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Preface

For several years after its publication in 1995, the self-controlled case series
(SCCS) method met with a degree of scepticism. Gradually, it gained credence
beyond its early core of advocates, especially among epidemiologists concerned
with vaccine safety – the subject area in which the method was originally de-
veloped. Helped on by the increasing use of pre-existing databases of patient
records in epidemiological research, the SCCS method also became more pop-
ular in non-vaccine pharmacoepidemiology.

Back in the early days, we spent much time presenting and popularising
the SCCS method. Today, self-controlled methods are more widely accepted
by epidemiologists, so this purpose has become less salient. Equally important,
in our view, is the need to convey a better understanding of the method – and
thus, hopefully, to motivate further methodological developments to extend
its range of application and mitigate its limitations.

Over the past 20 years, we have provided practical advice to statisticians
and epidemiologists who have approached us with queries about the method.
Indeed several of these interactions have blossomed into long-term collab-
orations, and a few have motivated substantial methodological extensions.
Enriched by this experience, we think that the time is now ripe to collect to-
gether a dispersed literature into a coherent narrative. Hence this book, and
its associated R package SCCS.

We are greatly indebted to all those who contributed to the development
of the method in various ways. Particular thanks are due to Elizabeth Miller
and Stephen Evans for their early support and their unstintingly generous en-
couragement over many years. The long list of others to whom special thanks
are due includes Rustam Al-Shahi Salman, Nick Andrews, Ruth Brauer, John
Carlin, Bob Chen, Anne-Marie Connolly, Gisele Coutin-Marie, Bob Davis,
Frank DeStefano, Caitlin Dodd, Ian Douglas, Philippe Duclos, Sylvie Es-
colano, Annie Fourrier-Réglat, Francesca Galeotti, Paul Gargiullo, François
Haguinet, Steven Hawken, Mounia Hocine, Richard Hubbard, Pierre Joly, Pi-
otr Kramarz, Ronny Kuhnert, Cécile Landais, Katherine Lee, Linda Lévesque,
David Madigan, Yola Moride, Patrick Musonda, Danh Nguyen, Irene Petersen,
Nicole Pratt, Catherine Quantin, Adrian Root, Dominique Rosillon, Martijn
Schuemie, Liam Smeeth, Bart Spiessens, Julia Stowe, Therese Stukel, Laila
Tata, Pascale Tubert-Bitter, Thomas Verstraeten, Charlotte Warren-Gash,
Linda Wijlaars and Kumanan Wilson. The list is surely incomplete, and we
apologise to anyone we have left out.
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1

Introduction

1.1 Control and self-control in epidemiology

The Scottish physician James Lind is widely credited with conducting the
first controlled clinical trial. In 1747, in his capacity as ship’s surgeon on HMS
Salisbury, Lind selected 12 crew members afflicted by scurvy, and allocated
them in pairs to six treatments – one of which was daily consumption of two
oranges and a lemon. A second pair received seawater; the rest were treated
with a variety of other substances. Within a week, the patients taking the
citrus fruit had fully recovered – though nearly a half century elapsed before
the Royal Navy included lemon juice in its rations and eventually eradicated
scurvy at sea (Dunn, 1997).

Lind’s controlled trial is a seminal moment in the emergence of the sci-
entific method and its application to medicine. Today, the judicious use of
controls is a pervasive feature of modern epidemiological methods. Controls
are used in an attempt to reveal causal mechanisms: ideally, by eliminating
extraneous sources of systematic variation so that the experimental group and
the control group differ in just one single respect, any differences that then
emerge between the two groups can be ascribed to that single difference in ini-
tial conditions – or to chance. In epidemiology, the most rigorous application
of this principle is in randomised controlled trials, the randomisation aiming
primarily to ensure that the treatment and control groups are comparable
in all respects other than the treatment allocation. However many questions
in epidemiology cannot readily be addressed by randomised controlled trials.
In particular, diseases that are very uncommon or require long durations of
follow-up cannot realistically be investigated in this way, while some exposures
cannot be applied experimentally for ethical reasons. Instead, the methods of
observational epidemiology are used, notably traditional study designs such
as cohort and case-control studies.

Control remains fundamental to the methodology of observational studies,
but the absence of random allocation means that the exposure and control
groups may differ in important respects. Any such differences must be adjusted
for by statistical techniques, typically multiple regression, in an attempt to
recreate the level playing field of the randomised clinical trial. Alternatively,
causal inference methods can be applied, with the same aim.

However, the implementation or interpretation of all such methods requires

1



2 Introduction

some prior knowledge of those confounding variables that could bias the com-
parison between treatment and control groups and hence yield erroneous in-
ferences. Even when such variables are known, the precise causal pathways
involved may not be, and hence attempts to allow fully for these variables by
regression techniques may be only partly successful. For example, socioeco-
nomic factors are known to be confounders in epidemiological investigations
of many exposure and disease pairs. However, socioeconomic variables are of-
ten poorly measured. In addition, which aspect of social class is relevant in
any particular setting, and hence what exactly should be measured, generally
remains elusive. Likewise, analyses of clinical or administrative databases are
limited by what data happen to be available, which may or may not include
all relevant confounders. Indeed some potential confounders, such as genetic
factors, are not realistically measurable.

Self-control offers a different approach to resolving this conundrum. Self-
control is the use of a study subject as his or her own control, sampled
at different times: individuals are matched with themselves, and constitute
individual-level strata. Within such a scheme, all variables that are constant
in time are necessarily identical within strata and thus, in certain circum-
stances, are completely controlled. This applies to time-invariant variables
that are not even known to be confounders. Such variables could include, for
example, genetic factors and, over suitable time scales, socioeconomic factors
and underlying state of health. Time-varying confounders, on the other hand,
are not controlled automatically, and must therefore be allowed for by other
means.

1.2 Self-controlled methods

Self-controlled methods in epidemiology include the case-crossover method
and the self-controlled case series method, the subject of this book. Both in-
volve only cases, that is, individuals who have experienced the event of inter-
est. The case-crossover method was introduced by Maclure (1991) to evaluate
associations between transient exposures and acute health events. The self-
controlled case series method was proposed by Farrington (1995) to study
adverse health events potentially associated with vaccination. Both methods
have been used more widely, notably in the study of adverse events potentially
associated with pharmaceutical drugs.

The case-crossover method is a type of matched case-control design: the
sampling scheme fixes the event times of the cases. Unlike standard case-
control methods, in which controls are individuals selected among non-cases,
the case-crossover design involves choosing control periods within the time line
of the case. These control periods are defined in relation to the event time.
In standard matched case-control designs, the event time of the case deter-
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mines the index time in matched controls. In contrast, the self-controlled case
series (or SCCS) method is derived from a Poisson model for the underlying
retrospectively observed cohort, and the event times are not fixed by design,
though only cases within the cohort are included in the analysis. However,
both the case-crossover and the SCCS designs involve only within-person con-
trasts, rather than between-person contrasts or a combination of between and
within-person contrasts as in standard cohort and case-control designs.

These features underpin the distinct properties of the cohort, case-control,
case-crossover and SCCS designs. Table 1.1 exemplifies this typology, and how
the methods relate to one another within it.

TABLE 1.1
Relationships between epidemiologic designs.

Event times fixed by design
Yes No

Within-person Yes Case-crossover SCCS
contrasts only No Case-control Cohort

Self-controlled methods are attractive, first, because time-invariant con-
founders can potentially be controlled automatically. This is particularly useful
for studies conducted in administrative databases, in which relevant covariate
information may be limited. In addition, a common feature of self-controlled
methods is that non-cases are uninformative, and hence only cases are re-
quired. Indeed, this feature provided the original motivation for the develop-
ment of the SCCS method. Requiring only cases reduces the sample size and
simplifies data collection and checking, which can be focused entirely on those
individuals experiencing the events of primary interest.

Self-controlled methods also suffer from limitations. For example, as for
case-control methods, absolute event rates cannot be estimated directly. The
extra control of time-invariant covariates comes at the cost of further assump-
tions. And finally, the association parameter that is the target of inference
represents only the effect associated with within-individual variation in expo-
sure. This may not represent the total effect of that exposure. For example,
taking regular exercise has a beneficial effect in reducing the risk of cardio-
vascular disease. But an episode of energetic exercise may be associated with
a short-term increase in risk. Self-controlled methods can only aspire to esti-
mate the second, within-individual effect, which in SCCS analyses we refer to
as the relative incidence.



4 Introduction

1.3 Guide to contents

This book is about the analysis, application and design of the self-controlled
case series method. It is written in the hope that it will prove useful to a
range of audiences, including medical statisticians and epidemiologists. While
its focus is practical, the book contains a mix of methodology and applica-
tion, mathematical derivations and non-technical explanations from which the
reader is invited to pick and choose. Material that is primarily of mathematical
interest is grouped into starred sections which may be skipped entirely. Some
other less technical sections can nevertheless be quite heavy on methodology:
these end with an equation-free summary box, aimed at readers who wish to
focus primarily on applications.

In Chapter 2, we provide an overview of the SCCS method, focusing on
its application in epidemiology and sidestepping all technicalities. The SCCS
method and its assumptions are described in greater detail in Chapter 3.
Chapters 4 and 5 contain a detailed modelling guide for the standard SCCS
model. Further SCCS models, and extensions of the SCCS framework, are
described in Chapters 6 and 7. Finally, Chapter 8 covers aspects of the design
and presentation of SCCS studies. In all chapters, the methods are illustrated
by a wide range of applications in epidemiology.

The more technical starred sections of the book assume knowledge of basic
statistical theory, and make use of statistical concepts that include Poisson
processes, conditional probability, likelihood theory, and generalised linear
models. However, where possible key derivations are preceded by heuristic
motivation, often based on specific illustrations, that do not require any fa-
miliarity with this statistical material.

1.4 Computer package and data

Most of the examples in this book are implemented using the package SCCS

within the R environment (R Core Team, 2015). R may be downloaded
from the Comprehensive R Archive Network at cran.r-project.org. In-
structions on how to download and install the R package SCCS, along with
R code for the examples in this book, are available on the SCCS website at
sccs-studies.info. This website also contains details of and code for other
software to fit SCCS models. The R package SCCS is under constant develop-
ment in an effort to improve it. This is also true of R itself, which is regularly
updated with new releases, and of other R functions used in this book. The
analyses in the book were run with the 64-bit build of R version 3.4.3. It is
likely that, in the future, numerical results will differ from those in the book.
Substantive updates and corrections will be posted on the SCCS website.
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All data sets used in this book are available both within the R package
SCCS and on the SCCS website. These data sets are based on real epidemi-
ological studies. However, using the actual data from such studies is seldom
possible owing to the ethical restrictions governing their use. Previously un-
published data sets relating to vaccines have been jittered (some dates moved
randomly by a small amount) in order to protect patient confidentiality. The
licensing conditions under which data are made available from major phar-
macoepidemiology databases, such as the Clinical Practice Research Datalink
and its predecessor the General Practice Research Database, and The Health
Improvement Network, preclude making data publicly available. As it is essen-
tial for a book on the SCCS method to include examples from such databases,
we have resorted to simulating data. The data on MMR vaccine and autism
are also simulated. In these simulations, we have kept as close as possible to
published accounts of the data. To maintain a degree of realism, the simulation
models used to generate the data are not the same as those used to analyse
them. The data are provided to illustrate the application of the SCCS method,
and are not appropriate for substantive epidemiological investigations.
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2

Epidemiological overview

This chapter provides an introduction to the SCCS method, focused on its
epidemiological rather than statistical aspects. Our aim is to paint a broad
overview of the method: its genesis, the epidemiological questions it can help
to address, the ideas behind it, the data required, how it can be used, and the
assumptions it is based on. To maintain momentum, much detail is omitted;
this is remedied in subsequent chapters.

2.1 Genesis of the SCCS method

In 1992, a team of microbiologists and epidemiologists, along with a statisti-
cian, met in London to discuss a potential problem with the measles, mumps
and rubella (MMR) vaccine, which had been introduced in the United King-
dom in 1988. Some time earlier, a signal had been picked up suggesting that
mumps meningitis was occurring more frequently than expected following vac-
cination with MMR vaccines containing the Urabe mumps strain. In response,
two investigations had been launched. In the first, cases of aseptic meningitis
diagnosed from cerebrospinal fluid (CSF) samples were ascertained from pub-
lic health laboratories. In the second, hospital discharges with a diagnosis of
aseptic meningitis were obtained. Cases were sought aged 1–2 years, primarily
in areas where MMR vaccines containing the Urabe strain were used. MMR
vaccination history and vaccine type were then obtained for these cases. The
meeting was convened to discuss these new data.

Of the 32 CSF-confirmed cases, 27 had received MMR vaccine during the
second year of life. Of the 10 hospital cases, 9 had received MMR vaccine. The
proportions vaccinated were unremarkable, since MMR vaccine uptake was
high. More concerning were the temporal distributions of aseptic meningitis
in relation to MMR vaccination. These are displayed in Figure 2.1. Thirteen
of the 27 vaccinated CSF-confirmed cases and 5 of the 9 vaccinated hospital
cases had onset within the 15–35 day period after MMR vaccine, which from
studies in other countries was deemed to be the risk period (that is, the
period potentially at higher risk owing to exposure) for vaccine-associated
mumps meningitis. This degree of temporal clustering was highly suggestive of
a causal link. Subsequently, public health authorities took action and replaced

7
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FIGURE 2.1
Distribution of intervals between aseptic meningitis diagnosis and MMR vac-
cination. Left: CSF-confirmed. Right: hospital cases. The vertical dashed lines
represent time of MMR vaccination. The black bars represent cases occurring
15–35 days after MMR.

MMR vaccines containing the Urabe mumps strain with other MMR vaccines
for which there was no evidence of an association.

At this stage, the association between MMR vaccination and aseptic
meningitis could not readily be quantified, as the data comprised only cases,
that is, children with aseptic meningitis. The condition was sufficiently rare
that a cohort study was impractical. A case-control study would have faced
the tricky problem of choosing appropriate controls when the population from
which the cases were sampled was ill-defined. However, the cases alone clearly
contained information on the strength of association, as represented by the
degree of clustering revealed in Figure 2.1. The statistical problem was how
to extract this information from the cases, and summarise it using a standard
epidemiological measure such as a relative rate, relative risk or odds ratio.

This led to the development of the self-controlled case series (SCCS)
method, first published in 1995, with these CSF data as the motivating ex-
ample. Though the method was developed to use information only on cases,
it turned out to have a very useful additional property: time-invariant con-
founders are adjusted for automatically, even if they are unknown or unmea-
sured.
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2.2 Rationale for the SCCS method

In this section we briefly describe the rationale that lies at the heart of the
SCCS method. First, we explore what types of epidemiological questions can
be addressed from a randomly selected sample of cases, and what quantities
may be estimated from such a case series. This provides some motivation
for the SCCS method, which uses only cases, and helps throw light on how
time-invariant confounders are controlled. Finally, we outline what data are
required to apply the SCCS method.

2.2.1 Case series

A convenient way to introduce the SCCS method is to consider what epidemi-
ological questions can be answered from data only on cases, that is, individuals
who have experienced one or more events while under observation. The sta-
tistical methodology is then tailored to answer those questions.

It is not possible to estimate absolute rates or absolute risks from cases
alone, as the population person-time denominators are unavailable. Thus, it
is not possible to answer questions such as

Question 1

What is the risk of aseptic meningitis in
the period 15–35 days after MMR vaccination?

from case-only data. However, it is possible, in principle, to answer questions
involving relative quantities, such as

Question 2

Given that an MMR-vaccinated child was diagnosed with
aseptic meningitis in the second year of life, how much

more likely is it that this diagnosis arose 15–35 days
after vaccination rather than at some other time?

The answer to Question 1 is an absolute rate or risk, for example ‘one in 15 000
MMR doses’. The answer to Question 2 is a relative rate or risk, for example
‘10-fold higher’.

A key difference between the two questions is the formulation ‘Given that
an MMR-vaccinated child was diagnosed with aseptic meningitis in the second
year of life’, which identifies Question 2 as a conditional one. This is important
because, if the child had not had such a diagnosis, the rest of the question
would not apply. Thus, non-cases play no role in answering this question.

The SCCS model reflects this conditionality principle, thus ensuring that
the method is valid when applied to a sample of cases, or case series. In
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mathematical terms, the theory of the SCCS method is constructed around
a conditional likelihood. Specifically, we condition on (that is, we fix) the
number of events experienced by each case. This reflects the formulation of
Question 2, which was conditioned on a child experiencing one event. The
statistical model for the SCCS method is described in detail in Chapter 3.

The epidemiological parameters that are estimated in a SCCS study are
relative incidences associated with exposure or age. We use the term relative
incidence rather than relative rate, as in some circumstances the parameter
of interest is a relative hazard rather than a relative rate. The term relative
incidence is intended to cover both possibilities.

2.2.2 Self-control

The conditionality principle at the heart of the SCCS method implies that the
method makes use of information solely on the relative timing of events within
the period of observation of each case. This is also apparent from the way
Question 2 was formulated. Thus, the analysis may be thought of as stratified
by individuals: each case is a stratum of size 1. In this sense, the estimation
of exposure and age effects is undertaken within cases: the method is self-
controlled. In consequence, the impact of time-invariant covariates cannot be
estimated in a SCCS study, as such covariates affect an individual’s event rate
equally at all times (under the assumptions of the SCCS model).

Figure 2.2 illustrates this feature. The figure represents the time lines of
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FIGURE 2.2
Two cases with proportional event rates: the rate ratios at ages 1 and 2 are
the same for the two cases.
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two cases with proportional event rates: at each time point the rate for case
2 is A times that for case 1. It follows that the within-individual rate ratios
at ages 1 and 2 (that is, for each case, the rate at age 2 divided by the rate
at age 1) are the same for cases 1 and 2, since the constant A cancels out.
In consequence, within-individual comparisons provide no information on the
constant A. Thus, a SCCS study cannot be used to quantify the effect of
time-invariant covariates.

However, this turns out to be a bonus for estimating the effect of time-
varying exposures, such as pharmaceutical drugs: it means that the SCCS
method automatically adjusts for all time-invariant confounders that multiply
the absolute rate by a constant. Modification of the exposure effect by time-
invariant covariates, on the other hand, can be evaluated in SCCS models.

In epidemiological studies involving the collection of primary data, con-
founders must be known in advance so that information may be collected on
them. In database studies, relevant covariate data are often limited or absent,
and so confounder control based on the data available may be incomplete.
The SCCS method circumvents these difficulties and, in principle, allows for
full control of time-invariant confounders, even when these are unknown or
unmeasured. Such confounders might include, for example, genetic factors, ge-
ographical location, or socioeconomic status. Over suitably short time scales,
they might also include underlying state of health and behavioural factors.

Time-varying confounders, however, are not automatically controlled.
These must be included explicitly in the SCCS model. The most common
time-varying confounder is age, which is usually included in SCCS analyses
as a matter of course. Calendar time effects, such as seasonal effects, may also
be relevant in some applications.

2.2.3 Data requirements

In this section we provide a brief indication of the data required to conduct
a SCCS study. A further example is provided in Chapter 3, Section 3.4. Full
details on how to construct a SCCS dataset are given in Chapter 8, Section 8.1.

Most SCCS studies use age as the primary time line, though in some
cases it is more appropriate to use calendar time. Which to choose depends
on context. The choice of primary time line does not preclude adjusting for
other temporal variation: thus, if age is chosen as the primary time line then
adjustments for seasonal effects can also be made. For definiteness, we shall
assume that age is the primary time line.

The minimum information required on each case to undertake a SCCS
study is as follows: the age at which observation of the case began; the age at
which it ended; the age (or ages) at which the event occurred; and the ages at
which the exposure periods began and ended during the period of observation.
One unusual feature of the SCCS method is that exposure information is
required throughout the period of observation, including after the event: this is
needed to answer Question 2 in Section 2.2.1. However, if exposure information
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is available only prior to the event, an extension of the SCCS method may be
used. This is described in Chapter 7, Section 7.1.

For example, the first 10 lines of the data table for the aseptic meningitis
cases confirmed from cerebrospinal fluid (CSF) samples, described in Sec-
tion 2.1, are shown in Table 2.1. Each line corresponds to a different event.
In these data, there is just one event per case. The columns represent vari-
ables; their names are typical of those used throughout this book. The first
column, headed case, gives the case number. The second and third columns,
headed sta and end, respectively, are the ages (in days) of start and end of
observation for each case.

TABLE 2.1
Part of the data table for the study of MMR vaccine and aseptic meningitis
confirmed from CSF.

case sta end am mmr
1 366 730 384 516
2 444 730 517 495
3 366 730 407 487
4 366 730 407 384
5 366 730 380 NA
6 366 730 584 NA
7 366 730 495 477
8 366 730 458 434
9 366 730 503 469
10 366 445 407 382
... ... ... ... ...

For 8 of the cases shown here, the observation period spans the whole
second year of life: 366 to 730 days of age, inclusive. For case 2, the observation
period is shorter: 444 to 730 days; similarly for case 10 it is 366 to 445 days.
This is because, for these cases, the remainder of the second year of life fell
outside the ascertainment period for the study: if events had occurred at ages
366 to 443 for case 2, or at ages 446 to 730 for case 10, these events would
not have been ascertained, so these individuals would not have been featured
as cases in our data set.

The fourth column, headed am, is the age at CSF-confirmed aseptic menin-
gitis. Finally, column mmr gives age at MMR vaccination. For cases 5 and 6,
this is missing (and coded NA): these cases were not exposed to the vaccine
during their observation periods. Together with the risk period, which in this
study is the period 15 to 35 days after MMR vaccine, this determines the start
and end of exposure for each case. So for case 1 in Table 2.1, the period of
exposure includes days 531 to 551 of age.

This completes the description of the data required for this particular
study. In this study, some cases were unexposed, that is, they did not receive
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MMR vaccine. It is not essential to include unexposed cases, but it can some-
times be helpful to do so. Applications with and without unexposed cases will
be described in Chapter 4. In other applications, cases may experience more
than one event, or more than one exposure during their observation period,
and the structure of the data table is adapted to reflect this. These situations
are dealt with in detail in Chapter 4. Applications of SCCS methodology to
quantitative exposures require different data structures; these are described
in Chapter 6, Sections 6.5 and 6.6.

Summary

• Conditional questions of the form ‘given that an individual is a case...’
may be answered using cases only.

• The SCCS method reflects this conditionality principle, and may be
used to estimate relative rates from a sample of cases.

• Estimation is within-individuals, and in consequence time-invariant con-
founders are adjusted for automatically.

• The method requires data on event times, the period of observation,
and the exposure history throughout this period.

2.3 Some illustrations

In this section we illustrate the use of the SCCS method using four examples
from the epidemiological literature. We focus on the two key aspects of the
method: its reliance only on cases, and confounder adjustment.

2.3.1 Using only cases

The potential benefits of basing an epidemiological study on cases only include
simpler data handling, less onerous data checking, and in some cases, more
timely results. Furthermore, the problem of selecting appropriate controls is
sidestepped entirely. This is particularly useful when cases are ascertained
from hospital records or disease registers for which the catchment population
is ill-defined, thus making it more difficult to select suitable controls without
introducing selection bias.

MMR vaccines and febrile convulsions
Live attenuated measles vaccines are known occasionally to cause febrile con-
vulsions in children, typically in the second week after vaccination. After the
introduction of the combined measles, mumps and rubella (MMR) vaccine in
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the United States and the United Kingdom, studies were undertaken to quan-
tify the risk of febrile convulsions associated with the measles component of
the new vaccines. Table 2.2 summarises their results.

TABLE 2.2
Two studies of MMR vaccination and febrile convulsions.

Study Type No. children No. febrile Risk period RI
convulsions post-MMR 95% CI

1 Cohort 679 942 487 8 - 14 days 2.83
1.44 – 5.55

2 SCCS 952 cases 1062 6 – 11 days 3.04
2.27 – 4.07

Study 1 (Barlow et al., 2001) was a cohort study of children undertaken
in the United States within the Vaccine Safety Datalink database. It involved
679 942 children (637 989 person-years of observation) under the age of 7 years,
of which 137 457 were vaccinated with the MMR vaccine. Within this cohort,
487 first febrile convulsions were validated by chart review. The analysis was
adjusted for age, sex, health maintenance organisation, calendar time and
receipt of DTP vaccine. The adjusted relative incidence (RI) for the 8–14 day
period after MMR was 2.83, 95% confidence interval (CI) (1.44, 5.55).

Study 2 (Farrington et al., 1995) was a SCCS study undertaken in the
United Kingdom using hospital admission data linked to vaccination records.
There were 1062 febrile convulsions (5 of these were coded as aseptic menin-
gitis) in 952 children aged 12–24 months who were successfully linked to an
MMR vaccination record. All convulsions were included in the analysis. The
age-adjusted relative incidence for the 6–11 day period after MMR was 3.04,
95% CI (2.27, 4.07).

Despite some differences between the two studies, notably the post-
vaccination risk periods used, the results invite similar conclusions: MMR
vaccination is statistically significantly associated with a roughly 3-fold in-
crease in the rate of febrile convulsions in the second week after vaccination.
The confidence intervals for the RI are narrower in the SCCS study: this re-
flects the greater number of events included in this study. The overall study
size, however, is strikingly smaller.

MMR vaccines and autism
In 1998 a paper published in The Lancet (since withdrawn) claimed that
MMR vaccination may be causally linked to autism, further suggesting a close
temporal association between the two events. In subsequent years, several
studies were undertaken to test this hypothesis. The results from three such
studies are presented in Table 2.3.

Study 1 (Taylor et al., 1999) was a SCCS study undertaken in the United
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TABLE 2.3
Three studies of MMR vaccination and autism.

Study Type Sample size RI or OR
95% CI

1 SCCS 357 cases 0.88
0.40 – 1.95

2 Cohort 537 303 children, 0.92
316 cases 0.68 – 1.24

3 Case-control 1294 cases, 0.86
4469 controls 0.68 – 1.09

Kingdom. Children with autism aged under 16 years were identified from
a variety of sources, and linked to computerised vaccination records. There
were 357 cases of autism, of which 63 did not receive MMR vaccine. The
original 1999 analysis used relatively short post-MMR risk periods, in line with
the original hypothesis, which subsequently evolved. The analysis reported in
Table 2.3 used an indefinite post-MMR risk period (Farrington and Whitaker,
2006). Thus, a child was regarded as being potentially at increased risk at all
times after receiving MMR vaccine. The age-adjusted RI was 0.88, 95% CI
(0.40, 1.95).

Study 2 (Madsen et al., 2002) was a retrospective cohort study under-
taken in Denmark. The study included 537 303 children born between 1991
and 1998. Of these, 404 655 received MMR vaccine. The risk period included
all time after MMR vaccination. The analysis was adjusted for age, calendar
period, sex, birth weight, gestational age, mother’s education, and socioeco-
nomic status. There were 316 autism cases, leading to an adjusted relative
incidence of 0.92, with 95% CI (0.68, 1.24).

Study 3 (Smeeth et al., 2004a) was a matched case-control study under-
taken in the United Kingdom Clinical Practice Research Datalink. Cases were
identified within age groups chosen to include all who might have received
MMR vaccine. Cases and controls were matched by year of birth, sex and
general practice; the analysis was adjusted for duration of GPRD record. The
results in Table 2.3 relate to cases with a diagnosis of Pervasive Developmental
Disorder; restricting the case definition to autism yielded similar results. The
adjusted odds ratio (OR) for ever having received MMR vaccine was 0.86,
95% CI (0.68, 1.09).

The three studies yield similar results. In this specific context, it was im-
portant to obtain robust evidence quickly to limit the damage to the MMR
vaccination programme: the original SCCS analysis was published in the year
following publication of the hypothesis.

Note that the cohort study with 316 cases produces confidence intervals
that are narrower than those obtained with the SCCS study with 357 cases:
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the reason is that the SCCS method is less efficient when applied with long
risk periods, as is the case here. The relative efficiency of the SCCS method
and other epidemiological designs is discussed in Chapter 8, Section 8.3.

2.3.2 Controlling confounding

Although the original motivation for the SCCS method was to develop a valid
epidemiological study design based only on cases, control of time-invariant
confounders is a very useful property, and is often the main reason for un-
dertaking a SCCS analysis, perhaps in addition to a more traditional analysis
based on case-control or cohort methods. It is particularly useful for stud-
ies undertaken in pre-existing databases, where relevant covariate information
may be limited.

Antidepressants and hip fracture
Antidepressant drugs have been associated with hip fracture; the association
appears to be linked to the initiation of treatment with antidepressants. Hub-
bard et al. (2003) investigated this association in an elderly population using
a matched case-control study, supplemented by a SCCS analysis based on the
same cases, within the United Kingdom Clinical Practice Research Datalink
(CPRD). Particular interest focused on distinguishing between two types of
antidepressant drugs: tricyclic antidepressants (TCAs), and selective serotonin
reuptake inhibitors (SSRIs). Some key results are in Table 2.4.

TABLE 2.4
Antidepressants and hip fracture: case-control and SCCS analyses.

Analysis TCAs, 0–14 days SSRIs, 0–14 days
OR or RI 95% CI OR or RI 95% CI

Case-control 4.76 3.06 – 7.41 6.30 2.65 – 15.0
SCCS 2.30 1.82 – 2.90 1.96 1.35 – 2.83

Cases and controls were matched for age, sex, general practice and duration
of the available CPRD record. The case-control analysis was also adjusted for
history of falls and prescriptions for hypnotics and antipsychotics. Odds ratios
were obtained for starting on an antidepressant between 0 and 14 days prior
to hip fracture. In the SCCS analysis, which was adjusted for age, the risk
period was 0–14 days after the start of an antidepressant. Other time intervals
were also used, but are not reported here.

Both analyses found a statistically significant association between initi-
ation of antidepressants and hip fracture, whatever type of antidepressant
was used. However, the odds ratios (OR) from the case-control analysis are
markedly higher than the relative incidences (RI) from the SCCS analysis,
although the cases included were the same. Furthermore, the OR is higher for
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SSRIs than for TCAs, whereas there is little difference between antidepressant
type in the SCCS analysis.

As hip fracture is relatively uncommon, odds ratios and relative risks are
equivalent, so OR and RI should be similar. The fact that they differ sub-
stantially suggests that the results of the case-control study may be affected,
to some degree, by selection biases. Thus, persons at higher risk of hip frac-
ture may be more likely to be prescribed antidepressants. Such an indication
bias would inflate the odds ratios in the case-control study. Similarly, the con-
trasting results for TCAs and SSRIs may be due to physicians preferentially
prescribing SSRIs to frail patients. Such a channelling bias would inflate the
OR associated with SSRIs compared to that for TCAs. These biases are less
likely to affect the SCCS analysis, insofar as patient frailty, over and above the
effect of age, may be regarded as time-invariant over the course of the period
of observation for each case, which in this study was on average 6 years.

Influenza vaccination and asthma exacerbations
This study was undertaken in children with asthma aged 1 to 6 years, to
evaluate a possible association between receipt of the seasonal influenza vac-
cine and asthma exacerbations resulting in hospitalisation or an emergency
department visit (Kramarz et al., 2000). The study was conducted using com-
puterised medical records from four health maintenance organisations (HMO)
in the United States. Retrospective cohort studies were undertaken during
three influenza seasons; the cases from the cohorts were also analysed using
SCCS. In both the cohort and SCCS analyses, the risk period included the 2
weeks immediately after influenza vaccination. Table 2.5 shows results from
the 1995–96 influenza season.

TABLE 2.5
Influenza vaccination and asthma exacerbations: cohort and SCCS analyses.

Analysis Sample size RI 95% CI
Cohort, unadjusted 70 753 children 3.29 2.55 – 4.15

with asthma
Cohort, adjusted As above 1.39 1.08 – 1.77

SCCS 2075 cases 0.98 0.76 – 1.27

The unadjusted relative incidence is 3.29, with 95% CI (2.55, 4.15), suggest-
ing a strong positive association between influenza vaccination and asthma.
However, the analysis is prone to indication bias: children with more seri-
ous asthma are more likely to receive influenza vaccination. The adjusted
cohort analysis includes adjustment for sex, age, calendar time, HMO and
variables associated with underlying disease severity: prior use of β-agonists
and cromolyn, prior hospitalisations, and emergency department visits for
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asthma. These adjustments produced a large drop in the RI, to 1.39, though
it remained statistically significantly raised with 95% CI (1.08, 1.77). The
SCCS analysis, which adjusted for calendar time (this being the primary time
line for analysis), produced a statistically non-significant RI of 0.98, 95% CI
(0.76, 1.27).

This example illustrates the difficulty of fully adjusting for confounders
using proxy variables, and the potential benefit of a SCCS analysis, which
sidesteps the problem.

2.4 Assumptions and alternatives

The SCCS model requires some assumptions, which are outlined in this sec-
tion. However, extensions of the SCCS method are available when these as-
sumptions are not met.

2.4.1 Assumptions of the SCCS method

The SCCS method is based on four assumptions:

A1 Events arise independently within individuals or, if non-recurrent, are
uncommon.

A2 Occurrence of an event does not influence the subsequent period of obser-
vation.

A3 Occurrence of an event does not influence subsequent exposures.

A4 Exposures do not influence the ascertainment of events.

The first assumption is seldom problematic. Recurrences may be included
in a SCCS analysis provided that they are not influenced by earlier events
within the same individual. This might not be the case, for example, for my-
ocardial infarction (MI): a first MI might increase the chance of a second.
In this case, the SCCS study can proceed by including just the first event,
provided that it is uncommon in the population of interest. This is often the
case in practice.

The second assumption may be violated if the event is associated with high
short-term mortality. For example, suppose that the event is stroke, which
carries a relatively high short-term risk of death. As observation is curtailed
at death, the period of observation depends on when the stroke occurred.

The third assumption will fail, for example, for studies involving exposure
to a pharmaceutical drug when occurrence of the event is a contra-indication
to treatment with that drug. An example is oral rotavirus vaccination and
intussusception.
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Finally, the fourth assumption is not specific to the SCCS method, but
is included to avoid inappropriate use of the method. For example, events
ascertained within a spontaneous adverse event reporting scheme should not
be analysed with the SCCS method (unless suitably modified), since events
are ascertained owing to a presumptive link with the exposure. Generally, the
cases used in a SCCS study should comprise all or a random sample of the
cases within a defined population, as would for example be used in a case-
control study.

The rationale for the second and third assumptions relates to the condition-
ality principle upon which the SCCS method is based. All four assumptions
are discussed in much greater detail in Chapter 3, Section 3.7.

2.4.2 What if the assumptions are not satisfied?

Failure to satisfy the assumptions does not necessarily mean that the results
obtained using the SCCS method are invalid. For example, the assumption
that events do not increase short-term mortality is violated when the event
is MI. However, this was found to have no bearing on the results of a SCCS
study of antipsychotics and MI (Brauer et al., 2015). Indeed, whatever the
statistical method used, it is seldom the case that all assumptions are verified.
For example, a key assumption of cohort and case-control methods is that all
relevant confounders have been included in the model or allowed for in the
design of the study. In practice, it is seldom possible to demonstrate that this
has been achieved.

Whatever method is used, what matters primarily is that the results should
not be overly sensitive to failure of assumptions – that is, the results should not
be substantially biased if the assumptions are not met. Chapter 5 is devoted
to verifying the assumptions of the SCCS model, and to investigating the
sensitivity of the results to failure of assumptions.

When the results of a SCCS analysis are likely to be biased owing to
assumptions not being met, one of several extensions of the SCCS method may
be used. These are described in Chapter 7, and applied to several examples
including those on stroke and intussusception mentioned in Section 2.4.1.

Many SCCS studies published in the epidemiological literature have used
a traditional design, such as a cohort or case-control study, supplemented by a
SCCS analysis of the cases from this study. Examples include the hip fractures
and asthma studies described in Section 2.3.2. This is a fruitful approach. Dif-
ferent study designs require different assumptions, and comparing the results
obtained using different methods can yield further insights into the substan-
tive question of interest and the methodological strengths or limitations of the
investigation.

Finally, there are occasions where the SCCS method is not applicable.
For example, the SCCS method is not appropriate for studies of the poten-
tial association between developmental disorders in childhood and vaccination
in infancy with vaccines containing thiomersal. Nor would it be suitable for
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investigations of lifelong exposures, such as the impact of diet on cancer in-
cidence. The reason the SCCS method will not work in these settings is that
the exposure does not vary within individuals over the age range at which
events occur. The exposure, however, need not be transient, as illustrated in
the MMR vaccine and autism example of Section 2.3.1. These issues, and the
factors affecting the efficiency of the SCCS method, are discussed in Chapter 8.

Summary

• The SCCS method relies on the following four assumptions:

A1 Events are uncommon or independent within subjects.

A2 Events do not influence the subsequent period of observation.

A3 Events do not influence subsequent exposures.

A4 Exposures do not influence the ascertainment of events.

• If an assumption is not satisfied, an extension of the SCCS method may
be used.

• Supplementing cohort or case-control methods by an analysis of cases
using SCCS can be fruitful.

• The SCCS method is not appropriate when there is no variation in
exposure within cases.

2.5 Bibliographical notes and further material

For more details of the studies on MMR vaccine and aseptic meningitis de-
scribed in Section 2.1, see Miller et al. (1993). The SCCS model was first
published by Farrington (1995). As explained in Section 2.1, the method was
developed in order to use data available only on cases. Accordingly, it was
originally called the case series method. The term self-controlled was added
later to avoid confusion with case series arising from spontaneous reports
or convenience samples, not all of which may validly be analysed with the
SCCS method when case ascertainment is influenced by exposure history.
Other accessible introductions to the SCCS method and its application in-
clude Whitaker et al. (2006) and Whitaker et al. (2009) in English, Hocine
and Chavance (2010) in French and Pan et al. (2013) in Chinese.

A more detailed bibliography relating to the development of the SCCS
method and related designs is deferred to Chapter 3, Section 3.9, so as to
include connections to the wider statistical and epidemiological literatures,
which will have become more apparent at that point.
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The SCCS likelihood

Unlike other cohort-based epidemiological methods, the SCCS (self-controlled
case series) method cannot readily be explained by reference to population
rates, since only cases are sampled and consequently population rates are not
estimated. In addition, the method has some features that are not shared
with more standard epidemiological methods, and that therefore can appear
unusual – for example, ignoring non-cases, automatically controlling multi-
plicative confounders, and requiring observation time after the event of inter-
est has occurred. The reasons for these features only become apparent upon
studying the SCCS likelihood. Therefore, this is where we have chosen to start.

To begin with, we describe the likelihood for the standard SCCS model,
in which age and exposure effects are piecewise constant, that is, constant on
intervals, because it is the most commonly used. We then move on to a more
general form of the SCCS likelihood, its derivation from a cohort model, and
the assumptions required for this derivation to work. The starred subsections
within Section 3.7 and starred Section 3.8 are more mathematical and may
be skipped.

3.1 Why start with the likelihood?

In a cohort analysis, absolute incidence rates in exposed and unexposed peri-
ods can be estimated directly by counting the number of events in each period
and dividing by the total person time at risk within the cohort. Rates can then
be contrasted, adjusting for age effects and covariates using suitable statistical
models, yielding estimates of rate or hazard ratios with direct interpretations
as ratios of absolute incidences. Similarly, in a case-control study, the odds
ratio has a direct interpretation as the ratio of the odds of exposure in cases
and controls.

With the SCCS method, as in a cohort study, our aim is to estimate the
relative incidence – the common term we use to describe the intensity or rate
ratio, for recurrent events, or hazard ratio, for non-recurrent events. How-
ever, only cases are sampled. Consequently, absolute incidence rates cannot
be calculated directly as in a cohort analysis, since no population denomina-
tors are available. Nor are there any separate controls to compare with the
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cases. Thus, unlike standard epidemiological designs, there is no simple and
intuitive estimator of the relative rate or odds ratio. Nor are descriptions of
the method referring to comparisons of incidence rates in exposed versus un-
exposed periods within individuals wholly compelling, for the simple reason
that incidence rates are not available.

Instead, estimates are derived indirectly from the likelihood. This is the
probability or probability density of the available data on cases, expressed
as a function of the relative incidence and other parameters. The parameter
estimates are the values that maximise the likelihood; this estimation method
is known as maximum likelihood.

Of course, cohort methods also make use of likelihoods – indeed maximum
likelihood is the most commonly used estimation method in classical statis-
tics. It is instructive to contrast the cohort and SCCS likelihoods. This will
be done more formally in Section 3.8, but can also be described informally as
follows. The cohort likelihood is the joint probability that each individual in
the cohort experienced the observed temporal pattern of events, given that
individual’s exposure history. The SCCS likelihood, in contrast, is the joint
probability that each individual experienced the observed temporal pattern of
events, given the observed number of events and the exposure and observation
history for that individual. The key difference is in italics: the SCCS likeli-
hood conditions on the number of events observed for each individual. This
implies that, in the SCCS method, information on the degree of association
between exposure and event is obtained from the relative timing of events and
exposures within individuals, rather than from marginal event counts, which
are fixed by the conditioning.

Gaining some insight into the form of the SCCS likelihood, and how it
is derived, is key to understanding the properties and the limitations of the
method. The rest of this chapter is devoted to providing such insight.

3.2 Likelihood for the standard SCCS model

We shall assume to begin with that events for an individual i arise according
to a non-homogeneous Poisson process with intensity rate function λi(t|xi,yi)
observed over an interval (ai, bi], which we call the observation period. Ob-
servation periods may vary between individuals. Here t denotes age, xi is the
exposure and observation history for individual i up to the end of observation
bi and yi is a vector of time-invariant covariates for individual i. Some further
details of exposure and observation histories are provided in Section 3.8. The
Poisson assumption will be relaxed later. We have assumed that the time line
of primary interest is age, but it could just as well be calendar time: which is
most appropriate is dependent on the context.

In the standard SCCS model, the intensities (or incidence rates, in epidemi-
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ological terminology) λi(t|xi,yi) are assumed to be piecewise constant on age
groups, and on non-overlapping exposure-related risk periods; these are inter-
vals during which an individual is exposed. We shall assume that the relevant
age range (chosen to include all the observation periods) is partitioned into
J + 1 intervals, indexed by j = 0, . . . , J . Exposure levels are similarly repre-
sented by age-varying step functions with up to K+1 levels, varying from level
k = 0 in the absence of exposure to risk levels k = 1, . . . ,K in the presence
of exposure. Several risk levels are allowed: for example, in pharmacoepidemi-
ology, an individual might be regarded as unexposed (k = 0) prior to taking
the drug of interest. For a period after exposure to the drug, the individual
may be at risk level k = 1. This might then be followed by a further period
at some intermediate risk level k = 2, before returning to the reference risk
level (k = 0). Note that the same age groups are used for all cases, but the
exposure step functions vary between individuals according to their exposure
histories in xi.

An illustration is provided in Figure 3.1. The top graph shows the time line
of a case, indicated by the arrow. The observation period is denoted by the
light grey bar below the time line. This is partitioned into three age groups,
labelled j = 0, 1, 2, so J = 2. Above the time line, in darker grey, are the risk
periods. There are two of these, both at the same risk level k = 1. So here,
K = 1, and the exposure groups are labelled k = 0, 1. These age and exposure
groups split the observation period into 7 distinct time intervals, indicated by
the short vertical dotted lines.

age group j             0          0       1           1            2        2      2
exposure group k

age-related 
relative                 1 
incidence

exposure-related 
relative                 1 
incidence

overall profile       
of relative             1 
incidence

0.5

2

1.5 1.5

1.5

3

2

0.5 0.75 0.5

0          1       1           0            0        1      0

FIGURE 3.1
A case with piecewise constant intensity on age and exposure intervals (see
text).
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Let eijk denote the total duration (several non-adjacent time intervals may
be involved) of observation time spent by individual i in age group j and at
exposure level k. The intensity function for individual i is assumed to be
constant within each such category (i, j, k):

λi(t|xi,yi) = λijk when individual i at age t is in age group j

and at exposure level k.

For the case represented in Figure 3.1, the shape of the intensity function
is displayed in the bottom graph. This shows the relative incidence, that is,
the intensity relative to its value when j = 0 (age group 0) and k = 0 (the
unexposed level). It is piecewise constant on the seven intervals defined on the
top graph in Figure 3.1.

Suppose that a sample of N cases is available. Cases are individuals i, i =
1, . . . , N , who have experienced ni ≥ 1 events over their observation period.
The sample may be a random sample of cases, or all cases arising from an
underlying cohort. Let nijk denote the number of events experienced by case i
while observed in age group j and exposure group k. We now treat the number
of events ni for case i as fixed: this is called conditioning on ni, and is the
key statistical step in deriving the SCCS likelihood, as described informally in
Chapter 2, Section 2.2.1. It then follows from the Poisson assumption that the
event counts {nijk : j = 0, . . . , J ; k = 0, . . . ,K} are distributed multinomial
with index ni and probabilities

pijk =
λijkeijk∑J

r=0

∑K
s=0 λirseirs

.

Note that the pijk add up to 1 when summed over j and k, as indeed they
should. Further details of this key conditioning step are given in Section 3.8.
The likelihood contribution of case i is thus:

Li =
ni!∏J

j=0

∏K
k=0 nijk!

×
J∏
j=0

K∏
k=0

( λijkeijk∑J
r=0

∑K
s=0 λirseirs

)nijk

.

We shall use a simplified notation for such likelihood contributions. The multi-
nomial constant plays no role in parameter estimation, so we shall suppress
explicit mention of it. Furthermore, the repeated product and summation
signs will be combined when their ranges are clear from the context. Thus,
the multinomial likelihood contribution for case i is written:

Li = constant×
∏
j,k

( λijkeijk∑
r,s λirseirs

)nijk

. (3.1)

Provided that events occur independently in different individuals, the over-
all likelihood is the product of the individual contributions Li of the N cases:

L = constant×
N∏
i=1

∏
j,k

( λijkeijk∑
r,s λirseirs

)nijk

. (3.2)
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This is the standard SCCS likelihood, which is of product multinomial form.
Though derived under a Poisson assumption, it is also valid for non-recurrent
events in the limit where these are rare, as will be shown in Section 3.8.

In this form, with separate parameters λijk, the model is clearly over-
parameterised. Parsimonious parameterisations of the standard SCCS model
are discussed in Chapter 4. In the simplest such parameterisation,

λijk = φi exp
(
αj + βk

)
,

with α0 = β0 = 0. The parameters αj and βk describe the relative effects of
age and exposure, respectively, on the log scale.

This model is illustrated in Figure 3.1. The relative effects of age and ex-
posure are displayed in the two middle graphs, along with the values of the
age-related relative incidence exp(αj) and the exposure-related relative inci-
dence exp(βk). These combine multiplicatively: the overall relative incidence
profile is exp(αj + βk) = exp(αj)× exp(βk), shown in the bottom graph. For
example, on the third interval from the left, the age-related relative incidence
is 2 and the exposure-related relative incidence is 1.5, so that the overall rel-
ative incidence on that interval is 2× 1.5 = 3.

In this model, the parameters φi cancel out of Equation 3.2 and the SCCS
likelihood just involves J + K unknown parameters to be estimated. In fact
it is more common to work with the log likelihood, which becomes:

l(α,β) = constant +
N∑
i=1

∑
j,k

nijk log
{ exp(αj + βk)eijk∑

r,s exp(αr + βs)eirs

}
(3.3)

where α = (α1, . . . , αJ)T and β = (β1, . . . , βK)T .
Some key features that emerge from the definition of the standard SCCS

likelihood in Equation 3.2 are highlighted in the next section. A worked ex-
ample is provided in Section 3.4.

Summary

• In the standard SCCS model, the incidence of events is assumed to be
constant on pre-specified age and exposure categories.

• For each case, the distribution of events across age and exposure cate-
gories is multinomial.

• The likelihood for the standard SCCS model is the product of the con-
tributions for each case, and is therefore product multinomial.

• In the simplest such model, the only parameters are those describing
the relative effects of age and exposure.
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3.3 Properties of the SCCS likelihood

First, note that only cases are required to calculate the likelihood in Equa-
tion 3.2. The N cases included in the SCCS likelihood can be thought of as
arising from an underlying cohort: the non-cases in this cohort do not feature.
Thus, the underlying cohort need not be observed, indeed it can be entirely
notional. An example of a notional cohort is that which gives rise to hospital
admissions: there is no need to define precisely the hospital catchment popula-
tion to undertake a SCCS analysis based on hospital admissions. In addition,
since only cases are involved, the collection, verification and preparation of
the data for analysis is more straightforward.

Second, the SCCS likelihood involves ratios of intensities, and thus any
time-invariant covariates that act multiplicatively on the intensity function
will cancel out. Time-invariant here is taken to mean that the covariate for
each case i does not vary over the observation period (ai, bi]. This feature was
already in evidence in Equations 3.2 and 3.3, from which the constants φi
cancelled out. More generally, if for some time-invariant covariate or random
effect yi

λijk = φihi(yi)× νijk
for some arbitrary constants φi and functions hi, where the νijk do not depend
on yi, then the SCCS likelihood reduces to

L = constant×
N∏
i=1

∏
j,k

( νijkeijk∑
r,s νirseirs

)nijk

, (3.4)

which does not feature the yi. In other words, time-invariant covariates or ran-
dom effects acting multiplicatively on the intensity function are automatically
eliminated from the likelihood, and therefore need not be included explicitly
in a SCCS model. The main practical consequence of this property is that
confounding by fixed multiplicative covariates is automatically adjusted for,
even if such covariates are unmeasured, and indeed whether or not they are
known to be confounders.

The ratio form of the SCCS likelihood is what underpins its self-controlled
property. It also implies that only relative effects, rather than absolute inci-
dence rates, are estimable. Note that this property applies only to main effects:
interactions between time-invariant covariates and exposure variables do not
cancel out and are estimable, as will be described in Chapter 4.

These two features – only requiring a case series, and self-control of mul-
tiplicative time-invariant confounders – are the key properties of the SCCS
method, which motivated its name.

Third, the SCCS likelihood permits the inclusion of recurrent events: the
number of events experienced by case i is ni, which may be greater than 1.
The form of the SCCS likelihood implies that recurrences must be independent
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within individuals. Thus, the same expression would be obtained if each case
i were replicated ni times, replicate j = 1, . . . , ni featuring the jth event for
case i.

Fourth, and finally, note that the SCCS likelihood 3.2 features the sums∑
r,s λirseirs for each case i in its denominator. Computation of these quanti-

ties requires information on the exposure histories over the entire observation
periods (ai, bi], including at ages after the occurrence of any events. Similarly,
the intensities λ(t|xi,yi) depend on the exposure and observation histories xi
over the entire observation periods (ai, bi]. This is a subtle point, but is critical
to the conditioning argument used in deriving the likelihood. Some assump-
tions are needed for this argument to work. These assumptions were outlined
in Chapter 2, Section 2.4 and are discussed in greater detail in Section 3.7.

Summary

• In the SCCS method, only cases are required. This simplifies data col-
lection and verification.

• Any multiplicative covariate that does not vary over the observation pe-
riod is automatically controlled for. This protects against confounding.

• The SCCS method can handle recurrent events provided that recur-
rences occur independently for each subject.

• The exposure history of each case over the entire observation period is
required – both before and after any event.

3.4 Example: MMR vaccine and aseptic meningitis

In Chapter 2, Section 2.1, we described the application that motivated the
development of the SCCS method. This was the association between measles,
mumps and rubella (MMR) vaccines containing the Urabe mumps strain,
and aseptic meningitis. Two studies were undertaken, both involving only
cases. These studies suggested that events tended to cluster 15 to 35 days
after MMR vaccination, which was defined to be the risk period of interest
based on evidence from earlier studies. In the present section we illustrate the
SCCS method using data from one of these two studies: the hospital study,
undertaken in a health region where only Urabe-containing MMR vaccines
were used.

Hospital admission records of all children with a diagnosis of aseptic menin-
gitis (in fact, these were confirmed cases of viral meningitis) occurring on or
between 1st October 1988 and 31st December 1991 in children aged between
1 and 2 years of age (that is, children aged 366 to 730 days) were obtained.
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Linked MMR vaccination records for these children from 315 to 715 days of
age were also available, so that each day in each child’s observation period
could be classified as exposed (if falling within the 15 to 35 day post-MMR
risk period) or unexposed (otherwise).

There were 10 hospital admissions within the specified age and time bound-
aries, in 10 different children. Table 3.1 shows the data for these 10 cases.

TABLE 3.1
Aseptic meningitis study; ages are in days.

Case First day of First day of Last day of Day of Last day of
observation risk period risk period event observation

1 366 473 493 398 730
2 366 – – 399 730
3 366 407 427 413 730
4 366 444 464 449 730
5 366 448 468 455 730
6 366 447 467 472 730
7 366 410 430 474 730
8 366 485 505 485 730
9 366 511 531 524 730
10 366 443 463 700 730

As it happens, the observation period for all 10 cases was 366 to 730 days
inclusive (but note that this need not have been so). Case 2 was unexposed
throughout the observation period; the other 9 cases experienced risk periods
lasting 21 days. Of the 10 events, 5 occurred within a risk period, and 5 did not.
Most events occurred early in the observation period, which suggests that the
baseline incidence of aseptic meningitis (that is, the incidence in the absence
of exposure to MMR vaccination) may vary with age. To keep matters simple,
just two groups will be used in this example: ages 366–456 and ages 457–730
days, inclusive, so that each age group contains 5 events. The observation
period for each case is split up into successive time intervals determined by
changes in age group and exposure level, as shown in Figure 3.2 for the first
case.

In Figure 3.2, the light grey bar below the time line represents the obser-
vation period, which starts on day 366 of age and ends on day 730. It is split
into two age groups, with day 457 representing the first day of the second age
group. The dark grey bar above the time line represents the risk period, which
starts on day 473 of age and ends on day 493. Also indicated are the age at
vaccination (at 458 days of age) and the age at event (398 days).

Thus, from age 366 to 456 (91 days), case 1 is in age group 0 and exposure
group 0. From age 457 to 472, and from age 494 to 730 (a total of 253 days),
case 1 is in age group 1 and exposure group 0. From age 473 to 493, case 1 is
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366 start of
observation

457 age group
cut point

458 day
of MMR

473 risk 
period start

730 end of 
observation

493 risk 
period end

398 day
of event

FIGURE 3.2
Observation period, risk period, age group boundary, age at MMR and age at
event for case 1.

in age group 1 and exposure group 1. The unique event for case 1 occurs in
age group 0 and exposure group 0.

In this example, eijk denotes the duration of observation time spent by
case i in age group j (j = 0 for 366–456 days, j = 1 for 457–730 days) and
exposure group k (k = 0 for unexposed, k = 1 for exposed), and nijk is the
number of events for case i in each such period. Table 3.2 shows the values of
eijk and nijk for case 1.

TABLE 3.2
Observation time and event count by age and exposure groups for case 1.

Case Age group Exposure group Duration Events
i j k eijk nijk
1 0 0 91 1
1 0 1 0 0
1 1 0 253 0
1 1 1 21 0

The cumulative incidence rate for case 1 over the observation period is
thus

Λ1 =
∑
r,s

λ1rse1rs = 91λ100 + 0λ101 + 253λ110 + 21λ111,

and the SCCS likelihood contribution for case 1, from expression 3.1, is

L1 = constant×
(91λ100

Λ1

)1

×
(0λ101

Λ1

)0

×
(253λ110

Λ1

)0

×
(21λ111

Λ1

)0

= constant× 91λ100

91λ100 + 253λ110 + 21λ111
.

The contributions for the remaining 9 cases are obtained in the same way,
yielding the following expression for the overall likelihood:
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L = constant×
( 91λ100

91λ100 + 253λ110 + 21λ111

)
×
( 91λ200

91λ200 + 274λ210

)
×
( 21λ301

70λ300 + 21λ301 + 274λ310

)
×
( 13λ401

78λ400 + 13λ401 + 266λ410 + 8λ411

)
×
( 9λ501

82λ500 + 9λ501 + 262λ510 + 12λ511

)
×
( 263λ610

81λ600 + 10λ601 + 263λ610 + 11λ611

)
×
( 274λ710

70λ700 + 21λ701 + 274λ710

)
×
( 21λ811

91λ800 + 253λ810 + 21λ811

)
×
( 21λ911

91λ900 + 253λ910 + 21λ911

)
×
( 267λ1010

77λ1000 + 14λ1001 + 267λ1010 + 7λ1011

)
.

In the parameterisation λijk = φi exp(αj + βk), with α0 = β0 = 0, there
are just two parameters to be estimated, α1 and β1. For case 1, for example,

L1(α1, β1) = constant× 91

91 + 253 exp(α1) + 21 exp(α1 + β1)
,

and so the log likelihood for case 1 is:

l1(α1, β1) = constant− log(91 + 253eα1 + 21eα1+β1).
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The overall log likelihood is:

l(α1, β1) = constant + 5α1 + 5β1

− log(91 + 253eα1 + 21eα1+β1)

− log(91 + 274eα1)

− log(70 + 21eβ1 + 274eα1)

− log(78 + 13eβ1 + 266eα1 + 8eα1+β1)

− log(82 + 9eβ1 + 262eα1 + 12eα1+β1)

− log(81 + 10eβ1 + 263eα1 + 11eα1+β1)

− log(70 + 21eβ1 + 274eα1)

− log(91 + 253eα1 + 21eα1+β1)

− log(91 + 253eα1 + 21eα1+β1)

− log(77 + 14eβ1 + 267eα1 + 7eα1+β1).

This log likelihood function defines a surface of height l(α1, β1) over the plane
with coordinates (α1, β1). This likelihood surface is shown as a contour plot
in Figure 3.3, with the constant in the log-likelihood function set to zero.
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FIGURE 3.3
Contour plot for the log likelihood; × marks the maximum.
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The maximum of the log likelihood is then −50.09. The estimates of the
parameters α1 and β1 are the values that maximise the log likelihood. These
values turn out to be α̂1 = −0.7577 and β̂1 = 2.8792. Statistical software to
obtain these estimates will be described in Chapter 4.

This worked example will be continued in Section 3.6, where we illustrate
how the SCCS likelihood is derived from a cohort model.

We end the present section with some remarks about interval notation. In
this and all other examples, and in the software, we describe age and time
intervals, such as observation periods, age groups and risk periods, in the
form [first day, last day]. This differs from the notation used in mathematical
arguments, where intervals are written (a, b], which denotes the set of values
{t : a < t ≤ b}, and thus does not include a. The difference in notation arises
because, in practical examples, time is discretised into integer units, typically
days. From the formal point of view, (a, b] = [a + 1, b] in discrete time. In
mathematical arguments, where age and time are regarded as continuous, the
(a, b] notation is the most natural. In discrete time applications, however, it
is far more convenient to specify an interval by its first and last days.

3.5 The general SCCS likelihood

The likelihood presented in Section 3.2 relates to the standard SCCS model in
which age and exposure effects are assumed to be piecewise constant. Here we
present a more general version of the likelihood, which applies for more general
models in which age and exposure effects need not be piecewise constant. Some
such models will be described in Chapter 6.

As before, we assume that for each individual i, events arise with intensity
function λi(t|xi,yi) where t denotes age, xi is the exposure and observation
history up to bi and yi is a vector of time-invariant covariates. Suppose that
case i experiences ni events in (ai, bi], numbered j = 1, 2, . . . , ni at times
ti1, ti2, . . . , tini

. The self-controlled case series likelihood contribution of case
i is then:

Li = constant×
∏ni

j=1 λi(tij |xi,yi)( ∫ bi
ai
λi(t|xi,yi)dt

)ni
.

The integral in the denominator is the cumulative intensity experienced by
individual i over the observation period (ai, bi]. The overall SCCS likelihood
for N cases i = 1, 2, . . . , N is the product of these N contributions:

L = constant×
N∏
i=1

∏ni

j=1 λi(tij |xi,yi)( ∫ bi
ai
λi(t|xi,yi)dt

)ni
. (3.5)
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The derivation of this likelihood will be presented in Section 3.8. It generalises
the likelihood of Equation 3.2 since, if λi(t|xi,yi) is piecewise constant on age
intervals r = 0, . . . , J and at different exposure levels s = 0, . . . ,K within
(ai, bi], then, in the notation of Section 3.2,

ni∏
j=1

λi(tij |xi,yi) = constant×
∏
r,s

(
λirseirs

)nirs

,

and ∫ bi

ai

λi(t|xi,yi)dt =
∑
r,s

λirseirs.

All the properties of the standard SCCS likelihood described in Section 3.3
also hold of this more general version of the likelihood: only cases are required,
time-invariant multiplicative covariates are automatically adjusted, and recur-
rences may be included. The main difference is that the general likelihood need
not be product multinomial.

Summary

• A more general version of the SCCS likelihood is available, for which
it need not be assumed that age and exposure effects are piecewise
constant.

• This more general version of the likelihood shares the key properties of
the standard SCCS likelihood, though it need not be product multino-
mial.

3.6 MMR vaccine and aseptic meningitis: derivation of
the SCCS likelihood

For the remainder of this chapter, we consider the derivation of the SCCS like-
lihood from a cohort model, and the assumptions underpinning this deriva-
tion. The formal derivation is in Section 3.8. However the main ideas may be
conveyed more directly using the worked example introduced in Section 3.4.

Recall that hospital admission records of all children with a diagnosis of
aseptic meningitis occurring on or between 1st October 1988 and 31st Decem-
ber 1991 in children aged between 1 and 2 years of age (that is, children aged
366 to 730 days) were obtained. This yielded 10 cases. These 10 cases may
be regarded as arising within the underlying cohort comprising all children
within the study region aged between 366 and 730 days between 1st Octo-
ber 1988 and 31st December 1991. So, for example, a child born on 1st June
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1990 would contribute an observation period of 214 days from age 366 days
(reached on 1st June 1991) to 579 days inclusive (which falls on 31st Decem-
ber 1991). Suppose this child received MMR vaccine on 20th August 1991,
aged 446 days of age. The risk period is defined to stretch from 15 to 35 days
after this, namely from ages 461 to 481 inclusive. Admission to hospital for
aseptic meningitis at any time within the observation period 366–579 days of
age would have led to this child being classified as a case. As it happened,
there was no such admission so this child is not a case.

We now consider the cohort likelihood contributions for this non-case, and
for the first case listed in Table 3.1. The timelines for these two children,
including the age group boundary at 457 days of age, are shown in Figure 3.4.

473 493
398

event

366 730

366 579

461 481

first case

non-case

FIGURE 3.4
Timelines for a non-case and for case 1.

For simplicity, let us label the non-case i = 0 (and case 1 i = 1). The
non-case spends 91 days unexposed in age group 0, 102 days unexposed in age
group 1, and 21 days exposed in age group 1 (recall that age group 0 covers
366–456 days, age group 1 457–730 days). The cumulative incidence rate over
the observation period for the non-case is therefore:

Λ0 = 91λ000 + 0λ001 + 102λ010 + 21λ011.

Since there were no events, the cohort likelihood contribution for the non-case
is the Poisson probability

Lc0 = exp(−Λ0).

This is also the marginal likelihood (or probability) Lm0 of observing n0 = 0
events, given this child’s exposure and observation histories. The SCCS likeli-
hood contribution for this child is the conditional probability of the observed
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event pattern, given the marginal total ni0. This is:

L0 =
Lc0
Lm0

=
exp(−Λ0)

exp(−Λ0)

= 1.

Thus this child, being a non-case, does not contribute (other than trivially)
to the SCCS likelihood. The same argument applies to all non-cases in the
cohort: their SCCS likelihood contributions are all equal to 1. In other words
they contribute no information, and can be ignored.

Case 1, on the other hand, has the following cumulative incidence rate over
the observation period 366–730 days, previously obtained in Section 3.4:

Λ1 = 91λ100 + 0λ101 + 253λ110 + 21λ111.

The event distribution for case 1 was shown in Table 3.2: 1 event during 91
non-exposed days in age group 0, and 0 events in the other periods. The cohort
likelihood contribution for case 1 is the product of the Poisson probabilities
for each interval. This is as follows:

Lc1 = 91λ100 exp(−91λ100)× exp(−0λ101)

× exp(−253λ110)× exp(−21λ111)

= 91λ100 exp(−Λ1).

The marginal likelihood of observing n1 = 1 event given case 1’s exposure and
observation history, on the other hand, is the Poisson probability

Λm1 = Λ1 exp(−Λ1).

The SCCS likelihood contribution for case 1 is the conditional probability of
the observed event pattern, given the marginal total n1. This is:

L1 =
Lc1
Lm1

=
91λ100 exp(−Λ1)

Λ1 exp(−Λ1)

=
91λ100

91λ100 + 253λ110 + 21λ111
,

as specified in Equation 3.1, and as previously obtained in Section 3.4. The
other 9 cases are dealt with in the same way. The overall SCCS likelihood is
the product of the contributions for each of the 10 cases: the non-cases do not
contribute and hence need not be sampled.

The arguments presented here require several assumptions. Events for each
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individual are assumed to arise in a Poisson process, which enables us to calcu-
late Poisson probabilities. More subtly, conditioning on the number of events
for each case should not affect the incidence, and hence the parameters we
wish to estimate. These assumptions are considered in greater detail in Sec-
tion 3.7. The general derivation of the SCCS likelihood presented in Section 3.8
involves similar steps as the special case described here. One benefit of using
a more formal framework is that it helps to make explicit the assumptions
required.

3.7 Assumptions of the SCCS method

The assumptions of the SCCS method have already been described informally
in Chapter 2, Section 2.4. Stated slightly more precisely, they are as follows.

A1 Events are uncommon or arise in non-homogeneous Poisson processes.

A2 Events do not influence the length of observation periods.

A3 Events do not influence subsequent exposures.

A4 Exposures do not influence event ascertainment.

Assumptions 1 to 3 relate specifically to the SCCS method. Assumption 4
applies to other methods as well. In Chapter 2, Section 2.4 we described some
situations in which the assumptions may fail. In this section we discuss these
assumptions further, to explain in greater detail what they mean, why they
are required, and when they might be violated. Methods for checking and
sidestepping assumptions are described in Chapter 5. Extensions of the SCCS
method developed to weaken assumptions are the subject of Chapter 7.

3.7.1 Assumption 1: Poisson or rare events

The assumption that events arise according to a non-homogeneous Poisson
process within individuals, or alternatively that events are non-recurrent but
uncommon, is required to ensure that the SCCS likelihood is of ratio form,
that is, involves ratios of intensities; for non-recurrent events, this is a limiting
property as the event becomes rare. The ratio form of the likelihood in turn
ensures that time-invariant covariates that act multiplicatively on the intensity
function (or the hazard, for non-recurrent events) factor out.

It cannot be assumed that time-invariant confounders cancel out of the
likelihood if Assumption 1 is violated. A counter-example is described in Sec-
tion 3.7.2. In practice, Assumption 1 is seldom restrictive. If the event of
interest is uncommon, then ni = 1 for most cases and any departure from
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the Poisson assumption will have little impact on results. Furthermore, As-
sumption 1 does not rule out clustering of events within individuals at higher
risk. This is often represented in statistical models by a multiplicative time-
invariant individual frailty Ui, with

λi(t|xi,yi, Ui) = Uiνi(t|xi,yi)

where Ui is a non-negative random variable. The frailties Ui cancel out from
the SCCS likelihood, just as fixed multiplicative covariates do.

One situation that Assumption 1 does not cater for is lack of indepen-
dence of events within individuals. This arises, for example, if occurrence of
an event increases the hazard of subsequent events, as might occur with re-
peated myocardial infarctions, or repeat hospital admissions within a single
clinical episode.

3.7.2 A counter-example: negative binomial events*

Suppose that for the standard (piecewise-constant) SCCS model, events for
individual i arise in successive intervals according to the generalised negative
binomial distribution described by McCullagh and Nelder (1989), page 199.
Thus, in the notation of Section 3.2, nijk has mean λijkeijk and variance
(1 + θ−1

i )λijkeijk, for some positive θi. The probability mass function of nijk
is

P (nijk|θi, λijkeijk) =
Γ(nijk + θiλijkeijk)θ

θiλijkeijk
i

nijk!Γ(θiλijkeijk)(1 + θi)nijk+θiλijkeijk
,

where Γ denotes the gamma function. The marginal total ni is also gener-
alised negative binomial, with the same dispersion parameter θi and mean∑
r,s λirseirs. The conditional likelihood contribution for individual i given ni

is therefore

Li = constant×
∏
j,k

Γ(nijk + θiλijkeijk)

Γ(θiλijkeijk)
×

Γ(θi
∑
r,s λirseirs)

Γ(ni + θi
∑
r,s λirseirs)

.

Only when ni = 1 (and trivially when ni = 0, in which case Li is constant)
does this reduce to the SCCS likelihood contribution. For marginal counts
ni > 1, multiplicative factors in the λijk do not cancel out.

3.7.3 Assumptions 2 and 3: validity of conditioning

Assumptions 2 and 3 relate to observation and exposure histories. We shall
discuss these assumptions together. First, some new notation is needed. Let
xti denote the history of exposure and observation up to age t. Then xi = xbii

* This section may be skipped.
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is the history of exposure and observation up to the end of the observation
period at age bi. Further details of how exposure and observation histories are
defined for SCCS models are given in Section 3.8.

The distinction between xti and xi is important because, while the cohort
model uses histories up to event age t, the SCCS model conditions on the
observation and exposure history up to bi, and therefore after the event. The
SCCS model requires the following identity to be satisfied:

λi(t|xti,yi) = λi(t|xi,yi) for all t ∈ (ai, bi], (3.6)

This identity states that the incidence rate at age t is not altered by condi-
tioning on the exposure and observation history up to bi. The reason this is
needed is so that the conditioning required to obtain the SCCS likelihood does
not alter the quantities we wish to estimate. Assumptions 2 and 3 ensure that
this condition is met, as will be shown below. First, we explain heuristically
why the assumptions are needed.

Suppose first that Assumption 2 is not met, so that occurrence of an event
influences the observation period. As an illustration, consider the extreme
scenario in which observation necessarily stops some fixed time τ after the
first event. Then conditioning on the observation period (ai, bi] also fixes the
first event time at bi − τ .

In consequence, the intensity conditional on the observation period must be
zero at all times in (ai, bi−τ). This is because no event can occur prior to bi−τ :
if an event did occur before then, observation would necessarily stop before
bi; but it ended at bi. In contrast, without the conditioning, the hazard is not
fixed in this way: an event can happen at any time t, after which observation
terminates at bi = t+ τ . Thus, conditioning on the observation period alters
the intensity function in this hypothetical example, because fixing bi also
determines the event time. Incidentally, this also explains why it is incorrect
to stop the observation process at the event time, which corresponds to setting
τ = 0. Realistic situations in which the event can influence the observation
period include events with high short-term mortality, such as stroke.

Now suppose that Assumption 3 is not met, so that occurrence of an event
influences the subsequent exposure process. Consider for example the extreme
scenario in which occurrence of an event precludes any subsequent exposures.
Suppose that case i is exposed at some age si in (ai, bi]. Conditioning on the
exposure history, no event can occur before age si, so the conditional intensity
must be zero on (ai, si], irrespective of what the intensity was in the absence
of conditioning: again, conditioning alters the intensity function. Realistic sit-
uations in which the event can influence subsequent exposures include those in
pharmacoepidemiology where occurrence of an event is a contra-indication to
the drug exposure of interest. An example is intussusception and vaccination
against rotavirus. Exposure variables satisfying Assumption 3 are sometimes
called exogenous or external: see Kalbfleisch and Prentice (2002), pages 196–
200.

Importantly, the direction of bias resulting from failure of Assumption 3 is
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often predictable. If occurrence of an event decreases the probability of subse-
quent exposures, and the SCCS method is applied without allowing for this,
then the relative incidence will be biased upwards. This is because exposures
will tend to occur prior to events, thus inducing bias in the direction of a pos-
itive association. If, on the other hand, occurrence of an event increases the
probability of subsequent exposure, then the relative incidence will be biased
downwards. The direction of bias resulting from failure of Assumption 2 is
less easily predictable. The direction of the bias is influenced by the timing of
exposures over the observation period.

In the more technical Section 3.7.4, it is shown how Assumptions 2 and
3 imply Equation 3.6. However, these technicalities, while necessary from the
formal point of view, need not obscure what is really a rather straightforward
requirement. In the SCCS method, we regard the exposure processes, the
observation processes and the marginal event totals as fixed. Inference is based
on the timing of events. One way to think of this inferential framework is to
imagine the event history of each case being re-run over the same observation
period, with the same exposures and the same total number of events. To
avoid bias, the event times in such putative replications should be influenced
only by those exposure and age effects we wish to estimate, irrespective of the
conditioning involved.

3.7.4 A more formal demonstration*

We now show more formally how Assumptions 2 and 3 imply Equation 3.6.
For simplicity we assume that the event is non-recurrent; for recurrent events,
just suppress the condition T ≥ t in what follows, and interpret T = t as
meaning that an event occurred at t.

The hazard rate for individual i is formally defined as

P{T ∈ [t, t+ dt)|xti,yi, T ≥ t} = λi(t|xti,yi)dt, (3.7)

where T is the event time. Let xti = {xtoi, xtei} where xtoi is the observation
history to age t and xtei is the exposure history to age t for individual i.

Assumptions 2 and 3 may be stated formally as follows (we have suppressed
the indices i to reduce clutter):

A2 : P (xuo |xue , xto,y, T = t) = P (xuo |xue , xto,y, T ≥ t) ∀u ≥ t; (3.8)

A3 : P (xue |xto, xte,y, T = t) = P (xue |xto, xte,y, T ≥ t) ∀u ≥ t. (3.9)

Note that Assumptions 2 and 3 are not symmetrical in their formal state-
ments: thus, we allow the observation process to depend on the exposure
process (as represented by the presence of xue in Equation 3.8). For example,
in a study of vaccine safety, it is acceptable to define the observation period
as (v − τ1, v + τ2] where v is age at vaccination. However, given the exposure
history, the observation process must not depend on the event process.

* This section may be skipped.
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Multiplying Equations 3.8 and 3.9 together, we obtain

P (xuo , x
u
e |xto, xte,y, T = t) = P (xuo , x

u
e |xto, xte,y, T ≥ t) ∀u ≥ t. (3.10)

Now by Bayes’ Theorem, using the definition in Equation 3.7,

λi(t|xui ,yi) =
P (xui |xti,yi, T = t)× λi(t|xti,yi)

P (xui |xti,yi, T ≥ t)
. (3.11)

So if Assumptions 2 and 3 hold, combining Equations 3.10 and 3.11 with
xti = {xtoi, xtei} yields

λi(t|xui ,yi) = λi(t|xti,yi) for all u ≥ t.

In particular, this holds for u = bi, and hence the required condition 3.6 is
satisfied.

3.7.5 Assumption 4: independent ascertainment

Assumption 4 states that the sampling process whereby cases are selected for
inclusion in a SCCS study should not be influenced by the cases’ exposure
histories. This assumption differs from the other three in that it is shared by
other study designs in epidemiology, including cohort and case-control studies.
It is explicitly reaffirmed here because the SCCS method is so simple to apply
to any collection of cases.

For example, in spontaneous reporting systems for potential drug-related
adverse reactions, events of interest are reported when there is a suspicion that
a drug may be the cause of the event. This is an instance where Assumption
4 is violated. While modified SCCS methods can sometimes be used in such
circumstances, further assumptions are usually required: see Escolano et al.
(2013).

Likewise, spurious effects may be generated by the way events are ascer-
tained in some administrative databases. For example, in some databases med-
ical histories are recorded retrospectively and post-dated to consultations at
which drugs are prescribed, resulting in spurious associations between day of
prescription and events. This is a further instance of a violation of Assumption
4. It serves to emphasise the importance of understanding the idiosyncracies of
administrative databases before using the SCCS or indeed any other method
of analysis.
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Summary

• The SCCS method is based on the following four assumptions:

A1 Events are uncommon or arise in Poisson processes.

A2 Events do not influence the length of observation periods.

A3 Events do not influence subsequent exposures.

A4 Exposures do not influence event ascertainment.

• If Assumption 1 fails, time-invariant multiplicative confounders may not
factor out of the likelihood.

• If Assumptions 2 or 3 fail, the relative incidence may be biased, be-
cause conditioning on observation periods or exposure histories alters
the incidence function.

• If Assumption 3 fails, the direction of the bias is predictable.

• Assumption 4 is shared with other study designs. When applying the
SCCS and other methods to data from administrative databases it is
important to be aware of the idiosyncracies of these databases.

3.8 Derivation of the SCCS likelihood*

In this section, the SCCS likelihood in Equation 3.5 is derived from a cohort
model. As in Section 3.7.3, let xti denote the history of exposure and observa-
tion up to age t. Then xi = xbii is the history of exposure and observation up
to end of the observation period at age bi.

The observation history to age t is a function on (ai, t] taking the value
1 when individual i is under observation and 0 when not. The observation
history for t ≤ bi is usually (ai, t], though in principle it could also consist
of disjoint age or time intervals. The exposure history to age t is a set of
functions on (ai, t], each representing a distinct exposure. Exposures can be
quantitative or categorical. In the simplest standard SCCS model, there is
a single categorical exposure, which may be represented as a time-varying
factor.

We begin with a cohort of individuals labelled i = 1, . . . ,M observed over
age intervals (ai, bi]. These intervals are the observation periods, and may
vary between individuals. Occurrences of the events of interest and exposure
history up to bi are recorded for each individual in the cohort. This cohort is

* This section may be skipped.
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observed retrospectively, so the events and exposures for all individuals are
known. Suppose that there are N cases, a case being an individual who has
experienced one or more events within his or her observation period (ai, bi].
For simplicity, and without any loss of generality, we assume that the cases
are listed first, and so are indexed by i = 1, . . . , N . Each case experiences
ni > 0 events at times ti1, ti2, . . . , tini

in (ai, bi], while ni = 0 for the non-
cases i = N + 1, . . . ,M . This notation is illustrated in Figure 3.5.
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FIGURE 3.5
A cohort of size M and its N cases, showing observation periods and event
times.

We suppose that Assumption 1 from Section 3.7 holds. To begin with
assume that, for cohort member i, events arise in a non-homogeneous Poisson
process with intensity function λi(t|xti,yi). The cohort likelihood for case i =
1, . . . , N , with ni > 0 events at times ti1, ti2, . . . , tini

in (ai, bi], is then

Lci =

ni∏
j=1

λi(tij |x
tij
i ,yi) exp

(
−
∫ bi

ai

λi(s|xsi ,yi)ds
)
.
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An individual i = N+1, . . . ,M is a non-case and so experiences ni = 0 events
in (ai, bi]. The likelihood contribution for this non-case is

Lci = exp
(
−
∫ bi

ai

λi(s|xsi ,yi)ds
)
.

