
Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg40

Andreas Sailer

Reverse Engineering of Real-Time System Models
from Event Trace Recordings

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

40

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg

Band 40

2019

Contributions of the Faculty Information Systems
and Applied Computer Sciences of the
Otto-Friedrich-University Bamberg

Andreas Sailer

2019

Reverse Engineering of Real-Time System Models
from Event Trace Recordings

Dieses Werk ist als freie Onlineversion über das Foschungsinformationssystem (FIS; fis.
uni-bamberg.de/) der Universität Bamberg erreichbar. Das Werk – ausgenommen Cover,
Zitate und Abbildungen – steht unter der CC-Lizenz CC-BY.

Lizenzvertrag: Creative Commons Namensnennung 4.0
http://creativecommons.org/licenses/by/4.0

Herstellung und Druck: docupoint, Magdeburg
Umschlaggestaltung: University of Bamberg Press
Umschlagbild: © Andreas Sailer

University of Bamberg Press, Bamberg 2019
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-86309-690-8 (Druckausgabe)
eISBN: 978-3-86309-691-5 (Online-Ausgabe)
URN: urn:nbn:de:bvb:473-irb-465069
DOI: http://dx.doi.org/10.20378/irb-46506

Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Na-
tionalbibliographie; detaillierte bibliographische Informationen sind im Internet über
http://dnb.d-nb.de/ abrufbar.

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Fried-
rich-Universität Bamberg als Dissertation vorgelegen.
1. Gutachter: Prof. Dr. Gerald Lüttgen
2. Gutachter: Prof. Dr. Jürgen Mottok
Tag der mündlichen Prüfung: 22.07.2019

v

Abstract

Model-driven approaches are experiencing an increasing acceptance in the automot-

ive domain thanks to the availability of the AUTOSAR standard, which defines an

open software architecture for themodel-based development of real-time systems and

a corresponding development methodology. However, the process of creatingmodels

of existing system components is often difficult and time consuming, especially when

legacy code is involved or information about the exact timing is needed. The research

community tackles this problem by developing algorithms for automatically deriving

characteristics of the system’s timing behaviour, e.g., response times and resource

blockings from various artefacts such as source code or runtime measurements.

This work focuses on reversely engineering an AUTOSAR-compliant model,

which can be used for further processing including timing simulation and optim-

isation, via a dynamic analysis from trace recordings of a real-time system. Although

software reverse engineering via dynamic analysis has a long history, little research

targets embedded systems and its use for multi-core architectures is largely unre-

searched. Furthermore, related workmainly discusses the analysis of individual char-

acteristics of a real-time system, such as execution times or stimulation patterns in-

stead of creating a description of the entire system. Huselius, whose work is among

the publications most related to the topic of this thesis, proposes a technique to re-

verse engineer a model that reflects the general temporal behaviour of the original

real-time software. However, like other existing solutions, it was not developed with

AUTOSAR in mind. It is also not feasible to make this approach applicable to the

automotive domain, becauseHuselius has not considered some required details, such

as activation patterns, scheduling information, and compliance to the standardised

development methodology of AUTOSAR.

We want to tackle this deficiency by introducing, in this work, an approach that

seizes on Huselius’s considerations and extends them in order to make them applic-

able to the automotive domain. To do so, we present CoreTAna, a prototypical tool

that derives an AUTOSAR compliant model of a real-time system by conducting dy-

namic analysis using trace recordings. Its reverse engineering approach is designed

in such a way that it fits seamlessly into the methodology specified by AUTOSAR.

CoreTAna’s current features are explained and their benefits for reverse engineering

are highlighted, and a framework for evaluating the quality of synthesised models is

vi

described. Motivated by the challenge of assessing the quality of reverse engineered

models of real-time software, we also introduce a mathematical measure for com-

paring trace recordings from embedded real-time systems regarding their temporal

behaviour and a benchmark framework based on this measure, for evaluating reverse

engineering tools such as CoreTAna. This framework considers common system ar-

chitectures and also includes randomly generated systems and systems of projects in

the automotive domain and other industries. Finally, CoreTAna’s performance and

applicability are evaluated on the basis of this benchmark.

vii

Kurzfassung

Dank der Verfügbarkeit des AUTOSAR Standards, welcher eine offene Softwarear-

chitektur zur modellbasierten Entwicklung von Echtzeitsystemen sowie eine korres-

pondierende Entwicklungsmethodik definiert, erfahren modellgetriebene Herange-

hensweisen eine steigende Akzeptanz in der Automobilbranche. Der Prozess zur Er-

stellung eines Models für bestehende Systemkomponenten ist jedoch oft beschwer-

lich und zeitaufwändig, vor allem wenn dabei bestehender Quellcode betroffen ist

oder Information über den genauen zeitlichen Ablauf benötigt wird. Die Foschungs-

gemeinschaft geht dieses Problem durch die Entwicklung von Algorithmen an, die

automatisch die Eigenschaften des Zeitverhaltens eines Systems, zum Beispiel Ant-

wortzeiten und Blockierungen von Betriebsmittel, aus verschiedenen Artefakten, wie

beispielsweise aus Quellcode oder Laufzeitmessungen, ableiten.

Diese Arbeit fokussiert sich auf die Rekonstruktion eines AUTOSAR-konformen

Modells auf Basis einer dynamischen Analyse von Trace Aufzeichnungen aus einem

Echtzeitsystem, welches zur Weiterverarbeitung in einer Echtzeitsimulation oder in

einer Optimierung verwendet werden kann.

Obwohl die Nachbildung von Software mithilfe einer dynamischen Analyse auf

eine lange Geschichte zurückschauen kann, zielen wenige Forschungsarbeiten auf

eingebettete Systeme ab. Des Weiteren widmen sich verwandte Arbeiten hauptsäch-

lich der Analyse von vereinzelten Eigenschaften eines Echtzeitsystems, wie zumBeis-

piel Ausführzeiten oder Aktivierungsmuster, anstelle eine Beschreibung des Ges-

amtsystems zu erstellen. Huselius, dessen Arbeit unter den Veröffentlichungen ist,

die der Thematik dieser Abschlussarbeit am nächsten kommt, schlägt eine Technik

vor die ein Modell rekonstruiert, das das generelle, zeitliche Verhalten der orginalen

Echtzeitsoftware reflektiert. Wie andere bestehende Lösungsansätze wurde diese je-

doch ohne Berücksichtigung des AUTOSAR Standards entwickelt. Es ist auch nicht

möglich diesen Ansatz auf die Automobilbranche anzuwenden, da Huselius ein-

ige notwendige Details nicht berücksichtigt, wie zum Beispiel Aktivierungsmuster,

Informationen über das Scheduling und die Konformität zur standardisierten En-

twicklungsmethodik von AUTOSAR.

Wir möchten daher diese Defizite angehen indem wir in dieser Arbeit einen An-

satz vorstellen, der auf den Überlegungen von Huselius aufsetzt und diese erweit-

ert, um sie in der Automobilbranche anwendbar zu machen. Hierfür stellen wir

viii

CoreTAna vor, ein prototypisches Werkzeug, das ein AUTOSAR-konformes Mod-

ell eines Echtzeitsystems ableitet basierend auf der dynamischen Analyse von Trace

Aufzeichnungen. Dessen Vorgehensweise bei der Rekonstruierung ist so entwor-

fen, dass es sich nahtlos in die von AUTOSAR spezifizierte Methodik einpasst.

CoreTAna’s gegenwärtige Funktionalitäten werden erklärt und deren Vorteile für

die Modellrekonstruktion hervorgehoben.Motiviert durch die Herausforderung die

Qualität der rekonstruierten Modelle von Echtzeitsystemen zu bewerten, stellen wir

ferner ein mathematisches Maß für den Vergleich von Trace Aufzeichnungen bezüg-

lich ihrem zeitlichen Verhalten vor sowie eine Framework basierend auf diesem

Maß zur Beurteilung von Werkzeugen wie CoreTAna. Dieses Framework berück-

sichtigt gebräuchliche Systemarchitekturen und auch zufällig generierte Systeme

sowie Systeme aus Projekten in der Automobilbranche und anderen Industriezwei-

gen. Schließlich werden CoreTAna’s Leistungsfähigkeit und Anwendbarkeit anhand

dieses Frameworks evaluiert.

xi

Acknowledgements

This work was conducted in the context of the ITEA2 founded project AMALTHEA

(“Model Based Open Source Development Environment for Automotive Multi Core

Systems”) and its successor AMALTHEA4public (“Enabling of Results from AMAL-

THEA and others for Transfer into Application and building a Community”). Both

were pan-European projects that consisted of a mixture of academic and industrial

partners whose goal it it was to develop a consistent, open, and expandable tool plat-

form for engineering automotive multi-core systems.

Foremost, I would like to thank my industrial advisors Prof. Dr. Martin Hobels-

berger and Dr. Michael Deubzer at Timing-Architects Embedded Systems GmbH

for giving me the chance to work on this topic. We had a lot of inspiring discussions

and they taught me proper research work and scientific writing. I am deeply grateful

to Prof. Dr. Gerald Lüttgen for the great support and for giving me the opportunity

to write this thesis in the Software Technologies Research Group at the University of

Bamberg. I thank my further advisors Prof. Dr. Jürgen Mottok for educating and

guiding me over the past years with great care, enthusiasm, and patience, and Prof.

Dr. Ute Schmid for her help and the feedback she gave me over the years.

I thank my research colleague Stefan Schmidhuber for the inspiring discussions

and the great time we had as Ph.D. students at the LaS3. I am indebted to all col-

leagues at the LaS3 and Timing-Architects, in particular Erna Oklapi, Erjola Lalo, Fe-

lix Martin, Jürgen Pöllinger, Maximilan Hempe, Ariane Maack, who have made my

time very enjoyable and also helped me countless times.

So many friends have supported me over the last years and I want to apologise

to any friend I may have omitted in that time. I am fortunate to have a loving and

supportive family, who put great trust in me. They always believed in me and gave

me a strong motivation.

January 2019, Regensburg

xiii

”You see there is only one constant. One universal.

It is the only real truth: Causality. Action, reaction. Cause and effect.”

— The Matrix (1999)

CONTENTS xv

Contents

1. Introduction 1
1.1. Motivation . 1

1.1.1. Documentation . 3
1.1.2. Simulation . 3
1.1.3. Optimisation . 3

1.2. Contributions . 4
1.3. Research Method . 6
1.4. Outline . 11

I. Background 15

2. Related Work 17
2.1. Embedded Software Domain . 21
2.2. Other Software Domains . 26
2.3. Other Domains . 28

3. Software Development for Multi-core Architecture 31
3.1. Target Mapping . 32

3.1.1. Partitioning . 33
3.1.2. Communication . 35
3.1.3. Agglomeration . 37
3.1.4. Mapping . 38

3.2. Timing Simulation . 40
3.3. Model-based Optimisation . 42

4. Real-time Automotive Model 45
4.1. Processing Units . 46
4.2. Processes . 47

4.2.1. Call Graph . 50
4.2.2. Runnable . 52
4.2.3. Stimulation . 56

4.3. Schedulers . 60

xvi CONTENTS

4.4. Standards in the Automotive Industry 62
4.4.1. ASAM MDX . 62
4.4.2. AUTOSAR . 64
4.4.3. AMALTHEA . 66

5. Trace Recordings 73
5.1. Trace Categories . 73

5.1.1. Software Tracing . 73
5.1.2. Hardware Tracing . 75
5.1.3. Hybrid Tracing . 76

5.2. Trace Techniques . 77
5.2.1. Bus Trace . 78
5.2.2. Flow Trace . 79
5.2.3. On-Chip Trace . 80
5.2.4. Software Trace Target . 81
5.2.5. Software Trace Host . 82
5.2.6. Snooper Trace . 82
5.2.7. Advanced Register Trace 82

5.3. Trace Format . 83
5.3.1. Process Level . 83
5.3.2. System Level . 86
5.3.3. Trace Events . 88
5.3.4. Database Representation 90
5.3.5. Trace Analysis . 92

II. Contributions 95

6. CoreTAna 97
6.1. Design . 97
6.2. Approach . 100
6.3. Algorithms . 101

6.3.1. OS Configuration . 103
6.3.2. Scheduling Properties . 107
6.3.3. Stimulation . 111
6.3.4. Runtime Behaviour . 117

CONTENTS xvii

6.3.5. Call Graph . 121
6.4. Summary . 128

7. Distance of Timed Actions 129
7.1. Challenges of Comparing Real-time Behaviour 130

7.1.1. Purely Periodic without Communication 131
7.1.2. Client-Server without Reply 132
7.1.3. State Machine . 133
7.1.4. Feedback Loop . 134
7.1.5. State Machine Feedback Loop 135

7.2. Related Work . 136
7.3. Definition . 138

7.3.1. Example . 140
7.3.2. Analysing Differences in Trace Recordings 141

7.4. Validation . 144
7.5. Other Use Cases . 145

7.5.1. Product Family . 147
7.5.2. Trace Check . 149

8. Evaluation 151
8.1. Synthetic Benchmark . 151

8.1.1. Purely Periodic without Communication 152
8.1.2. Client-Server without Reply 156
8.1.3. State Machine . 159
8.1.4. Feedback Loop . 163
8.1.5. State Machine Feedback Loop 166

8.2. Randomly Generated Systems . 169
8.3. Industrial Case Studies . 175

8.3.1. Automotive Case Studies 175
8.3.2. Further Case Study in Telecommunication 181
8.3.3. Summary . 184

8.4. Reasoning on the Quality of a Trace Recording 185

xviii CONTENTS

III. Summary 191

9. Conclusions and Outlook 193

Bibliography 201

Acronyms 213

Glossary 215

List of Figures 217

List of Tables 219

Listings 221

List of Algorithms 223

IV. Annex 225

A. Appendix 227
A.1. Architectural System Patterns . 227

A.1.1. Purely Periodic without Communication 227
A.1.2. Client-Server without Reply 270
A.1.3. State Machine . 310
A.1.4. Feedback Loop . 342
A.1.5. State Machine Feedback Loop 446

1
Introduction

The AUTomotive Open System ARchitecture (AUTOSAR)1 standard has experienced

gradual acceptance in the automotive domain since its release of version 3.0 in 2007.

One of its major goals is to define an open software architecture for the model-based

development of real-time systems and a corresponding development methodology.

Nevertheless, the process of deriving a model is often difficult, error-prone, and time

consuming, especially when legacy code is involved [1]. The consideration of tim-

ing behaviour is an extra challenge that requires substantial effort [2], but is essential

to the modelling process. Indeed, due to the current shift towards multi-core archi-

tectures in the automotive industry original equipment manufacturers (OEMs) are

forced to gain detailed knowledge about their legacy software, including stimulation

patterns and task execution times. Moreover, most tools which tackle the challenges

implied by this shift to multi-core, such as finding an ideal task-to-core allocation or

task priority assignment [3], require a model for analysis.

1.1. Motivation

Motivated by the challenges highlighted above the research community has con-

sidered a variety of approaches, including program slicing [4], machine learning [5],

and purely mathematical approaches [6]. This resulted in the development of sev-

eral solutions [7] over the past decade. Because each solution focuses on a specific

characteristic of real-time systems different modelling approaches for the abstract

description of, e.g., the system’s architectural composition [8] or temporal [9, 10] and

functional behaviour [8, 11] have emerged. However, there is no approach that has

been developed with AUTOSAR in mind.

There are also many sources from which system information can be ac-

1http://www.autosar.org

http://www.autosar.org

2 1. INTRODUCTION

quired [12]. Many existing approaches work on the basis of source code [4, 8, 10,

11]. However, this turns out to be infeasible in the automotive domain, because soft-

ware functionality is typically provided by vendors which do not hand over source

code. Furthermore, static analyses lack the ability to determine dynamic information

such as execution times. Since the timing aspects of a system are of particular import-

ance for the intended use cases presented later in Chapters 1.1.1 to 1.1.3, the most

convenient way to automatically derive a model is by conducting a dynamic analysis

based on traces. Trace recordings, or traces for short, store relevant events that were

observed during a system’s runtime.

Huselius [9] has conducted one of the latest and most extensive research concern-

ing automatic modelling using execution-time recordings. Huselius proposes a tech-

nique to reverse engineer a model that reflects the general temporal behaviour of the

original real-time software. However, like existing solutions, it was not developed

with AUTOSAR in mind. It is also not feasible to make this approach applicable to

the automotive domain, because Huselius has not considered some required details,

such as activation patterns, scheduling information, and compliance to the standard-

ised development methodology of AUTOSAR.

Thus, there is still a need for a solution that reverse engineers an AUTOSAR-

compliant model from trace recordings of a real-time system. We want to tackle this

deficiency by introducing, in this work, an approach that seizes on Huselius’s con-

siderations and extends them in order to make them applicable to the automotive

domain. The main focus is on automatically synthesising the temporal behaviour

of the software under investigation, in addition to an architectural system descrip-

tion, which can be done from scratch or by enriching an existing model. The latter

is performed if system information is already available, e.g., from a static analysis of

software artefacts such as source or object code.

The fact that our solution creates an AUTOSAR-compliant artefact, which can be

used for further processing, improves the interoperability considerably for existing

and established work environments. Thus, this not only enables a new way to in-

tegrate legacy software into the automotive development process, but it also makes

further use cases applicable including the following ones.

1.1. MOTIVATION 3

1.1.1. Documentation

Creating a model in an automatic manner actively supports the documentation of a

software project during the entire development process. For example, in a model-

based development process, manual changes to the software no longer have to be

applied to the model in an often error-prone and time-consuming manner. Indeed,

some pieces of information cannot be handled manually at all or only very costly due

to their complexity, such as the stimulation patterns of interrupts. Keeping a model

up-to-date is also much more expedient, e.g., when studying the model to understand

the system. However, also in cases in which the documentation is used for informa-

tion exchange between an OEM and its Tier-1s, a model containing the latest inform-

ation is invaluable. Finally, a model can be used for the validation of the underlying

system. Since the model reflects the system’s actual behaviour, this information, e.g.,

the response times, can be compared to the desired behaviour specified by the user

requirements.

1.1.2. Simulation

The reverse engineered model can be used for timing simulation, in order to make

a statement about the dynamic software behaviour of the real-time system under in-

vestigation. Similar to debugging, it is possible to analyse a system in detail and to

identify situations leading to incorrect behaviour and their causes. A simulation can

also be used to test whether the system responds correctly to a particular input.

Another application is the assessment of a system’s performance by simulating its

schedulability, so that characteristics of the system’s behaviour, e.g., response times

and resource blockings can be examined and considered for further system optim-

isation. Therefore, timing simulation also allows one to perform an impact analysis,

where the behavioural impact of system changes and its resulting performance is

checked. This helps engineers to not only examine and understand the system in

full detail, but also to manually refine the system step-by-step to optimise its perform-

ance.

1.1.3. Optimisation

A model can also help the automatic optimisation of a system. To do so, the aims of

the optimisation have to be defined in terms of real-time metrics such as response

4 1. INTRODUCTION

times or utilisations. The characteristics of the system are then altered by modify-

ing the model, and an evaluation of the system’s performance using, e.g., a timing

simulation enables engineers to assess whether the modifications have a positive or

negative impact on the system’s behaviour, especially regarding the targeted real-time

metrics.

1.2. Contributions

Motivated by the lack of a solution that reverse engineers an AUTOSAR-compliant

model from the dynamic analysis of a real-time system, the following research ques-

tions are outlined:

Question Q1:

To what extent is it possible to automatically synthesise an AUTOSAR-compliant

model of a real-time system that covers the system’s temporal behaviour based on

event trace recordings?

Question Q2:

Can a synthesised model be validated with regards to the extent in which its repres-

entation reflects the temporal behaviour of the corresponding actual system?

Question Q3:

To what extent is an approach for the automatic model synthesis of a real-time sys-

tem from event trace recordings applicable to industrial projects in the automotive

domain?

Although the aforementioned research questions can be partly solved with existing

solutions, our approach creates added value. This work makes in detail the following

contributions, which altogether cover the aforementioned research questions:

Contribution C1:

A set of algorithms that automatically synthesise an AUTOSAR-compliant model

with details on the system’s timing behaviour based on event trace recordings. (Real-

isation of Q1)

The approach presented by Huselius [9] provides some algorithms that are also rel-

evant for synthesising an AUTOSAR-compliant model. For this reason, the solution

approach described in this work takes Huselius’s considerations and extends them

to make them applicable to the automotive domain. For example, the assumptions

that are made by Huselius such as knowing the employed scheduling algorithm are

1.2. CONTRIBUTIONS 5

eliminated and additional algorithms including those for comprehending a system’s

dynamic stimulation are introduced.

Contribution C2:

An approach that assesses the extent in which a model reflects the temporal beha-

viour of its corresponding actual system. (Realisation of Q2)

An approach is introduced that allows one to make a statement about the reverse

engineered model. By employing a model-based timing simulation, it is verified

whether the simulation traces of the reverse engineered model and the hardware

traces of the system under investigation show the same temporal behaviour.

Because the quality of reverse engineering and, thus, of the resultingmodel heavily

depends on the provided input, trace recordings that monitor the system at different

levels of detail are used. This not only highlights the sensitivity of the developed

algorithms but also allows one to estimate prior to reverse engineering the quality of

the resulting model based on the characteristics of a given trace such as its length.

Contribution C3:

Ametric expressing the accordance of two sample event trace recordings with respect

to their represented temporal behaviour. (Realisation of Q2)

We define a new measure called Distance of Timed Actions (DoTA) which assesses

the quality of reverse engineered real-time software based on the Euclidean Distance.

It determines how well the resulting model reflects the actual system by compar-

ing real-time metrics, e.g., activate-to-activate times and response times of tasks that

were determined from the simulation traces of the reverse engineered model and the

hardware traces of the system under investigation. Further use cases for this measure

show that it is beneficial in other situations.

Contribution C4:

An extensible realisation of the developed algorithms to automatically synthesise a

probabilistic systemmodel from event trace recordings that fits fluently in the AUTO-

SAR development process and that supports the industrial use cases. (Realisation

of Q3)

One of themain outcomes of this work is Core Trace Analyser (CoreTAna), a novel tool

that reverse engineers an AUTOSAR-compliant model of a real-time, single- or multi-

core system, including its exact timing behaviour, based on the dynamic analysis of

the system’s trace recordings. CoreTAna can derive such amodel either automatically

6 1. INTRODUCTION

from scratch or by enriching an existing model. It is part of the TA Tool Suite as an

experimental module and is currently in transition to becoming a mature product.

During the work on this thesis, CoreTAna has already been employed by co-workers

and customers in many industrial projects. This has allowed us to not only integrate

it flawlessly with the AUTOSAR development process, but also to identify the features

that are in great demand such as analysing a system’s dynamic stimulation.

Contribution C5:

Case studies that on the one hand, show the correctness of the developed algorithms

and on the other hand, the applicability and usefulness of the implementation for

actual industrial projects. (Realisation of Q3)

Based on Huselius’s idea of varying common architectural patterns in the real-

time software domain to show the capability of the developed algorithms, a syn-

thetic benchmark is presented. This benchmark extends existing work by consider-

ing AUTOSAR-specific aspects such as Exclusive Areas and covers the functionality

provided by CoreTAna.

In addition to this benchmark, four industrial case studies are conducted. Three of

these illustrate the use of CoreTAna in the automotive domain. Thereby, the reverse

engineering copes in each case study with a trace recording that stores information

about the system at a specific level of detail. Finally, CoreTAna is also applied to a

project in the telecommunication domain to show that the developed algorithms are

not only limited to automotive domain.

1.3. Research Method

In this section the research method is presented, which was applied to the research

questions defined above. It sets itself apart from others because the research was

performed within publicly funded projects, AMALTHEA and its successor AMAL-

THEA4public2, and in collaboration with an industrial company, Timing-Architects

Embedded Systems3. The research described in this work arose from actual indus-

trial problems and has been continuously influenced by the feedback and experience

given by both project partners and customers. An overview of this synergy and the

embedded research method is depicted in Fig. 1.1.

2http://www.amalthea-project.org
3http://www.timing-architects.com

http://www.amalthea-project.org
http://www.timing-architects.com

1.3. RESEARCH METHOD 7

Contribution

Publication

Problem
Definition

Model
Definition

Model
Definition

Prototype
Development

Commercial
Product

Open Source

Industrial
Evaluation

Publication

Publication

Publication

Publication
Model-based Tools

Use Cases

Tool Platform

Customers

Support / Feedback

Existing TA Tool Suite

TA Tool Suite Integration

Use Cases

INDUSTRIAL CONTEXT RESEARCH CONTEXT

Figure 1.1.: Research Method. Overview of the Applied Research Method.

The research problems introduced in Chapter 1.1 were originally identified by

Timing-Architects (TA), a company which offers model-based tools for the system

design, simulation, automated optimisation, and target verification of embedded real-

time multi-core and many-core systems. When the company was founded in 2011,

model-based development had not received general acceptance in the automotive do-

main. So, already in the early years, it became obvious that obtaining a model of

the customer’s software system based on which TA’s tools work, is one of the cru-

cial points in the success of the start-up. Near the same time the pan-European re-

search project AMALTHEA started working on a customised, open source tool chain

platform for the development of embedded multi-core systems, including an AUTO-

SAR-compliant model for data exchange. This working environment influenced the

problem definition in such a way that the meta-model of the models which have to be

re-engineered were given as well as the technical approach, namely the use of a dy-

namic analysis. The latter is set because TA, as a tool vendor and consulting company,

does not get access to their customer’s source code.

Although the models targeted for reverse engineering are applicable to every em-

bedded domain, the developed prototype focuses on solving research problems that

are especially relevant to the automotive industry. This is because the developed

algorithms tackle the use cases provided by customers of TA or by partners of the

AMALTHEA project, which are mainly from the automotive domain. Nevertheless,

8 1. INTRODUCTION

the algorithms and the developed prototype are valid for the entire embedded domain.

However, applying them to another domain may require one to look into additional

system characteristics that do not apply to the automotive domain, such as a different

scheduling algorithm.

The algorithms developed for the prototype, which served as a proof of concept,

found its way into two different implementations. One version was turned into a

commercial product by integrating it into the existing TA Tool Suite. Another ver-

sion is included in the AMALTHEA open source platform, in which it serves as a link

between trace recordings and the corresponding system model to achieve a continu-

ous development tool chain. In contrast to the commercial version, the open source

contribution does not contain all the developed algorithms. Because the open source

version serves as an example implementation, it solely analyses trace recordings at the

process level. In the meantime, the open source platform AMALTHEA transitioned

to the Eclipse Foundation and is now an official Eclipse project called Application Plat-

form Project for Multi-Core (APP4MC). This ensures that the developed algorithms

continue to be maintained and gives a chance for other embedded domains to get

feedback.

Finally, the industrial connections represented by customers of TA on the one side

and partners from the AMALTHEA project on the other side were not only consul-

ted regarding use cases but also for thorough evaluations. Thus, it was possible to

not only test the developed algorithms, but also the implementation within actual in-

dustrial environments and to get detailed feedback, which again influenced further

developments.

The conducted research and the implemented prototype gained benefit not only

for TA but also for the research project in the form of disseminations. Over the years

the following publications, motivated by the scope of this work, were released:

Main Publications

• A. Sailer, M. Deubzer, G. Lüttgen and J. Mottok, “Comparing Trace Record-

ings of Automotive Real-time Software”, in Intl. Conf. on Real-Time Networks

and Systems, ACM, 2017

Motivated by the challenge of assessing the quality of reverse engineeredmod-

els of real-time software, we present a novel mathematical measure for com-

paring trace recordings from embedded real-time systems regarding their

temporal behaviour. We also introduce a benchmark framework based on this

1.3. RESEARCH METHOD 9

measure, for evaluating reverse engineering tools such as CoreTAna. This

considers common system architectures and also includes randomly gener-

ated systems and three systems from industrial automotive projects. Finally,

an industrial case study demonstrates other use cases of our measure, such as

impact analysis.

• A. Sailer, S. Schmidhuber, M.Hempe, M. Deubzer and J. Mottok, “Distributed

Multi-CoreDevelopment in the Automotive Domain – A Practical Comparison

of ASAM MDX vs. AUTOSAR vs. AMALTHEA”, in First Multi-Core Safe and

Software-intensive Systems Improvement Community Workshop, VDE, 2016

To give a state-of-the-art overview of distributed multi-core development in the

automotive industry, we present a comparison of three standards that are com-

monly used in this domain: ASAMMDX, AUTOSAR, and AMALTHEA. To do

so, we oppose the defined systemmodels of each standard, their methodology,

and reference implementation with each other. A case study on consolidating

software functions between car manufacturers and their suppliers shows the

application of each standard within an actual industrial multi-core project and

highlights their strengths and limitations.

• A. Sailer, M. Deubzer, G. Lüttgen and J. Mottok, “CoreTAna: A Trace Analyzer

for Reverse Engineering Real-Time Software”, in Intl. Conf. on Software Ana-

lysis, Evolution, and Reengineering, IEEE, 2016, pp. 17–28

We present CoreTAna, a novel tool that reverse engineers an AUTOSAR-

compliant model of a real-time system from a dynamic analysis of its trace

recordings. This paper gives an overview of CoreTAna’s current features and

discusses its benefits for reverse engineering.

• A. Sailer, “Towards anAutomated Reverse Engineering of DesignModels from

Trace Recordings”, in Jahrestagung der Gesellschaft für Informatik, GI, 2014,

pp. 2233–2245

This research aims to extract, analyse, and deduce information about the sys-

temunder observation from a limited view of the internal details of the system.

To achieve this, an iterative approach consisting of three steps is proposed.

• A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha and J. Mot-

tok, “Optimizing the Task Allocation Step for Multi-Core Processors within

AUTOSAR”, in Intl. Conf. on Applied Electronics, IEEE, 2013, pp. 247–252

This paper focuses on a model-based optimization approach for the task alloc-

ation problem in embedded multi-core systems. The starting point is the sys-

10 1. INTRODUCTION

tem description in AUTOSAR and runtimemeasurements of the runnables in

hardware traces. Based on this, an initial software partitioning of runnables

to tasks is created. Subsequently, we use a genetic algorithm to create and

evaluate solutions to the task allocation problem.

• A. Sailer, S. Schmidhuber, M. Deubzer and J. Mottok, “AMALTHEA – Platt-

form für kontinuierliche, modellbasierte Entwicklung”, in Embedded Software

Engineering Kongress, ELEKTRONIKPRAXIS Vogel Business Media GmbH &

Co. KG und MicroConsult Microelectronics Consulting & Training GmbH,

2013, pp. 538–544

We give an overview of AMALTHEA, an open source tool platform for en-

gineering embedded multi- and many-core software systems. The Eclipse-

based platform enables the creation and management of complex tool chains

including simulation and supports interoperability via a unified, AUTOSAR-

compliant model.

Supervised Theses

• P. Harrer, “Development of an Algorithm for Comparing Traces”, Master’s

Thesis, Hochschule Nordhausen, 2016

This master thesis describes the conceptual design and the development of

different algorithms for comparing hardware traces. It introduces real-time

metrics based on which the algorithms evaluate the similarity of traces.

• F. Martin, “Transformation of Hardware Traces to System Traces for Embed-

ded Multi-Core Real-Time Systems”, Master’s Thesis, Ostbayerische Technis-

che Hochschule (OTH) Regensburg, 2015

This thesis examines different trace techniques and analyses the coherence

between hardware, software, and system level entities. Based on the results,

a mapping from software level to system level is introduced and validated via

hardware tracing.

• X. Tang, “Trace-based Timing Verification of Real-Time Systems”, Master’s

Thesis, University of Shanghai for Science and Technology, 2014

This thesis introduces a round-trip approach for real-time operating systems,

i.e., from model to source code and back again via execution and hardware

tracing. Its motivation is to verify the results from a timing simulation by

comparing them with the timing behaviour of the actual hardware. A tool

was implemented to highlight differences between twomodels regarding their

timing behaviour.

1.4. OUTLINE 11

Peer-reviewed Publications

• M. Alfranseder, M. Mucha, S. Schmidhuber, A. Sailer, M. Niemetz and J. Mot-

tok, “A Modified Synchronization Model for Dead-lock Free Concurrent Exe-

cution of Strongly Interacting Task Sets in Embedded Systems”, in Intl. Conf.

on Applied Electronics, IEEE, 2013, pp. 13–18

We apply global scheduling algorithms to embedded, real-time, multi-core sys-

tems. To achieve this, a new resourcemodel and lockingmechanism are intro-

duced. The locking mechanism is then compared to existing ones regarding

the timing effects of their blocking behaviour.

• J. Mottok, M. Alfranseder, S. Schmidhuber, M. Mucha and A. Sailer, “How

to Improve the Reactiveness and Efficiency of Embedded Multi-core Systems

by Use of Probabilistic Simulation and Optimization Techniques”, in NATO

Advanced Research Workshop on Improving Disaster Resilience and Mitigation –

IT Means and Tools, Springer, 2013, ch. 16, pp. 253–268

This book chapter addresses different challenges of embeddedmulti-core real-

time systems. On the one hand, we discuss a deadlock-free synchronization

model. On the other hand, we present a model-based approach to map the

tasks of an embedded real-time system to the cores of a multi-core processor,

and to derive an execution time model from runtime measurements of soft-

ware functions. Based on this information, an optimisation technique im-

proves the system’s task-to-core mapping by performing probabilistic simula-

tions.

1.4. Outline

The remainder of this thesis is structured into three parts as follows. Part I introduces

the necessary background information for this work. It begins with an overview of

the related work on reverse engineering. Chapter 2 covers the latest research in the

reverse engineering on embedded software and those in other software domains in-

cluding web services. Finally, similar research questions from domains which are not

related to software, such as work flow and process mining, are discussed. Chapter 4

continues and focuses on themeta-model that is used for the results of the reverse en-

gineering. It introduces AMALTHEA, the AUTOSAR-compliant model generated by

our reverse engineering tool, and details how specific characteristics of a real-time sys-

tems, including hardware and software, are modelled. Next, an extensive overview on

12 1. INTRODUCTION

Table 1.1.: Research Questions. Overview of the research questions and thesis
contributions addressed by each chapter.

Question Contribution
Q1 Q2 Q3 C1 C2 C3 C4 C5

C
ha
pt
er

1

2 ✓
3
4
5

6 ✓ ✓ ✓ ✓
7 ✓ ✓ ✓
8 ✓ ✓ ✓
9

trace recording is given in Chapter 5. This chapter begins with the state-of-the-art in

trace recording by presenting different trace techniques and how they can be categor-

ised. It continues with an introduction to Best Trace Format (BTF), the trace format

which is processed by our reverse engineering algorithms. The individual events that

are defined by this trace format for recording the temporal behaviour of a real-time

system during runtime are described in detail.

Part II elaborates on the technical contributions of this thesis. Table 1.1 gives

an overview of the research questions and thesis contributions addressed by each

chapter. Chapter 6 focuses on CoreTAna, our reverse engineering tool. CoreTAna

allows one to automatically synthesise a probabilistic system model from event trace

recordings. This chapter elaborates on CoreTAna’s internal workings by detailing its

approach and introducing its algorithms. The algorithms are discussed separately,

which allows one to get an exact overview on the events that are required as input for

each algorithm and, thus, for reversely engineering individual aspects of the system

model. Chapter 7 lays the foundation for evaluating the algorithms. The require-

ments for determining how well a synthesised model reflects the timing behaviour of

the original system are elicited. This is done by introducing a synthetic benchmark,

which defines common architectural patterns in the real-time software domain and

feasible variations for each pattern. Based on this benchmark, CoreTAna’s perform-

1.4. OUTLINE 13

ance is evaluated. After the latest research regarding the comparison of trace record-

ings is presented, Chapter 7 continues with the definition of a novel measure. This

measure, called DoTA, is validated with the synthetic benchmark and further uses

cases are highlighted. Finally, Chapter 8 addresses the evaluation of the developed

algorithms and CoreTAna’s applicability in industrial projects. It consists of three

different parts. First, CoreTAna’s performance is determined based on the afore-

mentioned benchmark. Second, an evaluation with randomly generated systems is

performed. Third, case studies document our experiences with CoreTAna’s use in ac-

tual industrial projects. Each case study considers a typical system in the automotive

domain, which are kindly provided by industrial partners of the AMALTHEA project

or by customers of TA.

In Part III, a summary of the thesis achievements are given and future research

directions are highlighted.

Part I.

Background

2
Related Work

Reverse engineering via dynamic analysis has a long history. For example, Biermann

researched the inference of Turing machines from sample computations already in

1972 [23]. Cornelissen et al. give in [24] an extensive overview on research literature

which concerns program comprehension via dynamic analysis. Different facets in-

cluding activity, target, method, and evaluation are used to characterise the articles

of interest. Amongst the examined articles the analysis of a system’s behaviour, the

understanding of execution traces, and the recovery of high-level designs have been

found to be the least performed activities. The target facet reflects the intended field

of application. Cornelissen et al. conclude that “dynamic analysis is rarely applied to

legacy software systems” [24, p. 11] and that the use of dynamic analysis onmulti-core

architectures is “largely unexplored territory” [24, p. 11]. Finally, the article’s evalu-

ation outlines the manners in which the conducted research was validated. Here, the

authors “found industrial evaluations to be uncommon” [24, p. 12].

In addition, Kienle et al. provide in [7] a survey on reverse engineering, but focus

on its use in embedded systems. The authors review various reverse engineering

techniques and tools that are applicable for the specific characteristics of real-time

systems and cluster them into categories according to the resulting artefacts, such

as state machines, architecture models, and simulation models. They conclude that

“little research in reverse engineering targets embedded systems” [7, p. 8].

