
27th International Conference, FASE 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings

Fundamental
Approaches to
Software EngineeringLN

CS
 1

45
73

AR
Co

SS
Dirk Beyer
Ana Cavalcanti (Eds.)

Lecture Notes in Computer Science 14573

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Dirk Beyer • Ana Cavalcanti
Editors

Fundamental
Approaches to
Software Engineering
27th International Conference, FASE 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings

123

Editors
Dirk Beyer
LMU Munich
Munich, Germany

Ana Cavalcanti
University of York
York, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-57258-6 ISBN 978-3-031-57259-3 (eBook)
https://doi.org/10.1007/978-3-031-57259-3

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-0831-1976
https://doi.org/10.1007/978-3-031-57259-3
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wąsowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also

organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wąsowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luís Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

FASE 2024 is the 27th edition of the International Conference on Fundamental
Approaches to Software Engineering conference series. It is a forum for researchers,
developers, and users interested in the broad field of software engineering. The topics
of interest include requirements, design, architecture, modeling, applications of AI to
software engineering and software engineering for AI-based systems, quality, model-
driven engineering, processes, and software evolution. FASE 2024 was part of the 27th
federation of European Joint Conferences on Theory and Practice of Software (ETAPS
2024), held on April 6–11 in Luxembourg.

There were four submission categories for FASE:

1. Research papers clearly identify and justify a principled advance to the funda-
mentals of software engineering.

2. Empirical-evaluation papers evaluate existing software challenges or critically
validate current proposed solutions with scientific means, that is, by empirical
studies, controlled experiments, rigorous case studies, and simulations.

3. New Ideas and Emerging Results (NIER) papers seek to disrupt the status quo with
forward-looking, thought-provoking, innovative research on the foundations of
software engineering, as well as lessons learned from the past.

4. Tool demonstration papers present a new tool, a new tool component, or novel
extensions to an existing tool.

This year, 41 papers were submitted to FASE in categories 1–4, consisting of 29
research papers, 2 empirical-evaluation papers, 8 NIER papers, and 2 tool-demon-
stration papers. Each paper was reviewed by three program-committee members, who
could make use of subreviewers. It was possible to submit an artifact for evaluation
alongside a paper, if made long-term available and declared in the Data-Availability
Statement. The program committee extensively discussed the papers and ultimately
decided to accept 14 papers included here. This is an acceptance rate of 34%.

Artifacts comprise tools, models, proofs, or other data for validating the results of a
paper. The artifact-evaluation committee (AEC) reviewed the artifacts based on their
documentation, ease of use, and, most importantly, whether the results presented in the
corresponding paper could be accurately reproduced.

In an endeavor to unify artifact evaluation (AE) processes across ETAPS confer-
ences, the FASE 2024 AEC joined forces with the ESOP and FoSSaCS AECs. Across
all three conferences, AEC members were recruited by direct nominations from PC
members or the AEC chairs.

The joint call for artifacts imposed few requirements on the artifact packaging; in
particular, there was no predefined environment in which submitted artifacts were
supposed to be executable. Instead, author-defined container and VM submissions were
strongly encouraged and this advice was followed by most authors. We also chose to

adopt a documentation standard. This greatly facilitated artifact reviews, and we
believe that it will equally facilitate future use of the artifacts.

AEC members from all three committees bid to review artifacts submitted by all the
conferences. This gave the AEC flexibility to accommodate varying submission
numbers or topic of artifacts from the conferences. The evaluation was conducted in
three phases, an initial “kick-the-tires” phase and author response, a main review phase,
and a discussion phase. FASE 2024 received 6 artifact submissions. All of them met
the requirements for the “Artifacts Available” badge. In addition, 4 submissions were
awarded the “Artifacts Evaluated – Functional” badge and 2 submissions the “Artifacts
Evaluated – Reusable” badge.

FASE 2024 hosted the ETAPS unifying keynote by Sandrine Blazy from the
University of Rennes, France. These proceedings contain the invited paper supporting
the keynote. In From Mechanized Semantics to Verified Compilation: The Clight
Semantics of CompCert, Blazy reports on the use of operational semantics in the very
successful CompCert project based on the Coq theorem prover.

FASE 2024 also hosted Test-Comp 2024, the 6th International Competition on
Software Testing. This event evaluated 20 software systems for automatic test-case
generation for C programs. From the 14 actively participating teams, the jury selected 5
short papers that describe their test systems. These papers are also published in these
proceedings. They were reviewed by a separate program committee (jury). Each of the
Test-Comp papers was assessed by at least four jury members. Two sessions in the
FASE program were reserved for the presentation of the results: (1) a presentation
session with a report by the competition chair and summaries by the developer teams,
and (2) an open community meeting.

Finally, we would like to thank all the people who helped to make FASE 2024
successful. First, we thank the authors for submitting their papers. The PC members
and additional reviewers did a great job: they contributed informed and detailed reports
and engaged in the PC discussions. We thank Jan Kofron and Sebastian Junges for their
support in our use of HotCRP for artifact evaluation. We thank Reiner Hähnle, chair
of the FASE steering committee, and Marieke Huisman, chair of the ETAPS steering
committee, for their valuable advice. Lastly, we would like to thank the overall
organization team of ETAPS 2024.

February 2024 Dirk Beyer
PC Chair, Competition Chair

Ana Cavalcanti
PC Chair

Stefan Winter
AEC Chair

viii Preface

Organization

Program Committee

Dirk Beyer (Chair) LMU Munich, Germany
Ana Cavalcanti (Chair) University of York, UK
Erika Abraham RWTH Aachen, Germany
Maurice ter Beek Italian National Research Council, Italy
Ipek Caliskanelli RACE/UKAE, UK
Lucas Cordeiro University of Manchester, UK
Priyanka Darke Tata Consulting, India
Bernd Fischer Stellenbosch University, South Africa
Stijn de Gouw Open Universiteit, Netherlands
Reiner Haehnle TU Darmstadt, Germany
Einar Broch Johnsen University of Oslo, Norway
Leen Lambers BTU Cottbus-Senftenberg, Germany
Thierry Lecomte CLEARSY, France
Mercedes G. Merayo Universidad Complutense de Madrid, Spain
Marjan Mernik University of Maribor, Slovenia
Vince Molnár Budapest TU, Hungary
Jose Nuno Oliveira University of Minho, Portugal
Patrizio Pelliccione Gran Sasso Science Institute, Sweden
Luigia Petre Åbo Akademi University, Finland
Matteo Rossi University of Milan, Italy
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Marielle Stoelinga University of Twente, Netherlands
Jun Sun Singapore Management University, Singapore
Sebastian Uchitel University of Buenos Aires, Argentina
Daniel Varro McGill University, Canada
Vesal Vojdani University of Tartu, Estonia
Andrzej Wasowski IT University Copenhagen, Denmark
Manuel Wimmer University of Linz, Austria
Naijun Zhan Chinese Academy of Sciences, China

ESOP/FASE/FoSSaCS Joint Artifact Evaluation Committee

AEC Co-chairs

Tobias Kappé Open Universiteit and ILLC, University of Amsterdam,
The Netherlands

Ryosuke Sato University of Tokyo, Japan
Stefan Winter LMU Munich, Germany

AEC Members

Arwa Hameed Alsubhi University of Glasgow, UK
Levente Bajczi Budapest University of Technology and Economics,

Hungary
James Baxter University of York, UK
Matthew Alan Le Brun University of Glasgow, UK
Laura Bussi University of Pisa, Italy
Gustavo Carvalho Universidade Federal de Pernambuco, Brazil
Chanhee Cho Carnegie Mellon University, USA
Ryan Doenges Northeastern University, USA
Zainab Fatmi University of Oxford, UK
Luke Geeson University College London, UK
Hans-Dieter Hiep Leiden University, Belgium
Philipp Joram Tallinn University of Technology, Estonia
Ulf Kargén Linköping University, Sweden
Hiroyuki Katsura University of Tokyo, Japan
Calvin Santiago Lee Reykjavík University, Iceland
Livia Lestingi Politecnico di Milano, Italy
Nuno Macedo University of Porto and INESC TEC, Portugal
Kristóf Marussy Budapest University of Technology and Economics,

Hungary
Ivan Nikitin University of Glasgow, UK
Hugo Pacheco University of Porto, Portugal
Lucas Sakizloglou Brandenburgische Technische Universität Cottbus-

Senftenberg, Germany
Michael Schröder TU Wien, Austria
Michael Schwarz TU Munich, Germany
Wenjia Ye University of Hong Kong, China

Test-Comp 2024 Program Committee and Jury

Dirk Beyer (Chair) LMU Munich, Germany
Sumesh Divakaran College of Engineering Trivandrum, India
Marie-Christine Jakobs LMU Munich, Germany
Zhenbang Chen National University of Defense Technology, China
Marek Trtík Masaryk University, Brno, Czechia
Mohannad Aldughaim University of Manchester, UK/King Saud University,

Saudi Arabia
Kaled Alshmrany University of Manchester, UK/Institute of Public

Administration, Saudi Arabia
Yurii Kostyukov RnD Toolchain Labs, Huawei, China
Léo Andrès OCamlPro/LMF, France
Thomas Lemberger LMU Munich, Germany
Adam Štafa Masaryk University, Brno, Czechia
Martin Jonáš Masaryk University, Brno, Czechia

x Organization

Matthias Kettl LMU Munich, Germany
Joxan Jaffar National University of Singapore, Singapore
Max Barth LMU Munich, Germany

FASE 2024 Steering Committee

Reiner Hähnle (Chair) TU Darmstadt, Germany
Dirk Beyer Ludwig-Maximilians-Universität München, Germany
Ana Cavalcanti University of York, UK
Reiko Heckel University of Leicester, UK
Marie-Christine Jakobs Ludwig-Maximilians-Universität München, Germany
Einar Broch Johnsen University of Oslo, Norway
Leen Lambers BTU Cottbus-Senftenberg, Germany
Tiziana Margaria University of Limerick, Ireland
Mariëlle Stoelinga University of Twente, The Netherlands
Gabriele Taentzer Philipps-Universität Marburg, Germany
Sebastian Uchitel Universidad de Buenos Aires, Argentina/Imperial

College London, UK
Andrzej Wąsowski IT University of Copenhagen, Denmark
Heike Wehrheim University of Oldenburg, Germany
Manuel Wimmer Johannes Kepler University Linz, Austria

Additional Reviewers

Supriya Agrawal
Jie An
Pedro Antonino
Aren Babikian
Carlos Baquero
Davide Basile
Richard Bubel
Yan Cai
Michele Chiari
Bharti Chimdyalwar
Frank de Boer
Pieter-Tjerk de Boer
Daniel Drodt
João Faria
Luca Favalli
Máté Földiák
Hans-Dieter Hiep
Karoliine Holter

Violet Ka I Pun
Eduard Kamburjan
Kristóf Marussy
Milán Mondok
Simon Nagy
Michel Reniers
Arend Rensink
Maya R. Ayu Setyautami
Marco Scaletta
Jorge Sousa Pinto
Martin Steffen
R. Venkatesh
Adele Veschetti
Erik Voogd
Shuling Wang
Bohua Zhan
Bertalan Zoltán Péter

Organization xi

Contents

From Mechanized Semantics to Verified Compilation: the Clight Semantics
of CompCert . 1

Sandrine Blazy

Foundations for Query-based Runtime Monitoring of Temporal Properties
over Runtime Models . 22

Lucas Sakizloglou, Holger Giese, and Leen Lambers

Probabilistic Runtime Enforcement of Executable BPMN Processes 56
Yliès Falcone, Gwen Salaün, and Ahang Zuo

Combining Look-ahead Design-time and Run-time Control-synthesis for
Graph Transformation Systems . 77

He Xu, Sven Schneider, and Holger Giese

Formal Specification of Trusted Execution Environment APIs 101
Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Monitoring the Future of Smart Contracts . 122
Margarita Capretto, Martin Ceresa, and César Sánchez

Comprehending Object State via Dynamic Class Invariant Learning 143
Jan H. Boockmann and Gerald Lüttgen

Smart Issue Detection for Large-Scale Online Service Systems Using
Multi-Channel Data . 165

Liushan Chen, Yu Pei, Mingyang Wan, Zhihui Fei, Tao Liang, and
Guojun Ma

Refinement Verification of OS Services based on a Verified Preemptive
Microkernel . 188

Ximeng Li, Shanyan Chen, Yong Guan, Qianying Zhang, Guohui Wang,
and Zhiping Shi

Fuzzy quantitative attack tree analysis . 210
Thi Kim Nhung Dang, Milan Lopuhaä-Zwakenberg,
and Mariëlle Stoelinga

Towards Reliable SQL Synthesis: Fuzzing-Based Evaluation and
Disambiguation. 232

Ricardo Brancas, Miguel Terra-Neves, Miguel Ventura,
Vasco Manquinho, and Ruben Martins

Invariant-based Program Repair . 255
Omar I. Al-Bataineh

Can ChatGPT support software verification?. 266
Christian Janßen, Cedric Richter, and Heike Wehrheim

Combining Deductive Verification with Shape Analysis 280
Téo Bernier, Yani Ziani, Nikolai Kosmatov, and Frédéric Loulergue

First Steps towards Deductive Verification of LLVM IR 290
Dré van Oorschot, Marieke Huisman, and Ömer Şakar

FDSE: Enhance Symbolic Execution by Fuzzing-based Pre-Analysis
(Competition Contribution). 304

Guofeng Zhang, Ziqi Shuai, Kelin Ma, Kunlin Liu, Zhenbang Chen,
and Ji Wang

Fizzer: New Gray-Box Fuzzer (Competition Contribution) 309
Martin Jonáš, Jan Strejček, Marek Trtík, and Lukáš Urban

KLEEF: Symbolic Execution Engine (Competition Contribution) 314
Aleksandr Misonizhnik, Sergey Morozov, Yurii Kostyukov,
Vladislav Kalugin, Aleksei Babushkin, Dmitry Mordvinov,
and Dmitry Ivanov

TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest
Precondition Interpolation (Competition Contribution) 320

Arpita Dutta, Rasool Maghareh, Joxan Jaffar, Sangharatna Godboley,
and Xiao Liang Yu

Ultimate TestGen: Test-Case Generation with Automata-based Software
Model Checking (Competition Contribution) . 326

Max Barth, Daniel Dietsch, Matthias Heizmann,
and Marie-Christine Jakobs

Author Index . 331

xiv Contents

From Mechanized Semantics to Verified
Compilation: the Clight Semantics of CompCert

Abstract. CompCert is a formally verified compiler for C that is spec-
ified, programmed and proved correct with the Coq proof assistant.
CompCert was used in industry to compile critical embedded software.
Its correctness proof states that the compiler does not introduce bugs.
This semantic preservation property involves the formal semantics of the
source and target languages of the compiler.
Reasoning on C semantics to prove compiler correctness is challenging,
as C is a real language that was not designed with semantics in mind.
This paper presents the operational style that was designed for the C
semantics of CompCert in order to facilitate the mechanized reasoning
on terminating and diverging programs, and details the semantics of the
Clight source language of CompCert.

Keywords: operational semantics of programming languages · verified
compilation · machine-checked proofs

1 Introduction

Deductive verification provides very strong mathematical guarantees that a piece
of software is correct with respect to its specification, written in a logical lan-
guage to avoid ambiguities. A proof is conducted to provide these guarantees.
The outcome of deductive verification is a verified software, consisting of an
implementation and a proof that can be replayed or given to a certification au-
thority for scrutiny. This proof requires reasoning on properties related to the
involved programming language; they become mathematically precise as soon
as this language has formal semantics. Defining and reasoning on realistic lan-
guages requires mechanized semantics and machine-checked proofs, ensuring that
the proof is complete and that no semantic rule has been forgotten.

There are mainly two families of deductive proof tools (also known as program
provers), each with its pros and cons: automatic tools (such as Dafny [22], F* [30]
or Why3 [15]) where formulas (expressing pre- and post-conditions and invari-
ants) are discharged to logic solvers, and interactive proof assistants (e.g., Coq [17],
Isabelle [2] or Agda [1]) where the user decides how to reason and conducts the
proof interactively with the tool, that automates part of the reasoning, ensures
that the proof is complete and follows the laws of mathematical logic. Automatic
program provers are easier to use when the discharged formulas are proved with-
out requiring extra work (namely adding assertions to help the logic solvers).
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 1–21, 2024.
https://doi.org/10.1007/978-3-031-57259-3_1

Sandrine Blazy(B)

Inria, Univ Rennes, CNRS, IRISA, Rennes, France

sandrine.blazy@irisa.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_1&domain=pdf
http://orcid.org/0000-0002-0189-0223

However, when program provers fail to prove some formulas, interactive proof
assistants are better adapted to conduct more advanced proofs. A prototypical
example is a proof requiring reasoning on a data structure that is not used by
the software under scrutiny, but only defined for the sole purpose of the proof
(see for instance the proof of correctness of the famous majority algorithm [12]).

One of the first programs whose proof was mechanized in LCF is a rudi-
mentary compiler for arithmetic expressions [31]. In 1972, when this paper was
published, a compiler was a representative example of a particularly complex
program. The specification of a compiler is rather simple: the generated code
must behave as prescribed by the semantics of the source program. This correct-
ness property is a semantic preservation property from the source language to
the target language of the compiler. It becomes mathematically precise as soon
as these languages are defined by formal semantics.

Nowadays, the compiler remains a particularly complex piece of software (due
to the numerous optimizations it performs to generate efficient code). Moreover,
it is the mandatory point of passage in the software production chain. Verifying
the compiler provides a means of ensuring that no errors are introduced during
compilation, and of preserving at target level the guarantees obtained at source
level. The idea of having a single theorem demonstrated once and for all, along
with a readable proof, was already present in 1972, but it took several decades
for verified compilation to develop and scale up.

CompCert is the first optimizing compiler for the C language targeting differ-
ent assembly languages and used in safety-critical industries (to compile mission-
critical embedded software used in avionics and nuclear power), with a mech-
anized proof of correctness [23, 27, 19]. In industry, the interest for CompCert
arose from a need to improve the performances of the generated code, while
guaranteeing the traceability requirements required by the certification author-
ities in force in these critical fields, which CompCert has indeed provided.

Developing a verified compiler requires both programming the compiler using
the programming language of the proof assistant (so that it runs efficiently on real
programs), and defining a semantic model and abstractions to reason about, in
order to conduct the correctness proof. Mechanized reasoning on C-like languages
is tricky; it requires a semantic style that is adapted to inductive reasoning and
some associated reasoning principles. In CompCert, the chosen proof technique
is the use of simulation diagrams between program executions, which required
to define a new semantic model that is detailed in this paper. The semantic
model and proof technique scale to realistic languages like C. They are general
enough to be applied to all the intermediate languages of the compiler. The
proof technique was extended and successfully reused in order to ensure other
properties than CompCert correctness [5–7].

This paper is about mechanized operational semantics for compiler verifi-
cation and their application to the CompCert compiler, with a focus on the
Clight semantics, that significantly evolved since its first published version [9].
The Clight language is the preferred language to get guarantees from C pro-
grams and then compile them with CompCert (e.g., [18, 13, 11, 8, 21, 16, 33]).

2 S. Blazy

This paper aims at providing the prerequisites needed to design new program
transformations or analyses operating over Clight.

All results presented in this paper have been mechanically verified using the
Coq proof assistant [25, 32, 3]. This paper is organized as follows. First, Sec-
tion 2 recalls the early days of compiler verification. Then, Section 3 introduces
a small-step semantics for terminating programs written using a toy imperative
language, together with the associated proof technique based on simulation di-
agrams. Section 4 extends this language and its semantics to observe diverging
program executions; it defines an alternate semantics that facilitates the mecha-
nized proofs. Section 5 defines the semantics of Clight. Related work is discussed
in Section 6, followed by conclusions.

Notations. For functions returning “option” types, ⌊x⌋ (read: “some x”) corre-
sponds to success with return value x, and ϵ (read: “none”) corresponds to failure.
In grammars and rules, a∗ denotes 0, 1 or several occurrences of syntactic cate-
gory a, and a? denotes an optional occurrence of syntactic category a. ϵ denotes
the empty list, [x] denotes a list made of a single element x and h :: t denotes the
list with head h and tail t. The list l++l′ denotes the concatenation of two lists l
and l′. Given a binary relation R, R∗ denotes its reflexive transitive closure and
R+ its transitive closure.

2 Historical Example: a First Verified Compiler

The idea of verifying a compiler and stating a theorem for compiler correctness
dates back to 1967 [29]. The proof of this theorem was mechanized in 1972
using LCF [31]. This compiler translates in a single pass any simple arithmetic
expression a to a code p, namely a list of instructions of a simple stack machine
(see Fig. 1); this is the familiar translation to reverse Polish notation used by
old HP pocket calculators.

For instance, the expression 1+2 is compiled to the code iconst 1 :: iconst 2 ::
iplus :: ϵ. The stack contains numbers and the machine instructions pop their
arguments off the stack and push their results back. This machine is close to a
subset of the Java virtual machine. The machine code for an expression a ex-
ecutes in sequence, and deposits the value of a at the top of the stack π. An
instruction either pushes an integer, or pushes the current value of a variable,
or pops two integers then pushes their sum.

The source and target languages are defined in Fig. 1 by their semantics.
In [29], these are functions interpreting expressions or instructions. In this paper,
we rather use inference rules to abstract away the definitions of all our semantics.
The semantic judgments for evaluating expression a and executing code p are
respectively σ ⊢ a ⇒ v and σ, π ⊢ p → π′, where a semantic element, the store
σ is injected to assign integer values to variables, and the evaluation stack π
contains temporary integer values.

The correctness theorem of the compiler is Theorem 2: it states that for
any expression a, its value v computed by the semantics of the source language

From Mechanized Semantics to Verified Compilation 3

Arithmetic expressions:
a ::= x | c | a + a source language (variable, integer constant, addition)

constant
σ ⊢ c⇒ c

variable
σ ⊢ x⇒ σ(x)

addition
σ ⊢ a1 ⇒ v1 σ ⊢ a2 ⇒ v2

σ ⊢ a1 + a2 ⇒ v1 + v2

VM instructions:
i ::= ivarx | iconst c | iplus target language

empty stack
σ, ϵ ⊢ c→ c

constant
σ, c :: π ⊢ p→ π′

σ, π ⊢ iconst c :: p→ π′

variable
σ, σ(x) :: π ⊢ p→ π′

σ, π ⊢ ivarx :: p→ π′

addition
σ, (m+ n) :: π ⊢ p→ π′

σ, n :: m :: π ⊢ iplus :: p→ π′

other
σ, π ⊢ p→ π′

σ, π ⊢ i :: p→ π′

Translation from arithmetic expressions to machine code (compile function):

x 7→ ivarx c 7→ iconst c
a1 7→ i1 a2 7→ i2

a1 + a2 7→ i1 ++i2 ++[iplus]

Theorem 1 (first correctness). ∀a σ π, σ ⊢ a ⇒ v → σ, π ⊢ compile(a)→ v :: π

Proof. By induction on the structure of arithmetic expressions.

Theorem 2 (compiler correct). ∀a σ, σ ⊢ a ⇒ v → σ, ϵ ⊢ compile(a)→ [v]

Proof. By theorem 1.

Fig. 1: Historical example: a first verified compiler.

is exactly the value returned by executing the compiled code compile(a). This
theorem is proved only once, for any expression given as input to the compiler.
The verification of this tiny compiler is now taught as an exercise in masters
courses (e.g., [25, 32]). It is an illustrative example of the need to generalize
a theorem, so that it can be proved by induction (here on expressions). This
explains why Theorem 1 is proved by induction on expressions and used to
prove Theorem 2, the main theorem for compiler correctness.

3 A First Semantics for a Toy Imperative Language

The previous section defines a big-step semantics for a rudimentary language
for arithmetic expressions. In this section, we first extend this language (into a
toy imperative language called IMP), and then introduce simulation diagrams,
a convenient proof technique for reasoning on IMP programs.

4 S. Blazy

Boolean expressions:
b ::= true | false | a = a | a ≤ a |∼ b | b ∧ b source language

IMP commands:
c ::= skip | x := a | c; c skip, assignment, sequence
| if (b) c else c | while (b) c conditional, while loop

equality test
σ ⊢ a1 ⇒ v1 σ ⊢ a2 ⇒ v2

σ ⊢ a1 + a2 ⇒ v1 + v2

negation
σ ⊢ b ⇒ v

σ ⊢∼ b ⇒∼ v

and
σ ⊢ b1 ⇒ v1 σ ⊢ b2 ⇒ v2

σ ⊢ b1 + b2 ⇒ v1 + v2

assign
σ ⊢ a ⇒ v

(x := a, σ)→ (skip, σ[x→ v])

if true
σ ⊢ b ⇒ true

(if (b) c1 else c2, σ)→ (c1, σ)

if false
σ ⊢ b ⇒ false

(if (b) c1 else c2, σ)→ (c2, σ)

sequence done
(skip; c, σ)→ (c, σ)

sequence
(c1, σ1)→ (c2, σ2)

(c1; c, σ1)→ (c2; c, σ2)

while done
σ ⊢ b ⇒ false

(while (b) c, σ)→ (skip, σ)

while loop
σ ⊢ b ⇒ true

(while (b) c, σ)→ (c; (while (b) c), σ)

Fig. 2: IMP operational semantics: big-step semantics for expressions, and small-
step semantics for commands.

3.1 Small-step Semantics

IMP is made of arithmetic expressions (reused from Section 2), boolean expres-
sions and commands (skip, assignment, sequence, conditional and loop). Boolean
expressions are used in conditionals and loops. IMP is defined in Fig. 2, where
the semantics of arithmetic expressions defined in Fig. 1 is reused.

Semantics observe the possible behaviors of programs and are defined using
an operational style, that is the preferred style for machine-checked reasoning
about semantics. Operational semantics consist of big-step semantics and small-
step semantics, and both styles are equivalent. Moreover, proving this equiva-
lence is a valuable way of getting confidence in the semantics and supporting
both styles may be interesting, as it offers the possibility of choosing the most
appropriate one for different needs.

Choosing a style may be a matter of taste. However, big-step semantics are
not adapted to define in a natural way some semantic features such as unstruc-
tured control, diverging and concurrent executions, whereas small-step semantics
are more suitable. Because of while loops (e.g., while (true) skip), the execution
of IMP programs may diverge, contrary to the evaluation of IMP expressions.

From Mechanized Semantics to Verified Compilation 5

So, we rather choose small-step semantics to define IMP commands, and big-step
semantics to define IMP expressions.

The small-step semantics is a reduction semantics between semantic states.
A semantic state is a pair (c, σ) made of a command and a store. The semantics
takes the form of a relation (c, σ) → (c′, σ′), where a command c is reduced
into a command c′ in an execution step. The c′ command represents all the
remaining steps and σ′ is the store resulting from this computation step. The
execution of a sequence of commands c1; c2 first iterates the reduction of c1 until
the final reduction to skip. Then, c2 is reduced. The execution of a while loop
unfolds the loop when its body is executed at least once. So, this rule generates
a sequence of commands that will be further reduced.

The evaluation of expressions always terminates and the big-step seman-
tics of expressions observe these terminating behaviors. Contrary to big-step
semantics, small-step semantics observe in a similar and convenient way termi-
nating executions of commands together with diverging executions. The reflexive
transitive closure →∗ of this step relation is used to chain the finite transition
sequences. In a similar way, →∞ is used to chain infinite execution steps. Given
initial and final stores σi and σf , the termination of a command c is defined as
terminates(σi, c, σf) ≜ (c, σi)→∗ (skip, σf): c terminates when it is reduced to a
skip command. Given an initial store σ, the diverging execution of a command c
is defined as diverges(σi, c) ≜ (c, σi)→∞: all transition sequences starting from
σi are infinite.

Moreover, the semantics observe a third kind of behaviors, going wrong be-
haviors (or abnormal termination), that happen for instance because of a di-
vision by zero. Given a command c and a store σ, this behavior is defined as
goeswrong(σ, c) ≜ ∃c′, ∃σ′. (c, σ)→∗ (c′, σ′)∧ (c′, σ′) ↛∧c′ ̸= skip: after a finite
number of execution steps to (c′, σ′), this state cannot reduce (written ↛) and
it is not a final state as c′ differs from the skip command. However, abnormal
termination is not preserved by verified compilation, as compiler optimizations
may remove instructions leading to going wrong behaviors [24].

3.2 Reasoning on Operational Semantics: Simulation Diagrams

From a proof point of view, with big-step semantics, the proof follows naturally
the structure of programs and is conveniently conducted by induction on deriva-
tions of big-step executions. With small-step semantics, the standard proof tech-
nique is to rely on simulation diagrams between semantic states and involving
invariants defining matching states. Proving a simulation requires reasoning by
case analysis on each possible step. An interesting property of simulations is that
they are compositional: they are chained together to describe complete program
executions. Thus, the proof of correctness of a compiler pass mainly amounts to
the proof of a simulation, and the tricky part often consists in finding the right
invariants to preserve.

The choice between a big-step and a small-step style simply on the basis of
the adequacy to describe semantic features sometimes comes at the expense of
the choice of the proof technique. As an example, choosing a small-step style to

6 S. Blazy

S1 S2

S ′
1 S ′

2

≈ ≈

+

S1 S2

S ′
1

≈
≈

with m(S2) < m(S1)

Fig. 3: Forward-simulation diagram with measure. Black lines are hypotheses,
red lines are conclusions.

represent in a convenient way diverging executions of IMP prevents the use of
standard simulations. Indeed, these simulations also represent the troublesome
situation where infinitely many consecutive steps in the source program are sim-
ulated by no step at all in the target program. Such situations denote incorrect
program transformations, since some diverging behaviors are simulated by some
terminating behaviors. In order to handle diverging execution steps and rule out
this infinite stuttering problem, a common solution is to strengthen the invari-
ant of the simulation with the definition of a well-founded measure (over the
states of the source language) that for instance strictly decreases in cases where
stuttering could occur.

An example of a simulation diagram is the forward simulation diagram shown
in Fig. 3 and expressed in the following theorem. Given a program P1 and its
transformed program P2, each transition step in P1 (from semantic state S1 to
semantic state S2) must correspond to transitions in P2 (from semantic state S ′1
to semantic state S ′2) and preserve as an invariant a relation ≈ between semantic
states of P1 and P2. The measure m(·) is defined over the states of P1 and strictly
decreases in cases where stuttering could occur. The diagram ensures that if the
source program diverges, it must perform infinitely many non-stuttering steps,
so the compiled code executes infinitely many transitions.

4 Continuation-based Small-step Semantics for IMP

Proving simulation diagrams is a general and convenient technique to reason on
small-step semantics. This section explains how the simulation diagram defined
in Section 3 can be used to reason on a toy imperative language extended with
statements. Semantics describe the dynamic of programs, in contrast to com-
piler passes, which are statically defined, for any source program. A simulation
relates the two, by expressing that target execution steps must correspond to
source execution steps. One issue with standard small-step semantics is that they
describe intermediate steps involving new commands that are subcommands of
the source program (e.g., the last rule of Fig. 2).

A consequence of this spontaneous generation of commands is that the rea-
soning required to prove a simulation becomes difficult and complicates the def-
inition of the anti-stuttering measure. This section first defines an alternative
small-step semantics for IMP that is better adapted to mechanized reasoning.
Then, it shows that it is equivalent to the first small-step semantics.

From Mechanized Semantics to Verified Compilation 7

4.1 Semantic Rules

The solution adopted in CompCert is to define an original small-step style based
on continuations, where the new semantic states become triples, as the command
to be executed is explicitly decomposed into a sub-command c under focus, where
computation takes place, and a context k that describes the position of the sub-
command in the whole command; or, equivalently, a continuation that describes
the parts of the whole command that remain to execute once the sub-command
terminates. More precisely, the semantic states become of the shape (c, k, σ),
and the semantic judgment becomes (c, k, σ)⇝ (c′, k′, σ′). Continuations k are
of three kinds, defined in Fig. 4.

– The continuation stop means that nothing remains to be done once the sub-
command terminates. In other words, the sub-command under focus is the
whole command. This happens either at the beginning or at the end of a
program execution.

– A continuation c; k means that when the sub-command terminates, we will
then execute the command c, then continue as described by k.

– A continuation ⟲(b, c, k) means that when the sub-command c terminates,
we will then execute the loop while (b) c. When this loop terminates, we
will continue as described by k.

Dealing with continuations requires adding new semantic rules to define the
execution of commands. The evaluation of expressions remains unchanged. In
the end, there are three kinds of semantic rules (see Fig. 4):

– Computation rules evaluate arithmetic and boolean expressions, and modify
the triple accordingly. They are close to the rules of the previous semantics.

– Focusing rules describe how to replace the sub-command by a sub-sub-
command that must be executed first, enriching the continuation accord-
ingly.

– Resumption rules describe how to extract a continuation in order to execute
the next sub-command. More precisely, when the sub-command under focus
is skip, and therefore has terminated, resumption rules examine the head of
the continuation to find the next sub-command to focus on.

The semantics if IMP rules defines two focusing rules, one for sequences and
one for loops. Focusing on a sequence means executing its left part, while pushing
the right part to the current continuation. Focusing on a loop means executing its
body, while pushing the loop to the current context. The semantics also defines
two resumption rules. The resumption rule for a sequence is triggered when its
left part is reduced to the skip command; it then steps to the right part of the
sequence. The resumption rule for a loop steps to the next execution of the loop
body.

Thanks to continuations, semantic rules become genuine reduction rules. For
instance, an if command is now rewritten into a sub-command, namely one of
its branches. Moreover, as in the previous small-step semantics, termination and
divergence are defined using transition sequences. Initial semantic states are of

8 S. Blazy

Continuations:
k ::= stop | c; k | ⟲(b, c, k) stop, sequence, while

assign (computation)
σ ⊢ a ⇒ v

(x := a, k, σ)⇝ (skip, k, σ[x→ v])

sequence (focusing)
((c1; c2), k, σ)⇝ (c1, c2; k, σ)

if true (computation)
σ ⊢ b ⇒ true

(if (b) c1 else c2, k, σ)⇝ (c1, k, σ)

if false (computation)
σ ⊢ b ⇒ false

(if (b) c1 else c2, k, σ)⇝ (c2, k, σ)

while done (computation)
σ ⊢ b ⇒ false

(while (b) c, k, σ)⇝ (skip, k, σ)

while loop (computation + focusing)
σ ⊢ b ⇒ true

(while (b) c, k, σ)⇝ (c,⟲(b, c, k), σ)

skip sequence (resumption)
(skip, c; k, σ)⇝ (c, k, σ)

skip while (resumption)
(skip,⟲(b, c, k), σ)⇝ (while (b) c, k, σ)

Fig. 4: Continuation-based small-step semantics for IMP

the shape (c, stop, σi) and final states are of the shape (skip, stop, σf). Given
initial and final stores σi and σf , the termination of a command c is defined as
kterminates(σi, c, σf) ≜ (c, stop, σi)⇝∗ (skip, stop, σf). Given an initial store σi,
the diverging execution of c is defined as kdiverges(σi, c) ≜ (c, stop, σi)⇝∞.

4.2 Equivalence between the Two small-step Semantics

The equivalence between the two small-step semantics states that they agree
on which commands terminate and which commands diverge. In other words, it
amounts to the two following properties.

Theorem 3 (Equivalence of terminating behaviors).
∀c, σi, σf . terminates(c, σi, σf)↔ kterminates(c, σi, σf).

Theorem 4 (Equivalence of diverging behaviors).
∀c, σi. diverges(c, σi)↔ kdiverges(c, σi).

We use a simulation diagram to prove each theorem in a direction. More pre-
cisely, we only have to define the matching invariant ≈ between semantic states,
the anti-stuttering measure between source states. Conducting these proofs is
yet another opportunity to validate these semantics.

As an example, we show that every transition of the continuation semantics is
simulated by zero, one or several reduction steps. Given a semantic state (c, k, σ)
the measure is defined by a recursive function that counts the nesting of sequence
operators constructs in c. The invariant (c, k, σ) ≈ (c′, σ′) is defined in Fig. 5.

From Mechanized Semantics to Verified Compilation 9

build stop
(stop, c) ↪→ c

build seq
(k1, (c; c1)) ↪→ c′

((c1; k1), c) ↪→ c′

build loop
(k1, (c; while (b) c)) ↪→ c′

(⟲(b1, c1, k1), c) ↪→ c′

matching invariant
(k, c) ↪→ c′

(c, k, σ) ≈ (c′, σ)

Fig. 5: Equivalence between the two semantics: matching invariant

The command c′ is computed from the command c following the ↪→ function,
that takes the sub-command c and the continuation k, and rebuilds the whole
command. This is achieved by inserting c to the left of the nested sequence
constructors described by k. For instance, the second rule builds a sequence of
commands from the left command of a sequence and the sequence continuations
related to it. The proof of the simulation proceeds by structural induction on
continuations.

5 Clight Semantics

Simulation-based proof techniques scale to realistic languages such as C and
continuation-based semantics are the privileged style to facilitate compiler cor-
rectness proofs, as shown by their use in the CompCert compiler. There are two
C-like languages in CompCert, CompCertC the source language of the compiler
and Clight, that is a choice language to reason on C programs. This section
introduces some background on CompCert generic semantics. Then, it defines
the Clight semantics.

5.1 Form IMP to CompCert

In order to model the execution of programs written in realistic languages such
as C, the semantic judgments introduced in Section 4.1 need to be extended
in three directions. First, C programs are composed of two kinds of functions,
depending whether they are defined in the program (internal) or not (external,
that are declared with a name and a signature). So, to ensure some guarantees
on external functions, the semantics observe traces of input/output operations
performed during execution. These traces belong to program behaviors. Second,
because of pointer arithmetic, variables need to be generalized to left values, and
the store becomes a memory model storing different kinds of values, with different
permissions to prevent memory overflows. Third, because of the presence of
global, local and temporary variables and functions, semantic states are more
involved. This section gives the background to understand these three extensions
that are explained in more detail in [9, 24, 26].

10 S. Blazy

Instrumenting the semantics to collect traces of observables. Traces
of input/output operations (e.g., memory accesses to global volatile variables
used by hardware devices) are part of the observed behavior. The correctness
theorem is strengthened to show preservation of these observable effects (that
can not modify memory), and it becomes: if the source program terminates
(resp. diverges) and performs observable effects t, then the generated program
terminates (resp. diverges) and performs the same effects t, and has no other
behavior. Semantic judgments S → S ′ become S t−→ S ′, where the trace t is a
list of (possibly infinite) events. An execution step S ε−→S ′ means that no event
is triggered during this step.

Memory model. The memory model of CompCert is shared by all the lan-
guages of the compiler. It provides an abstract view of memory refined into a
concrete memory layout. The memory is a collection of disjoint blocks identified
by memory addresses, and with fixed lower and upper bounds. Blocks store val-
ues (i.e., byte-sized quantities) that can be either machine integers (stored on 32
and 64 bits), pointers, floating-point numbers, or undef. A pointer (or a memory
location) is a pair (ℓ, δ) made of a block identifier and an integer offset within
that block. The special undef value is also used to denote arbitrary bit patterns,
such as the value of uninitialized variables.

Basic memory operations are load, store, alloc, and free operations. Among
the properties of memory operations are good variables properties, that ensure
memory safety (e.g., no out-of-bound array access) in terminating and diverging
executions of programs. Moreover, memory operations are preserved by generic
memory transformations called extensions and injections. They preserve the
properties of memory operations. Last, in the C semantics of CompCert, each
variable allocation creates a new block, and the number of blocks decreases dur-
ing compilation.

Semantics states. Three environments are used in the semantic judgments for
Clight, in addition to the memory store.

– A global environment G maps global variables to memory blocks, and func-
tion pointers to their definitions. It does not change during evaluation and
execution.

– A local environment σ maps local variables to pairs made of a memory block
and a type.

– A temporary environment σl maps local temporaries (namely a special class
of local variables that do not reside in memory and whose address cannot
be taken) to values.

Semantic states all carry a memory store M , mapping addresses to values,
and a continuation k materializing the call stack. These states are of three kinds:

– regular states S(f, c, k, σ, σl,M), that are execution points within an internal
function f at statement c,

From Mechanized Semantics to Verified Compilation 11

Statements
c ::= skip empty statement

| aτ1
1 = aτ2

2 assignment to a left value
| id← aτ assignment to a temporary variable
| (aτ1

1)? = aτ2
2 ((aτ)∗) function call

| (aτ1
1)? = ef τ∗

ext (aτ)∗ builtin invocation
| c1; c2 sequence
| if (aτ) c1 else c2 conditional
| switch (aτ) ls multi-way test and branch
| loop (c1) c2 infinite loop
| break exit from the current loop
| continue next iteration of the current loop
| return aτ return from current function
| lbl : c labeled statement
| goto lbl jump to a label

Switch cases:
ls ::= ϵ | (lbl? : c) :: ls

Fig. 6: Clight syntax

– call states C(Fd, v∗, k,M), that are reached each time a function defined by
Fd is called; the state carries the parameters passing v∗ from the caller,

– return states R(v, k,M) from a caller to a callee, with resulting value v.

5.2 Clight Syntax

The syntax of Clight is defined in Fig. 6. Clight is a simplified version of the
CompCertC source language of CompCert, where expressions are pure, and as-
signments and function calls are commands instead of expressions. Clight ex-
pressions are annotated with their types and written aτ ; expressions are not
detailed in this paper as they are similar to those defined in [9]. A novelty in
expressions is the bitfield access mode for members of struct or unions.

Base statements are skip, assignments, function calls (with optional assign-
ment of the return value to a local variable) and builtin invocations, break,
continue and function return. Other statements describe the control flow: se-
quences, conditionals, loops, switch and goto statements.

An infinite loop written loop (c1) c2 executes c1 then c2 repeatedly. It is equiv-
alent to the C loop written for (; ; c1) c2. A continue in c1 branches to c2.
The three C loops are derived forms; a while loop while (e) c is defined as
loop ({if (e) skip else break}; c) skip, and a for loop for (c1; a2; c3) c4 is defined
as the sequence c1; loop (if (a2) skip else break; c3) c4. A switch statement con-
sists of an expression and a list of cases. A case is a labeled statement ⌊lbl⌋ : c
or the default case ϵ : c.

A program is composed of several definitions of functions, global variables
and struct and union types. A function definition Fd is either internal(f) or
external(ef, targs, tres, cconv). The definition of an internal function f is composed

12 S. Blazy

of a signature, local variables and a body (namely a statement, called f.body).
The definition of an external function ef only declares its signature.

The signature of a function f is composed of a return type called f.return,
the types of parameters and information cconv related to calling conventions
(e.g., the possibility to return struct for functions, or the use of old-style unpro-
totyped functions). External functions model input/output operations; they in-
clude system calls and compiler built-in functions (e.g., volatile reads and stores,
memory allocation and deallocation, and copy of memory blocks). Function calls
and built-in invocations are annotated with their signature.

5.3 Clight Semantics

The semantics of Clight is defined by the following semantic judgments. The
terminating (resp. diverging) execution of a whole program is defined using the
relation →∗ (resp. →∞), as in Section 3.

– The big-step evaluation G, σ, σl,M ⊢ aτ1
1 ⇐ (ℓ, δ), b of an expression aτ1

1 in
left-value position results in a memory location (ℓ, δ) that contains the value
of aτ1

1 and the bitfield designation b, that is the access mode for members of
structs or unions (either a plain field or a bitfield).

– The big-step evaluation G, σ, σl,M ⊢ aτ ⇒ v of an expression aτ computes
its value v.

– The big-step evaluation G, σ, σl,M ⊢ (aτ)∗ ⇒ v∗ of a list of expressions
computes a list of values.

– The small-step execution G ⊢ S
t−→S′ from a semantic state S steps to state

S′ and emits trace t.

The semantic rules for statements are defined in Fig. 7, Fig. 8 and Fig. 9.
The rules of Fig. 7 and Fig. 8 step within the currently-executing function and
do not trigger any external event, hence the empty trace ε in the rules. Fig. 7
defines the continuations for these statements and the semantics of assignments,
sequences of statements, loops, break and continue statements. The rule for if
statements is not shown as it is similar to the rule of Fig. 4.

As in Fig. 4, a continuation k consists of the remainder of a command c and a
control stack that describes the context in which k occurs. The stop and sequence
(;) continuations are defined as in Fig. 4. Two continuations are defined for loops:
⟳(c1, c2, k) means after c1 in loop (c1) c2, and ⟳⟳(c1, c2, k) means after c2 in
this loop. A continuation↗(k) is defined to catch in k a break statement arising
out of a switch statement. To handle a call to a function f , we need a new form
⇝(x?, f, σ, σl, k) of continuation representing pending function calls in k, given
the local (resp. temporary) environment σ (resp. σl) of the calling function and
the optional identifier x where the result is stored.

An assignment aτ1
1 := aτ2

2 to a left-value aτ1
1 evaluates aτ2

2 to a memory
location (ℓ, δ), and expression aτ1

1 to value v2, then casts v2 into v in order to
take into account the types of both expressions. The value v is stored at this
memory location, which may fail. Last, the memory M ′ is returned after storing

From Mechanized Semantics to Verified Compilation 13

Continuations:
k ::= stop | c; k | ⟳(c, c, k) | ⟳⟳(c, c, k) stop, sequence, loops
| ↗(k) |⇝(x?, f, σ, σl, k) switch, call

assign (computation)
G, σ, σl,M ⊢ aτ1

1 ⇐ (ℓ, δ), b G, σ, σl,M ⊢ aτ2
2 ⇒ v2

semCast(v2, a
τ2
2 , aτ1

1 ,m) = ⌊v⌋ G ⊢ τ1,m, (ℓ, δ) : b, v,m′

G ⊢ S(f, (aτ1
1 := aτ2

2), k, σ, σl,M)
ε−→S(f, skip, k, σ, σl,M

′)

set (computation)
G, σ, σl,M ⊢ aτ ⇒ v

G ⊢ S(f, (id← aτ), k, σ, σl,M)
ε−→S(f, skip, k, σ, σl[id→ v],M)

sequence (focusing)
G ⊢ S(f, (c1; c2), k, σ, σl,M)

ε−→S(f, c1, c2; k, σ, σl,M)

skip sequence (resumption)
G ⊢ S(f, skip, c; k, σ, σl,M)

ε−→S(f, c, k, σ, σl,M)

continue sequence (resumption)
G ⊢ S(f, continue, c; k, σ, σl,M)

ε−→S(f, continue, k, σ, σl,M)

break sequence (resumption)
G ⊢ S(f, break, c; k, σ, σl,M)

ε−→S(f, break, k, σ, σl,M)

loop (computation + focusing)
G ⊢ S(f, (loop (c1) c2), k, σ, σl,M)

ε−→S(f, c1,⟳(c1, c2, k), σ, σl,M)

skip or continue loop (resumption)
x ∈ {skip; continue}

G ⊢ S(f, x,⟳(c1, c2, k), σ, σl,M)
ε−→S(f, c2,⟳⟳(c1, c2, k), σ, σl,M)

break loop1 (resumption)
G ⊢ S(f, break,⟳(c1, c2, k), σ, σl,M)

ε−→S(f, skip, k, σ, σl,M)

break loop2 (resumption)
G ⊢ S(f, break,⟳⟳(c1, c2, k), σ, σl,M)

ε−→S(f, skip, k, σ, σl,M)

skip loop (resumption)
G ⊢ S(f, skip,⟳⟳(c1, c2, k), σ, σl,M)

ε−→S(f, loop (c1) c2, k, σ, σl,M)

Fig. 7: Clight semantics for statements (first rules)

the value v in the datum of type τ stored at memory location (ℓ, δ), and the

14 S. Blazy

label (computation)
G ⊢ S(f, (lbl : c), k, σ, σl,M)

ε−→S(f, c, k, σ, σl,M)

goto (computation + focusing)
findLabel(lbl, f.body, callCont(k)) = ⌊(c′, k′)⌋

G ⊢ S(f, (goto lbl), k, σ, σl,M)
ε−→S(f, c′, k′, σ, σl,M)

switch (computation + focusing)
G, σ, σl,M ⊢ aτ ⇒ v semSwitchArg(v, τ) = ⌊lbl⌋

G ⊢ S(f, (switch (aτ) sl), k, σ, σl,M)
ε−→S(f, seq(selectSwitch(lbl) = sl),↗(k), σ, σl,M)

skip break switch (resumption)
x ∈ {skip; break}

G ⊢ S(f, x,↗(k), σ, σl,M)
ε−→S(f, skip, k, σ, σl,M)

continue switch (resumption)
G ⊢ S(f, continue,↗(k), σ, σl,M)

ε−→S(f, continue, k, σ, σl,M)

Fig. 8: Clight semantics for goto and switch statements

statement is reduced to skip. An assignment id← aτ to a temporary variable id
evaluates aτ to a value v and updates the local environment accordingly.

The two rules for sequences are similar to the rules given in Fig. 4. The
execution of a continue statement in a loop body interrupts the current execution
of this loop body and triggers its next iteration. So, when a continue statement
is after c1 in a loop loop (c1) c2, then c2 is the next statement to execute and
the continuation is updated accordingly.

The execution of a break statement in a loop body terminates the execution of
the current loop body. So, the statements c1 and c2 of the loop body are popped
from the continuation stack. Moreover, when a continue or a break statement is
followed by a statement c, then c is not executed, hence it is popped from the
continuation stack. The resumption rule for loops steps to the execution of the
next execution of the loop body, when the continuation is a ⟳⟳ continuation.

Fig. 8 defines the semantics of labeled, goto and switch statements. The
execution of a labeled statement lbl : c steps to the execution of c. The execution
of a goto lbl statement in a function f first pops the continuation stack k until
a call or a stop, in order to remove from k its local context part. Then, from
this continuation callCont(k) representing the control flow from the last caller
of f , findLabel computes recursively (if any) the control flow in f from its entry
point until the statement labeled lbl. A new continuation k′ that extends k and
represents this control flow is then manufactured, and findLabel returns (if any)
the pair (c′, k′), where c′ is the leftmost sub-statement of c labeled lbl. The rule
thus steps to statement c′ and continuation k′, with no change in environments.

From Mechanized Semantics to Verified Compilation 15

The execution of a statement switch (aτ) sl first evaluates aτ into value v,
which is then casted into an unsigned integer when τ is an integer type (and
fails otherwise). The rule steps to the appropriate case of the switch, given the
value of the selector expression, and the corresponding statements are executed
(after being converted into a sequence of statements from a labeled statement).
In other words, the rules focus on a case switch and the continuation remembers
this control flow. This rule is general enough to model executions of unstructured
switch statements such as Duff’s device [14].

The execution of a break statement in a switch case terminates the execution
of this case. In other words, the execution of break (or a skip) statement in a
switch case steps to skip and updates the continuation into k. The execution of
a continue statement in a switch case updates the continuation into k as well,
while keeping the continue statement as the current statement.

The semantic rules involving call and return states are defined in Fig. 9. First,
the rule for a call to an internal function identified by a

τf
f evaluates a

τf
f into v

and each argument aτ of the function. The value v identifies the block where
the function definition Fd is stored in the global environment G, and funct(G, v)
returns this definition if any. The rule requires that the signature of the called
function matches the signature τf annotating the call, namely τf#sigOf(Fd).

The rule for a builtin invocation also evaluates the list of its arguments. A
builtin is an external function ef and the rule applies ef to arguments v∗: it
mainly checks that the builtin is known, that ef cannot modify the memory
state M , that v∗ are integers or floats and that they agree in number and types
with the function signature (see [24]).

The execution of a return statement frees in memory M all the blocks of the
current environment σ, and steps to a return state with the retuned value in any
(or undef otherwise), and updated continuation and memory state.

A step from a callstate with an internal function f steps to a regular state
to further execute the statements f.body of f . The semantics for allocation of
variables (hence the modified memory M ′) and binding of parameters is given
by functionEntry(f, v∗,M, σ, σl,M

′). Two semantics are supported, one where
parameters are local variables, reside in memory, and can have their address
taken, and the other where parameters are temporary variables and do not reside
in memory.

A step from a callstate with an external function ef steps directly to a return
state (to further return to its caller) after generating the appropriate event in
the trace t. Moreover, the rule applies ef to arguments v∗, to perform similar
checks to those performed by the rule for builtin invocation. Last, a step from
a return state either ends the program execution (when the call stack becomes
empty) or reaches the regular state of the caller that carries a skip statement
and the returned value v stored in the local environment.

16 S. Blazy

function call
G, σ, σl,M ⊢ a

τf
f ⇒ v G, σ, σl,M ⊢ (aτ)∗ ⇒ v∗

funct(G, v) = ⌊Fd⌋ τf#sigOf(Fd)

G ⊢ S(f, id? = a
τf
f ((aτ)∗), k, σ, σl,M)

ε−→C(Fd, v∗,⇝(id?, f, σ, σl, k),M)

builtin invocation
G, σ, σl,M ⊢ (aτ)∗ ⇒ v∗ G ⊢ ef(v∗),M

t−→ v,M ′

G ⊢ S(f, id? = ef τ∗
ext (aτ)∗, k, σ, σl,M)

t−→S(f, skip, k, σ, σl{id? ← v},M)

return 1
semCast(v, τ, f.return,m) = ⌊v′⌋ freeAll(M,σ) = ⌊M ′⌋

G ⊢ S(f, return ⌊aτ⌋, k, σ, σl,M)
ε−→R(v′, callCont(k),M ′)

return 0
freeAll(M,σ) = ⌊M ′⌋

G ⊢ S(f, return ϵ, k, σ, σl,M)
ε−→R(undef, callCont(k),M ′)

skip call
freeAll(M,σ) = ⌊M ′⌋

G ⊢ S(f, skip, k, σ, σl,M)
ε−→R(undef, k,M ′)

internal function
functionEntry(f, v∗,M, σ, σl,M

′)

G ⊢ C(internal(f), v∗, k,M)
ε−→S(f, f.body, k, σ, σl,M

′)

external function
G ⊢ ef(v∗),M

t−→ v,M ′

G ⊢ C(external(ef, targs, tres, cconv), v∗, k,M)
t−→R(v, k,m′)

returnstate
G ⊢ R(v,⇝(id?, f, σ, σl, k),M)

ε−→S(f, skip, k, σ, σl{id? ← v},M)

Fig. 9: Clight semantics for functions

6 Related Work

The semantics of the Clight language were first mechanized using big-step seman-
tics [9] that were targeting a smaller language and only observing terminating
behaviors. Then, a co-inductive interpretation of big-step semantics for diverg-
ing behaviors was defined [28]. However, this approach did not scale to conduct
compiler correctness proofs of CompCert, contrary to the current continuation-
based small-step semantics. Indeed, the cost for extending the correctness proof
to diverging behaviors was relatively high (and Coq support for coinductive
proofs is temperamental). Compared to [9], the Clight language was extended
to model assignments of temporary variables, single infinite loops (instead of C
lops), labeled and general goto statements and switch statements.

From Mechanized Semantics to Verified Compilation 17

Other mechanized semantics were defined for realistic languages such as Java,
the JVM [20] and JavaScript [10]. In [20], the authors define a big-step semantics
and a small-step semantics, which are proved equivalent. A correctness proof of
a two-stage compiler from Java to a virtual machine is proved correct using
the simulation proof technique. These semantics target a simpler compiler than
CompCert and only observe terminating behaviors and do not use continuations.

The idea of using continuations to facilitate some mechanized semantic rea-
soning first appeared in [4], where an axiomatic semantics (a.k.a. program logics)
was defined from an operational semantics. The considered language was Cminor,
a lower-level language than Clight, that is the target language of the CompCert
front-end. Thanks to continuations, the soundness proof of the axiomatic se-
mantics reuses the induction principles generated by Coq, thus avoiding to craft
error-prone induction principles. Continuation-based small-step semantics were
then used in the backend of the CompCert compiler [24].

7 Conclusion

This paper presented some operational styles for defining mechanized semantics
of programming languages, starting from a toy imperative language to the C lan-
guage. Exploration on toy languages is essential, but the results do not directly
scale to big languages. This paper details the Clight semantics of CompCert, a
reasonable proposal that works well in the context of compiler verification and
a choice language to reason on C programs.

The continuation-based small-step semantics style detailed in this paper is the
style chosen for all the languages of the CompCert compiler. It models terminat-
ing and diverging executions of programs and facilitates the semantic reasoning
using simulation proof techniques.

Mechanized semantics is a need shared by many verification efforts, not just
verified compilation. It is still a difficult task, especially for realistic programming
languages. Better tooling for defining and maintaining mechanized semantics for
realistic languages is needed.

References

1. Agda version 2.6.4 (2023), https://wiki.portal.chalmers.se/agda/Main/HomePage
2. Isabelle2023 (2023), https://isabelle.in.tum.de/
3. Online Coq development for CompCert version 3.13 (2023),

https://compcert.org/doc/index.html
4. Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K.,

Brandt, J. (eds.) Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4732, pp. 5–21. Springer (2007),
https://doi.org/10.1007/978-3-540-74591-4_3

5. Barrière, A., Blazy, S., Flückiger, O., Pichardie, D., Vitek, J.: Formally verified
speculation and deoptimization in a JIT compiler. Proc. ACM Program. Lang.
(POPL) (2021), https://doi.org/10.1145/3434327

18 S. Blazy

6. Barrière, A., Blazy, S., Pichardie, D.: Formally verified native code genera-
tion in an effectful JIT: turning the CompCert backend into a formally ver-
ified JIT compiler. Proc. ACM Program. Lang. 7(POPL), 249–277 (2023),
https://doi.org/10.1145/3571202

7. Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D., Trieu,
A.: Formal verification of a constant-time preserving C compiler. Proc. ACM
Program. Lang. 4(POPL), 7:1–7:30 (2020). https://doi.org/10.1145/3371075,
https://doi.org/10.1145/3371075

8. Blazy, S., Hutin, R.: Formal verification of a program obfuscation based
on mixed boolean-arithmetic expressions. In: Mahboubi, A., Myreen, M.O.
(eds.) Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-
15, 2019. pp. 196–208. ACM (2019). https://doi.org/10.1145/3293880.3294103,
https://doi.org/10.1145/3293880.3294103

9. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of
the C language. Journal of Automated Reasoning 43(3), 263–288 (2009).
https://doi.org/10.1007/s10817-009-9148-3, https://hal.inria.fr/inria-00352524

10. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudz-
iuniene, D., Schmitt, A., Smith, G.: A trusted mechanised javascript
specification. In: Jagannathan, S., Sewell, P. (eds.) The 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. pp. 87–100. ACM (2014). https://doi.org/10.1145/2535838.2535876,
https://doi.org/10.1145/2535838.2535876

11. Bourke, T., Brun, L., Dagand, P., Leroy, X., Pouzet, M., Rieg, L.: A for-
mally verified compiler for lustre. In: Cohen, A., Vechev, M.T. (eds.) Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-
23, 2017. pp. 586–601. ACM (2017). https://doi.org/10.1145/3062341.3062358,
https://doi.org/10.1145/3062341.3062358

12. Boyer, R.S., Moore, J.S.: MJRTY: A fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe. pp. 105–118.
Kluwer Academic Publishers (1991)

13. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd:
A separation logic tool to verify correctness of C programs. J. Autom.
Reason. 61(1-4), 367–422 (2018). https://doi.org/10.1007/S10817-018-9457-5,
https://doi.org/10.1007/s10817-018-9457-5

14. Duff, T.: (1983), www.lysator.liu.se/c/duffs-device.html
15. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Pro-

ceedings of the 22nd European Symposium on Programming. LNCS, vol. 7792,
pp. 125–128. Springer (Mar 2013). https://doi.org/10.1007/978-3-642-37036-6_8,
https://doi.org/10.1007/978-3-642-37036-6_8

16. Herklotz, Y., Pollard, J.D., Ramanathan, N., Wickerson, J.: Formal verifica-
tion of high-level synthesis. Proc. ACM Program. Lang. 5(OOPSLA) (oct 2021).
https://doi.org/10.1145/3485494, https://doi.org/10.1145/3485494

17. Inria: The Coq proof assistant reference manual (2022), http://coq.inria.fr, version
8.12.1

18. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-
verified C static analyzer. In: Rajamani, S.K., Walker, D. (eds.) Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-

From Mechanized Semantics to Verified Compilation 19

ples of Programming Languages, POPL 2015, Mumbai, India, January 15-
17, 2015. pp. 247–259. ACM (2015). https://doi.org/10.1145/2676726.2676966,
https://doi.org/10.1145/2676726.2676966

19. Kästner, D., Barrho, J., Wünsche, U., Schlickling, M., Schommer, B., Schmidt, M.,
Ferdinand, C., Leroy, X., Blazy, S.: CompCert: Practical Experience on Integrating
and Qualifying a Formally Verified Optimizing Compiler. In: ERTS2 2018 - 9th
European Congress Embedded Real-Time Software and Systems. pp. 1–9. 3AF,
SEE, SIE (Jan 2018)

20. Klein, G., Nipkow, T.: A machine-checked model for a java-like lan-
guage, virtual machine, and compiler. ACM Trans. Program. Lang.
Syst. 28(4), 619–695 (jul 2006). https://doi.org/10.1145/1146809.1146811,
https://doi.org/10.1145/1146809.1146811

21. Koenig, J., Shao, Z.: CompCertO: Compiling certified open c com-
ponents. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation.
p. 1095–1109. PLDI 2021, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3453483.3454097,
https://doi.org/10.1145/3453483.3454097

22. Leino, R.M.: Program Proofs. The MIT Press (2023),
https://mitpress.mit.edu/9780262546232/program-proofs/

23. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
(2009). https://doi.org/10.1145/1538788.1538814

24. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning
43(4), 363–446 (2009). https://doi.org/10.1007/s10817-009-9155-4

25. Leroy, X.: Coq development for the course "mechanized semantics" (2019),
https://github.com/xavierleroy/cdf-mech-sem/tree/master

26. Leroy, X., Blazy, S.: Formal verification of a c-like memory model and its uses
for verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008).
https://doi.org/10.1007/S10817-008-9099-0, https://doi.org/10.1007/s10817-008-
9099-0

27. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Comp-
Cert - A Formally Verified Optimizing Compiler. In: ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress. SEE (Jan 2016)

28. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004

29. Mac Carthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions.
Mathematical Aspects of Computer Science (1967)

30. Martínez, G., Ahman, D., Dumitrescu, V., Giannarakis, N., Hawblitzel,
C., Hriţcu, C., Narasimhamurthy, M., Paraskevopoulou, Z., Pit-Claudel,
C., Protzenko, J., Ramananandro, T., Rastogi, A., Swamy, N.: Meta-F*:
Proof automation with SMT, tactics, and metaprograms. In: Caires, L.
(ed.) Programming Languages and Systems. pp. 30–59. Springer Interna-
tional Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17184-1_2,
https://doi.org/10.1007/978-3-030-17184-1_2

31. Milner, R.J., Weyrauch, R.: Proving compiler correctness in a mechanized logic.
Machine Intelligence 7, 51–73 (1972)

32. Pierce, Benjamin, e.a.: Software foundations - volume 1: logical foundations (2023),
https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html, version 6.6

33. Tassarotti, J., Tristan, J.B.: Verified density compilation for a probabilis-
tic programming language. Proc. ACM Program. Lang. 7(PLDI) (jun 2023).
https://doi.org/10.1145/3591245, https://doi.org/10.1145/3591245

20 S. Blazy

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

From Mechanized Semantics to Verified Compilation 21

http://creativecommons.org/licenses/by/4.0/

Foundations for Query-based Runtime Monitoring
of Temporal Properties over Runtime Models

1 Brandenburg University of Technology, Cottbus, Germany

2 Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany

Abstract. In model-driven engineering, runtime monitoring of systems
with complex dynamic structures is typically performed via a runtime
model capturing a snapshot of the system state: the model is represented
as a graph and properties of interest as graph queries which are evaluated
over the model online. For temporal properties, history-aware runtime
models encode a trace of timestamped snapshots, which is monitored
via temporal graph queries. In this case, the query evaluation needs to
consider that a trace may be incomplete, thus future changes to the
model may affect current answers. So far there is no formal foundation for
query-based monitoring over runtime models encoding incomplete traces.
In this paper, we present a systematic and formal treatment of incomplete
traces. First, we introduce a new definite semantics for a first-order
temporal graph logic which only returns answers if no future change
to the model will affect them. Then, we adjust the query evaluation
semantics of a querying approach we previously presented, which is based
on this logic, to the definite semantics of the logic. Lastly, we enable
the approach to keep to its efficient query evaluation technique, while
returning (the more costly) definite answers.

1 Introduction

Modern safety-critical systems, e.g., smart healthcare and autonomous trans-
portation, consist of numerous interconnected technologies such as sensors, smart
devices, and information systems [15]. These systems are human-in-the-loop and
operate in highly dynamic environments [16]. Moreover, they are real-time, i.e.,
their safe operation depends on the timing of their actions, and missed deadlines
for these actions may lead to hazardous situations [46]. These characteristics
hinder complete quality assurance during the design of such systems and increase
the uncertainty about their behavior at runtime. Consequently, their safe opera-
tion relies on formally precise Runtime Monitoring (RM) techniques [34], which
are capable of handling the complex underlying structure and its dynamic [13]
as well as timing constraints when monitoring the system behavior [4].

As shown by recent surveys [9, 52], in model-driven engineering, RM of
systems with complex dynamic structures is typically performed via a (structural)
Runtime Model (RTM) [12] capturing a snapshot of the system state: the model
is represented as a graph of interacting components and properties of interest
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 22–55, 2024.
https://doi.org/10.1007/978-3-031-57259-3_2

Lucas Sakizloglou1(B) , Holger Giese2 , and Leen Lambers1

lucas.sakizloglou@b-tu.de

http://orcid.org/0000-0001-6971-1589
http://orcid.org/0000-0002-4723-730X
http://orcid.org/0000-0001-6937-5167
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_2&domain=pdf

as graph queries which are evaluated over the model online; query matches
constitute monitoring issues. For efficiency, the evaluation of graph queries is
based on methods which afford incremental and change-driven evaluation [54],
i.e., triggered only when changes to the RTM are relevant to a query.

For temporal properties, history-aware RTMs capture past changes to the
model and their timing [11], thereby encoding a trace of timestamped snapshots.
These RTMs are then monitored via the evaluation of temporal graph queries
which specify the ordering and timing constraints that matches should satisfy. In
this case, the query evaluation needs to consider that the trace encoded by the
history-aware RTM may be incomplete, i.e., the execution may be ongoing, and
hence future changes to the RTM may affect current query answers. So far there
is no formal foundation for temporal-query-based RM over incomplete RTMs.

In our previous work, we presented a querying approach for the evaluation
of temporal graph queries over history-aware RTMs named InTempo [49]—see
Section 2.3 for an overview and Fig. 1 for an illustration. InTempo advances the
state-of-the-art by: enabling a formally precise answer set which pairs matches
with their temporal validity , i.e., the set of all time points for which a match
exists and satisfies a temporal property according to a first-order temporal graph
logic; featuring sound methods for incremental and change-driven evaluation as
well as the optional pruning of the RTM, i.e., the removal of temporally irrelevant
history. Extensive experimental evaluation showed that our implementation of
InTempo efficiently evaluated complex queries over considerably large models
(approx. from 10K to 48M elements) [49]. The experimental evaluation included
an RM application scenario, in which InTempo evaluated queries faster than an
RTM-based tool and a tool from the related RM approach known as Runtime
Verification (RV).

However, the formal foundation of InTempo assumes that the RTM encodes
a complete trace. For the RM scenario, we equipped InTempo with a check
that was applied to the answer set and, based on the timing constraint of the
property, filtered matches that could be affected by future changes to the RTM.
In this paper, we present a formal foundation for temporal-query-based RM over
incomplete RTMs. The foundation entails the introduction of an answer set which
formalizes the intuition behind the check and allows approaches like InTempo
to maintain their efficiency while returning formally precise answers.

Specifically, our contributions are the following. First, we introduce a definite
semantics for a temporal graph logic (Section 3), which only returns answers if
they are definite, i.e., no future change to the RTM will affect them; we show
that the definite semantics is sound. Then, we introduce a new definite answer set
(Section 4) for the query language of InTempo which pairs matches with their
definite temporal validity and invalidity. Compared to the original (non-definite)
answer set, the definite answer relies on the time point on which a query is
evaluated and thus requires the re-computation of the definite temporal validity
and invalidity in each evaluation. The definite answer set is thus inefficient, i.e.,
not amenable to change-driven evaluation. However, we use this theoretical result
to show that our last contribution, the effective answer set (Section 5), which

Foundations for Query-based RM of Temporal Properties over RTMs 23

status : string
Probe

SHSService

pID : int
PMonitoringService

pID : int
DrugService

Servicects : long
dts : long

MonitorableEntity

[0..*]

[0..*]
event trace

(ℎ!)

answer set
(T or Te)

evaluationmetamodel

mapping of events
to modifications (E)

temporal queries
(in L)

pruningRTMH

operationalization

InTempo

Fig. 1: An excerpt of the SHS metamodel from [49] (left) and an operational
overview of the InTempo implementation where arrows denote input and output.

essentially incorporates the check mentioned above, can return definite answers
while relying on the original, and thus efficient, answer set.

The presented contributions are based on unpublished material from the
doctoral thesis of the first author [47]. Section 2 reiterates preliminaries and
InTempo, Section 6 discusses related work, and Section 7 concludes the paper.
Running Example As a running example we will use the Smart Healthcare
System (SHS) introduced in [49]. Fig. 1 shows an excerpt of the SHS metamodel.
An SHS is an envisioned smart medical environment [45], based on the service-
based exemplar in [55], which supports clinicians in medical treatments by
automating tasks via smart devices. In the context of an SHS, RM may be used
to verify whether treatments comply with the requirements in a guideline, which
typically contain timing constraints [17]. In the SHS, services are invoked by a
main service called SHSService to collect measurements from patient sensors,
i.e., PMonitoringService, or take medical actions via smart medical devices
such as a smart pump, i.e., DrugService. The results of service invocations are
tracked via monitoring probes (Probe) that are attached to Services. Probes
are generated periodically or upon events in the real world. Each Probe has a
status attribute whose value depends on the type of Service. Each Service has
a pID attribute which identifies the patient for whom the Service is invoked.
The MonitorableEntity is explained in Section 2.1.

We focus on a property P that tracks time between triage and admission, as
often done in medical guidelines [39]; in the context of an SHS, these activities are
represented by the invocation of a sensor service and a drug service, respectively:
“When a sensor service is invoked for a patient, there should be a drug service
invoked for the same patient within one minute and, until then, there should
be no other sensor service invoked for the same patient.” The specific timing
constraint is adjusted for the purpose of presentation. Assume an RTM that
captures that a sensor service has just been invoked for a patient, but contains no
drug invocation yet; for monitoring P , it is important to consider that a future
state which contains the drug service invocation may follow in time; therefore,
the present state does not yet violate P .

2 Preliminaries

In this section, we summarize preliminaries and the InTempo query language.
An overview of the notation used in the paper is shown in Table 2 in Section A.

24 L. Sakizloglou et al.

n!.!
s:SHSService

pm:PMonitoringServicepm2:PMonitoringService

{pm.pID = pm2.pID}

n!.#
s:SHSService

pm:PMonitoringService

{pm.pID = d.pID}

d:DrugService

n!	 s:SHSService pm:PMonitoringService

(𝑛!, 𝜓%)

𝑁
(𝑛!, ¬𝜓%)

(𝑛!, ¬∃𝑛!.!)

(𝑛!, ∃𝑛!.!)

(𝑛!.!, 𝑡𝑟𝑢𝑒)

(𝑛!, ∃𝑛!.#)

(𝑛!.#, 𝑡𝑟𝑢𝑒)

Fig. 2: Patterns for the SHS (left) and the GDN N for the query (n,¬ψP).

2.1 Formal Representation of Models and Queries

An RTM is typically represented as a graph, where system entities are captured by
vertices, information about the entities by attributes, and relationships between
entities by edges [25, 14, 24]. In this paper, for the formal representation of RTMs,
we rely on the well-known typed graphs [20], i.e., graphs typed over a type graph
which defines types of vertices, edges, and valid structures for typed graphs.

Definition 1 ((typed) graph, (typed) graph morphism, type graph). A
graph G = (GV , GE , sG, tG) consists of a set of vertices GV , a set of edges GE,
a source function sG : GE → GV , and a target function tG : GE → GV . Given
two graphs G = (GV , GE , sG, tG) and K = (KV ,KE , sK , tK), a graph morphism
f : G → K is a pair of mappings fV : GV → KV , fE : GE → KE such that
fV ◦ sG = sK ◦ fE and fV ◦ tG = tK ◦ fE. A graph morphism f : G → K is a
monomorphism, denoted by ↪→, if fV and fE are injective. A type graph is a
distinguished graph TG = (TGV , TGE , sTG, tTG). A tuple (G, type) consisting of
a graph G and a graph morphism type : G→ TG is called a typed graph. Given
two typed graphs GT = (G, type) and KT = (K, type′), a typed graph morphism
f : GT → KT is a graph morphism f ′ : G→ K such that type′ ◦ f ′ = type.

Type graphs can be extended to support the well-known concepts of inheritance
and multiplicities from the object-oriented paradigm [53]. Moreover, typed graphs
can be extended by vertex and edge attributes, each associated with a data type,
i.e., a character string, an integer, a real number, or a boolean, to obtain typed
attributed graphs [20]. Attribute assignments assign data-type-compatible values
to attributes, and attribute constraints , i.e., a boolean expression over attribute
values, restrict the possible assignments. Our contributions rely on such graphs,
defined in detail in our prior work [50]; to avoid the complication of presentation,
here we omit these extensions from our definitions.

The metamodel in Fig. 1 may be seen as an informal representation of the
type graph of the SHS, where only vertices have attributes. Correspondingly, the
RTM G7 in Fig. 3 is an informal representation of a typed attributed graph. We
henceforth refer to typed attributed graphs simply as graphs or patterns. The
RTM G7 contains assignments, which assign values to attributes, e.g., pm1.pID

Foundations for Query-based RM of Temporal Properties over RTMs 25

𝐻["]

pID= 1
cts= 5
dts= ∞

d1:DrugService
pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService

cts= 2
dts= ∞

s:SHSService

𝐻[$]

pID= 2
cts= 7
dts= ∞

pm2:PMonitoringService
pID= 1
cts= 5
dts= 7

d1:DrugService

pID= 1
cts= 4
dts= ∞

pm1:PMonitoringService
cts= 2
dts= ∞

s:SHSService

𝐺% s:SHSService

s:SHSService𝐺&

pID= 1
pm1:PMonitoringService

s:SHSService𝐺$

pID= 1
pm1:PMonitoringService

pID= 2
pm2:PMonitoringService

𝐺" s:SHSService

pID= 1
pm1:PMonitoringService

pID= 1
d1:DrugService

Fig. 3: Snapshots as RTMs (G∗) and traces as RTMH instances (H[∗]).

= 1. The representation of the textual statements in property P of the running
example by patterns is illustrated in Fig. 2: The invocation of a sensor service is
captured in patterns n1 and n1.1, and the invocation of a drug service is captured
in n1.2; constraints are illustrated between braces, e.g., n1.1 requires that the
values for pID of pm and pm2 are equal; vertices with the same label refer to the
same vertex in the queried RTM.

We assume that the system is instrumented to generate (instantaneous) events
upon changes to its state, and identify the system execution with a possibly
infinite sequence of such events. The system has a clock whose time domain is the
set of non-negative real numbers R+

0 , and uses the clock to timestamp events. We
refer to an element of the time domain as a time point. Intuitively, an (execution)
trace hτ of a system with respect to an event at time point τ is the sequence of
all observed events in the execution from its beginning, i.e., time point 0, up
to and including τ . For brevity, we group all changes with the same time point
in one event. However, we require that no event groups an infinite amount of
changes, thereby ruling out Zeno behaviors—in the use-cases of interest, all traces
will eventually terminate and differences between measurements cannot become
infinitely small. We denote the time point at position i of hτ by τi, with i ∈ N+.

For a model-based representation of a trace hτ , we rely on a Runtime Model
with History (RTMH) [49]. An RTMH H is a distinguished RTM where the fol-
lowing conditions hold. All vertices in H have a distinguished creation timestamp
cts and a deletion timestamp dts to which a value is assigned—therefore in Fig. 1,
all vertices inherit from the MonitorableEntity.3 When a vertex is created, the
time point of creation is assigned to cts and the value ∞ is assigned to the dts;
the dts value changes when the vertex is deleted in the modeled system. As a
vertex cannot have been deleted prior to its creation or deleted simultaneously
to its creation, the value of dts , if not ∞, has to be larger than the value of cts .

3 If tracking changes to attribute values or edges in an RTM is of importance, those
can be modeled as vertices, which is a customary modeling technique, e.g., [36].

26 L. Sakizloglou et al.

An hτ can be transformed to an RTMH H based on a mapping E from the set
of all possible events to corresponding graph modifications [48]; to capture the
period covered by H in this case, we denote it by H[τ]. Each trace continuation
hτ ′ that is yielded by an event at time point τ ′ with τ ′ > τ can be similarly
transformed to a H[τ ′] by applying the changes in the event at τ ′ to H[τ]; we
refer to H[τ ′] as a new version of H[τ]. This process generates a trace of RTMs
hHτ ′ , called an RTMH-trace, which mirrors h′τ ; we refer to members of hHτ ′ as
instances of the RTMH. Formally, an H[τ] is a compact representation of a timed
graph sequence [26], i.e., a sequence of timestamped graphs where additions and
deletions between two consecutive graphs are represented by morphisms. As an
example of an RTMH, see H[5] in Fig. 3 which contains all changes in events up
to time point 5; H[5] represents the timed graph sequence G2G4G5 (left in Fig. 3;
morphisms are omitted). A new event at time point 7 which contains the deletion
of d1, and the addition of pm2 is transformed into H[7]; this RTM represents the
sequence G2G4G5G7. If τ in hτ , hHτ , or H[τ] is irrelevant, we omit it.

2.2 Metric Temporal Graph Logic

For the specification and analysis of temporal properties in temporal queries,
InTempo relies on the Metric Temporal Graph Logic (MTGL) [50, 26]. MTGL
builds on Nested Graph Conditions (NGCs) [27] and Metric Temporal Logic
(MTL) [35] to enable the formulation of Metric Temporal Graph Conditions (MT-
GCs). The language of NGCs can formulate requirements that are as expressive
as first-order logic on graphs [18], as shown in [27, 44], and constitutes as such a
natural formal foundation for pattern-based queries. As NGCs, MTGCs support
bindings , i.e., morphisms between patterns which bind elements in outer condi-
tions to inner (nested) conditions, and are therefore able to track the evolution
of a given binding in a sequence of graphs separately to other bindings.

In the following definition of MTGL, we focus on a subset of MTGL operators
which contains the metric, i.e., interval-based, temporal operators until (UI , with
I an interval in R+

0) and its dual since (SI) from MTL. The existential quantifier
features a binding between the patterns n and n̂.

Definition 2 (metric temporal graph conditions). Let n,n̂ be patterns and
f : n ↪→ n̂ a binding. Moreover, let I be an interval in R+

0 . Then ψ is a Metric
Temporal Graph Condition (MTGC) over n defined as follows.

ψn ::= true | ¬ψn | ψn ∧ ψn | ∃(f : n ↪→ n̂, ψn̂) | ψn UIψn | ψn SIψn

In the remainder, we abbreviate ∃(f, true) by ∃ f and, when the domain of f is
clear from the context, ∃(f : n ↪→ n̂, ϕn̂) by ∃(n̂, ϕ). Other abbreviations, e.g.,
disjunction (∨), eventually (♢I) can be defined as usual.

Based on the patterns in Fig. 2, property P from the running example can be
reformulated into “given a binding for n1 at a time point τ , at least one binding
for n1.2 is found at some time point τ ′ ∈ [τ, τ +60], i.e., at most 60 seconds later;
in addition, at each time point τ ′′ ∈ [τ, τ ′) in between, no binding for n1.1 is
present.” In MTGL, this property is captured by the MTGC ψP := ¬∃ (n1 ↪→

Foundations for Query-based RM of Temporal Properties over RTMs 27

n1.1, true)U[0,60] ∃ (n1 ↪→ n1.2, true), or, abbreviated, ¬∃n1.1 U[0,60] ∃n1.2. The
system is assumed to track time in seconds; vertices s and pm from n1 are bound
in the patterns n1.1 and n1.2, i.e., all patterns refer to the same s and pm.

MTGL reasons over (finite) timed graph sequences. However, MTGCs can also
be equivalently checked over a graph with history [26], which here corresponds to
an RTMH. In the following, we define the semantics of the satisfaction relation
of MTGL based on an RTMH.

Definition 3 (satisfaction of metric temporal graph conditions over an
RTM). Let H be an RTMH, n a pattern, and m : n ↪→ H a binding. Moreover,
let τ be a time point in R+

0 and ψ be an MTGC over n. Then m in H satisfies
ψ at τ , written (H,m, τ) |= ψ, if maxe∈Ee.cts ≤ τ < mine∈Ee.dts, with E the
vertices of m, and one of the following cases applies.

– ψ = true.
– ψ = ¬χ and (H,m, τ) ̸|= χ.
– ψ = χ ∧ ω, (H,m, τ) |= χ, and (H,m, τ) |= ω.
– ψ = ∃(f : n ↪→ n̂, χ) and there exists m̂ : n̂ ↪→ H such that m̂ ◦ f = m and
(H, m̂, τ) |= χ.

– ψ = χUIω and there exists τ ′ with τ ′ − τ ∈ I such that (H,m, τ ′) |= ω and
for all τ ′′ ∈ [τ, τ ′) (H,m, τ ′′) |= χ.

– ψ = χSIω and there exists τ ′ with τ − τ ′ ∈ I such that (H,m, τ ′) |= ω and
for all τ ′′ ∈ (τ ′, τ] (H,m, τ ′′) |= χ.

Intuitively, a binding m for n in the RTM H satisfies the MTGC ∃(f : n ↪→ n̂, χ)
at time point τ if (i) all elements of m are already created but not yet deleted at
τ , and (ii) there exists a binding m̂ for n̂ in H such that m̂ is compatible with
m, i.e., respects the binding between the two patterns captured in n ↪→ n̂, and
m̂ satisfies the MTGC χ at τ . The intuition behind true, negation, conjunction,
until, and since is the usual.

2.3 InTempo: Query Language and Overview of Operation

InTempo introduces a query language, henceforth referred to as L, which has
two distinguishing features: it enables the formulation of ordering and temporal
constraints in MTGL, i.e., as an MTGC, thereby enabling formal precision in
checking whether matches satisfy those constraints; it computes the period for
which a match satisfies an MTGC, thereby enabling practical query evaluations,
as the query does not have to be evaluated for each time point of interest. We
summarize core concepts of graph queries and L below.

In its plainest form, a graph query is characterized by a pattern n. A match
for this query is a binding from n to a queried graph which preserves structure
and type. L allows for the specification of temporal graph queries , i.e., queries of
the form (n, ψ) with ψ an MTGC over n, whereby matches for n in an RTMH H
need to satisfy the temporal requirement captured in ψ. Based on the running
example, the query (n1,¬ψP), searches H for matches for n1, i.e., sensor services,
which falsify ψP .

28 L. Sakizloglou et al.

Vertices in H have lifespans, defined by their cts and dts . Similarly, a match
m in H is valid only if there is a non-empty interval λm = ∩e∈E [e.cts, e.dts), with
E the vertices of m, called the lifespan of a match. According to its definition,
the values of regular attributes in H cannot change and, hence, cannot affect λm.
In the special case where the pattern of a query is the empty graph ∅, an (empty)
match m is always found with λm = R. Temporal logics that reason over intervals,
such as MTGL, are capable of deciding the truth value of a property for the
entire time domain; in InTempo, the set of time points satisfying a property is
called the satisfaction span and defined as Y(m,ψ) = {τ | τ ∈ R∧ (H,m, τ) |= ψ}
with ψ an MTGC. The temporal validity V(m,ψ) is equal to λm ∩ Y(m,ψ) and
defined as the period for which m exists in H and satisfies ψ.

The following computation, called the satisfaction computation Z of m for
ψ, soundly computes Y, as shown in [49]. The computation relies on interval
operations defined as usual [see 41]: Let k, z be intervals; then k ⊕ z = [ℓ(k) +
ℓ(z), r(k) + r(z)], k ⊖ z = [ℓ(k) − r(z), r(k) − ℓ(z)] with ℓ(k) and r(k) the left
and right end-point of k, respectively. We denote the unions ℓ(k) ∪ k by +k, and
k ∪ r(k) by k+; when r(k) = ∞, k+ = k. The interval k is overlapping z when
k ∩ z ̸= ∅ and adjacent to z when k ∩ z = ∅ but k ∪ z is an interval.

Definition 4 (satisfaction computation Z). Let n, n̂ be patterns and ψ, χ, ω
be MTGCs. Moreover, let m be a match for n in an RTM H, and M̂ a set of
matches for n̂ that are compatible with the (enclosing) match m. The satisfaction
computation Z(m,ψ) is recursively defined as follows.

Z(m, true) = R (1)
Z(m,¬χ) = R \ Z(m,χ) (2)

Z(m,χ ∧ ω) = Z(m,χ) ∩ Z(m,ω) (3)

Z(m, ∃(n̂, χ)) =
⋃

m̂∈M̂

λm̂ ∩ Z(m̂, χ) (4)

Z(m,χUIω) =


⋃

i∈Z(m,ω), j∈Ji

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ̸∈ I⋃

i∈Z(m,ω)

i ∪
⋃

j∈Ji

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ∈ I

(5)

Z(m,χSIω) =


⋃

i∈Z(m,ω), j∈Ji

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ̸∈ I⋃

i∈Z(m,ω)

i ∪
⋃

j∈Ji

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ∈ I

(6)

with Ji the set of all intervals in Z(m,χ) that are either overlapping or adjacent
to some i ∈ Z(m,ω).

The intuition behind the equations for true, negation, and conjunction is clear.
Regarding exists, the satisfaction span is the union of the temporal validity of
all matches m̂ for n̂ which are compatible with m. Regarding until, if 0 ̸∈ I, the
satisfaction includes every time point τ in the intersection of some i′ ∈ Z(m,ω)
with a j′ ∈ Z(m,χ) for which a time point τ ′ ∈ i′ occurs within I. Furthermore, j′

Foundations for Query-based RM of Temporal Properties over RTMs 29

needs to overlap i′, e.g., j′ = [1, 3], i′ = [2, 4] or be adjacent to i′, e.g., j′ = [1, 2),
i′ = [2, 4]. If j′ and i′ are adjacent, during the computation j becomes right-
closed to ensure that their intersection produces a non-empty set. If 0 ∈ I, then,
according to Definition 3, it may be that j′ is empty, i.e., does not exist, and
until is satisfied by every i′ ∈ Z(m,ω). Therefore, the computation includes every
i′ and remains unchanged otherwise. The intuition behind since is analogous.

The intersection of two intervals is always an interval, whereas the union of
two intervals may result in disjoint sets. Hence, technically Z and V are interval
sets which may contain disjoint or empty intervals.

We define below the answer set T for a query in L.

Definition 5 (query answer set T). Given a pattern n, an MTGC ψ, and an
RTMH H, the answer set T of a query in L over H is given by:

T(H) = {(m,V(m,ψ))|m is a match for n ∧ V(m,ψ) ̸= ∅}

Regarding the operation of InTempo (see Fig. 1), the approach expects a
metamodel, a set of queries in L, a mapping E from events to modifications,
and an event trace hτ as input—see definitions earlier. InTempo operationalizes
queries (see Section 5). For each event events in hτ , InTempo performs the
corresponding changes to an RTMH and, after each change, evaluates the queries.
Pruning may follow, which triggers another query evaluation to update stored
matches. Finally, InTempo returns the answer set T or, for RM, performs the
check described in Section 1 and essentially returns matches in the effective answer
set Te (see Section 5). In our implementation of InTempo, the metamodel, the
queries, and the mapping are defined based on model-based technologies [48].

We present an example that demonstrates that T may contain imprecise
answers in the context of an incomplete trace.

Example 1 (imprecision over incomplete trace). Evaluated over H[7] in Fig. 3, the
query (n1,¬ψP) returns an answer set T(H[7]) which contains a pair (m2, [7,∞));
m2 is a match for n1 involving the vertex pm2, and [7,∞) is the temporal validity
V which states that m2 falsifies ψP from time point 7 onward. V is the result of
the intersection of λm2 = [7,∞) with Z(m2,¬ψP) = R. The satisfaction span Z

is computed according to Definition 4—see Table 1 for details.
This computation is definite only if H[7] is the last instance in an RTMH-trace;

if the trace is incomplete, and it is to be continued by a new H[τ] with τ ≤ 67,
the match m2 may still satisfy ψP , as there is still time for a DrugService to be
created timely, i.e., a match for the pattern n1.2, which is compatible with m2,
to be found—assuming that until then there would be no match for n1.1.

3 Definite Semantics for Metric Temporal Graph Logic

This section presents our contribution to MTGL. Specifically, we introduce a new
semantics, called definite, which only returns answers if they are definite, i.e., no
future change to the RTMH will affect them. Similarly to temporal logics which

30 L. Sakizloglou et al.

account for RM over incomplete traces [8, 21], the definite semantics is three-
valued, as they return the value unknown when the result of the satisfaction check
is not definite. We show the soundness of the definite semantics in Theorem 1
based on the regular semantics in Definition 3. Moreover, we show that for a
certain period the definite and the regular semantics are equivalent (Theorem 2);
this equivalence enables our contribution in Section 5, i.e., it allows InTempo to
return definite answers efficiently. Finally, we demonstrate an intrinsic limitation
of the definite semantics: we show that for unsatisfiable properties, the semantics
may return decisions with a delay, compared to the earliest time point on which
the decisions could have been returned. We compute the maximum possible
magnitude of the delay (Corollary 2).

We begin with the definition of the definite semantics. In the context of an
RTMH H[c], a satisfaction decision for time point τ ∈ [0, c] is definite if the
decision for τ remains the same in all possible future versions of H[c]. We obtain
the definite satisfaction span by adjusting the satisfaction relation of MTGL
from Definition 3 to this notion of definiteness. Moreover, we obtain the definite
falsification by negating the statements in the cases of the definite satisfaction.
We present the adjusted satisfaction relation, called definite satisfaction relation,
and the definite falsification relation over an RTMH below.

Definition 6 (definite satisfaction and definite falsification of metric
temporal graph conditions over an RTMH). Let H[c] be a RTMH, n a
pattern, and m : n ↪→ H[c] a match. Moreover, let τ ∈ R be a time point and
ψ be an MTGC over n. Then the definite satisfaction relation |=d and definite
falsification relation |=d

F are defined via mutual recursion as follows. The match
m definitely satisfies ψ at τ , written (H[c],m, τ) |=d ψ, iff τ ∈ λm ∩ [0, c], or m
is the empty match, and one of the following cases applies.

– ψ = true.
– ψ = ¬χ and (H[c],m, τ) |=d

F χ.
– ψ = χ ∧ ω, (H[c],m, τ) |=d χ, and (H[c],m, τ) |=d ω.
– ψ = ∃(f : n ↪→ n̂, χ) and there exists m̂ : n̂ ↪→ H[c] such that m̂ ◦ f = m and
(H[c], m̂, τ) |=d χ.

– ψ = χUIω and there exists τ ′ with τ ′ − τ ∈ I such that (H[c],m, τ
′) |=d ω

and for all τ ′′ ∈ [τ, τ ′) (H[c],m, τ
′′) |=d χ.

– ψ = χSIω and there exists τ ′ with τ − τ ′ ∈ I such that (H[c],m, τ
′) |=d ω

and for all τ ′′ ∈ (τ ′, τ] (H[c],m, τ
′′) |=d χ.

The definite falsification relation is based on a logical negation of the statements
in the cases of the definite satisfaction relation. The match m definitely falsifies
ψ at τ , written (H[c],m, τ) |=d

F ψ, iff τ ∈ λm ∩ [0, c], or m is the empty match,
and one of the following cases applies.

– ψ = ¬χ and (H[c],m, τ) |=d χ.
– ψ = χ ∧ ω and (H[c],m, τ) |=d

F χ or (H[c],m, τ) |=d
F ω.

– ψ = ∃(f : n ↪→ n̂, χ) and either there does not exist an m̂ : n̂ ↪→ H[c] such
that m̂ ◦ f = m, or there exists m̂ and (H[c], m̂, τ) |=d

F χ.

Foundations for Query-based RM of Temporal Properties over RTMs 31

– ψ = χUIω and for all τ ′ with τ ′ − τ ∈ I (H[c],m, τ
′) |=d

F ω or there exists
τ ′′ ∈ [τ, τ ′) such that (H[c],m, τ

′′) |=d
F χ.

– ψ = χSIω and for all τ ′ with τ − τ ′ ∈ I (H[c],m, τ
′) |=d

F ω or there exists
τ ′′ ∈ (τ ′, τ], (H[c],m, τ

′′) |=d
F χ.

In comparison to |=, |=d confines the lifespans of matches and the satisfaction
of exists to the period that has been observed, i.e., [0, c]. Moreover, |=d relies on
|=d

F for the satisfaction of a negation. Similarly to |=d, |=d
F confines the decisions

for matches to [0, c], and relies on |=d for the falsification of negation. The match
m never falsifies true. We note that |=d

F and ̸|=d are not equivalent; ̸|=d returns
true for time points that do not definitely satisfy the operator, i.e., points that
falsify it but also points for which a definite decision cannot yet be made.

The following theorem shows the soundness of the definite relations |=d and
|=d

F by relating them to the regular satisfaction relation |= from Definition 3 and
its negation ̸|=. The theorem refers to observed prefixes of a possibly infinite
RTMH-trace hH and their possible continuations; an RTMH H[τi] in hH is
associated with the τ of the event with index i ∈ N+ in the execution h—see
Section 2.1. The theorem states that a definite decision, i.e., a decision made
by either |=d or |=d

F , for a certain time point τ over an H[τi] in hH implies that
the same decision is made by |= (or ̸|=) for τ over H[τi]; moreover, |= makes the
same decision for τ over all possible future versions of H[τi] in hH .

Theorem 1 (definite relations imply satisfaction relation over trace).
Let ψ be an MTGC over a pattern n. Moreover, let hHτD be RTMH-trace, with
D ∈ N+. For all i ∈ [1,D] ∩ N+, if m is a match for n in H[τi] and τ ∈ [0, τi],
then for all k ∈ [i,D] ∩ N+, (i) if (H[τi],m, τ) |=d ψ, then (H[τk],m, τ) |= ψ, and
(ii) if (H[τi],m, τ) |=d

F ψ, then (H[τk],m, τ) ̸|= ψ.

Proof (idea). By mutual structural induction over ψ. The implication is shown
to hold for each MTGL operator. See Section B.1 for the complete proof. ⊓⊔

In the following, we discuss the second important result of this section, i.e.,
the equivalence of the definite and regular semantics.

The satisfaction decision for future temporal operators at time point τ may
depend on a τ ′ > τ . The upper bound of the distance between τ ′ and τ is given
by the non-definiteness window, defined below.

Definition 7 (non-definiteness window w). Given an MTGC ψ, the non-
definiteness window w, i.e., the period for which a satisfaction decision for ψ at
a time point τ may be non-definite, is defined as follows.

w(ψ) =



r(I) + max (w(χ), w(ω)) if ψ = χUI ω

max (w(χ), w(ω)) if ψ = χSI ω

max (w(χ), w(ω)) if ψ = χ ∧ ω
w(χ) if ψ = ¬χ
w(χ) if ψ = ∃(n, χ)
0 if ψ = true

(7)

32 L. Sakizloglou et al.

As usual in (online) RM, we assume that w ̸= ∞, i.e., MTGCs contain no
unbounded future operators which may render a property non-monitorable [42].

Based on w, we present a variation of Theorem 1 which states that, given an
H[τi], if τ ∈ [0, τi − w], with i an index in a RTMH-trace, then definite decisions
made by either the definite satisfaction relation |=d or definite falsification relation
|=d

F are equivalent to the decisions of the satisfaction relation |=. If w ̸= 0, in
order for [0, τi − w] to be a valid interval, it is implicitly required that τi ≥ w,
i.e., H[τi] covers a period that is larger than the non-definiteness window.

Theorem 2 (definite relations are equivalent to satisfaction relation
over certain period of trace). Let ψ be an MTGC over a pattern n and w
the non-definiteness window of ψ. Moreover, let hHτD be an RTMH-trace, with
D ∈ N+. For all i ∈ [1,D]∩N+, if m is a match for n in H[τi] and τ ∈ [0, τi−w],
then for all k ∈ [i,D] ∩ N+, (i) (H[τi],m, τ) |=d ψ iff (H[τk],m, τ) |= ψ, and (ii)
(H[τi],m, τ) |=d

F ψ iff (H[τk],m, τ) ̸|= ψ.

Proof (idea). By mutual structural induction over ψ. The equivalence is shown
to hold for each MTGL operator. See Section B.2 for the complete proof. ⊓⊔

Theorem 2 enables our contribution to change-driven evaluation in Section 5.
Finally, we present the third important result of the section, i.e., the limitation

of the semantics. The following corollary states that all time points for which a
definite decision cannot be made belong to a certain period in the observed trace.

Corollary 1 (period in trace with non-definite decisions). Let ψ be an
MTGC, w be the non-definiteness window of ψ, H[τi] be an RTMH instance
associated with the time point τi, m be a match for a pattern n, and τ a time
point in [0, τi]. If (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ, then τ ∈ (τi −w, τi].

Proof (idea). Follows from Theorem 2—see Section B.3 for the complete proof.
⊓⊔

We demonstrate below that, in case an MTGC is unsatisfiable (or unfalsifiable),
the definite relations may return an answer with a delay. The maximum possible
delay depends on the non-definiteness window w from Definition 7.

Let |=T and |=F,T be respectively a satisfaction and falsification relation for
MTGL that reflect the timeliest knowledge : Given a match m, an MTGC ψ, an
RTMH instance H[τi] from a sequence of instances, and a time point τ ∈ [0, τi],
(H[τi],m, τ) |=T ψ if (H[τi],m, τ) |= ψ and there exists no possible successor of
H[τi] in the sequence that could falsify ψ at τ ; analogously, (H[τi],m, τ) |=F,T ψ if
(H[τi],m, τ) ̸|= ψ and there exists no possible successor of H[τi] that could satisfy
ψ at τ . These timeliest relations can only make decisions for m over the observed
trace, as m may not exist in the parts covered by successors of H[τi], i.e., in time
points larger than τi.

Given a sequence of RTMH instances hH with H[τi] an instance in hH , let
H[τk] be the first successor of H[τi] in hH for which τk ≥ τi + w. The following
corollary states that, contrary to |=T and |=F,T, the definite relations may have
to wait for H[τk] to be able to make a definite decision for τ ∈ (τi − w, τi].

Foundations for Query-based RM of Temporal Properties over RTMs 33

Corollary 2 (maximum possible delay before definite decision). Let ψ
be an MTGC, w be the non-definiteness window of ψ, m be a match for a pattern
n, and H[τi] be an RTMH instance from a sequence of RTMH instances hHτD with
i ∈ [1,D] ∩ N+. Moreover, let τ ∈ (τi − w, τi] and k be the smallest index in
[i,D] ∩ N+ such that τk ≥ τi + w. If (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ,
then a definite decision for τ can be made over H[τk].

Proof. Follows from Corollary 1. ⊓⊔

Thus, compared to |=T and |=F,T, the definite relations may make a decision
for τ ∈ (τi − w, τi] with a delay of at most (τk − τi) time points.

Example 2. (delay in definite decision) Let ψc := ♢[0,1](¬∃n1 ∧ ∃n1). Consider
an RTMH-trace comprising two RTMH instances: H[7] in Fig. 3 and a hypo-
thetical H[9] which is yielded by an unrelated change and all elements from
H[7] are unchanged. Therefore, a match m1 exists in both instances. The check
(H[7],m1, 7) |=F,T ψc returns true, as (H[7],m1, 7) ̸|= ψc and there is no possible
successor of H[7] that could satisfy ψc; on the other hand, (H[7],m1, 7) |=d

F ψc

makes no decision, as according to its definition, the relation waits first for a
duration of history that covers the timing constraint of until to be observed.
The check (H[9],m1, 7) |=d

F ψc returns true, as enough time has elapsed. Thus,
compared to |=F,T, this decision has been made with a delay of two time points.

Avoiding this delay would require that the definite relations recognize whether
an MTGC is satisfiable which is undecidable for NGCs and thus MTGCs. The
delay is not observed with the running example, i.e., ψP := ¬∃n1.1 U[0,60] ∃n1.2
or similar MTGCs, e.g., (♢[0,2]∃n1.1) ∧ (♢[0,3]∃n1.2).

4 Computations and Answer Set for Definite Semantics

This section presents our contribution to the semantics of L, the query language
of InTempo. Specifically, we adjust the satisfaction computation presented in
Definition 4 to the definite satisfaction relation (|=d) from Definition 6. Moreover,
we introduce the analogous concepts for the definite falsification relation (|=d

F).
Theorem 3 shows the soundness of the introduced computations. Based on these
computations, we introduce a definite answer set for L.

In the context of a temporal query (n, ψ) the definite satisfaction span related
to a match m for n in H[c] is defined similarly to the satisfaction span Y in
Section 2.3, i.e., Yd = {τ |τ ∈ R ∧ (H[c],m, τ) |=d ψ}. The definite falsification
span is defined as Fd = {τ |τ ∈ R ∧ (H[c],m, τ) |=d

F ψ}. Any time point in the
time domain not in Yd or F belongs to the unknown span X. The sets Yd,Fd,
and X are disjoint. It also holds that R = Yd ⊎ Fd ⊎X. The definite satisfaction
computation Zd and the definite falsification computation F d for an MTGC are
defined below.

34 L. Sakizloglou et al.

Definition 8 (definite satisfaction computation Zd and definite falsifica-
tion computation F d). Let n, n̂ be patterns and ψ, χ, ω be MTGCs. Moreover,
let m be a match for n in an RTMH H, and M̂ a set of matches for n̂ that are
compatible with the (enclosing) match m. The definite satisfaction computation
Zd(m,ψ) and definite falsification computation F d(m,ψ) are defined via mutual
recursion as follows.