The overall likelihood for the entire cohort of cases and non-cases is thus:

Lc =
N∏
i=1

ni∏
j=1

λi(tij |x
tij
i ,yi)

M∏
i=1

exp
(
−
∫ bi

ai

λi(s|xsi ,yi)ds
)
. (3.12)

The SCCS likelihood is derived from this cohort likelihood by conditioning,
for each individual i, on the exposure and observation history xi up to bi,
and the total number of events ni observed for individual i. What is not
conditioned upon is the set of event times ti1, ti2, . . . , tini

when ni > 0.
As noted in Section 3.7.3, for inferences about the intensity functions

λi(x
t
i,yi) to be valid in the SCCS model, conditioning on the exposure and

observation history xi must not affect the intensities. Assumptions 2 and 3,
stated in Section 3.7, imply the identity in Expression 3.6, namely:

λi(t|xti,yi) = λi(t|xi,yi) for all t in (ai, bi].

Thus, if these assumptions hold, we may replace xti by xi in Equation 3.12:

Lc =
N∏
i=1

ni∏
j=1

λi(tij |xi,yi)
M∏
i=1

exp
(
−
∫ bi

ai

λi(s|xi,yi)ds
)
. (3.13)

The marginal probability, or likelihood, that individual i experiences ni events,
given the exposure and observation history, is

Lmi =
1

ni!

(∫ bi

ai

λi(s|xi,yi)ds
)ni

exp
(
−
∫ bi

ai

λi(s|xi,yi)ds
)
.

The marginal probability of the observed outcomes ni, i = 1, . . . ,M is the
product of these terms, namely (since ni = 0 for i = N + 1, . . . ,M)

Lm =
N∏
i=1

1

ni!

(∫ bi

ai

λi(s|xi,yi)ds
)ni

M∏
i=1

exp
(
−
∫ bi

ai

λi(s|xi,yi)ds
)
. (3.14)

The SCCS likelihood is obtained by dividing Equation 3.13 by Equation 3.14.
Thus, dropping explicit mention of the constant term,

Lc
Lm

= constant×
N∏
i=1

∏ni

j=1 λi(tij |xi,yi)( ∫ bi
ai
λi(s|xi,yi)ds

)ni

which is the SCCS likelihood in Equation 3.5.
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A consequence of this argument is that the non-cases drop out of the like-
lihood upon conditioning. The SCCS method is based on the relative timing
of events and exposures, given the number of events. If there are no events,
there is no information about such relative timings: non-cases are uninforma-
tive, and contribute 1 to the SCCS likelihood. The practical implication is
that non-cases need not be sampled.

This derivation applies to events that arise in non-homogeneous Poisson
processes within individuals, and are therefore potentially recurrent. Now sup-
pose that the event of interest is non-recurrent, but rare. The λi(t|xi,yi) are
then hazards rather than intensities. We assume that the M individuals in the
underlying at-risk cohort have not experienced the event by the start of obser-
vation. Each case experiences a single event at age ti in (ai, bi], i = 1, . . . , N .

For t in (ai, bi], let

Si(ai, t) = exp
(
−
∫ t

ai

λi(s|xi,yi)ds
)

denote the probability that individual i remains event-free at age t, given that
he or she was event-free at the start of observation ai. The cohort likelihood
is

L′c =
N∏
i=1

λi(ti|xi,yi) exp
(
−
∫ ti

ai

λi(s|xi,yi)ds
)

×
M∏

i=N+1

exp
(
−
∫ bi

ai

λi(s|xi,yi)ds
)

=
N∏
i=1

λi(ti|xi,yi)Si(ai, ti)
M∏

i=N+1

Si(ai, bi). (3.15)

The marginal likelihood is

L′m =

N∏
i=1

{∫ bi

ai

λi(s|xi,yi)Si(ai, s)ds
} M∏
i=N+1

exp
(
−
∫ bi

ai

λi(s|xi,yi)ds
)

=
N∏
i=1

{
1− Si(ai, bi)

} M∏
i=N+1

Si(ai, bi). (3.16)

The conditional likelihood is the ratio of Equations 3.15 and 3.16:

L′c
L′m

=
N∏
i=1

λi(ti|xi,yi)Si(ai, ti)
{1− Si(ai, bi)}

.

This expression again only involves the N cases, but note that it is not the
same as the SCCS likelihood L in Equation 3.5. However, it approximates to
L since, by assumption, the event is rare. To see this, write

λi(t|xi,yi) = φνi(t|xi,yi),
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where φ is a positive constant and the functions νi(t|xi,yi) are bounded on
(ai, bi], and consider the limit as φ tends to zero. In this limit, the intensity
functions λi(t|xi,yi) tend to zero. Using the approximation e−ε = 1−ε+O(ε2)
for ε close to zero, it follows that

Si(ai, t) ' 1−
∫ t

ai

λi(s|xi,yi)ds when φ→ 0.

So, in this limit, Si(ai, ti)→ 1 and

λi(ti|xi,yi)
1− Si(ai, bi)

→ νi(ti|xi,yi)∫ bi
ai
νi(s|xi,yi)ds

=
λi(ti|xi,yi)∫ bi

ai
λi(s|xi,yi)ds

.

Thus in the limit as φ→ 0,

L′c
L′m

=
N∏
i=1

λi(ti|xi,yi)∫ bi
ai
λi(s|xi,yi)ds

,

which is equivalent to the SCCS likelihood in Equation 3.5 with ni = 1 and
ti = ti1 for i = 1, . . . , N . Thus, for non-recurrent events, the SCCS likelihood
is valid in the limit in which the event is rare, which is usually the case in
practice.

3.9 Bibliographical notes and further material

The standard SCCS model was proposed by Farrington (1995) as an epidemi-
ological method for assessing the safety of vaccines; its genesis is described in
Chapter 2, Section 2.1. The general SCCS likelihood appeared in Farrington
and Whitaker (2006). The SCCS method brings together statistical theory on
conditional Poisson inference, and self-controlled and case-only cohort meth-
ods from epidemiology. These three strands have numerous antecedents.

Andersen (1970) elucidated the properties of conditional likelihoods, with
an example showing how incidental parameters can be eliminated by condi-
tioning on the sum of Poisson counts. A close connection is to the work of
Cox (1972) on modulated Poisson processes: Cox’s conditional likelihood for
a modulated Poisson process is identical to a SCCS likelihood for a single
individual. Hausman et al. (1984) applied this idea in econometrics to the
analysis of panel data; see also Lancaster (2000).

The use of self-controls in the context of cohort studies was discussed
by Ray and Griffin (1989). Their suggestion was to compare incidence rates
shortly after a point exposure to incidence rates at later periods after the
exposure, controlling for age and potential confounders. When there are no
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age effects, this effectively reduces to the SCCS method as the estimator of
the relative incidence involves only cases.

Aalen et al. (1980) proposed a method to analyse the cases arising within
a cohort. This approach was developed further by Prentice et al. (1984), who
suggested using a proportional hazards model on case-only data. Feldmann
(1993a,b) developed a case-only method specifically for the investigation of
adverse drug reactions. This coincides with the SCCS method when the event
is rare and the baseline hazard is constant. The SCCS method was also derived
by Becker et al. (2004), with further development in Becker et al. (2006).

Like the SCCS method, the case-crossover method of Maclure (1991) is
a case-only method with self-controls. Maximum likelihood estimation for
this method is described in Marshall and Jackson (1993), and design issues
are discussed in Mittleman et al. (1995). Unlike the SCCS method, it is a
case-control method, with referents selected from the case’s own history. The
method requires exposures to be exchangeable (Vines and Farrington, 2001).
This implies that the probability of exposure must be constant over time, a
condition that is relaxed in the case-time-control method of Suissa (1995), fur-
ther investigated by Jensen et al. (2014). Case-crossover methods are useful
in evaluating associations between transient exposures and acute events, and
need not require information on post-event exposures.

The case-crossover method has also been used in environmental epidemi-
ology, notably to study the health impacts of air pollution. The nomenclature
in this area is a little tangled: thus, the time-stratified case-crossover method
of Lumley and Levy (2000) is actually a SCCS method, event times being
regarded as random rather than fixed as they are in standard case-crossover
designs. The ‘full-stratum’ version (but not other versions) of the bidirectional
case-crossover method of Navidi (1998) is a special case of the time-stratified
case-crossover design, and therefore is also a SCCS method. These connections
are elucidated in Whitaker et al. (2007) and Armstrong et al. (2014), and are
discussed further in Chapter 6, Section 6.6. Several other case-only designs in
epidemiology are discussed in Greenland (1999) and Farrington (2004).
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The standard SCCS model

In the standard SCCS model, the observation period for each case is parti-
tioned into non-overlapping segments on which the age and exposure effects
are assumed to be constant. A version of the model was briefly described in
Chapter 3, Section 3.2. In this chapter we consider this model in detail. Other
models will be considered in Chapter 6.

The bulk of the chapter is devoted to fitting the standard SCCS model us-
ing the R package SCCS, illustrated with numerous practical examples, starting
from Section 4.3. In this section, SCCS analyses with one exposure per case are
described. In subsequent sections more complex settings are introduced: re-
peated exposures in Section 4.4, multiple exposure types in Section 4.5, model
comparison in Section 4.6, interactions and effect modification in Section 4.7,
indefinite and extremal risk periods in Section 4.8, and seasonal effects in
Section 4.9.

Section 4.6.2 on combining multinomial categories and Section 4.10, in
which the parameterisation of the model is described more formally, are
starred to indicate that they may be skipped.

Chapter 4 may be regarded as the first half of a modelling guide for the
standard SCCS model, to be completed in Chapter 5. In the present chapter,
we focus on data structures and model fitting, and present some graphical
displays to guide this process. In the next chapter, we will turn to checking
the validity of the assumptions and modelling choices, with further graphical
displays for this purpose.

4.1 Proportional incidence models

The SCCS likelihood is defined in terms of the intensity (or hazard) function
λi(t|xi,yi) for cases i = 1, . . . , N . We now turn to statistical models for this
function, our primary focus being applications in epidemiology. In keeping
with epidemiological terminology, we shall refer to the intensity function as
the incidence rate.

All the models considered in this book are proportional incidence mod-
els. These are built up by multiplying together separate components for age,
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exposure and covariate effects. Thus, in conceptual terms,

Incidence rate = Baseline×Age effect× Exposure effect× Covariate effect.

In mathematical notation, the proportional incidence model is of the form:

λi(t|xi,yi) = φiψ(t|yi)ρ(t|xi,yi)hi(yi).

The constants φi are absolute incidence rates at some reference age, describing
the baseline incidence. The function ψ(t|yi) represents the age effect at age
t for individual i, relative to that reference age. The relative age effect may
depend on the time-invariant covariates yi. The function ρ(t|xi,yi) represents
the relative incidence associated with exposure. This depends on the exposure
history in xi for individual i, and may also depend on the time-invariant
covariates yi. The functions hi specify the main effect of the time-invariant
covariates yi on the incidence rate, as distinct from any interactions with age
effects or time-varying exposures.

The constants φi and the time-invariant effects hi(yi) cancel out of the
SCCS likelihood, as previously described in Chapter 3. These quantities are
not estimated in the SCCS model, and so will not be considered further. For
this reason, we leave them unspecified and focus on the time-varying kernel
of the incidence rate function:

ν(t|xi,yi) = ψ(t|yi)ρ(t|xi,yi). (4.1)

In its simplest form, this model may be written:

Incidence rate kernel = Age effect× Exposure effect.

In the standard SCCS model, age and exposure effects are assumed to be
piecewise constant. Age effects take different levels on pre-defined age groups.
The age groups and levels are common to all cases. Exposures are discrete,
switching on and off or between a restricted set of levels during an individual’s
observation period. They might represent, for example, treatment period on
pharmaceutical drugs, the durations of which may vary between patients, or
washout periods following treatments. They might also represent risk intervals
following point exposures, such as vaccinations. Quantitative exposures (those
measured on a continuous scale) will be discussed in Chapter 6. The age
and exposure levels are represented by parameters, the values of which are
estimated by maximising the SCCS likelihood.

The simplest such model assumes there is a single exposure type and no
interactions with time-invariant covariates. The incidence rate kernel is piece-
wise constant, taking values that depend only on age parameters αj repre-
senting the age effect at levels j = 0, . . . , J , and exposure parameters βk
representing the exposure effect at levels k = 0, . . . ,K.

In this simple model, the incidence rate kernel at age t takes the value

νijk = exp(αj)× exp(βk) = exp(αj + βk)
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when t lies within an interval at level j for age and level k for exposure for
case i. The parameters αj and βk are log relative incidences, relative to the
reference level 0, with α0 = β0 = 0. Thus, there are J + K parameters to be
estimated.

Generally, the exposure-related parameters βk are of primary interest, and
hence provide the focus of inference. The log relative incidence parameter βk
has the following interpretation: the incidence rate is multiplied by exp(βk)
when the individual is at exposure level k, relative to the incidence rate when
at the reference level 0, over and above any age effect. Thus, if βk = 0 there
is no effect at exposure level k. The exposure is associated with an increase
in incidence if βk > 0, and with a decrease in incidence if βk < 0. The age
parameters αj have a similar interpretation. Thus, the incidence at age level j
is the incidence at the reference level 0, multiplied by exp(αj). Further details
of this parameterisation may be found in Section 4.10.

Summary

• All SCCS models considered are proportional incidence models, in which
the different components (of age, exposure, covariates) are combined
multiplicatively.

• Time-invariant quantities cancel out of the SCCS likelihood, so we focus
on the incidence rate kernel which involves only time-varying effects.

• The simplest such model is of the form

Incidence rate kernel = Age effect × Exposure effect.

• In the standard SCCS model, age and exposure effects are assumed to
be piecewise constant, and so the incidence rate kernel is also piecewise
constant.

4.2 Fitting the standard SCCS model

The simple model νijk = exp(αj + βk) described in Section 4.1 defines a
log-linear model with model formula

Age + Exposure.

The model can be elaborated further to include interactions with time-
invariant covariates yi, several exposures (and interactions between them),
and seasonal as well as age effects. All these features will be exemplified in
subsequent sections.
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The first step in fitting the model is to reshape the data (a practical il-
lustration is provided in Section 4.3.2). Each individual’s observation period
is split into distinct segments Eijk of length eijk, on which the incidence
rate kernel for individual i is constant at age level j and exposure level k.
The boundaries of the segments Eijk are determined by the cutpoints used
to define the age and exposure groups. The number of events nijk in each
segment for individual i is also obtained. Let ni denote the array {nijk,
j = 0, . . . , J ; k = 0, . . . ,K}, for i = 1, . . . , N , N being the number of cases.
The standard SCCS model is then

ni ∼ Multinomial(ni;pi),

this denoting the multinomial distribution with index ni and probability array
pi with elements

pijk =
νijkeijk∑
r,s νirseirs

.

The model can be fitted directly with software for conditional Poisson
or product multinomial models. Alternatively, some other models commonly
used in epidemiology can be coaxed into a form suitable for our purposes. We
briefly describe two such options.

The first method is to use the so-called Poisson trick, whereby an associ-
ated Poisson model is fitted with an extra individual-level factor γ with levels
i = 1, . . . , N (McCullagh and Nelder, 1989, page 212). This associated model
has a logarithmic link and offsets log(eijk) and is defined as follows:

nijk ∼ P (νijkeijk),

log(νijk) = αj + βk + γi.

This model can be fitted with any software for generalised linear models. The
parameters γi are needed to constrain the marginal totals to their observed
values, but are of no intrinsic interest. In large data sets, γ is high-dimensional
and so it is desirable to use a fitting algorithm with an absorption facility, so
that the incidental parameters γi are not estimated explicitly.

A second approach is to note that the likelihood contribution for each
event, say

νijkeijk∑
r,s νirseirs

, (4.2)

is of the same form as that of a case-control set in a 1 : Mi matched case-
control study (Breslow and Day, 1980, page 248). The ‘case’ is a case interval,
namely the interval in which the event occurred; the ‘controls’ are the Mi

non-empty control intervals within the observation period (ai, bi] in which the
event did not occur. Software to fit conditional logistic regression models can
thus be adapted to fit the standard SCCS model. Indeed, software to fit the
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Cox proportional hazards model can also be adapted to this purpose, the form
of Expression 4.2 being similar to that of a partial likelihood contribution, the
risk set now playing the role of the matched case-control set (Cox and Oakes,
1984, page 92). This is the approach taken in R package SCCS.

Summary

• The first step in fitting the standard SCCS model is to reshape the data,
by splitting each observation period into non-overlapping intervals in
which the age and exposure effects are constant.

• The standard SCCS model is a log-linear product multinomial model.
Several techniques can be used to fit the model using standard statistical
software.

4.3 The R package SCCS: standard SCCS model

To download R and the R package SCCS, see Chapter 1, Section 1.4. The
standard model is fitted using the single function standardsccs. This function
reshapes the data and fits the model.

All data sets should include an individual identifier (in the function
standardsccs this is argument indiv), the age at event (argument aevent),
the age at start of observation (astart), and the age at end of observation
(aend). Variables describing the exposures – which take different forms de-
pending on the application – and time-invariant covariates will be described
where they arise. If calendar time is the time line of interest, ages are replaced
by times from a reference date. In most of the applications described in this
book, ages or times are in days; other choices may be appropriate depending
on context, but must be specified as integers.

In the examples in this section, each case is exposed once. The data com-
prise one line per event. In Section 4.4, two different data formats will be
described to handle more general situations in which there are repeat expo-
sures.

4.3.1 A single point exposure: MMR vaccine and ITP

These data were collected to investigate the association between measles,
mumps and rubella (MMR) vaccine and idiopathic thrombocytopaenic pur-
pura (ITP). Cases were obtained from hospital admissions and linked to vac-
cination records. All admissions to these hospitals occurring in children aged
366 to 730 days – that is, the second year of life – between specified dates in
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1991 and 1994 (which varied between hospitals) were identified. The data are
based on those published in Miller et al. (2001).

The data comprise 44 ITP admissions in 35 children. The observation pe-
riod for each of the 35 children is determined by the age and time boundaries
used to select the cases. For example, in one hospital the calendar time period
of data collection was 1st October 1991 to 30th September 1994; the obser-
vation periods for cases from that hospital, on a scale of age in days, stretch
from the maximum of 366 and age (in days) on 1st October 1994, to the min-
imum of 730 days and age (in days) on 30th September 1994. (The choice of
observation periods is discussed more generally in Chapter 8.) Five cases had
two events, and one case had five events. The data for the first six cases are
shown in Table 4.1.

TABLE 4.1
The first 6 cases from the MMR vaccine and ITP study; ages are in days.

Case Age at Age at first day Age at last day Age at MMR Sex
event of observation of observation vaccination

1 691 454 730 670 1
2 722 366 730 868 2
3 442 366 730 540 1
4 429 366 730 378 2
5 414 366 730 710 1
5 418 366 730 710 1
6 708 439 730 487 1

Case 5 in Table 4.1 had two events, at ages 414 and 418 days. Case 2 was
vaccinated at 868 days, after the end of observation, and so is unexposed in
the observation period.

The risk period was taken to be the six-week period after MMR vacci-
nation (if the child received MMR vaccine), that is, the period 0 to 42 days
inclusive post-MMR, day 0 denoting the day MMR vaccine was administered.
To investigate in more detail the risk profile, the period was also split into 3
two-week risk periods: 0 to 14, 15 to 28, and 29 to 42 days post-MMR. These
risk periods are shown in Figure 4.1.

In this study, ITP cases not at risk from MMR during the observation
period were included. These cases contribute to the estimation of the age
effect, which was assumed to be constant on the 2-month intervals [366, 426],
[427, 487], [488, 548], [549, 609], [610, 670] and [671, 730] days; the age group
boundaries are shown in Figure 4.1.

The case identifier (taking the same value for events within the same indi-
vidual) is case. The start and end of the observation periods are in variables
sta and end, while the age at ITP is in variable itp. The exposure information
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366 488 549 610 730427 671

risk periods,
days after MMR:

0 15 29 42

FIGURE 4.1
Observation period, age group boundaries and risk periods for the ITP and
MMR study.

available is the age at MMR vaccination, in variable mmr. The fixed covariate
sex is also available (coded 1 for boys, 2 for girls).

The package SCCS includes all the data sets used in this book. The data
for this application are in data frame itpdat. The standard SCCS model is
specified as follows.

library(SCCS)

itp.mod1 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

The entry
event∼mmr+age

specifies the model formula, in standard R syntax. The individual identifier
is indicated by indiv=case. The ages at which the observation periods begin
and end are defined by the pair

astart=sta, aend=end.

The age at event is specified by aevent=itp. The exposure groups are defined
by the triple

adrug=mmr, aedrug=mmr+42, expogrp=c(0,15,29).

The variable adrug specifies the age at MMR vaccine, while aedrug is the end
of drug-related exposure. The vector expogrp defines the exposure periods:
the convention used throughout is to specify the first day of each risk period in
relation to adrug. The risk periods are assumed to be contiguous, the final one
ending at aedrug. The vector agegrp specifies the first day of each age group
except the first (which is the earliest age at start of observation); it defaults
to NULL if no age groups are required, in which case there is effectively a single
age group covering all observation periods. Finally, the data frame from which
the variables are chosen is specified by the data argument.

The output, which is stored in itp.mod1, includes the estimated parame-
ters and their standard errors, as well as the corresponding relative incidences
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(which are the exponentiated coefficients) and asymptotic 95% confidence in-
tervals. For this example we show the full output; in subsequent examples,
only edited output relating to the relative incidences of primary interest will
be displayed.

> itp.mod1

Call:

coxph(formula = Surv(rep(1, 392L), event) ~ mmr + age +

strata(indivL) + offset(log(interval)), data =

chopdat, method = "exact")

n= 392, number of events= 44

coef exp(coef) se(coef) z Pr(>|z|)

mmr1 0.2692 1.3089 0.7529 0.357 0.7207

mmr2 1.7841 5.9540 0.4388 4.065 4.79e-05 ***

mmr3 0.9556 2.6002 0.6375 1.499 0.1339

age2 -0.4209 0.6565 0.4075 -1.033 0.3017

age3 -1.5584 0.2105 0.6448 -2.417 0.0156 *

age4 -1.2329 0.2915 0.5756 -2.142 0.0322 *

age5 -0.9266 0.3959 0.5356 -1.730 0.0836 .

age6 -0.9123 0.4016 0.5360 -1.702 0.0887 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.3089 0.7640 0.29922 5.7253

mmr2 5.9540 0.1680 2.51922 14.0717

mmr3 2.6002 0.3846 0.74536 9.0709

age2 0.6565 1.5233 0.29538 1.4591

age3 0.2105 4.7513 0.05948 0.7447

age4 0.2915 3.4311 0.09432 0.9006

age5 0.3959 2.5259 0.13857 1.1311

age6 0.4016 2.4902 0.14046 1.1482

Rsquare= 0.075 (max possible= 0.399 )

Likelihood ratio test= 30.45 on 8 df, p=0.0001757

Wald test = 34.63 on 8 df, p=3.129e-05

Score (logrank) test = 49.14 on 8 df, p=5.977e-08

The output of primary interest lies in the second table of results. The rows
labelled mmr1, mmr2 and mmr3 corresponds to the three risk periods. The first
column (under exp(coef)) gives the relative incidence; the last two columns
give the lower and upper 95% confidence limits. The remaining rows of this
table, labelled age2 to age6, correspond to the age effects relative to the first
age group.
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The estimated relative incidence is raised in the 0–42 day period after
MMR vaccination, significantly so in the second and third week after receiving
the vaccine, when the relative incidence (RI) is 5.95, 95% confidence interval
(CI) (2.52, 14.1). The age-specific relative incidence appears to decline with
age after the first 2-month period (the reference period) before increasing
again slightly.

To obtain the average relative incidence over the 0–42 day post-MMR risk
period, we combine the three risk periods into one and refit the SCCS model
(from now on, only edited output will be displayed):

itp.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

agegrp=c(427,488,549,610,671), data=itpdat)

This yields:

> itp.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 3.2262 0.310 1.53197 6.7941

Thus the relative incidence over the 0–42 day period post-MMR is 3.23, with
95% CI (1.53, 6.79).

4.3.2 Reshaping the MMR vaccine and ITP data

Before the SCCS model can be applied, the data first need to be reshaped as
described in Section 4.2. The function standardsccs automatically reshapes
the data, so there is usually no need to delve into this aspect of the analysis.
Nevertheless, in this section we give some brief details of how this is done for
the MMR vaccine and ITP data from Section 4.3.1.

Briefly, the observation period of each case is split up into successive in-
tervals on which the age and exposure effects are constant. The reshaped
data comprise the interval lengths indexed by the levels of the age and ex-
posure variables, and the number of events in each interval. The reshaping is
done by the R function formatdata within the R package SCCS. This function
produces a new data frame with a row for each time interval (the original
data comprised a row for each event). The function uses a similar syntax to
standardsccs, but without the model formula.

For example, formatdata is applied to the MMR vaccine and ITP data as
follows:

itp.dat1 <- formatdata(indiv=case, astart=sta, aend=end,

aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)
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The new data frame itp.dat1 comprises 12 variables and 392 rows. Owing
to space constraints we present only 9 of these 12 variables (the three not
displayed are expanded versions of aevent, astart and aend), and limit the
output to 19 rows of data. The leftmost column should be ignored (it numbers
the intervals; the missing numbers correspond to intervals of zero length, which
have been removed).

> itp.dat1

indivL event eventday lower upper interval age mmr indiv

3 1 0 691 454 487 34 2 0 1

4 1 0 691 488 548 61 3 0 1

5 1 0 691 549 609 61 4 0 1

6 1 0 691 610 669 60 5 0 1

7 1 0 691 670 670 1 5 1 1

8 1 0 691 671 684 14 6 1 1

9 1 1 691 685 698 14 6 2 1

10 1 0 691 699 712 14 6 3 1

11 1 0 691 713 730 18 6 0 1

......

475 44 0 411 366 382 17 1 0 35

476 44 0 411 383 397 15 1 1 35

477 44 1 411 398 411 14 1 2 35

478 44 0 411 412 425 14 1 3 35

479 44 0 411 426 426 1 1 0 35

480 44 0 411 427 487 61 2 0 35

481 44 0 411 488 548 61 3 0 35

482 44 0 411 549 609 61 4 0 35

483 44 0 411 610 670 61 5 0 35

484 44 0 411 671 730 60 6 0 35

The first 9 rows correspond to the exposure and event history of the first
case (indiv=1), who experienced a single event. The last 10 rows correspond
to the last case (indiv=35), who also experienced a single event. The new vari-
ables lower and upper specify the endpoints of each interval, and interval its
duration. The variable event is an indicator variable showing which interval
contains the event; and variables age and mmr contain the age and exposure
levels corresponding to each interval.

Thus, for example, the first interval for the first case is [454, 487] days,
which does not contain an event, is at age level 2, and exposure level 0 (unex-
posed). The last interval for the last case is [671, 730] days, does not contain
an event, is at age level 6 and exposure level 0.

Individuals with several events are replicated; the new variable indivL

counts events, not individuals, and thus takes values 1 to 44 (the number of
events) rather than 1 to 35 (the number of cases).
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4.3.3 Extended exposures: antidepressants and hip fracture

In the MMR and ITP example, the risk periods were determined by the point
exposure resulting from receipt of the MMR vaccine. In other situations, the
risk periods are determined by the treatment, the duration of which will gener-
ally vary between individuals. The present example uses 1000 simulated cases
similar to the data in Hubbard et al. (2003). The exposure is the first period
of treatment with an antidepressant and the outcome is first hip fracture. The
risk periods are defined as follows. Each period on drug is split into three risk
periods: an initial period of 0–14 days (0 days being the start of treatment)
to represent the acute risk associated with treatment initiation, followed by
an intermediate risk period of 15–42 days. A third risk period then stretches
from day 43 until the end of treatment. At the end of the treatment period,
there are two washout periods of 91 days each before the risk is assumed to
return to baseline. These washout periods are intended to capture residual
effects of the drug after its withdrawal, but also reflect uncertainty in the pre-
cise end of exposure. Thus, we use 5 relative incidence parameters: 3 for the
period on drug, and 2 for the washout periods. These choices are illustrated
in Figure 4.2.

days after start 
of treatment:
0   15       43

end of 
treatment

risk periods

days after end of treatment:
92                             182

washout periods

FIGURE 4.2
Risk and washout periods for the antidepressants and hip fracture data.

There are 1000 cases, in data frame hipdat. When dealing with moder-
ately large data sets it is useful to visualise the observation periods, or other
aspects of the data, in a suitable plot. The following code produces the plot
in Figure 4.3.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

os <- order(hipdat$sta)

plot(c(min(hipdat$sta/365.25),max(hipdat$end/365.25)), c(1,

length(hipdat$case)), type="n", xlab="age (years)",

ylab="case rank")

segments(hipdat$sta[os]/365.25, hipdat$case,

hipdat$end[os]/365.25, hipdat$case)

The observation periods span the age range 72 to 87 years, with much variation
in their starting points and durations. A simple way to choose the age bands
is to use the quantiles of the age at event (rounded to integer days) via the
quantile function; we define 20 age groups in this way. The washout periods
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FIGURE 4.3
Distribution of the observation periods for the hip fracture data.

are specified using the washout facility. Age at hip fracture is in variable frac.
Age at the start of first treatment with an antidepressant is in ad, and the
age at the end of this treatment is in endad. The standard SCCS model is
specified as follows.

ageq <- floor(quantile(hipdat$frac, seq(0.05,0.95,0.05),

names=F))

hip.mod1 <- standardsccs(event~ad+age, indiv=case, astart=sta,

aend=end, aevent=frac, adrug=ad, aedrug=endad,

expogrp=c(0,15,43), washout=c(1,92,182),

agegrp=ageq, data=hipdat)

The two washout periods are [endad+1, endad+91] and [endad+92,
endad+182]. The entries in the washout vector are the days at the start of
each interval, counted from aedrug, and the end of the final washout period.

The edited output for the five risk periods is:

> hip.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

ad1 2.1477 0.4656 1.2594 3.663

ad2 1.8472 0.5414 1.2013 2.840

ad3 1.5164 0.6595 1.2583 1.827

ad4 1.2527 0.7983 0.9263 1.694

ad5 1.0273 0.9734 0.7368 1.432
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The five relative incidences are given by ad1 to ad5. In the [0, 14]-day risk pe-
riod, RI = 2.15, 95% CI (1.26, 3.66). In the [15, 42]-day risk period, RI = 1.85,
95% CI (1.20, 2.84). Thus, the risk of a hip fracture is significantly increased
in the 0–14 and 15–42 day periods after first receiving an antidepressant. The
relative incidence remains significantly above 1 for the rest of the treatment
period: RI = 1.52, 95% CI (1.26, 1.83). It drops to values not statistically
significantly different from 1 during the washout periods.

4.4 Data formats for repeated exposures

In both the ITP and the hip fracture examples, each case was exposed once,
and the exposure periods were contiguous. Very commonly, there may be
repeat exposures, corresponding for example to multiple doses of the same
vaccine, or repeat treatment periods with the same drug. To handle these
more general settings, we use one of two data formats, specified within the
function standardsccs by the argument dataformat. The two options are
dataformat="stack" (the default) and dataformat="multi".

Suppose that there is just one type of exposure, that may be repeated
several times; in Section 4.5 we will consider several different types of exposure.
In the stack format, repeat exposures are stacked into one single column, and
for each event there are as many rows of data as repeat exposures. In the multi
format, on the other hand, repeat exposures are specified by multiple sets of
columns – one set for each repeat – and there is one row of data per event.

For example, suppose that individual i has start of observation a, end of
observation b, event at t, and two exposure periods [c1, d1] and [c2, d2]. In data
format stack, individual i appears as two rows in the data set, one for each
exposure; entries unrelated to the exposure are repeated:

indiv astart aend aevent expo endexpo

......

i a b t c1 d1

i a b t c2 d2

......

In data format multi, on the other hand, individual i appears as one row in
the data set:

indiv astart aend aevent expo1 endexpo1 expo2 endexpo2

......

i a b t c1 d1 c2 d2

......

Format stack is particularly useful when the number of repeated exposures
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is large, which makes it awkward to accommodate them as separate variables.
A typical application is to intermittent treatments for chronic conditions. For-
mat multi may be used when there is a small number of repeated exposures,
and when a dose effect of the exposures may be present. This format is useful
when there are successive doses of a drug, as for multi-dose vaccines. Under
data format multi, the model is specified using only the variable name for
the first exposure period; this will be described in Section 4.4.2. Occasionally,
the risk periods may overlap: for example, the risk period after one dose may
end after the next dose. The convention used in data format "multi" is that
the most recent exposure period takes precedence, and the parameterisation
of the SCCS model is adjusted accordingly.

If an individual experiences more than one event, the information for each
recurrence is entered as additional rows. Thus, for example, if individual i
described above has two events at times t1 and t2, these appear as four rows
under format stack:

indiv astart aend aevent expo endexpo

......

i a b t1 c1 d1

i a b t1 c2 d2

i a b t2 c1 d1

i a b t2 c2 d2

......

and as two rows under format multi:

indiv astart aend aevent expo1 endexpo1 expo2 endexpo2

......

i a b t1 c1 d1 c2 d2

i a b t2 c1 d1 c2 d2

......

The variable indiv is used to keep track of which events occur within which
individuals.

4.4.1 Intermittent treatments: NSAIDs and GI bleeds

This example uses data in format stack, the default format. Non-steroidal
anti inflammatory drugs (NSAIDs) are known to increase the risk of gastro-
intestinal (GI) bleeds. The data in this example are a subset of a simulated
data set to be described in Section 4.5.2. This subset includes 838 cases of a
first GI bleed. Exposure to NSAIDs is intermittent: these cases had a total
2920 such exposures, of different durations. Only cases with at least one expo-
sure are included. In Chapter 5, we will discuss the validity of the assumptions
for these data.
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The data are in data frame gidat. This being in format stack, the in-
formation on the exposure periods is stacked in two columns: ns, containing
the age at start of exposure, and endns, containing the age at the end of the
period of exposure. These exposure periods constitute the risk periods. Age
at first GI bleed is in bleed. The variable case identifies the distinct cases
(the numbering is not consecutive as the data are extracted from a larger data
set).

Plots of the observation periods and risk periods may be obtained from the
following code; for the former, we first need to remove duplicated starts and
ends of the observation periods which inevitably arise for repeated exposures
in data format stack; this is done using R function duplicated.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

usta <- gidat$sta[duplicated(gidat$case)==0]

uend <- gidat$end[duplicated(gidat$case)==0]

os <- order(usta)

plot(c(min(usta)/365.25,max(uend)/365.25), c(1,length(os)),

type="n", xlab="age (years)", ylab="case rank")

segments(usta[os]/365.25, 1:length(os), uend[os]/365.25,

1:length(os))

os2 <- order(gidat$ns)

plot(c(min(gidat$ns)/365.25, max(gidat$endns)/365.25), c(1,

length(os2)), type="n", xlab="age (years)", ylab=

"exposure rank")

segments(gidat$ns[os2]/365.25, 1:length(os2),

gidat$endns[os2]/365.25, 1:length(os2))

The plots are shown in Figure 4.4. NSAID exposures are generally brief,
longer exposures are more frequent at older ages. The observation periods last
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FIGURE 4.4
GI bleed data. Left: observation periods. Right: exposures to NSAIDs.
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between 6 months and 15 years, much less than the span of the data. We shall
use 40 age groups, based on the quantiles of the age at GI bleed. Note that
rows relating to multiple exposures need to be removed for this purpose:

ageq <- floor(quantile(gidat$bleed[duplicated(gidat$case)==0],

seq(0.025,0.975,0.025), names=F))

The default factor level for the age factor is the first, lowest age group. This
being a rather atypical age group, we change the reference level to the middle
age group (level 21); this does not alter the exposure effects. With this age
group as reference, the standard SCCS model is fitted as follows (specifying
dataformat="stack" is not strictly necessary as this is the default).

gi.mod1 <- standardsccs(event~ns+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=ns, aedrug=endns, agegrp=ageq,

dataformat="stack", data=gidat)

This produces the following results.

> gi.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 2.02466 0.4939 1.64957 2.4850

The relative incidence is 2.02, 95% CI (1.65, 2.49). Thus, NSAIDs are associ-
ated with a twofold increase in GI bleeds.

4.4.2 Multiple vaccine doses: convulsions and DTP vaccine

This example uses data in format multi. The diptheria, tetanus, pertussis
(DTP) vaccine is given to infants in several doses, typically 3 or more. Data
were collected in the United Kingdom in the early 1990s to study the associ-
ation, if any, between DTP vaccine and convulsions in the first year of life –
specifically, from ages 29 to 365 days. The risk periods of interest are [0,3], [4,7]
and [8,14] days after each dose of DTP vaccine, as illustrated in Figure 4.5. It
is also of interest to explore whether there is an effect of dose.

The jittered data, in data frame dtpdat, comprise 1214 cases with a total
of 1379 convulsions. Some 73% of cases have observation periods covering

risk periods
days after DTP vaccination:

0                  4                   8                            14

FIGURE 4.5
Risk periods for DTP vaccine and convulsions.



Data formats for repeated exposures 63

the whole period 29 to 365 days, so the histogram of ages at convulsion in
Figure 4.6 is informative about the trend with age – which is increasing from
about 6 months of age. DTP vaccinations, on the other hand, occur mainly
in the first six months of life. The age at event is in variable conv. The ages
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FIGURE 4.6
Left: age at convulsion. Right: age at DTP vaccine (3 doses combined).

at DTP vaccination are in three separate variables, called dtp for the first
dose, dtpd2 for the second dose and dtpd3 for the third dose. Not all children
received all 3 doses.

Figure 4.6 is obtained as follows. The R function duplicated is used to
obtain the ages at DTP vaccination in cases; these are numbered in variable
case. It is needed because a case can experience several convulsions.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(dtpdat$conv, breaks=seq(29,369,20), xlab=

"age at convulsion (days)", main=NULL)

uni <- (duplicated(dtpdat$case)==0)

vac <- c(dtpdat$dtp[uni==1],dtpdat$dtpd2[uni==1],

dtpdat$dtpd3[uni==1])

hist(vac, main=NULL, xlab="age at DTP vaccine (days)")

In view of the strong age dependence of both events and exposures, care-
ful control of age is required. We shall use 12 roughly 4-weekly age groups.
The exposure information is entered in function standardsccs as the ar-
ray cbind(dtp,dtpd2,dtpd3). However, the model formula is specified as
event∼dtp+age – thus, the exposure is called by the name of the first dose.
The default model under data format multi assumes common exposure pa-
rameters at each dose. There are three exposure periods after each dose, so
there are three parameters, common to each dose. The model is specified as
follows.
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ageg <- c(57,85,113,141,169,197,225,253,281,309,337)

dtp.mod1 <- standardsccs(event~dtp+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=cbind(dtp,dtpd2,

dtpd3), aedrug=cbind(dtp+14,dtpd2+14,dtpd3+14),

expogrp=c(0,4,8), agegrp=ageg, dataformat="multi",

data=dtpdat)

This yields the following results.

> dtp.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.5000 0.6667 1.0608 2.121

dtp2 0.8931 1.1197 0.5767 1.383

dtp3 0.9741 1.0266 0.7019 1.352

Parameter dtp1 is the relative incidence for the [0, 3] day risk period. This
is 1.50, 95% CI (1.06, 2.12), and is thus statistically significantly raised. The
relative incidences in the [4, 7] and [8, 14] day periods (parameters dtp2 and
dtp3, respectively) are 0.89 and 0.97, and are both statistically non significant.

This model assumes that there is no dose effect, so that the relative in-
cidences in each dose-related risk period are the same for all three doses –
with a common parameter for each risk period. Setting sameexpopar = F al-
lows a separate dose-specific parameter to be fitted at each dose (the default
is sameexpopar = T). We now alter the model to allow different parameter
values at different doses.

dtp.mod2 <- standardsccs(event~dtp+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=cbind(dtp,dtpd2,

dtpd3), aedrug=cbind(dtp+14,dtpd2+14,dtpd3+14),

expogrp=c(0,4,8), agegrp=ageg, dataformat="multi",

sameexpopar=F, data=dtpdat)

This yields:

> dtp.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.5678 0.6379 0.8741 2.812

dtp2 0.8499 1.1766 0.3914 1.845

dtp3 1.2519 0.7988 0.7513 2.086

dtp4 1.3495 0.7410 0.7282 2.501

dtp5 0.6128 1.6318 0.2506 1.499

dtp6 0.9051 1.1048 0.5128 1.598

dtp7 1.5984 0.6256 0.9114 2.803

dtp8 1.2274 0.8147 0.6501 2.318

dtp9 0.7716 1.2959 0.4212 1.414
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There are now 9 exposure parameters: one for each risk period, for each of
the three doses. The three parameters corresponding to the [0, 3] day risk
periods are labelled dtp1, dtp4, dtp7. Their values are similar, so there is
little evidence of a dose effect. The parameters for the [4, 7] day risk periods
are labelled dtp2, dtp5, dtp8, and those for the [8, 14] day risk periods are
dtp3, dtp6, dtp9.

Inspection of the parameter estimates suggests that there is little evidence
of any effect other than in the [0, 3] day risk period, and little evidence of any
variation with dose (a more formal procedure will be described in Section 4.6).
Accordingly, we simplify the model to include only this risk period, and fit it
without the dose effect, that is, with the default setting sameexpopar = T:

dtp.mod3 <- standardsccs(event~dtp+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=cbind(dtp,dtpd2,

dtpd3), aedrug=cbind(dtp+3, dtpd2+3,

dtpd3+3), agegrp=ageg, dataformat="multi",

sameexpopar=T, data=dtpdat)

which yields:

> dtp.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.5187 0.6585 1.0795 2.137

In conclusion, there is a marginally significant effect in the risk period [0, 3]
days after DTP vaccination, RI = 1.52, 95% CI (1.08, 2.14), and little evidence
of a dose effect.

Note finally that we chose to name the first DTP dose dtp rather than dtp1

and the second and third DTP doses dtpd2 and dtpd3 rather than dtp2 and
dtp3 in order to avoid confusion with the parameters, which are labelled dtp1,

dtp2... . We shall use a similar convention with other multi-dose vaccines.

4.5 Multiple exposure types

In some circumstances, several exposures of different types (as distinct from
repeated exposures of the same type) may be associated with the event of
interest. It may then be advisable to include these different exposure types
simultaneously in the model. For both data formats, the additional exposure
types are included as additional columns. For the stack format, missing values
NA are used as padding when the number of exposures for different types differ.
For example, suppose that there are two exposure types expo1 and expo2, and
that individual i with a single event at age t experiences two episodes [cj , dj ],
j = 1, 2, of the first exposure type, and three episodes [ek, fk], k = 1, 2, 3, of
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the second exposure type. In data format stack, the data for individual i will
then be as follows:

indiv astart aend aevent expo1 endexpo1 expo2 endexpo2

......

i a b t c1 d1 e1 f1

i a b t c2 d2 e2 f2

i a b t NA NA e3 f3

......

We consider examples in both data formats.

4.5.1 Exposures of several types: convulsions, Hib and MMR
vaccines

In this example, there is at most one instance of each exposure for each case,
so the two data formats coincide (and we use the default format). The vaccine
against Haemophilus influenzae type B (Hib) is administered to babies, with
a further booster dose in the second year of life. The present data concern
the possible association between Hib vaccination and convulsions in children
aged 366 to 730 days of age. However, this is also the age range at which
measles, mumps and rubella (MMR) vaccine is given, which has a well-known
association with convulsions. To investigate the association, if any, between
Hib booster vaccine and convulsions, it is therefore necessary to allow for
the effect of MMR vaccine, which may be given at the same time as or in
close temporal proximity to Hib vaccine. Thus, both exposure types must be
modelled simultaneously.

The jittered data include 2435 convulsions in 2201 children, and are in
data frame condat. Variables conv, mmr, hib are the ages at convulsion,
MMR vaccine and Hib vaccine, respectively. Most observation periods cover
the whole second year, so the histogram at age of event shown in Figure 4.7
is informative about the age effect – which is declining. We shall use 20-day
age groups, and risk periods [0,7] and [8,14] days after the Hib vaccine. The
model is specified as follows.

ageg <- seq(387,707,20)

con.mod1 <- standardsccs(event~hib+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=hib, aedrug=hib+14,

expogrp=c(0,8), agegrp=ageg, data=condat)

This produces the following results.

> con.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

hib1 0.9170 1.0905 0.5174 1.6253

hib2 1.6833 0.5941 1.0648 2.6610
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FIGURE 4.7
Age at convulsion for 2201 children aged 366 to 730 days.

The relative incidence in the [8, 14] day risk period is statistically significantly
raised: 1.68 with 95% CI (1.06, 2.66). However, 212 of the 542 Hib vaccines
administered were given on the same day as the MMR vaccine. We investigate
the impact of the MMR vaccine, using the same risk periods [0, 7] and [8, 14].

con.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+14,

expogrp=c(0,8), agegrp=ageg, data=condat)

This yields:

> con.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.0952 0.9131 0.8470 1.4162

mmr2 2.4257 0.4123 2.0081 2.9301

There is a strong effect in the [8, 14] day risk period: relative incidence 2.43,
95% CI (2.01, 2.93). This may affect the Hib results. In consequence, we need
to allow for the MMR-related exposures in the model for Hib vaccine. Thus,
the model should contain both the exposure related to Hib vaccination, and
the exposure related to MMR vaccination. The required model formula is of
the form:

hib + mmr + age.

This is implemented as follows.
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con.mod3 <- standardsccs(event~hib+mmr+age, indiv=case, astart=

sta, aend=end, aevent=conv, adrug=cbind(hib,mmr),

aedrug=cbind(hib+14,mmr+14), expogrp=list(c(0,8),

c(0,8)), agegrp=ageg, data=condat)

Note the use of a list to define expogrp: the kth element of the list defines the
risk periods for the kth exposure type. This makes it possible to specify dif-
ferent risk periods for Hib and MMR vaccines, if required. This code produces
the following output.

> con.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

hib1 0.8958 1.1163 0.4999 1.6054

hib2 1.0663 0.9378 0.6630 1.7150

mmr1 1.1061 0.9041 0.8511 1.4373

mmr2 2.4101 0.4149 1.9830 2.9291

The relative incidences for MMR are little different from those in model
con.mod2. However, the relative incidence for Hib vaccine in the risk period
[8, 14] days has changed compared to that obtained in model con.mod1. From
being significantly raised, it is now close to 1: relative incidence 1.07, 95%
CI (0.66, 1.72). We conclude that there is little evidence of an association be-
tween Hib vaccine and convulsions in the second week after vaccination with
the booster dose, though there is an association with MMR vaccine.

4.5.2 Multiple exposures of several types: NSAIDs,
antidepressants and GI bleeds

In Section 4.4.1, the association between non-steroidal anti-inflammatory
drugs (NSAIDs) and gastro-intestinal bleeding (GI bleeds) was discussed. It
has been suggested that some classes of antidepressants (ADs) are also asso-
ciated with GI bleeds.

To investigate this, we use simulated data on 1000 persons aged 20 to 100
years with a first GI bleed, similar to those described in Tata et al. (2005).
The exposures are of two types: NSAIDs and ADs. Each exposure is recurrent,
with up to 10 different periods on drug for each drug type. The data are in
data frame addat, in the default data format stack. Variables bleed, ns,
ad contain the ages at GI bleed, NSAID prescription and AD prescription,
respectively. Of the 1000 cases, 838 were exposed to NSAIDs and 502 to ADs;
340 were exposed to both NSAIDs and ADs. The ages at and durations of
NSAID exposures have already been shown in Figure 4.4; the corresponding
plot for AD exposures is shown in Figure 4.8.

Periods on ADs are spread throughout the age range. Most are very brief,
though there are clusters of longer treatment periods in middle and later age.
As for the NSAIDs analysis in Section 4.4.1, we shall use 40 age groups defined
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FIGURE 4.8
Age and duration of exposure to antidepressants.

by the quantiles of age at GI bleed. The SCCS model with AD exposure alone
is specified as follows.

ageq <- floor(quantile(addat$bleed[duplicated(addat$case)==0],

seq(0.025,0.975,0.025), names=F))

ad.mod1 <- standardsccs(event~ad+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=ad, aedrug=endad, agegrp=ageq, data=addat)

This gives:

> ad.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

ad1 1.36490 0.73265 1.03222 1.8048

Thus, ADs are marginally significantly associated with GI bleeds: the relative
incidence is 1.36, 95% CI (1.03, 1.80) in an analysis with just ADs.

The analysis with both ADs and NSAIDS is specified as follows.

ad.mod2 <- standardsccs(event~ns+ad+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,endad),

agegrp=ageq, data=addat)

This model produces the following results.
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> ad.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 1.98669 0.50335 1.61737 2.4403

ad1 1.27799 0.78248 0.96452 1.6933

The relative incidence for ADs is slightly reduced, to 1.28, with 95% CI
(0.96, 1.69), and is now marginally non-significant. The relative incidence for
NSAIDs is also slightly lower than in the model for NSAIDs alone described
in Section 4.4.1, though still highly statistically significant, with a relative
incidence of 1.99, 95% CI (1.62, 2.44).

4.5.3 Multiple doses of different vaccines: convulsions, DTP
and Hib vaccines

In this example we present data on two vaccine exposures, with data in format
multi. In Section 4.4.2 the association between diphtheria, tetanus and pertus-
sis (DTP) vaccination and convulsions in the first year of life was discussed. In
the present example, our focus is still on DTP vaccine, but we also include ex-
posures related to primary vaccination with the vaccine against Haemophilus
influenzae type b (Hib) which, like DTP vaccine, is administered in three
doses during the first year of life.

The data comprise 1213 cases with 1378 convulsions (one fewer than in the
DTP data of Section 4.4.2: one case with incorrect Hib vaccine information
was deleted). The jittered data are in data frame hibdat; conv is the age at
convulsion. The ages at the three doses of DTP vaccine are in dtp, dtpd2,

dtpd3. The ages at the three doses of Hib vaccine are in hib, hibd2, hibd3.
The numbers of DTP vaccinated cases are 1068, 1036, 950 for doses 1, 2 and

3 respectively. For Hib vaccine, the numbers are 662, 615, 550. Figure 4.9 shows
the scatterplot of age at Hib and age at DTP vaccines, all doses combined, for
cases with both vaccines. The strong diagonal indicates that many DTP and
Hib vaccines are given on the same day. For those that are not, Hib vaccines
tend to be given later. (Since these data were collected, the DTP and Hib
antigens have been combined into a single vaccine.) We shall use different risk
periods for the two vaccines. For DTP vaccine the risk periods are [0, 3], [4, 7]
and [8, 14] days after each dose. For Hib vaccine we use risk periods [0, 7] and
[8, 14] after each dose. The age groups are as in Section 4.4.2.

Recall from Section 4.4.2 that the relative incidence was raised in the
[0, 3] day period after DTP, with little evidence of a dose effect: in model
dtp.mod1, RI = 1.50, 95% CI (1.06, 2.12). To two decimal places, the same
result is obtained in the present data set.

We shall first of all fit a SCCS model in which it is assumed that the effect
is the same at all doses of each vaccine. Thus, there are 5 vaccine-related
parameters: 3 for the common effect of DTP, and 2 for the common effect of
Hib vaccine. This model is specified as follows.
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FIGURE 4.9
Scatterplot of ages at Hib and DTP vaccines, all doses combined.

ageg <- c(57,85,113,141,169,197,225,253,281,309,337)

hib.mod1 <- standardsccs(event~dtp+hib+age, indiv=case, astart=

sta, aend=end, aevent=conv, adrug=list(cbind(dtp,

dtpd2,dtpd3),cbind(hib,hibd2,hibd3)), aedrug=

list(cbind(dtp+14,dtpd2+14,dtpd3+14),cbind(hib+14,

hibd2+14,hibd3+14)),expogrp=list(c(0,4,8),c(0,8)),

agegrp=ageg, dataformat="multi", data=hibdat)

Note that the exposure information is now specified using lists. The first ele-
ments of lists adrug, aedrug and expogroup relate to the first exposure type,
namely DTP vaccine, and the second elements of the lists relate to the second
exposure type, namely Hib vaccine. For adrug and aedrug, the various doses
within each exposure type are entered as an array with dose 1 in the first
column, dose 2 in the second, and so on.

This model yields the following results.

> hib.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.3822 0.7235 0.9240 2.0678

dtp2 0.8232 1.2147 0.5080 1.3341

dtp3 1.2778 0.7826 0.8757 1.8645

hib1 1.1526 0.8676 0.7990 1.6627

hib2 0.5514 1.8135 0.3384 0.8985

Here, dtp1 refers to the relative incidence (RI) in the [0, 3] risk period, dtp2
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is the RI in the [4, 7] day risk period and dtp3 is the RI in the [8, 14] day
risk period after any DTP vaccine dose. Similarly, hib1 and hib2 are the
RIs for the [0, 7] and [8, 14] day periods after any Hib vaccine dose. None
of the exposure effects are statistically significant. We simplify the model by
restricting the risk periods to [0, 3] days for DTP vaccine and [0, 7] days for
Hib vaccine:

hib.mod2 <- standardsccs(event~dtp+hib+age, indiv=case, astart=

sta, aend=end, aevent=conv, adrug=list(cbind(dtp,

dtpd2,dtpd3), cbind(hib,hibd2,hibd3)), aedrug=

list(cbind(dtp+3,dtpd2+3,dtpd3+3),cbind(hib+7,

hibd2+7,hibd3+7)), agegrp=ageg, dataformat="multi",

data=hibdat)

This yields:

> hib.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.4472 0.6910 0.9907 2.114

hib1 1.1037 0.9061 0.7946 1.533

The DTP vaccine-associated relative incidence in the [0, 3] day period, when
exposure due to Hib vaccine is included in the model, is 1.45, 95% CI
(0.99, 2.11), which is marginally statistically non-significant. To check whether
there is a dose effect of DTP vaccine in this risk period, we now specify
sameexpopar=c(F,T). This signifies that for the first exposure type (namely
the three DTP doses) we set sameexpopar=F and so fit dose-specific param-
eters for the three doses, while for the second exposure type (the three Hib
vaccine doses) we retain the default sameexpopar=T and fit a common param-
eter for the three doses. The model is specified as follows.

hib.mod3 <- standardsccs(event~dtp+hib+age, indiv=case, astart=

sta, aend=end, aevent=conv, adrug=list(cbind(dtp,

dtpd2,dtpd3), cbind(hib,hibd2,hibd3)), aedrug=

list(cbind(dtp+3,dtpd2+3,dtpd3+3),cbind(hib+7,

hibd2+7,hibd3+7)), sameexpopar=c(F,T), agegrp=

ageg, dataformat="multi", data=hibdat)

This yields:

> hib.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.4722 0.6792 0.8094 2.678

dtp2 1.3177 0.7589 0.6989 2.484

dtp3 1.5460 0.6468 0.8624 2.772

hib1 1.1034 0.9063 0.7944 1.533
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Note that the meanings of dtp1, dtp2 and dtp3 have changed. They now
represents the effects of doses 1, 2 and 3 of the DTP vaccine, in the [0, 3] day
risk period after each dose, respectively. These are 1.47 at dose 1, 1.32 at dose
2 and 1.55 at dose 3. These values are similar, suggesting there is no dose
effect. We conclude that the evidence for a DTP effect is weak, and that there
is little indication of variation with dose.

4.5.4 Overlapping risk periods: convulsions and DTP

In this section we discuss in a little more detail how overlapping risk periods
are handled. Consider two exposures, labelled 1 and 2, experienced by the same
individual. Exposure 1 occurs in interval [c1, d1] and exposure 2 in [c2, d2]. An
overlap occurs if, for example, c1 < c2 < d1 < d2: the risk periods then overlap
in [c2, d1]. This is represented graphically in Figure 4.10.

c1 c2 d2d1

overlap

FIGURE 4.10
Overlapping risk periods for distinct exposures.

Suppose that β1 is the log relative incidence associated with exposure 1,
and β2 is the log relative incidence associated with exposure 2. Under the
standard parameterisation used in format stack, with exposures 1 and 2 en-
tered in distinct columns, the combined effect of these exposures in the overlap
[c2, d1] is β1 +β2. However, if exposures 1 and 2 are adjacent doses of the same
drug, then in format multi a different parameterisation is used: precedence
is given to the most recent dose. Thus, for the scenario represented in Fig-
ure 4.10, the combined exposure effect in the overlap [c2, d1] is β2, since the
most recent dose is exposure 2. This convention is also used for overlapping
risk periods of the same exposure with data in either format.

The two conventions produce different results when there are overlaps
between doses. To illustrate this, consider once more the data on convulsions
and DTP vaccine (and Hib vaccine, though we shall not use these) described in
Section 4.5.3. The minimum separation between adjacent doses of the vaccine
is 6 days: thus, for risk periods of 6 days or more post-vaccination, there
will be overlaps. We take the risk period [0, 14] days after each DTP dose,
and the same age groups as in Section 4.5.3. Using data format multi with
sameexpopar=F to allow dose-specific parameters , the model is as follows:

ageg <- c(57,85,113,141,169,197,225,253,281,309,337)

hib.mod4 <- standardsccs(event~dtp+age, indiv=case,

astart=sta, aend=end, aevent=conv, adrug=
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cbind(dtp,dtpd2,dtpd3), aedrug=

cbind(dtp+14,dtpd2+14,dtpd3+14), agegrp=

ageg, dataformat="multi", sameexpopar=F,

data=hibdat)

This yields:

> hib.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.2288 0.8138 0.8352 1.808

dtp2 0.9438 1.0595 0.6314 1.411

dtp3 1.1145 0.8973 0.7755 1.602

Now suppose we use data format stack, and enter the three DTP doses as
different exposure types:

hib.mod5 <- standardsccs(event~dtp+dtpd2+dtpd3+age,

indiv=case, astart=sta, aend=end, aevent=conv,

adrug=list(dtp,dtpd2,dtpd3), aedrug=list(dtp+14,

dtpd2+14,dtpd3+14), agegrp=ageg, dataformat=

"stack", data=hibdat)

This now yields:

> hib.mod5

......

exp(coef) exp(-coef) lower .95 upper .95

dtp1 1.2275 0.8146 0.8344 1.806

dtpd21 0.9405 1.0632 0.6293 1.406

dtpd31 1.1144 0.8974 0.7755 1.601

The parameter names are different from those obtained using data format
multi as the exposures are treated as being of different types, rather than
doses of the same type. More importantly, the numerical values differ slightly:
this is entirely due to the different conventions used in treating overlaps.

If we were to repeat this analysis with the risk period [0, 3] days, for ex-
ample, the two models would yield identical results. This is because there are
no overlaps, since the minimum separation between doses is 6 days.

4.6 Comparing models: likelihood ratio tests

Likelihood ratio tests are used to test null hypotheses θ1 = · · · = θk = 0,
where the θj are parameters of the model. They may also be used to test
null hypotheses of the form θ1 = · · · = θk, which is equivalent to θ2 − θ1 =
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0, . . . , θk − θ1 = 0. This is achieved by fitting nested models M1 (the reduced
model) and M2 (the full model) with p1 and p2 parameters, where M1 ⊂
M2 and p1 < p2. (Model M1 is nested within model M2 if setting p2 − p1

parameters to zero in model M2 yields model M1.) The likelihood ratio test
statistic is

LRT = −2{log(L1)− log(L2)},

where L1 is the maximised likelihood for the reduced model M1 and L2 is the
maximised likelihood for the full model M2. Under the null hypothesis that
the true model is M1, LRT has approximately a chi-squared distribution on
p2 − p1 degrees of freedom in large samples.

This applies only to models that are nested one within the other. In the
case of SCCS models, some care is needed when testing null hypotheses of the
form θ1 = · · · = θk. If the reduced model is obtained by combining categories
(such as risk periods, for example), the reduced model is no longer strictly
nested within the full model, since the multinomial categories have changed.
However, combining categories in this way only affects the constant multiplier
of the multinomial likelihood: provided an appropriate correction factor is
applied, the likelihood ratio test can still validly be used. The details are
given in Section 4.6.2, which is starred and may be skipped. The function
lrtsccs in package SCCS automatically applies this correction factor. The use
of this function is described in Section 4.6.1.

4.6.1 Comparing models: ITP and MMR vaccine

We return to the example on MMR vaccine and idiopathic thrombocytopaenic
purpura (ITP) described in Section 4.3.1. Consider the following sequence of
four SCCS models.

itp.mod1 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

itp.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

agegrp=c(427,488,549,610,671), data=itpdat)

itp.mod3 <- standardsccs(event~age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

itp.mod4 <- standardsccs(event~mmr, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

Models itp.mod1 and itp.mod2 are the same as those fitted in Section 4.3.1.
Model itp.mod1 is the full model with both exposure and age effects. The
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other three are reduced models: in itp.mod3 the exposure effect is omitted
from the model formula (which is equivalent to assuming that the relative
incidence is 1 for the three post MMR vaccine risk groups), in itp.mod4 the
age effect is omitted (equivalent to assuming that there is no age effect), while
in itp2 the three risk groups [0, 14], [15, 28] and [29, 42] are collapsed into
one, which corresponds to the null hypothesis β1 = β2 = β3. Models itp.mod3
and itp.mod4 are nested within itp.mod1. The corresponding likelihood ratio
tests may be undertaken as follows.

> lrtsccs(itp.mod1,itp.mod3)

test df pvalue

13.43 3 0.003793

The likelihood ratio test statistic for the null hypothesis that there is no ex-
posure effect is 13.43 on 3 degrees of freedom, p = 0.0038. Thus, the exposure
effect is highly statistically significant.

> lrtsccs(itp.mod1,itp.mod4)

test df pvalue

10.28 5 0.06768

The age effect, on the other hand, is marginally statistically non-significant,
with χ2(5) = 10.28, p = 0.068.

The reduced model itp.mod2 is not strictly speaking nested within the
full model itp.mod1, as the three risk groups have been merged into one.
This is taken into account by the R function lrtsccs, which produces a valid
likelihood ratio test for these models.

> lrtsccs(itp.mod1,itp.mod2)

test df pvalue

4.865 2 0.08782

Here we have χ2(2) = 4.87, p = 0.088. Thus there is little evidence against the
null hypothesis that the relative incidence is the same in all three risk periods.

Note finally that the order in which the models are specified in lrtsccs

is immaterial.

4.6.2 Combining multinomial categories*

To make matters definite, suppose that the null hypothesis is βk = βl for
0 ≤ k, l ≤ K. Let M1 denote the reduced model with the same multinomial
categories as the full modelM2, and letM

′

1 denote the collapsed reduced model
with exposure categories k and l combined into a single new category labelled

* This section may be skipped.
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m. Thus, λijk = λijl = λijm in the reduced models. Also, eijm = eijk + eijl
and nijm = nijk + nijl.

The multinomial likelihood contributions L
′

ijm of the new exposure cate-

gory m in the collapsed reduced model M
′

1 and of exposure categories k and
l in the reduced original model M1 are related as follows:

L
′

ijm =
( λijmeijm∑

r,s λirseirs

)nijm

=
e
nijm

ijm

e
nijk

ijk e
nijl

ijl

×
( λijkeijk∑

r,s λirseirs

)nijk

×
( λijleijl∑

r,s λirseirs

)nijl

= constant× Lijk × Lijl.

The multinomial likelihood contributions thus differ only by a constant term,
and hence the overall likelihoods for models M1 and its collapsed version M

′

1

are proportional, that is, L
′

1 = cL1. The same constant multiplier applies to
the null models with all age and exposure parameters set to zero: L

′

0 = cL0.
The likelihood ratio test statistic may therefore be written as follows:

LRT = −2{log(L1)− log(L2)}

=
[
− 2{log(L

′

1)− log(L
′

0)}
]
−
[
− 2{log(L2)− log(L0)}

]
.

This involves the full model M2 and the collapsed reduced model M
′

1, and
their null counterparts. The full model M2 and the collapsed reduced model
M
′

1 can be compared using the likelihood ratio test in this way. The R function
lrtsccs makes use of this identity to obtain the likelihood ratio test statistic.

4.7 Interactions: effect modification and stratification

In the examples considered so far, all model formulas have been of the form

Age + Exposure(s).

Others are of course possible. In particular, while time-invariant multiplica-
tive covariates factor out of the SCCS likelihood, we can still examine their
impact as effect modifiers on the association between exposure and event, via
the interaction between the covariate and the exposure variable. This would
involve fitting a model with model formula

Age + Exposure + Exposure.Covariate

where Exposure.Covariate is the interaction term between the covariate and
the exposure variable. Note that the main effect of the covariate is not included
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in the model formula, since it cannot be estimated in a SCCS model as it drops
out of the likelihood.

Interactions between one or more time-invariant covariates and the age
effect can also be included in the model. When the covariate is a factor, the
model is then stratified by the levels of the covariate. The model formula is
then

Age + Exposure + Age.Covariate

Finally, if there are several time-varying exposures, we might be interested in
the interaction between them. This is represented by the model formula

Age + Exposure1 + Exposure2 + Exposure1.Exposure2.

Combinations of these models may also be used.
Models with these model formulas can be parameterised in several ways.

Which parameterisation is preferable depends on context. For example, sup-
pose that the covariate is a factor. The model formula

Age + Exposure + Exposure.Covariate

can be fitted in two different ways. Using the crossing operator * as in Age

+ Exposure*Covariate returns the interaction terms, which indicate the
amount by which the covariate modifies the effects of exposure. Using the
nesting operator / as in Age + Covariate/Exposure returns the exposure
effect at each level of the covariate.

4.7.1 Interactions: sex, ITP and MMR vaccine

The incidence of idiopathic thrombocytopaenic purpura (ITP) is known to
depend on gender, being more common in males. This raises two questions:
might sex be an effect modifier for the association between MMR vaccine and
ITP? And might the age-related incidence of ITP be different in males and
females? To answer these questions we continue the example of Sections 4.3.1
and 4.6.1. We fit models with suitable interaction terms.

We begin with effect modification. We define a new model itp.mod5 with
the interaction between sex and exposure. Sex is coded 1 for males and 2 for
females, and is entered in the model as a factor.

itp.mod5 <- standardsccs(event~factor(sex)*mmr+age, indiv=case,

astart=sta, aend=end, aevent=itp, adrug=mmr, aedrug=

mmr+42, expogrp=c(0,15,29), agegrp=c(427,488,549,

610,671), data=itpdat)

The likelihood ratio test of the null hypothesis that the interaction terms are
zero is as follows; itp.mod1 defined in Sections 4.3.1 and 4.6.1 is the reduced
model with no interactions.
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> lrtsccs(itp.mod1,itp.mod5)

test df pvalue

0.5973 3 0.8971

The p-value being 0.90, there is little evidence to reject the null hypothesis
that the interaction terms are zero. The model parameters are as follows.

> itp.mod5

......

exp(coef) exp(-coef) lower .95 upper .95

factor(sex)2 NA NA NA NA

mmr1 1.0336 0.9675 0.13439 7.9494

mmr2 4.7702 0.2096 1.53093 14.8635

mmr3 2.8557 0.3502 0.62508 13.0465

age2 0.6723 1.4875 0.29844 1.5144

age3 0.2185 4.5758 0.06123 0.7801

age4 0.3008 3.3246 0.09601 0.9423

age5 0.4070 2.4570 0.14124 1.1728

age6 0.4193 2.3848 0.14459 1.2161

factor(sex)2:mmr1 1.8165 0.5505 0.09525 34.6442

factor(sex)2:mmr2 1.7478 0.5722 0.31114 9.8178

factor(sex)2:mmr3 0.8139 1.2286 0.05873 11.2801

The first row in this portion of the output shows the main effect of sex: this is
not estimable in a SCCS model, hence all entries are missing. R also produces
a warning message (not shown) relating to this. Then come the three main
effects of exposure: the values in column exp(coef) are the relative incidences
in males. These are followed by the main effects of age. Finally, the last three
rows are the interactions between sex and exposure. The values in column
exp(coef) are the amounts by which the exposure effect in males must be
multiplied to get the exposure effect in females. None of these interactions are
individually significant, in line with the result of the likelihood ratio test: we
conclude that there is little evidence of gender-related effect modification.

We now turn to the interaction between sex and age. The issue here is
whether we ought to stratify the analysis by sex, so that the age effect is al-
lowed to be different in males and females. Thus, it is convenient to use the
parameterisation giving relative age effects within males and females (rather
than the effect modification). Accordingly we specify the model with the nest-
ing operator /.

itp.mod6 <- standardsccs(event~mmr+factor(sex)/age, indiv=case,

astart=sta, aend=end, aevent=itp, adrug=mmr, aedrug=

mmr+42, expogrp=c(0,15,29), agegrp=c(427,488,549,

610,671), data=itpdat)

The parameters of the model itp.mod6 are as follows.
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> itp.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.326e+00 7.539e-01 0.29977 5.869

mmr2 5.846e+00 1.711e-01 2.42032 14.121

mmr3 2.524e+00 3.961e-01 0.71085 8.965

factor(sex)2 NA NA NA NA

factor(sex)1:age2 9.383e-01 1.066e+00 0.32695 2.693

factor(sex)2:age2 3.915e-01 2.554e+00 0.10160 1.509

factor(sex)1:age3 1.357e-01 7.368e+00 0.01622 1.136

factor(sex)2:age3 3.118e-01 3.208e+00 0.06472 1.502

factor(sex)1:age4 2.745e-01 3.643e+00 0.05542 1.360

factor(sex)2:age4 3.368e-01 2.969e+00 0.06952 1.632

factor(sex)1:age5 7.854e-01 1.273e+00 0.23885 2.583

factor(sex)2:age5 3.204e-09 3.121e+08 0.00000 Inf

factor(sex)1:age6 4.782e-01 2.091e+00 0.11729 1.950

factor(sex)2:age6 3.425e-01 2.920e+00 0.07068 1.659

Note first that the relative incidences associated with MMR vaccination
(shown in the first three rows of this output) are only marginally affected
by stratifying the age effect, compared to those of model itp.mod1 from Sec-
tion 4.3.1. The last 10 rows show the age effect, stratified by sex. The relative
age effect in girls in age group 5 is 0.0000 because there are no events in this
category. Figure 4.11 displays the stratified age effect.
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FIGURE 4.11
Relative age effects for ITP data, stratified by sex. Left: males. Right: females.

This plot is obtained using the following code:

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

am<-c(1,itp.mod6$coef[c(5,7,9,11,13),2],itp.mod6$coef[13,2])
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af<-c(1,itp.mod6$coef[c(6,8,10,12,14),2],itp.mod6$coef[14,2])

age<-c(366,427,488,549,610,671,730)

plot(age, am, type="s", ylim=c(0,2), xlab="age (days)",

ylab="age effect, males")

plot(age, af, type="s", ylim=c(0,2), xlab="age (days)",

ylab="age effect, females")

The likelihood ratio test of the null hypothesis of no interaction between
sex and age is as follows.

> lrtsccs(itp.mod1,itp.mod6)

test df pvalue

7.384 5 0.1936

Thus there is little evidence to reject the null hypothesis that there is no
interaction between age and sex, since p = 0.19. All in all, it would appear
that stratifying the analysis by sex is not necessary.

4.7.2 Interactions between exposures: GI bleeds, NSAIDs
and antidepressants

In Section 4.5.2, simulated data were used to illustrate the effects of non-
steroidal anti-inflammatory drugs (NSAIDs) and antidepressants (ADs) on
gastro-intestinal (GI) bleeds. For NSAIDs, the relative incidence was 1.99
and highly statistically significant; for ADs it was 1.28 and marginally non-
significant. It has been suggested, however, that the effect of ADs can be higher
when taken in conjunction with an NSAID. Thus, the interaction between
these drugs is of interest.

The baseline model includes the exposure effects of both NSAIDs and ADs,
but no interaction; this was model ad.mod2 in Section 4.5.2. For completeness,
here it is again, along with edited output.

> ageq <- floor(quantile(addat$bleed[duplicated(addat$case)==0],

seq(0.025,0.975,0.025), names=F))

> ad.mod2 <- standardsccs(event~ns+ad+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,endad),

agegrp=ageq, data=addat)

> ad.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 1.98669 0.50335 1.61737 2.4403

ad1 1.27799 0.78248 0.96452 1.6933

We now include the interaction between the two exposures, starting with the
effect modification parameterisation.
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ad.mod3 <- standardsccs(event~ns*ad+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,endad),

agegrp=ageq, data=addat)

This yields (the interaction term is at the bottom of the output table):

> ad.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 2.14232 0.46678 1.72896 2.6545

ad1 1.48872 0.67172 1.09600 2.0222

......

ns1:ad1 0.54922 1.82076 0.31654 0.9529

The interaction is 0.55, 95% CI (0.32, 0.95). As the confidence interval excludes
1, the interaction is statistically significant, as confirmed by the likelihood ratio
test:

> lrtsccs(ad.mod2,ad.mod3)

test df pvalue

4.701 1 0.03015

In the absence of ADs, the relative incidence associated with NSAIDs is 2.14,
95% CI (1.73, 2.65). In the absence of NSAIDs, the relative incidence associ-
ated with ADs is 1.49, 95% CI (1.10, 2.02). Thus, both drugs, on their own, are
significantly positively associated with GI bleeds. The interaction term is 0.55;
this being less than 1, it corresponds to an inhibitory effect. The relationship
between the relative incidences is as follows:

RINSAID+AD = RINSAID ×RIAD ×RIInteraction.

Thus, we have

RINSAID+AD = 2.14232× 1.48872× 0.54922

' 1.75.

Thus, the relative incidence associated with both NSAIDs and ADs is higher
than with ADs alone, but not as high as if no interaction were present, in
which case, from ad.mod2, it would be 1.99 × 1.28 ' 2.54. The inhibitory
effect of the interaction is represented graphically in Figure 4.12.

In the presence of NSAIDs, do ADs significantly increase the risk of a GI
bleed over and above the risk level associated with NSAIDs? This may be
answered directly using the alternative parameterisation:

ad.mod4 <- standardsccs(event~ns/ad+relevel(age,ref=21),

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,endad),

agegrp=ageq, data=addat)
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FIGURE 4.12
Relative incidences: models with (full lines) and without (dashes) interaction.

This yields (again, the interaction terms are at the end of the output table):

> ad.mod4

....

exp(coef) exp(-coef) lower .95 upper .95

ns1 2.14232 0.46678 1.72896 2.6545

......

ns0:ad1 1.48872 0.67172 1.09600 2.0222

ns1:ad1 0.81764 1.22304 0.49213 1.3585

The last term is the relative incidence associated with ADs, in the presence of
NSAIDs. It is 0.82, 95% CI (0.49, 1.36): the effect is not statistically significant.
We conclude that, when taken alone, both NSAIDs and ADs increase the
risk of a GI bleed. When taken together, there is no evidence that the risk
associated with ADs is greater than that associated with NSAIDs alone: if
anything, the risk appears to be reduced.

4.8 Indefinite and extremal risk periods

A common misconception about SCCS studies is that risk periods must be of
short duration and transient. They need not be either, though exposures do
need to be time-varying. Long risk periods are perfectly acceptable, though
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they do have efficiency implications, to be examined in Chapter 8. In fact,
risk periods can be indefinite, so that an individual at risk stays at risk for
the remainder of the observation period. In this section, we consider some of
the modelling issues relating to risk periods of this type. We also consider
situations in which risk periods, though of finite duration, necessarily always
occur at the beginning of the observation period. Both settings share the
characteristic that time at risk always follows, or always precedes, control
time: we refer to them as involving extremal risk periods.

The main modelling issue confronting SCCS analyses of this type is po-
tential confounding between age effects and exposure effects. It is sensible to
assess the potential for confounding prior to analysis. Methods for doing this
vary between applications, so we proceed by discussing three examples. In all
three there is only one exposure, and hence data formats multi and stack

coincide.

4.8.1 Curtailed observation: antidiabetics and fractures

If it is not known what the risk profile is likely to be after the end of a
treatment period, one option is to curtail the observation period at the end
of treatment: this circumvents having to make any assumption about the
level of risk following the end of treatment. We present an instance of such a
design, using 2000 simulated events based on Douglas et al. (2009). This was
an investigation of the association between treatment with thiazolidinedione
antidiabetic drugs and fractures. A single risk period was used, comprising the
period from initiation of treatment until 60 days after the first interruption of
treatment for more than 60 days. The risk and observation periods are shown
in Figure 4.13.

start of
observation

end of
observation

start of
treatment

end of
treatment

FIGURE 4.13
Observation and risk periods for the antidiabetics and fracture study.

Curtailing the observation period at a time determined by the exposure
history is perfectly acceptable in SCCS studies (see Chapter 3, Section 3.7).
However, care is required to ensure that age effects are fully allowed for in the
analysis. The risk period always follows the control period: since the incidence
of fractures increases with age, failure to control for age effects will bias the
relative incidence upwards.
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In this example, separating the effects of age and exposure is further com-
plicated by the fact that only cases with exposure to the drug were sampled.
The data are in data frame adidat; variable frac is the age at first fracture,
variable adi is the age at the start of first antidiabetic treatment. We shall
use age groups defined by 40 quantiles of frac. To ensure that age and ex-
posure effects can be separated, we need to check that there is both exposed
and unexposed time within each age group. A visual check is provided by
Figure 4.14, which is obtained as follows.

ageq <- quantile(adidat$frac, seq(0.025,0.975,0.025), names=F)

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

vals <- c(min(adidat$sta),ageq,max(adidat$end))/365.25

plot(adidat$adi/365.25, adidat$frac/365.25, xlim=

c(min(adidat$sta)/365.25,max(adidat$end)/365.25),

xlab="age at drug (years)", ylab="age at event (years)",

pch=16, cex=0.5)

abline(v=vals, lty=2)
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FIGURE 4.14
Scatterplot of age at fracture and age at drug for antidiabetics data. Vertical
dashed lines denote the age group boundaries.

Figure 4.14 shows that each age group contains values of adi and hence both
exposed and unexposed observation time. Thus, the data contain the infor-
mation required to separate the effects of age and exposure.