In the following, a selection of existing reverse engineering techniques is presen-

ted in more detail. At first, publications most related to the topic of this thesis are

discussed by laying out techniques that are applicable in the domain of embedded

software. This is followed by more general techniques and approaches from other

domains. Table 2.1 overviews what is covered by each related work that is presented

in this section.

18 2. RELATED WORK

Ta
bl
e
2.
1.
:
R
el
at
ed
W
or
k.
O
ve
rv
ie
w
on
w
ha
ti
s
co
ve
re
d
by
ea
ch
re
la
te
d
w
or
k
th
at
is
di
sc
us
se
d
in
th
is
se
ct
io
n

Sc
he
du

lin
gP

ro
pe
rti
es

St
im

ul
ati
on

Pa
tte

rn
s

Ru
nt
im

eB
eh
av
iou

r

St
ati
cA

na
lys

is

Dy
na
m
ic
An

aly
sis

H
yb
rid

An
aly

sis So
ur
ce

Co
de

By
te
Co

de Tr
ac
eR

ec
or
din

g

Ap
pr
oa
ch Al
go
rit
hm Be
nc
hm

ar
k

Ca
se

St
ud

y

M
od
el
Sy
nt
he
si
s
A
na
ly
si
s
Ty
pe

In
pu
t

C
on
tr
ib
ut
io
n

T
hi
s
th
es
is

X
X

X
X

X
X

X
X

X

H
us
el
iu
s

[2
5]

X
X

X
X

X
X

X
X

[2
6]

X
X

X
X

X
X

X

[2
7]

X
X

X
X

X
X

X
X

[9
]

X
X

X
X

X
X

X
X

X
X

K
ra
ft

[2
8]

X
X

X
X

X
X

[1
2]

X
X

X
X

X
X

[4
]

X
X

X
X

X
X

X

Si
ro
fa
ki
s

[2
9]

X
X

X
X

X

T
hi
el
e

[6
]

X
X

X
X

X

[3
0]

X
X

X
X

X

[3
1]

X
X

X
X

X
X

X

19

Sc
he
du

lin
gP

ro
pe
rti
es

St
im

ul
ati
on

Pa
tte

rn
s

Ru
nt
im

eB
eh
av
iou

r

St
ati
cA

na
lys

is

Dy
na
m
ic
An

aly
sis

H
yb
rid

An
aly

sis So
ur
ce

Co
de

By
te
Co

de Tr
ac
eR

ec
or
din

g

Ap
pr
oa
ch Al
go
rit
hm Be
nc
hm

ar
k

Ca
se

St
ud

y

M
od
el
Sy
nt
he
si
s
A
na
ly
si
s
Ty
pe

In
pu
t

C
on
tr
ib
ut
io
n

A
lte
nb
er
nd

[1
0]

X
X

X
X

X
X

C
ic
co
zz
i

[3
2]

X
X

X
X

X
X

X

[3
3]

X
X

X
X

X
X

X

[1
1]

X
X

X
X

X
X

X
X

T e
rr
as
a

[3
4]

X
X

X
X

X
X

X

A
ug
us
to
n

[3
5]

X
X

X
X

X

M
ur
ph
y

[3
6]

X
X

X
X

X
X

[3
7]

X
X

X
X

X
X

V
an
H
oo
rn

[3
8]

X
X

X
X

X
X

K
ro
gm
an
n

[5
]

X
X

X
X

X
X

X

[8
]

X
X

X
X

X
X

X
X

X

C
oo
k

[3
9]

X
X

X
X

X
X

[4
0]

X
X

X
X

X
X

20 2. RELATED WORK

Sc
he
du

lin
gP

ro
pe
rti
es

St
im

ul
ati
on

Pa
tte

rn
s

Ru
nt
im

eB
eh
av
iou

r

St
ati
cA

na
lys

is

Dy
na
m
ic
An

aly
sis

H
yb
rid

An
aly

sis So
ur
ce

Co
de

By
te
Co

de Tr
ac
eR

ec
or
din

g

Ap
pr
oa
ch Al
go
rit
hm Be
nc
hm

ar
k

Ca
se

St
ud

y
M
od
el
Sy
nt
he
si
s
A
na
ly
si
s
Ty
pe

In
pu
t

C
on
tr
ib
ut
io
n

va
n
de
r
A
al
st

[4
1]

X
X

X
X

X

W
en

[4
2]

X
X

X
X

X
X

2.1. EMBEDDED SOFTWARE DOMAIN 21

2.1. Embedded Software Domain

In general, the embedded systems domain is equivalent to that of real-time systems.

This means that for embedded systems the correctness of its behaviour depends not

only on functional correctness but also on temporal accuracy. This fact imposes extra

challenges on the process of reverse engineering which is why generic reverse engin-

eering techniques cannot be applied without further ado. For that reason, this section

presents the related work in reverse engineering techniques that are applicable for the

specific characteristics of real-time systems.

Huselius’s contributions. Contributions with the closest relation to the re-

search problem discussed in this thesis are provided by Huselius [9, 25–27]. In [25],

a method for automatic model generation based on observations from a running sys-

tem is introduced; additional technical details on this approach can be found in [26].

In [27], the presented approach is extended regarding the aspects of model validation.

Finally, a complete overview on the research topic of dynamic model extraction is

given in [9].

The approach proposed by Huselius uses instrumentation to record events during

a system’s runtime. The following events are monitored: “send and receive oper-

ations providing interprocess communications (ipc), variable updates, and context

switches” [27, p. 2]. Based on these events, the actions performed by the system are

detected, such as send and receive operations of inter-process communication, end of

a job, value updates to variables, and execute statements. However, instrumentation

cannot only alter the system’s timing but can also change functional behaviour [43].

To prevent this so-called probe effect, the author suggests to reduce the overhead of

recording. For that reason, not all variable updates are recorded but only “those that

represent the data-state in the system” [9, p. 54]. This results in the problem, which is

discussed in Huselius’s case study, that often several attempts are necessary to find a

sufficient probing. Another drawback of the presented approach is that instrument-

ation requires access to the implementation code and the possibility to modify it.

Within the scope of this thesis, working on the basis of source code is infeasible,

because software functionality is often provided by vendors that do not hand over

source code. For this reason and also to avoid the aforementioned probe effect, hard-

ware tracing is used. A high-speed trace interface and the availability of dedicated

co-processors and memory for tracing on the CPU allows engineers to record more

pieces of information on the system’s runtime behaviour without any temporal im-

22 2. RELATED WORK

pact on its execution. That way, also a larger range of events can be considered when

compared to Huselius’s approach.

The approach by Huselius synthesises a model that can describe the observed be-

haviour, namely “a probabilistic state-machine model expressed in the ART-ML lan-

guage” [25, p. 1]. ART-ML is an architecture and real-time behaviour modelling lan-

guage for describing the temporal behaviour of real-time software systems including

their timing requirements and intended for analysis within a simulation environ-

ment. A complete definition of ART-ML can be found in [28, p. 125 ff.]. An ART-ML

model consists of a set of tasks. Each task is defined by a set of attributes and a behavi-

oural description. The former includes a specification of the tasks scheduling priority

and its activation offset and recurrence. The latter describes the temporal and func-

tional behaviour of the corresponding task in an abstract manner. For this purpose,

expressions such as message box communication, binary semaphore access, or exe-

cution time consumption as well as the control flow statements of the programming

language C and a probabilistic selection statement are available.

In contrast to the model used in this article, in which the behaviour of functions

and data accesses can also be modelled, the “ART-ML model provides a very high-

level view of the system” [9, p. 57] This additional level of detail is necessary to enable

more use cases for the synthesised model, such as optimising the call sequence of

functions within tasks.

Kraft’s contributions. Kraft, formerly Andersson and a colleague of Huselius at

that time, researched on how dynamic analysis can be used to model the temporal

behaviour of embedded systems [4, 12, 28]. The authors propose different ways to ex-

tract the information necessary to facilitate the understanding and modelling of real-

time software systems [28], but do not provide algorithms for automatically generat-

ing a model. With this basic research and the specification of ART-ML [28, p. 125 ff.],

Kraft prepared the ground for the aforementioned approach proposed by Huselius

and presented a strategy for extracting a simulation model from a real-time software

system in [12]. This strategy combines Huselius’s model synthesis approach with a

hybrid model extraction method. The former is used on trace recordings of a system

to automatically generate models for all tasks that are observed in the recordings. The

resulting models are then inspected regarding their complexity. For complex tasks,

the proposed hybrid model extraction is applied. At first, the source code of the sys-

tem under investigation is used to extract static information for the model, such as

2.1. EMBEDDED SOFTWARE DOMAIN 23

call-graphs and functional statements. For this purpose, a program slicing method

called ‘Katana’ is used, which is presented in [43, p. 103 ff.]. The resulting model is

then refined by dynamic aspects, including execution times and estimated probabil-

ities for conditions, to obtain an accurate model for simulation.

Because Kraft’s method represents a hybrid approach, the availability of source

code is required. If we consider just the dynamic analysis, the informative content

added by this is merely the extraction of the execution time and the estimation of

probabilities. Thus, the added value by this work turns out to be negligible for our

research.

Sirofakis’s contributions. Another problem which is similar to the topic of this

thesis is discussed in [29]. Sirofakis et al. describe a modelling framework for build-

ing timedmodels of synchronous real-time systems. To remove divergences between

an application software and its implementation, a relation between both is established

by adding timing constraints to the application software. At first, the application soft-

ware, which is represented by an Esterel program, is annotated with intervals defining

the best-case and the worst-case execution time (BCET, resp., WCET). These times

are estimated using existing techniques, such as profiling or static analysis. The pro-

gram together with a model of its environment and a corresponding event sequence

to control the environment is then compiled to C code. By doing so, the actual execu-

tion times of functions are substituted by the intervals provided by the annotations.

The instrumented C code represents a timed automaton model of the system, which

can be analysed via timing analysis techniques for relevant real-time properties. The

problem discussed in [29] diverges from that targeted in this thesis that [29] only con-

siders synchronous real-time systems. Furthermore, the proposed method is limited

to single-processor implementations [29, p. 3] and, once again, annotations to the

program have to be possible.

Thiele’s contributions. In contrast to the literature discussed so far, the follow-

ing works do not really focus on reverse engineering. Instead, the research group of

Thiele define amathematical framework, the so called real-time calculus, for analysing

system properties of embedded systems [6, 30, 31].

Two models form the basis of the underlying mathematical framework and con-

sequently of the system’s analysis. On the one hand, this is the event model, which

describes theminimum andmaximumnumbers of events that arrive within any time

24 2. RELATED WORK

interval. For that reason, the resulting functions are called the upper and lower arrival

curve. The secondmodel captures the processing capabilities of the system andworks

in a similar manner. In the so called service curve, the lower and upper processing lim-

its of a resource are defined. Thus, the system is described on the basis of how much

load is incoming and how much load can be processed. Although there is a method

available to generate event traces for simulation or physical measurements [44], the

models are just suitable for quantitatively characterising a system. For this reason, we

also use the concept of arrival curves in CoreTAna to describe stimulation patterns of

tasks. Other characteristics of the system such as the task priorities, however, require

a qualitative specification.

Altenbernd’s contributions. More recently, Altenbernd et al. [10] have de-

veloped an approach to automatically derive source-level timingmodels. Their goal is

to infer a model that can be used for static worst case execution time (WCET) analysis

or simulation in order to estimate the timing behaviour of a system at source-level.

The resulting linear timing model specifies a correlation between execution times

and virtual instructions, which represent an abstraction of the actual source code.

For each virtual instruction the execution times are automatically identified from the

measured execution times and recorded instruction counts. This is done by compil-

ing example programs and executing these on the target hardware or a simulator.

Thereby, the execution time needed to execute an example program is determined.

In a next step, each example program is translated into the virtual instruction code

format. A WCET analysis tool which establishes a relation between virtual instruc-

tions and their execution times, determines then the execution counts for all virtual

instructions in an example program. Finally, the system under investigation is trans-

lated into the virtual instruction code format and, based on this together with the

previously determined knowledge on virtual instructions and their execution times,

estimations on the WCET and the execution time for a single program run can be

calculated.

This approach differs from the one presented in this thesis by deriving source-level

timing models. Not only does this approach require the availability of source code, it

also reveals the internal program logic of the system under investigation by using a

source-level timing model. Both of these drawbacks, however, are infeasible within

the scope of our work.

2.1. EMBEDDED SOFTWARE DOMAIN 25

Ciccozzi’s contributions. Another related work is the round-trip approach in-

troduced by Ciccozzi et al. [11, 32, 33], where target code is generated from design

models according to the concept of model-based engineering. This step is often con-

sidered as a one-way street, where changes in the target code are not propagated back

to the modelo. Furthermore, in embedded systems, characteristics such as resource

consumption or execution time play a crucial role in the correct behaviour of the

system. However, values for these characteristics are basically non-existent at the

modelling level until the design is implemented and run on a specific platform. For

this reason, Ciccozzi et al. introduce a round-trip approach which includes the auto-

matic annotation of design models via code execution monitoring that is extended by

aspects of multi-processing in [11, 33].

Instead of just generating source code from designmodels, the proposed approach

inserts additional traceability information to establish a mapping between model ele-

ments and generated code segments. This allows one to automatically monitor and

measure properties of a system during runtime including execution time, response

time, heap and stackmemory usage and then propagate the results back to the design

model for further evaluation. For the definition of the designmodel, the CHESSmod-

elling language [11, p. 5 ff.], an UML profile including tailored subsets of SysML and

MARTE, is employed by Ciccozzi et al.. The result of the monitoring is a four-column

log file that contains the aggregated value for each property and model element.

In general, the approach by Ciccozzi et al. is in line with the goal of our work,

namely to automatically infer a model of a system which accurately reflects the sys-

tem’s runtime behaviour. But their approach already starts with an existing design

model that describes the complete system. However, a developer has to handle mul-

tiple diverse models, of which each one covers a distinctive part of the system such as

functional behaviour or architectural description. For this reason, the generation of

an initial model, which can then be gradually enhanced, plays a crucial role and has

not been discussed by Ciccozzi et al..

Terrasa’s contributions. Motivated by the fact that statically analysing a real-

time system, e.g., determining the WCET yields highly pessimistic results, Terrasa

et al. present in [34] a framework for extracting temporal properties from real-time

systems by analysing run-time traces. The temporal properties considered are either

system related, e.g., the utilisation or task related with properties such as response

times, computation times, blocking times, and jitter factors. The framework which

26 2. RELATED WORK

they introduce consists of two consecutive steps. At first, each temporal property is

defined as a function over pre-defined sequences of state transitions. Then, based

on a trace recording that can origin from hardware or software tracing the system

evolution is reconstructed as state transitions. That way the temporal properties are

determined. Finally, the authors present a case study in which their framework is

used to extract temporal properties from a POSIX real-time application running on

RT-Linux.

Although the deterministic finite automata, based on which the temporal prop-

erties are defined, are similar to those used in this work and could be adapted ac-

cordingly, the framework calculates just a set of performance metrics. A model of

the overall system and the interaction of its elements, which can be considered for

further system optimisation and which is required for our work, is not available.

2.2. Other Software Domains

While the previous section focuses on existing solutions for the embedded software

domain, the following gives an overview on related work from other software do-

mains.

Auguston’s contributions. Auguston suggests an approach to create a model

of a program’s behaviour [35]. The model is defined as a set of events, the so called

event trace. An “event is an abstraction for any detectable action performed during the

program execution, such as a statement execution, expression evaluation, procedure

call, sending and receiving a message, etc.” [35, p. 1]. This implies that events have

to be detectable via implementation, e.g., by instrumentation. Each event is defined

by a time interval stating the beginning and end of an action. In addition to the event

trace, two binary relations over events, precedence and inclusion, are introduced to

express temporal relationships. Precedence expresses a sequential order of two events

and inclusion states that events are contained within another composite event, e.g.,

statement execution events within a subroutine call event. Based on this model of a

program’s behaviour, the event trace can be checked regarding patterns which capture

structural and contextual conditions.

In conclusion, the introduced model is basically an event trace format that is op-

timised to check against assertion rules. Because no explicit assertion rules are given

that allow reasoning, e.g., to determine task priorities, the presented approach does

2.2. OTHER SOFTWARE DOMAINS 27

not create added value to this thesis.

Murphy’s contributions. The software reflexion model technique by

Murphy [36, 37] is another research which is related to the scope of this thesis.

The authors present an approach to get an understanding of the system’s source

code and to gain insights into the system’s behaviour. The approach which consists

of five steps, derives and iteratively refines a so-called reflexion model. The first step

creates a high-level model that describes aspects of the system’s structure, e.g., the

data flow architecture by reviewing artefacts such as source code, documentation,

or expert interviews. Following this, a source model which contains information

on the system’s interaction including the call graph is created from source code. A

map describing the relation between the high-level model and the source model is

established next. In contrast to the previous model, the “map is produced manually”

[36, p. 3]. Finally, the actual reflexion model is computed to comprehend interactions

in the source code from the viewpoint of the high-level model. This is done by

merging the information from the source model with that of the high-level model

using the map. The resulting reflexion model is then checked and if necessary

refined. This step is repeated until the structural information has reached the

required level of detailed.

Although this technique describes a list of consecutive steps, the required inform-

ation for all models except that from source code has to be gathered manually. Fur-

thermore, no algorithms are presented for the one step that can be automated. In

conclusion, the presented approach describes a general process of how to proceed in

order to get a model that covers the design and implementation of a software sys-

tem.

VanHoorn’s contributions. VanHoorn et al. [38] present a framework formon-

itoring and analysing the runtime behaviour of Java, .Net, and COM-based systems.

The framework, called Kieker, requires the instrumentation of the software system.

This imposes an “average overhead at below 10%” [38, p. 2] regarding performance

measures such as response times. Monitoring records containing timing, control-

flow, and session information, CPU and resource utilization, and memory/swap us-

age are either stored in the file system, in SQL databases or streamed in-memory.

Thus, the monitored records can be analysed online or offline, i.e., during runtime,

resp., afterwards. The produced outputs of an analysis are either textual or graphical

28 2. RELATED WORK

visualisations including sequence diagrams, call trees, and dependency graphs.

Although the framework provides comprehensive analysis capabilities including

that of the timing behaviour, the results of the individual analyses stand on their own.

However, in order to reason about the system as a whole and to reconstruct an archi-

tectural model covering the entire system behaviour as targeted within the scope of

this thesis, a solution would have to be developed on top of the individual analyses.

Krogmann’s Contributions. Krogmann et al. [5, 8] introduce an approach for re-

verse engineering a behaviour model from Java byte code using genetic search. The

goal is to get a representation of the system’s components which can be used for per-

formance predictions. The approach is based on static and dynamic analysis of byte

code. Via the instrumentation of byte code and following execution in a previously

defined test bed that is explicitly designed for the application, the amount of executed

byte code and the inputs and outputs of a component are recorded individually. A

genetic search is then used on the monitored data in order to discover functional de-

pendencies in the control and data flow. The resulting parametrised model of a com-

ponent’s behaviour consists on the one hand of estimations on how many byte code

instructions are executed depending on the input parameters and on the other hand

of mathematical formulas describing the number of external calls and their relation-

ship regarding a component’s input. Finally, the byte code is executed on the target

platform to determine timing values for individual components. All those pieces of

information enable then a performance prediction of the entire system.

The presented approach “focuses on business information systems” [8, p. 13] and

has to be extended to work with embedded systems. In contrast to what is targeted

within the scope of this thesis, however, this approach tries to capture the internal

program logic of the system under investigation. This endeavour is rated as legally

critical and not targeted within this thesis in order to protect the intellectual property.

For that reason black-boxes like software functions are just approximated and not

further analysed.

2.3. Other Domains

Similar problems to those discussed within the scope of this thesis can also be found

in other domains. One of these domains is the automatic modelling of work flow

processes, which is also known as work flowmining. The goal is to generate a formal

2.3. OTHER DOMAINS 29

model of management steps in an automatic manner. However, there are two main

differences. On the one hand, process mining misses a notion of time. On the other

hand, the algorithms need multiple traces as input in order to gain confidence in a

solution.

Cook’s contributions. Cook et al. compare in [39] three different methods for

sequential process discovery. Eachmethod generates as a result a finite state machine

that covers all behavioural aspects of a process. The first method is called KTAIL and

works purely algorithmic. It origins from a string algorithm which looks for prefixes

that have the same set of tails for a given length. Those prefixes are then combined

to equivalent classes. This has the effect that loops in the trace are unrolled unless

they are merged afterwards. A drawback of this method is, that it is not robust in the

presence of noise. The seconds methods that is presented is purely statistical. RNET

is based on a neural network which is trained using a window of the event stream

with a specified length. The last method is called MARKOV and combines both an

algorithmic and statistical approach. There, the probability of event sequence in the

trace are determined with the help of a Markov model.

In [40], the idea behind the methods above is extended in order to capture and

model also concurrent behaviour. As a result of this, the method generates Petri

nets instead of finite state machines. The methods works by determining the metrics

entropy, event type count, periodicity, and causality from the trace. Based on these

metrics, the method determines when concurrent behaviour is occurring and what

dependence relationships, such as fork and join, exist. Finally, dependencies are in-

ferred with the help of statistical and probabilistic analyses so that as much of the

available event stream as possible is explained.

Besides the fact that the used event traces have no notion of time, the methods

also require guidance from someone familiar with the underlying process who tunes

the parameters accordingly. Furthermore, the resulting models are just intended as

initial models of the process and have to be refined manually afterwards.

Van der Aalst’s contributions. Van der Aalst et al. [41] introduce an algorithm

which extracts a processmodel from an event log. The log contains information about

the workflow process as it is actually being executed. This means that well-defined

steps in the workflow, the events, are recorded sequentially and with every execution

a new sequence is created. Then, the presented algorithm analyses such a log and cre-

30 2. RELATED WORK

ates a corresponding Petri net. To give the method a notion of time event types such

as task start, task complete, task withdraw, and task resume can be added. However,

no noise, e.g., false recordsmust be contained in the event log. Based on the recorded

event sequences, the algorithm constructs places with connecting transitions in the

Petri net, if it detects a causal relation between two transitions in the log.

Besides the stated limitations of the algorithms that they cannot deal with short

loops and that they derive behaviourally equivalent models instead of rediscovering

the same model, the algorithm requires multiple event sequences to work. So, this

algorithm can be seen as an alternative way to derive the call graph within a process.

However, this isn’t the main challenge tacked by this work. Nevertheless, there is

still the problem that no task interactions, e.g., due to scheduling or synchronisation

mechanisms, are considered.

Wen’s contributions. Wen et al. introduce in [42] a novel approach for process

mining based on event types. For this purpose, the authors introduce two events types

called START and COMPLETE that break up the atomicity of tasks. In that way, the

fact that tasks need time to execute is exploited and parallelism can be detected. The

proposed algorithm is an extension of an existing algorithm which takes the newly

exposed temporal information into consideration. At first, the causality information is

used to derive ordering relations between individual tasks. Based on this information,

the algorithm generates a Petri net.

Although this approach extends existing ones by a notion of time, timing inform-

ation such as the timespan of the tasks or their recurring appearances are not subject

of the process mining.

3
Software Development for

Multi-core Architecture

The automotive industry is constantly facing new demands. Modern cars have to

produce lower pollution and become more energy efficient in order to comply with

more restrictive environmental laws. Another major goal is to reduce the number of

accidents, which is a result of the increasing individual transport by improving the

active and passive safety in vehicles. Moreover, the demand for comfort and assist-

ance features rises drastically. All these developments and improvements lead to an

increasing system complexity.

Most vehicle features are implemented in dedicated electronic control units

(ECUs). This means that there is, e.g., one ECU for the engine management and one

for the steering. Figure 3.1 gives an impression of the resulting complexity by visual-

Figure 3.1.: Schematic Overview of ECUs in a Luxury Car from Year 2002. Copy-
right: Vector Informatik GmbH.

32 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

ising the 76 individual ECUs of a luxury car 15 years ago. Nowadays, this amount is

reached by mid-range vehicles and modern luxury cars are expected to be equipped

with more than 100 ECUs.

3.1. Target Mapping

The software development process for automotive and other embedded systems in-

cludes a step called target mapping. In this activity, artefacts which result from prior

steps of the development process and which are independent of the target platform,

such as functional models, are adapted to the target platform. Thereby, a multitude

of different system characteristics have to be considered, e.g., the available hardware

platform including the processing units and their connection to the periphery or the

operating system (OS), which manages the temporal scheduling in a multi-tasking

system.

Multi-core architectures pose an additional challenge to the target mapping and

increase the complexity of the systems under development further. There is a multi-

tude of possibilities to distribute tasks on the available processing units. At the same

time, the correct execution of the software has to be guaranteed which is achieved

by sticking with the defined execution order of functions. But this order is initially

designed for a sequential execution and has to be paralleled by the target mapping in

order to benefit from the multi-core architecture. However, the mapping of a task to

a processing unit has a crucial influence on the system’s timing behaviour, its per-

formance and safety. As a consequence, the goal of the target mapping is to optimise

these system qualities without changing the execution behaviour.

Parallelism can be performed on different levels and starts with the problem itself,

e.g., a feedback loop. To solve this problem, a parallel algorithm can be applied instead

of an algorithm that works sequential. In a next step, the implementation of the al-

gorithm is divided into individual parts, the functions, which are called runnable in

automotive terminology, so that they can run in parallel in a computer program. A

possible realisation of such a parallel program is the execution inmultiple independent

processes, the so-called multi-tasking. Finally, parallel computing requires that the ex-

ecution of the program is running concurrently on the available multi-core hardware

platform.

The development step of adapting software to the target platform, which consists

of many phases, realises parallel program and parallel computing. A possible real-

3.1. TARGET MAPPING 33

Figure 3.2.: PCAM Method as originally introduced by Foster. Reprinted from
[46].

isation of the target mapping is, e.g., the PCAM Method as originally introduced by

Foster [46]. As depicted in Fig. 3.2, it consists of the following four phases, which are

discussed in detail in the following sections:

• Partitioning: The mapping of functions to tasks.

• Communication: Analysis of the requirements on the communication

between tasks on the available multi-core platform.

• Agglomeration: Optimisation of the task structure with the goal to minimise

the overhead by communication and synchronisation.

• Mapping: The mapping of the optimised tasks to the different processing

units considering the available hardware properties such as the speed of the

memory connections.

3.1.1. Partitioning

The partitioning represents the first phase towards a parallel execution. It applies the

design paradigm “divide and conquer”, which states that a problem has to be divided

in independent parts. Then, these parts have to be solved in parallel. The goal of

34 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

Figure 3.3.: Functional Decomposition. Reprinted from [47].

the partitioning is to create a large number of small functions that do not contain

duplicate data and computations. This means that the partitioning does not only

consider the computations for solving the problem but also the data on which the

computations are executed.

There are two general approaches for partitioning available [47]: domain decom-

position and functional decomposition. In the domain decomposition, at first the

data of the system are divided into equal sized parts and then all computations that

are producing these data parts are packed together in a task. In opposite to this, the

functional decomposition splits the system according to their functionality and then

these functions are bundled together with the required data into tasks.

For the development of hard real-time systems in the automotive industry, mainly

the approach of functional decomposition is applied in which all the runnables are

bundled to tasks according their activation requirements. The activation requirement

of each runnable is defined, e.g., by the feedback loop it implements or the sampling

rate of a sensor. Fig. 3.3 depicts this approach, in which each colour defines a different

recurrence period.

3.1. TARGET MAPPING 35

3.1.2. Communication

The goal of this phase is to determine the correct position of a runnable within a task.

Fig. 3.4 depicts the data flow between six runnables in a task.

This results in a directed graph that contains often a cycle. To achieve a sequential

execution order for the runnables, which is required for each task, it is necessary to

break up this graph by eliminating all cycles within the graph. At the same time, the

correct real-time behaviour of the software functions on the target platform has to be

preserved.

To achieve this, the requirements on the dynamic behaviour are clearly denoted for

each runnable using execution order constraints and age constraints. An execution order

constraint defines the relation between runnables in such a way that one runnable has

to be executed before the other, e.g., because of a data dependency. If a runnable does

not have any dependency to any other runnable regarding its execution order, it can

be placed arbitrarily within the task. An age constraint defines the maximum age of

a data value, i.e., the maximum time since a value of the data signal was produced

last. This guarantees that the runnables work with the latest data. Fig. 3.5 extends

the example introduced in Fig. 3.4 by the annotated timing constraints.

With the help of the timing constraints, it is possible to eliminate cycles within the

graph and to achieve a sequential execution order for the runnables. Fig. 3.6 shows a

possible execution order for our prior introduced example.

In Fig. 3.6, the runnables are positioned within the task so that all defined exe-

cution order constraints are met and that the times between the production and con-

Figure 3.4.: Data Flow between Runnables. Data Flow between the Runnables (R1
– R6). Adapted from [48].

36 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

Figure 3.5.: Timing Constraints to annotate Data Flow. Data flow between the
runnables (R1 – R6) with annotated timing constraints. Adapted from [48].

suming of the data, which are constrained by an age constraint, are minimised. How-

ever, the presented execution order is just one of perhaps many possible solutions.

Although the solution still contains cyclic data dependencies, these data accesses are

not crucial for a correct behaviour because no maximum data age is defined. This

means that in these cases it does not matter whether a runnable works on the latest

data values or on data which has been produced during the previous task execution.

Figure 3.6.: Execution Order of Runnables. Possible execution order of the run-
nables (R1 – R6) within the task. Adapted from [48].

3.1. TARGET MAPPING 37

Nevertheless, also the fact that usually not all requirements are known at the begin-

ning of the target mapping has to be considered. This is a crucial problem especially

in the automotive industry, where a distributed software development is practised,

i.e., parts of the software are developed by the OEM and other parts are developed by

the Tier-1s. For this reason, all the steps of the target mapping have to be performed

again with every integration of a new software version.

3.1.3. Agglomeration

The transition between the analysis of the communication and the subsequent op-

timisation of the task structure is fluent and is also performed iteratively. While the

previous step focuses on the communication between the runnables within a task,

this step considers the interaction of tasks and the resulting impact on the commu-

nication. Thereby, it is necessary to protect the data signals which are processed by

the runnables from concurrent access in order to ensure data stability and data coher-

ency.

Figure 3.7.: Need for Data Stability and Coherency. Example showing the need
for data stability and coherency. Reprinted from [48].

38 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

Data stability As soon as runnables are executed in parallel and data is exchanged,

it is very likely that a data value is modified although a different runnable is still in

need of this value. If the data is scalar and can be written atomically, then the value

of the data signal cannot be corrupted by a concurrent write access. This means that

a read access to a data signal yields either the old or the new value. But as soon as

there are multiple read accesses, either within the same runnable or across multiple

runnables, and each time the same value is expected, then it can happen that the

stability of the data signal is lost. This situation is depicted on the left side of Fig. 3.7,

in which a data signal S1 has to be stable across multiple runnables.

In some cases, a concurrent modification of data is acceptable because the val-

ues are used in encapsulated parts of the algorithm or because the data features low

dynamics and thus, can change only slightly. But in other cases, changing a value

such as a boolean value or the state variable of a state machine during a computation

has a severe impact. To avoid this behaviour, the need for stability of a data signal is

defined first. Then, this data stability is realised in the agglomeration phase, e.g., via

buffering.

Data coherency A change in well-defined data structures such as structs or ar-

rays while a runnable is still processing this data can also have a severe impact. For

example, two pieces of information such as a flag and its complement have to be writ-

ten and read in a coherent way because otherwise it can happen that the data is read

and in the meantime a part of the data set is already modified. This case is visualised

on the right side of Fig. 3.7, in which coherency for the data signals S1 and S2 is

required.

In general, this problem appears on communication between tasks that have dif-

ferent activation frequencies. Thus, it has to be defined for each of these data signals,

whether a data coherency is needed. In the agglomeration phase, the coherency is

then realised by implementing critical sections for the affected data, e.g, via sema-

phores.

3.1.4. Mapping

Finally, the mapping realises the allocation of the defined tasks to the available pro-

cessing units of the target platform. Tasks, which are executed on the same processing

unit access the same local memory. But if tasks communicate between processing

3.1. TARGET MAPPING 39

Execution Time

Cost

1

2

4

3

5

6

Figure 3.8.: Pareto-optimal Solutions. Solutions compared regarding their min-
imum execution time and minimum cost. The hatched areas visualise the areas
in which a solution is pareto-optimal.

units, then data has to be transferred between these processing units. In doing so, a

temporal overhead arises which results in an execution delay. In the worst cases, this

overhead becomes so massive that the results of the previous phases communication

and agglomeration are invalidated because the real-time behaviour of the software

functions cannot be guaranteed any more. Thus, the mapping considers mainly the

resulting communication overhead of the tasks. This challenge is even bigger for

heterogeneous processor architectures, where not all processing units are equal but

feature, e.g., different frequencies or memory interfaces.

There are multiple possible goals that can be targeted by the mapping, e.g., an

equally distributed load over all processing units, the so-called load balancing. The

underlying problem of the mapping is equal to that of bin-packing. This means that

there are a multitude of possible solutions. Thus, the goal of the mapping is to con-

sider the most comprehensive subset of the possible solution space in a reasonable

amount of time in order to find a so-called pareto-optimal trade-off. This is necessary

because the objectives of the partitioning andmapping phases oppose each other, e.g.,

real-time properties vs. load balancing. A result of the mapping is a pareto-optimum

and thus, superior to other solutions, if it performs better in at least one objective

than all other solutions and if it is at least equal in all other objectives at the same

40 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

time.

Fig. 3.8 visualises the problem of pareto-optimal solutions. In this example, the

best trade-off between the two objectives minimum execution time and minimum

cost has to be found. The figure shows six solutions within the design space and the

areas in which they are pareto-optimal. Thus, there are four pareto-optimal solutions

(1, 4, 5, and 6) in this example from which the “best” has to be chosen then.

3.2. Timing Simulation

Timing simulation is an approach for examining temporal properties of a real-time

system as shown in Fig. 3.9. Established techniques for analysing whether a system

is capable of meeting all the required deadlines such as timing analysis or scheduling

analysis cannot handle the exploding complexity in automotive systems and are more

andmore replaced by timing simulation. The biggest advantage of employing timing

simulation during the development is that it allows one to make design decisions in

an easy and time efficient way. For example, an engineer can analyse the impact of

changing the sequence of runnables within a task during the targetmapping by simu-

lating the system behaviour and determining the resulting communication overhead.

By making assumptions, this is even possible, if the target platform is not physically

available or if the software system is only partially known. With progressing develop-

ment, more information on the system under development is available and thus, less

assumptions have to be made so that the simulation results get closer to the system’s

actual behaviour.

The realisation of a timing simulation can be based on, e.g., a discrete-event simu-

lation [49]. In a discrete-event simulation, changes to the system, so called events, can

only occur to a particular instant in time. Between consecutive events, no change in

the system is assumed to occur, which allows the simulation to directly jump in time

from one event to the next instead of continuously updating the system’s internal

state in small time slices. Based on the occurred events, the system behaviour during

runtime can be comprehended and the performance determined.

In case of an underlying discrete event simulation, the timing simulation works on

an abstraction of the system, which consists of models for the hardware, software and

operating system. Each model is represented by a state machine which describes the

system’s behaviour and the input/output interfaces that are required to interact with

other model parts. A transition from one state to another is caused by interactions

3.2. TIMING SIMULATION 41

Figure 3.9.: Screenshot of Simulation Results in TA Simulator. Screenshot of sim-
ulation results as presented by the commercial timing simulation tool TA Simu-
lator1. The upper half visualises the events in a Gantt chart. The lower half shows
the performance metric values calculated from the events in a table and their dis-
tribution in a histogram.

via events. An event consists of a time stamp, which defines the occurrence moment

of the event, a signal, which is necessary to differ between the interactions of two

model parts, and a value, which gives additional information on the signal, e.g., an

identifier and an event counter. For a chronologically correct sequence of events, the

simulation holds a queue of all occurred events and sorts them according their time

stamp. During the execution of the simulation, the global time is set to the time stamp

of the next event in the queue and the transitions for the affected state machines are

triggered.

The employment of a discrete event simulation makes it possible to model the

system in a probabilistic manner. This has the effect that with each execution the

parameters of the statemachines are variedwithin their valid range so that their stated

statistical estimators are met. Because this approach covers the complete range of the

model parameters, scheduling anomalies can be exposed and an extensive coverage

of the exploration space can be achieved. The result of the timing simulation is a

sequence of events, a so-called trace recording, which contains all state transitions of

the system during execution. These events are then used to determine performance

1http://www.timing-architects.com

http://www.timing-architects.com

42 3. SOFTWARE DEVELOPMENT FOR MULTI-CORE ARCHITECTURE

Figure 3.10.: Screenshot of Optimisation Results in TA Optimizer. Screenshot
of optimisation results as presented by the commercial tool TA Optimizer2. The
upper half opposes the fitness of the initial model (red) and that of an optimised
model (blue) in a radar chart. The lower half shows the individual metric values
considered by the fitness in a table.

metrics of the real-time system, such as the response times of tasks of communication

overhead that allows one to make the required design decisions.

3.3. Model-based Optimisation

Another approach which gained in importance with the arrival of multi-core architec-

tures in the automotive development is the model-based optimisation. By applying

model-based development, e.g., via the AUTOSAR methodology, it is possible to sys-

tematically evaluate different variants of the system under development in order to

maximise system performance according to user-defined metrics such as utilisation

or inter-core communication.