Zd(m, true) = R (8)

Zd(m,¬χ) = F d(m,χ) (9)

Zd(m,χ ∧ ω) = Zd(m,χ) ∩ Zd(m,ω) (10)

Zd(m, ∃(n̂, χ)) = (−∞, τ] ∩
⋃

m̂∈M̂

λm̂ ∩ Zd(m̂, χ) (11)

Zd(m,χUIω) =


⋃

i∈Zd(m,ω), j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ̸∈ I⋃

i∈Zd(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

)
if 0 ∈ I

(12)

Zd(m,χSIω) =


⋃

i∈Zd(m,ω), j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ̸∈ I⋃

i∈Zd(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

)
if 0 ∈ I

(13)

with Jd
i the set of all intervals in Zd(m,χ) that are either overlapping or adjacent

to some i ∈ Zd(m,ω).
Based on R = Yd⊎Fd⊎X, the definite falsification computation F d(m,ψ) can

be generally defined as F d = R \ (Zd ⊎X), which leads to the following equations.

F d(m, true) = ∅ (14)

F d(m,¬χ) = Zd(m,χ) (15)

F d(m,χ ∧ ω) = F d(m,χ) ∪ F d(m,ω) (16)

F d(m, ∃(n̂, χ)) = (−∞, τ] ∩
(
R \ Zd(m, ∃(n̂, χ))

)
(17)

F d(m,χUIω) =


R \

(⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jd

i

j ∩
(
(j+ ∩ i)⊖ I

))
if 0 ̸∈ I

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(j+ ∩ i)⊖ I

))
if 0 ∈ I

(18)

F d(m,χSIω) =


R \

(⋃
i∈Zd(m,ω)⊎X(m,ω), j∈Jd

i

j ∩
(
(+j ∩ i)⊕ I

))
if 0 ̸∈ I

R \

(⋃
i∈Zd(m,ω)⊎X(m,ω)

i ∪
⋃

j∈Jd
i

j ∩
(
(+j ∩ i)⊕ I

))
if 0 ∈ I

(19)

Foundations for Query-based RM of Temporal Properties over RTMs 35

where Jd
i is the set of all intervals in Zd(m,χ)⊎X(m,χ) that are either overlapping

or adjacent to some i ∈ Zd(m,ω) ⊎X(m,ω).

Regarding Zd, the equations for conjunction, until, and since have the same
structure with their corresponding equations in Definition 4, but rely on Zd

instead of Z. Analogously to |=d, the computation for negation relies on F d. The
computation for exists confines its decisions to the period that has been observed.

Regarding F d, a match m never falsifies true; analogously to |=d
F , F d relies on

Zd for the falsification of negation; the operator exists confines its computation to
the observed period; the equations for until and since complement their respective
definite satisfaction computations, whereby the definite satisfaction computation
for their operands χ and ω instead of considering only time points that definitely
satisfy χ and ω, i.e., their satisfaction spans Zd(m,χ) and Zd(m,ω), considers
time points that do not definitely falsify χ and ω, i.e., Zd(m,χ) ⊎X(m,χ) and
Zd(m,ω) ⊎X(m,ω).

The following theorem states that the set of time points in the definite
satisfaction span Yd and definite falsification span Fd are equal to the sets of
time points obtained by the definite satisfaction computation Zd and definite
falsification computation F d, respectively.

Theorem 3 (equality of definite spans and definite computations for
satisfaction and falsification). Given a match m in an RTMH H[τ] and an
MTGC ψ, it holds that Yd(m,ψ) = Zd(m,ψ) and Fd(m,ψ) = F d(m,ψ).

Proof (idea). The proof for Zd proceeds by structural induction over ψ. The proof
for F d is based on the application of F d = R \ (Zd ⊎X) for each MTGL operator.
See Section B.4 for the complete proof. ⊓⊔

Based on the definite computations, we now extend L with a notion of definite
answers by adjusting the answer set T in Definition 5. To this end, we define
the notion of temporal invalidity IV as the dual notion of temporal validity V

from Section 2.3, i.e., the intersection of the lifespan λm of a match m with
the falsification span. Moreover, we define the definite temporal validity Vd as
λm ∩ Zd, and the definite temporal invalidity IVd as λm ∩ F d.

Definition 9 (definite answer set Td). Given a pattern n, an MTGC ψ, and
an RTMH H, the definite answer set Td of a query in L over H is given by:

Td(H) = {(m,Vd(m,ψ), IVd(m,ψ))|m is a match for n ∧ (Vd ̸= ∅ ∨ IVd ̸= ∅}

Example 3 (precision of definite computations over incomplete trace). As in
Example 1, the query (n1,¬ψP) is evaluated over H[7]. This time however, we
obtain the definite answer set Td(H[7]). The match m2 for n1, that involves the
object pm2, is not contained in Td; m2 is matched and its lifespan is computed
to be λm2 = [7,∞) but no compatible match for n1.2 is found; As shown in
Table 1, Zd(m2, ψP) = (−∞,−53] and F d(m2, ψP) = ∅. Therefore, both Vd and
IVd are empty, and the match is excluded from Td. Note that Td(H[7]) contains

36 L. Sakizloglou et al.

Table 1: Computations Z, Zd, and F d for two matches for (n1,¬ψP) over H[7].
m1 m2

MTGC Z Zd F d Z Zd F d

true R R ∅ R R ∅
∃n1.1 ∅ ∅ (−∞, 7] ∅ ∅ (−∞, 7]
¬∃n1.1 R (−∞, 7] ∅ R (−∞, 7] ∅

true R R ∅ R R ∅
∃n1.2 [5, 7) [5, 7) {(−∞, 5), [7, 7]} ∅ ∅ (−∞, 7]

ψP [−55, 7) [−55, 7) {(−∞,−55), [7, 7]} ∅ ∅ (−∞,−53]
¬ψP {(−∞,−55), [7,∞)} {(−∞,−55), [7, 7]} [−55, 7) R (−∞,−53] ∅

a match m1 for n1 that involves pm1, as its Vd is non-empty (see Table 1), i.e.,
there are time points for which m1 definitely falsifies ¬ψP , or definitely satisfies
ψP . All computations in Table 1 are interval sets (see Section 2.3), however, for
presentation purposes, singletons are displayed as intervals.

Let H[67] be an RTMH that is yielded by an event at time point 67; the changes
by this event do not affect vertices or nodes in H[7]; m2 would be returned by Td,
paired with Vd = [7, 7], as there would be no future version of the RTMH which
could satisfy ψP at time point 7.

5 Keeping to Change-driven Evaluation

The operationalization of queries in InTempo (see also Fig. 1) is based on
Generalized Discrimination Networks (GDNs) [28, 10]. Specifically, a query in L

is decomposed into a suitable ordering, i.e., a network, N of simple sub-queries. N
is a tree where each node represents a query and each edge a dependency between
queries—see Fig. 2 (right) for the GDN for ψP . N is executed bottom-up, i.e., the
execution starts with leaves and proceeds upward. The root of N computes the
answer set T(H) of q. Each node in N stores intermediate matches paired with
their Z; therefore N is amenable to change-driven and incremental execution:
changes to H are propagated through N , whose nodes only recompute their
stored matches if the change is relevant to them or one of their dependencies.
Moreover, InTempo offers a method to remove temporally irrelevant history
from the RTMH, thereby rendering the query evaluation memory-efficient.

Based on these features, an extensive experimental evaluation of our im-
plementation of InTempo showed efficient performance in the evaluation of
temporal graph queries over considerably large models (approximately from
10K to 48M elements) [49]. InTempo also evaluated queries faster than the
established RV tool MonPoly [6] as well as the RTM-based tool Hawk [24] in
an RM application scenario. In the scenario, incomplete traces were handled by
performing a check for each match which, based on the timing constraints of the
property, postponed returning the match if future changes could affect it.

Foundations for Query-based RM of Temporal Properties over RTMs 37

The definite answer set Td from Definition 9 handles incomplete traces com-
prehensively, as it only includes matches and time points which no future change
can affect. However, Td relies on the definite MTGL semantics from Definition 6
which, contrary to the regular semantics from Definition 3, considers the time
point on which a query is evaluated; consequently, adjusting N to compute the
definite computations Zd and F d, and thus to return Td, would imply that every
new version of H[τ] would trigger a re-computation of all spans stored in N .
Therefore, Td is not amenable to change-driven evaluation.

Based on the intuition behind the check from above, we lastly present a new
answer set, called effective, that contains definite results while relying on T, which
is amenable to change-driven evaluation. Specifically, based on the equivalence
in Theorem 2, we show that T is equivalent to a subset of Td if the V of matches
in T is restricted to a period with definite decisions (see Corollary 1). This last
contribution formalizes the intuition behind the check from above, and allows
approaches like InTempo to maintain their efficiency while returning sound
results. We define the effective answer set Te for L based on T below.

Definition 10 (effective answer set Te). Given a pattern n, an MTGC ψ
with w the non-definiteness window of ψ, an RTMH H[τ], and an answer set
T(H[τ]) of a query in L, the effective answer set Te(H[τ]) of the query is the
set of all tuples (m,V ∩ [0, τ − w]) such that (i) (m,V(m,ψ)) ∈ T(H[τ]) and (ii)
V(m,ψ) ∩ [0, τ − w] ̸= ∅.

The following theorem states that Te is equal to a restricted version of Td

whose Vd excludes a period equal to w. We assume that the trace duration is
larger than w and that the trace has more than one member.

Theorem 4 (equality of effective answer set and restricted definite
temporal validity answer set over trace). Let (n, ψ) be a query with ψ
an MTGC, w be the non-definiteness window of ψ, and hHτD be a RTMH-trace
with D ∈ [2,∞] ∩ N+, and i be an index in [k,D − 1] ∩ N+ such that τk ≥ w.
Moreover, let Td

V,r(H[τi]) be the restricted definite temporal validity answer set
over H[τi] which has been obtained from the definite answer set Td but contains
(i) only pairs of matches with their temporal validity Vd, with Vd ≠ ∅ and (ii) Vd

is intersected with [0, τi − w]. Then, Te(H[τi]) = Td
V,r(H[τi]).

Proof (idea). Based on the more general Theorem 2. See Section B.5 for the
complete proof. ⊓⊔

Theorem 4 shows how InTempo returns definite results while using the change-
driven evaluation for T described above. On the other hand, as Td

V,r excludes
F d, obtaining F d with Te requires the evaluation of a separate query (n,¬ψ) in
parallel to (n, ψ). Moreover, due to postponing returning answers that may be
non-definite, Te may return answers with a delay; although this is not observed
in ψP from the running example, it may affect other properties, as demonstrated
in Example 4. Hence, Te is intended for application scenarios where this impact
is either absent or acceptable.

38 L. Sakizloglou et al.

Example 4 (Delay in detection). Let ψD := (¬∃n1.1)∧(¬♢[0,2]∃n1.2) be an MTGC
and (n1,¬ψD) a query in L. Let H[5] be a hypothetical RTMH that contains a
match for n1 and a match for n1.1, whose lifespans are [5,∞). The time point 5
is contained in Vd(m1,¬ψD), i.e., the decision for 5 is definite; however, this time
point is not admitted to Te(H[5]) due to the intersection with [0, 5− w], where,
for ψD, w = 2. The time point will be admitted to Te when w has elapsed.

6 Related Work

In our previous work, we presented an analysis procedure with preliminary support
for RM of MTGL, as the procedure can be adjusted so that it returns true either
as soon as a falsification is detected or only when it has become definite [51].
When a falsification is detected, the procedure returns the time point on which
the procedure was last executed. The result abstracts the interval-based semantics
of MTGL into a point-based interpretation which lacks precision. The definite
semantics from Section 3 supports RM of MTGL directly, i.e., at the level of
semantics. Moreover, it enables the computations of the definite falsification and
satisfaction spans, which in turn enable practical query evaluations.

Compared to InTempo and its advancement we presented, other query-based
approaches for RM over structural RTMs either lack a formal treatment of
monitoring, e.g., [24, 1], or do not support other key features, e.g., first-order
quantification [19], temporal operators [14, 13], or timing constraints [40]. On the
other hand, these approaches have their own advantages over the foundations we
presented, e.g., support for distributed query evaluation [14] and more temporal
primitives [24].

Runtime Verification (RV) is also concerned with formally precise online
RM over incrementally processed, and thus possibly incomplete, traces of events.
Despite the similarity of their aim, RV and RTMs are different in their applications
and characteristics: for instance, state representations in RV focus on a low level
of abstraction and are typically inaccessible during monitoring. Conversely, an
RTM aims at a richer knowledge representation [14] and has to be accessible to
end-users or other technologies during monitoring, as it acts as an interface to
manage the system [23]—see [47, 49] for a more elaborate comparison. In RV,
properties may be specified using various formalisms, e.g., temporal logics and
regular expressions [3], comparisons among which are non-trivial [33, 43]. In the
following, we focus on approaches based on temporal logics. According to a recent
classification, no approach simultaneously supports key features of InTempo
such as first-order quantification, metric temporal constraints, interval-based
interpretations, and native support for graph queries and bindings [22].

The RV approach most relevant to our work is MonPoly [6]. MonPoly, an
established tool that has been among the top-performers in an RV competition [2],
is an implementation of an incremental monitoring algorithm based on Metric
First-Order Temporal Logic (MFOTL) [7]. The semantics of MFOTL is point-
based, i.e., the logic assesses the truth of a formula only for the time points
of events in a trace, which means the logic cannot support the computation

Foundations for Query-based RM of Temporal Properties over RTMs 39

of a temporal validity or represent the lifespan of a match straightforwardly.
MonPoly cannot always encode complex graph queries: for instance, expressing
the MTGC from the running example, which prohibits the existence of a pattern,
is not possible as MonPoly restricts the use of negation in this place at the
formula for reasons of monitorability. Even when possible, this encoding may
become overly technical and, as indicated by the performance comparison of
InTempo to MonPoly [49] as well as another similar comparison [19], may
affect performance: for instance, emulating graph pattern matching requires that
partial orderings of match candidates are explicitly formulated in MFOTL which
may bloat the size of the formula.

The RV tool DejaVu [31, 30] monitors properties specified in a first-order
metric past-only logic with point-based semantics. Translating MTGCs in this
logic would require emulating graph-based encodings and bindings (similar to
MonPoly) and, moreover, reformulating MTGCs such that they feature only past
operators. Such reformulations are not always possible and could be significantly
less compact [37, 32]. Monitoring algorithms for interval-based propositional or
signal logics with metric timing constraints [5, 38] are capable of interval-based
interpretations; although inapplicable to a graph-based first-order setting, they
are therefore based on interval computations which are similar to ours. Havelund
et al. present a monitoring approach for a logic defined over intervals; properties
in the logic refer to interval relations, e.g., requiring that two intervals overlap,
where the intervals my contain data [29]. The logic supports quantification over
intervals but does not support quantification over the data.

7 Conclusion and Future Work

We present a formal and systematic treatment of incomplete traces in query-based
runtime monitoring of temporal properties over structural runtime models. First,
we introduce a new semantics for a first-order temporal graph logic, called definite,
which only returns decisions if no future change to the model will affect them.
Then, based on the definite semantics, we introduce a new definite answer set
for the query language of InTempo, a querying scheme we previously presented.
Lastly, we present the effective answer set which, contrary to the definite answer
set, is amenable to change-driven evaluation. This answer set allows approaches
like InTempo to maintain their efficiency while returning definite answers.

Our plans for future work include a consideration of a rewriting procedure
for properties in MTGL, such that the rewritten properties avoid or minimize
possible delays in returning results, while allowing for a comparable performance
to the property before rewriting. We plan to extend the API of the InTempo
implementation with the option to return the effective answer set directly. More-
over, we plan to implement the definite answer set and investigate its impact on
performance. Although not as efficient as the effective answer set, we also plan
to use the definite answer set for testing the answers in the effective answer set.
Finally, we plan to extend InTempo with a decision procedure that, depending
on the property, switches to the answer set that is more appropriate.

40 L. Sakizloglou et al.

A Overview of Notation

The overview is shown in Table 2.

B Proofs

Following are the proofs for the theorems in the paper, as presented in the
doctoral thesis of the first author [47].

B.1 Theorem 1: definite relations imply satisfaction relation over
trace

Following is the proof for Theorem 1 (see [47, Section A.3.2]), i.e., given an
MTGC ψ over a pattern n and an RTMH-trace hHτD with D ∈ N+ the last index,
for all i ∈ [1,D] ∩ N+, if m a match for n in H[τi] and τ ∈ [0, τi], then for
all k ∈ [i,D] ∩ N+, (i) if (H[τi],m, τ) |=d ψ, then (H[τk],m, τ) |= ψ, and (ii) if
(H[τi],m, τ) |=d

F ψ, then (H[τk],m, τ) ̸|= ψ.

Proof. By definition of the RTMH, a match m in H[τi] will be structurally present
in all H[τk] with k ∈ [i,D] ∩ N+—what may change (once) in future versions of
H[τi] is the lifespan of m, i.e., if the dts of all matched elements is ∞ and one of
these elements is updated to a value less than ∞; even then, this change will not
affect the lifespan of m in the period [0, τi], that is, in H[τi], the observation on
whether m is present in λm ∩ [0, τi] will never be refuted.

The proof proceeds by mutual structural induction over ψ. In the base case,
we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

– Base case: true.
We begin with the definite satisfaction. We assume (H[τi],m, τ) |=d true
and show that (H[τk],m, τ) |= true for an arbitrary k ∈ [i,D] ∩ N+. By the
semantics of MTGL, true is always satisfied. Therefore, m in H[τk] also satisfies
true at τ . We have shown that the implication is true.
We proceed with the definite falsification. Based on the semantics of the definite
falsification relation, a match m never falsifies true. Therefore, the antecedent
(H[τi],m, τ) |=d

F true is false, making the consequent (H[τk],m, τ) ̸|= true true.
– Induction step: ψ = ¬χ.

We begin with the definite satisfaction. Assume that (H[τi],m, τ) |=d
F χ ⇒

(H[τk],m, τ) ̸|= χ for an arbitrary k ∈ [i,D]∩N+. By the semantics of negation
and the definite relations, (H[τi],m, τ) |=d

F χ ⇔ (H[τi],m, τ) |=d ¬χ. Simi-
larly, (H[τk],m, τ) ̸|= χ ⇔ (H[τk],m, τ) |= ¬χ. Therefore, it also holds that
(H[τi],m, τ) |=d ¬χ⇒ (H[τk],m, τ) |= ¬χ.
We proceed with the definite falsification. Assume that (H[τi],m, τ) |=d χ⇒
(H[τk],m, τ) |= χ. Analogously to the definite satisfaction, (H[τi],m, τ) |=d χ⇔
(H[τi],m, τ) |=d

F ¬χ and (H[τk],m, τ) |= χ ⇔ (H[τk],m, τ) ̸|= ¬χ. Therefore,
(H[τi],m, τ) |=d

F ¬χ⇒ (H[τk],m, τ) ̸|= ¬χ.

Foundations for Query-based RM of Temporal Properties over RTMs 41

Symbol Concept Formal Representation Def.

P temporal property from running
example

- p. 3

Gτ runtime model, at time point τ typed attributed graph p. 4
τ time point real number p. 5
hτ event trace, spanning the interval

[0, τ]
sequence of events p. 5

i index of sequence member natural number p. 5
τi time point at i-th member of

sequence
real number p. 5

E mapping from events to graph
modifications

function p. 6

H[τ] runtime model with history,
spanning the interval [0, τ]

typed attributed graph p. 6

hH
τ RTMH-trace, spanning the interval

[0, τ]
sequence of runtime models with

history
p. 6

ψ, χ, ω temporal property metric temporal graph condition p. 6
n, n̂ (graph) pattern typed attributed graph p. 6
|= (regular) satisfaction relation of

metric temporal graph logic
relation p. 7

m, m̂ match morphism p. 7
L query language of InTempo set of queries p. 7
E set of matched vertices set of vertices in given match p. 7
e matched vertex vertex in E p. 7
λm lifespan of a match m interval p. 8
Y satisfaction span interval set p. 8
Z satisfaction computation interval set p. 8
V temporal validity interval set p. 8
M̂ set of matches of m̂ compatible to

m
set of matches p. 8

T (regular) answer set of L set of (m,V) pairs p. 9
|=d definite satisfaction relation relation p. 10
|=d

F definite falsification relation relation p. 10
c current time point real number p. 10
D last member of sequence natural number p. 11
w non-definiteness window interval p. 11
|=T timeliest satisfaction relation relation p. 12
|=F,T timeliest falsification relation relation p. 12
Yd definite satisfaction span interval set p. 13
Zd definite satisfaction computation interval set p. 13
Fd definite falsification span interval set p. 13
F d definite falsification computation interval set p. 13
X unknown span interval set p. 13
Vd definite temporal validity interval set p. 15
IV temporal invalidity interval set p. 15
IVd definite temporal invalidity interval set p. 15
Td definite answer set of L set of (m,Vd, IVd) triples p. 15
N network generalized discrimination network p. 16
Td
V,r restricted temporal validity answer

set of L
subset of Td only with Vd p. 17

Te effective answer set of L subset of T with V capped based
on w

p. 17

Table 2: Main symbols, their denoted concept, and formal representation; the
rightmost column shows the page on which the symbol was first defined.

42 L. Sakizloglou et al.

– Induction step: ψ = ∃(n̂, χ).
Let the induction hypothesis be (H[τi], m̂, τ) |=d χ ⇒ (H[τk], m̂, τ) |= χ and
(H[τi], m̂, τ) |=d

F χ⇒ (H[τk], m̂, τ) ̸|= χ, where m̂ is a match for the pattern n̂
and k an arbitrary index in [i,D] ∩ N+.
We begin with the definite satisfaction. We assume (H[τi],m, τ) |=d ∃(n̂, χ) and
show this implies (H[τk],m, τ) |= ∃(n̂, χ). Since (H[τi],m, τ) |=d ∃(n̂, χ), there
exists matches m and m̂ such that m̂ is compatible with m and τ ∈ λm ∩ λm̂.
The matches m, m̂ will be structurally present and m̂ will be compatible
with m in all future versions of H[τi]. Moreover, there will be no changes in
λm, λm̂ for the period [0, τ]. Also, by the induction hypothesis, m̂ satisfies
χ at τ . Therefore, by the semantics of the satisfaction relation for exists,
(H[τk],m, τ) |= ∃(n̂, χ). We have shown that the implication is true.
We proceed with the definite falsification. We assume that (H[τi],m, τ) |=d

F

∃(n̂, χ) and show that this implies (H[τk],m, τ) ̸|= ∃(n̂, χ). Since (H[τi],m, τ)

|=d
F ∃(n̂, χ), (i) either there exists no m̂ in H[τi] such that m̂ is compatible

with m, or (ii) there exists m̂ compatible with m, but τ ̸∈ λm ∩ λm̂, or (iii)
there exists m̂ compatible with m with τ ∈ λm ∩ λm̂ but m̂ definitely falsifies
χ at τ . If (i) is true, it will be true in all future versions of H[τi], as matches
cannot be found retrospectively. If (ii) is true, the lifespan of λm̂ in the period
[0, τi] will not change in all future versions of H[τi]. Finally, if (iii) is true, we
know from the induction hypothesis that (m̂, τ) ̸|= χ also over H[τk]. Therefore,
in any case, (H[τk],m, τ) ̸|= ∃(n̂, χ). We have shown that the implication is
true.

– Induction step: ψ = χUIω.
We begin with the definite satisfaction. Induction hypothesis: (H[τi],m, τ)

|=d χ⇒ (H[τk],m, τ) |= χ and (H[τi],m, τ) |=d ω ⇒ (H[τk],m, τ) |= ω with k
an arbitrary index in [i,D] ∩ N+.
We assume (H[τi],m, τ) |=d χUIω and show this implies (H[τk],m, τ) |=
χUIω. Since (H[τi],m, τ) |=d χUIω, there exists τ such that τ ′ − τ ∈ I and
(H[τi],m, τ

′) |=d ω, and for all τ ′′ ∈ [τ, τ ′) (H[τi],m, τ
′′) |=d χ. The decisions

for the time point τ ′ and for all time points τ ′′ either concern a match or not: if
they do concern a match, then they are confined to [0, τi] and remain unaltered
throughout the trace; if they do not concern a match, e.g., they concern true
or ¬true, then they again remain unaltered. Therefore, also over H[τk] it will
hold that at τ ′ (H[τk],m, τ

′) |= ω, and for every τ ′′ (H[τk],m, τ
′′) |= χ. Thus,

by the semantics of the satisfaction relation for until, (H[τk],m, τ) |= χUIω.
We have shown that the implication is true.
We proceed with the definite falsification. Let the induction hypothesis be
(H[τi],m, τ) |=d

F χ⇒ (H[τk],m, τ) ̸|= χ and (H[τi],m, τ) |=d
F ω ⇒ (H[τk],m, τ)

̸|= ω.
We assume (H[τi],m, τ) |=d

F χUIω and show that this implies (H[τk],m, τ)

̸|= χUIω. Since (H[τi],m, τ) |=d
F χUIω, for all τ ′ such that τ ′−τ ∈ I, either (i)

(H[τi],m, τ
′) |=d

F ω or (ii) there exists τ ′′ ∈ [τ, τ ′) such that (H[τi],m, τ
′′) |=d χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ ′ and at τ ′′ concern a match,

Foundations for Query-based RM of Temporal Properties over RTMs 43

they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold over H[τk]. Therefore, (H[τk],m, τ) ̸|= χUIω.
We have shown that the implication is true.

– Induction step: ψ = χSIω.
The proof proceeds analogously to until. We begin with the definite satisfaction.
Let the induction hypothesis be (H[τi],m, τ) |=d χ ⇒ (H[τk],m, τ) |= χ and
(H[τi],m, τ) |=d ω ⇒ (H[τk],m, τ) |= ω with k an arbitrary index in [i,D]∩N+.
We assume (H[τi],m, τ) |=d χSIω and show this implies (H[τk],m, τ) |=
χSIω. Since (H[τi],m, τ) |=d χSIω, there exists τ ′ such that τ − τ ′ ∈ I

and (H[τi],m, τ
′) |=d ω, and for all τ ′′ ∈ (τ ′, τ] (H[τi],m, τ

′′) |=d χ. The deci-
sions for the time point τ ′ and all time points τ ′′ either concern a match or
not: if they do concern a match, then they are confined to [0, τi] and remain
unaltered throughout the trace; if they do not concern a match, then they
will again remain unaltered. Therefore, also over H[τk] it will hold that at τ ′
(H[τk],m, τ

′) |= ω, and for all τ ′′ (H[τk],m, τ
′′) |= χ. Thus by the semantics of

the satisfaction relation for since, (H[τk],m, τ) |= χSIω. We have shown that
the implication is true.
We proceed with the definite falsification. Let the induction hypothesis be
(H[τi],m, τ) |=d

F χ⇒ (H[τk],m, τ) ̸|= χ and (H[τi],m, τ) |=d
F ω ⇒ (H[τk],m, τ)

̸|= ω.
We assume (H[τi],m, τ) |=d

F χSIω and show that this implies (H[τk],m, τ)

̸|= χSIω. Since (H[τi],m, τ) |=d
F χSIω, for all τ ′ such that τ − τ ′ ∈ I, either (i)

(H[τi],m, τ
′) |=d

F ω or (ii) there exists τ ′′ ∈ (τ ′, τ] such that (H[τi],m, τ
′′) |=d χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
definite satisfaction, if the decisions for all τ ′ and at τ ′′ concern a match,
they will remain unaltered, and so will they if they do not concern a match.
Therefore, the case will also hold over H[τk]. Therefore, (H[τk],m, τ) ̸|= χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows that Theorem 1 holds. ⊓⊔

B.2 Theorem 2: definite relations are equivalent to satisfaction
relation over certain period of trace

Following is the proof for Theorem 2 (see [47, Section A.3.3]), that is, given
an MTGC ψ over a pattern n, the non-definiteness w window of ψ, and a
sequence of RTMH instances hHτD with D ∈ N+ the last index, for all i ∈
[1,D] ∩ N+, if m a match for n in H[τi] and τ ∈ [0, τi − w], then for all k ∈
[i,D]∩N+, (i) (H[τi],m, τ) |=d ψ iff (H[τk],m, τ) |= ψ, and (ii) (H[τi],m, τ) |=d

F ψ
iff (H[τk],m, τ) ̸|= ψ.

By definition of the RTMH, a match m in H[τi] will be structurally present
in all H[τk] with k ∈ [i,D] ∩ N+—what may change (once) in future versions of
H[τi] is the lifespan of m, i.e., if the dts of all matched elements is ∞ and one of
these elements is updated to a value less than ∞; even then, this change will not
affect the lifespan of m in the period [0, τi], that is, in H[τi], the observation on
whether m is present in λm ∩ [0, τi] will never be refuted.

44 L. Sakizloglou et al.

Proof. The direction ⇒ of the equivalence has been shown by the more general
Theorem 1, which concerned an arbitrary τ . We therefore focus on direction
⇐ of the equivalence. As m is present in H[τi], its lifespan λm in the period
[0, τi] will remain unchanged in subsequent versions of H[τi]. In the following, the
non-definiteness window w is computed according to Definition 7.

The proof proceeds by mutual structural induction over ψ. In the base case,
we show the theorem to be true for the MTGL operator true. We omit the
straightforward step for conjunction.

– Base case: true.
We begin with the satisfaction. We assume (H[τk],m, τ) |= true for an arbitrary
k ∈ [i,D] ∩ N+ and τ ∈ [0, τi − w] with wnd = 0, and show that this implies
(H[τi],m, τ) |=d true. As true is always satisfied, m in H[τi] definitely satisfies
true at τ . Hence, the implication to be true.
We proceed with the falsification. Based on the semantics of satisfaction, a
match m never satisfies ̸|= true. Therefore, the antecedent (H[τk],m, τ) ̸|= true
is false, making the consequent (H[τi],m, τ) |=d

F true true.
– Induction step: ψ = ¬χ.

We begin with the satisfaction. Let (H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d
F χ

for an arbitrary k ∈ [i,D] ∩ N+ and τ ∈ [0, τi − w] with w(¬χ) = w(χ).
By the semantics of negation and the satisfaction relation, (H[τk],m, τ) ̸|=
χ ⇔ (H[τk]m, τ) |= ¬χ. Similarly, (H[τi],m, τ) |=d

F χ ⇔ (H[τi],m, τ) |=d ¬χ.
Therefore, it also holds that (H[τk],m, τ) |= ¬χ⇒ (H[τi],m, τ) |=d ¬χ.
We proceed with the falsification. Assume (H[τk],m, τ) |= χ ⇒ (H[τi],m, τ)

|=d χ. Analogously to the satisfaction, (H[τk],m, τ) |= χ⇔ (H[τi],m, τ) ̸|= ¬χ
and (H[τk],m, τ) |=d χ ⇔ (H[τk],m, τ) |=d

F ¬χ. Therefore, (H[τk],m, τ) ̸|=
¬χ⇒ (H[τi],m, τ) |=d

F ¬χ.
– Induction step: ψ = ∃(n̂, χ).

Let the induction hypothesis be (H[τk], m̂, τ) |= χ ⇒ (H[τi], m̂, τ) |=d χ and
(H[τk], m̂, τ) ̸|= χ⇒ (H[τi], m̂, τ) |=d

F χ, where m̂ is a match for the pattern n̂,
k an arbitrary index in [i,D] ∩ N+, and τ ∈ [0, τi − w]. The non-definiteness
window w is given by w(∃(n̂, χ)) = w(χ).
We begin with the satisfaction. We assume that (H[τk],m, τ) |= ∃(n̂, χ) and
show that this implies (H[τi],m, τ) |=d ∃(n̂, χ). Since (H[τk],m, τ) |= ∃(n̂, χ),
there exists matches m and m̂ in H[τk] such that m̂ is compatible with m

and τ ∈ λm ∩ λm̂. The match m is present in H[τi] and, according to the
induction hypothesis, the match m̂ is also present in H[τi]. As the matches
are structurally the same, m̂ is also compatible with m in H[τi]. Moreover, as
there are no changes in λm, λm̂ for the period [0, τi], τ ∈ λm ∩ λm̂ over H[τi].
We also know that τ ≤ τi and, by the induction hypothesis, that m̂ satisfies χ
at τ . Therefore, by the semantics of the definite satisfaction relation for exists,
(H[τi],m, τ) |=d ∃(n̂, χ). We have shown that the implication is true.
We proceed with the falsification. We assume that (H[τk],m, τ) ̸|= ∃(n̂, χ) and
show that this implies (H[τi],m, τ) |=d

F ∃(n̂, χ). Since (H[τk],m, τ) ̸|= ∃(n̂, χ),
(i) either there exists no m̂ in H[τk] such that m̂ is compatible with m, or (ii)

Foundations for Query-based RM of Temporal Properties over RTMs 45

there exists m̂ compatible with m, but τ ̸∈ λm ∩ λm̂, or (iii) there exists m̂
compatible with m with τ ∈ λm ∩ λm̂ but m̂ falsifies χ at τ . If (i) is true,
it will be true in all future versions of H[τi], as matches cannot be found
retrospectively. If (ii) is true, the lifespan of λm̂ in the period [0, τi] will not
change in all future versions of H[τi]. Finally, if (iii) is true, we know from
the induction hypothesis that (m̂, τ) |=d

F χ also over H[τi] and that τ ≤ τi.
Therefore, in any case, (H[τi],m, τ) |=d

F ∃(n̂, χ). We have shown that the
implication is true.

– Induction step: ψ = χUIω.
We begin with the satisfaction. Let the induction hypothesis be (H[τk],m, τ) |=
χ⇒ (H[τi],m, τ) |=d χ and (H[τk],m, τ) |= ω ⇒ (H[τi],m, τ) |=d ω with k an
arbitrary index in [i,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness window
w is given by max(w(χ), w(ω)) + r(I).
We assume (H[τk],m, τ) |= χUIω and show (H[τi],m, τ) |=d χUIω. Since
(H[τk],m, τ) |= χUIω, there exists τ ′ such that τ ′ − τ ∈ I and (H[τk],m, τ

′) |=
ω, and for all τ ′′ ∈ [τ, τ ′) (H[τk],m, τ

′′) |= χ. From τ ∈ [0, τi − w] and
τ ′ ∈ [τ + ℓ(I), τ + r(I)], it follows that τ ′ ≤ τi −max(w(χ), w(ω)). Based on
this and the induction hypothesis, (H[τi],m, τ

′) |=d ω. Moreover, as τ ′ stems
from a period outside the non-definiteness window of ω, the decision at τ ′,
whether it concerns a match or not, will remain unaltered once made.
The decision at τ ′ as well as the preceding period [τ, τ ′) are also outside
the non-definiteness window of χ. Thus, all τ ′′ ∈ [τ, τ ′) stem from a period
covered by H[τi], and decisions for χ made in this period are definite. Therefore,
for all [τ + ℓ(I), τ + τ ′) (H[τi],m, τ

′′) |=d χ, and, by the definite semantics,
(H[τi],m, τ) |=d χUIω. We have shown that the implication is true.
We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d

F χ and (H[τk],m, τ) ̸|= ω ⇒ (H[τi],m, τ)

|=d
F ω.

We assume (H[τk],m, τ) ̸|= χUIω and show (H[τi],m, τ) |=d
F χUIω. Since

(H[τk],m, τ) ̸|= χUIω, it holds that for all τ ′ such that τ ′ − τ ∈ I either (i)
(H[τk],m, τ

′) ̸|= ω or (ii) there exists τ ′′ ∈ [τ, τ ′) such that (H[τk],m, τ
′′) |= χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
satisfaction, the decisions for all τ ′ and at τ ′′ stem from a period that is covered
by H[τi], and decisions made in this period regarding χ and ω are definite.
Therefore, the case will also hold over H[τi]. Therefore, (H[τi],m, τ) |=d

F χUIω.
We have shown that the implication is true.

– Induction step: ψ = χSIω.
We begin with the satisfaction. Let the induction hypothesis be (H[τk],m, τ) |=
χ⇒ (H[τi],m, τ) |=d χ and (H[τk],m, τ) |= ω ⇒ (H[τi],m, τ) |=d ω with k an
arbitrary index in [i,D]∩N+ and τ ∈ [0, τi −w]. The non-definiteness window
w is given by max(w(χ), w(ω)).
We assume (H[τk],m, τ) |= χSIω and show (H[τi],m, τ) |=d χSIω. Since
(H[τk],m, τ) |= χSIω, there exists τ ′ such that τ − τ ′ ∈ I and (H[τk],m, τ

′) |=
ω, and for all τ ′′ ∈ (τ ′, τ] (H[τk],m, τ

′′) |= χ. From τ ∈ [0, τi − w] and
τ ′ ∈ [τ − r(I), τ − ℓ(I)], it follows that τ ′ ≤ τi −max(w(χ), w(ω)). Hence, the

46 L. Sakizloglou et al.

decision at τ ′ can already be made over H[τi], and, moreover, as τ ′ stems from
a period outside the non-definiteness window of ω, the decision at τ ′, whether
it concerns a match or not, will remain unaltered once made. Therefore,
(H[τi],m, τ

′) |=d ω. The decision at τ ′ as well as the succeeding period (τ ′, τ]
is also outside the non-definiteness window of χ. Thus, all τ ′′ ∈ (τ ′, τ] stem
from a period covered by H[τi], and decisions for χ made in this period are
definite. Therefore, for all τ ′′ ∈ (τ ′, τ] (H[τi],m, τ

′′) |=d χ, and, by the definite
semantics, (H[τi],m, τ) |=d χSIω. We have shown that the implication is true.
We proceed with the falsification. Let the induction hypothesis be that
(H[τk],m, τ) ̸|= χ ⇒ (H[τi],m, τ) |=d

F χ and (H[τk],m, τ) ̸|= ω ⇒ (H[τi],m, τ)

|=d
F ω.

We assume (H[τk],m, τ) ̸|= χSIω and show (H[τi],m, τ) |=d
F χSIω. Since

(H[τk],m, τ) ̸|= χSIω, it holds that for all τ ′ such that τ − τ ′ ∈ I either (i)
(H[τk],m, τ

′) ̸|= ω or (ii) there exists τ ′′ ∈ (τ ′, τ] such that (H[τk],m, τ
′′) |= χ.

Regardless of which is the case, i.e., (i) or (ii) or both, analogously to the
satisfaction, the decisions for all τ ′ and at τ ′′ stem from a period that is covered
by H[τi], and decisions made in this period regarding χ and ω are definite.
Therefore, the case will also hold over H[τi]. Therefore, (H[τi],m, τ) |=d

F χSIω.
We have shown that the implication is true.

From the base case and induction steps, it follows that Theorem 2 holds. ⊓⊔

B.3 Corollary 1: Period in trace with non-definite decisions

Following is the proof for Corollary 1 (see [47, p. 32]), that is, if ψ is an MTGC,
w is the non-definiteness window of ψ, H[τi] is a RTMH instance associated with
the time point τi, m is a match for a pattern n, and τ a time point in [0, τi], then
if (H[τi],m, τ) ̸|=d ψ and (H[τi],m, τ) ̸|=d

F ψ, then τ ∈ (τi − w, τi].

Proof. The proof follows from Theorem 2. The satisfaction relation and its
negation make a decision for every time point in [0, τi − w], i.e., the relation
does not support the value unknown; Theorem 2 shows that the decisions made
by the satisfaction relation and its negation for [0, τi − w] are equivalent to the
decisions made by the definite relations. Consequently, if no definite decision is
made for τ ∈ [0, τi], then τ ̸∈ [0, τi − w]. ⊓⊔

B.4 Theorem 3: Equality of definite spans and definite computations
for satisfaction and falsification

Following is the proof for Theorem 3 (see [47, Section A.3.4]), i.e., given a match
m over a RTMH H[τ] and an MTGC ψ, the definite satisfaction span Yd of m
for ψ over H[τ] is given by the definite satisfaction computation Zd of m for ψ
over H[τ] in Definition 8, that is, Yd(m,ψ) = Zd(m,ψ). Moreover, the definite
falsification span F of m for ψ over H[τ] is given by the definite falsification
computation F of m for ψ over H[τ] in Definition 8, that is, F(m,ψ) = F (m,ψ).

Foundations for Query-based RM of Temporal Properties over RTMs 47

Proof. The proof for the definite satisfaction span Zd proceeds almost identically
to the proof for Theorem 1 for Z in [47, Section A.3.1], i.e., by structural induction
over ψ, and therefore omitted. For true, conjunction, exists, until, and since in
Definition 8, inclusion can be shown in both directions—the proof for the negation
relies on a reasoning analogous to the one presented below for negation for the
definite falsification span.

The proof for the definite falsification F is based on the application of
F = R \ (Zd ⊎X) for each MTGL operator—which follows from R = Yd ⊎ F ⊎X.
The unknown span X for true is X = ∅, whereas for exists, by definition of the
RTMH H[τ], it is X = (τ,∞). If F is known, it can be used to compute Zd ⊎X.

– ψ = true: From Equation 8 in Definition 8, we have Zd(m, true) = R, therefore
F (m, true) = ∅.

– ψ = ¬χ: It holds that

F (m,¬χ) = Zd(m,¬χ) ⊎X(m,¬χ)

and
Zd(m,χ) = Zd(m,¬χ) ⊎X(m,¬χ)

Therefore,
F (m,¬χ) = Zd(m,χ) = Zd(m,χ)

– ψ = χ ∧ ω: Let each time point that does not definitely falsify the MTGC a
that χ encloses to be assumed to satisfy the a. In practice, this includes all
time points in Zd(m,χ)⊎X(m,χ) for a. Subtracting this maximal satisfaction
span from the time domain R yields the set of time points that definitely falsify
χ. Let the satisfaction span of ω be defined analogously. If the satisfaction
span of conjunction is computed based on these maximal satisfaction spans of
χ and ω, i.e., by (Zd(m,χ) ⊎X(m,χ)) ∩ (Zd(m,ω) ⊎X(m,ω)), the definite
falsification span of conjunction can be computed analogously.

F (m,χ ∧ ω) = R \
(
(Zd(m,χ) ⊎X(m,χ)) ∩ (Zd(m,ω) ⊎X(m,ω))

)
= R \

(
(R \ F (m,χ)) ∩ (R \ F (m,ω))

)
= F (m,χ) ∪ F (m,ω)

– ψ = ∃(n̂, χ): Let τ be the time point of the RTMH H[τ]. As Z(m, ∃(n̂, χ)) is
known and X(m, ∃(n̂, χ)) = (τ,∞), to obtain the falsification computation,
we can directly solve R \ (Zd ⊎X).

F (m, ∃(n̂, χ)) = R \
(
Zd(m, ∃(n̂, χ)) ∪ (τ,∞)

)
=
(
R \ (τ,∞)

)
∩
(
R \ Zd(m, ∃(n̂, χ))

)
= (−∞, τ] ∩

(
R \ Zd(m, ∃(n̂, χ))

)
– ψ = χUIω and 0 ̸∈ I: The computation for until relies on the reasoning

explained in the case of conjunction. The satisfaction span of until is computed
based on the maximal satisfaction spans of ω, i.e., Zd(m,ω)⊎X(m,ω), and χ,

48 L. Sakizloglou et al.

that is, JX
i is obtained by Zd(m,ω) ⊎X(m,ω) and Zd(m,χ) ⊎X(m,χ), thus

the until satisfaction span is similarly maximal. Therefore, complementing
this maximal satisfaction span yields all time points that definitely falsify
until. Therefore, we have:

F (m,χUIω) = R \

(⋃
i∈Zd(m,ω)∪X(m,ω), j∈JX

i

j ∩
(
(j+ ∩ i)⊖ I

))

– ψ = χUIω and 0 ∈ I: The reasoning is similar to the case where 0 ̸∈ I.
– ψ = χSIω and 0 ̸∈ I: The case proceeds analogously to the corresponding case

of until.
– ψ = χSIω and 0 ∈ I: The case proceeds analogously to the corresponding case

of until.

By showing that Yd(m,ψ) = Zd(m,ψ) and the equations for F (m,ψ), we have
shown that theorem holds.

B.5 Theorem 4: Equality of effective answer set and restricted
definite temporal validity answer set over trace

Following is the proof for Theorem 4 (see [47, p. 57]), which states that, if
ζ := (n, ψ) is a temporal query with ψ an MTGC, w is the non-definiteness
window of ψ, hHτD is a RTMH-trace with D ∈ [2,∞] ∩ N+, i is an index in
[k,D− 1] ∩ N+ such that τk ≥ w. Td

V,r(H[τi]) is the restricted definite temporal
validity answer set over H[τi] which has been obtained from the definite answer
set Td but contains (i) only pairs of matches with their temporal validity Vd with
Vd ̸= ∅ and (ii) Vd is intersected with [0, τi − w], then the effective answer set
Te(H[τi]) is equal to Td

V,r(H[τi]).

Proof. Based on the more general Theorem 2 which shows that, for τ ∈ [0, τi−w],
the satisfaction decision for τ in H[τi] is equivalent to definite satisfaction decision
for τ in H[τi]. The computations of V and Vd over H[τi] rely on the computations of
Z and Zd over H[τi], respectively. Theorem 1 in [47, Section A.3.1] and Theorem 3
show that satisfaction relation and definite satisfaction relation over H[τi] are
soundly reflected in Z and Zd over H[τi], respectively. ⊓⊔

References

[1] Gala Barquero, Javier Troya, and Antonio Vallecillo. “Improving Query
Performance on Dynamic Graphs”. In: Softw Syst Model 20.4 (Aug. 1, 2021),
pp. 1011–1041. issn: 1619-1374. doi: 10.1007/s10270-020-00832-3.

[2] Ezio Bartocci et al. “First International Competition on Runtime Verifi-
cation: Rules, Benchmarks, Tools, and Final Results of CRV 2014”. In:
Int J Softw Tools Technol Transfer 21.1 (Feb. 1, 2019), pp. 31–70. issn:
1433-2787. doi: 10.1007/s10009-017-0454-5.

Foundations for Query-based RM of Temporal Properties over RTMs 49

https://doi.org/10.1007/s10270-020-00832-3
https://doi.org/10.1007/s10009-017-0454-5

[3] Ezio Bartocci et al. “Introduction to Runtime Verification”. In: Lectures
on Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio
Bartocci and Yliès Falcone. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 1–33. isbn: 978-3-319-75632-5.
doi: 10.1007/978-3-319-75632-5_1.

[4] Ezio Bartocci et al. “Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications”. In: Lectures on
Runtime Verification. Ed. by Ezio Bartocci and Yliès Falcone. Vol. 10457.
Cham: Springer International Publishing, 2018, pp. 135–175. isbn: 978-3-
319-75631-8. url: http://link.springer.com/10.1007/978-3-319-75632-5_5.

[5] David Basin, Felix Klaedtke, and Eugen Zălinescu. “Algorithms for Mon-
itoring Real-Time Properties”. In: Acta Informatica 55.4 (June 1, 2018),
pp. 309–338. issn: 1432-0525. doi: 10.1007/s00236-017-0295-4.

[6] David Basin, Felix Klaedtke, and Eugen Zălinescu. “The MonPoly Moni-
toring Tool”. In: Kalpa Publications in Computing. RV-CuBES 2017. An
International Workshop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools. Vol. 3. EasyChair,
Dec. 14, 2017, pp. 19–28. doi: 10.29007/89hs.

[7] David Basin et al. “Monitoring Metric First-Order Temporal Properties”.
In: J. ACM 62.2 (May 6, 2015), 15:1–15:45. issn: 0004-5411. doi: 10.1145/
2699444.

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good, the
Bad, and the Ugly, But How Ugly Is Ugly?” In: Runtime Verification. Ed.
by Oleg Sokolsky and Serdar Taşıran. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2007, pp. 126–138. isbn: 978-3-540-77395-5.
doi: 10.1007/978-3-540-77395-5_11.

[9] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.Time: A
Guided Tour of the State of the Art and Research Challenges”. In: Softw
Syst Model 18.5 (Oct. 1, 2019), pp. 3049–3082. issn: 1619-1374. doi: 10.
1007/s10270-018-00712-x.

[10] Thomas Beyhl et al. “On the Operationalization of Graph Queries with
Generalized Discrimination Networks”. In: Graph Transformation. Ed. by
Rachid Echahed and Mark Minas. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 170–186. isbn: 978-3-
319-40530-8. doi: 10.1007/978-3-319-40530-8_11.

[11] Robert Bill et al. “On the Need for Temporal Model Repositories”. In:
Software Technologies: Applications and Foundations. Ed. by Martina Seidl
and Steffen Zschaler. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 136–145. isbn: 978-3-319-74730-9. doi:
10.1007/978-3-319-74730-9_11.

[12] Gordon Blair, Nelly Bencomo, and Robert B. France. “Models@ Run.Time”.
In: Computer 42.10 (Oct. 2009), pp. 22–27. issn: 1558-0814. doi: 10.1109/
MC.2009.326.

50 L. Sakizloglou et al.

https://doi.org/10.1007/978-3-319-75632-5_1
http://link.springer.com/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.29007/89hs
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-74730-9_11
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326

[13] Márton Búr. “Query-Based Runtime Monitoring in Real-Time and Dis-
tributed Systems”. PhD thesis. Canada: McGill University, 2021. url:
https://escholarship.mcgill.ca/concern/theses/w95055572.

[14] Márton Búr et al. “Distributed Graph Queries Over Models@run.Time for
Runtime Monitoring of Cyber-Physical Systems”. In: Int J Softw Tools
Technol Transfer 22.1 (Feb. 1, 2020), pp. 79–102. issn: 1433-2787. doi:
10.1007/s10009-019-00531-5.

[15] L. Catarinucci et al. “An IoT-Aware Architecture for Smart Healthcare
Systems”. In: IEEE Internet of Things Journal 2.6 (Dec. 2015), pp. 515–526.
issn: 2327-4662. doi: 10.1109/JIOT.2015.2417684.

[16] Federico Ciccozzi et al. “Model-Driven Engineering for Mission-Critical IoT
Systems”. In: IEEE Software 34.1 (Jan. 2017), pp. 46–53. issn: 1937-4194.
doi: 10.1109/MS.2017.1.

[17] Carlo Combi et al. “Modelling Temporal, Data-Centric Medical Processes”.
In: Proceedings of the 2nd ACM SIGHIT International Health Informatics
Symposium. IHI ’12. New York, NY, USA: Association for Computing
Machinery, Jan. 28, 2012, pp. 141–150. isbn: 978-1-4503-0781-9. doi: 10.
1145/2110363.2110382.

[18] Bruno Courcelle. “The Expression of Graph Properties and Graph Transfor-
mations in Monadic Second-Order Logic”. In: Handbook of Graph Grammars
and Computing by Graph Transformation: Volume I. Foundations. USA:
World Scientific Publishing Co., Inc., Feb. 1, 1997, pp. 313–400. isbn:
978-981-02-2884-2. doi: 10.1142/9789812384720_0005.

[19] Wei Dou, Domenico Bianculli, and Lionel Briand. “A Model-Driven Ap-
proach to Trace Checking of Pattern-Based Temporal Properties”. In:
Proceedings of the ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems. MODELS ’17. Austin, Texas:
IEEE Press, Sept. 17, 2017, pp. 323–333. isbn: 978-1-5386-3492-9. doi:
10.1109/MODELS.2017.9.

[20] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. “Fundamental Theory
for Typed Attributed Graph Transformation”. In: Graph Transformations.
Ed. by Hartmut Ehrig et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 161–177. isbn: 978-3-540-30203-2. doi:
10.1007/978-3-540-30203-2_13.

[21] Cindy Eisner et al. “Reasoning with Temporal Logic on Truncated Paths”.
In: Computer Aided Verification. Ed. by Warren A. Hunt and Fabio Somenzi.
Berlin, Heidelberg: Springer, 2003, pp. 27–39. isbn: 978-3-540-45069-6. doi:
10.1007/978-3-540-45069-6_3.

[22] Yliès Falcone et al. “A Taxonomy for Classifying Runtime Verification
Tools”. In: Int J Softw Tools Technol Transfer 23.2 (Apr. 1, 2021), pp. 255–
284. issn: 1433-2787. doi: 10.1007/s10009-021-00609-z.

[23] Robert France and Bernhard Rumpe. “Model-Driven Development of Com-
plex Software: A Research Roadmap”. In: Future of Software Engineering
(FOSE ’07). May 2007, pp. 37–54. doi: 10.1109/FOSE.2007.14.

Foundations for Query-based RM of Temporal Properties over RTMs 51

https://escholarship.mcgill.ca/concern/theses/w95055572
https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.1109/MS.2017.1
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1142/9789812384720_0005
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1007/978-3-540-30203-2_13
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1109/FOSE.2007.14

[24] Antonio García-Domínguez et al. “Querying and Annotating Model Histo-
ries with Time-Aware Patterns”. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS). Sept. 2019, pp. 194–204. doi: 10.1109/MODELS.2019.000-2.

[25] Sona Ghahremani, Holger Giese, and Thomas Vogel. “Improving Scalability
and Reward of Utility-Driven Self-Healing for Large Dynamic Architectures”.
In: ACM Trans. Auton. Adapt. Syst. 14.3 (Feb. 25, 2020), 12:1–12:41. issn:
1556-4665. doi: 10.1145/3380965.

[26] Holger Giese et al. “Metric Temporal Graph Logic over Typed Attributed
Graphs”. In: Fundamental Approaches to Software Engineering. Ed. by
Reiner Hähnle and Wil van der Aalst. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2019, pp. 282–298. isbn: 978-3-
030-16722-6. doi: 10.1007/978-3-030-16722-6_16.

[27] Annegret Habel and Karl-Heinz Pennemann. “Correctness of High-Level
Transformation Systems Relative to Nested Conditions”. In: Mathematical
Structures in Computer Science 19.2 (Apr. 2009), pp. 245–296. issn: 1469-
8072, 0960-1295. doi: 10.1017/S0960129508007202.

[28] E. N. Hanson, S. Bodagala, and U. Chadaga. “Trigger Condition Testing
and View Maintenance Using Optimized Discrimination Networks”. In:
IEEE Transactions on Knowledge and Data Engineering 14.2 (Mar. 2002),
pp. 261–280. issn: 1558-2191. doi: 10.1109/69.991716.

[29] Klaus Havelund, Moran Omer, and Doron Peled. “Monitoring First-Order
Interval Logic”. In: Software Engineering and Formal Methods. Ed. by
Radu Calinescu and Corina S. Păsăreanu. Cham: Springer International
Publishing, 2021, pp. 66–83. isbn: 978-3-030-92124-8. doi: 10.1007/978-3-
030-92124-8_4.

[30] Klaus Havelund and Doron Peled. “BDDs for Representing Data in Runtime
Verification”. In: Runtime Verification. Ed. by Jyotirmoy Deshmukh and
Dejan Ničković. Vol. 12399. Cham: Springer International Publishing, 2020,
pp. 107–128. isbn: 978-3-030-60508-7. doi: 10.1007/978-3-030-60508-7_6.

[31] Klaus Havelund and Doron Peled. “First-Order Timed Runtime Verification
Using BDDs”. In: Automated Technology for Verification and Analysis.
Ed. by Dang Van Hung and Oleg Sokolsky. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 3–24. isbn:
978-3-030-59152-6. doi: 10.1007/978-3-030-59152-6_1.

[32] Klaus Havelund and Doron Peled. “Runtime Verification: From Proposi-
tional to First-Order Temporal Logic”. In: Runtime Verification. Ed. by
Christian Colombo and Martin Leucker. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2018, pp. 90–112. isbn:
978-3-030-03769-7. doi: 10.1007/978-3-030-03769-7_7.

[33] Klaus Havelund et al. “Monitoring Events That Carry Data”. In: Lectures
on Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio
Bartocci and Yliès Falcone. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 61–102. isbn: 978-3-319-75632-
5. doi: 10.1007/978-3-319-75632-5_3.

52 L. Sakizloglou et al.

https://doi.org/10.1109/MODELS.2019.000-2
https://doi.org/10.1145/3380965
https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1109/69.991716
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/978-3-030-59152-6_1
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-319-75632-5_3

[34] Kerianne L. Hobbs et al. “Runtime Assurance for Safety-Critical Systems:
An Introduction to Safety Filtering Approaches for Complex Control Sys-
tems”. In: IEEE Control Syst. 43.2 (Apr. 2023), pp. 28–65. issn: 1066-033X,
1941-000X. doi: 10.1109/MCS.2023.3234380.

[35] Ron Koymans. “Specifying Real-Time Properties with Metric Temporal
Logic”. In: Real-Time Syst 2.4 (Nov. 1, 1990), pp. 255–299. issn: 1573-1383.
doi: 10.1007/BF01995674.

[36] Christian Krause et al. “An SQL-Based Query Language and Engine for
Graph Pattern Matching”. In: Graph Transformation. Ed. by Rachid Echa-
hed and Mark Minas. Vol. 9761. Cham: Springer International Publishing,
2016, pp. 153–169. isbn: 978-3-319-40530-8. doi: 10.1007/978-3-319-40530-
8_10.

[37] F. Laroussinie, N. Markey, and P. Schnoebelen. “Temporal Logic with
Forgettable Past”. In: Proceedings 17th Annual IEEE Symposium on Logic
in Computer Science. July 2002, pp. 383–392. doi: 10.1109/LICS.2002.
1029846.

[38] Oded Maler and Dejan Ničković. “Monitoring Properties of Analog and
Mixed-Signal Circuits”. In: Int J Softw Tools Technol Transfer 15.3 (June 1,
2013), pp. 247–268. issn: 1433-2787. doi: 10.1007/s10009-012-0247-9.

[39] Felix Mannhardt and Daan Blinde. “Analyzing the Trajectories of Patients
with Sepsis Using Process Mining”. In: RADAR+EMISA@CAiSE, Essen,
Germany, June 12-13, 2017. Ed. by Jens Gulden et al. Vol. 1859. CEUR
Workshop Proceedings. CEUR-WS.org, 2017, pp. 72–80. url: http://ceur-
ws.org/Vol-1859/bpmds-08-paper.pdf.

[40] Diego Marmsoler and Ana Petrovska. “Runtime Verification for Dynamic
Architectures”. In: Journal of Logical and Algebraic Methods in Program-
ming 118 (Jan. 1, 2021), p. 100618. issn: 2352-2208. doi: 10.1016/j.jlamp.
2020.100618.

[41] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. Society for Industrial and Applied Mathematics, Jan.
2009. isbn: 978-0-89871-771-6. doi: 10.1137/1.9780898717716.

[42] Doron Peled and Klaus Havelund. “Refining the Safety–Liveness Classifi-
cation of Temporal Properties According to Monitorability”. In: Models,
Mindsets, Meta: The What, the How, and the Why Not? Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday. Ed. by Tiziana
Margaria, Susanne Graf, and Kim G. Larsen. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 218–234. isbn:
978-3-030-22348-9. url: https://doi.org/10.1007/978-3-030-22348-9_14.

[43] Giles Reger and David Rydeheard. “From First-order Temporal Logic to
Parametric Trace Slicing”. In: Runtime Verification. Ed. by Ezio Bartocci
and Rupak Majumdar. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015, pp. 216–232. isbn: 978-3-319-23820-3. doi:
10.1007/978-3-319-23820-3_14.

[44] Arend Rensink. “Representing First-Order Logic Using Graphs”. In: Graph
Transformations. Ed. by Hartmut Ehrig et al. Lecture Notes in Computer

Foundations for Query-based RM of Temporal Properties over RTMs 53

https://doi.org/10.1109/MCS.2023.3234380
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-319-40530-8_10
https://doi.org/10.1007/978-3-319-40530-8_10
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1007/s10009-012-0247-9
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
https://doi.org/10.1016/j.jlamp.2020.100618
https://doi.org/10.1016/j.jlamp.2020.100618
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-319-23820-3_14

Science. Berlin, Heidelberg: Springer, 2004, pp. 319–335. isbn: 978-3-540-
30203-2. doi: 10.1007/978-3-540-30203-2_23.

[45] Patrice C Roy, Samina Raza Abidi, and Syed Sibte Raza Abidi. “Monitoring
Medication Adherence in Smart Environments in the Context of Patient
Self-Management: A Knowledge-Driven Approach”. In: Smart Technologies
in Healthcare. CRC Press, 2017, pp. 195–223. isbn: 978-1-315-14568-6. doi:
10.1201/9781315145686-8.

[46] John Rushby. “Critical System Properties: Survey and Taxonomy”. In:
Reliability Engineering & System Safety. Special Issue on Software Safety
43.2 (Jan. 1, 1994), pp. 189–219. issn: 0951-8320. doi: 10.1016/0951-
8320(94)90065-5.

[47] Lucas Sakizloglou. “Evaluating Temporal Queries over History-Aware Ar-
chitectural Runtime Models”. PhD thesis. Universität Potsdam, 2023. doi:
10.25932/publishup-60439.

[48] Lucas Sakizloglou, Matthias Barkowsky, and Holger Giese. “Keeping Pace
with the History of Evolving Runtime Models”. In: Fundamental Approaches
to Software Engineering. Ed. by Esther Guerra and Mariëlle Stoelinga. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2021, pp. 262–268. isbn: 978-3-030-71500-7. doi: 10.1007/978-3-030-71500-
7_13.

[49] Lucas Sakizloglou et al. “Incremental Execution of Temporal Graph Queries
over Runtime Models with History and Its Applications”. In: Softw Syst
Model 21.5 (Oct. 1, 2022), pp. 1789–1829. issn: 1619-1374. doi: 10.1007/
s10270-021-00950-6.

[50] Sven Schneider et al. “Formal Testing of Timed Graph Transformation
Systems Using Metric Temporal Graph Logic”. In: Int J Softw Tools Technol
Transfer 23.3 (June 2021), pp. 411–488. issn: 1433-2779, 1433-2787. doi:
10.1007/s10009-020-00585-w.

[51] Sven Schneider et al. “Optimistic and Pessimistic On-the-fly Analysis for
Metric Temporal Graph Logic”. In: Graph Transformation. Ed. by Fabio
Gadducci and Timo Kehrer. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 276–294. isbn: 978-3-030-51372-
6. doi: 10.1007/978-3-030-51372-6_16.

[52] Michael Szvetits and Uwe Zdun. “Systematic Literature Review of the
Objectives, Techniques, Kinds, and Architectures of Models at Runtime”.
In: Softw Syst Model 15.1 (Feb. 1, 2016), pp. 31–69. issn: 1619-1374. doi:
10.1007/s10270-013-0394-9.

[53] Gabriele Taentzer and Arend Rensink. “Ensuring Structural Constraints in
Graph-Based Models with Type Inheritance”. In: Fundamental Approaches
to Software Engineering. Ed. by Maura Cerioli. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005, pp. 64–79. isbn: 978-3-540-
31984-9. doi: 10.1007/978-3-540-31984-9_6.

[54] Dániel Varró et al. “Road to a Reactive and Incremental Model Trans-
formation Platform: Three Generations of the Viatra Framework”. In:

54 L. Sakizloglou et al.

https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1201/9781315145686-8
https://doi.org/10.1016/0951-8320(94)90065-5
https://doi.org/10.1016/0951-8320(94)90065-5
https://doi.org/10.25932/publishup-60439
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1007/978-3-030-71500-7_13
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/s10270-021-00950-6
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/978-3-540-31984-9_6

Softw Syst Model 15.3 (July 1, 2016), pp. 609–629. issn: 1619-1374. doi:
10.1007/s10270-016-0530-4.

[55] Danny Weyns and Radu Calinescu. “Tele Assistance: A Self-Adaptive
Service-Based System Exemplar”. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems. May 2015, pp. 88–92. doi: 10.1109/SEAMS.2015.27.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Foundations for Query-based RM of Temporal Properties over RTMs 55

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1109/SEAMS.2015.27
http://creativecommons.org/licenses/by/4.0/

Probabilistic Runtime Enforcement
of Executable BPMN Processes

Abstract. A business process is a collection of structured tasks corre-
sponding to a service or a product. Business processes do not execute
once and for all, but are executed multiple times resulting in multiple
instances. In this context, it is particularly difficult to ensure correctness
and efficiency of the multiple executions of a process. In this paper, we
propose to rely on Probabilistic Model Checking (PMC) to automati-
cally verify that multiple executions of a process respect some specific
probabilistic property. This approach applies at runtime, thus the evalua-
tion of the property is periodically verified and the corresponding results
updated. However, we go beyond runtime PMC for BPMN, since we pro-
pose runtime enforcement techniques to keep executing the process while
avoiding the violation of the property. To do so, our approach combines
monitoring techniques, computation of probabilistic models, PMC, and
runtime enforcement techniques. The approach has been implemented as
a toolchain and has been validated on several realistic BPMN processes.

1 Introduction

Business processes are structured tasks that model a specific service or prod-
uct. Such processes are present in any company or institution worldwide, and
there is a need for better controlling these processes to reduce costs and im-
prove throughput. Many companies model their services and processes, thereby
increasing their level of automation. One of the challenges in this context is to
ensure the quality, correctness, and efficiency of these processes. In this paper, we
assume that processes are described using Business Process Model and Notation
(BPMN) [20], the standard business process modelling language. BPMN pro-
cesses are not executed once but multiple times, resulting in multiple instances.

In this study, we focus on quantitative analysis of processes, which is partic-
ularly useful for computing probabilistic properties or other metrics related to
time, costs or resource usage. More precisely, we use probabilistic model checking
(PMC) to automatically verify that multiple executions of a process respect prob-
abilistic properties [15]. In the context of BPMN processes, probabilistic proper-
ties help verifying that some task usage does not go above a certain threshold or
for computing how many resources have to be associated with specific tasks to
execute the process smoothly. Evaluating a probabilistic property is strongly re-
lated to the number of process instances being executed. Therefore, PMC should
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 5

9

–7

9

, 2024.
https://doi.org/10.1007/978-3-031-57259-3_3

Yliès Falcone , Gwen Salaün , and Ahang Zuo(B)

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

ahang.zuo@inria.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_3&domain=pdf
http://orcid.org/0000-0002-0114-0641
http://orcid.org/0000-0003-3654-8791
http://orcid.org/0009-0003-8396-5886

be applied at runtime to analyse the current execution of running instances. The
property is periodically verified, and the corresponding results are updated.

In this paper, we not only verify probabilistic properties on BPMN processes
using PMC at runtime, but also enforce the process executions to not violate
the property. To do so, we rely on runtime verification and enforcement tech-
niques. Runtime verification [3,10] is a technique to verify whether system’s ex-
ecutions satisfy a given correctness property at runtime. Runtime Enforcement
(RE) [12, 13] is complementary to runtime verification and provides techniques
that can intervene in the system at runtime to ensure that the behaviour of the
system respects the expected properties. In this paper, the system consists in
the multiple executions of a process and we want these executions to always
satisfy a given property. This is possible by catching the flow of executions of
these process instances and by changing it (when the property is violated) using
correcting actions (such as buffering or reordering specific tasks).

More precisely, we introduce probabilistic runtime enforcement, allowing
BPMN processes to satisfy a given probabilistic property at runtime. To achieve
this, we first convert the BPMN process into a formal model represented by
a Labelled Transition System (LTS). We then monitor the multiple executions
of the process and extract the corresponding traces (one trace per process in-
stance). Based on these execution traces, we can annotate the LTS model of
the process by adding execution probabilities to transitions of the LTS, thus ob-
taining a Probabilistic Transition System (PTS) model. It is worth noting that
recent actions are taken into account to compute this PTS but are not effectively
released and considered executed. Probabilistic model checking is then used to
verify whether the PTS model satisfies the given property. If the property is
satisfied, all recent actions are released. If the property is violated, the enforce-
ment mechanism is triggered and the aforementioned recent actions are retained,
removed or re-ordered to avoid the property violation. This approach was fully
implemented and its effectiveness was validated on several examples of processes
and properties.

The contributions of this work can be summarised as follows:

– A novel algorithm, which analyses (possibly incomplete) execution traces
and builds a Probabilistic Transition System.

– A probabilistic enforcement mechanism, which avoids probabilistic property
violation when executing multiple process instances.

– An entire toolchain supporting the whole approach and its validation on
realistic processes.

The organisation of this paper is as follows. Section 2 introduces the back-
ground notions required to this work. Section 3 presents the probabilistic en-
forcement approach for BPMN. Section 4 describes the toolchain automating
all the approach steps, illustrates the approach with a case study, and presents
experimental results. Section 5 surveys related work, and Section 6 concludes.

Probabilistic Runtime Enforcement of Executable BPMN Processes 57

2 Background

This section outlines the fundamental concepts, such as BPMN, Labelled Tran-
sition System (LTS), Probabilistic Transition System (PTS), execution traces,
and probabilistic properties.

2.1 Business Process Model and Notation

Business Process Model and Notation (BPMN) is a widely used workflow-based
notation for describing and modelling business processes [20]. The syntax of a
BPMN process is defined as a graph-based structure, where vertices or nodes
represent various elements such as events, tasks, and gateways, and edges or
flows connect these nodes. Figure 1 introduces the key elements of the BPMN
notation.

Task

Initial Event End Event

Split gateways: inclusive, exclusive, parallel Merge gateways: inclusive, exclusive, parallel

Task Flow

Fig. 1: Excerpt from the BPMN notation.

The diagram includes the initial event and the end event, which serve to
initialise and terminate processes, respectively. It is assumed that there is only
one initial event, which corresponds to the initiation of a process and at least one
end event, which corresponds to the completion of a process. Task represents an
atomic activity and typically has only one incoming flow and one outgoing flow,
denoting the sequence of activities within the process. Gateways are used to
describe the control flow of the process. There are two patterns for each gateway
type: the split pattern and the merge pattern. The split pattern consists of a
single incoming flow and multiple outgoing flows. The merge pattern consists of
multiple incoming flows and a single outgoing flow. Several types of gateways
are available, such as exclusive, parallel, and inclusive gateways. An exclusive
gateway corresponds to a choice among several flows. A parallel gateway executes
all possible flows at the same time. An inclusive gateway executes one or several
flows. The choice of flows to execute in exclusive and inclusive gateways depends
on the evaluation of data-based conditions.

This paper focuses on the multiple executions of a single process, known as
process instances. Each instance is characterised by an identifier and by the list

58 Yliès Falcone , Gwen Salaün, and Ahang Zuo

of tasks executed by this instance. It is assumed that each instance eventually
completes, thus resulting in a finite list of tasks.

2.2 LTS & PTS

Labelled and Probabilistic Transition Systems are used in this paper as semantic
models for BPMN. Moreover, they allow the automated analysis of the corre-
sponding BPMN processes.

Definition 1 (LTS). A Labelled Transition System (LTS) is a tuple ⟨Q,Σ, qinit ,
∆⟩, where: Q is a finite set of states, Σ is a finite set of labels/actions, qinit is
the initial state, ∆ ⊆ Q × Σ × Q is a transition relation, where (q, a, q′) ∈ ∆
represents a possible transition from state q to state q′ with label a, also written
q

a−→ q′.

Probabilities are useful for making explicit the likelihood of executing specific
tasks in a process. Therefore, we also use Probabilistic Transition Systems [23],
an extension of the LTS model that incorporates probabilities for transitions.

Definition 2 (PTS). A Probabilistic Transition System (PTS) is a tuple ⟨S,A,
sinit, δ, P ⟩ such that ⟨S,A, sinit, δ⟩ is a labelled transition system as per Defini-
tion 1 and P : δ → [0, 1] is the probability labelling function.

P (s
a→ s′) ∈ [0, 1] is the probability for the system to move from state

s to state s′, performing action a. For each state s, the sum of the probabil-
ities associated with its outgoing transitions is equal to 1, that is ∀s ∈ S :∑

s′∈S P (s, a, s′) = 1. When using LTS or PTS as a semantic model of a BPMN
process, the set of labels or alphabet refers to the set of tasks appearing in the
BPMN process.

2.3 Execution Traces

A process can be executed multiple times, resulting in multiple instances. Each
process instance being executed can be in one of the following three states: wait-
ing state, running/ongoing state, and completed state. Any (ongoing or com-
pleted) instance consists of a sequence of tasks within the process. Every time
an instance executes, it results in an execution trace of tasks.

Definition 3 (Execution Trace). An execution trace (σT) refers to a se-
quence of tasks that are executed in a specific order by a specific process instance.

It is worth noting that in the rest of this work, an execution trace can be
completed or not. In the latter case, this is due to the fact that the process
instance is still running and has not completed yet.

Several operations can be performed on execution traces. Assuming an exe-
cution trace σ of length n and an execution trace σ′ of length m, we define the
following primitive operations:

Probabilistic Runtime Enforcement of Executable BPMN Processes 59

– Size: Size(σ) = |σ|.
– Index: σ[i] is the ith element in σ, i < n
– Slice: σ[0...i] = σ[0].σ[1]. · · · .σ[i− 1], i ≤ n.
– Concatenation: Concat(σ, σ′) = σ[0...n].σ′[0...m].
– Reorder: Reorder(σ, σ′) = σ′[0...m].σ[0...n].

2.4 Probabilistic Properties

The Model Checking Language (MCL) [26] is a branching-time temporal logic
that is suitable for expressing properties of concurrent systems using actions. It
extends the alternation-free µ-calculus [9] with regular expressions, data-based
constructs, and fairness operators. A probabilistic property is a specification
or requirement that expresses a probabilistic behaviour of a system or model
being analysed. In this paper, probabilistic properties are used to describe the
requirements for the probability of execution of a task or a set of combined tasks
in a BPMN process. We use MCL to describe probabilistic properties using the
prob R is op [?] E end prob construct [24], where R is a regular formula that
describes transition sequences, op is a comparison operator such as “<”, “≤”, “>”,
“≥”, “=”, “<>”, and E is a real number that represents a probability. Given an
MCL probabilistic property and a PTS model, we use the CADP Probabilistic
Model Checker [24] in order to evaluate the property on the PTS model.

3 Probabilistic Runtime Enforcement

Our approach takes two inputs, a BPMN model and a probabilistic property,
and produces as output a list of safe-to-execute tasks, in the sense that they
do not violate the given property. This approach consists of three parts: the
monitoring part, the transformation part, and the probabilistic runtime enforce-
ment mechanism (Figure 2). First, monitoring is used to observe the multiple
executions of the given process, in particular to retrieve the tasks executed by
each process instance (resulting in execution traces). Second, the input BPMN
model is transformed into its corresponding semantic model, namely an LTS.
This step is performed only once. Finally, the probabilistic runtime enforcement
mechanism consists of two modules. The first module corresponds to Probabilis-
tic Model Checking (PMC), which determines whether a new version of the PTS
violates the given probabilistic property. The second module corresponds to the
enforcer, which is activated only when the probabilistic model checking returns
false. In such a case, the enforcer applies appropriate techniques to modify the
input trace (e.g., by retaining some tasks and not executing them immediately),
and thus avoid property violation.

3.1 Monitoring

Monitoring techniques are useful to observe and monitor the current status of
the BPMN process executions. More precisely, we monitor process executions

60 Yliès Falcone , Gwen Salaün, and Ahang Zuo

Fig. 2: Approach Overview.

from an instance perspective since the main goal is to extract all traces executed
by ongoing process instances on a given period.

Figure 3 illustrates the monitoring process of a BPMN process at runtime,
which involves observing every generated instance for that process. Multiple
instances can execute concurrently, and all information related to the execution
of one process instance is stored in a database. To retrieve execution traces
for all process instances, we rely on extraction techniques at varying levels of
granularity. As shown in the figure, each instance execution trace is composed
of a process ID, an instance ID, a set of tasks, a start time, and an end time.

Fig. 3: Runtime monitoring of multiple executions of a BPMN process.

Since we focus here on long-running process executions, it does not make
sense to retrieve all execution traces from the beginning. Therefore, the extrac-
tion is triggered for a specific time window. This operation is repeated peri-
odically, thus resulting in a sliding window algorithm. Algorithm 1 aims at ex-
tracting the execution traces for all instances that are either in progress or have
already finished during a specified time window. The algorithm takes as input

Probabilistic Runtime Enforcement of Executable BPMN Processes 61

the process ID, the checkpoint timestamp, and the window duration. It first ini-
tialises an empty list for the output traces. Then, it retrieves all execution traces
associated with the process ID using the getTraces() method, which extracts all
execution traces as illustrated in Figure 3. For each instance, it checks whether
its endTime property is None (instance still running), or less than or equal to
the start of the window. If so, it appends the execution trace to the output trace
list. Finally, the algorithm returns as output a set of traces executed on that
window. The time complexity of this algorithm is O(n), where n is the number
of instances in the process.

Algorithm 1 Get traces in the sliding window
Inputs: Process ID PID , Checkpoint Timestamp ts, window duration td
Output: Execution traces T
1: T := []
2: Tall := PID .getTraces()
3: for each Tr ∈ Tall do
4: if Tr .endTime is None or Tr .endTime ≤ ts− td then T .append(Tr)

return T

3.2 Transforming BPMN into LTS

LTS is a semantic model that shows all possible execution paths for a process.
To transform BPMN into LTS, we rely on an existing approach that first trans-
lates BPMN into the LNT process algebraic specification language, and then
transforms it into an LTS by using CADP compilers [17]. For more information
on the transformation process from BPMN to LTS, please refer to [22,27].

3.3 Transforming LTS into PTS

The transformation process from an LTS to a PTS consists of two steps. The
initial step aims at traversing all provided instances and identifying all the possi-
ble execution paths for each instance (Algorithm 2). In a second step, a counter
is added to each transition of the LTS, thus allowing us to track the number of
times each transition is executed. This facilitates the calculation of the proba-
bility value associated with executing each transition. Finally, the output model
is represented as a PTS (Algorithm 3).

An execution path is a sequence of transitions in the LTS that matches
with the execution trace of an instance. When an instance has been successfully
completed, there exists only one corresponding execution path. The LTS may
exhibit non-deterministic behaviour due to the presence of inclusive gateways in
the BPMN model. Therefore, when considering unfinished instances, we calculate
the execution probabilities of all relevant paths and normalize these probabilities.

Algorithm 2 takes as input an LTS and an execution trace of an instance
Ttasks (i.e. a list of tasks), and finds all feasible execution paths in the LTS that

62 Yliès Falcone , Gwen Salaün, and Ahang Zuo

satisfy the given execution trace. The algorithm uses a depth-first search (DFS)
approach to traverse the LTS, starting from the initial state. It compares the
tasks in the transitions of the LTS with the tasks in the ordered sequence of tasks
to determine feasible paths. The algorithm maintains a stack to keep track of the
current state and partial paths, and recursively explores all possible transitions
from the current state until it reaches a state that fully matches the ordered
sequence of tasks. Given that it is a non-deterministic model, it then backtracks
to explore other possible transitions and continues the exploration process until
all paths have been exhaustively explored. The time complexity of the algorithm
is O(|Q| × |∆|), where |Q| represents the number of states in the LTS and |∆|
represents the number of transitions in the LTS.

Algorithm 2 Get all execution paths of an instance in LTS (FindPaths)
Inputs: LTS = ⟨Q,Σ, qinit ,∆⟩, an execution trace Ttasks = [t1, t2, . . . , tn]
Output: A list of paths (resultPaths)
1: resultPaths := []

return DFS(LTS, Ttasks , qinit , [], resultPaths)

2: function DFS(LTS, tasks, qcurrent , currentPath, resultPaths)
3: if Size(tasks) == 0 then
4: return resultPaths.append(currentPath)
5: else
6: task := tasks[0]; restTasks := tasks[1:]
7: Qnext := {q′ ∈ Q | (qcurrent , task, q′) ∈ ∆}
8: for all qnext ∈ Qnext do
9: nextPath := currentPath

10: nextPath.append((qcurrent , task, qnext))
11: DFS(LTS, restTasks, qnext , nextPath, resultPaths)

Algorithm 3 takes as input an LTS and a list of execution traces I, and
computes a PTS representing the probability distribution of transitions between
states of the LTS based on the occurrence of tasks in the set of execution traces.
The algorithm first initialises a counter for each transition in the LTS, which
records the number of times the transition is taken in the execution trace (line 1).
Then, for each execution trace in the list, the algorithm computes the set of pos-
sible execution paths in the LTS that correspond to the execution trace (line 5).
If there is only one path, the algorithm increments the counter for each transition
in the path by 1 (lines 6 to 7). If there are multiple paths, the algorithm incre-
ments the counter for each transition in each path by 1, but also keeps track
of the number of execution traces that have multiple paths to avoid double-
counting (lines 10 to 11). Finally, the algorithm computes the probability of
each transition by dividing its counter by the sum of counters for all transitions
with the same source state and event (line 12). The resulting probabilities are
normalised so that they sum to 1 (line 13). The algorithm returns the PTS,

Probabilistic Runtime Enforcement of Executable BPMN Processes 63

which consists of the set of states, tasks, and transitions of the LTS, along with
the computed probabilities for each transition. The time complexity of this al-
gorithm is O(|I| × |Q| × |∆|), where |I| is the number of execution traces, |Q|
represents the number of states in the LTS, and |∆| represents the number of
transitions in the LTS.

Algorithm 3 Computation of PTS (ComputePTS)
Inputs: LTS = ⟨Q,Σ, qinit ,∆⟩, a list of execution traces I = [I1, I2, . . . , In]
Output: PTS = ⟨S,A, sinit , δ, P ⟩
1: for each (q, a, q′) ∈ ∆ do cnt((q, a, q′)) := 0

2: Paths := [], counter := 0 ▷ counter records the number of unfinished traces
3: for all Ii ∈ I do
4: Ttasks := Ii.getTasks()
5: Paths := FindPaths(LTS, Ttasks) ▷ FindPaths (Algorithm 2)
6: if Size(Paths) == 1 then
7: for each (s, a, s′) ∈ Paths[0] do cnt((s, a, s′)) := cnt((q, a, q′)) + 1

8: else
9: counter := counter + 1

10: for each Path ∈ Paths do
11: for each (s, a, s′) ∈ Path do cnt((s, a, s′)) := cnt((q, a, q′)) + 1

12: P := {(s, a, s′) 7→ cnt((s, a, s′))/ ▷ calculate probabilities
(
∑

q∈S,a′∈A,(s,a′,q)∈δ cnt((s, a
′, q))− counter) | (s, a, s′) ∈ δ}

13: P := Normalisation(P)
return ⟨S,A, sinit , δ, P ⟩

3.4 Critical Tasks

In this subsection, we describe how to define and compute critical actions/tasks
given an LTS model of a BPMN process and a probabilistic property. Critical
tasks refer to specific tasks that play a crucial role in determining whether a
system’s behaviour violates or satisfies a given property. This notion is at the
heart of the enforcement techniques presented in the next subsection.

The notion of critical task used here is inspired by the notion of last action
of the property introduced in [16]. This paper states that the violation of a
property by a given model is somehow triggered when the last action of the
property is executed by the model. In other words, if the last action is not
executed, the model does not violate the property. Depending on the actions
used in the probabilistic property (including the last action), we can identify
one or more execution paths in the LTS, including the actions of the property,
where each path consists of an ordered list of transitions. We then traverse this
set of paths and for each path we search for the last state (the closest to the end
of the path) corresponding to a choice between several transitions. This state

64 Yliès Falcone , Gwen Salaün, and Ahang Zuo

s is particularly important because it is the last opportunity to avoid reaching
the last action (of the property) and thus violating the property. The actions or
tasks for all transitions outgoing from state s are candidates to critical tasks. At
this point, the operator of the property needs to be considered. If the operator is
less than ("<" or "≤"), there is one critical task, corresponding to the transition
outgoing from s and leading to the last action. If the operator is greater than
(">" or "≥"), the critical tasks correspond to all transitions outgoing from s
and leading to actions other than the last one. If the operator is "=" or "<>",
the critical tasks correspond to all tasks appearing on transitions outgoing from
s.

Algorithm 4 Computation of critical tasks in LTS (ComputeCriticalTasks)
Inputs: LTS = ⟨Q,Σ, qinit ,∆⟩, Probabilistic property (pp)
Output: A set of Critical Tasks (CTasks)
1: CTasks := {}, Ttasks := pp.getTasks()
2: Paths := FindPaths(LTS, Ttasks) ▷ FindPaths (Algorithm 2)
3: for each path ∈ paths do
4: reversedPath := Reverse(path)
5: for each transition (s, task , s ′) in reversedPath do
6: ∆s ⊆ {(s, a, q) ∈ ∆ | q ∈ Q}
7: if Size(∆s) > 1 then
8: if pp.operator() is ” > ” or ” ≥ ” then
9: CTasks := CTasks ∪ {a ∈ Σ \ task | ∃q ∈ Q, (s, a, q) ∈ ∆s}

10: else if pp.operator() is ” < ” or ” ≤ ” then
11: CTasks := CTasks ∪ {task}
12: else
13: CTasks := CTasks ∪ {a ∈ Σ | ∃q ∈ Q, (s, a, q) ∈ ∆s}
14: break

return CTasks

Algorithm 4 presents a method for computing the critical tasks (CTasks)
given an LTS and a probabilistic property (pp). The algorithm starts by initial-
ising CTasks as an empty set and extracts the set of all tasks Ttasks included
in the probabilistic property. Next, it calls FindPaths (Algorithm 2) to find all
paths in the LTS that include the tasks in Ttasks (line 2). For each path found,
the algorithm reverses it and iterates over the transitions in reverse order. For
each transition t represented as (s, task, s′), the algorithm selects the set of out-
going transitions from state s in the LTS, denoted by ∆s (line 6). If the size of
∆s is greater than 1, the algorithm checks the operator specified in pp (lines 7
to 13). If the operator is either > or ≥, the algorithm adds to CTasks the set
of all actions a in Σ that have outgoing transitions from state s and do not
correspond to the task in task (lines 8 to 9). If the operator is < or ≤, the algo-
rithm adds the task task to CTasks (lines 10 to 11). Otherwise, the algorithm
adds to CTasks the set of all actions a in Σ that have outgoing transitions from
state s (line 13). Finally, the algorithm breaks out from the loop for the current

Probabilistic Runtime Enforcement of Executable BPMN Processes 65

path. The algorithm returns the set of critical tasks CTasks as output. The time
complexity of this algorithm is O(f(n)×|∆|), where f(n) is the time complexity
of the FindPaths algorithm and |∆| is the number of transitions in the LTS.

3.5 Probabilistic Runtime Enforcement (PRE)

The enforcement mechanism (EM) requires as input a probabilistic property φ
and an LTS (Fig. 4). It is triggered right after the monitoring component. At
runtime, it periodically receives a list of execution traces and a list of waiting
tasks (waiting to be executed) from the monitoring component, and produces
as output a list of tasks (to be executed) whose execution does not cause the
violation of the probabilistic property, as verified using PMC techniques.

Fig. 4: Overview of PRE.

The enforcement techniques used in this paper rely on two operations: re-
ordering and buffering. Reordering techniques correspond to a change in the
order of application of some of the tasks received as input. Buffering techniques
rely on a FIFO buffer B, which stores critical tasks when necessary. Buffering
techniques aim at delaying the execution of specific tasks by adding them tem-
porarily to the buffer B and taking them out of the buffer when their execution
does not induce the violation of the property.

Algorithm 5 presents the enforcement mechanism in detail. The algorithm
takes as input a list of (waiting) tasks, a probabilistic property φ, and an LTS.
It returns a list of tasks to be executed (in the best case, the same sequence of
tasks given as input) that satisfies φ. The idea is to update the PTS by merging
the execution traces and the tasks to be executed (waiting tasks and tasks in
the buffer), and to use PMC techniques to determine whether these new tasks
would still preserve the satisfaction of the property. If the executions of these
tasks would violate the property, buffering or reordering techniques are triggered.

The algorithm is initialised when the EM is called for the first time. Initiali-
sation consists of (i) computing the critical tasks using the ComputeCritical-
Tasks algorithm (Algorithm 4) and storing them in the global variable ct, and
(ii) initialising the buffer B to empty. The ComputeCriticalTasks algorithm
computes the tasks of the process that can avoid the property violation and thus
will be stored in the buffer B by the enforcer when necessary. When the enforce-
ment mechanism is used for the first time, the list of tasks to be processed only
consists of the waiting tasks. Later on, each time enforcement is used, the list

66 Yliès Falcone , Gwen Salaün, and Ahang Zuo

Algorithm 5 Enforcement Mechanism
Inputs: a list of execution traces T , a list of waiting tasks σT , a probabilistic property

φ, an LTS.
Output: a list of tasks to be executed σ′

T
1: if EM is not initialised then ▷ ct and B are Global variables.
2: ct := ComputeCriticalTasks(LTS, φ) ▷ Algorithm 4
3: B := [], σ := σT ▷ Initialise Buffer B
4: else
5: σbuffer := ⟨task | task ∈ B.getTasks()⟩ ▷ All tasks in Buffer
6: σ := Concat(σbuffer , σT) ▷ Concatenation

return σ′
T := EM(LTS, T , σ, φ, ct)

7: function EM(LTS, T , σ, φ, ct)
8: if Check(LTS, T , σ, φ) then
9: σs := ⟨task | task ∈ σ ∧ task ∈ B.getTasks()⟩

10: RemovefromBuffer(σs) ▷ Buffering: (Remove)
11: return σ
12: else
13: σ1 := ⟨task | task ∈ σ ∧ task ∈ ct⟩, σ2 := ⟨task | task ∈ σ ∧ task /∈ σ1⟩
14: σr := Reorder(σ1, σ2) ▷ Reordering
15: if Check(LTS, T , σr, φ) then
16: σs := ⟨task | task ∈ σr ∧ task ∈ B.getTasks()⟩
17: RemovefromBuffer(σs) ▷ Buffering: (Remove)
18: return σr

19: else
20: σ′, σ′′ := Bisection(σ1) ▷ Binary-Search
21: σa := ⟨task | task ∈ σ′′ ∧ task /∈ B.getTasks()⟩
22: AddtoBuffer(σa) ▷ Buffering: (Add)
23: σb := Concat(σ2, σ

′) ▷ Concatenation
24: EM(LTS, T , σb, φ, ct)

25: function Check(LTS, T , σ, φ) ▷ Probabilistic model checking
26: return UpdatePTS(LTS, T , σ) |= φ ? true : false

27: function UpdatePTS(LTS, T , σ) ▷ Transforming LTS into PTS
28: I := []
29: for each task ∈ σ, in order do I := task .getInstance() ▷ I: Execution trace
30: I.append(task), I.append(I)
31: for each τ ∈ T do I := τ.getInstance()
32: if I /∈ I then I.append(I)
33: return ComputePTS(LTS, I) ▷ ComputePTS (Algorithm 3)

34: function Bisection(σ) ▷ Binary-Search
35: n := Size(σ); m := ⌊n/2⌋
36: return σ[0...m], σ[m...n]

Probabilistic Runtime Enforcement of Executable BPMN Processes 67

of tasks to be processed is obtained by concatenating all the tasks in the buffer
with the tasks in the waiting list (line 6). Function EM then starts processing
this list of tasks. The Check function first verifies whether the given execution
traces and the given list of tasks satisfy the property by using PMC. If this func-
tion returns true, all the tasks are removed from the buffer and the algorithm
returns the tasks in the buffer and the waiting tasks (lines 8 to 11). Otherwise,
the enforcement techniques are triggered. First, reordering techniques are ap-
plied as follows. The list of tasks is reordered by favouring (and thus executing
first) the non-critical tasks, which are placed at the beginning of the list. Then,
the PTS is built again, and PMC called to check whether ordering differently
the tasks to be executed avoid the property violation (line 15). If the result is
true, the buffer is emptied, and the list of tasks is returned. If the result is false,
reordering techniques are not enough, and in such a case, the mechanism then
executes some of the tasks only partially. To identify the subset of tasks that
can be executed without violating the property, we use the Bisection func-
tion (lines 34 to 36). This function helps to avoid an exhaustive exploration of
all possible combinations of tasks (and calling PMC for each solution), which
would be too costly and time-consuming. This function divides the list of critical
tasks into two parts. The algorithm then puts the second part into the buffer
and recursively calls the EM function for this new list of tasks, which is the
list of non-critical tasks (computed on line 13) concatenated with the first part
returned by the Bisection function (lines 20 to 24). The algorithm ends when
the verdict of PMC is true and returns a list of safe-to-execute tasks.

The time complexity of this algorithm is O(log |σT |× f(|σT |)), where |σT | is
the size of the given list of tasks, and f(|σT |) represents the time complexity of
using PMC.

3.6 Characteristics

This paper proposes enforcement mechanism that is online, untimed, and opera-
tional, meaning it utilises real-time system traces, disregards physical time inter-
vals, and offers a practical implementation guide. This mechanism has three main
characteristics: soundness, monotonicity, and transparency. PRE refers to the
probabilistic enforcement mechanism, PRE.buff is the buffer B, ¬E(PRE.buff)
means that the buffer was not triggered, PRE.out refers to the output of the
mechanism, and Check refers to the probabilistic model checking function.

Proposition 1 states that the tasks in each trace generated by the mechanism
do not violate the properties of the system by their execution.

Proposition 1 (Soundness)
∀σ : PRE(LTS, T , σ, φ).out = σ′

T =⇒ Check(LTS, T , σ′
T , φ) == true

Proof (Sketch). If the PMC’s verdict is false, the execution monitor does not
produce any tasks as output to maintain soundness.

Proposition 2 states that the enforcer’s output sequence consistently grows
with respect to the number of non-critical tasks in the input sequence.

68 Yliès Falcone , Gwen Salaün, and Ahang Zuo

Proposition 2 (Monotonicity)
∀t ∈ σ, t′ ∈ σ′, t, t′ /∈ ct : size(σ) ≤ size(σ′) =⇒ size(PRE(LTS, T , σ, φ).out) ≤
size(PRE(LTS, T , σ′, φ).out)

Proof (Sketch). The buffer exclusively stores critical tasks. Therefore, as the
number of non-critical tasks in the input increases, the length of the output of
the mechanism also increases.

The execution monitor is transparent, which means that it only intervenes if
the input tasks to be executed violate the property.

Proposition 3 (Transparency)
PRE(LTS, T , σ, φ).out = σ′

T ,¬E(PRE.buff) =⇒ PRE(LTS, T , σ′
T , φ).out = σ

Proof (Sketch). Since there is no suppression operation in the enforcement mech-
anism, all tasks in the input σ are the same as in the output σ′

T when the buffer
is not triggered.

4 Tool Support & Evaluation

This section first presents the toolchain that automates the different steps of
our approach. We then provide a practical illustration of the approach and tools
using a case study. Finally, additional experiments are presented to evaluate the
tools’ performance on a series of realistic examples.

4.1 Tool

Figure 5 gives an overview of the toolchain. As far as the inputs are concerned, we
rely on the open-source tool Activiti [2] to specify and execute BPMN processes.
Probabilistic properties are described using MCL. The monitoring techniques
are implemented in Java and aim at extracting the required information about
execution traces from a MySQL database. The transformation from BPMN pro-
cesses to LTS models is performed using an open-source tool called VBPMN [21].
The annotation of the LTS model with probabilities, thus resulting in a PTS
model, is implemented in Java. PMC is computed using the CADP probabilistic
model checker, which takes as input an MCL probabilistic property and a PTS,
and returns a Boolean value. Finally, the enforcer is also implemented in Java
and applies the correction when necessary on the input flow of tasks using the
techniques (reordering and buffering) presented in Section 3.

4.2 Case Study

The approach is illustrated using the shipment process of a hardware retailer [25].
Figure 6 shows the BPMN process of this example, whose final goal is to de-
liver goods. More precisely, this process starts when there are goods ready for
shipment. Two tasks are then executed concurrently: one involves packaging the

Probabilistic Runtime Enforcement of Executable BPMN Processes 69

Enforcer

BPMN Model

Instances

Database

Probabilistic property/properties
(Model Checking Language 5)

BPMN2LTS

LTS2PTS

Probabilistic
Model Checker

Execution Traces
+

List of waiting
tasks

Generate Transform

Log

Extract

Input(2): data

Input(1): LTS

PP

PTS Verdict

Output

Input

Monitoring

Transformation

Enforcement Mechanism

OutputList of safe-to-execute tasks

Fig. 5: Toolchain overview.

goods (T7) while the other determines whether a normal or special shipment
is required (T1). Based on that decision, the first option verifies the need for
additional insurance (T2), followed by the opportunity to purchase additional
insurance (T4) and/or complete a post-label (T5). Another option is to request
quotes from carriers (T3), followed by assigning a carrier and preparing the pa-
perwork (T6). Finally, the package is transferred to a designated pick-up area
(T8).

Decide: normal
post or

special carrier

Check extra
insurance

Move package to
pick area

Assign a carrier Request quotes
from carriers

Fill in a post label

Take out extra
insurance

Package goods

Goods to ship

Goods available
for pick

E1 PG1
T1 Normal post

T8

T6

T5

T4

T2

T3

T7

Special carrier

EG1

IG1 IG2

EG2

PG2

E2

Always

Extra insurance
required

Fig. 6: BPMN shipment process of a hardware retailer.

70 Yliès Falcone , Gwen Salaün, and Ahang Zuo

For illustration purposes, we choose a property checking that the probability
of executing task T4 after task T2 is less than 0.5. This is important because
the choice of taking extra insurance (T4) comes with a cost, and if this decision
is taken too often (more than half of the time here), this could result in high
expenses on a short period of time. This property is expressed in MCL as follows:
prob true*. T2. true*. T4 is < 0.5 end prob. As the question mark symbol is used,
the model checker returns a Boolean value indicating the property’s truthfulness
and a numerical value representing the probability of executing T4 after T2.

Fig. 7: Experiments on the case study without enforcement.

We have conducted two series of experiments with this running example,
one without the enforcement mechanism (results are shown in Figure 7) and
the other with enforcement (Figure 8). The same randomized workload of 2000
instances was used for each experiment. These experiments show that, without
enforcement techniques, there is a 7% risk of violating the property, resulting in a
satisfaction rate of 93%. In other words, the property is violated 7% of the time,
which corresponds to the situations where the curve goes above the probability
threshold represented as an horizontal line in Figure 7. On the other hand,
Figure 8 shows that with enforcement, the instance executions keep satisfying
the given probabilistic property, resulting in a 100% satisfaction rate and no
violation of the property. In practice, this allows one to delay payment of extra
insurance over time and thus avoids peaks of extra expenses.

Fig. 8: Experiments on the case study with enforcement.

Probabilistic Runtime Enforcement of Executable BPMN Processes 71

4.3 Experiments

The goal of this section is to evaluate the correctness and performance of the
enforcement approach. The correctness is calculated as the percentage of prob-
abilistic properties violated during the running process, while the performance
is measured by the average execution time (AET) of an instance. AET is com-
puted by summing the execution time of each instance and by dividing this value
by the number of instances. To conduct these experiments, we relied on a set
of BPMN processes taken from the literature. Each process was executed 1000
times, resulting in 1000 instances. The time taken between the startup of two
new process instances was computed using an exponential distribution with a
lambda value of 5 (λ = 5). These experiments were performed on an Ubuntu OS
laptop with a 1.7 GHz Intel Core i5 processor and 8 GB of RAM.

The results of these experiments are presented in Table 1. Each row gives
the results for a given process by providing a description, its size in terms of
number of tasks and gateways, the size of the corresponding LTS in terms of
number of states and transitions, the correctness results without (a) and with
(b) enforcement, and the AET without/with enforcement. The correctness value
corresponds to the satisfaction rate as a percentage (%). The second is described
as the unit of time for AET.

Table 1: Experimental results for some case studies.

No.
BPMN

Process

Characteristics PTS
Correctness AET (s)

Tasks Gateways States Transitions

1 Shipment [25] 8 2 + 2 + 2 18 38
(a) 93% 0.65

(b) 100% 1.38

2 Shipment [25] 8 2 + 2 + 2 18 38
(a) 47% 0.68

(b) 100% 2.23

3 Shopping [22] 22 8 + 2 + 2 59 127
(a) 93% 0.94

(b) 100% 1.98

4 Shopping [22] 22 8 + 2 + 2 59 127
(a) 54% 0.97

(b) 100% 3.76

5 AccoutOpening [22] 15 3 + 2 + 2 20 33
(a) 89% 0.56

(b) 100% 1.58

6 Online-Shop [22] 19 7 + 2 36 74
(a) 96% 1.98

(b) 100% 4.52

7 Multi-Inclusives [22] 8 6 141 1201
(a) 85% 3.42

(b) 100% 11.44

8 Booking [22] 11 2 + 4 53 252
(a) 88% 2.42

(b) 100% 6.17

72 Yliès Falcone , Gwen Salaün, and Ahang Zuo

Table 1 first shows that without enforcement techniques, the resulting cor-
rectness results present a satisfaction rate below 100%, whereas this rate is sys-
tematically of 100% when enforcement is used. As for AET, the execution time
is longer when using enforcement techniques. The time increases when the per-
centage of satisfaction of the property decreases. For instance, examples 1 and 2
use the same process but different properties. The percentage of property viola-
tions of example 1 is lower than example 2; therefore, the latter takes more time
when using enforcement because it takes more time for the process instances to
complete. Similar results can be observed for examples 3 and 4. Although the
enforcement mechanism increases the execution time of the process, it system-
atically ensures that the process executes while preserving the given property.

5 Related Work

In this section, we first compare with existing works on probabilistic verification
of business processes, and then we focus on enforcement techniques.

The approaches proposed in [5,6] deal with Bayesian networks to infer the re-
lationship between different events. As an example, the authors in [6] introduce a
BPMN normal form based on Activity Theory that can be used for representing
the dynamics of a collective human activity from the perspective of a subject.
This workflow is then transformed into a Causal Bayesian Network that can be
used for modelling human behaviours and assessing human decisions. In [18,19],
the authors present a framework for modelling and analysing business workflows.
These workflows are described with a subset of BPMN extended with probabilis-
tic nondeterministic branching and general-purpose reward annotations. An al-
gorithm translates such models into Markov Decision Processes (MDP) written
in the syntax of the PRISM model checker. This enables quantitative analysis
of business processes for properties such as transient/steady-state probabilities,
reward-based properties, and best- and worst-case scenarios. These properties
are verified using the PRISM model checker. This work supports design time
analysis but does not focus on the dynamic execution and runtime verification
of processes. The approach in [8] extends BPMN with time and probabilities.
Specifically, the authors expect that a probability value is provided for each flow
involved in an inclusive or exclusive split gateway. These BPMN processes are
then transformed to rewriting logic and analysed using the Maude statistical
model checker PVeStA. The authors in [15] propose to compute probabilities
from execution traces of executable BPMN and apply probabilistic model check-
ing techniques at runtime to analyse a given property. In this work, we also rely
on PMC, but we go beyond the analysis of BPMN processes, because when the
property is not satisfied, we apply techniques for enforcing the satisfaction of
the property.