The overall effect of exposure to this class of antidiabetics is obtained as
follows.
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adi.mod1 <- standardsccs(event~adi+age , indiv=case,

astart=sta, aend=end, aevent=frac, adrug=

adi, aedrug=end, expogrp=0, agegrp=ageq,

data=adidat)

The results are as follows:

> adi.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

adi1 1.5569 0.6423 1.3504 1.795

Thus the relative incidence is 1.56, with 95% CI (1.35, 1.80).
The age-specific relative incidence is relatively steady to age 70 then in-

creases sharply. It is shown in Figure 4.15, obtained using the following code.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

acoef <- as.vector(adi.mod1$coef[2:40,2])

aeffect <- c(1,acoef,acoef[39])

plot(vals, aeffect, type="s", xlab="age (years)",

ylab="age effect")
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FIGURE 4.15
Estimated relative age effect for fracture in antidiabetics data.

Also of interest is whether the relative incidence varies with time since the
beginning of treatment. To investigate this we introduce additional cutpoints
to obtain the relative incidences at intervals roughly corresponding to 0–1,
1–2, 2–3, 3–4, 4–5, 5–6 and 6+ years after the beginning of treatment.
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exint <- c(0,366,731,1096,1461,1826,2191)

adi.mod2 <- standardsccs(event~adi+age, indiv=case,

astart=sta, aend=end, aevent=frac, adrug=

adi, aedrug=end, expogrp=exint, agegrp=ageq,

data=adidat)

This gives the following results.

> adi.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

adi1 1.2932 0.7733 1.0808 1.5475

adi2 1.4454 0.6918 1.1762 1.7762

adi3 1.9328 0.5174 1.5528 2.4059

adi4 2.6115 0.3829 2.0649 3.3027

adi5 2.7269 0.3667 2.0873 3.5625

adi6 2.3144 0.4321 1.6850 3.1788

adi7 1.5988 0.6255 1.1559 2.2113

The relative incidence increases up to 4–5 years after the beginning of treat-
ment, then declines. This age variation may be investigated further using a
likelihood ratio test.

> lrtsccs(adi.mod1,adi.mod2)

test df pvalue

58.25 6 1.02e-10

Since p < 0.0001, the variation of the relative incidence with time since start
of treatment is highly statistically significant.

4.8.2 Indefinite risk periods: MMR vaccine and autism

In the applications considered so far, the events of interest have generally been
acute, with a clearly defined time of onset. The SCCS method can also, in some
circumstances, be used with conditions that develop gradually, and to which a
time of onset can at best only be ascribed notionally. For such conditions, using
short risk periods is not sensible: long or indefinite risk periods are needed,
that allow time for the condition of interest to emerge and be diagnosed.
Indefinite risk periods are also suitable if it is hypothesised that the risk of
the event is increased at all times after the beginning of the exposure.

Autism and its potential association with MMR vaccine provides an in-
stance of such a setting. The present example uses simulated data based on
Taylor et al. (1999); an analysis using indefinite risk periods is presented in
Farrington et al. (2001). The data, in data frame autdat, include age at MMR
vaccination, in variable mmr, and age at autism diagnosis, in variable diag, for
350 cases of autism.

The observation periods used in the present example span ages from 275
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days (9 months) to 5730 days (15.7 years) of age. Unlike the antidiabetics
example of Section 4.8.1, age at exposure (median 1.2 years) generally precedes
age at event (median 3.2 years), as shown in Figure 4.16.

age at MMR vaccination (years)

Fr
eq

ue
nc

y

0 5 10 15

0
50

10
0

15
0

20
0

age at autism diagnosis (years)

Fr
eq

ue
nc

y
0 5 10 15

0
50

10
0

15
0

20
0

FIGURE 4.16
Age distributions for MMR and autism data. Left: MMR vaccination. Right:
autism diagnosis.

Key to separating the effects of age and time since MMR in these data
is the presence of 64 unvaccinated autism cases. The inclusion of 42 cases
vaccinated after the second year of life, under the MMR vaccination catch-up
programme, also helps. In view of the substantial age variation in MMR and
autism diagnosis, it is sensible to use a fine partition of age. We shall use 40
quantiles of diag.

ageq <- quantile(autdat$diag, seq(0.025,0.975,0.025), names=F)

aut.mod1 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=diag, adrug=mmr, aedrug=end,

expogrp=0, agegrp=ageq, data=autdat)

This yields

> aut.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.051 0.95157 0.5176 2.133

Thus there is little evidence of an association: the relative incidence is 1.05,
with 95% CI (0.52, 2.13). It is also of interest to investigate the variation of the
relative incidence with time since MMR vaccination. This is achieved by the
following code, where cutpoints have been included to split the risk intervals
into 0–2, 2–4, 4–6 and 6+ years since vaccination.
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exint <- c(0,731,1461,2191)

aut.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=diag, adrug=mmr, aedrug=end,

expogrp=exint, agegrp=ageq, data=autdat)

This produces the following results.

> aut.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.0497 0.95261 0.5152 2.139

mmr2 0.8987 1.11271 0.3987 2.026

mmr3 0.7765 1.28785 0.2586 2.332

mmr4 1.1800 0.84747 0.3317 4.198

Thus there is little evidence of a statistically significant effect in any of these
periods since MMR vaccination.

The autism data provide an opportunity to demonstrate the benefit of
including unexposed cases in SCCS models when age and exposure effects
are likely to be confounded. This is the case with the present data, owing
to the positive correlation in vaccinated cases between time since vaccination
and age, which is mitigated but not eliminated by the presence of some late
vaccinees.

To this end, we refit the model with time since MMR vaccination, using
subset to select only vaccinated cases:

aut.mod3 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=diag, adrug=mmr, aedrug=end,

expogrp=exint, agegrp=ageq,

data=subset(autdat,mmr>0))

This yields:

> aut.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.5059 0.66404 0.61946 3.661

mmr2 1.4322 0.69822 0.47842 4.287

mmr3 2.6981 0.37063 0.51315 14.186

mmr4 8.1960 0.12201 0.88158 76.199

The estimates, though still not statistically significantly greater than 1, are
higher than those obtained from model aut.mod2, and also much less precise,
as shown by the width of the confidence intervals. The contrast is particularly
striking for the later times since vaccination. The reason for the difference
is that, when unvaccinated cases are excluded, there is little information to
distinguish between the effects of age and time since vaccination, particu-
larly at older ages and longer times since vaccination. Including unvaccinated
cases increases the information available on age effects. This in turn reduces
confounding, and improves the estimation of vaccine effects.
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4.8.3 Initial risk periods: NRT and MI

In this final example on extremal risk periods we consider an application
where the risk period is always at the start of the observation period – and
furthermore, in which all individuals are exposed. The exposure is the ini-
tiation of nicotine replacement therapy (NRT), and the outcome is the first
myocardial infarction. Smokers who experience a myocardial infarction may
be encouraged to follow a course of NRT, thus violating an assumption of the
SCCS method. Starting the observation period at NRT initiation of sidesteps
this problem. Another issue is MI-related mortality: this will be discussed in
Chapter 7.

The data are in data frame nrtdat. The observation period stretches from
the age on the day the NRT started (variable nrt), to 365 days after that
date (variable end), even if the patient record ends sooner. There are 141
simulated cases, aged between 39 and 82 years, based on data from Hubbard
et al. (2005a). Interest is focused on the relative incidence of MI in the period
immediately following the initiation of NRT. Accordingly we use four 1-week
risk periods: 0–7, 8–14, 15–21, and 22–28 days after nrt. The risk intervals
and observation periods are represented schematically in Figure 4.17.

start of
observation

end of
observation

start of
NRT

days after start of NRT
8 15 22 28

FIGURE 4.17
Observation and risk periods for MI and NRT initiation study.

The risk periods always precede the control period. In addition, the obser-
vation periods are short (1 year) in relation to the age range of the data (43
years), as shown in Figure 4.18. This graph is obtained using the following R
code.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

perm <- order(nrtdat$nrt, nrtdat$end, nrtdat$mi)

s <- nrtdat$nrt[perm]/365.25

e <- nrtdat$end[perm]/365.25

t <- nrtdat$mi[perm]/365.25

v <- 1:length(t)

plot(t, v, xlab="age (years)", ylab="case number", type="p",

pch=16, cex=0.5)

segments(s,v,e,v)
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FIGURE 4.18
Observation periods (lines) and ages at event (points) for 141 MI cases.

If we were to use age intervals of, say, 5 years, most observation periods would
be entirely contained within a single age band. The age adjustment would
therefore have little impact on the results – for most cases, the age effect
would be time-invariant over the observation period. Provided the incidence
of MI does not vary much over a 1-year period, it is reasonable not to fit any
age effect. In this case, the model is defined as follows.

nrt.mod1 <- standardsccs(event~nrt, indiv=case, astart=nrt,

aend=end, aevent=mi, adrug=nrt, aedrug=nrt+28,

expogrp=c(0,8,15,22), agegrp=NULL, data=nrtdat)

This yields

> nrt.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

nrt1 1.685 0.5935 0.6893 4.119

nrt2 1.926 0.5193 0.7877 4.708

nrt3 1.155 0.8655 0.3677 3.631

nrt4 1.155 0.8655 0.3677 3.631

The relative incidences nrt1 and nrt2, which correspond to the first two weeks
following the initiation of NRT therapy, are elevated but far from statistically
significant.

The variable cage contains the centred age at NRT, in years (the mean
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age at NRT in these data is 58.8 years). This is a time-invariant covariate.
It is of interest to investigate whether the relative incidence varies with age
at NRT: this can be achieved by including the interaction between cage (a
continuous variable) and exposure.

nrt.mod2 <- standardsccs(event~cage*nrt, indiv=case, astart=

nrt, aend=end, aevent=mi, adrug=nrt, aedrug=nrt+28,

expogrp=c(0,8,15,22), agegrp=NULL, data=nrtdat)

The interaction is tested as follows.

> lrtsccs(nrt.mod1,nrt.mod2)

test df pvalue

0.3826 4 0.9839

Since p = 0.98, there is very little evidence to reject the null hypothesis of no
interaction. In conclusion, provided that the incidence of MI varies little over
a period of a year, there is little compelling evidence that the risk of MI is
increased in the 4 weeks following the initiation of NRT therapy, though the
confidence intervals are wide, which suggests low power.

SCCS studies with identical short observation periods defined in relation to
point exposures have sometimes been called self-controlled risk interval stud-
ies (Baker et al., 2015). When such studies are analysed without the inclusion
of age effects, conditioning on numbers of events within cases turns out to be
largely optional: identical maximum likelihood estimates and standard errors
are obtained regardless of the conditioning. These designs are discussed in
Chapter 8.

4.9 SCCS analyses with temporal effects

So far, all SCCS models have used age as the time line of interest. In this
section, we consider situations where temporal variation, such as a seasonal
effect, is important. In some circumstances, notably when both the exposure
and the event incidences vary seasonally, and the observation period is rela-
tively short, age effects can be disregarded and the analysis can be couched
wholly in terms of calendar time, with seasonal variation taking the place of
age variation. This is the situation considered in the first example, in Sec-
tion 4.9.1.

In other circumstances, both age and calendar time effects may be relevant.
In this case, the SCCS model must be augmented to include the effect of season
as well as age on the baseline incidence. In the simplest such model, in which
the effects of age and time are taken to be independent, the age-related relative
incidence is of the form

ψ(t|t0i) = ψ(t)σ(t+ t0i),
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where t0i is the date of birth of individual i, measured using some time origin
common to all individuals. Thus, t + t0i is the calendar time at which indi-
vidual i reaches age t. The function ψ(t) is, as before, the age-specific relative
incidence function common to all individuals. The function σ(s) represents
the relative incidence associated with calendar time s. If the temporal effects
of interest are seasonal, σ(s) is a periodic function with period one year.

Seasonal effects may be handled within the framework of the standard
SCCS model by modelling seasonal variation as piecewise constant. Thus, a
further set of cutpoints is introduced, which partitions the observation periods
into time intervals on which the seasonal effect is constant. This is illustrated
in Figure 4.19 for a single case, born on 18th April (of 2014).
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FIGURE 4.19
Schematic representation of age and seasonal cutpoints.

The observation period for this case is [29, 730] days. There are four age
groups (roughly 5 months for the first and 6 months for the other three), and
quarterly season groups with start dates in ddmm format (1st January, 1st
April, 1st July and 1st October). The date of birth is needed to calculate
the age of the case at the seasonal group cutpoints. These seasonal cutpoints
partition the observation period of this case into nine intervals. The seasonal
factor has four levels, and thus three free parameters. Other seasonal groups
may be used, according to the context. For monthly seasonal effects, for ex-
ample, a seasonal factor with 12 levels (and 11 free parameters) would be
required, corresponding to monthly cutpoints.

The SCCS model is now fitted with a model formula of the form

Exposure + Age + Season.

A vector of season group boundaries in ddmm format must be specified. A
variable giving the date of birth of each case, in the format ddmmyyyy, is
required to convert seasonal cutpoints into ages for each case. All ages (start
and end of the observation period, age at event, ages at exposure, age group
boundaries) must be given as days since birth. The syntax for the function
standardsccs is described, along with an example, in Section 4.9.2.

4.9.1 Calendar time: GBS and influenza vaccine

This application relates to the possible association between influenza vaccine
and Guillain–Barré syndrome (GBS), using data from Galeotti et al. (2013).
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The study was undertaken in Italy during the 2010–2011 influenza season,
which was deemed to last from 1st October 2010 to 15th May 2011. A sample
of 174 cases of GBS with onset within this period was collected. Of these cases,
52 received the seasonal influenza vaccine.

The data, which have been jittered, are in data frame gbsdat; flu is
the time of influenza vaccination and gbs is the time of GBS onset. Times
are counted from 1st October 2010, which is day 1. The latest vaccination
occurred on day 107. Both influenza vaccination and GBS are seasonal, as
suggested by Figure 4.20. Thus, a SCCS analysis should adjust for season.
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FIGURE 4.20
Numbers vaccinated (left) and GBS cases (right) by day of observation.

The observation period stretches from 1st October 2010 (day 1) to 15th
May 2011 (day 227). It is unlikely that the incidence of GBS will vary much
with age over such a short period. Thus in this example, the primary time line
is calendar time, rather than age, though it is still called age in the model.
The risk period is taken to be 0–42 days after vaccination. We shall control for
season in calendar months October to March, and a final category 1st April
to 15th May. The code for the model is as follows.

seas <- cumsum(c(31,30,31,31,28,31))

gbs.mod1 <- standardsccs(event~flu+age, indiv=case, astart=sta,

aend=end, aevent=gbs, adrug=flu, aedrug=flu+42,

expogrp=0, agegrp=seas, data=gbsdat)

Note that season is entered in the model formula as age; the partition of the
observation period in agegrp is defined by seas. This model yields:

> gbs.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

flu1 2.5825 0.3872 1.4161 4.7096
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Thus, the relative incidence is 2.58 with 95% CI (1.42, 4.71). (The validity of
the assumptions underpinning this estimate will be discussed in Chapter 5.)
The model without any season effect is

gbs.mod2 <- standardsccs(event~flu, indiv=case, astart=sta,

aend=end, aevent=gbs, adrug=flu, aedrug=flu+42,

expogrp=0, agegrp=seas, data=gbsdat)

yielding the following result and likelihood ratio test

> gbs.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

flu1 2.899 0.345 1.666 5.044

> lrtsccs(gbs.mod1,gbs.mod2)

test df pvalue

35.33 6 3.719e-06

The effect of season is highly statistically significant (p < 0.0001 in the like-
lihood ratio test) though the estimated relative incidence is little affected by
the inclusion of seasonal effects in the model.

Variable sage gives the age of each case, in years, on 1st October 2010.
The age range is wide, stretching from 19 to 96 years, so it is of interest to
investigate whether age at the start of observation – a time-invariant contin-
uous covariate – is an effect modifier for the association between influenza
vaccination and GBS. The interaction model is as follows.

gbs.mod3 <- standardsccs(event~sage*flu + age, indiv=case,

astart=sta, aend=end, aevent=gbs, adrug=flu,

aedrug=flu+42, expogrp=0, agegrp=seas, data=gbsdat)

This yields the following likelihood ratio test.

> lrtsccs(gbs.mod1,gbs.mod3)

test df pvalue

0.1208 1 0.7282

Thus, since p = 0.73, there is little evidence that age at start of observation
is an effect modifier.

4.9.2 Seasonal SCCS model: OPV and intussusception

In this example, the time line of primary interest is age, but calendar seasonal
effects also need to be taken into account. The exposure is vaccination with
the oral polio vaccine (OPV), and the outcome is intussusception in children
under 1 year of age. The data were collected in Cuba; the study was published
as Galindo-Sardiñas et al. (2001).
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The jittered data are in data frame intdat and are in data format multi.
Age at intussusception is in variable intus. The oral polio vaccine is admin-
istered in two doses in Cuba. The ages at OPV are in opv and opvd2. We
shall use three risk periods: 0–14, 15–28 and 29–42 days after each dose. Age
is controlled in 30-day intervals with a final interval of 35 days. The SCCS
model with age effect is as follows.

age <- seq(30,330,30)

int.mod1 <- standardsccs(event~opv+age, indiv=case, astart=sta,

aend=end, aevent=intus, adrug=cbind(opv,opvd2),

aedrug=cbind(opv+42,opvd2+42), expogrp=c(0,15,29),

agegrp=age, dataformat="multi", data=intdat)

This model assumes a common effect at each dose. The exposure estimates
are as follows.

> int.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.349 0.74108 0.8960 2.032

opv2 1.148 0.87134 0.7263 1.813

opv3 1.435 0.69710 0.9302 2.212

The relative incidences are 1.35, 1.15 and 1.44 for the risk periods 0–14, 15–28
and 29–42 days after either dose, respectively. All are greater than one, though
none are statistically significant.

However, in Cuba, the two OPV doses are administered in national cam-
paigns that take place mainly, though not exclusively, during the months of
February to April. The seasonal distribution of OPV in the 273 cases in the
study is shown in Figure 4.21. Also shown is the seasonal distribution of the
273 intussusceptions. These figures were obtained with the following code;
variable dob is the date of birth, in format ddmmyyyy.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

bdate <- as.Date(formatC(intdat$dob, width=8, format="d",

flag="0"), "%d%m%Y")

mopv <- factor(c(months(bdate+intdat$opv, abbreviate=T),

months(bdate+intdat$opvd2, abbreviate=T)),

levels=c("Jan","Feb","Mar","Apr","May",

"Jun","Jul","Aug","Sep","Oct","Nov","Dec"), ordered=T)

barplot(table(mopv), xlab="Month of vaccination (both doses)")

mevent <- factor(months(bdate+intdat$intus, abbreviate=T),

levels=c("Jan","Feb","Mar","Apr","May",

"Jun","Jul","Aug","Sep","Oct","Nov","Dec"), ordered=T)

barplot(table(mevent), xlab="Month of event")
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FIGURE 4.21
Seasonal distribution of OPV vaccinations (left) and intussusceptions (right).

The vaccinations are highly seasonal; the intussusceptions less so, though there
is some clustering of events in the first half of the year. Thus, there is a
possibility of seasonal confounding: it is advisable to control for season, as
well as age.

We now describe how the function standardsccs may be used to fit a
seasonal (calendar time) effect as well as an age effect. As previously noted,
all age variables must be specified as days of age since birth. (This is the
case for the OPV and intussusception data.) Two additional arguments are
supplied to the function standardsccs. First, the date of birth of each case,
in format ddmmyyyy, is specified in argument dob. Second, the cutpoints for
the season groups are specified in argument seasongrp in format ddmm, these
representing the first days of each season group. The seasonal effect is a factor,
the reference level being the time interval starting at the earliest date in
seasongrp.

For the OPV and intussusception data, we shall control for season in cal-
endar months. Thus we define:

month <- c(0101,0102,0103,0104,0105,0106,0107,0108,0109,0110,

0111,0112)

This will generate a 12-level factor, and thus 11 additional seasonal param-
eters. The model with OPV-associated exposure effects, and both age and
season effects, is fitted with the model formula opv+age+season, as follows.

int.mod2 <- standardsccs(event~opv+age+season, indiv=case,

astart=sta, aend=end, aevent=intus, adrug=

cbind(opv,opvd2), aedrug=cbind(opv+42,opvd2+42),

expogrp=c(0,15,29), agegrp=age, seasongrp=month,

dob=dob, dataformat="multi", data=intdat)
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The seasonal parameters are as follows:

> int.mod2

.....

exp(coef) exp(-coef) lower .95 upper .95

.....

season2 0.6313 1.58392 0.3438 1.1593

season3 0.9950 1.00502 0.5624 1.7603

season4 1.1245 0.88930 0.6386 1.9800

season5 1.0345 0.96662 0.5850 1.8294

season6 0.8565 1.16754 0.4710 1.5574

season7 0.4795 2.08537 0.2357 0.9757

season8 0.3934 2.54217 0.1858 0.8329

season9 0.4977 2.00920 0.2513 0.9857

season10 0.8030 1.24528 0.4487 1.4373

season11 0.7677 1.30265 0.4267 1.3812

season12 0.9445 1.05880 0.5536 1.6112

The earliest date in seasongrp is 0101, January 1st, so the reference level is
January. Parameter season2 corresponds to February, parameter season3 to
March, etc. With this parameterisation, statistically significant seasonal effects
are obtained for July to September: in these months the relative incidence is
significantly lower than in January.

The vaccine exposure effects, adjusted for both age and season, are now
as follows:

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.1479 0.87118 0.7123 1.8497

opv2 0.9450 1.05823 0.5607 1.5926

opv3 1.1521 0.86795 0.6999 1.8965

All three estimates are closer to 1 than with model int.mod1. Thus, there is
some confounding by season, though this will not alter the interpretation of
the results.

Models int.mod2 and int.mod1 are nested, so the statistical significance
of the seasonal effect may be evaluated using a likelihood ratio test:

> lrtsccs(int.mod1,int.mod2)

test df pvalue

18.41 11 0.07254

Thus the seasonal effect as a whole is marginally statistically non-significant.
We may also fit a dose-specific seasonal model:

int.mod3 <- standardsccs(event~opv+age+season, indiv=case,

astart=sta, aend=end, aevent=intus, adrug=

cbind(opv,opvd2), aedrug=cbind(opv+42,opvd2+42),

expogrp=c(0,15,29), agegrp=age, seasongrp=month,
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dob=dob, dataformat="multi", sameexpopar=F,

data=intdat)

The relative incidences associated with each dose of OPV are now as follows:

> int.mod3

.....

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.0404 0.96116 0.5477 1.9763

opv2 0.7154 1.39791 0.3360 1.5229

opv3 1.1392 0.87778 0.6043 2.1476

opv4 1.2499 0.80007 0.6721 2.3245

opv5 1.2123 0.82490 0.6289 2.3368

opv6 1.2138 0.82385 0.6069 2.4275

None of these parameters are statistically significantly different from 1, nor is
there much evidence of a dose effect. This may be verified with a likelihood
ratio test:

> lrtsccs(int.mod3,int.mod2)

test df pvalue

1.328 3 0.7225

We may thus conclude that, having controlled for both age and season effects,
there is little evidence of any association between OPV and intussusception,
and little evidence of a dose effect.

Note finally that the syntax described above enables other season groups
to be defined. Cuba is a tropical country with a rainy season from May to
October and a dry season from November to April. This rainy/dry seasonality
is reflected by the following seasonal groups:

rainydry <- c(0105,0111)

The model with these seasonal groups (and common vaccine effects at each
dose) is then

int.mod4 <- standardsccs(event~opv+age+season, indiv=case,

astart=sta, aend=end, aevent=intus, adrug=

cbind(opv,opvd2), aedrug=cbind(opv+42,opvd2+42),

expogrp=c(0,15,29), agegrp=age, seasongrp=rainydry,

dob=dob, dataformat="multi", data=intdat)

The vaccine effects are similar to those obtained without any seasonal effect
(model int.mod1). The seasonal effect is as follows:

> int.mod4

.....

exp(coef) exp(-coef) lower .95 upper .95

.....

season2 1.266 0.79001 0.9516 1.684
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The earliest date in seasongrp is 0105, so the reference level is the rainy
season, May to October. Parameter season2 now corresponds to the dry sea-
son, November to April. The relative incidence for the dry season (relative to
the rainy season) is 1.27 which, with 95% CI (0.95, 1.68), is not statistically
significantly different from 1.

In any specific application, the choice of season groups should depend on
context.

4.10 Parameterisation of the standard SCCS model*

In this section we describe more formally the parameterisation of the standard
SCCS model. The material in this section is primarily for use in later starred
sections. We begin by describing in more detail the simple version of the
standard model introduced in Section 4.1.

In this simple model, there are no time-invariant covariates yi, and there is
a single type of exposure. All individuals share the same age effect ψ(t). Only
the effects for ages t lying within the observation period (ai, bi] of at least one
of the N cases need to be specified. Thus, we partition the age interval (a, b]
where a = min{ai : i = 1, . . . , N} and b = max{bi : i = 1, . . . , N} into J + 1
disjoint intervals (cj , cj+1], j = 0, . . . , J with c0 = a and cJ+1 = b. The age
effect is assumed to be piecewise constant on these intervals. It is represented
by a single age-dependent factor u(t) with J + 1 levels, parameterised by the
vector α, level j corresponding to interval (cj , cj+1]. Thus the relative age
effect is the step function

ψ(t) = exp{u(t)Tα} = exp(αj) for t in (cj , cj+1].

The parameter corresponding to the reference level is set to zero. We shall
generally assume that the reference age level is level 0, corresponding to the age
group (c0, c1], so α0 = 0 and the parameters to be estimated are α1, . . . , αJ .
These are log relative incidences, relative to the reference age category.

Exposures are handled in a similar way to age effects, but with the dif-
ference that their timing typically varies between cases, since it depends
on the exposure history in xi. We suppose that the exposure takes K + 1
levels k = 0, . . . ,K in non-overlapping age intervals. Level 0 is the base-
line or reference level, representing lack of exposure (or a reference exposure
level). The exposure effect for case i is piecewise constant on disjoint inter-
vals (dir, dir+1], r = 0, . . . , Di with di0 = ai and diDi+1 = bi. Generally, the
number of intervals Di will vary between cases: for example, some cases might
be exposed more often, or with different exposure levels, than others. The
exposure effect is represented by a single age-dependent factor vi(t;xi) with

* This section may be skipped.
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K + 1 levels, parameterised by the vector β and taking some level kir on the
interval (dir, dir+1]. The relative incidence function for individual i associated
with the exposure is the step function

ρ(t|xi) = exp{vi(t;xi)Tβ} = exp(βkir ) for t in (dir, dir+1].

Level k = 0 being the reference level, we set β0 = 0. There are K exposure-
related parameters β1, . . . , βK to be estimated. Parameter βk represents the
log relative incidence associated with exposure level k.

The number of age intervals and exposure levels, and the age and exposure
cutpoints, are to be chosen by the investigator, and depend entirely on the
application. Some general guidance is provided in Chapter 8.

This simple model may be elaborated in several ways, as described in the
applications in this chapter. First, both the age effect and the exposure effect
may be modified by time-invariant covariates yi. This is handled by including
interactions between the time-varying age factor or the time-varying exposure
factor and the yi. Examples were described in Section 4.7.

A further extension of the basic model is to include several distinct ex-
posures, for example different pharmaceutical drugs, whose association with
the event is of interest. Distinct exposures may be represented by super-
scripts s = 1, . . . , S. To each exposure type s, with observation and expo-
sure history xsi , corresponds a distinct time-varying factor vsi (t;x

s
i ). Expo-

sure type s is piecewise constant on intervals (dsir, d
s
ir+1] for r = 1, . . . , Ds

i ,
has Ks + 1 levels with level 0 as reference, and associated parameter vec-
tors βs = (βs0, β

s
1, . . . , β

s
Ks)T with βs0 = 0. Note that the exposure intervals

(dsir, d
s
ir+1] can overlap between different exposures. Examples of SCCS models

with more than one exposure type were considered in Section 4.5.
Finally, the age effect may be supplemented by a calendar time effect, such

as a seasonal effect. This requires a further individual-specific partition into
seasonal components, represented by an additional time-varying factor. Such
models were considered in greater detail in Section 4.9.

4.11 Bibliographical notes and further material

The theory of generalised linear models (GLMs) is central to the standard
SCCS model, owing to the equivalence between product multinomial models
and certain Poisson models. The key reference in this regard is McCullagh
and Nelder (1989).

Originally, the SCCS software was developed within GLIM4, a now super-
seded statistical package for fitting GLMs which had the key advantage of
possessing an absorption facility. The R package gnm now also possesses this
facility (Turner and Firth, 2015) and is one of several that can be used to fit
the models in this chapter. The R package SCCS uses the equivalence between
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the SCCS model and the conditional logistic regression model described in Sec-
tion 4.2, implemented with function clogit within the R package survival

(Therneau, 2015). Other software for fitting the standard SCCS model may
be found on the SCCS website (see Chapter 1, Section 1.4).

The SCCS model was originally developed for evaluating adverse events
potentially associated with vaccination. This remains a major area of applica-
tion, discussed in Andrews (2002) and reviewed in Weldeselassie et al. (2011).
To our knowledge, the first use of the method in non-vaccine pharmacoepi-
demiology was Hubbard et al. (2003). This has now become a major field of
application, notably in conjunction with administrative or clinical databases.
Reviews of studies using the SCCS method in pharmacoepidemiology include
Nordmann et al. (2012), Gault et al. (2017) and Ghebremichael-Weldeselassie
et al. (2018), the latter encompassing other applications in non-vaccine epi-
demiology.



5

Checking model assumptions

Like all statistical methods, the SCCS method relies on assumptions. In this
chapter, we describe some techniques for checking whether the assumptions of
the SCCS method are reasonable, in the sense that departure from them is un-
likely to produce grossly inaccurate inferences. Assumptions may be grouped
in several categories, detailed in the following paragraphs.

First are the assumptions about the nature of the underlying process that
generates the data. These include assumptions 1, 2 and 3 described in Chap-
ter 3, Section 3.7. They are: (1) events are uncommon or arise in a non-
homogeneous Poisson process; (2) events do not influence observation periods;
and (3) events do not influence subsequent exposures.

Then there are assumptions about how the data were sampled, for exam-
ple assumption 4 in Chapter 3, Section 3.7 (namely, that exposures do not
influence ascertainment of cases). It may also be relevant to know whether
the data comprise all or a random sample of events occurring within a defined
population.

In addition, modelling assumptions are required in specifying the form of
the statistical model for the incidence rate function λ(t|xi,yi). For example,
all SCCS models considered in this book assume that age and exposure effects
combine multiplicatively. For the standard SCCS model, modelling assump-
tions also include the number and placing of age and exposure categories.

Other modelling assumptions relate directly to the subject matter of the
specific application, notably the choice of variables to include in the model.
Examples include interactions with effect modifiers, seasonal effects, and ad-
ditional time-varying exposures.

Finally, there are assumptions about the validity of the inferential frame-
work, for example whether asymptotic likelihood theory is reliable in the finite
sample at hand.

We will not consider sampling and subject matter assumptions in any
detail, as these require application-specific information. Likewise, issues re-
garding the validity of asymptotic likelihood theory are not specific to the
SCCS method, so will only be considered briefly.

Our approach to the other categories of assumptions is guided by two prin-
ciples. First, given that assumptions are unlikely to be true in any absolute
sense, what matters primarily is whether the results obtained are sensitive to
departures from these assumptions. Thus, we need to establish whether our
model is useful, rather than whether it is right. Second, investigating the va-
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lidity of and sensitivity to assumptions should be straightforward, otherwise
it will not be done. Thus, we restrict the discussion to methods that are easy
to use. We focus on the standard SCCS model, though many of the tech-
niques apply more generally. In Chapter 7 we will consider more complicated
extensions of SCCS models which may be appropriate when failure of the key
assumptions is likely to have a major impact on the results.

The techniques described in this chapter are not intended as a set of recipes
to be applied in all circumstances. As with any other statistical model, which
assumptions ought to be checked depends on the specific application, and is
a matter of judgement. For example, the Poisson assumption for recurrent
events need only be checked when there are substantial numbers of recur-
rences. Event-dependence of observation periods need only be investigated
when the event carries substantial short-term mortality. Long-term event-
dependence of exposures requires attention only when there is reason a priori
to suspect that it might be an issue.

Although the methods described are simple to use, in a few cases their
justification involves a technical argument. This material is in Sections 5.1.2,
5.3.4 and 5.4.5, which are starred and may be skipped.

5.1 Rare disease assumption for non-recurrent events

If the event of interest is non-recurrent, the SCCS method works provided
that the event is rare. But how rare is ‘rare’? In this section we provide some
guidance.

Briefly, this may be summarised as follows: if, in the population from
which cases are drawn, the probability of the event occurring during a typical
observation period is p, conditional on no event having occurred before that,
then the relative bias in the relative incidence is of order 1

2p. Assessing whether
such a relative bias is acceptable then depends on context, notably the degree
of uncertainty in the estimates (as indicated by the width of the confidence
intervals) and the use to which these estimates are to be put.

For example, if the probability that an event will occur within a typical
observation period is about 0.1, then the relative bias in the relative incidence
is about 0.05, or 5%. This could mean that a relative incidence of 2 is estimated
as 2.1.

Evaluating p cannot be achieved using case series data alone: it requires
denominator information. However, for our present purpose only rough orders
of magnitude are sufficient, and approximate denominator or rate information
is usually not difficult to obtain. Two examples are provided in Section 5.1.1.
The relative bias is derived in starred Section 5.1.2.
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Summary

• A rare disease assumption is required to apply the SCCS method to
non-recurrent events.

• The relative bias in the relative incidence is of order 1
2p, where p is the

probability of an event occurring in a typical observation period.

5.1.1 Evaluation of absolute risks: convulsions and stroke

In this section we provide two examples of evaluations of event probabilities.
These evaluations aim only to establish orders of magnitude, rather than pre-
cise estimates: only rough estimates are required for our purpose.

MMR vaccine and convulsions
In the first example, we evaluate the absolute risk of a child experiencing a
first febrile convulsion in the second year of life. Our purpose in doing so is
to assess whether a SCCS analysis of MMR vaccine and first convulsion in
this age group is valid. Thus, the population we are primarily interested in
includes children eligible for MMR vaccination. We use data from Farrington
et al. (1995), a record linkage study undertaken in five Health Districts of Eng-
land. In this study, 952 first admissions for febrile convulsion were recorded
in children who received an MMR vaccine before or after their convulsion. It
was estimated that, during the study period, 97 300 doses of MMR vaccine
had been given in the study districts. Thus, a rough estimate of the probabil-
ity of experiencing one or more convulsions during the second year of life is
952/97300 ' 0.01. This in turn suggests that the relative bias in the relative
incidence estimate in a SCCS study restricted to first convulsions will be of
the order of 0.5% or less. A relative bias of this magnitude is sufficiently small
to be of no practical concern.

Antipsychotics and stroke
The second example, in contrast, relates to an elderly population. It is based
on a SCCS study undertaken to assess the possible association between an-
tipsychotic drugs and first stroke (Douglas and Smeeth, 2008). The median
age at stroke in the cases is 80.7 years, with interquartile range (IQR) 73.0–
86.8 years. The observation periods span a median of 6.1 years, IQR 3.1–9.8
years. The study was undertaken in England, with stroke cases ascertained in
1988–2002.

Incidence rates for stroke in England may be obtained from Scarborough
et al. (2009), Table 2.1. The annual incidence rates vary between studies.
Averaging values for men and women, a lower estimate, for Great Britain
in 2004, is 837 per 100 000 per year in the 75+ years age group. A higher
estimate, for Oxfordshire in 2005, is 1097 per 100 000 per year in the 75–84
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year age group. Applying these rates over a period of observation of 6.1 years
gives a probability of stroke in the range 0.05–0.07. Thus, the relative bias in
a SCCS study of stroke resulting from the rare disease assumption would be
expected to be of the order of about 3% or less. This is not likely to be of
major concern.

5.1.2 Quantifying the bias for non-recurrent events*

The relative bias is derived in a simple but extreme scenario, in which there
are no age effects. Including age effects in the model would be expected to
reduce the bias.

We assume that the baseline event hazard λ is constant. Suppose that
each individual has the same observation period (0, b] and experiences a single
risk period of fixed duration, defined as (u, u + d] with 0 ≤ u ≤ b − d. We
investigate the asymptotic (large sample) bias in the relative incidence ρ =
exp(β) associated with this risk period in a SCCS analysis that makes no
allowance for age.

Let Λ denote the cumulative hazard over the entire observation period
(0, b], including the exposure period. Thus,

Λ = ρλd+ λ(b− d).

The probability that an event occurs in the risk period (u, u+ d], conditional
on it occurring in (0, b], is

P1 = P (u < T ≤ u+ d|T ≤ b) =
e−λu(1− e−ρλd)

1− e−Λ
.

Similarly, the conditional probability that an event does not occur in the risk
period is

P0 = P (T ≤ u or T ≥ u+ d|T ≤ b) =
1− e−λ(b−d)−ρλd − e−λu(1− e−ρλd)

1− e−Λ
.

The likelihood for a SCCS model with common observation period (0, b], com-
mon risk period (u, u + d] and no age effects is binomial. If N is the total
number of cases (and therefore of events, since these are non-recurrent), N1 is
the number of events in the risk period, and N0 the number of events in the
control period, then the maximum likelihood estimator of ρ is

ρ̂ =
N1

N0
× b− d

d
.

Asymptotically as N →∞,

ρ̂→ ρ̄ =
P1

P0
× b− d

d
in probability.

* This section may be skipped.
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We consider the limit in which λ, and hence Λ, are small. Using standard
approximations,

ρ̄ =
e−λu(1− e−ρλd)

1− e−λ(b−d)−ρλd − e−λu(1− e−ρλd)
× b− d

d

' ρ[1 +
1

2
Λ(1− 2

u

b− d
)],

to first order in Λ. Thus, the relative bias is of order Λ/2 if u = 0, −Λ/2 if
u = b− d, and 0 if u = (b− d)/2. In general, to first order,

| ρ̄− ρ
ρ
| ≤ 1

2
Λ.

Thus the relative bias in this setting is at most 1
2Λ in absolute value.

When Λ is small, the probability of an event occurring in the observation
period is p = 1 − exp(−Λ) ' Λ, to first order in Λ. Thus the relative bias is
of order 1

2p or less in absolute value.

5.2 Poisson assumption for potentially recurrent events

The SCCS likelihood for recurrent events is derived under the assumption that
the events arise in Poisson processes modulated within individuals by age and
time-varying exposures. In most practical applications, the events of interest
are rare, so there are relatively few recurrences. Nevertheless, for applications
in which recurrences are more common, it is desirable to check that failure
of the Poisson assumption would not substantially bias the estimator of the
exposure-related relative incidence.

The Poisson assumption may fail if the event intensity function depends
on the event history. This will occur, for example, if the occurrence of an
event alters the incidence of subsequent events, as is the case with myocardial
infarction since subsequent events are more likely after experiencing a first
event. The Poisson assumption may also fail if event ascertainment depends
on the event history. For example, if events are ascertained through hospital
admissions, and several admissions occur as the result of one event, these will
be recorded as several events, even though they are part of the same clinical
episode. There is often insufficient information to distinguish between episodes
on the basis of clustered event information.

5.2.1 Investigating recurrences

The simplest way to investigate the sensitivity of the SCCS model to the
Poisson assumption when first events are rare (see Section 5.1), is to repeat the
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analysis with only first events, and informally compare the relative incidence
associated with exposure in the two models. This will usually suffice.

A more formal test of sensitivity to the inclusion of cases with recurrences
in the analysis may be undertaken by carrying out a likelihood ratio test of
the interaction between the exposure and the marginal event count ni, or
a grouped version of ni, for example ni = 1 versus ni > 1. Such a test is
acceptable, since the SCCS analysis is conditional on the values ni. Note,
however, that it is not acceptable to include an interaction with the order of
each event, namely the variable categorising each event as a first, second, ...,
kth event. This is because specifying the order imposes a restriction of the
observation period, since the kth event can only occur after the first k − 1
events. Restricting the analysis to first events only, on the other hand, is valid
provided that these are rare in the sense described in Section 5.1.

If there are large numbers of recurrent events, graphical investigations may
be useful. If individual i has ni events at times ti1, . . . , tini , with ni > 1, there
are ni − 1 inter-event gap times wij = tij+1 − tij between events, starting
at the first event, with j = 1, . . . , ni − 1. To explore recurrences visually, it
may be useful to inspect gap times. A histogram of the gap times may reveal
unexpected patterns. In a pure Poisson process without censoring, gap times
are exponentially distributed, so the histogram would be expected to show an
exponential decline.

The histogram of gap times, however, does not allow for differences of
follow-up time between individuals. Provided that the case series comprises
all cases or was randomly sampled from a cohort, the histogram may be sup-
plemented by a nonparametric estimate of the cumulative hazard function of
the gap time distribution for second and subsequent events. As a guide to
interpretation, if the gap times are exponentially distributed the cumulative
hazard should be a straight line.

The cumulative hazard of gap times for second and subsequent events
may be obtained because the case series, conditionally on the occurrence of
a first event, comprises full information on such events. The observed gap
times wij described previously are supplemented by censored values wini =
bi− tini , where bi is the end of observation for individual i. The Nelson–Aalen
nonparametric estimator of the cumulative hazard function is

Λ̂(w) =
∑

k:w∗k≤w

dk
mk

where the w∗k are the distinct values among the wij , i = 1, . . . , N , j =
1, . . . , ni−1, dk is the number of gap times equal to w∗k and mk is the number
of gap times or censored values greater than or equal to w∗k. The variance of
the Nelson–Aalen estimator is

var{Λ̂(w)} =
∑

k:w∗k≤w

dk
m2
k

.
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For further details of this and other estimators see Cook and Lawless (2007),
page 123.

The cumulative hazard plot can be used to investigate whether events tend
to be clustered within episodes. This would be revealed by an unexpected
preponderance of short gap times, resulting in the cumulative hazard function
being concave close to the origin.

Summary

• Recurrent events should arise in a non-homogeneous Poisson process.

• When first events are rare, a simple sensitivity analysis is to refit the
model with first events only and compare results.

• More formally, an interaction may be fitted to stratify the exposure
effect according to presence or absence of recurrences.

• A histogram or a plot of the cumulative hazard of gap times for second
and subsequent events may be used to display recurrent events.

5.2.2 Recurrences for MMR and ITP data

We return to the data on ITP and MMR vaccine introduced in Chapter 4,
Section 4.3.1. These data comprise 44 events in 35 individuals. A significantly
raised relative incidence was found in the 0–42 day period post-MMR, espe-
cially in the two-week period 14–28 days. How sensitive is this finding to the
assumption that events arise in a non-homogeneous Poisson process within
individuals?

The first step in addressing this question is to describe the recurrences in
a little more detail. To this end we use three further variables. Variable rec

identifies the order of each event within the case, and thus takes the value 1
if the event is the first, 2 if it is the second, and so on. Variable gap is the
gap time between the event and the next event or, if there is no further event,
between the event and the end of observation. Finally, variable cen takes the
value 1 if gap is a gap time between successive events, and 0 if not.

The data are in data frame itpdat. As before, age at MMR vaccination
is in variable mmr; age at ITP is in itp. Variables gap, cen and rec can be
calculated from variables case, itp and end, but are included in the data
frame for simplicity.

We first obtain the distribution of event orders:

> table(itpdat$rec)

1 2 3 4 5

35 6 1 1 1
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This is just another way of saying that there are 29 individuals with a single
event, 5 with two events, and 1 with five. With so few recurrences, we are
unlikely to find any strong evidence against (or in favour of) the Poisson
assumption.

The Nelson–Aalen estimator of the cumulative hazard may be obtained us-
ing functions Surv and survfit from R package survival (Therneau, 2015).
The code is as follows:

library(survival)

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(survfit(Surv(itpdat$gap,itpdat$cen)~1,type=

"fleming-harrington",error="tsiatis"), fun=

"cumhaz", xlab="gap time (days)",

ylab="cumulative hazard")

This produces the plot shown in Figure 5.1. As expected, the confidence bands
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FIGURE 5.1
ITP gap times for second and subsequent events: Nelson–Aalen estimator of
the cumulative hazard (full line), with 95% confidence bands (dashed lines).

are very wide. The plot provides little evidence to suggest that gap times are
clustered near zero, as the cumulative hazard appears to be linear close to the
origin.

Whether or not recurrences satisfy the Poisson assumption remains a moot
point. However, what really matters is to what extent the results depend on
this assumption. Since ITP is a rare event, we may assess sensitivity to the
assumption by repeating the analysis with just the 35 first events. This is
achieved using the subset function, as follows.
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itp.mod7 <- standardsccs(event~mmr+age, indiv=case, astart=

sta, aend=end, aevent=itp, adrug=mmr, aedrug=

mmr+42, expogrp=c(0,15,29), agegrp=c(427, 488, 549,

610, 671), data=subset(itpdat,rec==1))

This produces the following results.

> itp.mod7

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.5945 0.6272 0.35544 7.1526

mmr2 7.1921 0.1390 2.91823 17.7251

mmr3 3.2174 0.3108 0.89305 11.5914

These results may be contrasted with those obtained in Chapter 4, Sec-
tion 4.3.1. The relative incidences are a little higher when the analysis is
restricted to first events, with the same pattern as observed previously. This
is because all recurrences occurred outside risk periods.

The same applies when the three risk periods are combined into one:

> itp.mod8 <- standardsccs(event~mmr+age, indiv=case, astart=

sta, aend=end, aevent=itp, adrug=mmr, aedrug=

mmr+42, agegrp=c(427,488,549,610,671),

data=subset(itpdat,rec==1))

> itp.mod8

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 3.9415 0.2537 1.78140 8.7209

In Chapter 4, Section 4.3.1, the relative incidence in the 0–42 day risk period
was found to be 3.23, 95% CI (1.53, 6.79). Thus, neither the results nor their
interpretation are substantially altered when recurrences are excluded. We
conclude that the analysis is not sensitive to failure of the Poisson assumption.

5.2.3 Recurrent convulsions and MMR vaccine

In the previous example there were rather few recurrences; the present data
set is larger and there are more recurrences, enabling a few more analyses to be
undertaken. The data comprise the 2435 convulsions in 2201 cases previously
described in Chapter 4, Section 4.5.1: thus, there are 234 recurrences.

The data are in data frame condat; mmr is the age at MMR vaccination
and conv is the age at convulsion. The data also include variables gap, cen
and rec described in Section 5.2.2, and the variable ngrp which takes the
value 1 if the case has a single event and the value 2 if the case has more
than one event. These four variables can be calculated from the others, but
are included in the data frame for simplicity.

We begin by describing the recurrences:
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> table(condat$rec)

1 2 3 4 5 6 7 8 9

2201 170 42 13 4 2 1 1 1

Thus one case had nine events, one had six, two had five, nine had four, 29
had three, 128 had two and 2031 had one. The gaps between successive events
may be represented graphically as follows.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(ifelse(condat$cen==1,condat$gap,NA), breaks=seq(0,350,10),

xlab="gap time (days)", main=NULL)

This produces the histogram shown in Figure 5.2; note that only uncensored
gap times are included. The histogram shows a mode close to zero, as would
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FIGURE 5.2
Histogram of gap times between adjacent recurrences of convulsions.

be expected if the gap times were exponentially distributed – and also if they
were clustered in episodes. To get more insight we obtain the Nelson–Aalen
estimator of the cumulative hazard; the R code is as follows.

library(survival)

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(survfit(Surv(condat$gap,condat$cen)~1,type=

"fleming-harrington",error="tsiatis"),

fun="cumhaz", xlab="gap time (days)",

ylab="cumulative hazard")
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FIGURE 5.3
Gap times for second and subsequent convulsions: Nelson–Aalen estimator of
the cumulative hazard (full line), with 95% confidence bands (dashed lines).

The cumulative hazard of the gap times is plotted in Figure 5.3. The estimator
displays some concavity close to zero, in the range 0–100 days. This may
indicate that short gap times occur too frequently: accordingly, we undertake
some further investigations.

First, we fit the baseline model, with 20-day age groups and four weekly
risk periods, [0, 7], [8, 14], [15, 21] and [22, 28] days post-MMR.

ageg <- seq(387,707,20)

con.mod4 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+28,

expogrp=c(0,8,15,22), agegrp=ageg, data=condat)

This yields the following relative incidence estimates:

> con.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.1128 0.8986 0.8600 1.4401

mmr2 2.4669 0.4054 2.0399 2.9832

mmr3 1.1796 0.8477 0.9043 1.5387

mmr4 1.1700 0.8547 0.8950 1.5294

Thus, only in the second week post-MMR is the relative incidence significantly
raised, with RI = 2.47, 95% CI (2.04, 2.98). We now fit an interaction model,
allowing different exposure effects according to the levels of ngrp, as follows.
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con.mod5 <- standardsccs(event~factor(ngrp)/mmr+age, indiv=

case, astart=sta, aend=end, aevent=conv, adrug=

mmr, aedrug=mmr+28, expogrp=c(0,8,15,22),

agegrp=ageg, data=condat)

This model may be compared to the baseline model using a likelihood ratio
test:

> lrtsccs(con.mod4,con.mod5)

test df pvalue

1.58 4 0.8124

Since p = 0.81, there is little evidence that including cases with recurrences
alters the relative incidence. Finally, note that while convulsions in children
aged 1–2 years are not uncommon in clinical terms, they are ‘rare’ by the
criterion of Section 5.1. Thus it is reasonable to fit a SCCS model restricted
to first events only, which may be done using the subset facility in R:

con.mod6 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+28,

expogrp=c(0,8,15,22), agegrp=ageg,

data=subset(condat,rec==1))

This yields

> con.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.1127 0.8987 0.8541 1.4496

mmr2 2.5404 0.3936 2.0944 3.0815

mmr3 1.2099 0.8265 0.9228 1.5864

mmr4 1.1857 0.8434 0.9002 1.5619

The relative incidence in the second week is only very marginally higher than
for the baseline model: RI = 2.54, 95% CI (2.09, 3.08); the RIs for other risk
periods are only marginally different as well, and not statistically significant.

We conclude from these analyses that, though there may be some evidence
of clustering of events in episodes, as suggested by the slight concavity of the
cumulative hazard close to the origin, this has little impact on the results, and
hence the baseline SCCS model is sufficiently robust to departures from the
Poisson assumption to provide trustworthy estimates.

5.3 Event-dependent observation periods

A key assumption of the SCCS method is that the observation periods are
not influenced by the events. This assumption was discussed in Chapter 3,
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Section 3.7. The assumption is required to ensure that conditioning on obser-
vation periods does not alter the event intensity function, which may in turn
bias the relative incidence associated with exposure.

The main scenario in which the assumption may fail is if the event of
interest carries high short-term mortality, so that some events are soon fol-
lowed by an event-induced end of observation. Generally, if there is no (or
low) short-term mortality attributable to the event, it is reasonable to regard
the assumption as being valid.

If the event is associated with increased short-term mortality, this does
not necessarily imply that inferences are biased. When the relative incidence
is indeed biased, the bias can be in either direction. If censoring of observa-
tion periods primarily affects unexposed or ‘control’ time, relative incidences
associated with exposure will be biased towards zero. If on the other hand the
censoring primarily affects exposed or ‘at risk’ time, the relative incidences
will be biased upwards. Generally, bias arises when exposures primarily occur
towards one end of the observation period. Event-dependence of observation
periods also can wreak havoc with age-related relative incidence estimates,
these typically being biased upwards in older age groups.

Note finally that if it is found that failure of the assumption is likely to
induce non-ignorable bias, the extension of the SCCS method described in
Chapter 7, Section 7.2 may be used.

In the present section we discuss some straightforward methods to inves-
tigate the assumption that observation periods are not influenced by events,
and the sensitivity of the results to failure of this assumption. We focus en-
tirely on the possibility that observation periods may be curtailed soon after
an event. The material in starred Section 5.3.4 is more technical and may be
skipped.

5.3.1 Investigating event-dependent observation periods

Suppose that a case i experiences an event at age ti; if events are recurrent,
let ti be the age at the first event. Let (ai, bi] denote the observation period
for individual i. If occurrence of an event precipitates the end of observation,
one might expect to observe a cluster of short intervals si = bi − ti. Thus,
the first step in investigating event-dependence of observation periods ought
to be to inspect a histogram of the si.

A formal hypothesis test of such clustering may be undertaken by fitting
a SCCS model with all the exposures of interest, along with an additional
terminal exposure with risk period (bi− τ, bi] where τ is some constant. Then
use a likelihood ratio test to test the null hypothesis that the relative incidence
associated with this terminal risk period is 1 – that is, test the null hypothesis
of no clustering of events close to the end of observation. The likelihood ratio
test is preferred to the inspection of parameter estimates from this expanded
model, since a degree of confounding between age effects and this terminal
exposure period may in certain circumstances affect these estimates. The value
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τ is context-dependent. A range of values may be tried; τ must be smaller than
the shortest observation period duration bi − ai.

This test is very limited in scope: it may detect the occurrence of event-
dependent observation periods, but does not offer any guide as to whether
this influences the estimate of the exposure effect β. As will be shown in
Section 5.3.4, it is perfectly possible for event-dependent observation periods
not to have any impact on the estimates of β. In order to investigate robustness
we need further information – namely whether the observation period has
been censored by (possibly event-induced) early termination. To describe this
censoring we need to describe the set-up in a little more detail, and introduce
some new notation.

In most SCCS studies, observation periods are defined by pre-specified age
and calendar time boundaries, which determine the start and end ages of the
observation period. In practice, the observation period may stop earlier than
the planned value b∗i , at some age ci < b∗i . This may be because the individual
has died, or for some other reason. If ci < b∗i , we say the observation period
has been censored; if ci ≥ b∗i the observation period is uncensored. The actual
observation period is (ai, bi] where bi is the minimum of ci and b∗i .

We define the following censoring indicator:

Ii = 1 if bi < b∗i , 0 if bi = b∗i ,

and assume that the values of Ii are available in variable censor.
To investigate whether censoring of observation periods biases the esti-

mated exposure-related relative incidence, we study the interaction between
the exposure of interest and the censoring indicator. Thus, we fit the interac-
tion model with model formula Censor/Exposure + Age. As will be shown
below, if censoring of observation periods is unrelated to events, then the
interaction is zero.

A likelihood ratio test for zero interaction may be undertaken, compar-
ing the interaction model to the standard SCCS model with model formula
Exposure + Age. Evidence against the null hypothesis of zero interaction sug-
gests that censoring of observation periods may be related to events, and may
significantly affect the relative incidence associated with exposure. The inter-
action with age is not included, as interest focuses on the exposure effects.

In addition, the interaction may be investigated directly, by contrasting the
estimated exposure effects in the censored and uncensored groups. Substantial
differences in these estimates, even if the interaction is not statistically signif-
icant, might indicate that event-dependence of observation periods is likely to
affect the results, or their interpretation.

This procedure is only likely to be useful when the numbers of cases with
censored observation periods and with uncensored observation periods are
both reasonably large. If there are few censored cases, event-dependent cen-
soring of observation periods is unlikely to be a major problem. However, if
there are few uncensored cases, then the test may be uninformative. In this
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situation there is little alternative but to try the extension of the SCCS model
to be described in Chapter 7, Section 7.2.

Summary

• Observation periods should not be influenced by events.

• Histograms of the time interval between event and end of observation
can help to identify event-induced censoring of observation.

• A simple (but limited) test is to fit a terminal risk period.

• Robustness may be investigated by including an interaction between
the exposure and an indicator for early termination of the observation
period.

• If the results are not robust to event-dependence of observation periods,
an extension from Chapter 7, Section 7.2 may be used.

5.3.2 Planned and actual observation periods: NRT and MI

In Chapter 4, Section 4.8.3, we investigated the association between the initi-
ation of nicotine replacement therapy (NRT) and first myocardial infarction
(MI). The start of the observation period was the day NRT began; the planned
end of the observation period, in variable end, was 365 days after the start of
NRT.

In fact, for 39 of the 141 cases, observation ended before the full 365 days
had elapsed. For some of these 39, the reason observation ended may have
been related to their myocardial infarction: indeed, for 9, observation ended
on the day of MI. Thus, a SCCS analysis with the actual observation periods
may have biased the estimators, which is why we used the planned observation
periods stretching to 365 days after NRT initiation. This was possible in this
example because all risk periods were known, by design (because exposure is
NRT initiation and all observation periods start at the first NRT prescription).

In the present section, we shall investigate the implications of using the
actual observation periods. The data, in data frame nrtdat, also contain the
actual end of observation for each case in variable act. The variable cen is
equal to 1 if act is strictly less than the planned end of observation in variable
end, and 0 otherwise. As before, mi is the age at MI and nrt is the age at
NRT.

Figure 5.4 shows the histograms of the intervals from MI to the planned
(365 days after NRT) and actual ends of observation. The contrast between
the two histograms is noticeable: intervals to the actual end of observation
display a sharp mode close to zero. This may indicate event-dependence of
the actual observation periods.
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FIGURE 5.4
Intervals between MI and end of observation. Left: planned. Right: actual.

To investigate this further, we first re-fit the SCCS model with the previ-
ously used NRT-associated risk periods [0, 7], [8, 14], [15, 21] and [22, 28] days
from initiation of NRT, but now using act rather than end as the end of
observation. As before we do not fit an age effect.

nrt.mod3 <- standardsccs(event~nrt, indiv=case, astart=nrt,

aend=act, aevent=mi, adrug=nrt, aedrug=nrt+28,

expogrp=c(0,8,15,22), agegrp=NULL, data=nrtdat)

Now extend the model to include an additional terminal risk period of duration
τ ; we shall use τ = 30 days. To this end we include the end of observation act

as an additional exposure, with risk period starting 30 days before that.

nrt.mod4 <- standardsccs(event~nrt+act, indiv=case, astart=nrt,

aend=act, aevent=mi, adrug=list(nrt,act), aedrug=

list(nrt+28,act), expogrp=list(c(0,8,15,22),-30),

agegrp=NULL, data=nrtdat)

We test the inclusion of the terminal risk period using a likelihood ratio test:

> lrtsccs(nrt.mod3,nrt.mod4)

test df pvalue

14.73 1 0.0001241

Unsurprisingly, the terminal effect is highly significant, confirming the im-
pression conveyed by the histogram. Finally we fit the SCCS model with an
interaction between the exposure and the censoring variable cen.

nrt.mod5 <- standardsccs(event~factor(cen)/nrt, indiv=case,

astart=nrt, aend=act, aevent=mi, adrug=nrt,

aedrug=nrt+28, expogrp=c(0,8,15,22), agegrp=NULL,

data=nrtdat)



Event-dependent observation periods 119

We compare this model to the baseline model:

> lrtsccs(nrt.mod3,nrt.mod5)

test df pvalue

7.073 4 0.1321

Since p = 0.13, the interaction term is not statistically significant. Thus,
there is little evidence that event-dependence of observation periods has a
statistically significant impact on the exposure effects. These are as follows,
from the baseline model nrt.mod3:

> nrt.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

nrt1 0.8863 1.1283 0.3408 2.305

nrt2 1.0129 0.9873 0.3895 2.634

nrt3 0.6753 1.4809 0.2083 2.189

nrt4 0.7366 1.3575 0.2301 2.358

None of the relative incidences from this model are statistically significant.
This was also the finding in Chapter 4, Section 4.8.3, using the planned ob-
servation periods terminating 365 days after initiation of NRT, as obtained
from nrt.mod1 in that section. However, it is instructive to compare infor-
mally the results: the relative incidences obtained with the actual observation
periods are much lower than those obtained previously. This is because event-
dependent censoring shortens the control periods, owing to the fact that risk
periods are always at the start of observation. Thus, while the analysis sug-
gest that event-dependent censoring has no statistically significant impact on
exposure effects, this may be due to low power of the interaction test. The
results obtained using the planned observation periods, rather than the actual
ones possibly curtailed by death, are more trustworthy as they are guaranteed
to be unaffected by event-dependence.

5.3.3 Heavy censoring: antipsychotics and stroke

In the NRT and MI example of Section 5.3.2, it was possible to use the planned
observation periods even if they were curtailed by censoring. This is not gen-
erally possible, since exposures after censoring are not usually known (in the
NRT application no exposures could occur after censoring, since exposure was
NRT initiation, and all observation periods began at the first NRT prescrip-
tion). In this section we describe such an application. In addition, in this
example, the proportions of cases with censored observation periods is high.

The example concerns the potential association between antipsychotics
and stroke in patients with and without dementia. The data are simulated,
based on Douglas and Smeeth (2008). The data in data frame apdat include
2000 cases of first stroke with at least one prescription for an antipsychotic.
There are 1500 cases in patients without dementia (dem = 0) and 500 cases in
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patients with dementia (dem = 1). Stroke carries high short-term mortality, so
in this example event-dependent censoring of observation periods is virtually
certain to occur. The issue of primary interest is whether it has any impact
on the estimates of relative incidence for antipsychotics and stroke, and if so,
how much.

Cases can have repeated exposures to antipsychotics. The data are in
the (default) stack format, with the exposure endpoints in variables ap and
endap. Age at stroke is in stro and the censoring indicator is in cen. The case
identifier is case. Figure 5.5 shows the distribution of observation periods for
all 2000 cases.
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FIGURE 5.5
Observation periods for 2000 stroke cases.

This figure was obtained using the following code.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

usta <- apdat$sta[duplicated(apdat$case)==0]

uend <- apdat$end[duplicated(apdat$case)==0]

os <- order(usta)

plot(c(min(usta)/365.25, max(uend)/365.25), c(1,length(os)),

type="n", xlab="age (years)", ylab="case rank")

segments(usta[os]/365.25, 1:length(os),

uend[os]/365.25, 1:length(os))

The observation periods span the age range 35–105 years, each one lasting
up to 15 years. For the dementia cases, the observation periods start later,
from age 60 years (not shown). To assess the potential impact of censoring of
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observation periods, we obtain counts of the numbers censored by dementia
status.

> table(apdat$cen[duplicated(apdat$case)==0],

apdat$dem[duplicated(apdat$case)==0])

0 1

0 394 47

1 1106 453

Thus, of the 1500 cases without dementia, 1106 (74%) are censored; of the 500
cases with dementia, 453 (91%) are censored. For these data, censoring means
‘not present in the database at the end of study’, so that death due to stroke
is not the only cause of censoring; other causes include deaths not associated
with stroke. The distributions of intervals from stroke to end of observation
in uncensored and censored cases are shown in Figure 5.6.
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FIGURE 5.6
Intervals between stroke and end of observation. Left: uncensored cases. Right:
censored cases.

For the censored cases, the peak in intervals under 6 months is very
much more pronounced than for uncensored cases. This is suggestive of event-
dependent censoring. In order to throw some light on whether censoring of
observation periods is likely to bias the relative incidences associated with an-
tipsychotics, we test the interaction between the exposure and the censoring
indicator. We proceed separately for cases with and without dementia.

The risk period is the period on antipsychotics. Douglas and Smeeth (2008)
used five 35-day washout periods; we shall use two 91-day washout periods
(to save on parameters). As in Douglas and Smeeth (2008) we use 5-year age
groups (except at the extremities of the age range where events are sparse).

For cases with dementia, the age range for stroke is 62 to 102 years; the
baseline and interaction models are as follows.
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agedem <- floor(seq(70,95,5)*365.25)

ap.mod1 <- standardsccs(event~ap+age, indiv=case, astart=sta,

aend=end, aevent=stro, adrug=ap, aedrug=endap,

washout=c(1,92,182), agegrp=agedem, data=

subset(apdat,dem==1))

ap.mod2 <- standardsccs(event~factor(cen)/ap+age, indiv=case,

astart=sta, aend=end, aevent=stro, adrug=ap,

aedrug=endap, washout=c(1,92,182), agegrp=agedem,

data=subset(apdat,dem==1))

The likelihood ratio test yields:

> lrtsccs(ap.mod1,ap.mod2)

test df pvalue

6.875 3 0.07599

The p-value is p = 0.076, suggesting that there is rather little evidence of an
interaction. Thus, for cases with dementia, event-dependence of observation
periods may not have much impact on the relative incidences associated with
exposure to antipsychotics. On the other hand, since only 47 cases are uncen-
sored, the test may lack power. The relative incidence estimates for the main
risk period and the two washout periods are as follows.

> ap.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 2.963 0.3375332 2.252 3.898

ap2 2.907 0.3439456 2.172 3.891

ap3 1.978 0.5056814 1.278 3.060

Thus, in this unadjusted analysis, the relative incidence associated with an-
tipsychotics is 2.96, 95% CI (2.25, 3.90), and declines a little during the
washout periods. The relative incidences for censored and uncensored cases
obtained from the interaction model are as follows:

> ap.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

......

factor(cen)0:ap1 3.762e+00 2.658e-01 1.6546 8.555

factor(cen)1:ap1 2.896e+00 3.453e-01 2.1654 3.873

factor(cen)0:ap2 2.223e+00 4.499e-01 0.8196 6.028

factor(cen)1:ap2 2.973e+00 3.363e-01 2.1897 4.037

factor(cen)0:ap3 2.716e-07 3.681e+06 0.0000 Inf

factor(cen)1:ap3 2.211e+00 4.523e-01 1.4185 3.446

For example, the relative incidence associated with antipsychotics is 3.76,
95% CI (1.65, 8.56) in the uncensored group, and 2.90, 95% CI (2.17, 3.87)
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in the censored group. There are no events in the second washout period for
uncensored cases. The estimates from the censored and uncensored groups
invite similar inferences, further suggesting that event-dependence may not
be a serious problem in patients with dementia.

For cases without dementia, the analysis proceeds along similar lines; the
age range for stroke is now 36 to 102 years.

agenod <- floor(seq(45,95,5)*365.25)

ap.mod3 <- standardsccs(event~ap+age, indiv=case, astart=sta,

aend=end, aevent=stro, adrug=ap, aedrug=endap,

washout=c(1,92,182), agegrp=agenod, data=

subset(apdat,dem==0))

ap.mod4 <- standardsccs(event~factor(cen)/ap+age, indiv=case,

astart=sta, aend=end, aevent=stro, adrug=ap,

aedrug=endap, washout=c(1,92,182), agegrp=agenod,

data=subset(apdat,dem==0))

The model without interaction yields the following estimates:

> ap.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 1.434 0.6974396 1.2051 1.706

ap2 1.454 0.6876020 1.2047 1.756

ap3 1.140 0.8773626 0.8523 1.524

These suggest that there is a statistically significant effect of antipsychotics
on stroke in patients without dementia. However, model ap.mod4 gives:

> ap.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

......

factor(cen)0:ap1 0.9893 1.0108215 0.6907 1.417

factor(cen)1:ap1 1.6198 0.6173424 1.3290 1.974

factor(cen)0:ap2 1.1399 0.8772953 0.7634 1.702

factor(cen)1:ap2 1.5783 0.6336003 1.2756 1.953

factor(cen)0:ap3 0.8620 1.1601524 0.4654 1.597

factor(cen)1:ap3 1.2534 0.7978343 0.9010 1.744

Thus, the relative incidence for antipsychotics exposure is 0.99, 95% CI
(0.69, 1.42) in the uncensored group, but 1.62, 95% CI (1.33, 1.97) in the
censored group. Similar contrasts may be observed for the washout periods.
Though the confidence intervals overlap, the estimates suggest different infer-
ences in the two groups. On the other hand, the likelihood ratio test yields:

> lrtsccs(ap.mod3,ap.mod4)

test df pvalue

6.662 3 0.08349
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Since p = 0.083, there is little evidence of an interaction. At this stage, it
appears that while the bias from event-dependent censoring of observation
periods may not be large in patients without dementia, it might nevertheless
affect our conclusions, and thus it warrants further investigation. In Chapter 7,
Section 7.2.4 we describe an adjusted SCCS analysis of the full data set.

In these data, information was available on censoring. What if it had not
been? In this case we might have tried fitting a terminal risk period of duration
κ = 183 days, to reflect the large number of intervals of under 6 months
between stroke and end of observation. The models, for cases with and without
dementia, respectively, are:

ap.mod5 <- standardsccs(event~ap+end+age, indiv=case,

astart=sta, aend=end, aevent=stro, adrug=

list(ap,end),aedrug=list(endap,end),

expogrp=list(0,-183),washout=list(c(1,92,182),0),

agegrp=agedem, data=subset(apdat,dem==1))

ap.mod6 <- standardsccs(event~ap+end+age, indiv=case,

astart=sta, aend=end, aevent=stro, adrug=

list(ap,end), aedrug=list(endap,end),

expogrp=list(0,-183), washout=list(c(1,92,182),0),

agegrp=agenod, data=subset(apdat,dem==0))

The terminal risk periods produce highly significant effects. For cases with
dementia,

> ap.mod5

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 2.645 0.378039 2.016 3.471

ap2 2.460 0.406481 1.837 3.294

ap3 1.574 0.635519 1.011 2.450

end1 3.908 0.255910 3.150 4.847

Thus, in this group, the relative incidence parameter associated with the ter-
minal risk period is 3.91, 95% CI (3.15, 4.85). The relative incidence associated
with antipsychotics remains high, at 2.65, 95% CI (2.02, 3.47), though slightly
lower than the value 2.96 from model ap.mod1.

For cases without dementia, we obtain:

> ap.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 1.1945 0.83717 1.0044 1.421

ap2 1.1963 0.83588 0.9885 1.448

ap3 0.9676 1.03352 0.7209 1.299

end1 2.8370 0.35248 2.4717 3.256
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The relative incidence associated with the terminal risk period is 2.84, 95% CI
(2.47, 3.26). The relative incidence associated with antipsychotics is 1.19, 95%
CI (1.00, 1.42). This is closer to the value obtained in the uncensored group
from model ap.mod4. Thus, fitting a suitably chosen terminal risk period, in
this case, may help to reduce the bias.

Finally, note that event-dependence of observation periods is likely to have
a big effect on the estimated age effects, especially at older ages, since obser-
vation time in these age groups is censored. Typically, age-related relative
incidences are inflated in older age groups. Age effects, however, are seldom
the focus of inference in SCCS studies.

5.3.4 Censoring of observation periods*

In this section we provide the rationale for the interaction test suggested in
Section 5.3.1. Related material is also provided in Chapter 7, Section 7.2.

We modify the SCCS likelihood to incorporate censoring that may lead
to the observation period being curtailed. We assume that censoring arises
with hazard µi(s|hsi ) for individual i, where hsi is the event history to age s.
When there is no event history, that is hsi = ∅, which occurs when no event has
occurred by age s, then µi(s|hsi ) ≡ µi(s). The censoring hazard may depend on
the exposure history and time-invariant covariates, though such dependence
is not made explicit to simplify the notation. Let Si(t|hti) denote the survivor
function of the censoring event for individual i, that is, the probability that
no censoring has occurred by age t given the event history:

Si(t|hti) = exp
(
−
∫ t

0

µi(s|hsi )ds
)
.

We now obtain the SCCS likelihood contributions for cases with uncen-
sored and censored observation periods, that is, cases for whom ci ≥ b∗i (un-
censored) or ci < b∗i (censored). Because the hazards µi(s|hsi ) are left un-
specified, it is convenient to use the general SCCS likelihood formulation of
Chapter 3, Section 3.5. Suppose that case i has events at ages ti1, . . . , tini ,
with ti1 < ti2 < · · · < tini

. At bi, the event history for case i is thus

hbii = {ti1, . . . , tini}.

Suppose first that case i is uncensored, so Ii = 0 (Ii is defined in Section 5.3.1).
The SCCS likelihood contribution then becomes:

Li =

∏ni

j=1 λi(tij |xi,yi)Si(bi|ti1, . . . , tini
)∫ bi

ai
. . .
∫ bi
sni−1

∏ni

j=1 λi(sj |xi,yi)Si(bi|s1, . . . , sni
)dsni

. . . ds1

,

(5.1)

* This section may be skipped.
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with s0 = ai if ni = 1. Now suppose that case i is censored, so Ii = 1. The
SCCS likelihood contribution Li is now:∏ni

j=1 λi(tij |xi,yi)µi(bi|ti1, . . . , tini)Si(bi|ti1, . . . , tini)∫ bi
ai
. . .
∫ bi
sni−1

∏ni

j=1 λi(sj |xi,yi)µi(bi|s1, . . . , ssni
)Si(bi|s1, . . . , sni

)dsni
. . . ds1

.

(5.2)

Suppose that the censoring hazard does not depend on the event history, so
that µi(s|hsi ) ≡ µi(s), and therefore Si(t|hti) ≡ Si(t). Then the terms involving
µi(bi) and Si(bi) in these likelihood contributions cancel out, leaving just

Li =

∏ni

j=1 λi(tij |xi,yi)∫ bi
ai
. . .
∫ bi
sni−1

∏ni

j=1 λi(sj |xi,yi)dsni
. . . ds1

= ni!×
∏ni

j=1 λi(tij |xi,yi)( ∫ bi
ai
λi(s|xi,yi)ds

)ni
.

This last expression follows from the fact that there are ni! different orderings
of the ni event times; it may be proved by induction on ni. Thus, when the
censoring hazard does not depend on the event history, we retrieve the SCCS
likelihood from Chapter 3, Equation 3.5.

The key point, for our purpose, is that event-dependent observation peri-
ods introduce extra terms in the SCCS likelihood contributions, which differ
according to whether observation periods are censored or not. This is what
motivates the test based on including an interaction term with the censoring
variable. Under the null hypothesis that observation periods are not event-
dependent, this interaction is zero. Because we are primarily interested in the
possible bias induced by event-dependent observation periods in the exposure-
related relative incidences, we implement this test by expanding the SCCS
model to include the interaction between the censoring variable and the ex-
posure effect, but not the interaction with age.

We have several times stated that event-dependent censoring of observation
periods does not imply that the estimated exposure parameter of interest, β,
is biased. Thus, the results need not be sensitive to failure of this assumption.
We now demonstrate this in a special case. Suppose that

µi(t|hti) = µi(t) + ‖hti‖θ,

where ‖hti‖ is the number of events for individual i that have occurred prior
to t in (ai, bi]. Thus, for case i, the censoring hazard is µi(t) before the first
event, and µi(t) + kθ between the kth and (k + 1)th events. It follows that

µi(bi|s1, . . . , sni
) = µi(bi) + niθ,

Si(bi|s1, . . . , sni) = e−nibiθ ×
ni∏
j=1

eθsj × exp
(
−
∫ bi

ai

µi(s)ds
)
.
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Inserting these expressions in Equations 5.1 and 5.2, the adjusted SCCS like-
lihood contribution for case i turns out to be identical whether the case is
censored or uncensored. It may be written

Li = constant×
∏ni

j=1 λ
∗
i (tij |xi,yi)( ∫ bi

ai
λ∗i (s|xi,yi)ds

)ni
,

where λ∗i (t|xi,yi) = λi(t|xi,yi) exp(θt). The term exp(θt) is incorporated into
the age effect of the proportional incidence model (see Chapter 4, Expression
4.1), which becomes ψ∗(t) = ψ(t) exp(θt), leaving the exposure effect un-
changed.

Note that Li is a standard SCCS likelihood contribution. The likelihood
will yield unbiased estimates of β, though the estimate of the age effect is
likely to be seriously upwardly biased (if θ > 0), especially at older ages.

5.4 Event-dependent exposures

The third key assumption of the SCCS method is that events do not influence
subsequent exposures. Specifically, exposures are required to be external, or
exogenous, in the sense described in Chapter 3, Section 3.7. This assumption is
required to ensure that conditioning on exposure histories over the observation
period does not alter the intensity function of the event; this in turn is needed
to ensure that the relative incidence associated with exposure is not biased.

There are two specific scenarios in which the assumption may fail, which
invite different adjustments. The first, more benign, scenario arises when oc-
currence of an event affects the exposure process for a fixed, and usually short,
period. This typically occurs with routine childhood vaccinations, which are
generally only administered to well individuals: if an event occurs, adminis-
tration of the vaccine in the days following the event may be delayed until
the child has recovered. The second, more challenging, scenario arises when
occurrence of an event permanently alters the subsequent exposure process.
This may occur, for example, if the event is a contra-indication to treatment
with the drug of interest.

Event-dependent exposures will usually bias the estimators of relative inci-
dence associated with exposure (though the bias may be small). On the other
hand, the direction of bias is often predictable: if occurrence of an event delays
or reduces the probability of subsequent exposures, then the relative incidence
associated with exposure will be biased upwards. If, on the other hand, the
occurrence of an event precipitates subsequent exposures, or increases their
probability, then the relative incidence will be biased downwards, towards
zero.

If the impact of an event on subsequent exposures is short-lived, as is
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most often the case, then a simple adjustment to the standard SCCS model
can be applied. If, on the other hand, events affect the subsequent exposure
process over the long term, then the extension of the SCCS model described
in Chapter 7, Section 7.1 may be used.

In Section 5.4.1, some straightforward methods are described to investigate
the assumption that exposures are not influenced by events. These are followed
by some examples. Starred Section 5.4.5 is a little more technical and may be
skipped.

5.4.1 Investigating event-dependent exposures

We assume that events do not influence observation periods, and investigate
whether events might influence exposures. Suppose first that the event of
interest is non-recurrent, and that each case experiences at most one exposure.
Suppose that case i has an event at age ti and a point exposure, or start of
exposure, at age ui. Suppose now that occurrence of an event reduces the
chance of an exposure occurring (or starting) during the subsequent time
interval of duration τ . This would result in a dearth of exposures in the post-
event period (ti, ti + τ ]. Conversely, if occurrence of an event increases the
chance of an exposure occurring during the subsequent time interval τ , this
would result in an excess of exposures in this post-event period.

To identify any unusual patterns of exposures in relation to the timing of
events, a histogram of the time intervals ti−ui may be useful. We call this the
centred event plot. Cases with no exposed time in their observation period are
not included in the centred event plot. If a case has several events, or several
exposures of the same type, we superimpose the data for each event-exposure
combination.

More formally, suppose that case i, i = 1, . . . , N , has events at ages tij , j =
1, . . . , ni, and point exposures, or exposure starts, at ages uik, k = 1, . . . ,mi,
with ni ≥ 1 and mi ≥ 0. The centred event plot includes all

∑N
i=1 ni × mi

values tij − uik, with j = 1, . . . , ni and k = 1, . . . ,mi; if mi = 0, the intervals
are undefined and case i is left out. If there are different exposure types,
separate centred event plots for each exposure type can be obtained.