For example, the huge design space of the target mapping for multi-core architec-

tures can be efficiently evaluated by applying a genetic algorithm on a system model.

There, specific parts of the system model such as a task’s priority or the task-to-core-

allocation are altered randomly by mutation and crossover algorithms. The perform-

ance of the resulting model, the so-called fitness, is then determined by employing a

2http://www.timing-architects.com

http://www.timing-architects.com

3.3. MODEL-BASED OPTIMISATION 43

timing simulation or timing analysis. The fitness is a scalar value, which is calculated

as a weighted sum of user-definedmetrics and defines the optimisation goal. Accord-

ing the theory of the survival-of-the-fittest, the models which are evaluated best are

selected to continuewith the genetic algorithmuntil a termination condition such as a

fixed number of generated models is reached. As shown in Fig. 3.10, the result of the

optimisation consists of a pre-defined number of system models, the so-called final

population, which have the highest fitness values during the optimisation process.

Based on this final population, the engineer can choose a pareto-optimal solution for

the system under development.

4
Real-time Automotive Model

Most ECUs in a vehicle represent real-time systems. There, the correctness of a sys-

tem’s behaviour depends not only on functional correctness but also on temporal

accuracy:

Definition 4.1 (Real-time System). “A real-time system is a system that is required

to react to stimuli from the environment […] within time intervals dictated by the

environment” [50, p. 2].

This consideration of timing behaviour is an extra challenge which requires sub-

stantial effort, but it is essential to the development process. For example, timing

simulation is applied to examine temporal properties of real-time systems by use of

discrete-event simulation. In a discrete-event simulation changes to the system, so

called events, can occur only at a particular instant in time. Between consecutive

events no change in the system is assumed to occur, which allows the simulation to

directly jump in time from one event to the next instead of continuously updating the

system’s internal state in small time slices. Because events can only occur at a partic-

ular instant in time, a discrete-event simulation can work with an abstract description

of the system under development. Thus, the most abstract description of a real-time

system can be defined according to [49, p. 11] as follows:

Definition 4.2 (Real-time SystemModel). A real-time system S = (τ,Π, ξ) consists of
a set of processes τ, a set of processing units Π, and a set of schedulers ξ.

A set of processes represents the dynamic application software and defines the

execution demand to the system. In contrast to this, the processing resource specifies

the amount of execution performance that can be provided by the system. Finally, the

scheduler establishes a connection between these two by describing how available

resources are utilised in order to cope with arising execution demands.

With every piece of information added to the model, the abstraction is reduced

and the simulation accomplishes more accuracy. This goes as far as to simulate the

46 4. REAL-TIME AUTOMOTIVE MODEL

timing behaviour in a cycle exact manner, which however, would go beyond a reas-

onable amount of time for simulation. Thus, a trade-off between simulation runtime

and level of detail described in a model has to be found. A detailed description on

what is covered by each part and which details can be added to achieve more accurate

simulation results is discussed in-depth in the following.

4.1. Processing Units

The hardware model focuses on the description of the available computing power. It

represents the balance to the software part, which makes a demand on the required

performance. The execution capabilities in an embedded system are provided by the

ECU. An ECU includes at least one micro-controller plus peripherals such as timers

and analogue ,resp., digital inputs and outputs.

The hardwaremodel is deliberately kept elementary, because the focus of this work

is on reversely engineering the software rather than on identifying characteristics of

the hardware. Although the hardware has an impact on the real-time behaviour of

the software, this impact is mainly reflected by the execution demand of the software,

e.g., each memory access extends the execution time. Furthermore, this work only

takes ECUs into account that contain exactly one micro-controller, which is currently

state-of-the-art in the automotive industry.

Definition 4.3 (Hardware Model). The hardware model consists of a single micro-

controller Π and defines the processing frequency ν(Cy) for each of the n = ∣Π∣
available processing units Cy ∀y ∈ {1, . . . ,n}. Each processing unit Cy of the micro-

controller is connected to the sharedmemory, which allows the sharing of data values.

A real-time system that consists of a micro-controller with exactly one processing

unit, which implies ∣Π∣ = 1, is called a single-core system. In cases of ∣Π∣ > 1, we speak
of multi-core systems. For example, Figure 4.1 depicts a quad-core micro-controller,

which means ∣Π∣ = 4.
Each processing unit Cy features a constant processing frequency ν(Cy) that does

not vary in time. Thus, dynamic voltage/frequency scaling (DVFS), which reduces the

processor voltage or frequency to minimise power consumption, cannot be represen-

ted in the model. However, it is possible to model symmetric multi-core processor

systems, in which all processing units of a micro-controller have the same frequency,

as well as asymmetric ones. In general, the processing frequency ν(Cy) denotes, how

4.2. PROCESSES 47

Processing Unit
C1

ν = 400 MHz

Processing Frequency

Shared Memory

Processing Unit
C2

ν = 200 MHz

Processing Frequency

Processing Unit
C3

ν= 200 MHz

Processing Frequency

Processing Unit
C4

ν= 400 MHz

Processing Frequency

Figure 4.1.: Hardware Model. Schematic overview of the information contained
in the hardware model. Shown is a quad-core micro-controller with its four pro-
cessing units (C1 – C4). The processing units C1 and C4, resp., C2 and C3 run at
a constant frequency ν of 400MHz, resp., 200MHz.

many instructions the processing unit Cy can calculate in a second. Thus, a task’s ex-

ecution time is determined by the number of instructions that has to be executed.

The mechanism, which allows tasks to share data values over processing units,

the inter-task communication, is realised in a symmetric way. For this, the micro-

controller has a shared memory, which all processing units Cy access in the same

way with the same access time. This considers a non-blocking access approach to

the shared memory, because blocking mechanisms delay all read and write accesses

if there is an ongoing write access to a data signal until this signal has been written.

Additional peripherals on an ECU such as communication buses, timers, or further

blocking resources are not considered in the model.

4.2. Processes

The software subsystem of a real-time systems is represented by the dynamic applic-

ation software. It consists of a set of processes and determines the execution demand

to the system.

Definition 4.4 (Process Set). Let Pi be a process, then a process set τ =

48 4. REAL-TIME AUTOMOTIVE MODEL

{P1, . . . ,Pn} ∣ n ∈N0 is a collection of all processes in a real-time system S.

As originally published in [49, p. 11], a process can be defined as a transformation

of a set of input dataΦI(i) to a set of output dataΦO(i). This abstraction is visualised
in Fig. 4.2. This thesis builds upon thismodelling idea and extends it by the additional

property priority oi:

Definition 4.5 (Process). A process Pi = (ai, ei, di, oi,ΦI(i),ΦO(i)) is defined by the
temporal properties activation stimulus ai, execution time ei(Cy), and deadline di and
by the logical properties priority oi, input data ΦI(i) and output data ΦO(i).

Each process is activated by a stimulus ai. This stimulus can origin from the envir-

onment or from the system itself, e.g., due to periodicity or inter-process activation.

There is a wide range of patterns available that allow one to model not only periodic

but also infrequent activations including jitter or sporadic behaviour. The patterns

supported in the developed model are described in detail later on in Sec. 4.2.3.

The execution time ei(Cy) defines the time that a processing unit Cy takes to ex-

ecute the process without interruption. Thus, it states a demand on the provided

computing power. This demand can be either specified as a duration for each pro-

cessing unit or abstracted as the number of instructions which have to be processed.

The advantage of latter is that it does not have to be determined for each processing

unit individually, because the execution time results from the amount of instructions

Temporal

Logical

ei

oi

t < t + dit
diai

ΦI(i) ΦO(i)

Pi

Figure 4.2.: Process Model. Visualisation of an abstract representation of process
Pi including its properties activation stimulus ai, execution time ei(Cy), deadline
di, priority oi, input data ΦI(i) and output data ΦO(i). Adapted from [49, p. 12].

4.2. PROCESSES 49

and the frequency of a processing unit. This is helpful especially in heterogeneous

systems.

The deadline di and the priority oi are parameters used for scheduling. Depending

on the applied scheduling algorithm, the parameters are considered by the scheduler

in order to determine which process is assigned a processing resource next. Consid-

ering the classification of the real-time system (hard, firm, soft), the deadline defines

the latest moment in time relative to its most recent activation before the process’s ex-

ecution should, resp., has to be finished. In contrast, the priority is an integer which

establishes a relative order of importance between processes.

Input data can either come from another process or from the environment of the

real-time system and output data can, analogously, go to another process or the en-

vironment. In contrast to the model defined in [49, p. 11], the model used in this

work cannot only require and provide signals as input, resp., output data but also

semaphores and spinlocks. A semaphore is a mechanism for limiting the number of

concurrent accesses to a resource. It is defined by its initial value n, which states the

maximum number of concurrent accesses. If a semaphore is initialised with n > 1,
its called a counting semaphore. This is due to the fact that each granted access to

a resource, resp., each exit decreases, resp., increases the number of remaining con-

current accesses allowed to that resource. In case of a mutex (n > 1), the semaphore
realises mutual exclusion. A spinlock is defined as a mechanism which causes a

process trying to acquire a lock to simply wait in a loop while repeatedly checking if

the lock is available. Thus, both semaphores and spinlocks allow one to control and

synchronise communication between processes.

In our model, a process can either emerge as an interrupt service routine (ISR) or

a task.

Definition 4.6 (Task). A task Ti = (ai, ei, di, oi, si, qi,ΦI
i ,Φ

O
i) is defined by the temporal

properties activation stimulus ai, execution time ei, and deadline di and by the logical

properties priority oi, pre-emptability si, maximum size of activation queue qi, input

data ΦI
i and output data ΦO

i .

In contrast to an ISR, a task requires the additional parameters si and qi. The

pre-emptability si states, whether a running task can be interrupted by the scheduler.

If a task is non pre-emptive, it continues execution until its termination or until a

schedule point is reached although a task with a higher priority is ready. Instead, ISRs

can be interrupted by ISRswith a higher priority at any time. A detailed description on

schedulers and how this parameter is used for scheduling is presented in Sec. 4.3.

50 4. REAL-TIME AUTOMOTIVE MODEL

The parameter qi states themaximum size of queued activation requests for a task,

i.e., how many instances of a task can be activated and, thus, reside concurrently in

the system at any time. A value “1” means that only a single activation is permitted

for this task and that it has to finish execution before it can be activated again.

So far, only processes on Process Level have been considered, i.e., one sees them as

black boxes without any knowledge of what is happening inside. Based on this de-

scription, it is already possible to simulate the timing behaviour of processes roughly.

However, to get more precise results and to get closer to the actual system behaviour,

it is necessary to model tasks as white boxes. This is realised in the developed model

via the call graph, which is introduced in detail in the following.

4.2.1. Call Graph

Fig. 4.2 depicts a process as a transformation of a set of input data ΦI(i) to a set of
output data ΦO(i) that takes ei time to execute. This abstraction lacks information
on when or how often the input/output data is accessed or what exactly is happening

during the execution time of a process, which is essential to get more precise sim-

ulation results. As a consequence, Def. 4.5 is extended to system level by adding a

description on how the process is interacting with the system.

This description is provided as a rooted, directed, acyclic graph, the so-called Call

Graph:

Definition 4.7 (Call Graph). Let V be a set of system interactions and let E = {ei} be
a set of tuples ei = (vk, vl) that link two interactions vk, vl ∈ V in such a way that the
graph is free of cycles and all sequences origin in a single interaction. Then the Call

Graph G is defined as G = (V,E).

With each execution of a process a sequence of system interactions is performed.

The call graph describes all possible sequences which can occur during execution in

a single graph. In the developed model, a process can perform the following system

interactions:

Runnable Call: A task calls the functionality of a runnable within its context. Run-

nables are not only responsible for consuming and producing the input, resp.,

output data of a task, but are also main contributors to the execution time of a

task as described in Sec. 4.2.2.

Mode Switch: A mode switch represents a fork from which on different sequences

of interactions can be observed, e.g., during initialisation of the system. In the

4.2. PROCESSES 51

developed model, a sequence connected to the fork can be selected either in a

deterministic manner according specific values of the input data or randomly.

Latter, allows one to express a mode switch in a probabilistic manner, i.e., one

branch is, for example, taken in 70% of the cases and the other one in 30%

of the cases.

Schedule Point (not allowed in ISRs): A schedule point explicitly calls the scheduler.

It marks a deliberately chosen point in time and divides a task into so-called

schedule sections. A task which is defined as non pre-emptive can only be

pre-empted between these schedule sections.

OS Events (not allowed in ISRs): OS events provide a mechanism for synchronisa-

tion and can be set, cleared and waited for by a task. A task has to wait for a

specified event until it is set. Once the event occurs, the task’s execution can

continue.

Inter-process Activation (not allowed in ISRs): A task can activate another task at any

time during its execution by triggering a stimulus.

The call graph differs from a typical control flow graph that states the order in

which individual statements, instructions or function calls of an imperative program

are executed, in such a way that only a small subset of interactions are allowed on

process level. Its main purpose is to define the sequence of runnables that are called

in a process. If not all information is available to do so, the call graph allows one

to model the order in a probabilistic manner, as shown by the activity diagram in

ΦI(1) ΦO(1)

T1

30%

70%

R1

R2

Schedule R3

Figure 4.3.: Call Graph. Activity diagram visualising the call graph of task T1. At
first, Task1 calls in 30% of the cases Runnable R1 and in 70% of the cases R2.
After that, the scheduler is invoked via a schedule point and runnable R3 is called
before the task terminates.

52 4. REAL-TIME AUTOMOTIVE MODEL

Fig. 4.3. The actual program logic, instead, is represented by the runnables, which

are discussed in the following.

4.2.2. Runnable

The source code of a task itself does not contribute any functionality to the system.

Instead, the functionality of a system is usually implemented by a function. In auto-

motive domain, these functions are called runnable entities or short runnables. They

are part of a software component and can be executed and scheduled independently

from other runnables.

Thus, a runnable is defined by a sequence of instructions which are executed

within the context of a process. The developed model seizes upon this idea and de-

scribes a runnable in the following way:

Definition 4.8 (Runnable). Let ΦI(i, j) ⊂ ΦI
(i) ∪ ∅ be some input data, ΦO(i, j) ⊂

ΦI(i) ∪ ∅ some output data of the process Pi and let X = (x0, . . . , xn) define a
sequence of instructions that work on this data, then a runnable Rj is defined as

Rj = (ΦI(i, j),ΦO(i, j),X).

A process calls the functionality of a runnable within its context. This means that

the runnables are responsible for transforming the input data of a process ΦI(i) to
its ΦO(i). Each runnable can also produce and consume local data signals. These
are additional signals that are neither input nor output data of the process but rather

serve for inter-runnable communication.

ΦI(1) ΦO(1)

T1

R1

e1,1

R3

e1,3

ΦO(1,3)ΦO(1,1)ΦI(1,1) ΦI(1,3)

Figure 4.4.: Input–process–output (IPO) Model of a Process. Abstract represent-
ation of how the runnables R1 and R3 are consuming and producing the input,
resp., output data of task T1.

4.2. PROCESSES 53

As shown in Fig. 4.4, runnables are not only responsible for consuming and pro-

ducing the input, resp., output data of a process, but are also main contributors to the

execution time of a process. For these purposes, the developed model provides the

following instructions that can be used within a runnable:

Instructions Block: An instructions block states a specific demand on the provided

computing power by defining a number of instructions that have to be processed.

The execution of this amount of instructions by a processing unit contributes, then,

to the execution time of a process. Because the purpose of amodel is not to describe

the actual amount of instructions exactly but rather in an abstract manner, the

developed model provides a wide range of probability distributions that allow one

to describe different scenarios, e.g., average or corner cases:

• Constant: The amount of instructions is defined by a constant value as

shown in Fig. 4.5. This representation is preferred in situations where no

further details on the dynamic behaviour of the system are known.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1234

P
ro
b
ab

ili
ty

Number of Instructions

Figure 4.5.: Constant Value. Probability mass function showing a constant num-
ber of instructions.

• Uniform Distribution: The amount of instructions follows a uniform dis-

tribution, which is defined by the minimum and maximum value as shown

in Fig. 4.6. This representations is used in cases where the engineer knows

that the dynamic behaviour varies between a minimum and a maximum

value but the distribution of the individual values is still unknown and for

that reason taken as uniform distributed.

54 4. REAL-TIME AUTOMOTIVE MODEL

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

10,00%

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

Pr
ob

ab
ili
ty

Number of Instructions

Figure 4.6.: Uniform Distribution. Probability mass function showing that the
number of instructions is uniformly distributed between 1229 and 1238 instruc-
tions.

• Normal/Gauss Distribution: The amount of instructions follows a Nor-

mal/Gaussian distribution, which is defined by the average amount, the

standard deviation value, and the lower and upper bound as shown in

Fig. 4.7. It is used in cases where the amount of instructions is mostly a

specific value, the average, but values can vary slightly up to a limit.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

Pr
ob

ab
ili
ty

Number of Instructions

Figure 4.7.: Normal/Gauss Distribution. Probability mass function showing that
the number of instructions is Gauss distributed between 1184 and 1282 instruc-
tions with an average of 1233 instructions and a standard deviation of 5.

• Weibull Distribution: The amount of instructions follows a Weibull distri-

bution [51], which is defined by the shape parameter k, the scale parameter

λ, and the lower and upper bound as shown in Fig. 4.8. This representation

is mainly used to model situations in which the amount of instructions is

close to either the set minimum or maximum.

4.2. PROCESSES 55

0%

2%

4%

6%

8%

10%

12%

14%

16%

11
84

11
87

11
90

11
93

11
96

11
99

12
02

12
05

12
08

12
11

12
14

12
17

12
20

12
23

12
26

12
29

12
32

12
35

12
38

12
41

12
44

12
47

12
50

12
53

12
56

12
59

12
62

12
65

12
68

12
71

12
74

12
77

12
80

12
83

Pr
ob

ab
ili
ty

Number of Instructions

Figure 4.8.: Weibull Distribution. Probability mass function showing that the
number of instructions isWeibull distributed between 1184 and 1282 instructions
with the shape parameter set to 0.5 and the scale parameter to 5.

• Beta Distribution: The amount of instructions follows a Beta distribu-

tion [52], which is defined by the minimum and maximum value, and the

shape parameter α and β as shown in Fig. 4.9. This distribution allows one

to model corner cases, i.e., scenarios in which the amount of instructions is

close to both the set minimum and maximum and only a few outliers are

between these peaks.

0%

1%

2%

3%

4%

5%

6%

7%

11
85

11
88

11
91

11
94

11
97

12
00

12
03

12
06

12
09

12
12

12
15

12
18

12
21

12
24

12
27

12
30

12
33

12
36

12
39

12
42

12
45

12
48

12
51

12
54

12
57

12
60

12
63

12
66

12
69

12
72

12
75

12
78

12
81

Pr
ob

ab
ili

ty

Number of Instructions

Figure 4.9.: Beta Distribution. Probability mass function showing that the num-
ber of instructions is beta distributed between 1185 and 1282 instructions with
the shape parameters α set to 0.05 and β to 0.2.

Data Access: A data access defines a read or write access to a data signal. A write

access represents the change of a data signal and a read access indicates that the

behaviour of the runnable is influenced by the value of that access. Depending on

the level of abstraction, a data write access is either stated without any additional

information or with the exact data that is written. The former is usually done, if

the model is represented in a probabilistic manner and no exact information on

56 4. REAL-TIME AUTOMOTIVE MODEL

the data flow is known.

Semaphore Access: A semaphore access represents an access to a semaphore or a

spinlock and can either indicate a request or release. In case the semaphore and

spinlock has reached its maximum, a request results in the blocking of the task in

which context the runnable is executed. Instead, a release signals that an additional

access to the shared resource is granted.

Runnable Call: A runnable call states the activation of another runnable and repres-

ents a sub-function call. The called runnable is then executed in the context of the

task in which the calling runnable is executed.

Although a runnable represents the implemented program logic, the model de-

scribes this behaviour in an abstract manner. The goal is not to model the source

code one-by-one, but to roughly describe what a runnable does and when. For that

reason, there is no loop or other control flow statements available, just a plain se-

quence. However, instructions such as an instruction block can be repeated within

a sequence. That way it is not only possible to position data accesses at the correct

point in time, but also to model loops by repeating each sequence within a loop for

the given number of loop cycles.

4.2.3. Stimulation

A stimulus is required to activate processes and represents responses to changes in

the environment or the system itself. These reactions can appear regularly or in a

random manner. For that reason, different stimulation patterns are available in the

developed model that allow one to describe a wide range of activation behaviour.

4.2.3.1. Inter-Process

The inter-process stimulation is defined as a process activation that is triggered dur-

ing the execution of another process. Thus, it does not follow a specific temporal

pattern, i.e., every millisecond, but rather represents a causal relationship between

two processes.

Consider, for example, two processes P2 and P3 that calculate some values and a

third process P1 that uses these values as input. Then, an efficient way of processing

is that both processes P2 and P3 activate the process P1 at the end of their execution,

as shown in Fig. 4.10.

4.2. PROCESSES 57

t
0 20 3010

P3

P2

P1

Figure 4.10.: Inter-process Stimulus. Process P1 is activated at the end of the
execution of the processes P2 and P3 via an inter-process activation.

4.2.3.2. Single Stimulus

The simplest temporal pattern in the developed model is that of Single Stimulus,

which is visualised in Fig. 4.11. It defines a trigger point t0 at a specific point in

time:

t0 = o f f set.

This pattern is intended to describe non-recurring responses such as an initialisa-

tion, which is only performed once, e.g., at the beginning of the system’s runtime.

t
t00

offset

Figure 4.11.: Single Stimulus. A process is activated once after a given offset has
passed since the system start.

4.2.3.3. Periodic Stimulus

The most common activation pattern which can be found in real-time systems is that

of Periodic Stimulus. It defines trigger points ti which repeat every period time units

after an initial offset, as shown in Fig. 4.12. Thereby, the period can deviate from its

value by a jitter according to a statistical distribution such as a Gaussian Distribu-

58 4. REAL-TIME AUTOMOTIVE MODEL

tion:

ti = offset + i ⋅ period + jitter ∀i ∈N0.

The Periodic Stimulus is used in real-time systems for repetitious activities such as

periodically looking for new sensor values or control loops.

t
t00 t1 t2

offset period period period

Figure 4.12.: Periodic Stimulus. Aprocess is activated after an initial offset and oc-
curs after that roughly every period of time units. The shown normal distribution
depicts the probability that a jitter influences the period.

4.2.3.4. Sporadic Stimulus

Another pattern that also describes recurring activations is Sporadic Stimulus. There,

the activation does not happen exactly periodically but deviates slightly according a

statistical distribution such as a Gaussian Distribution. This means that each trigger

point ti follows the previous trigger point ti−1 after deviation time units:

ti = ti−1 + deviation ∀i ∈N0 and t0 = offset.

In contrast to Periodic Stimulus, Sporadic Stimulus allows one to express activations

that drift away from periodicity. This behaviour occurs, for example, in the clock

distribution network of a CPU where a clock does not run at exactly the same rate as

a reference clock.

4.2. PROCESSES 59

t
t00 t1 t2

offset deviation0 deviation1 deviation2

Figure 4.13.: Sporadic Stimulus. A process is activated after an initial offset and
occurs after that according the values taken from the depicted normal distribution.

4.2.3.5. Arrival Curves

A more abstract way of defining a pattern is that of Arrival Curves. The concept is

based on an event model and allows one to denote ‘’the total amount of computation

that has been requested up to time t” [6, p.1]. In other words, the so-called upper

αu(t) and lower αl(t) arrival curves define lower and upper bounds for the number
of process activations which can be observed in any interval of length t. Hence, Arrival

Curves describe the density of activations.

Let A(t) describes the number of activations within [0; t], then the Arrival Curves
are defined as

αl(s − t) ≤ A(s)− A(t) ≤ αu(s − t) ∀ 0 ≤ s ≤ t.

Fig. 4.14a depicts periodic stimulations with a recurrence of ten time units and no

offset. If youmove a timewindow∆ t0 of size eleven time units along this sequence of

activations, you can always observe at least one activation, but never more then two in

this window. Choosing a smaller time frame, however, can lead to sections where no

activation can be observed. So, if you continue varying the length of this interval, you

get the minimum and maximum number of activations that can be observed at any

time. Those bounds constitute the upper and lower Arrival Curves for this periodic

stimulus as shown in Fig. 4.14b.

60 4. REAL-TIME AUTOMOTIVE MODEL

t
0 20 30

Δt0

10

Δt0

(a) Sequence of activations

t

1

Activations

2

3

4

αl

αu

10 20 30 40Δt0

(b) Arrival Curves

Figure 4.14.: Arrival Curve. Example showing the representation of periodic ac-
tivations with a recurrence of ten time units and no offset as Arrival Curves. The
coloured time windows of size t0 visualise the determination of the lower and
upper arrival curve.

4.3. Schedulers

The OS in the developed model is an abstract description of the system software that

manages the interaction of computer hardware and software and solely consists of

the scheduler.

Definition 4.9 (Scheduling Model). The scheduler model defines a set of schedulers

ξz, which assign jobs of a task set τx to the processing units {Py} of a micro-controller
during runtime according a predefined algorithm.

Both the assignment of tasks to a scheduler and the assignment of resources to a

scheduler are done before runtime and do not change during runtime. Depending

on the mapping of schedulers to the resources, one can distinguish between local,

global, and clustered scheduling in multi-core systems (∣{Py}∣ > 1). Local schedul-

ing means that each processing units of a micro-controller is managed by its own

scheduler (∣{ξz}∣ = ∣{Py}∣). In contrast to this, a scheduling is called global, if a single
scheduler (∣{ξz}∣ = 1) manages all processing units of a micro-controller. If a sched-
uler manages more than one resource then it is possible for a task that is mapped

to this scheduler to start execution on different cores with each activation or resume

on a different core after its pre-emption. Finally, there is also clustered scheduling,

which represents a combination of both. There, schedulers are allowed to manage

multiple processing units but the number of schedulers in total is larger than two

4.3. SCHEDULERS 61

(∣{ξz}∣ < ∣{Py}∣∧ ∣{ξz}∣ > 1).
All task sets τx and sets of processing units {Pz}must be disjunct in the scheduling

model. This means that each task and each processing unit is only managed by a

single scheduler. As a consequence, hierarchical scheduling is not considered in this

work.

A well known scheduling policy in real-time systems is that of task-fixed priority

scheduling. There, each job Ti,j of a task Ti has the same priority. The prioritisation

is done statically before runtime and does not change during runtime. An example

algorithm to achieve an initial prioritisation is Rate Monotonic. There, each task is

assigned a priority with respect to the inverse of its period, i.e., the task with the

shortest period has the highest priority.

An alternative to task-fixed scheduling is job-fixed prioritisation. This means that

the priority can differ between the jobs Ti,j of a task Ti but it is constant for one job.

The best known algorithm for this prioritisation is Earliest Deadline First (EDF). In

EDF the priority of a job is inversely proportional to its absolute deadline, i.e., the task

with the earliest absolute deadline has the highest priority.

Task-fixed priority scheduling is the most common scheduling policy which can

be found in automotive real-time systems. This is not only because task-fixed priority

scheduling is the only scheduling policy supported by the AUTOSAR standard so far

but also because it provides a low runtime complexity and enables formal schedulab-

ility analysis techniques. For these reasons, the focus of this work is on task-fixed

priority scheduling.

Besides the prioritisation of tasks, resp., jobs, a scheduling algorithm can also be

distinguished by its pre-emptive behaviour. In full pre-emptive scheduling, the active

execution of a task can be pre-empted by a task with a higher priority at any point in

time. Each pre-emption of a task results in an overhead and increases task execution

times because of additional operations that have to be performed such as context

switches for saving and restoring a task’s data.

Instead, in non pre-emptive scheduling a task executes until completion once it

is started. This has no impact on task execution times which makes execution times

more predictable but results in an increased blocking time for higher priority tasks.

In order to achieve a trade-off between the benefits and disadvantages of full pre-

emptive and non pre-emptive scheduling, there is also the option of cooperative

scheduling. In cooperative scheduling, a task can be non pre-emptive for a limited

time of the task execution time. This is realised, e.g., by so-called schedule points.

62 4. REAL-TIME AUTOMOTIVE MODEL

Fixed pre-emption points are defined within a task and pre-emption is limited to these

predefined positions. In that way, a task is divided into a set of fixed non pre-emptive

sections.

The scheduling model describes just a mapping of task sets τx to processing units

and does not define additional properties. The properties necessary for scheduling

such as pre-emptability or priorities are denoted with the tasks in the software model

as described in Sec. 4.2.

4.4. Standards in the Automotive Industry

The fact that automotive software systems are not developed by a single company,

but distributed within cross-organisational projects, e.g., between car manufacturers

(OEMs) and suppliers (Tier-1s), encouraged the automotive industry to adapt model-

based development. A large number of models were published over the last years in

order to cover the vast variety of information which arises during the development

process. To give an overview on the state-of-the-art of model-based development and

to establish a connection to the information covered by our model, three systemmod-

els that are commonly used in the automotive domain are compared in the following:

ASAMMDX, AUTOSAR, and AMALTHEA. Tab. 4.1 gives a compact overview on the

models defined by each standard before this section continues with a more detailed

introduction.

4.4.1. ASAM MDX

A first version of the model data exchange format (MDX)1 was released by the Asso-

ciation for Standardization of Automation and Measuring Systems (ASAM) in 2006.

Its specified model enables the description of SW-components of an ECU, their inter-

faces, and data elements. The motivation for ASAMMDX was to get rid of company-

specific, proprietary formats and to provide a well-documented, public standard.

The standard is mainly designed for data management and documentation. How-

ever, due to the fact that ASAM MDX allows to reference external software parts,

whichmakes the definition of sequential dependencies within the overall system pos-

sible, it is also used in the automotive industry for the information exchange between

1https://wiki.asam.net/display/STANDARDS/ASAM+MDX

https://wiki.asam.net/display/STANDARDS/ASAM+MDX

4.4. STANDARDS IN THE AUTOMOTIVE INDUSTRY 63

OEMs and system suppliers. Furthermore, ASAM MDX strongly influenced the de-

velopment of the Software Component Template in AUTOSAR, which have both sim-

ilar use cases.

Software
System

Scheduling

Task

Deadline

Data
Dictionary

ComponentCollection

CPU Mem

VariablesFeature

Interface

Process

Content

*

* *

*

*

*

*

*

*

Contains Relation

References Relation

1:1 Relation

1:n Relation*

n:n Relation**

Figure 4.15.: Software System Model of ASAM MDX Entity relationship model
visualising the software system meta-model as defined by ASAM MDX. Adapted
from [53].

The ASAM MDX standard [53] allows one to define the architecture of a software

system for a single ECU. The system under development is described as a hierarch-

ical structure of components. Components in turn encapsulate the internal beha-

viour provided by functions. Functions, which are called Software Features in ASAM

MDX, again contain an abstract model of their implementation. This includes, e.g.,

an unordered listing of accessed variables and their access type, i.e., buffered or un-

buffered, a specification of critical sections for mutual exclusion, and their timed ac-

tivations. The communication between functions is restricted by interfaces that have

to be provided by their containing components.

In addition to this grouping of functionality for application purposes, ASAMMDX

also contains execution order constraints and data age constraints to specify depend-

encies within the software system. The former references external functions which

have to be executed before or after a defined indivisible group of functions in a se-

64 4. REAL-TIME AUTOMOTIVE MODEL

quential manner. In contrast, data age constraints define the maximum age of data

consumed by a function, measured from last data production.

ASAM MDX also covers the specification of scheduling units for the operating

system. Software functions can be assigned to tasks and either a recommended or a

concrete execution order specified. Finally, also details of the software system regard-

ing the required hardware can bemodelled, which are basically limited to thememory

allocation of the software. Fig. 4.15 gives an overview on the content represented by

an ASAM MDX model.

4.4.2. AUTOSAR

AUTOSAR is a standardised software architecture for the automotive industry. One

of its main goals is to enable the integration of software from different suppliers in or-

der to increase functional reuse. Therefore, the standard defines a modular software

architecture which enables the implementation of software functions independently

from the underlying hardware. For example, a developer does not have to bother

about the location of a software function when implementing communication, e.g.,

whether the communication partner resides on the same ECU or on an ECU con-

nected via a network. To achieve this in AUTOSAR, software functions communicate

with each other via standardised interfaces that are provided by a common software

infrastructure, the runtime environment (RTE) and theOS. This interoperability is pos-

sible due to the fact that the common software infrastructure is customised for the

system under development by configuring it according to a description of the soft-

ware architecture descriptions, the so-called configuration descriptions. As depicted in

Fig. 4.16, the pieces of information required for such a configuration are gathered

within the following two models:

System Configuration Description This model provides an abstract descrip-

tion of the overall system or a subset of its components for one ECU. It describes

the application software [54] as a collection of software components (SW-Cs); compon-

ents represent architectural elements of the software system which provide interfaces

for communication. Each component encapsulates a set of so-called Runnable Entit-

ies, i.e., sequences of instructions which can be executed and scheduled independ-

ently and which establish communication dependencies via the SW-Cs’ interfaces.

Consequently, a runnable entity captures the actual functionality of the software sys-

4.4. STANDARDS IN THE AUTOMOTIVE INDUSTRY 65

Figure 4.16.: AUTOSAR Configuration Descriptions Schematic visualisation of
the information contained within AUTOSAR configuration descriptions. Reprin-
ted from [14].

tem.

The System Configuration Description also contains a model of the actual hard-

ware [55], which hierarchically describes the individual hardware elements of an ECU

and their interconnections. For this purpose, AUTOSAR predefines a set of categor-

ies for hardware elements, such asMicro-Controller or Processing Unit, and dedicated

attributes, such as memory size.

Finally, the model also contains a set of constraints to define a system’s mapping

and temporal properties. A mapping constraint describes a mandatory or permitted

allocation, e.g., of software functions to processing units or of data signals to memory

sections. Timing constraints [56] provide a way to define temporal guarantees or re-

quirements on the system, e.g., the maximum repetition time between the starts of a

Runnable Entity or the minimum distance between subsequent data accesses within

a given time interval.

ECU Configuration Description The common software infrastructure of

AUTOSAR has to be configured in a way that the system under development is man-

aged properly, as described by the System Configuration Description. The ECU Con-

figuration Description contains concrete values for the configuration of the operating

66 4. REAL-TIME AUTOMOTIVE MODEL

system and the runtime environment.

The operating system is mainly configured by the definition of tasks, which in-

cludes the determination of attributes such as the maximum number of queued ac-

tivation requests, the priority, and a task’s pre-emptability. In addition, the activation

patterns for each task are specified and an allocation of tasks to available processing

units is performed. The configuration of the runtime environment, which includes,

e.g., the mapping of runnable entities to tasks, their positions within in a task, and

schedule points, establishes the link between elements of the application software

and the operating system.

4.4.3. AMALTHEA

In 2011, the partners of the pan-European research project AMALTHEA2 started

working on a customised, open source tool chain platform. It was motivated by the

lack of multi-core support in development tools for embedded systems at that time.

The goal of AMALTHEA is to enable an efficient data exchange not only between dif-

ferent cooperating companies, but also between different tools used within a single

organisation. The provided tool chain platform including its system model, covers

engineering activities such as architectural modelling, partitioning, mapping, and

tracing. One of the main focuses of the project, especially its successor AMAL-

THEA4public, is to make the results open source and thus accessible to everyone

in order to establish a de-facto standard. To achieve this, the outcomes of the above

mentioned research projects including the tool platform and systemmodel are trans-

ferred into an official Eclipse project called APP4MC3. Similar to ASAM MDX, the

model in AMALTHEA focuses on describing a single control unit instead of a dis-

tributed system. Because AMALTHEA is designed to serve as an exchange format,

a system can also be described on different levels of detail. The AMALTHEA model

is divided into ten sub-models, each covering a specific aspect of the system under

development [57]. Fig. 4.17 gives an overview on the covered aspects.

The Components sub-model describes software components, which not only en-

capsulate the internal behaviour provided by functions, but also regulate the commu-

nication between each other via ports. In contrast to ASAM MDX and AUTOSAR

the description can also contain an unordered listing of the accessed resources like

2http://amalthea-project.org
3https://projects.eclipse.org/projects/technology.app4mc

http://amalthea-project.org
https://projects.eclipse.org/projects/technology.app4mc

4.4. STANDARDS IN THE AUTOMOTIVE INDUSTRY 67

Figure 4.17.: Overview of the contents of the AMALTHEAmeta-model. Reprinted
from [58].

variables, semaphores, or OS events. In this way, components can be described on

different levels of detail, which is important for exchanging information also during

early phases of development. Furthermore, a reference to the implementing task can

be added for traceability.

The Softwaremodel describes all parts regarding the functional behaviour of soft-

ware. This includes details for, e.g., functions, tasks, ISRs, and variables. Although,

these pieces of information are basically similar to those within ASAM MDX and

AUTOSAR, the level of detail can be higher in AMALTHEA. For example, the soft-

ware structure in ASAM MDX and AUTOSAR contains just information that vari-

ables are accessed. As opposed to this, AMALTHEA allows to state the order and the

temporal intervals in which variable accesses occur. Also the control flow can be ab-

stracted by defining the probability of actions such as function calls. This results in a

more precise representation of the dynamic software behaviour compared to what is

represented in ASAM MDX and AUTOSAR. Still, this representation is not detailed

enough to expose the program logic itself.