As far as runtime enforcement is concerned, existing techniques usually rely
on common techniques including buffering, reordering, healing and discarding
actions or events [1, 4, 12, 14]. Buffering rely on storing events that violate cer-
tain property in a buffer, which helps delaying their execution. Reordering was

Probabilistic Runtime Enforcement of Executable BPMN Processes 73

used in several works for favouring or delaying the execution of some actions.
Healing is a technique that enforces properties by repairing or inserting new
events to ensure compliance. Suppression of events ensures property enforce-
ment by discarding specific events. In the context of BPMN processes, removing
specific tasks or artificially adding other tasks is meaningless due to the overall
goal of the running processes, explaining why we made use of reordering and
buffering techniques only. The authors of [11, 13] focus on developing runtime
enforcement techniques for timed properties, without targetting any specific ap-
plication area. In [7], the authors study runtime monitoring and enforcement of
first-order LTL properties over data evolution using an automata-based tech-
nique. Their approach is based on the construction of a first-order automaton
that is able to perform the monitoring incrementally and by using exponential
space in the size of the property. This theoretical work does not focus on BPMN
probabilistic processes, nor on probabilistic properties.

6 Conclusion

In this paper, we have proposed a probabilistic execution enforcement mechanism
for BPMN processes at runtime. The BPMN process is first transformed into an
LTS model. This model is periodically annotated with the execution probability
of each transition in the LTS, resulting in a PTS model. This step is achieved
by supervising the multiple executions of the BPMN process and extracting the
corresponding execution traces. When new instances are triggered, new tasks
are waiting to be executed. We check whether the execution of these tasks will
not violate the given probabilistic property. If it is the case, the enforcement
techniques are activated by either buffering or reordering tasks in order to avoid
the violation of the property. All the steps of the approach are automated by a
toolchain consisting of tools we implemented or reused. Experiments show the
correctness of the approach, which preserves the truthfulness of the property, and
a slight overhead in terms of performance, which comes from the time needed to
apply enforcement techniques.

The two main perspectives of this work are as follows. The first one is to
extend the PRE mechanism in order to minimise the frequency of verifications
by considering the PMC results. The second future work focuses on applying
PMC results to dynamically adjust the resource allocation necessary for efficient
process execution.

Acknowledgements. This work was supported by the Région Auvergne-Rhône-
Alpes within the “Pack Ambition Recherche” programme.

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On Runtime Enforcement
via Suppressions. In: 29th International Conference on Concurrency Theory (CON-
CUR 2018). pp. 34:1–34:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

74 Yliès Falcone , Gwen Salaün, and Ahang Zuo

https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

2. Activiti: Open source business automation (accessed December 2021), https://
www.activiti.org/

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. Lectures on Runtime Verification: Introductory and Advanced Topics
pp. 1–33 (2018). https://doi.org/10.1007/978-3-319-75632-5_1

4. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime Verification over Out-of-Order
Streams. ACM Trans. Comput. Logic 21(1) (oct 2019). https://doi.org/10.
1145/3355609

5. Ceballos, H.G., Cantu, F.J.: Discovering causal relations in semantically-annotated
probabilistic business process diagrams. In: Global Conference on Artificial Intel-
ligence, GCAI. pp. 29–40 (2018). https://doi.org/10.29007/nd7r

6. Ceballos, H.G., Flores-Solorio, V., Garcia, J.P.: A probabilistic BPMN normal
form to model and advise human activities. In: International Workshop on Engi-
neering Multi-Agent Systems. pp. 51–69. Springer (2015). https://doi.org/10.
1007/978-3-319-26184-3_4

7. De Masellis, R., Su, J.: Runtime enforcement of first-order LTL properties on
data-aware business processes. In: Service-Oriented Computing: 11th International
Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings 11.
pp. 54–68. Springer (2013). https://doi.org/10.1007/978-3-642-45005-1_5

8. Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in
rewriting logic. Science of Computer Programming 168, 1–17 (2018). https:
//doi.org/10.1016/j.scico.2018.08.007

9. Emerson, E., Jutla, C.S., Sistla, A.: On model checking for the mu-calculus and its
fragments. Theoretical Computer Science 258(1), 491–522 (2001). https://doi.
org/10.1016/S0304-3975(00)00034-7

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Engineer-
ing dependable software systems pp. 141–175 (2013). https://doi.org/10.3233/
978-1-61499-207-3-141

11. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular
timed properties by suppressing and delaying events. Sci. Comput. Program. 123,
2–41 (2016). https://doi.org/10.1016/j.scico.2016.02.008

12. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities. Formal Methods in System
Design 38, 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4

13. Falcone, Y., Pinisetty, S.: On the Runtime Enforcement of Timed Properties. In:
Proceedings of the Runtime Verification 2019 conference, pp. 48–69. Springer (Oct
2019). https://doi.org/10.1007/978-3-030-32079-9_4

14. Falcone, Y., Salaün, G.: Runtime Enforcement with Reordering, Healing, and Sup-
pression. In: SEFM 2021 - 19th IEEE International Conference on Software En-
gineering and Formal Methods. pp. 1–20. IEEE, Virtual, United Kingdom (Dec
2021). https://doi.org/10.1007/978-3-030-92124-8_3

15. Falcone, Y., Salaün, G., Zuo, A.: Probabilistic Model Checking of BPMN Pro-
cesses at Runtime. In: iFM 2022 - International Conference on integrated Formal
Methods. pp. 1–17. Lugano, Switzerland (Jun 2022). https://doi.org/10.1007/
978-3-031-07727-2_11

16. Faqrizal, I., Salaün, G.: Counting Bugs in Behavioural Models using Counterex-
ample Analysis. In: FormaliSE 2022 - International Conference on Formal Meth-
ods in Software Engineering. pp. 1–11. Pittsburgh, United States (May 2022).
https://doi.org/10.1145/3524482.3527647

Probabilistic Runtime Enforcement of Executable BPMN Processes 75

https://www.activiti.org/
https://www.activiti.org/
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.29007/nd7r
https://doi.org/10.29007/nd7r
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-642-45005-1_5
https://doi.org/10.1007/978-3-642-45005-1_5
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-92124-8_3
https://doi.org/10.1007/978-3-030-92124-8_3
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1145/3524482.3527647
https://doi.org/10.1145/3524482.3527647

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

18. Herbert, L., Sharp, R.: Precise quantitative analysis of probabilistic business pro-
cess model and notation workflows. Journal of Computing and Information Science
in Engineering 13(1), 011007 (2013). https://doi.org/10.1115/1.4023362

19. Herbert, L.T., Sharp, R.: Quantitative analysis of probabilistic BPMN workflows.
In: International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. vol. 45011, pp. 509–518. American Society
of Mechanical Engineers (2012). https://doi.org/10.1115/DETC2012-70653

20. ISO/IEC: International standard 19510, information technology – business process
model and notation. (2013)

21. Krishna, A., Poizat, P., Salaün, G.: VBPMN: Automated Verification of BPMN
Processes. In: 13th International Conference on integrated Formal Methods (iFM
2017). Turin, Italy (Sep 2017). https://doi.org/10.1007/978-3-319-66845-1_
21

22. Krishna, A., Poizat, P., Salaün, G.: Checking Business Process Evolution. Science
of Computer Programming 170, 1–26 (Jan 2019). https://doi.org/10.1016/j.
scico.2018.09.007

23. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)
90030-6

24. Mateescu, R., Requeno, J.I.: On-the-Fly Model Checking for Extended Action-
Based Probabilistic Operators. International Journal on Software Tools for
Technology Transfer 20(5), 563–587 (Oct 2018). https://doi.org/10.1007/
s10009-018-0499-0

25. Mateescu, R., Salaün, G., Ye, L.: Quantifying the Parallelism in BPMN Processes
using Model Checking. In: The 17th International ACM Sigsoft Symposium on
Component-Based Software Engineering (CBSE 2014). Lille, France (Jun 2014).
https://doi.org/10.1145/2602458.2602473

26. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Maibaum, T. (eds.) FM 2008. Lecture Notes in
Computer Science, vol. 5014, pp. 148–164. Springer Verlag, Turku, Finland (May
2008). https://doi.org/10.1007/978-3-540-68237-0_12

27. Poizat, P., Salaün, G., Krishna, A.: Checking Business Process Evolution. In: 13th
International Conference on Formal Aspects of Component Software (FACS). Be-
sançon, France (Oct 2016). https://doi.org/10.1007/978-3-319-57666-4_4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

76 Yliès Falcone , Gwen Salaün, and Ahang Zuo

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1115/1.4023362
https://doi.org/10.1115/1.4023362
https://doi.org/10.1115/DETC2012-70653
https://doi.org/10.1115/DETC2012-70653
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1145/2602458.2602473
https://doi.org/10.1145/2602458.2602473
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-319-57666-4_4
https://doi.org/10.1007/978-3-319-57666-4_4
http://creativecommons.org/licenses/by/4.0/

Combining Look-ahead Design-time and
Run-time Control-synthesis for Graph

Transformation Systems

Abstract. The correct operation of safety-critical cyber-physical sys-
tems is crucial. However, such systems often feature a large variability
of start configurations, an intractably large state space, a high degree
of uncertainty, or inherently unsafe behavior. A model of the expected
system behavior starting in the current state can be used by look-ahead
controllers to derive control decisions to avoid paths to safety violations
when possible. However, the computational effort for deriving and ana-
lyzing the future system behavior is exponential in the look-ahead.
In this paper, we employ Graph Transformation Systems (GTSs) for the
modeling of expected system behavior. We then combine design-time and
run-time control synthesis based on Supervisory Control Theory (SCT)
achieving an exponential cost-reduction for a given controller look-ahead.
For a fixed required reaction time of controllers, much longer look-aheads
may therefore be employed. To illustrate and evaluate our approach, we
consider a system where shuttles must avoid collisions with ambulances
at level crossings.

Keywords: cyber-physical systems, self-adaptive systems, supervisory control,
model-predictive control, runtime verification, bounded model checking

1 Introduction

Cyber-physical systems in which software components operate in a physical en-
vironment often encompass complex concurrent behavior. The development or
synthesis of such control software achieving a given set of goals while also ensur-
ing the satisfaction of a given safety-specification is crucial. In model-predictive
control, a model of the expected system behavior is employed to obtain look-
ahead controllers. Such controllers derive control decisions based on the set of all
behavior sequences of a chosen look-ahead length starting in the current state.
However, the set of such behavior sequences is exponential in the look-ahead
length limiting the look-ahead to values allowing admissible reaction times.

As a running example, we consider a variation of the RailCab system from
[38, 30]. In this system, shuttles navigate on a large-scale track topology, which
intersects with a road topology at level crossings. Ambulances, which can be
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 77–100, 2024.
https://doi.org/10.1007/978-3-031-57259-3_4

He Xu , Sven Schneider(B) , and Holger Giese

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{he.xu,sven.schneider,holger.giese}@hpi.de

https://orcid.org/0009-0009-2984-8324
https://orcid.org/0000-0001-9828-618X
https://orcid.org/0000-0002-4723-730X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_4&domain=pdf

monitored by shuttles with a certain degree of uncertainty, navigate on the road
topology and may traverse level crossings. The shuttle control to be derived,
must avoid collisions with ambulances when possible by adjusting the speed of
the shuttle taking potential ambulance behavior into account. To focus on our
approach and to simplify our presentation, we reduce the possible number of
steps of actors in the system model by employing a small topology fragment
with one level crossing, a single shuttle, and one ambulance.

Besides run-time efficiency, controller synthesis approaches for cyber-physical
systems must solve an array of further problems. P1 (Sets of Start States): The
start state of the system is often not precisely known requiring the consideration
of a large or even infinite set of start states. These start states may differ in
rigid components but also in the number, the state, and the interconnection
of active components. For our running example, the underlying rigid topology
and the location of shuttles and ambulances on this topology may vary greatly.
P2 (State space explosion): Even when selecting a single start state, the state
space of the system is often intractably large or even infinite because all steps of
all components must be captured in the system model. P3 (Uncertainty): The
uncontrolled part of the system can often not be modeled faithfully at design
time due to uncertainty. For example, uncertainty arises due to behavioral or
configuration adaptation as well as from unknown, unreliable, or unpredictable
components/actors (such as humans) performing additional steps that cannot be
foreseen at design time or fail to perform such steps [45]. P4 (Unsafe Systems):
Avoidance of unsafe states is not always feasible due to uncertainty or in contexts
where unsafe states cannot be avoided by control at all.

For the modeling of the expected future system behavior, we employ Graph
Transformation Systems (GTSs), which can be used when system states can
be captured by graphs and when the steps of the involved components can
be captured using local graph modifications. In the past, various GTS-variants
have been developed and employed for the modeling, design, and analysis of such
systems in an abundance of publications such as [19, 20, 21, 18, 29, 22, 30, 49,
48, 33] focusing on different system aspects and requirements.

To accommodate for these problems (discussed in more detail in the sub-
sequent section), we propose a model-driven approach based on GTSs and the
MAPE-K control framework where we employ a sliding window technique consid-
ering actor-specific state fragments to reduce the computational effort (problems
P1 and P2) and combine design-time control synthesis with run-time control syn-
thesis as a look-ahead extension technique to efficiently obtain best-effort control
(to tackle problems P3 and P4). Both, at design-time and run-time, we employ
an extension of Supervisory Control Theory (SCT) with priorities for the syn-
thesis of controllers where the uncontrolled system is modeled using an extension
of GTSs with controllability notions.

This paper is structured as follows. In section 2, we discuss our conceptual
approach in the context of the MAPE-K framework including the sliding win-
dow technique. In section 3, we consider related work. In section 4, we present
our extension of SCT with priorities. In section 5, we integrate controllability

78 H. Xu et al.

Combining Design-time and Run-time Control-synthesis for GTSs 79

KnowledgeMonitor

Analyze Plan

Execute

Plant

Sensor Effector

Controller

Blue filling : Control Phase
Grey filling : Local State
Dashed lines : Information Exchange
Solid lines : Order of Execution

(a) MAPE-K closed-loop of controller and plant
s

leaf 1

2

us

ub1 ub2 sb1 sb2

1

(b) Runtime Model. A Bounded Forward State Space from the current system state s
(left). A Bounded Backward State Space leading to the unsafe state us (right). The safe
boundary {sb1, sb2} from which us can be avoided by preventing step 1. The unsafe
boundary {ub1, ub2} from which us cannot be avoided. The state leaf 1 contains ub1
(indicated by the dotted arrow) leading to the prevention of step 2.

Fig. 1. Overview of MAPE-K-based approach

notions into the GTS framework and present our running example. In section 6,
we discuss control synthesis at design-time. In section 7, we discuss control syn-
thesis at run-time based on the design-time results. In section 8, we evaluate our
approach for a larger case study. Finally, in section 9, we conclude the paper and
provide an outlook on future work.

2 MAPE-K Closed-Loop Approach

Software being executed in a cyber-physical system on a device often follows (at
least implicitly) the MAPE-K closed-loop design [53, 1] depicted in Figure 1a
developed for systems with a high degree of complexity, uncertainty, and dy-
namicity. Such software interacts with its context in that system via sensors and
effectors and keeps a Runtime Model (RTM) to store its local state across its
looped executions. It executes (a) the monitoring phase to react to sensor infor-
mation by updating the RTM accordingly, (b) the analysis phase to determine
the impact of the most recent events on its options to achieve its control goals, (c)
the planning phase to derive a control plan satisfying suitable quality standards,
and (d) the execution phase to send events to the effectors to implement the
steps of the derived control plan. Ideally, such a MAPE-K control architecture
adapts to unexpected situations at run-time in an ad-hoc manner.

In our approach, the RTM (see Figure 1b) contains (a) a Bounded Forward
State Space (BFSS) from the current system state s (derived and maintained

at run-time) and (b) a Bounded Backward State Space (BBSS) from unsafe
states us (derived at design-time). Both of theses state spaces are (similarly
to bounded model checking [50]) derived from the GTS capturing the expected
system behavior. Moreover, the RTM contains the controllers derived from these
two state spaces, which capture for each depicted state the exiting steps that the
shuttle may perform. At run-time the controller obtained from the BFSS and
the BBSS are combined by attempting to identify boundary graphs of the BBSS
in the leaf states of the BFSS. For a BFSS and BBSS of depth n and k, this
combination grants an effective look-ahead of n+k to the controller. Clearly, the
look-ahead should be maximized (taking other aspects such as required response
time into account) to provide the controller synthesis procedure with as much
information as possible to avoid the execution of overly conservative behavior
(such as unnecessarily slowing down the shuttle). Not employing a BBSS only
constructing a BFSS of depth n+ k to achieve the same look-ahead n+ k would
be exponentially more expensive and, moreover, this additional cost would be
incurred at run-time whereas at least the BBSS is obtained in our approach at
design-time rendering its cost of construction negligible.

In our approach, the four MAPE phases are as follows.
• Monitor phase: when the controller is informed via its sensors about a state

change from the BFSS root s to state s′, it selects s′ as the new root of the
BFSS. Unless the step to s′ was not expected due to uncertainty, s′ is already
one of the successors of s contained in the BFSS.

• Analysis phase: States of the BFSS unreachable from s′ are removed and the
GTS model is used to re-extend the BFSS to the chosen depth n. To identify
states to be avoided, all leaf states of the BFSS are checked for occurrences of
unsafe boundary states of the BBSS. Finally, the run-time controller is then
adjusted to the modified BFSS by selecting steps to be prevented that would
lead to the states to be avoided.

• Planning phase: The controller can then plan the execution of any controllable
step exiting the new root state s′ of the BFSS (in the running example, these
steps are the steps of the shuttle) or let the plant perform the next step.1

• Execute phase: If a step has been selected in the planning phase, this step is
send for execution to the corresponding effector (in the running example, a
hardware controller of the shuttle will receive and implement such a signal).

The worst-case controller response time depends on the time required for (a)
the full reconstruction of the BFSS and the corresponding controller synthesis
thereon (upon an occurrence of an unexpected step) and (b) the identification
of leaf states of the BFSS containing unsafe boundary states of the BBSS. The

1 The absence of such controllable steps does not indicate a problem as the controller
may just not need to change the behavior of the agent (e.g., the shuttle may already
be driving at the desired speed) but, in the considered time-abstract setting, the
absence of any step implies that no control strategy guaranteeing the avoidance of
unsafe states could be obtained. In this case, fallback behavior such as not modeled
emergency maneuvers or decisions by the environment on uncontrollable events may
still result in the avoidance of unsafe states.

H. Xu et al.80

usage of the BBSS exponentially reduces the computational effort for (a) as
discussed but, regarding (b), it also requires that the leaf states of the BFSS
need to be checked against a potentially large number of unsafe boundary states
instead of only the unsafe states. In our evaluation in section 8, we measure and
further discuss these effects for a considered case study.

As mentioned in the introduction already, we employ a sliding window ap-
proach reducing the size of the BFSS and BBSS to be constructed. Instead of
assuming that each agent maintains a perspective on the entire system state, we
adopt the technique from [30] where, in a compositional approach, agent-specific
scopes are used. On the one hand, this greatly reduces the number of steps (and
thereby the size of the BFSS and BBSS) as only a small number of agents will
be typically in the view range of an agent. On the other hand, a smaller view
range may result (closely related to the look-ahead) in an overly conservative
controller behavior. Besides mitigating the effect of state space explosion, this
sliding window approach has the additional advantage that start states must
only be determined for each actor individually and not globally. Intuitively, each
system step must be followed by suitable postprocessing to update the reached
state to the view range of the actor. These postprocessing steps are part of the
system model and therefore define changes in the context of the agent to which
the controller must suitably respond. In our evaluation in section 8, we further
discuss this sliding window technique as we abstract from it in our running
example to focus on controller synthesis via BFSS and BBSS.

3 Related Work

Model checking [2] is often inadequate for complex systems due to the state
space explosion problem and uncertainty. Bounded Model Checking (BMC) [50,
24, 25] has been devised to reduce analysis costs providing, however, weaker
guarantees and no support for uncertainty.

When formal fully-automatic verification is infeasible, Runtime Verification
also called Runtime Monitoring [28] is an approach for monitoring the system’s
states and steps at run-time for notable behavior such as violations of invari-
ants that require a manual or automatic response. However, without look-ahead
capabilities, potential near-future unsafe states cannot be detected. Therefore,
some RV approaches such as [45, 23, 15, 32, 52, 16] integrate a behavioral model
describing expected future evolutions of the system. In [45], the expected future
evolutions of a Timed Automata (TA) are analyzed at run-time using BMC. In
[15], Deterministic Timed Markov Chains modeling the system are analyzed at
design-time to obtain expressions on step-probabilities that will become available
at run-time to make probability-maximizing decisions at run-time by evaluat-
ing the expressions at run-time instead of performing computationally expensive
analysis. In [23], a run-time statistical model checking component has been inte-
grated into a self-adaptive system. However, these approaches also rely on BMC
and thereby suffer from state space explosion and in some cases such as [45, 15]
also from being unable to react to uncertain events.

Combining Design-time and Run-time Control-synthesis for GTSs 81

The approach of k-induction [26, 11] that has been adopted for variants of
GTSs in [47, 48, 3] establishes state invariants by symbolically applying GT rules
backwards from unsafe states to accumulate context capturing why and how the
symbolic violation could be reached. This approach is thereby a symbolic version
of backward BMC. We use a similar approach in this paper tackling the problem
of a large number of undesirable backward steps constructed by k-induction.

A combination of forward and backward BMC similar to our approach for
the analysis of Hybrid Automata in [54] applies depth first search forward and
backward in parallel to find paths to unsafe states for Hybrid Automata with
complex state space structure.

SCT as established in [40, 41, 39] for capturing, analyzing, and synthesizing
supervisory control when the controllers, the plants, and their closed loops are
given by regular languages over events (see also [27, 46] for an in-depth intro-
duction and a discussion of derived approaches) has to our knowledge not been
combined with event-priorities. However, priorities have been used to combine
supervised modules preventing blocking situations in [6, 7]. Also, approaches
in the Model Predictive Control domain (see [51] for a survey) employ mod-
els to predict the future system behavior as in our approach but focus usually
on continuous time systems minimizing costs as in [4, 5] and have not been
combined with SCT to the best of our knowledge. Besides the approach to dis-
tinguish between controllable and uncontrollable events as customary in SCT,
other approaches of identifying actions of different actors and capturing inter-
actions among such actors in the GT domain include [9] but also SCT for TA
(related to [45] above) has been considered in [43, 42]. [35, 36, 34, 33] where
a safety constraint has already been violated due to uncertainty or adversarial
effects requiring the derivation and execution of recovery mechanisms.

4 Priority-aware Supervisory Control Theory

We recall SCT as introduced in the seminal work of Ramadge and Wonham [40,
41, 39] in which the closed loop is given by the event-synchronizing composition
of controller and plant. To provide the essentials of this approach in our notation
and to extend this approach with the concept of event priorities, we introduce a
variant of Labeled Transition Systems (LTSs) extending finite automata thereby
capturing regular languages over an event alphabet as considered in standard
SCT. In such an LTS, events are grouped into controllable and uncontrollable
events (cf. the MAPE-K closed-loop in Figure 1a), which are executed by the
controller (e.g., signals to effectors) and the plant (e.g., signals from sensors). The
controller may restrict the execution of controllable events in the closed-loop.

We aim at controller synthesis such that event-prevention ensures that the
closed-loop avoids undesirable states (this notion is formalized below as non-
blockingness) and no steps executing uncontrollable events have been prevented
at the model level (this notion is formalized below as controllability) while
not preventing event executions unnecessarily to retain the highest possible

H. Xu et al.82

degree of freedom for further control steps.2 We equip events with a prior-
ity as motivated in the next section by our running example: steps executing
(un)controllable events are then only enabled when no steps executing higher-
priority (un)controllable events are enabled (i.e., priorities are checked within
the two groups of controllable and uncontrollable events separately).

Definition 1 (Labeled Transition System (LTS)). A Labeled Transition
System (LTS) Γ contains the following components.
• states(Γ) contains all states and its subsets start(Γ), safe(Γ), and unsafe(Γ)

contain the start, safe, and unsafe states.
• events(Γ) contains the controllable and uncontrollable events eventsC(Γ) and

eventsUC(Γ).
• prio(Γ) : events(Γ) N assigns a priority to each event.
• steps(Γ) ⊆ states(Γ)× events(Γ)× states(Γ) is a set of event-labelled steps.
Moreover, Γ1 is a sub-LTS of Γ2, written Γ1 ≤ Γ2, when the components of
Γ1 are contained in the corresponding components of Γ2 and the reversed LTS
rev(Γ) is obtained by reversing steps(Γ) and swapping start(Γ) and unsafe(Γ).

The priority-resolved LTS is obtained by omitting all controllable/uncontrol-
lable steps disabled by higher-priority controllable/uncontrollable steps. Only
the paths through this priority-resolved LTS can actually be observed.

Definition 2 (Priority-resolved LTS). For an LTS Γ and a set of events E,
Γ ′ = resPrio(Γ,E) is the largest sub-LTS of Γ such that for all (s, e1, s1) ∈
steps(Γ ′) with e1 ∈ E there is no (s, e2, s2) ∈ steps(Γ ′) with e2 ∈ E and
prio(Γ ′)(e2) > prio(Γ ′)(e1). Then, the priority-resolved LTS of Γ is given by
resPrio(Γ) = resPrio(resPrio(Γ, eventsUC(Γ)), eventsC(Γ)).3

A controller ΓC to be synthesized for a given plant ΓP is a sub-LTS of ΓP and,
hence, the event-synchronizing closed loop of ΓC and ΓP is just ΓC .

The notion of controllability requires that the controller cannot prevent un-
controllable events that the plant can execute.

Definition 3 (Controllability). A plant ΓP and a controller ΓC ≤ ΓP satisfy
controllability, if every path π of resPrio(ΓC) that can be extended by resPrio(ΓP)
with a step executing an uncontrollable event u ∈ eventsUC(ΓP) can be extended
by resPrio(ΓC) with a step executing u as well.

The notion of non-blockingness requires the liveness property that the closed
loop may eventually reach a safe state from any of its states. In our approach,
we define unsafe states as those violating a state invariant and safe states as
those not having paths to any unsafe states.

Definition 4 (Non-blockingness). A plant ΓP and a controller ΓC ≤ ΓP

satisfy non-blockingness, if every path π of resPrio(ΓC) can be extended to a
state in safe(ΓP).
2 Note that controllers can only force certain events in a given state in this framework

when all events executable from that state are controllable (differing from, e.g., [55]).
3 Note that, in general, resPrio(Γ) ̸= resPrio(Γ, events(Γ)).

Combining Design-time and Run-time Control-synthesis for GTSs 83

For the case of controllers and plants generating regular languages considered
here, admissible controllers satisfying controllability and non-blockingness are
closed under arbitrary unions [40, 41, 39, 27, 46]. Desired controllers are therefore
defined as those admissible controllers that result in the largest closed loops in
terms of sets of executable event sequences. Admissible controllers are also closed
under arbitrary union in the presence of event priorities because the union of
controllers will result in a controller that favors the highest priority steps from
any of the controllers and, moreover, LTSs are memoryless (beyond their current
state) implying that choosing higher priority steps from different controllers can
not lead to states not traversable using any of the controllers. However, only the
priority resolved versions of synthesized controllers for which the classic results
from [40, 41, 39, 27, 46] readily apply are to be used anyway.

Following SCT, the first controller candidate is the plant LTS Γ . This candi-
date is then incrementally refined by preventing events enforcing controllability
and non-blockingness least-restrictively until an admissible controller control(Γ)
is obtained (closedness under arbitrary union also implies that the order in which
violations of controllability and non-blockingness are resolved is insignificant).
Note that this fixed-point procedure supports also cyclic LTSs in general (in
which, as usual, loops may delay the visiting of safe states indefinitely as op-
posed to [55]). To handle the case with priorities, we resolve priorities among
uncontrollable events before applying the fixed-point procedure and resolving
priorities of remaining controllable steps afterwards to obtain the priority-aware
controller pControl(Γ).

Definition 5 (Priority-Aware Controller). An LTS Γ induces the LTS Γ ′ =
control(Γ) by adapting Γ as follows:4
• steps(Γ ′) is the largest subset of steps(Γ) such that for each (s, e1, s1) ∈

steps(Γ ′) (non-blockingness) there is some path from s1 to a state in safe(Γ ′)
using steps in steps(Γ ′) and (controllability) when (s1, u2, s2) ∈ steps(Γ) is
a step using an uncontrollable event u2 from eventsUC(Γ) then (s1, u2, s2) is
also a step in steps(Γ ′).

Moreover, pControl(Γ) = resPrio(control(resPrio(Γ, eventsUC(Γ))), eventsC(Γ))
is the priority-aware controller for Γ .

As an example for controller synthesis, consider the LTS in Figure 2 representing
an uncontrolled plant and the priority-aware controller synthesized for it.5 First,
to resolve blocking at s4, the controllable priority 2 event c2 from s0 is prevented
enabling the priority 1 event c1 from s0. Second, to resolve blocking at s3, the un-
controllable event uc3 from s1 is prevented. Third, to resolve non-controllability
at s1, the controllable priority 1 event c1 from s0 is prevented enabling the pri-
ority 0 event uc1 from s0. The resulting controller will only contain the path
from s0 to s2 executing the event uc1. Note that maintaining the steps of all
priorities in the LTS simplifies controller synthesis since the effect of preventing
controllable events (such as c2 and c1) becomes apparent immediately without
4 For brevity, we omit here the removal of unreachable states from Γ ′.
5 When resolving priorities among uncontrollable events and later among controllable

events no steps are removed in this example.

H. Xu et al.84

s2 s3 s4

s1

s0

uc1

c1
c2

uc2 uc3

Fig. 2. Example of controllability and non-blockingness. The unsafe states {s3, s4} are
given in red with dotted border, the safe state s2 is given in green with exiting arrow
symbol, the remaining orange states have paths to unsafe states, the start state s0
has an entering arrow symbol, the bold steps execute the uncontrollable events uci, the
non-bold steps execute the controllable events ci, the dashed steps have been prevented,
the event c2 has priority 2, the event c1 has priority 1, the other events have priority 0,
and only the boxed event uc1 can be executed since the steps executing {c1, c2} have
been prevented.

the need to derive such steps intermittently for then enabled steps (e.g., only
the step executing c2 was enabled initially due to its priority) decoupling LTS
generation and control synthesis.

Note that control(resPrio(Γ)) ̸= resPrio(control(Γ)) in general because first
resolving the priorities restricts the possible controllers to be synthesized. For
example, first resolving priorities in Figure 2 would remove the step with the
event uc1, which would otherwise be the only remaining step.

5 Control-oriented Graph Transformation

We first introduce control-oriented GTSs before discussing the modeling of our
running example using this formalism.

To ease presentation, we employ the simple class of typed directed graphs
(short graphs) (see [12, 13, 14] for details). In our running example, we employ
the type graph TG from Figure 3a, which can be understood to be a simple
UML class diagram, and graphs, which can be understood to be simple UML
object diagrams. In visualizations of graphs such as Figure 3b, types of nodes are
indicated by their names (i.e., Si and Ti are nodes of type Shuttle and Track),
names of edges are omitted, types of edges are only given when required to avoid
ambiguity (the only edge types with equal source and target node types are fast ,
slow , and halt). We denote monomorphisms (monos) from graph H to graph H ′

mapping nodes and edges injectively by f :H H ′.
To introduce control-oriented GTSs, we first introduce GT rules used to

derive GT steps between graphs. A Graph Transformation (GT) rule ρ consists
of two monos ℓ : K L and r : K R describing the removal and addition of
elements and a set N of monos ni : L Ni of Negative Application Conditions

Combining Design-time and Run-time Control-synthesis for GTSs 85

(NACs) describing forbidden extensions of L.6 We use the abbreviation lhs(ρ) =
L later on. In visualizations of GT rules (see Figure 3), we use an integrated
notation in which L, K, and R are given in a single graph where graph elements
marked with ⊖ are from L−K and will be deleted, graph elements marked with
⊕ are from R−K and will be created, and where all other graph elements are in
K and will be preserved. When NACs are present, they are given on the left side
of the ▷ symbol. For example, consider the GT rule in Figure 3c which preserves
the ambulance and shuttle nodes A1 and S1, removes the edge from S1 to A1,
creates an edge from A1 to S1, and is only applicable when A1 has no edge to
some road node R1.

We now introduce our novel notion of control-oriented GTSs. Such a GTS
S contains a set start(S) of start graphs, a set unsafe(S) of unsafe graphs rep-
resenting violations of invariants, a set rules(S) of GT rules with the subsets of
controllable and uncontrollable GT rules rulesC(S) and rulesUC(S), and a map-
ping prio(S) assigning a natural number as a priority to each GT rule. Note that,
similarly as in our presentation of SCT in section 4, we assign priorities to GT
rules and group them into controllable/uncontrollable GT rules capturing which
steps can/cannot be prevented by the controller to be synthesized.

GT steps G σ G′ from a graph G to a graph G′ are labeled with a pair
σ = (ρ,m) consisting of a GT rule ρ and a match m : lhs(ρ) G identifying
an occurrence of lhs(ρ) in G. The match m must satisfy the requirement that
there is no NAC ni : lhs(ρ) Ni contained in ρ for which some m′

i : Ni G
satisfying m′

i ◦ ni = m exists. The graph G′ is then constructed from G via the
usual Double Pushout (DPO) diagram (see [12, 13, 14] for a details).

A GTS induces a forward LTS by deriving GT steps from already included
graphs and adds these steps as well as their target states in the resulting LTS.
Note that we merely propagate the priorities of the GT rules into the constructed
LTS instead of enforcing them by excluding lower-priority steps when higher-
priority steps are present.

Definition 6 (Forward LTS of a GTS, BFSS). A GTS S induces the unique
LTS Γ = JSK as follows:
• states(Γ) contains start(Γ) and the target states of all steps in steps(Γ).
• start(Γ) contains the graphs from start(S).
• safe(Γ) ⊆ states(Γ) contains the graphs from which unsafe(Γ) can’t be reached.
• unsafe(Γ) ⊆ states(Γ) contains the graphs G into which a mono t : H G

from some graph H ∈ unsafe(S) exists.
• eventsC(Γ) and eventsUC(Γ) contain the step labels σ = (ρ,m) of the steps in

steps(Γ) where ρ ∈ rulesC(S) and ρ ∈ rulesUC(S).
• prio(Γ)(ρ,m) = prio(S)(ρ) assigns the priority of the used GT rule ρ.
• steps(Γ) is the least relation containing all GT steps from states in states(Γ).
Moreover, the BFSS of depth n, denoted JSKn, is the largest sub-LTS of JSK in
which all paths starting in start(Γ) through distinct states have length ≤ n.

6 Our approach is orthogonal to the use of more expressive notions of application
conditions such as nested graph conditions [18, 14, 10].

H. Xu et al.86

:Shuttle

:Track :Crossing :Road

:Ambulance

:at :at

:road:track

:next :next

:active

:active

:fast :slow :halt

(a) Type graph

R2 R1 R0 RX

C1

T0T1T2T3

T4

TX

S1 A1

fast

(b) Current graph

A1

S1

⊖⊖⊖ ⊕⊕⊕▷A1 R1

(c) GT rule ρacp for postponing
ambulance creation.

A1

S1

⊖⊖⊖ ⊕⊕⊕

R1
⊕⊕⊕

▷

A1 R1

A1 R2

R2 R1

(d) GT rule ρace for expected ambulance creation at
the farthest road segment from the crossing.

A1

S1

⊖⊖⊖ ⊕⊕⊕

R1
⊕⊕⊕

▷

A1 R1

A1 R2

R1C1T1S1

(e) GT rule ρacu for unexpected ambulance creation
at some road segment (not on the crossing when
there is a shuttle already).

A1

R1

R2

⊖⊖⊖

⊕⊕⊕

S1

⊕⊕⊕

⊖⊖⊖

(f) GT rule ρa moving the am-
bulance to the next road.

(v1 , v2) ∈ {
(fast , fast),
(slow , fast),
(fast , slow),
(slow , slow),
(halt , slow)}

S1

T1

T2

⊖⊖⊖

⊕⊕⊕

v1 ⊖⊖⊖

v2 ⊕⊕⊕

A1

⊕⊕⊕

⊖⊖⊖

(g) GT rules ρff , ρsf , ρfs, ρss, and ρhs resulting
in a fast or slow shutle on the next track.

v ∈ {slow , halt}

S1

v ⊖⊖⊖

halt ⊕⊕⊕

A1

⊕⊕⊕

⊖⊖⊖

(h) GT rules ρsh and ρhh resulting in
a halted shuttle on the same track.

GT rules controllable? priority SFE SFU Figure

ρacp no 0 yes yes Figure 3c
ρace no 0 yes no Figure 3d
ρacu no 0 no yes Figure 3e
ρa no 0 yes yes Figure 3f
ρfs, ρss, ρhs yes 1 yes yes Figure 3g
ρff , ρsf yes 2 yes yes Figure 3g
ρsh ρhh yes 0 yes yes Figure 3h

(i) Overview of the GT rules used in the GTSs SFE and SFU.

Fig. 3. Details on the running example.

Combining Design-time and Run-time Control-synthesis for GTSs 87

We now discuss the modeling of our running example, which is a simplification
of the case study considered in our evaluation in section 8. We model shuttles
driving on a track topology where subsequent tracks are connected using next
edges as in Figure 3b. The driving speed of each shuttle is either fast, slow, or halt
(as marked using fast , slow , or halt loops). Level crossings (where track and road
topology intersect) are indicated by the node type Crossing and are connected to
the corresponding track and road segments. Ambulances may appear and drive
on the road topology including the level crossings.

The graph in Figure 3b represents the current view of the shuttle on the
system state. The ambulance A1 is not yet connected to a road meaning that it
can be ignored by the shuttle at this point. Ambulance and shuttle perform steps
alternatingly by switching the directed edge between them in each step to ensure
a certain level of fairness since the system would otherwise be fundamentally
unsafe as the shuttle could not rule out collisions anymore. The edge from the
ambulance to the shuttle indicates that the shuttle will perform the next step.

Shuttles may maintain their speed (events ff, ss, and hh) or switch between
fast and slow (events fs and sf) as well as between slow and halt (events sh and
hs), modeling the stopping and acceleration distance. These seven driving speed
transitions are controllable for the shuttle controller but all steps of ambulances
are uncontrollable. To allow the shuttle to make timely control decisions, an
ambulance detection mechanism informs the shuttle when ambulances are two
roads ahead of an upcoming level crossing (i.e., an ambulance would be detected
in Figure 3b when it enters the road R2). We derive shuttle control assuming
that this detection mechanism is reliable but analysis will reveal partial robust-
ness against unreliability in situations where ambulances are detected first on
the closer road segments R1 or even R0. Note that shuttle and ambulance per-
forming steps alternatingly will result in violations of non-blockingness when the
controller prevents all controllable steps of the shuttle in a given state, which is
thereby implicitly excluded as well.

We use GT rule priorities to model that the shuttle prefers faster driving
speeds over slower driving speeds. Therefore, without preventing any steps, the
shuttle will maintain its fast speed.

We now discuss the GT rules used in these GTSs in more detail. Again,
shuttle and ambulance steps alternate as implemented by switching the direction
of the edge between them in every GT rule. When its the ambulances turn, the
GT rules ρace, ρacu, and ρacp are applicable when the ambulance has no edge to
some road segment yet and the GT rule ρa is used otherwise. The GT rule ρace
models the expected creation of the ambulance by creating an edge from the
ambulance to the road R2 in Figure 3b (the three NACs check that A1 is not
yet on R1, that A1 is not yet on some other road, and that the matched road
R1 has no predecessor). The GT rule ρacu models the unexpected creation of the
ambulance by creating an edge from the ambulance to an arbitrary road unless
this road is at the level crossing with a shuttle being already located there as
well (the three NACs check that A1 is not yet on R1, that A1 is not yet on some
other road, and that S1 is not on a track connected by a crossing to R1). The

H. Xu et al.88

GT rule ρacp models the case that the ambulance is not yet created meaning that
ambulance detection is postponed (the NAC checks that the ambulance is not
yet on a road). Lastly, the GT rule ρa models the moving of a detected ambulance
to the next road segment (by removing the edge from A1 to the current road
segment R1 and creating such an edge to the road segment R2 reached). When
its the shuttles turn, the GT rules ρff , ρfs, ρsf , ρss, ρsh, ρhs, and ρhh are used. The
GT rules ρsh and ρhh do not move the shuttle to the next track while the other
GT rules do so. Here, the movement of the shuttle is implemented as for the GT
rule ρa by deleting and creating an edge and the driving speed transitions are
encoded by deleting and creating the driving speed loop at the shuttle.

In our running example, we first consider the GTS SFE with expected am-
bulance detection: for this GTS, we employ the graph from Figure 3b as start
graph, use 10 of the 11 GT rules from Figure 3, split GT rules into controllable
and uncontrollable GT rules, and employ priorities as listed in Figure 3i. In
particular, when its the ambulances turn, each enabled GT rule has the same
priority 0 making all steps derivable using the GT rules ρace and ρacp viable.
When its the shuttles turn, GT rules setting the speed to halt, slow, and fast
have priorities 0, 1, and 2 favoring a faster driving speed. Also, the GT rules for
slowing down or remaining halted (ρfs, ρsh, and ρhh) cannot be prevented as this
would lead to a violation of non-blockingness as discussed. Additionally, we con-
sider a second GTS SFU in which ambulances are possibly detected closer or on
the level crossing: this GTS differs from SFE by replacing the GT rule ρace with
ρacu for detecting an ambulance, which may result in up to four steps detecting
the ambulance on any of the four road segments.

In the considered GTSs, only a finite number of graphs can be reached and,
in the remainder, we represent each graph using an element of {✘, 0, 1, 2,✔}
× {0, 1, 2, 3, 4,✔} × {f, s, h} × {s, a} where (a) ✘ means that the ambulance has
not been detected yet, 0–2 is the distance of the ambulance to the crossing, and
✔ means that the ambulance has advanced beyond the crossing, (b) 0–4 is the
distance of the shuttle to the crossing and ✔ means that the shuttle has advanced
beyond the crossing, (c) f, s, and h is the driving speed of the shuttle, and (d) s
or a means that the shuttle or the ambulance performs the next step. The start
graph from Figure 3b is therefore represented by ✘4fs as the ambulance has not
yet been detected, the shuttle is four tracks away from the level crossing, the
shuttle is in fast driving speed, and the shuttle will perform the next step.

The 6 unsafe graphs in {0}×{0}×{f, s, h}×{s, a} of the considered GTSs SFE

and SFU all contain a shuttle and an ambulance on the level crossing but differ
in the three possible driving speeds of the shuttle and the two cases of which
entity performs the next step. While we specify the set of all unsafe states in our
GTS by providing it explicitly, unsafe states could also be identified using ad-
vanced approaches such as nested graph conditions, Linear Temporal Logic [37],
Computation Tree Logic [8, 2], or Metric Temporal Graph Logic [49].

The controller to be synthesized should force the shuttle to drive fast un-
less an ambulance is present, in which case the controller should ensure that the
shuttle reaches the track T1 with slow speed and then halts there until the ambu-

Combining Design-time and Run-time Control-synthesis for GTSs 89

lance has passed the level crossing. The controller synthesized by our integrated
approach results in this controller as discussed subsequently.

6 Design-time Control-synthesis

We now discuss design-time control synthesis based on (a) BBSS generation
from unsafe states and (b) control synthesis based on SCT together resulting in
an LTS with unsafe boundary to be avoided at run-time to avoid unsafe states
and a safe boundary for which the LTS is a controller avoiding unsafe states.

For our running example, we start the BBSS generation using only two unsafe
states X0 = {00sa, 00fa} for presentation purposes. We depict the obtained BBSS
in Figure 4, which is constructed by adding up to k steps backwards from X0.
From all additional states X1, unsafe states in X0 can be reached by construction;
to derive viable alternative steps avoiding unsafe states, we include all missing
forward steps from states in X1 to additional states X2. The states X2 are by
construction safe states (indicated by the exiting arrow symbol) of the resulting
LTS from which unsafe states in X0 cannot be reached (within k steps). The
start states of the constructed backward LTS are the last states traversed on each
backward path (indicated by the entering arrow symbol). These start states will
be grouped into the safe and unsafe boundary in the next step.

We construct a controller from the BBSS given in Figure 4 by applying
SCT. First, the two unsafe states 00sa and 00fa violate non-blockingness. To
make these states unreachable, all five steps with one of them as a target are
prevented resulting in a violation of non-blockingness at 01fs. To make this
state unreachable, the step (11fa, a, 01fs) is prevented resulting in a violation
of controllability at 11fa. To make this state unreachable, all three steps with
11fa as target are prevented. Due to event-priorities, only the boxed events can
be actually executed. Intuitively, the depicted controller ensures that, in the
presence of an ambulance approaching the upcoming level crossing, the shuttle
will avoid collisions, e.g., by halting in state 01ha. When the ambulance is created
unexpectedly closer to the crossing using ρacu in SFU, the controller obtained
here will fail since it would enter track T1 with fast speed when no ambulance
is detected reaching state ✘1fa and then not be able to halt in front of the level
crossing when the ambulance is then unexpectedly detected on the level crossing
in the next step reaching state 01fs.

Technically, we construct the BBSS for a given GTS relying on a secondary
GTS called the backward GTS : We generate the BFSS for the backward GTS
(according to Definition 6), reverse the obtained LTS (according to Definition 1),
and then add the missing forward steps to safe states as explained above. For
our running example, we employ the backward GTSs SBE and SBU, which can be
obtained from their forward counterpart GTSs SFE and SFU by reversing their
GT rules (see, e.g., [14, Lemma3.14] for rule reversal based on the L operation)
and switching the sets of unsafe and start graphs. The reason for using a back-
ward GTS is a reduced size of the BBSS, since (not simply using rule reversal)
modeling the backward GTS separately (while still ensuring that it agrees with

H. Xu et al.90

01ha 00sa 00fa

01hs 01ss 01fs

11ha10sa 10fa 11sa 11fa 12ha

11hs 11ss 12hs 12fs 12ss

hs

hh ss

sh sf hs
sf

hh fs
ff

ss

sf
sh

a a a

hh

hs sh

ss

sf
fs

ff

k
=

1k
=

2

k
=

3

Fig. 4. Design-time controller synthesis based on BBSSs. We reuse the notation from
Figure 2 for start states, unsafe states, safe states, potentially unsafe states, steps
executing controllable/uncontrollable events, and prevented steps. The depicted BBSS
of depth 3 and the resulting synthesized controller for the GTS SBE (or the GTS SBU)
based for brevity on only two of the six unsafe states. The two unsafe states can be
avoided resulting in an empty unsafe boundary.

the forward GTS as discussed in the next section) as in the case study consid-
ered in section 8 allows to enforce known system invariants (such as a minimum
distance between level crossings or upper bounds of shuttles in certain areas) to
reduce the number of derived steps.

Definition 7 (Backward LTS of a GTS, BBSS). A (backward) GTS S
induces the LTS Γ = JSKback by adapting Γ ′ = rev(JSK) as follows:
• states(Γ) contains states(Γ ′) and the safe states safe(Γ).
• safe(Γ) contains the target graphs of all steps in steps(Γ)− steps(Γ ′).
• steps(Γ) contains steps(Γ ′) and all GT steps from states in states(Γ ′).
Moreover, the BBSS of depth k, denoted JSKbackk , is the largest sub-LTS of JSKback
in which all paths through distinct states ending in unsafe(Γ) have length ≤ k.

We now apply the procedure pControl to the BBSS to derive the design-time
controller. The unsafe boundary for which no suitable control could be derived
is then given by all start states without an outgoing step and the safe boundary
is given by the remaining start states (for which a controllable path to a safe
state could be established).

Definition 8 (Design-time Controller). If S is a (backward) GTS and k ∈
N, then Γ = pControl(JSKbackk) is the design-time controller with unsafe boundary
uBoundary(S, k) = {s ∈ start(Γ) | ∄(s, e, s′) ∈ steps(Γ)}.

The design-time controller for the BBSS in Figure 4 is constructed for k = 3 and
has an empty unsafe boundary. However, when using k = 2 (removing the states
in the first row and the safe states in the second row), we obtain a design-time
controller with safe boundary {11ha, 11sa} and unsafe boundary {11fa}.

As a further example, consider Figure 5 in which the uncontrollable event
acu is used by the GTS SFU for an unexpected shuttle detection leading to a non-
empty unsafe boundary {✘1fa}. In comparison, the controller obtained for SFE

Combining Design-time and Run-time Control-synthesis for GTSs 91

00fa 00sa

✘1fs 01fs 11fs 21fs ✔1fs

✘1fa
acp

acu acu acu
acu

ff fs

Fig. 5. Design-time controller synthesis with unexpected shuttle detection

not assuming unreliable ambulances detection as in the step (✘1fa, acu, 01fs)
is robust by also avoiding (according to Figure 4) the state 01fs preceding a
collision in Figure 5. Moreover, this controller is robust against ambulances ap-
pearing unexpectedly directly on the crossing using the step (✘2fa, acu, 02fs)
unless the shuttle is already closer via step (✘1fa, acu, 01fs). Also, when an am-
bulance appears one track ahead of the crossing, either no collision occurs (af-
ter step (✘2fa, acu, 12fs)) or the ambulance crashes into the shuttle (after step
(✘1fa, acu, 11fs)).

7 Run-time Control-synthesis

At run-time, we employ a given (forward) GTS SFS to derive the run-time con-
troller as follows. First, we adapt SFS into S′

FS by using the current state of the
system as the unique start state and add uBoundary(SBS, k) to the set of unsafe
states. Second, we construct the BFSS of depth n (which is assumed to be main-
tained throughout system execution as described in section 2) for S′

FS. Third, we
apply SCT to obtain the least-restrictive controller.

Definition 9 (Run-time Controller). If S is the GTS obtained from the for-
ward GTS as the adjustment to the current system state and the unsafe boundary
of the design-time controller and n ∈ N, then Γ = pControl(JSKn) is the run-time
controller with leaf set leafs(S, n) = {s ∈ states(Γ) | ∄(s, e, s′) ∈ steps(Γ)}.

We now discuss in more detail how our run-time control synthesis obtains an
effective look-ahead of n + k steps towards unsafe states given by the n steps
of Γ and the k steps of the design-time BBSS.7 To this end, we first define a
simulation relation to capture when a backward GTS such as SBE and SBU for
our running example is correct w.r.t. a forward GTS such as SFE and SFU for
our running example. Since we do not consider the step labels (containing the
GT rules or matches applied in these steps), we can understand this simulation

7 Our presentation also covers the special case where the backward GTS used at
design-time is obtained by reversing the rules of the run-time GTS but also applies
to backward GTSs that are designed for improved design-time efficiency and appli-
cability (as mentioned before Definition 7, in relation to k-induction discussed in
section 3, and as elaborated in section 8).

H. Xu et al.92

to be a weak simulation in which one step of the forward GTS is simulated
(backwards) by the backward GTS using any number of GT steps.
Definition 10 (Simulation Relation for GTS-based LTSs). Given two
LTSs Γ and Γ ′ induced from GTSs according to Definition 6 and Definition 7.
A set R of morphisms f1 : G′

1 G1 from states G′
1 ∈ states(Γ ′) to states G1 ∈

states(Γ) is a simulation relation from Γ to Γ ′, if for every (G2, σ,G1) ∈ steps(Γ)
capturing the forward GT span (g2 :D1 G2, g1 :D1 G1) there is a sequence
of GT steps (G′

2, σ
′
n , G

′
2,n−1), . . . (G

′
2,1, σ

′
1 , G

′
1) ∈ steps(Γ ′) that can be combined

(using an iterated E-concurrent GT rule, [12, Theorem 3.26]) into the backward
GT span (g′2 :D

′
1 G′

2, g
′
1 :D

′
1 G′

1) such that d1 : D′
1 D1 and f2 : G′

2 G2

exist satisfying f2 ∈ R, f2 ◦ g′2 = g2 ◦ d1, and f1 ◦ g′1 = g1 ◦ d1.
G1D1G2

G′
1D′

1G′
2

g1g2

g′1g′2

f2 d1 f1= =

The following theorem then states that the existence of such a simulation relation
R from the forward GTS to the backward GTS containing at least all embeddings
of unsafe states V into the graphs reachable in the forward GTS within k steps
is sufficient to ensure that any safety violation of the forward GTS within n to
n + k steps is detected by checking the states reachable by n steps in JSFSKn
against the start states of JSBSKbackk . Note that Theorem 1 does not exclude
spurious violation paths in terms of path pairs (π1, π2) that are not composable
to a path π of SFS due to application conditions in GT rules used in π1 or π2.
Moreover, note that paths to unsafe states of length at most n steps are detected
by constructing JSFSKn already.
Theorem 1 (Violation Detection). Given a forward GTS SFS, a backward
GTS SBS, and an unsafe graph V contained in unsafe(SFS) and unsafe(SBS),
every violation detected in JSFSKn+k in terms of some path π of length > n from
start(SFS) to a graph containing V is correspondingly detected by the combined
technique using JSFSKn and JSBSKbackk by two paths π1 of length n from start(SFS)
to a graph containing B and π2 of length ≤ k from some B′ (for which some
b : B′ B exists) to the graph V whenever there is a simulation relation R from
JSFSKk to JSBSKbackk containing every mono f : V G into states G of JSFSKk.

Proof (sketch). By induction on k, we derive the existence of an embedding of
the last graph B of π2 into the last graph of π1 ensuring that steps in π reaching
a violating graph can be mimicked backwards via the simulation relation.

This theorem thereby ensures that the system has an effective look-ahead of
n+k steps at run-time towards unsafe states allowing it to derive suitable control
decisions to avoid such unsafe states (if possible for that effective look-ahead).

8 Evaluation

As a case study, we now consider a more complex variation of the running ex-
ample, including additional track features such as junctions, explicit modeling

Combining Design-time and Run-time Control-synthesis for GTSs 93

0 2 4 6 8 10 12

100

10,000

1,000,000

number of steps/effective look-ahead

du
ra

ti
on

in
m
s

Forward to collision
Forward to unsafe boundary
Backward from collision

Fig. 6. Evaluation results. Look-ahead for “forward to collision”, effective look-ahead
for “forward to unsafe boundary”, and depth of BBSS for “backward from collision”.

of monitoring and signals (traffic lights for shuttles and ambulances). The used
GTSs modeling this case study ensure that the sliding window perspective of the
controlled shuttle is enforced by removing track and road segments behind the
shuttle and enlarging the track/road topology forwards, potentially also includ-
ing junctions, level crossing, and further components in a way to be expected by
the shuttle. While we simply used the reversed rules for the backward GTSs in
the running example, this would generate here for our case study, as for typical
applications of the related approach of k-induction, a large number of unreal-
istic track topologies that would need to be singled out using other techniques
such as structural constraints reducing the applicability and performance of our
approach at design-time. Applying Theorem 1, we constructed a backward GTS
with 31 GT rules by hand such that all steps of the forward GTS with 34 GT
rules can be mimicked by at most two backward steps while minimizing the
overapproximation of additional track topologies that are never reachable in the
forward GTS. We used the tool Groove [17, 44] and provide the documented
model files an explanation of our evaluation steps online.8

We evaluated the efficiency of our integrated approach in terms of consumed
time by comparing it to the case where only a BFSS is constructed at run-
time.9 First, we use Groove to construct BFSSs of the forward GTS (for different
bounds) thereby simulating the case where our approach is not used. Second, we
use Groove to construct BBSSs of the backward GTS (for different bounds) also
acquiring the unsafe boundary graphs thereby simulating the design-time aspect
of our approach. Finally, we use Groove to construct the BFSS of the forward
GTS (for different bounds) using the unsafe boundary graphs as target graphs
(which means that the overhead of attempting to match the unsafe boundary
graphs is included in our measurement) thereby simulating the run-time aspect
of our approach. Generating the entire BFSS (for a given bound) instead of
only adjusting it to the last observed step means that we consider the worst-
case situation in which the entire BFSS is to be reconstructed due to, e.g., an
unexpected step of the system. According to Figure 6 (forward to collision),
the BFSS construction requires exponential run-time. In particular, collisions
8 https://github.com/OpenAcademicProject/Running-Example-of-Railway-

Transportation-System
9 System: 64-bit Win10, Intel Core i7-6700HQ, 40GB RAM, Groove 5.8.1

H. Xu et al.94

are detected at depth 13 requiring 188min, indicating that only using a BFSS
may incur inacceptable costs at run-time. According to Figure 6 (backward to
collision), the BBSS grows much slower compared to the BFSS because of (a) our
usage of a separate backward GTS and (b) the restriction of considering paths
that definitely lead to unsafe states. Hence, increasing the bound k for this BBSS
is more advantageous compared to increasing the bound n for the BFSS in this
scenario. Lastly, according to Figure 6 (forward to unsafe boundary), the first
member of the unsafe boundary is found at run-time in the BFSS at depth 8
requiring 8 s with an effective look-ahead of 13 (as the depth 7 BBSS captures 5
forward steps of the forward GTS), which is 1423 times faster. We conclude from
our evaluation that the goal of shifting computation time (and memory costs)
from run-time to design-time is achieved by a factor of 1423 for the case study.

We note that applying our approach using a value k > 0 can increase the
run-time cost. This would be the case when the forward/backward GTSs are
constructed and the values of n and k are selected such that the time required
for checking the leaf states of the run-time controller against the unsafe boundary
of the design-time controller exceeds the time saved by generating at run-time
a BFSS of depth n instead of n+ k. This may be the case when, e.g., the BBSS
contains a large number of infeasible paths (in the sense that the forward GTS
cannot exhibit (instantiations of) them for the considered start states) resulting
in an unsafe boundary containing a large number of states that can never be
matched. While this issue did not arise for the case study considered here where
run-time cost was decreased by a factor of 1423, this issue can be mitigated when
it arises by employing assumed state invariants (capturing infeasibility of paths)
to exclude states from the BBSS following the approaches in [47, 48, 3].

9 Conclusion and Future Work

In this paper, we presented a novel control-theoretic approach to run-time control
for Graph Transformation Systems (GTSs) with priorities modeling large-scale
systems with the threat of unexpected events. For the actor to be controller, we
combine controllers synthesized at design-time and run-time with look-aheads
n and k to obtain combined controllers with look-ahead n + k. An evaluation
based on a shuttle transportation system shows a decrease of run-time compu-
tation cost by a factor of 1423 compared to using only run-time controllers with
the same look-ahead suggesting that our approach successfully shifts a large
amount of run-time computation cost to design-time. Moreover, we exemplified
the robustness of the devised controlled system against unexpected events.

In the future, we will extend our approach to Interval Probabilistic Timed
Graph Transformation Systems [31] to model cyber-physical systems and the
steps of the contained actors more precisely, incorporate techniques to minimize
checking time against unsafe boundary nodes, and combine k-induction with
hand-coded backward GTSs to obtain small Bounded Backward State Spaces
(BBSSs) that are correct w.r.t. the forward GTS by design.

Combining Design-time and Run-time Control-synthesis for GTSs 95

References

[1] P. Arcaini, E. Riccobene, and P. Scandurra. “Modeling and Analyzing MAPE-K
Feedback Loops for Self-Adaptation”. In: 10th IEEE/ACM International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2015, Florence, Italy, May 18-19, 2015. Ed. by P. Inverardi and B. R. Schmerl.
IEEE Computer Society, 2015, pp. 13–23. doi: 10.1109/SEAMS.2015.10.

[2] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008. isbn:
978-0-262-02649-9.

[3] B. Becker and H. Giese. Cyber-Physical Systems with Dynamic Structure: To-
wards Modeling and Verification of Inductive Invariants. Tech. rep. 64. Hasso
Plattner Institute, University of Potsdam, 2012. url: https://nbn- resolving.
org/urn:nbn:de:kobv:517-opus-62437.

[4] T. Brüdigam, V. Gaßmann, D. Wollherr, and M. Leibold. “Minimization of con-
straint violation probability in model predictive control”. In: International Jour-
nal of Robust and Nonlinear Control 31.14 (2021), pp. 6740–6772. doi: https:
//doi.org/10.1002/rnc.5636. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/rnc.5636.

[5] T. Brüdigam, J. Teutsch, D. Wollherr, M. Leibold, and M. Buss. “Probabilistic
model predictive control for extended prediction horizons”. In: at - Automa-
tisierungstechnik 69.9 (2021), pp. 759–770. doi: doi:10.1515/auto-2021-0025.

[6] Y.-L. Chen, S. Lafortune, and F. Lin. “Modular Supervisory Control with Prior-
ities for Discrete Event Systems”. In: Proceedings of 1995 34th IEEE Conference
on Decision and Control. Vol. 1. 1995, pp. 409–415. doi: 10.1109/CDC.1995.
478832.

[7] Y. Chen, S. Lafortune, and F. Lin. “Resolving Feature Interactions Using Mod-
ular Supervisory Control with Priorities”. In: Feature Interactions in Telecom-
munications Networks IV, June 17-19, 1997, Montréal, Canada. Ed. by P. Dini,
R. Boutaba, and L. Logrippo. IOS Press, 1997, pp. 108–122.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications”. In: ACM Trans.
Program. Lang. Syst. 8.2 (1986), pp. 244–263. doi: 10.1145/5397.5399.

[9] A. Corradini, L. Foss, and L. Ribeiro. “Graph Transformation with Dependencies
for the Specification of Interactive Systems”. In: Recent Trends in Algebraic De-
velopment Techniques, 19th International Workshop, WADT 2008, Pisa, Italy,
June 13-16, 2008, Revised Selected Papers. Ed. by A. Corradini and U. Monta-
nari. Vol. 5486. Lecture Notes in Computer Science. Springer, 2008, pp. 102–118.
doi: 10.1007/978-3-642-03429-9_8.

[10] B. Courcelle. “The Expression of Graph Properties and Graph Transformations
in Monadic Second-Order Logic”. In: Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume 1: Foundations. Ed. by G. Rozenberg.
World Scientific, 1997, pp. 313–400. isbn: 9810228848.

[11] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. “Software Verifica-
tion Using k-Induction”. In: Static Analysis - 18th International Symposium,
SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings. Ed. by E. Yahav.
Vol. 6887. Lecture Notes in Computer Science. Springer, 2011, pp. 351–368. isbn:
978-3-642-23701-0. doi: 10.1007/978-3-642-23702-7_26.

[12] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2006. isbn: 978-3-540-31187-4. doi: 10.1007/3-540-31188-2.

H. Xu et al.96

https://doi.org/10.1109/SEAMS.2015.10
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus-62437
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus-62437
https://doi.org/https://doi.org/10.1002/rnc.5636
https://doi.org/https://doi.org/10.1002/rnc.5636
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.5636
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.5636
https://doi.org/doi:10.1515/auto-2021-0025
https://doi.org/10.1109/CDC.1995.478832
https://doi.org/10.1109/CDC.1995.478832
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-642-03429-9_8
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/3-540-31188-2

[13] H. Ehrig, C. Ermel, U. Golas, and F. Hermann. Graph and Model Transformation
- General Framework and Applications. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2015. isbn: 978-3-662-47979-7. doi: 10 .
1007/978-3-662-47980-3.

[14] H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. “M-adhesive trans-
formation systems with nested application conditions. Part 1: parallelism, con-
currency and amalgamation”. In: Mathematical Structures in Computer Science
24.4 (2014). doi: 10.1017/S0960129512000357.

[15] A. Filieri, C. Ghezzi, and G. Tamburrelli. “Run-time efficient probabilistic model
checking”. In: Proceedings of the 33rd International Conference on Software En-
gineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. Ed. by
R. N. Taylor, H. C. Gall, and N. Medvidovic. ACM, 2011, pp. 341–350. doi:
10.1145/1985793.1985840.

[16] S. Gerasimou, R. Calinescu, and A. Banks. “Efficient runtime quantitative verifi-
cation using caching, lookahead, and nearly-optimal reconfiguration”. In: 9th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, Proceedings, Hyderabad, India, June 2-3, 2014. Ed. by
G. Engels and N. Bencomo. ACM, 2014, pp. 115–124. doi: 10.1145/2593929.
2593932.

[17] GROOVE Team. Graphs for Object-Oriented Verification (GROOVE). https :
//groove.cs.utwente.nl. University of Twente, 2011.

[18] A. Habel and K. Pennemann. “Correctness of high-level transformation systems
relative to nested conditions”. In: Mathematical Structures in Computer Science
19.2 (2009), pp. 245–296. doi: 10.1017/S0960129508007202.

[19] R. Heckel. “Open graph transformation systems: a new approach to the com-
positional modelling of concurrent and reactive systems”. PhD thesis. Technical
University of Berlin, Germany, 1998. url: https://d-nb.info/95713598X.

[20] R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. “A View-based Approach to
System Modeling Based on Open Graph Transformation Systems”. In: Handbook
of Graph Grammars and Computing by Graph Transformation Volume 2: Appli-
cations, Languages and Tools. Ed. by H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg. World Scientific, 1999, pp. 639–668. isbn: 978-981-02-4020-2. doi:
10.1142/9789812815149_0016.

[21] R. Heckel, G. Lajios, and S. Menge. “Stochastic Graph Transformation Systems”.
In: Fundam. Inform. 74.1 (2006), pp. 63–84. url: https://content.iospress.com/
articles/fundamenta-informaticae/fi74-1-04.

[22] R. Heckel and G. Taentzer. Graph Transformation for Software Engineers - With
Applications to Model-Based Development and Domain-Specific Language Engi-
neering. Springer, 2020. isbn: 978-3-030-43915-6. doi: 10.1007/978-3-030-43916-
3.

[23] M. U. Iftikhar and D. Weyns. Towards runtime statistical model checking for self-
adaptive systems. CW Reports CW693. Department of Computer Science, KU
Leuven; Leuven, Belgium, Aug. 2016. url: https://lirias.kuleuven.be/1656638.

[24] N. Jansen, C. Dehnert, B. L. Kaminski, J. Katoen, and L. Westhofen. “Bounded
Model Checking for Probabilistic Programs”. In: Automated Technology for Veri-
fication and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan,
October 17-20, 2016, Proceedings. Ed. by C. Artho, A. Legay, and D. Peled.
Vol. 9938. Lecture Notes in Computer Science. 2016, pp. 68–85. doi: 10.1007/
978-3-319-46520-3_5.

Combining Design-time and Run-time Control-synthesis for GTSs 97

https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1017/S0960129512000357
https://doi.org/10.1145/1985793.1985840
https://doi.org/10.1145/2593929.2593932
https://doi.org/10.1145/2593929.2593932
https://groove.cs.utwente.nl
https://groove.cs.utwente.nl
https://doi.org/10.1017/S0960129508007202
https://d-nb.info/95713598X
https://doi.org/10.1142/9789812815149_0016
https://content.iospress.com/articles/fundamenta-informaticae/fi74-1-04
https://content.iospress.com/articles/fundamenta-informaticae/fi74-1-04
https://doi.org/10.1007/978-3-030-43916-3
https://doi.org/10.1007/978-3-030-43916-3
https://lirias.kuleuven.be/1656638
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5

[25] J. Katoen. “The Probabilistic Model Checking Landscape”. In: Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016. Ed. by M. Grohe, E. Koskinen, and
N. Shankar. ACM, 2016, pp. 31–45. doi: 10.1145/2933575.2934574.

[26] Z. Khasidashvili, K. Korovin, and D. Tsarkov. “EPR-based k-induction with
Counterexample Guided Abstraction Refinement”. In: Global Conference on Ar-
tificial Intelligence, GCAI 2015, Tbilisi, Georgia, October 16-19, 2015. Ed. by
G. Gottlob, G. Sutcliffe, and A. Voronkov. Vol. 36. EPiC Series in Computing.
EasyChair, 2015, pp. 137–150. doi: 10.29007/scv7.

[27] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event
Systems. 1st ed. Springer New York, NY, 1995. doi: 10.1007/978-1-4615-2217-1.

[28] M. Leucker and C. Schallhart. “A brief account of runtime verification”. In: J.
Log. Algebr. Program. 78.5 (2009), pp. 293–303. doi: 10.1016/j.jlap.2008.08.004.

[29] M. Maximova, H. Giese, and C. Krause. “Probabilistic timed graph transforma-
tion systems”. In: J. Log. Algebr. Meth. Program. 101 (2018), pp. 110–131. doi:
10.1016/j.jlamp.2018.09.003.

[30] M. Maximova, S. Schneider, and H. Giese. “Compositional Analysis of Proba-
bilistic Timed Graph Transformation Systems”. In: Fundamental Approaches to
Software Engineering - 24th International Conference, FASE 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings. Ed.
by E. Guerra and M. Stoelinga. Vol. 12649. Lecture Notes in Computer Science.
Springer, 2021, pp. 196–217. doi: 10.1007/978-3-030-71500-7_10.

[31] M. Maximova, S. Schneider, and H. Giese. “Interval Probabilistic Timed Graph
Transformation Systems”. In: Graph Transformation - 14th International Con-
ference, ICGT 2021, Held as Part of STAF 2021, Virtual Event, June 24-25,
2021, Proceedings. Ed. by F. Gadducci and T. Kehrer. Vol. 12741. Lecture Notes
in Computer Science. Springer, 2021, pp. 221–239. doi: 10.1007/978- 3- 030-
78946-6_12.

[32] G. A. Moreno, J. Cámara, D. Garlan, and B. R. Schmerl. “Proactive self-adaptation
under uncertainty: a probabilistic model checking approach”. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ES-
EC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. Ed. by E. D.
Nitto, M. Harman, and P. Heymans. ACM, 2015, pp. 1–12. doi: 10.1145/2786805.
2786853.

[33] O. Özkan. “Decidability of Resilience for Well-Structured Graph Transforma-
tion Systems”. In: Graph Transformation - 15th International Conference, ICGT
2022, Held as Part of STAF 2022, Nantes, France, July 7-8, 2022, Proceedings.
Ed. by N. Behr and D. Strüber. Vol. 13349. Lecture Notes in Computer Science.
Springer, 2022, pp. 38–57. doi: 10.1007/978-3-031-09843-7_3.

[34] O. Özkan. “Infinite-state graph transformation systems under adverse condi-
tions”. In: it Inf. Technol. 63.5-6 (2021), pp. 311–320. doi: 10.1515/itit-2021-
0011.

[35] O. Özkan. “Modeling Adverse Conditions in the Framework of Graph Trans-
formation Systems”. In: Proceedings of the Eleventh International Workshop on
Graph Computation Models, GCM@STAF 2020, Online-Workshop, 24th June
2020. Ed. by B. Hoffmann and M. Minas. Vol. 330. EPTCS. 2020, pp. 35–54.
doi: 10.4204/EPTCS.330.3.

[36] O. Özkan and N. Würdemann. “Resilience of Well-structured Graph Transforma-
tion Systems”. In: Proceedings Twelfth International Workshop on Graph Com-

H. Xu et al.98

https://doi.org/10.1145/2933575.2934574
https://doi.org/10.29007/scv7
https://doi.org/10.1007/978-1-4615-2217-1
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlamp.2018.09.003
https://doi.org/10.1007/978-3-030-71500-7_10
https://doi.org/10.1007/978-3-030-78946-6_12
https://doi.org/10.1007/978-3-030-78946-6_12
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1007/978-3-031-09843-7_3
https://doi.org/10.1515/itit-2021-0011
https://doi.org/10.1515/itit-2021-0011
https://doi.org/10.4204/EPTCS.330.3

putational Models, GCM@STAF 2021, Online, 22nd June 2021. Ed. by B. Hoff-
mann and M. Minas. Vol. 350. EPTCS. 2021, pp. 69–88. doi: 10.4204/EPTCS.
350.5.

[37] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October -
1 November 1977. IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.
1977.32. url: https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
4567914.

[38] RailCab Team. RailCab Project. https : / /www.hni . uni - paderborn .de/ cim/
projekte/railcab.

[39] P. J. G. Ramadge and W. M. Wonham. “On the Supremal Controllable Sub-
language of a Given Language”. In: SIAM Journal on Control and Optimization
(SICON) 25.3 (1987), pp. 637–659.

[40] P. J. G. Ramadge and W. M. Wonham. “On the Supremal Controllable Sub-
language of a given Language”. In: Decision and Control, 1984. The 23rd IEEE
Conference on. Vol. 23. 1984, pp. 1073–1080. doi: 10.1109/CDC.1984.272178.

[41] P. J. G. Ramadge and W. M. Wonham. “Supervisory Control of a Class of Dis-
crete Event Processes”. English. In: Analysis and Optimization of Systems. Ed.
by A. Bensoussan and J. Lions. Vol. 63. Lecture Notes in Control and Infor-
mation Sciences. Springer Berlin Heidelberg, 1984, pp. 475–498. doi: 10.1007/
BFb0006306.

[42] A. Rashidinejad, P. van der Graaf, and M. A. Reniers. “Nonblocking Supervisory
Control Synthesis of Timed Automata using Abstractions and Forcible Events”.
In: 16th International Conference on Control, Automation, Robotics and Vision,
ICARCV 2020, Shenzhen, China, December 13-15, 2020. IEEE, 2020, pp. 1033–
1040. doi: 10.1109/ICARCV50220.2020.9305312.

[43] A. Rashidinejad, M. A. Reniers, and M. Fabian. “Supervisory Control Synthesis
of Timed Automata Using Forcible Events”. In: CoRR abs/2102.09338 (2021).
arXiv: 2102.09338. url: https://arxiv.org/abs/2102.09338.

[44] A. Rensink. “The GROOVE simulator: A tool for state space generation”. In:
Applications of Graph Transformations with Industrial Relevance: Second In-
ternational Workshop, AGTIVE 2003, Charlottesville, VA, USA, September 27-
October 1, 2003, Revised Selected and Invited Papers 2. Springer. 2004, pp. 479–
485.

[45] J. Rinast. “An online model-checking framework for timed automata”. PhD the-
sis. Hamburg University of Technology, 2015. url: http://tubdok.tub.tuhh.de/
handle/11420/1256.

[46] S. Schneider. “Deterministic pushdown automata as specifications for discrete
event supervisory control in Isabelle”. PhD thesis. Straße des 17. Juni 135, 10623
Berlin, Germany: Technische Universität Berlin, Dec. 2019. 286 pp. doi: 10 .
14279/depositonce-9332. In press.

[47] S. Schneider, J. Dyck, and H. Giese. “Formal Verification of Invariants for At-
tributed Graph Transformation Systems Based on Nested Attributed Graph
Conditions”. In: Graph Transformation - 13th International Conference, ICGT
2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26, 2020, Proceed-
ings. Ed. by F. Gadducci and T. Kehrer. Vol. 12150. Lecture Notes in Computer
Science. Springer, 2020, pp. 257–275. doi: 10.1007/978-3-030-51372-6_15.

[48] S. Schneider, M. Maximova, and H. Giese. “Invariant Analysis for Multi-agent
Graph Transformation Systems Using k-Induction”. In: Graph Transformation -
15th International Conference, ICGT 2022, Held as Part of STAF 2022, Nantes,

Combining Design-time and Run-time Control-synthesis for GTSs 99

https://doi.org/10.4204/EPTCS.350.5
https://doi.org/10.4204/EPTCS.350.5
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1007/BFb0006306
https://doi.org/10.1007/BFb0006306
https://doi.org/10.1109/ICARCV50220.2020.9305312
https://arxiv.org/abs/2102.09338
https://arxiv.org/abs/2102.09338
http://tubdok.tub.tuhh.de/handle/11420/1256
http://tubdok.tub.tuhh.de/handle/11420/1256
https://doi.org/10.14279/depositonce-9332
https://doi.org/10.14279/depositonce-9332
https://doi.org/10.1007/978-3-030-51372-6_15

France, July 7-8, 2022, Proceedings. Ed. by N. Behr and D. Strüber. Vol. 13349.
Lecture Notes in Computer Science. Springer, 2022, pp. 173–192. doi: 10.1007/
978-3-031-09843-7_10.

[49] S. Schneider, M. Maximova, L. Sakizloglou, and H. Giese. “Formal testing of
timed graph transformation systems using metric temporal graph logic”. In: Int.
J. Softw. Tools Technol. Transf. 23.3 (2021), pp. 411–488. doi: 10.1007/s10009-
020-00585-w.

[50] T. Schüle and K. Schneider. “Bounded model checking of infinite state systems”.
In: Formal Methods Syst. Des. 30.1 (2007), pp. 51–81. doi: 10.1007/s10703-006-
0019-9.

[51] M. Schwenzer, M. Ay, T. Bergs, and D. Abel. “Review on model predictive
control: an engineering perspective”. In: The International Journal of Advanced
Manufacturing Technology 117.5 (Nov. 2021), pp. 1327–1349. issn: 1433-3015.
doi: 10.1007/s00170-021-07682-3.

[52] A. M. Sharifloo and A. Metzger. “Mcaas: Model checking in the cloud for assur-
ances of adaptive systems”. In: Software Engineering for Self-Adaptive Systems
III. Assurances. Springer, 2017, pp. 137–153. doi: 10.1007/978-3-319-74183-3_5.

[53] D. Weyns, B. R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wut-
tke, J. Andersson, H. Giese, and K. M. Göschka. “On Patterns for Decentralized
Control in Self-Adaptive Systems”. In: Software Engineering for Self-Adaptive
Systems II - International Seminar, Dagstuhl Castle, Germany, October 24-29,
2010 Revised Selected and Invited Papers. Ed. by R. de Lemos, H. Giese, H. A.
Müller, and M. Shaw. Vol. 7475. Lecture Notes in Computer Science. Springer,
2010, pp. 76–107. doi: 10.1007/978-3-642-35813-5_4.

[54] Y. Yang, L. Bu, and X. Li. “Forward and backward: Bounded model checking of
linear hybrid automata from two directions”. In: Formal Methods in Computer-
Aided Design, FMCAD 2012, Cambridge, UK, October 22-25, 2012. Ed. by G.
Cabodi and S. Singh. IEEE, 2012, pp. 204–208. url: https://ieeexplore.ieee.
org/document/6462575/.

[55] R. Zhang, Z. Wang, and K. Cai. “N-Step Nonblocking Supervisory Control of
Discrete-Event Systems”. In: 2021 60th IEEE Conference on Decision and Con-
trol (CDC), Austin, TX, USA, December 14-17, 2021. IEEE, 2021, pp. 339–344.
doi: 10.1109/CDC45484.2021.9683593.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

H. Xu et al.100

https://doi.org/10.1007/978-3-031-09843-7_10
https://doi.org/10.1007/978-3-031-09843-7_10
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/s10703-006-0019-9
https://doi.org/10.1007/s10703-006-0019-9
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/978-3-319-74183-3_5
https://doi.org/10.1007/978-3-642-35813-5_4
https://ieeexplore.ieee.org/document/6462575/
https://ieeexplore.ieee.org/document/6462575/
https://doi.org/10.1109/CDC45484.2021.9683593
http://creativecommons.org/licenses/by/4.0/

Formal Specification of Trusted Execution
Environment APIs

1 Pohang University of Science and Technology, Pohang, South Korea
kmbae@postech.ac.kr

2 Samsung Electronics, Hwasung, South Korea

Abstract. Trusted execution environments (TEEs) have emerged as a
key technology in the cybersecurity domain. A TEE provides an isolated
environment in which sensitive computations can be executed securely.
Trusted applications running in TEEs are developed using standardized
APIs that many hardware platforms for TEE adhere to. However, formal
models tailored to standard TEE APIs are not well developed. In this
paper, we present a formal specification of TEE APIs using Maude. We
focus on Trusted Storage API and Cryptographic Operations API, which
are foundational to mobile and IoT applications. The effectiveness of
our approach is demonstrated through formal analysis of MQT-TZ, an
open-source TEE application for IoT. Our formal analysis has revealed
security vulnerabilities in the implementation of MQT-TZ, and we patch
and confirm its integrity using model checking.

Keywords: Trusted execution environments · formal specification ·
formal methods · model checking · rewriting logic · Maude

1 Introduction

Trusted execution environments (TEEs) have emerged as a key technology in
the cybersecurity of a wide range of software [17]. They provide an isolated
program execution environment where sensitive computations can be executed
securely, shielding data from both software and hardware attacks. It guarantees
the integrity, authenticity, and confidentiality of executed programs and their
data. TEE is widely used in security-critical systems such as industrial control
systems [5,7], servers [10], mobile security [11], IoT [1,15], etc.

However, the effectiveness of TEEs depends on their proper implementation
and use. Inaccuracies or vulnerabilities can compromise the very integrity they
seek to maintain; for example, user applications can access an unauthorized
region of memory [12], or a kernel can be compromised using a stack-overflow
attack [2]. This emphasizes the importance of the formal verification of TEEs.
Through rigorous examination and validation, we can ensure the robustness of
TEEs, ensuring they operate as intended and providing an additional layer of
confidence in their ability to protect critical data.
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 101–121, 2024.
https://doi.org/10.1007/978-3-031-57259-3_5

Geunyeol Yu1 , Seunghyun Chae1 , Kyungmin Bae1(B) ,
and Sungkun Moon2

https://orcid.org/0000-0002-6171-9911
https://orcid.org/0009-0008-1199-7172
https://orcid.org/0000-0002-6430-5175
https://orcid.org/0009-0003-3153-4662
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_5&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

The standardization of TEE is overseen by Global Platform [8]. Many systems
that implement TEE, such as Samsung TEEgris, Trustonic Kinibi, Qualcomm
QTEE, etc., adhere to this standard. The standard defines the API for trusted
applications (TAs) to handle secure resources, such as memory and storage.
These APIs are essential because they provide TEE services to applications
running in a TEE. The uniformity of this API specification ensures compatibility
across a wide range of applications, even when running on different CPUs.

However, there is an evident deficiency in formal models tailored for TEE
specification and its associated APIs. This gap is concerning because without
rigorous verification and modeling, the integrity of TEEs could be compromised,
potentially exposing vulnerabilities. In this paper, we address this concern by
providing a comprehensive formal model of TEE APIs that is explicitly designed
for the formal analysis of TEE applications. In this approach, we aim to provide
a foundational tool that can serve the diverse spectrum of TEE applications and
improve the overall security landscape of software.

The architecture and behavior of Trusted Storage API, precisely defined in
the standard [8], is quite complicated. Primarily, it arises from the stringent
security requirement that each TA is assigned a dedicated storage, isolated and
shielded from other TAs. For example, the function responsible for creating a file
in TEE involves multifaceted processes, which is briefly illustrated in Section 3.
Such intricacies amplify the difficulty in developing a faithful formal model for
TEEs, because of a huge representation gap between the informal (standard)
specification [8] and a formal model to be developed.

In this paper, we address challenge of the representation gap by leveraging
a very expressive modeling language, called Maude [4], which supports powerful
object-oriented specification. Since TEE API is mainly specified using objects
and their interactions [8], it is appropriate to use such object-oriented modeling
approaches to formally specify TEE APIs, making it much easier to develop
a comprehensive formal model. We formalize important parts of TEE APIs,
namely, Trusted Storage API and Cryptographic Operations API, which are
central for trusted applications in mobile and IoT domains.

We demonstrate the effectiveness of our approach for formally analyzing
MQT-TZ [20,21], an open-source TEE application that secures the IoT protocol
MQTT. We have analyzed several security requirements of the implementation
of MQT-TZ and found security vulnerabilities using model checking. We are able
to fix a code-level bug and verify through model checking that the fixed program
satisfies the previously violated requirements.

This paper is organized as follows. Section 2 provides necessary background
on trusted execution environments and Maude. Section 3 presents the formal
object-oriented specification of Trusted Storage API in Maude. Section 4 presents
the Maude specification of Cryptographic Operations API. Section 5 explains
how TEE infrastructures, including trusted applications, can be specified in
Maude. Section 6 presents a case study on analyzing various requirements of
MQT-TZ and improving the implementation of MQT-TZ using our framework.
Section 7 discusses related work. Section 8 presents some concluding remarks.

102 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Formal Specification of Trusted Execution Environment APIs 103

Secure Monitor

Rich Execution Environment (REE) Trusted Execution Environment (TEE)

Rich Application (RA)

Rich OS (Linux, etc.)

Application

Operating System

Hardware

Trusted OS
TEE API

Trusted Application (TA)

Fig. 1: Overview of the TEE Architecture.

2 Preliminary

Trusted Execution Environments. A trusted execution environment (TEE) uses a
physically isolated storage and memory space to protect the security of program
codes, executions, sensitive data, and so on. TEE is standardized by Global
Platform [8], and many operating systems for TEE (e.g., Samsung TEEgris,
Trustonic Kinibi, and Qualcomm QTEE) follow the standard. In particular, the
standard defines the API for trusted applications to manage secure resources
including memory and trusted storage.

Figure 1 shows the overall architecture of TEE. Trusted applications (TAs)
are secure applications running in TEE. In contrast, rich applications (RAs) are
normal applications in REE. A trusted OS provides a collection of API functions,
specified in the standard document [8], for TAs to perform secure operations.
RAs perform secure services by invoking TAs, and the results of such requests
are returned to RAs, through a dedicated hardware called a secure monitor.

Maude. Maude [4] is a language and tool for formally specifying and analyzing
concurrent systems. A Maude specification consists of: (i) an equational theory
(Σ, E) specifying system states as algebraic data types, where Σ is a signature
(i.e., declaring sorts, subsorts, and function symbols) and E is a set of equations;
and (ii) a set of rewrite rules R of the form l : t → t′ if condition, specifying the
system behavior, where l is a label, and t and t′ are terms [14].

In Maude, operators are declared with the syntax op f : s1 . . . sn -> s,
where s1, ..., sn denote domain sorts and s denotes a range sort. Rewrite rules
are declared with the syntax crl [l]: t => t′ if cond (or, for unconditional
rules, rl [l]: t => t′), where cond is a conjunction of equations. Similarly,
equations are declared with the syntax ceq t = t′ if cond (or eq t = t′).

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An instance of a class C is
represented as a term < O : C | att1 : v1, ..., attn : vn > of sort Object,
where O is the object’s identifier, and vi is the value of each attribute atti. A
subclass inherits the attributes and rewrite rules of its superclasses. A message
is represented as a term of sort Msg. A global system state is a term of sort
Configuration that has the structure of a multiset composed of objects and
messages, where multiset union is denoted by juxtaposition (empty syntax).

Maude provides a number of formal analysis methods, including LTL model
checking. Maude’s LTL model checker checks whether each behavior from an
initial state satisfies a linear temporal logic (LTL) formula. A temporal logic
formula is constructed by state propositions and temporal logic operators such
as ˜ (negation), /\, \/, [] (“always”), <> (“eventually”), and U (“until”).

K Framework. K [16] is a rewriting-based framework for defining the semantics of
programming languages, in which many languages, including C [6], Java [3], and
EVM [9], have been successfully formalized. In K, program states are specified
as multisets of cells, called K configurations. Each cell represents a component
of a program state, such as computations, environments, and stores. Transitions
between K configurations are defined by rewrite rules.

A computation in K is defined as a ↷-separated sequence of computational
tasks. For example, t1 ↷ t2 ↷ . . . ↷ tn represents the computation consisting of
t1 followed by t2 followed by t3, and so on. A task can be decomposed into simpler
tasks, and the result of a task is forwarded to the subsequent tasks. E.g., (5+x)∗2
is decomposed into x ↷ 5 + □ ↷ □ ∗ 2, where □ is a placeholder for the result
of a previous task. If x evaluates to some value, say 4, then 4 ↷ 5 + □ ↷ □ ∗ 2
becomes 5 + 4 ↷ □ ∗ 2, which eventually becomes 18.

The following shows a typical example of K rules for variable lookup, where
the k cell contains a computation, env contains a map from variables to locations,
and store contains a map from locations to values:

lookup : ⟨x↷ ...⟩k ⟨...x 7→ l ...⟩env ⟨...l 7→ v ...⟩store
v

A horizontal line represents a state change, and “...” indicates irrelevant parts.
A cell without horizontal lines is not changed by the rule. By the lookup rule, if
the first task in k is x, then x is replaced by the value v of x in its location l.

K rules can be translated into ordinary rewrite rules [16]. For example, the
lookup rule can be written in Maude as follows, where environments and stores
are declared as semicolon-separated multisets of assignments, and and K, ENV,
and STORE are Maude variables that match the irrelevant parts:

rl [lookup]: k(X ~> K) env(X |-> L ; ENV) store(L |-> V ; STORE)
=> k(V ~> K) env(X |-> L ; ENV) store(L |-> V ; STORE) .

3 Formal Specification of Trusted Storage API

Trusted Storage API manages files and cryptographic keys in trusted storage.
The architecture and behavior of Trusted Storage API [8] is summarized in
Section 3.1. Trusted Storage API is complex due to the security requirement
that each TA’s storage is isolated and inaccessible to other TAs. We use Maude’s
object-oriented specification to naturally specify the architecture as a collection
of objects (Section 3.2) and the behavior as rewrite rules (Section 3.3).

104 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

1: create

4: recreate

TA Trusted
Storage

Persistent

2: delete

Transient

Persistent

5: return handle

2: fail 3: transform

Fig. 2: The flow of TEE_CreatePersistentObject for the case of transformation.

3.1 Overview of Trusted Storage API

In the TEE API standard [8], resources such as files and keys are expressed
as objects in an abstract way. A cryptographic object contains attributes, which
are data used to store key material in a structured way. A persistent object
represents a file associated with a data stream in its storage, and may also be
a cryptographic object with attributes. A transient object represents an object
with attributes in memory, but no data streams. Object handles are references
that identify a particular object and contain access rights information.

There are a total of 26 functions in Trusted Storage API. The persistent
API functions can create, rename, and delete persistent objects and their data
streams. The data stream API functions can read, write, truncate, or seek data
from persistent objects. The transient API functions can allocate and deallocate
transient objects, set, reset, or copy cryptographic keys to the objects, or generate
random keys. In addition, these functions can open object handles for persistent
and transient objects, respectively.

To illustrate the complexity of Trusted Storage API, consider the function
TEE_CreatePersistentObject, which creates a persistent object and returns the
object handle. It first checks if a persistent object with the same name exists.
Then, depending on the overwrite access flag, the operation either fails, or the
object is deleted and recreated. A new persistent object can be created either as a
cryptographic object or as a pure data object (without attributes). In the former
case, attributes can be taken from another cryptographic object, or a transient
object can be transformed to the persistent object. We describe the execution
flow of transformation when a persistent object already exists, in Figure 2. The
dashed box denotes deletion, and the dotted box represents creation.

3.2 Representing Trusted Storage Objects in Maude

Trusted Storage API can naturally be formalized in an object-oriented style. A
cryptographic object is modeled as an instance of the class CryptoObj, where
the attributes type, max-size, and usages denote the type, maximum size, and
usages of a cryptographic key to be created, respectively; and attributes denotes
cryptographic attributes.

class CryptoObj | type : Type, max-size : Nat, usages : Set{Usage},
attributes : Set{CryptoAttribute} .

Formal Specification of Trusted Execution Environment APIs 105

A persistent object is modeled as an instance of the class PersistObj, where
the attribute file-name denotes the name of its file, and data-stream denotes the
associated data stream. Similarly, a transient object is modeled as an instance of
the class TransObj, where initialized indicates whether the object is initialized.
Both classes are declared as subclasses of CryptoObj, because they are both
cryptographic objects according to the standard [8].

class PersistObj | file-name : FileName, data-stream : List{Data} .
class TransObj | initialized : Bool .
subclass TransObj PersistObj < CryptoObj .

A handle is represented as an instance of a subclass of the class Handle, where
oid is the object that it points to. In particular, an object handle is represented
as instances of the subclass ObjHandle, where flags contains data access flags.

class Handle | oid : Oid . class ObjHandle | flags : Set{DataAccessFlag} .
subclass ObjHandle < Handle .

The storage of each TA is modeled as an instance of the class Storage,
where status denotes its status, files denotes the file names in the storage,
and counter denotes a counter for creating a new identifier.

class Storage | status : StorageStatus, files : Set{FileName}, counter : Nat .

The kernel of each TA is modeled as an instance of the class TAKernel, where
status denotes its status, storage denotes its storage, counter denotes a counter
for creating a new identifier, and api-call denotes the status of an API call.
The status of a TA can be normal, outOfMemory, or panic.

class TAKernel | status : AppStatus, storage : Oid,
counter : Nat, api-call : CallStatus .

We represent an API function call as f(vl) # n of sort CallStatus, where
f is a function identifier, vl is the call parameters, and (optional) n denotes the
step of the call. The return of the call is represented as return(f,rl), where rl
denotes the return values. We use return(f) if there are no return values.

The interactions between the objects are represented as the messages of the
form msg r[vl] from Sender to Receiver, where r is the name of a request
and vl is a list of arguments for the request. We use msg r from Sender to
Receiver for the request with no arguments. For example, msg getStatus from
TK to SI represents a request message from the TA kernel TK to its associated
storage SI for returning the status with no arguments.

The following example shows a TA and its associated storage, a transient
object and its object handle, and a persistent object named file1.

< tk : TAKernel | status : normal, id-counter : 1, storage : so, ... >
< oh : ObjHandle | oid : to, flags : empty >
< so : Storage | status : normal, files : fileName(’file1), counter : 1 >
< to: TransObj | type : rsaKeyPair, max-size : 15, usages : decrypt >
< po : PersistObj | file-name : fileName(’file1), type : rsaKeyPair, ... >

106 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

3.3 Specifying Trusted Storage API Behaviors

Specification of TEE_ReadObjectData. This function takes a single parameter,
a handle to a persistent object for data reading. A TA first checks the storage
status by sending a message getStatus to an associated storage. When the
storage receives getStatus, it returns its status using a message retStatus.

rl [read-object-data-get-storage-status]:
< TK : TAKernel | api-call : readObjData(HI), storage : SI >

=> < TK : TAKernel | api-call : readObjData(HI) # 1 > (msg getStatus from TK to SI)
.
rl [return-storage-status]:

< SI : Storage | status : STATUS > (msg getStatus from TK to SI)
=> < SI : Storage | > (msg retStatus[STATUS] from SI to TK) .

If the storage status is normal, the TA sends a message read to the handle
to request data reading. Otherwise, it returns the storage status.

rl [read-object-data-storage-status-check]:
(msg retStatus[STATUS] from SI to TK)
< TK : TAKernel | api-call : readObjData(HI) # 1 >

=> if STATUS == normal then
< TK : TAKernel | api-call : readObjData(HI) # 2 > (msg read from TK to HI)

else < TK : TAKernel | api-call : return(readObjData, STATUS) > fi .

When the handle receives read and has the flag accessRead, it reads the first
data from the data stream of the persistent object. The data is returned to the
TA using a message retData and the TA returns the received data.

rl [read-object-data-from-persist]:
< HI : ObjHandle | oid : PI, flags : (accessRead, FLAGS) >
< PI : PersistObj | data-stream : DATA :: STREAM > (msg read from TK to HI)

=> < PI : PersistObj | data-stream : STREAM > (msg retData[DATA] from HI to TK)
< HI : ObjHandle | > .

rl [read-object-data-success]:
(msg retData[DATA] from HI to TK)
< TK : TAKernel | api-call : readObjData(HI) # 2 >

=> < TK : TAKernel | api-call : return(readObjData, DATA) > .

Specification of TEE_CreatePersistentObject. Due to the page limit, we explain
the rules used to specify the behavior in Figure 2. This function takes five param-
eters: file name, access flags, a handle to another transient or persistent object,
initial data, and an optional handle. A TA determines the method for creating
a persistent object and sends a creation request to an associated storage.

rl [create-persistent-determine-case]:
< TK : TAKernel | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT),

storage : SI >
=> < TK : TAKernel | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >

mkCreationMsg(FILE, FLAGS, HI, DATA, OPT, SI, TK) .

Formal Specification of Trusted Execution Environment APIs 107

The mkCreationMsg function determines the creation method and constructs
a create message, where the first argument denotes the method id. If the handle
is null, the message is for creating a pure persistent object. If both the handle
and optional handle are not null, the message is for creating a persistent object.
Otherwise, it’s for transforming a transient object into a new persistent object.

op mkCreationMsg : FileName Set{DataAccessFlag} HandleId Data HandleId
Oid Oid -> Configuration .

eq mkCreationMsg(FILE, FLAGS, null, DATA, OPT, SI, TK)
= (msg create[pure FILE FLAGS null DATA] from TK to SI) .

ceq mkCreationMsg(FILE, FLAGS, HI, DATA, OPT, SI, TK)
= if OPT == null

then (msg create[transform FILE FLAGS HI DATA] from TK to SI)
else (msg create[persist FILE FLAGS HI DATA] from TK to SI) fi if HI =/= null .

When the storage receives the create message, it checks the existence of a
persistent object with the same name from the storage. If the object exists and
the access flags contain the overwrite flag, it proceeds by sending the create
message to the persistent object. Otherwise, it informs TA with createFail.

crl [create-persist-overwrite-check]:
(msg create[METHOD FILE FLAGS HI DATA] from TK to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N TK] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

When the persistent object receives the create message with the transform
method, it transforms the transient object into a persistent object, opens a new
object handle, and deletes itself. Then, the handle is sent to the TA through the
message createSuccess. The function newOid is used to create a fresh identifier.

crl [create-persist-transform]:
(msg create[transform FILE FLAGS HI DATA N TK] from SI to PI)
< HI : ObjHandle | oid : OI >
< OI : TransObj | type : TYPE, usages : USAGES, max-size : M,

attributes : ATTRS >
< PI : PersistObj | file-name : FILE >

=> < NEW-HI : ObjHandle | oid : NEW-PI, flags : FLAGS >
< NEW-PI : PersistObj | type : TYPE, usages : USAGES, max-size : M,

attributes : ATTRS, data-stream : DATA,
file-name : FILE >

(msg createSuccess[NEW-HI] from NEW-PI to TK)
if NEW-HI := newOid(N, SI) /\ NEW-PI := newOid(N + 1, SI) .

When the TA receives a createSuccess message with an object handle, it
returns the handle. If receiving createFail or detecting insufficient memory, it
returns a corresponding error.

108 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

rl [create-persist-success]: (msg createSuccess[HI] from PI to TK)
< TK : TAKernel | status : normal, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, HI) > .

rl [create-persist-fail]: (msg createFail from SI to TK)
< TK : TAKernel | status : normal, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, errorAccessConflict) > .

rl [create-persist-mem-err]:
< TK : TAKernel | app-status : outOfMemory, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, errorOutOfMemory) > .

4 Formal Specification of Cryptographic Operations API

Cryptographic Operations API handles cryptographic algorithms by managing
operation states. Cryptographic Operations API is also quite complex due to
the internal operation states. This section shows that these difficulties can be
effectively dealt with using Maude’s object-oriented specification.

4.1 Overview of Cryptographic Operations API

A cryptographic operation abstracts a cryptographic process. It has an operation
state such as initial, active, or extract. An operation handle is a reference to a
cryptographic operation. Each handle has a handle state, which is defined by
whether a key is set, an operation is initialized, and data can be extracted.

The API provides a total of 30 functions for various types of cryptographic
primitives and schemes, including symmetric ciphers, authenticated encryptions,
and key derivations. In addition, the generic operation API functions support
the operations common to all types. These functions can allocate, free, reset
cryptographic operations, and set cryptographic key.

To illustrate the complexity of Cryptographic Operations API, consider the
state diagram of symmetric ciphers, described in Figure 3. The operation can be
started either with or without key (KEY_SET or not KEY_SET). If it has no key,
TEE_SetOperationKey is used to set a key. Otherwise, it is initialized (INIT) by
TEE_CipherInit. The operation can run the algorithm with TEE_CipherUpdate.
After performing the operation, TEE_FreeOperation can be used to deallocate

4.2 Representing Cryptographic Operations in Maude

Cryptographic operations can naturally be modeled in an object-oriented style.
We model cryptographic operations as instances of class CryptoOp. The attribute
attributes denotes a set of CryptoAttribute, max-size is the maximum size
of a key to use, and algorithm is the identifier of an algorithm to operate. The
attributes mode, state, and opclass denote the mode, state, and class of the
operation, respectively, and acc-data is a list of Data it holds.

Formal Specification of Trusted Execution Environment APIs 109

the operation or TEE_CipherDoFinal is used to finish and reset the operation.
Figure 4 shows the state diagram of message digest, which is also complex.

not KEY_SET
not INIT

KEY_SET
not INIT

KEY_SET
INIT

Start

TEE_AllocateOperation

TEE_SetOperationKey

TEE_ResetOperation

TEE_CipherInit

TEE_CipherInit

TEE_FreeOperation

TEE_CopyOperation

End

Start TEE_CopyOperation

TEE_ResetOperation
TEE_CipherDoFinal
TEE_SetOperationKey

TEE_CipherUpdate

TEE_SetOperationKey

Fig. 3: Symmetric cipher operation.

not KEY_SET
not INIT

not EXTRACT

KEY_SET
INIT

EXTRACT
Start End

TEE_AllocateOperation

TEE_DigestExtract

TEE_FreeOperation
TEE_CopyOperation

TEE_ResetOperation
TEE_DigestUpdate
TEE_DigestDoFinal

TEE_DigestExtract

TEE_ResetOperation
TEE_DigestDoFinal

Start

TEE_CopyOperation

End

TEE_FreeOperation

Fig. 4: Message digest operation.

class CryptoOp | attributes : Set{CryptoAttribute}, max-size : Nat,
algorithm : Algorithm, mode : Mode, state : State,
opclass : OpClass, acc-data : List{Data} .

Operation handles are represented as instances of the class OpHandle, which
extends Handle. The attribute state is a handle state and key-material-set
denotes whether cryptographic key materials are set to the operation.
class OpHandle | state : HandleState, key-material-set : Bool .
subclass OpHandle < Handle .

Specification of TEE_AllocateOperation. This function takes three parameters:
an algorithm identifier, a mode, and the maximum key size. A TA first checks
whether the algorithm and mode are compatible using the compatible function.
If valid, it creates a new cryptographic operation, and opens and returns an
operation handle. The function getClass is used to retrieve the algorithm class.
crl [allocate-operation-success]:

< TK : TAKernel | api-call : allocOperation(ALGO, MODE, MAXSIZE),
status : normal, id-counter : N >

=> < TK : TAKernel | api-call : return(allocOperation, HI), id-counter : N + 2 >
< HI : OpHandle | oid : OI, state : noKeyNotInit, key-material-set : false >
< OI : CryptoOp | attributes : empty, max-size : MAXSIZE, handle : HI,

algorithm : ALGO, mode : MODE, opclass : getClass(ALGO),
acc-data : nil, state : initial >

if compatible(ALGO, MODE) /\ OI := newOid(N, TK) /\ HI := newOid(N + 1, TK) .

If the algorithm and mode are not compatible or insufficient memory is de-
tected, the TA returns a corresponding error, specified by the following rules:
crl [allocate-operation-params-err]:

< TK : TAKernel | api-call : allocOperation(ALGO, MODE, MAXSIZE) >
=> < TK : TAKernel | api-call : return(allocOperation, errorNotSupported) >
if not compatible(ALGO, MODE) .

rl [allocate-operation-memory-err]:
< TK : TAKernel | status : outOfMemory, api-call : allocOperation(VL) >

=> < TK : TAKernel | api-call : return(allocOperation, errorOutOfMemory) > .