In the SCCS model, event times are random, while exposures are treated
as fixed, and are conditioned upon. Thus, for a case i with observation period
(a1, bi] and an exposure at age uik, the values of tij −uik in the centred event
plot are limited to the interval (ai − uik, bi − uik]. This is because tij could
in principle take any value in (ai, bi], since under the Poisson assumption the
ordering of event times within individuals is immaterial.

The distribution of the ranges (ai−uik, bi−uik] may affect the appearance
of the plot. It may be useful, therefore, to supplement the centred event plot
with a second centred plot, showing the maximum possible number of events,
given the constraints imposed by the observation periods, numbers of events
per case, and exposure histories. We call this the centred observation plot. It
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is obtained by plotting E(t) against t, where

E(t) =
N∑
i=1

mi∑
k=1

ni × Iik(t).

Here Iik(t) is the indicator function for the interval (ai− uik, bi− uik], taking
the value 1 if t ∈ (ai − uik, bi − uik] and 0 otherwise. Again, if mi = 0 then
the interval is undefined and case i is left out. E(t) is the number of events
in exposed cases whose observation periods include the time interval t from
exposure; we call this the number under observation. In particular, E(0) is
the number of events in exposed cases.

In centred event plots, interest focuses on the shape of the histogram in
pre-exposure intervals [−τ, 0) for relevant positive values of τ . For example,
a dearth of events in [−τ, 0) may indicate that exposures are postponed after
an event until an interval τ has elapsed. A cluster of events at positive values,
on the other had, may reflect the association of primary interest – but this is
not our present focus. This aspect of centred event plots will be discussed in
Section 5.5.

Observing a dearth or an excess of events in an interval of duration τ prior
to exposure is exactly equivalent to observing a dearth or an excess of expo-
sures in an interval of duration τ after an event. This suggests a simple test for
short-term event-dependence of exposures: expand the standard SCCS model
to include the pre-exposure risk period [−τ, 0) prior to each point exposure
or prior to the start of each extended exposure. Note, however, that this pre-
exposure interval is not actually associated with any exposure-induced risk.
Under the null hypothesis that there is no short-term event-dependence of
exposures of duration τ , the relative incidence parameter corresponding to
this pre-exposure risk period is exp(ξ) = 1. This null hypothesis can be tested
using a likelihood ratio test; it is also important to know whether inclusion
of a pre-exposure risk period alters the relative incidences associated with
exposure.

Several potentially useful graphical representations can be based on this
test. For example, the parameter estimate exp(ξ̂) can be plotted against τ , for
a range of values τ . This plot, with confidence limits on the estimates, helps
to indicate the duration of exposure-related event-dependence. In addition,
the robustness of a relative incidence parameter of primary interest, β, to
event-dependent exposures, may be visualised by plotting the estimated values
exp(β̂) obtained with pre-exposure risk periods of different durations τ .

As previously remarked, the relative incidence parameter exp(ξ) associated
with a pre-exposure risk period is not an exposure-related quantity. However,
in certain conditions (for example, when τ is small or repeat events are un-
common) it approximates the relative incidence of exposures after events. For
example, if exp(ξ) = 0.5, this signifies that an exposure is half as likely to oc-
cur in an interval τ after an event than it would have had no event occurred.
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This interpretation is explored further in starred Section 5.4.5, which may be
skipped.

However, some caution is required in the interpretation of the pre-exposure
risk period parameter when there are overlaps between the pre-exposure risk
period and the exposure risk periods. Such overlaps may occur when cases
experience several exposure episodes. Then it is advisable to include an inter-
action term between pre-exposure and post-exposure risk periods, to provide
greater flexibility in modelling the relative event rate on the overlaps.

Summary

• Exposures should not be influenced by events. For example, the event
should not be a contra-indication to the exposure of interest.

• A histogram of the time interval between the start of exposure and the
event can help to identify event-dependence of exposures.

• A simple test for short-term event-dependence of exposures is to expand
the model to include a pre-exposure risk period.

• Robustness may be investigated graphically by varying the duration of
pre-exposure risk periods and plotting the results.

• If the results are not robust to event-dependence of exposures, the ex-
tension of Chapter 7, Section 7.1 may be used.

5.4.2 Event-dependence of exposures: ITP and MMR

We return to the data on ITP and MMR vaccine previously considered in
Section 5.2.2 of the present chapter, and in Chapter 4, Section 4.3.1. A priori,
it is likely that, in the event of a child being admitted to hospital for ITP,
vaccination would be postponed for a short period until the child had recov-
ered. However, it is unlikely that vaccination would be affected long after the
event. We examine the data to throw light on the matter; we shall use the
data frame itpdat previously described.

Recall that the observation period is [366, 730] days, and that the post-
MMR risk period of interest is 0–42 days. Thus only MMR vaccinations in the
age range [324, 730] days of age are relevant. The centred event and observation
plots are obtained as follows.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

mmrx <- ifelse(itpdat$mmr<366-42|itpdat$mmr>730, NA, itpdat$mmr)

timint <- itpdat$itp - mmrx

hist(timint, breaks=seq(-350,350,25), xlab="days since MMR",

ylab="number of events", main=NULL)

xtime <- seq(min(itpdat$sta-mmrx,na.rm=T),
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max(itpdat$end-mmrx,na.rm=T), 1)

ytime <- NULL

for (i in 1:length(xtime)){

ytime[i] <- sum((itpdat$sta-mmrx<=xtime[i])*

(xtime[i]<=itpdat$end-mmrx), na.rm=T)

}

plot(xtime, ytime, type="s", xlab="days since MMR",

ylab="number under observation")

abline(v=2, lty=2)

The two centred plots are in Figure 5.7. The panel on the left shows the event
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FIGURE 5.7
Centred plots for ITP data. Left: event plot. Right: observation plot.

plot. The cluster of events at short positive intervals reflects the association
between MMR and ITP. There are no events at short negative intervals (the
first such event is at −46 days). Indeed, there are only 9 events at negative
intervals – however, this is likely to reflect the lack of observation time shown
in the panel on the right, itself due to the fact that most primary MMR
vaccines are administered early in the second year of life. (The number under
observation at t, plotted in the observation plot, is the number of events in
exposed cases, whose observation periods include the interval t from exposure.)
The absence of events at short negative intervals may be a chance effect, or it
may be due to delay in vaccination following an event.

We investigate further the potential impact of delayed vaccination on the
relative incidence estimates. To keep matters simple, we use the relative inci-
dence for the [0, 42] day post-MMR risk period. The baseline model itp.mod2
(with no pre-exposure risk period), and models with pre-exposure risk periods
of τ = 14 days (model itp.mod9) and τ = 28 days (model itp.mod10) are
specified as follows; model itp.mod2 was originally fitted in Section 4.3.1, and
is re-fitted here for completeness.
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itp.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=0, agegrp=c(427,488,549,610,671),

data=itpdat)

itp.mod9 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(-14,0), agegrp=c(427,488,549,610,671),

data=itpdat)

itp.mod10 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(-28,0), agegrp=c(427,488,549,610,671),

data=itpdat)

The models with pre-exposure risk periods are then compared to the baseline
model using likelihood ratio tests.

> lrtsccs(itp.mod2,itp.mod9)

test df pvalue

2.979 1 0.08435

> lrtsccs(itp.mod2,itp.mod10)

test df pvalue

5.736 1 0.01662

The effect is statistically significant for the 28-day but not for the 14-day pre-
exposure risk period (but the validity of these p-values is perhaps questionable
owing to the fact that the pre-exposure relative incidence parameter is 0 and
hence lies on the boundary of the parameter space). The key issue, however, is
whether including a pre-exposure risk period substantially alters the relative
incidence associated with MMR. To evaluate this, we try a sequence of values
of τ , and loop through them as follows.

tau <- seq(14,84,14)

pre.ri <- pre.lo <- pre.hi <- NULL

ri <- lo <- hi <- NULL

for (i in 1:length(tau)){

d <- -tau[i]

mod <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(d,0), agegrp=c(427,488,549,610,671),

data=itpdat)

pre.ri[i] <- mod$conf.int[1,1]

pre.lo[i] <- mod$conf.int[1,3]

pre.hi[i] <- mod$conf.int[1,4]

ri[i] <- mod$conf.int[2,1]

lo[i] <- mod$conf.int[2,3]

hi[i] <- mod$conf.int[2,4]

}
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These parameter values may then be plotted, as follows.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(tau, pre.ri, type="p", pch=16, xlim=c(0,100),

ylim=c(0,2.5), xlab="pre-exposure interval (days)",

ylab="relative incidence")

abline(1, 0, lty=2)

segments(tau, pre.lo, tau, pre.hi)

plot(tau, ri, type="p", pch=16, xlim=c(0,100), ylim=c(0,7),

xlab="pre-exposure interval (days)", ylab=

"relative incidence")

segments(tau, lo, tau, hi)

abline(itp.mod2$conf.int[1,1], 0, lty=2)

points(0, itp.mod2$conf.int[1,1], pch=16)

segments(0, itp.mod2$conf.int[1,3], 0, itp.mod2$conf.int[1,4])

These plots are displayed in Figure 5.8. The plot on the left shows the esti-

l l l

l

l

l

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

pre−exposure interval (days)

re
la

tiv
e 

in
ci

de
nc

e

l

l

l

l l
l

0 20 40 60 80 100

0
1

2
3

4
5

6
7

pre−exposure interval (days)

re
la

tiv
e 

in
ci

de
nc

e

l

FIGURE 5.8
Relative incidences and 95% CIs, by duration of pre-exposure risk period. Left:
relative incidence associated with the pre-exposure interval. Right: relative in-
cidence associated with MMR vaccine.

mated relative incidences exp(ξ̂) associated with the pre-exposure risk period.
The estimates for τ = 14, 28, 42 days are presented without confidence inter-
vals, as these cannot be calculated using asymptotic methods, because there
are no events in these intervals (profile likelihood confidence limits could be
used instead). For other values of τ , the confidence intervals include 1. The
plot on the right shows the estimated relative incidences associated with MMR
vaccine with a 0–42 day risk period. The baseline model with no pre-exposure
risk period yields RI = 3.23, 95% (1.53, 6.79). With a pre-exposure risk pe-
riod of τ = 42 days, RI = 2.41, 95% CI (1.11, 5.26); other values of τ yield
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estimates closer to that of the baseline model. We conclude that while there
is some evidence that MMR vaccination may be delayed after a hospital ad-
mission for ITP, and that this inflates the estimated relative incidence, the
conclusion that ITP is associated with MMR vaccination is robust to such a
departure from the assumption that events do not influence subsequent expo-
sures.

5.4.3 Event-dependence with multiple exposures: NSAIDs,
antidepressants and GI bleeds

In Chapter 4, Sections 4.5.2 and 4.7.2 we considered analyses of simulated
data on gastro-intestinal (GI) bleeds, non-steroidal anti-inflammatory drugs
(NSAIDs) and antidepressants (ADs). Might occurrence of a GI bleed delay
subsequent administration of NSAIDs or ADs? We consider the evidence. The
data are in data frame addat and are arranged in format stack, with repeat
exposures and events in separate rows. Thus the intervals between GI bleeds
and the start of NSAID and AD exposures, for all within-case combinations
of events and exposures, are simple to obtain:

nsint <- addat$bleed - addat$ns

adint <- addat$bleed - addat$ad

In this case the range of the GI to NSAID or GI to AD intervals is wide, so
we shall focus on intervals of about a year on either side of the exposures. The
centred event plots, for NSAIDs and ADs respectively, are in Figure 5.9.
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FIGURE 5.9
Centred event plots for GI bleed data. Left: days from start of NSAID pre-
scription. Right: days from start of AD prescription.

Interval zero corresponds to the start of the prescription. Both plots show a
clustering of events at short positive intervals, more pronounced for NSAIDs,
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corresponding to the association between these exposures and occurrence of
GI bleeds. There is no clear evidence of an unusually pronounced peak or
trough at short negative intervals, suggesting that events do not appear to
impact substantially upon exposures.

We investigate this further by including pre-exposure risk periods for both
NSAIDs and ADs. Normally we would use a short interval such as τ = 14
days, as any effect is likely to be short-lived. However, to illustrate how to
handle overlaps between pre-exposure and post-exposure risk periods we shall
use τ = 60 days (there are no overlaps with τ = 14 days). We first refit the
baseline model ad.mod5; to keep matters simple we use the model without
interaction, without changing the reference age group.

ageq <- floor(quantile(addat$bleed[duplicated(addat$case)==0],

seq(0.025,0.975,0.025), names=F))

ad.mod5 <- standardsccs(event~ns+ad+age,

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,

endad), agegrp=ageq, data=addat)

ad.mod6 <- standardsccs(event~ns+ad+age,

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad), aedrug=cbind(endns,

endad), expogrp=list(c(-60,0),c(-60,0)),

agegrp=ageq, data=addat)

The likelihood ratio test yields:

> lrtsccs(ad.mod5,ad.mod6)

test df pvalue

2.508 2 0.2854

The p-value is p = 0.29, which suggests there is little evidence of event-
dependence in a 60-day period. More important, however, is to assess the
robustness of the baseline model. The estimated relative incidences for model
ad.mod6 are:

> ad.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 1.231 0.812648 0.9351 1.619

ns2 2.075 0.481884 1.6792 2.565

ad1 1.065 0.938760 0.7257 1.564

ad2 1.281 0.780734 0.9585 1.712

Thus, the estimated pre-exposure relative incidences are 1.23 for the 60-day
period prior to NSAIDs, and 1.07 for the 60-day period prior to ADs – both
are close to 1 and not statistically significant. The relative incidences asso-
ciated with NSAIDs and ADs are 2.08 and 1.28, respectively. In Chapter 4,
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Section 4.7.2, the estimated values without a pre-exposure risk period were
1.99 and 1.28, respectively: including a 60-day pre-exposure risk period has
little impact on these estimates.

However, this analysis ignores possible overlaps between pre-exposure and
post-exposure risk periods, which may arise since each case can experience
several exposure episodes. In such circumstances it is advisable to fit a model
including the interaction between pre- and post-exposure risk periods. To do
so, it is necessary to redefine the pre-exposure risk periods as relating to
distinct exposures. Thus, define new variables nspre and adpre as follows:

nspre <- addat$ns-60

adpre <- addat$ad-60

The main effects model (without interactions) may then be fitted as follows:

ad.mod7 <- standardsccs(event~ns+nspre+ad+adpre+age,

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad,nspre,adpre), aedrug=cbind(endns,

endad,ns-1,ad-1), agegrp=ageq, data=addat)

This relative incidence estimates for model ad.mod7 are as follows.

> ad.mod7

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 2.016 0.496028 1.6380 2.481

nspre1 1.141 0.876758 0.8706 1.494

ad1 1.284 0.778986 0.9656 1.707

adpre1 1.043 0.958460 0.7143 1.524

The estimated relative incidences for the pre-exposure periods are 1.14 for
NSAIDs and 1.04 for ADs. These differ (slightly) from those obtained using
model ad.mod6. The discrepancies are due to the different conventions used
to handle overlaps. In model ad.mod6, precedence is given to the most recent
exposure, whereas in model ad.mod7 overlaps are modelled by combining pa-
rameters for the two intervals involved. These conventions are discussed in
detail in Chapter 4, Section 4.5.4.

The interactions between pre and post-exposure risk periods for each ex-
posure may be included as follows in the model (again, for simplicity, we have
not included interactions between the two exposures).

ad.mod8 <- standardsccs(event~ns*nspre+ad*adpre+age,

indiv=case, astart=sta, aend=end, aevent=bleed,

adrug=cbind(ns,ad,nspre,adpre), aedrug=cbind(endns,

endad,ns-1,ad-1), agegrp=ageq, data=addat)

The relative incidence estimates and the interactions for model ad.mod8 are
as follows.
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> ad.mod8

......

exp(coef) exp(-coef) lower .95 upper .95

ns1 2.0775 0.481338 1.6808 2.568

nspre1 1.2190 0.820349 0.9184 1.618

ad1 1.2838 0.778953 0.9605 1.716

adpre1 1.0440 0.957848 0.7006 1.556

......

ns1:nspre1 0.5501 1.817807 0.2148 1.409

ad1:adpre1 1.0022 0.997767 0.2927 3.432

Neither interaction term is statistically significant. The relative incidences for
the pre-exposure risk periods are 1.22 for NSAIDs and 1.04 for ADs. The
exposure-related relative incidences are 2.08 for NSAIDs and 1.28 for ADs.
These results differ only marginally from those obtained from models ad.mod6
and ad.mod7. We conclude that, in these data, overlaps between pre-exposure
and post-exposure risk periods have little impact on the results.

Finally, the likelihood ratio test to compare models ad.mod5 (without pre-
exposure risk periods) and ad.mod8 (with pre-exposure risk periods, including
interactions) is as follows.

> lrtsccs(ad.mod5,ad.mod8)

test df pvalue

2.752 4 0.6001

As before, the p-value p = 0.60 suggests there is little evidence of event-
dependence of exposures in a 60-day period.

Our substantive conclusion from this analysis is that the assumption that
events do not exert a short-term influence on subsequent exposures is reason-
able in this application.

5.4.4 Long-term dependence: influenza vaccine and GBS

Our final example is one in which the SCCS model is not robust to failure of
the assumption that events do not influence subsequent exposures.

In Chapter 4, Section 4.9.1, we discussed a possible association between
influenza vaccine and Guillain–Barré syndrome (GBS). Administration of the
seasonal inluenza vaccine may not be appropriate for patients with a history
of GBS. This is likely to introduce long-term dependence of exposures on
events: patients who have had GBS are less likely subsequently to receive the
influenza vaccine.

The centred event and observation plots are shown in Figure 5.10. The
event plot, on the left, shows that, of the 52 GBS cases with an influenza
vaccination, only one had an event before the vaccine. On the other hand,
the observation plot, on the right, shows a sharp increase in the number un-
der observation before 0. (The number under observation at t is the number
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FIGURE 5.10
Centred event and observation plots for GBS and influenza vaccination.

of events in exposed cases whose observation period includes the interval t
from exposure.) Thus, the vaccinated cases had less opportunity for GBS to
arise before vaccination – largely due to the fact that influenza vaccination is
encouraged early in the influenza season.

Figure 5.10 is obtained with the following code.

gint <- gbsdat$gbs - gbsdat$flu

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

gcuts <- seq(-190,190,10)

hist(gint, breaks=gcuts, xlab="days since vaccination",

ylab="number of events", main=NULL)

xtime <- seq(min(gbsdat$sta-gbsdat$flu, na.rm=T),

max(gbsdat$end-gbsdat$flu,na.rm=T), 1)

ytime <- NULL

for (i in 1:length(xtime)){

ytime[i] <- sum((gbsdat$sta-gbsdat$flu <= xtime[i])*

(xtime[i] <= gbsdat$end-gbsdat$flu), na.rm=T)

}

plot(xtime, ytime, type="s", xlab="days since GBS",

ylab="number under observation")

abline(v=0, lty=2)

A priori, we must assume that there is strong event-dependence of ex-
posures, and thus the standard SCCS model is unlikely to be appropriate.
Consequently, these data will be reanalysed using the extension of the SCCS
model to be described in Chapter 7, Section 7.1. Nevertheless, it is instructive
to examine the impact of including a pre-exposure risk period in the standard
SCCS model.
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We begin by fitting a SCCS model with a pre-exposure risk interval of du-
ration τ = 120 days, and monthly season groups as in Chapter 4, Section 4.9.1:

seas <- cumsum(c(31,30,31,31,28,31))

gbs.mod4 <- standardsccs(event~flu+age, indiv=case, astart=

sta, aend=end, aevent=gbs, adrug=flu, aedrug=flu+42,

expogrp=c(-120,0), agegrp=seas, data=gbsdat)

This produces the following estimates.

> gbs.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

flu1 0.09418 10.6180 0.01215 0.7298

flu2 1.82738 0.5472 0.96901 3.4461

The pre-exposure effect is statistically significant, with RI = 0.094, 95% CI
(0.012, 0.73). The relative incidence associated with influenza vaccination is
now marginally statistically non-significant: RI = 1.83, 95% CI (0.97, 3.45).
Other values of τ confirm these results, as shown in Figure 5.11, for values
τ = 20(20)120. The R code is omitted, as it is similar to that of Section 5.4.2.
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FIGURE 5.11
Relative incidences and 95% CIs, by duration of pre-exposure risk period. Left:
relative incidence associated with the pre-exposure interval; the dashed line is
at RI = 1. Right: relative incidence associated with influenza vaccine; the
dashed line is at RI = 2.58.

The plot on the left shows the relative incidences associated with the pre-
exposure risk interval. For the larger values of τ , the effects are statistically
significant, in that the 95% confidence interval is entirely located below 1,
suggesting that there is indeed a significant dearth of GBS events prior to



140 Checking model assumptions

influenza vaccination. The impact this has on the relative incidences associated
with influenza vaccination are shown in the plot on the right.

When no pre-exposure risk period is included, RI = 2.58, 95% (1.42, 4.71).
When a pre-exposure risk period is included, the relative incidence is reduced
to such an extent that it may become marginally statistically non-significant.
We conclude that, in this application, the results are sensitive to the assump-
tion that exposures are not event-dependent.

5.4.5 Interpretation of pre-exposure risk period*

In this section we explore a little further the idea of including a pre-exposure
risk period in a standard SCCS model in order to identify short-term de-
pendence of exposures on events. We need to consider both the event and
the exposure processes simultaneously. We suppose that exposures are point
events, such as vaccinations; more general formulations in which the point
exposure marks the start of a treatment period could also be considered.

Suppose that events, which may be recurrent for an individual i, arise in
a process with intensity function

λi(t|xti) = φiψi(t) exp{vi(t, xti)Tβ},

using notation introduced in Chapter 4, Section 4.10. Here xti includes the
exposure history of individual i to age t; note that we retain the superscript
t, as the exposure process to age t depends on the event history to age t.
To simplify the notation we have not included any time-invariant covariates,
though these may easily be accommodated.

We suppose that the exposures in (ai, bi] for individual i arise with intensity
function

µi(t|zti) = µi(t) exp{w(t, zti)ξ}, (5.3)

where zti is the event history of individual i to age t and w(t, zti) is the number
of events in the interval (max{t − τ, ai}, t). The parameter ξ describes the
dependence of the exposure process on the event process in (ai, bi]: if ξ = 0
there is no dependence and the exposure process is a non-homogeneous Poisson
process with intensity µi(t). If ξ > 0, events precipitate exposures within an
age interval τ , and if ξ < 0 then events inhibit exposures within this interval.
Dependence on the event process prior to age ai is assumed to be incorporated
into µi(t).

We consider the joint density of event and exposure times for one indi-
vidual i over an age interval (ai, bi]. For greater clarity we shall suppress the
individual identifier i, and write vi(t, x

t
i) as v(t) and w(t, zti) as w(t). Suppose

the individual has n events at ages t = {t1, . . . , tn} and m exposures at ages
u = {u1, . . . , um}, where a < t1 < · · · < tn ≤ b and a < u1 < · · · < um ≤ b.

* This section may be skipped.
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Given the exposure and event histories to age a, the joint density of the n
event times and m exposure times is

f(n,m, t,u) = φn
n∏
j=1

ψ(tj) exp{v(tj)
Tβ} exp

(
−
∫ b

a

φψ(s) exp{v(s)Tβ}ds
)

×
m∏
k=1

µ(uk) exp{w(uk)ξ} exp
(
−
∫ b

a

µ(s) exp{w(s)ξ}ds
)
.

(5.4)

Let IA(t) denote the indicator function for a time interval A, taking the
value 1 when t lies in A and the value 0 otherwise. Define

r(t) =
m∑
k=1

I(uk−τ,uk)(t).

We then have

m∑
k=1

w(uk) =
n∑
j=1

r(tj). (5.5)

Note also that if n ≥ 2 and tj − tj−1 > τ for all j = 2, . . . , n, then∫ b

a

µ(s) exp{w(s)ξ}ds

=
n∑
j=1

∫ b

a

µ(s) exp{I(tj ,tj+τ)(s)ξ}ds− (n− 1)

∫ b

a

µ(s)ds. (5.6)

If the condition tj − tj−1 > τ is not satisfied for some j ≥ 2, then iden-
tity 5.6 holds only approximately: there is an additional term of order O(τ)
corresponding to the overlaps between the intervals (tj − τ, tj).

Substituting Expressions 5.5 and 5.6 in Equation 5.4, and rearranging,
yields:

f(n,m, t,u) '
[ n∏
j=1

ψ∗(tj) exp{v(tj)
Tβ + r(tj)ξ}

]
× φn

m∏
k=1

µ(uk) exp
(
−
∫ b

a

φψ(s) exp{v(s)Tβ}ds
)

× exp
(

(n− 1)

∫ b

a

µ(s)ds
)
, (5.7)

where

ψ∗(t) = ψ(t) exp
(
−
∫ b

a

µ(s) exp{I(t,t+τ)(s)}ds
)
.
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Equation 5.7 is exact when n = 1 or when tj − tj−1 > τ for j = 2, . . . , n. Note
that only the expression in square brackets in Equation 5.7 involves the event
times t1 < · · · < tn. Now, as previously seen in Section 5.3.4,∫ b

a

∫ b

t1

. . .

∫ b

tn−1

n∏
j=1

ψ∗(tj) exp{v(tj)
Tβ + r(tj)ξ}dtn . . . dt2dt1

=
1

n!

[ ∫ b

a

ψ∗(s) exp{v(s)Tβ + r(s)ξ}ds
]n
.

Thus, integrating out the event times in Equation 5.7 yields the following
approximate expression for the marginal density:

f(n,m,u) ' 1

n!

[ ∫ b

a

ψ∗(s) exp{v(s)Tβ + r(s)ξ}ds
]n

× φn
m∏
k=1

µ(uk) exp
(
−
∫ b

a

φψ(s) exp{v(s)Tβ}ds
)

× exp
(

(n− 1)

∫ b

a

µ(s)ds
)
. (5.8)

We now reinstate the individual identifiers i. The conditional likelihood
contribution of case i with event times ti1, . . . , tini

, given that ni events oc-
curred, and given the observed exposures over (ai, bi], is obtained by dividing
Equation 5.7 by Equation 5.8. Thus it is

Li ' ni!×
∏ni

j=1 ψ
∗
i (tij) exp{vi(tij)Tβ + ri(tij)ξ}[ ∫ bi

ai
ψ∗i (s) exp{vi(s)Tβ + ri(s)ξ}ds

]ni
.

This has the form of a SCCS likelihood contribution, with baseline age effect
ψ∗i (t), exposure-related parameter vector β, and an additional time-varying
covariate ri(t), which is the number of exposures experienced by case i in
(t, t+ τ) within (ai, bi], with associated parameter ξ.

Thus, when events are rare (so that ni = 1 for most cases i, for which the
likelihood contributions Li are then exact) or τ is small, we retrieve a SCCS
likelihood. For small values τ , or when each case experiences at most one
exposure, the number of exposures in any interval (t, t + τ) is 0 or 1. In this
case, including the covariate ri(t) is the same as defining a pre-exposure risk
period of duration τ . From its definition in Equation 5.3, the exponentiated
parameter value exp(ξ) represents the relative incidence of exposure during
an interval of duration τ after an event.
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5.5 Modelling assumptions

By modelling assumptions, we specifically refer to the specification of the
model for the incidence function λi(t|xi,yi). In the case of the standard SCCS
model, this includes the appropriateness of the choice of risk periods and age
groups, and the age homogeneity of the exposure effect. In this section we
briefly discuss how to evaluate these aspects of the SCCS model.

5.5.1 Checking the model

We do not propose any formal, data-driven methods for choosing risk periods:
indeed we do not recommend using such techniques, other than in the very
specific situation where a SCCS study is undertaken solely as a hypothesis-
generating exercise. The reason is that, when used with the analysis methods
described in this book, data-driven choices of risk periods may produce spuri-
ous inferences about the association between the exposure and event of interest
(this is explored further in Chapter 8, Section 8.1.2). On the other hand, it
can be useful to represent the data in such a way as to display temporal asso-
ciations or their absence. This is achieved by the centred event plot described
in Section 5.4.1, possibly supplemented by the centred observation plot also
described there.

In contrast to risk periods, it does make sense to check that the age groups
used in the standard SCCS model are appropriate. The key issue is not usually
to obtain a valid estimate of the age effect (though in some applications this
may also be required), but to ensure that the estimate of the exposure effect is
not biased owing to an inappropriate choice of age categories. A simple way to
check this is to refit the model with a finer age categorisation, and informally
compare the estimates of β. If there is little practical difference, the original
choice of age groups is likely to be adequate.

Finally, the proportional incidence model implies that the relative inci-
dence associated with exposure is constant at different ages, in other words,
that the exposure effect is homogeneous. This can be explored by including
an Age * Exposure interaction term. A likelihood ratio test can be used to
check whether including the interaction improves the model fit, though it may
be more useful to supplement this by an informal assessment of whether the
estimates of β vary with age in practically important ways. To avoid sparse
or empty categories and a profusion of parameters, the interaction may best
be explored with grouped versions of the original age and exposure levels.
If the interaction is found to be statistically significant, this may indicate
heterogeneity of the exposure effect, or may call into question the multiplica-
tive effect assumption upon which the proportional incidence model is based.
The relative incidence estimated from the standard SCCS model without the
interaction should then be interpreted as an average effect.
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Summary

• Modelling assumptions include the specification of risk periods and age
categories.

• While a data-driven choice of risk periods is generally to be avoided,
a centred event plot of the time interval between the start of exposure
and the event can help visualise temporal associations.

• Robustness to the choice of age groups may be investigated by using a
finer age categorisation.

• Homogeneity of the exposure effect may be investigated by including a
(possibly grouped) age by exposure interaction.

5.5.2 Risk periods and age groups: MMR and convulsions

In Section 5.2.3 we explored recurrences of convulsions in data on MMR vac-
cination. The data, which are in data frame condat, were originally analysed
in Chapter 4, Section 4.5.1. In this analysis, age was grouped in 20-day peri-
ods, and four 1-week risk periods were used: [0, 7], [8, 14], [15, 21] and [22, 28]
days post-MMR. A significantly raised relative incidence was found for the
[8, 14]-day period after MMR, but not for the other risk periods.

To investigate the appropriateness of these preselected risk intervals we
construct the centred event and observation plots, restricting attention to
MMR vaccines given in the age range 366− 42 = 324 to 730 days.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

mmrx <- ifelse(condat$mmr<366-42|condat$mmr>730, NA, condat$mmr)

timint <- condat$conv - mmrx

timhis <- hist(timint, breaks=seq(-400,400,5), xlab=

"days since MMR", ylab="number of events",

main=NULL)

xtime <- seq(min(condat$sta-mmrx,na.rm=T), max(condat$end-mmrx,

na.rm=T), 1)

ytime <- NULL

for (i in 1:length(xtime)){

ytime[i] <- sum((condat$sta-mmrx<=xtime[i])*

(xtime[i]<=condat$end-mmrx), na.rm=T)

}

plot(xtime, ytime, type="s", xlim=c(-400,400),

xlab="days since MMR", ylab="number under observation")

abline(v=0, lty=2)

This produces the graphs shown in Figure 5.12. The centred event plot reveals
a very striking pattern close to zero; this aside it broadly mirrors the overall
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FIGURE 5.12
Centred plots for convulsions. Left: event plot. Right: observation plot.

shape of the centred observation plot. Figure 5.13 zooms in on the neighbour-
hood of zero; the bin size used is 5 days. The plot shows a large peak in the
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FIGURE 5.13
Detail of centred event plot for MMR and convulsions.

6–10 day period post-MMR, and a marked trough in the period 15–1 days
prior to MMR vaccine. Thus, it appears that the choice of MMR-associated
risk periods (weeks one to four post-MMR) is adequate: the plot certainly
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supports the finding that there is an excess of convulsions in the second week
after MMR vaccination.

However the plot also shows that a 15-day pre-MMR risk period should
be included in the model to correct for delays in vaccination following a con-
vulsion. Note that it is acceptable to make such a data-driven choice as the
pre-exposure effect, like the age effects, are not of primary interest.

We now explore the sensitivity of the results to the choice of age groups.
We fit the standard SCCS model with 20-day age groups, now including a
15-day pre-exposure risk period.

ageg <- seq(387,707,20)

con.mod7 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+28,

expogrp=c(-15,0,8,15,22), agegrp=ageg, data=condat)

The exposure effects are as follows:

> con.mod7

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.3717 2.6900 0.2683 0.5152

mmr2 1.0332 0.9679 0.7977 1.3383

mmr3 2.3014 0.4345 1.9010 2.7863

mmr4 1.1058 0.9043 0.8472 1.4435

mmr5 1.1028 0.9068 0.8432 1.4423

The pre-MMR effect is significant, the associated relative incidence being 0.37,
95% CI (0.27, 0.52). For the four post-MMR risk periods, only the effect in
the second week is significant, RI = 2.30, 95% CI (1.90, 2.79).

To investigate sensitivity to the choice of age categories, we fit a model
with more age categories, in which model con.mod7 is nested. We use 10-day
age categories:

ageg2 <- seq(377,717,10)

con.mod8 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+28,

expogrp=c(-15,0,8,15,22), agegrp=ageg2, data=condat)

The exposure effects for this model are:

> con.mod8

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.3705 2.6992 0.2673 0.5134

mmr2 1.0318 0.9691 0.7965 1.3367

mmr3 2.2903 0.4366 1.8908 2.7741

mmr4 1.1043 0.9056 0.8459 1.4417

mmr5 1.1053 0.9047 0.8451 1.4457
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The estimates of the exposure effect are very similar to those obtained from
model con.mod7. Specifically, the estimate for the second week post-MMR is
RI = 2.29 rather than 2.30. Thus, the original choice of age categories was
adequate.

5.5.3 Homogeneity of effect: MMR and convulsions

We now turn to verifying the homogeneity of the exposure effect. Since only
the pre-MMR risk period and the [8, 14] day risk period are associated with
convulsions, it makes sense to limit the exposure effects to these two periods.
Since they are not adjacent, they cannot be specified using expogrp. Instead
we define a new exposure variable pre containing the values mmr-15. We also
coarsen the age groups, in order to avoid empty categories when fitting inter-
actions. The reduced model is defined as follows.

pre <- condat$mmr-15

ageg3 <- c(427,487,547,607,667)

con.mod9 <- standardsccs(event~mmr+pre+age, indiv=case,

astart=sta, aend=end, aevent=conv, adrug=

list(mmr,pre), aedrug=list(mmr+14,pre+14),

expogrp=list(8,0), agegrp=ageg3, data=condat)

The estimated exposure effects are then:

> con.mod9

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 2.2822 0.4382 1.8898 2.7562

pre1 0.3666 2.7277 0.2649 0.5073

Parameter pre1 corresponds to the pre-MMR risk period and parameter mmr1
to the 8–14 days post-MMR risk period; the estimates are close to those
obtained with model con.mod7 in Section 5.5.2 which included three additional
risk periods and three times as many age categories.

We now investigate a possible interaction between the post-MMR exposure
effect and age.

con.mod10 <- standardsccs(event~age/mmr+pre, indiv=case,

astart=sta, aend=end, aevent=conv, adrug=

list(mmr,pre), aedrug=list(mmr+14,pre+14),

expogrp=list(8,0), agegrp=ageg3, data=condat)

> lrtsccs(con.mod9,con.mod10)

test df pvalue

18.31 5 0.002582

The interaction is highly statistically significant (p = 0.003) suggesting that
the MMR effect may vary with age, and in this sense is not homogeneous. To
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examine this further, we obtain two graphs: first, the relative age effect from
model con.mod9, and second, the age by exposure interaction from model
con.mod10. The code for these graphs is as follows.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

ar <- c(1,con.mod9$conf.int[3:7,1],con.mod9$conf.int[7,1])

as <- c(366,ageg3,730)/30.5

plot(as, ar, type="s", xlim=c(12,24), ylim=c(0.6,1.1),

xlab="age (months)", ylab="relative incidence")

ri <- con.mod10$conf.int[7:12,1]

lo <- con.mod10$conf.int[7:12,3]

hi <- con.mod10$conf.int[7:12,4]

ag <- 0.5*(c(ageg3,730)+c(366,ageg3))/30.5

plot(ag, ri, pch=16, xlim=c(12,24), ylim=c(0,16), xlab=

"age group midpoint (months)", ylab="relative incidence")

segments(ag,lo,ag,hi)

abline(h=con.mod9$conf.int[1,1], lty=2)

The graphs are shown in Figure 5.14. The estimated age effect decreases mono-
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FIGURE 5.14
Left: relative age effect for convulsions data. Right: relative incidence associ-
ated with MMR, by age group. The horizontal dashed line indicates the relative
incidence without interaction.

tonically. The MMR-associated relative incidences from the interaction model
are not monotone, though perhaps consistent with an increase. Taken to-
gether, these plots might indicate that the exposure and age effects combine
additively rather than multiplicatively. Though the interaction is statistically
significant, the relative incidence estimate from model con.mod9, represented
as the dashed line in the right panel of Figure 5.14, nevertheless provides a
useful summary of the association between MMR vaccination and convulsions,
and may be interpreted as an average effect over this age range.
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5.6 Asymptotic assumptions

The maximum likelihood inference framework relies on asymptotic arguments,
which may or may not be valid in small samples, especially when few events
occur in the risk period of interest. In such circumstances it might be possible
to combine risk periods to reduce such sparseness problems. Alternatively, an
analysis method other than the asymptotic likelihood ratio test may be used.

We shall describe one such alternative: a permutation test; for more detail
on such tests see Davison and Hinkley (1997) and Manly (1997). Suppose
that N cases are available with observation periods (ai, bi], i = 1, . . . , N , and
furthermore assume that these observation periods are not determined by the
exposure histories. Suppose also that exposure histories are obtained over an
age interval (a, b] that includes all the (ai, bi], and that case i experiences

ni events. Thus there are M =
∑N
i=1 ni events. Each event is assigned the

exposure history of the corresponding case; if ni > 1 the exposure history
of case i is replicated ni times. Under the null hypothesis of no association
between exposures and events, the exposure histories associated with the M
events may be permuted without altering the distribution of the test statistic.

Asymptotically as N grows large, the null distribution of the likelihood
ratio test statistic LRT comparing the model Exposure + Age with the model
Age is chi-squared on k degrees of freedom, k being the number of exposure
parameters. The permutation test, instead, uses the null distribution of LRT
obtained by permuting the exposure histories associated with the M events.

Often, the distinct permutations are too numerous to explore them exhaus-
tively, in which case a randomly selected subset of permutations is chosen. Let
T0 denote the observed likelihood ratio test statistic, and T1, . . . , TR the like-
lihood ratio test statistics obtained from R randomly chosen permutations of
the exposure histories. The empirical p-value is then

p =
1 + ‖{Tr : Tr ≥ T0, r = 1, . . . , R}‖

1 +R

where ‖A‖ denotes the size of set A. The Monte Carlo standard error associ-
ated with p is of order

√
p ∗ (1− p)/R. Calculating the Monte Carlo standard

error can help in the choice of R and in the interpretation of discrepancies
between asymptotic and empirical p-values.

Summary

• The validity of asymptotic assumptions may be questionable in small
samples.

• In some circumstances, a permutation test may be undertaken to sup-
plement the likelihood ratio test.
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5.6.1 Permutation test for the aseptic meningitis data

We return to the data on MMR vaccine and aseptic meningitis described in
Chapter 3, Sections 3.4 and 3.6. There were just 10 cases, each with a single
event, all with observation period 366 to 730 days, and nine of whom received
MMR vaccine. We used two age groups: [366, 456] days and [457, 730] days,
and the risk period was 15 to 35 days post-MMR. The data are in data frame
amdat. First, we obtain the asymptotic likelihood ratio test statistic, and store
it in t0.

am.mod1 <- standardsccs(event~age, indiv=case, astart=sta,

aend=end, aevent=am, adrug=mmr, aedrug=mmr+35,

expogrp=15, agegrp=457, data=amdat)

am.mod2 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=am, adrug=mmr, aedrug=mmr+35,

expogrp=15, agegrp=457, data=amdat)

t0 <- lrtsccs(am.mod1,am.mod2)$test

The exposure effect estimated in model am.mod2, and the likelihood ratio test,
are as follows.

> am.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 17.8004 0.05618 4.6476 68.175

......

> lrtsccs(am.mod1,am.mod2)

test df pvalue

14.91 1 0.0001128

The relative incidence is 17.8 with 95% CI (4.6, 68.2). The significance of the
exposure effect is confirmed by the likelihood ratio test, for which the test
statistic is 14.91 on 1 degree of freedom, p = 0.00011.

However, the very small sample size (10 events) means that the relevance
of asymptotic theory is at the very least questionable. The asymptotic null
distribution for the likelihood ratio test is χ2(1), the chi-squared distribution
on 1 degree of freedom. We explore its validity in the present context by
undertaking a permutation test. There are 10! = 3 628 800 permutations of the
10 exposure histories, too many to calculate exhaustively. Instead we randomly
sample R = 999 permutations, and for each of these obtain the likelihood
ratio test statistic. These are stored in vector test. The following code is
appropriate for data in which each line corresponds to a separate event, as is
the case here.

set.seed(54321)

R <- 999

perm <- amdat

test <- NULL
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for (i in 1:R){

perm$expo <- sample(perm$mmr, replace=F)

mod2 <- standardsccs(event~expo+age, indiv=case, astart=sta,

aend=end, aevent=am, adrug=expo, aedrug=expo+35,

expogrp=15, agegrp=457, data=perm)

mod1 <- standardsccs(event~age, indiv=case, astart=sta,

aend=end, aevent=am, adrug=expo, aedrug=expo+35,

expogrp=15, agegrp=457, data=perm)

test[i] <- lrtsccs(mod1,mod2)$test

}

The permutation test p-value is as follows.

> (1+sum(test>=t0))/(1+R)

[1] 0.004

The p-value is 0.004: some way from the asymptotic value 0.00011, but still
highly statistically significant; the Monte Carlo standard error is 0.002. The
null distribution estimated from these 999 permutations, together with the
asymptotic χ2(1) distribution, may be represented graphically as follows.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

xval <- seq(0, ceiling(max(test)), 0.1)

hist(test, freq=F, xlab="test statistic", ylab="density",

breaks=seq(0,ceiling(max(test)),0.25), main=NULL)

abline(v=t0, lty=2)

lines(xval, dchisq(xval,df=1))

The resulting plot is in Figure 5.15. The estimated null distribution is dis-
tinctly discontinuous, here supported on just six points. (The last support
point is indicated by the small bar at 14.91 on Figure 5.15.) These corre-
spond, from left to right on Figure 5.15, to permutations in which 1, 0, 2, 3,
4, 5 events lie within the risk period, respectively. More support points may
appear with different permutations. For example, with R = 9999 in the code
above there are seven, and the p-value is 0.0037 (Monte Carlo standard error
0.0006). Thus, in this example, asymptotic theory is clearly not applicable,
but the conclusions are not materially affected by this failure of asymptotic
assumptions.

5.6.2 Permutation test for the ITP data

In Section 5.2.2 we investigated the Poisson assumption for the ITP and MMR
data. We return to these data, which are in data frame itpdat, to study the
validity of asymptotic assumptions. There are 44 events in 35 individuals.

We consider first the model with three risk periods, [0, 14], [15, 28] and
[29, 42] days post-MMR. To obtain the likelihood ratio test statistic, we re-
fit models itp.mod1 and itp.mod3 previously explored in Chapter 4, Sec-
tion 4.6.1. The likelihood ratio test statistic is stored in t0 as follows.
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FIGURE 5.15
Estimated probability mass function of the permutation distribution (his-
togram) and asymptotic χ2(1) density. The vertical dashed line indicates the
observed value of the test statistic, 14.91.

itp.mod1 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

itp.mod3 <- standardsccs(event~age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

t0 <- lrtsccs(itp.mod1,itp.mod3)$test

The likelihood ratio test statistic, and the p-value based on the asymptotic
χ2(3) distribution, are:

> lrtsccs(itp.mod1,itp.mod3)

test df pvalue

13.43 3 0.003793

Thus, the exposure effect is highly statistically significant, with asymptotic
p-value 0.0038. We investigate the reliability of this value using a permutation
test. This is possible because, for these data, exposure histories are available
over the age range 366 to 730 days (and beyond), which contains all 35 obser-
vation periods.

The data comprise one line per event. The permutation test is implemented
as follows, with R = 999 permutations of the exposures.
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set.seed(54321)

R <- 999

perm <- itpdat

test <- NULL

for (i in 1:R){

perm$expo <- sample(perm$mmr, replace=F)

mod2 <- standardsccs(event~expo+age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=expo, aedrug=expo+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=perm)

mod1 <- standardsccs(event~age, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=expo, aedrug=expo+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=perm)

test[i] <- lrtsccs(mod1,mod2)$test

}

The p-value is estimated as

> (1+sum(test>=t0))/(1+R)

[1] 0.008

which is about twice the value obtained using the asymptotic χ2(3) distribu-
tion. The Monte Carlo standard error is of the order of 0.003. The asymptotic
and permutation null distributions of the likelihood ratio test statistic are
plotted as follows.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

xval <- seq(0, ceiling(max(test)), 0.1)

hist(test, freq=F, xlab="test statistic", ylab="density",

breaks=seq(0,ceiling(max(test)),0.5), main=NULL)

abline(v=t0, lty=2)

lines(xval, dchisq(xval,df=3))

The resulting plot is shown in the left panel of Figure 5.16. The asymptotic
χ2(3) distribution has a single mode; in contrast the permutation null distri-
bution has an additional mode at around 5. It is apparent that the asymp-
totic distribution differs substantially from its permutation-based counterpart.
Nevertheless, the conclusions are unaffected: there is a highly statistically sig-
nificant exposure effect.

The additional mode at 5 corresponds to those permutations in which one
or more of the three risk periods contain zero events. It is instructive to repeat
the analysis using the combined [0, 42]-day risk period. The R code is similar
to that previously given and is not shown. In this case, the asymptotic test
statistic is 8.57 on 1 degree of freedom, p = 0.0034. The p-value using the
permutation test (with R = 999 samples) is 0.007. But now the asymptotic
distribution, which is χ2(1), much more closely matches the permutation-
based null distribution. These are shown in the right-hand panel of Figure 5.16.
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FIGURE 5.16
Estimated probability mass functions of the permutation distributions (his-
tograms) and asymptotic densities. Left: model with three risk periods. Right:
model with a single 0–42 day risk period. The vertical dotted lines indicate the
observed values.

Thus, combining risk periods to avoid sparseness improves the validity of
asymptotic approximations.

5.7 Bibliographical notes and further material

Several of the methods described in this chapter were originally suggested
in Farrington (1995) and Farrington and Whitaker (2006). The rare events
assumption discussed in Section 5.1 is studied in Whitaker et al. (2018b).
More detailed empirical investigations of the tests described in Sections 5.3
and 5.4 may be found in Whitaker et al. (2018a). Andrews (2002) describes a
range of sensitivity analyses to investigate the robustness of the SCCS model.

Within-individual dependence of recurrent events is discussed further in
Farrington and Hocine (2010). Simpson (2013) proposed an extension of the
SCCS model to cater for positive dependence between successive events.

The small-sample performance of the standard SCCS method is studied
in Musonda et al. (2008b). In this paper, the small-sample bias in the relative
incidence is quantified. Zeng et al. (2013), on the other hand, discuss the
application of bias correction methods to the SCCS model.

Mohammed et al. (2012) developed an extension of the SCCS model to
correct for measurement error in risk period endpoints, which may bias the
relative incidence. The impact of such measurement errors on hypothesis tests
is studied in Mohammed et al. (2013b). Misclassification of events, and its
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impact on estimates derived using the SCCS method, is discussed in Quantin
et al. (2013).

In this chapter we have not recommended using data-driven choices of
risk periods, owing to their likely impact on the validity of the inferences
drawn from the models we have described. In exploratory investigations of
a hypothesis-generating, rather than hypothesis-testing, character, however,
data-driven choices of risk periods can be justified. Methods to this effect have
been proposed by Xu et al. (2011) and Xu et al. (2013).
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6

Further SCCS models

The standard SCCS models considered so far share the following characteris-
tics: the age effect is assumed to be constant on pre-defined age groups; the
exposure effect is also assumed to be piecewise constant on pre-defined risk
periods; events are of a single type; and exposures are discrete. In the present
chapter, we relax the constraints imposed by these characteristics, and intro-
duce a wider range of models. The likelihood for these models is still of the
general SCCS form specified in Chapter 3, Section 3.5, and the primary focus
for inference remains the estimation of exposure effects.

We begin, in Section 6.1, with a semiparametric SCCS model, in which
the age effects need not be pre-specified by the user. This model is only of
practical use for datasets of moderate size (typically, up to a few hundred
cases), so in Section 6.2 we consider SCCS models in which the age effects are
represented by spline functions. These models are extended in Section 6.3 so
that exposure effects are also modelled by spline functions. Throughout the
sections on semiparametric and spline-based SCCS models, we assume age is
the time line of primary interest, but it could just as well be calendar time.

In Section 6.4 we consider SCCS models for events of several different
types. In Section 6.5 we present a SCCS model for quantitative exposures.
Finally, in Section 6.6 we discuss SCCS models for environmental exposures,
and their relationship with other Poisson models. Bibliographical details, and
brief mention of some other SCCS models not considered here, are given in
Section 6.7. As in other chapters, material of a more technical nature has been
confined to separate starred sections which may be skipped: these include
Sections 6.1.4, 6.2.5, 6.3.6 and 6.4.4.

6.1 Semiparametric SCCS model

In the standard SCCS model described in Chapter 4, the relative age effect
is piecewise constant on user-specified age groups. However, an inappropriate
choice of age groups could, in principle, bias the estimator of the exposure
effect, so it can be advantageous to avoid such choices. This is the idea of the
semiparametric SCCS model: while the exposure effect of primary interest

157
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remains user-defined (this is the parametric half of the model), the age effect
is determined solely by the data (and is estimated nonparametrically).

In the semiparametric SCCS model, the age effect is left completely un-
specified, other than it being non-negative and bounded. It turns out that
the maximum likelihood estimator of the cumulative relative age effect is a
non-decreasing step function, taking steps only at event times. Details of the
model, and of its properties and limitations, are given in Section 6.1.1, which
is followed by some examples. The derivation of the semiparametric model,
and some further properties, are described in starred Section 6.1.4, which may
be skipped.

6.1.1 Formulation of the semiparametric model

Recall from Chapter 4, Equation 4.1, that the rate kernel for a case i observed
over the age interval (ai, bi] is defined as follows:

ν(t|xi) = ψ(t)ρ(t|xi).

Time-invariant covariates yi have been omitted to keep the notation simple;
they may be introduced into the semiparametric SCCS model in the same way
as for the standard model. The function ψ(t) is the relative age effect, to be
estimated nonparametrically.

We define the cumulative relative age effect from age a to be

Ψ(t) =

∫ t

a

ψ(s)ds.

Suppose that there are N cases, observed over the intervals (ai, bi], i =
1, . . . , N . We set a = min{ai : i = 1, . . . , N}. Let ni ≥ 1 be the number
of events experienced by case i, at ages ti1, . . . , tini

, i = 1, . . . , N . Define S to
be the set of distinct event ages tij across all N cases. Suppose that there are
M + 1 such distinct event ages, listed in increasing order as s0, . . . , sM .

We assume only that the relative age effect ψ(t) is non-negative and
bounded. The nonparametric maximum likelihood estimator of the cumulative
relative age effect Ψ(t) is a non-decreasing step function, taking steps only at
ages in S = {s0, . . . , sM}; why this is so is explained in Section 6.1.4. Suppose
that the step at age sr is of size exp(αr), for r = 0, . . . ,M . The reference level
is at the earliest event at age s0, so we set α0 = 0. The maximum likelihood
estimate of Ψ(t) may thus be written

Ψ̂(t) =
∑
{exp(α̂r) : sr ≤ t}.

The maximum likelihood estimator of ψ(t) consists of a series of spikes at the
ages in S, and is zero elsewhere.

At this point, one might query why a supposedly nonparametric estimator
of Ψ(t) should be expressed in terms of parameters αr. The key point is that
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this parameterisation is not pre-specified, but is entirely determined by the
data – specifically, by the distinct event times in S.

In contrast, the exposure effect ρ(t|xi) in the rate kernel is explicitly spec-
ified as piecewise constant on K ≥ 1 risk groups, as for the standard SCCS
model.

There are M + K parameters to be estimated: the M parameters
α1, . . . , αM corresponding to the steps in the cumulative relative age effect
function Ψ(t), and the K exposure parameters β1, . . . , βK . Like the standard
SCCS model, the semiparametric likelihood is product multinomial, and may
be fitted using similar algorithms to those used for the standard model. Fur-
ther details are in Section 6.1.4.

One important feature to note, however, is that the age effect parameter α
is high-dimensional, involving M elements. Typically, M is of the same order
as the number of cases, N . This has two consequences. First, and most prob-
lematically, fitting the semiparametric SCCS model can be computationally
demanding owing to the large number of age-related parameters. This limits
the practical usefulness of the model for large data sets, comprising more than
a few hundred cases. For large data sets, the standard SCCS model with a
large number of age categories, or the spline model described in Section 6.2,
may be used instead. Second, because the number of parameters increases with
the sample size, some special asymptotic theory is required. This is discussed
further in Section 6.1.4. It turns out that treating α as if it were of fixed
dimension is reasonable, so fitting algorithms based on standard asymptotic
likelihood theory will yield valid estimates and standard errors.

We end this section with one further remark concerning temporal effects.
Suppose that the baseline incidence of events depends on calendar time u as
well as the individual’s age t through a calendar time effect η(u). A simple
multiplicative model for the event incidence is:

λi(t, u|xi) = φiψ(t)η(u)ρ(t|xi).

Now suppose that the temporal effect η(u) is exponential, with η(u) =
exp(uδ). Let ui denote the time of birth of an individual i, so that u = t+ui,
t denoting the age of this individual. The terms φi and exp(uiδ) are time-
invariant and so drop out of the likelihood, leaving the rate kernel

ν(t|xi) = ψ∗(t)ρ(t|xi),

with ψ∗(t) = ψ(t) exp(tδ). Thus, the calendar time effect is absorbed into the
relative age effect. In the semiparametric SCCS model, we estimate age effect
parameters log{ψ∗(sr)} = α∗r = αr + srδ. In other words, the estimated age
effect includes the contribution of any exponential time trends present.

The benefit of this feature is that the semiparametric SCCS model adjusts
implicitly for exponential time trends in the baseline incidence. Other SCCS
models – notably the standard SCCS model – may be expected to be robust
to monotone calendar time effects. The downside is that care is required in
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interpreting the estimates of ψ(t) and Ψ(t), which incorporate exponential
calendar time as well as age components.

This property has been described when age is the time line of primary
interest. If the analysis is undertaken with calendar time as the primary time
line, a similar argument applies to monotone age effects: the semiparametric
SCCS model then adjusts implicitly for exponential age trends in the baseline
incidence. Thus, the estimated temporal effect incorporates the contribution
of any exponential age trends.

In the R package SCCS, the semiparametric model is fitted using function
semisccs. The syntax is similar to that of function standardsccs. For the
reasons given above, however, the function can only handle data sets up to a
moderate size (a few hundred cases). The next sections provide examples of
its application.

Summary

• In the semiparametric SCCS model, the exposure effect is piecewise-
constant as in the standard SCCS model, but the age effect is estimated
nonparametrically.

• The estimated cumulative relative age effect is a step function with
jumps only at the distinct event times.

• The semiparametric SCCS model avoids the need to specify age cat-
egories. However, estimation is computationally demanding, and this
restricts the applicability of the method.

• The semiparametric SCCS model automatically adjusts for exponential
calendar time trends.

6.1.2 Semiparametric model for the MMR and ITP data

We illustrate the semiparametric SCCS model with the ITP and MMR data
introduced in Chapter 4, Section 4.3.1, with the three risk periods [0, 14],
[15, 28] and [29, 42] days after MMR vaccination. The semiparametric SCCS
model is fitted as follows:

itp.mod12 <- semisccs(event~mmr, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), data=itpdat)

The main difference with the standard SCCS model is that the model formula
is specified by

event∼mmr
rather than

event∼mmr+age.
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The age effect in the semiparametric model is included automatically. The
argument agegrp is no longer used. In other respects – for example, handling
of data formats stack and multi, and inclusion of several exposure types –
the function is identical to standardsccs. The parameter estimates are:

> itp.mod12

.....

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.4620 0.6840 0.32378 6.601

mmr2 5.4460 0.1836 2.17091 13.662

mmr3 2.0435 0.4893 0.55674 7.501

These values may be compared to those obtained in Chapter 4, Section 4.3.1
– the differences are not materially important. The estimated cumulative rel-
ative age effect Ψ̂(t) is a step function with jumps at the distinct event times.
These may be obtained as follows:

> devt <- sort(unique(itpdat$itp))

> devt

[1] 374 381 389 396 402 403 406 407 409 411 412 414 418

[14] 419 425 429 438 440 442 443 452 463 473 477 480 484

[27] 494 522 543 553 564 598 609 612 615 623 633 666 676

[40] 691 705 708 722

There are 43 distinct event times, so there are 43 steps, the first being (ar-
bitrarily) of size 1 at 374 days. The estimated cumulative relative age effect
over the maximum observation period [366, 730] days is shown in Figure 6.1.

The cumulative relative age effect at age t represents the cumulative age-
specific incidence in the age interval [366, t] days, relative to the reference
age. If the age-specific incidence were constant, the cumulative relative age
effect would be a straight line. The bulge between 400 and 500 days of age
in Figure 6.1 represents clustering of ITP in this age range. This figure was
obtained using the following code:

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

psi <- cumsum(c(1,itp.mod12$coefficients[4:45,2]))

plot(c(366,devt,730), c(0,psi,max(psi)), type="s", xlab=

"age (days)", ylab="cumulative relative age effect")

Interactions with the exposure effect may be fitted in the same way as with
the standard SCCS model. For example, whether sex is an effect modifier may
be investigated as follows:

itp.mod13 <- semisccs(event~factor(sex)*mmr, indiv=case,

astart=sta, aend=end, aevent=itp, adrug=mmr,

aedrug=mmr+42, expogrp=c(0,15,29), data=itpdat)

and tested using the likelihood ratio test:
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FIGURE 6.1
Estimated cumulative relative age effect for the ITP data.

> lrtsccs(itp.mod12,itp.mod13)

test df pvalue

0.8648 3 0.8339

which, as in Chapter 4, Section 4.7.1, yields a statistically non-significant
result (p = 0.83).

6.1.3 Semiparametric model for the MMR and autism data

The semiparametric model may be used with indefinite risk periods in the
same circumstances as the standard SCCS model, as described in Chapter 4,
Section 4.8. We illustrate such an application with the autism and MMR
vaccine data of Chapter 4, Section 4.8.2.

Suppose first that we use a single indefinite risk period stretching from
age at MMR vaccination to end of observation. The semiparametric model is
specified as follows; the argument expogrp=0 is the default and is included
only for emphasis.

aut.mod4 <- semisccs(event~mmr, indiv=case, astart=sta,

aend=end, aevent=diag, adrug=mmr, aedrug=end,

expogrp=0, data=autdat)

This model may take some time to run, depending on your computer: there
are 319 distinct event ages, and hence 318 age-related parameters to estimate.

The relative incidence associated with MMR vaccine obtained with this
model is as follows:
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> aut.mod4

.....

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.8002 1.24966 0.36712 1.744

The relative incidence is 0.80, 95% CI (0.37, 1.74) and is therefore statisti-
cally non-significant. The relative incidence obtained with the standard SCCS
model was 1.05, 95% CI (0.52, 2.13). As in the standard SCCS model, we can
study how the exposure effect varies with time since vaccination. Using the
same time intervals as in Chapter 4, Section 4.8.2, the semiparametric SCCS
model is specified as follows.

exint <- c(0,731,1461,2191)

aut.mod5 <- semisccs(event~mmr, indiv=case, astart=sta,

aend=end, aevent=diag, adrug=mmr, aedrug=end,

expogrp=exint, data=autdat)

This yields the following results.

> aut.mod5

.....

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.7928 1.26143 0.36123 1.740

mmr2 0.6967 1.43536 0.28713 1.690

mmr3 0.5956 1.67912 0.18683 1.898

mmr4 0.9886 1.01158 0.26204 3.729

The cumulative relative age effect from model aut.mod5 is shown in Fig-
ure 6.2. The steep rise in the plot between 2 and 5 years of age indicates that
most autism diagnoses occur within this age range. The code for producing
Figure 6.2 is as follows.

devt <- sort(unique(autdat$diag))

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

psi <- cumsum(c(1,aut.mod5$coefficients[5:322,2]))

plot(c(min(autdat$sta),devt,max(autdat$end))/365.25,

c(0,psi,max(psi)), type="s", xlab="age (years)",

ylab="cumulative relative age effect")

6.1.4 Further details of the semiparametric model*

This section provides some further material about three aspects of the semi-
parametric SCCS model. First, we explain informally why the maximum like-
lihood estimator of the cumulative relative age effect Ψ(t) is a step function
with jumps at the event times. Second, we provide more detail on the product
multinomial representation of the semiparametric SCCS model. And finally,

* This section may be skipped.
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FIGURE 6.2
Estimated cumulative relative age effect for the autism data.

we briefly discuss asymptotics.

Maximum likelihood estimator
Let {ψ̂(t), β̂} denote the semiparametric maximum likelihood estimator. We

show, informally, that ψ̂(t) takes positive values only at event times in S,
and is zero elsewhere – or equivalently, that Ψ̂(t), the maximum likelihood
estimator of the cumulative relative age effect, is a step function with jumps
at the event times.

To handle these jumpy estimators, it is convenient to rewrite the likelihood
in a form that can accommodate such jumps. In the notation of Chapter 4,
Section 4.10,

ρ(t|xi) = exp{vi(t;xi)Tβ}.

The SCCS likelihood contribution of a case i with ni events at ages ti1, . . . , tini

may be written

Li = constant×
∏ni

j=1 ψ(tij) exp{vi(tij ;xi)Tβ}[ ∫ bi
ai

exp{vi(t;xi)Tβ}dΨ(t)
]ni

. (6.1)

The only change is that the integral in the denominator has been written in
a form that accommodates point masses.

We argue by contradiction: suppose that ψ̂(t) is not zero outside S. Thus,

there are ages t outside S where ψ̂(t) > 0. Let ψ̃(t) be equal to ψ̂(t) on S, but
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zero elsewhere. Then, for all event times tij , ψ̃(tij) = ψ̂(tij), and ψ̂(t) ≥ ψ̃(t)
at all t. For all cases i we have∫ bi

ai

exp{vi(t;xi)T β̂}dΨ̃(t) ≤
∫ bi

ai

exp{vi(t;xi)T β̂}dΨ̂(t),

and there is at least one case i for which the inequality is strict, since ψ̂(t) > 0
at some values t outside S (such a case i includes some or all of these val-
ues in its observation period). Let L̂i and L̃i denote Li with ψ(tij),Ψ(t),β

replaced, respectively, with ψ̂(tij), Ψ̂(t), β̂ and ψ̃(tij), Ψ̃(t), β̂. From Equation

6.1, L̃i ≥ L̂i for all i, and L̃i > L̂i for at least one i. It follows that, since the
overall likelihood is greater with ψ̃(t), ψ̂(t) cannot be the maximum likelihood

estimator. Our original supposition must therefore be wrong, and ψ̂(t) must

be zero outside S. Thus, ψ̂(t) consists of a series of spikes at the event times,
and Ψ̂(t) is a step function, with jumps only at event times.

Semiparametric likelihood and product multinomial model
Let r(i, j) denote the value r such that sr = tij , and let wir = I(ai,bi](sr).
Thus, wir is equal to 1 if sr is in (ai, bi], and is 0 otherwise. The contribution
of a case i to the semiparametric SCCS likelihood is then:

Li = constant×
∏ni

j=1 exp{αr(i,j) + vi(tij ;xi)
Tβ}[∑M

r=0 wir exp{αr + vi(sr;xi)Tβ}
]ni

. (6.2)

Note that the semiparametric SCCS likelihood depends on the ages sr only
through their ranks and through the covariate values vi(sr;xi).

We consider the semiparametric SCCS model with no interactions and a
single exposure type. For a case i with observation period (ai, bi], let Si denote
the set Si = S ∩ (ai, bi] of all distinct event times in (ai, bi]. The rate kernel
for case i is defined for ages sr in Si:

νir = ν(sr|xi) = exp{αr + v(sr;xi)
Tβ}.

Suppose that case i experiences nir events at age sr, and let ni denote the
vector of counts {nir : sr ∈ Si}. The semiparametric SCCS model is then

ni ∼ Multinomial(ni,pi)

where the probability vector pi has elements

pir =
νir∑

sk∈Si
νik

.

This formulation matches the likelihood contribution in Equation 6.2 because∑
sk∈Si

νik =
∑M
k=0 wikνik.
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Asymptotics
A central feature of standard parametric asymptotic theory is that the param-
eter to be estimated is finite-dimensional. This helps to ensure that, as the
sample size N increases, the amount of information available on each param-
eter increases at the same rate O(N). In the semiparametric SCCS model,
on the other hand, as the number of cases N increases, the size of S and
hence the number M of age-related parameters to be estimated also increases:
Ψ(t) is an infinite-dimensional parameter. For this reason, standard paramet-
ric asymptotic theory cannot be assumed to work. However, the more gener-
ally applicable methods of empirical process theory may be invoked (Van der
Vaart and Wellner, 1996). Applied with suitable regularity conditions, these

methods may be used to show that the maximum likelihood estimators β̂ and
Ψ̂(t) are consistent, that β̂ is asymptotically normally distributed with effi-
cient variance, and that the profile log-likelihood for β is asymptotically χ2

on K degrees of freedom under the null hypothesis β = β0. These results are
reported in Farrington and Whitaker (2006).

Since the profile log-likelihood for β is the same whether the model pa-
rameters are regarded as finite or infinite-dimensional, the variance of the
parameter β̂ may be approximated as if the model parameters were finite di-
mensional – that is, as if the model were parameterised with pre-specified age
effect parameters α of fixed, finite dimension M .

Note finally that these complications are primarily conceptual. In prac-
tice, event ages are only ever measured to some pre-determined accuracy –
usually days – and so the size of the set S is bounded. However, the number
of parameters αr can be large. Whatever theoretical point of view is adopted,
the relevance of asymptotic results to finite samples must be verified empir-
ically through simulations. For the semiparametric SCCS model, simulation
evidence in Farrington and Whitaker (2006) suggests that the approximations
are acceptable even in samples of small to moderate size.

6.2 SCCS model with spline-based age effect

The semiparametric SCCS model sidesteps the need to specify the age effect,
but there is a cost, both computationally and in terms of efficiency, because
the age effect is replaced by a high-dimensional parameter. In most practi-
cal applications, the relative age effect can reasonably be assumed to vary
smoothly, with few turning points. In SCCS models with spline-based age ef-
fect, the relative age effect is represented by a smooth function obtained by
splicing together polynomials of low dimension.

An advantage of splines is that, being smooth functions, they provide a
more realistic representation of the age effect than the step functions used in
the standard SCCS model. From a more technical point of view, an advantage
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of spline models is that the flexibility of the semiparametric SCCS model is
retained, but without some of its computational and efficiency limitations.
In addition, spline models can help mitigate confounding between age and
exposure effects.

In this section the SCCS model with spline-based age effect is described and
illustrated with practical examples. In Section 6.2.4 we compare the estimates
obtained with different SCCS models. More technical material on the spline-
based model is included in starred Section 6.2.5. This material is also relevant
to the models described in Section 6.3, in which splines are used to represent
the exposure effect.

6.2.1 Splines for the relative age effect

Our starting point, as in Section 6.1.1, is the rate kernel for a case i observed
over an age interval (ai, bi], namely:

ν(t|xi) = ψ(t)ρ(t|xi).

Time-invariant covariates yi have been omitted for simplicity. As for the stan-
dard and semiparametric SCCS models, the exposure effect ρ(t|xi) will be
assumed to be piecewise constant on pre-defined risk periods, with exposure-
related parameter β.

The relative age effect ψ(t), on the other hand, is to be represented
by a linear combination of cubic M-splines. This is constructed as follows.
Suppose that there are N cases, and let a = min{ai, i = 1, . . . , N} and
b = max{bi, i = 1, . . . , N}, so that (a, b] includes all the observation periods
(ai, bi]. The cubic M-spline is a linear combination of specially defined cubic
polynomials constituting an M-spline basis (this is described in Section 6.2.5).
These basis functions are defined piecewise at fixed points in [a, b] called knots,
including the endpoints a and b. We choose K knots τk, k = 1, . . . ,K with
a = τ1 < τ2 < · · · < τK = b. Then ψ(t) is a linear combination of S = K + 2
non-negative M-splines or piecewise cubic polynomials Ms(t):

ψ(t) =
S∑
s=1

α2
sMs(t).

The constants αs, which are squared to ensure that ψ(t) is non-negative, are
parameters to be estimated. The component polynomials Ms(t) are the M-
spline basis functions. Varying the number of knots K and the parameters αs
provides a suitably rich family of flexible parametric forms; the greater the
number of knots, the more flexible the spline function is.

M-splines have the property that the basis elements Ms(t) integrate to
1 over (a, b]. We shall also use integrated splines or I-splines, whose basis
functions Is(t) are obtained from the M-spline basis functions by integration:

Is(t) =

∫ t

a

Ms(u)du.



168 Further SCCS models

The Is(t) are non-decreasing polynomials of order 4, with Is(a) = 0 and
Is(b) = 1. They provide a convenient representation of integrals of spline
functions. This feature is particularly useful for the SCCS model, since the
SCCS likelihood involves integrals in its denominator. For example, suppose
that case i experiences a single event at age ti, and has a single risk period
(di1, di2]. Let xi(t) be 1 if t is in (di1, di2] and 0 otherwise. The SCCS likelihood
contribution for this case is then

Li =
ψ(ti) exp{xi(ti)β}∫ bi

ai
ψ(s) exp{xi(s)β}ds

=
{
∑S
s=1 α

2
sMs(ti)} exp{xi(ti)β}

Ψ(bi)−Ψ(ai) + {exp(β)− 1}{Ψ(di2)−Ψ(di1)}
,

where

Ψ(t) =

∫ t

a

ψ(u)du =

S∑
s=1

α2
sIs(t).

Cases with multiple risk periods are dealt with in a similar manner. In the
standard SCCS model, ψ(t) was set to be 1 in a particular age group chosen
as reference level; such a constraint is necessary as ψ(t) is the relative, not the
absolute age effect. In the absence of discrete age groups, other constraints are
required. The constraint used here is to rescale the αs so that ψ(a) = 1. Alter-

natively, we can set
∫ b
a
ψ(t)dt = 1, which is achieved by requiring

∑S
s=1 α

2
s = 1.

Further details of the construction of M-splines and I-splines for the pur-
poses of SCCS models is provided in Section 6.2.5. Figure 6.3 shows the S = 7
basis functions when a = 0, b = 4 with K = 5 internal knots at τ1 = 0, τ2 = 1,
τ3 = 2, τ4 = 3 and τ5 = 4.

Approximating ψ(t) with splines requires choosing and placing a suitable
number K of knots. If K is too low, the spline will not approximate ψ(t)
correctly. On the other hand, if K is too high, the spline will follow the data
too closely, producing a function that is too variable because it reproduces
random fluctuations.

The fitting technique we use is called penalised likelihood estimation. A
relatively large number K of knots is chosen in advance to ensure that the
spline is sufficiently flexible, and the smoothness of the estimate of ψ(t) is con-
trolled by penalising choices of the parameter α = (α1, . . . , αS) that produce
very wiggly estimates.

Penalised likelihood estimation involves maximising the quantity

PL(α,β) =
N∑
i=1

logLi(α,β)− 2λ

∫ ( S∑
s=1

α2
sM

′′

s (u)
)2

du

where Li(α,β) is the SCCS likelihood contribution of case i and M
′′

s (t) is the
second derivative of Ms(t). The second term in the penalised log likelihood
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FIGURE 6.3
Cubic spline basis functions on [0, 4] with knots at 0,1,2,3 and 4. Left: M-spline
basis functions Ms(t). Right: corresponding I-spline basis functions Is(t). The
integer labels are the values of s = 1, . . . , 7.

function PL(α,β) is a measure of the smoothness of the estimate of ψ(t),
known as the penalty. The non-negative parameter λ is a smoothing param-
eter: the larger the value of λ, the smoother the estimated relative age effect
ψ̂(t) will be. The parameter λ may be chosen automatically, using the method
of cross-validation, or an approximation to it. Further details of this and other
aspects of the fitting procedure are provided in Section 6.2.5.

In the R package SCCS, the SCCS model with spline-based relative age
effect is fitted using the function smoothagesccs. The function may be used
when there is a single exposure, with one or more contiguous risk or washout
periods.

Summary

• For the SCCS model with spline-based relative age effect, the exposure
effect is piecewise constant as in the standard SCCS model. The relative
age effect is represented by a cubic M-spline function.

• This allows a flexible yet parsimonious representation of the relative age
effect. However, the method requires the selection of a parameter that
controls the smoothness of the estimated relative age effect.

• The smoothing parameter may be chosen automatically using the
method of cross-validation. The model is then fitted by penalised likeli-
hood estimation.
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6.2.2 Spline model for age: MMR vaccine and ITP

We illustrate the spline model for age with the ITP and MMR vaccine data,
last discussed in Section 6.1.2. As before, we use the three risk periods [0, 14],
[15, 28] and [29, 42] days. The model with spline age effects is obtained as
follows using the function smoothagesccs.

itp.mod14 <- smoothagesccs(indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), data=itpdat)

The output from this model is summarised as follows.

> itp.mod14

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.358 0.7364 0.3081 5.985

mmr2 6.273 0.1594 2.6600 14.794

mmr3 2.605 0.3838 0.7470 9.087

spline based age relative incidence function:

Smoothing parameter = 2.8e+04

Cross validation score = 252.98

The parameters quoted are the relative incidences associated with the expo-
sure. Thus, the relative incidence in the [0, 14] day risk period is 1.36, 95%
CI (0.31, 5.99). In the [15, 28] day risk period, RI = 6.27, 95% CI (2.66, 14.8).
And in the [29, 42] day risk period, it is 2.61, 95% CI (0.75, 9.09). These val-
ues differ only slightly from those obtained with the standard SCCS model in
Chapter 4, Section 4.3.1. Nor do they differ substantially from those obtained
with the semiparametric model in Section 6.1.2.

The output also gives the value of the smoothing parameter and the
corresponding cross-validation score: 2.8e+04 and 252.98, respectively. The
smoothing parameter is obtained automatically, so as to minimise the approx-
imate cross-validation score for the number of knots used, which by default is
12, placed at equal intervals.

A plot of the estimated relative age effect is shown in Figure 6.4. The
plotted value at each age t is the age-specific relative incidence at t; the plot
is scaled so that the relative incidence at the lowest age is 1. This plot was
obtained as follows.

> par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

> plot(itp.mod14)

The smoothness of the estimated age effect can be controlled by the user.
There are two ways to do this: the first is to vary the number of knots kn

(though at least 5 knots must be used). The second, more direct, way is to
vary the smoothing parameter sp. The automatic selection procedure yielded
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FIGURE 6.4
Fitted smooth age effect for ITP and MMR data, using default settings.

the optimal value of the smoothing parameter, sp = 2.8e+04. Suppose we
halve this value:

itp.mod15 <- smoothagesccs(sp=1.4e+04, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), data=itpdat)

This produces the following results.

> itp.mod15

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.380 0.7246 0.3133 6.080

mmr2 6.136 0.1630 2.5892 14.542

mmr3 2.481 0.4030 0.7062 8.719

spline based age relative incidence function:

Smoothing parameter = 1.4e+04

Cross validation score = 253.67

The exposure-related relative incidences are similar to those obtained with
the optimal smoothing parameter. As expected, since we have reduced the
smoothing parameter, the estimated smooth age effect, shown in the left panel
of Figure 6.5, is rather more wavy than in Figure 6.4. Now try doubling the
optimal value of the smoothing parameter:
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FIGURE 6.5
Fitted smooth age effects for ITP and MMR data, with smoothing parameters
that differ from the optimal value λ. Left: with λ× 1/2. Right: with λ× 2.

itp.mod16 <- smoothagesccs(sp=5.6e+04, indiv=case, astart=sta,

aend=end, aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), data=itpdat)

This yields the following results.

> itp.mod16

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.343 0.7444 0.3066 5.886

mmr2 6.332 0.1579 2.6924 14.893

mmr3 2.678 0.3735 0.7715 9.293

spline based age relative incidence function:

Smoothing parameter = 5.6e+04

Cross validation score = 253.62

Again, these values differ little from those obtained with automatic selection
of the smoothing parameter. As expected, since the smoothness parameter
has been increased, the estimated smooth age effect, shown in the right panel
of Figure 6.5, is less wavy than with the automatically chosen smoothing
parameter. This figure was obtained using the following code.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(itp.mod15)

plot(itp.mod16)

Automatic selection of the smoothing parameter is convenient, and frees
the user from having to make arbitrary choices. However, it need not always
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produce entirely compelling results. For example, the estimated age effect in
Figure 6.4 is perhaps a little too wavy at higher ages, suggesting a degree of
undersmoothing; the curve in the right panel of Figure 6.5 is perhaps more re-
alistic. However, the estimated exposure effects, which are of primary interest,
are not substantially affected. It is a good idea to check that the exposure-
related relative incidences are not overly sensitive to the choice of smoothing
parameter.

6.2.3 Spline model for age: antidepressants and hip fracture

In Chapter 4, Section 4.3.3, we used the standard SCCS model to investigate
the association between antidepressants and hip fractures in the elderly. The
data, in data frame hipdat, comprise 1000 cases. Particular interest focuses
on the initiation of treatment. Thus, we defined three risk periods: [0, 14]
days and [15, 42] days after the start of treatment, and the rest of time on
antidepressants. We also used two 91-day washout periods.

The analysis with the standard SCCS model included 20 age groups defined
by the quantiles of age at hip fracture. An alternative is to model the age effect
using splines. The model is specified as follows.

hip.mod2 <- smoothagesccs(indiv=case, astart=sta,

aend=end, aevent=frac, adrug=ad, aedrug=endad,

expogrp=c(0,15,43), washout=c(1,92,182),

data=hipdat)

This yields the following output.