TheHardwaremodel describes the hardware of the systemwhich consists of ECUs,

micro-controllers, cores, memories, and additional peripherals. AMALTHEA uses

well defined elements instead of generic ones as in AUTOSAR. TheMapping model

allows to define the mappings of software elements to the operating system and hard-

ware components. In accordance to AUTOSAR, this includes the mapping of tasks

68 4. REAL-TIME AUTOMOTIVE MODEL

and ISRs to schedulers, whichmanage the execution on processing cores during run-

time. Furthermore, the mapping of data elements such as variables to memory mod-

ules is specified.

Event chains and constraints regarding the timing of software, the affinity of func-

tions to each other, or regarding the execution sequence of functions can be expressed

with the Constraintsmodel. Because these concepts where inherited from TADL, they

are in a great part compliant to the Timing Extensions [56] in AUTOSAR. However,

the event chain mechanism provided in AMALTHEA works on a hardware related

level as discussed later in the description of the Eventsmodel.

In contrast to the constraints mentioned above, the PropertyConstraints model is

used to limit the design space for the mapping and allocation decision by provid-

ing information about hardware properties required by certain functions. Similar

constraints are also available in AUTOSAR. The main difference however, is that in

AUTOSAR just constraints for components can be expressed, instead of individual

functions.

The Stimulimodel in AMALTHEA provides a variety of temporal patterns includ-

ing sporadic, jitter, and arrival curves, which can be used to either activate tasks or

ISRs but also to change variable values. In that way it is also possible to model stim-

ulations from the environment, e.g., due to incoming activity on the network bus in-

terface or to represent speed dependent execution in an engine management system.

Although this is in a great part also covered by the Timing Extensions in AUTOSAR,

AMALTHEA allows to represent the behaviour in more detail using statistical distri-

butions.

With theOperating Systemmodel, AMALTHEA provides a way to create an abstract

description of the OS, like schedulers, scheduling algorithms, resources, and runtime

that is produced by an operating system. This is a versatile approach and is not limited

to AUTOSAR or OSEK compliant operating systems.

As already mentioned above, the Events model is used to provide events that rep-

resent specific actions during the runtime of the system. In contrast to AUTOSAR,

where events represent an observable change in the system’s behaviour on a high level

such as different events for each kind of variable access, events in AMALTHEA are

considered at a lower, hardware-related level. Therefore, the events in AMALTHEA

are specified by the open-source trace format BTF [59]. Then, the events can be used

to model event chains, to define timing constraints or to create a trace configuration.

The latter can be described with the Config model. This model contains definitions

4.4. STANDARDS IN THE AUTOMOTIVE INDUSTRY 69

and configurations relevant for simulation or hardware tracing and has no equivalent

in AUTOSAR.

70 4. REAL-TIME AUTOMOTIVE MODEL

Ta
bl
e
4.
1.
:
M
od
el
s
de
fin
ed
by
A
ut
om
ot
iv
e
St
an
da
rd
s.
C
om
pa
ri
so
n
of
th
e
m
od
el
s
de
fin
ed
by
th
e
au
to
m
ot
iv
e
st
an
da
rd
s
A
SA
M

M
D
X
,A
U
T
O
SA
R
,a
nd
A
M
A
LT
H
EA
.R
ep
ri
nt
ed
fr
om

[1
4]
.

A
SA
M
M
D
X

A
U
T
O
SA
R

A
M
A
L T
H
EA

C
on
si
de
re
d
V
er
si
on
(R
el
ea
se
D
at
e)

1.
3.
0

(J
un
e

15
,

20
15
)

4.
2.
2

(J
ul
y

31
,

20
15
)

1.
1.
1

(N
ov
em
be
r

27
,2
01
5)

Sc
op
e
/
A
im

●
M
et
a
m
od
el
fo
r

da
ta
ex
ch
an
ge
re
-

ga
rd
in
g
so
ft
w
ar
e

m
od
ul
e
sh
ar
in
g

●
D
es
cr
ip
tio
n
of

a
di
st
ri
bu
te
d
sy
s-

te
m
w
ith
m
ul
tip
le

EC
U
s
po
ss
ib
le

●E
xc
ha
ng
e
fo
rm
at

fo
r
th
e
de
ta
ile
d

sp
ec
ifi
ca
tio
n

of

dy
na
m
ic

so
ft
-

w
ar
e
ar
ch
ite
ct
ur
e

pr
op
er
tie
s

●
U
ni
fo
rm

so
ft
-

w
ar
e
ar
ch
ite
ct
ur
e

●
Sp
ec
ia
l f
oc
us
on

m
ul
ti-
co
re

●
In
te
rf
ac
es

fo
r

co
m
m
un
ic
at
io
n

●
Ex
te
ns
ib
le
an
d

op
en

so
ur
ce

to
ol

pl
at
fo
rm

●
Ex
ch
an
ge

an
d

co
nfi
gu
ra
tio
n

fo
rm
at
s

H
ar
dw
ar
e
M
od
el

N
O

Y
ES

P
A
R
T
L Y

●
EC
U
s,
co
re
s,
m
em
or
ie
s,
pe
ri
ph
er
al
s

●
O
nl
y
on
e
EC
U

4.4. STANDARDS IN THE AUTOMOTIVE INDUSTRY 71

A
SA
M
M
D
X

A
U
T
O
SA
R

A
M
A
LT
H
EA

●
D
at
a
ne
tw
or
k

●
N
O

O
pe
ra
tin
g
Sy
st
em

M
od
el

N
O

P
A
R
T
L Y

Y
ES

●
A
bs
tr
ac
tO
S
de
sc
ri
pt
io
n

●
Y
ES

●
O
S
re
so
ur
ce
s
(e
.g
.s
em
ap
ho
re
s)

●
O
nl
y
sp
in
-lo
ck
s

●
O
S
ru
nt
im
es

●
N
O

St
at
ic
So
ft
w
ar
e
A
rc
hi
te
ct
ur
e

Y
ES

Y
ES

Y
ES

●
So
ft
w
ar
e
co
m
po
ne
nt
de
sc
ri
pt
io
n

●
F u
nc
tio
n
an
d
da
ta
de
fin
iti
on
s

●
C
om
m
un
ic
at
io
n
in
te
rf
ac
es

D
yn
am
ic
So
ft
w
ar
e
A
rc
hi
te
ct
ur
e

N
O

P
A
R
T
L Y

Y
ES

●
St
im
ul
i (
A
ct
iv
at
io
n
pa
tt
er
n)

●
O
nl
y
pe
ri
od
ic

●
Fu
nc
tio
n
ru
nt
im
es

●
O
nl
y
m
in
,
m
ax
,

av
er
ag
e

●
C
om
pl
ex
ca
ll
gr
ap
h

●
N
O

M
ap
pi
ng

N
O

Y
ES

Y
ES

●
T a
sk
m
ap
pi
ng

●
St
im
ul
i m
ap
pi
ng

72 4. REAL-TIME AUTOMOTIVE MODEL

A
SA
M
M
D
X

A
U
T
O
SA
R

A
M
A
L T
H
EA

●
D
at
a
m
ap
pi
ng

T i
m
in
g
R
eq
ui
re
m
en
ts

P
A
R
T
L Y

P
A
R
T
L Y

Y
ES

●
Ta
sk
de
ad
lin
es

●
Y
ES

●
Y
ES

●
G
en
er
ic
lim
its
fo
r
m
et
ri
cs

●
N
O

●
N
O

●
Ev
en
ts
&
Ev
en
tC
ha
in
re
qu
ir
em
en
ts
●
N
O

●
Y
ES

So
ft
w
ar
e
D
es
ig
n
C
on
st
ra
in
ts

P
A
R
T
LY

P
A
R
T
LY

Y
ES

●
Ex
ec
ut
io
n
O
rd
er
C
on
st
ra
in
t

●
Y
ES

●
Y
ES

●
D
at
a
A
ge
C
on
st
ra
in
t

●
Y
ES

●
Y
ES

●
D
at
a
C
oh
er
en
cy
G
ro
up
s

●
Y
ES

●
N
O

●
A
ffi
ni
ty
C
on
st
ra
in
ts

●
N
O

●
N
O

5
Trace Recordings

Analysing the program behaviour of a software system is an essential part in each de-

velopment process. It is performed repetitiously, e.g., to verify and validate a system’s

functionality or to measure its performance. For those tasks, developers usually use

debuggers. These can either be implemented in software or as dedicated hardware. A

traditional debugger halts the system’s execution and allows one to check the values

stored in the memory at that time.

This is possible for cases like the development of desktop software where timing

plays a minor part. In real-time systems, however, halting a system’s executionmight

result in a significant alteration of its runtime behaviour. The reason for this is that the

correctness of a real-time system is not only dependent on the functional correctness

but also on its temporal accuracy. Halting a system’s execution using debuggers is

consequently inconvenient in the context of real-time systems. Therefore, tracing is

used in cases where the alteration of timing behaviour is not an option. Tracing, short

for “trace recording implies detection and storage of relevant events during runtime[,]

for later off-line analysis” [43, p. 1].

5.1. Trace Categories

There are multiple possibilities to detect and store relevant events from the system

during runtime. Depending on the realisation, tracing techniques can be categorised

into the following three classes, as originally presented in [60]: software, hybrid, and

hardware tracing.

5.1.1. Software Tracing

According to [61, 62], software tracing implies the instrumentation of source code in

order to gather the desired pieces of information. Instrumentation means that code

74 5. TRACE RECORDINGS

Table 5.1.: Trace Technique Categories. Comparison of trace technique categor-
ies [19] with respect to cost, mobility, robustness, intrusiveness and safety. The
scale runs from very low (– –) to very high (++) accordance.

Software Hardware Hybrid
Cost ++ – – +

Mobility ++ – ++
Robustness ++ – +

Intrusiveness – – ++ –
Safety – – ++ – –

is added to the source code of the original application which handles not only the

detection of relevant situations during runtime, but also their storing or transmission

for an eventual analysis. The information can then be transferred to a desktop PC for

visualisation and analysis using classical debug hardware or hardware interfaces.

In some cases, software tracing also implies the instrumentation of object code.

This is especially common for cases where the source code itself is not available, e.g.,

in case software functionality is provided by suppliers.

Depending on the way instrumentation is added, the following three situations

can be distinguished. In the first one, the required lines of code are added by the

developer, so that one speaks of manual instrumentation. In case of an automated in-

strumentation, the source code is modified automatically by part of the development

tool chain, e.g. by the compiler. Last but not least, there is also dynamic instrument-

ation available. As the name implies, dynamic instrumentation changes the code

execution not offline but, in contrast to the two previous ones, during runtime.

In addition to the way instrumentation is added to the system, also the location

where it is located can be distinguished. On the one hand, the additional code can be

added to the application itself, the so-called task-level. Thismakes it possible to observe

events such as function calls and variable accesses. On the other hand, instrument-

ation maybe placed within the operating system, therefore called system-level, so that

the interaction between applications, including task switches, and global resources

can be monitored.

The big advantage of using software tracing is that it allows an exact control of

which events shall be collected. This allows an engineer to tailor the number of ob-

servable events to fit a certain use case, e.g., to trace just the communication between

5.1. TRACE CATEGORIES 75

two specific functions instead of all data accesses to that signal.

In contrast to this benefit stands the major disadvantage that instrumentation in-

fluences the run-time behaviour of the target application in a negative way. This is

due to the fact that additional code has to be executed, which results not only in longer

execution times but also in an alteration of event sequences. As a consequence, re-

corded tracings might not represent the actual behaviour of the system and, thus,

be useless. Also the additional utilisation caused by the instrumentation might be

critical and lead to deadline violations, if the load of the CPU is already exhausted.

Another problem arises in cases, where the software has to be certified according to

a safety standard such as [63]. This is due to the fact that each alteration to the applic-

ation code results in a loss of the certification, which means it has to be reassessed

regarding its functional safety.

An industrial product that provides the functionality of software tracing is for ex-

ample T1 from GLIWA GmbH1.

5.1.2. Hardware Tracing

In hardware tracing [19, 61], the events are merely generated by hardware, namely

by the central processing unit itself. For that reason, dedicated hardware is needed,

which supports this kind of tracing. Therefore, this category stands opposite to the

approach pursued with software tracing.

Hardware tracing works by closely monitoring the execution of the processing unit

at a low level, for which the internal system bus is used. This allows one to observe

all necessary information on the internal happenings within a processing unit, such

as the executed instructions and the processed data. Corresponding to these two ob-

servable pieces of information, two hardware trace approaches can be distinguished:

program flow trace and data trace. A program flow trace, also called function trace,

stores the execution path of an application during runtime which includes the detec-

tion of function calls and taken branches. Instead, a data trace allows one to monitor

the state of variables in memory.

The situations where the hardware generates an event, can be configured in ad-

vance and depend on what is supported by the processing unit. Finally, the generated

events are transferred off-chip. For this purpose, the processing unit needs to have

a high-speed interface that is connected to a host computer using another dedicated

1https://www.gliwa.com

https://www.gliwa.com

76 5. TRACE RECORDINGS

hardware device, the hardware debugger. This device not only transfers but also de-

codes the generated event stream, so that the gathered information can be utilised by

a debugger or other third party applications for visualisation and analysis.

In contrast to software tracing, hardware-based tracing bears multiple advantages.

It monitors the execution of everything that is happening within the processing unit

and not only of the instrumented parts of the software. That way unexpected situ-

ations, e.g., memory accesses due to corrupted pointers, are recorded. However, the

biggest advantage of hardware tracing is that it works non-intrusively. This means,

that no modifications to the actual system have to be made and consequently, no in-

fluences to its timing behaviour occur. This is especially important in cases where

the system has to be operated in a safety critical environment.

Hardware tracing has also some disadvantages. For one, dedicated hardware is

required. Not only does the processing unit have to contain certain features, also ad-

ditional hardware to transfer the gathered information from the target to a host com-

puter is necessary. Those prerequisites, however, make the use of tracing expensive.

For that reason, chip manufacturers offer their chips in two different versions. The

first one supports tracing and is designed to be used during development. The other

version lacks tracing capabilities and is consequently cheaper, so that it is used for the

final product where costs have to be kept low. Furthermore, since hardware tracing

monitors the system’s behaviour at a very low level and since an exact control of which

events are collected is not necessarily possible, the hardware requires extremely huge

bandwidths to handle the arising event stream. As a consequence, recording an exe-

cution trace that covers the system behaviour comprehensively is very challenging if

not impossible due to bandwidth limitations.

In the industry, hardware tracing solutions, meaning the dedicated devices needed

to transfer the gathered information from the target to a host computer, are for ex-

ample the iC6000 by iSYSTEM2, the PowerTrace-II by Lauterbach3, or the Universal

Debug Engine by PLS4.

5.1.3. Hybrid Tracing

Hybrid tracing [62] finally bridges the gap between software and hardware tracing. As

the name already implies, there the tracing is realised as a combination of both soft-

2http://isystem.com
3http://www.lauterbach.com
4https://www.pls-mc.com/

http://isystem.com
http://www.lauterbach.com
https://www.pls-mc.com/

5.2. TRACE TECHNIQUES 77

ware and hardware. This technique is based on the fact that some processors allow

one to re-program their microcode. The microcode is then re-programmed in such a

way that tracing is enabled for the instructions relevant to trace. As a consequence,

once this microcode is executed, the tracing is triggered and an unique value repres-

enting this instrumentation point written to a specific memory location or I/O port.

A hardware device connected to the processor collects these instrumentation point

identifiers, timestamps and, finally, records them in a trace.

Hybrid tracing combines the best of the tracing techniques mentioned previously

and succeeds in minimizing the instrumentation overhead. Nevertheless, it also in-

herits one of software tracing’s crucial disadvantages, namely that it works intrusively.

Due to this fact that the runtime behaviour of an application is modified, this tech-

nique is also not tolerable, if the software is developed with respect to certain safety

standards.

An industrial product, which provides hybrid tracing is, e.g., RTBx by Rapita Sys-

tems5.

5.2. Trace Techniques

While different categories of tracing were introduced in the previous sections, this

section presents in detail the individual ways how tracing data can be obtained. Note,

that the following techniques [64] do not necessarily have to be considered individu-

ally, but they can also be realised as a mixture of multiple ones.

Table 5.2 compares the following trace techniques with respect to required trace

hardware, feasible size of trace recordings, intrusiveness, and impact on timing. In

summary, it can be stated that engineers have to make a compromise between the

amount of information that has to be stored in a trace and the impact on the system’s

timing when choosing a trace technique.

According the experience of Timing-Architects, software target trace and on-chip

trace are currently the most frequently used techniques in industrial projects. The

former is mainly applied in situations where a particular information is required,

such as a data access by a specific function. On-chip trace, instead, is used to get a

continuous insight in the system’s behaviour, e.g., the interaction of tasks.

5https://www.rapitasystems.com

https://www.rapitasystems.com

78 5. TRACE RECORDINGS

Table 5.2.: Trace Techniques. Comparison of trace techniques with respect to re-
quired trace hardware, location and size of trace recordings, intrusiveness, and
its impact on timing as presented in [64, p. 9]. The scale runs from very low (– –)
to very high (++) accordance or, respectively, yes (✓) and no (×).

Trace HW Trace Size Intrusive Timing Impact

Bus Trace ✓ – …+ ✓ / × – – …++
Flow Trace ✓ – – × – – …–

On-Chip Trace × – – × – –
Extended × – × – …++

On-Chip Trace
Software

Trace Target
× – …++ ✓ –

Software
Trace Host

× ++ ✓ –

Snooper Trace × – – ✓ –
Advanced

Register Trace
× – – × – –

5.2.1. Bus Trace

Bus trace [64, p. 1 ff.] describes a technique, where information transferred via the

external system bus of the target is recorded. Due to the fact that the system bus

consists of an address, data and a control bus, all necessary pieces of information to

deduce the internal behaviour of a system can be observed. This includes the program

flow, all data accesses and their values.

The bus trace technique is mainly used for micro-controllers without internal peri-

phery and memory. However, it requires physical access to the memory interface in

order to be able to observe the necessary signals. This can either be implemented in

the CPU or in the memory module. A problem arises in cases where the CPU has

a cache or internal RAM, in addition to the external memory module. Then, not all

ongoing internal events can be observed due to the fact that data is stored in the in-

ternal memory for faster access. Instead, only the data exchange between the cache

and the external memory can be recorded. This deficit can, e.g., be resolved by either

completely turning off the cache, which then results in lower performance, activat-

ing write-through for the cache such that all changes to the data are replicated in the

5.2. TRACE TECHNIQUES 79

CORE
DEBUG

INTERFACE

BUS
UNIT

CACHE

RAM

FLASH

MEMORY

CONTROL

TRACE MEMORY

TRIGGER

CODE COVERAGE

T
R
A
C
E

H
A
R
D
W
A
R
E

D
E
B
U
G

T
O
O
L

TARGET

CHIP

Figure 5.1.: Bus Trace. Adapted from [64, p. 3].

external memory, or by code instrumentation to redirect data accesses to the cache.

In order to observe the system bus during runtime comprehensively, a large num-

ber of signals have to be recorded simultaneously. For that reason, a bus trace is in

general realised by a logic analyser, which is an electronic instrument that provides

not only a great number of inputs but also the possibility for high performance data

recording.

5.2.2. Flow Trace

The trend in the chip industry to put all peripheral parts including the memory to-

gether with the processing units on a single chip (System-On-Chip) has resulted in

the fact that external interfaces to the memory module are not available any more.

Consequently, performing a bus trace is infeasible. Instead, recent CPU architec-

tures provide a dedicated trace interface in addition to a debug interface [64, p. 3 ff.]

which can be seen in Fig. 5.2.

This interface is used tomake the information transferred via address and data bus

available to the outside in a compressed way. Thereby, the complete programflow and

all data accesses including their values can be observed. Current interfaces use a four

to 16 bit wide trace bus which is operated at a maximum frequency of around 400

MHz. Some trace protocols also allow one to encode the transferred bit stream in

real-time, which make analyses for triggering and code coverage possible.

The biggest disadvantage of the flow trace is that it has to struggle with the avail-

80 5. TRACE RECORDINGS

CORE
DEBUG

INTERFACE

BUS
UNIT

CACHE

RAM

FLASH

MEMORY

CONTROL

TRACE MEMORY

TRIGGER

CODE COVERAGE

T
R
A
C
E

H
A
R
D
W
A
R
E

D
E
B
U
G

T
O
O
L

TRACE
INTERFACE

TARGET

CHIP

Figure 5.2.: Flow Trace. Adapted from [64, p. 5].

able bandwidth, which is very limited compared to the amount of data. While record-

ing the complete program flow can be done without any problems, trace interfaces

quickly reach their limits if also data accesses have to be included in the trace. In or-

der to tackle this problem, some chips have an additional FIFO buffer or just specific

program parts or variables are traced. For that reason, some mainly contemporary

interfaces provide also a way to define address ranges, which then are included or,

respectively, excluded from the trace.

5.2.3. On-Chip Trace

For on-chip tracing [64, p. 5] some CPUs contain a trace memory instead of a ded-

icated trace interface as depicted in Fig. 5.3. This trace memory is implemented as

an additional FIFO buffer, in which the last addresses of executed jump instructions

and their destinations are recorded. The gathered information can be transferred off-

chip via a debugging device, where it can be used to deduce the program flow. As a

consequence, a dedicated trace interface can be omitted.

The biggest disadvantage of this technique is that only a limited amount ofmemory

is available to collect the trace information. This is due to the fact that the price as well

as the used die space of the chips have to be kept small. As a consequence, currently

a maximum of around 1.000 instructions can be stored only.

To eliminate this major shortcoming of an on-chip trace, extended on-chip trace [64,

p. 6] can also take advantage of the available RAM. In case of a full trace buffer, an

5.2. TRACE TECHNIQUES 81

CORE
DEBUG

INTERFACE

BUS
UNIT

CACHE

RAM

FLASH

MEMORY

CONTROL

D
E
B
U
G

T
O
O
L

TRACE
CONTROL

TRACE MEMORY

TARGET

CHIP

Figure 5.3.: On-Chip Trace. Adapted from [64, p. 7].

interrupt service routine is called, which then copies the data into the RAM. After

that, regular program execution continues. Although this technique makes it pos-

sible to store an additional amount of trace information, the executed interrupt ser-

vice routines have a considerable impact on the run-time behaviour of the system.

Alternatively, the trace information can also be written directly to the RAM instead of

copying it from the trace buffer. For this purpose, some CPUs support direct memory

access so that the influence on the actual run-time behaviour of the system is kept to

a minimal.

5.2.4. Software Trace Target

Instead of depending on the hardware to support gathering information about the

runtime behaviour of the system, the trace memory, a dedicated area in the target’s

RAM, can be filled by the application software itself [64, p. 6]. For that reason, the

developer adds functions to the application which store the trace information in the

memory in a well defined structure. Finally, the gathered information can again be

transferred and analysed off-chip via a debugging device.

The advantage of this technique is that the developer has full control onwhat pieces

of information shall be gathered. This includes not only individual addresses and

their values but, more importantly, also operating system constructs like processes or

complex data structures. That way a tracing solution tailored to the current situation

can be developed.

82 5. TRACE RECORDINGS

5.2.5. Software Trace Host

The software trace host technique[64, p. 6 f.] is basically the same as the previous one

above. However, the gathered information about the runtime behaviour of the system

is not written into a dedicated area in the target’s RAM but into the memory on a con-

nected host system. TO do so, the application has to be instrumented in such a way

that the arising information is sent to the host via one of the available communication

interfaces using a specific protocol.

The debug interface is predestined for this communication, since it is connected

to the target anyway. Trace data is then written to a dedicated buffer, which is either

directly accessed by the debugger without any timing interference, if this is supported

by the CPU, or periodically while the application is stalled. For the latter, a ring buffer

structure can be used to minimise its impact on timing.

5.2.6. Snooper Trace

Snooper trace [64, p. 8] is a simple technique where thememory is periodically checked

for changes during program execution. Modifications of data values and the program

counter can be observed and the runtime behaviour of the system deduced accord-

ingly. This technique is especially convenient for CPUs that provide the debugger

direct access to the target memory without halting system execution. Even then, the

quality of the resulting trace is highly dependent on the frequency, which is not only

given by the used debug interface but also the amount of observed data. Hence, this

technique is most suitable for systems where values do not change too rapidly; oth-

erwise, it results in gaps and data loss.

5.2.7. Advanced Register Trace

For an advanced register trace [64, p. 8] the current content of the CPU registers is

logged on the host system at every “STEP”, “GO” or “BREAK” instruction at assem-

bler level. Based on these pieces of information, the complete programflow can be de-

duced. By applying this technique, currently, up to 65.536 steps can be recorded.

5.3. TRACE FORMAT 83

5.3. Trace Format

Amajor challenge, which all existing trace techniques have in common, is that engin-

eers have to find a reasonable compromise between the amount of information that

has to be stored in a trace and the impact on the system’s timing. As a consequence,

two approaches evolved in the industry to meet this challenge. In the first approach,

which is called program flow trace, the system is considered at process level, i.e., the

interaction of processes is monitored. Because the resulting amount of information

is reasonable, this is done via hardware or software trace with neglectable impact.

Depending on the frequency of process occurrences, state-of-the-art techniques allow

one to record in addition all function calls. The other approach is called data trace and

stores information at system level, where operating system specifics such as data and

semaphore accesses are monitored.

To go into more detail on which actions can be monitored on process level and

system level, an introduction to a trace format is given in the following. We have

chosen BTF as trace format. The main motivation for our choice is that it is designed

for timing evaluation of event based systems, which has a beneficial effect on the

reverse engineering. Furthermore, the BTF specification [59] is publicly available and,

thus, can be employed by anybody to reproduce our results.

5.3.1. Process Level

The temporal behaviour of a real-time system is primarily determined by the em-

ployed scheduling policy, by which the operating system decides which process can

run on which processing unit. Processes can evolve through the following states dur-

ing a system’s execution [59]:

• ACTIVE: The process is ready to be executed and waits for allocation of a pro-

cessing unit for the first time.

• NOT INITIALIZED: The process is passive and can be activated.

• PARKING: The process has requested a resource that is unavailable and has

been preempted while waiting for the resource’s release.

• POLLING: The process has requested a resource that is unavailable and waits

actively for the resource’s release.

• READY: The process fulfils all functional prerequisites for execution and waits

to be allocated a processing unit.

84 5. TRACE RECORDINGS

ACTIVE WAITING READY PARKING

RUNNING POLLING

NOT
INITIALISED

TERMINATED

ac
tiv
at
e

sta
rt

te
rm
in
at
e

poll

run

p
ark

p
o
ll
p
a
rk
in
g

release parking

p
reem

p
t re

su
m
e

wa
it

release

A
L
L
O
C
A
T
E
D

T
O

C
O
R
E

R
E
M
O
V
E
D

F
R
O
M

C
O
R
E

Figure 5.4.: Process State Model. AUTOSAR task state model, extended by states
for the active (POLLING) and passive (PARKING) waiting for a Resource. Adap-
ted from [59, p. 13].

• RUNNING: The process has been assigned a processing unit, and its instruc-

tions are being executed.

• TERMINATED: The process finished executing its instructions and is passive.

• WAITING: The process has requested an OS Event that is unavailable and

waits passively for the event’s occurrence.

These states and their transitions to each other are depicted in Fig. 5.4. In this fig-

ure, the basic task state model employed by AUTOSAR [65], which is adopted from

the OSEK standard [66], is refined in order to distinguish some task states more pre-

cisely. Originally, the OSEK basic task state model captures only the following three

states [66, p. 18]: running, ready, suspended, and waiting. This means, that the states

NOT INITIALIZED and TERMINATED in Fig. 5.4 are equal to the OSEK state sus-

pended, the states ACTIVE, PARKING, and READY correspond to the OSEK state

ready, and the state RUNNING together with the state POLLING capture the OSEK

state running.

5.3. TRACE FORMAT 85

Because processes are implemented in the operating system as function calls,

events on process level are monitored, in general, via program flow trace. A program

flow trace allows to mark function addresses for observation and if the program calls

or returns from one of the marked addresses during execution, a timestamp is recor-

ded. This allows one to reproduce the program flow and to analyse the interaction of

processes. Thanks to the capabilities of the latest trace hardware and interfaces, it is

also possible to record the function calls performed by each process, i.e., the execu-

tion of runnables, if the amount of arising information is not too large. Runnables

are executed within the body of a process and traverse similar states:

• NOT INITIALISED: The runnable is passive and can be started.

• RUNNING: The runnable executes on a processing core.

• SUSPENDED: The runnable stopped execution on a core.

• TERMINATED: The runnable finished executing its instructions and is pass-

ive.

Fig. 5.5 depicts the state model of a runnable according to BTF [59]. It represents the

states defined by AUTOSAR [67, p. 126] in a condensed way by not distinguishing

RUNNING

NOT
INITIALISED

TERMINATED

SUSPENDED

start

su
sp
en
d resu

m
e

te
rm
in
at
e

A
L
L
O
C
A
T
E
D

T
O

C
O
R
E

R
E
M
O
V
E
D

F
R
O
M

C
O
R
E

Figure 5.5.: Runnable State Model. Adapted from [59, p. 17].

86 5. TRACE RECORDINGS

between the states waiting and preempted. This is due to the fact that runnables are

executed within the context of a process and, thus, themissing states fromAUTOSAR

can be inherited from the state of the calling process. All other states are equally avail-

able in AUTOSAR. Thus, the states preempted and waiting in AUTOSAR correspond

to the state SUSPENDED in BTF, the state to be started to the stateNOT INITIALISED,

and the state suspended to the state TERMINATED.

5.3.2. System Level

To perform a program flow trace, it is enough for the trace logic to monitor the start

address of functions, which is a manageable amount. But to get more information on

how the processes are interacting with the system and with each other, all accesses to

the data memory have to be observed. Moreover, the trace logic must not only register

accesses to specific memory locations but also the modifications performed, i.e., the

data values set. Because a program flow trace cannot provide this, the so-called data

trace must be employed in order to get a trace on system level.

Modifications to the memory are performed within the context of a process. This

means all actions happen in the running state of a process and, thus, represent trans-

itions that result in the same state again. The following actions on system level are

defined by BTF and can be detected via data trace:

Signal Actions A signal represents an address in the memory of a micro-

controller. This memory location contains a value, which can be accessed in two

different ways by a process:

• read: The data value stored at the definedmemory address of the signal is read

by a process.

• write: A data value is written to the signal by a process, i.e., the memory ad-

dress defined by the signal is set to the stated value.

OS Event Actions OS events are a mechanism for synchronisation provided by

the operating system. The following three actions can be performed by a process to

achieve synchronisation:

• clear_event: The stated OS event is cleared so that processes have to wait again

for the occurrence of this OS event.

5.3. TRACE FORMAT 87

• set_event: The stated OS event is set by a process in order to notify waiting

processes that a defined progress in execution is reached.

• wait_event: A process waits at a predefined position during execution for the

occurrence of the stated OS event, e.g., if this process requires information

that is provided by another process.

Semaphore Actions A semaphore is amechanism provided by the operating sys-

tem for limiting the number of concurrent accesses to a resource. The following two

actions can be performed by a process to synchronise communication:

• request: A process requests the stated semaphore and the number of remain-

ing concurrent accesses is decremented.

• release: A process releases the stated semaphore and the number of remaining

NOT
INITIALISED

FREEUSED

FULL OVERFULL

re
ad

y

used

free

u
se
d

lock used

u
n
lo
ck

fu
ll

un
lo
ck

lo
ck

overfull

full

ov
er
fu
ll

S
E
M
A
P
H
O
R
E

U
N
L
O
C
K
E
D

S
E
M
A
P
H
O
R
E

L
O
C
K
E
D

Figure 5.6.: Semaphore StateModel. Statemodel of amutex, resp., counting sem-
aphore for handling concurrent accesses to resources. Adapted from [59, p. 22].

88 5. TRACE RECORDINGS

concurrent accesses is incremented.

A semaphore is defined by its initial value n, which states the maximum number

of concurrent accesses. If this number is exceeded, the access to the stated resource

is blocked and the requesting process has to wait until one of the previous accessing

processes releases the resource. This means, that a semaphore can also change its

internal state. The following states of a semaphore are defined:

• FREE: No process has requested the semaphore.

• FULL: The semaphore has reached the maximum number of requests.

• OVERFULL: The semaphore has reached the maximum number of requests

and at least one process is waiting for the semaphore.

• USED: Processes have requested the semaphore but its maximum number of

concurrent accesses is not reached.

Fig. 5.6 depicts the state model of a mutex, resp., counting semaphore according to

BTF [59].

5.3.3. Trace Events

TheBTF standard defines not only the actions that can bemonitored during a system’s

execution but also a representation of the trace for later off-line analysis. Besides

storing the information in a database to achieve a high performance during analysis,

the standard also supports listing a trace in a textual and readable manner. Def. 5.1

gives an explicit structure that allows one to make an unambiguous statement about

the system’s internal behaviour based on so-called events.

Definition 5.1 (Event). Let <timestamp> be a time measure, such that a chronological

order of events can be achieved, <source> and <entity> the identifiers of an element in

the system, <sourceInstance> and <entityInstance> an identifier, that makes it possible

to distinguish coexisting elements, type an identifier, that represents the type of the

element stated by <entity>, and let action be an identifier, that indicates what happened

in the system, then an event <event> is defined by the septuple

5.3. TRACE FORMAT 89

<event> := (<timestamp>,

<source>, <sourceInstance>,

<type>,

<entity>, <entityInstance>,

<action>).

An event is defined by seven attributes, which are all separated by commas (CSV).

The first attribute <timestamp> indicates the moment in time when the event oc-

curred. It represents the amount of time that elapsed since the beginning of a trace

recording. This continuous counter in a used-defined time unit, which is set to nano-

seconds by default, makes it possible to achieve a chronological order of the system’s

internal behaviour.

The attribute <action> denotes a change to the system that was observed during

execution. As discussed before, each action corresponds to a state transition of an

element that is monitored on process or system level.

The remaining attributes source, sourceInstance, type, entity, entityInstance identify

the element that changed and, thus, that caused the event. Both source and entity rep-

resent identifiers of an element in the system and reference the according process,

function, semaphore, or data signal by its name. The source describes the context of

the affected element, e.g., the task in which a runnables is started. This is essential

for elements that are accessed from multiple contexts, which is usually the case. The

attributes <entityInstance> and <sourceInstance> are integers that allow one to distin-

guish coexisting instances of the same element. This is of importance for elements

with a life cycle, such as processes or runnables, which can be executed in parallel.

Because the names of actions are not ambiguous, e.g., a start action exists for pro-

cesses and runnables, the attribute type denotes an abbreviation (I, R, SEM, SIG, T)

that corresponds to the type of the affected element in the system (ISR, runnable,

semaphore, signal, task).

A trace recording is, consequently, defined as a sequence of trace events, as it is

shown in the following example.

Example Trace (FMTV Challenge 2016): Listing 5.1 contains an extract of a

simulation trace produced by the TA Simulator in order to show how a BTF trace of

an actual system looks like.

1996021 , Angle_Sync , 0 , SIG , Label_7442 , 0 , read , 0

90 5. TRACE RECORDINGS

2 1996021 ,CORE1, 0 , T , Angle_Sync , 0 , p o l l

1996106 ,CORE1, 0 , T , Angle_Sync , 0 , run

4 1996106 , Angle_Sync , 0 , SIG , Label_8386 , 0 , read , 0

1996106 ,CORE1, 0 , T , Angle_Sync , 0 , p o l l

6 1996191 ,CORE1, 0 , T , Angle_Sync , 0 , run

2000000 , per iodic_1ms , 2 , T , Task_1ms , 2 , a c t i v a t e

8 2000000 , Angle_Sync , 0 ,R , Runnable_6660us_48 , 0 , suspend

2000000 ,CORE1, 0 , T , Angle_Sync , 0 , preempt

10 2000000 ,CORE1, 0 , T , Task_1ms , 2 , s t a r t

2000000 , per iodic_2ms , 1 , T , Task_2ms , 1 , a c t i v a t e

12 2000000 , Task_1ms , 2 ,R , Runnable_1ms_0 , 2 , s t a r t

2000000 , Task_1ms , 2 , SIG , Label_849 , 0 , read , 0

14 2000000 ,CORE1, 0 , T , Task_1ms , 2 , p o l l

2000085 ,CORE1, 0 , T , Task_1ms , 2 , run

16 2000085 , Task_1ms , 2 , SIG , Label_5861 , 0 , read , 0

2000085 ,CORE1, 0 , T , Task_1ms , 2 , p o l l

18 2000170 ,CORE1, 0 , T , Task_1ms , 2 , run

Listing 5.1: Extract of a Simulation Trace produced by the TA Simulator from the

AMALTHEA Model provided for the FMTV Challenge 2016

Themodel used for this timing simulation is the AMALTHEAmodel provided for the

Formal Methods for Timing Verification (FMTV) Challenge 2016 [68]. It describes a

full-blown engine management software and is discussed in full detail in Sec. 8.3.1.3.

The listing shows the system’s internal behaviour at around 2ms (2000000 ns), where

the periodic tasks Task_1ms (line 8) and Task_2ms (line 12) are activated. The former

task is activated for the second time and the latter for the first time, which is denoted

by their instance counters. Because Task_1ms has a higher priority, the currently run-

ning task Angle_Sync is preempted in line 10.

5.3.4. Database Representation

Besides the possibility described above to store BTF information as comma-separated

values (CSV), it is also possible to use a database. This allows one not only to search

efficiently for individual information such as all activated tasks within a certain time

frame, but also to optimise access to the data for recurring queries.