110 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Specification of TEE_ResetOperation. A TA creates a resetOp message to reset
a cryptographic operation. If the cryptographic operation receives a request and
its key materials are set, it resets the operation state using the resetState
function, clears the data, and notifies the TA using a message finishResetOp.
The function resetState updates the state to initial if the state is active.
rl [reset-operation-request-reset]:

< TK : TAKernel | api-call : resetOperation(HI) > < HI : OpHandle | oid : CI >
=> < TK : TAKernel | > < HI : OpHandle | > (msg resetOp[HI] from TK to CI) .

rl [reset-operation-finish-reset]:
< CI : CryptoOp | state : STATE > (msg resetOp[HI] from TK to CI)
< HI : OpHandle | oid : CI, key-material-set : true >

=> < CI : CryptoOp | acc-data : nil, state : resetState(STATE) >
< HI : OpHandle | > (msg finishResetOp from CI to TK) .

rl [reset-operation-success]: (msg finishResetOp from CI to TK)
< TK : TAKernel | api-call : resetOperation(VL) >

=> < TK : TAKernel | api-call : return(resetOperation) > .

Specification of TEE_CipherUpdate. This function takes two parameters: an
operation handle and input data. A TA creates a message reqCipher to request
data encryption or decryption. When a cryptographic operation receives the
message and key materials are set, it checks whether the operation can succeed
using the cipherSuccess function. If successful, the operation runs the algorithm
with runAlgo and returns a result to the TA using the finishCipher message.
Otherwise, it reports failure using the failCipher message.
rl [cipher-update-request-cipher]: < HI : OpHandle | oid : CI >

< TK : TAKernel | api-call : cipherUpdate(HI, DATA) >
=> < TK : TAKernel | > < HI : OpHandle | > (msg reqCipher[HI DATA] from TK to CI) .

rl [cipher-update-try-cipher]:
(msg reqCipher[HI DATA] from TK to CI)
< HI : OpHandle | key-material-set : true >
< CI : CryptoOp | attributes : ATTRS, algorithm : ALGO, mode : MODE,

opclass : CLASS, state : STATE >
=> < CI : CryptoOp | > < HI : OpHandle | >

if cipherSuccess(ALGO, MODE, ATTRS, CLASS, STATE, DATA) then
(msg finishCipher[runOp(ALGO, MODE, ATTRS, DATA)] from CI to TK)

else (msg failCipher from CI to TK) fi .

When the TA receives the encrypted or decrypted data from cipherSuccess,
it returns the data. If receiving failCipher, it goes to panic.
rl [cipher-update-success]: (msg cipherSuccess[VALUE] from CI to TK)

< TK : TAKernel | api-call : cipherUpdate(VL) >
=> < TK : TAKernel | api-call : return(cipherUpdate, VALUE) > .

rl [cipher-update-panic]:
< TK : TAKernel | api-call : cipherUpdate(VL) > (msg failCipher from CI to TK)

=> < TK : TAKernel | status : panic > .

Formal Specification of Trusted Execution Environment APIs 111

5 Formal Specification of a TEE Infrastructure

5.1 Representing Rich and Trusted Applications in Maude

Thanks to the K semantics, we can model RA and TA to run programs, written
in any programming language. Applications are represented as instances of the
following class App, where prog denotes a program and proc is a K configuration
for the program execution. RAs and TAs are modeled as instances of the classes
RA and TA, respectively. Both classes inherit App but TA also inherits TAKernel.

class App | prog : Program, proc : KConfig .

class RA . class TA .
subclass RA < App . subclass TA < App TAKernel .

In this paper, we define K rewrite rules for a subset of the C language, in-
cluding function calls, variables, assignments, loops, and conditional statements.
As mentioned in Section 2, the K semantics can be written in Maude.

For TEE API function calls, we use TAKernel to handle them. When a TEE
API function FUNC is called with parameters VL, a TA pushes the call to api-call
and adds a task $wait(f), representing the task waiting for the function f . Then,
a TAKernel handles the call as explained in Sections 3 and 4. The isTeeApi
function is used to check whether a function is a TEE API.

crl [tee-api-call]:
< TI : TA | proc : (k(FUNC(VL) ~> K) KS) >

=> < TI : TA | proc : (k($wait(FUNC) ~> K) KS), api-call : FUNC(VL) >
if isTeeApi(FUNC) .

After the TAKernel handles the call, the TA assigns the return values to the
function’s output variables. We use $out(xl) to denote output variables xl. The
makeRetStmt function is used to create statements for assigning variables.

crl [tee-api-call-return]:
< TI : TA | proc : (k($wait(FUNC) ~> $out(XL) ~> K) KS),

api-call : return(FUNC, VL) >
=> < TI : TA | proc : (k(STMT ~> K) KS), api-call : noCall >
if isTeeApi(FUNC) /\ STMT := makeRetStmt(VL, XL) .

5.2 Representing Execution Environments

We represent the two separated execution environments as a pair {SR} | [ST],
where SR contains RAs and ST contains TAs, together with objects and messages
introduced in Sections 3 and 4. Trusted OS is represented as an instance of
the class TrustedOS, where sess is a map from SessionId to Oid. Sessions are
communication channels between RA and TA.

class TrustedOS | sess : Map{SessionId,Oid} .

112 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

We specify the communications between an RA and a TA using Maude rules.
The RA calls the TA using a secure monitor call (SMC). We define its semantic
using the following rule. A message smcReq represents an SMC and the function
makeSmcArgs makes SMC arguments.
crl [invoke-ta]:

< RI : RA | proc : (k(FUNC(VL) ~> K) KS) >
=> < RI : RA | proc : (k($wait(FUNC) ~> K) KS) > smcReq(ARGS)

if isInvokeFunc(FUNC) /\ ARGS := makeSmcArgs(RI, FUNC, VL) .

The secure monitor accepts the SMC request by transferring the message
smcReq from REE to TEE. Later, it gets a result from TEE through a message
smcRet and finishes the request by transferring the message to REE.
rl [accept-smc-request]: {REE smcReq(ARGS)} | {TEE} => {REE} | {TEE smcReq(ARGS)} .
rl [return-smc-request]: {REE} | {TEE smcRet(ARGS)} => {REE smcRet(ARGS)} | {TEE} .

We define the behavior of a trusted OS when receiving smcReq. The OS
invokes a target TA using an invkTa message. The function getTargetTa is used
to extract the target TA from SMC arguments and getRequestor is used to get
the RA’s identifier.
crl [accept-smc-request]:

< OS : TrustedOS | sess : SM > smcReq(ARGS)
=> < OS : TrustedOS | > invkTa(TI, RI, ARGS)
if RI := getRequestor(ARGS) /\ TI := getTargetTa(ARGS, SM) .

When the target TA receives invkTa and is not running, it executes a program
using the function run. For example, run(p,f,vl) executes the function f of a
program p with arguments vl. The functions getFunc and getParams are used
to get a function identifier and call parameters from SMC arguments.
crl [handle-invoke-ta]:

< TI : TA | proc : none, prog : P > invkTa(TI, RI, ARGS)
=> < TI : TA | proc : run(P, F, VL) > invkTa(TI, RI, ARGS)
if F := getFunc(ARGS) /\ VL := getParams(ARGS) .

After the execution, the TA gets a result from proc using the function getRes
and creates an invkTaRet message. Then, the trusted OS creates an smcRet
message for sending the result to the secure monitor, which is transferred to
REE. The function finished checks whether the process is finished.
crl [handle-invoke-ta-finish]:

< TI : TA | proc : KS > invkTa(TI, RI, ARGS)
=> < TI : TA | proc : none > invkTaRet(RI, RV)
if finished(KS) /\ RV := getRes(KS) /\ RI := getRequestor(ARGS) .

crl [return-smc-request]:
< OS : TrustedOS | > invkTaRet(RI, RES) => < OS : TrustedOS | > smcRet(ARGS)

if ARGS := makeSmcArgs(RI, RES) .

When the RA receives the message smcReq with the result, it finishes the
secure monitor call using the function makeRetStmt. The function retVal is used
to get return values from smcRet.

Formal Specification of Trusted Execution Environment APIs 113

crl [invoke-ta-finish]:
< RI : RA | proc : (k($wait(F) ~> $out(XL) ~> K) KS) > smcRet(ARGS)

=> < RI : RA | proc : (k(STMT ~> K) KS) >
if RI == getRequestor(ARGS) /\ VL := retVal(ARGS) /\ STMT := makeRetStmt(VL, XL) .

6 A Case study on Formal Analysis of MQT-TZ

This section shows the effectiveness and feasibility of our formal model using
MQT-TZ [21], a TEE-based implementation of the message transport protocol.
We defined LTL properties for MQT-TZ (Section 6.1), formally analyzed them
with threat models, and proposed a patch (Sections 6.2 and 6.3). Our formal
specification, case study model, and experimental results are available in [25].

6.1 Overview of MQT-TZ

MQT-TZ [21] is a secure topic-based publish-subscribe protocol utilizing TEE.
Figure 5 illustrates the overall architecture, presenting three entities: publisher,
subscriber, and broker. Publishers collect, encrypt, and send data as messages
to a broker’s topic. A subscriber can receive these messages by subscribing to
a topic. Brokers manage topics, subscriptions, and message delivery from pub-
lishers to subscribers. Each broker is implemented using TEE, consisting of a
single RA and TA. The RA retrieves publisher messages and calls the TA for
re-encryption or forward re-encrypted messages to subscribers.

The re-encryption is a key mechanism for protecting messages from potential
threats. It ensures that messages cannot be exploited, allowing only the intended
subscribers to read. This can be accomplished as follows: (i) Clients (publishers
and subscribers) generate symmetric keys and securely share them with brokers
using TLS, (ii) The publishers encrypt messages with their keys, and (iii) The
brokers decrypt the messages using the publisher’s keys and re-encrypt them
with the subscriber’s keys in TEE.

To analyze MQT-TZ, we define various requirements and express them as
LTL properties. These properties are summarized in Table 1. The properties P1
to P5 represent requirements for correctness of message reception (P1, P2, and
P3), system integrity (P4), and robustness of message sending (P5). P6 is for
checking whether the MQT-TZ scenarios satisfy the basic invariant.

RA TA

Broker
Publisher

Subscriber

TransObj CryptoOp

PersistObjData StreamTrusted
OS

TEEREE

…

Publisher

Subscriber

Fig. 5: Overview of MQT-TZ.

114 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Table 1: The LTL properties for MQT-TZ.
Prop. Description LTL Formula

P1
If no memory error occurs in the broker,
subscribers eventually receive messages.

□¬memErr.B →
□ (send.P → ♢recv.S)

P2
If the TA panics, subscribers should not receive
any messages. □ (panic.T A → □ ¬recv.S)

P3
If any memory error occurs in the broker,
subscribers should not receive any messages. □ (memErr.B → □ ¬recv.S)

P4
When the TA starts running, it should
eventually terminate. □ (start.T A → term.T A)

P5
If subscribers receive messages from publishers,
messages sent from each publisher are in order.

□ (inQueue.P (a :: b :: c) →
♢inQueue.S(a :: b :: c))

P6
The number of tasks handled by the TA cannot
exceed five. □ (¬numT askExceed(5))

For formal analysis, we represent MQT-TZ’s entities (brokers, publishers,
and subscribers) as Maude objects. We model brokers as instances of the Broker
class, which is a nested object with the execution environments of Section 5 for
running RA and TA, along with a buffer for storing publisher messages and a
subscriber list. Publishers are modeled as instances of the Publisher class, which
has a list of collected data to be sent to brokers. Subscribers are represented as
instances of Subscriber, which has a list of received messages from brokers.

We specify the behavior of clients and brokers, depicted in Figure 5. For
publishers, we define their behavior with two rules: collecting data, and sending
it to brokers with encryption. The behavior of subscribers is represented by
a single rule for message reception. We specify the behavior of a broker RA
using the following rules: (1) capturing publisher messages and storing them
in a message buffer, (2) running the MQT-TZ RA program, which calls a TA
(explained in Section 5), and (3) receiving re-encrypted messages from the TA
and sending them to subscribers.

For a broker RA and TA, we obtained their C programs from the MQT-TZ
Github repository. To run them in our model, we translated a total of 1200 lines
of C codes to our C-subset language using a simple translation script. Figure 6
shows the TA’s re-encryption function before the conversion.

6.2 LTL Model Checking

We have performed LTL model checking for the properties in Table 1, considering
two threat models. We use the following scenario for the analysis:

– Two subscribers (sub1, sub2), two publishers (pub1, pub2), and one broker
participate, where the broker has two topics.

– sub1 subscribes to a single topic, while sub2 subscribes to all topics.
– pub1 sends a single message, while pub2 sends two.

Formal Specification of Trusted Execution Environment APIs 115

static TEE_Result
payload_reencryption(void *session,

uint32_t param_types,
TEE_Param params[4]){

TEE_Result res;
uint32_t exp_param_types =
TEE_PARAM_TYPES(
TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_VALUE_INPUT);

if (param_types != exp_param_types)
return TEE_ERROR_BAD_PARAMETERS;

...

if (alloc_resources(session,
TA_AES_MODE_DECODE)

!= TEE_SUCCESS){
res = TEE_ERROR_GENERIC;
goto exit;

}

if (set_aes_key(session, ori_cli_key)
!= TEE_SUCCESS){

res = TEE_ERROR_GENERIC;
TEE_Free((void *) ori_cli_key);
goto exit;

}
...

if (cipher_buffer(session,
(char *) params[0].memref.buffer
+ TA_MQTTZ_CLI_ID_SZ + TA_AES_IV_SIZE,
data_size, dec_data, &dec_data_size)
!= TEE_SUCCESS){
res = TEE_ERROR_GENERIC;
goto exit;

}
...

TEE_Free((void *) dec_data);
exit:
return res;

}

Fig. 6: The C code of the TA’s re-encryption function.

Threat models. We consider two threat models: an out-of-memory threat and
a message modification threat. The out-of-memory threat nondeterministically
changes the status of a TA to outOfMemory. The message modification threat
represents a compromised broker [21] that calls a TA with incorrect arguments.
We specify the threats using Maude. For the out-of-memory threat, we model
the threat as a single rewrite rule as follows.

rl [out-of-memory-threat]: < TK : TAKernel | status : normal >
=> < TK : TAKernel | status : outOfMemory > .

For the message modification threat, we model an intruder as an instance
of the Intruder class with a single attribute subs-list, denoting a broker’s
subscription list. Prior to the attack, the intruder learns the subscription list
of a target broker from the messages in the broker’s REE and records this in
subs-list. After learning, the intruder uses this information and modifies any
incoming messages of the broker by replacing the sender with any one of its
subscribers. We can model this attack behavior as follows. The modify function
replaces the SENDER in a publisher message mqttzMsg to another subscriber using
the learned subscription list SUBS-LIST.

rl [message-modification-threat]: (mqttzMsg [DATA|TOPIC] from SENDER)
< INT : Intruder | subs-list : SUBS-LIST >

=> < INT : Intruder | > modify(DATA, TOPIC, SENDER, SUBS-LIST) .

Model checking experiment. We consider the following threat scenarios: without
any threats (NON), with the message modification threat (MSG), and with the
out-of-memory threat (OOM). We measure the size of the state space (|S|) in

116 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Table 2: The results of LTL model checking.
Prop. Type Safe? |S| Time

P1
NON ⊤ 62 35.7
MSG ⊤ 148 90.1
OOM ⊤ 202 144.2

P2
NON ⊤ 62 34.9
MSG ⊥ 17 9.1
OOM ⊤ 532 547.9

Prop. Type Safe? |S| Time

P3
NON ⊤ 62 35
MSG ⊤ 148 88.8
OOM ⊥ 0.1 0.1

P4
NON ⊤ 62 34.9
MSG ⊤ 148 88.6
OOM ⊤ 532 539.3

Prop. Type Safe? |S| Time

P5
NON ⊤ 62 33.8
MSG ⊤ 148 86.9
OOM ⊤ 532 546.7

P6
NON ⊤ 62 34.3
MSG ⊤ 148 87.9
OOM ⊤ 532 542.4

thousands, the model checking result (Safe?), and time in seconds. The ⊤ and
⊥ denote the property is safe and violated, respectively. We use the Maude
model checking command for the analysis, which provides counterexamples for
violations. We run the experiment on Intel Xeon 2.8GHz with 256 GB memory.

As summarized in Table 2, the two properties P2 and P3 are violated under the
threats, indicating the possible vulnerabilities. By analyzing the counterexample
of the P2 violation, we have discovered that the TA can panic during the message
re-encryption. This occurs because the sender of a message can be modified,
leading the TA to decrypt the message with an incorrect sender’s key. For the
P3 violation, we have found that when insufficient memory is detected, the TA
finalizes the re-encryption with an error and returns a re-encrypted message
containing (dummy) data. In this case, the RA does not verify whether the TA
returns a correct re-encrypted message and continues to transmit the message
to subscribers, which results in obtaining the message containing dummy data.

6.3 Patching the MQT-TZ Vulnerabilities

To fix the identified vulnerabilities, we have implemented code-level patches
for both the MQT-TZ RA and TA, as illustrated in Figure 7. Newly added
patches are highlighted in red, while the original codes are depicted in black.
The left side shows the patch for RA, and the right side is for TA. For the TA,
we modify it to inform the RA of a memory error or panic. In the case of the

TEEC_Result
void main(struct test_ctx *ctx,
mqttz_client *origin, mqttz_client *dest,
mqttz_times *times) { ...
res = TEEC_InvokeCommand(&ctx->sess,

TA_REENCRYPT,
&op, &ori);

if (res == TEE_ERROR_OUT_OF_MEMORY ||
res == TEE_ERROR_TA_DEAD) {

discardMsg(ctx, origin, dest);
}
... }

static TEE_Result
payload_reencryption(void *session,

uint32_t param_types,
TEE_Param params[4]){

...
if (alloc_resources(session,

TA_AES_MODE_DECODE)
!= TEE_SUCCESS){

res = TEE_ERROR_OUT_OF_MEMORY;
goto exit;

}
... }

Fig. 7: The patch codes for the MQT-TZ RA (left) and TA (right).

Formal Specification of Trusted Execution Environment APIs 117

Table 3: The results of LTL model checking after applying the patches.
Prop. Type Safe? |S| Time

P1
NON ⊤ 62 35.3
MSG ⊤ 149 89.9
OOM ⊤ 203 146.2

P2
NON ⊤ 62 35.1
MSG ⊤ 149 89.9
OOM ⊤ 347 294.8

Prop. Type Safe? |S| Time

P3
NON ⊤ 62 34.8
MSG ⊤ 149 89.7
OOM ⊤ 347 285.2

P4
NON ⊤ 62 34.7
MSG ⊤ 149 89.4
OOM ⊤ 347 278.5

Prop. Type Safe? |S| Time

P5
NON ⊤ 62 34.1
MSG ⊤ 149 87.4
OOM ⊤ 347 288.6

P6
NON ⊤ 62 34.4
MSG ⊤ 149 87.9
OOM ⊤ 347 286.1

RA, modifications are made to ignore the re-encrypted message when a memory
error or panic notification is received. Additionally, we have implemented the
discardMsg function to handle the cleanup of the re-encrypted message.

To validate the patches, we have performed the LTL model checking from
the previous section again. As shown in Table 3, P2 and P3 become safe (marked
as red), while all other results remain the same. In addition, we observe that the
state space is reduced up to approximately 185 thousand states compared to the
original experiment. This is because the patches discarded the states related to
memory error or panic.

In addition, we have identified redundant functions in the TA program using
formal analysis. For example, TEE_ResetOperation is called right after allocating
a cryptographic operation. Since the operation has not started, it remains in its
initial state and thus the reset operation has no effect. These redundancies can
be safely removed. To show this, we have collected all final states of the program
with and without redundancies and compared them. We confirm the reachable
states of the programs (with and without redundancies) are the same.

7 Related Work

Many studies have investigated the formal analysis of protocols leveraging TEE.
The work [13] introduces a protocol for Wasm applications, and verifies the cor-
rectness of its authentication, such as aliveness and non-injective agreement.
Another work [22] presents a protocol for secure remote credential management
using TEE, which is verified against the Dolev-Yao model. Both papers have
proven the correctness of their protocols by model checking. On the other hand,
the paper [24] formally analyzes direct anonymous attestation schemes running
on secure hardware through theorem proving. The papers [18,19] employ a simi-
lar approach, but aim at verifying remote attestation services of TEEs provided
by Intel. However, unlike our work, they focus on specific protocols and do not
propose a formal analysis framework for general TEE-based applications.

A formal analysis technique for an IoT framework using TEE is presented
in [23]. It provides a hierarchical colored Petri net for Trusted IoT Architec-
ture (TIoTA), which aims to protect data in IoT networks. This approach has
been used to verify security properties in CTL by model checking. However, it
is specifically tailored to TIoTA and cannot be applied to general TEE-based

118 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

applications. In contrast, our work aims to provide a formal analysis framework
for general TEE-based applications, written in any programming language whose
operational semantics is specified in K.

8 Concluding Remarks

We have presented a formal specification for TEE APIs using Maude. We have
specified two important TEE APIs (Trusted Storage API and Cryptographic
Operations API) that are fundamental to mobile and IoT applications. We have
leveraged Maude’s object-oriented specification to reduce a representation gap
between the standard document and the formal model, allowing us to effectively
specify the complex architectures and behaviors of the TEE APIs.

The effectiveness and feasibility of our approach have been demonstrated
through formal analysis of MQT-TZ [21,20], an open-source TEE application
for IoT. We have analyzed security requirements of MQT-TZ under given threat
models. Our formal analysis has revealed security vulnerabilities in the MQT-TZ
implementation. We have patched a code-level bug and verified the previously
violated requirements.

The future work includes providing comprehensive formal specifications for
TEE APIs, covering the time API, TEE arithmetical API, and peripheral and
event APIs. Additionally, we should verify the TEE API itself or generate test
cases for real-world validations using our formal specification. Another important
direction involves developing state space reduction techniques to enhance the
efficiency of TEE application analysis.

References

https://doi.org/10.1109/IRI.2018.00011

2. Beniamini, G.: Trust issues: Exploiting TrustZone TEEs. Accessed: Aug
03, 2022 (online) (2017), https://googleprojectzero.blogspot.com/2017/07/
trust-issues-exploiting-trustzone-tees.html

Formal Specification of Trusted Execution Environment APIs 119

Acknowledgments. This work was partially supported by SAMSUNG Electron-
ics Co., Ltd., and the National Research Foundation of Korea (NRF) grant (No.
2021R1A5A1021944) and Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant (No. 2022-0-00103), both funded by the Korea gov-
ernment (MSIT).

Data Availability Statement. The TEE formal specification, the MQT-TZ case
study, and experimental results are available in [25,26].

1. Ayoade, G., Karande, V., Khan, L., Hamlen, K.: Decentralized IoT data manage-
ment using blockchain and trusted execution environment. In: IEEE International
Conference on Information Reuse and Integration (IRI). pp. 15–22. IEEE (2018).

https://doi.org/10.1109/IRI.2018.00011
https://doi.org/10.1109/IRI.2018.00011
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

3. Bogdanas, D., Roşu, G.: K-Java: A complete semantics of Java. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages

https://doi.org/10.1145/2676726.2676982

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: All about Maude -

https://doi.org/10.1007/978-3-

5. Coppolino, L., D’Antonio, S., Formicola, V., Mazzeo, G., Romano, L.: VISE:
Combining Intel SGX and homomorphic encryption for cloud industrial con-
trol systems. IEEE Transactions on Computers 70(5), 711–724 (2021). https:

6. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

https://doi.org/10.1145/2103656.2103719

7. Fitzek, A., Achleitner, F., Winter, J., Hein, D.: The ANDIX research OS —
ARM TrustZone meets industrial control systems security. In: IEEE Interna-
tional Conference on Industrial Informatics (INDIN).

8. GlobalPlatform: TEE Internal Core API Specification v1.3.1 (2021), https://
globalplatform.org/specs-library/tee-internal-core-api-specification/

9. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A complete formal
semantics of the Ethereum virtual machine. In: IEEE Computer Security Founda-

https://doi.org/10.1109/CSF.

10. Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H.: vTZ: virtualizing ARM
TrustZone. In: USENIX Conference on Security Symposium (SEC). pp. 541–556.

https://dl.acm.org/doi/10.5555/3241189.3241232

11. Li, W., Xia, Y., Lu, L., Chen, H., Zang, B.: TEEv: Virtualizing trusted execu-
tion environments on mobile platforms. In: ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE). pp. 2–

https://doi.org/10.1145/3313808.3313810

12. Machiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N., Wang, R., Bianchi,
A., Choe, Y.R., Kruegel, C., Vigna, G.: BOOMERANG: Exploiting the semantic
gap in trusted execution environments. In: Network and Distributed System Secu-
rity Symposium (NDSS) (2017).

13. Ménétrey, J., Pasin, M., Felber, P., Schiavoni, V.: WaTZ: A trusted WebAssembly
runtime environment with remote attestation for TrustZone. In: IEEE International
Conference on Distributed Computing Systems (ICDCS). pp. 1177–1189. IEEE
(2022), https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00116

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96(1), 73–155 (1992). https://doi.org/10.1016/
0304-3975(92)90182-F

15. Nguyen, H., Ivanov, R., Phan, L.T., Sokolsky, O., Weimer, J., Lee, I.: LogSafe: Se-
cure and scalable data logger for IoT devices. In: IEEE/ACM International Con-
ference on Internet-of-Things Design and Implementation (IoTDI). pp. 141–152.

https://doi.org/10.1109/IoTDI.2018.00023

16. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. The Journal
of Logic and Algebraic Programming 79(6), 397–434 (2010). https://doi.org/10.
1016/j.jlap.2010.03.012

120 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

(POPL). pp. 445–456. ACM (2015).

A high-performance logical framework, Lecture Notes in
Computer Science, vol. 4350. Springer (2007).
540-71999-1

(POPL). pp. 533–544. ACM (2012).

//doi.org/10.1109/TC.2020.2995638

https://doi.org/10.1109/INDIN.2015.7281715
pp. 88–93. IEEE (2015).

tions Symposium (CSF). pp. 204–217. IEEE (2018).
2018.00022

USENIX Association (2017),

16. ACM
(2019).

https://dx.doi.org/10.14722/ndss.2017.23227

IEEE (2018).

https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1109/INDIN.2015.7281715
https://doi.org/10.1109/INDIN.2015.7281715
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://dl.acm.org/doi/10.5555/3241189.3241232
https://doi.org/10.1145/3313808.3313810
https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00116
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1109/IoTDI.2018.00023
https://doi.org/10.1109/IoTDI.2018.00023
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://dx.doi.org/10.14722/ndss.2017.23227

17. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what
it is, and what it is not. In: IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). pp. 57–64. IEEE (2015).
https://doi.org/10.1109/Trustcom.2015.357

18. Sardar, M.U., Faqeh, R., Fetzer, C.: Formal foundations for Intel SGX data cen-
ter attestation primitives. In: International Conference on Formal Engineering
Methods (ICFEM). Lecture Notes in Computer Science, vol. 12531, pp. 268–283.
Springer (2020). https://doi.org/10.1007/978-3-030-63406-3_16

19. Sardar, M.U., Musaev, S., Fetzer, C.: Demystifying attestation in Intel Trust
Domain Extensions via formal verification. IEEE Access 9, 83067–83079 (2021).
https://doi.org/10.1109/ACCESS.2021.3087421

20. Segarra, C., Delgado-Gonzalo, R., Schiavoni, V.: MQT-TZ fork of the open source
Mosquitto MQTT broker leveraging ARM TrustZone, https://github.com/mqttz/
mqttz

21. Segarra, C., Delgado-Gonzalo, R., Schiavoni, V.: MQT-TZ: hardening IoT bro-
kers using ARM TrustZone. In: International Symposium on Reliable Distributed
Systems (SRDS). pp. 256–265. IEEE (2020). https://doi.org/10.1109/SRDS51746.

22. Shepherd, C., Akram, R.N., Markantonakis, K.: Remote credential management
with mutual attestation for trusted execution environments. In: IFIP International
Conference on Information Security Theory and Practice (WISTP). Lecture Notes
in Computer Science, vol. 11469, pp. 157–173. Springer (2019). https://doi.org/
10.1007/978-3-030-20074-9_12

23. Valadares, D.C.G., Sobrinho, Á.A.d.C.C., Perkusich, A., Gorgonio, K.C.: Formal
verification of a trusted execution environment-based architecture for IoT ap-
plications. IEEE Internet of Things Journal 8(23), 17199–17210 (2021). https:
//doi.org/10.1109/JIOT.2021.3077850

24. Wesemeyer, S., Newton, C.J., Treharne, H., Chen, L., Sasse, R., Whitefield, J.: For-
mal analysis and implementation of a TPM 2.0-based direct anonymous attestation
scheme. In: ACM Asia Conference on Computer and Communications Security
(ASIACCS). pp.784–798. ACM (2020).https://doi.org/10.1145/3320269.3372197

25. Yu, G., Chae, S., Bae, K., Moon, S.: The artifact of TEE formal specification
(2023). https://doi.org/10.5281/zenodo.10462106

26. Yu, G., Chae, S., Bae, K., Moon, S.: Supplementary material. (2023), https://
github.com/postechsv/tee-formal-spec

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Formal Specification of Trusted Execution Environment APIs 121

2020.00033

https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1007/978-3-030-63406-3_16
https://doi.org/10.1007/978-3-030-63406-3_16
https://doi.org/10.1109/ACCESS.2021.3087421
https://doi.org/10.1109/ACCESS.2021.3087421
https://github.com/mqttz/mqttz
https://github.com/mqttz/mqttz
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.5281/zenodo.10462106
https://doi.org/10.5281/zenodo.10462106
https://github.com/postechsv/tee-formal-spec
https://github.com/postechsv/tee-formal-spec
http://creativecommons.org/licenses/by/4.0/

Monitoring the Future of Smart Contracts⋆

Abstract. Blockchains are decentralized systems that provide trustable
execution guarantees through the use of programs called smart contracts.
Smart contracts are programs written in domain-specific programming
languages running on blockchains that govern how tokens and cryptocur-
rency are sent and received. Smart contracts can invoke other smart con-
tracts during the execution of transactions initiated by external users.
Once deployed, smart contracts running code cannot be modified, so
techniques like runtime verification are very appealing for improving their
reliability. Moreover, the conventional model of computation of smart
contracts is transactional: once operations commit, their effects are per-
manent and cannot be undone. Therefore, errors in smart contracts may
lead to millionaire losses of money.
In this paper, we present the concept of future monitors which allows
monitors to remain waiting for future transactions to occur before com-
mitting or aborting. This is inspired by optimistic rollups, which are
modern blockchain implementations that increase efficiency (and reduce
cost) by delaying transaction effects. We exploit this delay to propose
a model of computation that allows bounded future monitors. We show
our monitors correct respect with legacy transactions, how they imple-
ment bounded future monitors and how they guarantee progress. We
illustrate the use of bounded future monitors by implementing correctly
multi-transaction flash loans.

1 Introduction

Blockchains [20] were first introduced as distributed infrastructures that elim-
inate the need of trustable third parties in electronic payment systems. Mod-
ern blockchains incorporate smart contracts [27,28] (contracts hereon), which
are stateful programs stored in the blockchain that govern the functionality of
blockchain transactions. Users interact with blockchains by invoking contracts3,
whose execution controls the exchange of cryptocurrency. Contracts allow so-
phisticated functionality, enabling many applications in decentralized finances
(DeFi), decentralized governance, Web3, etc.

⋆ This work was funded in part by PRODIGY Project (TED2021-132464B-
I00)—funded by MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR—by DECO Project (PID2022-138072OB-I00)—funded
by MCIN/AEI/10.13039/501100011033 and by the ESF+—and by a research grant
from Nomadic Labs and the Tezos Foundation.

3 Non-contract addresses can be considered as unit contracts.

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 122–142, 2024.
https://doi.org/10.1007/978-3-031-57259-3_

Margarita Capretto1,2(B) , Martin Ceresa1 , and César Sánchez1

1 IMDEA Software Institute, Madrid, Spain

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

6

{margarita.capretto,martin.ceresa,cesar.sanchez}@imdea.org

http://orcid.org/0000-0003-2329-3769
http://orcid.org/0000-0003-4691-5831
http://orcid.org/0000-0003-3927-4773
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_6&domain=pdf

Contracts are written in high-level programming languages, like Solidity [2]
and Ligo [4], which are then typically compiled into low-level bytecode languages
like EVM [28] or Michelson [1]. Even though contracts are typically small com-
pared to conventional software, writing contracts is notoriously difficult. The
open nature of the invocation system—where every contract can invoke every
other contract—facilitates that malicious users break programmer’s assumptions
and steal user tokens (e.g. [23]). Once installed, contract code is immutable4, and
the effect of running a contract cannot be reverted (the contract is the law).

Two classic reliability approaches can be applied to contracts:

– static techniques ranging from static analysis [26] and model checking [22]
to deductive software verification techniques [3,21,8,14], theorem proving
assistants [7,5,24] or assisted formal construction of programs [25].

– dynamic verification [15,6,18,10] dynamically inspecting the execution of
contracts against specifications taking corrective measures.

We follow in this paper a dynamic monitoring technique. Monitors are a defen-
sive mechanism to express desired properties that must hold during the execution
of the contracts. If the property fails, the monitor fails the whole transaction.
Otherwise, the execution finishes normally according to the contract code. In
practice, monitors are mixed within the contract code, which limits the proper-
ties that can be monitored. In [10], the authors presented a hierarchy of moni-
tors, including operation and transaction monitors. An operation monitor for a
contract A runs alongside A and reads and modifies specific monitor variables
stored in A [15,6,18]. Operation monitors can only execute when A is invoked
and cannot inspect or invoke other contracts. Transaction monitors [10] can in-
spect information across a full transaction, even after the last invocation of A
in the transaction. For example, the return of a loan within the transaction is
an important property that can be monitored with a transaction monitor and
not by an operation monitor, because a transaction must fail if the money lent
is not returned by the end of the transaction.

Traditional blockchain systems cannot implement transaction monitors [10],
but fortunately, this is easy to achieve by extending the execution model with
two simple features: a first instruction and a Fail/NoFail hookup mechanism.
Instruction first returns true during the first invocation of the contract in
the current transaction. The Fail/NoFail mechanism equips each contract with
a new flag, fail, that can be assigned (to true or false) during the execution
of the contract (and that is false by default). The semantics of fail is that
transactions fail if at least one contract has its fail flag set to true at the end
of the transaction.

In this paper, we study an even richer notion of monitors that enables to fail
or commit depending on future transactions. Future monitors can predicate on
sequences of transactions during a bounded period of time. This period of time,
called the monitoring window is fixed a priori.

4 Although there are techniques to upgrade the behaviour of smart contracts, like
proxy patterns and diamond proxy [19], the actual code does not change.

Monitoring the Future of Smart Contracts 123

Optimistic rollups. Future monitors can be implemented easily in Layer-2
Optimistic Rollups5, which are an approach to improve blockchain scalabil-
ity by moving computation and data off-chain. The most popular optimistic
rollup implementation is Arbitrum [9], implemented on top of the Ethereum
blockchain [28]. Arbitrum offers the same API as Ethereum, allowing to install
and invoke Ethereum contracts. Arbitrum transactions are executed off-chain
and their effects are submitted as assertions. Assertions are optimistically as-
sumed to be correct and a fraud-prove arbitration scheme allows to detect invalid
assertions. Assertions are pending during a challenging period6 to allow observers
to check their correctness. The arbitration game consists of a bisection protocol,
played between the challenger and asserter, which has the property that the hon-
est player can always win the dispute. Assertions that survive until the end of
the challenge period become permanent. Future monitors can exploit the delay
imposed by the challenging period to fail or commit based on information from
the future.

Bounded Future Monitoring. In this article, we enrich transaction monitors
with a controlled ability to predicate about the future evolution of blockchains.
Contracts are extended to include: txid, failmap, and timeout. The instruc-
tion txid returns the (unique) current transaction identifier. Each contract
is equipped with a map failmap indicating—for each transaction involving the
contract—whether the future monitor of the transaction is activated or not,
and if so, its monitoring status (commit, fail or undecided). By default, future
monitoring is deactivated. Contracts can modify their failmap (1) to activate
the future monitor of the current transaction, or (2) to commit or fail undecided
future monitors of previous transactions within the monitoring window. If a con-
tract sets a past transaction failmap entry to fail, the corresponding transaction
fails. The timeout function is invoked at the end of the monitoring window to
decide whether to fail or commit if the future monitor of the transaction is still
undecided. This guarantees that transactions cannot be pending after a bounded
amount of time.

We call our monitors future monitors since the decision to commit or fail may
depend on transactions that will execute in the future. Future monitors expand
the monitor hierarchy presented in [10], which included operation and transac-
tion monitors as well as monitors that involve several contracts (multicontract
monitors) or even the whole blockchain (global monitors), but always in the
context of a single transaction. When combined with future monitors, we obtain
multicontract future monitors and global future monitors, but we leave these ex-
tensions as future work. A particular subclass of multicontract future monitors
was studied in [16] focusing on long-lived transactions [17], whose lifetime span
blockchain transactions and potentially involve different contracts and parties.
Fig. 1 shows the updated monitoring hierarchy including future monitors.

5 Optimistic Rollups for short.
6 Currently a week.

124 Capretto, Ceresa and Sánchez

2 Model of Computation

We introduce now our abstract model of computation to reason about blockchains.

Blockchains Execution Overview. Blockchains are incremental permanent
records of executed transactions packed in blocks. Transactions are in turn com-
posed of a sequence of operations where the initial operation is an invocation
from an external user. Each operation invokes a destination contract, which
is identified by its unique address. The execution of an operation follows the
instructions of the program (the contract) stored at the destination address.
Contracts can modify their local storage and invoke other contracts.

Transaction execution consists of executing operations, computing their ef-
fects (which may include the generation of new operations) until either (1) there
are no more pending operations, or (2) an operation fails or the available gas is
exhausted. In the former case, the transaction commits and all changes are made
permanent. In the latter case, the transaction fails and no effect takes place in
the storage of contracts, except that some gas is consumed. Therefore, the state
of contracts is determined by the effects of committing transactions.

Model of Computation. Our model computation describes blockchain state
evolution as the result of sequential transaction executions. Blockchain configu-
rations are records containing all information required to compute transactions,
such as: a partial map between addresses and their storage and balance, plus
additional information about the blockchain such as block number. We use Σ to
denote blockchain configurations and U to denote balances of external users.

Transactions are the result of executing a sequence of operations starting from
an external operation placed by a user. Transactions can either commit, if every
operation is successful, or fail, if one of its operations fails or the gas is exhausted.
We use function basicTx, which takes a transaction, a blockchain configuration,
and balances of external users as inputs, and returns the blockchain configuration
and the external user balances that result from executing the transaction in the
input configuration. Additionally, predicate succ indicates whether the execution
of a transaction commits or fails in a given blockchain configuration and external
user balances. Furthermore, function discount deducts the specified amount of
tokens from the balance of the indicated user in the provided external user
balances. The following relation ⇝tx defines the evolution of the blockchain

Present Future

Global monitors Global future monitors [future work]

Multicontract monitors Multicontract future monitors [16] [future work]

Transaction monitors [10] Future monitors [this work]

Operation monitors [6,15,18]

Fig. 1. Monitor hierarchy. The first column belongs to [10].

Monitoring the Future of Smart Contracts 125

using basicTx, succ and discount:

commit

basicTx(tx,Σ,U) = (Σ′,U ′)
succ(tx,Σ,U) = commit

Σ,U ⇝tx Σ′,U ′ fail

U ′ = discount(U , src(tx), cost(tx))
succ(tx,Σ,U) = fail

Σ,U ⇝tx Σ,U ′

If a transaction fails (rule fail), the blockchain configuration is preserved,
but the external user originating the transaction pays for the resources con-
sumed. Cost and resource analysis are out of the scope of this paper, so we
ignore the computation of U .

Operation and transaction monitors are defined at the operation and trans-
action level, and thus, they are implemented inside basicTx and abstracted away
in this model.

3 Bounded Future Monitored Blockchains

In this section, we present a modified model of computation supporting future
monitors. The main addition is the implementation of monitoring transactions
predicating on future transactions within a monitoring window k. The monitor-
ing window captures for how long (in the number of transactions) the monitor
can predicate on. This additional feature enables us to install a monitor per trans-
action. Future instances of contracts that activated a future monitor can decide
to either fail or commit the past transaction within the monitoring window. If
any contract sets to fail the transaction future monitor of a past transaction, the
monitored transaction fails. Otherwise, when all contracts that monitor a given
transaction commit the transaction becomes permanently committed.

3.1 Future k-bounded Monitors

Transactions can commit or fail depending on their subsequent k transactions,
and thus, the post-state after executing a transaction may depend on future
transactions. At any given point in time, transaction future monitors may:
– fail because at least one contract involved set the monitor to fail;
– commit because all contracts involved set the monitor to commit;
– stay pending.

Therefore, we identify three transaction monitor states: known to fail, (denoted
by Fail), known to commit (denoted by Commit) and undecided (denoted by ?).
Finally, we add another value to represent transactions without monitors: None.

Failing Map. A contract C can only interact with the future monitor of trans-
action t if C was involved in t. To keep track of different monitors for C (for
different transactions), every contract C has a map, called failing map, from
transactions to monitor states.

At the start of a transaction, the monitor is deactivated and can only be
activated during the current transaction. Therefore, if at the end of a transaction

126 Capretto, Ceresa and Sánchez

t no contract updated the failing map of its monitor for t, then the behavior is
like legacy unmonitored transactions (as previously described in Section 2).

A contract C can modify its failing map many times but only the entries of

None

?

Fail Commit

Fig. 2. Monitor transitions.

those transactions where C was involved and ac-
tivated the monitor. Changes to failing maps at
the end of transactions can be (1) the activation
of the monitor for the current transaction (from
None to Fail,Commit, or ?, indicated by dashed
arrows in Fig. 2); or (2) decisions reached for
undecided monitors (from ? to Fail or Commit,
indicated by plain arrows).

Timeout. Contracts have a new special function called timeout that can be used
to describe the decision of undecided monitors at the monitoring window. Func-
tion timeout takes a transaction identifier and returns either Fail or Commit and
it is set by contracts. The default timeout function returns Commit.

At the end of the monitor window, the system invokes timeout if the failing
map entry for that transaction is marked as ?. If at least one contract involved in
the transaction decides to fail, the transaction fails, and otherwise the transaction
commits.

3.2 Extending the Model of Computation

We extend blockchain configurations with a future monitor context ∆ associat-
ing contracts with their failing map and timeout function.

Transaction Execution: Transactions can immediately commit or fail, or depend
on future transactions that happen within the monitoring window, so the exe-
cution of a transaction can return one of the following cases:
– a new configuration as an immediate commit,
– a new configuration as an immediate fail,
– two possible new configurations, one for failing and one for committing, which

depends on the future.
These behaviors are captured by a new function applyTx that checks if future
monitors were activated during the transaction. Future monitors restrict the
behavior of the blockchain, because they only modify the blockchain evolution
making transactions fail more often.

Non-monitored transactions either immediately commit or fail based on func-
tion succ, and their effects are equivalent to the traditional model.

The function applyTx, when applied to a monitored not failing transaction,
returns two blockchain configurations, describing the only two possible futures.
The first configuration represents the effects if the transaction commits, and the
second represents a failing transaction, so in these cases the post-configurations
are identical to the previous configurations (modulo resources consumed).

A contract C can only modify its failing map to activate the future monitor
of the current transaction or to decide future monitors that C had previously

Monitoring the Future of Smart Contracts 127

activated but not yet decided. If a contract incorrectly updates its failing map,
the current transaction fails. When transactions fail, the system does not modify
any failmap map or timeout function.

Blockchain System. There are two types of transactions: permanent (committed
or failed) and pending transactions. Blockchain runs are pairs (H, τ) consisting
of a sequence H of consolidated blockchain configurations called the history
and a directed tree τ where each internal node has one or two children. H
contains only permanent transaction. Tree τ is called the monitoring tree and
includes pending transactions. Each node in the monitoring tree is a blockchain
configuration. The monitoring tree represents all possible sequences of blockchain
states that the list of pending transactions can generate. Exactly one path in the
tree will eventually survive and become part of H, which depends on whether
the corresponding transactions commit of fail. Each level in the tree corresponds
to the execution of transactions up to that level but different configuration at
the same level is a different possible reality. To simplify notation, we use n to
refer to the blockchain configuration captured by node n in the tree. The root of
the monitoring tree is the last blockchain configuration that was consolidated,
that is, the last blockchain configuration in the history sequence.

The height of the monitoring tree is at most k. It can be shorter than k
at the genesis of the blockchain but once the first k transactions have been
executed the monitoring tree reaches and maintains a height k. In the worst
case, depending on the contracts deployed in the blockchain, the monitoring
tree can have 2k+1− 1 nodes, but in general not every transaction is going to be
monitored which reduces the branching and hence the size of the tree.

Fig. 3 shows a blockchain run (H, τ). The first j + 1 transactions are per-
manent and the last k transactions are pending. The last permanent blockchain
configuration is (Σ,∆) and it is also the root of the monitoring tree τ . When the
first pending transaction, tj+1, executes from configuration (Σ,∆), a contract
C that executed in tj+1 activated the transaction future monitor generating a
branching in τ . However, not all transactions generate a branching in the moni-
toring tree as not all transactions are necessarily monitored, (for example tj+k).
Configuration (Σ′, ∆′) is a one of the possible outcomes of executing all pending
operations.

Notation. We use the following functions:
– nextTx(n): returns the transaction that labels the outgoing edges from n.

– The successor of a node n
t−→ n′ in the monitoring tree.

– successors(n): given a node n that is not a leaf, returns all successors of n,
which can be (nc, nf), where nc is the committing successor and nf the
failing successor, or n′ if n is not branching.

– the committing subtree of n: the maximal subtree rooted at the committing
successor of n.

– the failing subtree of n: the maximal subtree rooted at the failing successor
of n.

– allFutures(n): the set of leaves reachable from node n.

128 Capretto, Ceresa and Sánchez

permanent transactions pending transactions

t0 t1 . . . tj

. . .

H

τ

. . .(Σ,∆)

tj+1 . . . tj+k

(Σ′,∆′)

Fig. 3. A blockchain run of j + 1 permanent transactions and k pending transactions.

Consider n
t−→ n′. The configuration at n′ is one of the possible results of execut-

ing transaction t from the blockchain configuration at n. For simplicity, when
referring to a monitoring tree τ with the root node n, we use the terms τ and
n interchangeably. Thus, successors(τ) denotes the successors of the root node
of τ . The possible futures of the root node of monitoring tree τ , denoted by
allFutures(τ), is referred as the futures in τ .

Example 1. The following figure shows an example run after 7 transactions,
starting at initial blockchain configuration N0 and monitoring window k = 2.

permanent transactions pending transactions

Nff
7

N fc
7

Ncc
7

Ncf
7

N f
6

Nc
6

N0 N1 N2 N3 N4 N5

t0 t1 t2 t3 t4 t6t5

H

τ

History H corresponds to the first 5 permanent transactions. The remaining
transactions are pending forming a directed tree τ whose root is N5. The trans-
action at node N5 is nextTx(N5) = t5. Node N5 successors are successors(N5) =

(N c
6 , N

f
6). The committing subtree of N5 is the subtree with root N c

6 and the

failing subtree of N5 is the subtree with root Nf
6 . Finally, the futures in τ are

allFutures(τ) = {Ncc
7 , Ncf

7 , N fc
7 , Nff

7 }. We annotate with superscript c and f the
committing and failing transactions, respectively, and group them in sequences
describing paths in monitoring trees.

Monitoring the Future of Smart Contracts 129

function step((H, τ), t)
τ ′ ← attach(τ, t)
if height(τ ′) ≤ k then

return(H, τ ′)
else

τ ′′ ← decide(τ ′)
tx← nextTx(τ)

H.add(τ
tx−→ τ ′′)

return(H, τ ′′)

function attach(τ, t) ▷ Extends monitoring trees.
τ ′ ← τ
for l ∈ allFutures(τ) do

switch applyTx(t, l) do

case Commit(lc) : τ
′.add(l

t−→ lc)

case Fail(lf) : τ
′.add(l

t−→ lf)

case Pending(lc, lf): τ
′.add(l

t−→ (lc, lf))

return τ ′

Fig. 4. Functions step and attach.

3.3 Blockchain evolution

The evolution of the blockchain is defined by function step (see Fig. 4) which
takes blockchain runs and transactions, and extends runs. The system has only
one rule:

step((H, τ), t) = (H ′, τ ′)

(H, τ)↠t (H
′, τ ′)

Valid traces are defined by the relation ↠ and consist of chains of related
blockchain states (H0, τ0) ↠t0 (H1, τ1) ↠t1 . . . where (H0, τ0) is an initial
blockchain run with τ0 = H0 = (Σ,∆).

Let (H, τ) be a blockchain run and t a transaction. We extend the monitoring
tree τ by adding a new level attaching t from every possible leaf, which increases
by one the height of τ (see Fig. 4). Let τ ′ be the result of attach(τ, t). If τ ′ has
height k + 1, the monitoring window for the first transaction in τ ′ has expired
and its monitor must fail or commit. To take this decision, function step invokes
function decide. The resulting monitoring tree τ ′′ returned by function decide
becomes the new monitoring tree. Finally, function step extends H making the
first pending transaction permanent.

Function decide (see Fig. 5) determines whether to commit or fail the first
pending transaction tx in monitoring tree τ with height k + 1 returning either
the committing or failing subtree of τ . If τ has only one successor, the decision
is trivial, otherwise we analyze tx possible futures. Function decide checks all
futures assuming tx commits, (i.e., all leaves in the committing subtree of τ); if
the future monitor of transaction tx commits in all of them, then tx commits
and the committing subtree of τ becomes the new monitoring tree. Otherwise,
tx fails and the failing subtree of τ becomes the new monitoring tree. If decide
cannot assert whether the monitored transaction fails or commits, decide invokes
timeout to decide (see function knownToCommitWithTimeout in Fig. 5).

In some cases, the decision of future monitors is known before the monitoring
windows ends. In such instances, some nodes are unreachable, called impossible
nodes. For example, when a transaction future monitor is waiting for a transac-
tion in the future and that transaction happens before the monitoring window
ends, the future monitor is going to be set to commit, which turns all nodes

130 Capretto, Ceresa and Sánchez

function decide(τ) ▷ Decides commit/fail of the root transaction of τ
assert height(τ) = k + 1
τ ′ ← prune(τ)
t← nextTx(τ)
switch successors(τ ′) do

case τ ′′: return τ ′′

case (τc, τf):
if ∀l ∈ allFutures(τc) : knownToCommitWithTimeout(l, t) then return τc
else return τf

function prune(τ)
if τ is a leaf then return τ
t← nextTx(τ)
switch successors(τ) do

case τ ′: return τ
t−→ prune(τ ′)

case (τc, τf):
τ ′
c ← prune(τc)
τ ′
f ← prune(τf)

if ∀l ∈ allFutures(τ ′
c) : knownToCommit(l, t) then return τ

t−→ τ ′
c

if ∀l ∈ allFutures(τ ′
c) : knownToFail(l, t) then return τ

t−→ τ ′
f

return τ
t−→ (τ ′

c, τ
′
f)

function failmapCommit(∆, c, t) return ∆[c].failmap[t] = Commit

function failmapFail(∆, c, t) return ∆[c].failmap[t] = Fail

function timeoutCommit(∆, c, t) return ∆[c].timeout[t] = Commit

function undecided(∆, c, t) return ∆[c].failmap[t] = ?

function monitoringContracts (l, t) return {c : l.∆[c].failmap[t] ̸= None}
function knownToCommit (l, t)

return ∀c ∈ monitoringContracts(l, t) : failmapCommit(l.∆, c, t)

function knownToFail (l, t)
return ∃c ∈ monitoringContracts(l, t) : failmapFail(l.∆, c, t)

function commitWithTimeout(∆, c, t)
return failmapCommit(∆, c, t) ∨ (undecided(∆, c, t) ∧ timeoutCommit(∆, c, t)

function knownToCommitWithTimeout (l, t)
return ∀c ∈ monitoringContracts(l, t) : commitWithTimeout(l.∆, c, t)

Fig. 5. Functions decide, prune and auxiliary functions.

in its failing subtree impossible nodes. Concretely, if in all possible futures in
the committing subtree of node n its transaction is known to commit, then all
nodes in the failing subtree of n are impossible nodes. Similarly, if in all pos-
sible futures in the committing subtree of node n its transaction is known to
fail, then all nodes in the committing subtree of n are impossible. Impossible
nodes are removed before deciding whether a transaction commits or not, since
we may incorrectly deduce that a monitor fails because of an impossible future

Monitoring the Future of Smart Contracts 131

ti ti+2ti+1

N

τ

H

Ncf

N fc

Nff

Ncfc

N fcc

Nffc

N c

Nf

Ncc Nccc

. . .

. . .

attach(τ, ti+2) = τ ′

ti :?

ti :-

ti+1:?
?ti :

ti+1:?
-ti :

ti+1:-
-ti :

ti+1:-
?ti :

?ti :
ti+1:
ti+2:-

ti :
ti+1:
ti+2:-

-

ti :
ti+1:
ti+2:-

-

ti :
ti+1:
ti+2:-

-
-

ti ti+2ti+1

N

N fc N fcc

N c

Nf

Ncc Nccc

. . .

prune(τ ′)

ti :?

ti :-

ti+1:?
?ti :

ti+1:?
-ti :

?ti :
ti+1:
ti+2:-

ti :
ti+1:
ti+2:-

-

(a) (b)

ti ti+2ti+1

N

H ′

N c

Ncc

. . .

. . .

decide(τ ′)

ti+1:?
?ti : ?ti :

ti+1:
ti+2:-

NcccNccc

Nccc

(c)

Fig. 6. Application of function step in a blockchain run.

node. Consequently, decide invokes prune to remove all impossible nodes, and
only then, decide determines whether the root transaction commits or not as
explained above.

Function prune (see Fig. 5) shows how to prune impossible nodes from trees.
To guarantee that impossible nodes are pruned before checking if roots of trees
are impossible (either commit or fail), we perform a bottom-up recursion.

Example 2. Fig. 6 shows the result of applying function step to blockchain run
(H, τ) with a monitoring window k = 2 and two pending transactions ti and
ti+1. Each node in the monitoring tree is annotated with the monitor state of
all pending transactions up to that node: a question mark means undecided
monitors, a tick means known to commit monitors, a cross means known to fail
monitors, and a dash denotes no monitored transactions. Initially, no monitors
are decided in any node in τ .

Function step((H, τ), ti+2) first invokes function attach(τ, ti+2). This function
adds a new level to τ by applying transaction ti+2 at all leaves in τ , obtaining
monitoring tree τ ′, Fig. 6(a). Transaction ti+2 immediately commits at all leaves
in τ , generating nodes Nccc, Ncfc, N fcc and Nffc. The future monitor for transac-
tion ti is known to fail at node Ncfc while remaining undecided at node Nccc and
the future monitor for transaction ti+1 is known to commit at nodes Nccc and
N fcc. Next, as the height of the new monitoring tree, τ ′, is 3 > 2, function step
invokes function decide(τ ′) to decide if the first pending transaction, ti, fails or
commits. Function decide invokes function prune to remove all impossible nodes

132 Capretto, Ceresa and Sánchez

in τ ′. When computing prune, the failing subtree of node N c, rooted at node
Ncf, is removed because at node Nccc the future monitor for the transaction
at node N c, ti+1, is known to commit and node Nccc is the only future in the
committing subtree of node N c, making the subtree rooted at Ncf an impossible
subtree. Similarly, the subtree rooted at Nff is an impossible subtree and it is
also removed by function prune.

Subtrees with roots Ncf and Nff are the only ones removed when applying
function prune to monitoring tree τ ′, as shown in Fig. 6(b).

Finally, to decide whether to commit or not transaction ti function decide
consider node Nccc, as it is the only future in the committing subtree of node
N in the monitoring tree returned by function prune. At node Nccc the future
monitor for transaction ti is undecided. However, since its monitoring window
has ended, function decide uses the timeout of the contracts that are undecided.
Assuming for all undecided contracts their timeout function commit transaction
ti, then function decide commits transaction ti, returning the subtree rooted at
N c as the new monitoring tree (see Fig. 6(c)), it would fail if at least one contract
timeout function fails. Finally, function step extends H by making transaction
ti permanent. If prune had not been applied before function decide evaluated all
futures in the committing subtree of N , transaction ti would have incorrectly
failed, as in impossible future N cfc, the future monitor for transaction ti fails.

An example of contracts that only lend their tokens if they receive them back
within 2 transactions in the future can be found in [11].

4 Properties

We discuss now properties of the model of computation defined in Section 3. In
particular, we establish how the new model extends the previous one, that the
size of monitoring trees is manageable, and the blockchain always progresses.
We assume a fixed monitoring window k. All proofs can be found in [11].

After the monitoring window has expired, the root transaction is confirmed
and one of two possible successors is consolidated.

Lemma 1. Let (H, τ) be the system run after k transactions, t a transaction
and (H ′, τ ′) = step((H, τ), t). The root of τ ′ is one of the successors of the root of
τ and all paths in τ ′ without leaves are also paths in τ . Moreover, H ′ is obtained
by extending H with the first pending transaction on τ .

The first k transactions from the genesis are just added to the tree. From
the previous lemma, after k transactions and when a new step is taken, the first
pending transaction is either committed or failed and a new pending transaction
is attached to all leaves. Moreover, the transaction added to the history is the
root of the previous monitoring tree and one of its successors is the root of the
new monitoring tree. In other words, exactly one of the paths in the monitoring
tree eventually becomes permanent, and thus, the blockchain always progresses.

Monitoring the Future of Smart Contracts 133

Corollary 1 (Progress). Function step is total and, after the first k invoca-
tions, each execution of step makes one transaction permanent.

The height of the monitoring tree is bounded by the monitoring window.

Lemma 2 (Bounded Certainty). Let τ be a monitoring tree in a blockchain
run obtained by applying function step l times. Then, the height of τ is the
minimum between l and k. Moreover, all leaves in τ are in its last level.

Function prune removes all impossible nodes from monitoring trees. Func-
tion prune recursively removes impossible nodes in the committing and failing
subtrees, and then, determines if it can remove any subtree by inspecting all
possible futures in the committing successor.

Lemma 3. Function prune(τ) returns a sub-monitoring tree of τ without im-
possible nodes and only impossible nodes were removed.

Function step consistently makes the blockchain progress. After more than k
transactions were added, the first pending transaction is made permanent (see
Corollary 1). The resulting monitoring tree keeps the order of the rest of the
pending transactions and it also preserves the same information of the pending
transactions except the last.

Lemma 4. Let τ be a monitoring tree, η be the result of expanding τ with a new
transaction, t be the first pending transaction in τ , and ν be the decided subtree
of η.
– If η has only one successor then ν is the result of pruning η’s successor.
– If η has two successors, then let ηc and ηf be the result of pruning the com-

mitting and failing subtrees of η respectively.
• Monitoring tree ν is ηc if in all possible futures assuming t commits,
transaction t does not fail or if no decision has been reached, all pending
timeout functions of t commit.

• Monitoring tree ν is ηf if there is a possible future where assuming trans-
actions t commits, leads to the monitor of t fail or some of the pending
timeout function of t fail.

The size of monitoring trees can be exponential in the number of monitored
transaction rather than in the monitoring window size, as monitored transactions
are the only ones branching monitoring trees.

Lemma 5. Let τ be a monitoring tree and m be the number of monitored trans-
actions in τ (so m ≤ k). Then, the size of τ is in O(2m × k).

In practical scenarios, the number of monitored transactions typically is small
compared to the monitoring window because most transactions do not require
future monitors. This makes the size of the monitoring tree much smaller than
the theoretical maximum.

Corollary 2. If the number of monitored transactions in monitoring trees is
constant then the size of monitoring trees is bounded by O(k).

134 Capretto, Ceresa and Sánchez

Finally, we show that adding future bounded monitors preserves legacy ex-
ecutions, so for blockchain runs where no contracts use future monitors, the
monitoring tree is a chain with no branching.

A legacy monitoring tree τ is such that every configuration obtained from
applying applyTx coincides with rule ⇝.

Lemma 6 (Legacy Pending Transactions). Let τ be a legacy monitoring
tree. Then, τ is a chain and the effect of executing all transactions in τ is equiv-
alent to executing them in the traditional model of computation.

If we add that the permanent history is equivalent (up to now) to the tradi-
tional model, then the evolution of the blockchain in both models coincide.

Lemma 7 (Legacy History). Let τ be a legacy monitoring tree and H be
a history such that every permanent transaction coincides with rule ⇝. Then,
the result of concatenating H and τ is equivalent to the traditional model of
computation.

From Corollary 1 and Lemma 7, we conclude that the new model of com-
putation is consistent with the previous model of computation and eventually
creates a chain. Additionally, Corollary 2 implies that in practical scenarios, the
size of monitoring trees is linear on the monitoring window, making it a feasible
and practical blockchain implementation.

5 Atomic Loans

Flash loan contracts allow other contracts to borrow tokens without any col-
lateral only if the borrowed tokens are repaid during the same transaction [12]
(typically with some interest). Atomic loans are a generalization of flash loans
where the borrowing party can repay the lending party in future transactions. It
is not possible to implement flash loans unless additional mechanisms are added
to the blockchain [10]. Similarly, it is impossible to implement atomic loans in
traditional blockchain computational models. As transaction monitors [10] en-
able flash loans transactions, future monitors allow monitors to check properties
across transactions enabling atomic loans. We illustrate now how to implement
atomic loans using the monitoring window as the maximum payback time.

We specify lender contracts as contracts respecting the following two prop-
erties:

Specification 1 (Atomic Loans) We say contract A is an atomic lender if:
AL-safety: A loan from A is repaid to A within the monitoring window.
AL-progress: Contract A grants loans unless AL-safety is violated.

The following contract FlashLoanLender shows a simple contract implement-
ing a flash loan lender7 using Fail/NoFail hookup [10], i.e. with no future moni-
tors but transaction monitors. We highlight monitor code with gray background.

7 Flash loan lender are atomic loan lenders with paying back window of one.

Monitoring the Future of Smart Contracts 135

contract FlashLoanLender {

uint pending_returns = 0;

uint fee;

function lend(address payable dest , uint amount) public

{ require(amount <= this.balance);

dest.receiveLoan{value: amount }(fee);

pending_returns += amount + fee;

this.fail = (pending_returns != 0); }

function returnLoan () external payable

{ pending_returns -= msg.value;

this.fail = (pending_returns != 0); } }

Function lend lends as long as the lender has enough funds, annotates the
borrowed tokens in pending_returns and sets its fail bit so the transaction
commits only if the loan is paid back. When the loan is returned, returnLoan de-
creases pending_returns and updates its fail bit. At the end of each transaction,
if there are pending loans the fail bit will make the transaction fail.

The above contract implements flash loans that must be returned within a
transaction, but does not work properly if future transactions are considered. It
is not possible to successfully predict or check whether the loan is returned in
some future transactions. We show now how future monitors solve this problem.

The following contract Lender is an atomic lender using future monitors. All
loans are treated equally and should be paid back on time, and if one loan is not
returned, then all loans issued at the same transaction would be rejected. Here
we are being too strict compared to practical cases, but it is enough to illustrate
the use of future transaction monitors.

contract Lender {

uint fee;

function lend(address payable dest , uint amount) public

{ require(amount <= this.balance);

dest.receiveLoan{value: amount }(fee);

pending_returns[msg.txid] += amount + fee;

if(pending_returns[msg.txid] != 0)

this.failmap[msg.txid] = UNDECIDED; }

function returnLoan(txId id) public

{ pending_returns[id]-= msg.value;

if(pending_returns[id] == 0) this.failmap[id] = COMMIT; }

} with monitor {

map <txId , int > pending_returns;

function timeout(txId id) { return FAIL; } }

Contract Lender uses a map pending_returns, from transactions to the amount
borrowed within that transaction, to determine whether a transaction should
commit or fail. Function lend grants a loan if the lender has enough funds,
increases the corresponding entry in map pending_returns for the current trans-
action and sets the failmap entry activating the current transaction monitor.
Client contracts can repay loans by invoking returnLoan, which receives the
transaction identifier of the lending transaction to decrease the corresponding

136 Capretto, Ceresa and Sánchez

NC:200
L: 900

NC: 100
L: 1000

NC:300
L: 900

NC: 200
L: 1000

NC: 100
L: 1000

NC: 0
L: 1100

NC.payBack(L,100)NC.invest()NC.borrow(L,100)

NC: 100
L: 1000

Fig. 7. Balance of contracts NC and L in the monitoring tree after executing the three
transactions posted by a client.

entry in pending_returns by the amount received. If pending_returns reaches 0
for a given transaction, the failmap entry of that transaction is set to COMMIT.
Finally, timeout returns FAIL to fail transactions with unpaid loans at the end
of their monitoring window.

Clients can request loans without further collateral, satisfying AL-progress,
and if loans are not returned within the monitoring window, the lending trans-
action will retroactively fail, satisfying AL-safety.

The following contract NaiveClient requests a loan invoking borrow.

contract NaiveClient {

map <pair <txId ,Lender >, uint > toPay;

function borrow(Lender l, uint amount) onlyOwner

{ l.lend(amount);

toPay[(msg.txid(),l)] = amount; }

function receiveLoan(uint fee)

{ toPay[(msg.txid ,msg.sender ())] += fee; }

function invest () onlyOwner { ... }

function payBack(Lender l, uint amount , txId id) onlyOwner

{ require(toPay[(id,l)] >= amount);

toPay[(id ,l)] -= amount;

l.returnLoan{value: amount }(id); } }

In subsequent transactions, the client can invest the funds, and in a final
transaction, return the loan to the lender invoking payBack.

Let NC and L be two contracts installed in a blockchain with a monitoring
window of length 2, where NC runs NaiveClient and L runs Lender. Consider
(Σ,∆) to be the current state of the blockchain at which NC has 100 tokens and
L has 1000 tokens. From (Σ,∆), the sequence of transactions is: (1) NC requests
a loan, (2) NC invests assuming contract L lends the money, and (3) NC returns
the loan. Because L employs future monitors to guarantee clients pay back, the
first transaction generates a branching on the blockchain evolution. The next two
transactions are not monitored, thus they do not create any branching. There-
fore, after these three transactions, there exist two possible futures as shown in
Fig.7, one where L grants the loan and another where it does not. We can see
that NC pays back in all possible futures. Moreover, contract NC pays back even

Monitoring the Future of Smart Contracts 137

in the future where contract L fails the past lending operation (for a detailed
explanation see [11]).

A malicious lender can take advantage of such behavior, for example using
the following contract MaliciousLender.

contract MaliciousLender {

uint fee;

function lend(address payable dest , uint amount) public

{ dest.receiveLoan{value: amount }(fee);

this.failmap[msg.txid] = UNDECIDED; }

function returnLoan(txId id) public { return; }

} with monitor {

function timeout(txId id) { return FAIL; } }

The above malicious lender, upon receiving a loan request in function lend, if
it has enough tokens, it grants the loan and marks the transaction as undecided
using its failmap map. However, this lender contract does not update its failmap
map when receiving paybacks. Therefore, at the end of the monitoring window,
the monitor remains undecided making the lending transaction fail due to the
timeout function. In other words, the malicious lender never lends any tokens,
as all its loans are reverted, but it looks like it does. When combined with
NaiveClient and the same three transactions described earlier, the malicious
lender will receive the repayment of a loan from client NC without having given
the loan. In Fig. 7, the bottom branch is the one that survives when the lender
implements a malicious contract.

The problem arises because client NC does not implement any mechanism
to check in which branch it is executing when repaying the loan. The naive
contract does not distinguish between the scenario where the loan will ultimately
be committed and the scenario where it will fail. As a result, client NC ends up
providing payments in both cases.

The following contract Client presents a correct client implementing two
maps,requested and toPay, to keep track of the amounts requested from lenders
and its debts owed to lenders, respectively.

contract Client {

map <pair <txId ,Lender >, uint > toPay , requested;

function borrow(Lender l, uint amount) onlyOwner

{ l.lend(amount);

requested [(msg.txid ,l)] = amount; }

function receiveLoan (uint fee)

{ require(requested [(msg.txid ,msg.sender)] == msg.value);

requested [(msg.txid ,msg.sender)] = 0;

toPay[(msg.txid ,msg.sender)] = msg.value + fee; }

function invest () onlyOwner { ... }

function payBack(Lender l, uint amount , txId id)

{ require(toPay[(id,l)] >= amount);

toPay[(id ,l)] -= amount;

l.returnLoan{value: amount }(id); } }

138 Capretto, Ceresa and Sánchez

C: 100
L:1000

C: 100
L:1000

C:300
L:900

C: 200
L:1000

C.borrow(L,100) C.invest() C.payBack(L,100)

C:200
L:900

C: 100
L:1000

C: 100
L:1000

Fig. 8. Balance of contracts C and L in the monitoring tree after executing the three
transactions posted by a client.

The above contract allows clients to determine the specific path in which
it is executing, and thus, to decide whether to repay. Consequently, clients can
successfully get loans from correct lenders while being resistant to attacks from
malicious lenders.

Fig. 8 shows an execution following the same transactions as before but with
the correct contract Client: clients request a loan, invest the money, and payback
the loan. The top branch shows the case where the lender sends the money and
the client returns it, while the bottom branch shows the case where the loan is
not given. In the former cases, the client returns the money, and in the latter
case, the client just fails the transaction.

These examples show how even contracts not monitoring transactions need
to be aware that transactions can create potential executions in the blockchain
evolution that may be reverted due to future monitors. Since the same trans-
action is executed in all possible scenarios, but their effects may be different,
contracts need to know in which temporal line they are executing and act ac-
cordingly. Contract Client accomplishes this by maintaining a record of debts
owed to lenders in variable toPay.

6 Related Work

Dynamic verification of smart contracts Runtime monitoring tools like
ContractLarva [15,6] and Solythesis [18] take a smart contract code and its prop-
erties as input and produce a safe smart contract that fail transactions violating
the given properties. They achieve this be injecting the monitor into the smart
contract as additional instructions. Therefore, these monitors are restricted to
one operation in a single contract. Transaction Monitors [10] extend monitoring
beyond a single operation to observe the effect of an entire transaction execution
on a given contract.

While these existing works provide strong foundations for smart contract ver-
ification, none directly address the ability to react based on future transactions,
as proposed in this work.

Branching Computational Models The monitoring tree generated by pend-
ing transactions might reassemble the tree-like structure in branching-time logic
such as CTL [13]. However, the branching in the monitoring tree represents all

Monitoring the Future of Smart Contracts 139

possible futures given by the monitors of the pending transaction, and exactly
one path eventually consolidates. In particular, future monitors are not aware of
the existence of other paths in the monitoring tree and therefore cannot reason
about them. CTL, on the other hand, can be used to express properties that
reason about different paths in the tree.

7 Conclusion

We presented future monitors for smart contracts. Future monitors are a defense
mechanism enabling contracts to state properties across multiple transactions.
These kinds of properties are motivated by long-lived transactions, in partic-
ular by atomic loans, which are not implementable in their full generality in
current blockchains. To implement future monitors, we introduced the notion of
monitoring window and two additional new mechanisms to blockchains, namely
failing maps and timeout functions.

Future monitors delay the consolidation of transactions, but the system re-
mains consistent and we gain in expressivity. The outcome of transactions re-
mains deterministic and depends solely on the transactions themselves, but now
transactions can fail because of future actions. Combining all elements we ob-
tained a deterministic semantics with future monitors in place.

We have also illustrated that contracts need to be aware of the existence of
possible executions. Future monitors introduce a branching model to describe
the evolution of blockchain systems where transactions may commit or not,
caused by the temporary uncertainty regarding the effect of pending transac-
tions. Consequently, when new transactions are added to the blockchain, they
are executed in multiple blockchain configurations, representing possible time-
lines. Therefore, contracts need to be aware of the different contexts in which
they are executing, ensuring that the transaction produces the desired effects in
all possible realities.

The main contribution of this paper is theoretical and we left the full imple-
mentation of future monitors as future work. Optimistic rollup systems, where
the effect of transactions is already delayed due to the fraud-prove arbitration
scheme, present an ideal environment to incorporate future monitors into prac-
tical blockchain systems without further implications. In particular, optimistic
rollup systems can allow future transaction monitors with little modifications,
and more importantly, without modifying the underlying blockchain.

For simplicity, we have neglected a specific analysis of the additional gas
consumption that arises for using future monitors, which might lead to the failure
of accepting transactions. Nevertheless, we conjecture that future monitors are
simple enough to guarantee that a calculable amount of gas will prevent gas
failing situations. However, we leave a detailed study for future work.

140 Capretto, Ceresa and Sánchez

References

1. Michelson: the language of smart contracts in Tezos. https://tezos.gitlab.io/
whitedoc/michelson.html.

2. Ethereum. Solidity documentation — release 0.2.0. http://solidity.

readthedocs.io/, 2016.
3. W. Ahrendt and R. Bubel. Functional verification of smart contracts via strong

data integrity. In Proc. of ISoLA (3), number 12478 in LNCS, pages 9–24. Springer,
2020.

4. G. Alfour. LIGO: a friendly smart-contract language for Tezos. https://ligolang.
org, 2020. last accessed: 2022-05-03.

5. D. Annenkov, J. B. Nielsen, and B. Spitters. ConCert: a smart contract certification
framework in Coq. In Proc. of the 9th ACM SIGPLAN Int’l Conf. on Certified
Programs and Proofs (CPP’20), pages 215–218. ACM, 2020.

6. S. Azzopardi, J. Ellul, and G. J. Pace. Monitoring smart contracts: ContractLarva
and open challenges beyond. In Proc. of the 18th International Conference on
Runtime Verification (RV’18), volume 11237 of LNCS, pages 113–137. Springer,
2018.

7. B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson. Mi-Cho-Coq, a frame-
work for certifying Tezos smart contracts. In Proc. of the FM 2019 International
Workshops, Part I, volume 12232 of LNCS, pages 368–379. Springer, 2019.

8. K. Bhargavan, A. Delignat-Lavaud, C. Fourneta, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Z.
Béguelin. Formal verification of smart contracts: Short paper. In Proc. of Workshop
on Programming Languages and Analysis for Security (PLAS@CCS’16), pages 91–
96. ACM, 2016.

9. L. Bousfield, R. Bousfield, C. Buckland, B. Burgess, J. Colvin, E. Felten,
S. Goldfeder, D. Goldman, B. Huddleston, H. Kalonder, F. Lacs, H. Ng, A. Sanghi,
T. Wilson, V. Yermakova, and T. Zidenberg. Arbitrum nitro: A second-
generation optimistic rollup. https://github.com/OffchainLabs/nitro/blob/

master/docs/Nitro-whitepaper.pdf, 2022.
10. M. Capretto, M. Ceresa, and C. Sánchez. Transaction monitoring of smart con-

tracts. In T. Dang and V. Stolz, editors, Proc. of the 22nd Int’l Conf. on Runtime
Verification (RV’22), volume 13498 of LNCS, pages 162–180. Springer, 2022.

11. M. Capretto, M. Ceresa, and C. Sánchez. Monitoring the future of smart contracts.
arXiv, abs/2401.12093, 2024.

12. A. C. Cañada, F. Kobayashi, fubuloubu, and A. Williams. Eip-3156: Flash loans.
https://eips.ethereum.org/EIPS/eip-3156.

13. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In D. Kozen, editor, Logics of Programs, pages
52–71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

14. S. Conchon, A. Korneva, and F. Zäıdi. Verifying smart contracts with Cubicle. In
Proc. of the 1st Workshop on Formal Methods for Blockchains (FMBC’19), volume
12232 of LNCS, pages 312–324. Springer, 2019.

15. J. Ellul and G. J. Pace. Runtime verification of Ethereum smart contracts. In
Proc. of the 14th European Dependable Computing Conference (EDCC’18), pages
158–163. IEEE Computer Society, 2018.

16. J. Ellul and G. J. Pace. Optional monitoring for long-lived transactions. In Proc.
of the 5th ACM Int’l Workshop on Verification and mOnitoring at Runtime EXe-
cution, Virtual Event(VORTEX’21), pages 35–39. ACM, 2021.

Monitoring the Future of Smart Contracts 141

https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/
https://ligolang.org
https://ligolang.org
https://github.com/OffchainLabs/nitro/blob/master/docs/Nitro-whitepaper.pdf
https://github.com/OffchainLabs/nitro/blob/master/docs/Nitro-whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-3156

17. J. Gray. The Transaction Concept: Virtues and Limitations, page 140–150. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

18. A. Li, J. A. Choi, and an. Long. Securing smart contract with runtime validation.
In Proc. of ACM PLDI’20, pages 438–453. ACM, 2020.

19. N. Mudge. Erc-2535: Diamonds, multi-facet proxy. https://eips.ethereum.org/
EIPS/eip-2535, February 2020. Ethereum Improvement Proposals, no. 2535.

20. S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009.
21. Z. Nehäı and F. Bobot. Deductive proof of industrial smart contracts using Why3.

In Proc. of the 1st Workshop on Formal Methods for Blockchains (FMBC’19),
volume 12232 of LNCS, pages 299–311. Springer, 2019.

22. A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev. VerX:
Safety verification of smart contracts. In Proc of the 41st IEEE Symp. on Security
and Privacy (S&P’20), pages 1661–1677. IEEE, 2020.

23. D. Phil. Analysis of the DAO exploit. https://hackingdistributed.com/2016/

06/18/analysis-of-the-dao-exploit/, 2016.
24. J. Schiffl, W. Ahrendt, B. Beckert, and R. Bubel. Formal analysis of smart con-

tracts: Applying the KeY system. In Deductive Software Verification: Future Per-
spectives - Reflections on the Occasion of 20 Years of KeY, volume 12345 of LNCS,
pages 204–218. 2020.

25. I. Sergey, A. Kumar, and A. Hobor. Scilla: a smart contract intermediate-level
LAnguage. CoRR, abs/1801.00687, 2018.

26. J. Stephens, K. Ferles, B. Mariano, S. Lahiri, and I. Dillig. SmartPulse: Automated
checking of temporal properties in smart contracts. In Proc. of the 42nd IEEE
Symp. on Security and Privacy (S&P’21). IEEE, May 2021.

27. N. Szabo. Smart contracts: Building blocks for digital markets. Extropy, 16, 1996.
28. G. Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151:1–32, 2014.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

142 Capretto, Ceresa and Sánchez

https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://creativecommons.org/licenses/by/4.0/

Comprehending Object State
via Dynamic Class Invariant Learning⋆

Software Technologies Research Group,
University of Bamberg, Bamberg, Germany

{jan.boockmann,gerald.luettgen}@swt-bamberg.de

Abstract. Maintaining software is cumbersome when method argument
constraints are undocumented. To reveal them, previous work learned
preconditions from exemplary valid and invalid method arguments. In
practice, it would be highly beneficial to know class invariants, too, be-
cause functionality added during software maintenance must not break
them. Even more so than method preconditions, class invariants are
rarely documented and often cannot completely be inferred automati-
cally, especially for objects exhibiting complex state such as dynamic
data structures.
This paper presents a novel dynamic approach to learning class invari-
ants, thereby complementing related work on learning method precon-
ditions. We automatically synthesize assertions from an adjustable as-
sertion grammar to distinguish valid and invalid objects. While random
walks generate valid objects, a combination of bounded-exhaustive test-
ing techniques and behavioral oracles yield invalid objects. The utility
of our approach for code comprehension and software maintenance is
demonstrated by comparing our learned invariants to documented in-
variant validation methods found in real-world Java classes and to the
invariants detected by the Daikon tool.

1 Introduction

Comprehending the behavior of a complex software component is challenging,
but necessary for component reuse and maintenance. The object-oriented pro-
gramming paradigm has enforced the principle of information hiding, which sep-
arates externally observable behavior from internal implementation. To make a
component reusable, it typically suffices to document its external behavior and
the constraints imposed on its method argument values. When following the prin-
ciples of defensive programming [4], a thorough input validation at the entry of
each method checks whether the constraints are satisfied. For components that
lack input validation, previous work has shown that appropriate preconditions
can be inferred automatically [2,8,27,30,33].

⋆ This research is supported by the German Research Foundation (DFG) under project
DSI2 (grant no. LU 1748/4-2).

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 143–1

9

4, 2024.
https://doi.org/10.1007/978-3-031-57259-3_7

Jan H. Boockmann(B) and Gerald Lüttgen

https://orcid.org/0000-0001-6816-8393
https://orcid.org/0000-0002-0925-4870
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_7&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

To make a component maintainable, however, information on its external
behavior alone is insufficient, because maintenance may require modifications
of the component’s implementation. Class invariants [19,20] capturing the con-
straints on the component’s program state exhibited at runtime are essential
for maintainers to ensure that their source code modifications, such as bug fix-
ing, refactoring, or implementing new functionalities, match the assumptions
implicitly encoded in the existing source code. A failure to do so may result in
unpredictable behavior or even system crashes. Despite this, class invariants are
rarely documented and checked even more rarely during input validation.

Approaches to dynamic assertion learning generalize from observations, e.g.,
object states, to synthesize assertions such as preconditions and class invariants.
Related tools include Daikon [8], Proviso [2], Hanoi [22], and EvoSpex [25].
Daikon observes program states during execution and uses templates to obtain
a set of candidate assertions, including class invariants, that hold at certain
program locations. Proviso learns preconditions that also consider complex data
types and uses a test generator as an oracle to detect invalid method arguments.
Hanoi infers representation invariants for data types in a functional programming
language. EvoSpex employs an evolutionary algorithm to learn postconditions
from (in)valid pre/post state pairs. Overall, the exploration of approaches to
dynamic class invariant learning for complex types remains relatively limited,
despite the potential benefits for software maintenance.

This paper proposes a dynamic analysis approach that learns a class invariant
using iterative refinements from (in)valid objects. We perform random walks in
object state spaces to construct valid objects and combine bounded-exhaustive
testing techniques [3,6,18] with behavioral oracles to create invalid objects. As or-
acles, one can either adapt the random walks or provide property-based tests [9].
We refine our candidate invariant by removing existing or introducing new as-
sertions, which are dynamically constructed along an assertion grammar. This
process iterates until all obtained (in)valid objects are classified correctly.

We have implemented our class invariant learning approach for Java in a pro-
totype tool, called Geminus. Our evaluation shows, for real-world Java classes
taken primarily from the the java.util package, that our learned class invari-
ants are at least as accurate as, and often surpass, those detected by Daikon
or documented in the code. Beyond software maintenance, class invariants also
support various software development activities, including software testing [13].

Organization Section 2 introduces the notions of class invariant and bounded-
exhaustive/property-based testing alongside a running example. Section 3 ex-
plains our class invariant learning approach and Section 4 evaluates it. Section 5
discusses related work, while Section 6 presents our conclusions and future work.

2 Foundations

This section reviews the concepts of class invariant in the context of the object-
oriented paradigm by means of a running example. We subsequently outline how
property-based and bounded-exhaustive testing relate to class invariants.

144 Jan H. Boockmann and Gerald Lüttgen

Comprehending Object State via Dynamic Class Invariant Learning 145

1 public class SimpleSquare {

2 //@ invariant w == h && w > 0;

3 private int w, h; // width and height

4

5 public SimpleSquare() { setLength(1); }

6 public void setLength(int length) {

7 if (length <= 0) { throw new IllegalArgumentException(); }

8 this.w = length;

9 this.h = length;

10 }

11

12 public int area() { return w*h; }

13 public int perimeter() { return 2*(w+h); }

14 public int aspectRatio() { return w/h; }

15

16 public SimpleRectangle toRect() {

17 return new SimpleRectangle(w, h);

18 }

19 }

Fig. 1: Running example Java class SimpleSquare.

Running Example The class SimpleSquare in Figure 1 models a square with a
non-zero positive length using the two integer attributes width (w) and height (h).
Other objects can interact with SimpleSquare by invoking its public methods to
set the length of the square or to compute its geometric properties, or to obtain
an equivalent object of class SimpleRectangle. Note that method setLength

performs thorough input validation and throws an IllegalArgumentException

if the provided method argument value is not strictly positive.

Class Invariants Objects play a fundamental role in object-oriented program-
ming. They are created via constructors, interact with other objects via method
calls, and are disposed by a destructor. Throughout method execution, an ob-
ject may call methods of other objects, including itself, or alter the accessible
attributes of other objects. Often, invoking a method results in a side-effect
or modification of the object’s state, either through modifying its primitive at-
tributes or by modifying the object state of a referenced object.

The notion of a class invariant in object-oriented programming has first
been explored in [19] and since been adapted by specification languages such
as JML [16]. Understanding class invariants is crucial during development and
maintenance, because they provide guarantees about the object state at the start
of a qualified method call [20] and the end of such a call. In contrast, the class
invariant may not hold for unqualified method calls, which the object invokes on
itself. For example, calling setLength in the constructor is considered unqualified.
Accordingly, the class invariant holds for all objects derived via a constructor or
via a qualified call invoked on an object that satisfies the invariant.

1 @Test public void traditionalTest() {

2 SimpleSquare s = new SimpleSquare();

3 s.setLength(5);

4 assert s.area() == 25;

5 }

6

7 @Test public void propertyBasedTest(SimpleSquare s) {

8 assert s.toRect().area() == s.area();

9 s.toRect().toSquare(); // implicitly checks absence of exception

10 }

Fig. 2: A traditional and a property-based tests for class SimpleSquare.

In the running example, the assertion that the width and height are equal and
strictly positive is a suitable class invariant. Accordingly, method aspectRatio

does not need to check that attribute h is non-zero to avoid a division-by-zero
exception, because this is implied by the invariant. Similarly, method toRect

can assume that constructing a new SimpleRectangle object always succeeds.

The set of reachable objects that a class invariant has to satisfy can be
constructed incrementally by performing random walks in the object state space.
A random walk starts at an object state derived from a constructor and continues
by invoking methods on the current object; this kind of state exploration is used
in the context of fuzz testing [17] and test suite generation [10,26]. Even for finite
object state spaces, an exhaustive exploration is often practically infeasible.

Property-Based Testing While traditional tests first establish a testing scenario,
property-based tests [9] are parameterized over inputs supplied by a test engine.
Property-based testing is primarily used in functional languages, e.g., in Haskell
using QuickCheck [5], but can also be applied to object-oriented programs.

Figure 2 depicts a traditional and a property-based test for our running
example. Note that the property-based test is parameterized over an object of
the class under test and checks that the obtained rectangle has the same area
as the former square. It also implicitly tests that the translation from rectangle
to square via method toSquare does not raise an exception.

Bounded-Exhaustive Testing Deriving a representative set of objects, e.g., for
property-based testing, is often a tedious and error-prone task when done man-
ually. Bounded-exhaustive testing [6,11,21] is a testing technique that automat-
ically tests a software for all valid inputs within specified size bounds.

While primitive types like integers are often sampled from a range of values,
complex object states usually require a create-and-test approach: a systematic
enumeration artificially assigns values to private and public attributes to create
all object states within a provided bound, and a manually specified predicate,
i.e., a class invariant, tests for validity and retains valid objects only.

146 Jan H. Boockmann and Gerald Lüttgen

weakening
via random walks

strengthening
via bounded-exhaustive testing

techniques & behavioral oracles

conflicting assertion analysis

invalid object integration
via grammar-based

assertion enumeration

A,O, Ō := ∅
found no
misclassified o

found a misclassified o
O := O ∪ {o}

identified conflict-
ing assertions Adel

A := A \Adel

found a mis-
classified ō
Ō := Ō ∪ {ō}

derived new mat-
ching assertion(s) Anew

A := A ∪Anew

found no mis-
classified ō
return I :=

∧
A

Fig. 3: Overview of our approach to dynamic class invariant learning.

3 Approach

This section introduces our approach to dynamic class invariant learning, which
is depicted in Figure 3. Each step either modifies the set of collected valid (O)
or invalid (Ō) objects, or the set of assertions (A) whose conjunction forms the
candidate class invariant (I). If an object is reachable, we consider it valid. If an
object is unreachable, we consider it invalid. The class invariant we aim to learn
classifies all reachable objects as valid and all unreachable objects as invalid.

The weakening step aims to refine the candidate class invariant I by finding
a valid object o that is classified as invalid by I. If successful, we remove the
conflicting, overly restrictive assertion(s) that caused the incorrect classification.
Previously collected invalid objects that are no longer classified as invalid due
to the removed assertions are reintegrated subsequently. If no valid object is
misclassified, we perform strengthening to find an invalid object ō that is mis-
classified. The invalid object integration step then derives a matching assertion
that correctly classifies an invalid object as invalid but all prior found valid
objects still as valid. If no ō is found, we return the candidate class invariant.

Because our approach learns from a finite set of objects, the learned class
invariant is only correct for the collected (in)valid objects, but not in general.
However, if no assertion can be generated to distinguish a valid from an invalid
object, the learned invariant correctly classifies only all identified valid objects,
but mistakenly classifies some invalid objects as valid.

The high-level weakening, strengthening, and invalid object integration steps
are generic and can be instantiated by different techniques. Our approach lever-
ages random walks to generate valid objects and combines bounded-exhaustive
testing techniques with behavioral oracles to obtain invalid objects. We derive
assertions to distinguish valid from invalid objects using a grammar. In contrast
to related approaches [25,30], our objects are guaranteed to be (in)valid.

Comprehending Object State via Dynamic Class Invariant Learning 147

Table 1: Intermediate states of our approach to class invariant learning in each
iteration, for the SimpleSquare running example.

it.
current

assertions
A

found
new
o/ō

removed
assertions

Adel

new
assertions

Anew

1 ∅ ō : 0 0 ∅ {false}

2 {false} o : 1 1 {false} {w = 1}

3 {w = 1} ō : 1 0 ∅ {w = h}

4 {w = 1, w = h} o : 2 2 {w = 1} {w > 0}

5 {w = h,w > 0} ⊥

Table 1 shows the execution state of our approach in each iteration when
learning class invariant w = h ∧ w > 0 for our running example SimpleSquare.
Valid objects such as 1 1 are indicated by a solid box, while invalid objects
such as 0 0 are shown in a dashed box. The remainder of this section uses this
example to illustrate the workings of our invariant learning approach.

3.1 A Triangle of Oracles

Our approach exploits the insight that an executable implementation, a testable
assumption, and an object form a closed loop of information. Assuming two
elements are correct one to allows constructing a test-based oracle to assess the
correctness of the third. This leads to the creation of three distinct oracles:

1. Implementation: Given a correct assumption and a valid object, any failure
upon testing the assumption indicates a faulty implementation.

2. Assumption: Given a correct implementation and a valid object, any failure
upon testing the assumption indicates an incorrect assumption.

3. Object : Given a correct implementation and a correct assumption, any failure
upon testing the assumption indicates an invalid object.

The implementation oracle is leveraged in software testing to detect faulty
implementations. It either encodes assumptions as traditional tests, which create
objects assumed to be valid by construction and checks assertions on them, or
as property-based tests, which evaluate properties on valid objects supplied by
the test engine. When learning a class invariant for a given implementation, one
can ignore the question of implementation correctness, because the invariant is
supposed to reflect the implementation. However, a learned invariant that does
not match the expectations may indicate a faulty implementation.

The assumption oracle can be employed to identify an incorrect invariant
that misclassifies valid objects as invalid when considering the invariant as the
assumption. By generating valid objects in our weakening step, we detect an
overly restrictive, i.e., unsound, invariant. Analogously, the second oracle can

148 Jan H. Boockmann and Gerald Lüttgen

be used to identify invariants that misclassify invalid objects as valid. If an ob-
ject is invalid, but the candidate invariant holds, the invariant is incomplete,
which allows our strengthening step to detect overly permissive invariants. We
consider an invariant/oracle sound if it classifies all valid objects as valid, and
complete if it classifies all invalid objects as invalid. The objects revealing an
incorrect candidate class invariant are added to the training set during weaken-
ing/strengthening, and the invariant is updated accordingly.

The object oracle can detect invalid objects if implementation and assump-
tion are correct. Invalid objects can be used by the assumption oracle to spot
overly permissive invariants. Providing assumptions to detect both valid and
invalid objects is challenging and equivalent to learning the class invariant.

3.2 Generating Valid Object States via Random Walks

The weakening step leverages the assumption oracle to assess whether the can-
didate class invariant misclassifies valid objects as invalid. To construct valid
objects, we perform random walks in object state spaces: any object derived via
a sequence of qualified method calls starting from a freshly constructed object is
valid. Because the implementation can be considered correct, a method invoca-
tion in a random walk may only throw expected exceptions, which are associated
with a failed input validation such as the IllegalArgumentException thrown
by method setLength. In contrast, unexpected exceptions are prevented by the
class invariant. For example, a division-by-zero exception cannot be thrown in
method aspectRatio, because the invariant guarantees that the height is non-
zero. In practice, all checked exceptions in Java are typically expected exceptions
and some unchecked exceptions are unexpected exceptions.

We parameterize the random walks using a set of builders and actions.
Builders construct fresh objects using the available constructors, and actions
invoke methods. Following the naming convention of [31] for methods, we use
the term observer/modifier action to denote an action that does not/does alter
the considered object’s state. In our example, a single builder invoking the zero-
argument constructor and a single action invoking method setLength with value
2 suffice. To enforce termination, we bound the random walk with respect to the
number of walks and the number of method calls per walk. To ensure deter-
ministic behavior, one may either randomly select a builder/action using a fixed
seed (like Randoop [26]) or exhaustively explore all builder/action combinations
up to a given depth (like EvoSpex [25]). Thus, not finding a valid object that is
misclassified as invalid by the candidate class invariant does not guarantee the
absence of one. The effectiveness of finding a misclassified object depends on the
object state coverage achieved by the random walk.

The candidate invariant before the second iteration (false) in Table 1 mis-
classifies 1 1 obtained directly from the constructor. In contrast, the invariant
at the start of the fourth iteration (w = 1 ∧ w = h) misclassifies 2 2 , which
is obtained after invoking setLength(2) on the freshly constructed object. No
valid object is misclassified as invalid for the invariant at the start of the fifth

Comprehending Object State via Dynamic Class Invariant Learning 149

Table 2: Accuracy of properties for detecting artificially created invalid
SimpleSquare objects (• detected, ◦ undetected)

invoked method/tested property 0 0 1 0 -1 -1 1 2 3 2

aspectRatio() • • ◦ ◦ ◦
toRect() • • • ◦ ◦
area()>0 • • ◦ ◦ ◦

perimeter()>0 • ◦ • ◦ ◦
aspectRatio()==1 • • ◦ • ◦

toRect().toSquare() • • • • •

iteration (w = h ∧ w > 0). Hence, this invariant is sound and, as we will see
later, it is also complete.

3.3 Detecting Invalid Objects via Behavioral Oracles

An object is considered invalid if it cannot be reached via a random walk. How-
ever, exhaustive state space exploration is impossible for infinite state spaces
which occur, e.g., when objects use references to establish unbounded structures
such as linked lists. Even for finite state spaces as exhibited by the running ex-
ample, an exhaustive exploration often remains practically infeasible. In general,
a partial exploration does not provide a sound oracle to determine if a supplied
object is unreachable. To detect invalid objects, we instead consider behavioral
oracles that exploit the behavior of the object under analysis exposed upon
method invocations. We consider two sound but possibly incomplete behavioral
oracles for detecting invalid objects: random walks and property-based tests.

Random Walks as Weak Oracles During the random walks used to generate
valid objects, any thrown expected exception indicates a failed input validation
and is ignored. Conversely, if an unexpected exception occurs during a walk
starting from an artificially created object, it implies that all objects along the
walk, including the initial object, are invalid. The use of random walks for de-
tecting invalid objects shares similarities with fuzz testing [17] for identifying
faulty implementations. In fuzz testing, a program is subjected to a range of
different input values to cause an observable error [38], indicating a bug in the
implementation. For a correct implementation, any unexpected exception indi-
cates an invalid object. While behavioral oracles based on random walk-based
are sound by construction for detecting invalid objects, they are rarely complete.

Table 2 shows the detection results of six properties for five invalid objects.
The first two properties resemble observer actions during a random walk. Method
aspectRatio throws a division-by-zero exception if the height is zero, thus de-
tecting the first two invalid objects. Method toRect creates a new rectangle
with the same width and height as the current square. The constructor of class

150 Jan H. Boockmann and Gerald Lüttgen

SimpleRectangle (not shown) validates the input width and height and throws
an exception if argument values are not strictly positive, thus subsuming the
aspectRatio method in terms of its detection capabilities. However, it fails to
detect objects whose strictly positive width and height differ.

Property-based Tests as Strong Oracles Property-based tests [9] are a stronger
behavioral oracle when compared to random walks. Not only can they detect
invalid objects that throw unexpected exceptions, but they can also interpret
the absence of an exception and method return values as an indication of object
invalidity. Because property-based tests operate at a behavioral level, they do not
require knowledge about internal implementation details. Information regarding
expected behavior can be found in the documentation of the class under analysis
and (formal) specifications, e.g., for abstract data types [12]. Because property-
based tests are assumed to be sound but incomplete, a passing property-based
test suite does not guarantee the validity of the object under analysis. However,
a single failed test is sufficient to deem the object invalid.

The last four properties in Table 2 resemble candidate property-based tests.
We may assume that the expected behavior of class SimpleSquare is that the
area and the perimeter must be greater than zero and that the aspect ratio
must be equal to one. In addition, the translation from a square to a rectangle
and back to a square should be possible without raising an exception. Observe
that the area property detects invalid objects with either the width, height or
both equal to zero. The perimeter property detects those invalid objects where
the sum of width and height is not strictly positive. Note that the aspect ratio
property, in addition to its corresponding observer action, detects some states
(due to integer division) where w and h differ. The last property subsumes its
associated observer action and detects all invalid objects.

3.4 Generating Invalid Objects via Bounded-Exhaustive Testing
Techniques

By considering invalid objects, we can not only check if the invariant is com-
plete, i.e., sufficiently restrictive, but also automatically identify equivalent as-
sertions [1,28]. While misclassified valid objects found during weakening widen
the scope, misclassified invalid object found during strengthening narrow it.

Acquiring a representative set of invalid objects is a non-trivial task. Existing
assertion learning approaches primarily derive possibly invalid objects by exe-
cuting a mutated program [15,23,30] or by mutating valid program states [25,29].
Nevertheless, these approaches often assume the derived object state to be in-
valid without conducting further validation. Consequently, the quality of the
learned assertion is compromised if a valid object state is mistakenly labeled as
invalid. Using generators for complex test inputs from bounded-exhaustive test-
ing (BET), such as Korat [3,21], enables the artificial creation of a large number
of (in)valid object states. We combine these generators with behavioral oracles,
and contrary to the conventional practice in BET of retaining only valid objects,
we retain only those objects that are classified as invalid. Behavioral oracles can

Comprehending Object State via Dynamic Class Invariant Learning 151

also be applied to objects constructed using program or state mutation; however,
we favor the complex test input generators from BET because they produce a
larger and more representative set of invalid objects.

The five invalid object states displayed in Table 2 are included in the output of
a bounded-exhaustive object state generator when supplied with a lower/upper
bound of -1/3 on integer values. The invalid objects 0 0 and 1 0 are suitable
for strengthening the candidate invariant.

3.5 Invalid Object Integration

Our approach generates new assertions on-the-fly in order to integrate so far
misclassified invalid objects and classify them correctly. Each assertion is evalu-
ated in the context of an object of the class under study. The following assertion
grammar suffices for our running example:

Int ::= 0 | 1
Bool ::= true | false | Int = Int | Int > Int

Int ::=+ w | h

The first two rule fragments reason about integer and boolean values, while
the last fragment provides access to the attributes of a SimpleSquare object.
Terminals such as “1” or “>” denote constants or operators, and non-terminals
such as Int are types. Symbol ::=+ indicates that we supplement a non-terminal
with new rules.

The invalid object integration step is performed after strengthening or weak-
ening. In the former case, a single invalid object is provided, while in the latter
case there may be multiple or no invalid objects. In case of a single misclassified
invalid object, we search for an assertion that classifies the said object as invalid,
but does not classify any previously collected valid object as invalid. For multiple
invalid objects, we iteratively search for a suitable assertion.

Our invalid object integration step can be substituted with any model learn-
ing approach that accepts valid and invalid object states as input. While neural
networks [24] and support vector machines [30] generally achieve high accuracy,
their black-box nature makes them less ideal for program comprehension. In con-
trast, decision tree models [2] offer interpretability, but their internal disjunctive
encoding is disparate to how developers express class invariants in code, usu-
ally as a sequence of assert statements. Hence, we favor conjunctive models for
modeling class invariants in the context of comprehending object states, because
they are interpretable and align with how invariants are phrased in practice.

Caching Suitable Assertions An unsuitable assertion either incorrectly detects
a valid object or does not detect the candidate invalid object. Because our ap-
proach only adds objects and never removes existing ones, an assertion that
incorrectly detects a valid object is not only unsuitable to integrate the cur-
rently misclassified invalid object but also for any future one. In contrast, an

152 Jan H. Boockmann and Gerald Lüttgen

1 1 0 0 1 0 1 -1 -1 -1

aspectRatio()

𝑤 = ℎ

Fig. 4: The behavioral oracle aspectRatio() and the assertion w = h both
detect the invalid object 1 0 , but classify other objects differently.

assertion that satisfies all valid objects and the misclassified invalid object may
still be suitable in the future.

Our caching mechanism only stores assertions that satisfy all valid objects.
For example, after observing 1 1 we store the assertion true in the cache, but
we do not store false.

Preventing Equivalent Assertions Our approach only adds assertions to distin-
guish invalid from valid objects, which prevents the generation of equivalent
assertions. This strategy exploits observational equivalence [1,28], which creates
equivalence partitions among assertions based on the values to which they eval-
uate. Because our approach only adds an assertion if the existing assertions
cannot distinguish an invalid object from the valid objects, the added assertion
is observationally inequivalent to any existing assertion. This property remains
true because we only add (in)valid objects, thus refining this notion of equiva-
lence. For example, false and w=1 are considered to be equivalent with respect
to 0 0 , but are inequivalent when also considering 1 1 .

Observational equivalence cannot be used for approaches that only consider
valid objects [8,27,34], because all suitable assertions are deemed equivalent.
Instead, these approaches require static analysis to detect equivalent assertions.