> hip.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

ad1 2.150 0.4651 1.2609 3.666

ad2 1.855 0.5390 1.2069 2.852

ad3 1.506 0.6639 1.2497 1.816

washout1 1.267 0.7895 0.9370 1.712

washout2 1.029 0.9719 0.7382 1.434

spline based age relative incidence function:

Smoothing parameter = 1.5e+08

Cross validation score = 7535.5

The results are very similar to those obtained with the standard SCCS
model: there is a strong association between antidepressants and hip fracture,
particularly at the initiation of therapy. Thus, in the [0, 14] day risk period,
RI = 2.15 with 95% CI (1.26, 3.67). The smooth age effect estimated from
this model is shown in Figure 6.6, obtained as follows:

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(hip.mod2)
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FIGURE 6.6
Fitted smooth age effect for antidepressants and hip fracture data, obtained
with default settings.

The sensitivity of the results to the choice of smoothing parameter may
be assessed by refitting the model with different values. The optimal value
obtained by automatic selection was λ = 1.5e+08. First we reduce this ten-
fold:

hip.mod3 <- smoothagesccs(sp=1.5e+07, indiv=case, astart=sta,

aend=end, aevent=frac, adrug=ad, aedrug=endad,

expogrp=c(0,15,43), washout=c(1,92,182),

data=hipdat)

which yields the following:

> hip.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

ad1 2.145 0.4662 1.2580 3.658

ad2 1.852 0.5401 1.2044 2.847

ad3 1.504 0.6648 1.2480 1.813

washout1 1.266 0.7902 0.9362 1.711

washout2 1.028 0.9731 0.7372 1.432

spline based age relative incidence function:

Smoothing parameter = 1.5e+07

Cross validation score = 7538.5
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Next, we increase the smoothing parameter tenfold:

hip.mod4 <- smoothagesccs(sp=1.5e+09, indiv=case, astart=sta,

aend=end, aevent=frac, adrug=ad, aedrug=endad,

expogrp=c(0,15,43), washout=c(1,92,182),

data=hipdat)

which gives:

> hip.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

ad1 2.154 0.4643 1.2632 3.672

ad2 1.860 0.5376 1.2101 2.859

ad3 1.511 0.6618 1.2538 1.821

washout1 1.268 0.7884 0.9384 1.714

washout2 1.033 0.9683 0.7410 1.439

spline based age relative incidence function:

Smoothing parameter = 1.5e+09

Cross validation score = 7536.23

The results are insensitive to the choice of smoothing parameter. The esti-
mated smooth age effects obtained with hip.mod3 and hip.mod4 are shown
in Figure 6.7. As expected, the plot on the left is slightly more wavy than in
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FIGURE 6.7
Fitted smooth age effect for antidepressants and hip fracture data with user-
defined smoothing parameter values. Left: λ=1.5e+07; right: λ = 1.5e+09.

Figure 6.6; the plot on the right is slightly smoother. The ranges plotted on
the vertical axes are also very different. This is due to the different shapes of
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the estimated age effects at low ages, where the data are sparse, both graphs
being scaled to take the value 1 at the lowest age.

The values of the cross-validation score are only marginally affected by
these large changes in the smoothing parameter: clearly, the cross-validation
score is a very flat function of the smoothing parameter.

6.2.4 Precision of estimators: MMR and autism

In Chapter 4, Section 4.8.2 we fitted the standard SCCS model to data on
MMR vaccine and autism; in Section 6.1.3 of the present chapter we fitted
the semiparametric model. In the present example, we fit the spline model for
age, and compare the precisions (that is, the reciprocals of the variances) of
the estimators from the three models. We also comment on the use of spline
models when the exposure and age effects are confounded.

The model with spline-based age effect is specified as follows:

aut.mod6 <- smoothagesccs(indiv=case, astart=sta, aend=end,

aevent=diag, adrug=mmr, aedrug=end, data=autdat)

This yields the following estimate:

> aut.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 1.047 0.9549 0.5266 2.082

spline based age relative incidence function:

Smoothing parameter = 2e+06

Cross validation score = 2606.65

The estimated age effect is shown in Figure 6.8. This features a very marked
peak around age 3 years, which corresponds to the typical age at diagnosis of
autism. Thereafter, the age effect drops to a much lower average and roughly
constant level, with some variation of lesser amplitude.

With the spline model, the average MMR vaccine effect is RI = 1.05, 95%
CI (0.53, 2.08). With the standard SCCS model of Chapter 4, Section 4.8.2
we obtained RI = 1.05, 95% CI (0.52, 2.13). With the semiparametric model
of Section 6.1.3 we obtained RI = 0.80, 95% CI (0.37, 1.74).

Each one of these estimates was obtained by exponentiating the estimated
log relative incidence β̂. The variance of β̂ may be obtained from the standard
errors listed in the output of each model. It may also be calculated directly
from the 95% confidence limits (preferably, before rounding), as follows:

var(β̂) =
( log(RI+)− log(RI−)

2× 1.96

)2

,

where RI+, RI− are the upper and lower 95% confidence limits for RI =
exp(β), respectively.
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FIGURE 6.8
Fitted smooth age effect for the MMR vaccine and autism data.

Using this expression, we obtain var(β̂) = 0.123 for the spline model, 0.130
for the standard SCCS model, and 0.158 for the semiparametric SCCS model.
The estimate obtained with the spline model is the most precise, as var(β̂)
is lowest for this model. The semiparametric model (which makes the fewest
assumptions about the shape of the age effect) gives the least precise estimate
for these data, because it requires the largest number of parameters to model
the age effect. This example illustrates how the spline model provides both
great flexibility and good efficiency.

A further advantage of spline models is that they can provide more stable
estimates than the standard SCCS model when there is substantial confound-
ing between age and exposure effects. This may occur, for example, when there
is little variation in age at exposure, and few unexposed cases.

Recall that in Chapter 4, Section 4.8.2, we fitted the standard SCCS model
to the autism data with unvaccinated cases removed, and observed that the
parameter estimates for the vaccine effect in successive time intervals after
vaccination were inflated, with very wide confidence limits. We repeat these
analyses with the SCCS spline model for age, starting with the whole data.

exint <- c(0,731,1461,2191)

aut.mod7 <- smoothagesccs(indiv=case, astart=sta, aend=end,

aevent=diag, adrug=mmr, aedrug=end,

expogrp=exint, data=autdat)

This yields the following estimates for the effect of MMR vaccine at different
times from vaccination:
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> aut.mod7

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.8544 1.170 0.3948 1.849

mmr2 0.4546 2.200 0.1905 1.085

mmr3 0.4012 2.493 0.1271 1.266

mmr4 0.7037 1.421 0.1989 2.489

spline based age relative incidence function:

Smoothing parameter = 2e+06

Cross validation score = 2606.65

As found in previous analyses, there is little evidence of any effect at any time
since MMR vaccination. We now refit the spline model, excluding unvaccinated
cases:

aut.mod8 <- smoothagesccs(indiv=case, astart=sta, aend=end,

aevent=diag, adrug=mmr, aedrug=end,

expogrp=exint, data=subset(autdat,mmr>0))

This yields the following results:

> aut.mod8

......

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.9203 1.0866 0.3648 2.322

mmr2 0.4741 2.1092 0.1679 1.338

mmr3 0.5924 1.6880 0.1372 2.558

mmr4 1.5757 0.6346 0.3213 7.728

spline based age relative incidence function:

Smoothing parameter = 2.9e+05

Cross validation score = 2099.39

Other than in the last time period, these estimates are not strikingly different
from those obtained with model aut.mod7 using the whole data. Certainly,
the parameters are not as seriously inflated as they were when the analyses
were undertaken with the standard SCCS model; see models aut.mod2 and
aut.mod3 in Chapter 4, Section 4.8.2.

This example illustrates how using a spline model can mitigate the es-
timation problems resulting from confounding of age and exposure effects.
However, spline models cannot be expected to resolve such problems entirely:
including unexposed cases in such circumstances is strongly recommended.
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6.2.5 Modelling with M-splines*

In this section, some further material is provided on M-spline basis functions,
the selection of the smoothing parameter λ, and the estimation procedure.
More details on M-splines may be found in Ramsay (1988). The approach
used to fit the SCCS model with spline-based relative age effect is similar to
that used by Joly et al. (1998).

M-spline basis functions
The K knots a = τ1 < τ2 < · · · < τK = b are supplemented by six further
dummy knots, three at a and three at b. The knots are relabelled k1 to kK+6,
with τr = kr+3 for r = 1, . . . ,K. Define functions Ms(t|q) on (a, b] for q =
1, 2, . . . and s = 1, . . . ,K + 2 = S recursively on q as follows.

For q = 1,

Ms(t|1) =

{
1

(ks+1−ks) ks ≤ t < ks+1,

0 elsewhere on (a, b].

Note that Ms(t|1) is identically zero for s = 1, 2, 3, since for these values
ks = ks+1 = a. Then for q ≥ 2 define in turn:

Ms(t|q) =

{
q{(t−ks)Ms(t|q−1)+(ks+q−t)Ms+1(t|q−1)}

(q−1)(ks+q−ks) ks ≤ t < ks+q,

0 elsewhere on (a, b].

Finally, set Ms(t) = Ms(t|4). This function is a positive cubic polynomial on
(τmax{1,s−3}, τmin{S−2,s+1}), s = 1, . . . , S, is zero elsewhere on (a, b), and is
twice differentiable on (a, b). The set of functions Ms(t), s = 1, . . . , S is the
M-spline basis.

The I-spline basis functions Is(t) are obtained by integrating the M-spline
basis functions Ms(t). They can also be defined recursively in terms of M-
spline basis functions. See Ramsay (1988) for details.

Smoothing parameter selection
The smoothing parameter λ is chosen by maximising an approximation to the
cross-validation score obtained when the exposure effect parameter β = 0.
The method closely follows that of Joly et al. (1998). The cross-validation
score is defined as

V (λ) =

N∑
i=1

logLi(α̂−i),

where Li(α) is the contribution of case i to the SCCS likelihood and α̂−i is the
maximum penalised likelihood estimate obtained when case i is removed, both
with β = 0. The cross-validation score printed by R function smoothagesccs

* This section may be skipped.
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is actually −V (λ), which is positive. In the estimation, we use the constraint
αr = 1 for r = [(S + 1)/2], rounded up when S is even.

Following O’Sullivan (1988), the leave-one-out estimator α̂−i is replaced
by its 1-step Newton–Raphson approximation ᾱ−i:

ᾱ−i = α̂− Ŵ−1d̂−i,

where W is the (S− 1)× (S− 1) Hessian of PL(α) and d−i is the gradient of
the penalised log likelihood function with case i removed; both are evaluated
at the maximum penalised likelihood estimator α̂ of α. The second term is
Op(N

−1). Since the gradient of PL(α) is zero at α̂,

d̂−i =
∂{PL(α)− logLi(α)}

∂α
|α̂

= −∂ logLi(α)

∂α
|α̂

= −d̂i

where di is the gradient of logLi(α). Substituting this expression in
logLi(α̂−i) and expanding around α̂, we obtain

logLi(α̂−i) ' logLi(α̂) + d̂Ti Ŵ−1d̂i.

Let H denote the Hessian of the SCCS log likelihood function
∑N
i=1 logLi(α)

with β = 0 and the constraint αr = 1. Write W = H− 2λP, the second term
representing the Hessian of the penalty. Using the approximation

Ĥ ' −
N∑
i=1

d̂id̂
T
i ,

derived from the second Bartlett identity E(l
′2) = −E(l

′′
) for a log likelihood

function l, and summing over i,

V (λ) '
N∑
i=1

logLi(α̂) +

N∑
i=1

d̂Ti Ŵ−1d̂i

'
N∑
i=1

logLi(α̂)− trace([Ĥ− 2λP̂]−1Ĥ).

Finally, we obtain an explicit expression for P̂, which depends on α. Let A
denote the symmetric matrix with entries

Ajk =

∫ b

a

M
′′

j (u)M
′′

k (u)du.

Then ∫ b

a

( S∑
s=1

α2
sM

′′

s (u)
)2

du = α2TAα2,
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α2 denoting the vector with elements α2
s. Let

P+ = 4{A ◦ (ααT )}+ 2{diag(Aα2)},

where ◦ denotes the element-wise matrix product. Finally, let P equal P+

with row r and column r removed. The optimal value of the smoothing pa-
rameter λ is selected to maximise this approximation to V (λ).

Estimation procedure
In most applications, we would not expect the age-related effect to have many
turning or inflexion points. Typically, between 8 and 15 knots should suffice;
the default number in R function smoothagesccs is 12, and we require at least
5. The knots are equally spaced in [a, b]. The optimal value of the smoothing
parameter λ is selected with the exposure effect β set to zero, as described
above. This value λ is then fixed, and the estimates α̂ and β̂ are the values that
maximise the penalised log likelihood function PL(α,β) with the constraint

αr = 1, for r = [(S + 1)/2], rounded up if S is even. The constant trace([Ĥ−
2λP̂]−1Ĥ) may be interpreted as the model degrees of freedom associated with
the relative age effect.

We follow Rondeau and Gonzalez (2005) and use the inverse of minus the

Hessian of the maximised penalised log likelihood PL(α̂, β̂) as an approxi-
mation to the covariance matrix for the parameters. From this, approximate
confidence intervals for the exposure effect parameters β may be derived. Fi-
nally, the parameters αs are scaled to meet our preferred constraint, namely
ψ(a) = 1.

6.3 SCCS models with spline-based exposure effect

In Section 6.2 we described a spline-based SCCS model in which the relative
age effect is represented by cubic M-splines. In the present section, cubic
M-splines are used to represent the exposure effect. We describe two SCCS
models. In the first, only the exposure effect is spline-based: the age effect is
piecewise constant on pre-defined age groups. In the second, both exposure
and age effects are represented by cubic M-splines.

When the risk period of primary interest is very short – a few days or
weeks, say – then a SCCS model with piecewise constant exposure effect, such
as the standard, semiparametric, or spline model for age, is recommended.
However, when the risk period is long, and there is interest in describing the
risk profile associated with exposure, then a spline model may provide a more
realistic representation of the exposure effect. This can also be used to verify
the validity of parametric representations.

Representing the exposure effect with a spline function means that it is
no longer assumed to take a set of discrete values, but is a relative incidence
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function that varies smoothly with time since the start of exposure. Such a
representation is useful especially in an exploratory rather than hypothesis
testing context, when the shape of the exposure-associated risk profile is of
interest, or the timing of the exposure effect in relation to the start of exposure
is uncertain.

In Section 6.3.1 we describe the models. In subsequent sections we provide
practical examples of their application. Some technical material relating to
both models is included in starred Section 6.3.6, which may be skipped.

6.3.1 Splines for exposure effects

In Section 6.2, we described a model for the rate kernel in which the exposure
effect is taken to be piecewise constant and the relative age effect is represented
by a spline function. We now describe SCCS models in which the exposure
effect is represented by a spline function. To keep matters simple, we assume
that each case i experiences one period of exposure within the observation
period (ai, bi], starting at age di1 and ending at age di2. For example, age di1
might represent the age at vaccination, while di2 represents an age at which
the vaccination may be assumed to have no further impact. Alternatively,
di1 may represent age at the start of treatment, while di2 is the age at the
end of treatment (or some time after that). If the risk period associated with
exposure is indefinite, then di2 = bi.

We now set
d = max{di2 − di1 : i = 1, . . . , N}.

The interval (0, d] is the nominal risk period from the start of exposure, over
which the spline function describing the exposure effect will be defined. It
is called nominal because it may be longer than the actual risk period. The
interval (0, d] includes all intervals (0, di2−di1], i = 1, . . . , N . Note that times
within the interval (0, d] are not ages, but times since the start of exposure.

The effect of exposure is described by a spline-based relative incidence
function ρ(u), defined on the nominal risk period (0, d]. We choose K ≥ 5
knots τk, k = 1, . . . ,K with 0 = τ1 < τ2 < · · · < τK = d. The exposure-related
relative incidence function ρ(u) is a linear combination of S = K+ 2 M-spline
basis functions Ms(u) defined for values u in (0, d]:

ρ(u) =
S∑
s=1

β2
sMs(u). (6.3)

The M-spline basis functions are the same as those described in Section 6.2,
and are defined in Section 6.2.5. The constants βs are parameters to be esti-
mated, and are squared to ensure that ρ(t) is non-negative. No constraint is
placed on the parameters β1, . . . , βS .

For a case i with exposure history in xi determined by the risk period
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(di1, di2], the exposure effect at age t is:

ρ(t|xi) =

{∑S
s=1 β

2
sMs(t− di1) for t in (di1, di2],

1 elsewhere on (ai, bi].

To avoid a proliferation of symbols we use ρ to describe both ρ(u) and ρ(t|xi).
The relative incidence function ρ(u) is a function of duration of exposure,
whereas the exposure effect ρ(t|xi) is a function of age, given the exposure
history in xi.

The relative age effect ψ(t) is represented in one of two ways, which we
consider in turn. The first option is to assume the relative age effect is con-
stant on pre-defined age groups, as for the standard SCCS model. Thus, the
exposure effect is represented by a spline function, but the age effect is piece-
wise constant with parameter vector α; level 0 is the reference level, for which
α0 = 0. The reference level is usually the earliest age group.

Estimating the parameters of the model involves striking a compromise be-
tween correctly representing genuine variation in the exposure-related relative
incidence function ρ(u) in Equation 6.3, without producing an unduly wiggly
estimate. We use the penalised likelihood technique described in Section 6.2
to control the smoothness of the estimate of ρ(u). This is determined by a
single smoothing parameter λ. The penalised likelihood function is

PL(α,β) =

N∑
i=1

logLi(α,β)− 2λ

∫ ( S∑
s=1

β2
sM

′′

s (u)
)2

du,

where Li(α,β) is the SCCS likelihood contribution of case i and M
′′

s (u) is
the second derivative of Ms(u). The smoothing parameter λ may be chosen
by the method of cross-validation, or an approximation to it. The penalised
likelihood estimates of α and β are the values that maximise PL(α,β) for
this optimal value of λ. Approximate confidence bands for the exposure-related
relative incidence function ρ(t) may be obtained by inverting the Hessian of
the penalised likelihood function.

The second option is to represent the relative age effect by a separate
spline function. In this model, both the exposure effect and the relative age
effect are represented by M-splines. Insofar as spline-based models may be
regarded as nonparametric, this SCCS model is then fully nonparametric. The
spline function for the relative age effect involves K1 knots and S1 = K1 + 2
parameters αs, s = 1, . . . , S1, with αTα = 1 or ψ(a) = 1, as described in
Section 6.2. The spline function for the exposure effect uses K2 knots and
S2 = K2 + 2 parameters, as described earlier in the present section. Thus, for
case i with observation period (ai, bi] and exposure history in xi determined
by the single exposure period (di1, di2], the rate kernel νi(t|xi) = ψ(t)ρ(t|xi)
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is represented by the product of the following two spline functions:

ψ(t) =

S1∑
s=1

α2
sM1s(t) for t in (ai, bi], and

ρ(t|xi) =

S2∑
s=1

β2
sM2s(t− di1) for t in (di1, di2] and 1 otherwise.

The functions M1s(t), s = 1, . . . , S1, denote the cubic M-spline basis functions
for the relative age effect, defined as in Section 6.2 on the age interval (a, b],
and the functions M2s(t), s = 1, . . . , S2, are the S2 basis functions for the
exposure effect, defined at times in (0, d] after the start of exposure. The pe-
nalised likelihood now involves two penalty terms with two distinct smoothing
parameters, λ1 controlling the smoothness of the age effect and λ2 controlling
the smoothness of the exposure effect:

PL(α,β) =
N∑
i=1

logLi(α,β) − 2λ1

∫ ( S1∑
s=1

α2
sM

′′

1s(u)
)2

du

− 2λ2

∫ ( S2∑
s=1

β2
sM

′′

2s(u)
)2

du.

As before, optimal values of λ1 and λ2 are selected by a cross-validation
method. The penalised likelihood is then maximised to obtain estimates of
the parameters α and β.

So far we have assumed that each case has at most one risk period (di1, di2].
Multiple non-overlapping risk periods may also, in principle, be accommo-
dated in much the same way. Brief details may be found in Ghebremichael-
Weldeselassie et al. (2017b).

For both these SCCS models with spline-based exposure effects, further de-
tails of the SCCS likelihood contributions, the choice of smoothing parameters
and the calculation of approximate confidence bands for the exposure-related
relative incidence function ρ(u) are provided in Section 6.3.6.

In the R package SCCS, the SCCS model with spline-based exposure ef-
fect and piecewise constant relative age effect is fitted using the function
smoothexposccs. The default number of knots is kn=12 and the smooth-
ing parameter sp can be specified explicitly, or optimised automatically (the
default).

The nonparametric SCCS model with spline-based age and exposure effects
is fitted using the function nonparasccs. The numbers of knots are kn1 and
kn2 for the age and exposure effects, respectively. The smoothing parameters
are sp1 and sp2, and are automatically optimised by default.

Both these functions may be used when each case experiences at most
one exposure period. Both models may take some time to run. Fitting prob-
lems may arise when events are sparse at some ages, or at some times since
exposure, in which case another SCCS model should be fitted instead.
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These R functions also produce pointwise 95% confidence bands for the
exposure effect. These confidence bands are generally wider than the 95% con-
fidence intervals for the exposure effects in pre-defined risk periods, obtained
from the standard SCCS model. This is because the pointwise confidence
bands quantify the uncertainty of the exposure-related relative incidence at
each time point since the start of exposure, rather than the uncertainty of the
average relative incidence over each risk period.

Summary

• Rather than representing the exposure effect by a step function, it may
be described by a smooth exposure-related relative incidence function.
M-splines may be used to represent this function.

• In one version of this model, the age effect is assumed to be constant
on pre-defined age groups. There is a single smoothing parameter de-
termining the smoothness of the exposure effect.

• In a second version, splines are used to represent both the age effect and
the exposure effect. There are then two smoothing parameters, control-
ling the smoothness of the age and exposure effects, respectively. This
model may be regarded as nonparametric.

• The models are fitted using cross-validation and penalised likelihood
methods similar to those used for the SCCS model with spline-based
age effect.

6.3.2 Spline model for exposure: MMR and autism

In Section 6.2.4 we fitted the spline model for age to the data on MMR vaccine
and autism. In this application, the risk periods stretch from age at primary
MMR vaccination to the end of observation: thus, the risk periods can be
very long. With the models we have fitted so far, we obtained estimates of
the average MMR-related relative incidence. In Chapter 4, Section 4.8.2 and
in Section 6.1.3 we also fitted models with time since MMR vaccine grouped
in 4 categories (1, 2, 3, and 4 or more years).

The spline model for the exposure effect allows for a more detailed as-
sessment of the risk profile by time since MMR vaccination. Using the same
age groups as for the standard SCCS model, the spline model for exposure is
specified as follows using R function smoothexposccs:

ageq <- quantile(autdat$diag, seq(0.025,0.975,0.025), names=F)

aut.mod9 <- smoothexposccs(indiv=case, astart=sta, aend=end,

aevent=diag, adrug=mmr, aedrug=end, agegrp=ageq,

data=autdat)
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This yields the following results (all but the first and last of the age parameters
have been omitted):

> aut.mod9

......

exp(coef) exp(-coef) lower .95 upper .95

age2 6.774 0.14762 2.5599 17.927

......

age40 2.171 0.46070 0.6642 7.093

Spline based exposure relative incidence function:

Smoothing parameter = 5.9e+00

Cross validation score = 2404.15

Our main interest lies in the plot of the estimated exposure-related relative
incidence function, shown in Figure 6.9.
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FIGURE 6.9
Fitted smooth exposure effect for MMR vaccine and autism (full line), with
pointwise 95% confidence bands (dashed lines). The horizontal dotted line is
at RI = 1.

This figure is obtained using the following code:

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(aut.mod9)

abline(h=1, lty=3)

The estimated exposure-related relative incidence function remains close to
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1 throughout the post-MMR risk period. Figure 6.9 thus supports the use of
the model in which the MMR-related relative incidence is represented by a
single constant value, as in Section 6.2.4. In that model, RI = 1.05, with 95%
CI (0.53, 2.08).

Note that the pointwise 95% confidence bands in Figure 6.9 are much
wider than this confidence interval. This is because they represent the uncer-
tainty in different quantities. The pointwise 95% confidence bands represent
the uncertainty in the relative incidence at each time since MMR vaccination.
The confidence interval for the average RI represents the uncertainty in the
estimated average RI over all times post-MMR. Figure 6.9 shows that such
an average is a reasonable summary measure, and so can validly be used as
the target for inference.

6.3.3 Spline model for exposure: antidiabetics and fracture

In Chapter 4, Section 4.8.1 we used the standard SCCS model to analyse data
on antidiabetics and fracture. The model identified a significantly increased
risk over the risk period, which extended from the age at the first antidia-
betic prescription to end of observation. A further analysis, with time at risk
grouped into 7 categories, suggested that the risk increased up to 4–5 years
after the start of treatment, and then declined.

The risk profile can also be investigated using the spline model for the
exposure effect. Using the same age groups as previously, the model is specified
as follows.

ageq <- quantile(adidat$frac, seq(0.025,0.975,0.025), names=F)

adi.mod3 <- smoothexposccs(indiv=case, astart=sta, aend=end,

aevent=frac, adrug=adi, aedrug=end, agegrp=ageq,

data=adidat)

This yields the following output (only the first and last of the 39 age param-
eters are displayed):

> adi.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

age2 0.8483 1.1788 0.5650 1.274

......

age40 3.7148 0.2692 1.2548 10.998

Spline based exposure relative incidence function:

Smoothing parameter = 3.9e+02

Cross validation score = 16547.31

The main interest resides in the plot of the exposure effect in Figure 6.10.
This shows that the relative incidence increases to about 2.5, reaching this
peak about 1500 days (4.1 years) after the start of treatment, then declines to
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FIGURE 6.10
Fitted smooth exposure effect for antidiabetics and fracture (full line), with
pointwise 95% confidence limits (dashed lines). The horizontal dotted line is
at RI = 1.

a value a little in excess of 1.5 at around 2500 days (6.8 years) after the start
of treatment, thereafter remaining roughly constant.

The main advantage of the spline model for the exposure effect is that it
provides a more flexible estimate of the risk profile over the whole risk period
than is available from parametric or semiparametric models. Note that, above
about 6.5 years (2374 days), the risk profile is roughly constant. Thus it is
appropriate to summarise it with a constant average value.

In Chapter 4, Section 4.8.1, the estimated relative incidence from model
adi.mod2 for the period 6+ years (about 2200+ days) after the start of treat-
ment was 1.60, 95% CI (1.16, 2.21). This confidence interval is much narrower
than the confidence bands for this age range displayed in Figure 6.10, which
relate to the uncertainty at individual time points.

For the purpose of inference about defined time periods after the start of
exposure, we can also use the spline model for age. Using the same groupings
of time since exposure as in Chapter 4, Section 4.8.1, the model is specified
as follows.

exint <- c(0,366,731,1096,1461,1826,2191)

adi.mod4 <- smoothagesccs(indiv=case, astart=sta, aend=end,

aevent=frac, adrug=adi, aedrug=end, expogrp=exint,

data=adidat)

This gives the following estimates.
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> adi.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

adi1 1.279 0.7816 1.069 1.532

adi2 1.421 0.7037 1.155 1.748

adi3 1.908 0.5242 1.531 2.377

adi4 2.565 0.3899 2.025 3.249

adi5 2.681 0.3731 2.048 3.508

adi6 2.243 0.4459 1.629 3.086

adi7 1.551 0.6446 1.118 2.152

spline based age relative incidence function:

Smoothing parameter = 1.5e+08

Cross validation score = 16581.88

The final parameter represents the relative incidence 6+ years after the start
of treatment. This is RI = 1.55, with 95% CI (1.12, 2.15), similar to the
estimate obtained with the standard SCCS model. The smooth age effect is
shown in Figure 6.11.
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FIGURE 6.11
Fitted smooth age effect for antidiabetics and fracture.

6.3.4 Nonparametric model: MMR and convulsions

In Chapter 4, Section 4.5.1 and also in Chapter 5, Section 5.2.3 we discussed
data on MMR vaccine (and other vaccines) and convulsions in children aged
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1–2 years. Standard SCCS analyses were undertaken with a range of different
risk periods; a significant association was identified in the second week after
MMR vaccination, but not at other times.

In the present section we undertake a nonparametric analysis of the as-
sociation between MMR vaccine and convulsions. That is, we shall represent
both the age effect and the exposure effect using spline functions. We shall
use the 8-week nominal risk period [0, 56] days. Such an analysis provides a
broader picture of the risk profile of the vaccine over this time scale.

The model is specified as follows, using the R function nonparasccs. Nei-
ther the arguments expogrp or agegrp are required.

con.mod11 <- nonparasccs(indiv=case, astart=sta, aend=end,

aevent=conv, adrug=mmr, aedrug=mmr+56,

data=condat)

This produces the following output.

> con.mod11

Non parametric self controlled case series

Age related relative incidence function:

Smoothing parameter = 6.2e+07

Cross validation score = 14042.72

Exposure related relative incidence function:

Smoothing parameter = 1.5e+00

Cross validation score = 14021.99

Note that no parameter estimates are quoted: only the values of the
two smoothing parameters, and the cross-validation scores obtained for each
smoothing parameter. Thus, with the exposure effect set to zero, the op-
timal smoothing parameter for the age effect is λ1 = 6.2e+07, yielding a
cross-validation score of 14042.72. With the age effect set to zero, the op-
timal smoothing parameter for the exposure effect is λ2 = 1.5, yielding a
cross-validation score of 14021.99. The output is displayed in Figure 6.12; this
figure is obtained as follows.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(con.mod11)

abline(h=1, lty=3)

The estimated smooth age effect, shown in the left panel of Figure 6.12,
is monotone decreasing from 1 to about 0.5 over the second year of life. The
estimated MMR-related exposure effect shows a clear peak rising to about
RI = 2.3 in the period 4–12 days after MMR vaccine. There is a less pro-
nounced second bump at 18–25 days post MMR, rising to about RI = 1.4.

While the confidence bands unequivocally identify the first peak (at 4–12
days post MMR) as statistically significant, the status of the second peak (at
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FIGURE 6.12
Nonparametric SCCS model for MMR vaccine and convulsions. Left: age ef-
fect. Right: exposure effect (full line) with 95% pointwise confidence bands
(dashed lines). The horizontal dotted line is at RI = 1.

8–25 days post MMR) is not so clear. This analysis could be used to generate a
hypothesis about the presence of a second peak, to be tested in further studies.
At other times in the 8-week nominal risk window, there is little evidence of
an effect associated with MMR, the relative incidence remaining close to 1.

6.3.5 Nonparametric model: acute risk of hip fracture

In Section 6.2.3 we fitted a spline SCCS model for age to the hip fracture and
antidepressants data, first analysed using the standard SCCS model in Chap-
ter 4, Section 4.3.3. These models used 5 risk periods: two initial risk periods
[0, 14] and [15, 42] days after the initiation of treatment with antidepressants,
followed by the rest of the time on the drug, and two washout periods. The
overall risk periods can be very long indeed.

Long risk periods present a challenge for the nonparametric SCCS model,
which may fail to converge. In such circumstances it may be necessary to
use shorter risk periods, provided these are appropriate in the context of the
application.

For the hip fracture data, the model does not converge if we specify
aedrug=endad. However, interest focuses primarily on the acute risk immedi-
ately following initiation of treatment with antidepressants. Accordingly, we
restrict the nominal risk period to include only the first year of exposure. This
model is specified as follows:

hip.mod5 <- nonparasccs(indiv=case, astart=sta,

aend=end, aevent=frac, adrug=ad,

aedrug=pmin(endad,ad+365), data=hipdat)
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The model yields the following smoothing parameters and cross-validation
scores.

> hip.mod5

Non parametric self controlled case series

Age related relative incidence function:

Smoothing parameter = 1.5e+08

Cross validation score = 7535.98

Exposure related relative incidence function:

Smoothing parameter = 1.1e+03

Cross validation score = 7572.31

Figure 6.13 shows the estimated effects. The smooth age effect is very
similar to that obtained in Section 6.2.3 with the spline model for age. The
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FIGURE 6.13
Nonparametric SCCS model for initiation of antidepressants and hip fractures.
Left: age effect. Right: exposure effect (full line) with 95% pointwise confidence
bands (dashed lines). The horizontal dotted line is at RI = 1.

smooth exposure effect suggests that the effect is highest immediately after
the initiation of treatment with antidepressants, then declines to a roughly
constant value close to 1 over the remainder of the 12-month period of expo-
sure. The pointwise 95% confidence bands lie above 1 up to about 100 days
after the initiation of treatment.

These results broadly match those obtained with the standard SCCS model
and the spline SCCS model for age. Arguably, however, the parametric rep-
resentations of the exposure effect used in those models provide a sharper
description of the risk profile in the period of primary interest, which imme-
diately follows the initiation of treatment.



SCCS models with spline-based exposure effect 193

6.3.6 Further material on spline-based models*

In many respects, the SCCS models with spline-based exposure effect are
similar to the SCCS model with spline-based age effect. Thus the material in
Section 6.2.5 will be referred to in the present section. We focus here on some
key differences, notably likelihood contributions, choice of smoothing parame-
ter or parameters, and calculation of approximate pointwise confidence bands
for the exposure-related relative incidence function.

Likelihood contributions
We consider first the model with piecewise constant age effect. Suppose that
case i experiences ni events at ages tij , j = 1, . . . , ni, and has exposure period
(di1, di2]. Let Di(t) denote the indicator function for (di1, di2], equal to 1 if
di1 < t ≤ di2 and equal to 0 otherwise, for t in (ai, bi], the observation period
for case i. The likelihood contribution for case i is:

Li =

ni∏
j=1

ψ(tij)
(∑S

s=1 β
2
sMs(tij − di1)

)Di(tij)

∫ bi
ai
ψ(t)

(∑S
s=1 β

2
sMs(t− di1)

)Di(t)

dt

.

Suppose now that ψ(t) is piecewise constant. Then there are cutpoints cir,
r = 1, . . . , Ri including {di1, di2} and with ci0 = ai and ciRi = bi such that
ψ(t) is constant with value exp(αh(i,r)) on (cir−1, cir]. Also, suppose that event
time tij lies in (cirj−1, cirj ] so that ψ(tij) = exp(αh(i,rj)). The likelihood con-
tribution Li of case i may then be written:

ni∏
j=1

exp(αh(i,rj))
(∑S

s=1 β
2
sMs(tij − di1)

)Di(tij)

∑Ri

r=1 exp(αh(i,r))e
1−Dir
ir

(∑S
s=1 β

2
s [Is(cir − di1)− Is(cir−1 − di1)]

)Dir
,

where eir = cir − cir−1 and Dir = Di(cir), which is equal to 1 if (cir−1, cir] is
contained within (di1, di2] and 0 otherwise. The functions Is(t) in the denom-
inator are the cubic I-spline basis functions, described in Section 6.2.5.

When ψ(t) is itself a spline, with ψ(t) =
∑S1

s=1 α
2
sM1s(t), the exposure-

related relative incidence function being ρ(u) =
∑S2

s=1 β
2
sM2s(u), the likeli-

hood contribution is:

Li =

ni∏
j=1

∑S1

s=1 α
2
sM1s(tij)

(∑S2

s=1 β
2
sM2s(tij − di1)

)Di(tij)

∫ bi
ai

∑S1

s=1 α
2
sM1s(t)

(∑S2

s=1 β
2
sM2s(t− di1)

)Di(t)

dt

.

The denominator involves integrals of products of cubic M-spline basis func-
tions. These may be obtained explicitly using integration by parts. The denom-
inator turns out to involve I-splines and their first, second and third integrals.

* This section may be skipped.
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The calculations, though not difficult, are unenlightening and are not included.
Full details may be found in Ghebremichael-Weldeselassie et al. (2017b).

Choice of smoothing parameter(s)
For the SCCS model with spline-based exposure effect and piecewise constant
age effect, the selection of the smoothing parameter closely follows the proce-
dure described in Section 6.2.5, with the roles of parameter vectors α and β
switched. Thus, the cross-validation score is now defined as

V (λ) =
N∑
i=1

logLi(β̂−i),

where Li(β) is the contribution of case i to the SCCS likelihood and β̂−i is
the maximum penalised likelihood estimate obtained when case i is removed,
both with α = 0.

The only difference is that there is no constraint on the parameters βs.
Thus, in the last step of the calculation in which the matrix P is obtained, we
set P = P+, where P+ is defined in Section 6.2.5.

For the nonparametric SCCS model, both procedures are used: the method
described in Section 6.2.5 is used to obtain λ1, the smoothing parameter asso-
ciated with the age effect, and the procedure just described is used to obtain
λ2, the smoothing parameter associated with the exposure effect.

Calculation of confidence bands
Approximate pointwise 95% confidence bands for the exposure-related relative
incidence function ρ(u) may be obtained as follows. Let V̂ denote the approx-

imate covariance of β̂, obtained from the negative of the inverted Hessian of
the penalised likelihood PL(α̂, β̂) evaluated at the penalised maximum log
likelihood estimates. Then

Ŵ = 4 diag(β̂)V̂(diag(β̂))T

is the approximate covariance matrix of β̂
2
. Let

M2(u)T = (M21(u), . . . ,M2S2
(u)).

The approximate confidence bands on ρ(u) =
∑S2

s=1 β
2
sM2s(u), for u in (0, d],

are

ρ̂(u)± 1.96

√
M2(u)TŴM2(u).

Alternatively, to ensure the confidence bands lie above zero, they can be cal-
culated on the log scale as

ρ̂(u) exp
(
± 1.96ρ̂(u)−1

√
M2(u)TŴM2(u)

)
.
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6.4 SCCS model for multi-type events

All SCCS models described so far have been for events of a single type. In
this section, we consider models for events that may be classified as belong-
ing to one of several exclusive types: we refer to these as multi-type events.
Multi-type events may arise, for example, when events occur with distinct
clinical presentations. The analysis of non-recurrent multi-type events is usu-
ally referred to as competing risks (Aalen et al., 2008, pages 114–117). Most
commonly, competing risks analysis is used to analyse deaths, the different
types corresponding to mutually exclusive causes of death. With greater rel-
evance to the SCCS method, one can also envisage non-terminal competing
risks, such as the first occurrence of a potentially recurrent multi-type event.

In Section 6.4.1 we discuss standard SCCS models for multi-type events.
Examples of these models are described in Sections 6.4.2 and 6.4.3. Starred
Section 6.4.4 contains some more technical material on these models, including
competing risks, and may be skipped.

6.4.1 Modelling multi-type events

Suppose that the event of interest can take one of several, mutually exclusive
types labelled r = 1, . . . , R. We assume to begin with that, for each individ-
ual i, the R event types are potentially recurrent, and arise independently
within the individual’s observation period (ai, bi] according to Poisson pro-
cesses. (This assumption will subsequently be relaxed.) Thus, an individual i
may experience more than one event type over the observation period.

Suppose that an individual i experiences nir events of type r in (ai, bi].

The total number of events experienced by individual i is ni =
∑R
r=1 nir. A

case is now defined as an individual with ni ≥ 1. This means that for some,
but not necessarily all, r = 1, . . . , R, nir ≥ 1. Suppose that there are N cases,
and define

Er = {i : nir > 0, i = 1, . . . , N}.

Thus, Er is the subset of cases who have experienced one or more events of type
r. The sets Er may overlap, since a case may experience more than one event
type, but the union of the Er is just the set of cases:

⋃R
r=1Er = {1, . . . , N}.

The derivation of the SCCS likelihood for multi-type events closely follows
that for events of a single type, described in Chapter 3, Section 3.8. The main
difference is that, rather than conditioning on the overall number of events
ni for individual i, we condition on the numbers of events of each type for
that individual, contained in the vector (ni1, . . . , niR). The multi-type SCCS
likelihood then turns out to be the product of the SCCS likelihoods for each
event type taken separately. Thus, if Lir is the SCCS likelihood contribution
of an individual i in Er, that is, of a type r case, then the overall multi-type
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SCCS likelihood is

L = constant ×
R∏
r=1

∏
i∈Er

Lir.

The multi-type SCCS likelihood is derived in Section 6.4.4. The practical
consequence of the fact that the multi-type SCCS likelihood is just the product
of the SCCS likelihoods for the individual event types is that the multi-type
model may be fitted in much the same way as a single type SCCS model.

To keep matters simple, we shall assume that the standard SCCS model
applies to each event type – and thus, that the incidence rate is piecewise
constant on pre-determined age and exposure intervals. In a simple model with
no fixed covariates, the incidence rate kernel of event type r for an individual
i at age level j and exposure level k is:

νijkr = exp(αjr + βkr). (6.4)

The age and exposure intervals can differ for different event types, though
this is not usually needed: it is much simpler to use the same intervals for all
event types, if necessary by subdividing them. The age and exposure parame-
ters, however, will typically differ between event types, and investigating such
differences constitutes the main focus of the multi-type analysis.

The standard multi-type SCCS model is fitted in a similar way to the single
type model, with a new R-level factor for event type, which may be treated
as a time-invariant covariate. A sequence of models may then be fitted, to
include interactions with event type if required.

The baseline model is νijkr = exp{αj + βk}, represented by the model
formula

Age + Exposure

which implies αjr = αj and βkr = βk for all j, k, r – that is, no effect of type
on the age or exposure effects. Variation of the age effect according to event
type may be investigated by fitting the model νijkr = exp{αjr + βk} with
model formula

Age + Exposure + Age.Type

where Age.Type represents the interaction between Age and Type. The main
effect of Type is not included as it is time-invariant and so cannot be estimated
in the SCCS model. Similarly, variation of the exposure effect according to
event type corresponds to the model νijkr = exp{αj+βkr} with model formula

Age + Exposure + Exposure.Type.

The full model in Equation 6.4 allows variation in both age and exposure
effect by event type, with model formula

Age + Exposure + Age.Type + Exposure.Type.
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This model is equivalent to fitting separate models for each of the R different
event types. The main advantage of the multi-type formulation is that it
enables formal significance tests to be undertaken, using the likelihood ratio
test, to compare the different models.

This framework for the multi-type SCCS model applies to recurrent events
of different types that are independent within individuals. It encompasses
situations in which there is clustering of events within individuals, and hence
marginal dependence in the event-type counts nir. This framework may also
be used for competing risks analyses when all event types are rare. More
contrived circumstances, in which the event types of interest are rare, but
competing events not of primary interest are not rare, may also be treated
in this framework, provided that such incidental events are unrelated to the
exposure of interest. Further details of all these scenarios are provided in
starred Section 6.4.4.

Summary

• The multi-type SCCS model provides a framework for analysing events
that arise in several, mutually exclusive types.

• The multi-type SCCS likelihood is the product of the SCCS likelihoods
for the individual event types.

• Multi-type analyses using the standard SCCS model involve interactions
between a factor representing the different event types and the age and
exposure effects.

• The model may be used when recurrences of the various event types are
independent within individuals, or for competing events when the event
types potentially associated with the exposure of interest are rare.

6.4.2 Febrile and non-febrile convulsions

This example uses new data on convulsions and MMR vaccine in the second
year of life (366 to 730 days of age). The risk period of interest spans the
first two weeks after vaccination: [0, 7] and [8, 14] days. The jittered data, in
data frame febdat, comprise 988 convulsions, including 894 first events and
94 recurrences. The convulsions are classified in one of two exclusive types,
in variable type: non-febrile convulsions (type = 1) and febrile convulsions
(type = 2).

There are 119 non-febrile convulsions and 869 febrile convulsions. Fig-
ure 6.14 shows the age distribution of the two event types. There are no
striking differences in the age distribution of febrile and non-febrile convul-
sions: a more detailed, model-based analysis is required. Figure 6.15 shows the
centred event and observation plots. The bin size for the centred event plot
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FIGURE 6.14
Age at convulsion (days). Left: non-febrile convulsions. Right: febrile convul-
sions.

is 20 days. There is a clear trough in the period immediately prior to MMR
vaccination, so we shall use a pre-exposure risk period of 21 days.
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FIGURE 6.15
Centred plots for convulsions. Left: event plot. Right: observation plot.

Figure 6.15 was obtained with the following code:

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

mmrx <- ifelse(febdat$mmr<366-15|febdat$mmr>730, NA, febdat$mmr)

timint <- febdat$conv - mmrx

timhis <- hist(timint, breaks=seq(-400,400,20), xlab=

"days since MMR", ylab="number of events",

main=NULL)
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xtime <- seq(min(febdat$sta-mmrx,na.rm=T), max(febdat$end-mmrx,

na.rm=T), 1)

ytime <- NULL

for (i in 1:length(xtime)){

ytime[i] <- sum((febdat$sta-mmrx<=xtime[i])*

(xtime[i]<=febdat$end-mmrx), na.rm=T)

}

plot(xtime, ytime,type="s", xlim=c(-400,400),

xlab="days since MMR", ylab="number under observation")

abline(v=0, lty=2)

The baseline model, with a common exposure and age effect for the two
event types, is specified as follows with six age groups of approximately two
month durations.

ageg <- c(426,486,546,606,666)

feb.mod1 <- standardsccs(event~mmr+age, indiv=case, astart=sta,

aend=end, aevent=conv, adrug=mmr, aedrug=mmr+14,

expogrp=c(-21,0,8), agegrp=ageg, data=febdat)

This produces the following exposure effect estimates.

> feb.mod1

.....

exp(coef) exp(-coef) lower .95 upper .95

mmr1 0.5997 1.6676 0.4144 0.8678

mmr2 1.0341 0.9670 0.6720 1.5913

mmr3 3.0686 0.3259 2.3273 4.0460

The pre-exposure risk period effect is statistically significant. There is no
marked effect in the [0, 7] day risk period (relative incidence 1.03, 95% CI
(0.67, 1.59), but a clearly elevated relative incidence in the [8, 14]-day period:
RI = 3.07, 95% (2.33, 4.05). This is apparent in the centred event plot of
Figure 6.15.

To investigate the multi-type SCCS model proper, we now fit a sequence
of models with interactions with the variable type. Model feb.mod2 allows for
separate exposure effects for the two event types, model feb.mod3 for separate
age effects, and model feb.mod4 for separate exposure and age effects.

feb.mod2 <- standardsccs(event~factor(type)/mmr+age, indiv=case,

astart=sta, aend=end, aevent=conv, adrug=mmr,

aedrug=mmr+14, expogrp=c(-21,0,8), agegrp=ageg,

data=febdat)

feb.mod3 <- standardsccs(event~mmr+factor(type)/age, indiv=case,

astart=sta, aend=end, aevent=conv, adrug=mmr,

aedrug=mmr+14, expogrp=c(-21,0,8), agegrp=ageg,

data=febdat)
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feb.mod4 <- standardsccs(event~factor(type)/(mmr+age),

indiv=case, astart=sta, aend=end, aevent=conv,

adrug=mmr, aedrug=mmr+14, expogrp=c(-21,0,8),

agegrp=ageg, data=febdat)

In the full model, feb.mod4, the exposure effects are as follows.

> feb.mod4

.....

exp(coef) exp(-coef) lower .95 upper .95

factor(type)2 NA NA NA NA

factor(type)1:mmr1 0.3298 3.0321 0.08024 1.3557

factor(type)2:mmr1 0.6329 1.5800 0.43109 0.9292

factor(type)1:mmr2 1.2190 0.8204 0.38119 3.8980

factor(type)2:mmr2 1.0072 0.9928 0.63330 1.6019

factor(type)1:mmr3 2.7366 0.3654 1.18176 6.3371

factor(type)2:mmr3 3.1071 0.3218 2.31760 4.1655

The relative incidences associated with the [0, 7]-day risk period are, respec-
tively, 1.22 and 1.01 for non-febrile and febrile convulsions, both statistically
non-significant. The relative incidences for the [8, 14]-day risk period are 2.74,
95% CI (1.18, 6.34) for non-febrile convulsions, and 3.11, 95% CI (2.32, 4.17)
for febrile convulsions.

The estimates obtained using the full model feb.mod4 are the same as
would have been obtained if separate analyses had been undertaken of febrile
and non-febrile convulsions. The advantage of the multi-type analysis, how-
ever, is that it provides a framework in which to test whether any differences
in exposure effects between event types are statistically significant. This may
be done using likelihood ratio tests.

> lrtsccs(feb.mod1,feb.mod2)

test df pvalue

1.347 3 0.718

> lrtsccs(feb.mod1,feb.mod3)

test df pvalue

4.839 5 0.4358

> lrtsccs(feb.mod1,feb.mod4)

test df pvalue

5.917 8 0.6565

These three likelihood ratio tests yield p-values well above 0.05, and so there
is little evidence to reject the null hypothesis that age and exposure effects are
identical for febrile and non-febrile convulsions. Thus, the estimates obtained
from the baseline model feb.mod1 may validly be used to summarise the
results.
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6.4.3 Antidiabetic drugs and fracture site

In Chapter 4, Section 4.8.1, we discussed a SCCS analysis of the association
between antidiabetics and fracture. In the present example, we revisit this
application, focusing on fracture site.

Fracture sites are in variable type, and are coded type = 1 for foot, ankle,
wrist or hand fractures, type = 2 for hip fractures, and type = 3 for spine frac-
tures. The data, which are simulated based on Douglas et al. (2009), include
2000 cases. Only first fractures are included, so the event types compete.

Note that, in principle (though not in our data), fracture sites need not
be exclusive: for example, a double fracture might occur in two different sites.
There are several ways to handle such multiple type events. One is to define
a hierarchy of types and always allocate multiple types to the highest in the
hierarchy. Another is to create a new category for multiple types. Finally, in
some circumstances it may be appropriate to count a multiple type event as
several distinct events, one for each type.

In the present data, in data frame adidat, the type frequencies are as
follows:

> table(adidat$type)

1 2 3

1596 262 142

Thus, fractures of the limb extremities (type = 1) are much more frequent
than hip or spine fractures.

In the previous analysis in Chapter 4, Section 4.8.1, we used 40 age groups
defined by the quantiles of frac, the age at fracture. In the present analysis,
using such a large number of age groups would produce large numbers of
empty multinomial categories for the less frequent event types (notably those
for spine fracture, of which there are only 142). In consequence, many type-
specific age parameters would lie on the boundary of the parameter space.
This in turn may affect the validity of the asymptotic p-values from likelihood
ratio tests. To mitigate this problem, we shall reduce the number of age groups
to 20.

The baseline model, with common exposure and age effects for the three
event types, but now with only 20 age groups, is specified as follows.

ageq2 <- quantile(adidat$frac,seq(0.05,0.95,0.05), names=F)

adi.mod5 <- standardsccs(event~adi+age, indiv=case,

astart=sta, aend=end, aevent=frac, adrug=

adi, aedrug=end, expogrp=0, agegrp=ageq2,

data=adidat)

The effect estimate from this model is common to the three types of fractures,
and is as follows.
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> adi.mod5

.....

exp(coef) exp(-coef) lower .95 upper .95

adi1 1.5608 0.6407 1.3581 1.794

The relative incidence is 1.56, 95% CI (1.36, 1.79), which differs little from
that obtained in Chapter 4, Section 4.8.1, namely RI = 1.56, with 95% CI
(1.35, 1.80). Thus reducing the number of age groups does not introduce any
appreciable bias.

We now fit a sequence of multi-type SCCS models to investigate any dif-
ferences in the age and exposure effects according to event type.

adi.mod6 <- standardsccs(event~factor(type)/adi+age,

indiv=case, astart=sta, aend=end, aevent=frac,

adrug=adi, aedrug=end, expogrp=0, agegrp=ageq2,

data=adidat)

adi.mod7 <- standardsccs(event~adi+factor(type)/age,

indiv=case, astart=sta, aend=end, aevent=frac,

adrug=adi, aedrug=end, expogrp=0, agegrp=ageq2,

data=adidat)

adi.mod8 <- standardsccs(event~factor(type)/(adi+age),

indiv=case, astart=sta, aend=end, aevent=frac,

adrug=adi, aedrug=end, expogrp=0, agegrp=ageq2,

data=adidat)

Model adi.mod6 allows the exposure effect to vary with event type. Model
adi.mod7 allows the age effect to vary between types. And model adi.mod8
allows both exposure and age effects to vary. These elaborations of the baseline
model may then be investigated by likelihood ratio tests (models adi.mod7

and adi.mod8 each have a single empty age group, but this will not unduly
influence the tests).

> lrtsccs(adi.mod5,adi.mod6)

test df pvalue

13.62 2 0.001103

> lrtsccs(adi.mod5,adi.mod7)

test df pvalue

46.4 38 0.1646

> lrtsccs(adi.mod5,adi.mod8)

test df pvalue

48.06 40 0.1787

The p-value of 0.0011 for the comparison between adi.mod5 and adi.mod6

is highly statistically significant, suggesting that the exposure effects differ
according to event type. The other comparisons yield p-values in excess of
0.15. Thus, it would appear reasonable to summarise the data with model
adi.mod6.
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> adi.mod6

.....

exp(coef) exp(-coef) lower .95 upper .95

.....

factor(type)1:adi1 1.4016 0.7134 1.2055 1.630

factor(type)2:adi1 2.3777 0.4206 1.7519 3.227

factor(type)3:adi1 2.2253 0.4494 1.4908 3.322

According to this model, the antidiabetic drugs studied are positively associ-
ated with fractures at all three sites, though the association is strongest with
hip and spine fractures. For foot, ankle, wrist or hand fractures, the relative
incidence is 1.40, with 95% CI (1.21, 1.63). For hip fractures, RI = 2.38, 95%
CI (1.75, 3.23). And for spine fractures, RI = 2.23, 95% CI (1.49, 3.32).

As found in Chapter 4, Section 4.8.1, the relative incidence varies by time
since the beginning of treatment. It is of interest to describe the trajectories
for the different event types. This may be done as follows, using the same
variable exint as used in Chapter 4, Section 4.8.1.

exint <- c(0,366,731,1096,1461,1826,2191)

adi.mod9 <- standardsccs(event~factor(type)/adi+age,

indiv=case, astart=sta, aend=end, aevent=frac,

adrug=adi, aedrug=end, expogrp=exint, agegrp=ageq2,

data=adidat)

The parameters from this model may be used to obtain Figure 6.16, which
shows the relative incidence by time since start of treatment for the three event
types (R code not shown). There is a similar pattern for the three event types:
a rise, followed by a drop. All three trajectories begin at a similar level, but
the subsequent rise appears steeper for spine and (especially) hip fractures.

6.4.4 SCCS likelihoods for multi-type events*

We provide details of the derivation of the multi-type SCCS likelihood, under
the assumptions described in Section 6.4.1.

Marginally independent recurrent event types
In this setting the type-specific event processes are independent non-
homogeneous Poisson processes. Let λir(t|xi,yi) denote the incidence of events
of type r for an individual i over the observation period (ai, bi]. As usual, xi
is the exposure and observation history over (ai, bi] and yi is a set of time-
invariant covariates; we assume without loss of generality that these covariates
are the same for all event types. The incidence of events, irrespective of type,
is

λi+(t|xi,yi) =
R∑
r=1

λir(t|xi,yi).

* This section may be skipped.
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FIGURE 6.16
Relative incidence of fracture by time since start of treatment, by fracture type.

If individual i experiences nir > 0 events of type r in (ai, bi], let tirs,
s = 1, . . . , nir denote the event times. The cohort likelihood contribution for
individual i is then

Lci =

R∏
r=1

nir∏
s=1

λir(tirs|xi,yi) exp
(
−
∫ bi

ai

λi+(t|xi,yi)dt
)
,

with the convention that if nir = 0 then the corresponding term in the product
is replaced by 1. Conditioning on the total number of events of each type
experienced by individual i, that is, on the vector (ni1, . . . , niR), yields the
following conditional likelihood contribution:

Li = constant ×
R∏
r=1

∏nir

s=1 λir(tirs|xi,yi)( ∫ bi
ai
λir(t|xi,yi)dt

)nir
.

The overall multi-type SCCS likelihood is the product of these contributions
for the N cases:

L = constant ×
N∏
i=1

R∏
r=1

∏nir

s=1 λir(tirs|xi,yi)( ∫ bi
ai
λir(t|xi,yi)dt

)nir

= constant ×
R∏
r=1

∏
i∈Er

∏nir

s=1 λir(tirs|xi,yi)( ∫ bi
ai
λir(t|xi,yi)dt

)nir
, (6.5)

where Er is the set of individuals experiencing one or more events of type r,
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defined in Section 6.4.1. This last expression is the product, over the different
types, of the type-specific SCCS likelihoods. Note that if the overall number
of events ni were conditioned upon for each individual, an extra term would
appear in the conditional likelihood, corresponding to the relative marginal
abundances of the different types.

Marginally dependent recurrent event types
In this setting, the marginal counts nir of the different event types are depen-
dent, but the type-specific event times remain independent within individuals.
In such a scenario it is commonly assumed that, for individual i, events of type
r arise according to a non-homogeneous Poisson process with rate

µir(t|xi,yi, Uir) = Uirλir(t|xi,yi),

where Uir is a positive random variable, r = 1, . . . , R, and U i = (Ui1, . . . , UiR)
is sampled from some R-variate density. Conditioning on U i as well as
(ni1, . . . , niR), the frailty terms Uir factor out and we retrieve Expression 6.5.

Competing risks: all event types are rare
We now suppose that the event of interest is non-recurrent. Thus, the event
types compete, in the sense that occurrence of one event types precludes any
other from occurring. Let ti denote the unique event time for individual i. The
cohort likelihood contribution of individual i is then

Lci =
R∏
r=1

λir(ti|xi,yi)nir exp
(
−
∫ ti

ai

λi+(t|xi,yi)dt
)
.

Conditioning on (ni1, . . . , niR) yields the conditional likelihood contribution

Li =

∏R
r=1 λir(ti|xi,yi)nir exp

(
−
∫ ti
ai
λi+(t|xi,yi)dt

)∫ bi
ai

∏R
r=1 λir(s|xi,yi)nir exp

(
−
∫ s
ai
λi+(t|xi,yi)dt

)
ds
. (6.6)

If all event types are rare, we apply a similar argument as in Chapter 3,
Section 3.8. We write the overall hazard as

λi+(t|xi,yi) = φνi+(t|xi,yi),

where the functions νi+ are bounded, and consider the limit of the conditional
likelihood as φ→ 0. The exponentiated terms in Equation 6.6 tend to 1, and
so the multi-type SCCS likelihood contribution is retrieved. Thus, in this limit,
the overall multi-type SCCS likelihood is

L =
R∏
r=1

∏
i∈Er

λir(ti|xi,yi)∫ bi
ai
λir(t|xi,yi)dt

,

which is of the same form as Expression 6.5.
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Competing risks: only event types of interest are rare
In this final scenario, we distinguish between event types of interest, which are
those potentially associated with the exposure, and event types that are not
of primary interest, which can safely be assumed not to be associated with
the exposure. Only the events of interest are sampled. Events not of primary
interest are referred to as incidental events.

We assume that only the events of interest are rare: the incidental event
types may not be rare. This setting might apply, for example, in elderly popu-
lations with the incidental competing events representing deaths unrelated
to the exposure. We assume that the event types of interest are labelled
r = 1, . . . , R0, where R0 < R; event types R0 + 1, . . . , R are the incidental
events, which are not sampled and may not be rare. Define

λi++(t|yi) =
R∑

r=R0+1

λir(t|yi)

to be the total hazard for the incidental event types. Note that, by assumption,
this does not involve the exposure history in xi. For the rare event types
r = 1, . . . , R0, for which

∑R0

r=1 nir = 1, we write

λir(t|xi,yi) = φνir(t|xi,yi).

Now let φ tend to zero. Then λi+(t|xi,yi) → λi++(t|yi). Thus, in this limit,
the SCCS likelihood contribution of case i becomes

Li =

∏R0

r=1 λir(ti|xi,yi)nir exp
(
−
∫ ti
ai
λi++(t|yi)dt

)∫ bi
ai

∏R0

r=1 λir(s|xi,yi)nir exp
(
−
∫ s
ai
λi++(t|yi)dt

)
ds
. (6.7)

The exponentiated terms do not disappear in the rare events limit because
the incidental event types are not rare. Suppose now that, for the event types
r = 1, . . . , R0 of interest,

λir(t|xi,yi) = µir(t|yi)ρ(t|xi,yi).

Define

λ∗ir(t|xi,yi) = µ∗ir(t|yi)ρ(t|xi,yi),

with

µ∗ir(t|yi) = µir(t|yi) exp
(
−
∫ t

0

λi++(s|yi)ds
)
.

With this substitution, the SCCS likelihood contribution of case i from Equa-
tion 6.7 may be written

Li =

∏R0

r=1 λ
∗
ir(ti|xi,yi)nir∫ bi

ai

∏R0

r=1 λ
∗
ir(s|xi,yi)nirds

.
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The overall SCCS likelihood is

L =
N∏
i=1

∏R0

r=1 λ
∗
ir(ti|xi,yi)nir∫ bi

ai

∏R0

r=1 λ
∗
ir(s|xi,yi)nirds

=

R0∏
r=1

∏
i∈Er

λ∗ir(ti|xi,yi)∫ bi
ai
λ∗ir(s|xi,yi)ds

.

This takes the multi-type SCCS likelihood form of Equation 6.5. The exposure
effects are unaffected: the estimates therefore retain their original interpreta-
tion. The age effects, however, have a different interpretation: they describe
the baseline hazards of the events of interest, conditional on no incidental
events occurring.

6.5 SCCS models for quantitative individual exposures

All the SCCS models so far described have involved a binary exposure, that
is, an exposure that at any one time is either present or absent. This reflects
the fact that most applications of the SCCS method, notably in pharmacoepi-
demiology, involve binary exposures.

However, there is nothing about the SCCS method that intrinsically re-
quires exposures to be binary. In this section, we consider quantitative ex-
posures, that is, exposures that are measured on a continuous scale. In Sec-
tion 6.5.1 the SCCS model for individual quantitative exposures is discussed.
This model requires a different data format from those used previously, but
in all other respects it is very similar to the SCCS models described so far.
Section 6.5.2 describes an application with individual quantitative exposures.

6.5.1 Modelling quantitative exposures

Suppose that individual i experiences a quantitative exposure xi(t) at age (or
time) t, and is observed over the observation period (ai, bi]. In practice, xi(t)
is not measured continuously. We assume throughout this section that xi(t)
is measured at successive time points, expressed in days, hours, or some other
appropriate time unit. In this section, all times, including the observation
period endpoints ai and bi, are assumed to be expressed as integer values in
these units. For consistency with other sections of the book, we refer to these
time units as days.

Let di = bi − ai denote the number of days of observation for individual
i. The exposure variable xi(t) is assumed to be roughly constant on each day,
taking the value xij on the jth day of observation for individual i, that is,
over the time interval (ai+ j−1, ai+ j], for j = 1, . . . , di. The temporal effect
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can be age, calendar time, day of the week, day of observation, or some other
relevant time variable. The incidence rate kernel νij for a simple model with
temporal effect parameterised by α and exposure effect parameterised by β is

νij = exp(αh(i,j) + βxij),

where h(i, j) is the level of the temporal effect for case i on day j of ob-
servation. This may be compared to the standard SCCS model described in
Chapter 4, Section 4.1. The main difference is that β is the coefficient of a
quantitative exposure, rather than a factor level. It represents the log of the
relative incidence associated with a 1 unit increase in exposure.

Let ni denote the total number of events experienced by individual i over
the observation period (ai, bi], and let nij denote the number of events on day
j of observation. The SCCS likelihood contribution of a case i with ni > 0 is
then

Li = constant×
di∏
j=1

( νij∑di
j=1 νij

)nij

.

This is similar to a likelihood contribution for the standard SCCS model
obtained in Chapter 3, Equation 3.1. There are two main differences. First,
the risk periods, previously indexed by k, no longer feature; second, the time
period durations (previously eijk) no longer feature explicitly, because each
exposure level xij now lasts for 1 day.

Owing to these similarities with the standard SCCS model, the SCCS
model for quantitative exposures may be fitted using similar methods. How-
ever, the data format is different to accommodate the exposure variable, which
must now be specified on each day of observation for each case. Accordingly,
the observation periods for all cases are concatenated into a single column.

Thus, for SCCS analyses with quantitative exposures, the data are ar-
ranged with a column indiv for individual case identifiers i = 1, . . . , N , repli-
cated di times; a column day for day of observation j = 1, . . . , di for individual
i; a column for event counts nij ; and further columns for exposures xij and
temporal variables. Each row represents a different day of observation; there
are D =

∑N
i=1 di rows. Here is an example with d1 = 4, d2 = 3 and d3 ≥ 2, a

single quantitative exposure variable expo, and a day-of-week variable dow (1
for Monday, 2 for Tuesday, etc):

indiv day event expo dow

1 1 0 1.276 5

1 2 1 2.417 6

1 3 0 1.863 7

1 4 1 1.980 1

2 1 0 0.428 3

2 2 1 0.329 4

2 3 0 0.875 5
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3 1 1 0.979 2

3 2 0 1.032 3

.....

The SCCS model for quantitative exposures is fitted using function quantsccs

within the R package SCCS.

Summary

• The SCCS method may be used to study quantitative exposures – that
is, exposures expressed on a continuous scale – measured at successive
time points within the observation period of each case.

• Accommodating quantitative exposures requires a different data format,
in which exposures are concatenated into a single column.

6.5.2 Headaches and blood pressure

A cohort study has suggested that high systolic blood pressure may be nega-
tively associated with headaches, in the sense that individuals with high blood
pressure are less likely to experience headaches than individuals with normal
blood pressure (Hagen et al., 2002). A rather different question is whether
transient high (or low) blood pressure is a trigger for headaches. In the present
example, we illustrate how a SCCS analysis with quantitative blood pressure
data could help, in principle, throw light on this question.

The design involves individuals taking twice daily (early morning and late
afternoon) systolic and diastolic blood pressure readings for 7 successive days,
and recording any headaches arising between these readings. The data include
71 headaches (the occurrences of which were simulated at random) in 64 in-
dividuals. The data are in data frame bpdat and include the variables case,
numbered 1 to 64, time for time of day (1: am, 2: pm), dow for day of the
week (1: Monday, 2: Tuesday, ..., 7: Sunday), sys for systolic blood pressure,
dia for diastolic blood pressure, and head taking the value 1 if the individual
experienced a headache starting between this blood pressure reading and the
next (or during the 12 hours following the final reading). The time unit in this
analysis is a half day.

The data comprise 64 × 7 × 2 = 896 rows, with one column per variable.
Figure 6.17 shows the distribution of diastolic and systolic blood pressures,
together with those values for which a headache was recorded. This figure was
obtained using the following code:

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(bpdat$dia, xlab="diastolic pressure", main=NULL)

rug(bpdat$dia[bpdat$head==1])

hist(bpdat$sys, xlab="systolic pressure", main=NULL)

rug(bpdat$sys[bpdat$head==1])
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FIGURE 6.17
Distribution of blood pressure (mmHg). The rugs below each histogram indicate
at what pressures a headache was recorded.

The rugs below the histograms in Figure 6.17 do not suggest that headaches
cluster within the tails of the distributions. A SCCS model for these data with
just the two blood pressure variables is as follows:

bp.mod1 <- quantsccs(event~sys+dia, indiv=case, event=head,

data=bpdat)

This yields:

> bp.mod1

.....

exp(coef) exp(-coef) lower .95 upper .95

sys 1.024 0.9761 0.9894 1.061

dia 1.008 0.9920 0.9637 1.054

The relative incidence is 1.02 for systolic blood pressure, 95% CI (0.99, 1.06),
and 1.01 for diastolic blood pressure, 95% CI (0.96, 1.05). Thus, an increase
of 1 unit in systolic (respectively, diastolic) blood pressure is associated with
an increase in the incidence of headache in the following period of 2% (respec-
tively, 1%). However, these increases are not statistically significant, as the
95% confidence intervals for the relative incidences include 1.

Model bp.mod1 does not adjust for time-of-day or day-of-week variation,
which may be associated with headache and thus may be a confounder. Ad-
justment of the variation in headache incidence owing to time of day and day
of week may be achieved by including the time by dow interaction in the
model, with both variables entered as factors:

bp.mod2 <- quantsccs(event~sys+dia+factor(time)*factor(dow),

indiv=case, event=head, data=bpdat)
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This yields:

> bp.mod2

.....

exp(coef) exp(-coef) lower .95 upper .95

sys 1.0258 0.97485 0.99040 1.062

dia 1.0114 0.98875 0.96664 1.058

There is little change from model bp.mod1. Other variables of interest may
be created by grouping values of dow. For example, to contrast working week
and weekend effects, a new factor wend may be created and fitted as follows:

wend <- cut(bpdat$dow, breaks=c(0,5,7))

bp.mod3 <- quantsccs(event~sys+dia+wend, indiv=case,

event=head, data=bpdat)

The new variable wend is a factor taking level 1 on Monday to Friday (cor-
responding to values of dow in (0, 5]), and level 2 on Saturday and Sunday
(values of dow in (5, 7]). This yields:

> bp.mod3

.....

exp(coef) exp(-coef) lower .95 upper .95

sys 1.025 0.9756 0.9899 1.061

dia 1.006 0.9942 0.9613 1.052

wend(5,7] 0.745 1.3422 0.4253 1.305

Thus, headaches are less frequent at weekends (relative incidence RI = 0.75),
but this effect is not statistically significant as the 95% confidence interval
(0.43, 1.31) includes 1.

When reporting relative incidences associated with quantitative exposures,
it is sometimes convenient to use unit multiples. For example, in the models
described here, the relative incidences of headaches are calculated for an in-
crease of 1 unit in blood pressure. If the relative incidences relating to an
increase in 10 units were required, the blood pressure data should be scaled
(divided by 10) prior to fitting the model, or the RI estimates relating to an
increase in 1 unit should be raised to the power 10. The relative incidence
of headaches associated with a rise of 10 units in systolic blood pressure,
estimated from model bp.mod3, is RI = 1.28, 95% (0.90, 1.81). Whether or
not multiple units are used, it is essential to specify explicitly what units the
relative incidences relate to.

6.6 SCCS models for environmental exposures

The timings and levels of all exposures so far considered have been specific to
each individual, and thus typically vary between individuals. In some appli-
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cations, however, the exposure is population-wide and exogenous. Such pop-
ulation exposures arise notably in environmental epidemiology: for example,
an entire population may experience the same air quality, the same weather
extremes, or the same pollution levels.

Several methods of analysis of such data have been suggested which, owing
to the conditioning involved, are instances of the SCCS method. These include
the full-stratum bidirectional case-crossover method (Navidi, 1998), the time-
stratified case-crossover method (Lumley and Levy, 2000), and the conditional
Poisson method (Armstrong et al., 2014). The terminology commonly used in
this area is a little confusing, since case-crossover studies relate to a different
study design. Some further discussion is provided in Section 6.7.

In Section 6.6.1 we describe the SCCS model for environmental exposures,
and illustrate its application in Sections 6.6.2 and 6.6.3. The model is formu-
lated within the context of Poisson generalised linear models, which provide
a general and flexible modelling environment in this setting.

6.6.1 SCCS likelihood for environmental exposure data

Suppose that all individuals are observed over the same time period (a, b] and
experience the same population exposures. In line with many environmental
epidemiology applications, we shall assume that these exposures are quantita-
tive, though the model also applies to binary exposures. As in Section 6.5.1,
we assume that exposures are measured at d successive intervals of one time
unit, which we shall refer to as days. All individuals are observed from days
1 to d = b− a.

In such a setting, the exposure effect is completely confounded with the age
or time effect, because there is no between-individual variation in exposure.
In order to control for temporal variation in the incidence of the events of
interest, we subdivide the overall observation period into short time windows,
over which it is reasonable to assume that there is little temporal variation.
The SCCS analysis is then undertaken within these short time windows, con-
ditionally on the total numbers of events observed within each window.

For notational convenience, we shall assume that there are K such time
windows of equal duration J , so that d = J × K (in practice the windows
need not be of equal length). Let xjk denote the exposure on day j of time
window k, and let nijk denote the number of events experienced by individual
i on day j of time window k.

The incidence rate kernel for an individual i on day j in time window k is

νijk = exp(αk + βxjk),

where αk is the time (or age) effect, which we have assumed to be constant
on window k. This model can easily be extended to include additional time-
varying covariates measured at the same time points. Let nik denote the num-
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ber of events experienced by case i within time window k. Thus,

nik =
J∑
j=1

nijk,

for k = 1, . . . ,K. The SCCS likelihood contribution Li for case i is obtained
as described in Chapter 3, by conditioning on the subtotals nik for case i,
rather than on the overall total ni. The benefit of this is that the age effects
exp(αk) are time-invariant within each segment, and therefore cancel out of
the likelihood. Thus, the likelihood contribution for case i is:

Li = constant×
K∏
k=1

J∏
j=1

{ exp(βxjk)∑
r exp(βxrk)

}nijk

.

The overall SCCS likelihood L = L1 × L2 × · · · × LN is thus

L = constant×
K∏
k=1

J∏
j=1

{ exp(βxjk)∑
r exp(βxrk)

}njk

, (6.8)

where

njk =
N∑
i=1

nijk

is the total number of events observed on day j of time window k. Note
that all reference to the individual cases indexed by i has disappeared in
Equation 6.8. Thus, the data required for a SCCS analysis in this setting is
just the time series of event counts aggregated over all cases, cross-classified
by time windows k, k = 1, . . . ,K, together with the exposures. This SCCS
model is identical to the time-stratified case-crossover model.

Since the data now comprise event counts, rather than the timings of indi-
vidual events within cases, the R functions used up till now no longer apply.
However, it turns out in any case to be more fruitful to exploit the equivalence
between SCCS models, which are product multinomial, and Poisson models
via the so-called Poisson trick, described in Chapter 4, Section 4.2. The SCCS
model is fitted using a Poisson generalised linear model with the daily event
count as response, log link, and a factor for the K time windows:

njk ∼ P(νjk),

log(νjk) = βxjk + γk.

The γk are incidental parameters that ensure that the Poisson and SCCS like-
lihoods coincide. (Specifically, the incidental parameters constrain the fitted
total number of events in each time window to match the observed total.)
Only the parameter β is of interest, though it is essential to include the time
window indicators as a factor.
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Fitting the SCCS model via the associated Poisson model suffers the disad-
vantage of having to estimate large numbers of incidental parameters, though
in some software implementations it is possible to eliminate these parameters.
However, in the present setting, using the associated Poisson model does also
have certain advantages.

One advantage is that the Poisson model lies within the much richer class
of time series models. Should the SCCS model prove to be inappropriate (for
example, owing to the presence of overdispersion or autocorrelation), time
series models may provide a more suitable modelling environment. Unlike
data on individual cases with individual exposures, data on shared population
exposures are often not sparse – that is, the event variable does not consist
primarily of 0’s and 1’s. This makes it possible to use standard tools for
checking assumptions in generalised linear models, notably plots of residuals
and asymptotic goodness of fit methods. These may be of benefit to assess
the presence of overdispersion and autocorrelation and the validity of the
Poisson and other assumptions, along with the potential impact of any failure
of assumptions.

Given that the data are presented as a time series, one might ask why
bother at all with the SCCS model? One advantage of using the SCCS frame-
work is that it requires the investigator to focus on which time windows to
use so as to minimise confounding by temporal effects. This may be of benefit
when the effects of interest are small compared to those associated with tem-
poral variation, as is often the case in studies of air pollution. Keeping within
the SCCS modelling framework also has the advantage that time-invariant
multiplicative confounders are automatically controlled. But if the Poisson
assumption does not hold, for example if there is non-ignorable overdisper-
sion, it cannot be assumed that such confounding is eliminated in this way;
see Chapter 3, Section 3.7.2 for a counter-example.

Checking goodness of fit may be done by computing the Pearson residuals

rjk =
(njk − ν̂jk)√

ν̂jk
,

where the ν̂jk are the fitted values of the νjk. The Pearson chi-square statistic
χ2 and associated dispersion parameter φ may also be obtained:

χ2 =
∑
j,k

r2
jk,

φ̂ = χ2/df,

where df is the residual degrees of freedom of the model; in the setup presented
in this section (K windows of equal duration J , and just one covariate), df =
KJ − K − 1. Under the null hypothesis that the correct model has been
fitted (and hence that the data conform to the Poisson distribution), χ2 is
asymptotically distributed according to the chi-squared distribution with df
degrees of freedom, and φ = 1. In R, these analyses may be undertaken using
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the function glm. Alternatively, the R package gnm may be used (Turner and
Firth, 2015); this has an absorption facility with the advantage that incidental
parameters may be eliminated, and is therefore considerably more efficient.
For more details on Poisson generalised linear models, see McCullagh and
Nelder (1989).

Should the SCCS method fail, owing to the fact that no time windows can
be found in which the underlying incidence can be assumed to be constant,
the investigator can consider time series models for count data that generalise
the Poisson model but which lie beyond the SCCS modelling framework.

Summary

• In applications involving population exposures, all cases are observed
over the same period and experience the same exposures. Time and
exposure effects are then confounded.

• A SCCS analysis may be undertaken provided that the exposure period
can be subdivided into short time windows over which temporal varia-
tion may be ignored. The analysis proceeds conditionally within these
time windows.

• The SCCS model may be implemented by fitting a Poisson generalised
linear model to the time series data, with incidental parameters for the
time windows. This model can be used to check the Poisson assumption
directly.

6.6.2 Air pollution and asthma

Hospital admissions for asthma in Nottingham were recorded on successive
days over 8 years, starting in September 1996. Daily air pollution levels in
Nottingham over the same period were also recorded. In this example, we
focus on PM10 levels, which are the concentrations in µg/m3 of particulate
matter less than 10µm in diameter. These data are also described in Farrington
and Whitaker (2006). The question of interest is whether PM10 levels are
associated with asthma admissions.

The data frame pmdat contains three variables: day, taking values 1 to
2922; asma, containing the count of hospital admissions for asthma during the
course of that day (ranging from 0 to 14); and pm10, the PM10 concentration
for that day.

The data are all from the same location, so there is no between-individual
variation in exposures. Thus, the temporal effect is confounded with the expo-
sure. However, provided that the temporal effect may be regarded as constant
on short time intervals, a SCCS analysis may be undertaken.