An example for the implementation of a BTF-compliant database design is the

5.3. TRACE FORMAT 91

E
n
ti
tyE
n
ti
ty
T
ab

le
N
am

e
N
am

e

T
y
p
e

E
n
ti
ty
T
y
p
e

N
am

e

In
st
an

ce

E
n
ti
ty
In
st
a
n
ce

T
im

eF
ro
m

E
n
ti
ty
In
st
a
n
ce
ID

T
im

eT
o

E
n
ti
ty

E
ve
n
t

T
im

es
ta
m
p

R
em

ai
n
d
er

S
Q
C
N
R

S
ou

rc
eE

n
ti
ty
ID

E
n
ti
ty
In
st
an

ce
ID

S
o
u
rc
eE

n
ti
ty
In
st
an

ce
ID

T
y
p
e

E
ve
n
tT

y
p
e

N
am

e

S
o
u
rc
e

E
n
ti
ty
S
ou

rc
e

*

1

1

*

1

*

*

1

*

*

Figure 5.7.: Entity-Relationship Model of ATDB. BTF-compliant Database Design
of the APP4MC Trace Database (ATDB).

92 5. TRACE RECORDINGS

AMALTHEA trace database (ATDB) [58]. Its design is optimised for the analysis of

entity correlations and temporal metrics. As a consequence, parts of the information

are stored deliberately in a redundant way in order to enable efficient data requests.

The database model of ATDB, which is shown in Fig. 5.7, consists of the following

mixture of statically and dynamically defined tables:

• Entity contains information about all the entities recorded in the trace includ-

ing the name of the entity and a reference to its type, which is stored in the En-

tityType table. Because the Event tables are created dynamically, it also stores

the name of the table in which the events for that entity are stored.

• EntityType contains all the types of entities stored in the database, e.g., Run-

nable, Signal, or Task.

• EntitySource stores information about which entity causes an event by another

entity.

• EntityInstance contains information about the lifetime of each instance of an

entity by storing the time stamps from and to which it was active. Each entry

also has a reference to the affected entity and an instance number that shows

how often this entity has been activated up to that point.

• Event tables are created dynamically in a variable amount. A table is created for

each entity and contains all the events of that entity including the timestamp

at which the event occurred and a reference to entity that caused the event.

The information which Event table stores information of which entity is part

of the Entity table.

• EventType contains all the actions, i.e., the types of events performed by the

entities stored in the database, e.g., activate, start, or terminate.

5.3.5. Trace Analysis

The main purpose of trace recording is the detection and storage of relevant events

during runtime for later off-line analysis. Listing 5.2 shows a possible sequence of

observed state transitions for a fictional task Task1.

5 , Alarm , 1 , T , Task_1 , 1 , a c t i v a t e

2 15 , Core_1 , 0 , T , Task_1 , 1 , s t a r t

20 , Core_1 , 0 , T , Task_1 , 1 , p o l l

4 25 , Core_1 , 0 , T , Task_1 , 1 , park

5.3. TRACE FORMAT 93

30 , Core_1 , 0 , T , Task_1 , 1 , r e l e a s e _p a r k i ng

6 35 , Core_1 , 0 , T , Task_1 , 1 , resume

45 , Core_1 , 0 , T , Task_1 , 1 , preempt

8 55 , Core_1 , 0 , T , Task_1 , 1 , resume

65 , Core_1 , 0 , T , Task_1 , 1 , t e rmina t e

10 75 , Alarm , 2 , T , Task_1 , 2 , a c t i v a t e

Listing 5.2: Simple Trace Example

This trace respects the BTF [59], where each line stands for an observed event. In

this example, each line represents a transition of the task Task1 from one state to an-

other according the statemachine presented in Fig. 5.4. Together with the timestamp,

these pieces of information can be used to visualise the recorded system execution in

a Gantt chart, as depicted in Fig. 5.8.

t0 5 15 20 25 30 35 45 55 65 75

Figure 5.8.: Gantt Chart of Trace Example. Visualisation of the trace example
of Listing 5.2 in a Gantt chart, showing task Task1 in different states over time.
Adapted from [13].

This figure shows the temporal sequence of the states in which a task resides over

time as bars on a time line. To be able to distinguish the individual states in the Gantt

chart, each bar is coloured and patterned according the colour, resp., pattern of the

corresponding state defined in Fig. 5.4. With the help of such a Gantt chart, it is

possible to reproduce the interaction of individual elements in order to understand

the internal behaviour of the system. This means in the case of our example, that it

allows one to understand why it took task Task1 60 time units to finish although it

executes only 25 time units on the processing core. As a consequence, the engineer

can look into which other task requested the shared resource that caused the task to

poll and by which task it was preempted later on.

Besides visualisation, another way to objectively analyse a system’s temporal be-

94 5. TRACE RECORDINGS

haviour is to calculate metrics [69] from a trace recording:

• A2A:Activation-To-Activation: The distance between two successive activations

of a task. In Fig. 5.8, this is indicated by the horizontal black arrow.

• NET: Net Execution Time: The actual execution time of a task, which spans

from the task’s start to its termination and excludes the time the task is pree-

mpted. In Fig. 5.8, this is indicated by the sum of the lengths of all green

arrows.

• Parking: Parking Time: The timespan of a preempted task waiting for a re-

quested resource. In Fig. 5.8, this is indicated by the length of the orange

arrow.

• Polling: Polling Time: The timespan of a task actively polling for a requested

resource. In Fig. 5.8, this is indicated by the length of the red arrow.

• Ready: Ready Time: The timespan of a task between its start and termination,

in which it is not executed on any processing unit. In Fig. 5.8, this is indicated

by the sum of the lengths of all blue arrows.

• SD: Start Delay: The time from the activation moment of the task to the mo-

ment of its start. In Fig. 5.8, this is indicated by the length of the grey arrow.

• Waiting: Waiting Time: The timespan of a task actively waiting for anOSEvent.

This metric is not indicated in the Fig. 5.8 because according events are miss-

ing in the example trace for simplicity reasons.

The listed metrics allow one to assess a system’s real-time performance and that

way to comprehend its internal behaviour. They represent only a selection of the vari-

ety of metrics that have been defined by the community over the years. Furthermore,

this example considers only a trace recording at process level. In general, this is suffi-

cient to comprehend the temporal behaviour of a real-time system, because tasks are

the smallest schedulable units managed by the operating system. However, besides

tasks also other entities, e.g., functions and data signals, as well as their corresponding

events, such as function calls and data accesses, can be observed during a system’s

runtime. With the help of these pieces of information and according metrics, it is

possible to get an even more detailed insight into the system’s behaviour.

Part II.

Contributions

6
CoreTAna

CoreTAna is the name of our novel tool that derives an AUTOSAR-compliant model

of a real-time system by conducting dynamic analysis using trace recordings. It is part

of the TATool Suite [70] as an experimental feature and allows one to generate amodel

at system level. This includes a description of the static information on a system such

as the tasks and their mapping to the processing cores but also dynamic information

such as the runtime behaviour and data dependencies. A limited version of CoreTAna

that synthesises just a task model is included in the open-source Eclipse APP4MC1

tool chain.

This chapter elaborates on CoreTAna’s internal workings as they are implemen-

ted in the TA Tool Suite Release 16.03 which is the version used for all evaluations

and case studies mentioned in this work. A detailed description of the algorithms

employed by our reverse engineering approach are presented next.

6.1. Design

As depicted in Fig. 6.1, CoreTAna’s reverse engineering starts with a system’s cap-

tured hardware traces. Because vendors use their own trace format, the traces are

first transformed into the BTF trace format [59], which provides a common interface

for CoreTAna (see 1 in Fig. 6.1). A SQLite database is created for each trace record-

ing and the events are stored in such a way that querying for existing elements or for

events of specific entities can be performed quickly.

Inputs to the reverse engineering are also other already available pieces of informa-

tion of themodel, e.g., the program structure derived from static analysis or a detailed

description of the known hardware platform. For each entity that is contained in this

partial system model and that is detected in the trace recordings and, thus, stored in

1http://www.eclipse.org/app4mc

http://www.eclipse.org/app4mc

98 6. CORETANA

Model
Initialiser

HW TraceBTF Trace

Trace Replayer

Task Event
Handler

Function
Event Handler

Event Handlers
Signal Event

Handler

Model
Transformation

AUTOSAR
Meta-Model

AMALTHEA
Meta-Model

Resulting
System Model

1

2

3

Internal Data Model

Call Sequences

A B D
DCA

A
C

B
D

Call Graph

5

Stimulations

Distribution

5

Preemptions

T2

T1

T1

T2

Priorities

5

CoreTAna
...

EVENT STREAM

6

Partial
System Model

(optional)

Fu
n

ct
io

n
s

Semaphore
Event Handler

Tasks

Sc
h

e
d

u
lin

g

D
at

a
Si

gn
al

s

Se
m

ap
h

o
re

s

In
te

rr
u

p
t

Se
rv

ic
e

R

o
u

ti
n

e
s

ISR Event
Handler

4

Model
Transformation

Figure 6.1.: CoreTAna’s Software Design. The internal reverse engineering ap-
proach utilises the following technologies: SQLite, Eclipse Plug-In, Ec-
lipse EMF, Eclipse MMT, Choco Constraint Solver, Apache Commons
Math, Apache Commons Collections. Adapted from [15].

the databases, the Model Initialiser creates an object 2 . Each object implements the

state machine of the entity’s type according BTF and they altogether represent the

internal data model.

The Trace Replayer creates for each trace recording an event stream such that all

events are processed in chronological order 3 , which allows us to reason about event

sequences such as context switches from one process to another. Each event triggers

a transition in the state machine of the according object of the internal data model. To

achieve a fast analysis, only the events that are relevant to the reverse engineering of a

specific part of themodel are considered, e.g., only the activation events are important

for the stimulation-pattern use case, which is controlled by the event handler.

6.1. DESIGN 99

In the next step, the pieces of information collected from the trace events are pro-

cessed 4 . The processing in chronological order allows us to detect coherences ne-

cessary to determine individual system characteristics such as pre-emptions 5 (see

Sec. 6.3). All obtained pieces of information from the trace recordings are analysed

and the gained knowledge stored in the internal data model, which is, basically, a super

set of all the information contained in the supported AUTOSAR-compliant models.

This approach is necessary because of decisions that need to be made later on and

that require a complete overview of the system’s runtime behaviour such as the de-

termination of a stimulation pattern from the individual task activations.

Finally, all synthesised information is transformed from the internal data model

into an AUTOSAR-compliant model 6 including AUTOSAR itself and AMALTHEA.

In cases where there are multiple ways to model the observed behaviour, such as the

representation of periodic activations by a sequence of single activations, the alternat-

ives are assessed in the order of universality, starting with themost specific alternative

as it can be seen in Algorithm 7.

As mentioned before, CoreTAna is part of the TA Tool Suite and is also included in

the open-source tool chain APP4MC. Because both products are constructed on the

Eclipse Rich Client Platform (RCP), CoreTAna is realised as an Eclipse Plug-in and

utilises a number of Eclipse technologies. For example, the description of CoreTAna’s

internal datamodel is based on the EclipseModeling Framework (EMF). The decision

for this is motivated by the fact that both models that can be generated by CoreTAna

AUTOSAR and AMALTHEA are also based on EMF which makes the employment

of model transformation possible for which we use the Query View Transformation

(QVT) implementation of the Eclipse Model-to-Model Transformation (MMT) pro-

ject.

Besides these Eclipse technologies which define mainly the architecture of our

tool, CoreTAna utilises additional open-source libraries for the implementation of

the reverse engineering algorithms. For example, some algorithms in Chapter 6.3

model a problem by stating a set of constraints that need to be satisfied. To be able to

solve these constraint satisfaction problems (CSPs), we employ internally the Choco

solver2. Other algorithms rely on the libraries of the Apache Commons project. Com-

mons Math3 helps us addressing our mathematical and statistical problems such as

2http://www.choco-solver.org/
3http://commons.apache.org/proper/commons-math/

http://www.choco-solver.org/
http://commons.apache.org/proper/commons-math/

100 6. CORETANA

goodness-of-fit tests and Commons Collections4 provides us with powerful data struc-

tures such as the PATRICIA Trie that allow us to handle and analyse the vast amount

of data that arises during the reverse engineering in an efficient way.

6.2. Approach

The reverse engineering approach of CoreTAna is designed in such a way that it fits

seamlessly into the methodology specified by AUTOSAR. It also supports all the use

cases that arise from our customer projects. For example, the most common chal-

lenge is to generate a model of a legacy software system, i.e., no model information

is available at all. To do so, the customer provides us at first with a single trace re-

cording that covers the general system behaviour but usually contains just events at

process level because of technical limitations. This trace is then applied to CoreTAna

as input which creates a rough frame of the system by determining the tasks and ISRs

with their runtimes and the scheduling properties. With the help of DoTA, CoreTAna

highlights also at once the deficits of the generated model which are inspected manu-

ally afterwards. Because our measure is composed of individual real-time metrics,

the differences to the trace recording are easily comprehensible and allows one to

identify the system parts that require additional information. Based on this frame

and the results of the manual analysis, a first review of the model is done together

with the customer in which the achieved quality and obvious deficits are discussed.

As an alternative, CoreTAna can also process multiple trace recordings in order

to generate a model, e.g., if the trace recordings cover specific scenarios of the sys-

tem’s behaviour. In that case, each trace is transformed into a separate data base

first. All these are then used by the model initialiser to create the internal model.

After that, one trace after another is processed in chronological order and the ob-

served events trigger the state machines of the internal objects. However, once a

trace replay is completed, the objects are not analysed but their state machines are

reset in order to continue with the next trace. After all data bases have been accessed,

the gained knowledge stored in the internal model is analysed and transformed to a

single AUTOSAR-compliant model.

Another common task for CoreTAna is the augmentation of a partially available

model with additional information from a trace recording. This is, for example, the

4http://commons.apache.org/proper/commons-collections/

http://commons.apache.org/proper/commons-collections/

6.3. ALGORITHMS 101

case if an initial model is already generated by a static analysis and has to be refined by

the dynamic information of the system or if CoreTAna generated amodel from a trace

recording at process level which is gradually improved by analysing trace recordings

at system level. To consider already existing knowledge in the reverse engineering ap-

proach, CoreTAna loads the information from the AUTOSAR-compliant model into

its internal model. After that, the events of the new trace recording are processed and

the gained information stored together with the existing knowledge in the internal

objects. Finally, all these pieces of information are considered for the generation of a

new AUTOSAR-compliant model which then not only covers the system’s behaviour

of the new trace recording but also that of the input model.

6.3. Algorithms

In Chapter 6.1, we introduced CoreTAna’s software design which consists of the fol-

lowing three steps:

1. initialisation of the internal model (2 in Fig. 6.1),

2. collecting information on the system by processing the events in the trace re-

cording in chronological order (3 and 4),

3. and analysing and reasoning on the gained knowledge (5).

This approach is also reflected in the design of the algorithms. As a consequence, the

reverse engineering is also divided in three consecutive steps:

1. Pre-processing: The purpose of the pre-processing is to initialise the internal

datamodel and, thus, it represents the implementation of theModel Initialiser

as shown in Fig. 6.1. This includes determining all relevant entities in the

system such as ISRs, tasks, runnables, data signals, and semaphores from the

events of the trace recordings and requires that each entity can be identified

by its unique name. For example, Algorithm 2 shows how all process entities

are detected based on BTF events. Further, the allocation of the processes to a

processing unit must be known before the trace can be processed in order to

be able to analyse the scheduling.

2. Processing: Once all processes and their allocations are known, the informa-

tion about each entity is refined further, for which, each trace recording that

is available as input is processed in chronological order, one after another.

Thereby, the internal data model is filled step-by-step with the information

102 6. CORETANA

Algorithm 1Main Function
1: functionMain(trace)
2: processes ← ∅ ▷ Set for process entities.
3: runnables ← ∅ ▷ Set for runnable entities.
4: allocations ← () ▷ Tuple for mapping process to processing unit.
5: activations ← [,] ▷ Two-dimensional matrix for activation moments.
6: CSPpriorities ← () ▷ Tuple for priority constraints and variables.
7: preemptive ← () ▷ Tuple for process pre-emptability.
8: NETs ← [,] ▷ Two-dimensional matrix for execution times.
9: stimulations ← () ▷ Tuple for stimulation pattern.
10: priorities ← () ▷ Tuple for process priorities.
11: distributions ← () ▷ Tuple for probability distributions.
12: callSequences ← [, ,] ▷ Three-dimensional matrix for call sequences.
13: callGraph ← ∅ ▷ Empty set for branches with probability.
14: ▷ Pre-Processing
15: processes ← determineProcesses(trace)
16: runnables ← determineRunnables(trace)
17: allocations ← determineAllocation(trace)
18: ▷ Processing
19: activations ← prepareStimulation(trace)
20: CSPpriorities ← preparePriorities(trace, allocations)
21: preemptive ← determinePreemptability(trace, processes)
22: NETs ← prepareExecutionTimes(trace)
23: callSequences ← prepareCallSequences(trace)
24: ▷ Post-Processing
25: stimulations ← determineStimulation(activations, processes)
26: priorities ← solve(CSPpriorities)
27: distributions ← determineExecutionTimes(runnables,NETs)
28: callGraph ← determineCallGraph(callSequences, processes)
29: end function

required for decisions that need to be made later on. In some cases, the de-

termination of knowledge can already be done during the processing of a trace,

e.g., information on the pre-emptability of a process.

3. Post-processing: Finally, all information collected in the internal data model

is analysed and the missing elements for the AUTOSAR-compliant model are

determined. This step is deliberately separated from the processing because

some decisions that need to bemade consider the information that is available

on the system’s runtime behaviour in total, i.e., all trace recordings must be

processed first and not only one.

Algorithm 1 summarises the functionality of CoreTAna by listing all algorithms

that are applied and by bundling them according to the aforementioned steps. A

detailed description of each algorithm mentioned here is presented in the following

sections.

6.3. ALGORITHMS 103

Algorithm 2 Process Entities
Input: trace – Tuple containing all events in chronological order
Output: processes – Set containing the names of all process entities

1: function determineProcesses(trace)
2: processes ← ∅ ▷ Set for processes entities.
3: for all event in trace do
4: if event[type] = ‘T’ or ‘ISR’ then
5: if event[action] = ‘activate’ or ‘start’ or ‘resume’ or ‘preempt’ or ‘wait’ or ‘release’ or ‘run’ or
‘poll’ or ‘poll_parking’ or ‘park’ or ‘release_parking’ then

6: add event[entity] to processes
7: return processes
8: end function

6.3.1. OS Configuration

AUTOSAR [65] is defined as a multiprocessing operating system, i.e., multiple con-

current processes are executed in a system with each process running on a separate

processing unit. Thus, the first pieces of information that have to be determined be-

fore a trace can be processed are the processes that are available in the system. This

is described in Algorithm 2 where all process entities are determined based on BTF

events. To do so, the individual elements of an event are accessed via their names

given in Def. 5.1, e.g., type, entity, and action for the fourth, fifth, and seventh ele-

ment, resp..

The algorithm shows that all processes are determined by going through the events

of a trace recording and looking for task and ISR events, which can be identified

by their type. The entity element of these events represents the name of a process

according to the BTF specification. Alternatively, the same result can be achieved

via a SQL statement similar to the following one, without the need to iterate over all

events:

1 SELECT E.Name
2 FROM Entity as E, EntityType as T
3 WHERE (E.Type = T.ID) AND (T.Name = 'T' OR T.Name = 'ISR')

Listing 6.1: SQL statement for querying all process entities that occur in a trace

recording.

Determining other system entities such as runnables is done analogously. After

that, for each entity, an object is created that implements the state machine according

to the entity’s type.

Further, the allocation of the processes to a processing unit has to be known before

104 6. CORETANA

Algorithm 3 Allocation
Input: trace – Tuple containing all events in chronological order
Output: X – Tuple of variables representing the ID of the processing unit allocated by a process

1: function determineAllocation(trace)
2: runningState ← ∅ ▷ Set of currently running processes.
3: C ← ∅ ▷ Set of allocation constraints.
4: X ← () ▷ Tuple of constraint variables representing the allocations.
5: preempted ← 0 ▷ Process that got preempted.
6: for all event in trace do
7: if event[type] = ‘T’ or ‘ISR’ then
8: e ← event[entity]
9: create constraint variable Ce
10: X[e]← Ce
11: if event[action] = ‘start’ or ‘resume’ or ‘run’ then
12: add constraint to C: X[e] = X[preempted]
13: preempted ← 0
14: for all process in runningState do
15: add constraint to C: X[e] ≠ X[process]
16: add e to runningState
17: else
18: remove e from runningState
19: if event[action] = ‘preempt’ then
20: preempted ← e
21: CSP ← (X,C)
22: ▷ Find an allocation by solving the CSP for the given constraints.
23: solve(CSP)
24: return X
25: end function

the trace can be processed in order to detect pre-emptions. Because AUTOSAR ap-

plies local scheduling, where each processing unit is managed by its own scheduler,

the allocations can be determined according to Algorithm 3. For this, let Cp denote

a constraint variable that represents the ID of the processing unit allocated by pro-

cess p. Due to the fact that processing units are shared resources, which can only be

occupied by one process at a time, the process events are processed in chronological

order to detect concurrent executions and pre-emptions. These pieces of informa-

tion are used to define a Constraint Satisfaction Problem (CSP) (line 12 and 15 of

Algorithm 3), which then yields an allocation of process to processing unit that fulfils

the observations recorded in the underlying trace.

Example 1 (Allocation). In order to show how the algorithms work, a short example is

introduced in the following. It describes a simple systemwhich consists of three tasks

(Task_1, Task_2, and Task_3) and runs on two processing units (CORE0 and CORE1).

Task_1 and Task_2 are scheduled by the operating system on CORE0 and Task_3 is

mapped to CORE1. Furthermore, Task_1 is known to call Runnable_1, Runnable_2,

6.3. ALGORITHMS 105

t0 6000 12000 18000 24000 30000 36000 42000 48000 54000

Task 1

Runnable 1

Runnable 2

Runnable 3

Runnable 4

Task 2

Task 3

Figure 6.2.: Gantt Chart of Trace Example for Showing CoreTAna’s Algorithms.
Visualisation of the trace recording described in Example 1 in a Gantt chart.

Runnable_3, and Runnable_4 and is activated periodically every 10ms.

Fig. 6.2 visualises a trace recording that covers 58ms of this system’s internal be-

haviour in a Gantt chart. The according BTF trace is shown in Listing 6.2. There, also

the intermediate states of the most relevant variables used in Algorithm 3 are added

in red in order to illustrate how this algorithm determines the allocation of a process

to a processing unit.

0 ,CORE0, 0 , T , Task_1 , 0 , a c t i v a t e

2 X = (CTask1), runningState = ∅
100 ,CORE0, 0 , T , Task_1 , 0 , s t a r t

4 runningState = {Task1}
100 , Task_1 , 0 ,R , Runnable_1 , 0 , s t a r t

6 500 ,CORE1, 0 , T , Task_3 , 0 , a c t i v a t e

X = (CTask1 ,CTask3)
8 600 ,CORE1, 0 , T , Task_3 , 0 , s t a r t

106 6. CORETANA

runningState = {Task1,Task3};C = {CTask1 ≠ CTask3}
10 1000 , Task_1 , 0 ,R , Runnable_1 , 0 , t e rmina t e

1000 , Task_1 , 0 ,R , Runnable_2 , 0 , s t a r t

12 5000 ,CORE0, 0 , T , Task_2 , 0 , a c t i v a t e

X = (CTask1 ,CTask3 ,CTask2)
14 5200 , Task_1 , 0 ,R , Runnable_2 , 0 , suspend

5200 ,CORE0, 0 , T , Task_1 , 0 , preempt

16 runningState = {Task3}, preempted = Task1
5200 ,CORE0, 0 , T , Task_2 , 0 , s t a r t

18 runningState = {Task3,Task2}; preempted = 0;C = {CTask1 ≠ CTask3 ,CTask2 =
CTask1}

10200 ,CORE0, 0 , T , Task_2 , 0 , t e rmina t e

20 runningState = {Task3}
10400 ,CORE0, 0 , T , Task_1 , 0 , resume

22 runningState = {Task3,Task1}
10400 , Task_1 , 0 ,R , Runnable_2 , 0 , resume

24 14400 , Task_1 , 0 ,R , Runnable_2 , 0 , t e rmina t e

14400 ,CORE0, 0 , T , Task_1 , 0 , t e rmina t e

26 runningState = {Task3}
15000 ,CORE0, 0 , T , Task_1 , 1 , a c t i v a t e

28 15100 ,CORE0, 0 , T , Task_1 , 1 , s t a r t

runningState = {Task3,Task1}
30 15100 , Task_1 , 1 ,R , Runnable_1 , 1 , s t a r t

16000 , Task_1 , 1 ,R , Runnable_1 , 1 , t e rmina t e

32 16000 , Task_1 , 1 ,R , Runnable_2 , 1 , s t a r t

24200 , Task_1 , 1 ,R , Runnable_2 , 1 , t e rmina t e

34 24200 ,CORE0, 0 , T , Task_1 , 1 , t e rmina t e

runningState = {Task3}
36 30000 ,CORE0, 0 , T , Task_1 , 2 , a c t i v a t e

30100 ,CORE0, 0 , T , Task_1 , 2 , s t a r t

38 runningState = {Task3,Task1}
30100 , Task_1 , 2 ,R , Runnable_1 , 2 , s t a r t

40 31000 , Task_1 , 2 ,R , Runnable_1 , 2 , t e rmina t e

31000 , Task_1 , 2 ,R , Runnable_4 , 0 , s t a r t

42 38000 , Task_1 , 2 ,R , Runnable_4 , 0 , t e rmina t e

6.3. ALGORITHMS 107

38000 ,CORE0, 0 , T , Task_1 , 2 , t e rmina t e

44 runningState = {Task3}
45000 ,CORE0, 0 , T , Task_1 , 3 , a c t i v a t e

46 45100 ,CORE0, 0 , T , Task_1 , 3 , s t a r t

runningState = {Task3,Task1}
48 45100 , Task_1 , 3 ,R , Runnable_3 , 0 , s t a r t

50100 , Task_1 , 3 ,R , Runnable_3 , 0 , t e rmina t e

50 50100 , Task_1 , 3 ,R , Runnable_4 , 1 , s t a r t

57100 , Task_1 , 3 ,R , Runnable_4 , 1 , t e rmina t e

52 57100 ,CORE0, 0 , T , Task_1 , 3 , t e rmina t e

runningState = {Task3}
54 58000 ,CORE1, 0 , T , Task_3 , 0 , t e rmina t e

runningState = ∅,CTask1 = 0,CTask2 = 0,CTask3 = 1

Listing 6.2: Example trace for showing CoreTAna’s algorithm for determining the

allocation.

The most relevant lines in Listing 6.2 for comprehending the algorithm are the

lines in which the constraints are defined. In line 8, constraint “CTask1 ≠ CTask3”

is created because of the knowledge that both tasks Task1 and Task3 are running at

that moment, i.e., they must be allocated to different processing units. The other

constraint “CTask2 = CTask1” is added to the constraint satisfaction problem as a result

of line 17. At that point in time it is known that Task1 is pre-empted by Task2. This fact

allows one to conclude that both tasksmust run on the same processing unit. And this

is also what the constraint solver yields with CTask1 = 0,CTask2 = 0,CTask3 = 1 in line
55. The resulting integers for the constraint variable state the allocated processing

unit, i.e., Task1 and Task2 execute on the same processing unit because they have the

same number and Task3 on a different one.

6.3.2. Scheduling Properties

The temporal behaviour of a real-time system is partially determined by the employed

scheduling policy. Therefore, it is crucial to reversely engineer the system’s schedul-

ing parameters, which includes in case of an AUTOSAR-compliant system the pro-

cess priorities and the information whether a process can be pre-empted or not.

The AUTOSAR OS provides a fixed priority-based scheduling policy [65, p. 83 f.],

which means that the scheduler assigns a managed resource to the process with the

108 6. CORETANA

Algorithm 4 Preparation of Process Priority Determination
Input: trace – Tuple containing all events in chronological order

processes – Set containing the names of all process entities
allocations – Set containing the ID of the processing unit allocated by a process

Output: CSP – Tuple containing a set of variables that represents the priorities of the processes
and a set of constraints that puts the priorities in relation to

1: function preparePriorities(trace, allocations)
2: readyState ← () ▷ Tuple with all process instances in state ready.
3: C ← ∅ ▷ Set of priority constraints.
4: X ← () ▷ Tuple of constraint variables representing a process priority.
5: for all event in trace do
6: if event[type] = ‘T’ or ’ISR’ then
7: e ← event[entity]
8: create constraint variable Ce
9: X[e]← Ce
10: instance ← event[entityInstance]
11: allocation ← allocations[e]
12: if event[action] = ‘start’ or ‘resume’ then
13: remove (e, instance) from readyState[allocation]
14: for all process in readyState[allocation] do
15: if age(e) < age(process) then
16: add constraint to C: X[e] > X[process]
17: else
18: add constraint to C: X[e] ≥ X[process]
19: else if event[action] = ‘activate’ or ‘preempt’ or ‘park’ then
20: add (e, instance) to readyState[allocation]
21: CSP ← (X,C)
22: return CSP
23: end function

highest priority. The priority of each process is set before runtime and does not

change during execution. It is represented by a positive numerical value, which “has

to be understood as a relative value, i.e. the values show only the relative ordering of

the [processes]” [65, p. 227].

The priority ordering of processes can be determined from trace events accord-

ing Algorithm 4 where age(xi) denotes a function that yields the time since the ac-
tivation of process instance xi. Based on the knowledge that processes with higher

priorities are preferred, each process execution reveals the process with the highest

priority among all processes that are ready to be scheduled on a processing unit at

the observed point in time (see line 11 ff. in Algorithm 4). In order to do so, the

allocation, i.e., the processing units on which an activated process can execute, has

to be known. If the activation moment of the started processes dates back furthest,

the priority relation is clear because of the fact that processes with the same priority

on the same processing unit are executed in order of their activation (see line 15).

Using this knowledge, the trace recording is processed and a constraint describing

6.3. ALGORITHMS 109

Algorithm 5 Process Pre-emptability
Input: trace – Tuple containing all events in chronological order

processes – Set containing the names of all process entities
Output: preemptive – Tuple containing the pre-emptability of each process

1: function determinePreemptability(trace, processes)
2: preemptive ← () ▷ Tuple for process pre-emptability.
3: for all process in processes do
4: preemptive[process]← ’NON’
5: for all event in trace do
6: if event[type] = ‘T’ or ’ISR’ then
7: if event[action] = ‘preempt’ or ‘park‘ then
8: e ← event[entity]
9: preemptive[e]← ’FULL’
10: return preemptive
11: end function

the priority relation between two processes is added to the CSP if such an according

situation is detected. After all trace recordings are processed, the resulting CSP is

solved in the post-processing step and, for each process, the solver yields a priority

that satisfies the behaviour observed in the trace.

Another scheduling property that drives the scheduling policy of the AUTO-

SAR OS is the pre-emptability of a process [65, p. 228]. Pre-emptability defines

whether the execution of a process can be suspended, e.g., in order to execute a higher

prioritised process. The AUTOSAR OS supports mixed pre-emptive systems, which

means that the software is made up of full pre-emptive and non pre-emptive pro-

cesses in any combination. Algorithm 5 describes a way to analyse a trace recording

regarding the pre-emptive characteristics of its processes. The algorithm assumes

that, in general, all processes are non pre-emptive (see line 4 in Algorithm 5). If a pre-

emption is detected in the trace, the pre-emptive property of the process is changed

to full pre-emptive (see lines 6 ff.). Thus, this algorithm yields its results already in

the processing step.

Example 2 (Scheduling Properties). In order to show how the algorithms that are

presented in this section work, we continue with the simple system introduced in Ex-

ample 1. Listing 6.2 depicts the BTF trace recording that covers 58ms of this system’s

internal behaviour. Again, the intermediate states of the most relevant variables used

in Algorithm 4 and Algorithm 5 are added in red to illustrate how these algorithms

determine the process priorities and whether a process can be pre-empted.

preemptive = (Task1 = ‘NON′,Task2 = ‘NON′,Task3 = ‘NON′)
2 0 ,CORE0, 0 , T , Task_1 , 0 , a c t i v a t e

110 6. CORETANA

X = (CTask1); readyState[0] = (Task1, 0)
4 100 ,CORE0, 0 , T , Task_1 , 0 , s t a r t

readyState = ()
6 100 , Task_1 , 0 ,R , Runnable_1 , 0 , s t a r t

500 ,CORE1, 0 , T , Task_3 , 0 , a c t i v a t e

8 X = (CTask1 ,CTask3); readyState[1] = (Task3, 0)
600 ,CORE1, 0 , T , Task_3 , 0 , s t a r t

10 readyState = ()
1000 , Task_1 , 0 ,R , Runnable_1 , 0 , t e rmina t e

12 1000 , Task_1 , 0 ,R , Runnable_2 , 0 , s t a r t

5000 ,CORE0, 0 , T , Task_2 , 0 , a c t i v a t e

14 X = (CTask1 ,CTask3 ,CTask2); readyState[0] = (Task2, 0)
5200 , Task_1 , 0 ,R , Runnable_2 , 0 , suspend

16 5200 ,CORE0, 0 , T , Task_1 , 0 , preempt

preemptive[Task1] = ‘FULL′; readyState[0] = {(Task1, 0), (Task2, 0)}
18 5200 ,CORE0, 0 , T , Task_2 , 0 , s t a r t

age(Task1) = 5200; age(Task2) = 200;C = {CTask2 > CTask1}
20 10200 ,CORE0, 0 , T , Task_2 , 0 , t e rmina t e

10400 ,CORE0, 0 , T , Task_1 , 0 , resume

22 readyState = ()
10400 , Task_1 , 0 ,R , Runnable_2 , 0 , resume

24 14400 , Task_1 , 0 ,R , Runnable_2 , 0 , t e rmina t e

14400 ,CORE0, 0 , T , Task_1 , 0 , t e rmina t e

26 15000 ,CORE0, 0 , T , Task_1 , 1 , a c t i v a t e

readyState[0] = (Task1, 1)
28 15100 ,CORE0, 0 , T , Task_1 , 1 , s t a r t

readyState = ()
30 15100 , Task_1 , 1 ,R , Runnable_1 , 1 , s t a r t

16000 , Task_1 , 1 ,R , Runnable_1 , 1 , t e rmina t e

32 16000 , Task_1 , 1 ,R , Runnable_2 , 1 , s t a r t

24200 , Task_1 , 1 ,R , Runnable_2 , 1 , t e rmina t e

34 24200 ,CORE0, 0 , T , Task_1 , 1 , t e rmina t e

30000 ,CORE0, 0 , T , Task_1 , 2 , a c t i v a t e

36 readyState[0] = (Task1, 2)
30100 ,CORE0, 0 , T , Task_1 , 2 , s t a r t

6.3. ALGORITHMS 111

38 readyState = ()
30100 , Task_1 , 2 ,R , Runnable_1 , 2 , s t a r t

40 31000 , Task_1 , 2 ,R , Runnable_1 , 2 , t e rmina t e

31000 , Task_1 , 2 ,R , Runnable_4 , 0 , s t a r t

42 38000 , Task_1 , 2 ,R , Runnable_4 , 0 , t e rmina t e

38000 ,CORE0, 0 , T , Task_1 , 2 , t e rmina t e

44 45000 ,CORE0, 0 , T , Task_1 , 3 , a c t i v a t e

readyState[0] = (Task1, 3)
46 45100 ,CORE0, 0 , T , Task_1 , 3 , s t a r t

readyState = ()
48 45100 , Task_1 , 3 ,R , Runnable_3 , 0 , s t a r t

50100 , Task_1 , 3 ,R , Runnable_3 , 0 , t e rmina t e

50 50100 , Task_1 , 3 ,R , Runnable_4 , 1 , s t a r t

57100 , Task_1 , 3 ,R , Runnable_4 , 1 , t e rmina t e

52 57100 ,CORE0, 0 , T , Task_1 , 3 , t e rmina t e

58000 ,CORE1, 0 , T , Task_3 , 0 , t e rmina t e

54 CTask1 = 0,CTask2 = 1,CTask3 = 0

Listing 6.3: Example trace for showing CoreTAna’s algorithms for determining

the scheduling properties

The most relevant lines in Listing 6.2 for comprehending the algorithms are line

16 for Algorithm 5 and line 18 for Algorithm 4. The former trace event represents

a pre-emption of Task1 which results in the fact that Task1 is stated as pre-emptive.

Furthermore, it has the effect that Task1 returns to the processing state ready in that

moment. This is of crucial importance for Algorithm 4 because the next trace event

starts the execution of Task2. Due to the fact that Task1 was activated before Task2, the

constraint “CTask2 > CTask1” is is added to the constraint satisfaction problem. Finally,

the constraint solver yields a possible priority assignment for each process in line 54,

which respects the determined constraint that the priority of Task2 has to be higher

than that of Task1.

6.3.3. Stimulation

Besides the parameters of the system’s scheduling policy, the instants in time at

which a process is activated must be identified in order to determine the temporal

behaviour of a real-time system [3]. To make a statement about the activation pattern

112 6. CORETANA

of a process, at first, the activationmoments for each process are determined from the

trace recording as described by Algorithm 6. In the processing step, the timestamps

are stored for later analysis in a two-dimensional matrix called activations[,] where

each row vector contains the activation moments of a specific process.