Inexpressive Assertion Grammars If the assertion grammar for the example in
Figure 4 would only be capable of generating the assertion w = h , then the
invalid object 0 0 cannot be integrated. This invalid object is said to be indis-
tinguishable from the valid objects such as 1 1 with respect to the employed
assertion grammar. Because our collected objects are proven (in)valid, indistin-
guishability can only be resolved by increasing the grammar’s expressiveness.
Instead, we continue learning but label the class invariant as approximate, which
ensures that it is overly permissive and, thus, remains sound. Note that once
the candidate class invariant becomes approximate, it remains so. However, an
overly permissive invariant is still useful for program comprehension, because a
subsequent manual invariant refinement only needs to add assertions.

Outperforming the Behavioral Oracle Our approach does not learn an invariant
from a single complete oracle, utilizes two sources of sound information: behav-
ioral oracles for invalid objects and random walks for valid objects. This can
result in invariants that improve upon the accuracy of the underlying behavioral

Comprehending Object State via Dynamic Class Invariant Learning 153

oracle. For example, the oracle aspectRatio() in Figure 4 detects the invalid
object 1 0 , which can be integrated by adding the assertion w = h to the
candidate class invariant. Note that this assertion also detects the invalid object
1 -1 that is not detected by the oracle.

Qualities of Learned Class Invariants The quality of our learned class invariants
depends on the expressiveness of the assertion grammar, the accuracy of the be-
havioral oracle, and the object state coverage achieved by the random walk for
generating valid objects and the bounded-exhaustive object state generator for
generating potential invalid objects. While an inexpressive assertion grammar
may be detected during learning, an incomplete oracle or an insufficient ob-
ject state coverage cannot be detected. Accordingly, no soundness/completeness
guarantees can be given for a learned non-approximate class invariant except
that it correctly classifies all collected (in)valid objects. Approximate class in-
variants classify some of the collected invalid objects as valid, which still aids
comprehension in the presence of an inexpressive assertion grammar.

Learning a complete invariant that also correctly classifies so far unseen ob-
jects is only possible if the assertion grammar is sufficiently expressive, the
behavioral oracle is complete, and the object state coverage is sufficient, e.g.,
exhaustive for finite object state spaces.

4 Evaluation

To evaluate our class invariant learning approach, we have implemented the
prototype tool Geminus for Java. Our bounded-exhaustive object state generator
uses the Java Reflection API to modify the internal object state and prevents the
generation of symmetric object states in the style of [21]. Our grammar-based
assertion generator performs an explicit top-down enumeration and generates
strings representing native Java expressions, which allows for a simple grammar
definition. We use the Java JShell to dynamically compile these strings into
executable lambda expressions at runtime.

Our experiments focus on the following research questions:

RQ1 How do random walks and property-based tests compare to a ground-truth
class invariant in terms of detecting invalid objects?

RQ2 What is the disparity between the class invariant learned by Geminus and
the employed behavioral oracle?

RQ3 How does the accuracy of the class invariant(s) learned by Geminus, de-
tected by Daikon, and documented as invariant validation methods differ?

4.1 Benchmark Composition

Our benchmark contains several dynamic data structures, whose implementa-
tions exhibit complex invariants. In addition, the corresponding classes are one of
the few in the Java collections framework that contain state validation methods.

154 Jan H. Boockmann and Gerald Lüttgen

From the evaluation examples of Daikon [8], we pick StackAr and QueueAr,
which were adapted from [37] and provide an array-based implementation of
a stack and queue, respectively. The majority of our dynamic data structures
originate from the Java collections framework java.util. Class ArrayList and
legacy class Vector both provide a linear collection via an array-based implemen-
tation. In addition, class LinkedList provides Deque/Queue functionalities via a
linkage-based implementation, while class ArrayDeque uses an array-based im-
plementation. Class PriorityQueue handles comparable elements via an array-
based priority heap, and class BitSet offers a memory-efficient bit vector.

For verification, a class invariant needs to be strong enough to prove an
assertion. In our learning setting, we search for a class invariant that correctly
classifies all reachable objects as valid and all unreachable objects as invalid.
Depending on the verification task, the class invariant required for this may be
weaker than the invariant we aim to learn. Accordingly, the manually specified
ground-truth invariants for evaluating each benchmark item must be as strong as
possible. Thus, the number of benchmark items is primarily limited by the cost
of manually specifying these strong class invariants. Evaluating our approach on
further data structures, including Maps and Sets, is left for future work.

To evaluate our approach, we have instantiated a random walk and bounded-
exhaustive generator for each benchmark item and have written property-based
tests using the provided documentation. We configure the assertion grammar
to include binary operators among integers (+, -, ==, !=, >=, >), object iden-
tity, range null checks in arrays, and the ternary operator (c?b:true) to encode
implications. Extending the grammar with additional operators, such as mul-
tiplication or division among integers, is straightforward and may improve the
expressiveness of the grammar. However, the increase of assertions expressible
in the grammar may lead to timeouts during assertion synthesis. For our exper-
iments, we limit assertion generation to a maximum of 75 000 assertions.

4.2 Evaluation Results

Our results in Table 3 show the number of valid (val.) and invalid (inv.) objects
produced by the bounded-exhaustive generator for our ground-truth invariant,
which contains A assertions. Because random walks (RW) and property-based
tests (PBT) are sound, i.e., all objects classified as invalid are guaranteed to be
invalid, we only report false-negatives (FN), i.e., the number of invalid objects
that remain undetected. As a behavioral oracle, our random walks have a walk
length and a walk count of 50. Increasing the walk length and count may improve
detection accuracy, but at the cost of increased computation time.

Our evaluation results in Table 4 report on the accuracy of the class invariant
learned by Geminus using random walks or property-based tests as oracle, the
class invariant detected by Daikon in its default configuration, and the invariant
validation method documented in the source code (Doc). Geminus and Daikon
receive the same set of valid objects derived from deterministic random walks
with both a walk length and a walk count of 500, respectively. Analogously
to using random walks as oracles, increasing the walk length and count may

Comprehending Object State via Dynamic Class Invariant Learning 155

Table 3: Accuracy comparison in detecting invalid objects using manually writ-
ten ground-truth class invariants, random walks, and property-based tests; best
results are highlighted in bold.

Item
Ground-truth RW PBT

val. inv. A FN FN

SimpleSquare 10 431 2 90 0

StackAr 4097 4095 3 0 0

QueueAr 322 10 678 13 3 078 152

PriorityQueue 1918 154 954 8 63 149 36 708

BitSet 2047 40 961 6 19 099 18 434

ArrayList 4083 38 925 4 16 398 16 398

Vector 4083 38 925 4 16 398 16 398

LinkedList 4 38 335 4 4 0

ArrayDeque 385 345 727 12 169 593 0

further improve the object state space coverage in terms of valid objects, but
at the cost of increased computation time. In addition, Geminus derives invalid
objects from the bounded-exhaustive object state generator using its respective
oracle. We only report false-positives (FP) for Daikon, because the invariants
learned by Geminus classify all valid object as valid in our experiments. We
report the computation time (t) in seconds. All experiments were conducted on
an Apple MacBook Air M2 with 16 GB RAM.

Regarding threats to validity, we manually examined the source code of the
benchmark items to define the ground-truth class invariant. To mitigate the risk
of specifying an overly restrictive invariant, we validated it against the objects
visited by our random walk. To address threats to internal validity that may
arise from random walks, we fixed the random number generator’s seed to ensure
that the same objects are generated during each walk. Furthermore, we excluded
probabilistic data structures like skip lists [32] from the benchmark to ensure
identical internal object states.

4.3 Oracle Accuracy Comparison

When used as a behavioral oracle, random walks detect numerous invalid object
states in our experiments. They exhibit comparable accuracy to property-based
tests for benchmark items StackAr, ArrayList, and Vector. Additionally, ran-
dom walks identify a significant portion of invalid objects for LinkedList. The
majority of unexpected exceptions arise from null dereferencing or accessing out-
of-bounds indices in arrays. Random walks cannot assess whether the retrieved
elements from a PriorityQueue are in the correct order. The documentation
states that retrieving the first element from an ArrayDeque throws an exception

156 Jan H. Boockmann and Gerald Lüttgen

Table 4: Comparing the accuracy in detecting invalid objects using the class in-
variant learned by Geminus, detected by Daikon, and invariant validation meth-
ods documented in the code; best results are highlighted in bold.

Item
Geminus+RW Geminus+PBT Daikon Doc

FN t A O Ō FN t A O Ō FN FP t A FN A

SimpleSquare 0 3 2 2 2 0 4 2 1 2 1 0 7 2 – –

StackAr 0 6 2 3 4 0 5 2 3 4 0 0 7 4 – –

QueueAr 2 229 7 4 13 12 542 93 15 39 50 2 513 0 9 9 – –

PriorityQueue 62 545 31 2 4 5 9 277 298 3 11 11 112 462 0 32 6 – –

BitSet 18 434 11 2 3 4 18 434 9 2 3 4 55 2036 45 3 0 3

ArrayList 16 398 10 2 3 4 16 398 10 2 3 4 16 398 0 53 3 7 181 2

Vector 16 398 21 2 3 4 16 398 21 2 3 4 16 398 0 49 4 7 181 2

LinkedList 0 15 10 4 29 0 15 10 4 29
0 4 26 16 729 1

LinkedList* 0 10 2 3 2 0 10 2 3 2

ArrayDeque 98 966 74 5 6 9 0 60 8 23 24 169 593 0 23 7 30 079 7

if the structure is empty, but random walks cannot detect cases where the queue
is considered empty, yet a retrieval does not throw an exception.

The property-based tests fail to identify some invalid objects for five items.
BitSet, ArrayList, and Vector implementations nullify unused array elements
to aid garbage collection, which does not affect functional behavior. However,
our tests, which focus on functional behavior, cannot detect objects violating
this property. Random walks can also only uncover faults related to functional
behavior. In the case of StackAr, where the ground-truth class invariant is lim-
ited to functional aspects only, both our tests and the random walks detect all
invalid objects. For PriorityQueue, polling the first element involves a sift-down
operation, partially repairing an invalid object state. In contrast, a QueueAr with
a capacity of zero is considered both empty and full simultaneously, leading any
method to return immediately, and concealing the remaining state. This is a
known debugging scenario [38], where a bug can lead to an invalid object state
without necessarily causing an observable error.

Regarding RQ1, our benchmark in Table 3 leads to the conclusion that
property-based tests outperform random walks in terms of accuracy. Further-
more, we observed that the remaining undetected invalid objects either do not
affect functional behavior or are partially repaired during method invocation,
rendering their detection challenging.

4.4 Disparity between Learned Invariants and Leveraged Oracles

Using random walks as behavioral oracles, Geminus learns and often surpasses
the accuracy of the oracles in our experiments. Although our random walks do

Comprehending Object State via Dynamic Class Invariant Learning 157

not detect all invalid objects for class SimpleSquare (see Table 2), Geminus still
manages to learn the correct class invariant. The accuracy of the learned class
invariant depends on the assertion grammar and the order in which candidate
assertions are generated. For SimpleSquare, assertions w = h and w > 0 are
generated before assertions w ≥ 1 and h ≥ 1, which would also resolve all
misclassified objects found by the random walk oracle.

Using property-based tests as the oracle, Geminus learns an approximate
class invariant for class PriorityQueue and ArrayDeque. The current asser-
tion grammar is not sufficiently expressive to generate a parametrized assertion
such as queue[(i-1)/2].compareTo(queue[i])<=0, which is required for item
PriorityQueue. Nevertheless, the learned invariant is more accurate than the
underlying oracle. In contrast, Geminus learns a less accurate class invariant for
QueueAr. While the assertion grammar is expressive enough to generate a suit-
able assertion with multiple conditions that resolves the indistinguishability, the
current assertion limit is insufficient in this case.

Regarding RQ2, our benchmarks in Tables 3 and 4 demonstrate Geminus’s
ability to learn a class invariant that outperforms the oracle, resulting in a lower
number of false-negatives. Both cases of approximate invariants are due to the
inability of the assertion grammar to generate suitable assertions. To gener-
ate parametrized assertions, the assertion grammar needs to be extended with
lambda expressions. To better support assertions with multiple conditions, which
would pave the way for analyzing more complex Java projects, we plan to re-
place our conjunctive assertion model with a conjunctive normal form model for
model training (cf. Section 6).

4.5 Comparing Geminus, Daikon, and Invariant Validation Methods

Daikon [8] generates assertions using templates and retains only those assertions
that hold for valid objects. It performs equally well for simple data structures
like StackAr, but it generates less accurate class invariants for other benchmark
items. For SimpleSquare, it identifies the incorrect invariant w = h ∧ w ≥ 0,
which fails to detect 0 0 . While [20] excludes unqualified calls, Daikon con-
siders them, which may result in learning an overly permissive invariant. In
contrast, Geminus considers qualified calls only and learns the correct invariant.

The invariants learned by Geminus may produce false-positives, but never
did so in our experiments. The invariants documented in the state validation
methods also produce no false-positives, as anticipated. However, Daikon does
report false-positives for BitSet and LinkedList. For BitSet, this is due to
the random walk configuration inadequately representing the object state space,
which leads Daikon to retain the overly restrictive assertion words[] elements

>= 0, encoding that all array elements are greater than or equal to zero. Because
Geminus solely adds assertions to detect previously undetected invalid objects,
it learns the correct invariant in this example. While this mechanism proves
advantageous when dealing with unrepresentative valid objects, Geminus relies
on a representative set of invalid objects.

158 Jan H. Boockmann and Gerald Lüttgen

The LinkedList class uses a doubly-linked list structure with prev and next

attributes. Daikon detects assertions aiding program comprehension, but it lacks
the necessary guards to avoid false-positives. While Daikon only considers valid
objects and thus does not require an additional oracle to detect invalid ob-
jects, it may learn overly permissive invariants. For example, Daikon identi-
fies the doubly-linked style through the first == first.next.prev assertion.
However, it overlooks the need for a guard to prevent null dereferencing. Iden-
tifying necessary assertions containing guards is a challenging task when only
valid objects are available. Considering invalid objects assists Geminus in finding
the necessary assertions, like first != last ? first == first.next.prev :

true. Despite its recursive structure, Geminus learns an invariant that accurately
detects all invalid objects. This is possible because the bounded-exhaustive ob-
ject state generator only covers object states for LinkedList, including up to
three list nodes. Note that linkage-based classes exhibit large object state spaces
even for a small number of linked elements, which is due to reference aliasing.
While the documented validation method accurately characterizes the case of an
empty list, it imposes an overly permissive constraint for non-empty lists, namely
first.prev == null && last.next == null. The crucial constraint that the
previous attribute of the next node is the current node is not documented.

The linearization [7] technique maps a linkage-based structure to an array
representation. We can enrich our grammar with the closure abstraction to store
the objects that are reachable from a given object, using a specific attribute
in an array. While the linearization in [7] is used to reason about the values
stored in a list, this closure abstraction allows one to characterize the double
linkage structure by expressing that the closure from the first element via the
next attribute is reverse to the closure from the last element via the prev

attribute. In LinkedList*, Geminus uses this grammar to learn an invariant
that generalizes to lists of arbitrary length.

The invariant validation methods for BitSet, ArrayList, and Vector require
null elements at the next free array location, while our ground-truth checks all re-
maining locations. Both constraints do not affect the functional behavior and are
thus not detectable by our oracles. In practice, invariants ensuring a functionally
equivalent behavior typically suffice. Similarly, ArrayDeque requires elements in
the queue to be different from null. It concludes from a null value when fetching
the first/last element that the queue is empty. The documentation mentions that
all non-live elements in the array are null, but this is only partially checked in
their checkInvariantsmethod, leading to numerous undetected invalid objects.

Regarding RQ3, our benchmark in Table 4 demonstrates that Geminus
learns more accurate invariants when using the more accurate property-based
tests as oracle, instead of the random walk oracle. Moreover, it often outperforms
Daikon in terms of accuracy. Unlike Daikon, our tool identifies necessary guards
for complex object states most of the time, avoiding overly permissive or incorrect
invariants. Notably, Geminus achieves greater accuracy than the documented
validation methods, especially for the complex object states of LinkedList or
ArrayDeque.

Comprehending Object State via Dynamic Class Invariant Learning 159

5 Related Work

This section contrasts our dynamic class invariant learning to related dynamic
assertion learning approaches.

Daikon [8] exhaustively instantiates its assertion templates and retains only
those assertions that hold for all observed states at desired program locations.
In contrast, Geminus uses the first assertion that suffices to detect a so far
misclassified invalid object. Because Daikon considers valid objects only, it relies
on static analysis to prune overly permissive, equivalent, or redundant assertions.
In contrast, Geminus employs invalid objects to exclude such assertions, which
allows us to consider a much larger set of candidate assertions.

PIE [27] learns preconditions and loop invariants from (in)valid objects and
uses a feature grammar to construct assertions in conjunctive normal form on-
the-fly; however, Valiant’s algorithm [36] limits PIE to small formulas. While PIE
requires a postcondition to correctly label the set of predefined program states
during learning, Geminus uses behavioral oracles to detect invalid objects.

Alearner [30] derives preconditions and uses a test suite to detect invalid
method inputs. While Geminus keeps the object graph of each (in)valid example,
Alearner only stores an abstraction, which limits precondition expressiveness and
hinders manual inspection of training data. Alearner uses program mutation to
obtain potentially invalid object states, but does not validate this assumption.

OASIs [15] assesses soundness and completeness of an assertion located
within the program. Similar to our random walks, OASIs generates execution
scenarios to identify overly restrictive assertions. It uses mutation testing to
deem an assertion overly permissive; however, this technique cannot be applied
to class invariants, because they cannot be mapped to a single program location.
GAssert [35] uses OASIs to evaluate the quality of an assertion and enhance it
for soundness, completeness, and assertion size using an evolutionary learning al-
gorithm. Its evolutionary technique can be an alternative to our grammar-based
assertion enumeration, but necessitates defining evolutionary operators.

Proviso [2] addresses, like Geminus does, complex object states, but learns
preconditions from observer methods. In contrast, Geminus learns class invari-
ants from private attributes. While Proviso uses a test generator to obtain
(in)valid argument values, invalid object states cannot be derived in this way. If
no distinguishable feature can be constructed, Proviso relabels valid objects as
invalid. Geminus’ objects are guaranteed to be (in)valid.

Hanoi [22] and Geminus both learn invariants from (in)valid objects. While
Hanoi’s notion of constructible value bears similarity with random walks, their
invalid objects are not proven invalid and must be recomputed after finding a
new so far misclassified valid object. Hanoi learns representation invariants for
types in a functional language and constructs a single definition that captures
the recursive structure of the type. In contrast, Geminus iteratively refines a set
of assertions to learn the invariant of a class in an object-oriented language.

EvoSpex [25] employs an evolutionary algorithm, but learns postconditions
from (in)valid pre/post state pairs. Invalid pairs are obtained via state mutation,
which does however not necessarily yield invalid states. Geminus solves this

160 Jan H. Boockmann and Gerald Lüttgen

problem for class invariants using behavioral oracles, and only considers thereby
proven invalid states. While Geminus utilizes Java expressions, EvoSpex encodes
assertions in the Alloy language [14]. The assertion enumeration component in
Geminus is language agnostic and can be replaced with, e.g., Alloy.

SpecFuzzer [23] tackles the problem that inferred specifications often contain
equivalent assertions. It uses Daikon to remove overly restrictive assertions and
then applies program mutation to derive possibly invalid states in order to con-
struct equivalence partitions among the remaining assertions. Geminus prevents
the generation of equivalent assertions, similar to SpecFuzzer, via observational
equivalence reduction [1,28]. While equivalence partitions can be constructed
without knowing whether a state is valid or invalid, guaranteed to be invalid
states allow us to assess whether an invariant is sufficient. Geminus generates
new assertions until a suitable assertion that detects an invalid state is found.

6 Conclusions

To ensure that modifications to legacy software conform to existing assumptions,
it is essential to make implicit guarantees explicit, e.g., in the form of method pre-
conditions and class invariants. However, class invariants encoding object state
assumptions are rarely documented and almost never checked automatically.

In this paper, we presented a dynamic analysis for class invariant learning
that automatically derives (in)valid objects and distinguishes between them by
grammar derived assertions. We leverage random walks in object state spaces
to find valid objects and a combination of complex test input generators from
bounded-exhaustive testing with behavioral oracles to find invalid objects. In
this setting, random walks can even be reused as behavioral oracles. Our pro-
totype tool Geminus improves upon related tools such as Daikon by learning
invariants for complex classes, such as dynamic data structures included in the
java.util package, resulting in a higher accuracy in detecting invalid objects.
Considering invalid objects, too, allows Geminus to prevent the generation of
equivalent assertions, thereby leading to concise invariants without the need for
static assertion equivalence checks.

The capabilities of dynamic class invariant learning approaches primarily rely
on finding so far misclassified (in)valid objects and training a suitable invariant
model. While finding execution paths that result in a representative set of valid
objects is well understood in the context of software testing, finding represen-
tative invalid objects is studied less and should be in the focus of future work.
Sampling object states while executing a mutated program is likely a source for
potentially invalid objects worth to be explored. Our conjunctive assertion model
struggles to scale with respect to invariants containing multiple guards per as-
sertion. Future work should focus on crafting heuristics for learning formulas in
conjunctive normal form to model complex class invariants with multiple guards.

Data-Availability Statement The source code of Geminus, the benchmark
items, the evaluation results and instructions for reproduction are available on-
line via DOI 10.5281/zenodo.10514765.

Comprehending Object State via Dynamic Class Invariant Learning 161

https://doi.org/10.5281/zenodo.10514765

References

1. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification (CAV). LNCS, vol. 8044,
pp. 934–950. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 67

2. Astorga, A., Madhusudan, P., Saha, S., Wang, S., Xie, T.: Learning stateful precon-
ditions modulo a test generator. In: McKinley, K.S., Fisher, K. (eds.) Conference on
Programming Language Design and Implementation (PLDI). pp. 775–787. ACM
(2019). https://doi.org/10.1145/3314221.3314641

3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: Frankl, P.G. (ed.) International Symposium on Software Testing
and Analysis (ISSTA). pp. 123–133. ACM (2002). https://doi.org/10.1145/566172.
566191

4. Cheng, D.Y., Deutsch, J.T., Dutton, R.W.: “Defensive programming” in the rapid
development of a parallel scientific program. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 9(6), 665–669 (1990), https://doi.org/10.1109/43.55196

5. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: Odersky, M., Wadler, P. (eds.) International Conference on
Functional Programming (ICFP). pp. 268–279. ACM (2000). https://doi.org/10.
1145/351240.351266

6. Coppit, D., Yang, J., Khurshid, S., Le, W., Sullivan, K.J.: Software assurance by
bounded exhaustive testing. IEEE Trans. Software Eng. 31(4), 328–339 (2005).
https://doi.org/10.1109/TSE.2005.52

7. Ernst, M.D., Griswold, W.G., Kataoka, Y., Notkin, D.: Dynamically discovering
program invariants involving collections. In: University of Washington Department
of Computer Science and Engineering technical report UW-CSE-99-11-02, (Seattle,
WA), November 16, 1999. Revised March 17, 2000. (2000)

8. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.01.015

9. Fink, G., Bishop, M.: Property-based testing: A new approach to testing for as-
surance. ACM SIGSOFT Softw. Eng. Notes 22(4), 74–80 (1997). https://doi.org/
10.1145/263244.263267

10. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented
software. In: Gyimóthy, T., Zeller, A. (eds.) Symposium on the Foundations of Soft-
ware Engineering and European Software Engineering Conference (FSE/ESEC).
pp. 416–419. ACM (2011), https://doi.org/10.1145/2025113.2025179

11. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test
generation through programming in UDITA. In: Kramer, J., Bishop, J., Devanbu,
P.T., Uchitel, S. (eds.) International Conference on Software Engineering (ICSE).
pp. 225–234. ACM (2010), https://doi.org/10.1145/1806799.1806835

12. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software valida-
tion. Commun. ACM 21(12), 1048–1064 (1978), https://doi.org/10.1145/359657.
359666

13. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P.J., Lüttgen, G., Simons, A.J.H.,
Vilkomir, S.A., Woodward, M.R., Zedan, H.: Using formal specifications to sup-
port testing. ACM Comput. Surv. 41(2), 9:1–9:76 (2009), https://doi.org/10.1145/
1459352.1459354

162 Jan H. Boockmann and Gerald Lüttgen

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1109/43.55196
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/TSE.2005.52
https://doi.org/10.1109/TSE.2005.52
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1806799.1806835
https://doi.org/10.1145/359657.359666
https://doi.org/10.1145/359657.359666
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/1459352.1459354

14. Jackson, D.: Alloy: A language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019), https://doi.org/10.1145/3338843

15. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: Oasis: Oracle assessment
and improvement tool. In: Tip, F., Bodden, E. (eds.) International Symposium on
Software Testing and Analysis (ISSTA). pp. 368–371. ACM (2018), https://doi.
org/10.1145/3213846.3229503

16. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006). https://doi.org/10.1145/1127878.1127884

17. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
The art, science, and engineering of fuzzing: A survey. IEEE Trans. Software Eng.
47(11), 2312–2331 (2021). https://doi.org/10.1109/TSE.2019.2946563

18. Marinov, D., Khurshid, S.: Testera: A novel framework for automated testing of
Java programs. In: International Conference on Automated Software Engineering
(ASE). p. 22. IEEE Computer Society (2001). https://doi.org/10.1109/ASE.2001.
989787

19. Meyer, B.: Eiffel: A language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988). https://doi.org/10.1016/0164-1212(88)90022-2

20. Meyer, B.: Class invariants: concepts, problems, solutions. CoRR abs/1608.07637
(2016). https://doi.org/10.48550/arXiv.1608.07637

21. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for gen-
erating structurally complex test inputs. In: International Conference on Soft-
ware Engineering (ICSE). pp. 771–774. IEEE Computer Society (2007). https:
//doi.org/10.1109/ICSE.2007.48

22. Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of rep-
resentation invariants. In: Donaldson, A.F., Torlak, E. (eds.) International Con-
ference on Programming Language Design and Implementation (PLDI). pp. 1–15.
ACM (2020). https://doi.org/10.1145/3385412.3385967

23. Molina, F., d’Amorim, M., Aguirre, N.: Fuzzing class specifications. In: Interna-
tional Conference on Software Engineering (ICSE). pp. 1008–1020. ACM (2022),
https://doi.org/10.1145/3510003.3510120

24. Molina, F., Degiovanni, R., Ponzio, P., Regis, G., Aguirre, N., Frias, M.F.: Training
binary classifiers as data structure invariants. In: Atlee, J.M., Bultan, T., Whittle,
J. (eds.) International Conference on Software Engineering (ICSE). pp. 759–770.
IEEE / ACM (2019), https://doi.org/10.1109/ICSE.2019.00084

25. Molina, F., Ponzio, P., Aguirre, N., Frias, M.F.: Evospex: An evolutionary algo-
rithm for learning postconditions. In: International Conference on Software Engi-
neering (ICSE). pp. 1223–1235. IEEE Computer Society (2021), https://doi.org/
10.1109/ICSE43902.2021.00112

26. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: International Conference on Software Engineering (ICSE). pp. 75–
84. IEEE Computer Society (2007), https://doi.org/10.1109/ICSE.2007.37

27. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Krintz, C., Berger, E.D. (eds.) Conference on Programming
Language Design and Implementation (PLDI). pp. 42–56. ACM (2016). https:
//doi.org/10.1145/2908080.2908099

28. Peleg, H., Polikarpova, N.: Perfect is the enemy of good: Best-effort program syn-
thesis. In: Hirschfeld, R., Pape, T. (eds.) European Conference on Object-Oriented
Programming (ECOOP). LIPIcs, vol. 166, pp. 2:1–2:30. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.2

Comprehending Object State via Dynamic Class Invariant Learning 163

https://doi.org/10.1145/3338843
https://doi.org/10.1145/3213846.3229503
https://doi.org/10.1145/3213846.3229503
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1016/0164-1212(88)90022-2
https://doi.org/10.1016/0164-1212(88)90022-2
https://doi.org/10.48550/arXiv.1608.07637
https://doi.org/10.48550/arXiv.1608.07637
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2

29. Pham, L.H., Sun, J., Le, Q.L.: Compositional verification of heap-manipulating
programs through property-guided learning. In: Lin, A.W. (ed.) Asian Symposium
on Programming Languages and Systems (APLAS). LNCS, vol. 11893, pp. 405–
424. Springer (2019), https://doi.org/10.1007/978-3-030-34175-6 21

30. Pham, L.H., Thi, L.T., Sun, J.: Assertion generation through active learning. In:
Duan, Z., Ong, L. (eds.) International Conference on Formal Engineering Methods
(ICFEM). LNCS, vol. 10610, pp. 174–191. Springer (2017). https://doi.org/10.
1007/978-3-319-68690-5 11

31. Ponzio, P., Bengolea, V.S., Brida, S.G., Scilingo, G., Aguirre, N., Frias, M.F.: On
the effect of object redundancy elimination in randomly testing collection classes.
In: Galeotti, J.P., Gorla, A. (eds.) International Workshop on Search-Based Soft-
ware Testing (ICSE). pp. 67–70. ACM (2018), https://doi.org/10.1145/3194718.
3194724

32. Pugh, W.W.: Skip lists: A probabilistic alternative to balanced trees. In: Dehne,
F.K.H.A., Sack, J., Santoro, N. (eds.) Workshop on Algorithms and Data Struc-
tures (WADS). LNCS, vol. 382, pp. 437–449. Springer (1989), https://doi.org/10.
1007/3-540-51542-9 36

33. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: Ryder, B.G., Zeller,
A. (eds.) International Symposium on Software Testing and Analysis (ISSTA). pp.
295–306. ACM (2008), https://doi.org/10.1145/1390630.1390666

34. Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduction. In:
Enea, C., Piskac, R. (eds.) International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI). LNCS, vol. 11388, pp. 24–47. Springer
(2019), https://doi.org/10.1007/978-3-030-11245-5 2

35. Terragni, V., Jahangirova, G., Tonella, P., Pezzè, M.: Evolutionary improvement
of assertion oracles. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). pp. 1178–1189. ACM (2020), https://doi.
org/10.1145/3368089.3409758

36. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984),
https://doi.org/10.1145/1968.1972

37. Weiss, M.A.: Data structures and algorithm analysis in Java, vol. 2. Addison-
Wesley (2007)

38. Zeller, A.: Why programs fail - A guide to systematic debugging, 2nd ed. Academic
Press (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

164 Jan H. Boockmann and Gerald Lüttgen

https://doi.org/10.1007/978-3-030-34175-6_21
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1145/3194718.3194724
https://doi.org/10.1145/3194718.3194724
https://doi.org/10.1007/3-540-51542-9_36
https://doi.org/10.1007/3-540-51542-9_36
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/1968.1972
http://creativecommons.org/licenses/by/4.0/

Smart Issue Detection for Large-Scale Online
Service Systems Using Multi-Channel Data

Abstract. Given the scale and complexity of large online service sys-
tems and the diversity of environments in which the services are to be
invoked, it is inevitable that those service systems contain bugs that
affect the users. As a result, it is essential for service providers to dis-
cover issues in their systems based on information gathered from users.
iFeedback is a state-of-the-art technique for user-feedback-based issue
detection. While it has been deployed to help detect issues in real-world
service systems, the accuracy of iFeedback’s detection results is relatively
low due to limitations in its design. In this paper, we propose the SkyNet
technique and tool that analyzes both user feedback gathered via spe-
cific channels and public posts collected from social media platforms to
more accurately detect issues in service systems. We have applied the
tool to detect issues for three real-world, large-scale online service sys-
tems based on their historical data gathered over a ten-month period of
time. SkyNet reported in total 2790 issues, among which 93.0% were
confirmed by developers as reflecting real problems that deserve their
close attention. It also detected 58 out of the 62 severe issues reported
during the period, achieving a recall of 93.5% for severe issues. Such
results suggest SkyNet is both effective and accurate in issue detection.

1 Introduction

Large-scale online service systems are becoming indispensable for people’s work
and everyday life nowadays. They also get more and more complex so as to
support the ever-growing needs of their users for new and more powerful func-
tionalities. The scale and complexity of such services as well as the diversity of
environments in which the services are to be invoked, however, have made it
more challenging than ever for developers to make sure the services will always
behave as expected. Despite the tremendous amount of time and effort devel-
opers invest in testing and debugging such online service systems, it is almost
inevitable that some bugs escape the developers’ attention, get released into the
field, and negatively impact users’ experience with the services. It is, therefore,
extremely important for the service providers to discover issues in their systems
based on information gathered from users in a timely manner.

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 1

9

5–187, 2024.
https://doi.org/10.1007/978-3-031-57259-3_8

Liushan Chen1(B), Yu Pei2 , Mingyang Wan1, Zhihui Fei1, Tao Liang1,
and Guojun Ma1

1 ByteDance Inc., Shenzhen, China
chenliushan@bytedance.com

2 Department of Computing, The Hong Kong Polytechnic University, Hong Kong,

Hong Kong S.A.R., China

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_8&domain=pdf
http://orcid.org/0000-0001-6065-6958

In view of that, Zheng et al. [45] recently proposed the iFeedback approach to
detecting issues based on user feedback. While the approach has been deployed
to help detect issues in large-scale online service systems and has successfully
detected severe issues, the overall precision of its results is relatively low, 76.2%
to be exact [45]. We conjecture there are three reasons for that. First, iFeedback
extracts word combinations from feedback texts as indicators of issues. Since
word combinations only capture the lexical, rather than semantical, character-
istics of feedback texts, they, as issue indicators, tend to be overly sensitive to
the wording of user feedback. Second, iFeedback detects anomalies at the level
of time intervals based on all the user feedback gathered during those intervals,
which is too coarse-grained. Since a wide range of different types of user feed-
back, concerning issues or not, may get reported during each time interval, it
is more likely for iFeedback’s judgment to be influenced or even misled by user
feedback that does not report any issues. Third, iFeedback applies an unsuper-
vised algorithm to cluster the feedback during anomalous time intervals based
on the word combinations and their contexts. While unsupervised clustering al-
gorithms are less expensive to apply, they tend to produce less precise results
than supervised algorithms in general [36].

To address these limitations of iFeedback and improve the quality of issue
detection results, we propose in this paper a novel approach, named SkyNet, to
automatically detecting issues in online service systems based on multi-channel
user input, including both user feedback and messages posted on social media
platforms. More concretely, SkyNet first employs a cascading classifier to label
the user feedback texts based on an input hierarchical label system for different
types of user experiences. Then, it applies time-series data analysis to predict,
based on historical data, a threshold for the normal frequencies of user feedback
reporting each known type of negative user experience; and it reports an issue
when more feedback of the same type than allowed by the threshold is gathered
from the users. Meanwhile, for user feedback reporting negative experiences of
previously unknown types, SkyNet reports an issue when an abnormous amount
of such user feedback concerns similar negative user experiences. The semantic
embedding of feedback texts and the customized issue detection process adopted
by SkyNet enables it to detect more real issues in service systems and to prune
out most false positives. In view that social media platforms have become im-
portant and popular venues for users to share their experiences with various
services and products, SkyNet also monitors and analyzes messages posted on
social media platforms to detect issues before they generate a large number of
user feedback or attract considerable unwanted public attention.

We have implemented the SkyNet approach into a tool with the same name.
To empirically evaluate SkyNet’s effectiveness, we applied it to detect issues for
three real-world, large-scale online service systems based on their historical data
gathered from a ten-month duration. SkyNet reported in total 2790 issues,
93.0% of which were confirmed by operators and developers as reflecting real
problems that deserve their close attention. Besides, SkyNet was able to detect

166 Liushan Chen et al.

Smart Issue Detection for Large-Scale Online Service Systems 167

58 of the 62 severe issues that occurred during that period of time. Such results
suggest SkyNet is highly effective and accurate in issue detection.

Contributions. This paper makes the following contributions:

– We propose the SkyNet technique that analyzes both user feedback gath-
ered from specific channels and public posts collected from social media
platforms to accurately detect issues in large-scale online service systems.

– We develop SkyNet into a tool with the same name.
– We empirically evaluate SkyNet by applying it to detect issues for three

real-world service systems based on historical data. The results produced
suggest that SkyNet is highly effective and accurate.

2 Related Work

Our work is closely related to existing work in the following areas.
Anomaly detection based on backend monitoring. In view that many

issues in online service systems affect performance attributes like “disk queue
length” and “network retransmission rate” of the backend systems, people often
monitor the corresponding key performance indicators (KPIs) of the systems and
rely on the values to detect anomalies in those services [15,18,21,22,23,25,26,39,44].
For instance, Laptev et al. [21] proposed the EGADS system that combines
a collection of anomaly detection and forecasting models to detect anomalies
in time-series KPI data. Liu et al. [25] proposed the Opprentice system that
trains a random forest with labeled KPI features to select appropriate param-
eters and thresholds for existing detectors. Xu et al. [44] proposed an unsuper-
vised anomaly detection algorithm, named Donut, to effectively detect anomalies
in seasonal KPIs. Given that online service systems automatically generate is-
sue reports and alerts when the monitored indicators exhibit anomalous values,
techniques have also been developed to mine attribute collections of issue re-
ports [15,24] to characterize and detect incidents [22].

Issue detection based on user feedback. Many issues, e.g., user interface
defects and silent back-end issues, in those systems, however, are not reflected by
pre-defined KPIs [45]. In view of that and the fact that user opinions coming in
different forms (e.g., user feedback, tweets, and forum posts) contain valuable in-
formation to support software development and maintenance [12,13,29,30,41,42],
Zheng et al. [45] proposed the iFeedback approach to detecting issues based on
user feedback on-the-fly. iFeedback first extracts word combination-based indi-
cators to represent an issue and collects each indicator’s historical occurrence
trend (HOT), then the long-term and short-term windows of the HOTs are fed
to a binary classifier to identify anomalous time intervals, and in the end, user
feedback from time intervals containing issues are clustered as reporting different
issues. SkyNet improves on iFeedback from three perspectives. First, iFeedback
extracts word combinations from feedback texts as indicators of issues, which
captures only the lexical characteristics of feedback texts, while SkyNet em-
ploys the ALBERT-tiny model to encode user feedback so that the semantics
of user feedback can be taken into account during the issue detection process.

Fig. 1: An overview of the issue detection process with SkyNet.

Second, iFeedback detects anomalies at the level of time intervals based on all
the gathered user feedback, which is often too coarse-grained and increases the
chance of coincident non-issue-reporting feedback influencing and misleading the
issue detection process. In contrast, SkyNet employs a cascading classification
algorithm to label user feedback based on a hierarchical label system and only
takes feedback that reports negative user experiences into account in the re-
maining issue detection process. Third, SkyNet also monitors and analyzes
messages posted on social media platforms to detect issues in a timely manner,
which complements user-feedback-based issue detection.

Learning from user opinions in other forms. User opinions in other
forms have also been utilized to support various types of activities in software
development. Gao et al. [14] proposed the IDEA framework that detects issues
from review texts of apps. Stanik et al. [38] proposed an approach to iden-
tify aspects of software systems to improve based on user comments received
on Twitter. While those identified aspects may indeed need improvement, they
not necessarily are issues in the corresponding software systems. Guzman et
al. [16] proposed the ALERTme approach that automatically classifies, groups,
and ranks tweets to facilitate the analysis of application-related tweets. Williams
and Mahmoud [43] conducted a study on leveraging Twitter as a main source
of software user requirements. Johann et al. [19] proposed the SAFE approach
that extracts keywords from app feature descriptions written by developers and
app reviews on app stores to better characterize the apps. Compared with these
works, SkyNet focuses on detecting issues in online service systems based on
user feedback and social media posts.

3 The SkyNet Approach

Figure 1 depicts an overview of the issue detection process with SkyNet. SkyNet
leverages deep learning algorithms to detect issues based on multi-channel data
and it combines two loosely coupled processes: The main process is designed
for detecting issues based on user feedback texts gathered through dedicated
channels that are embedded in the service systems, while the auxiliary process

168 Liushan Chen et al.

complements the main process and aims to detect issues using posts collected
from social media platforms. Each issue detected by SkyNet is associated with
a collection of user feedback, a social media post in case it is the main concern
of the post, and a list of ten keywords extracted from the user feedback and
post using the TF-IDF method [6]. While the keywords help provide a rough
idea about an issue, developers must examine the associated user input to de-
termine whether the reported issues reflect real problems in the service systems.
In the rest of this section, we explain in detail the steps in SkyNet’s main and
auxiliary issue detection processes.

Note that, as in other model-based approaches, we periodically review the in-
put user feedback and social media posts as well as the detected issues, manually
rectify the incorrect detection results if any, and use the new data to fine-tune the
models that SkyNet utilizes so as to keep the models fit for the updated business
situation and to prevent model degradation. Also note that, although sometimes
users include images in their feedback and social media posts to help explain the
problems they have encountered, SkyNet does not utilize such information in
its current implementation. We leave the development of new techniques that
exploit the extra image information to facilitate issue detection for future work.

3.1 Hierarchical Classification of User Feedback

The first step in issue detection with SkyNet is to decide the type of user ex-
perience that each piece of the gathered user feedback reports. SkyNet makes
such decisions on the basis of a hierarchical label system, where the labels char-
acterize with different levels of detail the types of (negative) user experiences
that users report in their feedback.

SkyNet differentiates three broad categories of user feedback in issue de-
tection, namely feedback reporting negative user experiences of a known type,
feedback reporting negative user experiences of unknown types, and feedback
not reporting negative user experiences. User feedback from the first two cate-
gories is collectively called negative experience reporting feedback. Note that not
all negative user experiences are caused by issues in service systems. For exam-
ple, although a user’s access to an online service will be blocked if her device
is offline due to a hardware failure, the experience does not indicate anything
problematic in the online service system.

Feedback Encoding Since SkyNet is designed to detect issues in large-scale
online service systems, and it may need to process a large number of user feed-
back under tight time constraints, we use ALBERT-Tiny [20] to encode the
user feedback. BERT [11] is a pre-trained state-of-the-art language representa-
tion neural network model with strong semantic comprehension capability. AL-
BERT [20] is a lite BERT architecture, and it lowers the memory consumption
and increases the training speed of BERT, while without significantly sacrific-
ing BERT’s semantic comprehension ability, by sharing parameters across layers
and reducing embedding dimensions of words. ALBERT-Tiny [20] is the smallest
version of ALBERT that is 10x times faster than BERT for inference.

Smart Issue Detection for Large-Scale Online Service Systems 169

Fig. 2: A sample hierarchical label system (in blue) and some examples of the associated
user feedback.

Hierarchical Label System To correctly decide which type of user experience
each user feedback reports is crucial since incorrect decisions made here may
mislead the downstream steps and cause the whole task of issue detection to
fail. SkyNet employs an existing hierarchical label system to facilitate making
those decisions. In the system, each label corresponds to a particular type of
user experience that users may have with the target online service system.

Designing a label system to properly characterize user experiences is a chal-
lenging task. SkyNet adopts a hierarchical, rather than flat, label system mainly
because it is extremely difficult, if not impractical, to decide a priori on the right
granularity level for the labels in a flat system so as to strike a good balance
between the accuracy and the value of the classification results based on that
label system. On the one hand, a coarse-grained label system often makes it
easier for a classifier to correctly label the input data, but the classification re-
sults may not be very useful since each label encodes little extra information.
On the other hand, a fine-grained label system typically makes it harder for a
classifier to correctly label the input data, but a correct label in this case can be
highly valuable since it encodes abundant extra information. In the context of
user feedback classification for issue detection, coarse-grained labels provide rel-
atively vague information about the user experience, which may not be sufficient
to help developers effectively confirm or understand the underlying issues.

Figure 2 displays part of the hierarchical label system that SkyNet uses for
classifying the user feedback on an online video editing system. In the hierarchical
label system, labels at the top level classify all the user feedback into broad
categories concerning aspects like “Functionality” and “User Account” of the
online system, labels at the intermediate level partition the broad categories
into smaller, finer-grained ones, while labels at the bottom level correspond to
specific types of experiences that users may have when using the online system.
Two top-level labels in the hierarchical label system, namely “Unknown” and
“Non-negative”, are special in the sense that they do not have subordinate labels
because they are for user feedback texts that report negative user experiences
of previously unknown types and that do not report negative user experiences,

170 Liushan Chen et al.

Fig. 3: The process of hierarchical user feedback classification in SkyNet.

respectively. Since some user experiences of previously unknown types may still
reveal important issues of the systems, SkyNet conducts extra analysis on the
related feedback to determine if they report any issues. Section 3.2 gives more
details about the analysis. User feedback classified as “Non-negative” will not
be further processed by SkyNet.

Figure 2 also lists some example feedback snippets from users of the online
video editing system and associates the snippets to their corresponding labels.
Two things from the examples are worth noting. First, users often use different
words in describing the same issue. For example, the words “save” and “ex-
port” were used in snippets 1-1 and 1-2 to refer to the action of exporting a
video, respectively. Second, different words with similar meanings may be used
to describe user experiences of distinct types. For example, the word “save” was
used in both snippets 2-2 and 3-2, which report different types of negative user
experiences. Due to such flexibility in natural language expressions, using word
combinations like (“save” and “video”) to characterize and group user feedback,
as was done in previous work [45], may often produce results of low precision. In
view of that, SkyNet extracts the semantics of the experiences reported in user
feedback via deep learning and classifies user feedback based on their semantics.

We do not consider the requirement for an input hierarchy of user feedback
labels as a major restriction to SkyNet’s applicability for two reasons. First,
although not every service system readily has a dedicated hierarchy of user feed-
back labels, hierarchies from similar systems could be used instead to bootstrap
the application of SkyNet on a new service system since, according to our
experience, systems with similar functionalities often share hierarchies of user
feedback labels. Second, a collection of appropriate issue labels is essential for the
effective management of issues in large online service systems. Developers need
to devise the labels with or without tool support, and the labels can be organized
into a hierarchy to drive SkyNet. While the construction of such a hierarchical
label system may require some manual effort, such investment is worthwhile in
the long term since a high-quality label system can greatly improve the result
accuracy of feedback classification and issue detection.

Cascading Classification SkyNet employs cascading classification to asso-
ciate user feedback to the labels from the hierarchical label system. Cascading

Smart Issue Detection for Large-Scale Online Service Systems 171

is a particular case of ensemble learning based on the concatenation of several
sub-classifiers [2]. In SkyNet’s cascading classification for hierarchical labels,
each sub-classifier targets only the labels at a particular level, and the output
of a high-level sub-classifier is used as additional input to drive lower-level sub-
classifiers in the cascade. In such a setting, it is relatively easier for high-level
sub-classifiers to produce proper classification results since the number of labels
they need to consider is small and the differences between instances from dif-
ferent classes are big; It is also relatively easier for low-level sub-classifiers to
achieve more precise classification results since they only need to focus on the
labels subordinate to those labels output by high-level sub-classifiers [35].

Figure 3 shows the cascade classifier SkyNet employs to categorize the user
feedback on the online video editing system described in Section 3.1. The classi-
fier contains three sub-classifiers, each for one level of the label hierarchy. Each
sub-classifier is a two-layer network, with the neural cells on each layer being
fully connected with each other, and it takes all its parent-level classifiers’ output,
if any, as input for the current level’s classification. For instance, the top-level
sub-classifier classifies user feedback based on the highest level labels like “Func-
tionality” and “User Account” according to the input text embedding. While
the bottom-level sub-classifier takes both the text embedding and the output of
the two sub-classifiers at higher levels as input to conduct the most fine-grained
classification. The connections between classifiers help preserve the cascade re-
lationship between multi-level labels and improve classification accuracy.

Particularly, each sub-classifier is a multi-class classifier with a loss function
defined as L = 1

N

∑N
i=1

∑C
c=1 loss(yic, ŷic), where N is the number of samples,

C is the total number of classes in the classification, ŷic is the probability of ith
training example belonging to the cth class, yic is a binary indicator function that
represents the ground truth label, while loss(yic, ŷic) is the cross-entropy loss
between the classification results and the ground truth. Cross-entropy loss [10]
is a common loss function for classification tasks, and its value increases as the
predicted probability diverges from the actual labels.

The loss function for the overall cascading classification model is defined as
Loverall = αL1 + βL2 + γL3. That is, the overall loss Loverall of the model is the
weighted sum of the loss Ln at the n-th cascading level (1 ≤ n ≤ 3), with α, β
and γ being the weights of corresponding levels. We assign decreasing values
0.8, 0.6, and 0.4, to α, β and γ, respectively, based on the intuition that an
incorrect label at any level will lead to incorrect labels for all the underneath
levels. With the cascading connections, the weight of the first level sub-classifier
will be adjusted with respect to the loss of all classifiers at the three levels
during back-propagation, and the weight of the second level sub-classifier will be
adjusted with respect to the loss of sub-classifiers at the second and third levels.

3.2 Issue Detection Based on User Feedback

While it is useful to classify feedback texts based on the types of user experi-
ences they report, it is neither necessary nor practical to manually examine all
the user feedback that reports negative experiences. On the one hand, not all

172 Liushan Chen et al.

user feedback reporting negative experiences is caused by issues in online ser-
vice systems that demand manual inspection by developers. On the other hand,
user feedback reporting negative experiences with popular service systems often
comes in overwhelming numbers, and therefore it can be prohibitively expensive
to manually handle all those user feedback.

To help developers better distribute their time and effort on tasks for issue
handling, SkyNet only reports issues for negative experiences shared by a large
number of users. Particularly, SkyNet employs a time series forecasting tech-
nique to dynamically predict a threshold for the frequency of each known type
of negative user experience. An alert indicating the discovery of an issue that
needs to be handled will be raised if negative user experiences of the related type
get reported more often than allowed by the threshold.

Issues of Known Types When SkyNet classifies a piece of user feedback text
to a known type of negative user experience, we say the feedback is an instance
of the user experience type. By concatenating the instance numbers of a known
negative user experience type within each time unit, we form time-series data
about the frequency of that type of user experience. Based on the hypothesis
that a rising issue of known type will cause outliers in the time-series data of its
corresponding label, SkyNet determines that there is an issue when the number
of user feedback reporting a particularly known type of negative experience in a
time period exceeds a threshold.

Since the normal frequency of each type of negative user experience is closely
related to several factors that vary across experience types and over time, adopt-
ing a fixed threshold for all negative user experience types would be too rigid.
First, different types of negative experiences naturally occur in different frequen-
cies. For example, in our experience, it is normal to have in each day a few hun-
dred users of a large-scale service system reporting that they cannot receive the
verification code, and the reasons often include things like typos in their phone
numbers, unstable connections of their phones, and the low response speed of
their network operators, none of which is indicative of issues in our systems.
On the contrary, the daily number of users reporting problems with uploading
files is typically much smaller, and when that number increases significantly, it
is highly likely that an issue in our system is the cause. Second, the normal fre-
quency of any type of negative user experience fluctuates at different times in a
day, a week, or a month. For instance, most negative experiences occur more of-
ten during the day when most users are active than at midnight when most users
have fallen asleep. Since predicting a dynamic threshold with historical data is a
widely accepted way to detect issues [33,21], SkyNet naturally formulates the
issue detection problem as a time series forecasting problem that predicts the
normal frequency range for each label based on historical data.

More concretely, we apply a sliding window strategy for the segmentation
of each label’s historical data, and we adopt a classical bidirectional long short-
term memory (BiLSTM) [17] network to learn the historical trends of individual
labels. The window size is set to 50 time units in the current implementation, and

Smart Issue Detection for Large-Scale Online Service Systems 173

Fig. 4: Expansion of frequency data with feedback type ID, which enables the prediction
of multiple thresholds with a unified BiLSTM model.

the window slides with a stride length of one time unit. Note that all outliers—
data points outside the interquartile range [4]—in the time series are removed,
the Min-Max normalization [31,32] is applied for feature scaling before training.

BiLSTM is a recurrent neural network that takes historical time series data
as input to make a prediction based on the trend. To predict a value y ′

t for time
t , the model takes a series of historical data [xt−50 , ..., xt−1] as input, where
xt represents the feature vector for the time unit immediately after t . During
training, the model loss is the mean squared error between the actual value yt
and the predicted value y ′

t for time t .

Based on the predicted frequency y′t for a label, SkyNet calculates the
threshold tht for the label as y′t ∗ dr, where dr is a dynamic ratio calculated as
log(std([xt−50, ..., xt−1])/mean([xt−50, ..., xt−1])). The rationale behind the cal-
culation of the threshold is that the magnitude of acceptable frequency fluctu-
ations should be proportional to the absolute value of the frequency prediction
for the label. For example, when the occurrence of a label increases by ten, this
fluctuation would be relatively smaller if the label’s regular frequency yt is ten
thousand instead of a hundred. We apply a log transformation when calculating
dr to keep it relatively small.

Predicting Multiple Thresholds with A Unified BiLSTM Model Usually, predict-
ing the normal frequency of a particular type of user feedback requires training
a specialized model with the historical frequency data associated with that type.
Training one specialized model for each prediction task, however, would cause
high costs for the application and maintenance of SkyNet. To reduce those
costs, we expand the values in the time series data for each type of user feed-
back with the identity of that type and use the expanded time series data of all
feedback types to train a unified BiLSTM model. The unified model is then able
to predict the normal frequencies of different types of user feedback.

Particularly, we expand the feedback frequency data in three steps, as de-
picted in Figure 4. We first apply one-hot encoding to produce a unique value as
the identity of each type of user feedback. Since one-hot type IDs generated in
this way are typically sparse, we then transfer them to a dense vector via a fully-
connected network g(·). Afterward, the frequency data and the dense vector will

174 Liushan Chen et al.

Fig. 5: Detecting issues of unknown types by clustering user feedback.

be combined to form the expanded frequency data. That is, given the one-hot ID
δ of a user feedback type and the vectorized frequency xt of this user feedback
type at time t, the expanded frequency is constructed as xt ⊕ g(δ), where ⊕
indicates vector concatenation. Here, the transfer of one-hot type IDs to dense
vectors is necessary because, without it, all but one dimensions of the input data
would be for the feedback type ID, and it will be extremely hard for the BiLSTM
model to learn meaningful knowledge about the feedback frequency.

Evaluation results of SkyNet on three real-world large-scale online service
systems, as detailed in Section 4, show that such unification does help improve
the efficiency, while without significantly sacrificing the effectiveness, of threshold
prediction in SkyNet.

Issues of Unknown Types Recall that all feedback reporting previously un-
known types of negative user experiences will be classified into the “Unknown”
category, and such feedback may also reveal issues if many of them concern
similar experiences. In view of that, SkyNet clusters user feedback in category
“Unknown” periodically (e.g., every half an hour) and raises an issue when the
number of feedback in a cluster exceeds a threshold. Figure 5 depicts the main
steps SkyNet takes to detect issues of unknown types based on clustering.

To increase the chance that user feedback reporting similar user experiences
gets placed into one cluster, it is important that the embedding properly cap-
tures the semantic characteristics of the feedback texts. To that end, SkyNet
naturally uses the fine-tuned ALBERT-Tiny model to generate the deep seman-
tic embedding of these feedback texts. Feedback clustering solely based on that
embedding, however, may suffer from the overfitting problem and miss issues
of unknown types because the ALBERT-Tiny model was fine-tuned w.r.t. the
input hierarchical label system. Therefore, SkyNet also incorporates the shal-
low semantics extracted with Word2Vec [27,28] and Smooth Inverse Frequency
(SIF) [9] to facilitate the clustering. Word2Vec is a pre-trained model that mas-
ters word associations from a large corpus of text, while SIF uses the vector cal-
culated as the weighted average of all word vectors to embed a sentence. Given
a piece of feedback text, SkyNet first applies Word2Vec to produce the em-
bedding for each token in the text and then converts the token embeddings to a
sentence embedding with SIF. Afterward, the overall embedding of the feedback
combining its shallow and deep semantic information is formed by concatenating
the embeddings produced by ALBERT-Tiny and SIF, respectively.

Smart Issue Detection for Large-Scale Online Service Systems 175

Fig. 6: Cross-domain decision mechanism. The valid public opinion is used to retrieve
feedback according to both syntactic and semantic similarity from the database in a
time window. The retrieved feedback results then go through a statistical judgment for
issue alert.

With the overall semantic embedding as input, SkyNet employs the K-
means algorithm to cluster “Unknown” feedback into groups. Note that, since
the “Unknown” user feedback usually concerns a wide range of user experiences
without concentrating on any specific types, we expect the resultant clusters to
be small in size. Correspondingly, when those user feedback texts form large
groups, it is highly likely that the feedback in those groups reveals issues in the
system. Specifically, SkyNet reports an issue if the size of a cluster exceeds
a threshold Hf = MAX(Ntotal/m ∗ α, β), where Ntotal is the total number of
feedback being clustered, m is the (predefined) number of clusters to produce,
while both α and β are constants. In other words, an alert will be raised if the
number of feedback in a cluster is larger than both α times the average cluster
size and a fixed value β. We conservatively set α to 5 in SkyNet since, according
to our experience, an issue often causes the size of its corresponding feedback
cluster to increase by 10 times or even more. β is introduced to avoid reporting
issues merely because the value of Ntotal/m∗α is very small, e.g., when the total
number of user feedback to be clustered is small, and we empirically set it to 10.

3.3 Issue Detection Based on Social Media Data

Due to the potentially high cost and the impact that negative public opinions
may cause when they are overlooked, SkyNet dedicates an auxiliary process to
detecting issues reflected by posts on social media platforms.

Compared with user feedback collected from dedicated channels that is more
informative and has labeled historical data for training, social media posts usu-
ally contain noisy data, are less structured, and often cover a wide range of
topics, making it more challenging to extract issue-related information from
them. In view of that, SkyNet adopts a two-stage denoising process to prune
out most posts that are either not directly related to the service system under
consideration or not reporting experiences likely associated with issues.

More concretely, during the two-stage denoising process, SkyNet first ap-
plies keyword-based search to filter out posts that do not mention the name of

176 Liushan Chen et al.

the target service system, and then applies a binary classification model con-
structed with ALBERT-Tiny to further filter out posts not reporting negative
user experiences. To train the classification model, we collect product-related
posts and manually labeled them to distinguish whether they report negative
user experiences. We refer to all the social media posts that are retained after
the two-stage denoising process as relevant posts.

To identify social media posts that report negative experiences likely associ-
ated with issues, SkyNet employs a cross-domain joint-decision-making process
based on both user feedback and social media posts. As depicted in Figure 6,
for each relevant social media post, SkyNet first retrieves similar user feedback
from past time windows. We consider two types of similarities between user feed-
back and social media posts. The lexical similarity is calculated using the Lucene
correlation algorithm that comes with ElasticSearch [3], which is based on the
classic BM25 algorithm [8]. We consider a piece of user feedback to be a lexical
match of a social media post if the BM25 score between them is higher than a
threshold 40. The semantic similarity is calculated as the Euclidean distance be-
tween the ALBERT-Tiny embeddings of the user feedback and the social media
post. We consider a piece of user feedback to be a semantic match of a social
media post if the distance is smaller than a threshold of 0.4. A piece of user feed-
back is considered a match for a social media post if it is a lexical or semantic
match for the post. Obviously, it is possible that a piece of user feedback is both
a lexical and a semantic match of a social media post.

Given a relevant social media post p, let Nh and Nd be the total number of
matching user feedback for p in the past hour and day, respectively, SkyNet
raises an issue if Nh exceeds the threshold Hh = MAX(αh ∗ Nh, βh) or Nd

exceeds the threshold Hd = MAX(αd∗Nd, βd), where Nh and Nd are the average
number of matching user feedback for p in each hour and day of the past week,
respectively, while αh, αd, βh, and βd are constants. Intuitively, an alert will be
generated if (1) the number of similar user feedback in the past hour is larger
than both αh times the hourly average across the past week and a fixed value
βh or (2) the number of similar user feedback in the past day is larger than
both αd times the daily average across the past week and a fixed value βd.
We empirically assign 3, 3, 5, and 10 to αh, αd, βh, and βd, respectively, in
the current implementation of SkyNet, and we leave the development of more
sophisticated techniques for predicting the threshold values for future work.

4 Experimental Evaluations

We experimentally evaluated the effectiveness of SkyNet and the usefulness of
its components based on its application results produced on real-world online
service systems. Our evaluation aims to address the following research questions:

RQ1: How effective is SkyNet in detecting issues in industry-level online service
systems? In RQ1, we assess the effectiveness of SkyNet in issue detection
in terms of the precision and recall it achieves from a user’s perspective.

Smart Issue Detection for Large-Scale Online Service Systems 177

Table 1: Industry-level online service systems used as the subjects in our experiments.

id description mau #feedback #label

top interm. bottom

S1 An online video sharing platform > 600m > 100, 000 36 140 360
S2 An online video editing system > 130m > 1, 000 13 188 442
S3 An online beauty camera platform > 27m > 200 7 51 84

RQ2: How useful are the individual component mechanisms of SkyNet for the
overall issue detection? Recall that SkyNet integrates three components
to effectively detect issues in large-scale online service systems, namely a
component Ck that applies cascading classification and time series analysis
to detect issues of known types based on user feedback, a component Cu

that applies the K-means clustering algorithm to detect issues of unknown
types based on user feedback, and a component Cp that applies joint decision
making to detect issues based on social media posts. In RQ2, we investigate
how much each of these components contributes to the overall effectiveness
of SkyNet.

We were not able to experimentally compare SkyNet with iFeedback for
two reasons. First, the implementation of iFeedback is not publicly available.
Second, faithfully re-building the tool is hardly viable because important in-
formation regarding its implementation is missing from the related publication.
For example, we only know from the publication that iFeedback employs an
XGBoost-based model to classify whether a time interval contains an issue, and
it applies a hierarchical algorithm to cluster the user feedback as reporting dif-
ferent issues [45], but no information about the settings and parameters of the
model and algorithm adopted in their implementation was given in the publi-
cation, although those settings and parameters may greatly affect iFeedback’s
issue detection capabilities.

4.1 Subject Systems

In our experiments, we applied SkyNet to three industry-level online service
systems. Table 1 summarizes the basic information about the systems. For each
system, the table gives its ID, a brief description, its number of monthly active
users (MAUs) in millions, and the average number of user feedback items re-
ceived per day for the system. System S1 is an online video-sharing social media
platform, system S2 is an online video editing system, and system S3 is an online
beauty camera platform. The subjects include systems of different types for dif-
ferent users, with different magnitudes of MAUs, and receiving different amounts
of user feedback. The diversity in the subject systems helps to ensure that the
experiments are representative of SkyNet’s behavior in different situations.

178 Liushan Chen et al.

4.2 Model Training

Since all three subject systems mainly target Chinese users, we configured SkyNet
to utilize a pre-trained ALBERT model [1], the DSG embedding corpora [7], and
the Jieba text segmentation library [5] for processing texts in Chinese. Mean-
while, we configured SkyNet to utilize the texts posted on Weibo3, one of the
biggest social media platforms in China, for issue detection in the experiments.

For each system, we utilized historical user feedback with labels manually
assigned by the system developers over a one-month period to fine-tune the
ALBERT-Tiny model and to train the cascading classification model as a whole.
To prepare the hierarchical label system, first, we invited the system developers
to decide which labels associated with negative user experience reporting feed-
back should be retained as the bottom layer labels. Then, following the principles
described in Section 3.1, the developers were asked to group and summarize the
bottom layer labels to form the intermediate and top layer labels. Finally, all the
other labels indicating negative user experiences were converted to “Unknown”,
and the remaining labels were converted to “Non-negative”. In this way, we pre-
pared for each online service a hierarchical label system and a large number
of user feedback associated with those labels. For each constructed hierarchical
label system, Table 1 gives the numbers of labels at its three different layers.

Afterward, we followed the standard practice [34] to tune the hyperparam-
eters to be used with the classification and BiLSTM models. Particularly, for
each service system, we we selected via random search a group of 10 hyperpa-
rameters that enables the classification model to correctly label the most his-
torical user feedback texts, and then we looked for values adjacent to these
hyperparameters via grid search [34] that produced the highest number of cor-
rect labels and used the values for the classification model in our experiments.
The BiLSTM model was trained through stochastic gradient descent [37] on
the time series data derived from the given historical feedback data. For exam-
ple, for the experiments on service system S1, the cascading classification model
used the following non-default hyperparameters: batch size=24; dropout=0.1;

learning rate=2e−5; warm up proportion=0.1; max epoch=10, while the BiLSTM
model used the following non-default hyperparameters: dropout=0.1; max epoch=

50; sequence len=50; learning rate=0.1; batch size=24.

4.3 Experimental Setup

We applied SkyNet to detect issues in each subject system based on historical
data collected over a ten-month period of time. Each detected issue was checked
manually by operators and developers of the systems to confirm whether it
indicates a real problem that needs to be handled. Moreover, the operators and
developers also assessed the severity of each issue based on the functionalities it
may impact, the costs it may incur, and the extent to which users’ experience
may be jeopardized. An issue is called a severe issue if its impact in at least one
of those aspects is substantial.

3 https://www.weibo.com

Smart Issue Detection for Large-Scale Online Service Systems 179

https://www.weibo.com

To answer RQ1, we collected all the issues reported by SkyNet for the sub-
ject systems as well as the results of manual inspections on the issues. Following
the practice in previous work [45], we measure the effectiveness of SkyNet in
terms of the precision and recall of the issue detection results produced by the
tool. In particular, the precision is calculated as the percentage of real issues in
all the detected issues, i.e., N i

c/N
i
d, where N i

c and N i
d are the numbers of issues

confirmed by developers and detected by SkyNet, respectively; The recall is
calculated as the ratio of detected severe issues to all the severe issues recorded
for the whole experiment period, i.e., Ns

d/N
s
r , where N

s
d and Ns

r are the numbers
of severe issues detected by SkyNet and recorded by developers, respectively.
Note that metric recall concerns only severe issues in the system because severe
issues will be reported eventually due to their high impact even if SkyNet fails
to detect them, while there is no practical way for us to find out the exact total
number of real issues in those systems.

To answer RQ2, we ran SkyNet two more times on all the user feedback
data and the social media posts to detect issues for the systems, the first time
with component Cp being disabled and the second time with both components
Cp and Cu being disabled. Then, we compared the issue detection results from
the three runs in the number of issues detected as well as the precision and recall
of the corresponding results.

4.4 Experimental Results

In this section, we report on the results produced in the experiments and answer
the research questions.

RQ1: Effectiveness Table 2 lists the basic information about the issue detec-
tion results SkyNet produced on the systems. For each system, the table lists
its system ID, the numbers of issues detected by SkyNet and confirmed by
developers, the numbers of severe issues detected by SkyNet and recorded by
developers, and the precision (prec) and recall (reca) achieved accordingly.

SkyNet detected 2790 issues in total, 2595 of them were manually confirmed
to be true issues, achieving a precision of 93.0%. As for severe issues, developers
recorded in total 62 cases for the three systems in ten months, and 58 of them
were detected by SkyNet, achieving a recall of 93.5%. In comparison, iFeed-
back [45] was able to achieve 76.2% and 93.2% for precision and recall, respec-
tively, in its evaluation. SkyNet managed to significantly outperform iFeedback
in terms of precision while slightly improving the recall. Such results suggest that
SkyNet is both effective and accurate in issue detection.

To understand the reasons for SkyNet’s ineffectiveness, we manually in-
spected all four severe issues that were missed. Three of the four severe issues
were missed due to minor fluctuations in the number of associated user feedback.
For instance, one severe issue that SkyNet missed occurred during AB-testing
[40] of a service system. Since only a small number of users were involved in the
AB-test, while the issue seriously damaged the user experience of the system,

180 Liushan Chen et al.

Table 2: Issue detection results produced by SkyNet on the subject systems.

sid issue severe issue prec reca

detected confirmed detected recorded

S1 2003 1895 51 54 94.6% 94.4%
S2 507 452 7 8 89.2% 87.5%
S3 280 248 0 0 88.6% -

Overall 2790 2595 58 62 93.0% 93.5%

Table 3: Usefulness of SkyNet’s individual components for issue detection.
sid sir Ck Ck + Cu SkyNet (Ck + Cu + Cp)

Ni
d Ni

c Ns
d P R Ni

d Ni
c Ns

d P R Ni
d Ni

c Ns
d P R

S1 54 1975 1870 28 94.7% 51.9% 1997 1889 45 94.6% 83.3% 2003 1895 51 94.6% 94.4%
S2 8 497 444 5 89.3% 62.5% 507 452 7 89.2% 87.5% 507 452 7 89.2% 87.5%
S3 0 277 246 0 88.8% - 280 248 0 88.6% - 280 248 0 88.6% -

Overall 62 2749 2560 33 93.1% 53.2% 2784 2589 52 93.0% 83.9% 2790 2595 58 93.0% 93.5%

the total number of users affected was relatively small, compared with the num-
ber of users that routinely access the service provided by the system. Hence,
no alert was triggered. The severe issue could have been detected if SkyNet
predicts the threshold frequency of issue-reporting feedback texts as a ratio to
the total number of users with access to the relevant system feature. SkyNet
missed the other severe issue of a previously unknown type due to the impre-
cise clustering of feedback texts. Since various users’ descriptions of the issue
were quite different, SkyNet’s unsupervised model was not able to group all
the user feedback reporting the same issue into a cluster. This is not completely
unexpected since, although we have considered both the lexical and semantic
characteristics of feedback texts in their embedding, it is not a perfect solution
yet. We plan to devise more powerful embedding and clustering techniques to
facilitate the detection of issues of unknown types in the future.

SkyNet was effective and accurate in detecting issues for large-scale online
service systems. 93.0% of the issues detected by SkyNet reflect real problems
that demand manual inspection. 93.5% of the severe issues recorded for the
systems were detected by SkyNet.

RQ2: Usefulness of Component Mechanisms Table 3 shows the results
produced by SkyNet with various components being disabled in issue detection.
For each system identified by its SID, the table gives the issue detection results
from using just component Ck, using both components Ck and Cu, and using
all three components of SkyNet. In each setting, the table lists the numbers of
issues detected by the tool (N i

d) and confirmed by developers (N i
c), the number

of severe issues detected by the tool (Ns
d), and the precision (P) and recall (R)

achieved accordingly.
When Ck is the only component enabled, SkyNet was able to detect 2749

issues, among which 2560 were manually confirmed, and 33 severe issues for the

Smart Issue Detection for Large-Scale Online Service Systems 181

systems, achieving the overall precision and recall of 93.1% and 53.2%, respec-
tively. To put it in perspective, that is 98.7% (=2560/2595) of the real issues
and 56.9% (=33/58) of the severe issues the tool can ever detect with all its
components being enabled. Such results clearly show that both cascade feed-
back classification and dynamic threshold prediction of SkyNet were effective
in detecting issues based on user feedback. Although the recall that Ck achieved
in detecting severe issues is relatively low, it is understandable since many se-
vere issues are of previously unknown types and hence beyond the detecting
capability of Ck.

Component Cu helped capture 29 (=2589-2560) real issues and 19 (=52-33)
severe issues that component Ck failed to detect, which caused the precision of
the overall result to drop slightly to 93.0% but helped raise the recall of the over-
all result to 83.9%. The drop in the result precision is understandable since Cu

essentially detects issues of previously unknown types via unsupervised learning,
and the results of unsupervised learning are relatively low in general. Compared
with a few false positives, i.e., reported issues that were manually ruled out as
they were not real issues, the 19 severe issues detected by component Cu are sig-
nificantly more important for the developers. Therefore, we believe component
Cu is a valuable complement to component Ck. Note that only feedback items
that report negative user experiences of previously unknown types are processed
by component Cu.

The issue detection results produced by components Ck and Cu also enable
us to directly compare SkyNet and iFeedback’s issue detection capability solely
based on user feedback. As shown in Table 3, if only having access to user feed-
back, or when component Cp is disabled, SkyNet was able to detect 2784 issues,
among which 2589 were confirmed to be real ones and 52 were considered severe.
The precision and recall achieved are therefore 93.0% and 83.9%, respectively.
Recall that the precision and recall iFeedback achieved were 76.2% and 93.2%,
respectively. The differences suggest that SkyNet and iFeedback make different
tradeoffs between issue detection precision and recall. iFeedback is more lenient
in reporting issues. On the one hand, many issues it reported turned out to
be false positives; On the other hand, it managed to detect more severe issues;
SkyNet is stricter in reporting issues. On the one hand, it reported fewer false
positives; On the other hand, it missed a few more severe issues.

SkyNet makes up for its relatively low recall in issue detection based on
user feedback by taking into account also users’ posts on social media platforms.
Although component Cp only detected 6 more real issues in our experiments,
all of them turned out to be severe, and missing any of these issues may have
caused great damage to the company. Therefore, although this component has
only slightly improved the overall recall, we consider it to be a crucial and non-
dispensable part of SkyNet.

All the three components Ck, Cu, and Cp are important for SkyNet to detect
(severe) issues in an effective and accurate manner.

182 Liushan Chen et al.

Threat to Validity In this section, we discuss possible threats to the validity
of our findings and show how we mitigate them.

Construct validity. In our evaluation, a reported issue could be manually
confirmed or rejected as a real or severe issue, but different people may provide
different assessments. To mitigate this threat, we directly reused the independent
issue assessment results from the developers of the service systems.

Internal validity. SkyNet makes use of a list of parameters, including, e.g.,
the size of the sliding window for BiLSTM and the similarity threshold for match-
ing social-media posts with user feedback texts. We set the parameters based on
our experience in the current implementation of SkyNet. Experimental eval-
uation conducted on three industry-level online service systems produced very
promising results, suggesting the chosen parameter values are appropriate. Hav-
ing said that, we are aware that different values for the parameters may influence
SkyNet’s effectiveness, and therefore we plan to conduct more experiments in
the future to systematically evaluate the possible influence.

We were not able to experimentally compare SkyNet with iFeedback for
reasons stated at the beginning of Section 4. As the result, we compared the
two tools based on the results they produced on the subject systems in their
corresponding evaluations. For the comparison to be as fair as possible, we eval-
uated SkyNet on service systems of similar scales from various categories of
applications. Moreover, the comparison was based on common metrics precision
and recall, instead of measurements like the numbers of issues and severe issues
detected, which greatly depends on the experimental setup.

External validity. The subject service systems adopted in our experiments
were real-world services of different scales and from different application do-
mains. These characteristics help mitigate the risk that our evaluation overfits
the subjects. In the future, on the one hand, we will continue monitoring the
execution of SkyNet on existing service systems, on the other hand, we will
deploy SkyNet on more service systems. We see no intrinsic limitations that
would prevent SkyNet from working reliably on different online service systems.

5 Conclusions

This paper presents the SkyNet technique and tool that utilize user data gath-
ered from multiple channels to detect issues for large-scale online service systems.
The technique has been applied to detect issues for three real-world online ser-
vices based on historical data gathered over a ten-month period of time. The
produced results suggest that SkyNet is both effective and accurate in detect-
ing issues and severe issues for large-scale online service systems.

6 Data Availability

The SkyNet tool has been integrated into the production issue tracking system
in the first author’s company. For confidentiality reasons, neither the tool nor
the multi-channel user feedback can be available for public download.

Smart Issue Detection for Large-Scale Online Service Systems 183

References

1. Albert pre-trained model for chinese. https://github.com/brightmart/albert_

zh. Last accessed 19 May 2022.

2. Cascading classifiers - wikipedia. https://en.wikipedia.org/wiki/Cascading_

classifiers. Last accessed 19 May 2022.

3. Github elasticsearch. https://github.com/elastic/elasticsearch. Last ac-
cessed 19 May 2022.

4. Interquartile range. https://en.wikipedia.org/wiki/Interquartile_range.
Last accessed 19 May 2022.

5. Jieba - chinese text segmentation. https://github.com/fxsjy/jieba.

6. Okapi bm25 - wikipedia. https://en.wikipedia.org/wiki/Okapi_BM25. Last
accessed 19 May 2022.

7. Tencent ai lab embedding corpora for chinese and english words and phrases.
https://ai.tencent.com/ailab/nlp/en/embedding.html.

8. tf–idf - wikipedia. https://en.wikipedia.org/wiki/Tf%e2%80%93idf. Last ac-
cessed 19 May 2022.

9. S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence
embeddings. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017.

10. D. R. Cox. The regression analysis of binary sequences. Journal of the Royal
Statistical Society: Series B (Methodological), 20(2):215–232, 1958.

11. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

12. A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio, G. Can-
fora, and H. C. Gall. What would users change in my app? summarizing app
reviews for recommending software changes. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 499–510, 2016.

13. B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why people hate your
app: Making sense of user feedback in a mobile app store. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1276–1284, 2013.

14. C. Gao, J. Zeng, M. R. Lyu, and I. King. Online app review analysis for identifying
emerging issues. In M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman,
editors, Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 48–58. ACM,
2018.

15. J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li, Y. Dang, S. Cai,
W. Wu, Y. Zhou, M. Chintalapati, and D. Zhang. Efficient incident identification
from multi-dimensional issue reports via meta-heuristic search. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page
292–303, New York, NY, USA, 2020. Association for Computing Machinery.

16. E. Guzman, M. Ibrahim, and M. Glinz. A little bird told me: Mining tweets for re-
quirements and software evolution. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 11–20, 2017.

184 Liushan Chen et al.

https://github.com/brightmart/albert_zh
https://github.com/brightmart/albert_zh
https://en.wikipedia.org/wiki/Cascading_classifiers
https://en.wikipedia.org/wiki/Cascading_classifiers
https://github.com/elastic/elasticsearch
https://en.wikipedia.org/wiki/Interquartile_range
https://github.com/fxsjy/jieba
https://en.wikipedia.org/wiki/Okapi_BM25
https://ai.tencent.com/ailab/nlp/en/embedding.html
https://en.wikipedia.org/wiki/Tf%e2%80%93idf

17. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

18. C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang. Time series anomaly
detection for trustworthy services in cloud computing systems. IEEE Transactions
on Big Data, 2017.

19. T. Johann, C. Stanik, W. Maalej, et al. Safe: A simple approach for feature
extraction from app descriptions and app reviews. In 2017 IEEE 25th international
requirements engineering conference (RE), pages 21–30. IEEE, 2017.

20. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT:
A lite BERT for self-supervised learning of language representations. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

21. N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable framework for auto-
mated time-series anomaly detection. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1939–1947,
2015.

22. L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao, B. Qiao, S. He, P. Lee,
J. Sun, F. Gao, L. Yang, Q. Lin, S. Rajmohan, Z. Xu, and D. Zhang. Fighting
the fog of war: Automated incident detection for cloud systems. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 131–146. USENIX Asso-
ciation, July 2021.

23. Z. Li, Y. Zhao, R. Liu, and D. Pei. Robust and rapid clustering of kpis for large-
scale anomaly detection. In 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS), pages 1–10. IEEE, 2018.

24. Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang. idice: Problem identification for
emerging issues. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 214–224, 2016.

25. D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng. Opprentice:
Towards practical and automatic anomaly detection through machine learning. In
Proceedings of the 2015 Internet Measurement Conference, pages 211–224, 2015.

26. M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai. Robust and rapid adaption
for concept drift in software system anomaly detection. In 2018 IEEE 29th In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages 13–24.
IEEE, 2018.

27. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In Y. Bengio and Y. LeCun, editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, 2013.

28. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. arXiv preprint
arXiv:1310.4546, 2013.

29. D. Pagano and W. Maalej. User feedback in the appstore: An empirical study.
In 2013 21st IEEE international requirements engineering conference (RE), pages
125–134. IEEE, 2013.

30. F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshy-
vanyk, and A. De Lucia. User reviews matter! tracking crowdsourced reviews to
support evolution of successful apps. In 2015 IEEE international conference on
software maintenance and evolution (ICSME), pages 291–300. IEEE, 2015.

31. S. K. Panda and P. K. Jana. Efficient task scheduling algorithms for heterogeneous
multi-cloud environment. The Journal of Supercomputing, 71(4):1505–1533, 2015.

Smart Issue Detection for Large-Scale Online Service Systems 185

32. S. Patro and K. K. Sahu. Normalization: A preprocessing stage. arXiv preprint
arXiv:1503.06462, 2015.

33. M. Raginsky, R. M. Willett, C. Horn, J. Silva, and R. F. Marcia. Sequential
anomaly detection in the presence of noise and limited feedback. IEEE Transac-
tions on Information Theory, 58(8):5544–5562, 2012.

34. K. Ramasubramanian and J. Moolayil. Applied Supervised Learning with R: Use
machine learning libraries of R to build models that solve business problems and
predict future trends. Packt Publishing, 2019.

35. M. Saberian and N. Vasconcelos. Boosting algorithms for detector cascade learning.
Journal of Machine Learning Research, 15:2569–2605, 2014.

36. R. Sathya, A. Abraham, et al. Comparison of supervised and unsupervised learning
algorithms for pattern classification. International Journal of Advanced Research
in Artificial Intelligence, 2(2):34–38, 2013.

37. S. Sra, S. Nowozin, and S. J. Wright. Optimization for machine learning. Mit
Press, 2012.

38. C. Stanik, T. Pietz, and W. Maalej. Unsupervised topic discovery in user com-
ments. In 2021 IEEE 29th International Requirements Engineering Conference
(RE), pages 150–161. IEEE, 2021.

39. Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei, S. Zhang, X. Qu,
et al. Hotspot: Anomaly localization for additive kpis with multi-dimensional
attributes. IEEE Access, 6:10909–10923, 2018.

40. D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping experiment infras-
tructure: More, better, faster experimentation. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
17–26, 2010.

41. L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release planning
of mobile apps based on user reviews. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 14–24. IEEE, 2016.

42. P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen. Phrase-based extraction
of user opinions in mobile app reviews. In Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, pages 726–731, 2016.

43. G. Williams and A. Mahmoud. Mining twitter feeds for software user require-
ments. In 2017 IEEE 25th International Requirements Engineering Conference
(RE), pages 1–10. IEEE, 2017.

44. H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng,
et al. Unsupervised anomaly detection via variational auto-encoder for seasonal
kpis in web applications. In Proceedings of the 2018 World Wide Web Conference,
pages 187–196, 2018.

45. W. Zheng, H. Lu, Y. Zhou, J. Liang, H. Zheng, and Y. Deng. ifeedback: exploiting
user feedback for real-time issue detection in large-scale online service systems. In
2019 34th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 352–363. IEEE, 2019.

186 Liushan Chen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Smart Issue Detection for Large-Scale Online Service Systems 187

http://creativecommons.org/licenses/by/4.0/

Refinement Verification of OS Services
based on a Verified Preemptive Microkernel

Ximeng Li2, Shanyan Chen1, Yong Guan1,3,
Qianying Zhang2,3, Guohui Wang2,3, Zhiping Shi1,2(�)

1 College of Information Engineering,
Capital Normal University, Beijing, China

shizp@cnu.edu.cn
2 Beijing Key Laboratory of Electronic System Reliability and Prognostics,

Capital Normal University, Beijing, China
3 Beijing Advanced Innovation Center for Imaging Theory and Technology,

Capital Normal University, Beijing, China

Abstract. An OS microkernel can be extended by implementing ser-
vices upon it. A service could introduce an object that references a kernel
object, and implement a group of functions that invokes the functions
for manipulating the kernel object. We consider the scenario where the
microkernel has been verified with machine-checkable proofs, while the
services remain to be verified. Moreover, the verification of the micro-
kernel is not performed with the verification of subsequent extension in
mind. We address the problem of how to build sufficiently on the ver-
ification results for the microkernel, in achieving the verification of the
services. Our methodology consists of enhancements to the verification
framework for the microkernel, and the design of invariants for establish-
ing the connection between the service-level objects and the kernel-level
objects. Using the methodology, we have conducted a substantial formal
verification of a group of services extending the inter-task communication
functionalities of the preemptive microkernel µC/OS-II. Our verification
uncovers dormant bugs and provides a level of correctness assurance for
the services that is above what is achievable through extensive testing.

1 Introduction

Microkernels provide the most fundamental functionalities of operating systems
such as task management, inter-task communication, and interrupt handling.
Microkernels are relatively small in size and simple in structure. Compared with
monolithic kernels, errors in microkernel-based systems are more likely to occur
outside of the kernel. Thus, these errors are less likely to crash the entire system.
A preemptive microkernel allows a task to be interrupted at any point of execu-
tion, as long as interrupts are enabled in the CPU. During interrupt handling,
a higher-priority task can be switched to. This mechanism permits the timely
processing of urgent workloads, increasing the responsiveness of the system.

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 188–209, 2024.
https://doi.org/10.1007/978-3-031-57259-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_9&domain=pdf

On the downside, the possibility of preemption results in a great number of
inter-dependencies between tasks. This adds to the difficulty in correctly design-
ing and implementing the microkernel. Out of concern for correctness, substantial
efforts have been dedicated to achieving the formal verification of preemptive mi-
crokernels (e.g., [28]). These verification efforts lay a solid foundation for assuring
the correctness of the software systems based on preemptive microkernels.

Since a microkernel only provides the core functionalities in abstracting and
managing system resources, the extension of the functionalities for a microkernel
is often required in a given application scenario. The functionality of a kernel
object Oknl can be extended in the following way. Firstly, a data structure is
introduced — an instance Osrv of this data structure contains a reference to Oknl,
while maintaining some additional attributes. Secondly, the operations that can
be performed on Osrv are implemented. In these operations, checks and updates
are performed on the additional attributes in Osrv, and the operations for Oknl

are invoked to complete the checks and updates on the internal attributes. The
extension provides a service to the user. We shall refer to Osrv as a service object.

For instance, the mutexes in a microkernel might not support modes of oper-
ations such as recursive and non-recursive modes. This feature can be introduced
in an extension of the microkernel, providing a modes-aware mutex service to
the user. Firstly, a service-level mutex object can be introduced. Secondly, the
mode of a mutex can be tracked by an attribute of this service object. Thirdly,
in an operation that tries to obtain a service-level mutex that the current task
already owns, the attribute is checked before deciding whether to invoke the
kernel function for obtaining the mutex or not.

In safety-critical scenarios, the correctness of the services that extend the
microkernel can be as important as the correctness of the microkernel itself. A
reliable way to ensure the correctness of the services is formal verification. If the
microkernel itself has been formally verified, the formal specifications and proofs
for the functions of the microkernel could be used as a basis for this verification.

The formal verification of the services can still be non-trivial. This is true es-
pecially if the tasks executing the service functions (e.g., the function for obtain-
ing a modes-aware mutex) can be preempted. In this case, it can be non-trivial
even to ensure that a service object in use always references a corresponding ker-
nel object that has been properly allocated and initialized. For the verification of
the services, another problem is how to achieve good reuse of the specifications
and proofs for the underlying microkernel. Moreover, if the proofs for the micro-
kernel have been developed using a verification framework, it would be good to
sufficiently leverage this verification framework, as opposed to requiring a great
amount of modification to the verification framework.

In this article, we address the aforementioned challenges in the formal verifi-
cation of OS services (in the above sense) that extend a preemptive microkernel.
Specifically, we consider the case where refinement verification has been per-
formed for the microkernel, using a variant of concurrent separation logic [9]
called CSL-R [28, 27]. This is the program logic used in the first formal verifica-
tion of a practical preemptive microkernel with machine-checkable proofs.

Refinement Verification of OS Services 189

Fig. 1: The connection between service objects and kernel objects

The main contributions of this article include:

1. enhancements to the verification framework of CSL-R to support the com-
positional specification of the functions implementing the OS services

2. a design of invariants dependent on auxiliary variables for reasoning about
the connection between service objects and their underlying kernel objects

3. results obtained by applying the extended verification framework and the
invariants design to achieve the formal verification of inter-task synchroniza-
tion and communication services that extend the corresponding functionali-
ties of the preemptive microkernel µC/OS-II [3]

Specifically, the enhancements to the verification framework of CSL-R en-
ables the integration of the specifications for the kernel functions as components
for the specifications of service functions. The connection between the service
objects and their underlying kernel objects is shown to satisfy structural prop-
erties that are generic to the specific purposes and contents of the services. The
verification of the inter-task synchronization and communication services is per-
formed in an industrial verification project in the aerospace domain, while these
services also constitute a module of a system to be more widely used in other
safety-critical scenarios. We devise the specification of each service function and
prove that the specification is refined by the code of the function. The develop-
ment is performed in the Coq proof assistant [1]. This verification is a substantial
effort, in which we have uncovered problems in extensively tested code.

2 Challenges in Verifying an OS Service

We assume a service object (e.g., a service-level task, semaphore, or message
queue) is implemented as a struct in C. The service object obj contains a pointer,
obj.ptr, to a potential kernel object of the underlying microkernel. The service
object contains a number of attributes that are managed outside of the micro-
kernel. Moreover, we assume that all the service objects of the same kind are
organized in the array obj arr. This array is illustrated in the upper part of Fig. 1.

We consider a kernel object to be active, if the kernel object has been allocated
and initialized. An active kernel object is expected to be in a consistent state.
The set of active kernel objects is illustrated in the lower part of Fig. 1.

A desired integrity requirement about the connection between the service
objects and the underlying kernel objects is:

190 X. Li et al.

Requirement 1 If a service object is fully created, then the service object ref-
erences a kernel object that is in a consistent state.

This requirement is reflected by the arrow without a cross over it in Fig. 1. If
the requirement is not met, then an operation on a service object could trigger
an operation on an inconsistent kernel object. Hence, the proper completion of
the kernel operation with correct results cannot be guaranteed.

Another desired integrity requirement about the connection between the ser-
vice objects and the underlying kernel objects is:

Requirement 2 Each kernel object is referenced by at most one service object.

This requirement is reflected by the arrow with a cross over it in Fig. 1. If a kernel
object can be referenced by two or more service objects, then it is difficult to
guarantee that all these service objects are consistent with the kernel object. An
operation on one of these service objects would update the service object and
the kernel object consistently. But this update could break the consistency of
another service object with the kernel object.

Fig. 2: The function service obj create

It can be nontrivial to ascertain the
satisfaction of Requirement 1 and Re-
quirement 2 in a preemptive setting.
Consider the function service obj create
in Fig. 2. This function is used to create
service objects. The dotted boxes reflect
the areas of critical regions, in which the
task executing the function cannot be
preempted. Line 2 searches for an index
idx in obj arr using the internal function
get free obj. This index identifies an ar-
ray element that corresponds to an un-
used service object. Line 3 checks if the
return value of get free obj is a valid in-
dex for obj arr. If not, then the entries of obj arr are used up, and the func-
tion service obj create returns. Otherwise, obj arr[idx].ptr gets the special value
Dummy at line 4. This value signals that the array entry obj arr[idx] is reserved —
it cannot be used by a different task attempting to create a service object. Then,
the critical region is exited. Afterwards, the kernel function kernel obj create for
creating a kernel object is invoked at line 5. Here, katt is the attribute value
used to initialize the kernel object. The function returns the pointer to the ker-
nel object that is allocated and initialized — NULL in case no kernel object can
be allocated. This pointer is assigned to the kernel object pointer in the service
object obj arr[idx] at line 6. Then, it is checked whether the pointer is not NULL.
The function service obj create returns if the kernel object pointer is NULL. Oth-
erwise, the data attributes of the created service object obj arr[idx] are initialized
at line 8. The index idx for this created service object is then returned.

If Requirement 1 is to be satisfied, the following condition related to the
function service obj create in Fig. 2 should be met.

Refinement Verification of OS Services 191

Condition 1 After the completion of the assignment p<-kernel obj create(katt),
the pointer p points to an active kernel object if p is not NULL.

This condition guarantees that the pointer assigned to obj arr[idx].ptr points to
an active kernel object — thus a kernel object in a consistent state. This helps
ensure that the service object obj arr[idx] references a kernel object that is in a
consistent state, once the service object is fully created. However, Condition 1
might not hold, since the data located at the return address of kernel obj create
could be modified by preemptive tasks. Hence, dedicated reasoning is required
to ascertain that the potential modification of data does not break Condition 1.

If Requirement 2 is to be satisfied, the following condition should be met.

Condition 2 After the completion of the assignment p<-kernel obj create(katt),
no service object already references the kernel object pointed to by p.

If Condition 2 is not met, then the service object obj arr[idx] could start to
reference the created kernel object, along with some other service object that
originally referenced the same kernel object. It appears that the potential kernel
object that is allocated in a call to kernel obj create must be free before the
allocation. Given the code of service obj create, it is unlikely that a free kernel
object would get referenced from a service object. However, the joint effects of all
the functions supporting the creation, deletion, and use of the service object are
more complicated than suggested by this observation. Hence, dedicated formal
reasoning is required to ascertain the satisfaction of Condition 2.

In the remainder of the article, we will discuss how to ascertain the satis-
faction of Condition 1 and Condition 2, thereby ascertaining the satisfaction of
Requirement 1 and Requirement 2, in a refinement verification of OS services.
A key ingredient of our methodology is the formulation of invariant conditions
dependent on auxiliary variables in a separation logic (see Section 5).

Ultimately, the ability to show that Requirement 1 and Requirement 2 are
fulfilled supports the formal verification of the service functions against their
specifications. We will also discuss how to compose these specifications from
the formal specifications of the underlying kernel functions (see Section 4). This
enables the reuse of the specifications and proofs for the kernel functions, as
previously developed in the formal verification of the microkernel.

3 Refinement Verification of OS Microkernels

To facilitate the understanding of our technical development, we briefly introduce
the verification framework for the concurrent separation logic CSL-R [28, 27], as
well as the formal verification of an OS microkernel using this framework.

3.1 The Big Picture

Through the refinement verification of an OS microkernel, a simulation is estab-
lished between the execution of a concrete system and the execution of an ab-
stract system. The concrete system consists of client programs, kernel functions,
and interrupt handlers. The abstract system contains the same client programs

192 X. Li et al.

Fig. 3: Execution of a microkernel and simulation by a specification

as the concrete system. In addition, the abstract system contains the specifica-
tions for the kernel functions and the interrupt handlers. These specifications
are in the form of abstract programs, as opposed to concrete C or assembly code.

An example of the simulation between the concrete system and the abstract
system is illustrated in Fig. 3. In this figure, the concrete system runs two tasks.
Task 1 calls the kernel function f with the list vl of argument values. This
function executes a series of steps in a critical region. Then, it needs to wait on
an event for a given time period. Hence, it calls the function sched() to trigger re-
scheduling. Suppose task 2 is scheduled for execution. After several steps taken
by task 2, a tick interrupt comes. The arrival of the interrupt is illustrated by
 . After the interrupt is handled, the system looks for the highest-priority task
that is ready for execution. Suppose task 1 has become ready and it is executed
for another time. Task 1 then finishes the kernel function f and returns to user
code. In the aforementioned scenario, task 2 is preempted by task 1.

The kernel function f is specified using the abstract program ωf as given by

ωf vl := γ1LvlM; sched; γ2LvlM

Here, γ1 and γ2 represent two atomic steps of execution. Each step has vl as the
list of input values. In addition, sched is a primitive for the scheduling operation.
Moreover, γ1, sched, and γ2 are sequentially composed. We will give further
details about the language in which ωf vl is expressed in Section 3.2.

Part of the simulation between the concrete system and the abstract system
is concerned with the simulation of the execution steps for the function f. The
abstract statement ωf vl is executed in the abstract system after the function f is
called with the list vl of arguments. The concrete execution steps in the critical
region are simulated by the atomic step γ1. Furthermore, the concrete execution
steps for sched() are simulated by the execution step of sched. In addition, the
concrete execution steps taken by task 1 after it is resumed are simulated by the
atomic step γ2. The simulation between the concrete system and the abstract
system is required to preserve a global invariant. The global invariant is used to
relate the states of the two systems — further details will be given in Section 3.3.

The simulation of the concrete system by the abstract system is established
by reasoning about each kernel function separately. This reasoning is performed
using the rules of the CSL-R logic. For the kernel function f, the goal of the
reasoning is to establish the correspondence between the concrete code of f and
the abstract program ωf . The reasoning goes forward (in the sense of [16]) in

Refinement Verification of OS Services 193

the concrete code of f, performing symbolic execution of the abstract statement
ωf vl at appropriate points. Thus, the goal is turned into establishing the cor-
respondence between the remainders of f and the remainders of ωf vl , i.e., the
abstract statements γ1LvlM; sched; γ2LvlM, sched; γ2LvlM, and γ2LvlM.

3.2 The Specification of Kernel Functions

As illustrated in Section 3.1, a kernel function is specified using a mathematical
function ω. This function maps each list vl of argument values to an abstract
statement 𝕤. This abstract statement is expressed using the values in vl . The
syntax for abstract statements is given below.

𝕤 ::= γLvlM | sched | end v̂ | 𝕤1; 𝕤2 | 𝕤1 + 𝕤2
v̂ ::= Some v | None

where v ∈ Val , vl ∈ Val∗, γ ∈ Val∗ ×AState ×Val? ×AState

Here, Val is the set of values, Val∗ is the set of value lists, and Val? is the
set of optional values. An optional value is represented by the meta-variable
v̂. Furthermore, AState is the set of abstract states. In the atomic operation
γLvlM, γ relates the list vl of input values and an initial abstract state to an
optional output value and a resulting abstract state. Furthermore, end v̂ signals
the completion of execution for an abstract statement. In addition, 𝕤1; 𝕤2 is a
sequential composition. Lastly, 𝕤1 + 𝕤2 is a nondeterministic choice.

An abstract state Σ ∈ AState captures as mathematical objects the memory
content that is relevant to the abstract programs of the kernel functions. For
example, a C struct s with the members s.a and s.b in the memory can be
abstractly represented as a pair (a, b) in the abstract state. Overall, an abstract
state could contain the representations of typical kernel objects such as kernel-
level tasks, semaphores, mutexes, and message queues. The formal semantics of
the abstract statements is defined based on reads and updates of the abstract
state. We omit the definition of this semantics here.

3.3 Invariants and Fractional Permission

In a concurrent separation logic, the well-formedness of global resources is ex-
pressed using a global invariant. Examples of these global resources include the
kernel data structures for tasks, synchronization objects, etc. In a concurrent
separation logic that supports refinement verification, the global invariant I is
interpreted over a concrete state and an abstract state. Thus, I can be used to
assert the well-formedness of the global resources in concrete and abstract rep-
resentations and the relation between the two. Hence, if the struct s mentioned
in Section 3.2 is global, then I can be used to assert the well-formedness of s
in the memory, the well-formedness of the tuple (a, b) in the abstract state, and
the fact that a and b properly represent the memory values of s.a and s.b.

In reasoning about a kernel function, the global invariant I can be asserted
to hold after entering a piece of code that has exclusive access to the global
resources (e.g., a critical region in which a task cannot be preempted). The aux-
iliary information provided by this assertion of I can be used in the subsequent

194 X. Li et al.

γierrL·M +(γiokLvidxM ; ωkcre [vkatt,vcre] ; (γcerrLvidx,vcreM + γcokLvidx,vcre, vsattM))

1 2(b)

2(a)
choice between 1 and 2 choice between a and b

Fig. 4: The abstract statement for service obj create

reasoning. The well-formedness of the global resources may be temporarily bro-
ken in the code, but it must be re-established at the point where exclusive access
to the global resources is given up. At this point (e.g., where a critical region is
exited), I must be shown to hold again. Intuitively, a critical region consumes
well-formed global resources and gives back well-formed global resources again.

Consider an auxiliary variable that represents the current program location
for a task. If the global invariant is formulated to depend on such a variable, then
the variable should be treated as a global resource. However, the variable is then
modifiable at any point outside of a critical region, by another task that preempts
the current one. Nonetheless, the current program location of a task should not
be modifiable by a different task. This is where fractional permission [8] can be
employed to facilitate verification using a concurrent separation logic.

More concretely, an auxiliary variable x can be introduced for a task t, such
that t has 1

2 permission, and the global invariant has 1
2 permission, over x. A

task is allowed (by the program logic) to read a variable, as long as the task
has 1

2 permission over the variable. On the other hand, a task is allowed to
modify a variable, only if the task has full permission over the variable. Hence,
the task t is allowed to modify the variable x, when the other 1

2 permission over
x is obtained from the global invariant, e.g., in a critical region. The variable x
cannot be modified by any preemptive task t′. This is because t′ is allowed to
obtain at most 1

2 permission over the variable from the global invariant.

4 Compositional Specification of Service Functions

4.1 Composing Service Specification from Kernel Specification

To enable the refinement verification of the function service obj create in Fig. 2,
the function should be specified using an abstract statement. This abstract state-
ment should reflect the following cases about the execution of service obj create.

1. the execution of service obj create could fail, in case there is no usable service
object in the system, or

2. service obj create could obtain an index vidx for a usable service object, at-
tempt at kernel object creation as implemented in kernel obj create, obtain
the return value vcre from kernel obj create, and then proceed as follows:
(a) if vcre is the address of a newly allocated and initialized kernel object,

then service obj create sets the kernel object pointer in the vidx-th service
object to vcre, sets the data attribute in this service object to the given
attribute value vsatt, and returns the index value vidx

(b) if vcre is NULL, then service obj create returns an invalid index value

Refinement Verification of OS Services 195

We intend to formulate the abstract statement for service obj create using
the specification language presented in Section 3.2. A potential formulation is
given in Fig. 4. At the top level, this abstract statement is a nondeterministic
choice between the part expressing the meaning of item 1 and item 2 above. The
meaning of item 1 is expressed using the atomic operation γierr. The meaning of
item 2 is expressed with two sequential compositions. Here, the atomic operation
γiok is used to express the operation of obtaining vidx. Furthermore, ωkcre is the
abstract program for kernel obj create. In addition, the nondeterministic choice
between γcerr and γcok is used to express a choice between the sub-items 2(b)
and 2(a) above. This particular choice is deterministic because of the conditions
about vcre as expressed in 2(a) and 2(b). The correspondence between the in-
formal expression of the functional requirements for service obj create and the
formal counterpart is illustrated by the annotations in Fig. 4.

The specification of service obj create in Fig. 4 is composed of the abstract
program for kernel obj create. This compositional aspect enables the reuse of the
specification for the functions of the underlying microkernel. This reuse implies
that the formal proofs for these kernel functions (as developed in verifying the
microkernel) can also be reused. However, a technical problem was encountered
with specifications like the one in Fig. 4. The function service obj create has
two formal parameters (see Fig. 2). According to the CSL-R framework, if the
abstract program of the function service obj create is ωscre, then the result of
calling the function with the arguments vkatt and vsatt in the abstract system is
the abstract statement ωscre [vkatt, vsatt]. This cannot be the abstract statement
in Fig. 4, because the additional parameters vidx and vcre are not introduced.

To solve the aforementioned problem, we modify the semantics of the speci-
fication language such that a call to a function could nondeterministically result
in an abstract statement ω (vl++vl ′), where ω is the mathematical function rep-
resenting the abstract program for the callee, vl is a list that contains exactly the
actual arguments for the callee, and vl ′ is an arbitrary list of values. Intuitively,
the list vl ′ can be used to accommodate the intermediate values generated in
the abstract program. For the above example with service obj create, we define
ωscre such that ωscre ([vkatt, vsatt]++vl ′) yields the abstract statement in Fig. 4.
We use the first value of vl ′ for vidx, and use the second value of vl ′ for vcre.