The total number of admissions for asthma is 3264. The cumulative number
of asthma cases from day 1 may be plotted as follows:
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par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(pmdat$day, cumsum(pmdat$asma), type="l",

xlab="time (days)", ylab="cumulative asthma admissions")

The plot, shown in Figure 6.18, is roughly linear. This suggests a broadly
constant rate of accrual: there is no substantial systematic variation in the
daily incidence of asthma. This in turn suggests that it is reasonable to ignore
temporal effects on short time scales. We shall use time windows of 7 days.
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FIGURE 6.18
Cumulative number of hospital admissions for asthma over time.

There are 418 successive time windows: 417 7-day windows, and one final
3-day window. These windows are in variable week defined as follows:

week <- ceiling(pmdat$day/7)

We shall also control for day of week, to allow for any day-of-week variation
in admission patterns for asthma. To this end, we shall create a new variable
dow with the labels 1: Monday, . . . , 7: Sunday. The first day of the series is a
Wednesday, so the variable is obtained with the following code:

dow <- rep(c(3,4,5,6,7,1,2), length.out=length(pmdat$day))

As outlined in Section 6.6.1, the SCCS model is fitted via an associated
Poisson generalised linear model with incidental parameters for the time win-
dows:

pm.mod1 <- glm(asma~pm10+factor(dow)+factor(week),

family=poisson, data=pmdat)
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This model has 425 parameters: the intercept, the PM10 coefficient β, the
6 day-of-week contrasts, and the 417 window contrasts. Only the parameter
corresponding to pm10 and the 6 parameters for dow are of interest; the rest
are incidental parameters and (with the exception of the intercept) are not
reproduced here:

> summary(pm.mod1)

.....

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.327164 0.232793 5.701 1.19e-08 ***

pm10 -0.002346 0.002601 -0.902 0.367170

factor(dow)2 -0.015603 0.062446 -0.250 0.802695

factor(dow)3 -0.080737 0.063566 -1.270 0.204043

factor(dow)4 -0.250825 0.066459 -3.774 0.000161 ***

factor(dow)5 -0.192846 0.065407 -2.948 0.003194 **

factor(dow)6 -0.207213 0.065623 -3.158 0.001591 **

factor(dow)7 -0.027328 0.063043 -0.433 0.664670

The rightmost column contains approximate p-values. The effect of PM10 is
not statistically significant (p = 0.37). Asthma admissions are statistically
significantly less frequent on Thursdays, Fridays and Saturdays (dow = 4, 5
or 6) than on Mondays (the reference category).

The parameter estimates (listed in the first column) and their standard
errors (second column) are on the log scale, and need to be transformed to
obtain relative incidences and confidence intervals. The relative incidence in
asthma admissions associated with an increase in PM10 levels of 10 µg/m3

(note the unit multiplier 10 here) is

RI = exp(10×−0.002346) ' 0.98

and the 95% confidence limits are

RI− = exp(10×−0.002346− 1.96× 10× 0.002601) ' 0.93

RI+ = exp(10×−0.002346 + 1.96× 10× 0.002601) ' 1.03

As noted in Section 6.6.1, the associated Poisson model in this setting makes
it possible to check for overdispersion. The Pearson chi-square statistic and
degrees of freedom are obtained as follows:

pearson <- sum((pmdat$asma-pm.mod1$fitted.values)^2/

pm.mod1$fitted.values)

df <- pm.mod1$df.residual

These may be used to test the null hypothesis that the model provides an
adequate fit to the data:

> pchisq(pearson, df, lower.tail=F)

[1] 0.01649165
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The p-value is 0.016. Thus there is evidence that the Poisson model does
not provide an adequate fit. However, the degrees of freedom are large (df =
2497), so the test is likely to pick up even a small departure from the Poisson
assumption. The key question is whether this departure from the Poisson
assumption is of practical importance. We obtain the estimated dispersion
parameter:

> pearson/df

[1] 1.06129

The dispersion parameter is 1.06, which is very close to 1, the value expected
under the Poisson assumption. Such a small departure from assumptions is
unlikely to be of material importance. We conclude that inferences from the
SCCS model are reliable for these data.

The R function glm provides no facility for eliminating the incidental pa-
rameters, and so is relatively inefficient (and produces reams of redundant
output). The model may be fitted much more efficiently using R package gnm

for generalised nonlinear models, which has an eliminate option. After load-
ing the package, the model is fitted as follows:

library(gnm)

pm.mod2 <- gnm(asma~pm10+factor(dow), eliminate=factor(week),

family=poisson, data=pmdat)

The incidental parameters are not estimated explicitly. Only the parameters
of interest are displayed in the summary output:

> summary(pm.mod2)

.....

Estimate Std. Error z value Pr(>|z|)

pm10 -0.002346 0.002601 -0.902 0.367170

factor(dow)2 -0.015603 0.062446 -0.250 0.802695

factor(dow)3 -0.080737 0.063566 -1.270 0.204043

factor(dow)4 -0.250825 0.066459 -3.774 0.000161 ***

factor(dow)5 -0.192846 0.065407 -2.948 0.003194 **

factor(dow)6 -0.207213 0.065623 -3.158 0.001591 **

factor(dow)7 -0.027328 0.063043 -0.433 0.664670

These parameters are the same as those from model pm.mod1.

6.6.3 Ambient temperature and RSV

In this section we present an example which is more challenging, owing to
severe confounding between seasonal and exposure effects. The data relate to
respiratory syncytial virus (RSV), a common respiratory infection, in Eng-
land and Wales. RSV displays regular seasonal variation of great regularity
and amplitude, the cause of which is poorly understood. One question of in-
terest is whether ambient temperature plays any role in such fluctuations,
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independently of any seasonal effect. An intrinsic difficulty in such an analysis
is that temperature and seasonality are strongly correlated.

The data comprise weekly laboratory reports of RSV isolates obtained over
7 years, 1996 to 2003. The data were described in Whitaker et al. (2007). The
data frame rsvdat comprises the variables year, the year of report; win, a
vector of indicators for 91 successive 4-week windows; week, denoting week of
the year, numbered 1 to 52; rsv, the count of RSV isolates in that week; and
temp, the average temperature over the previous week in Central England.
The previous week’s temperature is used (rather than the current week’s) to
allow for the incubation period of RSV.

Figure 6.19 shows the time series of RSV counts. The time series displays

0 100 200 300

0
20

0
40

0
60

0
80

0
10

00
12

00

time (weeks)

rs
v 

is
ol

at
es

FIGURE 6.19
Number of RSV isolates over time.

very marked seasonality, peaking in the winter weeks, and dropping close to
zero in summer. The minimum weekly count over the period is 1; the maximum
is 1306. The amplitude of the seasonal fluctuations varies from year to year.

It is apparent from Figure 6.19 that no choice of time window based on suc-
cessive weeks is likely to be appropriate for a SCCS model in this application.
This is because the seasonality is so pronounced that the baseline incidence
cannot be regarded as constant within such a window. For example, suppose
we fit a SCCS model with 4-week windows:

rsv.mod1 <- glm(rsv~temp+factor(win),

family=poisson, data=rsvdat)

Alternatively, function gnm may be used, as described in Section 6.6.2. This
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yields the following output (ignoring the intercept and the incidental param-
eters corresponding to factor win):

> summary(rsv.mod1)

.....

Estimate Std. Error z value Pr(>|z|)

temp -0.030737 0.002211 -13.901 < 2e-16 ***

According to this model, there is a statistically highly significant negative
association between temperature and RSV: the relative incidence associated
with a 10oC increase in average ambient temperature is RI = 0.74, 95% CI
(0.70, 0.77). However, the model is inadequate in several respects, as revealed
by the residuals and the estimated dispersion parameter.

resid1 <- (rsvdat$rsv-rsv.mod1$fitted.values)/

sqrt(rsv.mod1$fitted.values)

pearson1 <- sum(resid1^2)

df1 <- rsv.mod1$df.residual

The goodness of fit test and dispersion parameter are as follows:

> pchisq(pearson1, df1, lower.tail=F)

[1] 0

> pearson1/df1

[1] 18.09202

Thus, φ̂ = 18.1, well above the value 1 required for a Poisson model. The plot
of the residuals against the logs of the fitted values is shown in the left panel
of Figure 6.20.
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FIGURE 6.20
Residual plots for RSV models. Left: with windows comprising 4 adjacent
weeks. Right: with week-of-year windows and year adjustment.
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The plot’s funnel shape provides clear evidence that the residual variance
is not constant. Thus, a different approach is required.

There is nothing in SCCS theory described in Section 6.6.1 that requires
the time windows within which the analysis is conditioned to comprise ad-
jacent weeks. The only requirement is that the windows should be non-
overlapping and not determined by events. An alternative strategy, which
may provide better control of seasonality, is to use week of year to define the
windows. For example, the first window comprises week 27 in the seven years
1996 to 2002; the next window comprises week 28 in these years, and so on.
Thus, there are 52 7-week windows. As evident from Figure 6.19, there is
clear year-to-year variation in RSV counts, and this needs to be taken into ac-
count. In the present SCCS context, with week-of-year windows, year becomes
a time-varying covariate, which can be controlled in the SCCS model. Ideally,
the year effect would be allowed to differ for each week-of-year: however, owing
to the lack of replication (we have only the one time series), this would leave
no information to estimate the temperature effect, which is completely con-
founded with the temporal effect. Instead, we use the next best thing, which
is to group week-of-year into pairs, and fit the interaction between year and
this grouped variable. This pairing is defined as follows:

gwk <- cut(rsvdat$week, seq(0,52,2))

Variable gwk is a factor with 26 levels: level 1 for weeks 1 and 2, level 2 for
weeks 3 and 4, and so on. We now fit the SCCS model with time windows
defined by week. The time-varying covariates are temperature, and the year
by grouped week interaction:

rsv.mod2 <- glm(rsv~temp+factor(year)*gwk+factor(week),

family=poisson, data=rsvdat)

This yields the following estimate for the temperature effect:

> summary(rsv.mod2)

.....

Estimate Std. Error z value Pr(>|z|)

temp -0.006065 0.003501 -1.732 0.083202 .

The association with temperature is no longer statistically significant, the
relative incidence associated with a 10oC increase in temperature being RI =
0.94, 95% CI (0.88, 1.01). The residuals and dispersion parameter are obtained
as follows.

resid2 <- (rsvdat$rsv-rsv.mod2$fitted.values)/

sqrt(rsv.mod2$fitted.values)

pearson2 <- sum(resid2^2)

df2 <- rsv.mod2$df.residual

This yields:
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> pearson2/df2

[1] 2.229287

The estimated dispersion parameter is thus φ̂ = 2.23. This is much closer
to 1, though still indicative of overdispersion. The residual plot is shown in
the right panel of Figure 6.20. The funnel shape has largely disappeared, and
the residual variance is plausibly constant, aside from a few outliers for some
weeks with large fitted values. Figure 6.20 was obtained using the following
code:

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(log(rsv.mod1$fitted.values), resid1, ylim=c(-16,16),

xlab="log of fitted values", ylab="Pearson residual")

plot(log(rsv.mod2$fitted.values), resid2, ylim=c(-16,16),

xlab="log of fitted values", ylab="Pearson residual")

In fact, all but 11 residuals have absolute values less than 2. Our final model
excludes these 11 outliers in case they should unduly influence the results:

wt <- as.numeric(resid2^2<4)

rsv.mod3 <- glm(rsv~temp+factor(year)*gwk+factor(week),

family=poisson, weights=wt, data=rsvdat)

The estimate of the temperature effect is now as follows:

> summary(rsv.mod3)

.....

Estimate Std. Error z value Pr(>|z|)

temp -0.000556 0.003667 -0.152 0.879490

The corresponding relative incidence for an increase in 10oC is RI = 0.99,
95% CI (0.93, 1.07). The overdispersion is still statistically significant (the
Pearson chi-square test gives p = 0.0006). However, the estimated dispersion

parameter for this final model is φ̂ = 1.42, which is indicative of rather mild
overdispersion. This is unlikely to invalidate inferences from this model.

We therefore conclude that there is little evidence to support an association
between temperature and RSV, independently of the seasonal effect. However,
the SCCS model cannot resolve entirely the confounding of temperature and
temporal effects, which could in principle be achieved by using disaggregated
data from distinct geographical areas.

6.7 Bibliographical notes and further material

The semiparametric SCCS model was proposed in Farrington and Whitaker
(2006). The SCCS model with spline-based age effect was described in
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Ghebremichael-Weldeselassie et al. (2014), and the model with spline-based
exposure effect in Ghebremichael-Weldeselassie et al. (2016). The nonpara-
metric SCCS model, in which both age and exposure effects are spline-based,
was published in Ghebremichael-Weldeselassie et al. (2017b).

The SCCS model with spline-based age effect overcomes some of the limita-
tions of the semiparametric model – namely, its potential lack of efficiency and
its high computational cost, both of which are due to the possibly large num-
ber of age-related parameters to be estimated. Lee and Carlin (2014) proposed
a different strategy to tackle the same issues, based on fractional polynomials
rather than splines. In their model, the relative age effect is piecewise con-
stant as in the standard SCCS model, but the step heights at the age group
midpoints are represented by a fractional polynomial of low dimension.

The multi-type SCCS model for recurrent events and competing risks was
described in Ghebremichael-Weldeselassie et al. (2017a). The applicability of
the SCCS model to competing risks was originally raised by Andersen (2006).
A bivariate copula-based SCCS model for studying the dependence between
two distinct events or event types has been developed by Hocine et al. (2005),
and applied to an investigation of antibiotic resistance.

The time-stratified case-crossover method was developed by Lumley and
Levy (2000), in order to correct biases that had become apparent in applica-
tions of case-crossover methodology to environmental time series data. The
full-stratum bidirectional case-crossover method proposed by Navidi (1998)
is a special case of the time-stratified case-crossover method, with a single
stratum. Note that other, more standard, case-crossover designs used for en-
vironmental time series data are not equivalent to the SCCS method owing
to differences in the sampling scheme. These differences were alluded to in
Chapter 3, Section 3.9. The relationship between case-crossover methods and
the SCCS method is discussed more fully in Vines and Farrington (2001) and
Whitaker et al. (2007).

Several other SCCS models have been proposed, relating to adverse event
surveillance or signal detection in pharmacoepidemiology. These include se-
quential versions of the SCCS model, applied using the sequential probability
ratio test (Hocine et al., 2009) or cumulative sum charts (Musonda et al.,
2008a). Another is the Multiple SCCS (or MSCCS) model described by Simp-
son et al. (2013). This was developed to analyse data on a given event in
longitudinal observational databases, so as to account simultaneously for the
potential effect of large numbers of different drugs. In this model, the SCCS
log likelihood is supplemented by a shrinkage penalty on the drug-related pa-
rameters. A further development is the Factorised SCCS (or FSCCS) model,
in which a hierarchical SCCS model is used to study large numbers of event
types as well as large numbers of drugs, using latent variables to link related
drugs or outcomes (Moghaddass et al., 2016). Both the MSCCS and FSCCS
models may be formulated in a Bayesian framework; see also Shaddox et al.
(2016). A SCCS model incorporating the effect of cumulative exposures and
other features relevant to long-term use of pharmaceutical drugs has been
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developed by Schuemie et al. (2016). A further special SCCS model is that
applied by Escolano et al. (2011) to intussusception and rotavirus vaccine,
and described in greater detail by Escolano et al. (2013). This model may be
used in some circumstances to investigate spontaneous reports of potentially
vaccine-associated adverse events, with the aim of enhancing the investigation
of vaccine safety signals.
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Extensions of the SCCS model

In earlier chapters we described several versions of the SCCS model, all of
which were based on the SCCS likelihood derived in Chapter 3. In the present
chapter we move outside this framework, with the aim of weakening some of
the assumptions of the SCCS method.

In Section 7.1 we develop a SCCS model to handle event-dependent ex-
posures. These are exposures that may be influenced by prior events, thus
violating a key assumption. This takes us away from likelihood-based meth-
ods altogether, and into the realm of estimating equations.

In Section 7.2 we describe a SCCS model to handle event-dependent obser-
vation periods, specifically in the situation where occurrence of an event may
precipitate the end of observation, thus violating another key assumption. The
approach we propose requires an additional modelling step to obtain weights
with which the SCCS likelihood is then adjusted.

Finally, in Section 7.3 we discuss more specifically the application of the
SCCS method when the event of interest is death. In this situation both the
observation period and the exposure are event-dependent in an extreme sense.

The models described in Sections 7.1 and 7.2 require some sustained math-
ematical arguments. For both models, we have sought to provide heuristic
accounts of the key ideas that underpin the mathematics which, as elsewhere
in the book, are developed in starred sections which may be skipped.

7.1 SCCS for event-dependent exposures

In this section we describe a SCCS model which, under some assumptions, is
appropriate even when the exposure of interest may depend on prior events.
The assumptions are that the event is non-recurrent and rare, that the obser-
vation period for each case is not influenced by the event, that the exposure
periods are not indefinite, and that the intended duration of each exposure
period is known from the outset once it begins. The latter assumption applies,
for example, to risk periods following a point exposure such as a vaccination,
and to drug treatment periods determined by prescription. When the event is
rare but potentially recurrent, the method may be applied to first events.

Event-dependent exposures may arise in different ways. For example, oc-
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currence of an event may preclude any subsequent exposure. This occurs in
pharmacoepidemiology when the event of interest is a contra-indication to
treatment. An example is rotavirus vaccination and intussusception: rotavirus
vaccine is unlikely to be administered to a child who has experienced an intus-
susception. Thus, rotavirus vaccination is an event-dependent exposure when
intussusception is the event. Conversely, events may precipitate exposures that
would not otherwise have occurred. For example, sustaining an injury in a car
accident may result in being prescribed opioid analgesics. Thus, treatment
with opioid analgesics is an event-dependent exposure when car accident in-
juries are the events of interest. Event-dependence of exposures may also arise
owing to idiosyncracies in the ascertainment of exposures: for example, if ex-
posure histories are collected at the time of event, then post-event exposures
will be undocumented. Finally, occurrence of an event may affect the timing
of subsequent exposures. For example, occurrence of an adverse health event
may delay a routine vaccination.

Whatever its manifestation, event-dependence of exposures means that
post-event exposure data cannot validly be conditioned upon to obtain the
SCCS likelihood, as outlined in Chapter 3, Section 3.7. A SCCS analysis
that ignores the issue may yield biased estimates. The direction of bias is
predictable: if the event precludes (or reduces the frequency of) subsequent
exposures, the relative incidence will be biased upwards. On the other hand,
if the event precipitates (or increases the frequency of) subsequent exposures,
the relative incidence will be biased downwards towards zero.

As seen in Chapter 5, Section 5.4, including a pre-exposure risk period can
sometimes reduce the bias resulting from a short-term reduction in exposure
frequency following an event. However, other methods are required to handle
more prolonged event-dependence.

Our approach in the rest of this section is to set aside any exposures
arising after the occurrence of an event, as they may be affected by the event.
Thus, without loss of generality, we focus on the situation in which post-
event exposures are suppressed, for whatever reason, and adjust the analysis
in an appropriate way. In Section 7.1.1 we seek to convey in non-technical
terms the ideas behind this extension of the SCCS model, in particular the
notion of a counterfactual. Four applications are provided in Sections 7.1.2
to 7.1.5. Results obtained with the modified and the standard SCCS models
are contrasted in Section 7.1.4. The technical machinery used, which involves
estimating equations, is developed in a special case in Section 7.1.6; the general
method is described in Section 7.1.7. Both these sections are starred, and may
be skipped.

7.1.1 Estimating equations and counterfactual exposures

The SCCS likelihood framework described in Chapter 3 cannot be used when
the information on exposures is event-dependent. Instead of maximum likeli-
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hood estimation, we use the more general framework provided by the theory
of estimating equations.

Suppose that α and β are the parameters for age and exposure effects.
Throughout, we take the primary time line to be age, but it could be calendar
time. An elementary unbiased estimating function for case i is a function
Mir(ti;α,β) of the age at event ti for case i, with zero mean under the correct
model. Suppose that there are J free age parameters and K free exposure
parameters. We need as many distinct estimating functions as there are free
parameters, so r = 1, 2, . . . , J +K. The parameter estimates are obtained by
solving the system

N∑
i=1

Mir(ti;α,β) = 0, r = 1, 2, . . . , J +K

for α and β. The method of estimating equations generalises maximum likeli-
hood estimation: in maximum likelihood, the elementary unbiased estimating
functions are the likelihood scores (the derivatives of the log likelihood contri-
bution for each case with respect to the parameters). The advantage is that
estimating equations may be used even when the likelihood is unavailable.
Further details on the theory of estimating equations may be obtained from
Jesus and Chandler (2011).

In the present section, we shall describe very informally the ideas behind
the construction of suitable unbiased estimating functions in a special case.
The estimating equations for this special case are derived in Section 7.1.6.

Suppose, for the time being, that the exposure of interest occurs at most
twice, and that no exposures can occur (or be observed) after an event. We
consider a case with observation period (a, b]. Note that, whatever the event
age t, the observation period remains (a, b]: this is because we have assumed
that the observation period is not influenced by the event. (This and other
assumptions were set out at the start of Section 7.1.) This two-exposure sce-
nario applies, for example, to two-dose vaccines, with events whose occurrence
constitutes a contra-indication to vaccination.

To begin with, consider only cases for which the age at event occurs after
the start of a second exposure at age c2, the first exposure having occurred
at age c1 < c2. There are two possible scenarios, according to the age at
occurrence of the event, represented in Figure 7.1.

In scenario 1 of Figure 7.1, the event occurs at age t in the age interval
(d2, b], after the end of the second risk period (c2, d2]. Because no individual
can experience more than two exposures, we know that no further exposures
could occur after d2, whatever the value of t. Similarly, in scenario 2 of Fig-
ure 7.1, if the event occurs at an age t during the second risk period (c2, d2],
the exposure history is also known after t, since by assumption the end of
exposure d2 is determined by c2, and the duration of the risk period is known
a priori.

Thus, provided the event occurs after a second exposure, the exposure
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FIGURE 7.1
Scenarios for a case with event after the start of the second exposure. Age t is
the age at event, (c1, d1] is the first risk period and (c2, d2] is the second risk
period.

history up to b is known, and is unaffected by the age at event t. In other
words, for this subset of cases, exposures are not event-dependent. Hence
we can use the estimating equation derived from the SCCS likelihood for
cases with observation periods (c2, b] to estimate the parameter β2 associated
with second exposures. This argument has made use of the assumption that
exposures can occur at most twice. In fact, it turns out (as will be explained
in Section 7.1.6) that this assumption can be weakened: it’s enough to assume
that, in our dataset, the exposure occurs at most twice for any case.

Suppose now that we try to apply a similar argument to cases for which
the event occurs after the start of the first exposure at age c1. There are now
four possible scenarios, represented in Figure 7.2.
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FIGURE 7.2
Scenarios for a case with event after the start of the first exposure. Age t is
the age at event, (c1, d1] is the first risk period and (c2, d2] is the second risk
period.

In each of the four scenarios in Figure 7.2, we know that the case expe-
riences a first exposure, with risk period ending at age d1. Thereafter, the
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observed exposure history depends on the event age t: in scenarios 1 and 2 a
second exposure is observed, while in scenarios 3 and 4, no further exposure
is observed. In these last two scenarios, had the event not occurred, the case
might have experienced no further exposure, or might have experienced a sec-
ond exposure. We call the exposure history that would have arisen, had the
event not occurred, the counterfactual exposure history.

To estimate the parameter β1 associated with the first exposure, we cannot
apply the SCCS likelihood directly, even with the observation period (c1, b],
because the observed exposure history between d1 and b depends on when the
event arises. Thus, the conditioning argument upon which the SCCS likelihood
depends can no longer be used.

In order to get round this difficulty, we shall derive an estimating equation
based on a counterfactual exposure history in which no second exposure ever
occurs. This counterfactual exposure history is, by definition, unaffected by
the event age t after c1 since, whatever t, there is no second exposure. Thus, for
cases arising after a first exposure, that is, for which the event occurs at an age
t in (c1, b], we use an estimating procedure derived from the SCCS likelihood
with observation period (c1, b], based on there being no further exposures after
c1. The obvious difficulty with this approach is that we might observe second
exposures for some cases, as in scenarios 1 and 2 in Figure 7.2. In order to
conform to our counterfactual, we reduce the expected number of events by
the factor exp(β2) in second risk periods when a second exposure happens to
be observed. This correction factor is illustrated in Figure 7.3. This approach,
once formalised appropriately, as will be described in Section 7.1.6, offers a
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Adjustment to the second risk period when a second exposure is observed. Age
t is the age at event, (c1, d1] is the first risk period and (c2, d2] is the second
risk period.
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way of estimating β2 based on cases with events occurring after c2, and β1

using cases with events occurring after c1. Information on the age parameters
α may also be derived from these cases in a similar manner.

We have so far considered cases for which the event arises after one or two
exposures. What about cases for which the event age t does not necessarily
arise after any exposure? These comprise all cases arising in (a, b]. There are
now five scenarios, shown in Figure 7.4.
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FIGURE 7.4
Scenarios for a case with event at any time after the start of observation a.
Age t is the age at event, (c1, d1] is the first risk period and (c2, d2] is the
second risk period.

In scenario 5 of Figure 7.4, no exposures have arisen by age t when the
event occurs. This scenario is not covered by those in which the event arises
after an exposure. In this scenario, there are three counterfactual exposure
histories, in which the case could have gone on to experience zero, one or
two exposures, had the event not occurred. To handle this scenario, we again
impose our no exposure counterfactual. In our counterfactual world, there is
now no information on exposure parameters (since no exposures are deemed
to occur), but there is information on the age parameters α. To handle the
scenarios in which exposures do actually arise, we reduce the expected number
of events by exp(β1) or exp(β2) in the risk periods corresponding to those
exposures that happen to be observed. These correction factors are illustrated
in Figure 7.5.

This discussion of counterfactuals has purposefully avoided any technical-
ities, aiming only to provide a flavour of the method, which is distinctly non-
standard. The estimating equations for the special case of up to two exposures
and two age groups are derived in Section 7.1.6. The estimating equations for
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FIGURE 7.5
Adjustment to the first and second risk periods when observed. Age t is the age
at event, (c1, d1] is the first risk period and (c2, d2] is the second risk period.

the general method, with an arbitrary number of exposures and age groups,
are given in Section 7.1.7. In this section we also describe how to obtain confi-
dence intervals for the parameters, and we outline how to fit the model. Both
these sections involve substantial technicalities; accordingly, they are starred
and may be skipped.

The method is implemented in the R package SCCS by the function
eventdepenexp. In the next four sections we describe some examples of its
application.

Summary

• An extension of the SCCS model is available for rare non-recurrent
events when exposures are event-dependent.

• Observation periods are assumed not to be event-dependent. The risk
periods must be of finite duration. The duration of each risk period is
assumed to be known once it begins.

• The model parameters are obtained by solving a system of estimating
equations. The corresponding estimating functions are obtained using
counterfactual exposure histories.
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7.1.2 Unique exposures: influenza vaccine and GBS

In Chapter 4, Section 4.9.1 a statistically significant association was found
between vaccination with seasonal influenza vaccine and Guillain–Barré syn-
drome (GBS). With the risk period 0–42 days after vaccination, the relative
incidence was found to be 2.58, 95% CI (1.42, 4.71).

However, further analysis in Chapter 5, Section 5.4.4 suggested that the
results were sensitive to possible failure of the assumption that exposures
are not event-dependent. Thus, of the 52 vaccinated cases, only one event
occurred prior to vaccination. While this may reflect the temporal distribution
of influenza vaccination, which tends to occur early in the influenza season,
concerns have been expressed about a possible link between GBS and influenza
vaccination since the 1976 swine influenza epidemic in the United States. Such
concerns may make it less likely for a person who has had GBS subsequently
to receive an influenza vaccine. Thus, exposures may be event-dependent.

We apply the SCCS extension for event-dependent exposures using the R
function eventdepenexp, with the same risk period as used previously. As
before, we adjust for season of the year (rather than age) in six monthly
categories:

seas <- cumsum(c(31,30,31,31,28,31))

gbs.mod5 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=gbs, adrug=flu, aedrug=flu+42, agegrp=seas,

data=gbsdat)

This yields:

> gbs.mod5

......

exp(coef) exp(-coef) lower .95 upper .95

flu1 1.8573 0.5384 0.9965 3.4619

age2 1.4179 0.7053 0.8190 2.4549

age3 1.2864 0.7774 0.7081 2.3370

age4 1.9158 0.5220 1.1022 3.3298

age5 1.8529 0.5397 1.0411 3.2980

age6 0.6757 1.4799 0.3370 1.3547

age7 0.4286 2.3332 0.2029 0.9053

Thus, the relative incidence is 1.86 with 95% confidence interval (1.00, 3.46).
The relative incidence is lower than when the standard SCCS model is used,
and is now only borderline statistically significant. Owing to the lack of ro-
bustness of the standard model, these results are to be preferred to those from
Chapter 4, Section 4.9.1.

Note that the syntax of function eventdepenexp is similar to that of func-
tion standardsccs, except that the model formula is not specified explicitly.
This model formula is always of the form

Exposure + Age
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where age is specified by agegrp. Age could be replaced by calendar time, but
the model can only handle a single time-varying exposure. For the GBS data,
the age variable is replaced by time of year, in variables seas. In order to fit
a model with just the exposure, then use agegrp=NULL as follows:

gbs.mod6 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=gbs, adrug=flu, aedrug=flu+42, agegrp=NULL,

data=gbsdat)

This yields:

> gbs.mod6

......

exp(coef) exp(-coef) lower .95 upper .95

flu1 2.332 0.4289 1.337 4.068

The RI without adjustment for time of year is markedly higher: time of the
year is a time-varying confounder and should be included in the model. Note,
however, that unlike models obtained with standardsccs, nested models ob-
tained using eventdepenexp cannot be compared formally using a likelihood
ratio test. This is because this SCCS extension does not use a likelihood.

7.1.3 Multiple doses: rotavirus vaccine and intussusception

The first vaccine against rotavirus infection was withdrawn after case-control
and SCCS studies showed it to be associated with a substantial increase in
the risk of intussusception in infants (Murphy et al., 2001). Subsequently,
other rotavirus vaccines were developed with an improved safety profile, and
routine vaccination against rotavirus was introduced in the United Kingdom
in 2013. The vaccine is given to infants under six months of age in a 2-dose
schedule. Rotavirus vaccination is contra-indicated for children who have had
an intussusception. A SCCS study was undertaken in the United Kingdom to
assess the safety of the vaccine (Stowe et al., 2016). This example includes the
data from this study, with ages jittered to preserve confidentiality.

The data are in format multi in data frame rotdat. There are 566 cases.
Of these, 79 occurred after the first dose and 49 occurred after the second dose
of rotavirus vaccine. The age at intussusception is in variable intus. The ages
at first and second doses of vaccine are in rv and rvd2, respectively. Cases
were ascertained between the ages of 42 and 183 days. The distributions of
age at vaccination (both doses combined) and intussusception in these cases
is shown in Figure 7.6. The bimodal distribution of age at vaccination reflects
the recommended age at vaccination: 2 months for dose 1, 3 months for dose
2. Most observation periods stretch from 42 to 183 days; Figure 7.6 suggests
that the risk of intussusception increases with age over the first six months of
life.

Since intussusception is a contra-indication for rotavirus vaccination, the
standard SCCS model cannot be applied as exposures are event-dependent.
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FIGURE 7.6
Left: age at rotavirus vaccination (both doses combined). Right: age at intus-
susception.

Thus, we use the SCCS extension for event-dependent exposures. The risk
period of interest is [1, 21] days post-vaccination. The day of vaccination (day
0) is excluded: this was to compare with results from other studies. In the first
model, we assume that the vaccine effect is the same at both vaccine doses.
We use 14-day age groups.

age <- seq(56,168,14)

rot.mod1 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(rv,rvd2), expogrp=1,

aedrug=cbind(rv+21,rvd2+21), agegrp=age,

dataformat="multi", data=rotdat)

The estimated vaccine-related relative incidence from this model is as follows.

> rot.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

rv1 3.601 0.2777 2.1897 5.923

Thus, RI = 3.60, 95% CI (2.19, 5.92), both doses combined, indicating a
statistically significant association. To investigate this association in more
detail, we fit a second model in which the risk period is partitioned into two
intervals, [1, 7] days and [8, 21] days:

rot.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(rv,rvd2),

aedrug=cbind(rv+21,rvd2+21), expogrp=c(1,8),

agegrp=age, dataformat="multi", data=rotdat)
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The results from this model are as follows.

> rot.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

rv1 6.318 0.1583 3.4855 11.453

rv2 2.505 0.3993 1.3921 4.506

Thus, RI = 6.32 in the 1–7 day risk period and RI = 2.51 in the 8–21
day risk period, both being statistically significantly greater than 1. We now
obtain separate estimates for each of the two vaccine doses, by specifying
sameexpopar=F as follows.

rot.mod3 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(rv,rvd2),

aedrug=cbind(rv+21,rvd2+21), expogrp=c(1,8),

sameexpopar=F, agegrp=age, dataformat="multi",

data=rotdat)

This yields the following parameter estimates (including the age-related rela-
tive incidences):

> rot.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

rv1 14.2298 0.07027 7.2815 27.809

rv2 1.6014 0.62447 0.5966 4.299

rv3 2.2446 0.44551 0.8604 5.856

rv4 2.8918 0.34580 1.5016 5.569

age2 0.9137 1.09445 0.4610 1.811

age3 1.8442 0.54224 0.9851 3.452

age4 3.2021 0.31230 1.7880 5.734

age5 3.2830 0.30459 1.8329 5.881

age6 5.3504 0.18690 3.0360 9.429

age7 4.5672 0.21895 2.5891 8.057

age8 5.1603 0.19379 2.9271 9.097

age9 5.9376 0.16842 3.3913 10.396

age10 4.5282 0.22084 2.5879 7.923

These results indicate that the association relates primarily to the first week
after the first dose: RI = 14.2, 95% CI (7.28, 27.8). In contrast, the relative
incidence for the 8–21 day risk period after the first dose is 1.60, 95% CI
(0.60, 4.30) and thus not statistically significantly raised. After the second
dose, the relative incidences are 2.24 for the 1–7 day risk period and 2.89 for
the 8–21 day risk period, only the second of these being statistically significant,
95% CI (1.50, 5.57). The age-related relative incidences indicate a sharp rise in
incidence with age over the first six months of life. The estimated age profile
is displayed in Figure 7.7, which was obtained as follows.
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FIGURE 7.7
Intussusception: estimated relative age profile.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

ari <- c(1, rot.mod3$coef[5:13,2], rot.mod3$coef[13,2])

ageg <- c(42,age,183)

plot(ageg, ari, type="s", ylim=c(0,6), xlab="age (days)",

ylab="age effect")

In conclusion, administration of this rotavirus vaccine is associated with
an increased risk of intussusception, primarily in the first week after the first
dose. The first dose is administered at an early age (2 months), at which the
incidence of intussusception is low.

7.1.4 Model comparisons: OPV and intussusception

In this example we use data on oral polio vaccine (OPV) and intussusception
in the United Kingdom (Andrews et al., 2001) to compare models, in two
different ways. Intussusception is not a contra-indication to OPV vaccination,
so the standard SCCS model can be used. Our first model comparison is to
analyse these data with both the standard SCCS model, and the extension of
the SCCS model for event-dependent exposures. This type of comparison can
be used informally when it is unclear whether results may be sensitive to the
assumption that exposures are not event-dependent.

The second comparison involves comparing subgroups of cases. In the stan-
dard SCCS model, this is most easily achieved using a likelihood ratio test, as
described in Chapter 4, Section 4.6. However, the SCCS extension for event-
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dependent exposures does not involve a likelihood (the method is based on
estimating equations). Nevertheless, results obtained in non-overlapping sub-
groups of cases can be compared using a chi-squared test.

The data, in data format multi, are in data frame opvdat. The obser-
vation period for this study was 27 to 365 days of age. There are 207 cases,
each with one intussusception. The age at intussusception is in variable intus.
Each case received up to 3 doses of OPV vaccine; the ages at vaccination are
in opv, opvd2 and opvd3. 614 doses were administered before age 365 days.
The distribution of age at vaccination (all doses combined) up to 365 days of
age, and of age at intussusception, are in Figure 7.8. The distribution of ages
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FIGURE 7.8
Left: age at OPV (all doses combined). Right: age at intussusception.

at vaccination reflects the recommended 2-, 3-, 4-month vaccination schedule
for oral polio vaccine. The incidence of intussusception peaks at 5 to 7 months
of age.

Comparing SCCS methods
Since intussusception is not a contra-indication for OPV, there is no reason
a priori not to use the standard SCCS method. We use the risk period 0–20
days after each dose, and 30-day age groups. Allowing a different parameter
at each dose, the model is specified as follows:

ageg <- seq(60,330,30)

opv.mod1 <- standardsccs(event~opv+age, indiv=case,

astart=sta, aend=end, aevent=intus,

adrug=cbind(opv,opvd2,opvd3),

aedrug=cbind(opv+20,opvd2+20,opvd3+20),

sameexpopar=F, agegr=ageg, dataformat="multi",

data=opvdat)

The vaccine-associated relative incidences are as follows:
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> opv.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.3008 0.7688 0.5694 2.971

opv2 0.5454 1.8334 0.2671 1.114

opv3 1.2238 0.8171 0.7400 2.024

We now apply the SCCS extension for event-dependent exposures. In this
model, the 98 post-event exposures are set aside (they are recoded as missing).
The model is as follows:

opv.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(opv,opvd2,opvd3),

aedrug=cbind(opv+20,opvd2+20,opvd3+20),

sameexpopar=F, agegrp=ageg, dataformat="multi",

data=opvdat)

This yields the following vaccine-associated RIs:

> opv.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.3068 0.7652 0.5933 2.878

opv2 0.4825 2.0725 0.2272 1.025

opv3 1.1368 0.8796 0.6814 1.897

The estimates from models opv.mod1 and opv.mod2, and their confidence
intervals, are very similar. This kind of informal comparison is useful when
there is some doubt about whether the assumption that exposures are not
event-dependent is satisfied. For these data, neither model suggests there is
evidence of an association between OPV and intussusception, for any vaccine
dose.

Finally, it is instructive to apply the standard SCCS model to the data
with post-event exposures removed, in order to display the bias resulting from
event-dependent exposures. First, we obtain the censored exposures:

copv <- ifelse(opvdat$opv>opvdat$intus, NA, opvdat$opv)

copvd2 <- ifelse(opvdat$opvd2>opvdat$intus, NA, opvdat$opvd2)

copvd3 <- ifelse(opvdat$opvd3>opvdat$intus, NA, opvdat$opvd3)

The standard SCCS model applied to these censored exposures is:

opv.mod3 <- standardsccs(event~copv+age, indiv=case,

astart=sta, aend=end, aevent=intus,

adrug=cbind(copv,copvd2,copvd3),

aedrug=cbind(copv+20,copvd2+20,copvd3+20),

sameexpopar=F, agegr=ageg, dataformat="multi",

data=opvdat)
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which yields:

> opv.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

copv1 1.595 0.6269 0.6744 3.773

copv2 0.781 1.2804 0.3719 1.640

copv3 1.939 0.5157 1.1463 3.280

The estimates are higher than those from opv.mod1 and opv.mod2. In par-
ticular, the relative incidence after the third dose is 1.94, 95% CI (1.15, 3.28)
and therefore appears statistically significant. These results are biased owing
to failure of the assumption that exposures are not event-dependent. Model
opv.mod2, which is obtained using the same censored exposures, successfully
corrects this bias.

Comparing subgroups
Does gender modify the relative incidence associated with OPV? In the stan-
dard SCCS model, this may be investigated by fitting the interaction between
gender and exposure, and using a likelihood ratio test. With the SCCS exten-
sion for event-dependent exposures, this is not possible as no likelihood has
been defined. However, a chi-squared test is possible, based on the parameter
estimates and standard errors obtained from males and females separately.
Suppose that the estimated parameter is β̂m for males and β̂f for females,
with standard errors sm and sf respectively. The test statistic is

U =
(β̂m − β̂f )2

s2
m + s2

f

.

Under the null hypothesis that βm = βf , U is approximately distributed as
chi-squared on 1 degree of freedom in large samples.

To apply this to the OPV and intussusception data, we first fit the
SCCS extension to males and females separately, with doses combined us-
ing sameexpopar=T (this is the default, and is only included for emphasis).
Gender is in variable sex, coded 1 for males and 2 for females.

opv.mod4 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(opv,opvd2,opvd3),

aedrug=cbind(opv+20,opvd2+20,opvd3+20),

sameexpopar=T, agegrp=ageg, dataformat="multi",

data=subset(opvdat,sex==1))

opv.mod5 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(opv,opvd2,opvd3),

aedrug=cbind(opv+20,opvd2+20,opvd3+20),

sameexpopar=T, agegrp=ageg, dataformat="multi",

data=subset(opvdat,sex==2))
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The estimates for males and females, respectively, are as follows:

> opv.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

opv1 1.089 0.9181 0.6342 1.870

> opv.mod5

......

exp(coef) exp(-coef) lower .95 upper .95

opv1 0.6602 1.51477 0.32636 1.335

Thus, the RIs are 1.09 for males and 0.66 for females. The test statistic and
p-value are obtained as follows:

num <- coef(opv.mod4)[1,1]-coef(opv.mod5)[1,1]

var <- coef(opv.mod4)[1,3]^2+coef(opv.mod5)[1,3]^2

test <- num^2/var

pval <- pchisq(test, df=1, lower.tail=F)

The test statistic is in test and its p-value is in pval:

> c(test, pval)

[1] 1.2208747 0.2691891

Thus, the test statistic is 1.22, and the p-value is 0.27: there is very little
evidence of a statistically significant difference between the relative incidences
for males and females.

7.1.5 Multiple exposures: respiratory infections and MI

All three examples presented so far in this section have involved one or more
doses of vaccine. The present application involves multiple exposures of the
same type. The exposures of interest are respiratory tract infections, and
the event is myocardial infarction (MI). The data are simulated, based on
data from the Clinical Practice Research Datalink published in Smeeth et al.
(2004b).

The data comprise 940 first myocardial infarctions in patients aged 65 to 80
years of age with at least one recorded respiratory tract infection in that time.
The data are in data frame midat and are organised in format stack, with
one line per exposure. Age at myocardial infarction is in variable mi, age at
infection is in rti. The variable cen indicates whether or not the observation
period was terminated early, taking the value 1 if it was and 0 if not.

To avoid any issues relating to event-dependent observation periods (which
will be addressed in Section 7.2), we restrict attention to the 454 cases whose
observation period was not curtailed. Experiencing a myocardial infarction
may alter the subsequent risk of infection: it may increase it, if the MI or
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treatment for it impairs the patient’s immune system; or it may reduce it,
if precautionary measures to avoid infections are taken. Our interest is in
assessing whether such an effect, if present, affects the association between
respiratory tract infection and MI.

Figure 7.9 shows the observation periods for these 454 cases. The appear-
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FIGURE 7.9
Observation periods for 454 cases of myocardial infarction.

ance of the plot at the edges results from the fact that the data were abstracted
from a larger dataset. This figure was obtained as follows.

unin <- (1-duplicated(midat$case))*(midat$cen==0)

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

usta <- midat$sta[unin==1]

uend <- midat$end[unin==1]

os <- order(usta)

plot(c(min(usta)/365.25,max(uend)/365.25), c(1,length(os)),

type="n", xlab="age (years)", ylab="case rank")

segments(usta[os]/365.25, 1:length(os), uend[os]/365.25,

1:length(os))

These 454 cases experienced 1077 respiratory tract infections; 233 had 1, 106
had 2. One had 29.

Figure 7.10 shows the age distributions for respiratory tract infections and
MIs. Interpretation of the graphs is complicated by the variation in observation
periods. One noteworthy feature is that, above 75 years of age, the frequency
of respiratory infections drops but that of MIs remains high. Figure 7.10 was
obtained using the following code.
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FIGURE 7.10
Left: age at respiratory tract infection. Right: age at MI.

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(midat$rti[midat$cen==0]/365.25, breaks=seq(65,80,1),

xlab="age at RTI (years)", main=NULL)

hist(midat$mi[unin==1]/365.25, breaks=seq(65,80,1),

xlab="age at MI (years)", main=NULL)

To evaluate the association between respiratory tract infections and MI,
we first fit a standard SCCS model with risk periods 0–7 and 8–14 days post-
infection. We use age groups defined by the 0.1-quantiles of age at MI.

ageq <- floor(quantile(midat$mi[unin==1], seq(0.1,0.9,0.1),

names=F))

mi.mod1 <- standardsccs(event~rti+age, indiv=case, astart=sta,

aend=end, aevent=mi, adrug=rti, aedrug=rti+14,

expogrp=c(0,8), agegr=ageq, dataformat="stack",

data=subset(midat,cen==0))

This produces the following estimates for the exposure effect.

> mi.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

rti1 4.958 0.2017 3.1347 7.843

rti2 1.415 0.7065 0.5831 3.436

Thus the relative incidence for the [0, 7] day risk period is 4.96, with 95%
CI (3.13, 7.84): there is a strong association between infection and MI. There
is no statistically significant association in the risk period [8, 14] days. But
might the 0–7 day risk period estimate be biased owing to event-dependent
exposures? For example, if infections tended to occur less frequently after
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an MI, perhaps owing to precautionary measures, the RI would be biased
upwards.

To investigate this we can use the SCCS extension for event-dependent
exposures. This ignores the post-event exposure history of each case, which
therefore cannot affect the results. The model is applied as follows.

mi.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=mi, adrug=rti, aedrug=rti+14, expogrp=c(0,8),

agegrp=ageq, dataformat="stack",

data=subset(midat,cen==0))

As in the specification of mi.mod1, we include dataformat="stack" just for
emphasis: as for function standardsccs, this is the default so is not strictly
required.

This model yields

> mi.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

rti1 4.073 0.2455 2.4575 6.750

rti2 1.219 0.8205 0.4790 3.101

The estimates are lower than those for mi.mod1. However the differences are
not important in practicat terms: in the [0, 7]-day risk period, RI = 4.07
with 95% CI (2.46, 6.75). The substantive conclusions from this analysis are
that there is indeed a genuine association between respiratory tract infections
and MI in the week after an infection, and that this is not a spurious effect
resulting from event-dependent exposures.

7.1.6 SCCS for event-dependent exposures: a special case*

In this section we derive the estimating equations for the parameters α and β
in a special case, in which at most two exposures can arise, each corresponding
to a single risk period, and in which there are just two age groups. Thus there
are three parameters to estimate: one age-related parameter α, and the two
exposure-related parameters β1 and β2, corresponding to the first and second
exposures, respectively. The ages at first and second exposure for case i are
denoted ci1 and ci2, respectively; the corresponding risk periods (expressed
in mathematical notation) are (ci1, di1] and (ci2, di2]. We define elementary
estimating functions Mi1, Mi2 and Mi3 for α, β1 and β2, respectively.

The observation period (ai, bi] of a case i is partitioned by the exposures
into five successive exposure intervals, indexed by k = 1, 2, . . . , 5. The two age
groups are indexed by j = 0, 1. One such configuration is shown in Figure 7.11.
Note that the indices k code the exposure history, and do not uniquely corre-
spond to exposure levels. Thus in Figure 7.11, k = 1, 3, 5 all correspond to the

* This section may be skipped.
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exposure group k

0
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FIGURE 7.11
Illustration: one configuration for two exposures and two age groups. The in-
tervals (ci1, di1] and (ci2, di2] are the first and second risk periods, respectively.

unexposed level. In this particular configuration, the cutpoint separating the
two age groups occurs between the two exposure periods, but it could occur
at any time in relation to either exposure, or not at all. For simplicity, we
shall assume that, for all i, ai < ci1, di1 < ci2 and di2 ≤ bi. In the general case
described in Section 7.1.7 these restrictions are not necessary, and arbitrary
numbers of risk periods may be used after each exposure.

When individual i is a case, some or all of these exposures may not be
observed: they are then counterfactual, that is, they are the exposures that
would have been observed, had that individual not been a case.

Let eijk ≥ 0 denote the duration of the time spent by case i, really or
counterfactually, in age group j and in exposure interval k, and nijk the num-
ber of events (0 or 1, by assumption) experienced by case i in this interval.
The total number of events experienced by case i is ni = 1.

Suppose now that the event for case i occurs after the second exposure.
In this scenario, both exposures are observed. We proceed using the standard
SCCS method, using the observation period (ci2, bi]. This is illustrated in
Figure 7.12 for the configuration described in Figure 7.11. The standard SCCS

bi

ci2 di2

age group j

exposure group k

1

4

1

5

FIGURE 7.12
Illustration: standard SCCS method applied to the observation period (ci2, bi].
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likelihood contribution for case i, using the observation period (ci2, bi] is:

Li(α, β2) = constant×
(eβ2ei04)ni04 × (eα+β2ei14)ni14 × (ei05)ni05 × (eαei15)ni15

{eβ2(ei04 + eαei14) + (ei05 + eαei15)}(ni04+ni14+ni05+ni15)
.

(7.1)

The first derivative of log(Li) with respect to β2 gives the elementary likeli-
hood score function for β2:

Mi3(α, β2) = ni.4 − (ni.4 + ni.5)
eβ2(ei04 + eαei14)

eβ2(ei04 + eαei14) + (ei05 + eαei15)
.

In this expression, the dots represent sums over j = 0, 1, so for example
ni.4 = ni04 + ni14. The estimating equation for β2 is then

N∑
i=1

Mi3(α, β2) = 0.

To obtain an unbiased estimating function for β1, we consider a case i with
event arising after the first exposure. The exposure history after the event rep-
resented by the partitioning illustrated in Figure 7.11 is now counterfactual:
it is the exposure history which would have been observed had the event not
occurred; alternatively, it is the exposure history that would have been ob-
served, had the event not affected subsequent exposures. Based on this partly
counterfactual exposure history, the elementary likelihood score function for
β1, obtained by differentiating the standard SCCS likelihood contribution for
that case with the observation period (ci1, bi], would be

ni.2 − (ni.2 + ni.3 + ni.4 + ni.5)×
eβ1(ei02 + eαei12)

eβ1(ei02 + eαei12) + (ei03 + eαei13) + eβ2(ei04 + eαei14) + (ei05 + eαei15)
.

(7.2)

However, this likelihood score function cannot usually be evaluated, since the
intervals eij3, eij4 and eij5, for j = 0, 1, may not be observed. To get round this
difficulty, we modify this score function to conform with a counterfactual in
which no exposures occur after the first. This involves removing the term eβ2 in
Expression 7.2. Also, the count ni.4 must be divided by eβ2 to ensure that the
expected value conforms with our imposed counterfactual. This adjustment is
illustrated in Figure 7.13 for the configuration described in Figure 7.11.

These modifications result in the following elementary estimating function
for β1:

Mi2(α, β1, β2) = ni.2 − (ni.2 + ni.3 + ni.4e
−β2 + ni.5)×

eβ1(ei02 + eαei12)

eβ1(ei02 + eαei12) + (ei03 + eαei13) + (ei04 + eαei14) + (ei05 + eαei15)
.

(7.3)
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FIGURE 7.13
Illustration: adjustment to event count in second risk period.

This elementary estimating function can always be evaluated, even if the event
occurs before a second exposure has arisen, since in this case ni.4 = ni.5 = 0
and ei.3 + ei.4 + ei.5 = bi − di1, and the subdivision of this interval by age is
known. Thus, ei03 +ei04 +ei05 and ei13 +ei14 +ei15 are known. Our estimating
equation for β1 is then

N∑
i=1

Mi2(α, β1, β2) = 0.

It remains to construct an unbiased estimating function for α. This comprises
three components, which are added together. The first component comes from
the SCCS likelihood contribution in Equation 7.1. The first derivative of the
log likelihood contribution with respect to α yields the following elementary
likelihood score function for α:

(ni14 + ni15)− (ni.4 + ni.5)× eα(eβ2ei14 + ei15)

(eβ2ei04 + ei05) + eα(eβ2ei14 + ei15)
. (7.4)

This is the first component.
The second component is derived in a similar way to Mi2 in Equation 7.3.

We start with the elementary likelihood score function for α, derived from
the standard SCCS likelihood contribution for that case with the observation
period (ci1, bi]. This is

(ni12 + ni13 + ni14 + ni15)− (ni.2 + ni.3 + ni.4 + ni.5)×
eα(eβ1ei12 + ei13 + eβ2ei14 + ei15)

(eβ1ei02 + ei03 + eβ2ei04 + ei05) + eα(eβ1ei12 + ei13 + eβ2ei14 + ei15)
.

We then modify this score function in line with our imposed counterfactual.
Thus, as before, we remove the eβ2 and adjust ni14 and ni.4. This yields the
second component:

(ni12 + ni13 + ni14e
−β2 + ni15)− (ni.2 + ni.3 + ni.4e

−β2 + ni.5)×
eα(eβ1ei12 + ei13 + ei14 + ei15)

(eβ1ei02 + ei03 + ei04 + ei05) + eα(eβ1ei12 + ei13 + ei14 + ei15)
. (7.5)
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The third component is derived from the elementary likelihood score function
for α obtained from the standard SCCS likelihood with observation period
(ai, bi]. This score function is

(ni11 + ni12 + ni13 + ni14 + ni15)− (ni.1 + ni.2 + ni.3 + ni.4 + ni.5)×
eα(ei11 + eβ1ei12 + ei13 + eβ2ei14 + ei15)

E0(β1, β2) + eαE1(β1, β2)
, (7.6)

where

Ej(β1, β2) = eij1 + eβ1eij2 + eij3 + eβ2eij4 + eij5, j = 0, 1.

As before, we modify this score function to accord with our no exposures
counterfactual. Thus, we remove the terms eβ1 and eβ2 in Expression 7.6,
multiply ni02 and ni12 by e−β1 , and multiply ni04 and ni14 by e−β2 . This is
illustrated in Figure 7.14 for the configuration described in Figure 7.11.
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exp(1)

FIGURE 7.14
Illustration: adjustments to event counts in first and second risk periods.

These adjustments yield

(ni11 + ni12e
−β1 + ni13 + ni14e

−β2 + ni15)−

(ni.1 + ni.2e
−β1 + ni.3 + ni.4e

−β2 + ni.5)× eαei1.
ei0. + eαei1.

, (7.7)

where eij. = eij1 + eij2 + eij3 + eij4 + eij5 for j = 0, 1. This is our third
component. The elementary estimating function Mi1(α, β1, β2) for α is the
sum of the three components in Expressions 7.4, 7.5 and 7.7. The estimating
equation for α is

N∑
i=1

Mi1(α, β1, β2) = 0.

The elementary estimating functions Mir ≡ Mir(α, β1, β2) are unbiased,
that is, have zero expectation under the correct model. This is immediate
for r = 3 since Mi3 is an elementary likelihood score function. We show
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unbiasedness for r = 2; the case r = 1 proceeds component-wise under similar
lines.

Since individual i is a case, and events are non-recurrent, then ni = 1. It
follows that either ni.1 = 0 or ni.1 = 1. Now, we have

E(Mi2) = E(Mi2|ni.1 = 1)P (ni.1 = 1) + E(Mi2|ni.1 = 0)P (ni.1 = 0).

But Mi2 = 0 when ni.1 = 1, since then ni.2 = · · · = ni.5 = 0. And if ni.1 = 0,
then ni2+ = ni.2 + ni.3 + ni.4 + ni.5 = 1. So it suffices to show that Mi2 has
zero expectation when ni2+ = 1. Let

Ei2+ = eβ1(ei02 + eαei12) + (ei03 + eαei13) + eβ2(ei04 + eαei14) + (ei05 + eαei15).

The conditional expectations of the nijk, for k ≥ 2, are

E(ni.2|ni2+ = 1) =
eβ1(ei02 + eαei12)

Ei2+
,

E(ni.3|ni2+ = 1) =
(ei03 + eαei13)

Ei2+
,

E(ni.4|ni2+ = 1) =
eβ2(ei04 + eαei14)

Ei2+
,

E(ni.5|ni2+ = 1) =
(ei05 + eαei15)

Ei2+
.

Substituting these expectations in Expression 7.3 yields

E
[
Mi2(α, β1, β2)|ni2+ = 1

]
= 0,

as required.
The restriction that a case can experience at most two exposures can be

relaxed: it is only necessary that no case in the data set at hand experiences
more than two exposures. To see this, suppose that, in principle, a case could
experience three exposures, but that no case actually does. The third exposure,
which in these data is always counterfactual and is never actually observed,
could be represented by a further risk period (ci3, di3]. The likelihood score
equation is then altered as before in line with our no further exposure coun-
terfactual. But since no event occurs after ci3 for any i, the inclusion of this
additional counterfactual risk period does not affect the evaluation of any of
the equations. Unsurprisingly, since third exposures are not observed, the cor-
responding parameter β3 does not appear in the estimating functions, and is
not estimable from these data. Thus, such hypothetical additional exposure
intervals can simply be ignored.

7.1.7 General method for event-dependent exposures*

In this section we consider the general case when there are an arbitrary num-
ber of age groups, exposures, and risk periods. We also give some further

* This section may be skipped.
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details about the calculation of standard errors and confidence limits, and
outline a model fitting strategy.

Estimating equations in the general case
In this section, we state the unbiased estimating functions for α and β when
there is an arbitrary number J of age-related parameters (and so J + 1 age
groups) and an arbitrary number of exposures, each contributing one or several
contiguous risk periods, for example corresponding to distinct vaccine doses,
or repeated treatment with the same drug. The derivation of these functions
is similar to that presented in Section 7.1.6.

We suppose to start with that a case i experiences up toR distinct exposure
episodes of the same exposure (for example the same drug) at ages cir, r =
1, . . . , R. We assume that each exposure gives rise to S contiguous risk periods
(ds−1
ir , dsir], s = 1, . . . , S, with d0

ir = cir. The log relative incidence associated
with risk period s after exposure r is βrs; there are in all R× S risk periods.
We assume for the time being that the corresponding R×S relative incidences
may be distinct. It will be explained later how to obtain a common estimate
when βrs = βs for all r. Let αj denote the log relative incidence associated
with age group j relative to age group 0, for j = 1, . . . , J .

For each case i, with observation period (ai, bi], the indices k = 1, . . .K
for K = R× (S + 1) + 1 count the successive exposure intervals from ai to bi.
The first (k = 1) is (ai, ci1]; the second is (ci1, d

1
i1]; and so on. These intervals

are further subdivided by age. The interval for case i corresponding to age
group j and exposure interval k has length eijk ≥ 0. If an interval does not
arise then its length is set to zero; k represents the same position relative to
successive exposures for all cases. The number of events (zero or one) arising
in interval ijk is nijk.

To move between the interval counter k and the risk periods defined by
the indices r and s we shall use the following three functions, defined for
r = 1, . . . , R, s = 1, . . . , S and k = 1, . . . ,K:

r(k) =

{
r, if (r − 1)(S + 1) + 2 ≤ k ≤ r(S + 1),

0, otherwise;

s(k) =

{
s, if r(k) ≥ 1 and {r(k)− 1}(S + 1) + 1 + s = k,

0, otherwise;

k(r, s) = (r − 1)(S + 1) + 1 + s.

In some applications, for example those involving vaccines, it is important to
distinguish between doses. The notation introduced above allows for observa-
tion periods starting after the first dose: in this case eijk is set to zero for the
missing intervals. The key point is that k represents the same position relative
to successive doses for all cases.
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Now define, for r = 0, 1, . . . , R (note the inclusion of r = 0 here),

w
(r)
ijk =


0, if k ≤ (r − 1)(S + 1) + 1,

1, if r = r(k) or k = r′(S + 1) + 1 for some r′ ≥ r,
exp(−βr′s), if k = k(r′, s) for some r′ > r and some s.

In this definition, the subscripts i and j are redundant but are retained for
consistency in what follows. Set β0s = 0 for all s = 0, 1, . . . , S. Now define the
following subsets of cases:

S0 = {i : ai /∈ ∪Rr=1(cir, d
S
ir]},

and, for r = 1, . . . , R,

Sr = {i : (cir, d
S
ir] ∩ (ai, bi] 6= ∅}.

Note that unexposed cases, if present, are included in S0. With this notation,
the elementary estimating function for αj , j = 1, . . . , J is

Mi,j(α,β) =
R∑
r=0

Mr
ij(α,β),

where, if i ∈ Sr,

Mr
i,j(α,β) =

K∑
k=1

w
(r)
ijknijk −

( J∑
j=0

K∑
k=1

w
(r)
ijknijk

)
×

∑K
k=1 w

(r)
ijke

αj+βr(k)s(k)eijk∑J
j=0

∑K
k=1 w

(r)
ijke

αj+βr(k)s(k)eijk
, (7.8)

and Mr
i,j(α,β) = 0 if i /∈ Sr. Note that β00 = 0. The notations Mi,j and

Mij are equivalent – the comma separating the indices here is used for greater
clarity.

The elementary estimating function for βrs, r = 1, . . . , R, for i ∈ Sr, is

Mi,(r−1)S+s(α,β) =
J∑
j=0

nijk(r,s) −
( J∑
j=0

K∑
k=1

w
(r)
ijknijk

)
×

∑J
j=0 w

(r)
ijk(r,s)e

αj+βrseijk(r,s)∑J
j=0

∑K
k=1 w

(r)
ijke

αj+βr(k)s(k)eijk
. (7.9)

If i /∈ Sr then Mr
i,(r−1)S+s(α,β) = 0.

Note that the terms w
(r)
ijke

βr(k)s(k) in the expressions on the right-hand side
of Equations 7.8 and 7.9 are

w
(r)
ijke

βr(k)s(k) =


0, if k ≤ (r − 1)(S + 1) + 1,

exp(βrs), if r = r(k) and s = s(k),

1, if k = r′(S + 1) + 1 for some r′ ≥ r,
1, if k = k(r′, s) for some r′ > r and some s.
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The system of J +RS estimating equations for (α,β) is

N∑
i=1

Mi,m(α,β) = 0, m = 1, . . . , J +RS.

The estimators α̂, β̂ are the solutions of this system of equations.
If the parameters βrs are equal at different doses, so that βrs = βs for

r = 1, . . . , R, there are only S exposure parameters to be estimated. The
elementary estimating functions for βrs are added over r = 1, . . . , R. The
elementary estimating function for βs is then

Mi,J+s(α,β) =

R∑
r=1

Mi,(r−1)S+s(α,β, . . . ,β)

where β = (β1, . . . , βS) and the dots on the right of the equation represent R
repeats.

Approximate confidence intervals
Confidence intervals for the parameters may be obtained using standard re-
sults from the theory of estimating equations (Jesus and Chandler, 2011). Let
V(θ) denote the observed covariance matrix of the vector of unbiased esti-

mating functions, with components
∑N
i=1Mim(θ), where θ is the parameter

vector (α,β)T . Let H(θ) denote the Jacobian of the vector of estimating func-
tions. Thus, V(θ) and H(θ) are (J + RS) × (J + RS) matrices with (u, v)
elements

Vuv(θ) =

N∑
i=1

Miu(θ)Miv(θ),

Huv(θ) =

N∑
i=1

∂Miu(θ)

∂θv
.

The covariance matrix cov(θ̂) may be estimated using the sandwich estimator

H(θ̂)−1V(θ̂)H(θ̂)−1T . This may then be used to obtain confidence intervals
for θ.

Fitting the model
In the final part of this section we give some brief indications about how to
fit the model. The key is to note that the elementary estimating equations
for i ∈ Sr, r = 0, 1, . . . , R, may be interpreted as score equations from a
pseudo-Poisson model. For a count n and a weight w with 0 ≤ w ≤ 1, let
the expression wn ∼ P (µ) denote a likelihood contribution proportional to
e−µµwn when w 6= 0 and equal to 1 when w = 0. This model is called pseudo-
Poisson because the response variable wn need not be an integer.
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The elementary estimating equations derived for i ∈ S0 may equivalently
be obtained as elementary score equations from the pseudo-Poisson model

w
(0)
ijknijk ∼ P (λ

(0)
ijkeijk)

log(λ
(0)
ijk) = φ

(0)
i + αj .

Similarly, the elementary estimating equations for i ∈ Sr correspond to ele-
mentary score equations from the pseudo-Poisson model

w
(r)
ijknijk ∼ P (λ

(r)
ijkeijk)

log(λ
(r)
ijk) = φ

(r)
i + αj + βrsI(k(r, s) = k),

with I(.) the indicator function.
To fit the model, we first stack the R + 1 data subsets S0,S1, . . . ,SR,

with distinct individual identifiers for each stack level r = 0, 1, . . . , R, and with
covariate vectors to match the submodels described above. For an initial choice
of parameters βrs, the w

(r)
ijknijk are defined as response variables. The model

is fitted iteratively, alternatively maximising the pseudo-Poisson likelihood

for given weights w
(r)
ijk and then updating the weights w

(r)
ijk using the latest

parameter estimates of the βrs, until a convergence criterion is met.
Note that the elementary estimating functions in Expressions 7.8 and 7.9,

when evaluated at the observed values nijk for i ∈ Sr, take the form of the
residual y − νπ. Thus, y is 0, 1 or exp(−βr′s) for some r′ > r and some s
(since ni = 1); ν similarly involves exp(−βr′s); and π may involve the age
parameters αj and the parameters relating to exposure r, βr1, . . . , βrS .

The elementary estimating functions for each parameter may be obtained
from the converged pseudo-Poisson model by summing the residuals corre-
sponding to the cells indexed by that parameter. The matrix V is then calcu-
lated directly from these elementary estimating functions.

To obtain the matrix of derivatives H, note that the partial derivatives are
of the form

∂

∂θ
(y − νπ) =

(∂y
∂θ
− ∂ν

∂θ
π
)
− ν ∂π

∂θ
. (7.10)

The first bracket on the right-hand side of Equation 7.10 is either of the form
−(y− νπ), if θ = βr′s, or 0 otherwise. The last term on the right-hand side of
Equation 7.10 is a contribution to the Hessian of the pseudo-Poisson model.

Thus, the matrix H may be obtained from the Hessian of the converged
pseudo-Poisson model and its residuals. The sandwich variance estimator may
then be obtained from V and H as described above.

Some details about the about the model fitting procedure may be obtained
by specifying verbose=T in function eventdepenexp. For example, with the
rotavirus and intussusception data of Section 7.1.3,

rot.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,
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aevent=intus, adrug=cbind(rv,rvd2),

aedrug=cbind(rv+21,rvd2+21), expogrp=c(1,8),

sameexpopar=T, agegrp=age, dataformat="multi",

data=rotdat, verbose=T)

produces the following output:

No. exposures after first event (treated as missing): 0

No. events included at stack level 0: 566

No. events included at stack level 1: 79

No. events included at stack level 2: 49

iteration: 1

beta: 1 1.57803590021434 beta: 2 0.699352762537988

iteration: 2

beta: 1 1.81714591093924 beta: 2 0.892285864427605

......

iteration: 10

beta: 1 1.84341970787888 beta: 2 0.918140503166051

The first line indicates that 0 cases received rotavirus vaccination after in-
tussusception; if some cases had, these post-event exposures would have been
recoded as missing. The next three lines describe the construction of the data
stack: at stack level 0, all 566 events are included. At stack level 1, the 79
events after the first dose of vaccine are included. At stack level 2 the 49 post
second dose events are included. Finally, some details of the iterative fit are
provided: in this case, the fitting process was deemed to have converged at
the 10th iteration.

7.2 SCCS for event-dependent observation periods

We now turn to an extension of the SCCS model that applies when observation
periods are influenced by events. We consider one specific context, in which
events may bring forward the end of observation. This arises, for example,
when the event of interest is associated with high mortality. The extension
is required when the methods described in Chapter 5, Section 5.3, suggest
that this type of event-dependence could bias the estimated associations of
interest in a standard SCCS model. This bias may be in either direction; and
it is possible that violation of the assumption produces no bias, as shown in
Chapter 5, Section 5.3.4.

The standard SCCS model applies when the observation periods extend
to the planned end of the study. It also applies if the observation periods are
censored at random (Kalbfleisch and Prentice, 2002, page 53), as may occur if
observation is curtailed owing to circumstances unconnected with the event.
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The extension to the standard SCCS model requires information on
whether the observation period for each case has been censored. It applies
to rare non-recurrent events (if the event is recurrent, the method should
be applied to first occurrences). Exposures within the observation period are
assumed not to be event-dependent. The method requires two additional as-
sumptions. First, censoring may be influenced by, but should not necessarily
coincide with, the event of interest. Second, given the event history, the cen-
soring process should not depend on the exposure history.

The practical implications of these assumptions merit some further consid-
eration. Regarding the first assumption, note that the event of interest must
not itself censor observation, as is the case with death. (The use of SCCS
methods when death is the event of interest is discussed in Section 7.3.) For
example, suppose that censoring occurs owing to death caused by stroke, the
event of interest. Stroke increases the risk of death, so censoring through death
is event-dependent, but stroke does not always result in death.

The second assumption holds provided the exposure is not an independent
risk factor for censoring. In the stroke example, the assumption means that
any death caused by the exposure must be due to a stroke caused by the
exposure, and not some other exposure-induced pathology. In other words,
stroke must lie on any causal pathway that may exist between exposure and
death. For most applications in pharmacoepidemiology, this assumption is
unlikely to be unduly restrictive. However, if deaths directly induced by a
drug are of concern, then death would most likely be the event of interest in
the analysis. In this case, the methods described in Section 7.3 should be used.

The extension of the standard SCCS model involves a two-stage mod-
elling approach, described in Section 7.2.1. Three applications are described,
in Sections 7.2.2 to 7.2.4. Fitting the model can require some experimentation
with initial parameter values, aspects of which are considered in Section 7.2.5.
Further details of the model are provided in Sections 7.2.6 and 7.2.7. These
sections are starred and may be skipped.

7.2.1 A two-stage modelling approach

In this section we describe informally how the SCCS likelihood described in
Chapter 3, Section 3.5, must be modified to take account of event-dependent
observation periods. Technical details of the derivation are in starred Sec-
tion 7.2.6.

We suppose that each case i experiences a single event at age ti. Let
ai denote the start of observation for individual i, and b∗i the planned end
of observation. In practice, the observation period might end earlier than
planned, at some age ci < b∗i . If this occurs, then we say that the observation
period is censored. If the observation period is not censored, we write ci ≥ b∗i .
The actual observation period is (ai, bi], where

bi = min{ci, b∗i }.
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This notation was introduced in Chapter 5, Section 5.3. We shall also use the
censoring indicator previously defined in that section:

Ii = 1 if bi < b∗i , 0 if bi = b∗i . (7.11)

We assume that the value of Ii is available for each case.
Two key changes to the standard SCCS likelihood are required; both of

these involve the censoring process – that is, the process that may lead to
early termination of the observation period. The exposure history is xi, and is
unaffected by prior events; the observation history is now modelled explicitly.

First, let Si(t) denote the probability that censoring has not occurred by
age t for case i, in the absence of an event. To derive the SCCS likelihood, we
condition on the number of events (0 or 1, in our case) that have occurred for
individual i during their observation period. Suppose that one event occurs, at
age ti. It then follows that individual i was not censored before age ti, which
occurs with probability Si(ti). The event intensity function λi(t|xi) must be
adjusted to take account of the thinning effect of censoring. To this end, we
replace λi(t|xi) in the SCCS likelihood by

λ∗i (t|xi) = λi(t|xi)× Si(t).

Since, by assumption, Si(t) does not involve the exposure history xi, inclu-
sion of this term will only alter the relative age effect, and not the exposure
effect which is generally of primary interest. The relative age effect estimated
from the extended SCCS model will thus incorporate the thinning effect of
censoring. This modification only really involves a change in interpretation of
the age effects, and does not require any alteration to the model.

The second change to the SCCS likelihood that is required to accommodate
the effect of event-dependent observation periods is more fundamental. It turns
out that event times must be weighted in a particular manner. The weight
for a case i turns out to be, essentially, the probability that the observation
period ended at bi, given ti and the indicator Ii.

The reason why such weights must be introduced may be explained infor-
mally as follows. If occurrence of an event precipitates the end of observation,
then conditioning on – informally, fixing – the end of observation affects the
distribution of the event time. To illustrate this, suppose that the event of
interest is stroke, which carries relatively high short-term mortality. Suppose
that case i suffered a stroke in the age interval (ai, bi]. Without further infor-
mation, age is the only factor available to us which influences the timing of
the stroke within this interval. However, if it is also known that case i died of
stroke at age bi (so that Ii = 1), then it becomes much more likely that the
stroke occurred shortly before bi, since many deaths from stroke occur shortly
after the stroke. Thus, this extra information affects the distribution of age at
stroke for this case: the distribution must be weighted towards bi. The amount
of weighting depends on the distribution of the interval between stroke and
death. If such a weighting is not introduced, the clustering of events shortly
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before bi, if it occurs, may incorrectly be ascribed to age or exposure effects.
This may produce biased estimates of these effects.

Let wi(bi|t, Ii) denote the weight function for case i, where Ii is the cen-
soring indicator. The modified SCCS likelihood contribution for a case i with
a single event at ti turns out to be

Li =
λ∗i (ti|xi)× wi(bi|ti, Ii)∫ bi
ai
λ∗i (t|xi)× wi(bi|t, Ii)dt

. (7.12)

The derivation is provided in Section 7.2.6. Expression 7.12 may be contrasted
with the corresponding likelihood contribution for the standard SCCS model:

Li =
λi(ti|xi)∫ bi

ai
λi(t|xi)dt

,

where all event times have the same weight of 1.
As with the standard SCCS model, time-invariant covariates acting mul-

tiplicatively on the incidence rate drop out of the likelihood, though interac-
tions with exposure or age effects may be estimated. In addition, and unlike
the standard SCCS model, time-invariant covariates yi may also influence the
weight functions which are then written wi(t|bi, Ii,yi).

Fitting the model is done in two stages. In the first stage, the weight func-
tions wi(t|bi, Ii) are estimated by modelling the distributions of the intervals
from the event times ti to the end of observation bi, given Ii. In the second
stage, the standard SCCS model is used to obtain the parameters for the age
effect (which adjust for the impact of censoring) and the exposure effects, us-
ing the weights estimated in the first stage. This is the approach used with
the function eventdepenobs in R package SCCS: four different weight models
are fitted automatically, and the best-fitting is used to calculate the weights.

These weight models are mixture models. Fitting them is not straightfor-
ward, and may require some experimentation with initial parameter values.
However, the results obtained from the SCCS model at the second stage are
not unduly sensitive to the values of the weights. Further details of the weight
models, the fitting procedure, and the convergence problems that may be
encountered are discussed in starred Section 7.2.7.

Summary

• An extension of the SCCS model is available for rare non-recurrent
events when observation periods are censored after the event by a pro-
cess that depends on the event, but not on the exposure.

• In this extended SCCS model, event times are weighted by a function
that depends on the time interval from event to end of observation.

• The model is fitted in two stages. In stage one, the weights are estimated.
In stage two, a standard SCCS model is fitted using these weights.
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7.2.2 Nicotine replacement therapy and MI

We return to the application on nicotine replacement therapy (NRT) and first
myocardial infarction (MI), first discussed in Chapter 4, Section 4.8.3. There
we fitted a standard SCCS model, with a planned (or nominal) observation
period ending 365 days after NRT initiation. Then in Chapter 5, Section 5.3.2
we discussed using the actual observation period rather than the planned
period. Some of the actual observation periods end early, possibly owing to
death of the patient resulting from their MI: an instance of event-dependent
observation periods.

The results obtained from the two analyses are summarised in Table 7.1.
The relative incidences obtained with actual observation periods are much

TABLE 7.1
Results from two SCCS analyses of the NRT and MI data.

Planned obs period Actual obs period
Risk period RI 95% CI RI 95% CI

0–7 days 1.69 0.69 – 4.12 0.89 0.34 – 2.31
8–14 days 1.93 0.79 – 4.71 1.01 0.39 – 2.63
15–21 days 1.16 0.37 – 3.63 0.68 0.21 – 2.19
22–28 days 1.16 0.37 – 3.63 0.74 0.23 – 2.36

lower than those obtained with planned observation periods. That these dif-
ferences may be due to event-dependent observation periods is suggested by
Figure 7.15, in which the distributions of the intervals from MI to actual end
of observation are plotted separately for censored and uncensored intervals.
The mode close to zero in censored individuals suggests that some of these
individuals may have died from their MI.

To explore this further we use the SCCS extension for event-dependent
observation periods, implemented in R function eventdepenobs. The model
requires the censoring indicator, which is in variable cen. This takes the value
1 if the observation period was censored (so the actual end of observation is
earlier than planned) and 0 otherwise.

The model is specified as follows:

nrt.mod6 <- eventdepenobs(event~nrt, indiv=case, astart=nrt,

aend=act, aevent=mi, adrug=nrt, aedrug=nrt+28,

censor=cen, expogrp=c(0,8,15,22), agegrp=NULL,

data=nrtdat)

Most of the arguments of function eventdepenobs are the same as for
standardsccs. The only new argument used here is censor=cen to specify
the censoring variable.

The resulting (edited) output is as follows.
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FIGURE 7.15
Distribution of interval from MI to actual end of observation for NRT data.
Left: uncensored values. Right: censored values.

> nrt.mod6

......

EWA EWI EGA EGI

Loglik -28.57869 -25.40956 -28.59141 -25.64863

AIC 65.15738 58.81912 65.18282 59.29725

......

exp(coef) exp(-coef) lower .95 upper .95

nrt1 1.928 0.5188 0.7666 4.847

nrt2 2.007 0.4984 0.7729 5.209

nrt3 1.244 0.8039 0.3795 4.077

nrt4 1.343 0.7446 0.4193 4.302

The first part of the output provides details of the four inbuilt parametric
models used to obtain the weights. These are exponential–Weibull (EWA and
EWI) and exponential–gamma (EGA and EGI) mixture models, to be de-
scribed in Section 7.2.7. The model with the best fit, that is the lowest value
of the Akaike Information Criterion (AIC), is selected: in this case it is model
EWI, with AIC = 58.82.

The last part of the output gives the SCCS model parameters obtained
using these weights. For example, for the risk period 0–7 days after NRT,
RI = 1.93 with 95% CI (0.77, 4.85). These estimates are corrected for the
effect of event-dependence of observation periods. These corrected estimates
may be compared to those in Table 7.1. They are quite close to those obtained
using the planned observation periods.