After all trace recordings are processed and all activationmoments of the processes

are collected in the internal data model, the gathered information is analysed in the

post-processing step to generate matching activation patterns. AUTOSAR provides

two ways for specifying temporal activation patterns for tasks: OSAlarm [65, p. 197 ff.]

and OSScheduleTable [65, p. 220 ff.]. An alarm describes a periodic activation and is

defined by the AlarmTime, which sets the relative or absolute time when the alarm ex-

pires for the first time, and theCycleTime, which determines the time until the alarm’s

recurrence. A schedule table is an encapsulation for a set of so-called ExpiryPoints,

which define a recurring sequence of activations. Each expiry point specifies a point

in time relative to the start of the schedule table at which the OS activates a task. The

schedule table itself is determined by an absolute or relative offset and a duration,

which sets the period for a cyclic repetition.

In contrast to AUTOSAR, AMALTHEA[57] allows one to define activation pat-

terns also for ISRs. In AMALTHEA, a single activation is called SingleStimulus, a

periodic activation is modelled with the help of the PeriodicStimulus pattern and, for

non-periodic activations, the PeriodicSnytheticStimulus is used without setting a re-

currence. The semantics of these terms are equal to those of their counterparts in

AUTOSAR which is why they are determined the same way. In addition, AMAL-

THEA provides a stimulation pattern called Arrival Curve that is an alternative way to

model periodic and non-periodic activations. For these reasons, we enable the gen-

Algorithm 6 Preparation of Stimulation Pattern Determination
Input: trace – Tuple that contains all events in chronological order
Output: activations – Two-dimensional matrix that contains all activation moments for each

process
1: function prepareStimulation(trace)
2: activations ← [,] ▷ Two-dimensional matrix of process activations.
3: for all event in trace do
4: if event[type] = ‘T’ or ‘ISR’ then
5: if event[action] = ‘activate’ then
6: e ← event[entity]
7: instance ← event[entityInstance]
8: activations[e, instance]← event[timestamp]
9: return activations
10: end function

6.3. ALGORITHMS 113

Algorithm 7 Determination of Stimulation Patterns
Input: activations – Two-dimensional matrix containing all activation moments of each

process
processes – Set containing the names of all process entities

Output: stimulations – Tuple of stimulation patterns describing the temporal activations for
each process

1: function determineStimulation(activations, processes)
2: stimulations ← () ▷ Tuple for stimulation patterns.
3: for process in processes do
4: if length(activations[process]) = 1 then
5: ▷ Single activation
6: alarm ← () ▷ Tuple for stimulation information.
7: alarm[AlarmTime]← activations[process, 0]
8: alarm[CycleTime]← 0
9: stimulations[process]← alarm
10: else
11: a2a ← () ▷ Tuple for inter-arrival times.
12: for i ← 0 to length(activations[process]) - 2 do
13: a2a[i]← activations[process, i + 1]− activations[process, i]
14: if sd(a2a)

mean(a2a) < 0.5% then

15: ▷ Periodic activation
16: alarm ← () ▷ Tuple for stimulation information.
17: alarm[AlarmTime]← activations[process, 0]
18: alarm[CycleTime]←mean(a2a)
19: stimulations[process]← alarm
20: else
21: ▷ Non-periodic activation
22: scheduleTable ← () ▷ Tuple for stimulation information.
23: for i ← 0 to length(activations[process]) - 1 do
24: expiryPoint ← ()
25: expiryPoint[offset]← activations[process, i]
26: scheduleTable[i]← expiryPoint
27: stimulations[process]← scheduleTable
28: return stimulations
29: end function

eration of that pattern via an additional input parameter for our reverse engineering

algorithm.

Let mean and sd be functions that yield the mean and standard deviation, resp.,

from a tuple. Then, the stimulation of a process can be identified as a periodic ac-

tivation (Alarm) or a sequence of activations (ScheduleTable) from trace events as de-

scribed by Algorithm 7. Due to the fact that there are multiple ways to model the

observed stimulation behaviour, such as the representation of periodic activations by

a sequence of single activations, the alternatives are assessed in the order of universal-

ity, starting with the most specific alternative. For each process, the algorithm checks

first whether there is only a single activation recorded in the trace (see lines 5 ff. in

Algorithm 7). If this is the case, a non-recurring alarm is created and associated with

114 6. CORETANA

the process. Otherwise, the algorithm continues and checks whether the observed

activations are roughly periodic, by determining the standardized moment of the res-

ulting distribution of the process’s inter-arrival times. A moment below 0.5 %, which

is a common significance level for statistical tests [71, p. 30], confirms that the process

is activated by a cyclic alarm (see lines 14 ff.). Finally, if the observed activations are

found to be neither singular nor periodic, the individual activation times are trans-

ferred into expiry points of a schedule table (see lines 22 ff.).

Example 3 (Stimulation). Again, we use the simple system introduced in Example 1

in order to show how the algorithms work. Listing 6.4 depicts the BTF trace record-

ing that covers 58ms of this system’s internal behaviour. The intermediate states of

the most relevant variables used in Algorithm 6 are added in red to illustrate how

this algorithm gathers the information for determining the stimulation later on via

Algorithm 7.

0 ,CORE0, 0 , T , Task_1 , 0 , a c t i v a t e

2 activations[Task1] = (0)
100 ,CORE0, 0 , T , Task_1 , 0 , s t a r t

4 100 , Task_1 , 0 ,R , Runnable_1 , 0 , s t a r t

500 ,CORE1, 0 , T , Task_3 , 0 , a c t i v a t e

6 activations[Task3] = (500)
600 ,CORE1, 0 , T , Task_3 , 0 , s t a r t

8 1000 , Task_1 , 0 ,R , Runnable_1 , 0 , t e rmina t e

1000 , Task_1 , 0 ,R , Runnable_2 , 0 , s t a r t

10 5000 ,CORE0, 0 , T , Task_2 , 0 , a c t i v a t e

activations[Task2] = (5000)
12 5200 , Task_1 , 0 ,R , Runnable_2 , 0 , suspend

5200 ,CORE0, 0 , T , Task_1 , 0 , preempt

14 5200 ,CORE0, 0 , T , Task_2 , 0 , s t a r t

10200 ,CORE0, 0 , T , Task_2 , 0 , t e rmina t e

16 10400 ,CORE0, 0 , T , Task_1 , 0 , resume

10400 , Task_1 , 0 ,R , Runnable_2 , 0 , resume

18 14400 , Task_1 , 0 ,R , Runnable_2 , 0 , t e rmina t e

14400 ,CORE0, 0 , T , Task_1 , 0 , t e rmina t e

20 15000 ,CORE0, 0 , T , Task_1 , 1 , a c t i v a t e

activations[Task1] = (0, 15000)
22 15100 ,CORE0, 0 , T , Task_1 , 1 , s t a r t

6.3. ALGORITHMS 115

15100 , Task_1 , 1 ,R , Runnable_1 , 1 , s t a r t

24 16000 , Task_1 , 1 ,R , Runnable_1 , 1 , t e rmina t e

16000 , Task_1 , 1 ,R , Runnable_2 , 1 , s t a r t

26 24200 , Task_1 , 1 ,R , Runnable_2 , 1 , t e rmina t e

24200 ,CORE0, 0 , T , Task_1 , 1 , t e rmina t e

28 30000 ,CORE0, 0 , T , Task_1 , 2 , a c t i v a t e

activations[Task1] = (0, 15000, 30000)
30 30100 ,CORE0, 0 , T , Task_1 , 2 , s t a r t

30100 , Task_1 , 2 ,R , Runnable_1 , 2 , s t a r t

32 31000 , Task_1 , 2 ,R , Runnable_1 , 2 , t e rmina t e

31000 , Task_1 , 2 ,R , Runnable_4 , 0 , s t a r t

34 38000 , Task_1 , 2 ,R , Runnable_4 , 0 , t e rmina t e

38000 ,CORE0, 0 , T , Task_1 , 2 , t e rmina t e

36 45000 ,CORE0, 0 , T , Task_1 , 3 , a c t i v a t e

activations[Task1] = (0, 15000, 30000, 45000)
38 45100 ,CORE0, 0 , T , Task_1 , 3 , s t a r t

45100 , Task_1 , 3 ,R , Runnable_3 , 0 , s t a r t

40 50100 , Task_1 , 3 ,R , Runnable_3 , 0 , t e rmina t e

50100 , Task_1 , 3 ,R , Runnable_4 , 1 , s t a r t

42 57100 , Task_1 , 3 ,R , Runnable_4 , 1 , t e rmina t e

57100 ,CORE0, 0 , T , Task_1 , 3 , t e rmina t e

44 58000 ,CORE1, 0 , T , Task_3 , 0 , t e rmina t e

Listing 6.4: Example trace for showing CoreTAna’s algorithms for determining

the stimulation patterns

Gathering all the information that is necessary for Algorithm 7 to determine

a suitable stimulation pattern is straight forward. Every time an activation event

appears in the trace recording, the timestamp of that event is stored in a data

structure under the respective entity. This data structure is then used as input for

Algorithm 7 which yields, for example, a periodic stimulation pattern in case of

Task1. The intermediate states of the most relevant variables in order to comprehend

the algorithm are stated in the following:

length(activations[Task1]) = 4
a2a[0] = activations[Task1][1]− activations[Task1][0] = 15000− 0 = 15000
a2a[1] = activations[Task1][2]− activations[Task1][1] = 30000− 15000 = 15000

116 6. CORETANA

a2a[2] = activations[Task1][3]− activations[Task1][2] = 45000− 30000 = 15000
mean(a2a) = 15000+15000+15000

3 = 15000
sd(a2a) =

√
1
3{(15000− 15000)2 + (15000− 15000)2 + (15000− 15000)2} = 0

sd(a2a)
mean(a2a) =

0
15000 = 0

alarm[AlarmTime] = 0
alarm[CycleTime] = 15000

Algorithm 8 Prepare Execution Times
Input: trace – Tuple containing all events in chronological order
Output: NETs – Two-dimensional matrix containing all observed net execution times of the

runnables and processes
1: function prepareExecutionTimes(trace)
2: GETs ← [,] ▷ Two-dimensional matrix of gross execution times.
3: NETs ← [,] ▷ Two-dimensional matrix of net execution times.
4: starts ← [,] ▷ Two-dimensional matrix of start instants.
5: suspends ← [,] ▷ Two-dimensional matrix of suspend instants.
6: resumes ← [,] ▷ Two-dimensional matrix of resume instants.
7: terminates ← [,] ▷ Two-dimensional matrix of terminate instants.
8: entities ← ∅ ▷ Set of all process and runnable entities.
9: for all event in trace do
10: if event[type] = ‘T’ or ‘ISR’ or ‘R’ then
11: e ← event[entity]
12: instance ← event[entityInstance]
13: add e to entities
14: if event[action] = ‘start’ then
15: starts[e, instance]← event[timestamp]
16: else if event[action] = ‘suspend’ or ‘preempt’ then
17: suspends[e, instance]← event[timestamp]
18: else if event[action] = ‘resume’ then
19: resumes[e, instance]← event[timestamp]
20: else if event[action] = ‘terminate’ then
21: terminates[e, instance]← event[timestamp]
22: for e in entities do
23: for i ← 0 to length(starts[e]) - 1 do
24: GETs[e, i]← terminates[e, i]− starts[e, i]
25: NETs[e, i]← GETs[e, i]
26: for j ← 0 to length(suspends[e]) - 1 do
27: if start[e, i] < suspends[e, j] and

resumes[entity, j] < terminates[e, i] then
28: preemption ← resumes[e, j]− suspends[e, j]
29: NETs[e, i]← NETs[e, i]− preemption
30: return NETs
31: end function

6.3. ALGORITHMS 117

6.3.4. Runtime Behaviour

Another property that determines the temporal behaviour of a real-time system is

the execution time of a process. AUTOSAR only provides a means to specify the

Resource Consumption [72, p. 112 ff.] of aRunnable Entity. Because runnables are called

within the context of a process, CoreTAna derives the execution times of a runnable

entity from the temporal behaviour of the process, in case no detailed information

on individual runnables is contained within a trace recording. This means that the

runtime behaviour of a process is represented by at least a single runnable entity.

The resource consumption is specified by the gross execution time (GET) and net

execution time (NET) of a runnable entity. Their values can be determined from a

trace recording, as shown in Algorithm 8.

The GET is defined as the time interval between the start and the termination

of a process or runnable (see line 24 in Algorithm 8). In contrast, the NET states

the amount of time during which this entity actually executes on a processing core

and, thus, does not include the time during which the entity is pre-empted (see

lines 28 f.).

In the processing step, CoreTAna only collects the individual times for each entity

from one or multiple trace recordings. Based on this data, the observable runtime

behaviour is then quantitatively summarised in the post-processing step. To do so,

AUTOSAR provides statistical measures such as minimum, maximum, and nominal

for each execution time. AMALTHEA even allows one to model the probability of

the execution time values with the help of the following five statistical distributions

(see Sec. 4.2.2): constant value, uniform distribution, normal distribution, Weibull

distribution [51], beta distribution [52].

Thus, the main goal of the post-processing step is to find a probability distribution

that fits the sampledprobability distribution best. This is done with the help of the

Kolmogorov-Smirnov Test (K-S Test) [71, p. 192 ff.], which is a statistical goodness-of-

fit test that summarises the differences between observed values and the values ex-

pected from a given probability distribution. At first, we determine the parameters of

each supported probability distribution such as the mean and the standard deviation

for the normal distribution from the sample values (see lines 19 f. in Algorithm 9).

After that, the K-S Test calculates the significance level that states the probability that

the null hypothesis, namely that the observed sample values follow the distribution

specified by the parameters, is rejected. Thus, the probability distribution that fits

best to the sample with the reference probability distribution is identified by the low-

118 6. CORETANA

Algorithm 9 Determine Execution Time Distribution
Input: entities – Set containing the names of all runnable entities

NETs – Two-dimensional matrix containing all observed net execution times of the
runnables and processes

Output: distributions – Tuple containing definitions of the probability distributions for each
entity

1: function determineExecutionTime(entities, NETs)
2: distributions ← () ▷ Tuple for the distributions.
3: for all entity in entities do
4: values ← NETs[entity]
5: if length(values) = 1 then ▷ Constant
6: distributions[entity]← constant(NETs[entity, 0])
7: else
8: value ←mostFrequentValue(values) ▷ Constant
9: constant ← constant(value)
10: minSL ← kolmogorovSmirnovTest(constant, values)
11: distributions[entity]← constant
12: min ←min(values) ▷ Uniform distribution
13: max ←max(values)
14: uni ← uniform(min, max)
15: significanceLevel ← kolmogorovSmirnovTest(uni, values)
16: if significanceLevel< minSL then
17: minSL ←significanceLevel
18: distributions[entity]← uni
19: mean ←mean(values) ▷ Normal distribution
20: sd ← sd(values)
21: normal ← normal(mean, sd)
22: significanceLevel ← kolmogorovSmirnovTest(normal, values)
23: if significanceLevel< minSL then
24: minSL ←significanceLevel
25: distributions[entity]← normal
26: lambda ← lambda(values) ▷Weibull distribution
27: kappa ← kappa(values)
28: weibull ← weibull(lambda, kappa)
29: significanceLevel ← kolmogorovSmirnovTest(weibull, values)
30: if significanceLevel < minSL then
31: minSL ← signi f icanceLevel
32: distributions[entity]← weibull
33: α ← alpha(values) ▷ Beta distribution
34: β ← beta(values)
35: beta ← B(α, β)
36: significanceLevel ← kolmogorovSmirnovTest(beta, values)
37: if significanceLevel < minSL then
38: distributions[entity]← beta
39: return distributions
40: end function

est significance level resulting from the K-S Test (see, e.g., lines 23 ff.).

Example 4 (Execution Time). Listing 6.5 depicts the BTF trace recording of the simple

system that was introduced first in Example 1. It covers 58ms of the system’s internal

behaviour and contains in red the intermediate states of the most relevant variables

6.3. ALGORITHMS 119

used in Algorithm 8 to gather the information for determining an execution time

distribution later on via Algorithm 9.

0 ,CORE0, 0 , T , Task_1 , 0 , a c t i v a t e

2 100 ,CORE0, 0 , T , Task_1 , 0 , s t a r t

starts[Task1] = (100)
4 100 , Task_1 , 0 ,R , Runnable_1 , 0 , s t a r t

starts[Runnable1] = (100)
6 500 ,CORE1, 0 , T , Task_3 , 0 , a c t i v a t e

600 ,CORE1, 0 , T , Task_3 , 0 , s t a r t

8 starts[Task3] = (600)
1000 , Task_1 , 0 ,R , Runnable_1 , 0 , t e rmina t e

10 terminates[Runnable1] = (1000)
1000 , Task_1 , 0 ,R , Runnable_2 , 0 , s t a r t

12 starts[Runnable2] = (1000)
5000 ,CORE0, 0 , T , Task_2 , 0 , a c t i v a t e

14 5200 , Task_1 , 0 ,R , Runnable_2 , 0 , suspend

suspends[Runnable2] = (5200)
16 5200 ,CORE0, 0 , T , Task_1 , 0 , preempt

suspends[Task1] = (5200)
18 5200 ,CORE0, 0 , T , Task_2 , 0 , s t a r t

starts[Task2] = (5200)
20 10200 ,CORE0, 0 , T , Task_2 , 0 , t e rmina t e

terminates[Task2] = (10200)
22 10400 ,CORE0, 0 , T , Task_1 , 0 , resume

resumes[Task1] = (10400)
24 10400 , Task_1 , 0 ,R , Runnable_2 , 0 , resume

resumes[Runnable2] = (10400)
26 14400 , Task_1 , 0 ,R , Runnable_2 , 0 , t e rmina t e

terminates[Runnable2] = (14400)
28 14400 ,CORE0, 0 , T , Task_1 , 0 , t e rmina t e

terminates[Task1] = (14400)
30 15000 ,CORE0, 0 , T , Task_1 , 1 , a c t i v a t e

15100 ,CORE0, 0 , T , Task_1 , 1 , s t a r t

32 starts[Task1] = (100, 15100)
15100 , Task_1 , 1 ,R , Runnable_1 , 1 , s t a r t

120 6. CORETANA

34 starts[Runnable1] = (100, 15100)
16000 , Task_1 , 1 ,R , Runnable_1 , 1 , t e rmina t e

36 terminates[Runnable1] = (1000, 16000)
16000 , Task_1 , 1 ,R , Runnable_2 , 1 , s t a r t

38 starts[Runnable2] = (1000, 16000)
24200 , Task_1 , 1 ,R , Runnable_2 , 1 , t e rmina t e

40 terminates[Runnable2] = (144000, 24200)
24200 ,CORE0, 0 , T , Task_1 , 1 , t e rmina t e

42 terminates[Task1] = (14400, 24200)
30000 ,CORE0, 0 , T , Task_1 , 2 , a c t i v a t e

44 30100 ,CORE0, 0 , T , Task_1 , 2 , s t a r t

starts[Task1] = (100, 15100, 30100)
46 30100 , Task_1 , 2 ,R , Runnable_1 , 2 , s t a r t

starts[Runnable1] = (100, 15100, 30100)
48 31000 , Task_1 , 2 ,R , Runnable_1 , 2 , t e rmina t e

termiantes[Runnable1] = (1000, 16000, 31000)
50 31000 , Task_1 , 2 ,R , Runnable_4 , 0 , s t a r t

starts[Runnable4] = (31000)
52 38000 , Task_1 , 2 ,R , Runnable_4 , 0 , t e rmina t e

terminates[Runnable4] = (38000)
54 38000 ,CORE0, 0 , T , Task_1 , 2 , t e rmina t e

termiantes[Task1] = (14400, 24000, 38000)
56 45000 ,CORE0, 0 , T , Task_1 , 3 , a c t i v a t e

45100 ,CORE0, 0 , T , Task_1 , 3 , s t a r t

58 starts[Task1] = (100, 15100, 30100, 45100)
45100 , Task_1 , 3 ,R , Runnable_3 , 0 , s t a r t

60 starts[Runnable3] = (45100)
50100 , Task_1 , 3 ,R , Runnable_3 , 0 , t e rmina t e

62 starts[Task1] = (50100)
50100 , Task_1 , 3 ,R , Runnable_4 , 1 , s t a r t

64 starts[Task1] = (31000, 50100)
57100 , Task_1 , 3 ,R , Runnable_4 , 1 , t e rmina t e

66 terminates[Runnable4] = (38000, 57100)
57100 ,CORE0, 0 , T , Task_1 , 3 , t e rmina t e

68 termiantes[Task1] = (14400, 24000, 38000, 57100)

6.3. ALGORITHMS 121

58000 ,CORE1, 0 , T , Task_3 , 0 , t e rmina t e

70 terminates[Task3] = (58000)

Listing 6.5: Example trace for showing CoreTAna’s algorithms for determining

the execution time distributions

Listing 6.4 shows the gathering of all the information required for determining

an execution time distribution. It is done straight forward by storing the timestamp

of every state change event of a process from or to running state in a data structure

under the respective entity. Besides that, Algorithm 8 also covers the determination

of the net execution times from the aforementioned timestamps. In order to compre-

hend this part of the algorithm, the intermediate states of the most relevant variables

for determining the execution times of Runnable2 are stated in the following:

GET[Runnable2, 0] = 14400− 1000 = 13400
GET[Runnable2, 1] = 24200− 16000 = 8200
NET[Runnable2, 0] = GET[Runnable2, 0] = 13400
NET[Runnable2, 1] = GET[Runnable2, 1] = 8200
length(suspends[Runnable2]) = 1)
preemption = resumes[Runnable2]− suspends[Runnable2] = 10400− 5200 = 5200
NET[Runnable1, 0] = NET[Runnable1][0]− preemption = 13400− 5200 = 8200

The data structure that stores the net execution times is then used as input for

Algorithm 9 which yields, for example, a constant value as the execution time

distribution of Runnable2:

values = data[Runnable2] = (8200, 8200)
length(values) = 2
value = mostFrequentValue(values) = 8200)
constant = 8200
minSL = kolmogorovSmirnovTest(8200, (8200, 8200)) = sup ∣ 8200 −
(8200, 8200) ∣= 0

6.3.5. Call Graph

As shown before, the runtime behaviour of a real-time system varies during execu-

tion. This is not only because of preemptions resulting from scheduling or because

of hardware effects such as jitters but also as a consequence of the different execu-

tion sequences of a process. For example, a process calls a different runnble during

122 6. CORETANA

initialisation or in case of an error.

This manner, in which processes show a distinct behaviour in specific situations,

is called mode dependency and is supported by both meta-models AUTOSAR and

AMALTHEA. In contrast to AUTOSAR, whose mode management only allows one

to define a mode-dependent execution of runnables, AMALTHEA allows one also to

describe a probabilistic execution with the help of its call graph (see Chapter 4.2.1).

Before such a graph can be constructed, all sequences of calls that are performed by

a process are determined from a trace recording as described by Algorithm 10.

The preparation of the call graph is split in two different call sequence determin-

ations. On the one hand, all runnable calls within a process are collected (see line

8 ff. in Algorithm 10), which constitute the content of the call graph. On the other

hand, also the data accesses that are performed by a runnable are stored (see line

12 ff.). These are required to enable the detection of data dependencies during the

composition of the call graph. Because data signals are accessed within the context

of a process in BTF, the runnable instance that is currently executed is determined

from the call graph first. The result is a three-dimensional matrix, in which each row

represents a process or a runnable entity, each column an instance of that entity and

the third dimension the sequence of calls performed by that instance.

The next step is to summarise the call sequences collected in the three-dimensional

Algorithm 10 Preparation of Call Graph
Input: trace – Tuple that contains all events in chronological order
Output: callSequences – Three-dimensional matrix that contains the observed calls for each

process and runnable instance
1: function prepareCallSequences(trace)
2: callSequences ← [, ,]
3: for all event in trace do
4: process ← event[source]
5: pi ← event[sourceInstance]
6: e ← event[entity]
7: if event[type] = ‘R’ then ▷ Add runnable to call sequence
8: if event[action] = ‘start’ then
9: i ← length(callSequences[process, pi)
10: callSequences[process, pi, i + 1]← e
11: else if event[type] = ‘SIG’ then ▷ Associate signal access with runnable
12: if event[action] = ‘read’ or ‘write’ then
13: i ← length(callSequences[process, pi])
14: [runnable, ri]← callSequences[process, pi, i]
15: j ← length(callSequences[runnable, ri])
16: callSequences[runnable, ri, j + 1]← e
17: return callSequences
18: end function

6.3. ALGORITHMS 123

Algorithm 11 Determination of Call Graph
Input: callSequences – Three-dimensional matrix that contains the observed calls for each

process and runnable instance
processes – Set that contains the names of all process entities

Output: callGraph – Set of tuples representing the nested call sequences with their probabilities
1: function determineCallGraph(callSequences, processes)
2: callGraph ← ∅
3: f requencies ← ()
4: for all process ∈ processes do
5: roots ← ∅
6: for all sequence ∈ callSequences[processes] do
7: f requencies[sequence]← f requencies[sequence]+ 1 ▷ absolute frequencies
8: add sequence to patriciaTrie ▷ construct Patricia trie
9: add sequence[1] to roots ▷ collect graph roots
10: for all root ∈ roots do
11: amount ← cardinality(callSequences[process])
12: branch ← createBranch(amount, root, patriciaTrie, f requencies)
13: add branch to callGraph
14: return callGraph
15: end function

matrix by building a call graph, which is described in Algorithm 11. There, redundant

information such as storing the same call sequence multiple times is eliminated by

determining the amount of times each unique call sequence was observed (see line

6f). To further reduce redundancy and to achieve a more compact call graph, not only

unique sequences are considered but also similar ones. For that reason, all observed

call sequences are also used to build up a PATRICIA Trie (see line 8), which is an

optimised data structure for retrieving strings with a common prefix. Thus, each call

in a call sequence is equivalent to a character in a string.

These two pieces of information the frequency of the unique call sequences and

the PATRICIA Trie, are then used to build up the call graph, resp. its branches in

a recursive manner as described in Algorithm 12. Starting with the roots, i.e., the

first element stored in a the call sequences and, thus, the first calls performed by

a process, one call after another is added to the call graph. If a common sequence

of calls is succeeded by two different calls, a fork in the graph is created and the

probability for taking a specific branch is calculated. To do so, all sequences that start

with the same calls, the prefix, are retrieved from the PATRICIA Trie (see line 4).

Then, the probability is determined by the frequency that each of these retrieved call

sequences was observed (see line 6 ff.). This is continued recursively by adding the

next succeeding call to the prefix (see line 21) until the PATRICIA Trie yields only one

sequence.

124 6. CORETANA

Algorithm 12 Create Branch
Input: amount – Integer value stating the amount of call sequences covered by the parent branch

prefix – String that contains an observed sequence of calls
patriciaTrie – Patricia Trie containing all observed sequences of calls
frequencies – Tuple of integers containing how often sequences of calls

were observed
Output: callGraph – Set of tuples representing the nested call sequences with their probabilities

1: function createBranch(amount, prefix, patriciaTrie, frequencies)
2: callGraph ← ∅
3: sequences ← ∅
4: sequences ← prefix(patriciaTrie, pre f ix) ▷ get sequences with matching prefix
5: f requency ← 0
6: for all sequence ∈ sequences do
7: f requency ← f requency + f requencies[sequence] ▷ how often did a sequence occur
8: probability ← f requency

amount
9: if cardinality(sequences) = 1 then
10: n ← length(pre f ix)−1
11: m ← length(sequences[0])−1
12: callSequence ← sequences[0,n . . .m]
13: branch ← (probability, callSequence) ▷ no more recursion
14: add branch to callGraph
15: else
16: subBranches ← ∅
17: for all sequence ∈ sequences do
18: n ← length(pre f ix)−1
19: m ← length(pre f ix)
20: newPre f ix ← sequence[0 . . .m + 1]
21: subBranch ← createBranch(f requency,newPre f ix, patriciaTrie, f requencies)
22: add subBranch to subBranches
23: callSequence ← (sequence[n . . .m], subBranches)
24: branch ← (probability, callSequence)
25: add branch to callGraph
26: checkModeDependency(callGraph)
27: minimise(callGraph)
28: return callGraph
29: end function

After all branches have been created, it is possible to checkwhether amode depend-

ency is the cause that leads to different call sequences (see line 26 in Algorithm12). As

the name already implies, mode dependent execution varies due to a dedicated state

of a variable and, thus, the first action that has to be performed during execution is

a check of that variable. As a consequence, this function looks into each branch of

the determined call graph and checks if the first action performed by the called run-

nable is a data access to the same variable. If that is the fact and if the values of that

variable are mutually exclusive for each branch at the time of the data access, a data

dependency can be concluded.

Finally, the call graph is examined and if possible further minimised. To do so,

6.3. ALGORITHMS 125

common calls at the end of the call sequences are determined with the help of a

suffix tree correspondingly to how the PATRICIA Trie is used and combined in a

single sequence of calls.

Example 5 (Call Graph). The creation of a call graph is shown with the help of the

simple system that was introduced first in Example 1. Listing 6.6 depicts a BTF trace

that covers 58ms of the system’s internal behaviour. The intermediate states of the

most relevant variables used in Algorithm 10 to gather the information for creating a

call graph later on via Algorithm 11 are added in red.

0 ,CORE0, 0 , T , Task_1 , 0 , a c t i v a t e

2 100 ,CORE0, 0 , T , Task_1 , 0 , s t a r t

100 , Task_1 , 0 ,R , Runnable_1 , 0 , s t a r t

4 callSerquences[Task1, 0] = (Runnable1)
500 ,CORE1, 0 , T , Task_3 , 0 , a c t i v a t e

6 600 ,CORE1, 0 , T , Task_3 , 0 , s t a r t

1000 , Task_1 , 0 ,R , Runnable_1 , 0 , t e rmina t e

8 1000 , Task_1 , 0 ,R , Runnable_2 , 0 , s t a r t

callSerquences[Task1, 0] = (Runnable1,Runnable2)
10 5000 ,CORE0, 0 , T , Task_2 , 0 , a c t i v a t e

5200 , Task_1 , 0 ,R , Runnable_2 , 0 , suspend

12 5200 ,CORE0, 0 , T , Task_1 , 0 , preempt

5200 ,CORE0, 0 , T , Task_2 , 0 , s t a r t

14 10200 ,CORE0, 0 , T , Task_2 , 0 , t e rmina t e

10400 ,CORE0, 0 , T , Task_1 , 0 , resume

16 10400 , Task_1 , 0 ,R , Runnable_2 , 0 , resume

14400 , Task_1 , 0 ,R , Runnable_2 , 0 , t e rmina t e

18 14400 ,CORE0, 0 , T , Task_1 , 0 , t e rmina t e

15000 ,CORE0, 0 , T , Task_1 , 1 , a c t i v a t e

20 15100 ,CORE0, 0 , T , Task_1 , 1 , s t a r t

15100 , Task_1 , 1 ,R , Runnable_1 , 1 , s t a r t

22 callSerquences[Task1, 1] = (Runnable1)
16000 , Task_1 , 1 ,R , Runnable_1 , 1 , t e rmina t e

24 16000 , Task_1 , 1 ,R , Runnable_2 , 1 , s t a r t

callSerquences[Task1, 1] = (Runnable1,Runnable2)
26 24200 , Task_1 , 1 ,R , Runnable_2 , 1 , t e rmina t e

24200 ,CORE0, 0 , T , Task_1 , 1 , t e rmina t e

126 6. CORETANA

28 30000 ,CORE0, 0 , T , Task_1 , 2 , a c t i v a t e

30100 ,CORE0, 0 , T , Task_1 , 2 , s t a r t

30 30100 , Task_1 , 2 ,R , Runnable_1 , 2 , s t a r t

callSerquences[Task1, 2] = (Runnable1)
32 31000 , Task_1 , 2 ,R , Runnable_1 , 2 , t e rmina t e

31000 , Task_1 , 2 ,R , Runnable_4 , 0 , s t a r t

34 callSerquences[Task1, 2] = (Runnable1,Runnable4)
38000 , Task_1 , 2 ,R , Runnable_4 , 0 , t e rmina t e

36 38000 ,CORE0, 0 , T , Task_1 , 2 , t e rmina t e

45000 ,CORE0, 0 , T , Task_1 , 3 , a c t i v a t e

38 45100 ,CORE0, 0 , T , Task_1 , 3 , s t a r t

45100 , Task_1 , 3 ,R , Runnable_3 , 0 , s t a r t

40 callSerquences[Task1, 3] = (Runnable3)
50100 , Task_1 , 3 ,R , Runnable_3 , 0 , t e rmina t e

42 50100 , Task_1 , 3 ,R , Runnable_4 , 1 , s t a r t

callSerquences[Task1, 3] = (Runnable3,Runnable4)
44 57100 , Task_1 , 3 ,R , Runnable_4 , 1 , t e rmina t e

57100 ,CORE0, 0 , T , Task_1 , 3 , t e rmina t e

46 58000 ,CORE1, 0 , T , Task_3 , 0 , t e rmina t e

Listing 6.6: Example trace for showing CoreTAna’s algorithms for determining

the call graphs

Listing 6.4 contains only the runnables that are called by Task1. Thus, these are

the only pieces of information that are gathered for determining a call graph. To do

so, every runnable entity that is called within the context of that task is stored in a data

structure under the respective entity and instance. This data structure is then used

as input for Algorithm 10 which yields together with Algorithm 12 the call graphs.

In order to comprehend these two algorithms, the intermediate states of the most

relevant variables for determining the call graph of Task1 are stated in the following:

f requencies[(Runnable1,Runnable2)] = 2
f requencies[(Runnable1,Runnable4)] = 1
f requencies[(Runnable3,Runnable4)] = 1
roots = {Runnable1,Runnable3}
amount = 4

One branch starting with the call of Runnable1 is created by Algorithm 12 the follow-

6.3. ALGORITHMS 127

ing way:

sequences = {(Runnable1,Runnable2), (Runnable1,Runnable4)}
f requency = 2+ 1 = 3
probability = f requency

amount =
3
4

cardinality(sequences) = 2
sequence = (Runnable1,Runnable2)
n = length((Runnable1))− 1 = 0
m = length((Runnable1)) = 1
newPre f ix = (Runnable1,Runnable2)

Then, the first recursion happens:

sequences = {(Runnable1,Runnable2)}
f requency = 2
probability = f requency

amount =
2
3

cardinality(sequences) = 1
n = length((Runnable1,Runnable2))− 1 = 1
m = length((Runnable1,Runnable2))− 1 = 1
callSequence = sequences[0, 1..1] = (Runnable2)
branch = (23 , (Runnable2))
callGraph = {(23 , (Runnable2))}

The recursion ends and returns to the calling function:

subBranch = (23 , (Runnable2))
sequence = (Runnable1,Runnable4)
subBranch = (13 , (Runnable4))
subBranches = {(23 , (Runnable2)), (

1
3 , (Runnable4))}

callSequence = (Runnable1,{(23 , (Runnable2)), (
1
3 , (Runnable4))}

branch = (34 , (Runnable1,{(
2
3 , (Runnable2)), (

1
3 , (Runnable4))}))

Finally, the algorithm yields the following call graph for Task1 which says that in 75%

of the cases Runnable1 is called first followed by Runnable2 in 66.6% of the cases and

Runnable2 in the other 33.3% of the cases and Runnable3 followed by Runnable4 is

called with a probability of 25%:

callGraph = {(3
4
, (Runnable1,{(

2
3
, (Runnable2)), (

1
3
, (Runnable4))})),

(1
4
, (Runnable3,Runnable4))}.

128 6. CORETANA

6.4. Summary

The algorithms presented in this chapter show that it is possible to determine key

characteristics of a system from a trace recording. More importantly, a lot of inform-

ation can be extracted directly from a trace recording without the need of much infer-

ence. This makes CoreTAna’s behaviour comprehensible and reproducible.

Structuring the algorithms in three consecutive steps highlights the fact that there

are only few dependencies between the determination of individual system charac-

teristics. In fact, all algorithms within a step can run in parallel, and, CoreTAna can

achieve results in a reasonable amount of time even from trace recordings that span

multiple gigabytes. It is also shown how the performance of CoreTAna’s algorithms

is further optimised by storing the trace in a database, and then querying just the in-

formation required for the individual algorithm instead of chronologically processing

each event.

How well our algorithms reversely engineer a system’s timing behaviour and how

long it takes CoreTAna to process a trace recording are topics that are addressed

next.

7
Distance of Timed Actions

Before evaluating the efficiency of CoreTAna’s algorithms, we first discuss the chal-

lenge of evaluating how well a synthesised model reflects the timing behaviour of the

original system.

Because CoreTAna performs a dynamic analysis, the only artefact that can be used

for the evaluation of CoreTAna’s quality of reverse engineering are the events that

occur during system execution and the specific moments in time at which they are

observed. As the synthesised model ideally reflects the same temporal behaviour,

D
ES

IG
N

IM
P

LE
M

EN
TA

TI
O

N

CoreTAna

Actual Trace

Simulated Trace

CPU

Binary Code of Actual System

Model

Trace
comparison

Figure 7.1.: Trace Comparison. Schematic approach for analysing how closely
an AUTOSAR model that has been synthesised by CoreTAna reflects the actual
system. Reprinted from [13].