With this abstract statement, we intend to express that the atomic operation
γiok identifies a specific index vidx — the vidx-th service object is unused in the
abstract state from which the operation is performed. Afterwards, the atomic
operation γcok initializes exactly the vidx-th service object. However, vidx is
arbitrary if it is the first value of the arbitrary list vl ′. How to ensure that vidx

is the index found by γiok at the point where the operation γcok is performed?

We solve this problem by permitting the execution of an abstract statement
to reach an error state. From the error state no further execution of the abstract
statement is permitted. We adjust the refinement condition to express that the
concrete system should be simulated by the abstract system unless the abstract
system is in an error state. In the abstract program for service obj create, we
define the atomic operation γiok such that an error state results if the parameter

196 X. Li et al.

Fig. 5: Simulation for service obj create in the extended verification framework
(potential preemption before/after atomic operations omitted)

vidx is not equal to the found index (see Fig. 5). Hence, if γcok is executed to
simulate the concrete execution of service obj create, the previous execution of
γiok could not have ended up in an error state. Thus, vidx as used in γcok is equal
to the index of the unused service object found by γiok.

By admitting the error states in the abstract computation, and extending the
notion of refinement in CSL-R correspondingly, we permit using the output of
operations in the subsequent abstract computation. In particular, this enables
the compositional specification of the service functions — where the abstract
programs of the kernel functions may produce results that are used in the ab-
stract programs of the service functions. For sound reasoning about the new
notion of refinement, we have also introduced new rules into the program logic.
Formally, we have re-established the soundness of the verification framework.

Remark 1. In the µC/OS-II microkernel, the computation result of a critical re-
gion is rarely passed to another critical region via local variables or return values
of functions. Correspondingly, it is unnecessary to capture the output value of
an operation and pass this value to another operation in the abstract program of
a function. Hence, the CSL-R framework for the verification of µC/OS-II was not
originally designed to accommodate additional parameters like vidx and vcre.

4.2 Expressing Assumptions about the User

A second use of the error states in the abstract computation (as discussed in
Section 4.1) is to support the expression of assumptions about user data in the
formal specification of the service functions.

For an example of these assumptions, consider a variant of the service func-
tion service-obj-create in Fig. 2 that works properly only if the argument satt
satisfies a well-formedness condition. More concretely, suppose satt is intended
to be a pointer to a struct. This struct contains several attributes for initializ-
ing the service object. However, the C language does not provide a feature to
check whether satt really points to a well-formed struct that contains these at-
tributes (like instanceof in Java). Hence, this check might not be implemented
in the code of this variant of service obj create. Then, service obj create should
be verified under the assumption that satt points to the right type of struct.

The above assumption can be naturally expressed in the pre-condition for a
function, if the function is to be verified using an ordinary Hoare-style program
logic. However, a service function is specified using an abstract program instead
of pre/post-conditions in a refinement verification. Then, the assumption should

Refinement Verification of OS Services 197

be expressed in this abstract program. We express such an assumption in the
definition of an atomic operation in the abstract program. More concretely, this
atomic operation gives the error state if the assumed condition about user data
is not satisfied. With our adjusted definition of simulation, the abstract system
is required to simulate the concrete system only if the abstract system is not in
an error state (see Section 4.1). This corresponds to the meaning of assumptions
— the refinement of the abstract programs by the concrete code is only required
if the assumptions about user data are satisfied.

5 Reasoning about Service-Kernel Connection

Through refinement verification of an OS service, we establish the simulation
between the execution of the service functions and the execution of their abstract
programs (see Section 4.1). This simulation preserves the global invariant.

We express Requirement 1 and Requirement 2 (see Section 2) in the global
invariant to show that the satisfaction of both requirements is preserved in the
simulation. As explained in Section 2, the establishment of Condition 1 and
Condition 2 is supportive of showing the fulfillment of Requirement 1 and Re-
quirement 2. The two conditions can be established if they are also formulated in
the global invariant, and are shown to be preserved in the simulation. However,
these two conditions involve the program location that is local to a task, as well
as a task-local pointer to a kernel object. These parameters cannot be directly
expressed in the global invariant. In this section, we explain how to capture the
program location and the kernel object pointer for each task using auxiliary
variables with fractional permission (Section 5.2). We then present a design of
invariant conditions that depends on these auxiliary variables (Section 5.3). We
are able to show that Condition 1 and Condition 2 are preserved by the execution
of each service function, with the help of the invariant conditions.

The satisfaction of Condition 1 and Condition 2 depends on the way each
service function affects the connection between a service object and its underly-
ing kernel object. Hence, we will first present a series of code patterns for service
functions that capture a proper way to handle this connection (Section 5.1).

5.1 Creation, Deletion, and Use of Service Objects

We assume that the service functions for creating, deleting, and using a ser-
vice object possess the code patterns in Fig. 6. The scope of critical regions
is represented by the dashed boxes. A line with the content Check cond repre-
sents a conditional that checks the condition cond. A return from the function is
triggered if the check fails. Before each return from inside a critical region, the
critical region is exited first. A line in the non-bold face represents an assignment
to an auxiliary variable. These assignments will be explained later.

Creation of Service Objects. The function service obj create is used to create
a service object. The code pattern of this function is shown in Fig. 6a. This code
pattern is the same as in Fig. 2, except for containing two extra assignments
to auxiliary variables. In addition, the code pattern for the underlying kernel
function kernel obj create is given in the upper part of Fig. 6b.

198 X. Li et al.

(a) creation of service objects (b) kernel obj. creation/deletion

(c) use of service objects (d) deletion of service objects

Fig. 6: The patterns for creation/deletion/use of service/kernel objects

Deletion of Service Objects. The function service obj delete (Fig. 6d) is used
to delete a service object. The deleted service object is the one represented by
the array element obj arr[idx]. Here, idx is the argument of the function. The
function first checks to ensure that idx is within the array bound for obj arr.
Then, the function remembers the kernel object pointer obj arr[idx].ptr in the
local variable p. Afterwards, the function checks if the pointer p is neither NULL
nor Dummy. If so, then obj arr[idx] should represent a valid service object. The
function then sets obj arr[idx].ptr to NULL. Finally, the function invokes the kernel
function kernel obj delete (Fig. 6b) to free the kernel object pointed to by p.

Use of Service Objects. The function service obj oper (Fig. 6c) outlines the
general pattern for an operation on a service object. First, the validity of the
index for the target service object is checked. Then, it is checked whether the
attribute value of the service object satisfies the conditions for performing the
intended operation. Next, it is checked whether the pointer to the kernel object
obj arr[idx].ptr is valid. If so, the kernel function kernel obj oper performing the
corresponding operation on the underlying kernel object is invoked.

Refinement Verification of OS Services 199

5.2 Auxiliary Variables with Fractional Permission

We introduce an auxiliary variable, ptr, for each task. This auxiliary variable
reflects the value of the local pointer p at key program locations in the func-
tions of Fig. 6. We employ fractional permission for ptr. Half of the permission
over ptr is given to the global invariant. Hence, ptr can be read in the global
invariant. Half of the permission over ptr is retained by the task for which ptr
is introduced. Hence, ptr can be used to reflect the value of a local pointer.

Via built-in mechanisms of CSL-R, we ensure that whenever a task enters
a service function, the value of ptr is NULL. This captures that the task is not
working with a kernel object when entering a service function. When the task
running a service function gets hold of a kernel object via p, we set ptr of the
task to the value of p. For service obj create, this is at the end of the critical
region in the underlying kernel function kernel obj create — when the kernel
object has just been created. For service obj delete and service obj oper, this is at
the end of their first critical regions. We reset ptr to NULL when the task loses
hold of the kernel object. For service obj delete, this is at the end of the critical
region in the kernel function kernel obj delete — when the kernel object has just
been freed. For service obj create and service obj oper, this is at their end.

We introduce an auxiliary variable, loc, for each task. This auxiliary variable
reflects the current program location of the task. We employ fractional permis-
sion for loc. Half of the permission over loc is given to the global invariant.
Hence, this variable can be read in the global invariant. Half of the permission
over loc is retained by the task for which loc is introduced. Hence, the program
location of each task cannot be modified by a different task.

Via built-in mechanisms of CSL-R, we ensure that whenever a task enters a
service function, the value of loc is Loc normal. This reflects that the task is
not at a special program location concerning object creation or deletion when
entering a service function. When a task running a service function starts to
work with a kernel object, we distinguish between the cases for object creation
and object deletion, by setting loc to different values. We set loc to Loc cre

for object creation (see Fig. 6b). We set loc to Loc del for object deletion (see
Fig. 6d). We reset loc to Loc normal when the task stops working with the
underlying kernel object. If the service function executed is service obj oper, then
loc remains at the value Loc normal through the execution of the function.

5.3 Invariant Conditions Dependent on Auxiliary Variables

Via the auxiliary variables, loc and ptr, we are able to formalize Condition 1
and Condition 2. The formulation of these conditions is simpler if the abstract
representations of data are used instead of the concrete counterpart. We use
locmp to represent a function from each task identifier to an optional value
of the auxiliary variable loc for the task. We use ptrmp to represent a function
from each task identifier to an optional value of the auxiliary variable ptr for the
task. We also introduce the abstract representations of the service objects and the
kernel objects. We use sobjmp to represent a function that maps each index value
i to an optional tuple. The tuple represents the service object obj arr[idx] if idx

200 X. Li et al.

sobj kobj aux (locmp, ptrmp, sobjmp, kobjmp, fkobjs) :=

∀t, a : ptrmp(t) = Some (Vptr a) ⇒

(
locmp(t) = Some Loc cre∧

kobjmp(a) ̸= None ∧ ¬obj ref (sobjmp, a) ∧ ¬ptr in fkobj pool(a, fkobjs)

)

∨

(
locmp(t) = Some Loc del∧

kobjmp(a) ̸= None ∧ ¬obj ref (sobjmp, a)

)

∨

(
locmp(t) = Some Loc normal∧

(kobjmp(a) ̸= None ∨ ptr in fkobj pool(a, fkobjs))

)


where obj ref (sobjmp, a) := ∃i, att : sobjmp(i) = Some (KObj a, att)

and ptr in fkobj pool(a, fkobjs) means a is the address of some free kernel object

cre del mut ex (locmp, ptrmp) :=

∀t1, t2, a : (locmp(t1) ∈ { Loc cre, Loc del} ∧ ptrmp(t1) = Some (Vptr a)) ⇒
(locmp(t2) ∈ { Loc cre, Loc del} ∧ ptrmp(t2) = Some (Vptr a)) ⇒
t1 = t2

1 2 3

4 5

6 7

Fig. 7: The invariant conditions sobj kobj aux and cre del mut ex

has the value i. More concretely, we have sobjmp(i) = Some (KObj a, att) if the
value of obj arr[idx].ptr is a, and the value of obj arr[idx].att is att . Furthermore,
we use kobjmp to represent a function that maps the address of each active kernel
object to the abstract representation of the kernel object. Hence, the expression
kobjmp(a) ̸= None means that there is an active kernel object at the address a.

We devise the condition sobj kobj aux (locmp, ptrmp, sobjmp, kobjmp, fkobjs)
as shown in Fig. 7. We make this condition a part of the global invariant. Ac-
cording to this condition, if a task with the identifier t is working with the kernel
object at the address a (i.e., ptrmp(t) = Some (Vptr a)), then the task could be
at a special program location for object creation, at a special program location
for object deletion, or not at one of these special program locations. These three
cases are reflected by a disjunctive normal form in sobj kobj aux .

The Use of the Invariant Condition sobj kobj aux. The invariant con-
dition sobj kobj aux becomes available to the reasoning task after each critical
region is entered. The contents of the parameters locmp, ptrmp, sobjmp, kobjmp,
and fkobjs correspond to the concrete data they represent. The specific parts 1 -
9 can be exploited depending on the values of the auxiliary variables.

We are able to capture Condition 1 and Condition 2 in Section 2 using
sobj kobj aux . If a task t has just completed the assignment p<-kernel obj create(
katt) in the function service obj create, then the task is at a special program
location for object creation (i.e., locmp(t) = Some Loc cre). Hence, Condition 1
in Section 2 is captured by the condition 1 in Fig. 7. Furthermore, Condition 2

Refinement Verification of OS Services 201

in Section 2 is captured by the condition 2 in Fig. 7. Condition 2 is expressed
using the predicate obj ref . The definition of this predicate is given below the
definition of sobj kobj aux in the upper part of Fig. 7.

We next explain the use of the condition 4 . When a task is in the function
kernel obj delete (hence at Loc del), the task resets the members of the kernel
object pointed to by p to their initial values. Condition 4 says that p points
to an active kernel object. This helps ensure the safety of the dereferencing
operation on p. The condition 6 ∨ 7 serves an analogous purpose. When a task
is in the function kernel obj oper (hence at Loc normal), the task dereferences
the pointer p to access the members of the kernel object. The condition 6 ∨ 7

says that p points to a kernel object that is either active or in the pool of the
free kernel objects. Thus, the safety of the dereferencing operation is ensured.
Here, the disjunction of 6 with 7 is necessary. This is because before the task
enters kernel obj oper, the task can be preempted by another task. The latter
task could invoke service obj delete, obtain the pointer to the kernel object, and
free the kernel object in kernel obj delete. This deletion does not cause trouble
to the execution of kernel obj oper — a sensible design of kernel obj oper would
check whether the kernel object to be used has been freed. This check can be
implemented using a data member of kernel objects.

The Proof Obligations for sobj kobj aux. Since sobj kobj aux is specified
as a part of the global invariant, a proof obligation in the verification of the
service functions is to establish sobj kobj aux where a critical region is exited.
Further invariant conditions are supplied for fulfilling this proof obligation.

Suppose a task with identifier t is about to return to the service func-
tion service obj create from the kernel function kernel obj create. There, we have
locmp(t) = Some Loc cre. In addition, if the local pointer p has the value a,
then we have ptrmp(t) = Some (Vptr a). Hence, condition 1 in sobj kobj aux
requires that there be an active kernel object at the address a. Consider a poten-
tial case where the task t is preempted by a different task t′, which happens to be
entering the function kernel obj delete, with the address a as the value for the pa-
rameter p. At the point where t′ exits from the critical region in kernel obj delete,
condition 1 cannot be established for t. This is because the kernel object at a
would have been freed by the task t′ — this kernel object is no longer active.

To show that the aforementioned scenario involving the tasks t and t′ is
impossible, we introduce another condition, cre del mut ex , into the global in-
variant (see bottom part of Fig. 7). The condition says that the actual accesses
of the special program locations marked by Loc cre and Loc del are mutually
exclusive, among all the accessing tasks that deal with the same kernel object
at some address a. Consider the point where task t′ enters the critical region
in kernel obj delete. The task is then at the program location Loc del. If task
t is about to return from kernel obj create, the task is at the program location
Loc cre. Hence, the kernel object dealt with by t cannot be the kernel object
that is dealt with by t′, according to the invariant condition cre del mut ex .
While task t′ is in the critical region of kernel obj delete, no other task can exe-
cute. Hence, the kernel object dealt with by t cannot be the kernel object dealt
with (deleted) by t′, when task t′ exits the critical region of kernel obj delete.

202 X. Li et al.

The Proof Obligations for cre del mut ex. Since cre del mut ex is speci-
fied as a part of the global invariant, a proof obligation in the verification of the
service functions is to establish cre del mut ex where a critical region is exited.

For instance, when a task t exits from the critical region in service obj delete,
the task gets to the program location Loc del. Hence, it should be ascertained
that there is no other task at the program location Loc cre, and working with
the kernel object pointed to by the local pointer p in service obj delete. Consider
the point where task t has just completed the assignment p<-obj arr[idx].ptr
in the aforementioned critical region. There, the kernel object Oknl pointed
to by p is referenced from a service object. From 2 in the invariant condi-
tion sobj kobj aux , if a task t′ is at the program location Loc cre and working
with a kernel object O′

knl, this O′
knl is not referenced from any service object.

Hence, O′
knl must be different from Oknl. Since the other tasks do not execute

while the task t is in a critical region, there is still no task at Loc cre and
working with the kernel object Oknl, when the task t exits from the critical
region in service obj delete. In addition, conditions 3 and 5 in the definition
of sobj kobj aux are also used to establish the condition cre del mut ex where
some of the critical regions are exited. We do not expand on the details.

Summary of Invariant Design. The invariant conditions dependent on aux-
iliary variables enable the establishment of structural integrity properties about
the connection from service objects to kernel objects. This provides a solid foun-
dation for formally verifying the service functions (if they are implemented with
the expected code patterns) based on a microkernel that is already verified in
CSL-R. We provide the formalized code, formal specifications, and correctness
proofs for the functions in Fig. 6 as part of the accompanying artifact.

6 Experimental Evaluation

We apply our methodology in the formal verification of a group of inter-task
synchronization and communication services implemented as an extension to the
preemptive microkernel µC/OS-II. These services are developed by a separate
group of people for safety-critical usage scenarios (e.g., in aerospace vehicles,
self-driving cars, etc). The services provide functions for manipulating mutexes,
semaphores, and message queues. These service objects extend the corresponding
kernel objects of µC/OS-II. For instance, a service-level mutex can be recursive
or non-recursive, a service-level semaphore can be binary or counting, and a
service-level message queue can be blocking or non-blocking. This fine-grained
distinction of object types is not supported by the corresponding kernel objects
of µC/OS-II. We discuss some key aspects of our formal verification below.

Application of the Methodology. Almost all the interface functions for the
inter-task synchronization and communication services invoke the underlying
functions of µC/OS-II to complete operations on kernel objects. This invocation
is usually performed outside of critical regions. For instance, the service function
could be pthread mutex lock for obtaining a service-level mutex, and the corre-
sponding kernel function of µC/OS-II would be OSMutexPend. We are able to

Refinement Verification of OS Services 203

compose the specifications of the service functions from the specifications of the
corresponding kernel functions in the extended CSL-R verification framework
(see Section 4.1). In addition, the service objects are often initialized with point-
ers to dedicated structs containing attribute values. Our extension to the CSL-R
framework also enables us to express the assumption that each of these pointers
points to a well-formed struct of the appropriate type.

Almost all the service functions are implemented following the code patterns
in Fig. 6. For each kind of service (for mutexes, semaphores, and message queues),
we use the method in Section 5 to establish the structural properties about the
connection between service objects and kernel objects. A complication arises
because µC/OS-II has a common pool for kernel objects of different kinds. On
the other hand, each kind of service object is represented using a different struct,
and organized in a separate array. In the verification, we establish that each kind
of service object in use references a kernel object of the same kind, and each
kernel object is referenced by at most one service object of the same kind.

Verification Efforts. The source code for the interface functions and the
newly implemented internal functions totals 1561 lines. Our proof code for these
functions totals approximately 49k lines. The statistics about the lines of source
code and the lines of proof code for our verification of the interface functions
for the mutex service are given in Table 1. The corresponding statistics for the
verification of the other two services are omitted for space reasons. The overall
ratio between the verified code and the verification code is about 1:31. This
ratio is on par with that in the formal verification of µC/OS-II [28, 27]. Owing to
the compositional specification of the service functions, we did not need to re-
develop the proofs for the microkernel. Hence, we were able to devote more efforts
to establishing the structural properties of the connection between the service
level and kernel level, which made the verification of the services possible. It
took approximately 3 person years to complete the verification. This included
6 person months for extending the CSL-R framework as well as designing and
stabilizing all the invariants that connect the service level and the kernel level.

Table 1: The statistics about the formal proofs for the mutex service

Service Function
Source
LOC

Proof
LOC

Service Function
Source
LOC

Proof
LOC

pthread mutex init 76 1986 pthread mutexattr init 60 1150

pthread mutex destroy 33 605 pthread mutexattr destroy 21 506

pthread mutex lock 99 2514 pthread mutexattr gettype 36 654

pthread mutex trylock 96 2457 pthread mutexattr settype 38 705

pthread mutex timedlock 106 2765 pthread mutexattr getprioceiling 38 726

pthread mutex unlock 97 2563 pthread mutexattr setprioceiling 39 732

Problems and Fixes. Through formal verification, we uncovered several prob-
lems in the code of the inter-task synchronization and communication services.
This code had been extensively tested before our verification started. The most
common cause for the uncovered problems is the absence of big enough criti-
cal regions that ensure the uninterruptible execution of code. The problem with

204 X. Li et al.

the most complicated cause is: If four tasks create and delete service objects
concurrently, service objects that are out-of-sync with their corresponding ker-
nel objects can be brought into existence. For instance, a service-level mutex
could start to reference a kernel-level message queue, and a binary service-level
semaphore could start to reference a kernel-level semaphore with a value of 10.
We uncovered part of the problems after realizing that the services could not be
shown to preserve some of the conditions in the global invariant — but these
conditions captured the required or intended behaviors of the services.

We reported the uncovered problems to the developers of the OS services.
They performed three main types of modifications to the code. The first was
enlarging a critical region. The second was adjusting the order of operations.
The third was introducing dedicated mechanisms to avoid races over global re-
sources. An example modification to the code was the following. The initial
implementation of the service function mq delete invoked the kernel function
OSQDel before it set the pointer from a service queue to the underlying kernel
queue to NULL. This order was later reversed such that it agreed with the code
pattern of service obj delete in Fig. 6d. The reason for this reversion was that
the original order was found to cause the existence of service objects that are
inconsistent with their underlying kernel objects in a highly concurrent setting.

7 Related Work

Our focus is the formal verification of functional correctness for OS services,
building on the verification results for an underlying OS kernel. However, our
methodology is also applicable if the service functions are implemented inside the
kernel. Hence, one type of related work is the formal verification of OS kernels.

In the literature, there are several developments about the formal verification
of OS kernels at the implementation level. The seL4 operating system is formally
verified in terms of functional correctness and information security [21, 20]. In the
Verisoft project, an operating system kernel encompassing assembly code and
device drivers is formally verified [5, 4]. CertikOS [18, 17] is a formally verified
concurrent OS. It is carefully organized in layers to facilitate verification. The
commercial preemptive microkernel µC/OS-II is formally verified in terms of the
functional correctness of the API functions [28, 27]. In [11], queue data structures
for inter-process communication are verified using the Iris framework [2].

Like our work, the aforementioned developments verify operating system code
using a proof assistant such as Isabelle [23] or Coq [1]. Unlike our work, these
developments are not focused on the formal verification of code that builds on
an OS kernel, by building on prior verification results for the kernel. Our verifi-
cation is performed for a group of inter-task synchronization and communication
services. On the other hand, the verification performed in the aforementioned
related developments either has a comprehensive coverage of the functionalities
of an OS, or targets a different component than our verification does.

Apart from the aforementioned related work, several developments (e.g. [25,
12, 13, 24, 22, 6, 7, 29]) formally verify operating systems at a more abstract level
than we do, or via an approach that is different from ours – such as through

Refinement Verification of OS Services 205

model checking or requiring trust in external solvers (e.g., Z3 [15]). In addition,
some of the existing works [20, 14, 30] verify the security properties of operating
systems, instead of functional correctness as we verify in the present work.

Our work is about the formal verification of concurrent programs in a broad
sense. Notable verification frameworks in this regard include Iris [19] and VST [10].
These frameworks have no builtin support for the type of concurrency in a pre-
emptive OS kernel, where the switch between threads is triggered via interrupt
handling. Our use of the auxiliary variables with fractional permission helps ex-
press a protocol followed by the concurrent tasks that manipulate the service
objects. In the literature, there exist techniques with dedicated abstractions for
expressing the protocols followed by concurrent threads. An example abstrac-
tion is a state transition system [26]. In the present work, our focus is to achieve
the required verification by maximally exploiting the features of the verification
framework for the underlying microkernel. Hence, we have not introduced fur-
ther abstractions for the expression of protocols. Due to space limits, we stop
here in our discussion about related work in concurrent program verification.

8 Conclusion

We address the problems in formally verifying a group of OS services that build
on a preemptive microkernel, in case the microkernel itself has been formally
verified. Specifically, the verification of the microkernel has been a refinement
verification performed using a concurrent separation logic that supports frac-
tional permission. Our aim is to build sufficiently on the verification framework
and verification code for the microkernel, in verifying the code of the services.
Our methodology consists of enhancements to the verification framework that
enable the compositional specification of the service functions, as well as a de-
sign of invariants for establishing structural integrity properties about the con-
nection between the service level and the kernel level. We use the methodology
to accomplish a substantial verification task targeting a group of inter-task syn-
chronization and communication services based on the preemptive microkernel
µC/OS-II. The verification uncovers dormant bugs and provides a level of cor-
rectness assurance that is above what can be achieved through extensive testing.

A potential direction for future work is the design of deductive systems that
facilitate the verification of global properties for a service, based on the abstract
programs of all the interface functions of a service. Another direction for future
work is the verification of progress properties for the functions of a service.

Data-Availability Statements. The mechanized extension to the CSL-R veri-
fication framework and proofs for the OS service in abstract form (as described in
Section 4 and Section 5) are published at Zenodo (10.5281/zenodo.10456998).

Acknowledgments. This work was partially supported by the National Nat-
ural Science Foundation of China (62002246, 62272322, 62272323, 62372311,
62372312). We thank Xinyu Feng for help with the CSL-R verification frame-
work. We thank Qinxiang Cao and Bohua Zhan for advices on some of the techni-
cal ingredients facilitating the completion of our work. We thank the anonymous
reviewers for providing valuable feedback that helped improve our presentation.

206 X. Li et al.

References

1. The Coq proof assistant. https://coq.inria.fr/. Accessed: 2023-10-08.
2. Iris – a higher-order concurrent separation logic framework, implemented and ver-

ified in the Coq proof assistant. https://iris-project.org/. Accessed: 2023-10-
12.

3. µC/OS-II. https://www.osrtos.com/rtos/uc-os-ii/. Accessed: 2023-10-08.
4. Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert Schirmer, and

Artem Starostin. The Verisoft approach to systems verification. In Proceedings
of Second International Conference on Verified Software: Theories, Tools, Experi-
ments (VSTTE), pages 209–224, 2008.

5. Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and Alexandra Tsyban. Per-
vasive verification of an OS microkernel - inline assembly, memory consumption,
concurrent devices. In Proceedings of Third International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), pages 71–85, 2010.

6. June Andronick, Corey Lewis, and Carroll Morgan. Controlled Owicki-Gries con-
currency: Reasoning about the preemptible eChronos embedded operating sys-
tem. In Proceedings of Workshop on Models for Formal Analysis of Real Systems,
(MARS), pages 10–24, 2015.

7. Bernhard Beckert and Michal Moskal. Deductive verification of system software in
the Verisoft XT project. Künstliche Intell., 24(1):57–61, 2010.

8. John Boyland. Checking interference with fractional permissions. In Proceedings
of 10th International Symposium on Static Analysis (SAS), pages 55–72, 2003.

9. Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM
SIGLOG News, 3(3):47–65, 2016.

10. Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W.
Appel. VST-Floyd: A separation logic tool to verify correctness of C programs.
Journal of Automated Reasoning, 61(1-4):367–422, 2018.

11. Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and
Francesco Zappa Nardelli. Applying formal verification to microkernel IPC at
Meta. In Proceedings of 11th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs (CPP), pages 116–129, 2022.

12. Shu Cheng, Jim Woodcock, and Deepak D’Souza. Using formal reasoning on a
model of tasks for FreeRTOS. Formal Aspects of Computing, 27(1):167–192, 2015.

13. Nathan Chong and Bart Jacobs. Formally verifying FreeRTOS’ interprocess com-
munication mechanism. In Embedded World Exhibition & Conference, 2021.

14. David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end verification of
information-flow security for C and assembly programs. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 648–664, 2016.

15. Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver.
In Proceedings of 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Held as Part of ETAPS, pages
337–340, 2008.

16. Mike Gordon and Hélène Collavizza. Forward with Hoare. In A. W. Roscoe,
Clifford B. Jones, and Kenneth R. Wood, editors, Reflections on the Work of C.
A. R. Hoare, pages 101–121. Springer, 2010.

17. Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (New-
man) Wu, Vilhelm Sjöberg, and David Costanzo. Building certified concurrent OS
kernels. Communications of the ACM, 62(10):89–99, 2019.

Refinement Verification of OS Services 207

18. Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. CertiKOS: An extensible architecture for build-
ing certified concurrent OS kernels. In Proceedings of 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 653–669, 2016.

19. Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming, 28:e20, 2018.

20. Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification
of an OS microkernel. ACM Transactions on Computer Systems, 32(1):2:1–2:70,
2014.

21. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification
of an OS kernel. In Proceedings of 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220, 2009.

22. Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Born-
holt, Emina Torlak, and Xi Wang. Hyperkernel: Push-button verification of an
OS kernel. In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), pages 252–269, 2017.

23. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

24. Evgeny Novikov and Ilja S. Zakharov. Verification of operating system monolithic
kernels without extensions. In Proceedings of 8th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
Part IV, pages 230–248, 2018.

25. Leandro Batista Ribeiro, Florian Lorber, Ulrik Nyman, Kim Guldstrand Larsen,
and Marcel Baunach. A modeling concept for formal verification of OS-based
compositional software. In Proceedings of 26th International Conference on Fun-
damental Approaches to Software Engineering (FASE), Held as Part of ETAPS,
pages 26–46, 2023.

26. Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek
Dreyer. Logical relations for fine-grained concurrency. In Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 343–356, 2013.

27. Fengwei Xu. Design and Implementation of A Verification Framework for Pre-
emptive OS Kernels. PhD thesis, University of Science and Technology of China,
2016.

28. Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A
practical verification framework for preemptive OS kernels. In Proceedings of 28th
International Conference on Computer Aided Verification (CAV), pages 59–79,
2016.

29. Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verifica-
tion of a type-safe operating system. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
99–110, 2010.

30. Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. Refinement-based
specification and security analysis of separation kernels. IEEE Transactions on
Dependable and Secure Computing, 16(1):127–141, 2019.

208 X. Li et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Refinement Verification of OS Services 209

Fuzzy quantitative attack tree analysis

1 University of Twente, Enschede, The Netherlands
{t.k.n.dang,m.a.lopuhaa,m.i.a.stoelinga}@utwente.nl

2 Radboud University, Nijmegen, The Netherlands
m.stoelinga@cs.ru.nl

Abstract. Attack trees are important for security, as they help to iden-
tify weaknesses and vulnerabilities in a system. Quantitative attack tree
analysis supports a number security metrics, which formulate important
KPIs such as the shortest, most likely and cheapest attacks.
A key bottleneck in quantitative analysis is that the values are usually
not known exactly, due to insufficient data and/or lack of knowledge.
Fuzzy logic is a prominent framework to handle such uncertain values,
with applications in numerous domains. While several studies proposed
fuzzy approaches to attack tree analysis, none of them provided a firm
definition of fuzzy metric values or generic algorithms for computation
of fuzzy metrics.
In this work, we define a generic formulation for fuzzy metric values that
applies to most quantitative metrics. The resulting metric value is a fuzzy
number obtained by following Zadeh’s extension principle, obtained when
we equip the basis attack steps, i.e., the leaves of the attack trees, with
fuzzy numbers. In addition, we prove a modular decomposition theorem
that yields a bottom-up algorithm to efficiently calculate the top fuzzy
metric value.

Keywords: Attack trees · quantitative analysis · fuzzy numbers.

1 Introduction

Attack trees. Attack trees (ATs) [32] are a popular tool for modeling and an-
alyzing security risks. They provide a structural way to identify vulnerabilities
in a system, by decomposing the attacker’s goal into subgoals, down to basic
attack steps that a malicious actor can take to reach said objective. An attack
tree consists of basic attack steps (BASs) representing atomic adversary actions,
and intermediate AND/OR-gates whose activation depends on the activation of
their children. The attacker’s goal is to activate the root (top node), see Fig. 1
for an example. ATs can be trees or directed acyclic graphs (DAGs). ATs have
been supported by commercial tools [1–3] and equipped with semantics [25, 18].
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 210–231, 2024.
https://doi.org/10.1007/978-3-031-57259-3_10

Thi Kim Nhung Dang1(B) , Milan Lopuhaä-Zwakenberg1 ,
and Mariëlle Stoelinga1,2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_10&domain=pdf
http://orcid.org/0000-0002-3235-5952
http://orcid.org/0000-0001-5687-854X
http://orcid.org/0000-0001-6793-8165

Fig. 1: The AT model visualises the attack steps by which an attacker can illegally
take money from a bank. The attacker needs to enter the bank by breaking in
or sneaking in, and also needs to open a vault. Sneaking in, breaking in, and
opening a vault cost 30, 5 and 60 minutes, respectively. Hence, the quantitative
metric minimal cost for the attacks is min(30 + 60, 5 + 60) = 65.

Quantitative analysis. Beyond qualitative analysis, ATs are also used to calculate
important security metrics of the system, e.g., the minimal cost (in money, time
or resources) the attacker needs to spend for a succesful attack, or the probability
of a succesful attack. Such metrics are obtained by assigning an attribute value
to each BAS, such as the cost needed to perform that BAS, and using this as
input to calculate the security metric. When the AT is treeshaped, the metric
is quickly calculated using a bottom-up algorithm, propagating values from the
BASs to the top. For DAG-shaped ATs this problem is NP-complete, but good
heuristics exist [22]. These algorithms are formulated in the generic algebraic
structure of semirings, allowing them to be employed to a vast range of security
metrics including cost, time, skill, damage, etc.

Uncertain parameters. The methods described above assume that all BAS pa-
rameters are known exactly. However, this is problematic in practice: statistics
on attacker capabilities may be hard to obtain, and because of the fast-changing
nature of the field historical data are only of limited use. Obtaining accurate
and realistic parameter values is a key bottleneck in quantitative security anal-
ysis. In its absence, there is a great need for methods that allow us to deal with
uncertain and approximately known parameter values.

Fuzzy theory. Fuzzy theory is a prominent framework in which parameter uncer-
tainty and its effect on a calculation’s outcome can be expressed mathematically.
It has been successfully used in many applications, including machine learning
[7], reliability engineering [6], and computational linguistics [24]. Rather than
exact (‘crisp’) values, e.g., x = 3, each parameter is assigned a range of values,
and to each of these a possibility value in [0, 1] is assigned by means of a mem-

Fuzzy quantitative attack tree analysis 211

bership function. Often, only functions of a specific form are considered, leading
to the definition of triangular, trapezoidal, etc. fuzzy numbers [13].

While fuzzy theory has been applied to AT analysis before [17, 35, 19, 11,
36], much of the earlier work lacks mathematical rigor, and none of these apply
fuzzy theory to quantitative analysis. As a result, there are no algorithms for
calculating AT metrics with fuzzy parameters. In fact, to our knowledge the
fuzzy counterpart of quantitative AT analysis has not been defined yet. A key
technical hurdle is that the operations typically used in AT analysis do not
preserve popular fuzzy number types: for instance, the OR-gate corresponds
to the operation min for the minimal cost metric, and applying min to two
triangular fuzzy numbers does not yield a triangular fuzzy number.

Contributions. Our first contribution is a clear, mathematically rigorous defini-
tion of fuzzy AT metrics. Because these are defined for general fuzzy numbers,
rather than specific subtypes such as triangular fuzzy numbers, we sidestep the
problem that these subtypes are not preserved under AT metric operations; in-
stead, our definition works for the generic semiring framework defined in [22].
We show that our definition naturally follows from Zadeh’s extension principle
[38], a general approach for extending functions to fuzzy numbers.

Having defined fuzzy AT metrics, we furthermore develop a linear-time,
bottom-up algorithm for calculating them for tree-shaped ATs. We show the
validity of this algorithm by showing that fuzzy AT metrics are susceptible to
modular analysis : when an AT has a module, i.e., a minimally connected sub-
component, a fuzzy metric can be computed by first calculating the metric for
the module and then for its complement. When an AT has many modules, this
substantially speeds up computation. When an AT is tree-shaped, every node is
a module, proving the validity of the algorithm.

Our algorithm generalizes the bottom-up algorithm for crisp AT metrics from
[22]. Unfortunately, the algorithm for DAG-shaped metrics from that paper does
not transfer to the fuzzy setting. The key reason is that fuzzy numbers do not
form a semiring, as we show in this paper. Fuzzy metrics for DAG-shaped ATs
require a radically new approach, and we leave this for future work.

Summarized our contributions are:

1. A rigorous, general definition of fuzzy AT metrics;
2. A bottom-up algorithm for computing fuzzy metrics in tree-structured ATs;
3. A proof of modular decomposition for fuzzy AT metrics.

The full version of this paper (including the appendix) is available on Zenodo[9].

2 Related work

Below, we provide a literature review for computation of metrics with fuzzy
numbers applied to attack trees and the related formalism of fault trees.

212 Dang et al.

Attack tree analysis with fuzzy numbers. An intuitionistic fuzzy set was used
to represent the uncertainty and hesitancy present in data [17], or an attack-
defense model was proposed [35, 11], or using a fuzzy analytic hierarchy process
to establish a successful probability model of cyber attack [36, 19]. However,
there have been several studies on the approach of involving fuzzy attribution
in fault tree analysis (FTA) summarized [37, 15, 31, 14, 23] for many years.

Fault tree analysis. Fault trees can be considered as the safety variant of attack
trees: whereas attack trees indicate how malicious attacks propagate through a
system and lead to damage, fault trees indicate how unintended failures prop-
agate and lead to system level failures. Therefore, leaves of a fault tree model
component failures and are called basic events (BEs). Due to their similarities,
many approaches to fuzzy fault tree analysis can also be applied to attack trees.
Comprehensive literature surveys on fault trees with fuzzy numbers can be found
in [37, 23, 31, 14].

Fault tree analysis with fuzzy probabilities. Fuzzy set theory was firstly used in
fault tree analysis by Tanaka et al. [34] to address the problem of uncertain
BEs failure. In the paper, Zadeh’s extension principle was used to estimate the
possibility of system failure. The failure possibility of the basic events and top
event were represented as trapezoidal fuzzy numbers.

Singer [33] considered the distribution of BEs as fuzzy numbers. The mem-
bership function is continuous and is approximated by left and right functions
called L-R type fuzzy numbers [10]. Here, L-R type fuzzy numbers are defined by
a triplet (m, a, b), where m, a, b are positive real numbers. The author extended
algebraic operations on the triplet of L-R type fuzzy numbers and calculated the
possibility distribution of the system.

Kim et al. [16] evaluated the possibility of system failure. Similar to [33], L-R
type fuzzy numbers are used as the possibilities of BEs. The value m of the triplet
(m, a, b) is evaluated by four-expert valuations in the form of triangular fuzzy
numbers (TFNs). Each value m is determined to calculate the optimistic and
pessimistic possibilities of a system accident. Finally, two cases of possibilities -
the pessimistic possibility of system failure with major TFN and the optimistic
one with minor TFN - were determined.

Lin et al. [21] estimated failure possibility of ambiguous events. For this
purpose, the linguistic variables describing the evaluation data are expressed in
triangular or trapezoidal fuzzy numbers denoting failure possibilities. The fuzzy
possibility of a top event is calculated using the α-cut fuzzy operators.

Peng et al. [27] presented an approach to fault diagnosis of communication
control systems. All probability values of the fault tree were converted to uni-
form triangle fuzzy numbers. The fuzzy probability of the top event was then
calculated using Zadeh’s principle. A fault tree (FT) consisting of only OR-
gates was shown as an analytical example to determine the confidence interval
of probability of top event and achieve fuzzy reasoning diagnosis result.

Fuzzy quantitative attack tree analysis 213

Fault tree reliability analysis with interval arithmetic. Purba et al.[28] devel-
oped a fuzzy probability based fault tree analysis to propagate and quantify
epistemic uncertainty raised in basic events. BE reliability characteristics are
described in fuzzy probabilities. From the BE fuzzy probabilities, the matrix of
fuzzy probabilities of the minimal cut sets is generated and then the top event
fuzzy probability is quantified using the Fuzzy multiplication rule in engineering
applications.

Purba et al. [29] proposed a fuzzy probability and α-cut based-FTA approach.
Each fuzzy probability distribution of BEs is represented uniquely by an α-cut.
The top event α-cut is quantified into the best estimate α-cut, the lower bound
α-cut, and the upper bound α-cut follow fuzzy arithmetic operations on α-cuts
of BEs. The approach was verified by evaluating the reliability of a complex
engineering system and the results are compared to the reliability of the same
system quantified by conventional FTA.

Fuzzy FTA by conversion of fuzzy number of BEs to crisp probability of BEs. Hu
et al. [12] developed an FFTA methodology for analyzing above-ground walled
storage system failures. Expert elicitation and fuzzy logic was used to manipulate
the ambiguities and vagueness in the linguistic variables of BEs. Fuzzy proba-
bility BE was defuzzified to a crisp number. The resultant crisp probability of
BEs were used as inputs to generate crisp probability of the top event.

At the time of this writing, fuzzy analysis has not been studied for ATs. The
literature has introduced fuzzy analysis of FTs, but it only addresses certain
types of fuzzy numbers (trapezoidal, triangular, etc.). This paper thus provides
a general mathematical framework for fuzzy analysis of ATs.

3 Fundamentals of fuzzy theory

Fuzzy set theory was introduced by L.A. Zadeh [38] to deal with problems in
which vagueness is present. Instead of considering elements x of a set X with
a fixed value, we consider fuzzy elements x which can have a range of possible
values; the extent to which x can be equal to x is expressed by the membership
degree of x in x, which is a value x[x] ∈ [0, 1]. The value x[x] is the confidence one
has that x has value x. Here x[x] = 1 denotes full membership, while x[x] = 0
denotes no membership.

For instance, the time needed to perform an attack may be given as a real
number, e.g. x = 3 ∈ R; but often the exact time needed is not known precisely,
and can be somewhere around 3. This can be represented by a fuzzy number
x : R → 1 which is 0 everywhere except close to 3, and which has a maximum at
3 (see Fig. 2).

Definition 1. Let X be a set. A fuzzy element of X is a function x : X → [0, 1].
The set of all fuzzy elements of X is denoted F(X) := {x | x : X → [0, 1]}.

In the literature, fuzzy elements are usually called fuzzy sets [38], on the basis
that the membership function x : X → [0, 1] generalizes the indicator function

214 Dang et al.

(a) (b)

Fig. 2: A non-fuzzy, ‘crisp’ element x (a) and a fuzzy element x (b).

1S : X → {0, 1} of a set S ⊆ X; thus a fuzzy set can be thought of as a set
of which elements can have partial membership. Instead, we use the term fuzzy
element to stress that in this paper, fuzzy elements are used to express the
uncertainty of individual values, as in Fig. 2b, rather than the uncertainty of
set membership. A fuzzy element x behaves similarly to a probability density
function in that the uncertainty of an element of X is expressed by a function
on X.

Our definition of fuzzy element is very general. Many works in the literature
restrict the form of the function x : X → [0, 1] to make computation more con-
venient, especially for X = R, i.e., for so-called fuzzy numbers. Thus there exist
triangular, trapezoidal, Gaussian, etc. fuzzy numbers [13, 8].

Example 1. Consider real numbers a ≤ b ≤ c ≤ d. The trapezoidal fuzzy number
trapa,b,c,d ∈ F(R) is defined as (see Fig. 3):

trapa,b,c,d[x] =


x−a
b−a , if a < x ≤ b,

1, if b < x < c,
d−x
d−c , if c ≤ x < d,

0, otherwise.

(1)

The trapezoidal fuzzy number trapa,b,c,d has the maximal membership degree
of 1, i.e., trapa,b,c,d[x] = 1 for all x ∈ [b, c]. At the same time, a and d are the
lower and upper bounds of its support, respectively. In case b = c, we have a
triangular fuzzy number tria,b,d.

For notational convenience we occasionally abbreviate x via a list of mem-
bership values x 7→ x[x], omitting x for which x[x] = 0. For example, x = {1 7→
0.7, 2 7→ 0.5} ∈ F(Z) is defined by

x[x] =


0.7, if x = 1,

0.5, if x = 2,

0, otherwise.

Arithmetic operations on fuzzy elements are performed following Zadeh’s
extension principle [13, 4, 39, 41, 40, 38]. This principle provides a framework to

Fuzzy quantitative attack tree analysis 215

Fig. 3: The trapezoidal fuzzy number trapa,b,c,d.

apply functions and arithmetic operations on sets to their fuzzy elements. Before
giving the full definition, we motivate it by an example.

Example 2. Consider x, y ∈ F(N) given by

x = { 2 7→ 0.4, 3 7→ 1},
y = { 5 7→ 1, 6 7→ 0.6}.

We wish to calculate the addition of x and y, which we write as x+̃y. This is
also an element of F(N) and so we must specify the confidence (x+̃y)[z] that the
sum values to z, for all z ∈ N. Consider z = 8; the sum values to 8 only in one
of these two cases:
– x values to 2 and y values to 6;
– x values to 3 and y values to 5.

Our confidence that x values to 2 is x[2] = 0.4, and our confidence that y values
to 6 is y[6] = 0.6. Our confidence that both of these are true, i.e., that the first
case holds, is then min{0.4, 0.6} = 0.4. Similarly, our confidence that the second
case holds is min{1, 1} = 1. Our confidence (x+̃y)[8] that the sum values to 8 is
then the confidence that either of the two cases above holds; this is expressed
by the maximum, so

(x+̃y)[8] = max{0.4, 1} = 1.

Similarly one can calculate (x+̃y)[z] for other values of z, by taking all possible
outcomes of the sum and calculating their confidence. This yields

x+̃y = {7 7→ 0.4, 8 7→ 1, 9 7→ 0.6}.

The idea behind Example 2 can be applied to general multivariate functions.
The only change that needs to be made is that in general, there may be infinitely
many pairs (x, y) such that f(x, y) = z; therefore one needs to take the supremum
over all min{x[x], y[y]} rather than the maximum.

Definition 2 (Zadeh’s Extension Principle). Let f be a multiargument
function f : X1 ×X2 × · · · ×Xn → Y . The Zadeh extension of f is the function
f̃ : F(X1)× . . .× F(Xn) → F(Y) defined as:

f̃(x1, . . . , xn)[y] =


sup

(x1,x2,...,xn)∈
∏

i Xi :
f(x1,x2,...,xn)=y

min
i=1,...,n

xi[xi], f−1(y) ̸= ∅,

0 f−1(y) = ∅.

216 Dang et al.

Based on the extension principle, different arithmetic operations on fuzzy
numbers have been defined [5, 34, 4, 20, 27]. As a result of Definition 2, addition
and subtraction operations on fuzzy numbers typically have straightforward for-
mulations. E.g., for two trapezoidal fuzzy numbers we have

trapa1,a2,a3,a4
+̃ trapb1,b2,b3,b4 = trapa1+b1,a2+b2,a3+b3,a4+b4 ,

trapa1,a2,a3,a4
−̃ trapb1,b2,b3,b4 = trapa1−b4,a2−b3,a3−b2,a4−b1 .

Multiplication and division, however, are nonlinear operations that produce
fuzzy numbers of different types than the operands; for example, the quotient of
two trapezoidal fuzzy numbers is itself not trapezoidal. For convenience and to
simplify the computation, the resulting fuzzy number can be approximated by
a fuzzy number of the same type. The computation and visualisation of these
estimations can be found in [5].

In section 5, we will apply the general fuzzy element framework to formulate
fuzzy attack tree metrics. Unfortunately, the operators considered in AT anal-
ysis, such as min, do not preserve triangular, trapezoidal, etc. fuzzy numbers.
We therefore need to work with fuzzy numbers and Zadeh extensions in full
generality as defined above.

4 Attack trees

In this section, we provide a brief overview of ATs as presented in [22]. Attack
trees are hierarchical graphical models that illustrate the attack process. The
trees are usually drawn inverted, with the root node located at the top of the
tree and branches descending from the root to the lowest levels of the tree – the
leaves. The root node represents the attacker’s overall objective. The leaves in
ATs are called Basic Attack Steps (BASs) representing the attacker’s activities.
Nodes between the leaves and the root node depict transitional states or attacker
sub-goals. These intermediate steps are equipped with logical gates that indicate
whether an intermediate step succeeds, e.g. the AND-gate succeeds if all input
children succeed, the OR-gate is successful if at least one child does succeed.

Definition 3. [22] An attack tree is a tuple T = (N,E, t), where (N,E) is a
rooted directed acyclic graph, and t is a map t : N → {BAS, OR, AND} such that
t(v) = BAS if and only if v is a leaf for all v ∈ N .

The root of T is denoted RT , and the set of children of a node v is denoted
ch(v) = {w ∈ N | (v, w) ∈ E}. The set of basic attack steps is denoted BAST =
{v ∈ N | t(v) = BAS}.

4.1 Semantics for attack trees

The semantics of an AT are defined by its successful attacks, i.e., attacks that
activate the top node. Formally, an attack is a subset A ⊆ BAST . For example,
in Fig. 1, {p, r} is an attack, corresponding to stealing money by breaking in

Fuzzy quantitative attack tree analysis 217

and then opening the vault. An attack’s success is most conveniently expressed
by the structure function, which is defined recursively as follows:

Definition 4. [22] Let T be an AT. The structure function fT : N × 2BAST →
{0, 1} of T is defined, for a node v ∈ N and an attack A ⊆ BAST , by

fT (v,A) =


1 if t(v) = OR and ∃u ∈ ch(v) s.t fT (u,A) = 1,

1 if t(v) = AND and ∀u ∈ ch(v) s.t fT (u,A) = 1,

1 if t(v) = BAS and v ∈ A,

0 otherwise.

(2)

An attack A is said to reach a node v if fT (v,A) = 1, i.e. it makes v succeed.
If no proper subset of A reaches v, then A is a minimal attack on v. The set of
minimal attacks on RT is denoted JT K. For example, the AT from Fig. 1, has
three successful attacks: {r, q}, {r, p}, and {r, q, p}. The first two are minimal,
so we have: JT K = {{r, q}, {r, p}}.

Discussion regarding attacks and semantics for ATs are presented in [22].
Note that adding BASes to an attack will not make it less successful; hence the
successful attacks are determined by JT K. This leads to the following definition
of the semantics.

Definition 5. The semantics of an AT T is its suite of minimal attacks JT K.

4.2 Security metrics for attack trees

Quantitative AT analysis may concern various attributes, such as cost, time,
damage, etc. To handle all these attributes in a generic way, analysis algorithms
work over a so-called attribute domain (V,▽,△). Here V is the value domain for
the attribute, e.g., R≥0 for costs, and [0, 1] for probability. Furthermore, ▽ and
△ are binary operators on V , where ▽ denotes the way values are propagated
over an OR-gate: If T = OR(a, b) and a, b are BASs assigned metric values xa, xb,
then xa▽xb is the security value of T . Similarly △ is the operator corresponding
to the AND-gate. For technical reasons we assume ▽ and △ satisfy some algebraic
properties, which is encoded in the definition of a semiring.

Definition 6. [22] A semiring is a tuple (V,▽,△) where V is a set, ▽ and △ are
commutative associative binary operators on V , and △ distributed over ▽ (i.e.
x △ (y▽z) = (x △ y)▽(x △ z)).

To assign a metric value to an AT T , one chooses a semiring V in which the
metric takes value, as well as a BAS value xa ∈ V for each BAS a; this is encoded
as a vector x⃗ ∈ V BAST . The calculation of T proceeds in two steps: first, we assign
values to an attack A = {a1, . . . , an}. Since all BASs have to be executed, we set
mA(x⃗) =

an
i=1 xai . This corresponds to the cost/damage/probability/etc. of the

attack A, given the BAS values x⃗. Next, we calculate the metric value of T as a
whole. To do this, we consider the set of all minimal attacks JT K = {A1, . . . , Am}.
Since for the top node to be reached one only needs one minimal attack, the
metric value for T is calculated via mT (x⃗) =

`m
i=1 mAi(x⃗).

218 Dang et al.

Example 3. We consider the minimal cost metric that assigns to an AT the
minimal cost the attacker needs to spend to successfully reach the top node. This
corresponds to the semiring (N,min,+). Indeed, the cost needed to activate the
top node in OR(a, b) is the minimum of the costs xa and xb, as only one of the
two children needs to be activated; hence ▽ = min. Similarly, an AND-gate needs
to activate all children, so their costs need to be added and △= +. Then given
a vector x⃗ ∈ RBAST

≥0 assigning a cost value xa ∈ R≥0 to each BAS a, the metric
value of T is defined as mT (x⃗) = minA∈JT K

∑
a∈A xa. Here

∑
a∈A xa is the total

cost of performing an attack A, so the metric value corresponds to the cost of
the cheapest minimal attack. Consider the AT T = AND

(
r,OR(q, p)

)
in Fig. 1.

Recall that JT K = {{r, q}, {r, p}} = {A1, A2}, and consider an attribution x⃗
given by xr = 60, xq = 30, xp = 5. Then the metric can be calculated as follows.

mT (x⃗) = min

(∑
a∈A1

xa,
∑
a∈A2

xa

)
= min(60 + 30, 60 + 5) = 65.

Formalizing the discussion and example above leads to the following defini-
tion.

Definition 7. [22] Let T be an AT and let (V,▽,△) be a semiring.

1. An attribution of T in V is an element x⃗ of V BAST .
2. Given an attribution x⃗, the metric value of T given V and x⃗ is defined as

mT (x⃗) =
h

A∈JT K

i

a∈A

xa ∈ V. (3)

As is implicit from the notation, we consider a metric to be a function
mT : V BAST → V that takes as input the vector x⃗ of BAS attribute value (e.g.
BAS costs), and outputs the AT’s security value (e.g. minimal cost needed to
succesfully attack the AT). This viewpoint is useful when extending AT metrics
to the fuzzy setting in the next section.

5 Fuzzy metrics for attack trees

To define fuzzy AT metrics — as stated, to the best of our knowledge no such
definition exist yet — we equip each BAS with a fuzzy element of V , i.e., an ele-
ment of F(V). Thus, a fuzzy attribution is an element x⃗ of F(V)BAST , assigning
a fuzzy element xa to each BAS a. For crisp metrics, the AT’s metric value is
obtained by applying a function mT to the crisp attribution vector x⃗, as outlined
in Definition 7. Analogously, we obtain the fuzzy metric value by applying m̃T

to x⃗, where m̃T is the Zadeh extension of mT .

Example 4. Consider the AT T = AND(r,OR(q, p)) from Fig. 1; recall that
JT K = {{r, q}, {r, p}}. We consider the minimal time metric, corresponding to

Fuzzy quantitative attack tree analysis 219

the semiring (R≥0,min,+). For this semiring, consider the fuzzy attribution
x⃗ = (xr, xq, xp) given by xr = {50 7→ 1, 60 7→ 1}, xq = {0 7→ 1}, and xp = {5 7→ 1},
respectively; that is, q and p have crisp time values, and r either takes time 50
or 60, with equal possibility.

Since the minimal attacks are {r, q} and {r, p}, the function mT : V 3 → V
is given by mT (xr, xq, xp) = min(xr + xq, xr + xp) for all xr, xq, xp ∈ V . Then
the fuzzy metric value is equal to m̃T (xr, xq, xp). Using the definition of Zadeh
extension from Definition 2, the confidence that this fuzzy metric value is equal
to a y ∈ R≥0 is equal to

m̃T (⃗x)[y] = sup
xr,xq,xp∈R≥0:

min(xr+xq,xr+xp)=y

min
(
xr[xr], xq[xq], xp[xp]

)
.

Since xq[xq] ̸= 0 only for xq = 0, where xq[xq] = 1, we only need to consider
xq = 0, and, for the same reason, we only need to consider xp = 5. Thus the
expression above is equal to

sup
xr:

min(xr,xr+5)=y

min
(
xr[xr], 1, 1

)
=

{
1, if y = 50 or y = 60,

0, otherwise.

so m̃T (⃗x) = {50 7→ 1, 60 7→ 1}.

Formally fuzzy AT metrics are then defined as follows.

Definition 8. Let T be an AT and let (V,▽,△) be a semiring.

1. A fuzzy attribution is an element x⃗ of F(V)BAST .
2. Given a fuzzy attribution x⃗, the fuzzy metric value of T given V and x⃗ is

defined as m̃T (⃗x), where m̃T : F(V)BAST → F(V) is the Zadeh extension of
the function mT from Definition 7.

More concretely, m̃T (⃗x) is the fuzzy element of V defined, for y ∈ V , by

m̃T (⃗x)[y] = sup
x⃗∈V BAST :
mT (x⃗)=y

min
v∈BAST

xv[xv]

= sup
x⃗∈V BAST :`

A∈JTK
a

a∈A xa=y

min
v∈BAST

xv[xv]. (4)

Our choice of using Zadeh’s extension to extend crisp AT metrics to fuzzy AT
metrics is justified by the fact that Zadeh extension treats the input fuzzy num-
bers x1, . . . , xn as independent, i.e., it assumes that there is no nontrivial joint
fuzzy distribution on the product space

∏
i Xi of which the xi are the marginal

distributions [30]. This is a standard assumption on BASes (See [26] for a sim-
ilar viewpoint on fault trees) which we follow. In theory, one could extend the

220 Dang et al.

definition to allow non-independent BASes with more complicated joint fuzzy
distributions. However, the prevailing viewpoint is that such relations should be
explicitly modeled into the AT itself. For example, if the non-independence is
due to a common cause affecting the joint distribution of multiple BAS attribute
values, then this common cause should be explicitly modeled into the AT frame-
work by replacing the BAS by sub-ATs with shared nodes [26]. We will follow
this philosophy and use the Zadeh extension as the natural way to define fuzzy
AT metrics.

An alternative way of defining fuzzy AT metrics would be to replace the crisp
operators ▽,△ in (3) with their fuzzy counterparts ▽̃, △̃. However, this does not
coincide with our definition, as the following result shows:

Theorem 1. In general,

m̃T (⃗x) ̸=
h̃

A∈JT K

ĩ

a∈A

xa, (5)

This result is shown by the following example.

Example 5. We continue Example 4, where m̃T (xp, xq, xr) = {50 7→ 1, 60 7→ 1}.
On the other hand,

h̃

A∈JT K

ĩ

v∈A

xv = m̃in
(
xr+̃xq, xr+̃xp

)
.

One could calculate this fuzzy number in a manner analogous to Example
4, but here we show another method that is often more convenient. For a fuzzy
number x ∈ F(R≥0), define x(1) = {x ∈ R≥0 | x[x] = 1}; this is the level 1 α−cut
of x [13]. Then from Definition 2 one can deduce that for x, y ∈ F(R≥0) and
f : R2

≥0 → R≥0 one has

(f̃(x, y))(1) = {f(x, y) | x ∈ x(1), y ∈ y(1)}.

For brevity we abbreviate the right hand side of this equation to f(x(1), y(1)).
It follows that

(
m̃in

(
xr+̃xq, xr+̃xp

))(1)
= min((xr+̃xq)

(1), (xr+̃xp)
(1))

= min(x(1)r + x(1)q , x(1)r + x(1)p)

= min({50, 60}+ {0}, {50, 60}+ {5})
= min({50, 60}, {55, 65})
= {50, 55, 60}.

Hence

(˜̀
A∈JT K

ã

v∈A

xv

)
[x] = 1 if and only if x ∈ {50, 55, 60}. Since this fuzzy

number only takes possibility values 0 and 1, it follows that
h̃

A∈JT K

ĩ

v∈A

xv = {50 7→ 1, 55 7→ 1, 60 7→ 1} ≠ {50 7→ 1, 60 7→ 1} = m̃T (xp, xq, xr).

Fuzzy quantitative attack tree analysis 221

(a) (b)

Fig. 4: Two triangular fuzzy numbers and their minimum, as a Zadeh extension
of the function min.

The ‘extra’ possibility 55 7→ 1 on the LHS comes from comparing the attack
{r, q} with cost 60 + 0 to the attack {r, p} with cost 50 + 5. In other words,
in this comparison r is considered to have costs 50 and 60 simultaneously. By
contrast, in the calculation of m̃T (⃗x) the cost xr can only have one value at a
time.

Equation (5) shows that a priori, there are two ways one can define fuzzy AT
metrics. We choose to use the definition of m̃T (⃗x) via Zadeh’s extension as in
Definition 8 for two reasons: first, this accurately captures the independence of
the BASes as outlined below Definition 8. Second, we show in Theorem 3 that
this definition satisfies modular decomposition, a fundamental property of AT
metrics. The RHS of (5) does not satisfy modular decomposition, giving another
argument why Definition 8 is the preferred definition (see Remark 2 below).

Example 6. Consider the AT T = OR(a, b) with the min cost metric, represented
by the semiring (R≥0,min,+). As fuzzy attributions consider xa = tri0,1,4 and
xb = tri1,2,3. Then one can show (see Fig. 4) that m̃T (⃗x) = m̃in(xa, xb) is given
by

m̃in(xa, xb)[x] =


x, if 0 ≤ x < 1,
1− x−1

3 , if 1 ≤ x < 2.5,
3− x, if 2.5 ≤ x < 3,
0, otherwise.

In particular m̃in(xa, xb) is not a triangular fuzzy number. Hence triangular fuzzy
numbers are not preserved by the operations inherent to AT analysis. The same
holds for other popular subtypes of fuzzy numbers such as rectangular numbers;
for this reason, we define fuzzy quantitative AT analysis for general fuzzy num-
bers in Definition 8. Finding subtypes of fuzzy numbers that are preserved by
AT analysis operations forms an interesting avenue for future research.

Remark 1. Besides AT metrics as defined in this paper, in [22] quantitative anal-
ysis for so-called dynamic ATs (DATs) is also defined. DATs include a new gate
type SAND (“sequential AND”) used when attack steps have to be performed

222 Dang et al.

in sequential order; the normal AND-gate allows its children to be performed
in parallel. This changes both semantics and quantitative analysis: an attack is
now a partially ordered set (A,≺) rather than just a set A of BASes, to denote
the relative timing behaviour of the attack steps; and for quantitative analysis
a third binary operation ▷ is introduced to correspond to SAND-gates, and the
metric is defined in terms of these operators.

The results of this paper straightforwardly carry over to the DAT setting.
That is, fuzzy DAT metrics are defined as the Zadeh extension of crisp DAT
metrics akin to Definition 8. Furthermore, this definition satisfies modular de-
composition, which follows from the modular decomposition of crisp DAT metrics
analogous to Theorem 3. As a result, a bottom-up algorithm analogous to Alg. 1
calculates fuzzy DAT metrics for treelike DATs.

6 Metric computation for ATs

To calculate the fuzzy AT metric m̃T (x) directly from Definition 8, one first
needs to calculate the function mT , which in return requires one to find JT K. In
general, this set is of exponential size, making calculation cumbersome for large
ATs. Therefore, dedicated algorithms for quantitative AT analysis are needed.
For crisp AT metrics these are described in [22]. In this section, we define a
bottom-up algorithm for calculating fuzzy AT metrics for tree-shaped ATs, and
we show that its validity follows from the fact that fuzzy AT metrics satisfy
modular decomposition. We also show that the BDD-based approach for metric
calculation for DAG-shaped ATs from [22] does not extend to the fuzzy case,
and that a radically new approach is needed.

6.1 Bottom-up algorithm

The bottom-up algorithm presented in Algorithm 1 is adapted from the bottom-
up algorithm for crisp AT metrics first presented in [25]. It takes as input an
AT T , a node v of T , a semiring D = (V,▽,△), and a fuzzy attribution x⃗, and
outputs a fuzzy value B̃U(T, v,D, x⃗) ∈ F(V) assigned to v; this value corresponds
to the metric value associated to reaching v. If t(v) = BAS, this is simply xv. If
t(v) = OR, then B̃U(T, v,D, x⃗) is obtained by applying ▽̃ to the values associated
to the children of v; for t(v) = AND we instead use △̃. The AT’s fuzzy metric
value is then given by B̃U(T,RT , D, x⃗).

Theorem 2. Let T be a static AT with tree structure, D = (V,▽,△) a semiring,
and x⃗ a fuzzy attribution with values in V . Then m̃T (⃗x) = B̃U(T,RT , D, x⃗).

Example 7. We apply the algorithm to Example 4. Then the algorithm calculates
the metric as follows

B̃U(T,RT , D, x⃗) = B̃U(T, r,D, x⃗) △̃ B̃U(T,min(q, p), D, x⃗)

= B̃U(T, r,D, x⃗) △̃
(
B̃U(T, q,D, x⃗) ▽̃ B̃U(T, p,D, x⃗)

)

Fuzzy quantitative attack tree analysis 223

Input: attack tree T = (N,E, t),
node v ∈ N,
semiring attribute domain D = (V,▽,△),
fuzzy attribution x⃗ ∈ F(V)BAST .

Output: Fuzzy element B̃U(T, v,D, x⃗) ∈ F(V).
if t(v) = OR then

return ˜̀
w∈ch(v)

B̃U(T,w,D, x⃗)

else if t(v) = AND then
return

ã

w∈ch(v)

B̃U(T,w,D, x⃗)

else /* t(v) = BAS */
return xv

end
Algorithm 1: B̃U for tree-structured AT T .

= sup
xr,xq▽p∈R≥0:
xr+xq▽p=y

min
(
xr[xr], sup

xq,xp∈R≥0:
min(xq,xp)=xq▽p

min
(
xq[xq], xp[xp]

))
= sup

xr,xq,xp∈R≥0:
xr+min(xq,xp)=y

min
(
xr[xr], xq[xq], xp[xp]

)
= sup

xr∈R≥0:
xr+min(0,5)=y

min
(
xr[xr], 1, 1

)

=

{
1, if y = 50 or y = 60,

0, otherwise.

= {50 7→ 1, 60 7→ 1}.

The algorithm is efficient as we can see that it is linear in |E|, making it
vastly more efficient than first calculating mT and then Zadeh-extending it. The
algorithm is generic as it is applicable to popular quantitative metrics in ATs
such as cost, damage, skill, probability, etc. [22]. We should note, however, that
the linearity of the time complexity assumes that the fuzzy operations ▽̃ and △̃
take constant time.

While the algorithm applies only to tree-structured ATs, this covers a large
portion of the ATs found in the literature [25]. As such, the algorithm can be
used in many applications.

As we show in the appendix of [9], the proof of Theorem 2 depends on a
fundamental property of AT metrics called modular decomposition. In the next
section, we will explain this and show that fuzzy metrics satisfy this property.

6.2 Modular decomposition

Modular decomposition is a fundamental property of AT metrics as it facilitates
the recursive solution of many problems, which typically improves performance.

224 Dang et al.

For a node v in an AT T , let Tv be the AT consisting of all descendants of
v, i.e., the nodes w for which there exists a path v → w. This is a rooted DAG
with root v. A module is a node v for which Tv is only minimally connected to
the rest of T :

Definition 9. Let v ∈ N \BAS. We call node v a module if v is the only node
in Tv with connections to T \ Tv.

For instance, in Fig. 1, the modules are “enter the bank” and “get money”.
Finding the modules of an AT aids in calculating metrics as follows. Given a
module v, one can split up T into two parts: the sub-AT Tv with root v, and
the ‘quotient’ T v obtained by replacing the entire sub-AT v with a single new
node, which we will still call v (see Fig. 5). Then one can calculate the metric for
Tv to find m̃Tv

(⃗x), and use this as a BAS attribute value for v in T v. One then
calculates the metric value for T v with this new BAS value. In [22, Thm. 9.2]
it is shown that for crisp metrics this results in the same metric value for T
as when one considers the entirety of T at once. As a result, we can split up
metric calculations via a divide-and-conquer approach once one has identified
the modules. The following theorem shows that this also holds for fuzzy AT
metrics.

Theorem 3. Let (V,▽,△) be a semiring. Let v be a module in an AT T , x⃗ ∈
F(V)BAST be a fuzzy attribution for T . Let x⃗v ∈ F(V)BASTv be the fuzzy attribu-
tion for Tv obtained from restricting x, i.e., (⃗xv)w = xw for all w ∈ BASTv

. Let
T v be the AT obtained by replacing Tv in T by a single BAS still called v. Let
x⃗v ∈ F(V)BASTv be a fuzzy attribution for T v given by

xvv′ =

{
xv′ , v′ ̸= v,

m̃Tv
(⃗x), v′ = v.

Then m̃T (⃗x) = m̃Tv (⃗xv).

The theorem is the extension of Theorem 9.2 of [22]. The proof of Theorem 3
is shown in the appendix of [9]. In a treelike AT, every node is a module, and
applying modular decomposition then yields Theorem 2.

Remark 2. In the same way that Theorem 3 can be used to prove Theorem 2, it
can also be used to show that the alternative definition of fuzzy AT metrics in the
RHS of (5) does not satisfy modular decomposition. Namely, if the alternative
definition would satisfy modular decomposition, Alg. 1 would also calculate the
alternative definition for treelike ATs. However, since this does not conform to
our Definition 8 even for treelike ATs (see Theorem 1), we conclude that the
alternative definition does not satisfy modular decomposition.

Fuzzy quantitative attack tree analysis 225

Fig. 5: Calculation of m̃T (⃗x) can be done by computing m̃Tv (⃗xv), where v′ ∈
BASTv is assigned with fuzzy attribute m̃Tv (⃗xv).

(a) (b)

Fig. 6: A DAG AT (a), and its BDD (b).

6.3 Computations for DAG ATs

Directed acyclic graph (DAG) ATs refer to ATs in which a node has more than
one parent [22]. Fig. 6a visualizes an AT with DAG structure. Unfortunately,
Alg. 1, does not correctly compute the (fuzzy) metric value of DAG-shaped ATs.
The reason for this is that the algorithm does not detect whether a node’s child
is shared with another node or not, which leads to double counting of a child’s
metric value.

Example 8. Let xu = {1 7→ 1}, xv = {0 7→ 1, 3 7→ 1}, xw = {1 7→ 1}, and
D = {N,min,+}. The min cost computation for the DAG AT shown in Fig. 6a
using algorithm 1 gives B̃U(T,RT , x, D) = m̃in(xu, xv) +̃ m̃in(xv, xw) = {0 7→
1, 1 7→ 1} +̃ {0 7→ 1, 1 7→ 1} = {0 7→ 1, 1 7→ 1, 2 7→ 1}, whereas m̃T (xu, xv, xw) =
{0 7→ 1, 2 7→ 1}.

For crisp metrics, this was solved by the BDD-based approach introduced
in [22]. Boolean functions are compactly represented by a binary decision dia-
gram(BDD), a type of directed acyclic graph. One can apply this to the structure
function of an AT as in Fig. 6b: as one can see, each nonleaf is labeled with a
BAS and has two outgoing edges, while the leafs are labeled 0 and 1. For a
given attack A, the BDD evaluates fT (RT , A) as follows: at a node with label

226 Dang et al.

v, follow the dashed line if v /∈ A, and the nondashed line if v ∈ A. The leaf
in which one ends up holds the value of fT (RT , A). Every Boolean function can
be represented as a BDD, and although the corresponding BDD is worst-case of
exponential size, BDDs are usually quite compact.

The BDD can also be used to calculate (crisp) AT metrics. We showcase this
for the minimal cost metric, but it can be applied to other metrics, so long as
the corresponding semiring is absorbing (see [22]). Minimal cost is calculated
as follows: for each BAS v, the cost xv is attached to the nondashed edges
originating from BDD nodes with label v, while each dashed edge gets label 0
(see Fig. 6b). Then the attack with minimal cost corresponds to the shortest path
from RT to 1 in the BDD; since the BDD is acyclic this computation is linear
in the size of the BDD. In total, this means that this is worst-case exponential
in the size of the AT, but in practice the calculation is quite fast.

Unfortunately, this approach no longer works for fuzzy AT metrics. The rea-
son is that this approach assumes that the metric arises from a semiring, in
particular, that distributivity holds. As the following example shows, if (V,▽,△)
is a semiring, then (F(V), ▽̃, △̃) is no longer a semiring, because distributivity no
longer holds. It is therefore no surprise that the BDD method no longer works
either.

Example 9. Let (V,▽,△) = (R≥0,min,+), and consider the fuzzy elements x =
{0 7→ 1, 2 7→ 1} and y = z = {0 7→ 1}. Then using the methods from Example 5,
we find that

m̃in(x+̃y, x+̃z) = m̃in({0 7→ 1, 2 7→ 1}, {0 7→ 1, 2 7→ 1})
= {0 7→ 1, 1 7→ 1, 2 7→ 1},

x+̃m̃in(y, z) = {0 7→ 1, 2 7→ 1}+̃{0 7→ 1}
= {0 7→ 1, 2 7→ 1}.

Hence (F(R≥0), m̃in, +̃) is not distributive, and in particular not a semiring.

The reason that distributivity fails for fuzzy numbers is that, as we discussed
in Section 5, a Zadeh-extended operator like +̃ acts as though its two arguments
are independent. However, in an expression like m̃in(x+̃y, x+̃z) the arguments
x+̃y and x+̃z are typically not independent. This ensures that distributivity is
not retained under Zadeh extension.

Since the BDD method used for crisp AT metrics does not work, a new
method is needed for calculating fuzzy metrics for DAG-like ATs. This is beyond
the scope of this paper. One possible way to approach this problem is to find
a way to keep track of the ‘double counting’ that occurs when applying B̃U to
DAG-like ATs, and eliminate it at the end of the algorithm. Such an approach
would require a radically new, strategy, and we therefore leave it to future work.

7 Conclusion and future work

In this paper we define a mathematical formulation for deriving AT fuzzy met-
rics values. In our knowledge, fuzzy theory has been applied in FTs for imprecise

Fuzzy quantitative attack tree analysis 227

data, but fuzzy quantitative metrics remain somewhat implicitly defined. The
definition we provide is explicit and generic for commonly used quantitative
metrics. Moreover, this definition can be used to better capture uncertainty in
quantitative metrics values. In addition, this paper introduces an efficient algo-
rithm to calculate AT metrics with fuzzy attribution. The proposed algorithm
is linear in |E|, as opposed to the definition of fuzzy metrics which requires cal-
culation of crisp metrics followed by fuzzy operators. The algorithm works for
tree-like structure models that satisfy modular decomposition.

In the future, we want to develop an algorithm for fuzzy metrics computa-
tion on DAG ATs. For that aim, the algorithm should address the non-semiring
property of fuzzy operators and the DAG structure on ATs. Another avenue for
future research is the development of subtypes of fuzzy numbers that are pre-
served by (Zadeh-extended) arithmetic operations inherent to AT analysis, such
as min and max. Upon formally defining such subtypes, these can then be used
to implement quantitative analysis algorithms efficiently.

Acknowledgement This research has been partially funded by ERC Consol-
idator grant 864075 CAESAR and the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement
No. 101008233.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Isograph. https://www.isograph.com/software/attacktree/
2. Risk Tree. https://risktree.2t-security.co.uk
3. Amenaza’s SecurITree. https://www.amenaza.com/AT-tool.php
4. de Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: The Extension Principle of Zadeh

and Fuzzy Numbers, pp. 23–41. Springer Berlin Heidelberg, Berlin, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-53324-6_2

5. Basiura, B., Duda, J., Gaweł, B., Opiła, J., Pełech-Pilichowski, T., Rębiasz, B.,
Skalna, I.: Fuzzy Numbers, pp. 1–26. Springer International Publishing, Cham
(2015). https://doi.org/10.1007/978-3-319-26494-3_1

6. Bowles, J.B., Pelaez, C.E.: Application of fuzzy logic to reliability engineering.
Proceedings of the IEEE 83(3), 435–449 (1995)

7. Couso, I., Borgelt, C., Hullermeier, E., Kruse, R.: Fuzzy sets in data analysis:
From statistical foundations to machine learning. IEEE Computational Intelligence
Magazine 14(1), 31–44 (2019)

8. Czogała, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems, pp. 1–26. Phys-
ica Heidelberg (2012). https://doi.org/10.1007/978-3-7908-1853-6

9. Dang, T.K.N., Lopuhaä-Zwakenberg, M., Stoelinga, M.: Fuzzy quantitative attack
tree analysis (Jan 2024). https://doi.org/10.5281/zenodo.10554728

10. Dubois, D., Prade, H.: Fuzzy real algebra: Some results. Fuzzy Sets and Systems
2(4), 327–348 (1979). https://doi.org/10.1016/0165-0114(79)90005-8

228 Dang et al.

11. Garg, S., Aujla, G.S.: An attack tree based comprehensive framework for the risk
and security assessment of vanet using the concepts of game theory and fuzzy
logic. Journal of Emerging Technologies in Web Intelligence 6(2), 247 – 252 (2014).
https://doi.org/10.4304/jetwi.6.2.247-252

12. Hu, G., Phan, H., Ouache, R., Gandhi, H., Hewage, K., Sadiq, R.: Fuzzy
fault tree analysis of hydraulic fracturing flowback water storage fail-
ure. Journal of Natural Gas Science and Engineering 72, 103039 (2019).
https://doi.org/10.1016/j.jngse.2019.103039

13. Jezewski, M., Czabanski, R., Leski, J.: Introduction to Fuzzy Sets, pp. 3–22.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-59614-3_1

14. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Systems with Applications 77, 114–135 (2017).
https://doi.org/10.1016/j.eswa.2017.01.058

15. Kabir, S., Papadopoulos, Y.: A review of applications of fuzzy sets to safety and
reliability engineering. International Journal of Approximate Reasoning 100, 29–55
(2018). https://doi.org/10.1016/j.ijar.2018.05.005

16. Kim, C., Ju, Y., Gens, M.: Multilevel fault tree analysis using fuzzy
numbers. Computers & Operations Research 23(7), 695–703 (1996).
https://doi.org/10.1016/0305-0548(95)00070-4

17. Komal: Chapter 4 - fuzzy attack tree analysis of security threat assessment in
an internet security system using algebraic t-norm and t-conorm. In: Garg, H.,
Ram, M. (eds.) Engineering Reliability and Risk Assessment, pp. 53–64. Advances
in Reliability Science, Elsevier (2023). https://doi.org/10.1016/B978-0-323-91943-
2.00003-4

18. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) Formal Modeling and
Analysis of Timed Systems. pp. 156–171. Springer International Publishing, Cham
(2015)

19. Li, R., Li, F., Zhang, J.: Vehicle network security situation assessment method
based on attack tree. In: IOP Conference Series: Earth and Environmental Science.
vol. 428. Institute of Physics Publishing (2020). https://doi.org/10.1088/1755-
1315/428/1/012021

20. Liang, G.S., Wang, M.J.J.: Fuzzy fault-tree analysis using failure possibility. Mi-
croelectronics Reliability 33(4), 583–597 (1993). https://doi.org/10.1016/0026-
2714(93)90326-T

21. Lin, C.T., Wang, M.J.J.: Hybrid fault tree analysis using fuzzy sets. Reliability En-
gineering & System Safety 58(3), 205–213 (1997). https://doi.org/10.1016/S0951-
8320(97)00072-0

22. Lopuhaä-Zwakenberg, M., Budde, C.E., Stoelinga, M.: Efficient and generic algo-
rithms for quantitative attack tree analysis. IEEE Transactions on Dependable and
Secure Computing pp. 1–18 (2022). https://doi.org/10.1109/TDSC.2022.3215752

23. Mahmood, Y.A., Ahmadi, A., Verma, A.K., Srividya, A., Kumar, U.: Fuzzy
fault tree analysis: a review of concept and application. International Jour-
nal of System Assurance Engineering and Management 4, 19–32 (2013).
https://doi.org/10.1007/s13198-013-0145-x

24. Massanet, S., Riera, J.V., Torrens, J., Herrera-Viedma, E.: A new linguistic com-
putational model based on discrete fuzzy numbers for computing with words. In-
formation Sciences 258, 277–290 (2014)

Fuzzy quantitative attack tree analysis 229

25. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Information Security and
Cryptology-ICISC 2005: 8th International Conference, Seoul, Korea, December 1-2,
2005, Revised Selected Papers 8. pp. 186–198. Springer (2006)

26. Pandey, M.: Fault tree analysis. Lecture notes, University of Waterloo, Waterloo
(2005)

27. Peng, Z., Xiaodong, M., Zongrun, Y., Zhaoxiang, Y.: An approach of fault diagnosis
for system based on fuzzy fault tree. In: Proceedings of the 2008 International
Conference on MultiMedia and Information Technology. p. 697–700. MMIT ’08,
IEEE Computer Society, USA (2009). https://doi.org/10.1109/MMIT.2008.142

28. Purba, J.H., Sony Tjahyani, D., Ekariansyah, A.S., Tjahjono, H.: Fuzzy
probability based fault tree analysis to propagate and quantify epis-
temic uncertainty. Annals of Nuclear Energy 85, 1189–1199 (2015).
https://doi.org/10.1016/j.anucene.2015.08.002

29. Purba, J.H., Tjahyani, D.T.S., Susila, I.P., Widodo, S., Ekariansyah, A.S.: Fuzzy
probability and α-cut based-fault tree analysis approach to evaluate the reliability
and safety of complex engineering systems. Quality and Reliability Engineering
International 38, 2356 – 2371 (2022). https://doi.org/10.1002/qre.3080

30. Reche, F., Morales, M., Salmerón, A.: Construction of fuzzy measures over product
spaces. Mathematics 8(9), 1605 (2020)

31. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15-16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

32. Schneier, B.: Modeling security threats. Dr. Dobb’s journal 24(12) (1999)
33. Singer, D.: A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets

and Systems 34(2), 145–155 (1990). https://doi.org/10.1016/0165-0114(90)90154-
X

34. Tanaka, H., Fan, L.T., Lai, F.S., Toguchi, K.: Fault-tree analysis by
fuzzy probability. IEEE Transactions on Reliability R-32(5), 453–457 (1983).
https://doi.org/10.1109/TR.1983.5221727

35. Wang, S., Ding, L., Sui, H., Gu, Z.: Cybersecurity risk assessment method of ICS
based on attack-defense tree model. J. Intell. Fuzzy Syst. 40(6), 10475–10488 (jan
2021). https://doi.org/10.3233/JIFS-201126

36. Wen, B., Li, P.: Risk assessment of security and stability control sys-
tem against cyber attacks. In: 2021 IEEE 2nd China International
Youth Conference on Electrical Engineering (CIYCEE). pp. 1–5 (2021).
https://doi.org/10.1109/CIYCEE53554.2021.9676799

37. Yazdi, M., Mohammadpour, J., Li, H., Huang, H.Z., Zarei, E., Pirbalouti, R.G.,
Adumene, S.: Fault tree analysis improvements: A bibliometric analysis and liter-
ature review. Quality and Reliability Engineering International 39(5), 1639–1659
(2023). https://doi.org/10.1002/qre.3271

38. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965).
https://doi.org/10.1016/S0019-9958(65)90241-X

39. Zadeh, L.: The concept of a linguistic variable and its application
to approximate reasoning-iii. Information Sciences 9(1), 43–80 (1975).
https://doi.org/10.1016/0020-0255(75)90017-1

40. Zadeh, L.: The concept of a linguistic variable and its application
to approximate reasoning—i. Information Sciences 8(3), 199–249 (1975).
https://doi.org/10.1016/0020-0255(75)90036-5

41. Zadeh, L.: The concept of a linguistic variable and its application
to approximate reasoning—ii. Information Sciences 8(4), 301–357 (1975).
https://doi.org/10.1016/0020-0255(75)90046-8

230 Dang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Fuzzy quantitative attack tree analysis 231

http://creativecommons.org/licenses/by/4.0/

Towards Reliable SQL Synthesis: Fuzzing-Based
Evaluation and Disambiguation

Abstract In recent years, more people have seen their work depend on
data manipulation tasks. However, many of these users do not have the
background in programming required to write complex programs, par-
ticularly SQL queries. One way of helping these users is automatically
synthesizing the SQL query given a small set of examples. Several pro-
gram synthesizers for SQL have been recently proposed, but they do not
leverage multicore architectures.
This paper proposes Cubes, a parallel program synthesizer for the do-
main of SQL queries using input-output examples. Since input-output
examples are an under-specification of the desired SQL query, sometimes,
the synthesized query does not match the user’s intent. Cubes incorpo-
rates a new disambiguation procedure based on fuzzing techniques that
interacts with the user and increases the confidence that the returned
query matches the user intent. We perform an extensive evaluation on
around 4000 SQL queries from different domains. Experimental results
show that our parallel approach can scale up to 16 processes with super-
linear speedups for many hard instances, and that our disambiguation
approach is critical to achieving an accuracy of around 60%, significantly
larger than other SQL synthesizers.

1 Introduction

In the age of digital transformation, many people are being reassigned to tasks
that require familiarity with programming or database usage. However, many
users lack the technical skills to build queries in a language such as Structured
Query Language (SQL). Hence, several new systems have been proposed for au-
tomatically generating SQL queries for relational databases [32,20,30,33]. The
goal of query synthesis is to automatically generate an SQL query that corre-
sponds to the user’s intent. For instance, the user can specify their intent using
natural language [30,33] or examples [28,32,20,27]. Our work targets query syn-
thesis using examples, where an example consists of a database and an output
table that results from querying the database. The problem of synthesizing SQL
queries from input-output examples is known as Query Reverse Engineering [29].
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 232–254, 2024.
https://doi.org/10.1007/978-3-031-57259-3_11

Ricardo Brancas1(B) , Miguel Terra-Neves2 , Miguel Ventura2 ,
Vasco Manquinho1 , and Ruben Martins3

1 INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
ricardo.brancas@tecnico.ulisboa.pt
2 OutSystems, Linda-a-Velha, Portugal

3 Carnegie Mellon University, Pittsburgh, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_11&domain=pdf
http://orcid.org/0000-0001-7006-9829
http://orcid.org/0000-0003-4089-7206
http://orcid.org/0000-0002-4233-1348
http://orcid.org/0000-0002-4205-2189
http://orcid.org/0000-0003-1525-1382
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

CourseID StudentID Grade

10 36933 A
11 36933 B
12 36933 A
10 37362 A
12 37362 C
11 37453 A
10 37510 B
12 37510 A
10 37955 A

(a) The Grades table.

CourseID CourseName

10 Programming
11 Algorithms
12 Databases

(b) The Courses table.

CourseName GradeCount

Programming 4
Algorithms 2
Databases 3

(c) The output table.

Figure 1: Two input tables: Courses and Grades. Output table: number of grades
per course.

Figure 1 illustrates an input-output example with two input tables (Courses
and Grades) and an output table. The output table corresponds to counting the
number of grades in each course. In this example, the goal is to synthesize the
following SQL query:

SELECT CourseName , count (*) AS ’GradeCount ’
FROM Grades NATURAL JOIN Courses
GROUP BY CourseName

Observe that, for a person with limited database training, it is often easier to
define one or more examples than to learn how to write the desired SQL query.

Even though query synthesis tools using examples [28,32,20,27] have seen a
remarkable improvement in recent years, they still suffer from scalability prob-
lems with respect to the size of the input tables and the complexity of the
synthesized queries. Nowadays, multicore processors have become the predomi-
nant architecture for common laptops and servers. However, none of the previous
query synthesis tools take advantage of the parallelism available in these archi-
tectures. In this work, we present Cubes, the first parallel synthesizer for SQL
queries. Cubes is built on top of an open-source sequential query synthesizer [20],
which we further improved by extending the language of queries supported by
Cubes and by adding pruning techniques that can prevent incorrect programs
from being enumerated. To take advantage of parallel architectures, we extend
Cubes by using divide-and-conquer. In this approach, each process searches a
smaller sub-problem until it either finds a solution or exhausts that subspace
and chooses another sub-problem to solve. We present a novel approach to cre-
ate sub-problems based on considering different subsets of the domain-specific
language for each process.

To evaluate our tool, we collected benchmarks from previous works [32,28,27,20].
Also, we created a new dataset by extending existing query synthesis problems
using natural language [35] to use examples instead. In the end, we collected

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 233

around 4000 instances that will be publicly available and can be used by other
researchers when evaluating query synthesis tools.

We perform an exhaustive comparison between Cubes and state-of-the-art
SQL synthesizers based on examples [32,20,27]. Our evaluation shows that cur-
rent SQL synthesizers can synthesize many SQL queries that satisfy the examples
but do not match the user intent. We observe that all state-of-the-art SQL syn-
thesizers return fewer than 50% of queries that match the user intent, i.e., even
though they satisfy the example given by the user they do not match the query
that the user had in mind. Cubes addresses this challenge by using parallelism
to find multiple solutions and interact with the user to disambiguate the query
that matches the user intent. To disambiguate the queries, we use fuzzing to pro-
duce new examples that result in a different output for the possible synthesized
queries. We select one of these examples and ask the user if the output is correct
for these new input tables. If the user responds affirmatively, we can discard
all queries that do not match this new output. Otherwise, if the user responds
negatively, we can discard the queries that match the new output. We repeat
this process until we are confident that we found the query the user intended.

To summarize, this paper makes the following key contributions:

– a divide-and-conquer procedure for SQL synthesis (section 2).
– a new procedure that uses fuzzing to disambiguate a set of queries that

satisfies the initial example (section 3).
– a new large dataset for SQL synthesis using examples with around 4000

instances (section 5).
– a new open-source SQL synthesis tool called Cubes whose parallel version

with 16 processes outperforms the sequential version by solving more in-
stances and having a median speedup of around 15× on hard instances (sec-
tion 5).

– a first study that analyses the accuracy of queries returned by SQL synthesiz-
ers showing that more than 55% of the queries do not match the user intent.
Our disambiguation procedure improves the accuracy of Cubes to 60% and
significantly outperforms other example-based synthesizers (section 5).

2 SQL Synthesis

In this work, we propose Cubes, a divide-and-conquer query synthesizer that
builds upon the open-source SQL synthesizer Squares [20]. Squares is a se-
quential synthesizer based on enumeration that uses operations from the R pro-
gramming language as its Domain Specific Language (DSL)4. R is more expres-
sive than SQL and allows a more compact representation for database queries.
Since Squares is modular and open-source, it is easy to modify and extend to
a parallel setting. Cubes splits the synthesis problem into disjoint sub-problems
to be solved in parallel by each of the available processes. Hence, each process
focuses solely on a particular area of the search space.
4 A detailed description of the DSL is available in the extended version of this paper [3].

234 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Spec. Cube
Generator Cube 3

Cube 2

Cube 1

...

Cube n

Synthesis

Synthesis

Synthesis

...

Synthesis

Translation
Layer

R Program
or Fail

SQL

Cubes-DC

Figure 2: Cubes’ architecture for divide-and-conquer.

In our context, each sub-problem is represented by a cube: a sequence of
operations from Cubes’ DSL such that the arguments for the operations are
still to be determined. Consider the following cube as an example: [filter,
natural_join], which represents the section of the search space composed by
programs with two operations, where the first is a filter (equivalent to a WHERE
in SQL) and the second is a natural_join.

The overall architecture of Cubes is illustrated in Figure 2. The Cube Gen-
erator component is responsible for generating cubes in increasing size (i.e., first
the cubes with one operation, then with two operations, and so forth), building
a FIFO queue. Observe that since each cube corresponds to a distinct sequence
of operations, there is no intersection in the search space of the different cubes.
Then, each process receives a specific cube and checks if it is possible to fill
in the missing arguments (e.g., columns, tables, filter conditions) to satisfy the
input-output examples. Whenever a process finds a solution, the translation layer
transforms the R program into SQL. Otherwise, if a cube cannot be extended
into a complete program that satisfies the user specification, the process gets a
new cube from the Cube Generator queue.

Dynamic Cube Generation. One approach for a cube generation heuristic is to
define a static order of operations to be explored. Although a static heuristic can
be effective on some specific domains, it is very unlikely that it generalizes to new
instances. Therefore, Cubes uses a dynamic cube generator inspired by natural
language techniques. Since candidate programs are constructed as a sequence of
operations, a bigram prediction model can be used to decide the next operation
to be chosen in a given sequence. Therefore, when choosing the next operation,
the operation immediately preceding it is used to compute an expectation of
which of the possible choices will lead to the desired program.

Program scoring. The initial scores of the bigram can be improved during the
search by using information from programs that do not satisfy the examples. For
a given program p, we compute the score of the program p as the percentage
of elements of the expected output (according to the provided example) that

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 235

appear in the output of p. A score of 1 indicates that all the expected values
occur in the output, and as such, filtering or restructuring might lead to a correct
program. On the other hand, a value of 0 means that the candidate program is
likely very far from a correct solution.

For each evaluated program, the score, score(p), is used to update the bigram
scores. A high score for a given program, p, means that Cubes will generate new
cubes similar to the one that originated the program p. On the other hand, a
low score means that Cubes will try to diversify the search in the future.

DSL Splitting. Besides the splitting of the search space using cubes, Cubes
also splits the DSL operations among the processes. The motivation for this
additional split is that some DSL operations have more possible argument com-
pletions than others. For instance, there are many more ways to complete an
inner_join operation than, for example, a filter operation. If the program to
be synthesized does not require some of the complex operations, then we can
solve this program more quickly with a smaller DSL. To ensure that Cubes can
always find the correct program, at least one process always runs with the entire
DSL while the other processes may contain only subsets of the DSL.

3 Accuracy and Disambiguation

An essential issue in program synthesis is knowing if the returned program cor-
responds to the user intent. To determine the accuracy of the synthesis tools, we
call the query that the user wishes to obtain the ground truth query. Observe that
SQL synthesis tools that use input-output examples return a query that satisfies
the user’s examples. However, these examples are an under-specification, and as
such, the returned query might not satisfy the true user intent.

Cubes may find multiple queries that satisfy the examples. However, unless
these queries are equivalent, only one of them matches the user’s intent. To
address this challenge, we create new examples with different input-output pairs
for the synthesized queries and interact with the user to disambiguate the correct
query. Next, we describe how to use fuzzing to create new examples and our di-
sambiguation procedure to improve Cubes’s accuracy and meet the user intent.

3.1 Fuzzing

Given a set of synthesized queries, our goal is to determine which one matches
the user intent. Since some of them may be equivalent, multiple queries may be
correct. One approach is to use query equivalence tools to check the equivalence
of these queries and only consider a representative query of each equivalence
class. Although recent work in query equivalence tools [6,38,5] has advanced the
state-of-the-art, these tools remain incomplete, not supporting many complex
queries present in our datasets. To overcome this limitation, we use a fuzzing-
based approach to determine the approximate equivalency of different queries.

236 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Consider a synthesis problem with an input-output example (I,O) and let Q1

and Q2 be two queries that satisfy this example. Fuzzing consists of taking the
input I, slightly modifying it, and producing I ′. Next, we apply both Q1 and
Q2 to I ′ producing the outputs O′

1 and O′
2, respectively. If the outputs differ

(O′
1 ̸= O′

2), then Q1 and Q2 are surely distinct. However, if the outputs are
equal (O′

1 = O′
2), we cannot conclude that the queries are equivalent. Hence, we

perform several rounds of fuzzing, generating and testing different inputs, with
each round increasing the confidence in our answer.

In order to produce fuzzed input-output examples, we use the Semantic Eval-
uation suite [37]. Consider a table, T ∈ I. In order to generate a fuzzed version
of this table, T ′ ∈ I ′, the suite starts by randomly selecting the number of rows
of the new table. Then, to fill the cells of T ′, three sources are used: (1) values
sampled from a uniform distribution for the given type (i.e., for integers a uni-
form distribution on [−263, 263 − 1]), (2) values taken from the corresponding
columns on the original table, T , and closely related values (i.e., if “Alice” is in
T then both “Alice” and “Alicegg” might be considered for T ′), and (3) values
taken from the queries we are comparing, and closely related values. The reason
why the suite takes into account values from the queries themselves is to increase
code coverage (e.g., making it more likely to find off-by-one errors). Finally, all
foreign keys are respected so that the semantics of the database are preserved.

3.2 Disambiguation

Cubes is able to return multiple queries that satisfy the user specification. How-
ever, if the example provided is an under-specification of the true user intent,
those queries will most likely have slightly different semantics. In order to ease
the burden on the user of selecting a correct query, we propose a disambiguation
algorithm, shown in Algorithm 1.

Cubes starts by synthesizing all possible solutions under a given time limit.
The goal of the disambiguation is then to ask the user questions in order to
iteratively discard queries until we find one that satisfies the user intent. Our
procedure attempts to minimize the number of questions as much as possible, by
trying to discard approximately half of the queries each time we ask a question.

To do this, we start by generating a new input database I ′ through fuzzing.
Next, we execute each of the synthesized queries on this new input I ′ and group
them according to the output they produce. In each disambiguation step, we
generate 16 new input databases, by performing fuzzing 16 times, and selecting
the input-output example that is closest to splitting the set of queries in half.

Figure 3 shows a real-world disambiguation interaction. Initially, we have 7
queries found by Cubes that satisfy the original input-output example. In this
case, we generate a new input I ′ such that 1 of the 7 queries provides the output
table A′, 3 queries provide as output table B′, and 3 others provide an output
C ′. Then, we ask the user if the new input-output example (I ′, B′) is correct. If
the user answers yes, then the solution is one of the 3 queries. Otherwise, the
solution should be one of the 4 remaining queries. Since the user answered yes,
then 3 queries remain to disambiguate. The disambiguation procedure terminates

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 237

Algorithm 1: Disambiguation method
Input: S, the set of synthesized queries, I, input database,

O, output table, R, number of fuzzing rounds
Result: a query considered to be the most likely solution

Disambiguate(S, I, O,R)
1 bestSplit ← ∅;
2 for i← 1 to R do
3 I ′ ← Fuzz(I, S);
4 split ← GroupByOutput(S, I ′);
5 if BetterSplit(bestSplit, split) then
6 bestSplit ← split;

end
7 if bestSplit = ∅ then
8 return First(S);
9 (I ′,SA, O′

A,SB)← bestSplit;
10 if AskUserIfExampleIsCorrect(I ′, O′

A) then
11 return Disambiguate(SA, I, O, R);
12 else
13 return Disambiguate(SB, I, O, R);

7 queries

1 query 3 queries 3 queries
✓

1 query 2 queries

2 queries

Figure 3: Example disambiguation process from a problem that generated 7 pos-
sible queries. Blue boxes represent the input-output example given to the user.

when either there is only one query remaining or the fuzzing procedure is unable
to find a new example to distinguish the remaining queries. In the latter case,
the remaining queries are deemed equivalent and the first one found by Cubes
during the search is returned to the user. Notice that Cubes enumerates queries
in increasing order of the number of operators. Hence, the first queries to be
found by Cubes have the fewest operations and should be more general.

4 Methods and Data

This section describes the benchmark sets used to evaluate Cubes and com-
pare it to other synthesizers, as well as two distinct methods to perform that
comparison: simple evaluation and fuzzy-based evaluation.

Data. We use five different benchmark sets, divided into two groups. The first
group, consisting of the benchmarks recent-posts, top-rated-posts, textbook

238 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Algorithm 2: Query checker using fuzzing
Input: q, the synthesized query, Q, the ground truth query,

I, input database, R, number of fuzzing rounds
Result: a Boolean representing if a distinguishing input was not found

FuzzyCheck(q,Q, I,R)
1 if Execute(Q, I) ̸= Execute(q, I) then
2 return False;
3 for i← 1 to R do
4 I ′ ← Fuzz(I, Q);
5 if Execute(Q, I ′) ̸= Execute(q, I ′) then
6 return False;

end
7 return True;

and kaggle refers to benchmarks that were previously used in other example-
based SQL synthesis papers [32,36,20,27]. The second group consists of a sin-
gle benchmark set: spider. We adapted the instances in spider from a very
large and diverse dataset of queries used for SQL synthesis from Natural Lan-
guage (NL) descriptions (also known as text-to-SQL) [35]. Overall, we used 176
instances from previously established benchmark sets, and created 3690 new
instances.

Simple Evaluation. In this setting, we are simply interested in checking if a
synthesizer can produce a query that satisfies the specification given by the
user. That is, when executed, the query should produce an output table that is
equal to the one specified by the user. Furthermore, we do not take into account
the row order of the output table. This method has been extensively used in the
past to measure the performance of SQL synthesizers [32,36,20,27]. The problem
with simple evaluation is that, in the case of an ambiguous example, it does not
address whether the synthesized query actually satisfies the user intent or not.

Fuzzy-based Evaluation. In this setting, we check if the synthesized queries satisfy
the true intent of the user and not just the input-output example. The motive for
this distinction is that the input-output example might be an under-specification
of the query the user wishes to obtain. That is, several queries can satisfy the
example, but they do not have the same semantics.

Algorithm 2 shows how we use fuzzing, as introduced in subsection 3.1, to
determine if two queries are likely to have the same semantics. We start by sanity
checking if the synthesized query, q, and the ground truth query, Q, produce the
same output for the provided input database, I (lines 1-2). Then, we perform
R rounds of fuzzing (line 3), where for each round, we generate a new input
database, I ′, and check if the two queries still produce the same output table
(lines 5-6). If all rounds pass successfully, we consider the queries equivalent
(line 7). When comparing two tables, we perform a very lax comparison that:
(1) ignores row order – tables are seen as a multiset of rows, (2) ignores column

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 239

names, and (3) tries to convert the datatypes of columns – if two columns contain
the same data but one as a number and the other as a string, they are considered
equivalent. Note that several rounds might be needed to find an input that
distinguishes the queries. The parameter R controls the maximum number of
fuzzing rounds until the algorithm deems the queries equivalent.

5 Evaluation

The evaluation presented next aim to answer the following research questions:

Q1. How does the sequential version of Cubes, Cubes-Seq, compare with other
state-of-the-art SQL synthesizers when using the simple evaluation metric?
(subsection 5.2)

Q2. What are the speedups obtained by using the divide-and-conquer approach,
Cubes-DC, when using the simple evaluation metric? (subsection 5.3)

Q3. How do Cubes and the other SQL synthesizers perform when using the
fuzzy-based evaluation metric? (subsection 5.4)

Q4. What is the impact of program disambiguation in Cubes’ fuzzy-based eval-
uation metric? (subsection 5.4)

All results were obtained on a dual socket Intel® Xeon® Silver 4210R @
2.40GHz, with a total of 20 cores and 64GB of RAM. Furthermore, a limit of
10 minutes (wall-clock time) and 56GB of RAM was imposed on all synthesizers
(sequential or parallel). All limits were strictly imposed using runsolver [22].