These results were obtained using default initial values for the parameters
of the weight models. The choice of initial values is important for these models,
and is discussed further in Section 7.2.5.
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7.2.3 Respiratory tract infections and MI

We return to the data on respiratory tract infections (RTI) and myocardial
infarction (MI) discussed in Section 7.1.5. The data comprise 940 cases of
first MI. Of these, 486 were censored: the observation period ended before the
planned end of the study. Some of the censoring may be unrelated to the MI;
but it is likely that in some cases occurrence of an MI resulted in death.

Figure 7.16 shows the distribution of intervals from MI to end of obser-
vation in censored and uncensored cases. Both distributions display a mode
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FIGURE 7.16
Distribution of interval from MI to end of observation for RTI data. Left:
censored values. Right: uncensored values.

close to zero, but it is very much more pronounced in the censored cases, as
would be expected if censoring was event-dependent.

To investigate the potential impact of event-dependent observation peri-
ods, we test the interaction between the exposure effect and the censoring
indicator, as described in Chapter 5, Section 5.3.1. First, we obtain the stan-
dard SCCS models without and with interaction, as follows.

uni <- (1-duplicated(midat$case))

ageq <- floor(quantile(midat$mi[uni==1], seq(0.1,0.9,0.1),

names=F))

mi.mod3 <- standardsccs(event~rti+age, indiv=case, astart=sta,

aend=end, aevent=mi, adrug=rti, aedrug=rti+14,

expogrp=c(0,8), agegr=ageq, data=midat)

mi.mod4 <- standardsccs(event~factor(cen)/rti+age, indiv=case,

astart=sta, aend=end, aevent=mi, adrug=rti,

aedrug=rti+14, expogrp=c(0,8), agegr=ageq,

data=midat)

These models have two risk periods, as in Section 7.1.5: 0–7 days and 8–14
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days after each infection. We now compare these models using the likelihood
ratio test:

> lrtsccs(mi.mod3,mi.mod4)

test df pvalue

5.233 2 0.07306

The interaction is marginally statistically non-significant. Ignoring any impact
of event-dependent observation periods, the estimated parameters are:

> mi.mod3

......

exp(coef) exp(-coef) lower .95 upper .95

rti1 6.195 0.16143 4.748 8.082

rti2 2.417 0.41374 1.560 3.745

age2 1.841 0.54321 1.300 2.607

age3 3.088 0.32384 2.095 4.551

age4 3.231 0.30951 2.112 4.943

age5 4.859 0.20580 3.109 7.594

age6 6.344 0.15764 3.962 10.156

age7 9.766 0.10240 5.980 15.949

age8 11.304 0.08847 6.790 18.818

age9 17.421 0.05740 10.209 29.727

age10 39.885 0.02507 22.861 69.587

Parameters rti1 and rti2 relate to the exposure effect. They suggest there
is a large effect, RI = 6.20 with 95% CI (4.75, 8.08) in the 0–7 day risk period
after each respiratory tract, reducing to RI = 2.42, 95% CI (1.56, 3.75) in the
period 8–14 days after infection. The age effect is markedly increasing.

To investigate whether these estimates are subject to bias resulting from
event-dependent observation periods, we now fit the SCCS extension.

mi.mod5 <- eventdepenobs(event~rti+age, indiv=case, astart=sta,

aend=end, aevent=mi, adrug=rti, aedrug=rti+14,

expogrp=c(0,8), agegrp=ageq, censor=cen, data=midat,

initval=rep(1.1,4))

Each of the weight models has four parameters. Here, we have specified initial
values for these parameters with initval=rep(1.1,4). The choice of initial
values, and their impact on results, is discussed further in Section 7.2.5.

This model yields the following output.

> mi.mod5

......

EWA EWI EGA EGI

Loglik -640.6667 -648.9525 -700.9147 -648.9943

AIC 1289.3335 1305.9049 1409.8294 1305.9887

......
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exp(coef) exp(-coef) lower .95 upper .95

rti1 6.4503 0.1550 4.8688 8.546

rti2 2.4445 0.4091 1.5595 3.832

age2 1.0358 0.9654 0.7334 1.463

age3 1.1243 0.8894 0.7743 1.632

age4 0.9643 1.0370 0.6491 1.433

age5 0.9564 1.0456 0.6288 1.455

age6 0.9340 1.0707 0.6033 1.446

age7 1.0680 0.9364 0.6770 1.685

age8 0.9283 1.0772 0.5791 1.488

age9 0.8724 1.1462 0.5315 1.432

age10 1.1123 0.8990 0.6623 1.868

Weight model EWA, with AIC = 1289.33, provides the best fit, so the weights
obtained with this model are used. The estimated relative incidences cor-
rected for event-dependence of observation periods are RI = 6.45 with 95%
CI (4.87, 8.55) for the 0–7 day risk period, and RI = 2.44, 95% CI (1.56, 3.83)
for the 8–14 day risk period. These estimates are not very different from those
from model mi.mod3 obtained with the standard SCCS method.

The estimated age effects, however, have changed considerably. The age-
related relative incidences obtained for models mi.mod5 and mi.mod3 are
shown (on the log scale) in Figure 7.17. The age-related trends are clearly
very different for the two models.
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FIGURE 7.17
Estimated age-related log relative incidences. Top graph: model mi.mod3. Bot-
tom graph: model mi.mod5.
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This graph was obtained using the following code.

ari.mod3 <- c(1, mi.mod3$coef[3:11,1], mi.mod3$coef[11,1])

ari.mod5 <- c(1, mi.mod5$summary$coef[3:11,1],

mi.mod5$summary$coef[11,1])

age.x <- c(65, ageq/365.25, 80)

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(c(65,80), c(-1,4), type="n", xlab="age (years)",

ylab="log relative incidence")

lines(age.x, ari.mod3, type="s")

lines(age.x, ari.mod5, type="s")

text(75, 3, "standard model")

text(75, -0.5, "extension model")

There are two reasons for the difference between the two estimated age
effects. First, they represent different quantities: that for model mi.mod5 in-
corporates the thinning effect of censoring. Second, the age effect estimated in
model mi.mod3 is likely to be biased at older ages, owing to the curtailment
of observation periods due to event-dependent censoring.

7.2.4 Antipsychotics and stroke

In this application, we continue the investigation of the data on antipsychotics
and stroke discussed in Chapter 5, Section 5.3.3. The data comprise 2000
stroke cases who received antipsychotics. Of these, 500 cases had dementia
and 1500 did not. Interest focuses on the potential association between re-
ceipt of an antipsychotic and stroke in patients with and without dementia.
Stroke carries a relatively high short-term mortality, so event-dependence of
observation periods is an issue. The analyses previously undertaken suggested
that event-dependence of observation periods may affect the interpretation of
the results for patients without dementia, but perhaps not those for patients
with dementia.

The results obtained in Chapter 5, Section 5.3.3 using the standard SCCS
model are shown in Table 7.2. They indicate that there is a significant pos-
itive association, for patients with and without dementia. The association

TABLE 7.2
Standard SCCS analyses of the antipsychotics and stroke data.

Cases with dementia Cases without dementia
Risk period RI 95% CI RI 95% CI

On drug 2.96 2.25 – 3.90 1.43 1.21 – 1.71
Washout 1 2.91 2.17 – 3.89 1.45 1.20 – 1.76
Washout 2 1.98 1.28 – 3.06 1.14 0.85 – 1.52
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is stronger for patients with dementia, with RI = 2.96, 95% CI (2.25, 3.90)
while on drug for patients with dementia compared to RI = 1.43, 95% CI
(1.21, 1.71) for patients without dementia. But are these estimates reliable?

To obtain corrected estimates we use the SCCS extension for event-
dependent observation periods, with the same age and exposure groups as
in previous analyses. We begin by analysing cases with and without dementia
separately. After a little experimentation with the initial values specified in
initval, the model for cases with dementia is as follows.

agedem <- floor(seq(70,95,5)*365.25)

ap.mod7 <- eventdepenobs(event~ap+age, indiv=case, astart=sta,

aend=end, aevent=stro, adrug=ap, aedrug=endap,

washout=c(1,92,182), agegrp=agedem, censor=cen,

data=subset(apdat,dem==1), initval=rep(0.9,4))

This yields:

> ap.mod7

......

EWA EWI EGA EGI

Loglik -385.108 -387.2556 -392.9409 -387.3082

AIC 778.216 782.5112 793.8818 782.6163

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 2.49383 0.4010 1.889246 3.2919

ap2 1.78342 0.5607 1.318000 2.4132

ap3 1.19219 0.8388 0.758056 1.8749

Weight model EWA is selected as the best-fitting, with AIC = 778.22. The
estimated relative incidences are a little lower than those in Table 7.2: while
on drug, RI = 2.49 with 95% CI (1.89, 3.29), and is thus statistically sig-
nificantly elevated. The relative incidence subsequently declines to a non-
significant value in the second washout period.

For cases without dementia, the model is:

agenod <- floor(seq(45,95,5)*365.25)

ap.mod8 <- eventdepenobs(event~ap+age, indiv=case, astart=sta,

aend=end, aevent=stro, adrug=ap, aedrug=endap,

washout=c(1,92,182), agegrp=agenod, censor=cen,

data=subset(apdat,dem==0), initval=rep(0.9,4))

This model gives the following results.

> ap.mod8

......

EWA EWI EGA EGI

Loglik -2022.713 -2115.370 -2122.568 -2115.369

AIC 4053.426 4238.739 4253.135 4238.738
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......

exp(coef) exp(-coef) lower .95 upper .95

ap1 1.0602 0.9433 0.89396 1.2573

ap2 0.8560 1.1683 0.70619 1.0375

ap3 0.7808 1.2807 0.57768 1.0554

Weight model EWA again gives the best fit, with AIC = 4053.43. The relative
incidences are lower than those reported for non-dementia cases in Table 7.2,
and are now close to or less than 1 and not statistically significant, provid-
ing little evidence of an association between antipsychotics and stroke. Thus,
event-dependence of observation periods does materially affect the conclusions
to be drawn for patients without dementia.

So far we have analysed patients with and without dementia separately.
There is merit in this approach, as it allows for different age effects and weight-
ings. An alternative is to model the whole data set in a single analysis. We
shall allow the weighting functions to be stratified by the dementia indica-
tor dem: thus, separate weighting functions are allowed for patients with and
without dementia. This is done by specifying covariates=factor(dem) in
function eventdepenobs; the default is covariates=NULL.

In our first joint model, we shall assume common relative incidences for
patients with and without dementia:

ageall <- floor(seq(45,95,5)*365.25)

ap.mod9 <- eventdepenobs(event~ap+age, indiv=case, astart=sta,

aend=end, aevent=stro, adrug=ap, aedrug=endap,

washout=c(1,92,182), agegrp=ageall, censor=cen,

covariates=factor(dem), data=apdat,

initval=rep(0.9,4))

This produces the following results.

> ap.mod9

......

EWA EWI EGA EGI

Loglik -2410.021 -2502.625 -2516.036 -2562.558

AIC 4836.041 5021.250 5048.072 5141.116

......

exp(coef) exp(-coef) lower .95 upper .95

ap1 1.3133 0.7614 1.13959 1.5136

ap2 1.0166 0.9837 0.86722 1.1917

ap3 0.8373 1.1943 0.65244 1.0745

The optimal weights are those from weighting model EWA, with AIC =
4836.04. The relative incidences, unsurprisingly, lie between those obtained
separately for patients with and without dementia. In the next model, we
include the interaction between the dementia indicator and the exposure vari-
able:
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ap.mod10 <- eventdepenobs(event~factor(dem)/ap+age, indiv=case,

astart=sta, aend=end, aevent=stro, adrug=ap,

aedrug=endap, washout=c(1,92,182), agegrp=ageall,

censor=cen, covariates=factor(dem), data=apdat,

initval=rep(0.9,4))

This model yields:

> ap.mod10

......

EWA EWI EGA EGI

Loglik -2410.021 -2502.625 -2516.036 -2562.558

AIC 4836.041 5021.250 5048.072 5141.116

......

exp(coef) exp(-coef) lower .95 upper .95

......

factor(dem)0:ap1 1.0688 0.9356 0.90180 1.2668

factor(dem)1:ap1 2.3871 0.4189 1.81057 3.1471

factor(dem)0:ap2 0.8641 1.1573 0.71335 1.0467

factor(dem)1:ap2 1.7125 0.5839 1.26830 2.3123

factor(dem)0:ap3 0.7865 1.2715 0.58201 1.0627

factor(dem)1:ap3 1.1422 0.8755 0.72701 1.7944

The weight models are exactly the same as those for model ap.mod9, as ex-
pected, since inclusion of the interaction term only affects the SCCS model.
The relative incidences are very similar to those obtained with models ap.mod7
and ap.mod8. The factor dem is coded 1 for patients with dementia, 0 for pa-
tients without dementia. For patients with dementia, the relative incidences
are: 2.39, 95% CI (1.81, 3.15) on drug; 1.71 (1.27, 2.31) and 1.14 (0.73, 1.79)
for the first and second washout periods, respectively. For patients without
dementia, the relative incidences are: 1.07, 95% CI (0.90, 1.27) on drug; 0.86
(0.71, 1.05) and 0.79, (0.58, 1.06) for the washout periods.

One advantage of the combined modelling approach is that formal compar-
isons between nested models may be undertaken, provided the same weighting
function is used for both models so that like is compared with like. This is
the case for models ap.mod9 and ap.mod10. The likelihood ratio test may be
undertaken with function lrtsccs, with the syntax adjusted to take account
of the expanded model output.

> lrtsccs(ap.mod9$summary,ap.mod10$summary)

test df pvalue

26.31 3 8.213e-06

The p-value is less than 0.0001, and so the interaction term is highly statis-
tically significant. Thus the association differs significantly between patients
with and without dementia.

We conclude that, after adjusting for the effect of event-dependent ob-
servation periods, there is evidence of a strong positive association between
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antipsychotics and stroke in patients with dementia, but little evidence of any
association for patients without dementia.

7.2.5 Experimenting with initial values

In the applications in Sections 7.2.3 and 7.2.4, the weight models were obtained
using special choices of initial values for the parameters, specified using the
argument initval. In this section, the choice of initial parameter values is
explored in greater detail.

The issue is important because the four weight models are mixtures of an
exponential (E) component and either a gamma (G) or Weibull (W) compo-
nent. Mixture models can be tricky to fit using maximum likelihood. This is
because different combinations of parameter values may provide fits of similar
quality: an issue of parameter identifiability. In addition, the likelihood may
be multimodal, and the fitting algorithm may converge to a local rather than
to the global maximum. In our case, however, the actual parameter values
for the weight models are not of primary interest: we just need the weight
models to provide a reasonable fit to the data on intervals from event to end
of observation. Provided that this is the case, the results obtained from the
SCCS model will not be overly sensitive to different weight models.

Further details of the weight models and their parameterisation are in
Section 7.2.7. For all the weight models discussed in the applications in Sec-
tions 7.2.2 to 7.2.4 there are 4 initial values. More complex weight models,
incorporating a regression component, may be fitted: these are described in
Section 7.2.7. The default settings set all initial values to be equal to 0.1.
Some experimentation is usually needed to choose reasonable initial values.
This is done by changing the initial values specified in initval and refitting
the model, to see if a lower AIC can be obtained. Extreme choices of initial
values can cause the model fitting procedure to fail completely.

To illustrate the impact of using different initial values, we refit the models
for nicotine replacement therapy and myocardial infarction with 100 randomly
chosen sets of initial values, each being specified using the uniform distribution
on [−2, 0.5]. The R code is as follows:

set.seed(1234)

svs <- matrix(rep(0,400), ncol=4)

aic <- rep(0,100)

par <- matrix(rep(0,400), ncol=4)

for (i in 1:100){

pi <- runif(4,-2,0.5)

modi <- eventdepenobs(event~nrt, indiv=case, astart=nrt,

aend=act, aevent=mi, adrug=nrt, aedrug=nrt+28,

censor=cen, expogrp=c(0,8,15,22), agegr=NULL,

data=nrtdat, initval=pi)

svs[i,] <- pi
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aic[i] <- min(modi$modelfit[2,1:4])

par[i,] <- modi$summary$conf.int[,1]

}

These 100 sets of initial parameters produce 8 ‘best’ AIC values (to 2 decimal
places):

> table(round(aic,2))

58.82 59.3 61.22 61.4 61.73 64.21 65.16 65.18

65 3 3 23 2 1 2 1

The lowest of these values is the most common, and was obtained in Sec-
tion 7.2.2 with model nrt.mod6 using the default initial values. In spite of
the variation in ‘best’ AICs according to initial values, the relative incidences
estimated from the corresponding SCCS models are very similar, as shown in
Figure 7.18. The conclusion from this figure is that the SCCS model results

59 60 61 62 63 64 65

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

AIC

es
tim

at
ed

 R
I

l
ll

l
l lll

ll
ll

l
l

l
l

llll
l

lll
l

ll
lll

l

lllllll
l

ll
l

lllll

l

l
lll

l l
llll

l
llll

l
lll

ll
lllllll

l
ll

ll
l

l

lllll

l

l
l

llll lllll

FIGURE 7.18
Relative incidences in successive periods after NRT initiation by AIC. Dots,
0–7 days; squares, 8–14 days; triangles, 15–21 days; diamonds, 22–28 days.
Results obtained with 100 sets of randomly chosen initial values.

are not overly sensitive to the choice of initial values for the weight models.
This figure was obtained using the following code.

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

plot(c(min(aic), max(aic)), c(1,2.2), type="n", xlab="AIC",

ylab="estimated RI")
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points(aic, par[,1], pch=19, cex=1.3)

points(aic, par[,2], pch=15, cex=1.3)

points(aic, par[,3], pch=17, cex=1.3)

points(aic, par[,4], pch=18, cex=1.6)

A similar conclusion may be drawn for the respiratory infections data of
Section 7.2.3. Model mi.mod5 was specified using initval=rep(1.1,4) after
a little experimentation. If we had used the same age groups but default initial
values, the model would have been:

mi.mod6 <- eventdepenobs(event~rti+age, indiv=case, astart=sta,

aend=end, aevent=mi, adrug=rti, aedrug=rti+14,

expogrp=c(0,8), agegrp=ageq, censor=cen, data=midat)

This produces:

> mi.mod6

......

EWA EWI EGA EGI

Loglik -656.3878 -703.5649 -664.6195 -719.0211

AIC 1320.7757 1415.1297 1337.2391 1446.0421

......

exp(coef) exp(-coef) lower .95 upper .95

rti1 6.3901 0.1565 4.8257 8.462

rti2 2.4223 0.4128 1.5460 3.795

The ‘best’ AIC is 1320.78, appreciably higher than the 1289.33 for model
mi.mod5. However the exposure parameters of the SCCS model have changed
only marginally from the previously obtained values rti1 = 6.45 and rti2

= 2.44. To obtain a broader picture, we randomly select 100 sets of starting
values from the interval [−1.25, 1.25] and refit the model for each of these
selections:

set.seed(1234)

svs <- matrix(rep(0,400), ncol=4)

aic <- rep(0,100)

par <- matrix(rep(0,200), ncol=2)

for (i in 1:100){

pi <- runif(4,-1.25,1.25)

modi <- eventdepenobs(event~rti+age, indiv=case, astart=sta,

aend=end, aevent=mi, adrug=rti, aedrug=rti+14,

expogrp=c(0,8), agegr=ageq, censor=cen,

data=midat, initval=pi)

svs[i,] <- pi

aic[i] <- min(modi$modelfit[2,1:4])

par[i,] <- modi$summary$conf.int[1:2,1]

}
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This takes some time to run, eventually producing the following ‘best’ AIC
values (rounded to integers):

> table(round(aic))

1289 1295 1306 1318 1321 1322 1415

59 14 3 17 5 1 1

The lowest value is that obtained with model mi.mod5. However, the estimated
exposure-related relative incidences vary very little, as shown in Figure 7.19.
The implication of this figure is that results of the SCCS analysis are robust
to the choice of initial values for the weight models.
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FIGURE 7.19
Relative incidences in successive periods after respiratory tract infections by
AIC. Dots, 0–7 days; squares, 8–14 days. Results obtained with 100 sets of
randomly chosen initial values.

Similar observations apply to the antipsychotics data, though the code
to fit models with 100 random starting values, selected uniformly from
[−0.75, 1.75], takes appreciably longer to run. Figure 7.20 shows the parame-
ter values for the ‘best’ AIC values obtained in this way. Again, there is little
variation in parameter estimates for these models.

7.2.6 Adjusting for event-dependent observation periods*

In this section we first derive the modified SCCS likelihood contribution in

* This section may be skipped.
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FIGURE 7.20
Relative incidences after antipsychotics by AIC. Left: patients with dementia.
Right: patients without dementia. Dots, period on drug; squares, first washout
period; triangles, second washout period. Results obtained with 100 sets of
randomly chosen initial values for each panel.

Expression 7.12 of Section 7.2.1. Then we derive the modified likelihood for
use when age and exposure effects are piecewise constant.

Derivation of the modified likelihood
Let hsi denote the event history of an individual i at age s; this is null (that
is to say, empty) for s ≤ ti, and ti for s > ti, where ti is the age at event for
case i.

The event hazard for an individual i is λi(t|xi,yi), where xi is the exposure
history over (ai, bi] (exposures are assumed not to be event-dependent up to
the end of observation), and yi is a vector of time-invariant covariates.

The censoring hazard function for an individual i is denoted µi(s|hsi ,yi).
This depends on the event history, and possibly also on the time-invariant
covariates yi which, without loss of generality, are the same as those for the
event hazard. For a case i, if s ≤ ti, then since the event history hsi is null we
write µi(s|hsi ,yi) = µi(s|yi). The censoring hazard is assumed not to depend
on the exposure history xi for individual i.

For ages s and t let s ∧ t denote the minimum of s and t. Thus, we have
bi = ci ∧ b∗i .

We begin with an individual i within the underlying cohort. Let Ei denote
the event indicator, equal to 1 if individual i experiences an event within the
observation period (ai, bi] and 0 otherwise; if Ei = 0 we nominally assume that
the event age ti > bi. Ii is the censoring indicator defined in Equation 7.11 of
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Section 7.2.1. The cohort likelihood contribution for individual i is

Lci(ti, bi) = λi(ti|xi,yi)Ei exp
(
−
∫ ti∧bi

ai

λi(s|xi,yi)ds
)

×µi(bi|hbii ,yi)
Ii exp

(
−
∫ bi

ai

µi(s|hsi ,yi)ds
)
.

We now condition on the actual observation period (ai, bi] and the number
of events ni (0 or 1) within it. The conditional likelihood contribution for
individual i is

Li =
Lci(ti, bi)∫ bi

ai
Lci(t, bi)dt

.

If Ei = 0, the conditional likelihood is the constant (bi− ai)−1. Thus, as with
the standard SCCS method, non-cases contribute no information and need
not be sampled. If Ei = 1, the conditional likelihood contribution Li is

λi(ti|xi,yi)µi(bi|ti,yi)Ii exp
(
−
∫ ti
ai
λi(s|xi,yi)ds−

∫ bi
ai
µi(s|ti,yi)ds

)
∫ bi
ai
λi(t|xi,yi)µi(bi|t,yi)Ii exp

(
−
∫ t
ai
λi(s|xi,yi)ds−

∫ bi
ai
µi(s|t,yi)ds

)
dt
.

(7.13)

Since events are rare, we have

exp
(
−
∫ t

ai

λi(s|xi,yi)ds
)
' 1. (7.14)

Also, if the age at event is t we may write∫ bi

ai

µi(s|t,yi)ds =

∫ t

ai

µi(s|yi)ds+

∫ bi

t

µi(s|t,yi)ds. (7.15)

Now define

λ∗i (t|xi,yi) = λi(t|xi,yi) exp
(
−
∫ t

0

µi(s|yi)ds
)
, (7.16)

and

wi(bi|t, Ii,yi) = µi(bi|t,yi)Ii exp
(
−
∫ bi

t

µi(s|t,yi)ds
)
. (7.17)

Substituting Expressions 7.14 to 7.17 in Expression 7.13, noting that the con-
stant terms exp(−

∫ ai
0
µi(s|yi)ds) cancel out, we obtain

Li =
λ∗i (ti|xi,yi)× wi(bi|ti, Ii,yi)∫ bi
ai
λ∗i (t|xi,yi)× wi(bi|t, Ii,yi)dt

.
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This is Expression 7.12, incorporating the time-invariant covariates yi. The
weight function wi(b|t, Ii,yi) is the density of the censoring time b for indi-
vidual i conditional on an event at t, defined on the truncated support (t, b∗i ],
with Ii the indicator for the event b = b∗i .

Modified likelihood for piecewise constant effects
Assume now that the event hazard is piecewise constant on J + 1 age periods
indexed by j = 0, . . . , J and K+ 1 exposure periods indexed by k = 0, . . . ,K.
Suppose that case i experiences nijk events in age period j, j = 0, 1, . . . , J
and exposure period k, k = 0, . . . ,K. This is always 0 or 1 as

∑
j,k nijk = 1.

The extended piecewise constant SCCS model is parameterised by J age-
related parameters α∗j , j = 1, . . . , J and K exposure-related parameters βk,
k = 1, . . . ,K. The α∗j are starred solely to emphasise that they represent log
relative age effects that take into account the thinning effect of censoring.

As for the standard SCCS model described in Chapter 4, Section 4.1,
time-invariant multiplicative factors in λ∗i (t|xi,yi) drop out of the likelihood,
leaving the incidence kernel that depends on age and exposure parameters:

ν∗ijk = exp(α∗j + βk).

Let Aijk denote the set of ages t for which case i is in age group j and exposure
group k. Define

Wijk =

∫
t∈Aijk

wi(bi|t, Ii,yi)dt. (7.18)

The Wijk are constants that do not depend on the parameters to be estimated.
The modified likelihood contribution for case i is then

Li = constant×
∏
j,k

( ν∗ijk ×Wijk∑
r,s ν

∗
irsWirs

)nijk

.

This is of exactly the same form as the standard SCCS likelihood, with
eijk = length(Aijk) replaced by Wijk. Thus, once the weights Wijk have been
obtained, the model is fitted in the same was as the standard SCCS model,
with the Wijk in place of the eijk. These are accommodated using the offset
terms log(Wijk).

7.2.7 Estimating the weights*

In this section we provide more detail on the method used for obtaining the
weight functions wi(bi|ti, Ii,yi). We shall assume that the functions are the
same for all individuals, that is, wi ≡ w for all i. The case subscripts on
bi, ti, Ii and yi may occasionally be dropped, for greater clarity. The four
parametric weight models for the censoring process used in the R function

* This section may be skipped.



SCCS for event-dependent observation periods 273

eventdepenobs are described. Finally, we outline the procedure used for fit-
ting these extended SCCS models.

Weight functions
The weight functions w(b|t, I,y) may be obtained by maximum likelihood
estimation of parametric densities f(b|t,y;θ) on (t,∞) for parameters θ. Here
t is the age at event and y is a vector of time-invariant covariates. Given data
(bi, ti, Ii,yi) and a parametric model f , the likelihood contribution is

Lwi (θ) = f(bi|ti,yi;θ)Ii × P (b > bi|ti,yi;θ)1−Ii ,

where

P (b > bi|ti,yi;θ) = 1−
∫ bi

ti

f(x|ti,yi;θ)dx.

Maximisation of the likelihood Lw =
∏
i L

w
i (θ) yields maximum likelihood

estimates θ̂. The estimated weight function for case i, as a function of t, is:

w(bi|t, Ii,yi) = f(bi|t,yi; θ̂)Ii × P (b > bi|t,yi; θ̂)1−Ii .

Weight models for the censoring process
The R function eventdepenobs, by default, fits four parametric weight models
and selects the best fitting. We now describe these four models.

It is natural to think of the density of age at censoring c, given an event
at age t, as the mixture of two components. The first component corresponds
to the acute, short-term impact of the event at age t, and is formulated as
a density for c − t. The second component reflects the underlying censoring
process which may not depend on age at event t, or the longer term impact
of an event at age t. Thus, a natural model for f(c|t,y;θ) is

f(c|t,y;θ) = π(t|y;θ)g(c− t|y;θ) + {1− π(t|y;θ)}h(c|t,y;θ). (7.19)

Here, π is a probability; g is a density on (0,∞), and h is a density on (t,∞).
We consider two versions of this model. In the age version, the second compo-
nent models the absolute age at censoring c, and age at start of observation
a is included among the time-independent covariates. In the interval version,
the second component models the interval c − t. In the age version of the
model, we have

h(c|t,y) =
h′(c|y)∫∞

t
h′(u|y)du

,

and in the interval version, we have

h(c|t,y) = h′(c− t|y),

for some density h′ on (0,∞).
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We now describe specific choices for the densities g and h′ (and hence the
age and interval versions of density h). The density g for the first component
is exponential with (small) mean ρ. Thus,

g(x) = ρ−1 exp(−x/ρ).

The densities h′ for the second component are either gamma or Weibull, with
location parameter θ and shape parameter η:

Gamma: h′(x) =
ηη

Γ(η)

(x
θ

)η−1

exp(−ηx/θ),

Weibull: h′(x) =
η

θ

(x
θ

)η−1

exp
{
− (x/θ)η

}
.

These define four mixture models: the exponential–gamma (age) mixture
model EGA, the exponential–gamma (interval) mixture model EGI, the
exponential–Weibull (age) model EWA, and the exponential–Weibull (inter-
val) model EWI.

Finally, we define regression models for the mixture probabilities π and
the model parameters ρ, θ and η. We assume that the time-invariant covariate
vector y includes a, the age at start of observation, and categorical covariates
z specified in the covariates argument. As before, t is age at event. The
analysis is thus stratified by the levels of the covariates z.

For the age models EGA and EWA, the regression models are:

logit{π(t, z} = πz + γzt,

ρ(z) = ρz,

log{θ(a, z)} = θz + ζza,

log{η(a, z} = ηz + ξza.

For the interval models EGI and EWI, the regression models are:

logit{π(t, z} = πz + γzt,

ρ(z) = ρz,

log{θ(t, z)} = θz + ζzt,

log{η(t, z} = ηz + ξzt.

Fitting procedure
The default procedure used by R function eventdepenobs is as follows. In
the first stage, the four weight models EGA, EGI, EWA and EWI are fitted,
for user-specified covariates z. The model with the smallest value of the AIC
(Akaike information criterion) −2 log L̂w + 2p, where L̂w is the maximised
likelihood and p is the number of estimated parameters, is chosen to estimate
the weight functions. The weights Wijk are obtained from Expression 7.18
by numerical integration. In the second stage, the SCCS model with piece-
wise constant age and exposure effects is fitted in much the same way as the
standard SCCS model, with offsets log(Wijk).
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Confidence intervals are obtained as for the standard SCCS model. Thus,
no adjustment is made for the fact that the weights are estimated from the
data. It turns out that the confidence intervals obtained in this manner are
slightly conservative (that is, too wide), though the loss in efficiency is typically
small. Further details are provided in Farrington et al. (2011).

Fitting mixture models by the method of maximum likelihood can be tricky
owing to lack of identifiability of the parameters and convergence to local
maxima. In consequence, results are often sensitive to the choice of initial pa-
rameter values for the weight models. In the present context, these difficulties
are mitigated by the fact that our primary interest lies in the SCCS models
based on weights obtained from the mixture models rather than in the mixture
models themselves. Generally, an approximate fit is likely to be sufficient.

By default, the weight models in R function eventdepenobs do not include
the regression terms: the regression parameters γz, ζz and ξz are set equal to
zero. The regressions can be included by specifying regress=T. Unless the
data are extensive, including the regressions is likely to compound any prob-
lems with parameter identifiability or convergence. The examples described in
Sections 7.2.2 to 7.2.4 all used the default setting regress=F.

It is advisable to experiment with different initial parameter values.
These are specified with initval. The default is initval=rep(0.1,4) when
regress=F and initval=rep(0.1,7) when regress=T. The initial values are
for the vector of parameters (log(ρ), θ, η, π, ζ, ξ, γ), in that order. When co-
variates are present, common initial values are used for the parameters cor-
responding to all covariates. The four weight models EGA, EGI, EWA and
EWI use the same initial values. For the purpose of fitting the weight models,
all times (and hence the dimensions of the location parameters) are in years
(that is, days/365.25).

7.3 Deaths in SCCS studies

In this final section we discuss how to handle deaths in SCCS studies. Most
of the section is devoted to SCCS studies in which death is the outcome event
of interest. Before turning to this, we briefly recapitulate earlier material on
how to handle censorship due to death.

When observation periods are censored at random (Kalbfleisch and Pren-
tice, 2002, page 53) by death, then the SCCS method is valid without mod-
ification. This applies, for example, when deaths arise in a process uncon-
nected with the outcome event of interest: observation periods are not event-
dependent.

If, on the other hand, deaths are influenced by (but distinct from) the event
of interest, then observation periods are event-dependent and the extension
described in Section 7.2 may be required.
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We now turn to the most extreme situation of all, in which deaths are the
outcomes of interest.

7.3.1 Death as the outcome event

Death as the outcome event is tricky to handle in self-controlled case series
analyses. The reason is that two key assumptions of the method are violated:
deaths censor both exposure and observation, so that both exposures and
observation periods are event-dependent. (There are exceptions, an example
of which is described in Section 7.3.4.)

Nevertheless, in some circumstances it is possible to undertake a valid
SCCS analysis when the outcome event of interest is death. However, three
requirements need to be met. First, the deaths of interest must be rare in the
study population over the observation period of interest, in the sense described
in Chapter 5, Section 5.1. Second, the duration of the risk periods must be
known once they begin, and must not be indefinite. And third, it must be
possible to define a nominal end of observation for each case.

Suppose that the observation period for case i starts at ai. By a nominal
end of observation, we mean a pre-specified age bi for case i such that, if the
event (in our case, death due to the cause of interest) had arisen at any time
in (ai, bi], then that event would have been observed and thus case i would
feature in our data set. Typically, nominal observation periods are defined
using the age and calendar time boundaries specified for ascertaining cases,
but there are other possibilities – for example, bi = ai+τ for some pre-specified
value of τ .

The reason a nominal observation period must be specified is that the
methods of Section 7.2 cannot be used to account for event-dependence of
the observation period. This is because observation is censored at the event:
conditioning on the actual observation period determines the event time. It
follows that neither the standard SCCS likelihood nor the extension described
in Section 7.2 can be used.

Instead, the SCCS analysis proceeds with observation period (ai, bi] for
each case i, where bi is the nominal end of observation. This gets round
the problem of event-dependence of the observation period, but not event-
dependence of exposures. Thus, the methods of Section 7.1 must be used. In
some cases, when there is at most a single exposure and observation starts
at the age of exposure, a standard SCCS model may be applied. This latter
model is in fact a special case of the extension described in Section 7.1. The
two models will yield the same parameter estimates, though the standard er-
rors and confidence intervals will generally differ, as the extension uses robust
rather than likelihood-based standard errors.
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Summary

• When the outcome event of interest is death, a SCCS analysis may be
undertaken provided that a nominal end of observation can be defined
for each case.

• A nominal end of observation for a case i observed from age ai is a pre-
specified age bi such that, if death were to occur at any time in (ai, bi],
then that death would be ascertained and so case i would be included
in the data set.

• Additional requirements are that deaths are rare in the population stud-
ied, and that risk period durations are known once they begin and are
not indefinite.

• The analysis proceeds with the extension to the SCCS method for event-
dependent exposures, applied with the nominal observation periods.

7.3.2 Bupropion and sudden death

Bupropion is a smoking cessation therapy which was launched in 2000 in the
United Kingdom. In 2001, anecdotal press reports suggested that bupropion
may be associated with an increase in the risk of sudden death. A SCCS
study was undertaken using data from The Health Improvement Network.
The observation period was specified to stretch from age at first bupropion
prescription to age on 11th November 2003, the last day of data collection.
There were 121 sudden deaths, including two in the risk period which was
chosen to be 0–28 days after first bupropion prescription (the recommended
duration of bupropion treatment). Note the use of a nominal age at end of
observation, since for the 121 cases actual observation ended at event.

We illustrate the analysis using 121 cases simulated based on Hubbard
et al. (2005b). These data are in data frame bupdat. Calendar time is expressed
in days, with day 0 corresponding to 1st October 2000. Calendar time at first
bupropion prescription is in variable date. Age at first bupropion prescription
is in variable bup.

We begin by defining the start and end of observation. The start of ob-
servation is the age at first bupropion precription. The nominal end of the
observation period is age on 11th November 2003, which is day 1136 counted
from 1st October 2000 (day 0). Thus, we define:

bupdat$sta <- bupdat$bup

bupdat$end <- bupdat$sta + (1136 - bupdat$date)

The distribution of the dates at first bupropion prescription are obtained as
follows.
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par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(bupdat$date/365, breaks=seq(0.0833,2.9988,0.0833), xlab=

"date at bupropion (years from 1 Oct 2000)", main=NULL)

This histogram is displayed in Figure 7.21. The drop in the number of bupro-
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FIGURE 7.21
Date of first bupropion prescription (years from 1st October 2000).

pion prescriptions from mid-2001 reflects the impact of media reports of a
possible link between bupropion and sudden death.

Since we are using a nominal end of observation, the end of observation
is not event-dependent. And since the exposure of interest relates to the first
prescription of bupropion, and the observation period starts at the age of first
prescription, there are no subsequent exposures. Thus, exposure is not event-
dependent either. Finally, sudden deaths are uncommon. Thus, we may apply
the standard SCCS model, with risk period [0, 28] days after first bupropion
prescription.

Before applying the model, we first check that exposure periods, which
coincide with the start of the observation period, are not clustered by age,
which would make it difficult to separate age and exposure effects. The nom-
inal observation periods, and ages at death, are shown in Figure 7.22. The
starts of observation are spread across the age range, so it should be possible
to separate age and exposure effects. Figure 7.22 was obtained as follows:

par(mar=c(4.1,4.1,1,1), cex.lab=1.4)

os <- order(bupdat$sta)

plot(c(min(bupdat$sta/365.25),max(bupdat$end/365.25)), c(1,
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FIGURE 7.22
Nominal observation periods (line segments) and age at death (points) for
bupropion data.

length(bupdat$case)), type="n", xlab="age (years)",

ylab="case rank")

segments(bupdat$sta[os]/365.25, bupdat$case,

bupdat$end[os]/365.25, bupdat$case)

points(bupdat$death[os]/365.25, bupdat$case, pch=20)

We shall use 10 age groups determined by the 0.1-quantiles of age at death.
The standard SCCS model is specified as follows:

ageq <- floor(quantile(bupdat$death,seq(0.1,0.9,0.1),names=F))

bup.mod1 <- standardsccs(event~bup+age, indiv=case, astart=sta,

aend=end, aevent=death, adrug=bup, aedrug=bup+28,

agegr=ageq, data=bupdat)

This yields the following results:

> bup.mod1

.....

exp(coef) exp(-coef) lower .95 upper .95

bup1 0.2972 3.3652 0.07167 1.232

The relative incidence of sudden death in the 28-day period after first bupro-
pion prescription is 0.30, with 95% CI (0.072, 1.23). Thus there is very little
evidence of any positive association. There are only two events within the risk
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period, so it is likely that the asymptotic assumptions upon which the calcula-
tion of confidence intervals is based are invalid – but, irrespective of this, the
fact that the relative incidence is well under 1 supports the conclusion that
there is no association.

The methods of Section 7.1 may also be applied to these data. Because
there is at most one single exposure for each case, they yield identical estimates
of exposure and age effects as the standard SCCS. However, the confidence
intervals may differ: they are based on a robust variance estimator, rather
than minus the inverse of the Hessian used in the standard SCCS model. The
model is

bup.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=death, adrug=bup, aedrug=bup+28,

agegrp=ageq, data=bupdat)

and the estimated effect of bupropion is

> bup.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

bup1 0.2972 3.3652 0.07370 1.198

As expected, the estimated relative incidence is the same as that obtained
with the standard SCCS model, but the confidence interval differs slightly.

If unexposed cases had been included, the methods of Section 7.1 could be
applied to all cases, including those with no bupropion prescription. Including
unexposed cases in this way is recommended when age at event and age at
exposure are highly correlated, which as shown in Figure 7.22 is not the case
in the bupropion data set.

7.3.3 Hexavalent vaccines and sudden infant deaths

In 2000, two hexavalent vaccines were introduced in Germany, for administra-
tion at 2, 3 and 4 months of age with a booster dose after 11 months. The
question soon arose as to whether these vaccines were associated with sudden
deaths (von Kries et al., 2005). A case-control study was undertaken; the cases
were also analysed using SCCS (Kuhnert et al., 2011, 2012). The data for the
present example have been simulated based on this study.

The data, in data frame siddat, comprise 300 cases of sudden infant death
syndrome (SIDS) occurring between the ages of 28 and 365 days of age. Age at
death is in variable sids. Only the first three doses of hexavalent vaccine are
included in the analysis; the ages at vaccination are in variables hex, hexd2
and hexd3. Of the 300 SIDS cases, 180 received the first dose, 98 the second
and 53 the third. The data are in format multi. The distribution of ages at
hexavalent vaccination and SIDS are shown in Figure 7.23.

The age distribution of SIDS peaks around the age at which the first
doses of hexavalent vaccine are administered. Because the events are deaths,
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FIGURE 7.23
Left: age at hexavalent vaccination (three doses combined). Right: age at SIDS.

both observation and exposures are censored at the event. However, since all
cases under 365 days of age were sought, we may define the nominal end of
observation to be 365 days of age for each case. This gets round the problem
of event-dependent observation periods. We then apply the SCCS extension
for event-dependent exposures. We shall use 28-day age groups and the risk
periods 0–3 days and 4–14 days post-vaccination, at each dose.

First, we specify the model with a common parameter at each dose:

age <- seq(42,350,28)

sid.mod1 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=sids, adrug=cbind(hex,hexd2,hexd3),

aedrug=cbind(hex+14,hexd2+14,hexd3+14),

expogrp=c(0,4), sameexpopar=T, agegrp=age,

dataformat="multi", data=siddat)

This yields the following exposure parameters:

> sid.mod1

......

exp(coef) exp(-coef) lower .95 upper .95

hex1 0.87387 1.1443 0.46890 1.6286

hex2 1.02598 0.9747 0.70022 1.5033

In the [0, 3]-day risk period, RI = 0.87 with 95% CI (0.47, 1.63); in the [4, 14]-
day risk period, RI = 1.03, 95% CI (0.70, 1.50). These results do not indicate
any evidence of association. In case they conceal a dose effect, we fit the model
with separate parameters at each dose using sameexpopar=F. This model is
specified as follows.

sid.mod2 <- eventdepenexp(indiv=case, astart=sta, aend=end,
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aevent=sids, adrug=cbind(hex,hexd2,hexd3),

aedrug=cbind(hex+14,hexd2+14,hexd3+14),

expogrp=c(0,4), sameexpopar=F, agegrp=age,

dataformat="multi", data=siddat)

This now yields:

> sid.mod2

......

exp(coef) exp(-coef) lower .95 upper .95

hex1 0.57089 1.7517 0.20646 1.5786

hex2 0.86363 1.1579 0.50006 1.4915

hex3 1.82228 0.5488 0.79258 4.1898

hex4 1.17572 0.8505 0.60907 2.2696

hex5 0.40665 2.4591 0.05544 2.9828

hex6 1.23234 0.8115 0.58215 2.6087

Parameters hex1 and hex2 are the relative incidences at dose 1, hex3 and
hex4 are the RIs at dose 2, and hex5 and hex6 are those at dose 3. None are
statistically significant: thus there is little evidence of a dose effect.

We conclude that the temporal association observed simply reflects the
fact that SIDS tends to occur at the age at which hexavalent vaccines are ad-
ministered; the data provide little evidence in support of a causal association.

7.3.4 Partner bereavement and death

In all the examples so far considered, exposure can only meaningfully be de-
fined when the case is alive. In this elegant application of SCCS methodology,
the event of interest is death, and the exposure is death of a partner (King
et al., 2017). Thus, exposure is observed even after the case has died. Conse-
quently, a standard SCCS analysis may be used, using nominal observation
periods for each case. For this reason, we focus on the design of the study,
rather than the analysis.

The study was undertaken within The Health Improvement Network
database. Cases included persons who died aged 50 to 99 years during the
period 2003 to 2014; these age and time boundaries, and dates on which GP
practice data were available, were used to define nominal observation periods.
Only cases living with a single adult of the opposite sex aged within 15 years
of the case were included. Exposure was defined as death of the partner. The
risk period included the 24 months after the death of the partner, subdivided
in eight 3-month periods.

A pre-exposure risk interval of 24 months was also included, to mitigate
the likely event-dependence of exposures. Note that, if the death of the case
precipitates the death of the partner, the resulting bias will be to reduce the
relative incidence.

Two separate SCCS analyses were undertaken: in male cases (death of the
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female partner being the exposure), and in female cases (death of the male
partner being the exposure). The design is represented in Figure 7.24.

case
death

partner x
death

FIGURE 7.24
Definition of risk periods for study of death and partner bereavement.

Age was adjusted for in eight age groups. Supplementary analyses were
undertaken by cause of death of the partner. The results indicated a positive
association, highest in the first three months after death of the partner, and
declining thereafter. For males (exposure being death of the female partner),
the relative incidence was 1.63, 95% CI (1.45, 1.83). For females (exposure
being death of the male partner), the relative incidence was 1.70, 95% CI
(1.52, 1.90).

A key and unusual feature of this analysis is that the exposure is observed
even after the case has died, though it might still be influenced by the death
of the case. The benefit of the SCCS approach in this context is that fixed
multiplicative confounders are automatically controlled, and hence the issues
surrounding choice of suitable controls arising in other epidemiological designs
are circumvented.

7.4 Bibliographical notes and further material

The extension of the SCCS method to event-dependent exposures was devel-
oped by Farrington et al. (2009). Further evaluation of the method is described
in Hua et al. (2013). The extension is based on the theory of estimating equa-
tions, further details of which may be found in Jesus and Chandler (2011).
The estimating equations were developed using counterfactuals. The use of
counterfactuals in statistical inference is reviewed in Höfler (2005).

The SCCS method for event-dependent observation periods was proposed
by Farrington et al. (2011). A related model, in a different context, was de-
veloped by Roy et al. (2006). Further details of the efficiency issues relating
to the estimation of the weights is discussed in Rathouz (2004).

Analysis of deaths with SCCS for a single exposure using nominal end of
observation was first used by Hubbard et al. (2005b). Kuhnert et al. (2011)
extended this approach to multiple exposures, when there is a minimum known
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separation between successive exposures, as is the case with some multi-dose
vaccines.

Other extensions of the SCCS model have been proposed. One is the posi-
tive dependence SCCS (PD-SCCS) model of Simpson (2013). This model can
be used to analyse recurrent events when the baseline event rate at age t for
an individual i depends on the number of events Ni(t

−) that have occurred
prior to t for that individual. Let Ei(t) denote the event and exposure his-
tory at time t. In the absence of time-invariant covariates, the event rate for
individual i is

λi(t|Ei(t)) = {φi + δNi(t
−)}ψ(t)ρ(t|xi).

The parameter δ ≥ 0 controls the degree of positive dependence between
successive events; the SCCS model is retrieved when δ = 0. In this extension,
events are no longer assumed to arise in a non-homogeneous Poisson process,
but in a non-homogeneous pure birth process with immigration. The model
may apply when occurrence of one event increases the chance of another, as
with myocardial infarction.

A further extension to the SCCS model is the measurement error SCCS
(MECS) model proposed by Mohammed et al. (2012). This model was devel-
oped in the context of a study of infection-associated cardiovascular events,
in which the exact times of the infections (which in this application are the
exposures) cannot accurately be ascertained, and are therefore subject to mea-
surement error. The authors propose a bias-corrected estimation procedure.
In Mohammed et al. (2013b) the same authors investigate the impact of mea-
surement errors on hypothesis tests. They conclude that, when there is a single
risk period, hypothesis tests that ignore the impact of measurement error are
valid.
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Design and presentation of SCCS studies

This final chapter is devoted to aspects of the design, efficiency, presentation
and contextualisation of SCCS studies.

We begin in Section 8.1 by discussing some of the key choices that need to
be made when designing a SCCS study. These include the primary time line,
risk periods, observation periods, and age groups. Some of these choices are
illustrated by examples in Section 8.1.5. In Section 8.1.6 we discuss a special
SCCS design sometimes called the self-controlled risk interval design.

Section 8.2 is devoted to sample size and power calculations. The R package
SCCS may be used to obtain nominal sample sizes with and without age effects,
and to undertake simulations in more realistic scenarios. Sample size formulas
are provided in Section 8.2.5 which is starred, and may be skipped.

In Section 8.3, we discuss the asymptotic efficiency and identifiability of
the SCCS design. We compare the efficiencies of the SCCS method, the cohort
method and the 1:1 matched case-control method. We also discuss how SCCS
design features may impact upon its efficiency. The focus is practical; the
theory is covered in Section 8.3.4 which is starred, and may be skipped.

In Section 8.4, we touch upon the presentation of SCCS studies. We show
how to use the R package SCCS to obtain event counts and person-time, and
discuss the presentation of results tables. We also review some of the graphs
introduced in earlier chapters, which help to illustrate aspects of SCCS studies.

The final Section 8.5 is devoted to the wider contextualisation of SCCS
studies. We discuss when, and how, measures of attribution including the
attributable fraction, population attributable fraction, and attributable risk
may validly be obtained in SCCS studies.

8.1 Choice of design

The very first step in designing a SCCS study is to choose the primary time
line: the choice is usually age or calendar time. Next, the observation period
and the risk periods must be specified. These choices should be motivated
primarily by subject matter considerations relating to the scientific question
of interest. However, they also have implications in terms of the efficiency of
the SCCS design relative to other designs, which will be explored further in

285
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Section 8.3. In most SCCS study designs it is also necessary to specify age
groups or time periods, unless semiparametric or spline-based methods are to
be used.

The requirement to specify the observation and risk periods is, of course,
not unique to SCCS studies. Similar choices must be made when designing a
cohort or case-control study, for example. However, because the SCCS method
bases inference exclusively on the timings of events within individual obser-
vation periods, rather than marginal information (which is conditioned upon,
and therefore is not used for estimation), it is particularly important to specify
observation and risk periods appropriately.

8.1.1 The primary time line

The primary time line should generally be that most relevant to variation in
event rates and exposures within individuals over the time scale of interest. In
the majority of SCCS studies in pharmacoepidemiology, it is likely to be age
rather than calendar time, since events and treatments within individuals are
often strongly age-related. This is particularly relevant for childhood vaccines
that are routinely administered according to an age-dependent schedule.

There are exceptions, in which calendar time is the most natural time line.
In pharmacoepidemiology, these exceptions usually relate to events or expo-
sures that arise seasonally. Examples, both relating to influenza vaccination,
were described in Chapter 2, Section 2.3.2 and Chapter 4, Section 4.9.1. The
environmental epidemiology applications of Chapter 6, Section 6.6, also used
calendar time as the primary time line. In some circumstances, time dimen-
sions other than age or calendar time, such as time since exposure, might be
relevant.

Whichever primary time line is chosen, it is possible to adjust for variation
on other time lines. Adjustment for seasonality in SCCS analyses in which
age is the primary time line was discussed in Chapter 4, Section 4.9. Note
also that SCCS analyses by age are insensitive to exponential calendar time
trends, as was pointed out in Chapter 6, Section 6.1.1. Finally, cohort effects
are time and age invariant, as they depend solely on the date of birth of each
case. In consequence, they cannot be estimated within a SCCS proportional
incidence model, as they factor out of the likelihood like other time-invariant
multiplicative covariates.

Finally, the unit of time must be chosen. For the functions in R package
SCCS, all times must be expressed as integers in these units. In virtually all
the examples in this book, the time unit is one day, as events and exposures
are usually recorded to the nearest day. However, there is no reason why, in
other contexts (as in Chapter 6, Section 6.5.2), other units of time should not
be chosen, provided that all times are expressed as integers in these units.
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8.1.2 Risk periods

The choice of risk period, or periods, is usually based on a prior hypothesis
relating to a potential association between the exposure and the event of
interest, on prior data from other studies, or on an understanding of the
underlying biological process. For applications in pharmacoepidemiology, such
an understanding may relate to the pharmacodynamics of the pharmaceutical
drug of interest.

If a point exposure is involved, as is the case with vaccination or initiation
of therapy with a pharmaceutical drug, then risk periods are specified using
time intervals from this point exposure. For some pharmaceutical drugs, the
risk period may be defined as the time or times on drug. Several risk periods
may be used, for example to capture the effects of initiation of treatment,
followed by the longer term effect of the drug. Washout periods after the end
of treatment may also be specified. If the event of interest is not acute, or if its
onset is difficult to pinpoint, longer (possibly indefinite) risk periods should
be used.

In specifying risk periods, it is important to distinguish between studies
designed to test a specific hypothesis, and hypothesis-generating studies. In
studies undertaken to test a specific hypothesis, for example to confirm results
obtained elsewhere, it is important, if applying the methods described in this
book, to choose the risk period a priori, rather than using the data to identify
the most strongly associated interval. The reason is that basing the risk period
on the data inflates the type I error probability, namely the probability that
a statistically significant effect is found when in reality there is none, unless
this effect is corrected using special statistical methods (see Section 8.6).

This is illustrated in Figure 8.1, which summarises the results of a simula-
tion study in which there is no association between a point exposure and an
event. In this simulation, all possible risk periods of durations 7 to 14 days
wholly contained within a 30-day post-exposure period are investigated. Each
point plotted is based on 500 runs of 500 cases.

The lower points (circles) represent the proportions of runs that yielded
a statistically significant effect (that is, the 95% confidence interval for the
relative incidence did not include 1) for the earliest post-exposure risk pe-
riod [0, r] for r = 6, . . . , 13. The proportions vary between 3.2% and 6%, in
line with the nominal type I error probability of 5%. The upper points (black
dots) represent the proportion of runs in which a significant effect was found
for at least one interval, when all possible intervals of that length were inves-
tigated. For example, when r = 6, the interval length is 7, and the 25 intervals
[0, 6], [1, 7], . . . , [24, 30] are investigated. These proportions are much greater
than 5%. The decline in these proportions as the risk period duration increases
simply reflects the drop in the number of intervals investigated.

Figure 8.1 illustrates the perils of basing the choice of risk period on the
data: even if there is no effect, a short interval close to the exposure can often
be found in which there appears to be a statistically significant effect.
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FIGURE 8.1
Proportion significant by length of risk period. Full dots: all intervals of that
length investigated. Circles: first interval only. The dashed line is at 0.05.

In hypothesis-generating studies, on the other hand, a more relaxed ap-
proach to choosing the risk period may be taken, since the purpose is to
develop a hypothesis relating to the presence or absence of an association, to
be confirmed in other studies. Even so, it is seldom sensible to try all possible
intervals. One approach is to use several contiguous risk periods, with the aim
of exploring the shape of the relative incidence function. An alternative is to
use the spline-based methods of Chapter 6, Section 6.3.

The choice of pre-exposure risk period, if one is required, is less of an issue
as it is not the focus of inference. However, the choice can sometimes be guided
by expert advice. For example, if the exposure of interest is vaccination and
the event involves hospitalisation, the vaccination is unlikely to happen while
the individual is in hospital. Thus, the pre-exposure risk period should be
related to the typical duration of a hospital stay.

In the case of studies undertaken within databases of administrative or clin-
ical records, account should be taken of the idiosyncracies of these databases.
For example, in some databases, past events may be recorded when a patient’s
history is taken on the day of consultation, rather than attributed to times
past. This can create entirely spurious associations if risk periods begin on
the day of consultation. This particular problem can be handled by including
a day of consultation effect in the SCCS model, or by excluding the day of
consultation from the risk period.
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8.1.3 Case ascertainment and observation periods

The specification of the observation period to be used in a SCCS study is
governed by case ascertainment. In turn, this depends, first, on the substantive
scientific question of interest (namely, the potential association between an
exposure and an event, perhaps in a specific population) and, second, on the
source of the data (for example, hospital or general practitioner records).

Typically, cases are ascertained subject to constraints on age and time
within a specific database or other sampling frame. Assuming that the primary
time line is age, the observation period for each case ascertained (with at least
one event) is the age interval (ai, bi] such that, if an event had occurred at any
time in (ai, bi], that event would have been captured by the case ascertainment
process.

In the next few paragraphs we shall describe in more detail the three time
lines (calendar time, age, and follow-up) that typically constrain case ascer-
tainment and, in consequence, define individual observation periods. The Lexis
diagram in Figure 8.2 shows the three time lines, to be discussed in the next
paragraphs.

Calendar time constraints
Calendar time constraints are always present insofar as all events ascertained
must have occurred prior to the time at which case ascertainment takes place
– call this time P (for present). Other calendar time constraints may also be
necessary or sensible.

For example, if the drug of interest comes into use at calendar time T1,
then in a study of that drug it may make sense to select only events occurring
after time T1. On the other hand, if it is required to include unexposed cases,
because age and exposure effects are likely to be confounded (see the discussion
in Chapter 4, Section 4.8.2, and Chapter 6, Section 6.2.4), then it may make
sense to include events occurring before T1. If it takes some time for events to
be recorded on the database, it might be wise to halt ascertainment at some
calendar time T2 before P , the interval P − T2 being chosen to ensure that
most events targeted are recorded. Using a cut-off time T2 < P might also
be sensible if events are ascertained at diagnosis, but retrospectively dated to
the earlier appearance of first symptoms.

Even if there are no such constraints, for operational reasons it might make
sense to restrict case ascertainment to some calendar time interval T1 to T2,
where T1 < T2 ≤ P . In Figure 8.2 calendar time is on the horizontal axis. The
point P denotes the present time; events occurring outside the calendar time
interval [T1, T2] are excluded.

If the primary time line is age, then calendar times T1 and T2 must be
converted to ages for the purpose of defining observation periods. If an indi-
vidual was born at calendar time Bi, the calendar time constraints for this
individual translate into ages T1 −Bi and T2 −Bi.



290 Design and presentation of SCCS studies

l

l

l

calendar time
T1 T2 PBi

ag
e

A1

A2

F1i

F2i

ai

bi

FIGURE 8.2
Lexis diagram showing calendar time, age and follow-up constraints on case
ascertainment for a case i with observation period (ai, bi] (see text).

Age constraints
Age constraints on case ascertainment may be determined by the exposure of
interest, the event of interest, the population of interest, and the risk period
– and very likely a combination of all four.

For example, if the exposure is primary MMR vaccination and the event
of interest is convulsion, then the vaccine is administered in the second year
of life, the event is acute, and the post-vaccination risk period is relatively
short, so it makes sense to restrict the observation period to the second year
of life. To take another example, if the event of interest is hip fracture in
the elderly, one might restrict case ascertainment to hip fractures in persons
above a certain age, but with no upper limit. For some events, for example
Guillain–Barré syndrome, no age restriction might be imposed.

In general, age constraints are of the form A1 to A2, where A1 is the lower
age and A2 the upper age of case ascertainment (and A2 might be left un-
specified). In Figure 8.2, age is on the vertical axis. Events occurring at ages
outside the age interval [A1, A2] are excluded.

Follow-up constraints
Follow-up constraints, as the name suggests, are constraints on the follow-
up time for each individual. These vary according to circumstance; several
may apply. Trivially, follow-up is constrained to include time between birth
and death (though in some SCCS analyses a nominal end of observation after
death is used – this is described in Chapter 7, Section 7.3).
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However, there may be more meaningful constraints. If cases are ascer-
tained within a particular database, then follow-up is constrained by the du-
ration of each subject’s record in the database. Thus, if an event is ascertained
for a case i, the follow-up constraint for that case is the age interval F1i to
F2i, where F1i is the age at which the database record begins for case i and
F2i is the age at which the record ends (this may be the current age). In some
instances, further restrictions might be imposed: for example, it might be re-
quired that a case has at least a year’s event-free follow-up in the database
before the first event; then F1i corresponds to the start of the record plus one
year. Finally, in some applications, cases are only ascertained from exposed
subjects, with follow-up determined by age at exposure or start of exposure.
Let Ei be the age at exposure for case i, and τ1, τ2 some pre-determined pos-
itive time intervals. The exposure-dependent follow-up is then F1i to F2i with
F1i = Ei − τ1 and F2i = Ei + τ2.

In Figure 8.2, follow-up for case i is represented as the diagonal line start-
ing at Bi (the date of birth). Events occurring outside the interval [F1i, F2i]
are excluded; the interval includes the thick dashed and full segments of the
diagonal line.

Combining constraints
The calendar time, and age follow-up constraints are then combined to deter-
mine the observation period (ai, bi] for each case i:

ai = max{T1 −Bi, A1, F1i}, bi = min{T2 −Bi, A2, F2i}.

Thus, the observation period for case i comprises:

all times between calendar times T1 and T2

that lie between ages A1 and A2

and between follow-up age limits F1i and F2i.

In Figure 8.2, the observation period for case i is represented by the full
line segment on the diagonal follow-up time line; the endpoints at ages ai
and bi are indicated by dots. For case i with this configuration, ai = A1 and
bi = F2i.

The definition of the observation period ensures that, if an event for case i
had arisen at any time within it, then the event would have been ascertained
as it falls within all the time constraints used for ascertaining cases. In conse-
quence, case i would be ascertained whatever the timing of the event or events
within the observation period.

It is worth reiterating that while it is acceptable for observation periods
to be determined by age at exposure, they must not be determined by age
at event, as this violates the assumptions of the method (see Chapter 3, Sec-
tions 3.7.3 and 3.7.4). Finally, while in mathematical terms we use the interval
(ai, bi] (which includes bi but not ai), in practice time and age are measured in
discrete units, typically one day, and the first and last day of the observation
period for each case are specified.
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8.1.4 Age groups

For the standard SCCS model, age groups must be specified. This specifi-
cation depends on the age profile of the event incidence function: typically,
narrower intervals are required where the age-related incidence varies most.
When possible, age groups can be determined a priori based on knowledge of
the likely variation in incidence. Alternatively, they may be selected after the
data have been assembled, using quantiles (rounded to integer values) of the
ages at event. Such a data-dependent choice is acceptable since age effects are
not usually the primary target of estimation.

Age effects may also reflect features of the case ascertainment process – for
example, delays in ascertaining cases, or retrospective dating of events to the
appearance of first symptoms. Such age-related effects will not introduce bias
in the exposure-related relative incidence provided that the case ascertainment
process is independent of exposure status. If any adjustment to event onset
dates is to be made, this should ideally be undertaken blind to information
on exposure.

When observation periods are short relative to the age range of the events,
choosing a large number of age groups can produce unreliable or undefined
age effects: this may occur, for example, when there are cases with disjoint
– that is, non-overlapping – observation periods. Some of the age parameters
may then not be identifiable. This does not usually affect the estimation of
the exposure effect, but if required can usually be remedied by reducing the
number of age groups.

8.1.5 Some examples of design choices

We illustrate contrasting SCCS designs with four examples from the literature.

Point exposures in a laboratory-based study: MMR vaccination and CSF-
confirmed aseptic meningitis
This is the application that motivated the development of the SCCS method,
described in Section 2.1 of Chapter 2. Prior to this study, cases of aseptic
meningitis in temporal association with some MMR vaccines had been ob-
served, albeit at a much lower rate than surveillance reports suggested in the
United Kingdom.

Cases of aseptic meningitis confirmed by investigation of cerebrospinal
fluid samples were obtained from five public health laboratories. Age at event
was taken to be age at hospital admission. Based on earlier studies, such as
Fujinaga et al. (1991), the risk period for aseptic meningitis was chosen to
be 15 to 35 days after MMR vaccination, day 0 corresponding to the day of
vaccination.

Each participating laboratory retrospectively ascertained all cases aged
between 366 and 730 days of age inclusive arising between two calendar dates.
These dates differed between laboratories: for example, for the Preston lab-
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oratory, admissions were sought between 1st April 1989 and 31st June 1992.
The age range was chosen so as to capture most primary MMR vaccinations,
for which the recommended age was 12 to 15 months, with some variation in
practice.

MMR vaccination histories for the cases were obtained from local authority
and general practitioner records. Note that, in view of the 15–35 day risk
period, information on MMR vaccination was required from age 366−35 = 331
days of age, to 730− 15 = 715 days of age, in order that each day within the
second year of life could be classified as lying within the risk period or not.

The observation period for each case from a given laboratory began at the
latest of age 366 days and age at the first day of case ascertainment for that
laboratory, and ended on the earliest of age 730 days and age at the last day
of case ascertainment for the laboratory. Thus, in this study, A1 = 366 days
and A2 = 730 days; the calendar times T1 and T2 varied between laboratories;
and no follow-up constraints were used.

The data are described in Miller et al. (1993). The SCCS analysis is re-
ported in Farrington (1995), and used 4 quarterly age groups.

Drug initiation, time on drug and washout periods in a database study: an-
tidepressants and hip fracture
This study, which was published in Hubbard et al. (2003), was undertaken
to investigate an association between antidepressants and hip fractures that
had been reported in several earlier studies. One of these, a case-control study,
found that the association was strongest for new users of antidepressants, sug-
gesting an increased risk associated with therapy initiation (Liu et al., 1998).
The present study also contrasted tricyclic antidepressants and selective sero-
tonin reuptake inhibitors, but noted the potential for bias due to channelling
– a form of indication bias. This study was referred to in Section 2.3.2 of
Chapter 2 and Section 4.3.3 of Chapter 4.

The SCCS study was designed in conjunction with a case-control study,
both undertaken within the Clinical Practice Research Datalink (CPRD). Age
was chosen as the primary time line, since the incidence of hip fracture varies
substantially with age. The risk period was chosen to include all time on
an antidepressant, starting at the first prescription and ending 31 days after
the last prescription, this interval being chosen based on the median interval
between successive prescriptions. To study the effect associated with initiation
of antidepressants, the risk period was split into three intervals: the period
0–14 days after the first prescription (day 0 being the day of prescription),
the period 15–42 days after first prescription, and the rest of the time on
antidepressants. Since the end of treatment was estimated (based on durations
of individual prescriptions) rather than known precisely, and to capture any
residual effect after coming off treatment, two washout periods were used:
1–91 and 92–182 days after the end of treatment.

The observation period was defined as follows. There were no age restric-
tions: first recorded diagnoses of hip fractures or fractured neck of femur at
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any age were included. Thus, in this study, A1 = 0 and A2 =∞. There were
time restrictions: events were ascertained between specified dates in 1987 and
1999, which define the calendar time limits T1 and T2. Finally, the follow-up
constraint was available time within the CPRD database, so for a case i, F1i =
age at start of CPRD record, and F2i = age at end of CPRD record. Ages
were grouped in 1-year bands.

Multiple exposures in a database study: NSAIDs, antidepressants and gastro-
intestinal bleeds
The Health Improvement Network (THIN) is a database of computerised med-
ical records from general practices (GPs) across England and Wales. In the
present study, data from THIN were used to investigate the association be-
tween antidepressants and gastro-intestinal bleeds, and their possible inter-
action with non-steroidal anti-inflammatory drugs (NSAIDs). The data from
Chapter 4, Section 4.5.2 were based on this study. The authors used a case-
control design, supplemented by a SCCS study based on the same cases.

Age is the most relevant time line in this context. As the primary interest
lay in the possible interaction between antidepressants and NSAIDs, risk pe-
riods were defined as treatment episodes with either drug. (Where the end of
treatment was not specified explicitly, it was imputed as 30 days from the last
prescription.) Thus, each case could have several risk periods for each drug,
and the risk periods typically varied in duration.

Case ascertainment, and hence the observation period for each case, was
determined as follows. All instances of first gastro-intestinal bleed were iden-
tified between 1st January 1990 and 1st November 2003, which define the
calendar time limits T1 and T2. Only events occurring at age 18 years or later
were included: thus A1 = 6575 days of age (this is 18× 365.25, rounded up);
there was no upper age limit, so A2 =∞. In order to ensure that events were
indeed first bleeds, and to obtain full information on exposures (the start of
which may have predated the start of observation), each case was required to
have been registered with the participating GP for at least 6 months. Thus
the follow-up constraints were as follows for each case i: F1i = age at start of
THIN record plus 183 days, and F2i = age at end of THIN record.

Observation periods completely determined by the exposure: antibiotics and
pregnancy
Two of the examples so far described have used follow-up constraints based
on database records. It is perfectly valid to define observation periods using
follow-up constraints determined by exposures. Nor is it strictly necessary for
the observation period to be an interval of age or time: it could comprise
several disjoint intervals.

An example with both these features is the study of antibiotics and preg-
nancy by Petersen et al. (2010). In this study, a woman is regarded as exposed
during pregnancy, and the events of interest are antibiotic prescriptions. The
observation period is defined to include, as well as the period of pregnancy,
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two control periods of the same duration, starting exactly one year before and
one year after the start of the pregnancy. Figure 8.3 illustrates the design.

control pregnancy control

T
T+1T-1

FIGURE 8.3
Observation and risk periods for the antibiotics and pregnancy study. The
pregnancy risk period begins at calendar time T years. The two control periods
begin 1 year before and 1 year after T . All three periods last 9 months.

The observation period thus comprises three disjoint intervals of approxi-
mately 9 months. The reason for choosing control periods starting exactly one
year before and one year after the start of the pregnancy is to control for any
seasonal effects that might be associated with the prescription of antibiotics:
such effects have thus been designed out. The alternative would have been to
adjust for them explicitly in the SCCS model using seasonal factors.

In this study, the events are antibiotic prescription episodes (of different
types), ascertained in the THIN database described in the previous example.
If a woman had several pregnancies, one was chosen at random. Every preg-
nant woman with at least one antibiotic prescription during her observation
period was included in the study. The only further constraints on ascertain-
ment were to include only women who were not pregnant at any time within
the two control periods, and who were registered with their GP for their en-
tire observation period. Thus, in this design, effective age and calendar time
constraints are not used (so A1 = 0, A2 = ∞, T1 = −∞, T2 = P ) and the
observation periods are determined solely by constraints on follow-up deter-
mined by pregnancy and duration of registration with the GP in the THIN
database.

Calendar time is perhaps the most relevant primary time line, though
the fact that seasonal effects are controlled for by design removes the need
to allow for them explicitly. Secular changes in prescribing practice could be
adjusted for, though they are perhaps unlikely to be detectable on a 3-year
timescale (similarly with age effects). It is also sensible to distinguish between
pre-exposure and post-exposure control periods in the analysis. Designs of this
type have sometimes been called self-controlled risk interval studies. These are
discussed further in Section 8.1.6.

8.1.6 Self-controlled risk interval designs

SCCS designs with short observation periods determined by a point expo-
sure, in which all cases share the same risk and control periods, have also
been called self-controlled risk interval designs. In such studies, age effects
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are usually assumed to be ignorable. The study of antibiotics and pregnancy
described in Section 8.1.5 is of this type. Another example is the study of nico-
tine replacement therapy and myocardial infarction first described in Chap-
ter 4, Section 4.8.3. Such designs are commonly used in vaccine adverse event
surveillance (Baker et al., 2015).

When all individuals have the same observation and risk periods, and
age effects are ignored, then the maximum likelihood estimator of the relative
incidence is the same whether or not the analysis is conditional on the number
of events experienced by each case. It follows that, as far as inference on the
log relative incidence β is concerned, it matters not whether the study is
restricted to cases: in this respect, cohort and self-controlled designs yield the
same inferences, though of course cohort designs also allow absolute rates to
be estimated.

This is because, in these circumstances, the cohort and SCCS (or self-
controlled risk interval) designs share the same estimator of the relative inci-
dence. Provided that events arise in a Poisson process and that the exposure
effect is multiplicative, these designs are all self-matched in the sense that
time-invariant confounders do not affect the relative incidence.

The reason is as follows. Suppose each individual in a cohort of M exposed
subjects has a control period of duration e0 and a single risk period of duration
e1. The total Poisson event rate in the control period is λe0, where

λ =
M∑
i=1

λi

is the sum of the individual event rates λi in the absence of exposure. In the
risk period, the total event rate is eβλe1, where e1 is the duration of the risk
period.

If N events arise in the cohort, of which N0 are in the control period
and N1 in the risk period, the maximum likelihood estimator of the relative
incidence, obtained from the Poisson cohort likelihood, is

eβ̂ =
N1 × e0

N0 × e1

which only involves the N events. This is identical to the maximum likelihood
estimator obtained from the SCCS analysis based only on cases.

Furthermore, the cohort variance of β̂ is

varcohort(β̂) =
e0 + eβe1

λe0eβe1
,

and the SCCS variance of β̂ is

varSCCS(β̂) =
(e0 + eβe1)2

Ne0eβe1
.
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But since, in the cohort model, the mle λ̂ = N(e0 + eβ̂e1)−1, the estimated
cohort variance reduces to that of the SCCS method:

v̂arcohort(β̂) = v̂arSCCS(β̂).

Thus, the cohort and SCCS designs result in exactly the same inference on β.
The same conclusion holds (with different expressions for the variance from
those in the above equations) if there are several risk periods.

The assumption that exposures must not be event-dependent remains rel-
evant to these designs. For this reason it might be sensible to exclude times
immediately preceding the exposure from the control period. Note also that
using a short control period adjacent to the risk period may be more prone
to misclassification bias resulting from an incorrect specification of the risk
period than would arise with longer control periods. This can be mitigated by
inserting a washout interval between the risk and control periods.

Although age is assumed not to affect the incidence over the short obser-
vation periods used, age homogeneity of the relative incidence may still be
investigated. This is achieved by including in the model an interaction be-
tween the exposure effect and age at exposure, and testing this interaction
using a likelihood ratio test. Some further issues relating to the interpretation
of relative incidences estimated in self-controlled risk interval studies in which
the control period always follows the risk period are discussed in Section 8.3.3.

Summary

• Designing a SCCS study requires the primary time line of analysis, the
risk periods, and the observation periods to be defined.

• In hypothesis-testing studies, data-dependent choice of the risk period
should be avoided.

• Defining observation periods will in general depend on a combination of
calendar time, age, and follow-up constraints.

• Age categories should reflect the age distribution of events.

• Self-controlled risk interval designs are SCCS studies with observation
periods defined in relation to exposure, in which cases share the same
risk and control periods. Typically, observation periods are brief and
age effects are ignored.
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8.2 Sample size and power

Self-controlled case series studies are usually observational, and consequently
formal sample size and power calculations are not as central to the study
design as for controlled clinical trials. However, such calculations can be useful
when several design options are contemplated, especially when dealing with
uncommon events for which the number of cases available for study is likely
to be small.

In the context of SCCS studies, the sample size is the number of events.
This may or may not be the same as the number of cases, depending on
whether cases experience more than one event. The sample size calculation
aims to estimate the sample size required to detect a specified design value of
the relative incidence associated with exposure, for a given significance level
and power. These quantities are defined in terms of the null hypothesis that
there is no effect associated with exposure, that is, that the relative incidence
is 1. The significance level is the probability that the null hypothesis is rejected
when it is true; the power is the probability that the null hypothesis is rejected
when the relative incidence equals the design value.

In a SCCS study, the sample size required depends on the significance
level, the design value of the relative incidence, and the power required for
that design value. It also depends on the relative durations of the risk period
and the observation period, and on the proportion of individuals exposed in
the population. Finally, it is influenced by the distribution of the risk periods
within the observation period, and by the age effects. The formula used to
obtain the sample size is approximate: in particular it relies on asymptotic
approximations that ignore the fact that event counts in risk and other periods
are discrete.

The R package SCCS contains two functions relevant to sample size and
power calculations. Function samplesize calculates the sample size for given
design parameters. Examples of the use of this function, and the assumptions
required, are described in Sections 8.2.1 and 8.2.3. The sample size formula
underpinning this function is based on the likelihood ratio test. Further details
of this formula and its derivation are given in Section 8.2.5, which is starred
and may be skipped.

The second function is simulatesccsdata. This function creates a simu-
lated SCCS data set with given design parameters, and can be used to gener-
ate cases with observation and risk periods of different durations, multiple risk
periods, repeated exposures, and washout periods. This facility is useful for
investigating more realistic scenarios. In Sections 8.2.2 and 8.2.4, simulations
are used to obtain the empirical power for a given design.
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Summary

• In a SCCS study, the sample size is the number of events rather than
the number of cases.

• The sample size required for a given design value of the relative inci-
dence depends on the significance level, the design value of the relative
incidence, and the power sought for this design value.

• The sample size also depends on the relative durations of the risk and
observation periods, and on the proportion of individuals exposed in the
population. It is influenced by the distribution of the risk periods and
the age effects.

• An approximate value of the sample size required may be obtained using
a sample size formula. Specific designs may be evaluated by simulation.

8.2.1 Estimating the sample size: no age effects

In this section we consider sample size calculations ignoring any age effects
that may affect the distributions of exposures or events. We illustrate the use
of R function samplesize in such a setting.

In this example, it is required to estimate the sample size for a study of
MMR vaccine, with observation period nominally including the second year
of life, that is, days 366 to 730 of age inclusive. The risk period is 15–35 days
after MMR vaccination: a duration of 21 days. The significance level is the
conventional value α = 0.05.

We seek 80% power for a design value of the relative incidence of 2.5. Sup-
pose first that only vaccinated cases are to be sampled, so that the proportion
exposed in the target population is 1. The required sample size is computed
as follows:

ss1 <- samplesize(eexpo=2.5, risk=21, astart=366, aend=730,

p=1, alpha=0.05, power=0.8)

Here, eexpo is the design value of the relative incidence; risk is the duration
of the risk period, p is the proportion vaccinated in the target population,
alpha is the significance level, and power is the power required. This yields:

> ss1

[1] 110

Thus, the sample of vaccinated cases must include 110 events. To estimate
how many events are required when their vaccination status is not known in
advance, we need information about MMR vaccine coverage in the second year
of life. Suppose that it is 75%. The sample size required is then obtained by
specifying p = 0.75:
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ss2 <- samplesize(eexpo=2.5, risk=21, astart=366, aend=730,

p=0.75, alpha=0.05, power=0.8)

This yields:

> ss2

[1] 143

Thus, the sample of cases (vaccinated or unvaccinated) should include 143
events. Note that 110/143 ' 0.77 rather than 0.75: vaccinees are slightly
over-represented among cases, owing to the positive association between vac-
cination and the event.

When the proportion exposed in the population is not known with any
degree of accuracy, it is usually best to plan the study based on the sample
size of events in exposed cases, and take steps to recruit the appropriate
number of exposed cases.