130 7. DISTANCE OF TIMED ACTIONS

the most obvious approach to evaluate a reverse engineering solution is to compare

the trace recordings of the actual system with those generated by simulating the syn-

thesised model. As depicted in Fig. 7.1, CoreTAna utilises the TA Simulator [70] for

this purpose. This commercial model-based tool, which is used by many Tier-1s and

OEMs in the automotive industry, allows one to simulate the timing behaviour of

models of AUTOSAR-compliant real-time systems.

As presented in Chapter 7.2, a lot of research has been conducted regarding the

comparison of trace recordings. Most focuses on statistical methods, which yield,

in our case, results that suggest an insufficient correspondence. This is due to the

fact that a model represents just an abstraction of a real system, where characterist-

ics are summarised at the level of detail that is defined by the meta-model. Thus, a

model describes rather a similar system than the exact same system that underlies the

model. However, statistical methods look for an identical behaviour, which cannot

be provided because of the abstraction.

Because of this absence of a suitable way to assess the quality of reverse engineered

real-time software, we have developed a newmeasure. Before we go into details about

the definition of ourmeasure, we first present the challenges that have to bemet when

evaluating differences in the timing behaviour of real-time systems.

7.1. Challenges of Comparing Real-time

Behaviour

Each alteration of a system’s characteristic, such as a task’s priority, can have an im-

pact on the timing behaviour of the entire system. For that reason, we present in

the following a set of models that represent common architectural patterns in the

real-time software domain and feasible variations for each pattern. The goal of these

variations is to provoke realistic changes to a system’s timing behaviour. The chal-

lenge of a suitable measure is then to quantify the impact of such a variation in a

reasonable way.

The basic idea for this approach is inherited from the work of Huselius [9, p. 111ff],

where so-called Archetypes, which represent the architectural patterns, and feasible

variations for each pattern, so-called PICs, are described. Unfortunately, Huselius

only gives a general description of each Archetype, which makes it impossible for us

to reproduce them precisely. Nevertheless, our models cover all Archetypes originally

7.1. CHALLENGES OF COMPARING REAL-TIME BEHAVIOUR 131

introduced by Huselius, but have been extended by additional variations to consider

AUTOSAR-specific aspects. To highlight the impact of a system change made by a

variation, the variations are designed in a consecutive way such that each variation

within a pattern alters the previous one by a single aspect. All systems that are de-

scribed in this section are public as example models in the Eclipse APP4MC Release

Version 0.7.21, which is an open-source platform for engineering embedded multi-

and many-core software systems.

7.1.1. Purely Periodic without Communication

This system architecture pattern (see Appendix A.1.1) consists of seven tasks, where

each task is activated periodically and no data accesses are performed. The execution

time for each task is determined by so-called runnable entities. All tasks contain just

one runnable, except for T7 which calls at first R7,1 and then R7,2. The variations

applied to this system pattern are:

1) Initial Task Set: Tasks T4, T5, T6, and T7 are active and scheduled according to

fixed-priority preemptive scheduling.

2) Increase of Task Set Size I: Tasks T3, T4, T5, T6, and T7 are active. Hence, system

utilisation is further increased.

3) Increase of Task Set Size II: Tasks T1, T3, T4, T5, T6, and T7 are active, i.e., system

utilisation is further increased.

4) Increase of Task Set Size III: From this variation through to variation 8, all tasks

(T1 – T7) are active. This increases system utilisation again.

5) Schedule: From this variation through to variation 8, T7 is set to non-preemptive.

Hence, the system’s timing behaviour is changed, which results in extinct activa-

tions.

6) Activation: From this variation through to variation 8, the maximum number of

queued activation requests is set to 2 for all tasks. This solves the problemwith ex-

tinct activation request that result from queue overflows in the previous variation.

7) Schedule Point: A scheduler call is added to T7 between the calls of R7,1 and R7,2.

This changes the timing behaviour.

8) Scheduling Algorithm: The scheduling algorithm is set to Earliest Deadline First,

so that the timing behaviour is changed completely.

1https://www.eclipse.org/app4mc/

https://www.eclipse.org/app4mc/

132 7. DISTANCE OF TIMED ACTIONS

7.1.2. Client-Server without Reply

This system architecture pattern (see Appendix A.1.2) extends the previous one by

adding one-way communication between tasks. Task T1 sends periodically a message

to task T2. Each time, one of the five available contents of the message is chosen

according a defined probability distribution. For example, in 15 % of the cases the

message contains the value “0”. Task T2 reacts on the received message by showing a

distinct behaviour for each content, which is manifested by varying execution times.

The implemented task set is depicted in Fig. 7.2.

The variations applied to this system pattern are:

1) Initial Task Set: All tasks as defined above are scheduled according to fixed-priority

preemptive scheduling.

2) Exclusive Area: For this variation, all data accesses are protected by a mutex and

priority ceiling protocol. Hence, blocking situations appear.

3) Inter-Process Activation: As from this variation on, task T2 gets activated by an

inter-process activation from task T1, so that a direct connection between T1 and

T2 is established.

4) Priority Ordering: As from this variation on, the priority relation between tasks

Msg2
M := 2

Msg1
M := 1

Msg0
M := 0

Msg3
M := 3

Msg4
M := 4

T1

15
%

20
%

30 %

20
%15

%

R2,2

R2,1

R2,0

R2,3

R2,4

M
=

0

M
=
1

M = 2

M
=
3

M
=

4

T2

Figure 7.2.: Client-Server without Reply. State diagram implemented by the sys-
tem architecture pattern ‘Client-Server without Reply’. Reprinted from [13].

7.1. CHALLENGES OF COMPARING REAL-TIME BEHAVIOUR 133

T1 and T2 is reversed. Thereby, a switch from asynchronous to synchronous com-

munication is realised.

5) Event Frequency Increase: As from this variation on, the periodicity of T1 is

shortened so that system utilisation is increased.

6) Execution Time Fluctuation: As from this variation on, the execution time distri-

bution is widened for both tasks. Hence, system utilisation is increased further,

which results in extinct activations.

7) Activation: As from this variation on, the maximum number of queued activation

requests for both tasks is set to 2. Thereby, the problem with extinct activations

resulting from the previous variation is solved.

7.1.3. State Machine

Message0
M := 0

Message1
M := 1

T1

50 %

50 %

State1

State0

State2

M = 0

M = 1M = 0

M = 1M = 0

M = 1

T2

Figure 7.3.: State Machine. State diagram implemented by the system architec-
ture pattern ‘State Machine’. Reprinted from [13].

In this system architecture pattern (see Appendix A.1.3), the previous one is extended

in such a way that the task T2 that receives messages varies its dynamic behaviour,

134 7. DISTANCE OF TIMED ACTIONS

and consequently its execution time not only according to the transmitted content, but

also according to its current internal state, i.e., the previously transmitted contents.

Task T1 sends periodically a message to task T2. With a probability of 50 %, the

message contains the value “1”. In the rest of the cases the content is “0”. Initially

starting from state State0, task T2 transitions to the next state, if the received message

contains the value “1”. Otherwise, it returns to the state it has been in before. Each

state manifests in a different execution time, which represents the varying dynamic

behaviour. The implemented state machine is depicted in Fig. 7.3.

The variations applied to this system pattern are equal to those described in

Sec. 7.1.2. Only the sequence in which the underlying system is modified by each

variation is slightly changed, in order to provoke realistic challenges such as exceed-

ing the maximum number of queued activation requests.

7.1.4. Feedback Loop

Cmd0
u := 0

Cmd1
u := 1

e
=
0

e
=
1

T1

State1
w := 50
y := 1

State0
w := 0
y := 0

State2
w := 100
y := 2

u = 0

u = 1u = 0

u = 1u = 0

u = 1

T2

R3,1

R3,2

R3,3

y
=

0

y = 1

y
=

2

T3

Error0
e := 0

Error1
e := 1

w
=

0

30
%

70
%

w = 50
50 %

50 %

w
=

100

70
%

30
%

T4

Figure 7.4.: Feedback Loop. State diagram implemented by the system architec-
ture pattern ‘Feedback Loop’. Reprinted from [13].

7.1. CHALLENGES OF COMPARING REAL-TIME BEHAVIOUR 135

The task set of the previous system architecture pattern is expanded further so that

messages are exchanged in a loop, instead of just in one way (see Appendix A.1.4).

Each task represents a part of a feedback control system. Task T1 represents the con-

troller, which gets the measured error e as input and sets the system input u accord-

ingly. The system, which is defined by task T2, implements a state machine that is

triggered by the system input. Depending on the state the task is in, it produces the

measured output w and the system output y. The latter influences the environment,

which is defined by task T3, and manifests in varying execution times. Finally, the

feedback loop is implemented by task T4, which sets the measured error e according

the measured output of the system w and a given probability.

In addition to the feedback loop as depicted in Fig. 7.4, other system architecture

patterns are added to be executed concurrently, in order to increase the complexity.

Tasks T5 and T6 represent a client-server without reply, and task T7 is a periodically

activated task without any communication. The variations for this system pattern are

equal to those applied to the previous patterns described in Secs. 7.1.2 & 7.3. How-

ever, the changed characteristics of this task set in comparison to the previous ones

required again to slightly change the sequence in which the variations are applied.

7.1.5. State Machine Feedback Loop

Finally, the previous system architecture pattern is expanded further by combining

the ideas behind patterns State Machine and Feedback Loop (see Appendix A.1.5) This

means that messages are exchanged in a loop, and each sender/receiver is also a state

machine. In addition to the state machine feedback loop as depicted in Fig. 7.5, other

system architecture patterns are again added to be executed concurrently, to increase

complexity. Tasks T3 and T4 represent a client-server without reply, and task T5 is a

periodically activated task without any communication.

The variations and the sequence in which these are applied to this system pattern

are identical to those used for pattern ‘Feedback Loop’ in Sec. 7.1.4.

136 7. DISTANCE OF TIMED ACTIONS

Message0
M1 := 0

Message1
M1 := 1

T1

M2 = 1

M2 = 0

M2 = 1

M2 = 0

State2,0

State2,1

State2,2

M1 = 0 / M2 := 1

M1 = 1 / M2 := 0M1 = 0 / M2 := 0

M1 = 1 / M2 := 0M1 = 0 / M2 := 0

M1 = 1 / M2 := 1

T2

Figure 7.5.: State Machine Feedback Loop. State diagram implemented by the
system architecture pattern ‘State Machine Feedback Loop’. Reprinted from [13].

7.2. Related Work

The problem of comparing trace recordings from embedded real-time systems re-

garding their temporal behaviour is similar to the problem of simulation model val-

idation [73]. Therefore, many different techniques are available that tackle the prob-

lem of simulation model validation [74–76]. The following two objective techniques

can mainly be found in the domain of real-time systems. One is based on statistical

methods such as goodness-of-fit tests [4, 73], and the other technique uses Algebra.

Lu et. al [73] study different ways to identify temporal differences between real-

time systems. To do so, the authors check with statistical hypothesis testing, if the

execution times (ETs) of tasks, resp., their response times (RTs), which are determ-

ined from timing traces, are in each case from the same population. A possible use of

parametric tests, e.g., t-test, z-test, etc. is ruled out first, because tests have shown that

sampling distributions of ETs and RTs do not conform to any known distribution like

7.2. RELATED WORK 137

uniform or normal distribution. The resampling methods bootstrap and permuta-

tion test are also not employable, since they “failed in, for instance, identifying tem-

poral differences” [73, p. 289]. Finally, the Chi-squared Test (χ2 Test), K-S Test, and

Wilcoxon–Mann–Whitney test are examined as representatives for non-parametric

statistical hypothesis tests. The former was found to be not suitable for timing ana-

lysis, because the required a priori knowledge is either too limited or too subjective.

In case of the Wilcoxon–Mann–Whitney test the authors have argued that this test

may come to an incorrect conclusion when considering multi-model distributions,

which are realistic in the attended context thought. Finally, the K-S Test has been

evaluated using a fictive system, since this non-parametric statistical hypothesis test

does not feature the aforementioned drawbacks of the χ2 Test and the Wilcoxon–

Mann–Whitney test. Although this evaluation shows that the results are in line with

the authors expectations, their algorithm can only detect significant differences in the

ETs and RTs of tasks. Further, variations that do not impact the ET or RT of tasks,

like drifting activation instants, are not considered at all.

Other authors [77] argue against the use of statistical techniques for comparing

trace recordings. Because the χ2 Test of independence is categorical in the temporal

dimension, it “leads to unintuitive results due to false negatives” [77, p. 4]. The exe-

cution time distribution of a program is often very complex and cannot be fitted to a

known distribution. Because the “Kolmogorov-Smirnov test […] assumes that one of

the distributions in a comparison is mathematically modeled” [77, p. 4], this statistical

test cannot be taken into consideration for comparing metrics determined from trace

recordings.

Because of the aforementioned unfitness of statistical methods in our case and

the consequent fact that the measure that we introduce in the next section is based

on Algebra, we present in the following related work that focuses on algebraic pro-

cedures.

Miranskyy et al. [78] propose a more generic approach by using Shannon and ex-

tended entropymeasures for comparing traces. A trace can be represented as a string,

in which each trace record is encoded by a unique character. Based on this string, the

probability of events are extracted and the entropy measures are calculated. With the

help of the proposed measure, multiple entropy-based fingerprints for a trace are cal-

culated that allows one to quantify the distance between a pair of traces. However, the

intended use case for this approach is to classify trace recordings, e.g., finding a trace

that shows defects of a known bug rather then defining a distance between each pair.

138 7. DISTANCE OF TIMED ACTIONS

Furthermore, the trace recording that are considered have no notion of time, which

is essential in our case.

Anderson discusses in [28, p. 108 ff.] the equivalence of observable properties such

as response-times, patterns, and resource utilizations in trace recordings. Neverthe-

less, no explicit tolerances are suggested for these comparison properties.

Huselius introduces in [9, p. 143 ff.] an objective measurement called Sum of Di-

vergence (SoD), which establishes a bijective mapping between two response time

samples in order to summarise the differences in their distributions. Disadvantages

of this solution are, on the one hand that the least common multiple (LCM) is used

to obtain equally sized sampled distributions. On the other hand, the measure is nor-

malised by the maximum difference between samples in the distributions. Thus, a

single scattered outlier can have a big impact on the quality of the result, because the

outlier can, e.g., be multiplied by the LCM or result in an improper difference for

normalisation.

Nemati et al. describe in [79] an algorithm that first divides trace recordings into

equally sized time windows and then calculates the differences in resource consump-

tion properties, such as the execution times of tasks between correlating time win-

dows. However, not only is it difficult to determine a leeway for difference in advance,

but the traces also have to start from exactly the same state and have to contain the

same sequences of states. The latter cannot be guaranteed for probabilisticmodels.

Because of the absence of a suitable way to assess the quality of reverse engineered

real-time software, we introduce a new measure.

7.3. Definition

The goal of our measure is to quantify the difference between two traces regarding

the recorded timing behaviour. As described in Chapter 5.3.3, each trace contains the

occurrences of events that are observed during system execution. Because an event is

defined as an action that is observed in the system at a specific point in time, we call

our measure DoTA. DoTA is hierarchically structured in two steps: Amount Distance

and Entity Distance. The former step checks whether both trace recordings contain

the same entities and the latter compares the temporal behaviour of each entity.

The BTF shows, that actions are performed by a multitude of named elements in

the system, the so-called entities, such as the tasks, ISRs, and runnables. For that

reason, our measure checks, at first, by calculating the Amount Distance whether all

7.3. DEFINITION 139

entities in the one trace are also present in the other trace.

Definition 7.1. Amount Distance∆A: Let P(si) be the process entities in trace sample
si for i ∈ 1, 2, and let ∣X∣ denote the cardinality of a set X. The Amount Distance ∆A

is defined by

∆A(s1, s2) = 1−
∣P(s1)∩ P(s2)∣
∣P(s1)∪ P(s2)∣

. (7.1)

To compare the amount of identical entities in two traces, Eq. 7.1 considers just

process entities, i.e., the tasks and ISRs, and not all observable entities. This is for

multiple reasons. On the one hand, the temporal behaviour of a real-time system is

primarily determined by the processes. On the other hand, technical limitations rule

out the recording of all entities at once, whereas a reversely engineered model can

contain additional entities in order to reproduce correct behaviour. Nevertheless, the

temporal behaviour of processes in both samples have tomatch, which then indirectly

reflects also a correct representation of other entities, e.g., runnables.

In a second step, the Entity Distance uses the metrics that we introduced in

Chapter 5.3.5 and that allow one to objectively analyse a system’s temporal behaviour

to determine the correspondence between observed entities in the comparative trace

recordings.

Definition 7.2. Entity Distance ∆E: Let E(si) ⊆ E(si) be all task, ISR, and runnable
entities in a trace sample si for i ∈ 1, 2 and such that ∣E(s1) ∩ E(s2)∣ > 0. The Entity
Distance ∆E is defined by

∆E(s1, s2) = ∑
e∈E(s1)∩E(s2)

√
∑m∈M

1
∣M∣ ⋅ (ms1 −ms2)2

∣E(s1)∩ E(s2)∣
, (7.2)

whereM = {mint,maxt, x̄t,Q1,t,Q2,t,Q3,t, IQMt ∣ ∀t ∈ {NET, A2A, SD, Ready, Park-
ing, Polling,Waiting}}; here,mint is theminimum,maxt themaximum, x̄t themean,

Q1,t the lower quartile, Q2,t the median, Q3,t the upper quartile, and IQMt the inter-

quartile mean of a time metric t.

The Entity Distance ∆E determines the differences between all the entities, includ-

ing runnables, tasks and ISRs, that are available in both samples. These entities are

compared by calculating the weighted Euclidean distance between the temporal be-

haviour recorded in the one sample and that in the other sample. Due to the fact that

each trace recording typically contains multiple observations of the same entity and,

140 7. DISTANCE OF TIMED ACTIONS

thus, also a variety of temporal characteristics, measures of descriptive statistics such

as the minimum, maximum, mean, lower quartile, median, upper quartile, and the

inter-quartile mean are used to quantitatively summarise the general behaviour for

each entity. Measures of spread or shape are not considered because they would lead

to inconsistent results, e.g., if the variances of two comparable entities are exactly the

same but their individual times are far apart. In this case, the temporal behaviour

is completely different, but an alignment in the variance would presume otherwise.

Instead, multiple measures of location are employed by us to capture differences in

variability. The weight of the Euclidean distance is chosen in such a way that each

metric measure contributes to the same extent, because none outranks the others in

importance.

Definition 7.3. Distance of Timed Actions (DoTA): Let s1, s2 be two sample trace

recordings, let ∆A denote the Amount Distance, and let ∆E be the Entity Distance.

Then, the Distance Timed Actions (DoTA) is defined by

DoTA(s1, s2) = 1− [1−∆A(s1, s2)] ⋅ [1−∆E(s1, s2)]. (7.3)

Finally, the equality in the amount of same entities in both samples and the differ-

ences of each individual entity are combined in ourmeasureDistance of Timed Actions

(DoTA), in order to obtain the distance between two sample trace recordings.

7.3.1. Example

In the following, the usage of the previously introduced distance measure is shown

on the basis of a simple example. Let us consider the two sample trace recordings

shown in Listings 7.1 and 7.2, where a single task T gets executed in each one:

0 , T , a c t i v a t e

2 0 , T , s t a r t

5 , T , t e rmina t e

4 10 , T , a c t i v a t e

10 , T , s t a r t

6 16 , T , t e rmina t e

Listing 7.1: Trace Sample 1

1 , T , a c t i v a t e

2 1 , T , s t a r t

5 , T , t e rmina t e

4 12 , T , a c t i v a t e

12 , T , s t a r t

6 17 , T , t e rmina t e

Listing 7.2: Trace Sample 2

7.3. DEFINITION 141

Since the same task occurs in both samples, the Amount Distance ∆A is calculated

as follows using Eq. 7.1:

∆A(s1, s2) = 1−
∣{T}∩ {T})∣
∣{T}∪ {T}∣

= 1− 1
1
= 0

Before the Entity Distance ∆E can be determined, the real-time metrics t for each

task occurrence have to be calculated first. In a next step, these metrics are scaled to

bring all values and, consequently, also the final distance result into the range [0,1].

For this purpose, each metric value is scaled to the maximum value for the metric

in both samples: x′t =
xt

maxt(s1,s2)
. Finally, the scaled values are summarised via the

aforementioned measures of descriptive statistics. For simplicity, we consider here

just the mean x̄′t for each metric. The means resulting from these calculations are

listed in Table 7.1.

Based on them, the Entity Distance ∆E can then be calculated by applying Eq. 7.2.

The weigh for each metricm is balanced and consequently set to 1
6 , because of the six

metrics used (x̄′A2A, x̄
′
NET, x̄

′
Parking, x̄

′
Polling, x̄

′
Ready, x̄

′
SD).

∆E(s1, s2) =

√
1
6 ⋅(0.90−1)2+

1
6 ⋅(0.916−0.75)2+ 0
∣{T}∣

≈ 0.077

Hence, the sample traces s1 and s2 differ by roughly 7.7% according to our measure

DoTA.

7.3.2. Analysing Differences in Trace Recordings

The example that is given inChapter 7.3.1 illustrates, howDoTA is applied on traces to

quantify their differences. But how does this information help an engineer and, more

importantly, how can an engineer figure out the reason of an unexpected result?

DoTA itself yields a single value that represents the difference between two trace

recordings in percentage. A value close to zero means, that the timing behaviour re-

corded in the traces are basically equal. The higher the result gets and the closer it gets

to 100%, the further away are the traces and, thus, the systems’ timing behaviours.

In case of the example, the difference was 7.7%. Because the Euclidean distance used

in our measure has a quadratic characteristic, even small variations have an extensive

142 7. DISTANCE OF TIMED ACTIONS

Table 7.1.: Metric Results of the Example. Real-time metrics t for task T in trace
samples s1 and s2 and their scaled means x̄′t.

t
s1 s2

Xt X′t x̄′t X X′t x̄′t
A2A {10} {1011} 0.90 {11} {1111} 1

NET {5,6} {56 ,
6
6} 0.916 {4,5} {46 ,

5
6} 0.75

Parking {0,0} {0,0} 0 {0,0} {0,0} 0

Polling {0,0} {0,0} 0 {0,0} {0,0} 0

Ready {0,0} {0,0} 0 {0,0} {0,0} 0

SD {0,0} {0,0} 0 {0,0} {0,0} 0

impact on the result and get highlighted by DoTA.

DoTA gives an overview of the similarity of the entire systems and is, consequently,

the place to start investigating from in case of indicated dissimilarity. Because the

measure is hierarchically structured in two parts, a first step for an engineer is to

look at the result of the Amount Distance to check, if all both trace recordings contain

the same entities. This measure is designed in such a way that it can be interpreted

in an easy way. For example, let us consider a system with five tasks and the second

trace is missing a task for some reason, then the similarity of both traces is 4
5 = 80%

at most, because four tasks are in both trace recordings and an additional one is only

present in the one trace.

In a next step, the Entity Distance is considered. Because the result of this measure

aggregates the differences of all entities in the system, this value gives just an overview

and lacks the possibility to highlight the exact reason for dissimilarity. However, the

big advantage of this measure is that it can be used for any set of entities not only

for all system entities. This means, that an engineer can apply the Entity Distance to

all processes and all runnables separately to identify whether the dissimilarity occurs

at process level, resp., at system level. This is done in Chapter 8.2, where Fig. 8.6

contrasts the differences of all system system entities, tasks and runnables.

With this information, the search for the source of the indicated dissimilarity con-

tinues by applying the Entity Distance to individual entities. In case the result of the

7.3. DEFINITION 143

distance measure at process level is conspicuous, the differences for each task and

ISR are determined as it is done in Chapter 7.5.1. There, Fig. 7.8 shows the results

of Entity Distance for all processes that are present in both trace recordings in a radar

chart. That way, the contributing difference of each individual entity to the entire

dissimilarity is highlighted which allows one to identify outliers in an easy way.

These actions are repeated with the individual metrics of the entity under invest-

igation to see which metrics have changed for a specific entity between the two trace

recordings and to what extend. Finally, if the metric of interest is know, the individual

values of the entities metric are compared, e.g., by contrasting them in a histogram.

Fig. 7.6 summarizes this approach for analysing differences in trace recordings based

Distance of Timed Actions (DoTA)

Amount Distance ∆A
Entity Distance ∆E

System

Entity Distance ∆E

Processes

Entity Distance ∆E

Process P1

Entity Distance ∆E

Metric m1

Instance Value
x1

. . . Instance Value
xn

. . . Entity Distance ∆E

Metric mn

. . . Entity Distance ∆E

Process Pn

Entity Distance ∆E

Runnables

Figure 7.6.: DoTA Approach. Visualisation of the multi-level approach for ana-
lysing differences in trace recordings based on the measure Distance of Timed
Actions.

144 7. DISTANCE OF TIMED ACTIONS

on our measure DoTA.

7.4. Validation

In Chapter 7.1, we present the challenges of comparing real-time behaviour based

on trace recordings. To do so, we introduce a set of models that represent common

architectural patterns in the real-time software domain and feasible variations for each

pattern that provoke realistic changes to a system’s timing behaviour. Quantifying the

impact of such a variation states the challenge that a suitable measure has to meet in

a reasonable way.

To show the expressiveness of our measure and to highlight the impact of the

changes made by each variation, we determine how traces of each variation differs

from traces of the previous one using Distance of Timed Actions (DoTA). In addition,

we also consider Huselius’ Sum of Divergence, an existing measure from the latest

related work as presented in Chapter 7.2. For conducting this exemplary evaluation,

we generate a simulation trace that covers 100 s of system execution for each model

using the TA Simulator [70]. The results for both measures, which are listed in detail

in Tab. 7.2, are visualised in Fig. 7.7.

Table 7.2.: Differences in Trace Recordings from Variations of different Architec-
tural Patterns.

Variations 1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6 6 vs. 7 7 vs. 8

Purely Periodic without Communication

DoTA 31.3 31.1 25.0 15.3 0.7 8.5 10.9

SoD 32.1 65.5 41.5 22.6 9.4 18.0 24.0

Client Server without Reply

DoTA 45.9 50.8 28.4 6.0 1.2 8.9

SoD 9.6 14.5 58.3 0.1 0.2 0.1

State Machine

DoTA 42.2 42.2 13.3 5.8 0.1 10.4

SoD 4.4 6.0 7.1 0.3 5.0 0.7

Feedback Loop

7.5. OTHER USE CASES 145

Variations 1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6 6 vs. 7 7 vs. 8

DoTA 49.7 16.1 19.9 11.3 3.2 1.6

SoD 15.6 7.7 21.7 15.0 11.0 8.4

State Machine Feedback Loop

DoTA 66.0 20.1 17.0 12.6 3.5 0.8

SoD 19.9 11.5 15.7 20.5 14.8 12.2

The results of DoTA for the first three variations of the system pattern ‘Purely Peri-

odic without Communication’ proceed nearly unchanged. This is because each vari-

ationmodifies the system in the same way, namely by adding onemore task. Instead,

the results of Huselius’ Sum of Divergence alternate massively. The low difference

between Variation 4 and Variation 5 is also consistent because the queue overflows

eliminated by the increase of the maximum number of queued activation requests in

Variation 5 happen only in very few situations.

The variations for all other system patterns are equal. This is noticeable in the de-

picted results of DoTA but not in those of Huselius’ Sum of Divergence. Because each

pattern contains data dependencies, the exclusive areas added by Variation 2 affect not

only all tasks directly but also indirectly via arising blocking situations, which, then,

results in the high difference at the beginning. The results of DoTA stay high for the

next variation of the system patterns ‘Client-Server without Reply’ and State Machine.

Both patterns consist of only two tasks and one of these tasks ismodified by adding an

interprocess activation. However, the other patterns consist of multiple tasks which

is why the variation has a lower impact on the overall system. All other variations

result in differences between 0% and around 20% and are, thus, also corresponding

to the results for the system pattern ‘Purely Periodic without Communication’.

7.5. Other Use Cases

Although Distance of Timed Actions (DoTA) is motivated by assessing how closely

a synthesised model reflects the timing behaviour of the underlying system, it has

multiple other applications. Two use cases to which we have successfully applied our

measure are presented in the following

146 7. DISTANCE OF TIMED ACTIONS

1-2 2-3 3-4 4-5 5-6 6-7 7-8
0

10

20

30

40

50

60

70

Compared Model Variations

D
is
ta
n
ce

[%
]

Purely Periodic w/o Communication

Client-Server w/o Reply Sum of Divergence

State Machine Distance of Timed Actions

Feedback Loop

State Machine Feedback Loop

1-2 2-3 3-4 4-5 5-6 6-7
0

20

40

60

D
is
ta
n
ce

[%
]

1-2 2-3 3-4 4-5 5-6 6-7
0

20

40

D
is
ta
n
ce

[%
]

1-2 2-3 3-4 4-5 5-6 6-7
0

20

40

Compared Model Variations

D
is
ta
n
ce

[%
]

1-2 2-3 3-4 4-5 5-6 6-7
0

20

40

60

Compared Model Variations

D
is
ta
n
ce

[%
]

Figure 7.7.: Validation Results for DoTA. Each marker denotes the differences
determined by our measure Distance of Timed Actions (DoTA), resp., Huselius’
Sum of Divergence between trace recordings of two succeeding model variations.
The different colours mark the individual system architecture patterns examined
in our validation. Adapted from [13].

7.5. OTHER USE CASES 147

7.5.1. Product Family

One use case to which we have successfully applied our measure is determining the

effects of system changes on the system’s timing behaviour. To explain this, assume

>
10 −

1

%

>
10 −

0
.5

%

>
10 0

%

>
1
0 0

.5
%

>
1
0
1

%

P1

P2

P3

P4P5

P6

P7

P8

P9

P10

P11

P12 P13

P14

P15

P16

P17

Consumer vs. Sport

Consumer vs. Luxury

Sport vs. Luxury

Figure 7.8.: Results for Use Case ‘Product Family’. Radar chart showing the dif-
ferences of each process (tasks and ISRs) in case of comparing the products ‘Con-
sumer’, ‘Sport’, and ‘Luxury’ with each other. Each process of the common soft-
ware product platform is represented by a spoke on which the change is plotted
based on our measure, and each colour indicates the products of the product fam-
ily that are compared. Reprinted from [13].

148 7. DISTANCE OF TIMED ACTIONS

not a single product but a product family for an industrial steering system, so that it

is possible to create software for the three distinct products ‘Consumer’, ‘Sport’ and

‘Luxury’, which all have the same architecture but different functionalities. The steer-

ing system consists of 17 tasks and ISRs, which together call 130 different runnables.

The employed hardware platform is the same for all three products and consists of a

dual core processor with a frequency of 120 MHz for each processing unit.

To analyse the impact of the varying functionalities on the timing behaviour of the

system’s processes (tasks and ISRs), we have compared, in pairs, trace recordings of

the products using our measure. Each trace recording covers 30 s and contains all

task and runnable calls performed during that time. This resulted in roughly 27 ⋅ 106

events and a file of 1.7GB, i.e., the system produces roughly one million events per

second. The results of our comparison, which are listed in detail in Tab. 7.3, are

depicted in Fig. 7.8 and show that not all processes are affected to the same extent

by a switch ta a different product of the product family, e.g., process P10 has exactly

the same timing behaviour in all three products, whereas the timing behaviour of

processes P1,P3, and P13 − P17 differ widely, with differences partially over 10%.

Table 7.3.:Differences between the processes for comparing trace recordings from
different products using DoTA.

Sport vs. Luxury Consumer vs. Luxury Consumer vs. Luxury

[%] [%] [%]

P1 11.56429082 10.45917769 6.351332577

P2 0.300603748 0.930040196 1.159205268

P3 4.69030997 0.855764358 4.122411453

P4 0.344240474 0.008929258 0.344180975

P5 0.544844983 0.137329436 0.487636673

P6 0.274527131 0.702967963 0.503836284

P7 1.657822857 1.625155677 1.403627162

P8 0.252377514 0.094432932 0.223618758

P9 2.671538317 3.675472482 1.337137081

P10 0.077832454 0.099147329 0.0582255

P11 0.50450458 0.263378962 0.394792842

P12 0.103067698 0.099147329 0.051912505

7.5. OTHER USE CASES 149

Process Sport vs. Luxury Consumer vs. Luxury Consumer vs. Luxury

[%] [%] [%]

P13 5.65491727 3.17575714 5.033000926

P14 7.399536903 9.11219579 9.555831633

P15 4.045246556 0.885569202 3.970209795

P16 13.65540227 5.399524851 14.33665408

P17 9.059978589 1.782551008 8.729271495

7.5.2. Trace Check

Another use case to which we have successfully applied our measure is assisting with

hardware tracing. The process of configuring the on-chip debug units is known to be

error-prone. For that reason, we use Distance of Timed Actions (DoTA) to highlight-

ing inconsistencies in the recorded system behaviour.

The main problem with an incorrectly configured on-chip debug unit is that ob-

0 10 20 30 40 50 60
0%

6.67%

13.33%

20%

26.67%

Difference [%]

F
re

q
u

en
cy

D
en

si
ty

[#
]

Figure 7.9.: Results for Use Case ‘Trace Check’. Histogram summarising the
correspondence of a ‘clean’ trace and a trace that contains errors because of an
incorrectly configured on-chip debug unit. The blue bars indicate the resulting
differences of the processes (tasks and ISRs).

150 7. DISTANCE OF TIMED ACTIONS

served events in the trace buffer are overwritten before the information is transferred

to the host. As a consequence, events are missing sporadically. Because the system

evolves through well defined states during execution, the missing of events leads to

invalid state transitions. To compensate this and to get a valid trace, events are added

at the required positions to satisfy the underlying state machines. Thus, the trace

looks good at first sight but reflects in some situations an unlikely timing behaviour

of the underlying system because of the incorrect timestamps of the added events. As

a consequence, we apply DoTA after changing the debug configuration to check if the

recently recorded trace reflects the same timing behaviour. The histogram depicted

in Fig. 7.9 shows the results of such a comparison with a trace that contains errors

because of an incorrectly configured on-chip debug unit.

This use case origins from an experience with tracing an industrial braking system.

The system consists of 15 tasks and ISRs, which together call 89 different runnables.

At first, we configured the on-chip debug unit to get a trace recording at process level.

Then, we intended to change the configuration in such a way that the trace also con-

tains runnable events. In the course of this, we got something wrong, which resulted

in the aforementioned buffer-overflows and the incorrect trace recordings. Because

the trace looked good at first sight, the errors were not detected until a few hours later

when the systemwas analysed in detail and some system characteristics turned out to

be inconclusive. As a consequence, we applied DoTA to compare the trace on process

level with the recently recorded trace and found out that all processes clearly differ

with differences up to 57% as listed in Tab. 7.4 and depicted in Fig. 7.9.

Table 7.4.: Differences between the processes for comparing a ‘clean’ trace and a
trace that contains errors using DoTA.

Process DoTA [%] Process DoTA [%] Process DoTA [%]

P1 22.26 P6 23.52 P11 25.74

P2 16.30 P7 37.86 P12 39.21

P3 38.99 P8 57.24 P13 39.33

P4 16.86 P9 22.42 P14 24.27

P5 22.83 P10 39.09 P15 24.83

8
Evaluation

Onemotivation for us to propose a novelmeasure is to assess the quality of our reverse

engineering tool, CoreTAna. This is done in the following in three different ways. At

first, the reverse engineering tool under evaluation has to manage realistic challenges

of the real-time development process in a synthetic benchmark. This determines

how well the intended field of applications is handled. Next, we apply CoreTAna to

randomly generated systems to explore its performance in the broad design space of

real-time systems. Finally, a tighter connection to real-life problems is established by

using CoreTAna in actual industrial projects.

8.1. Synthetic Benchmark

The goal of this benchmark is to provoke realistic challenges of the real-time develop-

ment process, e.g., blocking situations, which then have to be managed by a reverse

engineering tool under evaluation. For that reason, we use the models and variations

defined as the challenges of comparing real-time behaviour from trace recordings in

Chapter 7.1 as the basis of this synthetic benchmark.

To be able to conduct an exemplary evaluation on measuring the performance and

the quality of CoreTAna’s reverse engineering, we generate a simulation trace that

covers a specified number of time units for each system using the TA Simulator [70].

The numbers are chosen in such a way that in the first case only a few process ac-

tivations are recorded and in the other case an extensive amount of information is

sampled. Further, trace recordings are generated at both process level, which is lim-

ited to process events, and system level, which provide a detailed insight into a sys-

tem’s behaviour. The traces are then analysed by CoreTAna, which is included in the

TA Tool Suite Release 16.3 [70]. This analysis is performed on a workstation contain-

ing an Intel Core i7-4930K hexa-core CPU, where each core is clocked at a frequency

of 3.4GHz, with 32GB of RAM and running the 64-bit version of Windows Server

152 8. EVALUATION

2012.

To manifest a high quality of the performed reverse engineering, our measure

has to yield results close to zero percent when comparing the trace recordings of the

actual system with those generated when simulating the synthesised model. Mis-

matches in the recorded behaviour are revealed by our measure due to the fact that

the system’s scheduling propagates each disparity on and on, and due to the quad-

ratic characteristic of the used Euclidean distance. We also determine Huselius’ Sum

of Divergence, not only to compare it with our measure but also to substantiate its

shortcomings mentioned in Chapter 7.2.

8.1.1. Purely Periodic without Communication

For each of these systems a trace recording is applied to CoreTAna and the differ-

ence to those generated when simulating the synthesised model is determined using

our measure Distance of Timed Actions (DoTA) and Huselius’ Sum of Divergence.