5.1 Implementation

Cubes is implemented on top of the Trinity [15] framework, using Python 3.8.3.
Candidate programs are evaluated by translating the DSL operations into equiv-
alent R instructions. In particular, the tidyverse5 family of packages is used to
implement table manipulations. Once a correct R program is found, the dbplyr6

package (version 1.4.4) is used to translate that program to an equivalent SQL
query. In the parallel synthesizer, inter-process communication is achieved us-
ing a message-passing approach through Python’s multiprocessing pipes. All
source code, instance files, and execution logs are made publicly available.7

We use the fuzzing framework developed by Zhong et al. [37] in our disam-
biguation module to perform accuracy analysis. Furthermore, queries are exe-
cuted using the SQLAlchemy8 library (version 1.3.20), and row order is ignored
when comparing tables. The original implementation of the fuzzing framework is
non-deterministic, so we modified it in two important ways: (1) we added proper
seeding for Python’s pseudo-random number generator, and (2) we replaced all

5 https://www.tidyverse.org/
6 https://dbplyr.tidyverse.org/
7 https://doi.org/10.5281/zenodo.10492998
8 https://www.sqlalchemy.org/

240 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

0%

20%

40%

60%

80%

0.5 2 5 10 60 180 600
Time (s)

In
st

an
ce

s
So

lv
ed

Squares
Scythe
PatSQL
Cubes-Seq
VBS

Figure 4: Percentage of instances solved by each tool at each point in time. A
mark is placed every 150 solved instances.

usages of the set data structure with OrderedSet (sets backed with a list so that
the iteration order is deterministic). This change was needed so that both the
accuracy results presented in the paper and Cubes’ disambiguation process are
deterministic. The modified framework is also included in Cubes’ source files.

5.2 Sequential Performance using Simple Evaluation

We start by evaluating the performance of Cubes-Seq, the sequential version of
Cubes, and perform a comparison with other state-of-the-art SQL Programming
by Example (PBE) tools: Squares [20], Scythe [32] and PatSQL [27]. Figure 4
shows the percentage of instances solved by each synthesizer as a function of time
when using the simple evaluation method. Overall, Squares was able to solve
30.6% of the instances within the time limit of 10 minutes, while Scythe solved
49.5% and PatSQL solved 75.1%. Cubes-Seq was able to solve 79.4%.

Figure 4 also shows the Virtual Best Solver (VBS) for these four synthesizers.
The VBS can be seen as the result of running the four synthesizers in parallel,
or, equivalently, having an oracle that predicts which synthesizer is the best for a
given instance and using it. The VBS is able to solve more instances than any of
the other synthesizers (92.7% vs. the 79.4% for Cubes). This shows two things:
(1) not all synthesizers solve the same instances, and (2) it is advantageous to run
multiple synthesizers in parallel if the user has the resources for it. Furthermore,
if we consider a VBS with only the top-performing synthesizers, PatSQL and
Cubes, the percentage of solved instances is 90.5% (vs. 92.7% with the four
synthesizers), meaning that using two synthesizers in parallel results in 10%+
extra instances solved compared to just using Cubes.

One interesting difference between these synthesizers is the minimum time
in which they can return a solution for any of the instances, with Scythe and
PatSQL at around 0.3 seconds, while Squares and Cubes only solve the first
instance at 2 to 3 seconds. The most likely explanation for this difference is the

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 241

Table 1: Overall results for 10 seconds and 10 minutes grouped by benchmark.
The best tool for each time-limit/benchmark pair is highlighted in bold.

Run ka
gg
le

re
ce
nt
-p
os
ts

to
p-
ra
te
d-
po
st
s

sp
id
er

te
xt
bo
ok

All
Median
Speedup

10 seconds
Squares 21.2% 3.9% 5.3% 24.7% 28.6% 24.1%
Scythe 0.0% 49.0% 66.7% 22.5% 28.6% 23.4%
PatSQL 57.6% 41.2% 64.9% 72.5% 62.9% 71.7%
Cubes-Seq 15.2% 11.8% 33.3% 51.5% 34.3% 50.3%
Cubes-DC4 24.2% 11.8% 59.6% 70.0% 48.6% 68.5%
Cubes-DC8 27.3% 15.7% 63.2% 73.2% 54.3% 71.8%
Cubes-DC16 24.2% 19.6% 63.2% 75.4% 51.4% 73.8%

10 minutes
Squares 21.2% 7.8% 22.8% 31.0% 40.0% 30.6%
Scythe 3.0% 66.7% 80.7% 49.1% 54.3% 49.5%
PatSQL 63.6% 45.1% 66.7% 75.8% 68.6% 75.1%
Cubes-Seq 39.4% 25.5% 66.7% 80.9% 57.1% 79.4% (1×)
Cubes-DC4 45.5% 31.4% 73.7% 88.4% 71.4% 86.9% 8.4×
Cubes-DC8 54.5% 39.2% 73.7% 89.6% 68.6% 88.2% 12.8×
Cubes-DC16 51.5% 39.2% 75.4% 90.4% 77.1% 89.0% 15.5×

startup time for the programming languages used by the synthesizers. PatSQL
and Scythe both use Java, while Squares and Cubes use Python and also
need to initialize the R execution environment. Figure 4 also shows that both
Scythe and Cubes-Seq are able to solve more problem instances when we
increase the time limit, while PatSQL and Squares seem to reach a plateau.

Table 1 shows the results for each benchmark set with virtual time limits of 10
seconds (top half) and 10 minutes (bottom half). We can see that Cubes-Seq is
able to solve more instances than Squares in all benchmarks sets while solving
more instances than Scythe in 3 out of 5 benchmark sets. When comparing with
PatSQL, the results shown in Figure 4 are confirmed since although PatSQL
solves more instances with a shorter time limit, Cubes-Seq is able to solve more
instances in one benchmark set (spider) with a larger time limit.

5.3 Parallel Performance using Simple Evaluation

Considering the sequential version Cubes-Seq as our baseline, we now evaluate
the performance of the parallel version using divide-and-conquer (Cubes-DC).

Table 1 shows the results for the divide-and-conquer strategy Cubes-DC
with 4, 8, and 16 processes. Notice that divide-and-conquer tools improve upon
the sequential version, from 79.4% up to 89.0% when using 16 processes. More-
over, within a limit of 10 seconds, the parallel versions are able to solve 68.5%,

242 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

1 10 100
Speedup

D
en

sit
y

Quartiles
1

2

3

4

Figure 5: Instance speedup distribution for Cubes-DC16.

71.8%, and 73.8% of the instances when using, respectively, 4, 8, and 16 pro-
cesses. This contrasts with the sequential version that only solves 50.3% of the in-
stances. Hence, there is a significant speedup when using the divide-and-conquer
strategy, especially for shorter time limits. Observe that even within the time
limit of 10 seconds, Cubes-DC is the best-performing solver.

Formally, the speedup of method A in relation to method B is defined as the
time needed to execute method B divided by the time needed to execute method
A, and is a measure of how fast an implementation is compared to another. The
last column of Table 1 shows the speedup obtained by each parallel version
of Cubes in relation to the sequential version Cubes-Seq for instances where
Cubes-Seq needed 1 minute (or more) to solve. We focus this analysis on the
harder instances for the sequential tool since higher speedups in these instances
have a higher impact on the end user’s experience.

We can see that most configurations have a median speedup greater than
the number of processes used. This is called a super-linear speedup and occurs
because programs are enumerated in a different order when using our parallel
versions. Figure 5 shows the full speedup distribution for Cubes-DC16 along
with the distribution quartiles. We can see that more than 50% of instances
have a speedup greater than 10 when using 16 processes, while more than 25%
of instances have a speedup greater than 30.

5.4 Results using Fuzzing-based Evaluation

In this section we analyze the number of instances solved by Cubes when using
the more thorough fuzzy-based evaluation, as well as comparing it with other
program synthesis tools. Furthermore, we also evaluate the program disambigua-
tor introduced in section 3.

Figure 6 shows the results when using the fuzzy-based evaluation method
instead of the simple evaluation. For this evaluation, we used 16 fuzzing rounds
(R = 16). The “FuzzyCheck Timeout” label in the plot represents instances for
which the fuzzing evaluation timed out and not a timeout of the synthesizer

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 243

0

1000

2000

3000

4000

Squares Scythe PatSQL Cubes-Seq Cubes-DC16† Cubes-Seq
All Solutions

Cubes-DC16†

All Solutions

N
um

be
r

of
In

st
an

ce
s

No solution

FuzzyCheck Timeout

Execution Error

Incorrect by Fuzzing

Possibly Correct Any

Possibly Correct Top 5

Possibly Correct

Figure 6: Results of the fuzzy-based evaluation for each synthesizer.

0

1000

2000

3000

4000

Cubes-Seq
All Solutions

Cubes-Seq
All Solutions

+ Disambiguation

Cubes-DC16
All Solutions

Cubes-DC16
All Solutions

+ Disambiguation

N
um

be
r

of
In

st
an

ce
s

No solution

Disambiguate Timeout

FuzzyCheck Timeout

Execution Error

Incorrect by Fuzzing

Possibly Correct Any

Possibly Correct Top 5

Possibly Correct

Figure 7: Fuzzy-based evaluation results before and after disambiguation.

used. We used a time limit of 60 seconds per fuzzing round (16 × 60s = 960s).
Furthermore, some of the synthesized queries failed to execute (labelled as “Ex-
ecution Error”). This happens for two reasons: (1) some synthesized queries are
incompatible with the SQLite dialect, and (2) some of the synthesized queries
contain syntax problems.

We label instances for which we could not find a distinguishing input from
the ground truth as “Possibly Correct”, while instances for which we did find
such input are labelled as “Incorrect by Fuzzing”. Furthermore, for synthesizers
that return multiple solutions, “Possibly Correct Top 5” means that there was
a query in the top-5 returned queries for which we did not find a distinguishing
input from the ground truth. Similarly, “Possibly Correct Any” means that the

244 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Table 2: Comparison of the fuzzy-based evaluation with the simple evaluation.
Scythe Squares PatSQL Cubes-Seq

All Solutions
Cubes-DC16
All Solutions

Solved (simple eval.) 49.5% 30.6% 75.1% 79.5% 90.2%
Possibly Correcta 21.6% 9.2% 37.1% 58.0% 63.3%

as % of Solved instances 43.6% 30.0% 49.4% 73.0% 70.2%
Incorrect by Fuzzing 11.6% 8.4% 32.3% 10.7% 14.1%

as % of Solved instances 23.4% 27.5% 43.0% 13.5% 15.6%
Inconclusive 16.2% 13.1% 5.7% 8.9% 10.2%

as % of Solved instances 32.7% 42.8% 7.6% 11.2% 11.3%

a Includes instances in Possibly Correct Top 5 and Possibly Correct Any.

synthesizer returned a query for which we could not distinguish it from the
ground truth.

Previous tools all suffer from fairly low accuracy rates, staying under 45%, as
do Cubes-Seq and Cubes-DC16 if we only consider the first solution returned.
However, if we consider all solutions returned under 10 minutes, then Cubes
generates a correct (using fuzzy-based evaluation) solution on around 63% of
the instances, as shown in Table 2.

In order to be able to give that correct solution to the user, as opposed
to giving them all the solutions generated, we developed a query disambigua-
tor. Figure 7 shows the results of using that disambiguator on Cubes-Seq and
Cubes-DC16. We can see that the disambiguator can almost always identify
the correct query if such a query exists in the set of queries synthesized. Note
that small differences in the exact number of queries deemed correct using the
fuzzy-based evaluation may be due to different fuzzed inputs being generated.

It is also worth noting that a very small number of instances are labeled as
“Possibly Correct Top 5”. As explained in Section 3, Cubes returns the earliest
synthesized query when we reach a set of queries that we cannot distinguish from
one another. This means that, for those instances, a correct query was in the
final set of queries selected by the disambiguation, but it was not the first one
generated by Cubes. This happens because while the accuracy test has access to
the ground truth and can thus generate better-fuzzed inputs, the disambiguator
is limited to using values from the queries it is trying to disambiguate. Even so,
the fact that this only occurs in a very small number of queries indicates that
the approach is valid and seems to be able to both correctly disambiguate most
queries and catch the cases where the disambiguation fails.

We show that if we only consider the first solution, Cubes’ performance
is similar to other existing tools. The main improvement comes from (1) syn-
thesizing many possible queries for a given problem and (2) having a program
disambiguator to choose the right query. This first point is directly influenced by
our parallel approach to program synthesis, which allows us to synthesize more
programs that satisfy the examples under the chosen time limit.

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 245

0

10

20

30

1 to 10 11 to 100 101 to 1000 > 1000
Number of queries pre-disambiguation

Q
ue

st
io

ns
as

ke
d

Cubes-Seq

Cubes-DC16

Figure 8: Number of questions that need to be asked to the user in order to
perform disambiguation, as a function of the number of queries synthesized.

Finally, we analyze how many questions are asked to the user to disambiguate
the queries produced by Cubes. Figure 8 shows this data as a function of the
number of queries synthesized. Consider the first bar of the second group, relating
to instances where Cubes-Seq generated 11 to 100 queries. The plot shows that
to disambiguate those queries, we need at least 1 question, at most 11 questions,
and on average 3 questions.

For Cubes-Seq the average number of questions needed to disambiguate up
to 1000 queries is 2.31, while for Cubes-DC16 it is 2.69. As stated in Section 3,
our goal with the disambiguation strategy is to discard half the queries with each
question asked. Thus, we would expect that the number of questions needed to
disambiguate a given set of queries scales logarithmically with the size of that
set. Figure 8 shows that this behavior is, in fact, observed in practice.

6 Discussion

Here we discuss the main threats to validity of this work and some challenges
that were raised during the experimental evaluation.

Benchmarks. Our evaluation uses a large set of benchmarks from different do-
mains. However, they may not be representative of tasks commonly performed
by users or may have a bias towards a specific synthesis tool. To mitigate this,
we included benchmarks from several previous synthesis tools and also extended
a large dataset from query synthesis using NLP to use examples instead. In
the end, we have around 4000 instances but they are dominated by the spider
dataset [35]. Nevertheless, since this dataset has been extensively used in other
domains and was not created by us, we believe that it is more general and less
prone to bias.

246 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Parallelism. The divide-and-conquer approach already shows scalability for hard
instances when using 4 and 8 processes in a multicore architecture with super-
linear speedups. However, when increasing the number of processes to 16 the
gains are reduced. When the number of processes increases, there is an increase
of contention for memory accesses that can slow down the performance of each
process. To address this issue, it would be interesting to evaluate Cubes in
a distributed setting. Note that the overhead of going from multicore to dis-
tributed should be small since the inter-process communication is already done
using message-passing techniques, and no shared memory is used. Exchanging
information between processes is another source of improvement that would be
worth exploring in future work.

Cube generation. One way to further improve the divide-and-conquer approach
is to consider other cube generation strategies. For instance, we could learn from
data and use machine learning techniques such as pre-trained bigram scores or
using neural networks to predict the most likely cubes. We could also explore
other techniques similar to the ones used in SAT solvers, such as restarting the
search after n programs/cubes have been attempted.

Fuzzy-based Evaluation. Even though query synthesis tools are becoming more
efficient and can find a query that satisfies the input-output example given by
the user, they may not find the query that the user intended. To the best of our
knowledge, this is the first study where fuzzing was used to evaluate if the query
returned by the synthesizer matches the user’s intent. Even though fuzzing is not
a precise measurement of correctness since it may return that some queries are
equivalent when they may not be, it is an upper bound on the accuracy of these
tools. With the continuous improvement of SQL equivalence tools [6,38,5], it
may be possible to have an exact accuracy measurement in the future. However,
even with the current results, we already observe that all synthesis tools return
many answers that do not match the desired behavior.

Disambiguation. Interacting with the user to perform query disambiguation is
essential to increase the accuracy of SQL synthesizers based on examples. How-
ever, the questions that we asked the user may be too hard to answer, or the
user may answer them incorrectly. To mitigate the difficulty of the questions,
we only ask yes or no questions and present examples based on fuzzing that are
often similar to the initial example provided by the user. With this approach, we
hope that the user can quickly answer these questions. We currently automate
the disambiguation procedure and use the ground truth to answer the questions,
but a user study could be done in the future to confirm our hypothesis that
the questions are easy for users to answer. In this work, we assume that the
user never answers the questions incorrectly. However, considering this scenario
could open new research directions and is in line with recent work on program
synthesis with noisy data [11] where the examples may be incorrect.

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 247

7 Related Work

SQL Synthesis. In recent years, several tools for query synthesis have been pro-
posed using input-output examples to specify user intent [28,36,7,32,15,20]. Solv-
ing approaches vary from using decision trees with fixed templates [28,36] to
abstract representations of queries that can potentially satisfy the input-output
examples [32]. Another approach is to use SMT-based representations of the
search space [7,19] such that each solution to the SMT formula represents a
possible candidate query to be verified. The Cubes framework proposed in this
paper is also based on SMT-based representations, but it extends prior work in
several dimensions: (i) extends the language in the programs to be synthesized,
(ii) proposes pruning techniques that can be directly encoded into SMT, and
(iii) it is the first parallel tool for query synthesis.

In this paper, we compare Cubes with three other SQL Synthesis tools
that use input-output examples: Scythe [32], Squares [20] and PatSQL [27].
Scythe and PatSQL use sketch-based enumeration, where first a skeleton
program with missing parts is generated, and then, if the skeleton satisfies a
preliminary evaluation, the synthesizer tries to complete the sketch to obtain
a complete program. Squares, on the other hand, uses Satisfiability Modulo
Theories (SMT)-based enumeration where complete programs are obtained by
iterating the possible solutions of an SMT formula. Both Scythe and Squares
have limited DSLs and thus are not as well suited for complex tasks. Further-
more, Scythe’s ability to solve a given instance is severely limited by the size of
its input tables. Although PatSQL has a comparatively more expressive DSL,
it is still not able to outperform Cubes.

Another approach for specifying user intent is using natural language [33,30].
However, these approaches often need a large training data set from the query’s
domain. Recently, several techniques have been proposed that try to better gen-
eralize to cross-domain data [34,24]. Although many improvements have been
attained in finding the structure of the query through effective semantic ta-
ble parsing, defining the details (e.g., specific filter conditions) is usually hard,
particularly in more complex queries. The use of natural language for query syn-
thesis is complementary to our approach, and a combination of both strategies
could improve the accuracy of program synthesizers at the cost of more input
from the user, namely examples and a natural language description of the task.

Program Disambiguation. Current synthesizers focus primarily on generating
programs that satisfy the user’s specifications. However, in many situations, the
produced program does not satisfy the true user intent [16,26]. Previous work
has shown that this shortcoming can be solved without recurring to complete
specifications by introducing a program disambiguator. This component is re-
sponsible for interacting with the user and choosing between several possible
solutions. Mayer et al. [16] describe two types of user interaction for program
disambiguation: in the first approach, users select the correct program among a
set of returned solutions, which are presented in a way that allows easy naviga-
tion. The second approach is described as conversational clarification, where the

248 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

system iteratively asks questions to the user, further refining the original speci-
fication until just one candidate program is left [8,21,14,31,13,17]. In Cubes, we
use conversational clarification to improve the confidence in produced solutions
while still keeping the complexity for the user low.

Parallel Solving. Solving logic formulas in parallel has been the subject of ex-
tensive research work [10,9,1,2], both using memory-shared [25] and distributed
approaches [18]. One of the techniques used to explore the search space is called
divide-and-conquer [12]. In this approach, the search space is split into disjoint
areas such that there is no intersection between the areas explored by each pro-
cess. In this case, work-stealing techniques [23] are commonly used to avoid
starvation since the search space can be unevenly split among the processes.
Although we adapt techniques from parallel automated reasoning, the paral-
lelization in the Cubes framework is not done at solving logic formulas but at a
more abstract level. In our case, logic formulas continue to be solved sequentially.
Moreover, starvation is avoided by producing additional work, i.e., increasing the
number of operations from the DSL in the programs to be enumerated.

8 Conclusions

This work introduces Cubes, a new enumeration-based framework for query
synthesis from examples. A new robust tool is proposed that is able to synthesize
an extensive range of SQL queries. Additionally, Cubes also takes advantage of
the current multicore processor architectures, providing the first parallel query
synthesizer from examples using a divide-and-conquer approach. The splitting
of the program space is done by providing different sequences of operations to
each thread, as well as performing DSL splitting among threads.

An in-depth experimental evaluation is also carried out, comparing Cubes
with other state-of-the-art query synthesizers in a wide variety of benchmark
sets. Experimental results show the effectiveness and robustness of Cubes, be-
ing able to successfully synthesize SQL queries for a larger range of problem
instances than other tools. Moreover, the parallel versions of Cubes have super-
linear speedups for many hard instances and, when using 16 processes, provide
a median speedup of 15× over the sequential version of the tool.

Finally, an accuracy analysis of the produced queries is also performed using
fuzzing techniques. Results show that the queries produced by current synthesiz-
ers often differ from the user intent, and more than 50% of the queries returned
to the user do not match the expected behavior the user had in mind. To in-
crease the trust and reliability of SQL synthesizers, we advocate the need to use
a fuzzing-based evaluation that can more precisely measure the accuracy of SQL
synthesizers. Using this methodology together with the large dataset that we
collected will make it easier for other researchers to evaluate their SQL synthesis
tools in the future.

Since examples are imprecise specifications, increasing the trust and relia-
bility of SQL synthesizers is essential. To improve the reliability of Cubes, we

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 249

propose an interactive procedure with the user that can disambiguate among all
queries found by Cubes that satisfy the original input-output example. After the
disambiguation procedure, the accuracy of Cubes in providing the user intent
query is significantly increased from around 40% to 60%. Other synthesizers can
use similar disambiguation approaches, and it is also expected to improve their
accuracy with respect to the user intent.

Acknowledgments

This work was partially supported under National Science Foundation (NSF)
Grant No. CCF-1762363, an Amazon Research Award, and by OutSystems and
by Portuguese national funds through FCT, under projects UIDB/50021/2020
(DOI: 10.54499/UIDB/50021/2020), PTDC/CCI-COM/2156/2021 (DOI:10.544-
99/PTDC/CCI-COM/2156/2021) and 2022.03537.PTDC (DOI: 10.54499/202-
2.03537.PTDC). Support was also provided by FCT through the Carnegie Mellon
Portugal Program under Grant PRT/BD/152086/2021.

References

1. Aigner, M., Biere, A., Kirsch, C.M., Niemetz, A., Preiner, M.: Analysis of portfolio-
style parallel SAT solving on current multi-core architectures. In: Berre, D.L. (ed.)
POS-13. Fourth Pragmatics of SAT workshop, a workshop of the SAT 2013 con-
ference, July 7, 2013, Helsinki, Finland. EPiC Series in Computing, vol. 29, pp.
28–40. EasyChair (2013). https://doi.org/10.29007/73N4

2. Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S.A. (eds.) Theory and Applications of Satisfiability Testing
- SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9340, pp. 156–172.
Springer (2015). https://doi.org/10.1007/978-3-319-24318-4_12

3. Brancas, R., Terra-Neves, M., Ventura, M., Manquinho, V., Martins, R.: CUBES:
A parallel synthesizer for SQL using examples. CoRR abs/2203.04995 (2022).
https://doi.org/10.48550/ARXIV.2203.04995

4. Brancas, R., Terra-Neves, M., Ventura, M., Manquinho, V., Martins, R.: To-
wards reliable SQL synthesis: Fuzzing-based evaluation and disambiguation (2024).
https://doi.org/10.5281/zenodo.10492998

5. Chu, S., Murphy, B., Roesch, J., Cheung, A., Suciu, D.: Axiomatic foundations
and algorithms for deciding semantic equivalences of SQL queries. Proc. VLDB
Endow. 11(11), 1482–1495 (2018). https://doi.org/10.14778/3236187.3236200

6. Chu, S., Wang, C., Weitz, K., Cheung, A.: Cosette: An automated prover for SQL.
In: 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org
(2017), http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf

250 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

Data-Availability Statement

The Cubes SQL synthesizer, our dataset and the experimental results presented
in this work are available in our supplemental artifact [4].

7. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-based
Synthesis of Table Consolidation and Transformation Tasks from Examples. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 422–436. PLDI 2017, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3062341.3062351

8. Ferreira, M., Terra-Neves, M., Ventura, M., Lynce, I., Martins, R.: FOREST:
an interactive multi-tree synthesizer for regular expressions. In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 27th International Conference, TACAS 2021, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12651, pp. 152–169. Springer (2021).
https://doi.org/10.1007/978-3-030-72016-2_9

9. Gent, I.P., Miguel, I., Nightingale, P., McCreesh, C., Prosser, P.,
Moore, N.C.A., Unsworth, C.: A review of literature on parallel con-
straint solving. Theory Pract. Log. Program. 18(5-6), 725–758 (2018).
https://doi.org/10.1017/S1471068418000340

10. Hamadi, Y., Sais, L. (eds.): Handbook of Parallel Constraint Reasoning. Springer
(2018). https://doi.org/10.1007/978-3-319-63516-3

11. Handa, S., Rinard, M.C.: Inductive program synthesis over noisy data. In: Devanbu,
P., Cohen, M.B., Zimmermann, T. (eds.) Proc. ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
pp. 87–98. ACM (2020). https://doi.org/10.1145/3368089.3409732

12. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In:
Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 31–59.
Springer (2018). https://doi.org/10.1007/978-3-319-63516-3_2

13. Ji, R., Liang, J., Xiong, Y., Zhang, L., Hu, Z.: Question selection for interactive
program synthesis. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020. pp. 1143–1158. ACM
(2020). https://doi.org/10.1145/3385412.3386025

14. Li, H., Chan, C., Maier, D.: Query from examples: An iterative, data-driven
approach to query construction. Proc. VLDB Endow. 8(13), 2158–2169 (2015).
https://doi.org/10.14778/2831360.2831369

15. Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: An Extensible Syn-
thesis Framework for Data Science. Proc. VLDB Endow. 12(12), 1914–1917 (Aug
2019). https://doi.org/10.14778/3352063.3352098

16. Mayer, M., Soares, G., Grechkin, M., Le, V., Marron, M., Polozov, O., Singh, R.,
Zorn, B.G., Gulwani, S.: User interaction models for disambiguation in program-
ming by example. In: Latulipe, C., Hartmann, B., Grossman, T. (eds.) Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology,
UIST 2015, Charlotte, NC, USA, November 8-11, 2015. pp. 291–301. ACM (2015).
https://doi.org/10.1145/2807442.2807459

17. Narita, M., Maudet, N., Lu, Y., Igarashi, T.: Data-centric disambiguation for data
transformation with programming-by-example. In: Hammond, T., Verbert, K.,
Parra, D., Knijnenburg, B.P., O’Donovan, J., Teale, P. (eds.) IUI ’21: 26th Interna-
tional Conference on Intelligent User Interfaces, College Station, TX, USA, April
13-17, 2021. pp. 454–463. ACM (2021). https://doi.org/10.1145/3397481.3450680

18. Ngoko, Y., Cérin, C., Trystram, D.: Solving sat in a distributed cloud: A
portfolio approach. Int. J. Appl. Math. Comput. Sci. 29(2), 261–274 (2019).
https://doi.org/10.2478/amcs-2019-0019

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 251

19. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.: En-
codings for Enumeration-Based Program Synthesis. In: Schiex, T., de Givry, S.
(eds.) Principles and Practice of Constraint Programming. pp. 583–599. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-30048-7_34

20. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho,
V.: SQUARES: A SQL synthesizer using query reverse engineering.
Proceedings of the VLDB Endowment 13(12), 2853–2856 (Aug 2020).
https://doi.org/10.14778/3415478.3415492

21. Ramos, D., Pereira, J., Lynce, I., Manquinho, V.M., Martins, R.: UNCHAR-
TIT: an interactive framework for program recovery from charts. In: 35th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia, September 21-25, 2020. pp. 175–186. IEEE (2020).
https://doi.org/10.1145/3324884.3416613

22. Roussel, O.: Controlling a Solver Execution with the runsolver Tool: System de-
scription. Journal on Satisfiability, Boolean Modeling and Computation 7(4), 139–
144 (Nov 2011). https://doi.org/10.3233/SAT190083

23. Schubert, T., Lewis, M.D.T., Becker, B.: Pamira - A parallel SAT solver with
knowledge sharing. In: Abadir, M.S., Wang, L. (eds.) Sixth International Workshop
on Microprocessor Test and Verification (MTV 2005), Common Challenges and
Solutions, 3-4 November 2005, Austin, Texas, USA. pp. 29–36. IEEE Computer
Society (2005). https://doi.org/10.1109/MTV.2005.17

24. Shi, P., Ng, P., Wang, Z., Zhu, H., Li, A.H., Wang, J., dos Santos, C.N., Xi-
ang, B.: Learning contextual representations for semantic parsing with generation-
augmented pre-training. In: Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artifi-
cial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. pp. 13806–
13814. AAAI Press (2021). https://doi.org/10.1609/AAAI.V35I15.17627

25. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: Fiberscip - A shared
memory parallelization of SCIP. INFORMS J. Comput. 30(1), 11–30 (2018).
https://doi.org/10.1287/ijoc.2017.0762

26. Shriver, D., Elbaum, S.G., Stolee, K.T.: At the end of synthesis: Narrowing pro-
gram candidates. In: 39th IEEE/ACM International Conference on Software En-
gineering: New Ideas and Emerging Technologies Results Track, ICSE-NIER 2017,
Buenos Aires, Argentina, May 20-28, 2017. pp. 19–22. IEEE Computer Society
(2017). https://doi.org/10.1109/ICSE-NIER.2017.7

27. Takenouchi, K., Ishio, T., Okada, J., Sakata, Y.: PATSQL: efficient
synthesis of SQL queries from example tables with quick inference
of projected columns. Proc. VLDB Endow. 14(11), 1937–1949 (2021).
https://doi.org/10.14778/3476249.3476253

28. Tran, Q.T., Chan, C., Parthasarathy, S.: Query by output. In: Çetintemel, U.,
Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2009, Prov-
idence, Rhode Island, USA, June 29 - July 2, 2009. pp. 535–548. ACM (2009).
https://doi.org/10.1145/1559845.1559902

29. Tran, Q.T., Chan, C.Y., Parthasarathy, S.: Query reverse engineering. VLDB J.
23(5), 721–746 (2014). https://doi.org/10.1007/s00778-013-0349-3

30. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: RAT-SQL: relation-
aware schema encoding and linking for text-to-sql parsers. In: Jurafsky, D., Chai,

252 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020. pp. 7567–7578. Association for Computational Linguistics (2020).
https://doi.org/10.18653/v1/2020.acl-main.677

31. Wang, C., Cheung, A., Bodík, R.: Interactive query synthesis from input-output
examples. In: Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu, D. (eds.)
Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. pp. 1631–1634.
ACM (2017). https://doi.org/10.1145/3035918.3058738

32. Wang, C., Cheung, A., Bodik, R.: Synthesizing Highly Expressive SQL
Queries from Input-output Examples. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. pp. 452–466. PLDI 2017, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3062341.3062365

33. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: SQLizer: Query Synthesis from
Natural Language. Proc. ACM Program. Lang. 1(OOPSLA), 63:1–63:26 (Oct
2017). https://doi.org/10.1145/3133887

34. Yu, T., Wu, C., Lin, X.V., Wang, B., Tan, Y.C., Yang, X., Radev, D.R., Socher, R.,
Xiong, C.: Grappa: Grammar-augmented pre-training for table semantic parsing.
In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net (2021), https://openreview.net/
forum?id=kyaIeYj4zZ

35. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q.,
Roman, S., Zhang, Z., Radev, D.R.: Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task. In: Riloff, E.,
Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018. pp. 3911–3921. Association for Computational Linguistics
(2018). https://doi.org/10.18653/V1/D18-1425

36. Zhang, S., Sun, Y.: Automatically synthesizing SQL queries from input-output
examples. In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Sil-
icon Valley, CA, USA, November 11-15, 2013. pp. 224–234. IEEE (2013).
https://doi.org/10.1109/ASE.2013.6693082

37. Zhong, R., Yu, T., Klein, D.: Semantic evaluation for text-to-sql with distilled
test suites. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020. pp. 396–411. Association for Computational
Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.29

38. Zhou, Q., Arulraj, J., Navathe, S.B., Harris, W., Xu, D.: Automated verification of
query equivalence using satisfiability modulo theories. Proc. VLDB Endow. 12(11),
1276–1288 (2019). https://doi.org/10.14778/3342263.3342267

Towards Reliable SQL Synthesis: Fuzzing Evaluation and Disambiguation 253

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

254 R. Brancas, M. Terra-Neves, M. Ventura, V. Manquinho, R. Martins

http://creativecommons.org/licenses/by/4.0/

Invariant-based Program Repair

Simula Research Laboratory, Oslo, Norway
omar@simula.no

Abstract. This paper describes a formal general-purpose automated
program repair (APR) framework based on the concept of program in-
variants. In the presented repair framework, the execution traces of a de-
fected program are dynamically analyzed to infer specifications φcorrect

and φviolated, where φcorrect represents the set of likely invariants (good
patterns) required for a run to be successful and φviolated represents the
set of likely suspicious invariants (bad patterns) that result in the bug in
the defected program. These specifications are then refined using rigor-
ous program analysis techniques, which are also used to drive the repair
process towards feasible patches and assess the correctness of generated
patches. We demonstrate the usefulness of leveraging invariants in APR
by developing an invariant-based repair system for performance bugs.
The initial analysis shows the effectiveness of invariant-based APR in
handling performance bugs by producing patches that ensure program’s
efficiency increase without adversely impacting its functionality.

Keywords: Automated program repair · Invariant learning and refinement ·
Patch overfitting · Program verifier · CPAChecker · Performance bugs

1 Introduction

Automated program repair (APR) has recently gained great attention because it
helps to significantly decrease manual debugging effort by automatically generat-
ing patches for defected programs. Modern program repair tools have been shown
to be effective at fixing bugs in many real-world programs. The poor quality of
automatically generated patches [11], however, continues to be a major obstacle
to the adoption of automated program repair by software practitioners.
Problem: The primary reason for the low quality of automatically generated
patches by current APR tools is the lack of specifications of the intended be-
havior. Most program repair systems rely on tests as the correctness criteria,
because a formal specification is not explicitly provided by software developers.
Therefore, current APR approaches produce plausible patches which must be
(manually) inspected before being deployed.

Solution: Program verification technology enables developers to prove the cor-
rectness of the program before deploying it. One of the key activities underlying
this technology involves inferring a program invariant—a logical formula that

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 255–2

9

5, 2024.
https://doi.org/10.1007/978-3-031-57259-3_12

Omar I. Al-Bataineh(B)

This work is supported by the Research Council of Norway through the secureIT project
(IKTPLUSS #288787).

As a result, there is no guarantee
that the generated patches are generally correct and do not introduce new bugs.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_12&domain=pdf

serves as an abstract specification of a program. Developers can significantly
benefit from program invariants to identify program properties that must be
preserved when modifying code. Unfortunately, these invariants are typically
absent from code, leading to the dominance of less rigorous APR approaches
(e.g., dynamic APR) and the well-known patch overfitting challenge [11].

We argue that by using test cases and reachability-based analysis techniques,
an accurate set of invariants may be obtained and utilized to produce high-
quality patches. In other words, program verification tools such as CPAChecker
[3] and PathFinder [15] can be used to refine the dynamically generated invariant
candidates. This can be done by first using the test cases to analyze the execution
traces of the program to infer a set of invariant candidates. These candidates are
then refined using a program verifier to obtain more accurate invariants. The
goal is to infer two specifications: (i) φcorrect, which represents the set of good
patterns required for a run to succeed, and (ii) φviolated, which represents the
set of bad patterns that lead to the target bug. Invariant-based APR offers two
key benefits. First, it directs APR towards potentially feasible patches. Second,
it enables the formal validation of plausible patches using program verifiers.
Viability of invariant-based APR: Program invariants have shown effective-
ness in many applications, such as program understanding, fault localization,
and formal verification. Invariants are effective because functional correctness
relates to the final result of a program rather than any specific implementation.
They can therefore assist in abstracting many concrete execution steps and thus
greatly reduce the effort needed to reason about the patch’s correctness.

In fact, developers who aim to repair a defected undocumented program (a
program written without thought for formal specifications) can find invariant-
based APR helpful in their repair tasks. The availability of mature automated
invariant detection tools like Daikon [4] and practical software verification tools
like CPAChecker and PathFinder makes the invariant-based program repair tech-
nique viable. At first glance, refining invariants using program verification tools
seems too expensive. However, due to tremendous advances in software verifica-
tion [2], in practice, invariant-based verification can be made pretty efficient. In
particular, the software analysis framework CPAChecker, which supports many
different reachability analyses, has been effectively used to validate a wide vari-
ety of reachability queries against C programs with up to 50K lines of code. This
makes reachability analysis a promising technique that can be used to signifi-
cantly reduce the patch overfitting problem and produce high-quality patches.

2 Invariant-based Program Repair Framework

In this section we reformulate the APR problem using the concept of program
invariants. We then describe how one can analyze the execution traces of fault-
free runs to infer likely specifications of the program’s intended behaviour and
execution traces of faulty runs to infer likely suspicious invariants that lead to the
faulty behaviour. Before proceeding further, let us introduce some definitions.

256 O. I. Al-Bataineh

Definition 1. (fault-free vs. faulty runs). Let P be a buggy program, R be
the set of runs of P , and φbeh be a property of program P ’s intended behavior.
We say that a run r ∈ R is a successful run (i.e., fault-free run) if P (r) |= φbeh.
On the other hand, we say that a run r′ ∈ R is a faulty run if P (r) ̸|= φbeh.

From Definition 1 we note that by analyzing information extracted from fault-
free runs, one might be able to infer a specification of the program’s intended
behavior. Similarly, by analyzing the execution information of faulty runs, one
might be able to deduce the violating invariants that cause the bug. This is be-
cause fault-free runs represent runs in which program invariants are maintained,
while faulty runs represent runs in which some program invariants are violated.

Definition 2. (Invariant-based APR problem). Let P be a program con-
taining bug b and T = (TP ∪ TF) be a test suite, where TP represents the set
of passing tests and TF represents the set of failing tests. Let D be a dynamic
invariant inference tool like Daikon, and V be a program verification tool like
CPAChecker. The invariant-based APR process consists of the following steps:

1. [Invariant extraction]. Generate an initial set of invariants I for P using D.
2. [Invariant refinement]. Refine the set I using V to produce specifications

φcorrect and φviolated. This can be done by asserting invariants at a program’s
location of interest and using any generated counter-example to refine them.

3. [Fault localization]. Compute a list of suspicious statements whose mutation
may lead to a valid patch by analyzing specifications φcorrect and φviolated.

4. [Patch generation]. Construct code that corrects the invariants that are vio-
lated while maintaining other program invariants. This can be performed by
employing a patch generation procedure like search- or semantic-based.

5. [Patch validation]. Validate the correctness of the generated patches using V .

Depending on the type of the bug being fixed and the structure of the an-
alyzed program, different program locations may be of relevance for properties
φcorrect and φviolated. Examples include pre- and post-conditions for different
functions, or loop invariants for some program loops. Note that the first two
steps of the invariant-based APR process described at Definition 2 are neces-
sary for increasing confidence in the precision of patches that are generated. The
actual repair steps of the process, steps 3-5, can be formally stated as follows:

pt = F V (P GV (F L(φcorrect, φviolated, P), T), φcorrect, φviolated) (1)

where FL is an invariant-based fault localization process, PGV is patch genera-
tion and validation process using test suite, and FV is a formal patch validation
process using the verification tool V . If no plausible patch is found or a plau-
sible patch is found but incorrect, the repair process returns fail. However, if
the plausible patch passes the verification step carried out by the tool V , the
process returns a patch. We now turn to discuss how one can generate specifi-
cations φcorrect and φviolated by analyzing the execution information obtained
by running program P using passing and failing tests. The analysis of fault-free
and faulty runs leads to the identification of the following formal patterns.

Invariant-based Program Repair 257

1. φcorrect = Igood = V (D(P, TP)), invariants deduced using only successful
runs. This set of invariants represents the likely intended behavior of P .

2. φfaulty = Imix = V (D(P, TF)), invariants deduced using the set of faulty
runs. Note that the set Imix may contain both good and bad patterns de-
pending on how the target bug affects different functionalities of P .

3. φviolated = (Imix \ Igood), the set of violated invariants related to the bug.

It is important to categorize and distinguish inferred patterns (invariants)
into good and bad patterns, especially when dealing with programs that have
several functional requirements. This helps to identify the set of desired invari-
ants to be maintained and violated invariants to be repaired when modifying
code. It also helps to identify the set of invariants that are relevant to the ana-
lyzed bug. The soundness of inferred φcorrect and φviolated depends heavily on
the soundness of the employed invariant inference tool as well as the invariant
refinement process. Increasing the amount of program behavior exercised using
reachability analysis increases the likelihood that φcorrect and φviolated are true.

Definition 3. (Patch validation in invariant-based APR). Let P be a
program containing bug b and T be a test suite containing at least one failing
test and one passing test. Let also pt be a plausible patch that makes P passes
all test cases in T . The validity of patch pt can be formally checked as follows

validity(pt) = V (pt, φcorrect) ∧ ¬V (pt, φviolated) (2)

where V (pt, φcorrect) ∈ {true, false} and that the tool’s response depends on
whether the specification is fulfilled or violated in the program being examined.

To boost confidence in the validity of the resulting patch, we opt to check
patches against both φcorrect and φviolated. However, to lower the cost of calling
the verifier V against each candidate patch, we aim to implement a three-step
patch validation method that uses the test suite first and the program verifier
afterwards. Generating plausible patches is done in the first step using test cases.
Second step involves formally checking plausible patches against the set of bad
patterns (property φviolated). Patches that pass the first two steps are checked
against the set of good patterns (property φcorrect) in the third step.

3 Fixing Performance Bugs Using Invariant-based APR

Performance bugs are programming errors that cause significant performance
degradation - lead to low system throughput. Experience has shown that many
commercial software that is widely used suffer from performance problems [13,
6, 10]. Therefore, there is a need to develop a rigorous repair framework for per-
formance bugs that ensures efficiency gain without compromising functionality.

One unique characteristic of performance bugs comparing to functional bugs
is that performance bugs do not affect the functionality of the program (i.e., the
program is semantically correct but inefficient) and thus the intended behavior
of the program can be automatically deduced using an invariant inference tool.

258 O. I. Al-Bataineh

This section describes an invariant-based APR system for performance bugs
and demonstrates how it may be applied to handle performance bugs by produc-
ing patches that ensures efficiency improvement without sacrificing functionality.

3.1 Invariant-based Repair Framework for Performance Bugs
In this section we describe an invariant-based repair framework for handling
performance bugs. The framework consists mainly of the following components:

1. a set of passing tests (tests that lead to fast runs),
2. a set of failing tests (tests that lead to slow runs),
3. runtime monitor to keep track of the program’s execution time and differen-

tiate between fast and slow runs, and
4. an automated invariant inference tool (Daikon or CPAChecker) and auto-

mated invariant verification tool (PVS, Z3 solver, or CPAChecker).

We now turn to discuss how we define the notions of passing and failing tests
and the process of generating and validating patches for performance bugs.
Passing and failing tests for performance bugs: Performance bugs do not
produce debugging information at runtime: they do not produce crashes, excep-
tions, or incorrect results. We therefore use a runtime monitor with a predefined
timer to redefine the concepts of passing and failing tests. We consider test cases
that lead to fast runs as passing tests while test cases that lead to slow runs as
failing tests. A repair that transforms slow runs into fast runs while preserving
the desired behavior of the original program is considered as a valid repair.
Patch generation strategy for performance bugs: Since we deal with a
semantically correct but inefficient program, an efficient version of the program
can often be created by restructuring the original program’s basic components.
Our preliminary analysis demonstrates the effectiveness of genetic repair tools,
such as GenProg, in dealing with performance bugs. This suggests that programs
with performance bugs can be fixed by relatively simple changes. For instance,
various performance bugs can be fixed by using mutation operators like move,
swap, delete, and insert employed by genetic repair programs. Consequently, we
aim to combine our repair framework with genetic-based patch generation tools.
Patch validation for performance bugs: It should be noted that invariant
inference tools can also be used to derive predicates related to the non-functional
attributes of the program. This can be achieved by adding extra non-functional
variables to the program being repaired. Suppose we have a program P with a
set of variables V and that P containing a performance bug. We need to check
whether the generated plausible patch for program P fixes the performance bug
without introducing new functional bug. To do so, we first generate and validate
predicates related to the efficiency attributes of the program, as described below.

1. Add a fresh variable nfv whose value has no impact on the behavior of P . The
type of performance bug that is being handled determines how nfv is used
to model the efficiency of the program. However, for the loop programs we
consider, nfv acts like a counter that is incremented once for each iteration.
In other words, the number of loop iterations serves as a model for efficiency.

Invariant-based Program Repair 259

2. Use the invariant detection tool D to infer the numerical invariants I(P, nfv)
and I(pt, nfv) for the original and plausible patched version, where I(P, nfv)
represents the collection of invariants in program P involving variable nfv.

3. Compare the numerical predicates in I(P, nfv) and I(pt, nfv) to determine
whether the patched version pt is more efficient than original program P .

For simplicity reasons, we assume we deal with a program with a single loop.
The number of loops in the analyzed program, however, determines how many
more variables are needed. The invariant inference tool D is thus used to infer
invariants on (V ∪{nfv}). We then distinguish the following types of predicates:

– I(P, V): predicates related to the program’s functionality, and
– I(P, nfv): predicates related to the program’s efficiency.

Using the generated predicates, one can check the validity of patch pt as follows

validity(pt) = SemaEq (I(P, V), I(pt, V)) ∧ PredSm (I(pt, nfv), I(P, nfv)) (3)

where SemaEq is a Boolean operation that checks whether the given sets of
invariants are semantically equivalent and PredSm is a Boolean operation that
checks whether the upper bound in the predicate related to the patched version
is smaller than the upper bound in the one related to the original program.

We now describe two formal procedures to verify the validity of plausible
patches (specification (3)) using the available program verification tools.

1. Daikon-PVS : In this patch validation procedure, Daikon is used to generate
predicates related to the functional and efficiency attributes of programs
P and pt. In the event that I(P, V) and I(pt, V) (i.e., predicates related
to functional attributes) are not identical, it may be necessary to examine
both equivalence and implication relations between the predicates in those
sets in order to determine whether P and pt are semantically equivalent. By
querying the theorem prover PVS, this task can be accomplished.

2. CPAChecker-PVS : One interesting feature in CPAChecker is that it produces
correctness witnesses in GraphML format and in those witnesses, one can
find the invariants of the analyzed program. This feature can be utilized to
generate the set of invariants in both the original program and corresponding
plausible one. In case that the invariants generated for both programs are not
identical, it may be necessary to examine both equivalence and implication
relations between the predicates in the two sets by invoking the prover PVS.

3.2 Fixing real-world performance bugs using invariant-based APR

In this section, we show how invariant-based APR can be used to handle real-
world performance bugs. For space reasons, we only consider one interesting ex-
ample of performance bugs (see Listing 1). The bug is based on a real-world flaw
that occurred in Apache and has also been analyzed by other researchers [14].
Analysis of the program in Listing 1: The program aims to determine
whether a given (target) string is contained within another (source) string. If

260 O. I. Al-Bataineh

1 int found = -1;
2 while (found < 0) {
3 // Check if string source [] contains target []
4 char first = target [0];
5 int max = sourceLen - targetLen ;
6 for (int i = 0; i <= max; i++) {
7 // Look for first character .
8 if (source [i] != first) {
9 while (++i <= max && source [i] != first);

10 }
11 // Found first character
12 if (i <= max) {
13 int j = i + 1;
14 int end = j + targetLen - 1;
15 for (int k=1; j<end && source [j]== target [k]; j++, k++);
16 if (j == end) {
17 /* Found whole string target . */
18 found = i;
19 break ;
20 }
21 }
22 }
23 // append another character ; try again
24 source [sourceLen ++] = getchar ();
25 }

Listing 1. A challenging performance bug found in Apache

the target string is found in the source string, the program sets the variable
found to the index of the target string’s first character. But there is a significant
performance flaw in the program: when the target string is at the start of the
source string, the run is fast, and the program stops almost instantaneously.
On the other hand, the run is slower and takes longer to finish when the target
string is closer to the end of the source string. This is mostly because there will
be a significant increase in the number of redundant computations. The fault
is that the initialization statement of the control variable i of the for loop at
line 6 should be placed outside the scope of the main while loop just after the
initialization of the variable found. The longest run that we reported occurs
when the source string has a length of 107 characters, and the target is a single
character that is present at the end of the source string. In this instance, the
program runs for 30 hours before terminating and producing the correct results.

3.3 Results and analysis

To handle the performance bug at Listing 1, we select two APR tools: the search-
based repair tool GenProg [7] and the semantic-based repair tool FAngelix [16].

Invariant-based Program Repair 261

These are general-purpose repair tools for C code that can be used to fix a
range of program bugs, including loop program bugs. While GenProg successfully
generated a plausible patch, FAngelix was unable to produce a plausible one. To
avoid doing repetitive calculations in the original program, GenProg moved the
initialization statement of the variable i outside of the for loop at line 6. In other
words, the program starts with the initialization statement of the variable i in
the patched version. In this case, the generated patch passes the test cases since
i is no longer being set to 0 every time the loop receives a new character.

To check the validity of the plausible patch generated by GenProg, we run the
tool Daikon and compare the functional and efficiency predicates obtained for
both the original program and the plausible patch. Daikon generates the same
set of invariants w.r.t. functional variables (i.e., both the original and the patched
versions have the same invariants w.r.t. program variables.) This demonstrates
that the patch maintains the functional behavior of the original program.

Listing 1 contains four loops: the while loop at line 2, for loop at line 6, while
loop at line 9, and for loop at line 15. To evaluate the efficiency of the original and
patched programs, it is sufficient to calculate the upper bound on the number
of iterations, as the patch does not modify the logic of any of the loops by
adding or removing an operation. That is, each iteration of the four loops in
both programs involves the same number of operations. We therefore add four
iteration counters (cnt2, cnt6, cnt9, cnt15) to model the efficiency of each loop,
where the index of the counter corresponds to the line number of the loop being
analyzed. For instance, the counter cnt2 is initially set to zero and advanced by
one whenever the loop at line 2 is run. We make the following observations when
analyzing the efficiency predicates for both the buggy and patched versions:

– Invariants generated for the counter variables cnt2 and cnt15 in the buggy
and patched versions are the same. This indicates that the patch does not
affect the number of times the loops at lines 2 and 15 are iterated.

– The counter variable cnt9 only advances in the buggy version and results in
the invariant cnt9 ≤ 500499. The fact that the patched version no longer
employs the while loop at line 9 is a sign of a major improvement.

– Daikon generated the invariant cnt6 ≤ 1001 in the buggy version and invari-
ant cnt6 ≤ 501 in the patched version. This shows that the loop at line 6 is
iterated 50% less times in the patched version than it is in the original code.

The aforementioned findings, along with the fact that the derived functional
predicates of both the original and patched versions are identical, boost our
confidence about the validity of the generated patch by the tool GenProg.

4 Related Work

Patch overfitting in APR: Several solutions have been developed to allevi-
ate the overfitting problem in APR, such as symbolic specification inference [8],
machine learning-based prioritization of patches [1], fuzzing-based test-suite aug-
mentation [5], and concolic path exploration [12]. These solutions rely on limited

262 O. I. Al-Bataineh

incomplete test cases and do not guarantee the general correctness of the patches.
Compared to those approaches that generate test inputs, invariant-based APR
automatically generates and refines desired invariants that need to be main-
tained and violated invariants that need to be repaired when modifying code,
which makes the approach more reliable than existing repair approaches.

Modern general-purpose APR tools still rely on symbolic execution or con-
colic execution [9, 12] to discover counterexamples and generate repairs. However,
these repair approaches manually inspect to determine whether the generated
patches are correct or identical to developer patches, which could be error-prone.
Invariant-based APR makes it possible to apply automated verification tech-
niques to alleviate overfitting problem and formally and systematically check the
accuracy of generated patches by comparing them to the developers patches.
Handling performance bugs: Several attempts have been made to detect and
repair performance bugs in programs using dynamic, static, and hybrid analysis
approaches [13, 6, 10]. [10] carried out an empirical investigation into perfor-
mance bugs and presented several efficiency rules for identifying them. Using
dynamic-static analysis techniques, several fix strategies have been developed
in [13] to identify and fix performance problems. However, our method is dif-
ferent from previous studies in that it is a more general and rigorous technique
that makes use of program invariant to address loop program performance issues
and yield reliable patches. Thanks to program invariants, the original program’s
efficiency can be systematically compared to the patched version.

5 Conclusion and Future Work

We described a novel general-purpose APR system based on the concept of pro-
gram invariants. Invariant-based APR holds the promise to handle a wider range
of bugs and produce more reliable patches than other APR approaches. This is
because invariant-based repair systems depend on stronger correctness criteria
rather than test suites. We demonstrate the usefulness of leveraging invariants in
APR by developing an invariant repair system for performance defects. The pre-
liminary results showed that invariant-based APR can assist in generating valid
patches that ensure efficiency improvement without compromising functionality.
Future work: To complete the line of research initiated here regarding invariant-
based APR, we identify the following key directions for future work.

– First and foremost, we aim to conduct a thorough empirical analysis to deter-
mine how well invariant-based APR handles functional and non-functional
defects in programs. This also entails assessing the invariant inference and
invariant verification tools that are currently accessible.

– Accurate invariant generation is required to ensure the validity of patches
produced by invariant-based APR. We conjecture that reachability analy-
ses can aid with this complex computational task and we aim to combine
invariant-based APR with program verification tools that support both in-
variant generation and refinement such as CPAChecker and PathFinder.

Invariant-based Program Repair 263

References

1. J. Bader, A. Scott, M. Pradel, and S. Chandra. Getafix: learning to fix bugs
automatically. Proc. ACM Program. Lang., pages 159:1–159:27, 2019.

2. D. Beyer. Automatic verification of C and java programs: SV-COMP 2019. In Tools
and Algorithms for the Construction and Analysis of Systems TACAS, volume
11429, pages 133–155, 2019.

3. D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In Computer Aided Verification, pages 184–190, 2011.

4. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

5. X. Gao, S. Mechtaev, and A. Roychoudhury. Crash-avoiding program repair. In
International Symposium on Software Testing and Analysis (ISSTA), pages 8–18,
2019.

6. G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting
real-world performance bugs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16,
2012, pages 77–88. ACM, 2012.

7. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A Generic Method
for Automatic Software Repair. IEEE Transactions on Software Engineering,
38(1):54–72, Jan. 2012.

8. S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. In International Conference on Software
Engineering (ICSE), pages 691–701, 2016.

9. S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable Multiline Program
Patch Synthesis via Symbolic Analysis. In International Conference on Software
Engineering (ICSE), pages 691–701, May 2016.

10. A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing performance
bugs. In 10th Working Conference on Mining Software Repositories (MSR), pages
237–246, 2013.

11. Z. Qi, F. Long, S. Achour, and M. C. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, July 12-17, 2015, pages 24–36, 2015.

12. R. Shariffdeen, Y. Noller, L. Grunske, and A. Roychoudhury. Concolic program
repair. In SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). ACM, 2021.

13. L. Song and S. Lu. Performance diagnosis for inefficient loops. In Proceedings of
the 39th International Conference on Software Engineering, ICSE, pages 370–380,
2017.

14. L. Song and S. Lu. Performance diagnosis for inefficient loops. In Proceedings of the
39th International Conference on Software Engineering, ICSE ’17, pages 370–380,
Buenos Aires, Argentina, 2017.

15. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking
programs. Autom. Software Engineering, 10(2):203–232, 2003.

16. J. Yi and E. Ismayilzada. Speeding up constraint-based program repair using a
search-based technique. Information and Software Technology, page 106865, 2022.

264 O. I. Al-Bataineh

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Invariant-based Program Repair 265

http://creativecommons.org/licenses/by/4.0/

Can ChatGPT support software verification?

Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
{christian.janssen1, cedric.richter, heike.wehrheim}@uol.de

Abstract. Large language models have become increasingly effective
in software engineering tasks such as code generation, debugging and
repair. Language models like ChatGPT can not only generate code, but
also explain its inner workings and in particular its correctness. This
raises the question whether we can utilize ChatGPT to support formal
software verification.
In this paper, we take some first steps towards answering this question.
More specifically, we investigate whether ChatGPT can generate loop
invariants. Loop invariant generation is a core task in software verifica-
tion, and the generation of valid and useful invariants would likely help
formal verifiers. To provide some first evidence on this hypothesis, we ask
ChatGPT to annotate 106 C programs with loop invariants. We check
validity and usefulness of the generated invariants by passing them to two
verifiers, Frama-C and CPAchecker. Our evaluation shows that Chat-
GPT is able to produce valid and useful invariants allowing Frama-C to
verify tasks that it could not solve before. Based on our initial insights,
we propose ways of combining ChatGPT (or large language models in
general) and software verifiers, and discuss current limitations and open
issues.

Keywords: Large language models · Invariant generation · Formal ver-
ification.

1 Introduction

Large language models (LLMs) [11,37,30] are increasingly employed to support
software engineers in the generation, testing and repair of code [15,14,27]. Gen-
erative AI can, however, not only generate code, but also provide explanations
of the inner workings of code and give arguments about its correctness. This
raises the question whether LLMs can also support formal software verification.

In this paper, we provide a first step towards answering this question. In gen-
eral, one can imagine various ways of supporting verifiers, depending on the ver-
ification approach they employ. Central to all verifiers are, however, techniques
for dealing with loops. Specifically, for abstracting the behaviour of loops, veri-
fiers aim at computing loop invariants. Our first step in evaluating ChatGPT’s
usefulness for software verification is thus the generation of loop invariants.

To this end, we ask ChatGPT to annotate C-programs with loop invariants.
We have chosen 106 C-programs from the Loops category of the annual com-
petition on software verification [7]. To enable the usage of these invariants by
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 26

99

–279, 2024.
https://doi.org/10.1007/978-3-031-57259-3_13

Christian Janßen, Cedric Richter(B) , and Heike Wehrheim

https://orcid.org/0000-0003-2906-6508
https://orcid.org/0000-0002-2385-7512
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_13&domain=pdf

Prompt> Compute a loop invariant for the following program!
1 void func(unsigned int n)
2 {
3 unsigned int x=n, y=0;
4 //@ loop invariant [mask];
5 while(x>0) {
6 x--; y++;
7 }
8 assert(y==n);
9 }

Infilling provided by ChatGPT: x+y==n

Fig. 1. Example task: loops/count_up_down-1.

verifiers, we needed the invariants to be given in some formal language. For
this, we have chosen ANSI/ISO C Specification Language (ACSL) [5], a design-
by-contract like annotation language for C. Initial experiments confirmed that
ChatGPT “knows” ACSL. The main part of our experiments then concerned
the evaluation of the invariants with respect to (a) validity and (b) usefulness
for verifiers. The first aspect required checking whether a proposed invariant
is actually a proper invariant, i.e., whether the computed predicate holds at
the beginning of the loop and after every loop iteration. We employ the state-of-
the-art interactive verifier Frama-C [4] for this validity checking. For evaluating
the usefulness of invariants, we provided two state-of-the-art verifiers (Frama-C
SV [9] and CPAchecker [8]) with the code annotated by the proposed invariant,
and evaluated whether the verifiers can then solve verification tasks which they
could not solve without the invariant1. Our results confirm that ChatGPT can
support software verifiers by providing valid and useful loop invariants, but also
show that more work needs to be done – both conceptually and practically – to
have LLMs provide a significant support for software verification.

2 Invariant Generation with ChatGPT

Our goal is to provide initial insights into the capabilities of large language
models, specifically ChatGPT, to support formal software verification. For this,
we propose the task of loop invariant generation.
Loop invariant generation. The goal of loop invariant generation is to gener-
ate valid and useful loop invariants for a given program. A valid loop invariant
is an invariant that (1) holds true before the first loop execution and (2) after
each loop iteration. A useful loop invariant is a valid loop invariant that is useful
for proving the given program correct.

To understand this, let us consider the example task shown in Figure 1. Here,
the large language model is tasked to analyze the given program and to propose
a loop invariant. For the given program, the invariant x + y == n represents a
valid loop invariant: as x is initialized to n and y to 0, the invariant holds (1)
1 In case of CPAchecker, we restrict CPAchecker’s own invariant generation facilities

as to be able to see the plain effect of the generated invariant.

Can ChatGPT support software verification? 267

before the first loop execution. The invariant furthermore holds (2) after each
loop iteration as y is incremented each time x is decremented.

The provided loop invariant also is a useful loop invariant: As x == 0 at the
end of the loop execution and x + y == n holds after the loop execution, we
can deduce that the assertion y == n is not violated after the loop execution.
The invariants x <= n and y >= 0 also represent valid loop invariants but they
are not useful for proving the program correct.
The idea is now to let ChatGPT generate such loop invariants. To this end, we
need to tell ChatGPT what its task is. As briefly mentioned in the introduction,
we expect ChatGPT to give loop invariants in the form of ACSL (ANSI C Spec-
ification Language [5]) assertions. ACSL is a specification language for C and of-
fers a number of keywords for specifications in a design-by-contract style. Among
others, there is the keyword loop invariant. ACSL specifications are written
inside comments of the form //@. Besides the plain code, Figure 1 also shows the
prompt used to tell ChatGPT its task (first line), and the code location and form
of the invariant we expect to be generated (//@ loop invariant [mask])2. We
thus phrase the task as an infilling problem [21], i.e., we require ChatGPT to
fill in some meaningful contents for [mask]. In this example, ChatGPT returns
the above discussed invariant. We arrived at this form of stating the task after
several experiments with different prompts.
Feeding loop invariants into verifiers. For evaluation of the generated in-
variants, we need to determine their validity and usefulness. To this end, we first
of all need to feed them into some verifier. Interactive verifiers natively provide
ways of feeding in such inputs. In an interactive verification run, a software en-
gineer provides program annotations (e.g., invariants) and the verifier tries to
prove that some given specifications are never violated3.

In this work, our goal is to evaluate the ability of large language models
to support verifiers. Therefore, we replace the software engineer by ChatGPT
and let it interact with the interactive verifier. Currently, the language model
only interacts by exchanging loop invariants (which is inline with our evaluation
goal). However, in future work it could be interesting to let the language model
generate other types of annotations.

During our evaluation, we use the interactive verifier Frama-C [4] to eval-
uate the validity and usefulness of the provided invariants. For evaluating the
usefulness, we furthermore employ an automatic verifier (CPAchecker [8]). To
also allow for interaction in this case, we employ ACSL2Witness [10] to convert
the ACSL annotated program to a correctness witness which CPAchecker is then
able to use in its verification.
Related work. There are only a few works that address invariant generation via
machine learning. The work in [32] uses large language models to predict invari-
ants of Java programs. They specifically trained large language models to predict
2 Prompt and answer from ChatGPT are abbreviated to fit the figure; the full prompt

is given in the appendix.
3 There exists a variety of properties that can be checked via verification; we focus

here on checking for violations of assertions.

268 C. Janßen et al.

Daikon [20] generated invariants. Their evaluation does not consider validity or
usefulness of the generated invariants but only concerns whether Daikon invari-
ants can be recovered. In contrast, in this work, we rely on instruction-tuned
large language models such as ChatGPT without any training and we use formal
verification approaches to evaluate the validity and usefulness of loop invariants
generated for C code.

Many approaches [36,31,22,35,12], which are related to or based on Syntax-
Guided Synthesis, have addressed invariant generation via machine learning tech-
niques. However, most of the existing techniques rely on traditional machine
learning or graph neural network based techniques instead of large language
models. We are interested in the capabilities of large language models in sup-
porting C software verifiers.

Beyond invariants, there also exist other ways to support software verifiers.
For example, the work in [3,23] supports verifiers with neural-network based
termination analyses. However, these approaches are often deeply integrated.
We chose loop invariant generation as many software verifiers already support
the exchange of invariants.

3 Evaluation

We evaluate ChatGPT on the task of loop invariant generation in C code. For
the evaluation, we use a benchmark of 106 verification tasks taken from the
SV-COMP Loops category [7]. We have chosen all tasks which (a) have ACSL
annotations (to be able to compare the generated with manually constructed
invariants), (b) have one loop only and (c) are correct, i.e., the assertions in the
code are valid. During our evaluation, we remove all ACSL invariant annotations
and let ChatGPT regenerate them. Now, based on our evaluation setup we aim
to answer the following research question:

Can ChatGPT support software verifiers with valid and useful loop invariants?

Experimental setup. For generating loop invariants, we employ the ChatGPT
(GPT-3.5) snapshot from June 2023. The model is queried via the OpenAI API4.
During our evaluation, we set the sampling temperature5 of ChatGPT to 0.2 and
sample up to k (k = 5) completions per task. We collect all invariants by parsing
the generated completions with the infillings.

For checking the validity of the generated invariants, we use the interactive
verifier Frama-C [4]. We annotate each task with one of the n generated invari-
ants. In total, we thus generate up to n annotated versions of each task which
we use for validation. We count loop invariants as validated only if Frama-C
WP can validate them within 10s6.
4 https://platform.openai.com/, accessed in Sept. 2023
5 The temperature controls the randomness of ChatGPT’s outputs; a lower temper-

ature leads to more deterministic outputs. We have chosen a low temperature to
obtain invariants in a processable format.

6 Note that a negative answer of Frama-C does not necessarily mean that the can-
didate invariant is invalid.

Can ChatGPT support software verification? 269

Table 1. Results for 106 verification tasks, divided by subcategory of the Loops cate-
gory (giving total number of tasks, number of successfully validated invariants, number
of verified tasks per verifier using either the generated or the human provided invariant
of the benchmark, and in gray the number of useful invariants)

Subcategory Tasks Frama-C k-induction

total val-invs. GPT invs. Human invs. GPT invs. Human invs.

loop-accelaration 15 8 1 (1) 2 (2) 6 (3) 6 (3)
loop-crafted 2 2 0 (0) 0 (0) 2 (0) 2 (0)
loop-industry-pat. 1 1 0 (0) 0 (0) 1 (0) 1 (0)
loop-invariants 8 4 3 (3) 3 (3) 0 (0) 1 (1)
loop-invgen 3 3 0 (0) 0 (0) 0 (0) 0 (0)
loop-lit 13 4 1 (1) 4 (4) 3 (2) 4 (3)
loop-new 7 4 1 (1) 1 (1) 0 (0) 0 (0)
loop-simple 1 1 1 (1) 1 (1) 1 (0) 1 (0)
loop-zilu 22 18 10 (10) 11 (11) 11 (6) 10 (5)
loops 13 13 5 (5) 6 (6) 8 (1) 8 (1)
loops-crafted-1 21 17 0 (0) 0 (0) 4 (3) 7 (6)

total 106 75 22 (22) 28 (28) 36 (15) 40 (19)

For evaluating the usefulness of the generated invariants, we now annotate
the task with the validated invariants from the previous step. If multiple invari-
ants are validated per task, we conjunct them to a single invariant and annotate
the task with the conjuncted invariant7. As verifiers, we consider the interac-
tive verifier Frama-C SV [9]8 and the automatic verifier CPAchecker [8]. We
configure CPAchecker to run k-induction without loop unrolling (similar to [10]
to be able to see the effect of the generated invariant). Note that this restricts
CPAcheckers facilities for verification. Finally, all verifier and validation runs
are executed via BenchExec [6] on a 24-core machine with 128GB RAM running
Ubuntu 22.04 with a maximum timelimit of 900s.

Results. Our main results are shown in Table 1. On the left side of the table,
we show the total number of tasks per subcategory (total) and the number of
tasks where at least one of the generated invariants can be validated (val-invs.).
On the right side of the table, we report on the verification results obtained from
executing Frama-C and CPAchecker (using k-induction without loop unfolding)
on the verification tasks with at least one validated invariant. We report the
total number of tasks that can be verified with a ChatGPT provided invariant
(GPT invs.) and a human provided invariant (Human invs.), i.e., the ACSL
invariant given in the benchmark. In addition, we also report the number of
useful invariants in gray brackets. Useful here means that the verifier cannot
complete the verification task without the invariant.

7 The logical conjunction of two valid invariants is again a valid invariant.
8 Frama-C SV is a version of Frama-C specifically configured to work well on SV-

COMP task.

270 C. Janßen et al.

1 void func () {
2 unsigned int x = 0, y = 1;
3 //@ loop invariant [mask];
4 while (x < 6) { x++; y *= 2; }
5 assert(y % 3 != 0);
6 }

Infilling provided by ChatGPT: x <= 6 && y == pow(2, x)
Human: (x==0 && y==1) || (x==1 && y==2) || (x==2 && y==4) || ...

Fig. 2. Example task: loop-accelaration/underapprox_1-2

ChatGPT can generate valid loop invariants. We find that ChatGPT can gen-
erate valid loop invariants for 75 out of 106 tasks (as validated by Frama-C).
Note that ChatGPT proposes loop invariant candidates for all 106 tasks and by
manual inspection we found that some of the generated loop invariant candi-
dates are still meaningful, even though they are not validated by Frama-C. An
example is shown in Figure 2. ChatGPT produces a meaningful loop invariant
candidate, but Frama-C rejects the candidate due to technical reasons9. The
human-annotated invariant avoids this problem by enumerating all variable as-
signments. In total, we found by manual inspection that 10 out of 31 invariant
candidates not validated by Frama-C are meaningful.

Interestingly, we found during our manual inspection that ChatGPT in many
cases seems to apply a set of useful heuristics to determine loop invariant candi-
dates. One of the most successful heuristic applied by ChatGPT on our bench-
mark is the copy assertion heuristic. Here, ChatGPT proposes an invariant that
is equivalent to a condition found in a nearby assertion. The heuristic is applied
in 30 out of 106 tasks and 23 of the resulting invariants are validated.

ChatGPT can support verifiers with useful loop invariants. We find that Chat-
GPT can produce useful invariants that can support software verifiers in their
verification tasks. In comparison to the human-provided invariants, ChatGPT
produced useful invariants for 22 out of 28 tasks in the case of Frama-C and
for 15 out of 19 tasks in the case of CPAchecker’s k-induction. Interestingly, we
find one example in the loop-zilu subcategory where the invariant proposed by
ChatGPT is more useful for CPAchecker than the human annotated invariant.
The example is shown in Figure 3. Here, ChatGPT proposes the invariants j
>= 0 and k >= 0 conjuncted with the human-provided invariant which is ob-
viously useful to prove that k >= 0 holds true at the end of the loop. Note
that, while this seems to be a case where the copy assertion heuristics is ef-
fective, Frama-C does not validate the invariant candidate k >= 0 alone. The
conjunction with j<=n && k>=n-j is important to validate the invariant. Still,
by manual inspection we find that the copy assertion heuristic of ChatGPT is
effective for providing useful invariants in 11 out of 22 cases for Frama-C and
in 5 out of 15 cases for k-induction.

9 Frama-C reports an invalid conversion from integer type to a floating point type
due to the pow operator and thereby fails.

Can ChatGPT support software verification? 271

1 void func(int k, int j, int n) {
2 if (!(n>=1 && k>=n && j==0)) return;
3 //@ loop invariant [mask];
4 while (j<=n-1) { j++; k--; }
5 assert(k>=0);
6 }

Infilling provided by ChatGPT: j >= 0 && k >= 0 && j <= n && k >= n - j
Human: j <= n <= k + j

Fig. 3. Example task: loop-zilu/benchmark04_conjunctive.

4 Limitations and Open Issues

We discuss limitations and open issues in using large language models for sup-
porting software verifiers.
Cooperation between Language Model and Software Verifier. Our eval-
uation has shown that large language models such as ChatGPT are already ca-
pable of producing valid and useful loop invariants for our benchmark tasks.
However, to be useful in practice, there are several challenges we have to master.
A key challenge is the communication and cooperation between large language
model and software verifier. Currently, we have implemented a top-down ap-
proach for invariant generation, i.e., we start by querying the language model
for invariant candidates, validate them and then provide them to a verifier.
The LLM has no knowledge about the specifics of the underlying validator or
the verifier used in the process. This can ultimately hinder the large language
model from generating valid (as validated by the validator) or useful (as deter-
mined by the verifier) loop invariants. During our evaluation, we already have
encountered an example where this knowledge gap leads to meaningful but not
validated invariant candidates (see Figure 2). Here, the language model has no
knowledge about the specifics of the validator used (Frama-C) or at least is not
informed that the proposed expression leads to a parsing error. Communicating
this information allows the large language model to self-debug [17] its invariant
proposals and thereby propose invariant candidates that are validated by the
validator and that are useful for the verifier. For example, if we report the im-
plicit conversion error back to ChatGPT, it generates a new invariant candidate
(y == 1 « x) for our example in Figure 2 that is validated by our validator.

LLM

Validator

Software
Verifier

(a) valid? (b) useful?

(c) not valid!

(d) not useful!

Fig. 4. Conceptual overview.

Overall, we envision a cooperative ap-
proach between large language model,
invariant validator and software veri-
fier as shown in Figure 4. In an inner
loop, the large language model coop-
erates with the validator to identify
valid loop invariants. Here, the lan-
guage model proposes invariant candi-
dates, obtains feedback from the val-
idator and refines its invariant sugges-
tion. In the outer loop, the language model cooperates in the same way with the

272 C. Janßen et al.

software verifier to find useful loop invariants. This work already implements (a)
the validation of invariant candidates and (b) the verification with useful invari-
ants. The key challenge is now to determine which feedback is needed from (c)
the validator or (d) the software verifier to effectively guide the language model
to valid and useful invariants.

A subsequent study [28] provides first insights in the feasibility of our ap-
proach. By providing feedback to the language model (in form of error messages
produced by Frama-C), the authors showed that language models can effectively
repair its invariant proposals. We believe that providing more detailed feedback
(e.g. by providing a more detailed reasoning why the validation process fails) can
further boost the performance of language model based invariant generation.

Finally, we can envision that our approach to language model and verifier
cooperation may be useful beyond invariant generation. For example, TriCo [2]
proposes to check the conformity between implementation and code specification
with a verifier. A large language model could react to conformity violations and
repair either the implementation or the specification.

Unified assertion language. Our approach for invariant generation requires
that large language models, validators and software verifiers communicate in-
variants with a common specification language (e.g., ACSL in our case). How-
ever, in practice, there exists a zoo of interactive verifiers such as Dafny [29],
Frama-C [4], KeY [1], KIV [19], and VeriFast [25] and automated software
verifiers such as CBMC [18], CPAchecker [8], Symbiotic [13], and Ultimate Au-
tomizer [24]. All of them implement their own custom way to communicate
invariants. Therefore, we either have to find a way to unify the communication
of invariants between systems or we have to define transformations that convert
between communication formats. In this work, we have already employed the
transformation ACSL2Witness [10] to convert ACSL to a format understand-
able by automated software verifiers. In the future, we plan to explore alternative
transformations to support a wider range of validators and verifiers.

Known limitations of LLMs. Large language models have many known lim-
itations such as hallucinations [26], input length limitations [30], and limited
reasoning capabilities [34]. All of this can significantly limit the ability of large
language models to produce valid and useful loop invariants or to support soft-
ware verifiers in general. However, active research is underway to overcome these
limitations, and a number of proposals have already been made to reduce halluci-
nations [33], increase input length [16], or improve the reasoning performance [38]
of large language models. It would be interesting for future work to evaluate how
these solutions impact the loop invariant generation abilities of large language
models.

5 Conclusion

In this work, we provided a first step towards answering the question whether
large language models can support formal software verification. For this, we

Can ChatGPT support software verification? 273

have evaluated ChatGPT on the task of loop invariant generation. Our eval-
uation shows that ChatGPT can support software verifiers by providing valid
and useful loop invariants. We plan to further improve the support for software
verification in future work by a cooperative approach that enables exchange of
information between large language models, invariant validators and software
verifiers. In particular, we intend to develop methods for providing feedback to
LLMs whenever candidate invariants are found to not be valid.

A Prompting ChatGPT

The full prompt and the answer of ChatGPT for the example task loops/co-
unt_up_down-1 is shown in Figure 5. We use the same prompt for all tasks.
The answer of ChatGPT can slightly vary between executions. Therefore, we
generate up to k answers and collect invariants from all answers via a regular
expression.

Prompt> Compute a loop invariant for the annotated loop including [invariant] in the
following C code. Please use the format of ACSL annotations and always end your
response with //@ loop invariant X ; where X is the computed invariant.

1 [...]
2 unsigned int __VERIFIER_nondet_uint ();
3

4 int main ()
5 {
6 unsigned int n = __VERIFIER_nondet_uint ();
7 unsigned int x=n, y=0;
8 //@ loop invariant [invariant];
9 while(x>0)

10 {
11 x--;
12 y++;
13 }
14 __VERIFIER_assert (y==n);
15 }

ChatGPT>

The loop i nva r i an t f o r the g iven code can be s ta t ed as f o l l ow s :

‘ ‘ ‘
//@ loop i nva r i an t y + x == n ;
‘ ‘ ‘
[. . .]

Fig. 5. Full prompt and answer for example task: loops/count_up_down-1.

274 C. Janßen et al.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel,
W., Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Softw.
Syst. Model. 4(1), 32–54 (2005). https://doi.org/10.1007/s10270-004-0058-x,
https://doi.org/10.1007/s10270-004-0058-x

2. Ahrendt, W., Gurov, D., Johansson, M., Rümmer, P.: Trico - triple co-piloting of
implementation, specification and tests. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation. Verification
Principles - 11th International Symposium, ISoLA 2022, Rhodes, Greece, October
22-30, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13701,
pp. 174–187. Springer (2022). https://doi.org/10.1007/978-3-031-19849-6_
11, https://doi.org/10.1007/978-3-031-19849-6_11

3. Alon, Y., David, C.: Using graph neural networks for program termination. In:
Roychoudhury, A., Cadar, C., Kim, M. (eds.) Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-
18, 2022. pp. 910–921. ACM (2022). https://doi.org/10.1145/3540250.3549095,
https://doi.org/10.1145/3540250.3549095

4. Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner, F., Kosmatov, N.,
Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., Williams, N.: The dogged
pursuit of bug-free C programs: the Frama-C software analysis platform. Com-
mun. ACM 64(8), 56–68 (2021). https://doi.org/10.1145/3470569, https://
doi.org/10.1145/3470569

5. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, http://frama-c.com/download/acsl.pdf

6. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 22nd International
Conference, TACAS 2016. Lecture Notes in Computer Science, vol. 9636, pp. 887–
904. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55, https:
//doi.org/10.1007/978-3-662-49674-9_55

7. Beyer, D.: Competition on software verification and witness validation: SV-
COMP 2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS. Lec-
ture Notes in Computer Science, vol. 13994, pp. 495–522. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_29, https://doi.org/10.1007/
978-3-031-30820-8_29

8. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software veri-
fication. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. Lecture Notes in Com-
puter Science, vol. 6806, pp. 184–190. Springer (2011). https://doi.org/10.1007/
978-3-642-22110-1_16, https://doi.org/10.1007/978-3-642-22110-1_16

9. Beyer, D., Spiessl, M.: The static analyzer Frama-C in SV-COMP (competition
contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 28th International Conference, TACAS 2022.
Lecture Notes in Computer Science, vol. 13244, pp. 429–434. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_26, https://doi.org/10.1007/
978-3-030-99527-0_26

10. Beyer, D., Spiessl, M., Umbricht, S.: Cooperation between automatic and interac-
tive software verifiers. In: Schlingloff, B., Chai, M. (eds.) Software Engineering and
Formal Methods - 20th International Conference, SEFM 2022. Lecture Notes in

Can ChatGPT support software verification? 275

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1145/3540250.3549095
https://doi.org/10.1145/3540250.3549095
https://doi.org/10.1145/3540250.3549095
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
http://frama-c.com/download/acsl.pdf
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26

Computer Science, vol. 13550, pp. 111–128. Springer (2022). https://doi.org/10.
1007/978-3-031-17108-6_7, https://doi.org/10.1007/978-3-031-17108-6_7

11. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

12. Chakraborty, S., Lahiri, S.K., Fakhoury, S., Lal, A., Musuvathi, M., Rastogi, A.,
Senthilnathan, A., Sharma, R., Swamy, N.: Ranking llm-generated loop invariants
for program verification. In: Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the
Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-
10, 2023. pp. 9164–9175. Association for Computational Linguistics (2023), https:
//aclanthology.org/2023.findings-emnlp.614

13. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety
checking revisited. Int. J. Softw. Tools Technol. Transf. 22(2), 115–133
(2020). https://doi.org/10.1007/s10009-019-00526-2, https://doi.org/10.
1007/s10009-019-00526-2

14. Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou, J., Chen, W.: Codet:
Code generation with generated tests. In: The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net (2023), https://openreview.net/pdf?id=ktrw68Cmu9c

15. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,
N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such,
F.P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S.,
Jain, S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V.,
Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., Zaremba,
W.: Evaluating large language models trained on code. CoRR abs/2107.03374
(2021), https://arxiv.org/abs/2107.03374

16. Chen, S., Wong, S., Chen, L., Tian, Y.: Extending context window of
large language models via positional interpolation. CoRR abs/2306.15595
(2023). https://doi.org/10.48550/arXiv.2306.15595, https://doi.org/10.
48550/arXiv.2306.15595

17. Chen, X., Lin, M., Schärli, N., Zhou, D.: Teaching large language models to self-
debug. CoRR abs/2304.05128 (2023). https://doi.org/10.48550/arXiv.2304.
05128, https://doi.org/10.48550/arXiv.2304.05128

18. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems, 10th International Conference, TACAS 2004.
Lecture Notes in Computer Science, vol. 2988, pp. 168–176. Springer (2004).
https://doi.org/10.1007/978-3-540-24730-2_15, https://doi.org/10.1007/
978-3-540-24730-2_15

276 C. Janßen et al.

https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2023.findings-emnlp.614
https://aclanthology.org/2023.findings-emnlp.614
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/s10009-019-00526-2
https://openreview.net/pdf?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2306.15595
https://doi.org/10.48550/arXiv.2306.15595
https://doi.org/10.48550/arXiv.2306.15595
https://doi.org/10.48550/arXiv.2306.15595
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15

19. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview
and verifythis competition. Int. J. Softw. Tools Technol. Transf. 17(6), 677–
694 (2015). https://doi.org/10.1007/s10009-014-0308-3, https://doi.org/
10.1007/s10009-014-0308-3

20. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.
01.015, https://doi.org/10.1016/j.scico.2007.01.015

21. Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih,
S., Zettlemoyer, L., Lewis, M.: Incoder: A generative model for code infilling and
synthesis. In: The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023), https://
openreview.net/pdf?id=hQwb-lbM6EL

22. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Bodík, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. pp. 499–512. ACM (2016). https://doi.org/10.1145/2837614.2837664,
https://doi.org/10.1145/2837614.2837664

23. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: Roy-
choudhury, A., Cadar, C., Kim, M. (eds.) Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-
18, 2022. pp. 633–645. ACM (2022). https://doi.org/10.1145/3540250.3549120,
https://doi.org/10.1145/3540250.3549120

24. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 36–
52. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8_2, https://
doi.org/10.1007/978-3-642-39799-8_2

25. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods
- Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6617, pp. 41–
55. Springer (2011). https://doi.org/10.1007/978-3-642-20398-5_4, https:
//doi.org/10.1007/978-3-642-20398-5_4

26. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A.,
Fung, P.: Survey of hallucination in natural language generation. ACM Comput.
Surv. 55(12), 248:1–248:38 (2023). https://doi.org/10.1145/3571730, https:
//doi.org/10.1145/3571730

27. Jiang, N., Liu, K., Lutellier, T., Tan, L.: Impact of code language models on au-
tomated program repair. In: 45th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. pp. 1430–
1442. IEEE (2023). https://doi.org/10.1109/ICSE48619.2023.00125, https:
//doi.org/10.1109/ICSE48619.2023.00125

28. Kamath, A., Senthilnathan, A., Chakraborty, S., Deligiannis, P., Lahiri, S.K., Lal,
A., Rastogi, A., Roy, S., Sharma, R.: Finding inductive loop invariants using large

Can ChatGPT support software verification? 277

https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125

language models. CoRR abs/2311.07948 (2023). https://doi.org/10.48550/
ARXIV.2311.07948, https://doi.org/10.48550/arXiv.2311.07948

29. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelli-
gence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/
978-3-642-17511-4_20, https://doi.org/10.1007/978-3-642-17511-4_20

30. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P.,
Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton,
F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P.F., Leike, J.,
Lowe, R.: Training language models to follow instructions with human feed-
back. In: NeurIPS (2022), http://papers.nips.cc/paper_files/paper/2022/
hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

31. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Krintz, C., Berger, E.D. (eds.) Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. pp. 42–56.
ACM (2016). https://doi.org/10.1145/2908080.2908099, https://doi.org/
10.1145/2908080.2908099

32. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can large language models
reason about program invariants? In: Krause, A., Brunskill, E., Cho, K., Engel-
hardt, B., Sabato, S., Scarlett, J. (eds.) ICML. Proceedings of Machine Learning
Research, vol. 202, pp. 27496–27520. PMLR (2023), https://proceedings.mlr.
press/v202/pei23a.html

33. Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y., Huang, Q., Li-
den, L., Yu, Z., Chen, W., Gao, J.: Check your facts and try again: Improv-
ing large language models with external knowledge and automated feedback.
CoRR abs/2302.12813 (2023). https://doi.org/10.48550/arXiv.2302.12813,
https://doi.org/10.48550/arXiv.2302.12813

34. Rae, J.W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, H.F., Aslanides,
J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J.,
Cassirer, A., Powell, R., van den Driessche, G., Hendricks, L.A., Rauh, M., Huang,
P., Glaese, A., Welbl, J., Dathathri, S., Huang, S., Uesato, J., Mellor, J., Higgins,
I., Creswell, A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S.M., Buchatskaya,
E., Budden, D., Sutherland, E., Simonyan, K., Paganini, M., Sifre, L., Martens, L.,
Li, X.L., Kuncoro, A., Nematzadeh, A., Gribovskaya, E., Donato, D., Lazaridou,
A., Mensch, A., Lespiau, J., Tsimpoukelli, M., Grigorev, N., Fritz, D., Sottiaux,
T., Pajarskas, M., Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume, C., Li,
Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A., de Las Casas, D., Guy, A.,
Jones, C., Bradbury, J., Johnson, M.J., Hechtman, B.A., Weidinger, L., Gabriel,
I., Isaac, W., Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals, O., Ay-
oub, K., Stanway, J., Bennett, L., Hassabis, D., Kavukcuoglu, K., Irving, G.: Scal-
ing language models: Methods, analysis & insights from training gopher. CoRR
abs/2112.11446 (2021), https://arxiv.org/abs/2112.11446

35. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop in-
variants for program verification. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,

278 C. Janßen et al.

https://doi.org/10.48550/ARXIV.2311.07948
https://doi.org/10.48550/ARXIV.2311.07948
https://doi.org/10.48550/ARXIV.2311.07948
https://doi.org/10.48550/ARXIV.2311.07948
https://doi.org/10.48550/arXiv.2311.07948
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.48550/arXiv.2302.12813
https://doi.org/10.48550/arXiv.2302.12813
https://doi.org/10.48550/arXiv.2302.12813
https://arxiv.org/abs/2112.11446

Canada. pp. 7762–7773 (2018), https://proceedings.neurips.cc/paper/2018/
hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html

36. Si, X., Naik, A., Dai, H., Naik, M., Song, L.: Code2inv: A deep learning framework
for program verification. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Veri-
fication - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21-24, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12225,
pp. 151–164. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_9,
https://doi.org/10.1007/978-3-030-53291-8_9

37. Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D., Chi, E.H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., Fedus, W.: Emergent abilities of large language models. Trans. Mach.
Learn. Res. 2022 (2022), https://openreview.net/forum?id=yzkSU5zdwD

38. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le,
Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language
models. In: NeurIPS (2022), http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Can ChatGPT support software verification? 279

https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html
https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-030-53291-8_9
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://creativecommons.org/licenses/by/4.0/

Combining Deductive Verification
with Shape Analysis

1 Thales Research & Technology, Palaiseau, France
{teo.bernier,yani.ziani,nikolai.kosmatov}@thalesgroup.com

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
frederic.loulergue@univ-orleans.fr

Abstract. Deductive verification tools can prove a large range of pro-
gram properties, but often face issues on recursive data structures. Ab-
stract interpretation tools based on separation logic and shape analysis
can efficiently reason about such structures but cannot deal with so large
classes of properties. This short paper presents an ongoing work on com-
bining both techniques. We show how a deductive verifier for C programs,
Frama-C/Wp, can benefit from a shape analysis tool, MemCAD, where
structural and separation properties proved in the latter become assump-
tions for the former. A case study on selected functions of the tpm2-tss
library using linked lists confirms the interest of the approach.

Keywords: deductive verification, shape analysis, abstract interpretation, linked
lists, Frama-C, MemCAD

1 Introduction

Context and Motivation. Deductive verification tools were successfully used in
many case studies [4] to prove a large range of safety, security and functional
properties. Such tools often have issues to conduct automatic proof on code with
recursive data structures (e.g. linked lists, trees, etc.), in particular, due to com-
plex memory models they need. The user has to guide the proof by interactively
proved lemmas, assertions, etc. Abstract interpretation tools based on separation
logic and shape analysis [3] can efficiently reason about such structures but typ-
ically cannot deal with so large classes of properties. This short paper presents
new ideas and emerging results on combining both techniques trying to take the
best of both worlds.

Approach and Results. We present a verification approach combining a popular
deductive verifier for C programs, Frama-C/Wp [6], with a shape analysis tool,
MemCAD [10]. The main idea is to prove structural and separation properties
in MemCAD and then to assume them in Frama-C/Wp in order to increase
the level of automation of the latter and overcome some of its limitations. We

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 280–289, 2024.
https://doi.org/10.1007/978-3-031-57259-3_14

Téo Bernier1 , Yani Ziani1,2 , Nikolai Kosmatov1(B) ,
and Frédéric Loulergue2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_14&domain=pdf
http://orcid.org/0009-0003-4834-7126
http://orcid.org/0009-0000-8540-1273
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0001-9301-7829
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

apply it on a real-life case study using linked lists: a few (slightly simplified)
functions of tpm2-tss3, a popular library for communication with a Trusted
Platform Module (TPM). Recent work [11] demonstrated that deductive verifi-
cation of the library functions manipulating linked lists was relatively hard, and
required many additional lemmas and assertions.

The contributions of this paper include the presentation of a combined verifi-
cation technique using deductive verification and shape analysis, its illustration
with Frama-C/Wp and MemCAD on a function manipulating linked lists, as
well as a successful case study on a set of functions of the tpm2-tss library.

2 Background

2.1 Deductive Verification with Frama-C/Wp

Frama-C [6] is an integrated toolbox built around a kernel offering core ser-
vices and plugins dedicated to specific analysis or verification tasks for C code,
e.g. value analysis, runtime assertion checking and deductive verification. Acsl
(ANSI C Specification Language) [6] is the common specification language of the
plugins. The Wp plugin performs modular deductive verification: each function
is verified independently. It generates verification conditions (VCs) from the C
code with Acsl annotations and requests their proof by the QED simplifier or
by external provers.

We illustrate the main Acsl features on the running example4 of Fig. 1, 3, 4,
5, presented as we go, where Acsl notation (e.g. \forall, integer, ==>, <=, &&)
is pretty-printed (resp., as ∀, Z,⇒, ≤, ∧). Lines 69–85 of Fig. 4 show a contract for
function list_push (detailed below) that adds a new value into a linked list (cf.
Lines 1–2 of Fig. 1), allocating a new cell. The contract includes pre-conditions
(requires clauses) and post-conditions (ensures clauses). The assigns clause is a
special kind of post-condition that indicates the memory locations the function is
allowed to modify. Acsl formulas are mostly multi-sorted first-order logic where
types are either C types or logic types (such as Z, the type of mathematical
integers). Acsl provides built-in constructs such as \result (the value returned
by the function) and predicates such as \valid(p) (stating that pointer p refers
to an allocated memory location, so that *p can be safely read and written) and
\separated(p1,p2,...) (stating that the memory locations referred to by given
pointers do not intersect). Notice that the considered memory locations are here
indicated by pointers. Users can define predicates such as those in Fig. 1, adapted
here from a previous work [1] on verifying linked lists in Wp.

The main predicate is the inductively defined predicate linked_ll (Lines 10–
19) stating that a linked list (segment) of int values (defined on Lines 1–2)
from pointer bl to pointer el (excluded) is a well-formed list represented by
an Acsl logical list ll. In other words, ll contains the pointers to the cells
of that list segment (or the whole list if el is NULL). Acsl lists are similar to

3 https://github.com/tpm2-software/tpm2-tss
4 Available in a companion artifact on http://doi.org/10.5281/zenodo.10497923

Combining Deductive Verification with Shape Analysis 281

1 typedef struct cell_s {struct cell_s* next; int data;} cell;
2 typedef cell* list;
3 /*@
4 predicate ptr_sep_from_list{L}(cell* c, \list<cell*> ll) =
5 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(c, \nth(ll, n));
6 predicate dptr_sep_from_list{L}(cell** c, \list<cell*> ll) =
7 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(c, \nth(ll, n));
8 predicate in_list{L}(cell* c, \list<cell*> ll) =
9 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n) == c;

10 inductive linked_ll{L}(cell *bl,cell *el,\list<cell*> ll) {
11 case linked_ll_nil{L}:
12 ∀ cell *el; linked_ll{L}(el, el, \Nil);
13 case linked_ll_cons{L}:
14 ∀ cell *bl, *el , \list<cell*> tail;
15 (\separated(bl, el) ∧ \valid(bl) ∧
16 linked_ll{L}(bl ->next , el, tail) ∧
17 ptr_sep_from_list(bl, tail)) ⇒
18 linked_ll{L}(bl , el, \Cons(bl, tail));
19 }
20 predicate unchanged_ll{L1, L2}(\list<cell*> ll) =
21 ∀ Z n; 0 ≤ n < \length(ll) ⇒
22 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
23 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2) ∧
24 \at((\nth(ll,n))->data , L1) == \at((\nth(ll,n))->data , L2);
25 axiomatic cell_to_ll {
26 logic \list<cell*> to_ll{L}(cell* beg , cell* end)
27 reads {node ->next | cell* node;
28 \valid(node) ∧ in_list(node , to_ll(beg , end))};
29 axiom to_ll_nil{L}: ∀ cell *node;
30 to_ll{L}(node , node) == \Nil;
31 axiom to_ll_cons{L}: ∀ cell *beg , *end;
32 (\separated(beg , end) ∧ \valid{L}(beg) ∧
33 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
34 to_ll{L}(beg , end) ==
35 \Cons(beg , to_ll{L}(beg ->next , end));
36 }
37 */
38 #include "lemmas_min.h"

Fig. 1. Types and Acsl predicates for linked lists.

lists in functional programming. In the inductive case (linked_ll_cons) over-
lapping list cells (or cyclic lists) are avoided by requiring that the first cell bl
is separated from all the other cells in the list including el, so the list is well-
formed. The predicates on Lines 4–9 use predefined functions: \length and \nth

that returns the nth element of a logic list. Predicates can take one or several
program points (C labels plus some Acsl labels: Pre and Post). The built-in
\at(e, L) specifies the value of an expression e at a label L. Using these fea-
tures, unchanged_ll states that a logic list does not change between two program
points (Lines 20–24). Finally, Lines 25–36 define an axiomatic function to_ll

that constructs a logic list from a C linked list. While it would be possible to
write requires ∃\list<cell>ll; linked_ll(*pl, NULL, ll); instead of Line 72
of Figure 4, the scope of the existential quantifier is just this line. Therefore, ll
cannot be used in the post-conditions, hence the need for to_ll.

Let us now detail the contract of list_push (its code is detailed below).
The pre-conditions state that pl is a valid pointer to a list (Line 70), separated
from every element in the list (Line 71), and refers to a linked list verifying the

282 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

a ll_cell<0,0> :=
b | [0]
c - emp
d - this = 0
e | [2 addr int]
f - this ->0 |-> $0 * $0.ll_cell () *
g this ->4 |-> $1
h - alloc(this , 8) & this ̸= 0.
i

j plist<0, 0> :=
k | [1 addr]
l - this ->0 |-> $0 * $0.ll_cell ()

m - alloc(this , 4) & this ̸= 0.

n cell<0,0> :=
o | [0]
p - emp
q - this = 0
r | [2 addr int]
s - this ->0 |-> $0 * this ->4 |-> $1
t - alloc(this , 8) & this ̸= 0.
u

v cell_plist<0,0> :=
w | [2 addr addr]
x - this ->0 |-> $0 * $0.cell() *
y this ->4 |-> $1 * $1.plist()
z - alloc(this , 8) & this ̸= 0.

Fig. 2. Inductive predicates for MemCAD.

inductive predicate linked_ll (Line 72). Line 73 specifies that the only locations
the function is allowed to modify are *pl, the head pointer of the list, and
\at(**pl, Post), the first element of the list at the exit point, i.e. the freshly
allocated cell. We cannot reference the new list cell at the entry point because it
is not allocated yet. In post-conditions, the returned value indicates whether or
not the allocation is successful (Line 76). Regardless of the success, we expect the
list invariants to hold (Lines 74–75). In case the allocation fails, we expect the
pointer *pl and the list contents to be unchanged (Lines 77–79). If it succeeds,
we expect the list to be composed of the new cell followed by the old list (Lines
80–81), the old list being unchanged (Lines 82–83), and the fields of the new
cell, next and data, resp., to point to the old list (Line 84) and to contain the
expected value (Line 85).

2.2 Shape Analysis with MemCAD

The purpose of MemCAD [10] is to automatically infer precise invariants about
programs manipulating complex data structures. It is based on shape analysis [3],
a static code analysis technique that discovers and verifies properties of recursive,
dynamically allocated data structures. It relies on separation logic and abstract
interpretation. Unlike in Wp, the analysis is global.

To use MemCAD on linked lists defined on Lines 1–2 of Fig. 1, the user
first defines an inductive predicate expressing a structural invariant of a well-
formed linked list, such as predicate ll_cell on Lines a–h of Fig. 2. A list, i.e.
a pointer to a list cell, satisfies the predicate in two cases. Each case defines
a memory separation formula and additional constraints. In the first case, the
pointer is null (Line d) and no specific memory separation is required (Line c).
This case has no additional arguments (cf. [0] on Line b). The second case has
two (existentially quantified) arguments: an address and an integer (Line e),
denoted, resp., by $0 and $1 in the rest of the case. The pointer is non null
and refers to a valid memory block of 8 bytes (Line h), assuming a 32-bit sys-
tem. Lines f–g define the values of the fields next and data (at offsets 0 and 4)
as $0 and $1, and require separation between those fields and the rest of the
list. The separation is expressed by the separating conjunction “*” [10]. Notice

Combining Deductive Verification with Shape Analysis 283

40 //@ assigns \nothing;
41 void mc_chk_plist(list* pl) {
42 _memcad("check_inductive(pl,plist)");
43 }
44

45 typedef struct {cell* c; list* pl;} cell_plist;
46

47 //@ assigns \nothing;
48 void mc_chk_sep_cell_plist(cell* c, list* pl) {
49 cell_plist tmp;
50 tmp.c = c; tmp.pl = pl;
51 cell_plist* ptmp = &tmp;
52 _memcad("check_inductive(ptmp ,cell_plist)");
53 }

Fig. 3. Auxiliary MemCAD checks for linked lists.

that “...*$0.ll_cell()*...” on Line f specifies separation recursively, for all
list cells reached by the predicate via the inductive case. The user can insert
the instruction _memcad("add_inductive(l,ll_cell)"); to assume that list l re-
spects predicate ll_cell, or _memcad("check_inductive(l,ll_cell)"); to check
the same property in MemCAD.

Predicate cell on Lines n–t is very close to predicate ll_cell except that
it only defines one list cell without recursion. Predicate plist on Lines j–m
expresses that a double pointer to a list cell (i.e. of type list*) is valid, refers
to a well-formed list and is separated from its cells. Predicate cell_plist is
explained below.

3 Combined Approach

3.1 Shape Analysis Assisted Verification

To prove complex memory-related annotations with Wp on real-life code [11], the
user typically has to manually annotate the code with many additional carefully
chosen assertions establishing structural invariants and separation properties at
several intermediate program points, and to add numerous lemmas to facilitate
reasoning about them (whose proof must usually be done manually in Coq, an
interactive proof assistant). Our approach proposes to let MemCAD deal with
the structural invariants of recursive data structures and separation properties,
and to admit them in Wp at some key points.

In order to use both tools simultaneously in this way, we first need to show the
equivalence between MemCAD and Wp inductive predicates. For MemCAD,
predicate ll_cell (Lines a–h of Fig. 2) specifies that each element of the list
is a valid cell, is separated from every other cell of the list and the list is null-
terminated. This is equivalent to the linked_ll predicate for Wp (Lines 10–
19 of Fig. 1) when we consider the whole list. Indeed, when el is NULL, this
predicate also means that every list cell is valid and separated from any other list
cell, and the list is null-terminated. Explicit separation conditions in the Acsl
predicate for Wp are expressed by the separating conjunction in the MemCAD

284 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

59 /*@
60 assigns \nothing;
61 ensures \result ̸= NULL ⇒ (\valid(\result) ∧
62 \result ->next == NULL ∧ \result ->data == 0); */
63 cell* calloc_cell () {
64 cell* c = malloc(sizeof(cell));
65 if (c) { c->next = NULL; c->data = 0; }
66 return c;
67 }
68

69 /*@
70 requires \valid(pl);
71 requires dptr_sep_from_list(pl ,to_ll (*pl , NULL));
72 requires linked_ll (*pl , NULL , to_ll(*pl, NULL));
73 assigns *pl , \at (**pl, Post);
74 ensures dptr_sep_from_list(pl , to_ll(*pl , NULL));
75 ensures linked_ll (*pl, NULL , to_ll(*pl, NULL));
76 ensures \result \in {0, 1};
77 ensures \result == 0 ⇒
78 unchanged_ll{Pre , Post}(to_ll(*pl , NULL));
79 ensures \result == 0 ⇒ *pl == \old(*pl);
80 ensures \result == 1 ⇒
81 to_ll(*pl , NULL) == ([|*pl|] ^ to_ll(\old(*pl), NULL));
82 ensures \result == 1 ⇒
83 unchanged_ll{Pre , Post}(to_ll(\old(*pl), NULL));
84 ensures \result == 1 ⇒ (*pl)->next == \old(*pl);
85 ensures \result == 1 ⇒ (*pl)->data == data; */
86 int list_push(list* pl, int data) {
87 cell* c = calloc_cell ();
88 if (!c) return 0;
89 mc_chk_sep_cell_plist(c, pl);
90 //@ admit ptr_sep_from_list(c,to_ll(*pl ,NULL));
91 //@ admit \separated(pl, c);
92 //@ ghost Alloc:;
93 c->next = *pl;
94 //@ assert unchanged_ll{Alloc ,Here}(to_ll{Alloc }(*pl,NULL));
95 c->data = data;
96 //@ ghost Link:;
97 *pl = c;
98 /*@ assert unchanged_ll{Link ,Here}(
99 to_ll{Link}(\at(*pl ,Pre),NULL)); */

100 mc_chk_plist(pl);
101 //@ admit dptr_sep_from_list(pl ,to_ll (*pl,NULL));
102 //@ admit linked_ll (*pl,NULL ,to_ll(*pl,NULL));
103 return 1;
104 }

Fig. 4. Functions calloc_cell and list_push with contracts.

counterpart. (Notice that separation of bl with NULL on Line 15 is trivial.) The
sequence of list elements, expressed by a logic list in Acsl and used to prove
functional properties about the contents of the list (cf. Lines 80–81) in Wp,
does not need to be specified for MemCAD, which we only use to reason about
structural properties.