It is good practice to estimate sample sizes for a range of design parameters,
to assess the sensitivity of the design to variation in these parameters. For
illustration, suppose that, in the MMR vaccine example, sample sizes are
sought for design values of the relative incidence in the range 1.5(0.5)3.5, and
for powers in the range 75(5)95%. Rather than calculating the 25 sample sizes
individually, a rudimentary sample size table may be obtained as follows (with
p = 1).

ri <- c(1.5,2.0,2.5,3.0,3.5)

po <- c(0.75,0.8,0.85,0.9,0.95)

m <- cbind(rep(ri,length(po)), rep(po,each=length(ri)))

ssfun1 <- function(x){

samplesize(eexpo=x[1], risk=21, astart=366, aend=730,

p=1, alpha=0.05, power=x[2])}

ssm1 <- matrix(apply(m,MARGIN=1,FUN=ssfun1), nrow=length(po),

byrow=T, dimnames=list(po,ri))

This yields:

> ssm1

1.5 2 2.5 3 3.5

0.75 633 187 96 61 44

0.8 719 213 110 70 50

0.85 826 246 127 81 58

0.9 972 291 150 96 69

0.95 1211 363 188 120 87

The top row gives the five design values of the relative incidence; the first
column the five powers. Thus, if the design value of the relative incidence is
2, a sample size of 213 events in vaccinated cases is required for 80% power,
rather than the 110 required with design value 2.5.
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8.2.2 Power assessment by simulation

The power associated with a given study design may be assessed by simulation
using the R function simulatesccsdata. This function creates a simulated
data frame from specified inputs. For example, continuing the MMR vaccine
example of Section 8.2.1, suppose we wish to simulate a data set comprising
110 events in 110 cases who have received MMR vaccine, with risk period
duration 21 days and design value eexpo=2.5. In the following example, the
observation period for each case is [366, 730] days and the start of the risk
period is uniformly distributed within the observation periods. There are no
age effects; simulations including age effects are discussed in Section 8.2.4.

set.seed(1234)

arisk <- round(runif(110,366,730))

simdata <- simulatesccsdata(nindivs=110, astart=366, aend=730,

adrug=arisk, aedrug=arisk+20, eexpo=2.5)

This creates a simulated data frame simdata with 110 rows (one event per
row) and the following columns:

> simdata

indiv astart adrug1 aedrug1 aend aevent

1 1 366 407 427 730 553

2 2 366 593 613 730 725

3 3 366 588 608 730 419

4 4 366 593 613 730 605

5 5 366 679 699 730 603

6 6 366 599 619 730 527

......

The function simulatesccsdata also accepts vectors as inputs for astart

and aend, thus allowing observation periods of different durations.
This simulation facility can be used to evaluate the power of a design. This

is done by simulating a large number of data sets with this design, analysing
each one with the SCCS method, and counting the proportion of data sets
that yield a statistically significant result.

For illustration, we evaluate the power of the proposed study of MMR
vaccine with design value eexpo=2.5. The estimated sample size is 110, there
are no age effects, and the risk period duration is 21 days for each case. For
definiteness we assume each case has the same risk period [457, 477] days
(as there are no age effects, this choice makes no difference to the results).
Statistical significance is assessed using the 95% confidence interval for the
relative incidence from the SCCS model, fitted without any age effects. For
1000 simulations, the required code is as follows.

set.seed(1234)

rilim <- rep(0,1000)

for (i in 1:1000){
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simdati <- simulatesccsdata(nindivs=110, astart=366, aend=730,

adrug=457, aedrug=477, eexpo=2.5)

sim.modi <- standardsccs(event~adrug1, indiv=indiv,

astart=astart, aend=aend, adrug=adrug1,

aedrug=aedrug1, aevent=aevent, data=simdati)

rilim[i] <- sim.modi$conf.int[1,3]

}

The vector rilim contains the lower 95% confidence limits for the relative
incidences obtained from the SCCS model (without age adjustment) fitted to
each of 1000 simulated data sets. The empirical power is then obtained as
follows:

> sum(rilim>1)/1000

[1] 0.793

The simulated power is thus 79.3%, only marginally lower than the value of
80% specified in the sample size calculation. This power estimate is subject to
Monte Carlo variation. The Monte Carlo (MC) standard error for a simulated
probability p based on R replicates is

√
p ∗ (1− p)/R. Thus, in this case the

MC standard error is√
0.793× (1− 0.793)

1000
= 0.013.

The simulated power should be quoted as 79.3% (MC error 1.3%). The MC
standard error reduces as the number of replicates increases; with 10 000, the
simulated power is 79.8% (MC error 0.4%).

Using the lower 95% confidence limit of the relative incidence to calculate
the power is, in effect, to use a 1-tailed hypothesis test. The corresponding
2-tailed test would also consider the proportion of 95% confidence intervals
with upper limit less than 1. However, when the true relative incidence is 2.5
this proportion is close to zero, so ignoring it does not materially affect the
power. We shall briefly return to the issue of 1-tailed and 2-tailed hypothesis
tests in Section 8.2.4.

Sample size calculations are only ever approximate, especially when the
sample sizes produced are not large. This is because the sample size formula
relies on asymptotic approximations. In particular, the formula makes no al-
lowance for the fact that the numbers of events occurring in and outside the
risk period are discrete. Figure 8.4 shows the true relationship between sample
size and power, assessed by simulation, and the relationship obtained using the
sample size formula. The stepped line obtained using the sample size formula
is non-decreasing: as the sample size increases, so does the power. In reality,
however, the power to sample size relationship is one of steady increases inter-
rupted by sudden drops. This is revealed by the sawtooth pattern of the points
in Figure 8.4. Each point was obtained by simulation with 10 000 replicates
using the code previously described, with values of nindivs ranging from 85
to 135.
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FIGURE 8.4
Power to sample size relationships for MMR study. Stepped line: obtained
using sample size formula. Points: obtained by simulation.

It is sometimes possible to incorporate a continuity correction in sample
size formulas to mitigate this effect. The alternative (espoused here) is to use
the sample size formula as a guide, to be refined by simulation. An advantage
of simulations is that greater realism can be introduced. Thus, for the MMR
example, we can allow the risk period to start at any time in the interval
[366, 730], and also fit the SCCS model with an adjustment for age. In the
following code, quarterly age groups are used.

set.seed(1234)

ageg <- c(457,548,639)

rilim <- rep(0,1000)

for (i in 1:1000){

arisk <- round(runif(110,366,730))

simdati <- simulatesccsdata(nindivs=110, astart=366, aend=730,

adrug=arisk, aedrug=arisk+20, eexpo=2.5)

sim.modi <- standardsccs(event~adrug1+age, indiv=indiv,

astart=astart, aend=aend, adrug=adrug1,

aedrug=aedrug1, aevent=aevent, agegrp=ageg,

data=simdati)

rilim[i] <- sim.modi$conf.int[1,3]

}

Note that the simulations do not incorporate any age effects, even though the
fitted SCCS models do. This now yields:
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> sum(rilim>1)/1000

[1] 0.812

The simulated power is thus 81.2% (MC error 1.3%).

8.2.3 Estimating the sample size: with age effects

To be more realistic, sample size calculations should take age effects into ac-
count. To keep the sample size formula manageable, some restrictive assump-
tions are imposed, the main one being that the risk period duration must not
exceed the width of the shortest age group. Furthermore, it is assumed that
the age effects are known, rather than estimated. Further details are provided
in Section 8.2.5.

Suppose that the observation period comprises J + 1 age intervals labelled
0 to J , category 0 (the earliest category) being the reference. The sample size
formula assumes that the risk period for each exposed individual in the target
population is wholly contained within one of these J + 1 age groups. Let pj
denote the proportion of the target population exposed in age group j. Then

p =

J∑
j=0

pj

is the proportion of the target population who are exposed. Also, let exp(αj)
denote the age-specific relative incidence in age group j, relative to age group
0, with exp(α0) = 1.

The sample size formula requires the age groups, the pj , and the exp(αj)
(for j = 1, . . . , J) to be specified.

We illustrate the calculation of sample sizes with age effects using the ex-
ample on MMR vaccine. To begin with, we assume that the target population
comprises only vaccinated individuals whose risk period is in the second year
of life. We shall use quarterly age groups specified by the cutpoints 457, 548,
639 days using agegrp=c(457,548,639).

Next, we specify the proportions exposed in each age group within the tar-
get population. Most children are vaccinated in the first quarter; we shall use
the distribution specified as follows: p=c(0.50,0.35,0.1,0.05). This means
that 50% of the target population are vaccinated in the first quarter, 35% in
the second, 10% in the third, and 5% in the fourth. These proportions sum
to 100%, in line with our assumption that the target population comprises
individuals vaccinated in the second year of life.

Finally, we specify the effects of age on the event incidence. The first
age group is taken as reference, with relative incidence 1. Suppose that the
incidence increases with age; we enter eage=c(1.2,1.6,2.0). This means
that the age-specific relative incidence, relative to the first age group, is 1.2
for the second age group, 1.6 for the third and 2.0 for the fourth. The code
required is as follows.
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ss3 <- samplesize(eexpo=2.5, risk=21, astart=366, aend=730,

p=c(0.50,0.35,0.1,0.05), alpha=0.05, power=0.8,

eage=c(1.2,1.6,2.0), agegrp=c(457,548,639))

This yields the following sample size:

> ss3

[1] 132

The sample size required is 132 events among exposed cases. This is greater
than the sample size 110 required when there were no age effects. The increase
is due to the negative correlation between age at vaccination and age at event.

Different age distributions will have different impacts on the sample size.
For example, suppose that the incidence of the event of interest declines during
the second year of life, with eage=c(0.8,0.6,0.5). The sample size is then
specified as follows:

ss4 <- samplesize(eexpo=2.5, risk=21, astart=366, aend=730,

p=c(0.50,0.35,0.1,0.05), alpha=0.05, power=0.8,

eage=c(0.8,0.6,0.5), agegrp=c(457,548,639))

This yields:

> ss4

[1] 95

The required sample size is now 95, which is less than the sample size 110
required without age effects.

The sample sizes so far calculated in this section have been obtained for a
target population including only individuals exposed in the second year of life.
Suppose now that we wish to sample from the entire population, in which the
proportion vaccinated within the second year of life is 0.75. We now specify
p=0.75*c(0.50,0.35,0.1,0.05):

ss5 <- samplesize(eexpo=2.5, risk=21, astart=366, aend=730,

p=0.75*c(0.50,0.35,0.1,0.05), alpha=0.05, power=0.8,

eage=c(1.2,1.6,2.0), agegrp=c(457,548,639))

This yields the following sample size:

> ss5

[1] 172

This is the number of events required among cases sampled from a target pop-
ulation including both vaccinated and unvaccinated individuals. It contrasts
with the sample size 143 required without age effects, for a target population
in which 75% of individuals are vaccinated in the second year of life.
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8.2.4 Simulated power with age effects present

The R function simulatesccsdata can readily incorporate age effects, af-
fecting both the distribution of exposures and the distribution of events. We
illustrate these features again using the MMR vaccination example. Specif-
ically, we base the simulations on the sample size 132 events obtained in
Section 8.2.3 with quarterly age groups, p=c(0.50,0.35,0.1,0.05) and
eage=c(1.2,1.6,2.0).

One purpose of using a simulation is to achieve greater realism, so we shall
use more realistic distributions than those used to obtain the sample size. We
shall base the distribution of risk periods on a scaled and shifted beta density
with parameters α = 2, β = 4. One realisation is shown in the left panel
of Figure 8.5. The panel on the right shows two choices for the age effect,
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FIGURE 8.5
Left: a sample of 132 risk interval starts simulated using a scaled and shifted
beta density. Right: continuous curve and step function representing the age
effect.

which increase from 1 to 2 over the observation period. The step function uses
roughly monthly age groups; the continuous curve is exponential. Figure 8.5
was obtained as follows.

age <- 366:730

agegp <- c(366, seq(401,731,30))

eagec <- exp((age-366)*log(2)/(730-366))

eageg <- exp((agegp-366)*log(2)/(731-366))

set.seed(1234)

arisk <- round(366+364*rbeta(132,2,4))

par(mfrow=c(1,2), mar=c(4.1,4.1,1,1), cex.lab=1.4)

hist(arisk, main=NULL, xlab="start of risk period (days)",

ylab="frequency", breaks=seq(366,730,20))
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plot(age, eagec, type="l", xlim=c(366,730), ylim=c(0.5,2.5),

xlab="age (days)", ylab="age effect")

lines(agegp, eageg, type="s")

The following simulation code is used to obtain 1000 replicates each with a
sample size of 132, with age effects as a monthly step function. The SCCS
model fitted still uses quarterly age groups, however. This is not a problem:
indeed it is more realistic to use a simpler model to analyse the simulated
data than was used in generating those data.

eage <- exp((seq(401,701,30)-366)*log(2)/(731-366))

set.seed(1234)

rilim <-rep(0,1000)

for (i in 1:1000){

arisk <- round(366+364*rbeta(132,2,4))

simdati <- simulatesccsdata(nindivs=132, astart=366, aend=730,

adrug=arisk, aedrug=arisk+20, eexpo=2.5,

agegrp=seq(401,701,30), eage=eage)

sim.modi <- standardsccs(event~adrug1+age, indiv=indiv,

astart=astart, aend=aend, adrug=adrug1,

aedrug=aedrug1, aevent=aevent, agegrp=

c(457,548,639), data=simdati)

rilim[i] <- sim.modi$conf.int[1,3]

}

The estimated power is as follows:

> sum(rilim>1)/1000

[1] 0.832

The power is thus 83.2% (MC standard error 1.2%). This compares with the
nominal 80% power specified in the sample size calculation.

Using a continuous age effect in the simulation would be more realistic than
the monthly step function, but takes much longer as a cutpoint is used for
each day of observation. To enter the age effects as a continuous exponential
curve, use the following code.

eage <- exp((seq(366,730,1)-366)*log(2)/(730-366))

eage <- eage[-1]

The second line removes the reference value 1 at age 366 days. The simulation
then proceeds as follows.

set.seed(1234)

rilim <-rep(0,1000)

for (i in 1:1000){

arisk <- round(366+364*rbeta(132,2,4))

simdati <- simulatesccsdata(nindivs=132, astart=366, aend=730,
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adrug=arisk, aedrug=arisk+20, eexpo=2.5, eage=eage)

sim.modi <- standardsccs(event~adrug1+age, indiv=indiv,

astart=astart, aend=aend, adrug=adrug1,

aedrug=aedrug1, aevent=aevent, agegrp=

c(457,548,639), data=simdati)

rilim[i] <- sim.modi$conf.int[1,3]

}

This yields:

> sum(rilim>1)/1000

[1] 0.84

Thus the power is 84.0% (MC standard error 1.2%).
One important practical use of simulations is to obtain empirical power

curves for a proposed study design. A power curve shows the power for a
range of values of the design parameter, and can thus be used to assess the
sensitivity of the design to the value of the design parameter. With the design
parameter equal to 1, the curve also indicates the actual significance level.

So far we have used the lower 95% confidence limit on the relative in-
cidence to assess statistical significance. This corresponds to a 1-tailed test,
with significance level 2.5%. The following code (using age effects represented
by a monthly step function) also incorporates a 2-tailed test based on the
likelihood ratio test statistic:

eage <- exp((seq(401,701,30)-366)*log(2)/(731-366))

set.seed(1234)

rilim <- plrt <- rep(0,1000)

for (i in 1:1000){

arisk <- round(366+364*rbeta(132,2,4))

simdati <- simulatesccsdata(nindivs=132, astart=366, aend=730,

adrug=arisk, aedrug=arisk+20, eexpo=1,

agegrp=seq(401,701,30), eage=eage)

sim.modi <- standardsccs(event~adrug1+age, indiv=indiv, astart=

astart, aend=aend, adrug=adrug1, aedrug=aedrug1,

aevent=aevent, agegrp=c(457,548,639), data=simdati)

sim.mod0 <- standardsccs(event~age, indiv=indiv, astart=astart,

aend=aend, adrug=adrug1, aedrug=aedrug1, aevent=

aevent, agegrp=c(457,548,639), data=simdati)

rilim[i] <- sim.modi$conf.int[1,3]

plrt[i] <- lrtsccs(sim.modi,sim.mod0)[1,3]

}

The vector plrt contains the p-values of the likelihood ratio test for the expo-
sure effect. The 1-tailed and 2-tailed empirical significance levels are obtained
as follows:
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> sum(rilim>1)/1000

[1] 0.032

> sum(plrt<0.05)/1000

[1] 0.044

The 1-tailed significance level from the lower 95% confidence limit is 3.2%
(MC standard error 0.56%); the 2-tailed significance level from the likelihood
ratio test is 4.4% (MC standard error 0.65%). The nominal values are 2.5%
and 5%, respectively. The MC standard errors in this case are perhaps a little
too large in relation to the target parameter values; increasing the number of
simulation replicates to 10 000 yields 2.95% (MC standard error 0.17%) for
the 1-tailed test and 5.00% (MC error 0.22%) for the 2-tailed test, but takes
a lot longer.

Figure 8.6 shows the power curves for values of the design parameter be-
tween 1 and 3.5. Each point was obtained using the code above with 10 000
replicates. The power curve provides an indication of the sensitivity of the
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FIGURE 8.6
Power curves for the MMR study design. Full line: 1-tailed test based on lower
95% confidence limit. Dashed line: 2-tailed test based on likelihood ratio.

design, which in this instance is based on a sample size of 132 events, to the
value of the design parameter. For example, the power for a relative incidence
of 2 is only 54 to 59% depending on which test is applied.

Simulations may be used to assess many other aspects of a study design,
notably the validity of asymptotic assumptions for the sample size used. In our
MMR vaccine example, the sampling distribution of the maximum likelihood
estimator of β, the log relative incidence, and the coverage probability of
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the 95% confidence interval when exp(β) = 2.5 may be obtained using the
following code, for the sample size 132.

eage <- exp((seq(401,701,30)-366)*log(2)/(731-366))

set.seed(1234)

beta <- cover <- rep(0,1000)

for (i in 1:1000){

arisk <- round(366+364*rbeta(132,2,4))

simdati <- simulatesccsdata(nindivs=132, astart=366, aend=730,

adrug=arisk, aedrug=arisk+20, eexpo=2.5, agegrp=

seq(401,701,30), eage=eage)

sim.modi <- standardsccs(event~adrug1+age, indiv=indiv, astart=

astart, aend=aend, adrug=adrug1, aedrug=aedrug1,

aevent=aevent, agegrp=c(457,548,639), data=simdati)

beta[i] <- sim.modi$coef[1,1]

cover[i] <- (sim.modi$conf.int[1,3]<2.5)*

(2.5<sim.modi$conf.int[1,4])

}

The vector beta contains 1000 replicates of the estimate of β, while the vector
cover takes the value 1 if the true value of the relative incidence (namely 2.5)
lies within the 95% confidence interval and the value 0 otherwise. Then

> mean(beta)

[1] 0.873134

> mean(exp(beta))

[1] 2.490439

> sum(cover)/1000

[1] 0.952

The mean of the estimates of β is 0.873, compared to the true value β =
log(2.5) = 0.916. The mean of the exponentiated values is 2.49. The simu-
lated coverage probability of the 95% confidence interval is 95.2% (MC stan-
dard error 0.68%), close to the nominal value. Figure 8.7 shows the sampling
distribution for β and exp(β), obtained using the code above, but with 10 000

replications. The sampling distributions of β̂ and exp(β̂) are roughly normal
in appearance, suggesting that the asymptotic assumptions underpinning the
estimation method are acceptable.

In this simulation we have used the mean of the estimates of β to sum-
marise its location. With smaller sample sizes, we might have obtained large
negative estimated values (in effect, −∞), corresponding to 0 events in the
risk period. Similarly, when risk periods are long, we might obtain large pos-
itive estimated values (in effect, +∞), when all events occur within the risk
period. If such values arise, the median or trimmed mean provide more rele-
vant measures of location than the mean. From a theoretical perspective, the
maximum likelihood estimator β̂, in finite samples, can take the values ±∞
with positive probability, so its central moments do not exist.
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FIGURE 8.7
Simulated sampling distribution. Left: log relative incidence. Right: relative
incidence. The dashed lines indicate the true values.

8.2.5 A formula for the sample size*

In this section the sample size formula behind the R function samplesize is
presented. The calculation is based on the likelihood ratio test statistic, in the
following simplified scenario.

We assume all individuals share the same observation period, covering
J + 1 age groups of duration e0, e1, . . . , eJ . The age-specific relative incidence
is assumed to vary as a step function with log values αj , j = 1, . . . , J relative
to the first age group, so that α0 = 0.

We also assume that individuals in the target population (the population
from which the cases are to be sampled), if exposed, have a single risk period
of duration e∗, which is entirely contained within a single age group. This
implies that e∗ ≤ ej for all j = 0, . . . , J . The relative incidence associated
with exposure is ρ = eβ . The probability that an individual randomly sampled
from the target population is exposed in age group j is pj , j = 0, . . . , J . The
probability that an individual is exposed at any time during the observation
period is p =

∑J
j=0 pj .

We make the further assumption that the values of the αj are known, so
that only β is to be estimated. We define the following intermediate quantities.
First, let rj be the weighted ratio of time at risk to the whole observation
period for a risk period contained within age group j:

rj =
eαje∗∑J
s=0 e

αses
, j = 0, . . . , J.

If there are no age effects, so that αj = 0 for all j, then rj is the ratio of the

* This section may be skipped.
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risk period to the observation period. Second, let πj be the probability, for an
individual exposed in age group j, that an event occurs during the risk period:

πj =
rjρ

rjρ+ 1− rj
, j = 0, . . . , J.

If there is no exposure effect, so that ρ = 1, then πj = rj . Finally, let νj denote
the probability that a case is exposed in age group j:

νj =
pj(rjρ+ 1− rj)

1− p+
∑J
s=0 ps(rsρ+ 1− rs)

, j = 0, . . . , J.

If there is no exposure effect, so that ρ = 1, then νj = pj . Now suppose
that n events occurring within the observation period for individuals within
the target population are randomly sampled. Let x denote the number of
events occurring within a risk period, and mj the number of events occurring
for individuals exposed at age j. The log likelihood ratio test statistic for β
obtained from the standard SCCS log likelihood (which is conditional on the
mj) may be written

D(β;x) = 2
{
xβ −

J∑
j=0

mj log(rje
β + 1− rj)

}
.

The maximum likelihood estimate β̂ of β maximises D(β;x) and satisfies the
identity

x =

J∑
j=0

mj π̂j .

Let xj denote the number of events occurring in the risk period, among the mj

events in individuals exposed in age group j. The xj are independent binomial
B(mj , πj) variates, and x =

∑
j xj . The mean and variance of x, conditional

on the mj , are thus:

E(x|m) =

J∑
j=0

mjπj ,

var(x|m) =

J∑
j=0

mjπj(1− πj). (8.1)

We shall base the sample size calculation on the signed root likelihood
ratio statistic

T (β̂;x) = sgn(β̂)

√
D(β̂;x).

Under the null hypothesis β = 0, T (β̂;x) is approximately distributed as a
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standard normal variate N(0, 1). To obtain an approximate distribution for a

design value β 6= 0, we first expand T (β;x) in a Taylor series around β̂. Since

β̂ optimises T (β;x), this yields:

T (β;x) = T (β̂;x) +Op(n
−1/2),

where n is the number of events. A second Taylor expansion, of T (β;x) around
E(x|m), together with Expressions 8.1, gives to first order:

E{T (β̂;x)} ' sgn(β)
[
2

J∑
j=0

mj{βπj − log(rje
β + 1− rj)}

]1/2
,

V {T (β̂;x)} ' β2

[E{T (β̂ : x)}]2

J∑
j=0

mjπj(1− πj).

Now replace mj by nνj in these expressions. Thus,

T (β̂;x) ≈ N
(
sgn(β)

√
nA,B

)
,

where

A = 2

J∑
j=0

νj{πjβ − log(rje
β + 1− rj)},

B =
β2

A

J∑
j=0

νjπj(1− πj).

The required sample size formula for 100γ percent power at the 100α percent
significance level (two-sided) is then

n =
1

A

(
z1−α/2 + zγ

√
B
)2
,

where z1−α/2 is the 1− α/2-quantile of the standard normal distribution and
zγ is its γ-quantile.

8.3 Efficiency and identifiability

The SCCS method is based on a conditional likelihood, derived from a Poisson
model for the underlying cohort from which cases are sampled. Conditioning in
this way incurs a cost in efficiency (that is, the variance of the relative incidence
estimator is increased). The question then arises: how much efficiency is lost in
this way? A related question is: how does the performance of the SCCS method
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depend on the choice of design parameters? Finally, under what circumstances
are the parameters of the SCCS model identifiable?

These are the issues addressed in this section. It is fair to say that they
will seldom prove decisive in the choice of design, which is usually, and quite
correctly, determined primarily by the practical application at hand. But an
understanding of these issues can help to guide the implementation of the
method more generally, and to anticipate or explain features of the results.

In Section 8.3.1 we discuss the relative efficiency of the SCCS method,
compared to cohort and case-control studies with the same cases. Then in
Section 8.3.2 we describe how the performance of the SCCS method depends
on its design, in an asymptotic sense. In Section 8.3.3 we briefly discuss some
identifiability issues, and how to tackle them. In these three sections, mathe-
matical details are kept to a minimum. A more elaborate treatment is provided
in Section 8.3.4, which is starred and may be skipped.

8.3.1 Relative efficiency of the SCCS method

The maximum likelihood estimator of the relative incidence from a SCCS
study is asymptotically efficient, which implies that, in large samples, no es-
timator with lower variance can be derived from a SCCS study. This fact
follows from the theory of maximum likelihood estimation. However, it is of
interest to compare the efficiency of the relative incidence estimator from a
SCCS study with that from a cohort or case-control study with the same cases
as the SCCS study.

Recall from Chapter 3, Section 3.8, that the SCCS likelihood is obtained
from an underlying Poisson cohort model by conditioning on the number of
events experienced by each individual in the cohort. This means that any
information about the relative incidence that is contained in these marginal
counts is not used in the SCCS method. Accordingly, the SCCS method will
generally be less efficient than the underlying Poisson cohort model.

Efficiencies are most readily compared using the asymptotic relative effi-
ciency or ARE. In our case, this is the ratio of the variances of the log relative
incidence estimators β̂ for a single risk period obtained from a SCCS model
and from the underlying cohort model with the same cases, as the number of
events n grows large. Thus, in mathematical notation,

ARE = lim
n→∞

var(β̂cohort)

var(β̂SCCS)
.

A general expression for the ARE is derived and discussed in Section 8.3.4.
However, the salient points are conveniently illuminated in a special case, in
which all individuals in the underlying cohort have an observation period of
equal duration b− a, a proportion p are exposed and experience a single risk
period of duration d, and in which there are no age effects. In this scenario,

ARE =
1 + preβ/(1− pr)
1 + reβ/(1− r)

(8.2)
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where r = d/(b − a) is the ratio of the risk period to observation period
durations.

Note from Equation 8.2 that when p = 1, ARE = 1. Thus, when all indi-
viduals in the underlying cohort are exposed, then the asymptotic efficiency
of the SCCS method is identical to that of the cohort method based on the
same exposed cases. The practical implication is that, when an exposure is
widespread, or when only exposed individuals are included, then a SCCS study
is virtually as efficient as a cohort study based on the same exposed cases.

Figure 8.8 illustrates how the asymptotic relative efficiency ARE varies
with r, the ratio of the risk period to the observation period, for a range of
values of the relative incidence ρ = eβ , in two scenarios: p = 0.3 (moderate ex-
posure probability) and p = 0.7 (high but not universal exposure probability).
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FIGURE 8.8
Dependence of ARE on ratio of risk to observation periods. Each line corre-
sponds to a different value of ρ = eβ, as labelled. Left: proportion exposed in
the underlying cohort p = 0.3; right: p = 0.7.

Figure 8.8 shows that ARE is high when r is small, but declines as r
increases. The decline is slow when the relative incidence is less than 1, more
rapid when the relative incidence is greater than 1. In other words, the SCCS
design is most efficient, compared to a cohort analysis based on the same
cases, when the risk period is short compared to the observation period.

Figure 8.9 shows how the ARE varies with p, the proportion of individuals
exposed in the underlying cohort, in two scenarios: r = 0.1 (risk periods short
relative to observation periods) and r = 0.5 (risk periods longer relative to
observation periods). As shown in Figure 8.9, the ARE increases with the
proportion exposed. When the proportion exposed is high, the ARE is high
in all scenarios. When the proportion exposed is low, the ARE is high when
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FIGURE 8.9
Dependence of ARE on proportion exposed in the underlying cohort. Each line
corresponds to a different value of ρ = eβ, as labelled. Left: risk period short
in relation to observation period, r = 0.1; right: r = 0.5.

the relative incidence is low. As shown by both figures 8.8 and 8.9, the ARE
increases as the relative incidence ρ = eβ declines.

A heuristic explanation for these relationships is as follows. The informa-
tion about the relative incidence from a cohort study may be partitioned into
two components: the information derived from the timing of events relative
to exposures within individuals, and the marginal information contrasting the
number of events in exposed and unexposed cases (irrespective of when the
event occurred in relation to exposure). The SCCS method uses the within-
individual information, but not the marginal information. In circumstances
where there is little or no marginal information, the SCCS method will be
virtually as efficient as the cohort method. This occurs, for example, when all
or nearly all individuals are exposed (p close to 1). When p < 1, the contri-
bution of marginal information increases when the duration of the risk period
relative to the observation period increases, and also when the relative inci-
dence increases, and so the SCCS method becomes less efficient compared to
the cohort method.

The asymptotic relative efficiency of the SCCS method compared to de-
signs other than cohort methods may also be obtained. Of particular interest
is to compare the efficiency of a 1:1 matched case-control study with that of
a SCCS study with the same cases; when the event rate is low the odds ratio
and the relative incidence are virtually identical. Denoting both by ρ = eβ ,
the asymptotic relative efficiency is defined as follows:

ARE = lim
n→∞

var(β̂1:1 casecon)

var(β̂SCCS)
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Consider rare events in the following simple scenario: all individuals in the
target population (from which both cases and controls are drawn) have an
observation period of equal duration, a proportion p are exposed and experi-
ence a single risk period, the ratio of the risk period to the observation period
durations being r, and there are no age effects. The relative efficiency is then:

ARE =
(1− r)(1 + ρ)

(1− pr)(ρr + 1− r)
.

Note that when p = 1, so that all individuals in the target population are
exposed, then ARE > 1. Thus, in this setting the SCCS design is more efficient
than the 1:1 matched case-control design with the same cases. This also applies
when r is less than or equal to 0.5. Figure 8.10 shows the relationship between
ARE and r for the same scenarios as in Figure 8.8. This shows that the ARE
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FIGURE 8.10
Dependence of ARE (1:1 matched case-control vs SCCS) on ratio of risk to
observation periods. Each line corresponds to a different value of ρ = eβ,
as labelled. Left: proportion exposed in the target population p = 0.3; right:
p = 0.7. The horizontal dashed line indicates ARE = 1.

drops below 1 only when r is large. When the relative incidence is large and
the risk period duration is small compared to the observation period, the ARE
can be very much greater than 1.

These relationships may be explained heuristically as follows. The 1:1
matched case-control study only uses discordant case-control pairs, exclud-
ing cases whose matched control has the same exposure as the case. When
r is small, the proportion of discordant case-control pairs drops and so the
SCCS method becomes more efficient. On the other hand, when r is close
to 1, the proportion of discordant pairs can remain substantial provided that
p < 1, and so in some circumstances the SCCS method becomes less efficient.
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Summary

• The efficiency of the SCCS design may be compared to that of others
with the same cases using the asymptotic relative efficiency, or ARE.

• The SCCS method has good efficiency compared to cohort and case-
control designs when the proportion exposed is high and when the risk
period is short relative to the observation period.

8.3.2 Impact of design on parameter estimates

It follows from the theory of maximum likelihood estimation that the max-
imum likelihood estimator β̂ of the log relative incidence is asymptotically
unbiased and efficient. However, it is useful to understand the properties of
the estimator in finite samples, in particular the extent and direction of its
bias, and how these, and its variance, may depend on features of the design.

To obtain simple expressions for the first order approximation to the
asymptotic bias and variance, we consider a simple scenario, similar to that
described in Section 8.3.1. However, unlike the scenario previously described,
we shall restrict attention to exposed cases (thus, p = 1). In this scenario,
all cases have the same observation period and a single risk period, the ratio
of the risk period to the observation period durations being r. The relative
incidence is ρ = eβ .

Let n denote the number of events in the sample, all of which are in
exposed cases by assumption. The maximum likelihood estimator of β based
on a sample of this size is β̂. The bias of this estimator, in an asymptotic
sense, is bias(β̂) = E(β̂) − β, that is, the difference between the mean of
the estimator (more precisely, its asymptotic limit) and the true value of the

parameter. While both the bias and the variance var(β̂) of the estimator tend
to zero as n grows large, the rate at which they do so provides some indication
as to how the estimator behaves in finite samples.

The first order expressions for the asymptotic (as n grows large) bias and

variance of β̂ are as follows.

bias(β̂) ' 1

2n
{reβ − (1− r)}

( 1

reβ
+

1

1− r

)
, (8.3)

var(β̂) ' 1

n

{reβ + (1− r)}2

reβ(1− r)
. (8.4)

Bias and variance are often combined into a single measure of estimator per-
formance, the mean squared error:

MSE = bias(β̂)2 + var(β̂)

When the asymptotic quantities in Equations 8.3 and 8.4 are substituted in
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the expression for the MSE, we obtain the asymptotic mean squared error.
To first order in n, this is the same as the asymptotic variance.

Note that the bias is zero (asymptotically, to first order in n) when reβ =
1−r, that is, when the expected number of events in the risk period equals the
expected number of events outside the risk period. The variance and MSE
are lowest in this situation as well. More generally, the dependence of the bias
and variance on r and eβ specified by Equations 8.3 and 8.4 is illustrated in
Figure 8.11. In this figure, the bias and variance have both been multiplied
by n, the number of events, to remove the dependence on n. The curves in
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FIGURE 8.11
Dependence of asymptotic scaled bias and variance on r. Left: bias ×n; dashed
line represents zero bias. Right: variance ×n. Each line represents a different
value of ρ = eβ, as labelled.

Figure 8.11 indicate that estimators can potentially be badly behaved for
values of r close to 0 or 1. These curves, however, are scaled by the sample
size. The actual bias and variance expected in a sample of size n = 20 is shown
in Figure 8.12.

Even with a sample size as low as n = 20, the bias is generally close to
zero except for extreme combinations of r and ρ. To summarise, problems may
arise in small samples, especially when the risk period is very short or very
long in relation to the observation period. This is particularly so for short
risk periods when the the relative incidence is well below 1, and for long risk
periods when the relative incidence is well above 1. Most importantly, when
the risk period is very short, the bias is likely to be negative, so that the
estimated value of the relative incidence may be lower than the true value.

If the risk period is short, the best way to reduce an anticipated small-
sample bias at the design stage of the study is to increase the number of events
to be sampled among exposed cases. Reducing the duration of the observation
period with the aim of increasing r will not help: it would lead to a reduction
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FIGURE 8.12
Dependence of asymptotic bias and variance on r for n = 20. Left: bias; dashed
line represents zero bias. Right: variance. Each line represents a different value
of ρ = eβ, as labelled.

in the number of events n and to an increase in the variance of the estimator.
Thus, suppose that M is the size of the target population, λ is the event rate
in the absence of exposure, e1 is the duration of the risk period and e0 is
the duration of the control period, so that the observation period has length
e0 + e1. Then the expected number of events is

E(n) = Mλ(e1ρ+ e0).

Substituting this expression for n in Equation 8.4, we obtain (to first order in
M),

var(β̂) =
1

Mλ

( 1

e0
+

1

e1eβ

)
.

Thus the variance of β̂ decreases as the control period length e0 increases, for
a fixed risk period duration e1. The asymptotic relative efficiency associated
with a control period of duration e0 relative to e0 =∞ is:

ARE∞ =
(

1 +
e1e

β

e0

)−1

.

This function is plotted in Figure 8.13. When e0 = e1×ρ, the bias is zero, but
ARE∞ is only 0.5. Thereafter, as e0 increases, the relative efficiency increases
towards 1.

As stated above, if the issue of bias is potentially of concern, efforts should
be made at the design stage to increase the sample size. In some circumstances,
it may be possible to maximise the number of exposed cases by choosing the
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FIGURE 8.13
Asymptotic relative efficiency ARE∞ by control period duration e0.

observation period so as to capture the age range at which most exposures
occur. Increasing the number of exposed cases will reduce both the finite
sample bias and the asymptotic mean squared error.

Summary

• In simple scenarios, the asymptotic bias and variance of the estimator
of the log relative incidence may be obtained in terms of the number of
events in exposed cases, the ratio of the risk period to the observation
period, and the relative incidence.

• In such scenarios, the bias is zero, and the variance is lowest, when
the expected number of events in the risk period equals the expected
number of events outside the risk period.

• Extreme combinations of relative incidence and risk period can produce
biased estimates with large variances in small samples.

• SCCS analyses in small samples with very short risk periods are likely
to produce estimates with negative bias, that is, an estimated relative
incidence lower than the true value.

• The observation period should be chosen in such a way as to maximise
the number of exposed cases.
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8.3.3 Estimability and identifiability in SCCS models

In this section, we collect together several topics relating to the estimability
and identifiability of the parameters in a SCCS model, and the interpretation
of relative incidences. Most of these issues have been touched upon in earlier
chapters, insofar as they arose in the context of SCCS analyses. Our aim here
is to focus on how they might influence the choice of SCCS design. These
issues can be dealt with much more formally (see Section 8.3.4). Here we take
an informal, descriptive approach.

Estimability and interpretation of the relative incidence
As it is based on cases only, the SCCS method cannot be used to estimate
absolute risks without additional information, as will be described in Sec-
tion 8.5.1. Nor can it be used to estimate relative incidences associated with
time-invariant exposures that act multiplicatively on the baseline incidence. If
an exposure has both a time-invariant component and a time-varying compo-
nent, then only the second may be estimated in a SCCS study. In such settings,
some care is needed in interpreting a relative incidence obtained from a SCCS
study.

In Chapter 1, Section 1.2, we gave the example of physical exercise: reg-
ular exercise may be beneficial in reducing the risk of cardiovascular disease,
but episodes of physical exertion may increase the short-term risk. The long-
term benefit associated with taking regular exercise cannot realistically be
estimated in a SCCS study, as it is essentially time-invariant. Estimation of
this effect requires a comparison between individuals taking and not taking
regular exercise. On the other hand, the relative incidence associated with
episodes of physical exertion can be estimated in a SCCS study, as the expo-
sure varies within individuals. The two exposures – taking regular exercise,
and episodic exertion – should thus be regarded as distinct. Effect modifica-
tion of the episodic risk by regular exercise may, however, be estimated in a
SCCS study, provided that covariate information on taking regular exercise is
collected on the cases.

Note that the SCCS method does not require the exposure to be transient:
however the exposure cannot be time-invariant. Examples of SCCS analy-
ses with exposures that are time-varying but not transient were presented in
Chapter 4, Sections 4.8.1 and 4.8.2.

Care in interpretation is also required with SCCS studies in which the
observation period starts at exposure, especially when the control period,
which follows the risk period, is of short duration. Such studies may certainly
be used to identify a risk gradient after exposure. However, estimating the
relative incidence relative to an unexposed baseline level requires that the
incidence should return to this level in the control period. This assumption
will often be reasonable, but it cannot be tested in a SCCS study in which
the observation periods start at exposure. The issue arises, in particular, in
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self-controlled risk interval studies, described in Section 8.1.6, in which the
control period is typically brief.

An example was described in Chapter 4, Section 4.8.3: the exposure was
nicotine replacement therapy (NRT), and the event was myocardial infarction
(MI). The question of interest was whether MI is associated with the initiation
of NRT therapy. The observation periods were relatively short: one year from
first NRT prescription. Thus, the relative incidence is based on a contrast
between the ratio of incidences in the period immediately following the initia-
tion of NRT therapy, and the incidence in the remaining period up to one year
later. Such a SCCS study can certainly identify or rule out a risk gradient,
but cannot necessarily determine, without further information, whether the
exposure is associated with an elevated or reduced relative incidence.

Aside from the efficiency considerations discussed in Section 8.3.2, it is
advisable when possible to use longer observation periods, not necessarily
starting at exposure, as these offer more opportunities to test the assump-
tions of the model, and to contextualise the risk profile.

Identifiability of parameters
The parameters of a SCCS model may be unidentifiable if exposure and age
effects are confounded. To take an extreme example, if an exposure were uni-
versal, and always occurred at exactly the same age or time for all individuals,
then it would not be possible to separate the effects associated with exposure
from the effects associated with age or time. This is true whatever the study
design, including the SCCS design.

We encountered such a situation, in which exposure and temporal effects
are confounded, in Chapter 6, Section 6.6. The exposure was environmental,
and affected everyone in the population studied at the same time. Thus, it was
not possible to identify separately the effect of the exposure from the effect
associated with temporal variation.

The solution in this case was to choose the observation periods so that
temporal variation within observation periods could be ignored. By removing
the temporal confounder from the model, the exposure effect can then be
identified. Such an approach usually – and exceptionally – requires observation
periods to be of short duration.

More generally, it is not uncommon for age and exposure effects to be
confounded to some degree. For example, childhood vaccinations are typically
administered according to a strict age-related schedule. In practice, there is
variation in age at vaccination, so this is not a problem provided that the risk
period is short. However, if the post-vaccination risk period is long or indefi-
nite, as was the case for the MMR vaccine and autism example discussed in
Chapter 4, Section 4.8.2, then there may be little between-individual varia-
tion in exposure history among vaccine recipients. As a result, the long-term
effects of vaccination are to some degree confounded with age effects.

In this example, there happened to be more variation in age at vaccination
owing to the MMR catch-up programme (in which older unvaccinated children
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were offered MMR vaccination). And in addition, confounding was reduced
by the inclusion of cases who did not receive MMR vaccine.

To get round the problem of lack of variability in exposure between exposed
individuals, unexposed cases should be included in the SCCS analysis. Such
cases enable the effects of age and exposure to be separately identified.

A further instance of non-identifiability relates to the inclusion of temporal
as well as age effects within a SCCS model. Multiplicative cohort effects are
not estimable in a SCCS model, as they are time-invariant. Multiplicative age
and time effects may or may not be identifiable when included together in a
SCCS model. As noted in Chapter 6, Section 6.1.1, an exponential time effect
is not separately identifiable within a semiparametric SCCS model. Thus, if
a temporal effect η(u) (u representing calendar time) is exponential, with
η(u) = exp(δu), and ui denotes the calendar time of birth of an individual i,
so that u = t+ ui, (t being age) then

η(u) = exp(δt)× exp(δui).

The term exp(δui) is a cohort effect. This drops out of the SCCS likelihood,
and the term exp(δt) is incorporated into the age effect. In standard SCCS
models, exponential time trends, with times grouped in distinct categories,
are only partially identifiable when the model also includes an age effect.

The practical implication is that estimated age effects encompass exponen-
tial calendar time trends. When the calendar time effect is cyclical, as is the
case with seasonality, then age and calendar time effects may be separately
identified. If the temporal effect includes both an exponential trend and a
cyclical seasonal component, the exponential trend will be absorbed into the
age effect, and only the seasonal component need be specified explicitly.

Summary

• Only time-varying effects can be estimated in a SCCS study. Effect
modification by time-invariant factors can also be estimated.

• In SCCS studies with initial risk periods and short observation periods,
only the presence or absence of a risk gradient can reliably be identified
without further assumptions.

• If there is little variation in the timing of exposures within exposed
cases, the exposure and age effects may be confounded.

• In such circumstances, including unexposed cases, or choosing observa-
tion periods so that age effects may be ignored, enables exposure effects
to be identified.

• In a SCCS model, exponential calendar time trends are largely con-
founded with age effects. Non-exponential calendar time effects, such as
cyclical seasonal variation, may be identified.
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8.3.4 More on identifiability and relative efficiency*

In this section we discuss identifiability and efficiency issues from a more
theoretical perspective, in an asymptotic setting. In particular we derive an
expression for the asymptotic relative efficiency of the cohort method and the
SCCS method with the same cases, in the presence of age effects.

To simplify the calculations, we consider a target population of individuals
with the same observation period (a, b]. Let X denote the exposure history of
a randomly selected individual from this population; the observation history
is not represented explicitly. We assume that X has a well-defined density. As
in Chapter 4, Section 4.10, we assume that the age-specific relative incidence
ψ(t) may be written ψ(t) = exp{u(t)Tα} and that the relative incidence func-
tion associated with an exposure history X = x is ρ(t|x) = exp{v(t;x)Tβ}.
This parameterisation applies to the standard SCCS model. Furthermore, we
assume that there are no time-invariant covariates, though these could readily
be incorporated. A cohort of M individuals is randomly sampled from this
population, including N ≤M cases. The N cases i = 1, . . . , N are listed first,
followed by the M − N non-cases. Individual i experiences ni events, with
ni > 0 for i = 1, . . . , N , and ni = 0 for i = M −N + 1, . . . ,M . For case i, tij
is the time of the jth event.

The event rate for an individual i with exposure history xi from this cohort
may be written

λ(t|xi) = exp{γ + u(t)Tα+ v(t;xi)
Tβ}.

The cohort model involves the parameters γ, α and β, whereas the SCCS
model involves just α and β. The likelihood for the SCCS model is as follows:

LSCCS =
N∏
i=1

ni∏
j=1

( exp{u(tij)
Tα+ v(tij ;xi)

Tβ}∫ b
a

exp{u(t)Tα+ v(t;xi)Tβ}dt

)
. (8.5)

The cohort likelihood is:

Lcohort =
N∏
i=1

ni∏
j=1

exp{γ + u(tij)
Tα+ v(tij ;xi)

Tβ}

×
M∏
i=1

exp
(
−
∫ b

a

exp{γ + u(t)Tα+ v(t;xi)
Tβ}dt

)
. (8.6)

At its heart, the relative efficiency of the SCCS and cohort methods derives
from the interplay of within and between-individual variability in exposure
and age effects. We begin by defining suitable measures of within-individual
and between-individual variability. For an individual with exposure history x,
define the density

fx(t) =
exp{u(t)Tα+ v(t;x)Tβ}∫ b

a
exp{u(s)Tα+ v(s;x)Tβ}ds

.

* This section may be skipped.
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Now define the within-individual mean µx and variance νx of the exposure
vector v(t;x) with respect to this density:

µx =

∫ b

a

v(t;x)fx(t)dt,

νx =

∫ b

a

v(t;x)v(t;x)T fx(t)dt− µxµTx ,

the integrations being undertaken component-wise. Also define the following
within-individual mean and variance of the age vector u(t) and its within-
individual covariance with the exposure vector:

θx =

∫ b

a

u(t)fx(t)dt,

δx =

∫ b

a

u(t)u(t)T fx(t)dt− θxθTx ,

κx =

∫ b

a

v(t;x)u(t)T fx(t)dt− µxθ
T
x .

We will need to average these within-individual quantities across individuals
in the cohort. Define the mean intensity Λ and weights ωx as follows:

Λ = E
[ ∫ b

a

exp{γ + u(t)Tα+ v(t;X)Tβ}dt
]
,

ωx =
1

Λ

∫ b

a

exp{γ + u(t)Tα+ v(t;x)Tβ}dt,

where the expectation E is with respect to the distribution of exposure histo-
ries X of the individuals within the target population from which the cohort
is drawn. The ωx give greater weight to individuals that are more likely to
experience greater numbers of events. We define the average within-individual
variances and covariances as follows:

varw(v) = E(ωXνX),

varw(u) = E(ωXδX),

covw(v,u) = E(ωXκX).

The subscripts w indicate that these refer to (average) within-individual
quantities. We also define between-individual variances and covariances, sub-
scripted by the letter b, as follows, with µ = E(ωXµX) and θ = E(ωXθX).

varb(v) = E(ωXµXµ
T
X)− µµT ,

varb(u) = E(ωXθXθ
T
X)− θθT ,

covb(v,u) = E(ωXµXθ
T
X)− µθT .
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Also define the total variances and covariances as the sum of the within and
between quantities, that is, vart ≡ varw + varb and covt ≡ covw + covb.

The matrix of second derivatives of the SCCS log likelihood from Expres-
sion 8.5, times −1, may be written

M∑
i=1

ni

(
νxi

κxi

κTxi
δxi

)
, (8.7)

since ni = 0 for i > N . The expectation of ni is MΛωxi . As the cohort size M ,
and hence the number of cases N , increases, Expression 8.7 is asymptotically
equivalent to

ISCCS = n

(
varw(v) covw(v,u)

covw(v,u)T varw(u)

)
,

where n is the number of events, which has expectation MΛ in a cohort of size
M . For the cohort model, the matrix of second derivatives of the likelihood
from Expression 8.6, times −1, may be written

M∑
i=1

Λωxi

 νxi
+ µxi

µTxi
κxi

+ µxi
θTxi

µxi

κTxi
+ θxiµ

T
xi

δxi + θxiθ
T
xi

θxi

µTxi
θTxi

1

 .

As the cohort size M increases, this is asymptotically equivalent to

Icohort = n

 vart(v) + µµT covt(v,u) + µθT µ

covt(v,u)T + θµ vart(u) + θθT θ

µT θT 1

 .

The asymptotic variances of β̂, the maximum likelihood estimator of β, for
the SCCS and cohort models, are obtained by inverting the matrices ISCCS

and Icohort. We use a standard identity for partitioned matrices: if

D =

(
A B

BT C

)
,

then the upper left corner of D−1 is (A−BC−1BT )−1, provided all inverses
exist. In the case of the cohort model, this identity is applied twice.

The asymptotic variances of β̂ are as follows:

varSCCS(β̂) =
1

n

{
varw(v)− covw(v,u)varw(u)−1covw(v,u)T

}−1
, (8.8)

varcohort(β̂) =
1

n

{
vart(v)− covt(v,u)vart(u)−1covt(v,u)T

}−1
. (8.9)

In the SCCS model, the variance of β̂ is undefined if v(t,X) is of the form
Au(t) + cX , where A is a time-invariant matrix and cX is a time-invariant
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vector that may vary between individuals. This corresponds to the situation
in which the exposure and the age profiles are collinear within individuals.
In this case, exposure and age effects are wholly confounded, and so β is
unidentifiable and hence cannot be estimated with the SCCS method.

In the cohort model, on the other hand, the exposure and age effects are
wholly confounded when v(t,X) = Au(t) + c, where c is a constant vector
that does not vary between individuals – a more stringent condition than for
the SCCS method. Thus, when exposure and age profiles are collinear within
individuals, the exposure effect β may still be estimable within the cohort
model, provided there is sufficient between-individual variation.

Now suppose that there is a single log relative incidence parameter β to
be estimated, so v(t, x) is a time-varying indicator function taking the values
0 in control periods and 1 in risk periods. The asymptotic relative efficiency
of β̂ in the SCCS design compared with the cohort design is obtained from
the ratio of the variances, that is, Expression 8.9 divided by Expression 8.8.
This ratio may be written:

ARE =
varw(v)

vart(v)
× 1−R2

w

1−R2
t

,

where R2
w and R2

t are akin to multiple squared correlations (Mardia et al.,
1979, page 168).

Thus, the asymptotic relative efficiency of the SCCS method is high when
the average within-individual variation in exposure accounts for a large pro-
portion of the total variation in exposure, and when there is little collinearity
between exposure and age profiles within individuals.

For the special case described in Section 8.3.1, there are no age effects so
ARE = varw(v)/vart(v). The exposure histories are binary:

v(t;X) =

{
I(a,a+d](t) if X = 1,

0 if X = 0,

with X = 1 occurring with probability p. Then Λ = eγ{p(reβ+1−r)+(1−p)},
and

varw(v) =
preβ(1− r)

{p(reβ + 1− r) + 1− p}(reβ + 1− r)
,

vart(v) =
preβ(1− rp)

{p(reβ + 1− r) + 1− p}2
.

Thus we have

varSCCS(β̂) =
( 1

Mpeα

)reβ + 1− r
reβ(1− r)

,

varcohort(β̂) =
( 1

Mpeα

)p(reβ + 1− r) + 1− p
reβ(1− rp)

,

from which the ARE in Equation 8.2 may be derived.
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8.4 Presentation of SCCS studies

The presentation of a SCCS study should follow the same principles that
apply to any other type of epidemiological investigation: the conduct of the
study should be described in sufficient detail to enable readers, in principle, to
reproduce it. It should include precise information on how observation periods
and risk periods are specified, how events and exposures are defined, and how
cases are sampled. It should also include details of what sensitivity analyses
were undertaken and other steps to verify the assumptions when these are in
doubt.

Rather than expanding further on these broad principles, in this section
we focus on some very much more practical issues. We begin by describing
how to obtain event counts and person-time totals, and how to use them in
results tables. Then we briefly review some of the graphs that can be displayed
to present SCCS data and results.

8.4.1 Results tables for SCCS studies

When reporting the results of a SCCS study, notably in results tables, it is
good practice to state not just the relative incidences, with 95% confidence
limits, but also the number of events within each risk period. Presenting event
counts is particularly important for assessing the strength of evidence, as well
as the validity of asymptotic assumptions. It may also be useful to present data
summaries on the total or average person-time within each risk period for the
cases in the study, though care is needed in interpreting such information:
owing to the self-matching involved, they are not denominators in the usual
sense.

Obtaining such descriptive statistics is readily achieved using the R pack-
age SCCS with the function formatdata, which reshapes the data in a form
suitable for SCCS analysis using the standard SCCS model. This function,
which was described in Chapter 4, Section 4.3.2, may be used to obtain event
counts and person-time totals in the various exposure and age groups.

8.4.2 MMR vaccine and ITP: relative incidence table

We return in this example to the data on ITP and MMR vaccine first discussed
in Chapter 4, Section 4.3.1. The data, in data frame itpdat, comprise 44
events in 35 cases. The risk period included days 0 to 42 after MMR vaccine;
an analysis was also done with three 2-week risk periods, [0, 14], [15, 28] and
[29, 42] days after MMR vaccine. In these analyses, the observation periods,
which were all comprised within the second year of life from 366 to 730 days
of age, were partitioned into six roughly 2-month age groups with cutpoints
at 427, 488, 549, 610 and 671 days of age.
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The estimated relative incidences were 1.31, 95% CI (0.30, 5.73) in the
[0, 14]-day risk period; 5.95, 95% CI (2.52, 14.1) in the [15, 28]-day risk period,
and 2.60, 95% CI (0.75, 9.07) in the [29, 42]-day risk period. Over the whole
6-week risk period, RI = 3.23, 95% CI (1.53, 6.79).

To better contextualise these results, we shall obtain event counts using
the R function formatdata. Thus:

itp.dat1 <- formatdata(indiv=case, astart=sta, aend=end,

aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=itpdat)

Obtaining the event counts by exposure group is readily achieved as fol-
lows:

> tapply(itp.dat1$event, itp.dat1$mmr, sum)

0 1 2 3

31 2 8 3

Thus, there are 31 events in control (unexposed) periods, 2 in the first 2-week
risk period, 8 in the second 2-week risk period, and 3 in the third 2-week risk
period. Event counts in each age group are obtained in a similar fashion:

> tapply(itp.dat1$event, itp.dat1$age, sum)

1 2 3 4 5 6

16 11 3 4 5 5

Table 8.1 shows the results as they might be presented in a report of the
study. When reading this table, it is apparent that the relative incidences for

TABLE 8.1
Relative incidences (RI) for MMR and ITP.

Risk period No. events RI 95% CI
Unexposed 31 1.00 –
0 - 14 days 2 1.31 (0.30, 5.73)
15 - 28 days 8 5.95 (2.52, 14.1)
29 - 42 days 3 2.60 (0.75, 9.07)
0 - 42 days 13 3.23 (1.53, 6.79)

the first and third 2-week periods are based on very small numbers of events
(2 and 3 events, respectively). Thus, the estimate obtained for the 0–42 day
risk period may be more robust.

Person-time within each risk or age category for the cases in the study
may also be obtained using the R function formatdata. However, some care
is needed: when reshaping the data, individuals with multiple events are repli-
cated and a new individual counter, indivL, is created. For these data, indivL
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takes values 1 to 44 (the number of events) rather than 1 to 35 (the number
of cases). To obtain person time for the 35 cases, we need to de-duplicate the
cases. This is achieved by subsetting the data:

itp.dat2 <- formatdata(indiv=case, astart=sta, aend=end,

aevent=itp, adrug=mmr, aedrug=mmr+42,

expogrp=c(0,15,29), agegrp=c(427,488,549,610,671),

data=subset(itpdat,duplicated(case)==0))

The total person-time for the exposure groups is then obtained as follows:

> tapply(itp.dat2$interval, itp.dat2$mmr, sum)

0 1 2 3

11147 464 426 408

Thus, for the 35 cases, there are 11147 person-days in control periods, and
464, 426 and 408 in the three risk periods, respectively. Similarly for the age
groups:

> tapply(itp.dat2$interval, itp.dat2$age, sum)

1 2 3 4 5 6

2013 2096 2135 2135 2135 1931

The interpretation of person-time in a SCCS study requires some caution.
It is important to remember that person-time does not represent a denomina-
tor, as in a cohort study, since it is calculated from cases alone. The relative
incidence estimator in a SCCS study is not a simple age-adjusted ratio of
absolute rates (a rate being a count divided by person-time), except in very
particular circumstances such as those described in Section 8.1.6.

8.4.3 Multiple exposures: NSAIDs and antidepressants

The presentation of results is complicated when there are several distinct
exposure types to be included in the same model. In this case, it may be best
to provide a separate table giving the cross-classification of event counts and
person-time totals by exposure type and level.

In Chapter 4, Section 4.5.2, data on 1000 gastro-intestinal bleeds were
presented. Of particular interest was the possible interaction between non-
steroidal anti-inflammatory drugs (NSAIDs) and antidepressants (ADs), in
Section 4.7.2 of the same chapter. The data are in data frame addat, and
include only first bleeds.

First, we reshape the data using formatdata, using the age groups previ-
ously specified for these data:

ageq <- floor(quantile(addat$bleed[duplicated(addat$case)==0],

seq(0.025,0.975,0.025),names=F))

ad.dat1 <- formatdata(indiv=case, astart=sta, aend=end,

aevent=bleed, adrug=cbind(ns,ad),

aedrug=cbind(endns,endad), agegrp=ageq, data=addat)
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The cross-classification of event counts by exposure type is obtained by enter-
ing the exposures as a list as follows.

> tapply(ad.dat1$event, list(ad.dat1$ns,ad.dat1$ad), sum)

0 1

0 710 78

1 184 28

In this table, the rows correspond to NSAIDs (specified first in the list), and
the columns to ADs. Thus, 710 GI bleeds occurred when not exposed to ei-
ther NSAIDs or ADs, 78 occurred when exposed to ADs but not NSAIDs,
184 occurred when exposed to NSAIDs but not to ADs, and 28 occurred
when exposed to both NSAIDs and ADs. Similarly, person-time, expressed as
person-years, is obtained as follows; as the data comprise only first events,
there are no recurrent events, so we do not need to subset the data.

> tapply(ad.dat1$interval, list(ad.dat1$ns,ad.dat1$ad),

sum)/365.25

0 1

0 7540.7721 527.4743

1 994.2478 172.7009

So the 1000 cases experienced 7540.77 person-years of observation with no
exposure, 994.25 years of exposure to NSAIDs alone, 527.47 person-years of
exposure to ADs alone, and 172.70 years of exposure to both NSAIDs and
ADs. These summaries are presented together in Table 8.2.

TABLE 8.2
Person time and GI bleeds by exposure type.

Exposure Person-years GI bleeds
Neither 7540.77 710
NSAID only 994.25 184
AD only 527.47 78
NSAID + AD 172.70 28

Unlike the MMR vaccine and ITP example in Section 8.4.2, the risk period
durations vary from case to case. The person-time in Table 8.2 may be used
to obtain the average times at risk. There are 1000 cases in this study. Thus,
cases spent on average 7.54 years unexposed to NSAIDs or ADs, 0.99 years
exposed to NSAIDs alone, 0.53 years exposed to ADs alone, and 0.17 years
exposed to both NSAIDs and ADs.

In SCCS models with both the effects of NSAIDs and ADs, there may
be no one-to-one correspondence between event counts and relative incidence
estimates. For example, the relative incidence for NSAIDs in the model with
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no interaction is based on the number of events in the NSAID only and the
NSAID + AD categories. Thus, rather than attempt to construct a table like
Table 8.1, it is preferable to present the person-time and event counts in a
table such as Table 8.2, and the relative incidences in a separate table.

8.4.4 Graphical displays for SCCS studies

In earlier chapters we have used several different types of graphs to present
SCCS data and results from SCCS studies. In this subsection we review these
different graphs, and comment briefly on their use.

Observation periods
Graphs displaying the observation periods are useful primarily for large data
sets in which there is substantial variation in the ages at which the observation
periods start and end. Such graphs provide a visual impression of the structure
and spread of the data. For example, Figure 4.3 in Chapter 4, Section 4.3.3
shows that there is considerable overlap of observation periods between cases;
in contrast the left panel of Figure 4.4 in Section 4.4.1 from the same chapter
shows that observation periods are short in relation to their spread over the
age range. An even more extreme case is Figure 4.18, in Section 4.8.3, which
shows that there is very little overlap between observation periods. This carries
implications for the modelling of age effects.

Graphs of observation periods are not likely to be very useful when most
observation periods share the same endpoints.

Risk periods
Diagrams showing risk periods readily convey key information about the SCCS
model. For example, Figure 4.2 in Chapter 4, Section 4.3.3 illustrates a com-
plex succession of risk and washout periods. Such graphs can also display risk
periods in relation to observation periods, as in Figure 4.13 in Chapter 4,
Section 4.8.1.

Exposure and event distributions
Descriptive information about age at event and age at exposure is most read-
ily presented in the form of histograms, as in Figure 4.6 from Chapter 4, Sec-
tion 4.4.2. In this example each case experiences up to three doses of vaccine,
which have been combined in one histogram: they could be plotted separately
if preferred.

The shape of the histogram for age at event needs to be interpreted with
some care, as it may reflect changes in durations of observation periods at
different ages. When there is little variation in observation periods between
cases, the shape of the histogram can help to inform the choice of age categories
in the SCCS model.

A histogram of exposures and events by season can similarly be used to
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explore the desirability of including seasonal effects in the SCCS model, as in
Figure 4.21 from Chapter 4, Section 4.9.2.

The histogram of age at exposure is perhaps most relevant for point expo-
sures, such as vaccines, and risk periods of fixed duration. When risk period
durations vary substantially between cases, a representation such as that used
in the right panel of Figure 4.4 in Chapter 4, Section 4.4.1 may be more useful.

Centred plots
Centred event plots, in which the time intervals between exposures and events
are plotted, were discussed in Chapter 5, Sections 5.4.1 and 5.5.1. These plots,
which may be supplemented by centred observation plots, can be used for two
different purposes.

First, they provide a useful representation of the data which can help to
illustrate the presence or absence of an association, and can therefore sup-
plement the numerical results obtained from a SCCS model. This can be
particularly useful for risk communication. An example is Figure 5.12 from
Section 5.5.2 of Chapter 5. Figure 2.1 in Section 2.1 of Chapter 2 is also a
centred plot. However, an important proviso surrounds the use of such plots:
they should not be used to choose the risk period when applying the methods
described in this book. To do so would invalidate the inferences drawn from
the model, as the risk period would then be data-dependent. For this reason,
we avoided them entirely in Chapter 4 which focused on model fitting.

Second, centred plots may be used to investigate short-term event depen-
dence of exposures, as described in Section 5.4.1 of Chapter 5. Examples from
Chapter 5 include Figure 5.7 in Section 5.4.2, Figure 5.9 in Section 5.4.3 and
Figure 5.10 in Section 5.4.4.

Fitted models
For most SCCS models, graphical representations of the exposure effect are
unenlightening, as there are only a small number of parameters: tabular pre-
sentation of the results, discussed in Section 8.4.1, is usually preferable. Spline
models for the exposure effect are the exception: indeed for such models, only
a graphical representation makes sense. An example of such a graph is Fig-
ure 6.9 from Section 6.3.2 of Chapter 6.

While age effects are not usually the focus of inference, it may sometimes
be appropriate to display the fitted relative age effect. It may be preferable
to do so using a graph rather than a list of parameter estimates. Examples
include Figure 4.11 of Section 4.7.1 and Figure 4.15 in Section 4.8.1 of Chap-
ter 4. For the semiparametric SCCS model, the cumulative relative age effect
is plotted, as in Figure 6.1 of Section 6.1.2, Chapter 6. Age effects for spline-
based SCCS models may also be plotted, as in Figure 6.4 from Section 6.2.2
of Chapter 6.

Sensitivity analyses
Several special plots were described in Chapter 5 relating to testing assump-



Measures of attribution in SCCS studies 335

tions and sensitivity analyses. These include the cumulative hazard plot for
gap times, such as Figure 5.1 in Section 5.2.2; histograms of the interval from
event to end of observation in censored and uncensored cases, such as Fig-
ure 5.6 in Section 5.3.3; plots of relative incidences by duration of pre-exposure
risk interval such as Figure 5.8 in Section 5.4.2. The use of these and other
such plots should be governed by the specific application under consideration.

Summary

• Event counts in risk and control periods are required to interpret relative
incidences, and should be quoted or included in results tables.

• It may also be appropriate to present person-time totals or averages.
Person-time totals should not be interpreted as denominators as they
relate only to cases.

• A wide range of graphs may be used to display key features of the data
to guide model choice, to illustrate the findings of a SCCS analysis, or
to summarise sensitivity analyses.

8.5 Measures of attribution in SCCS studies

If a relative incidence is found to be statistically significantly different from 1,
the issue arises as to whether the association is causal or artefactual. This issue
cannot be decided on statistical grounds alone, though a detailed investigation
of the assumptions, as described in Chapter 5, and other types of bias is a
necessary part of such an assessment.

If a statistically significant positive association is believed to be causal, it
may be relevant, for the purpose of contextualising the results and risk com-
munication, to present further estimates of the burden of disease attributable
to the exposure. Two such measures are the attributable fraction, or AF ,
and the population attributable fraction, or PAF . Although SCCS studies do
not provide direct estimates of absolute effects, in certain circumstances an
estimate of the absolute risk, or AR, may also be obtained indirectly using
additional information.

In Section 8.5.1 we discuss measures of attribution, including the at-
tributable fraction, population attributable fraction, attributable risk and
number needed to harm, and when and how these can be obtained from a
SCCS study. Sections 8.5.2 and 8.5.3 give examples of such calculations.
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8.5.1 Attributable fraction and attributable risk

Suppose first that just one relative incidence ρ is involved, which might relate
to unique or repeated exposures. We shall consider multiple relative incidences
later. In the context of SCCS studies, the attributable fraction is the propor-
tion of events arising within a risk period that may be attributed to the
exposure. This is obtained as follows from the relative incidence ρ:

AF =
ρ− 1

ρ
. (8.10)

It is estimated by substituting the RI estimate ρ̂ for ρ in Expression 8.10.
Since AF is a monotone function of ρ, a confidence interval for AF may be
obtained by substituting the confidence limits for ρ in Expression 8.10. The
description of the attributable fraction should always mention the risk period
to which it relates. This also applies to other measures of attribution, to be
described below.

In some circumstances, an estimate of the population attributable fraction
PAF may also be obtained from a SCCS study. The PAF is the proportion
of events arising in a defined population that are attributable to the exposure.
Estimating the PAF from SCCS data requires one key condition to be fulfilled:
the SCCS study must be based on a simple random sample or a census of all
events arising in the population. If n denotes the total number of events in
the SCCS study and n1 denotes the number of events in risk periods, then

PAF =
ρ− 1

ρ
× n1

n
. (8.11)

This is estimated by substituting ρ̂ for ρ in Expression 8.11.
In yet more restricted circumstances, a rough estimate of the attributable

risk AR may be obtained from a SCCS study. This is the probability that
an exposed individual from the population studied will experience an event
caused by the exposure. Estimating the AR from a SCCS study requires two
key conditions to be met. First, the SCCS study must include all events arising
in exposed subjects (subjects with at least one exposure) within the popula-
tion of interest; second, the number of exposed subjects within the relevant
population must be known. Let E be this number. Then:

AR =
ρ− 1

ρ
× n1

E
, (8.12)

where n1 is the total number of events arising within the risk period in this
population. AR is estimated by substituting ρ̂ for ρ in (8.12). Often, only a
rough estimate of E is available, and hence only a rough estimate of AR can
be obtained. Nevertheless, AR can still usefully convey the order of magni-
tude of the attributable risk. Sometimes the reciprocal of AR is more readily
interpretable; this is called the number needed to harm, or NNH.

Suppose now that K distinct relative incidences ρ1, . . . , ρK are found to be
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statistically significantly greater than 1, and that the corresponding associa-
tions are believed to be causal. For each k, ρk may relate to one or several risk
periods at exposure level k. The different exposure levels k typically relate to
distinct risk periods for the same exposure.

The attributable fraction AFk is then calculated for each k, and applies
specifically to risk periods at exposure level k:

AFk =
ρk − 1

ρk
.

Let n1k denote the number of events in risk periods at exposure level k. Then
the population attributable fraction is:

PAR =
1

n

K∑
k=1

(ρk − 1

ρk

)
× n1k.

The attributable risk is obtained as PAR with E in place of n:

AR =
1

E

K∑
k=1

(ρk − 1

ρk

)
× n1k.

As before, estimates of AFk, PAR and AR are obtained by substituting the
estimated relative incidences ρ̂k for ρk.

Obtaining confidence intervals for PAR and AR should take into account
the fact that ρ̂ and n1 are correlated; one approach is to use bootstrapping.
However, in view of the additional assumptions required, the values of PAR
and AR obtained from a SCCS study are best thought of as providing rough
orders of magnitude, especially if E is known only approximately.

8.5.2 Attributable risk: MMR and ITP

We derive measures of attribution for the study of ITP and MMR vaccine,
using the results reported in Section 8.4.2. Using a 0–42 day risk period post-
MMR, the relative incidence reported in Table 8.1 was found to be 3.23, with
95% CI (1.53, 6.79).

This estimate is significantly greater than 1. Assuming that the association
is causal, the attributable fraction for the 0–42 day risk period may then be
obtained as follows:

AF =
3.23− 1

3.23
= 0.690.

A 95% confidence interval for AR may be obtained by substituting the con-
fidence limits 1.53 and 6.79 in the same expression, yielding 0.346 and 0.853.
Thus the attributable fraction, expressed as a percentage, is 69.0%, with
95% CI (34.6%, 85.3%). Of the 13 events in the 0–42 day risk period, about
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0.69× 13 = 9.0 may reasonably be attributed to MMR vaccine, if the associ-
ation is deemed to be causal.

The cases obtained in this SCCS study included all hospital admissions for
ITP within two health regions, which arose in children aged between 1 and 2
years who could be matched to immunisation records. The number of MMR
vaccine doses administered in the underlying cohort from which the cases in
this SCCS study were drawn was estimated to be about 193 000 (Miller et al.,
2001). Thus, a rough estimate of the attributable risk in the 0–42 day risk
period may be obtained:

AR =
3.23− 1

3.23
× 13

193000
= 0.0000465.

A more readily interpretable measure is provided by number needed to harm,
which is the reciprocal of AR:

NNH =
1

AR
=

1

0.0000465
= 21504.

Thus, the number needed to harm is about 21 500. In conclusion, the at-
tributable risk for the 0–42 day post-vaccination risk period in this population
is about 1 episode of ITP per 21 500 MMR doses. Such information on the
order of magnitude of the attributable risk can usefully help to contextualise
the relative incidence estimate.

8.5.3 Attributable risk: intussusception and rotavirus
vaccine

In Chapter 7, Section 7.1.3 we presented jittered data on rotavirus vaccine
and intussusception from the United Kingdom. The vaccine is administered
in two doses, and the risk periods of interest comprised the intervals 1–7 days
and 8–21 days after each dose.

The results obtained suggest elevated relative incidences of intussusception
in the 1–7 day risk period after dose 1 and in the 8–21 day period after dose 2,
the RIs being statistically non-significant in the other two risk periods. As it
makes little sense to calculate measures of attribution for relative incidences
that are not statistically significant, our first step is to re-run the analyses
using a single combined 1–21 day risk period for each dose.

This is done as follows:

age <- seq(56,168,14)

rot.mod4 <- eventdepenexp(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(rv,rvd2),

aedrug=cbind(rv+21,rvd2+21), sameexpopar=F,

agegrp=age, dataformat="multi", data=rotdat)

This yields:
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> rot.mod4

......

exp(coef) exp(-coef) lower .95 upper .95

rv1 4.426 0.2259 2.4161 8.108

rv2 2.556 0.3913 1.4052 4.648

The relative incidences are statistically significantly elevated for both doses
over the 1–21 day risk period. As recommended in Section 8.4.1, we next
obtain the event counts in the two risk periods.

rot.dat1 <- formatdata(indiv=case, astart=sta, aend=end,

aevent=intus, adrug=cbind(rv,rvd2),

aedrug=cbind(rv+21,rvd2+21), sameexpopar=F,

agegrp=age, dataformat="multi", data=rotdat)

We may then obtain the event counts by exposure level at each dose:

> tapply(rot.dat1$event, rot.dat1$rv, sum)

0 1 2

527 20 19

Thus there are 20 events in the 1–21 day risk period after dose 1, and 19 after
dose 2. There are 527 events outside the risk period. Of these, 471 arose in
a historical cohort prior to the introduction of rotavirus vaccination, and 56
arose after the introduction of the vaccine (Stowe et al., 2016); the historical
cases contribute to the estimation of the age effects, but not directly to the
exposure effects. These data are collected in Table 8.3.

TABLE 8.3
Relative incidences (RI) for rotavirus vaccine and intussusception.

Exposure No. events RI 95% CI
Pre-vaccination cohort 471 1.00 -
Post-vaccination, unexposed 56 1.00 -
Dose 1, 1–21 day risk period 20 4.43 (2.42, 8.11)
Dose 2, 1–21 day risk period 19 2.56 (1.41, 4.65)

The attributable fractions for the 1–21 day risk periods may be calcu-
lated separately for each dose. For dose 1, it is (4.43− 1)/4.43 = 0.774, with
95% CI (0.587, 0.877), and for dose 2, (2.56 − 1)/2.56 = 0.609, with 95% CI
(0.291, 0.785).

The data were obtained using Hospital Episode Statistics for England. The
56+20+19 = 95 cases ascertained after rotavirus vaccination was introduced
include all intussusceptions in infants aged 42–183 days arising between the
introduction of the rotavirus vaccination programme and 31st October 2014,
which met the Brighton levels 1 and 2 criteria of diagnostic certainty. For
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these cases, it therefore makes sense to calculate the population attributable
fraction for the 1–21 day risk periods:

PAR =
1

95
×
(4.43− 1

4.43
× 20 +

2.56− 1

2.56
× 19

)
= 0.285.

Thus, about 28.5% of intussusceptions in the target population were at-
tributable to rotavirus vaccine within a 1–21 day risk period after either dose.

However, the PAR depends on the level of vaccine coverage and other
defining characteristics of the target population. More informative, perhaps,
is the attributable risk, the order of magnitude of which may be calculated
based on rough estimates of the numbers of vaccine doses administered within
the target population during the period of the study. These were estimated
in Stowe et al. (2016) as 827 000 first doses and 782 000 second doses. The
attributable risks in the 1–21 day risk periods after the first and second vaccine
doses are as follows:

ARdose 1 =
20

827000
× 4.43− 1

4.43
= 0.000019,

ARdose 2 =
19

782000
× 2.56− 1

2.56
= 0.000015.

Thus, the attributable risks for the 1–21 day risk periods are about 1.9 per
100 000 first doses and 1.5 per 100 000 second doses. These can alternatively
be expressed in terms of numbers needed to harm as 1 intussusception per
53 000 first doses and 1 intussusception per 68 000 second doses. These or-
ders of magnitude usefully complement the more precise estimates of relative
incidences, and can help to inform public health policy.

Summary

• If an association is found to be statistically significant and is believed
to be causal, then measures of attribution may be presented.

• The attributable fraction may be estimated directly from the relative
incidence. If the events in the SCCS study are a random sample, or
a census, of all events arising in the population of interest, then the
population attributable fraction may also be estimated.

• If the SCCS study includes all events in exposed individuals within the
population of interest, and the number of exposed individuals in that
population is known, then an estimate of the attributable risk, or its
order of magnitude, may be obtained.
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8.6 Bibliographical notes and further material

We have emphasised the need to specify the risk period a priori, to avoid
making data-dependent choices that would invalidate the inferences drawn
using the methods we have described. Alternative methods of analysis, in-
cluding some in which prior specification of the risk period is not required,
are described in Hunsberger and Proschan (2017).

Sample size formulas for the SCCS method are discussed by Musonda et al.
(2006). The saw-tooth relationship between power and sample size occurs more
generally, see Chernick and Liu (2002). Sample size and power calculations for
the SCCS model with exposure measurement error proposed by Mohammed
et al. (2012) are provided in Mohammed et al. (2013a).

The efficiency of the SCCS design relative to cohort and case-control de-
signs in the simple scenarios described in Section 8.3.1 is discussed in Far-
rington et al. (1996) and Whitaker et al. (2009). The more general results on
efficiency and identifiability of the SCCS model in Section 8.3.4 are derived
in Farrington and Whitaker (2006).

The self-controlled risk interval design is described in Baker et al. (2015).
Generally, control periods are chosen so that age effects may be ignored; Li
et al. (2015) discuss various adjustments when temporal effects need to be
included. The efficiency and power of the self-controlled risk interval design
compared to SCCS is discussed in Li et al. (2016). These authors derive results
on asymptotic relative efficiency which are related to those of Section 8.3.2.

Measures of attribution, including attributable risks, were first used in
connection with the SCCS method in Farrington et al. (1995).

A further issue relevant to SCCS studies, but not covered here, is the
impact of misclassification of events. Low specificity of the case definition will
bias the relative incidence towards 1. However, low specificity may increase
the sensitivity of the case definition, and hence power. These trade-offs are
discussed in Quantin et al. (2013). Misclassification of outcome events is also
discussed in Xu et al. (2014), in the context of signal detection.
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