To check if invariants hold in MemCAD, we define check functions shown
in Fig. 3. These functions are specified to be side-effect-free (cf. Lines 40, 47) to
prevent interference with the proof in Wp.

Combining Deductive Verification with Shape Analysis 285

The first function, mc_chk_plist (Lines 41–43), checks that pl respects the
plist predicate, i.e. is a valid pointer to a well-formed list from which it is
separated (Line 42, see also Lines j–m of Fig. 2).

The goal of the second function, mc_chk_sep_cell_plist, is to check that
c refers to a list cell, pl respects the plist predicate, and the corresponding
pointer and the list cells are separated from the cell referred to by c. To do that
in MemCAD, we introduce an ad-hoc structure cell_plist with both pointers
(Line 45). The function initializes a local structure (Lines 49–50) and takes its
address (Line 51) in order to express the required check (Line 52). This check
relies on the predicate cell_plist (Lines v–z of Fig. 2) stating that the given
pointer is non-null and refers to a structure with two pointers at offsets 0 and 4,
denoted $0 and $1, referring, resp., to a cell and to a double pointer to a well-
formed list, which are separated (between them and from the list cells). Notice
that “...*$1.plist()” on Line y specifies separation recursively, that is, from
all locations considered in separation constraints reached via plist (and hence
via ll_cell).

An important benefit of using MemCAD is its capacity to automatically
handle dynamic memory allocation, which is not yet supported in Wp. Thus,
we define a custom allocator that simulates the behavior of calloc for list cells
on Lines 59–67 of Fig. 4. Wp uses its contract, which is simple but currently
unprovable by Wp since dynamic allocation is not supported (it should become
provable when this support is added into Wp).

3.2 Proof of Function list push

We illustrate our approach on function list_push of Fig. 4. It tries to allocate
a new cell (Lines 87–88), and, in case of success, puts it on top of the list with
the given data (Lines 93, 95, 97, 103). Lines 92, 96 define ghost labels (that is,
labels used only in annotations).

Lines 89–91 show how we use MemCAD to verify that the new cell (referred
to by c) is separated both from the list cells and the pointer referred to by pl

(Line 89), and introduce these properties as assumptions for Wp (admit clauses
on Lines 90–91). They help Wp to prove in an assert clause on Line 94 that
the list remains unchanged since label Alloc (i.e. Line 92) despite writing into
the new cell on Line 93, and a similar assertion for the old list on Lines 98–99
despite the assignment on Line 97.

Instead of reasoning about the modified list directly in Wp—which often
presents another difficulty for deductive verification—we let MemCAD check
the list invariants on Line 100 and admit them on Lines 101–102 for Wp to
prove the post-conditions. Thanks to those assumptions, Wp successfully proves
this function. Notice that the check instruction for MemCAD and the admit
instructions for Wp are placed (for the moment, manually) at the same program
location to ensure the soundness of the global verification.

In order to have a full proof, we also need to run MemCAD to verify all the
checks in list_push. For this purpose, we define a wrapper in Fig. 5 to analyze

286 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

106 int mc_verify_list_push(void) {

107 list* pl; int i; _memcad("add_inductive(pl,plist)");

108 list_push(pl , i);

109 }

Fig. 5. Wrapper to verify list_push in MemCAD.

the call to list_push on Line 108 with an arbitrary list respecting the given pre-
conditions (which correspond in MemCAD, as we explained above, to assuming
predicate plist for pl, cf. Lines 70–72, 107). MemCAD also succeeds in its
analysis, hence, we can conclude that our function respects its Acsl contract.

While the annotation step is done manually in the current work, it can be
better automated in the future. A coordinated generation of checks and as-
sumptions for a given recursive data structure for both tools will facilitate the
verification and the justification of soundness of the combined approach. An
early idea consists in defining a domain-specific language for the description of
the target recursive data structure that is then used for the generation of neces-
sary predicates for MemCAD and for Wp as well as necessary assumptions and
checks. The investigation of this research direction is left for future work.

4 Case study on the tpm2-tss library

We tested our approach on a few (slightly simplified) functions of the tpm2-tss
library, a widely used open-source implementation of the TPM Software Stack
(TSS)5 designed to access the Trusted Platform Module (TPM). The library
uses a linked list to store and use TPM resources, such as objects sent to and
received from the TPM. List cells are dynamically allocated. Simplifications were
applied to data structures used for list cells (and their treatment).

We consider two functions, to add an object and to look for an object in a list,
with one called function, and apply MemCAD to verify separation properties
for a newly allocated cell that Wp is currently not able to deduce. A recent
study [11] demonstrated that deductive verification with Wp of these functions
required many additional lemmas and assertions, as well as the replacement of
the dynamic memory allocation by a static allocator. Interestingly, the difficulty
to verify real-life code was not caused by complex operations on lists—these
operations are in reality quite simple in the target code—but by the difficulty
to reason about the recursive data structure itself.

The proposed approach combining deductive verification with shape analysis
allows us to perform a complete proof with less effort and without replacing dy-
namic allocator by a static allocator. On the considered functions, the proof with
Wp alone [11] required 14 lemmas, leading to the generation of 241 proof obli-
gations, one of which required a manually created Wp script, and took 4m50s.
Thanks to combining Wp and MemCAD in our work, we could remove ∼45

5 https://trustedcomputinggroup.org/work-groups/software-stack/

Combining Deductive Verification with Shape Analysis 287

auxiliary Acsl annotations and 5 lemmas, so the proof required only 9 lemmas,
leading to 194 proof obligations using no scripts, and took 1min47s in total for
Wp and MemCAD (the latter taking less than 1 sec.).

5 Related Work and Conclusion

Related Work. Various tools based on separation logic were proposed, such as
VeriFast [8], Viper [7], VerCors [2]. He et al. [5] extract functional specification
from imperative programs using a memory-safe type system and insert dynamic
checks into the specification. GRASShopper [9] combines separation logic with
an SMT-based verifier. Unlike in our work, GRASShopper does not integrate
abstract interpretation based shape analysis (which allows us to infer structural
invariants with MemCAD without having to provide loop invariants for this
tool). Issues reported in a recent study [11] motivate such combinations for com-
plex real-life code with recursive data structures. Our work continues previous
efforts by proposing a combination of weakest-precondition based deductive ver-
ification with abstract interpretation based shape analysis on the source-code
level, which, to the best of our knowledge, was not studied and evaluated before.

Conclusion and Future Work. This short paper has presented an approach com-
bining deductive verification with Frama-C/Wp and shape analysis with Mem-
CAD. Separation properties and structural invariants for linked data structures
can be more easily proved by the latter, and then used as assumptions in the for-
mer, thus allowing it to focus on other properties. This work is still ongoing and
opens interesting research questions and perspectives: automation of the pro-
posed verification technique including a coordinated generation of checks and
assumptions, proof of its soundness, design of a common (higher-level) specifi-
cation mechanism for recursive data structures with automatic translation into
suitable definitions for MemCAD and Frama-C, as well as evaluation on other
relevant case studies.

Data-Availability Statement. Code examples used in this paper are available on-
line as a companion artifact on http://doi.org/10.5281/zenodo.10458675. The
artifact includes a Virtual Machine containing the installed tools and code ex-
amples used, and can be used to reproduce the results of this paper.

Acknowledgment. Part of this work was supported by ANR (grants ANR-22-
CE39-0014, ANR-22-CE25-0018) and French Ministry of Defense via a PhD
grant of Yani Ziani. We thank Allan Blanchard, Laurent Corbin, Löıc Correnson,
Daniel Gracia Pérez and Xavier Rival for fruitful discussions, and the anonymous
referees for helpful comments.

References

1. Blanchard, A., Kosmatov, N., Loulergue, F.: Logic against ghosts: Comparison
of two proof approaches for a list module. In: 34th Symp. on Applied Comput-

288 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

ing, Software Verification and Testing Track (SAC-SVT’19). pp. 2186–2195. ACM
(2019)

2. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verifica-
tion of parallel and concurrent software. In: 13th Int. Conf. on Integrated Formal
Methods (iFM’17). LNCS, vol. 10510, pp. 102–110. Springer (2017)

3. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: 12th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06). LNCS, vol. 3920, pp. 287–302. Springer (2006)

4. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science - State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer (2019)

5. He, P., Westbrook, E., Carmer, B., Phifer, C., Robert, V., Smeltzer, K., Stefanescu,
A., Tomb, A., Wick, A., Yacavone, M., Zdancewic, S.: A type system for extract-
ing functional specifications from memory-safe imperative programs. Proc. ACM
Program. Lang. 5, 1–29 (2021)

6. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

7. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: 17th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’16). LNCS, vol. 9583, pp. 41–62. Springer
(2016)

8. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: Industrial case studies. Science of Computer
Programming 82, 77–97 (2014)

9. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: 20th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’14). LNCS, vol. 8413, pp.
124–139. Springer (2014)

10. Sotin, P., Rival, X.: Hierarchical shape abstraction of dynamic structures in
static blocks. In: 10th Asian Symposium on Programming Languages and Systems
(APLAS’12). LNCS, vol. 7705, pp. 131–147. Springer (2012)

11. Ziani, Y., Kosmatov, N., Loulergue, F., Gracia Pérez, D., Bernier, T.: Towards for-
mal verification of a TPM software stack (2023), http://arxiv.org/abs/2307.16821

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Combining Deductive Verification with Shape Analysis 289

http://creativecommons.org/licenses/by/4.0/

First Steps towards Deductive Verification of
LLVM IR ⋆

Abstract. Over the last years, deductive program verifiers have sub-
stantially improved, and their applicability on non-trivial applications
has been demonstrated. However, a major bottleneck is that for every
new programming language, a new deductive verifier has to be built.
This paper describes the first steps in a project that aims to address
this problem, by language-agnostic support for deductive verification:
Rather than building a deductive program verifier for every program-
ming language, we develop deductive program verification technology
for a widely-used intermediate representation language (LLVM IR), such
that we eventually get verification support for any language that can be
compiled into the LLVM IR format.
Concretely, this paper describes the design of VCLLVM, a prototype tool
that adds LLVM IR as a supported language to the VerCors verifier. We
discuss the challenges that have to be addressed to develop verification
support for such a low-level language. Moreover, we also sketch how we
envisage to build verification support for any specified source program
that can be compiled into LLVM IR on top of VCLLVM.

1 Introduction

As software has become an intrinsic part of our daily lives, we become more and
more dependent on software being reliable and dependable, and we need tools
that can help us to establish these guarantees. Over the last years, substantial
progress has been made in the development of formal verification techniques that
can be used to ensure that software provides certain guarantees. This covers a
wide range of different approaches that can be used to provide guarantees at dif-
ferent levels of abstraction and precision. Here, we focus in particular on deduc-
tive program verification techniques [11], which are used to provide guarantees
directly at code level, by verifying whether a program fragment behaves accord-
ing to the pre-postcondition-contract that is specified for it. A broad range of de-
ductive verifiers exist, such as VerCors [4], KeY [1], VeriFast [14, 15], Viper [25],
Dafny [20], RESOLVE [37], Whiley [31], Frama-C [3], KIV [9] and OpenJML [7],
which have been used in several non-trivial case studies, see e.g. [29, 35, 34, 29,

⋆ Work on this project is supported by the NWO VICI 639.023.710 Mercedes project
and the NWO TTW 17249 ChEOPS project.

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 290–303, 2024.
https://doi.org/10.1007/978-3-031-57259-3_15

Dré van Oorschot, Marieke Huisman(B) , and Ömer Şakar

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
d.h.m.a.vanoorschot@alumnus.utwente.nl,

{m.huisman,o.f.o.sakar}@utwente.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_15&domain=pdf
http://orcid.org/0000-0003-4467-072X
http://orcid.org/0000-0003-3457-5446
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

13, 10, 17]. A major challenge for deductive verifiers in practice is to enlarge
the particular language features that they support. This language-dependency
creates a severe limitation on how effective these techniques can be used in cur-
rent software development, where language standards are regularly updated, new
programming languages are frequently used, and applications are often written
using multiple programming languages.

In compiler technology, this growth in source level programming languages,
as well as the wide range of target architectures has been tackled by the introduc-
tion of intermediate representation formats, such as LLVM IR [19]. They require
only a compiler into this intermediate representation format for a new program-
ming language, while new architectures are supported by defining a mapping
from the intermediate representation format into the new hardware. We propose
a similar approach to reduce the language-dependence of deductive program ver-
ification technology, by: (1) defining verification technology for LLVM IR, and
(2) developing a generic approach to translate contract specifications from a wide
range of source languages into contract specifications for LLVM IR.

This paper focuses in particular on the first step in this project: it contributes
VCLLVM, a prototype tool that encodes annotated LLVM IR programs into the
VerCors verifier [4] to enable deductive verification for LLVM IR. We describe
the challenges for the encoding of LLVM IR into VerCors, as LLVM IR is a much
lower-level language than the languages that are supported by VerCors already,
and how these challenges affect the design and implementation of VCLLVM. We
also sketch how we plan to use VCLLVM as a stepping stone in a bigger project
to develop language-independent support for deductive verification.

2 Background

This section gives a brief background on the VerCors verifier and LLVM IR.

VerCors VerCors [4] is a deductive verifier for concurrent programs. It can verify
programs written in several programming languages (e.g., Java, CUDA, OpenCL,
and its internal Prototype Verification Language PVL). To verify programs with
VerCors, they are first annotated with pre-postcondition-contract specifications
written in permission-based separation logic (PBSL) [38], and then the specified
programs are encoded into the internal format of VerCors, called COL, which is
transformed in several steps into the input language of Viper [25]. The Viper in-
frastructure is then used for verification. If verification with Viper fails, VerCors
translates the error message back to the level of the source program.

PBSL is a concurrent separation logic [27] with support for permissions [5].
Permissions make the language suitable to reason about concurrent programs,
as they are used to encode when variables may be read or written. VCLLVM at
the moment only supports sequential programs, thus we do not provide further
details about PBSL here, and instead refer to the documentation.

LLVM IR LLVM IR (LLVM Intermediate Representation) is the common in-
terface for the frontend and backend compilers developed as part of the LLVM

First Steps towards Deductive Verification of LLVM IR 291

project [19]. LLVM IR is designed to be abstract enough to be compiled to from
higher level frontend languages, and simple enough to be transformed into as-
sembly or machine code for a specific CPU architecture. It is also the language
being operated on by middle-end code optimisation and analysis passes [23].
More details about LLVM IR can be found in its documentation [22].

The LLVM IR language is an assembly language using the single static assign-
ment format. Each LLVM IR file consists of one module. Each module contains
multiple functions. Functions are divided into multiple (possibly labelled) blocks,
with one dedicated entry block. Every block consists of one or more instructions.
We briefly summarise the main features of LLVM IR that are relevant for our
work. First of all, LLVM IR features only two basic types, namely integers and
floats, with the standard (bitwise) binary operators. Both come with different
precisions. These two basic types can be combined into aggregate types, such as
vectors, arrays, and structs, and can be referenced via pointers. Further, LLVM
IR supports custom-declared constants and several predefined constants, such
as true and false. The constant undef is used to present undefined state to
the compiler as a range of possible values, which guarantees that the program
itself remains well-defined. The constant poison indicates erroneous state of a
program. LLVM IR offers branch instructions that can conditionally jump to
the beginning of any instruction block in the same function. This can be used
to encode conditionals and loops, and it offers a basis for error handling instruc-
tions. It is important to note that the internals of LLVM IR are not stable,
meaning there are no guarantees for compatibility between different LLVM IR
versions [21]. However, there are stable LLVM API functions that can analyse
and manipulate the internals of LLVM IR.

3 Challenges for Deductive Verification of LLVM IR

In order to encode LLVM IR programs into input for the VerCors verifier, several
challenges need to be addressed, as discussed in this section. The next section
discusses how these challenges influence our prototype design and implementa-
tion. In particular, challenge 1 to 3 have been addressed in our prototype, while
providing full solutions to challenges 4 to 7 has been left as future work.

– Challenge 1: Instability of LLVM IR As mentioned, LLVM IR is an unstable
language [21], without backwards compatibility, and there is no guaranteed
interoperability between the syntax of LLVM IR of different LLVM versions.

– Challenge 2: LLVM IR Specifications VerCors specifications use expressions
from the source language. As expressions in LLVM IR are written as a block
of single instructions, this raises the question what a suitable specification
language for LLVM IR would be: writing blocks in specifications (or even
multiple blocks with branches, e.g. for Boolean expressions) would be im-
practical and error-prone. However, an upside is that LLVM IR uses the SSA
(static single-assignment) format, which makes it hard to write specifications
that have side effects, and all instructions in LLVM IR are pure except for
memory instructions such as store and alloca.

292 van Oorschot, Huisman and Şakar

– Challenge 3: Origin of User Errors Parsing an LLVM IR file with the parser
of the LLVM API returns a module object that does not retain any origin
information; it is merely a semantically equivalent in-memory representation
of the program. This makes it challenging to communicate the origin of a
verification problem in the source code to the user. LLVM offers the possi-
bility to construct a string of LLVM IR representing any LLVM value, but
calculating line and column numbers or extracting a source string is complex
as extraneous white spaces and comments in the source file are ignored.

– Challenge 4: Control Flow LLVM IR depends on jumps and branches (i.e.
goto statements) in the function body to facilitate any control flow in a pro-
gram, while VerCors requires structured, reducible programs to be verified.
VerCors technically supports goto statements but there are some caveats to
be aware of when using them: the inclusion of goto statements obstructs the
guarantee that the program is reducible [12], and loop invariants are hard
to verify when a loop contains arbitrary goto statements.

With that in mind, the encoding essentially needs to be an LLVM IR de-
compiler to the high-level COL representation of VerCors. Loops can be
especially hard to recover due to their various forms (e.g. for-loops, while-
loops, and do-while loops), and the possibility of nesting. The challenge is
not so much in detecting cycles in the CFG (control flow graph) of the pro-
gram (for which trivial graph algorithms exist), but mainly to identify the
different parts of the loop (e.g., the loop condition, the loop body, and loop
breaks).

– Challenge 5: Low-level Language Features LLVM IR introduces new low-
level language constructs that have not been handled by VerCors yet, such
as loads, stores and other low-level memory instructions, Φ nodes (from the
SSA format), and low-level exception handling. All these concepts have to
be integrated into COL.

The current VCLLVM prototype simplifies many of these concepts or has
not yet implemented them. Some ideas on how other LLVM IR low-level
concepts could be translated into COL are discussed in [28].

– Challenge 6: LLVM Concurrency Model While LLVM IR does support in-
structions and control mechanisms that can be useful to ensure thread safety,
it does not support constructs for parallel thread creation or signal handling
natively. Instead, LLVM IR code depends on being linked against existing
concurrency libraries, e.g. the pthread library on POSIX systems for Clang.
Thus, in order to support reasoning about these concurrency libraries, their
behaviour has to be modeled.

– Challenge 7: undef and poison Both constants undef and poison are se-
mantically complex, and it is challenging to capture their semantics into
VerCors. First, undef represents a set of possible values, which should be
semantically treated as if it is a single value, and this concept does not yet
exist in VerCors. Second, poison indicates erroneous behaviour, and it will
have to be integrated into exception handling support of VerCors.

First Steps towards Deductive Verification of LLVM IR 293

Fig. 1: Workflow of using VCLLVM and VerCors

4 Design and Implementation of VCLLVM

This section discusses the design and implementation of our prototype tool
VCLLVM that translates LLVM IR programs into the VerCors internal COL
format. Figure 1 gives a general overview how VCLLVM connects to VerCors.
We discuss the main decisions in the design of VCLLVM, taking into account the
challenges mentioned above. For a more in-depth analysis of the design choices,
we refer to the Master thesis accompanying this paper [28].

Embedding versus Externalising The first design choice was whether to embed
VCLLVM into the VerCors codebase or to develop it as an extension. Embedding
could exacerbate the problems of Challenge 1 (instability of LLVM IR), and it
would also restrict the tool implementation language to be JVM-compatible,
which makes it hard to interface with existing LLVM IR functionality from the
LLVM project. Instead, externalising makes it possible to use C++ to implement
VCLLVM and to use all existing LLVM support functionality. We decided to go
for this option, as it makes VCLLVM easier to maintain in the future.

VCLLVM Output Format As VCLLVM is developed as an external tool, its
output needs to be in a format that is either already interpretable by VerCors
or for which an interpreter would be simple to implement. If VCLLVM would
generate concrete syntax, this requires that we define a concrete input language
that supports all features of LLVM IR. Instead, we opted to use serialisation,
which makes it possible to connect to the internal COL AST directly. We use
Protocol Buffers1 for this. It offers a largely automatable serialisation method,
with language support for Scala (implementation language of VerCors) and C++
(implementation language of VCLLVM). Moreover, it supports code generation
both from and to a Protocol Buffer definition, which simplifies the development
of the communication layer between VCLLVM and VerCors considerably.

Specification Syntax To specify the properties that need to be verified, we need
to embed the specifications into LLVM IR code such that they do not change
the behaviour of the program, but are available to VCLLVM after the LLVM IR
program has been parsed. Since comments are ignored by the LLVM parser, the
only option available is to use LLVM metadata to embed specifications.

1 See: https://developers.google.com/protocol-buffers.

294 van Oorschot, Huisman and Şakar

https://developers.google.com/protocol-buffers

!VC.contract !{
!"ensures",
!"%var1 = mul i32 %y, %x",
!"%var2 = add i32 %var1, %z",
!"%verdict = icmp eq i32 %var2, \result;"

}

(a)

!VC.contract !{
!"ensures %x * %y + %z == \result;"

}

(b)

!VC.contract !{
!"ensures icmp(eq,

add(mul(%y, %x), %z), \result);"
}

(c)

Fig. 2: Possible Specification Syntax Options

Ideally, the specification syntax stays as close as possible to the LLVM IR
syntax, but as explained in Challenge 2, it is not obvious for LLVM IR because of
its low-level nature. We considered 3 different options, as illustrated in Figure 2
with contracts that describe the following add-multiply LLVM IR function.

1 define i32 @addMult(i32 %x, i32 %y, i32 %z)
2 !VC.contract !1 ;, !2 or !3 from Figure 2 {
3 %1 = mul i32 %y, %x
4 %res2 = add i32 %1, %z
5 ret i32 %res2 }

This function takes as input parameters x, y and z. First it multiplies x and y,
stores the intermediate result in a local variable %1, and then adds z to this, and
returns this final result. All specifications in Figure 2 express that the return
value is equal to x * y + z. As usual, we use the keyword ensures to specify
a postcondition of the function, and \result to refer to the output value of
the function. Figure 2a uses blocks of instructions to write the specification
expressions. This is verbose, error prone and complicates parsing. Figure 2b
uses a specification syntax that is independent of LLVM IR syntax. This is
readable, but also creates ambiguities, as it makes it harder to connect the
specification to the code. Finally, Figure 2c uses the known LLVM IR instruction
keywords, but in a more functional manner. This is fairly readable, and avoids
the ambiguity. We decided to use this option for VCLLVM. Notice that, as
described in Section 7, eventually we hope to use VCLLVM as an intermediate
tool to reason about programs in any language that compiles into LLVM IR.
In that set up, the specification would be written in the input language of the
high-level language, and compiled into a VCLLVM specification.

First Steps towards Deductive Verification of LLVM IR 295

External library support LLVM IR is often compiled and linked against existing
libraries to provide support for external libraries. Support for this is needed in
particular to reason about concurrent LLVM IR, which rely on thread libraries.
The VCLLVM prototype has been designed with this requirement in mind, but
it has not yet been implemented.

5 Evaluation

To use the current version of VCLLVM, one needs to (1) write C code, (2) compile
that C code to LLVM IR, (3) optionally run the LLVM opt tool [23] to mitigate
program structures VCLLVM cannot yet interpret, (4) annotate the resulting
LLVM IR program manually, and (5) let VCLLVM/VerCors verify the LLVM
IR program. C is recommended because the C LLVM compiler (Clang) produces
concise LLVM IR code (unlike some of the other frontends like clang++ and
rustc). Moreover, the regression test suite of VCLLVM currently only supports

The tool is only a prototype, but it has been used on several non-trivial
examples, such as functions to compute triangular numbers and Cantor pairs,
a function for date comparison (using branching and integer comparison), and
recursive functions like Fibonacci and the factorial. In order to specify func-
tional behaviour of these programs, VCLLVM supports the definition of pure
specification-only functions, such as for example fib:

1 !VC.global = !{!0}
2 !0 = !{
3 !"pure i32 @fib(i32 %n) =
4 br(icmp(sgt, %n, 2),
5 add(call @fib(sub(%n, 1)), call @fib(sub(%n, 2))),1);”}

This expresses that for any fib(n) is computed using the following expres-
sion: if(n > 2) then fib(n - 1) + fib(n - 2) else 1 (where br denotes
a branch and icmp compares two integers).

Using this function, we can write and prove the following contract for a
recursive implementation of the Fibonacci function, see [28] for the full program.
This contract states that for any n > 1, the correct Fibonacci value is returned.

1 define dso_local i32 @fibonacci(i32 noundef %0)
2 !VC.contract !{
3 !"requires icmp(sge, %0, 1);",
4 !"ensures icmp(eq, \result, call @fib(%0));"
5 }
6 { ... }

Special attention has been given to give informative feedback when verifica-
tion fails. For more details about these examples, we refer to [28].

296 van Oorschot, Huisman and Şakar

6 Related Work

There exist several projects that develop formal static analysis techniques for bug
finding in LLVM IR. SMACK [32] defines a translation of LLVM IR into Boo-
giePL [20], to reason about C-programs using assertions that are compiled into
LLVM IR using Clang. The verification itself is bounded and a potential exten-
sion to contract specifications has not yet been explored. The Vellvm project [40,
39]) develops a framework to reason about LLVM IR programs. It provides a
mechanised semantics for LLVM IR, which can be used for verification. Rea-
soning is done directly in Coq, rather than at the code level, which requires
Coq expertise. KLEE [6]. is a dynamic symbolic execution engine, which auto-
matically generates suitable unit tests for LLVM IR applications, with a much
better coverage than manually created test suites, thus increasing the likelihood
of finding bugs. However, KLEE focuses only on bug finding, not on proving
correctness. Another recent tool to easily find bugs via a bounded analysis of
LLVM IR programs is Alive2 [24], which is tailored to reduce the number of false
positives. Other model checkers or bounded verifiers for LLVM IR are LLMC [2],
RCMC [16], Serval [26], FauST [33] and SAW [8]. They can only check properties
over a bounded state space, in contrast to our approach which uses deductive
verification. PhASAR is a static analysis framework for LLVM IR [36]. Users
specify arbitrary data-flow properties, and PhASAR then fully automatically
tries to analyse these properties. The approach shows promising results, but as
it is fully automatic, it also suffers from imprecisions that have to be manually
filtered out. Lammich [18] formalises the semantics of LLVM IR, using it as the
target language of the Refinement Framework in Isabelle. They do not analyse
LLVM IR programs, but rather they derive correct by construction LLVM IR
programs. Finally, verifying complex programs in the current VCLLVM/VerCors
implementation heavily relies on pure functions. This is similar to approach of
Paganoni and Furia [30] using predicates to verify Java bytecode.

7 Next Steps

As mentioned above, the current version of VCLLVM is still a prototype, and
it needs to be extended with better support for more language features, control
flow reconstruction, concurrency, and library inclusion.

Ultimately, the idea is not to use VCLLVM as a standalone tool to verify
LLVM IR programs directly, but rather to use it as part of a larger infras-
tructure (called Pallas) that will provide deductive verification support for any
programming language that can be compiled into LLVM IR. Figure 3 gives a
visual representation of the Pallas infrastructure. It will define a generic spec-
ification format for contract specifications. For each source-level programming
language supported by Pallas, a concrete contract specification syntax is defined
to specify the desired program properties at the level of the source language,
and then this should bee embedded into the generic contract specification for-
mat. The source to LLVM IR compiler is then used, combined with a compiler

First Steps towards Deductive Verification of LLVM IR 297

Fig. 3: Pallas Overall Idea

for the contract specifications in the generic contract specification format to the
LLVM IR format. VCLLVM then enables VerCors to reason about the program.
If verification succeeds, we know that the original source program satisfies the
source-code-level contracts; if verification fails, the error message will be trans-
lated back into an error message for the source program.

Further research questions that we need to investigate to create the Pallas
infrastructure are: (1) How to define a generic contract specification format that
can capture program properties for a large class of source-level programming
languages? (2) How to define a generic translation from the contract specification
format into LLVM IR contract specifications, which can be parametrised by the
compiler from a specific source language into LLVM IR? (3) How to provide
effective feedback at the level of the source language if verification at the LLVM
IR level fails by using decompilation techniques?

8 Conclusions

As a first step to solve the language-dependency problem of deductive verifiers,
we propose to use the LLVM IR format as a generic format. This paper sketches
the design of VCLLVM, a prototype implementation that enables deductive ver-
ification of LLVM IR programs, and we discuss the kind of examples that can
already be verified. In future work, we will expand this into a deductive verifi-
cation framework for any language that can be compiled into LLVM IR.

Data-Availability Statement

The artifact accompanying this paper can be found in [41].

298 van Oorschot, Huisman and Şakar

References

[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ul-
brich. Deductive Software Verification – The KeY Book. Vol. 10001. Lec-
ture Notes in Computer Science. Springer International Publishing, 2016.
isbn: 9783319498126. doi: 10.1007/978-3-319-49812-6.

[2] F. van der Berg. “LLMC: Verifying High-Performance Software”. In: Com-
puter Aided Verification: 33rd International Conference, CAV 2021, Vir-
tual Event, July 20–23, 2021, Proceedings, Part II 33. Springer. 2021,
pp. 690–703.

[3] A. Blanchard, F. Loulergue, and N. Kosmatov. “Towards Full Proof Au-
tomation in Frama-C Using Auto-active Verification”. In: NASA Formal
Methods - 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7-9, 2019, Proceedings. Ed. by J. M. Badger and K. Y. Rozier.
Vol. 11460. Lecture Notes in Computer Science. Springer, 2019, pp. 88–
105. doi: 10.1007/978-3-030-20652-9_6. url: https://doi.org/
10.1007/978-3-030-20652-9_6.

[4] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. “The VerCors Tool
Set: Verification of Parallel and Concurrent Software”. In: integrated For-
mal Methods 2017. Ed. by N. Polikarpova and S. Schneider. LNCS 10510.
Springer, 2017, pp. 102 –110. doi: 10.1007/978-3-319-66845-1_7.

[5] J. Boyland. “Checking Interference with Fractional Permissions”. In: SAS.
Vol. 2694. LNCS. Springer, 2003, pp. 55–72.

[6] C. Cadar, D. Dunbar, and D. R. Engler. “KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Programs”.
In: 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. Ed. by R. Draves and R. van Renesse. USENIX Association,
2008, pp. 209–224. url: http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf.

[7] D. R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK”. In: NASA
Formal Methods. Ed. by M. Bobaru, K. Havelund, G. J. Holzmann, and R.
Joshi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 472–479.
isbn: 978-3-642-20398-5.

[8] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and A.
Tomb. “Constructing semantic models of programs with the software anal-
ysis workbench”. In: Verified Software. Theories, Tools, and Experiments:
8th International Conference, VSTTE 2016, Toronto, ON, Canada, July
17–18, 2016, Revised Selected Papers 8. Springer. 2016, pp. 56–72.

[9] G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. “KIV:
overview and VerifyThis competition”. In: STTT 17.6 (2015), pp. 677–
694. issn: 1433-2787. doi: 10.1007/s10009-014-0308-3. url: https:
//doi.org/10.1007/s10009-014-0308-3.

[10] S. d. Gouw, F. S. de Boer, R. Bubel, R. Hähnle, J. Rot, and D. Steinhöfel.
“Verifying OpenJDK’s Sort Method for Generic Collections”. In: J. Autom.

First Steps towards Deductive Verification of LLVM IR 299

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-20652-9_6
https://doi.org/10.1007/978-3-030-20652-9_6
https://doi.org/10.1007/978-3-030-20652-9_6
https://doi.org/10.1007/978-3-319-66845-1_7
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3

Reason. 62.1 (2019), pp. 93–126. doi: 10.1007/s10817-017-9426-4.
url: https://doi.org/10.1007/s10817-017-9426-4.

[11] R. Hähnle and M. Huisman. “Deductive Software Verification: From Pen-
and-Paper Proofs to Industrial Tools”. In: Computing and Software Science
- State of the Art and Perspectives. Ed. by B. Steffen and G. J. Woeginger.
Vol. 10000. Lecture Notes in Computer Science. Springer, 2019, pp. 345–
373.

[12] M. S. Hecht and J. D. Ullman. “Flow graph reducibility”. In: Proceedings of
the fourth annual ACM symposium on Theory of computing. 1972, pp. 238–
250.

[13] H. A. Hiep, O. Maathuis, J. Bian, F. S. de Boer, M. C. J. D. van Eekelen,
and S. de Gouw. “Verifying OpenJDK’s LinkedList using KeY”. In: Tools
and Algorithms for the Construction and Analysis of Systems - 26th In-
ternational Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, Proceedings, Part II. Ed. by A. Biere and D.
Parker. Vol. 12079. Lecture Notes in Computer Science. Springer, 2020,
pp. 217–234. doi: 10.1007/978-3-030-45237-7_13. url: https:
//doi.org/10.1007/978-3-030-45237-7_13.

[14] B. Jacobs and F. Piessens. The VeriFast program verifier. Tech. rep. CW520.
Katholieke Universiteit Leuven, 2008.

[15] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F.
Piessens. “VeriFast: A powerful, sound, predictable, fast verifier for C
and Java”. In: NASA Formal Methods Symposium. Ed. by M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi. Springer. 2011, pp. 41–55.
doi: 10.1007/978-3-642-20398-5_4.

[16] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis. “Effective
stateless model checking for C/C++ concurrency”. In: Proceedings of the
ACM on Programming Languages 2.POPL (2017), pp. 1–32.

[17] N. Kosmatov, D. Longuet, and R. Soulat. “Formal Verification of an Indus-
trial Distributed Algorithm: An Experience Report”. In: Leveraging Appli-
cations of Formal Methods, Verification and Validation: Verification Prin-
ciples - 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part I. Ed. by T. Margaria and B. Steffen. Vol. 12476. Lecture Notes in
Computer Science. Springer, 2020, pp. 525–542. doi: 10.1007/978-3-
030-61362-4_30. url: https://doi.org/10.1007/978-3-030-
61362-4_30.

[18] P. Lammich. “Generating Verified LLVM from Isabelle/HOL”. In: 10th In-
ternational Conference on Interactive Theorem Proving (ITP 2019). Ed.
by J. Harrison, J. O’Leary, and A. Tolmach. Vol. 141. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 22:1–22:19. isbn: 978-3-
95977-122-1. doi: 10.4230/LIPIcs.ITP.2019.22. url: http://drops.
dagstuhl.de/opus/volltexte/2019/11077.

300 van Oorschot, Huisman and Şakar

https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-030-61362-4_30
https://doi.org/10.1007/978-3-030-61362-4_30
https://doi.org/10.1007/978-3-030-61362-4_30
https://doi.org/10.1007/978-3-030-61362-4_30
https://doi.org/10.4230/LIPIcs.ITP.2019.22
http://drops.dagstuhl.de/opus/volltexte/2019/11077
http://drops.dagstuhl.de/opus/volltexte/2019/11077

[19] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation”. In: International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.
doi: 10.5555/977395.977673.

[20] K. Leino. “Accessible Software Verification with Dafny”. In: IEEE Software
34.6 (2017), pp. 94–97. doi: 10.1109/MS.2017.4121212.

[21] LLVM Project. LLVMDeveloperPolicy: IRBackwardsCompatibility.https:
//llvm.org/docs/DeveloperPolicy.html{#}ir-backwards-compati
bility. [Accessed 05-Dec-2022]. Dec. 2022.

[22] LLVM Project. LLVM Language Reference Manual. https://releases.
llvm.org/15.0.0/docs/LangRef.html. [Accessed 05-Dec-2022]. Sept.
2022.

[23] LLVM Project. opt - LLVM optimizer. https://releases.llvm.org/
15.0.0/docs/CommandGuide/opt.html. [Accessed 05-Dec-2022]. Sept.
2022.

[24] N. P. Lopes, J. Lee, C. Hur, Z. Liu, and J. Regehr. “Alive2: bounded
translation validation for LLVM”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation, Virtual Event, Canada, June 20-25, 2021. Ed. by S. N. Freund
and E. Yahav. ACM, 2021, pp. 65–79. doi: 10.1145/3453483.3454030.
url: https://doi.org/10.1145/3453483.3454030.

[25] P. Müller, M. Schwerhoff, and A. Summers. “Viper - A Verification Infras-
tructure for Permission-Based Reasoning”. In: Verification, Model Check-
ing, and Abstract Interpretation. VMCAI. Ed. by B. Jobstmann and K. R. M.
Leino. Springer Berlin Heidelberg, 2016. doi: 10.1007/978- 3- 662-
49122-5_2.

[26] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang.
“Scaling symbolic evaluation for automated verification of systems code
with Serval”. In: Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 2019, pp. 225–242.

[27] P. W. O’Hearn. “Resources, concurrency and local reasoning”. In: 375.1–3
(2007), pp. 271–307.

[28] D. van Oorschot. VCLLVM: A Transformation Tool for LLVM IR pro-
grams to aid Deductive Verification. 2023. url: http://essay.utwente.
nl/96536/.

[29] W. Oortwijn, M. Huisman, S. Joosten, and J. van de Pol. “Automated
Verification of Parallel Nested DFS”. In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer.
2020, pp. 247–265.

[30] M. Paganoni and C. A. Furia. “Verifying Functional Correctness Properties
at the Level of Java Bytecode”. In: International Symposium on Formal
Methods. Springer. 2023, pp. 343–363.

[31] D. J. Pearce, M. Utting, and L. Groves. “An Introduction to Software Veri-
fication with Whiley”. In: Engineering Trustworthy Software Systems - 4th
International School, SETSS 2018, Chongqing, China, April 7-12, 2018,

First Steps towards Deductive Verification of LLVM IR 301

-

https://doi.org/10.5555/977395.977673
https://doi.org/10.1109/MS.2017.4121212
https://llvm.org/docs/DeveloperPolicy.html{#}ir-backwards-compatibility
https://llvm.org/docs/DeveloperPolicy.html{#}ir-backwards-compatibility
https://releases.llvm.org/15.0.0/docs/LangRef.html
https://releases.llvm.org/15.0.0/docs/LangRef.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/opt.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/opt.html
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://essay.utwente.nl/96536/
http://essay.utwente.nl/96536/
https://llvm.org/docs/DeveloperPolicy.html{#}ir-backwards-compatibility

Tutorial Lectures. Ed. by J. P. Bowen, Z. Liu, and Z. Zhang. Vol. 11430.
Lecture Notes in Computer Science. Springer, 2018, pp. 1–37. doi: 10.
1007/978-3-030-17601-3_1.

[32] Z. Rakamaric and M. Emmi. “SMACK: Decoupling Source Language De-
tails from Verifier Implementations”. In: Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, 2014, pp. 106–113. doi: 10.1007/978-3-319-08867-
9_7. url: https://doi.org/10.1007/978-3-319-08867-9_7.

[33] H. Riener and G. Fey. “FAuST: A framework for formal verification, auto-
mated debugging, and software test generation”. In: Model Checking Soft-
ware: 19th International Workshop, SPIN 2012, Oxford, UK, July 23-24,
2012. Proceedings 19. Springer. 2012, pp. 234–240.

[34] M. Safari and M. Huisman. “Formal Verification of Parallel Stream Com-
paction and Summed-Area Table Algorithms”. In: Theoretical Aspects of
Computing – ICTAC 2020. Ed. by V. K. I. Pun, V. Stolz, and A. Simao.
Springer, 2020, pp. 181–199. doi: 10.1007/978-3-030-64276-1_10.

[35] M. Safari, W. Oortwijn, S. Joosten, and M. Huisman. “Formal verification
of parallel prefix sum”. In: NASA Formal Methods Symposium. Ed. by R.
Lee, S. Jha, A. Mavridou, and D. Giannakopoulou. Springer, 2020, pp. 170–
186. doi: 10.1007/978-3-030-55754-6_10.

[36] P. D. Schubert, B. Hermann, and E. Bodden. “PhASAR: An Inter-procedural
Static Analysis Framework for C/C++”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by T. Vojnar and L. Zhang.
Cham: Springer International Publishing, 2019, pp. 393–410. isbn: 978-3-
030-17465-1.

[37] M. Sitaraman and B. W. Weide. “A Synopsis of Twenty Five Years of
RESOLVE PhD Research Efforts: Software Development Effort Estimation
Using Ensemble Techniques”. In: ACM SIGSOFT Softw. Eng. Notes 43.3
(2018), p. 17. doi: 10.1145/3229783.3229794.

[38] VerCors team. The VerCors Verifier Tutorial. url: https://vercors.
ewi.utwente.nl/wiki/.

[39] Y. Zakowski, C. Beck, I. Yoon, I. Zaichuk, V. Zaliva, and S. Zdancewic.
“Modular, compositional, and executable formal semantics for LLVM IR”.
In: Proc. ACM Program. Lang. 5.ICFP (2021), pp. 1–30. doi: 10.1145/
3473572. url: https://doi.org/10.1145/3473572.

[40] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. “Formal
verification of SSA-based optimizations for LLVM”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013. Ed. by H. Boehm and C. Flana-
gan. ACM, 2013, pp. 175–186. doi: 10.1145/2491956.2462164. url:
https://doi.org/10.1145/2491956.2462164.

302 van Oorschot, Huisman and Şakar

https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-030-64276-1_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1145/3229783.3229794
https://vercors.ewi.utwente.nl/wiki/
https://vercors.ewi.utwente.nl/wiki/
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

[41] Ö. Şakar, D. van Oorschot, and M. Huisman. Artifact for paper (First
Steps towards Deductive Verification of LLVM IR). en. 2024. doi: 10.
4121/9C8C079E-A941-4A66-89D8-3462BF30FF05.V1.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

First Steps towards Deductive Verification of LLVM IR 303

https://doi.org/10.4121/9C8C079E-A941-4A66-89D8-3462BF30FF05.V1
https://doi.org/10.4121/9C8C079E-A941-4A66-89D8-3462BF30FF05.V1
http://creativecommons.org/licenses/by/4.0/

FDSE: Enhance Symbolic Execution by
Fuzzing-based Pre-Analysis
(Competition Contribution)

1 College of Computer, National University of Defense Technology, Changsha, China
2 State Key Laboratory of Complex & Critical Software Environment, National

3 State Key Laboratory of High Performance Computing, National University of
Defense Technology, Changsha, China

{zhangguofeng16,szq,kelinma,klliu18,zbchen,wj}@nudt.edu.cn

Abstract. FDSE serves as an automatic test generation tool designed
for C programs based on symbolic execution. FDSE employs fuzzing-
based pre-analysis and combines static symbolic execution and dynamic
symbolic execution to improve the effectiveness of test generation. FDSE
achieves 5132 scores and is ranked 4th in the branch coverage track of
Test-Comp 2024.

Keywords: Symbolic Execution · Fuzzing · Test-Case Generation.

1 Test Generation Approach

Test case design is one of the most labor-intensive tasks in software engineering.
Automatic test case generation helps the test case designers reduce labor and
improve testing quality. Existing techniques usually accept more than one type
of software artifact (e.g., source code and software models) as input. Then, these
techniques utilize existing methods (e.g., optimization [10] or program analysis
[11]) to generate test cases. Besides, some approaches combine different methods
to achieve better effectiveness and efficiency [1].

Symbolic execution (SE) [5] is one of the underlying techniques that can be
used for automatic test case generation. Current SE methods can be categorized
into static symbolic execution (SSE) and dynamic symbolic execution (DSE).
SSE simulates the execution of the program using symbolic inputs. During anal-
ysis, SSE maintains many execution states. When encountering a branch state-
ment, SSE forks states to explore both branches. Many SSE engines have been
developed, such as KLEE [4] and SPF [9], to name a few. DSE combines symbolic
execution and concrete execution to further improve SE’s effectiveness and effi-
ciency. Specifically, DSE executes the program using concrete input and collects
path constraint of current execution. Then, based on the path constraints, DSE
constructs the new constraint for generating new input that steers the program
⋆

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 304–308, 2024.
https://doi.org/10.1007/978-3-031-57259-3_16

9

Guofeng Zhang1,2,3, Ziqi Shuai1,2,3, Kelin Ma1,2, Kunlin Liu1,2,3,
Zhenbang Chen1,2(B) , and Ji Wang1,2,3

University of Defense Technology, Changsha, China

Z. Chen—Jury Member.

https://orcid.org/0000-0002-4066-7892
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_16&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Fig. 1: FDSE’s Workflow in Test-Comp.

to different program path. In principle, SSE and DSE provide different means of
systematically exploring the program’s path space.

FDSE is mainly a SE-based test case generator. In most cases, FDSE uses DSE
to generate tests. To mitigate DSE’s disadvantage in handling the programs with
long-time execution or large symbolic data, e.g., the programs with large sym-
bolic arrays, loops, or many branches, FDSE employs a fuzzing-based pre-analysis
and combines SSE to improve DSE’s effectiveness and efficiency of generating
tests for the benchmarks of Test-Comp.

2 Framework

Figure 1 illustrates the Test-Comp version of FDSE. Firstly, we compile the C
program into bytecode and instrument the bytecode to generate a fuzzer for pre-
analysis. During fuzzing, we record the runtime features of the program, such
as the number of input variables or branches and the size of allocated arrays.
Secondly, we selectively employ DSE or SSE according to the number of static
branches, which is calculated by a simple static analysis. If the number exceeds
a threshold, e.g., 10,000 in the competition, FDSE employs SSE because DSE
may face the challenge of long-time execution. Otherwise, FDSE continues to
use DSE. Hence, either DSE or SSE is applied to analyze a benchmark program.
Finally, when employing the DSE engine, selective symbolization of the variables
is performed based on the information generated by fuzzing, aiming to mitigate
the problem of large symbolized arrays. Furthermore, the DSE engine limits
the number of loop unfolding times to prevent path explosion. This fuzzing-
based pre-analysis is based on the following two observations of the Test-Comp
benchmarks.

– When the program utilizes large loops to initialize a large-sized symbolic
array4, DSE maintains a huge number of symbolic variables internally, which
hinders the analysis’s efficiency and frequently exceeds memory limits. To
mitigate this, we employ fuzzing for pre-analysis to generate the parameters
that restrict the scale for DSE.

4 For example, the benchmark standard_copy2_ground-1.c

FDSE: Enhance Symbolic Execution by Fuzzing-based Pre-Analysis 305

#define N 100000
int main() {
int a1[N], a2[N], a3[N], i;
for(i=0; i<N; i++) {
a1[i]=input(); a2[i]=input();

}
for(i=0; i<N; i++) a3[i]=a1[i];
for(i=0; i<N; i++) a3[i]=a2[i];
for(i=0; i<N; i++)
assert(a1[i]==a3[i]);

return 0;
}

Fig. 2: standard_copy2_ground-1.c Fig. 3: Selective Symbolization in FDSE

– For programs that contain a large number of static branches 5, executing
a terminated path needs much time, which hinders the overall efficiency
of DSE. To tackle this problem, we propose using SSE instead of DSE to
analyze such programs, as SSE can perform better in this scenario.

Demonstration. We use a benchmark program in Test-Comp to demonstrate
the fuzzing-based pre-analysis. Figure 2 shows an example program that contains
four loops with a size of 100,000 and requires 200,000 input variables (i.e., sym-
bolic variables). SE is impractical to explore the path space of this program. The
key idea is to employ fuzzing first to generate seed inputs and symbolize a part
of input variables during SE, which can improve efficiency while ensuring high
coverage. Consider the program in Figure 2. The first step is to employ fuzzing
to generate input seeds, as shown in Figure 3. These seeds contain 200,000 vari-
ables, each with a random value X. Since only eight static branches exist, FDSE
uses the DSE engine. During DSE, FDSE limits the boundary of each loop, al-
lowing the loop body to be unrolled up to a configured number of times. This
configuration is determined by the information collected by fuzzing. FDSE unrolls
the loop only 50 times if the fuzzer detects that the loop body is executed more
than 100 times. Then, DSE reads the input seeds obtained from fuzzing. For this
example, DSE only symbolizes the first 100 variables due to the 50 times of loop
unrolling. The remaining variables only have concrete values. When generating
test cases, the generated values of symbolic variables are concatenated with the
values of the subsequent concrete variables in the input seed. Thus, DSE can
still generate a complete test case.

3 Result and Discussion

FDSE is optimized and achieves 5132 scores (4th place) in the branch coverage
track. Our tool performs well in many sub-categories, such as Arrays, BitVec-
tors, and Hardness. Thanks to Test-Comp’s competition, we have identified

5 For example, the program Problem05_label40+token_ring.01.cil-1.c

306 Zhang. Author et al.

several shortcomings in our DSE engine beyond the common challenges (such as
path explosion and constraint solving [2]).

– Our DSE engine does not apply any simplification rule to reduce symbolic
expressions, which results in redundant expressions and makes the tool crash
on some Hardware benchmarks due to exceeding memory limits.

– Our DSE engine is limited in environment modeling, e.g., the common sys-
tem libraries. When programs call these system libraries, the relevant path
constraints are lost, making it difficult to improve coverage, particularly in
the tasks in BusyBox, DeviceDriverLinux64, and AWS-C-Common.

– Our DSE engine is still limited in handling large symbolic arrays. Restricting
the number of symbolic variables limits the path exploration ability, which
may fail to cover deep branches.

– We do not prioritize or minimize the generated tests, which results in redun-
dant test cases and leads to validator timeout. For example, in the Combi-
nations category, over 20% of tests were not executed.

– FDSE is only optimized for branch coverage track. Smarter SE search strate-
gies for branch and error coverage are expected.

4 Software Project and Data Available

The DSE engine’s implementation of FDSE is based on SymCC [8]. The SSE en-
gine is KLEE [4]. The fuzzing component is implemented in C++ and based on
LLVM6[6]. The employed constraint solver of DSE is Z3 [7]. The command line
interface is implemented in Python.

In Test-Comp 2024, FDSE participated in coverage-branches and coverage-
error categories, where we only optimize FDSE for coverage-branches. The
benchexec tool information module is fdse.py, and the benchmark description
is fdse.xml. To use our tool script, the parameters of the property file, time
budget, and benchmark path must be set as follows:
fdse –testcomp –property-file=<..> –max-time=<..> –single-file-name=<..>

Our symbolic execution engine treats each benchmark as running on a 64-bit
architecture and always tries to maximize code coverage. The test suite generated
is written to the directory fdse_output/test-suite. According to the definition
of Test-Comp rules, the test suite includes a metadata XML file and a test-case
XML file that follows the required format.

FDSE, developed by the National University of Defense Technology, can be
found at https://github.com/zbchen/fdse-test-comp. FDSE is accessible for down-
load as a binary artifact on Zenodo, and the specific version available for down-
load is testcomp24 7, and it is publicly accessible under the Apache-2.0 license
terms. Moreover, Test-Comp 2024 [3] 8 provides users with scripts, benchmarks,
and FDSE binaries to facilitate the replication of competition results.
6 LLVM’s version is 10.0.1.
7

8

FDSE: Enhance Symbolic Execution by Fuzzing-based Pre-Analysis 307

https://doi.org/10.5281/zenodo.10203198
https://test-comp.sosy-lab.org/2024

https://github.com/zbchen/fdse-test-comp
https://doi.org/10.5281/zenodo.10203198
https://test-comp.sosy-lab.org/2024

Acknowledgement This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429
and 62002107).

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. J. Syst. Softw. 86, 1978–2001 (2013)

2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Computing Surveys (CSUR) 51, 1–39 (2016)

3. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings.
pp. 209–224. USENIX Association

5. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 385–394
(1976)

6. LLVM:
7. de Moura, L.M., Bjørner, N.S.: Z3: An efficient smt solver. In: International Con-

ference on Tools and Algorithms for Construction and Analysis of Systems (2008)
8. Poeplau, S., Francillon, A.: Symbolic execution with symcc: Don’t interpret, com-

pile! In: USENIX Security Symposium (2020)
9. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of java byte-

code. Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (2010)

10. Shahbazi, A., Miller, J.: Black-box string test case generation through a multi-
objective optimization. IEEE Transactions on Software Engineering 42, 361–378
(2016)

11. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In: Tests and
Proofs. pp. 134–153 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

308 Zhang. Author et al.

https://llvm.org

http://creativecommons.org/licenses/by/4.0/
https://llvm.org

New Gray-Box Fuzzer∗

(Competition Contribution)

Martin Jonáš , Jan Strejček , Marek Trtík B, and Lukáš Urban

Masaryk University, Brno, Czech Republic

Abstract. Fizzer is a new gray-box fuzzer. In contrast to common
gray-box fuzzers that aim to cover both true and false branches of
branching instructions, Fizzer primarily aims to cover both possible
values true and false of Boolean expressions in the program. When a
generated test evaluates a so-called atomic Boolean expression to one of
these values, our fuzzer computes the distance to the other value, detects
bytes that influence this distance, and applies gradient descent on these
bytes to flip the value. In Test-Comp 2024, Fizzer placed third in the
category Cover-Branches after FuSeBMC and FuSeBMC-AI.

Keywords: gray-box fuzzing · dynamic analysis · gradient descent

1 Test-Generation Approach

Fuzzing [5] is an automatic technique that generates test inputs for a given
program. Gray-box fuzzers first instrument the given program with a code that
tracks selected information about a program execution. The instrumented pro-
gram is then repeatedly executed on various inputs and the tracked information
is used to generate new inputs that should execute parts of the program not
executed in previous runs.

Successful gray-box fuzzers like AFL [6] collect only very limited information
about each program execution and try to quickly perform as many executions as
possible. In Fizzer, we use an approach that gathers slightly more information
about program executions and uses it to select uncovered parts of the code and
make more targeted attempts to cover it.

While typical gray-box fuzzers track only the information about the basic
blocks visited during a program execution, our approach tracks also evaluation of
each atomic Boolean expression (abe). A Boolean expression is atomic if it is not
a variable, not a call of a function whose definition is a part of the program, and
not a result of applying a logical operator. Many LLVM instructions yielding i1
type (i.e., Boolean) from other types are abes. An important example is the icmp
instruction used in translations of C expressions like (x > 42) or (string[i]
== ’A’). Each time an abe is evaluated to true or false, the instrumented
∗ This work has been supported by the Czech Science Foundation grant GA23-06506S.

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 309–313, 2024.
https://doi.org/10.1007/978-3-031-57259-3_17

Fizzer:

trtikm@mail.muni.cz

M. Trtík—Jury member.

https://orcid.org/0000-0003-4703-0795
https://orcid.org/0000-0001-5873-403X
https://orcid.org/0009-0009-6122-9574
https://orcid.org/0009-0004-9781-3071
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_17&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

code saves the calling context (i.e., the sequence of currently evaluated function
calls, which loosely corresponds to the call stack), the value of the abe, and the
distance to the opposite value. For example, if abe (x > 42) is evaluated to
true, the distance to false is computed as x - 42.

Our fuzzer aims to generate tests that evaluate each abe in each reached
calling context to both true and false. Assume that some input leads to the
evaluation of an abe to true and we want to evaluate it to false in the same
calling context. We first repeatedly execute the program on various mutations
of the input to detect the bytes of this input that have some influence on the
distance of the abe evaluation. This process is called a sensitivity analysis and
the detected bytes are called sensitive. Then we apply the following two analyses
that use the sensitive bytes. One analysis performs a gradient descent on the
sensitive bytes with the aim to minimize the absolute value of the distance and
to evaluate the abe in the considered calling context to false. Alternatively, if
we already know another input evaluating the abe to false in a different calling
context, we can try to use the value of its sensitive bytes instead of the sensitive
bytes of the current input. This analysis is called byteshare analysis.

The fuzzer maintains the information about abes evaluated in all program
executions, their calling contexts, values, and distances in a binary tree called
atomic Boolean execution tree. The tree is used to select the abe and its value
to be covered.

For a more detailed and formal description of our approach, we refer to the
corresponding research paper [4].

2 Software Architecture

Fizzer is implemented in C++, consists of around 11,000 lines of code in 125
files and uses the LLVM infrastructure. The compiled tool is dependent only on
the clang compiler. Fizzer consists of two 64-bit executables, namely Server
and Instrumenter, and a collection of static Libraries provided in both 32-
bit and 64-bit versions. Finally, there is a Python script offering a user friendly
interface to the tool.

The input program is first translated to LLVM by clang. The Instru-
menter then instruments the LLVM program with the code for tracking and
collecting data during program execution, as explained in the previous section.
The inserted code calls functions from the static Libraries. The instrumented
program linked with the corresponding static Libraries is called Target.

The Server controls the actual test generation process. In particular, Server
generates inputs using the sensitivity analysis, gradient descent, and byteshare
analysis mentioned above and runs the Target on these inputs. It also receives
and processes the information tracked by the Target during its executions and
builds the atomic Boolean execution tree. The tree is used to select an abe value
to be covered.

The Server is one process and each execution of Target runs in another
process. The exchange of information between the Server’s process and the

310 M. Jonáš et al.

: New Gray-Box Fuzzer 311

Target’s process is done via shared memory. This ensures that the Server can
receive the information about Target’s execution even if the execution crashes.

3 Strengths and Weaknesses

On the positive side, Fizzer is a relatively simple and very compact tool with
minimal external dependencies. As it is a pure fuzzer, it can be applied to pro-
grams of an arbitrary size and it can also handle programs that use external
functions available only in compiled form. And covering (in)equality constraints,
which is often difficult for fuzzers, is boosted by the gradient descent.

Fuzzers in general limit each execution of the program as they need to per-
form many of these executions. Fizzer sets upper bounds (passed to the tool via
command line options) on the number of evaluated abes, the size of the input
bytes read, the size of the calling context, and other properties. If an execution
of the Target exceeds some of the bounds, it is terminated. Fizzer thus ob-
tains information about prefixes of real executions and thus it can effectively
generate tests only for parts of the program close to the program entry point.
This weakness correlates with the well known practical experience with fuzzers
in general: they are effective in covering code close to the entry point, but have
troubles to get deeper. In Fizzer, we do not attempt to properly deal with this
phenomenon. We only use so-called optimizer after fuzzing stops (usually due to
reaching its timeout). The optimizer simply sets up the upper bounds to large
numbers and executes the program on those generated inputs that exceeded
some upper bound during fuzzing.

Some weaknesses of Fizzer also come from the fact that it is only a prototype
implementation taking advantage of some specific features of the Test-Comp
benchmarks. In particular, the only way of reading an input currently supported
by Fizzer are the functions __VERIFIER_nondet_*().

Another weakness is related to the use of gradient descent as one of the
main techniques to cover a selected abe. The technique is efficient when flipping
Boolean values depending on functions with only few extremes (e.g., quadratic
functions), but it can struggle on functions with a complex behavior (e.g., func-
tions used for hashing). To mitigate this issue, we implemented a second version
of the gradient descent adjusted for functions with many local extremes and we
apply it e.g. on function XOR.

In Test-Comp 2024, Fizzer won the bronze medal in the category Cover-
Branches where 18 tools were competing. Moreover, it obtained the highest score
in 3 out of 23 sub-categories of Cover-Branches, namely in ReachSafety-Floats,
SoftwareSystems-AWS-C-Common-ReachSafety, and SoftwareSystems-BusyBox-
MemSafety. Fizzer also participated in the Cover-Error category. It is impor-
tant to stress that Fizzer cannot currently be instructed to focus on covering
one particular location, like the target reach_error() of this category. Fizzer
thus attempted to cover all abes in the program, just like in the other category.
Despite of that Fizzer placed seventh out of 19 participants in this category.
More details can be found on competition’s website [1] and report [2].

Fizzer

4 Tool Setup and Configuration

Fizzer can be downloaded either as a binary or as a source code (links are
in Section 6). For the source code, checkout the commit tagged TESTCOMP24 in
order to build the version participating in the competition. The README.md file
in the root of the repository contains detailed instructions for building the tool.
Once the tool is built, all binaries are under ./dist directory. The content of
the directory can be copied “as-is” to a target computer, i.e., no installation is
necessary. The tool should be used via sbt-fizzer.py script:

sbt-fizzer.py [options] --input_file <my-c-program>
--output_dir <my-output-dir>

All results for the given C program <my-c-program> will be stored under the
directory <my-output-dir> (including generated tests). The list of all available
options can be obtained by command sbt-fizzer.py --help. Here are the
options we used in the competition:

• max_seconds 865 The timeout for the fuzzing.
• optimizer_max_seconds 30 The timeout for the optimizer.
• max_exec_milliseconds 500 The timeout for each Target’s execution.
• max_stdin_bytes 65536 The upper bound for the number of input bytes.
• stdin_model stdin_replay_bytes_then_repeat_zero An input model:

Read generated input bytes and then read zeros.
• test_type testcomp The format for the generated tests.

Please note that Fizzer currently does not execute the given program in an
isolated environment. It is thus not advised to run Fizzer directly (outside a
container) on any C program accessing disk or other external resources.

5 Software Project and Contributors

Fizzer has been developed at the Faculty of Informatics of Masaryk University
by Marek Trtík and Lukáš Urban. Martin Jonáš and Jan Strejček participated in
discussions and contributed to the project by some ideas. The tool is open-source
and it is available under the zlib license.

6 Data-Availability statement

Fizzer is available in a binary form at Zenodo [3] and the source code is available
at GitHub:

https://github.com/staticafi/sbt-fizzer

312 M. Jonáš et al.

https://github.com/staticafi/sbt-fizzer

References

1. Test-Comp 2024, table with results, https://test-comp.sosy-lab.org/2024/
results/results-verified/

2. Beyer, D.: Automatic Testing of C Programs: Test-Comp 2024. Springer (2024)
3. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: binary (Nov 2023). https:

//doi.org/10.5281/zenodo.10183158

5. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: State of the art. IEEE
Transactions on Reliability 67(3), 1199–1218 (2018). https://doi.org/10.1109/
TR.2018.2834476

6. Zalewski, M.: American fuzzy lop (2013), http://lcamtuf.coredump.cx/afl/.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

: New Gray-Box Fuzzer 313Fizzer

4. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Gray-box fuzzing via gradient descent
and Boolean expression coverage. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024.
LNCS, vol. 14572, pp. 90–109 (2024). https://doi.org/10.1007/978-3-031-57256-
2 5_

https://test-comp.sosy-lab.org/2024/results/results-verified/
https://test-comp.sosy-lab.org/2024/results/results-verified/
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
http://lcamtuf.coredump.cx/afl/.
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-57256-2_5
https://doi.org/10.1007/978-3-031-57256-2_5

KLEEF: Symbolic Execution Engine
(Competition Contribution)

1RnD Toolchain Labs, Huawei, Shenzhen, China

Abstract. KLEEF is a complete overhaul of the KLEE symbolic ex-
ecution engine for LLVM, fine-tuned for a robust analysis of industrial
C/C++ code. KLEEF natively handles complex data structures, such
as trees, linked lists, and dynamically allocated arrays, via lazy initializa-
tion and symcrete values. KLEEF has fine-tuned modes for both maxi-
mal test coverage generation and reproducing error traces, in particular
reaching a specific point in the program. In the paper, we describe the
above features and a competition configuration of KLEEF.

Keywords: Symbolic Execution · Lazy Initialization · KLEE Fork.

1 Test-Generation Approach

KLEEF is a complete overhaul of the KLEE [11,4] symbolic execution engine.
We first describe how KLEE works, then we describe our enhancements over it.

1.1 Symbolic Execution in KLEE

As a symbolic interpreter [1], KLEE runs a program on a symbolic memory,
which maps program locations to symbolic values, representing sets of concrete
values. When it meets a branching instruction, it adds target instructions to a
queue and after each executed instruction it decides which instruction execute
next. Symbolic interpreter collects all conditions from branching instructions in
a path constraint. It is a formula, which may be either unsatisfiable (if the path
is infeasible) or satisfiable, and have multiple solutions. Each solution gives a
concrete test, which would visit the corresponding path. A symbolic interpreter
usually relies on an SMT solver (like Z3 [8]) to get solutions of path constraints.

The KLEE engine is split into two logical parts. The first part is a symbolic
interpreter, which takes a symbolic state, executes one instruction, and produces
new states. The second part is a searcher, which chooses the next symbolic state
to execute according to a strategy, specified by input options, e.g., BFS or DFS.

⋆

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 314–319, 2024.
https://doi.org/10.1007/978-3-031-57259-3_18

Aleksandr Misonizhnik , Sergey Morozov , Yurii Kostyukov(B) ,
Vladislav Kalugin , Aleksei Babushkin , Dmitry Mordvinov ,

and Dmitry Ivanov

kostyukov.yurii@gmail.com

Y. Kostyukov—Jury member.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_18&domain=pdf
http://orcid.org/0000-0002-5907-0324
http://orcid.org/0000-0003-1160-5614
http://orcid.org/0000-0003-4607-039X
http://orcid.org/0009-0005-4024-088X
http://orcid.org/0000-0002-5661-5800
http://orcid.org/0000-0002-6437-3020
http://orcid.org/0000-0002-0420-9077
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

1.2 Our Enhancements over KLEE

We enhanced KLEE with support for arbitrary data structures such as trees
and linked lists by implementing lazy initialization [7]. If KLEE dereferences
a symbolic pointer, it forks the symbolic state into many: each one assumes that
the pointer refers to one of the existing locations in the memory. In KLEEF
we also fork one extra state, where the pointer refers to a fresh, lazy initialized
symbolic object, which is distinct from all other object of the current symbolic
memory. If there are not enough objects in the memory, KLEEF will create a
new one and continue execution while KLEE will not. In the configuration used
at the competition we only create lazy initialized symbolic objects for symbolic
pointers without forking the state into existing locations beforehand.

We improve KLEE with symcretes [10], which help to support dynamically
allocated arrays (with symbolic sizes) and external calls. KLEEF thus supports
detecting buffer overflows. A symcrete is a pair of symbolic value and its concrete
instance valid in the current context. The concrete part of symcrete values is
derived from the model of a path constraint. It stays the same if the solver can
find a model for concretized constraints. Having failed, the concretization will
be updated by values from the model for the original constraints. When a logical
solver receives a query with a symcrete, an equality between the symbolic and
concrete parts of the symcrete are added to the query. This helps the solver
to solve the query, as a part of the model is already specified in the symcrete.
KLEEF thus handles dynamically allocated arrays by making array size and
address symcretes. KLEEF uses the solver to minimize possible array size and
sparse storage for arrays, so that the entire process does not blow up.

We have implemented searchers optimized specifically for maximizing cov-
erage and reaching the error target. That is, KLEEF has targeted searcher and
guided searcher which maximize coverage and error reachability, similar to [3].
The targeted searcher uses the shortest path based algorithm to choose the near-
est execution state to the target location. Each execution state carries a set of
targets. A guided searcher manages a bunch of targeted searchers with different
targets and chooses states from every targeted searcher in interleaved manner.

KLEEF improves over KLEE in constraint solving by caching unsatisfia-
bility cores, interning symbolic expressions, tracking constraints during simplifi-
cation to detect conflicts and using an SMT solver incrementally. In KLEEF we
added support for Bitwuzla [9] SMT solver, which performs significantly bet-
ter on Test-Comp benchmarks. For example, KLEEF with Z3 achieves 2430
points running for 30 seconds on Test-Comp 2023 benchmarks, while KLEEF
with Bitwuzla achieves 2560 points within the same time limit.

2 Architecture

KLEEF has the same architecture as KLEE [4]. KLEEF is implemented in
C/C++ and relies on the LLVM infrastructure. KLEEF supports STP [5],
Z3 [8] and Bitwuzla [9] SMT solvers for checking constraint satisfiability.

KLEEF: Symbolic Execution Engine (Competition Contribution) 315

3 Strengths and Weaknesses of the Approach

KLEEF took 3rd place in Test-Comp 2024 (Overall) [2], which is impressive
as it is a pure symbolic execution engine. That is, it could get even better results
if paired with fuzzing or other techniques.

The main reasons for our advancement in coverage category are as fol-
lows. First, it is a smart searcher which guides the symbolic execution towards
uncovered branches. Second, it is fast constraint solving, incorporating a num-
ber of caching techniques and solver incrementality. Third, the engine handles
allocations with a symbolic size without concretization by using symcrete values.

The main reasons for our advancement in error reaching category in-
clude a smart searcher guiding the execution towards an error and elimination
of syntactically unreachable paths in CFG.

Note that KLEEF took less points than KLEE in error reaching cate-
gory. KLEEF has more solved benchmarks, yet this number is normalized
across subcategories. As KLEEF solves less benchmarks on SoftwareSystems-
BusyBox-MemSafety and SoftwareSystems-OpenBSD-MemSafety subcategories
than KLEE, we got less points in the error reaching category in total. Poor
performance on these two subcategories is due to bugs in KLEEF: it generated
a few tests which were not reproduced by the validation system.

4 Tool Setup and Configuration

4.1 How to Use KLEEF

In order to run the competition version from the command line, one should
get the archive with binaries from Zenodo1 and follow the README inside.

In order to generate a test coverage for a project without configur-
ing KLEEF manually, one should use a user-friendly wrapper UnitTestBot
C/C++ [6,12]. It allows KLEEF to be run in VS Code and JetBrains CLion.

In order to build KLEEF from sources, one should install LLVM, clone
KLEEF from GitHub2 and run build.sh script in the repository root.

4.2 Competition Configuration

KLEEF participates in both Cover-Error and Cover-Branches categories.
Common Parameters. Parameters --strip-unwanted-calls, --delete-

dead-loops=false, --mock-all-externals are used to (de)activate necessary
LLVM passes to simplify bitcode for a symbolic execution. A parameter --

external-calls=all allows function calls with symbolic arguments. An option
--libc=klee makes KLEEF support an extended number of external functions.

Parameters --cex-cache-validity-cores, --use-forked-solver=false,

--solver-backend=bitwuzla-tree, --max-solvers-approx-tree-inc=16 are
used to cache unsatisfiability cores and call a Bitwuzla solver incrementally.

1 https://doi.org/10.5281/zenodo.10202734
2 https://github.com/UnitTestBot/klee

316 A. Misonizhnik et al.

https://doi.org/10.5281/zenodo.10202734
https://github.com/UnitTestBot/klee

Parameters --symbolic-allocation-threshold=8192, --skip-not-lazy-

initialized, --use-sym-size-alloc are used to tune lazy initialization and
dynamically allocated arrays.

A parameter --fp-runtime adds a floating point support. Parameters start-
ing with --allocate-determ activate X86 support. An option --x86FP-as-

x87FP80 adds emulation of X86 floating points as extended 80 bit floating points.
Finally, --max-memory and --max-time fix memory and time limit.
Parameters for Cover-Error. An option --optimize=true simplifies code

before execution, e.g., it joins some branches to multiple blocks into selection
instructions. Options --search=dfs --search=bfs make KLEEF interleave
between DFS and BFS. Options --function-call-reproduce=reach error,

--exit-on-error-type=Assert make KLEEF run towards reach error func-
tion and fail only there. An option --dump-states-on-halt=unreached permits
KLEEF to generate tests for unfinished paths.

Parameters for Cover-Branches. A parameter --track-coverage=all

makes KLEEF track coverage by both branches and instructions. Options -

-optimize=false and --optimize-aggressive=false disable optimizations
which decrease coverage. Options --use-iterative-deepening-search=max-

cycles, --max-cycles-before-stuck=15 activate an iterative-deepening mode
of execution on a number of executed loop cycles. A parameter --max-solver-
time=10s fixes a time limit for an SMT solver. An option --only-output-

states-covering-new makes KLEEF only generate tests which increase cov-
erage. Options --search=dfs, --search=random-state make KLEEF inter-
leave between DFS and taking a random state. A parameter --dump-states-

on-halt=all makes KLEEF generate tests for the symbolic states remaining in
the end. Options --cover-on-the-fly, --delay-cover-on-the-fly, --mem-

trigger-cof start on the fly test generation after approaching memory cap.

5 Software Project and Contributors

More information about KLEEF is available on its website3. KLEEF is an
open-source piece of software which you could contribute to at GitHub4.

The key developers are the authors of this paper affiliated with RnD Toolchain
Labs, Huawei, Shenzhen, China. The authors have decent experience in the im-
plementation of research and industrial symbolic execution engines.

6 Data-Availability Statement

A binary version of KLEEF participating in the competition is publicly avail-
able5. Also, its source code is available on GitHub6.

3 https://toolchain-labs.com/projects/kleef.html
4 https://github.com/UnitTestBot/klee
5 https://doi.org/10.5281/zenodo.10202734
6 https://github.com/UnitTestBot/klee/releases/tag/testcomp24

KLEEF: Symbolic Execution Engine (Competition Contribution) 317

https://toolchain-labs.com/projects/kleef.html
https://github.com/UnitTestBot/klee
https://doi.org/10.5281/zenodo.10202734
https://github.com/UnitTestBot/klee/releases/tag/testcomp24

References

1. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A Survey of
Symbolic Execution Techniques. ACM Comput. Surv. 51(3) (2018)

2. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
3. Burnim, J., Sen, K.: Heuristics for Scalable Dynamic Test Generation. In: 2008

23rd IEEE/ACM International Conference on Automated Software Engineering.
pp. 443–446 (2008). https://doi.org/10.1109/ASE.2008.69

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and Automatic Genera-
tion of High-Coverage Tests for Complex Systems Programs. In: Draves, R., van
Renesse, R. (eds.) 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. pp. 209–224. USENIX Association (2008), http://www.usenix.org/
events/osdi08/tech/full papers/cadar/cadar.pdf

5. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
Damm, W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

6. Ivanov, D., Babushkin, A., Grigoryev, S., Iatchenii, P., Kalugin, V., Kichin, E.,
Kulikov, E., Misonizhnik, A., Mordvinov, D., Morozov, S., Naumenko, O., Ple-
shakov, A., Ponomarev, P., Shmidt, S., Utkin, A., Volodin, V., Volynets, A.:
UnitTestBot: Automated Unit Test Generation for C Code in Integrated De-
velopment Environments. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). pp. 380–384
(2023). https://doi.org/10.1109/ICSE-Companion58688.2023.00107

7. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 553–568. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

9. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13965, pp.
3–17. Springer (2023). https://doi.org/10.1007/978-3-031-37703-7 1, https://doi.
org/10.1007/978-3-031-37703-7 1

10. Pandey, A., Kotcharlakota, P.R.G., Roy, S.: Deferred Concretization in
Symbolic Execution via Fuzzing. In: Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. p.
228–238. ISSTA 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3293882.3330554, https://doi.org/10.1145/
3293882.3330554

11. The KLEE Team: KLEE Symbolic Execution Engine (2009), http://klee.github.io/
12. The UnitTestBot C/C++ Team: UnitTestBot C/C++ (2021), https://www.utbot.

org/cpp

318 A. Misonizhnik et al.

https://doi.org/10.1109/ASE.2008.69
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1109/ICSE-Companion58688.2023.00107
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
http://klee.github.io/
https://www.utbot.org/cpp
https://www.utbot.org/cpp

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

KLEEF: Symbolic Execution Engine (Competition Contribution) 319

http://creativecommons.org/licenses/by/4.0/

TracerX: Pruning Dynamic Symbolic Execution
with Deletion and Weakest Precondition
Interpolation (Competition Contribution)

National University of Singapore, Singapore, Singapore1,3,5

Huawei Canada Research Centre, Toronto, Canada2,

{arpita,joxan,xiaoly}@comp.nus.edu.sg1,3,5
rasool.maghareh@huawei.com2, sanghu@nitw.ac.in4

Abstract. Dynamic Symbolic Execution (DSE) is an important method
for the testing of programs. The major advantage of DSE is its path-by-
path exploration of the program execution space. However, this often
leads to the path explosion problem. To address this issue, a method of
abstraction learning has been used. The key step here is the computa-
tion of an interpolant to represent the learned abstraction. In Test-Comp
2024, we use two different approaches of interpolant generation viz., Dele-
tion Interpolation and Weakest Precondition Interpolation. The former
is our more stable and mature system and briefly discussed in [8]. In
this paper, we present the latter approach which is the heart of TracerX.
In general, the Weakest Precondition (WP) is the ideal (most general)
interpolant. However, WP is intractable to compute and is exponentially
disjunctive. A major challenge is to obtain a conjunctive approximation
of the WP. Therefore, we generate an approximation of the WP.

Keywords: Dynamic Symbolic Execution, Interpolation, Weakest Pre-
condition

1 Test-Generation Approach

DSE is an important method for program testing. The main challenge in symbolic
execution (SE) is path explosion. The method of abstraction learning [10] has
been used to address this by generating the interpolants to represent the learned
abstraction. The core feature in abstraction learning is the subsumption of paths
whose traversals are deemed to no longer be necessary due to similarity with
already-traversed paths. Despite the overhead of computing interpolants, the
pruning of the symbolic execution tree (SET) that interpolants provide often
brings significant overall benefits. An interpolant of a program point (state) is
an abstraction of it which ensures the safety of the subtree rooted at that state.
Thus, upon encountering another state of the same program point, if the context

⋆

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 320–325, 2024.
https://doi.org/10.1007/978-3-031-57259-3_19

Arpita Dutta1 , Rasool Maghareh2 , Joxan Jaffar B ,
Sangharatna Godboley , and Xiao Liang Yu

3()

4 5

3 National Institute of Technology Warangal, Hanamkonda, India

J. Jaffar—Jury Member Test-Comp 2024.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_19&domain=pdf
http://orcid.org/0000-0001-7887-3264
http://orcid.org/0000-0002-8147-6590
http://orcid.org/0000-0001-9988-6144
http://orcid.org/0000-0002-6169-6334
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

of the state implies the interpolant formula, then continuing the execution from
the new state will not lead to any error. Consequently, we can prune the subtree
rooted in the new state [6,7].

The heart of TracerX is the use of interpolation to address the path explosion
problem in DSE. The use of interpolation to address the path explosion problem
in DSE was first implemented in the TRACER system [9]. While TRACER was
able to perform bounded verification and testing on many examples, it could
not accommodate industrial programs which often dynamically manipulate heap
memory. TracerX combines the state-of-the-art DSE technology used in KLEE
[5] with the pruning technology in TRACER to address this issue. We presented
the software architecture of TracerX in [8]. The default interpolation algorithm
used by TracerX is the Deletion Interpolation and it was first developed under
TRACER [9].

Since the last Test-Comp, we have designed another interpolation algorithm
i.e., Weakest precondition (WP) interpolation. The Deletion algorithm generates
interpolant as a subset of the incoming context (which is the strongest postcon-
dition on the path to the assume condition), while the WP algorithm generates
interpolants from the weakest precondition of a path in the program. Hence, the
WP interpolation algorithm provides a more general interpolant which can have
a higher chance of subsuming more subtrees in SET.

The ideal (most general) interpolant is the WP of the target, which is the
condition that must be satisfied in order to get the target satisfied. For example,
consider the following piece of code:

assume (not (b1 ∧ ¬ b2 ∧¬ b3))

if (b1) x += 3 else x += 2

if (b2) x += 5 else x += 7

if (b3) x += 9 else x += 14

{x <= 24}

The WP before the first if-statement is:
b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)

¬b1 −→ x < 3

Here, WP is expressed as a disjunction of two conditions. This means that either
of the two conditions can be satisfied for the target to be reached.

Unfortunately, WP is intractable to compute, which means it is difficult or
impossible to find an exact solution for it. One way to approximate WP is to use a
conjunctive approximation, which involves expressing the WP as a conjunction
of simpler conditions. This can help to make the WP more tractable, but it
may also introduce some imprecision to the quality of interpolants (by under
approximation). However, this will not effect the soundness of the tool.

1.1 TracerX-WP: Approximation of Weakest Precondition

TracerX-WP implements the algorithm which approximates the ideal WP by
defining two components: path interpolants and tree interpolants. In this section,
we briefly explain how these two components are computed and used to generate
an approximation of the weakest precondition.

A path interpolant is a formula that represents the WP of a path. It starts
from the end of the path (target formula) and works backward to the beginning
of the path, using the rules of logic to compute a formula that if satisfiable then

TracerX: Pruning Dynamic Symbolic Execution with Deletion 321

target formulas will also be satisfiable. We consider a path to be a sequence of
assignments and assume statements executed in a specific order.

An assignment instruction assigns a value to a variable. Interpolant of an
assignment instruction is a logical formula that describes the effect of the as-
signment. For example, having the assignment instruction “x := z + 2”, and a
target “x ≤ 15”, the interpolant is described as WP (inst, target) : x ≤ 13.

For an assume instruction (B), consider the incoming context {C} as the
precondition and {ω} as the target. An interpolant is a formula that represents
the logical relationship between the variables in the context {C} and the condi-
tions in B. To find the interpolant, we compute the coarse partition (minimum
number of partitions) of {C} such that var(Ci) ∗ var(Cj) s.t. i ̸= j (∗ is in-
tuitively the “separating conjunction” from separation logic [12]) as shown in
Eq.1: {C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B) {ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm} (1)

We partition Ci into three groups. Constraints are replaced using the rules below:

– Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci.

– Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t.
B ∗ ωj .
Action: Replace Cgi by ωgi.

– Remainder of the Ci: We do not capture exact WP for this group.
e.g. {z == 5} assume(x > z − 2) {x > 0} (Here, z > 2 is the WP)
Action: No change to Ci, i.e. keep Ci.

A tree interpolant is a formula that corresponds to all the branches of a sub-
tree within the SET. It is computed as the conjunction of the path interpolants
between the root of the tree and each leaf node. Tree interpolants can be used to
prove the correctness of subtrees in the SET, by showing that a certain property
holds for all possible paths or branches in the subtree.

2 Software Architecture

KLEE

TracerX-WP Interpolant
Generation Engine

SMT Solver

C
la

ng

LLVM IR

Annotations

C
CPP
ObjC Test Cases

Statistics

Fig. 1. TracerX-WP Framework

The software archi-
tecture of TracerX-
WP is presented in
Fig. 1. The core fea-
ture of TracerX-WP
is its interpolation en-
gine which generalizes
the context of a node.
TracerX-WP works at
the level of LLVM bitcode, the intermediate language of the widely used LLVM
compiler infrastructure [11]. It provides an interpreter that can execute al-
most arbitrary code represented in LLVM IR, both concretely and symbolically.
TracerX-WP has a modular and extensible architecture. It provides a variety of
different search heuristics (e.g., Random and DFS) to explore the program state
space.

322 A. Dutta et al.

3 Strengths and Weaknesses

In Test-Comp 2024 [4], we participated with two different approaches to prune
subtrees viz., Deletion Interpolation and WP Interpolation. We represent the
former system as TracerX and the latter as TracerX-WP. TracerX secured a
score of 4020 for the 11042 tasks with a CPU time of 694.44 hours and 722.22
hours of wall time. Whereas, TracerX-WP obtained a score of 1480 for 11042
tasks with equal CPU time and wall time of 472.22 hours. The memory used by
TracerX and TracerX-WP are 19 TB and 10 TB. The total coverage obtained by
TracerX and TracerX-WP are 402000 and 148000 for 11042 tasks respectively.

The major reason for the lower score of TracerX-WP is that the imple-
mentation of TracerX-WP is experimental. It crashed due to not supporting
some expression types during interpolant computation. Also, in TracerX-WP,
test cases with ‘.ktest’ extension are converted into ‘.xml’ format after the
symbolic execution engine has finished the exploration while TracerX gener-
ates the tests during the exploration. This resulted in the unavailability of
test cases for the programs with timeout status in the coverage computation.
Moreover, the configuration we used in the ‘BenchExec’ tool-info for TracerX-
WP missed the support for 64-bit architecture. As a result, TracerX-WP was
not able to run the tests in some categories like ReachSafety-Hardware, and
SoftwareSystems-BusyBox-MemSafety. The fix for the above mentioned issues
is conceptually straight forward but it requires substantial amount of work. Since,
we need to modify the data structures used in our system. In subsequent versions,
we will come-up more stable system with all fixes and additional features.

In a comparison of TracerX with Symbiotic and Fizzer which won the bronze
for the third place in Cover-Error and Cover-Branches tracks respectively, Trac-
erX has almost equal scores in 13 out of 16 (with at most difference of 3
tasks) and 15 out of 23 categories. TracerX has better results than Fizzer in
some categories like ReachSafety-BitVectors, ReachSafety-Hardware, and
ReachSafety-Combinations. These observations show the potential of TracerX
approach and we hope to get higher scores in the future Test-Comp competitions.

4 Setup and Configuration

The steps to configure and running of TracerX are similar to KLEE [5] with some
extra command-line arguments. The argument -solver-backend=z3 should be
provided to run TracerX with Deletion Interpolation. Along with -wp-interpolant

option is required to invoke WP Interpolation. For detailed information, please
see the integrated --help option.

5 Software Project and Contributors
Information about TracerX with self-contained binary is publicly available at
https://tracer-x.github.io/. Also, the source code can be accessed from GitHub.
The authors of this paper and other colleagues have contributed to and developed
TracerX at NUS, Singapore. Authors of this paper acknowledge the direct and
indirect support of their students, former researchers, and colleagues.

TracerX: Pruning Dynamic Symbolic Execution with Deletion 323

https://tracer-x.github.io/
https://github.com/tracer-x/TracerX
https://nus.edu.sg/

6 Data-Availability Statement

The binary artifact of TracerX with Deletion Interpolation and Weakest Precon-
dition Interpolation used in Test-Comp 2024 are publicly available at Zenodo [2]
and [3] respectively. Also, Test-Comp 2024 [1] provides all the necessary scripts,
benchmarks, and tool binaries to reproduce the competition’s results.

7 Funding Statement

This research project is partially supported by grant MOE-T2EP20220-0012.

References

1. Test-comp 2024, https://test-comp.sosy-lab.org/2024/
2. TracerX with Deletion Interpolation, https://doi.org/10.5281/zenodo.10200610
3. TracerX with WP Interpolation, https://doi.org/10.5281/zenodo.10202605
4. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
5. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In: 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI. pp. 209–224
(2008)

6. Godboley, S., Jaffar, J., Maghareh, R., Dutta, A.: Toward optimal MC/DC test
case generation. In: Proceedings of the 30th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. pp. 505–516 (2021)

7. Jaffar, J., Godboley, S., Maghareh, R.: Optimal MC/DC test case generation. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion). pp. 288–289. IEEE (2019)

8. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic exe-
cution with interpolation (competition contribution). In: Fundamental Approaches
to Software Engineering (FASE). vol. 12076, p. 530. Springer (2020)

9. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execu-
tion tool for verification. In: 24th International Conference on Computer Aided
Verification (CAV). pp. 758–766. Springer (2012)

10. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal. In:
15th International Conference on Principles and Practice of Constraint Program-
ming (CP). pp. 454–469. Springer (2009)

11. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International symposium on code generation and opti-
mization, 2004. CGO 2004. pp. 75–86. IEEE (2004)

12. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Computer Science Logic: 15th International Workshop, CSL
2001 10th Annual Conference of the EACSL Paris. pp. 1–19. Springer (2001)

324 A. Dutta et al.

https://test-comp.sosy-lab.org/2024/
https://doi.org/10.5281/zenodo.10200610
https://doi.org/10.5281/zenodo.10202605

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

TracerX: Pruning Dynamic Symbolic Execution with Deletion 325

http://creativecommons.org/licenses/by/4.0/

Ultimate TestGen: Test-Case Generation with
Automata-based Software Model Checking

(Competition Contribution)

1 LMU Munich, Munich, Germany
2 University of Freiburg, Freiburg, Germany

Max.Barth@lmu.de

Abstract. We introduce Ultimate TestGen, a novel tool for automatic
test-case generation. Like many other test-case generators, Ultimate Test-

Gen builds on verification technology, i.e., it checks the (un)reachability
of test goals and generates test cases from counterexamples. In contrast
to existing tools, it applies trace abstraction, an automata-theoretic ap-
proach to software model checking, which is implemented in the suc-
cessful verifier Ultimate Automizer. To avoid that the same test goal is
reached again, Ultimate TestGen extends the automata-theoretic model
checking approach with error automata.

Keywords: Ultimate Automizer· Test-case generation · Software testing
· Test Coverage · Software model checking · Automata

1 Test-Generation Approach

Verification technology has been successfully used in the past to automatically
generate test cases [12,14,7,1]. Most existing approaches follow a similar prin-
ciple. Mainly, they perceive reaching an (uncovered) test goal as a property
violation and construct test cases from counterexamples [6]. To build a test
suite, they repeatedly check the reachability of still uncovered goals and prove
their unreachability or generate test cases from counterexamples that testify the
reachability of (uncovered) test goals. To improve the performance of the reach-
ability analysis after detecting the reachability of a test goal, many approaches
reuse previous information, e.g., continue the reachability analysis but exclude
property violations caused by already covered test goals. Also, our new test-case
generator Ultimate TestGen, which is implemented in Java, follows this basic
principle.

To analyze the reachability of test goals, Ultimate TestGen relies on trace
abstraction [11], an automata-theoretic approach to software model checking,
which performs counterexample-guided abstraction refinement (CEGAR) [9] and

⋆ Jury Member: Max Barth
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 32

9

–330, 2024.
https://doi.org/10.1007/978-3-031-57259-3_20

Max Barth1(B) , Daniel Dietsch2 , Matthias Heizmann2 ,
and Marie-Christine Jakobs1

https://orcid.org/0009-0002-7716-3898
https://orcid.org/0000-0002-8947-5373
https://orcid.org/0000-0003-4252-3558
https://orcid.org/0000-0002-5890-4673
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_20&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Program to
Automaton
Translator

Test
Goal

Encoder

Coverage
property Program

Analysis
L(A) = ∅?

done Feasibility
Check
of π

Interpolant
Automaton
Generation

Test-Case
Exporter

Error
Automaton
Generator

Refinement
A = A \Ar

Test
suiteprogram with assertions

initial
abstraction A

true fal
se

π
∈ L

(A
)

UNSAT proof, π

Ar

Ar

test
case

SAT
model, π

Fig. 1. Overview of the test-case generation approach of Ultimate TestGen

which is implemented in Ultimate Automizer. Figure 1 shows the overview of
the test-case generation process performed by Ultimate TestGen. Components
highlighted in gray are added to the verification process of Ultimate Automizer
and enable test-case generation.

The test-case generation process starts with the encoding of the test goals
into the program. To this end, we insert an assert(false); statement after each
test goal (either a branch or a call to reach_error()). Thereafter, we translate
the program with the assertions into an automaton A, which becomes the ini-
tial abstraction. This initial abstraction represents all possible counterexamples,
i.e., the initial automaton accepts a syntactical program path iff it reaches an
assert statement (i.e., a violation). Next, we iteratively refine the automaton
abstraction until it becomes empty.

If the abstraction still accepts a counterexample path π, we select an arbitrary
counterexample path π from the abstraction and check its feasibility. To check
the feasibility of π, Ultimate TestGen encodes the path into a formula and
checks its satisfiability with an SMT solver. Ultimate TestGen relies on the
SMT solvers Z3 [13], CVC4 [3], and MathSAT5 [8]. However, during the check
we must ensure that an assert statement introduced to cover an earlier test goal
does not prohibit reaching later test goals. Therefore, the feasibility check ignores
the assert statements added during test goal encoding.

If the counterexample is spurious, i.e., the formula is unsatisfiable, we use
the proof of unsatisfiability to generate an interpolant automaton Ar [10]. The
interpolant automaton accepts the counterexample path π and other (counter-
example) paths that are infeasible due to a similar reason. We use the interpolant
automaton to refine the abstraction and, thus, exclude infeasible paths, which
are accepted by the interpolant automaton, from the counterexample search.

If the counterexample is feasible, i.e., the formula is satisfiable, we generate
a test case from a model of the formula [6]. To this end, we identify the calls to
the __VERIFIER_nondet calls and retrieve their values from the model. Then,
we export the identified values into a test case in the exchange format3 used by

3 https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp23/doc/Format.
md

Ultimate TestGen (Competition Contribution) 327

https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp23/doc/Format.md
https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp23/doc/Format.md

Test-Comp [5]. The values are exported in the same order as their corresponding
calls occur in the counterexample path π. In addition, we generate an error
automaton that accepts all counterexample paths that end in the same test
goal as the current counterexample π. We use the error automaton to refine the
abstraction and exclude paths from the counterexample search that reach test
goals that are already covered.

The last step is the refinement of the abstraction A. This step excludes the
paths determined irrelevant because they are known to be infeasible or may not
reach uncovered test goals. To this end, we substract the interpolant automaton
and error automaton, respectively from the existing abstraction. Hence, each
step ensures that the abstraction considered in the next step considers fewer
counterexample paths and, thus, guarantees progress of the test-case generation.

2 Discussion of Strengths and Weaknesses

For a comparison of Ultimate TestGen with the other participants of Test-
Comp 2024, we refer to the competition report [5].

Ultimate TestGen checks the reachability of every test goal and generates
a test case for every goal that it proved reachable. Due to this goal-oriented pro-
cedure, it creates relatively small test suites. In addition, if Ultimate TestGen
completes the test-case generation process (i.e., result done), we can confidently
determine that any test goal not addressed by a test case is indeed unreachable.

Nevertheless, proving the reachability of certain test goals can be hard and
requires expensive SMT solver calls. When studying the results for the cate-
gory cover-error, we observe that Ultimate TestGen runs out of resources
(time or memory) for many software systems tasks as well as tasks in the cat-
egories XCSP, Sequentialized, ProductLines, ECA. In addition to the resource
issue, we observe that sometimes our tests are not confirmed by the validator,
which seems to be a bug of the translation of the counterexamples into the test
cases. Still, there also exist categories like loops, heap, arrays, and fuzzle in
which Ultimate TestGen performs rather well.

Looking at the cover-branches category, we observe that for many software
systems tasks as well as for certain float tasks, we already fail to construct the
automaton from the program because required C features are yet not supported
by the program to automaton translation. In these cases, the test-case generation
procedure does not even start. In addition, Ultimate TestGen has problems in
detecting the feasibility of error traces for Linux device driver tasks because
large string literals are not precisely encoded. For other task categories like AWS,
Sequentialized, ProductLines, Hardware, Fuzzle, ECA, and Combinations,
we observe that reaching the test goals is expensive and Ultimate TestGen
runs out of resources (time, memory) before covering a significant amount of
test goals. While we have seen the resource issue for the cover-error category,
too, the Hardness tasks reveal another issue with our test-case exporter, which
makes Ultimate TestGen crash. The reason for the crash is that our test-case
exporter failed to translate values from the SMT-LIB [2] FloatingPoint format

328 M. Barth et al.

back to certain C types such as ulong. Note that the C types float and double
were not an issue. Still, there exist task categories like e.g., loops, control-flow,
bitvectors, or XCSP for which Ultimate TestGen performs well and achieves
high coverage values.

3 Setup and Configuration

Ultimate TestGen is part of the Ultimate framework4, which is licensed un-
der LGPLv3. To execute Ultimate TestGen in the version submitted to Test-
Comp 2024 [4], one requires Java 11 and Python 3.6 and must invoke the fol-
lowing command.

./Ultimate.py –spec <p> –file <f> –architecture <a> –full-output

where <p> is a Test-Comp property file, <f> is an input C file, and <a> is the
architecture (32bit or 64bit). During execution of the command, the generated
tests are saved as .xml files in the exchange format for test cases required by
Test-Comp [5]. In Test-Comp 2024, we use the above command to participate
with Ultimate TestGen in both Test-Comp categories: cover-error (i.e., bug
finding by covering the call to reach_error) and cover-branches (i.e., code
coverage).

Data Availability The Test-Comp 2024 version of Ultimate TestGen is avail-
able online on Zenodo [4] and on GitHub5. Its corresponding benchmark defini-
tion file is available on GitLab6.

References

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.:
FuSeBMC_IA: Interval analysis and methods for test-case generation (compe-
tition contribution). In: Proc. FASE. pp. 324–329. LNCS 13991, Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_18

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV. pp. 171–177. LNCS 6806, Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_14

4. Barth, M., Dietsch, D., Heizmann, M., Jakobs, M.C.: Ultimate TestGen. Zenodo
(2023), https://doi.org/10.5281/zenodo.10071568

5. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)

4 https://ultimate.informatik.uni-freiburg.de and github.com/ultimate-pa/ultimate
5 https://github.com/ultimate-pa/ultimate/tree/ea2a3342b0e9ae9c8710d9bc5a32ec

c16b7297dd
6 https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/main/benchmark-defs/

utestgen.xml

Ultimate TestGen (Competition Contribution) 329

https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.5281/zenodo.10071568
https://ultimate.informatik.uni-freiburg.de
github.com/ultimate-pa/ultimate
https://github.com/ultimate-pa/ultimate/tree/ea2a3342b0e9ae9c8710d9bc5a32ecc16b7297dd
https://github.com/ultimate-pa/ultimate/tree/ea2a3342b0e9ae9c8710d9bc5a32ecc16b7297dd
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/main/benchmark-defs/utestgen.xml
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/blob/main/benchmark-defs/utestgen.xml

6. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004). https:
//doi.org/10.1109/ICSE.2004.1317455

7. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. pp. 368–372. LNCS 12649,
Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_20

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV. pp. 154–169. LNCS 1855, Springer (2000).
https://doi.org/10.1007/10722167_15

10. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Proc. SAS. pp. 69–85. LNCS 5673, Springer (2009). https://doi.org/10.1007/
978-3-642-03237-0_7

11. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013). https:
//doi.org/10.1007/978-3-642-39799-8_2

12. Jakobs, M.C.: CoVeriTest with dynamic partitioning of the iteration time limit
(competition contribution). In: Proc. FASE. pp. 540–544. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_30

13. de Moura, L.M., Bjørner, N.S.: Z3: An efficient SMT solver. In: Proc.
TACAS. pp. 337–340. LNCS 4963, Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

14. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking and
domination-based partitioning for efficient multi-goal test-suite generation (com-
petition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_26

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

330 M. Barth et al.

https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-030-45234-6_30
https://doi.org/10.1007/978-3-030-45234-6_30
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-45234-6_26
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Al-Bataineh, Omar I. 255

B
Babushkin, Aleksei 314
Bae, Kyungmin 101
Barth, Max 326
Bernier, Téo 280
Blazy, Sandrine 1
Boockmann, Jan H. 143
Brancas, Ricardo 232

C
Capretto, Margarita 122
Ceresa, Martin 122
Chae, Seunghyun 101
Chen, Liushan 165
Chen, Shanyan 188
Chen, Zhenbang 304

D
Dang, Thi Kim Nhung 210
Dietsch, Daniel 326
Dutta, Arpita 320

F
Falcone, Yliès 56
Fei, Zhihui 165

G
Giese, Holger 22, 77
Godboley, Sangharatna 320
Guan, Yong 188

H
Heizmann, Matthias 326
Huisman, Marieke 290

I
Ivanov, Dmitry 314

J
Jaffar, Joxan 320
Jakobs, Marie-Christine 326
Janßen, Christian 266
Jonáš, Martin 309

K
Kalugin, Vladislav 314
Kosmatov, Nikolai 280
Kostyukov, Yurii 314

L
Lambers, Leen 22
Li, Ximeng 188
Liang, Tao 165
Liu, Kunlin 304
Lopuhaä-Zwakenberg, Milan 210
Loulergue, Frédéric 280
Lüttgen, Gerald 143

M
Ma, Guojun 165
Ma, Kelin 304
Maghareh, Rasool 320
Manquinho, Vasco 232
Martins, Ruben 232
Misonizhnik, Aleksandr 314
Moon, Sungkun 101
Mordvinov, Dmitry 314
Morozov, Sergey 314

P
Pei, Yu 165

R
Richter, Cedric 266

S
Şakar, Ömer 290
Sakizloglou, Lucas 22
Salaün, Gwen 56
Sánchez, César 122

© The Editor(s) (if applicable) and The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 331–332, 2024.
https://doi.org/10.1007/978-3-031-57259-3

https://doi.org/10.1007/978-3-031-57259-3

332 Author Index

Schneider, Sven 77
Shi, Zhiping 188
Shuai, Ziqi 304
Stoelinga, Mariëlle 210
Strejček, Jan 309

T
Terra-Neves, Miguel 232
Trtík, Marek 309

U
Urban, Lukáš 309

V
van Oorschot, Dré 290
Ventura, Miguel 232

W
Wan, Mingyang 165
Wang, Guohui 188
Wang, Ji 304
Wehrheim, Heike 266

X
Xu, He 77

Y
Yu, Geunyeol 101
Yu, Xiao Liang 320

Z
Zhang, Guofeng 304
Zhang, Qianying 188
Ziani, Yani 280
Zuo, Ahang 56

	ETAPS Foreword
	Preface
	Organization
	Contents
	From Mechanized Semantics to Verified Compilation: the Clight Semantics of CompCert
	Foundations for Query-based Runtime Monitoring of Temporal Properties over Runtime Models
	Probabilistic Runtime Enforcement of Executable BPMN Processes
	Combining Look-ahead Design-time and Run-time Control-synthesis for Graph Transformation Systems
	Formal Specification of Trusted Execution Environment APIs
	Monitoring the Future of Smart Contracts
	Comprehending Object State via Dynamic Class Invariant Learning
	Smart Issue Detection for Large-Scale Online Service Systems Using Multi-Channel Data
	Refinement Verification of OS Services based on a Verified Preemptive Microkernel
	Fuzzy quantitative attack tree analysis
	Towards Reliable SQL Synthesis: Fuzzing-Based Evaluation and Disambiguation
	Invariant-based Program Repair
	Can ChatGPT support software verification?
	Combining Deductive Verification with Shape Analysis
	First Steps towards Deductive Verification of LLVM IR
	 FDSE: Enhance Symbolic Execution by Fuzzing-based Pre-Analysis (Competition Contribution)
	Fizzer: New Gray-Box Fuzzer
	KLEEF: Symbolic Execution Engine (Competition Contribution)
	TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest Precondition Interpolation (Competition Contribution)
	Ultimate TestGen: Test-Case Generation with Automata-based Software Model Checking (Competition Contribution)
	Author Index