The results, which are listed in detail in Tab. 8.1, are visualised in Fig. 8.1 and turn

out to be two fold in case of our measure. If all system characteristics are suppor-

ted by CoreTAna’s underlying reverse engineering approach, the synthesised model

reflects the actual system behaviour very well. This is demonstrated by the high sim-

ilarity between the trace recordings of Variations 1 to 6 in the figure. However, if at

least one system characteristic, such as the scheduling algorithm, is not considered

in CoreTAna, then the difference rises rapidly. This is due to the fact that even if

only one task is affected by a variation, this change can have an impact on all tasks

because of the scheduling. Moreover, the Euclidean distance used in our measure

has a quadratic characteristic.

In contrast, the gap between Variation 7 and 8 is far less distinct when determ-

ining the trace differences using the Sum of Divergence. Furthermore, Huselius’

measure manifests in general quite pessimistic results for this system architecture

pattern with most results being around 20 percent. This corresponds to the outcome

of the determined impact of change between the individual variations (see Fig. 7.7),

where the Sum of Divergence also shows a higher disparity between the traces than

using DoTA.

Noticeable is the fact that the results of the reverse engineering for the Vari-

ations 1 to 6 are lower by a factor 10 if the longer trace recording with the added

information is used. This means, that the results from the short trace are too pess-

8.1. SYNTHETIC BENCHMARK 153

1 2 3 4 5 6 7 8

10−4

10−3

10−2

10−1

100

101

102

9.5
1.2

2.2
1.5

2.3 1.9

2.3 2.3

6.2
1.0

1.8 2.1
3.3

2.4

D
is
ta
n
ce

[%
]

DoTA BTF Events Process Level 1 · 1011 time units

Sum of Divergence Computation Time System Level 1 · 1013 time units

1 2 3 4 5 6 7 8

Model Variation

103

104

105

106

107

A
m
o
u
n
t
[#

]

100

101

102

103

104

T
im

e
[s
]

Figure 8.1.: Results of CoreTAna for the variations of system architecture pattern
‘Purely Periodic without Communication’. Each red mark, resp., green mark de-
notes the result of our measure Distance of Timed Actions, resp., Huselius’ Sum
of Divergence for comparing a trace of the pattern, resp., its variation with one
generatedwhen simulating CoreTAna’s reversely engineeredmodel. The reduced
opacity in the lines isolates variations that feature characteristics that are not sup-
ported by CoreTAna (Schedule Points and EDF Scheduling). The orange marks,
resp., blue marks indicate the number of events in the traces of the pattern, resp.,
the time it took CoreTAna to synthesise the model from the trace.

154 8. EVALUATION

imistic and that they are actually closer to zero.

The runtime that CoreTAna takes to reconstruct a model is depicted on the lower

chart of Fig. 8.1 and appears to increase linearly with the number of events within

the trace recording. This due to the design of the reverse engineering approach, as

presented in Chapter 6.2, where the algorithms are designed in such a way that the

complete trace recording and, thus, all trace events are processed in chronological

order exactly once. Noticeable is that the runtime contains a constant part, e.g., ac-

cessing the trace database, since the runtime is steady for shorter trace recordings

although the number of events within the trace doubles from Variation 1 to 8.

Fig. 8.1 also shows that there is not much difference between the results of the

reverse engineering from traces at process level and those at system level. This is

due to the fact that this system pattern does not contain any data dependencies and,

thus, no information besides the function calls is added at system level. Just the time

it takes to perform the reverse engineering is differently because the added function

calls at system level have to be processed.

Table 8.1.: Detailed Results of CoreTAna for ‘Purely Periodic without Communic-
ation’.

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Distance of

Timed Actions

[%]

1 0.0009537 0.0001211 0.0006882 0.00006277

2 0.0012154 0.0002020 0.0008599 0.00010262

3 0.0022185 0.0003446 0.0015576 0.00018022

4 0.0015281 0.0003633 0.0009322 0.00021145

5 0.0023127 0.0005166 0.0014787 0.00033187

6 0.0019142 0.0005592 0.0014220 0.00024032

7 23.513359 23.480054 16.174810 16.1866607

8 23.282120 23.231606 22.774799 22.8086669

8.1. SYNTHETIC BENCHMARK 155

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Sum of

Divergence

[%]

1 24.4914285 16.242624 23.5200695 16.359409

2 17.9727093 10.541485 19.2979265 11.465052

3 22.0566686 13.565652 24.9350911 12.943896

4 19.4783329 12.639322 20.7283790 10.955535

5 11.9588580 2.4720624 11.3080650 2.3752584

6 9.73254768 2.2561763 10.1844009 1.7398719

7 43.5854961 43.394641 43.5800288 43.393426

8 35.5840176 35.599870 35.5733129 35.605577

Amount of

BTF Events [#]

1 4852 482252 22489 2246689

2 7185 715310 33083 3303933

3 11489 1145864 52811 5276161

4 15848 1581973 71927 7187277

5 14782 1475307 67231 6717281

6 15290 1526415 69695 6965045

7 15454 1542529 70351 7029501

8 15688 1565863 71287 7122847

Computation

Time [s]

1 6.8899295 156.53972 7.0686523 198.57825

2 6.5212860 216.66097 8.0940568 275.82592

3 7.4617857 521.61375 10.105386 577.56854

4 7.3750913 655.67053 9.2230262 916.49947

5 7.4464685 617.86835 9.1913158 655.81481

6 6.9981298 649.62631 9.9317691 725.65135

7 6.3163664 642.55496 9.3535587 776.39202

8 6.6608028 659.24892 8.4779536 687.60256

156 8. EVALUATION

8.1.2. Client-Server without Reply

Fig. 8.2 depicts the results of our measure Distance of Timed Actions (DoTA) and

Huselius’ Sum of Divergence for the variations of the system pattern ‘Client-Server

without Reply’, which are listed in detail in Tab. 8.2. The first thing that leaps out

compared to the outcome of the previous system pattern is the gap between DoTA’s

results from the traces at process level and those at system level. In Fig. 8.1, both

corresponding red lines run next to each other and for this system pattern they dif-

fer from each other roughly by a factor of 100. This difference is due to the fact

that the data dependencies added by this system architecture pattern happen within

the context of a task. Since the generated trace recordings at process level are lim-

ited to task events, the internal behaviour of tasks is totally unapparent to CoreTAna.

This black box like behaviour of tasks makes it impossible to deduce a more precise

model without the expense of adding uncertainty. The results of Huselius’ Sum of

Divergence show the same behaviour, although they are not as clear because of the

measure’s volatility.

The reduced amount of information contained within the traces at process level

entails also that only a few events represent all the available information and no large

variability exits. As a consequence, the results lie side by side no matter how long the

recorded time frame of the system is.

On closer examination of the results, another consequence of the increased com-

plexity of this system pattern when compared to the previous one stands out. This

manifests itself in the fact that the values resulting from our distance measure DoTA

differ by a factor of 100 for traces at system level and approximately by a factor of

10,000 for traces at process level (see redmarks around 10−1%, resp., 101% in Fig. 8.2

vs. those around 10−4 %, resp., 10−3 % in Fig. 8.1).

Although the results produced byHuselius’ Sum of Divergence give, again, a more

pessimistic evaluation of CoreTAna’s capabilities than DoTA does, they are roughly

in line with each other except for Variation 2 and 3. There, the distance between

the trace recording of the actual system and those generated when simulating the

synthesised model increases from the first variation in case of our measure, but the

Sum of Divergence decreases. The main reason for this is that Huselius’ measure

is normalised by the maximum difference between the trace recordings [9, p.143 ff].

That way, outlier results that occur infrequently distort the measure’s significance

about the general behaviour. The impact of small changes between the individual

variations as depicted in Fig. 7.7 show a similarly volatile behaviour.

8.1. SYNTHETIC BENCHMARK 157

1 2 3 4 5 6 7

10−1

100

101

102
4.3

1.2

2.4

3.5

8.3

9.6

2.4
1.8

2.2
1.9

3.5

2.5

1.2

1.8

3.5

2.4
2.1

2.0

4.8
5.9 5.9

4.9 5.4

8.6

2.2

D
is
ta
n
ce

[%
]

DoTA BTF Events Process Level 1 · 1011 time units

Sum of Divergence Computation Time System Level 1 · 1013 time units

1 2 3 4 5 6 7

Model Variation

103

104

105

106

107

A
m
o
u
n
t
[#

]

100

101

102

103

104

T
im

e
[s
]

Figure 8.2.: Results of CoreTAna for the variations of system architecture pattern
‘Client-Server without Reply’. Each redmark, resp., greenmark denotes the result
of our measure Distance of Timed Actions, resp., Huselius’ Sum of Divergence
for comparing a trace of the pattern, resp., its variation with one generated when
simulating CoreTAna’s reversely engineered model. The orange marks, resp.,
blue marks indicate the number of events in the traces of the pattern, resp., the
time it took CoreTAna to synthesise the model from the trace.

158 8. EVALUATION

CoreTAna’s runtime to reconstruct a model is in line with those from the previous

system pattern. Small fluctuations in the amount of events have hardly an impact

on the computation time, while the time it takes CoreTAna to process larger trace

recordings increases roughly linearly with the number of events. In general, the

amount of events in the trace and the corresponding amount of time it takes

CoreTAna to process this trace is around five times higher than in the previous

system pattern because of the added signal accesses.

Table 8.2.: Detailed Results of CoreTAna for ‘Client-Server without Reply’.

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

1 12.256728 12.236614 0.0963846 0.0475689

Distance of

Timed Actions

[%]

2 43.361206 44.942581 0.2431276 0.0589234

3 12.275972 17.572060 0.1788738 0.0595190

4 23.898499 35.169433 0.2151218 0.0490214

5 35.011617 24.478762 0.1859166 0.0543016

6 20.851929 20.610418 0.3481599 0.0863580

7 8.3254603 20.343858 0.2457119 0.2220823

Sum of

Divergence

[%]

1 53.130927 45.400173 16.138064 15.940925

2 11.159526 30.551754 1.1255763 0.3363400

3 48.423795 60.213025 18.491527 19.290745

4 42.222291 84.589280 1.3349835 0.0366133

5 83.016100 44.417854 1.8302575 0.0326665

6 31.746164 31.615589 2.9489597 0.0583671

7 6.0848614 29.916530 1.5705853 0.0342065

8.1. SYNTHETIC BENCHMARK 159

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Amount of

BTF Events [#]

1 9020 900020 47017 4700017

2 13355 1333353 98031 9800015

3 6020 600020 32017 3200017

4 8020 800020 38017 3800017

5 16020 1600020 76017 7600017

6 14830 1492899 69897 7049109

7 16018 1600020 76008 7600017

Computation

Time [s]

1 5.7949492 1012.0734 7.9979248 874.56971

2 6.8443415 880.50990 9.4392821 791.23004

3 6.0229296 404.26895 8.1328763 395.94720

4 7.3102416 406.10139 7.9014146 477.79289

5 6.4200232 1620.3791 10.467379 1680.8327

6 6.7426784 1362.8241 10.092693 1531.5093

7 6.6013917 1505.8412 10.604121 1628.2769

8.1.3. State Machine

The results for the system pattern ‘StateMachine’, which are listed in detail in Tab. 8.3

and visualised in Fig. 8.3, show a noticeable similarity to those for the previous pat-

tern. Our measure Distance of Timed Actions (DoTA) yields also results at around

20% for reverse engineering a model from the trace recordings at process level and

differences less than 0.5% at system level. Just the difference between the peaks

and valleys of the results for DoTA become greater, especially for the shorter trace

recordings. This is due to the characteristics of the probabilistic model used in this

system architecture pattern. Recording the system’s runtime behaviour for a longer

period and employing those to CoreTAna yields steadier results, because shorter trace

recordings have a smaller chance to cover all possible behaviour of the probabilistic

model. Because the aforementioned probability is hardly observable in trace record-

ings at process level, both dashed red lines nearly overlap whichmeans that recording

160 8. EVALUATION

1 2 3 4 5 6 7

10−1

100

101

102
4.6

3.7 3.4

2.1 2.1

2.7

4.0

1.6

3.7

1.5

4.8
4.0

1.6
2.0

2.7
2.3 2.0 2.0

6.7

1.5

6.1 5.5

9.0 8.2 8.4

D
is
ta
n
ce

[%
]

DoTA BTF Events Process Level 1 · 1011 time units

Sum of Divergence Computation Time System Level 1 · 1013 time units

1 2 3 4 5 6 7

Model Variation

103

104

105

106

107

A
m
o
u
n
t
[#

]

100

101

102

103

104

T
im

e
[s
]

Figure 8.3.: Results of CoreTAna for the variations of system architecture pattern
‘State Machine’. Coloured marks and line styles are used as in Fig. 8.2.

8.1. SYNTHETIC BENCHMARK 161

events for a longer period of time than in the short trace recording does not add in-

formation.

The results of Huselius’ Sum of Divergence are similar to those of DoTA. The

course of the red and green dashed lines, i.e., the values for the trace recordings at

process level, lie on the same level. Also, a similarity between the lines of the short

trace at system level is noticeable. Just the continuous drop from the first to the third

variation differs the results from those of DoTA. This drop is even more developed at

the results from the trace recordings at system level that last 1013 time units because

of the aforementioned volatility of the measure. Like it is shown in the results of the

previous system pattern in Fig. 8.3, only the results of Huselius’ Sum of Divergence

of the first three variations are distant. The remaining values are in line with those of

DoTA.

The amount of events resulting from simulating the model and the time it takes

CoreTAna to process these events are nearly unchanged compared to the previous

system model. The results show that CoreTAna can process roughly 10,000 events

per second in case of a trace recording at system level as input and around 1000 events

when analysing a trace recording at process level. The smaller throughput of events

in the latter case is because CoreTAna tries to deduce information that is missing

in the trace recordings at process level which takes additional time. A noticeable

difference to the results of the previous system patterns is that the ratio of amount

of events that are processed per time unit is very low for the long trace at process

level which manifests in such a way that both the blue line and orange line are nearly

congruent.

Table 8.3.: Detailed Results of CoreTAna for ‘State Machine’.

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Distance of

Timed Actions

[%]

1 15.652798 15.580206 0.2723777 0.0673689

2 47.586166 47.533505 0.4033630 0.1467363

3 20.032283 19.697544 0.1569058 0.0609489

4 37.221495 27.055662 0.3663406 0.0548155

5 33.893068 22.612843 0.1508038 0.0900652

162 8. EVALUATION

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

6 20.664853 19.964286 0.4777384 0.0820607

7 20.817826 19.882330 0.4011350 0.0839657

Sum of

Divergence

[%]

1 41.551175 34.541668 18.781859 11.821757

2 26.440948 26.323879 6.5627732 0.3363400

3 33.312319 32.728243 1.5343503 0.1029537

4 94.466047 46.515561 2.6116502 0.0366133

5 57.039978 29.888022 0.7087619 0.0326665

6 37.397598 31.573412 1.0810095 0.0583671

7 38.277515 29.698478 1.1049296 0.0342065

Amount of

BTF Events [#]

1 8245 823835 49587 4961947

2 13431 1341983 104928 10492584

3 8021 800021 48691 4866691

4 8020 800020 42018 4200018

5 15255 1498527 79647 7820058

6 16020 1599908 84018 8399378

7 16020 1599803 84018 8398778

Computation

Time [s]

1 6.0107281 826.54534 7.9558477 765.18599

2 6.4716200 1038.2568 9.3250706 874.84334

3 6.4486606 838.82497 7.7223145 753.26378

4 6.1018826 432.66732 8.8268628 559.27888

5 7.5224902 1490.7532 10.911711 1822.8462

6 6.4538438 1678.3919 10.386822 1987.4026

7 7.0271813 1728.0191 10.398466 2043.5359

8.1. SYNTHETIC BENCHMARK 163

8.1.4. Feedback Loop

Fig. 8.4 visualises the resulting quality of the performed reverse engineering for the

system pattern ‘Feedback Loop’, which is listed in detail in Tab. 8.4. Because this

system pattern is more complex than the previous one, the results of our measure

Distance of Timed Actions (DoTA) using trace recordings at system level are slightly

worse. However, those for trace recordings at process level are noticeably better with

valuesmainly between 14% and 17%. The reason for this is that periodically activated

tasks without communication are added in this system pattern in order to increase

the complexity, which are reverse engineered by CoreTAna quite good from trace re-

cordings at process level as it is shown in Fig. 8.1. Noticeable is also that the length of

the trace recording at process level does not have a big impact on the resulting quality

of the reverse engineering which manifests in such a way that the red dashed lines

are nearly congruent. This means that CoreTAna cannot recover the missing inform-

ation from system level more precisely even if a trace recording is used as input that

covers the system’s execution for a longer period of time.

This time also the results of the trace recordings at system level show significant

spread, which can once again be explained by the underlying probabilistic model.

Also the distance between the results of DoTA for the trace recordings at system level

covering a short period of time and those that last 1013 time units lie wide apart.

Because the complexity of the system increased further as in the previous system

architecture, the chance to cover all possible behaviour decreased to such an extent

that even large trace recordings do not cover everything.

The results of Huselius’ Sum of Divergence show a big difference compared to

those from the previous systempattern. In Fig. 8.3, the results for the trace recordings

at process level and those at system level lie clearly separated from each other with a

big gap of 50% to 100% in between. Although the results are not as volatile as before,

they nearly run next to each other in Fig. 8.4. Thus, Huselius’ Sum of Divergence

yields results that are not only very pessimistic but also that conclude that adding

pieces of information about the system level does not have an impact on the quality

of the reverse engineering of CoreTAna.

The amount of events resulting from simulating the model and the time it takes

CoreTAna to process these events show no significant difference in comparison to

the previous system model.

164 8. EVALUATION

1 2 3 4 5 6 7

10−1

100

101

102

1.4 1.5 1.6 1.7

1.6
2.0

1.6

2.4

8.6

1.2
1.4

1.0

1.4
1.1

1.6 1.7

3.1

1.5
1.8

1.5

7.8

1.2
1.0

7.0

3.2

1.8

5.7

D
is
ta
n
ce

[%
]

DoTA BTF Events Process Level 1 · 1011 time units

Sum of Divergence Computation Time System Level 1 · 1013 time units

1 2 3 4 5 6 7

Model Variation

103

104

105

106

107

A
m
o
u
n
t
[#

]

100

101

102

103

104

T
im

e
[s
]

Figure 8.4.: Results of CoreTAna for the variations of system architecture pattern
‘Feedback Loop’. Coloured marks and line styles are used as in Figs. 8.2 & 8.3.

8.1. SYNTHETIC BENCHMARK 165

Table 8.4.: Detailed Results of CoreTAna for ‘Feedback Loop’.

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Distance of

Timed Actions

[%]

1 14.349606 16.358382 0.2388283 0.0778398

2 15.091768 16.735423 0.8633648 0.1237109

3 16.216500 31.022230 1.2190268 0.1006605

4 16.874797 17.374592 1.4043835 0.0699575

5 16.480638 14.940903 1.0361191 0.3246640

6 19.889402 17.850104 1.4437576 0.1835005

7 15.796890 14.808603 1.1318237 0.5654531

Sum of

Divergence

[%]

1 21.861669 17.499155 17.952231 15.516433

2 19.689258 14.589903 9.5256064 6.7289407

3 32.015413 67.512619 12.118766 5.8157202

4 22.148177 32.783324 13.920895 10.487218

5 32.547768 23.588531 8.4394832 5.4783079

6 14.801654 26.126691 13.496559 4.3285223

7 26.397922 11.546924 8.8943718 7.2466639

Amount of

BTF Events [#]

1 2524 247935 16569 1644865

2 11847 1186978 63889 6395294

3 12826 1277567 68147 6803720

4 8171 818247 44992 4509812

5 14023 1397968 75287 7521149

6 13908 1384217 74363 7406301

7 14059 1410331 75431 7581103

166 8. EVALUATION

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Computation

Time [s]

1 6.3590104 60.396155 6.1630692 106.90990

2 6.9041974 777.51649 8.5426437 771.42144

3 7.0657849 790.93414 9.5481376 792.74775

4 6.8400576 420.28964 9.4596645 446.21983

5 6.8709635 1125.7334 9.4511110 1168.8052

6 6.8017730 1051.3514 8.9236850 1122.4087

7 6.9486556 1090.7730 10.106129 1163.6606

8.1.5. State Machine Feedback Loop

The resulting quality of the performed reverse engineering for the system pattern

“State Machine Feedback Loop”, which is listed in detail in Tab. 8.5, is visualised in

Fig. 8.5. Because of the periodically activated tasks without communication that are

added in this system pattern, the results, which are mainly between 11% and 22%,

are quite low, again, when trace recordings at process level are used as input.

Noticeable is, furthermore, the fact that the results for both trace lengths lie close

upon each other. Just the lines for trace recordings at system level have still a big gap

between them, which, however, is smaller than in the previous system pattern. This

indicates a reduced amount of probability in this pattern, which corresponds to the

description of the system pattern in Chapter 7.1.5.

The same tendency, namely that the values for both trace lengths lie close upon

each other, holds true for the results ofHuselius’ SumofDivergence. Especially, those

from trace recordings at system level have a noticeable small gap between them.

The amount of events resulting from simulating the model and the time it takes

CoreTAna to process these events show, again, no significant difference in compar-

ison to the previous system model.

In summary it can be said that CoreTAna yields comprehensible and useful results.

It is shown that traces at process level allow one to generate only a rough behavioural

description of a system because of the missing details and, thus, the length of the

trace does not play a big role. But the more information CoreTAna gets as input, i.e.,

8.1. SYNTHETIC BENCHMARK 167

1 2 3 4 5 6 7

10−1

100

101

102

1.1

2.2

3.2

1.7 1.5

1.6

5.2

8.7

3.4

1.1

4.9
4.0

1.1

5.3

1.7

1.6
1.9 1.7 1.5

2.1

1.9

2.9

4.5

8.1

4.8

1.9

6.9 7.3

D
is
ta
n
ce

[%
]

DoTA BTF Events Process Level 1 · 1011 time units

Sum of Divergence Computation Time System Level 1 · 1013 time units

1 2 3 4 5 6 7

Model Variation

103

104

105

106

107

A
m
o
u
n
t
[#

]

100

101

102

103

104

T
im

e
[s
]

Figure 8.5.: Results of CoreTAna for the variation of system architecture pattern
‘State Machine Feedback Loop’. Coloured marks and line styles are used as in
Figs. 8.2, 8.3 & 8.4.

168 8. EVALUATION

events at system level and recordings that cover a longer period of time, the more

precise is the resulting model.

Our measure DoTA represents a crucial part in this evaluation by determining the

results in a comprehensible way. This means that the resulting values do not tend to

vary. Thus, small changes in the complexity always show only small difference and

missing information has a big impact throughout the entire evaluation. In contrast,

such a non-volatile behaviour is not shownbyHuselius’ SumofDivergence. Although

the results of the measure are nearly congruent with those of our measure for trace

recordings at process level, they sometimes vary massively at system level, which

makes the measure inconsistent.

The time it takes CoreTAna to reverse engineer a model is also comprehensible.

There is not much difference between the resulting times of trace recordings at pro-

cess and system level. Basically, they are congruent because the main effort is spent

on processing the events in chronological order and analysing the effects, finally,

takes only a minor amount of time. Besides that, we see that the time increases

roughly linearly with the amount of time covered by a trace recording instead of the

included amount of events.

With this knowledge, we apply CoreTAna to randomly generated systems to explore

its performance in the broad design space of real-time systems.

Table 8.5.: Detailed Results of CoreTAna for ‘State Machine Feedback Loop’.

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Distance of

Timed Actions

[%]

1 11.315112 17.685999 0.0873491 0.0290390

2 22.267737 15.970018 0.3381904 0.0449968

3 32.124778 18.620338 1.0841904 0.0814129

4 16.613458 16.599144 0.4946097 0.0482207

5 15.497905 14.658455 0.3988198 0.1925746

6 16.169657 21.441146 1.0742245 0.6898238

7 51.823490 18.602887 0.5277344 0.7329283

8.2. RANDOMLY GENERATED SYSTEMS 169

V
ar
ia
tio
n Level of Detail and Length of Trace [time units]

Process Level System Level

1011 1013 1011 1013

Sum of

Divergence

[%]

1 33.534720 22.249503 12.277420 12.597820

2 47.545493 20.493800 7.8316856 7.2718625

3 74.188149 42.445496 11.864354 5.5936270

4 40.329721 36.654553 9.3963209 6.2592251

5 36.596220 32.822951 11.811192 6.6458784

6 39.612082 35.236438 7.0037333 11.376730

7 84.183426 33.965710 9.5088655 15.147561

Amount of

BTF Events [#]

1 2229 220029 14625 1460026

2 11536 1138420 61870 6133606

3 12262 1219472 65184 6497826

4 8435 838957 47310 4717998

5 17003 1694568 91876 9169264

6 16863 1683061 90581 9053512

7 17209 1715591 92700 9254323

Computation

Time [s]

1 5.9284746 77.912520 7.2566530 76.278453

2 7.3526964 824.84762 10.531692 767.76222

3 6.3379423 801.60637 8.9131484 791.39058

4 7.1040692 446.73755 8.7495989 474.62437

5 7.1094310 1669.8961 9.6598348 1665.9249

6 6.9041547 1535.6398 9.6521396 1642.6185

7 7.2183878 1594.9064 9.5066149 1691.1236

8.2. Randomly Generated Systems

The randomly generated systems are not completely random, but their generation

follows configurable settings. This allows us to influence the possible design space

such that a desired mixture of system architectures can be ensured. To do so, we

170 8. EVALUATION

analysed the systems of our customer projects and set the configuration in such a

way that we get system models with a realistic amount of processes and runnables

and reasonable internal behaviour.

Altogether, we generate a total of 1000 different systems. The number of tasks in

each system is chosen randomly between 9 and 20. All tasks are activated harmon-

ically by periodic alarms, with an offset between 0 and 50ms and a period between

1 and 1000ms. Their execution times are determined based on both their load, which

can be between 1 and 20%, and the number of called runnables, which each cover

between 30,000 and 100,000 instructions. This results in roughly 5 to 100 runnables

per task that are bundled in 6 to 13 coherent call sequences. Conditional statements

are added to each task in such a way that the execution of any number of these call

sequences depends on random values within the domain of one of the 1 to 20 gen-

erated data signals. This is repeated with the budgeted call sequences, in order to

enable nested control flows. Data dependency is then established by adding, with a

probability of 50%, a signal access to each runnable, which writes a random value

within the domain of that data signal.

A purely periodic task, which is roughly defined as a task without any conditional

statements, is consequently generated with an approximate probability of at least 1
9

(or 11.1%). This is due to the fact that roughly 5 to 100 runnables per task are bundled

into 6 to 13 coherent call sequences, which yield 1 to 9 call sequences per task. Con-

sequently, the probability that a task representing a server in a ‘Client-server without

Reply’ architecture is generated, is equal to the probability that one conditional state-

ment is present, which is at least 1
9 , and the fact that there is no write access to that

data signal within the task. Since 11 data signals are generated on average per system,

this results in a probability of at best 1
99 or 1.01%. In contrast, a task representing a

state machine has to modify the data signal on which it depends. Because a runnable

has write access to each signal in 50% of the cases, the resulting probability is roughly

5%.

Fig. 8.6 visualises how capable CoreTAna is to reverse engineer the randomly gen-

erated models, which is listed in detail in Tab. 8.6. To do so we used both trace record-

ings that cover the system’s internal behaviour at process level and traces at system

level. The stacked bar chart at the bottom depicts that 96% of the runnables differ

by less than 3% (sum of white and light red bars). This means that the internal be-

haviour of nearly all runnables can be reverse engineered very precisely. However,

there are also scattered outliers, which indicate differences in the runnable behaviour

8.2. RANDOMLY GENERATED SYSTEMS 171

0 20 40 60 80 100

System Level

Process Level

Systems

0 20 40 60 80 100

System Level

Process Level

Processes

0 20 40 60 80 100

System Level

Percentage of Entities [%]

Runnables

0% ≤ DoTA ≤ 1% 1% < DoTA ≤ 2% 2% < DoTA ≤ 3%

3% < DoTA ≤ 5% 5% < DoTA ≤ 8% 8% < DoTA ≤ 13%

13% < DoTA ≤ 21% 21% < DoTA ≤ 34% 34% < DoTA ≤ 57%

Figure 8.6.: Results from Randomly Generated Systems. Stacked bar chart of
CoreTAna’s results for reversely engineering the randomly generated models,
each based on a trace recording that covers 1 s of the system’s execution. The col-
oured bars mark the percentage of systems, processes, and runnables in which
their reversely engineered behaviour differs from the original one by a certain
distance value according our distance measure DoTA. Adapted from [13].

172 8. EVALUATION

as high as 57% (black bar).

Due to the fact that multiple runnables are mapped to a single process, the pro-

cess’s difference is added up by the difference of each runnable called, which con-

sequently yields worse results. Nevertheless, 64% of the processes differ by less than

1% (white bar) according or distance measure DoTA. Using trace recordings at pro-

cess level for reverse engineering visualises a completely different result. Only 42%

of all processes of the randomly generated systems show a difference of 1% or less,

which is nearly as much as the 37% of processes that differ by more than 34% (black

bar).

The fact that all resulting differences for the overall systems are lower than 10%,

shown in the stacked bar chart by the absence of accordingly coloured bars, demon-

strates that CoreTAna performs well in capturing a system’s dynamic behaviour when

trace recordings at system level are used as input. However, if a trace at process level

is used, also the CoreTAna’s performance is very limited. The results show that in

only 50% of the cases the temporal behaviour described by the reserve engineered

model differs by less than 10% from the general behaviour of the original real-time

software.

To investigate the effect of this fact on real-life problems, we show the use of

CoreTAna in actual industrial projects.

Table 8.6.: Detailed Results of Randomly Generated Systems. Amount of system,
process and runnable entities from randomly generated traces at process and sys-
tem level that have at least a difference less than or equal to a specific DoTA value.

DoTA [%]

Amount of Entities [%]

Systems Processes Runnables

Process System Process System
System Level

Level Level Level Level

1 9.8 6.3 64.01 41.79 81.18

2 27.5 10.1 73.46 44.68 94.84

3 53.7 17.8 76.49 45.86 96.36

4 75.6 26.3 78.17 46.56 96.73

5 88.8 32.9 79.37 47.19 96.92

6 95.8 38.1 80.22 47.89 97.05

7 98.2 43.1 80.96 48.40 97.14

8.2. RANDOMLY GENERATED SYSTEMS 173

DoTA [%]

Amount of Entities [%]

Systems [%] Processes [%] Runnables [%]

System Process System Process
System Level

Level Level Level Level

8 99.5 46.9 81.71 48.92 97.21

9 99.8 49.1 82.29 49.24 97.28

10 100 50.5 82.90 49.58 97.34

11 100 51.0 83.46 49.94 97.39

12 100 51.4 84.20 50.45 97.44

13 100 51.4 85.26 51.07 97.47

14 100 51.4 86.40 51.86 97.50

15 100 51.4 87.21 52.55 97.53

16 100 51.4 89.74 54.86 97.56

17 100 51.4 90.25 55.19 97.57

18 100 51.5 90.66 55.50 97.60

19 100 51.5 91.15 55.77 97.62

20 100 51.5 91.55 56.07 97.64

21 100 51.6 92.04 56.38 97.66

22 100 51.8 92.71 56.77 97.69

23 100 52.2 93.64 57.79 97.72

24 100 52.9 95.31 59.22 97.73

25 100 53.7 97.86 61.33 97.74

26 100 54.2 98.78 62.07 97.74

27 100 55.8 98.99 62.13 97.74

28 100 56.8 99.21 62.17 97.74

29 100 58.3 99.33 62.32 97.74

30 100 60.5 99.45 62.54 97.74

31 100 64.5 99.50 62.64 97.74

32 100 68.0 99.56 62.74 97.74

174 8. EVALUATION

DoTA [%]

Amount of Entities [%]

Systems [%] Processes [%] Runnables [%]

System Process System Process
System Level

Level Level Level Level

33 100 71.9 99.66 62.84 97.74

34 100 76.9 99.73 62.93 97.74

35 100 81.0 99.77 63.01 97.74

36 100 86.2 99.81 63.14 97.74

37 100 90.3 99.86 63.30 97.74

38 100 93.0 99.91 63.72 97.74

39 100 95.7 99.93 64.22 97.74

40 100 97.7 99.94 64.37 97.74

41 100 99.2 99.95 92.83 98.10

42 100 99.6 99.96 94.29 98.10

43 100 100 99.96 95.18 98.10

44 100 100 99.96 96.81 98.10

45 100 100 99.96 97.08 98.10

46 100 100 99.96 97.49 98.10

47 100 100 99.96 98.01 98.10

48 100 100 99.97 99.72 98.10

49 100 100 99.99 99.90 98.10

50 100 100 99.99 99.90 98.10

51 100 100 99.99 99.90 98.10

52 100 100 100 99.95 98.10

53 100 100 100 99.98 98.10

54 100 100 100 99.99 98.11

55 100 100 100 99.99 98.11

56 100 100 100 99.99 98.12

57 100 100 100 99.99 98.35

8.3. INDUSTRIAL CASE STUDIES 175

DoTA [%]

Amount of Entities [%]

Systems [%] Processes [%] Runnables [%]

System Process System Process
System Level

Level Level Level Level

58 – 100 100 100 100 100 100

8.3. Industrial Case Studies

In addition to the synthetic benchmark and the randomly generated systems, four

industrial case studies are conducted. Because TA is a tool vendor and consulting

company whose customers are mainly automotive OEMs and Tier-1s, three of these

case studies illustrate the use of CoreTAna in the automotive domain. However, to

show that the developed algorithms are not only limited to the automotive domain and

that they are usable for real-time systems in general, we also apply CoreTAna to trace

recordings from a former customer project in the telecommunication domain.

8.3.1. Automotive Case Studies

The case studies are chosen in such a way that the reverse engineering copes in each

case study with a trace recording that stores information about the system at a specific

level of detail. At first, we apply CoreTAna to a trace recording of an engine manage-

ment system, which presents the hardest challenges regarding real-time in the auto-

motive development. Because of the precise timing that is required for the complex

processes in a combustion engine such as injection, it is technically impossible to

trace more details than the interaction of tasks. A steering system, which is used for

the next case study, is less complex and allows one to apply function trace, i.e., all

process and runnable events be observed without any temporal impact on its execu-

tion. Because actual industrial systems are too complex which makes it technically

impossible to trace all details of its internal behaviour including data accesses, we use

trace recordings generated when simulating the model of the FMTV Challenge in the

third case study.

We evaluate CoreTAna’s performance and the achieved quality of the reverse en-

gineering by us using our proposed measure Distance of Timed Actions (DoTA); the

results are visualised in Fig. 8.7.

176 8. EVALUATION

102 103 104 105

C
o
m

p
u

ta
tio

n
T

im
e

[s]

10−1 100 101 102

FMTV

Steering

EMS

D
iff

eren
ce

[%
]

Figure 8.7.: Results of Automotive Case Studies. Box plots with whiskers from
minimum to maximum, summarising the differences between each task/ISR in
the individual industrial case studies according our distance measure DoTA. A
cross marks the result of the difference measure for the overall system. The
dashed box plot visualises the results of the FMTV Challenge with the given hard-
ware model. Reprinted from [13].

8.3.1.1. Engine Management System (EMS)

In a first industrial project, an engine management system (EMS) consisting of 75

tasks is analysed. To do so, a trace covering 6.5 s of the system’s execution was

provided in a 40MB file containing 90 ⋅ 103 events. Because of the high complex-
ity of the system under investigation and technical limitations, it was only possible to

observe and record task state transitions. Thus, no detailed insight into the system’s

behaviour can be inferred.

The visualisation in Fig. 8.7 of the differences between each task, which are listed

in detail in Tab. 8.7, shows that the quality of CoreTAna’s reverse engineering is in-

consistent. Some tasks contain only a small amount of variability, which is why their

behaviour is reflected quite well with a difference of only 4%. Other tasks, however,

8.3. INDUSTRIAL CASE STUDIES 177

show a difference of 35%, which indicates a lack of detail. Nevertheless, the overall

difference of 19.88% is in line with the results of the synthetic models in Chapter 8.1,

where evaluations of CoreTAna’s capability to handle the limited accuracy in logged

data yielded differences between 13% and 52%.

In addition, the time it takes CoreTAna to generate the model is stated in the fig-

ure. The blue dot shows that the 90 ⋅ 103 events in the trace recording are processed
in 159 s, resp., 2.65min, which is roughly 3 to 4 times longer than analysing an ac-

cording trace of the synthetic models.

Table 8.7.: Detailed Results of Case Study ‘Engine Management System (EMS)’.

Process
Difference Computation

Process
Difference Computation

(DoTA) [%] Time [s] (DoTA) [%] Time [s]

P1 27.26822 0.75112 P39 16.25324 0.084928

P2 29.33211 0.096376 P40 15.50078 0.076498

P3 17.56982 0.103602 P41 16.12675 0.083124

P4 18.84569 0.10029 P42 17.95330 0.073786

P5 23.45587 0.097278 P43 15.68794 0.08764

P6 27.41339 0.088846 P44 21.07741 0.071076

P7 24.05519 0.075294 P45 20.55802 0.080414

P8 18.48474 0.073486 P46 16.88526 0.063846

P9 28.18625 0.07469 P47 15.94663 0.063246

P10 15.57548 0.071078 P48 16.26116 0.070172

P11 17.40405 0.075896 P49 30.37618 0.066258

P12 37.42805 0.076194 P50 16.86565 0.069572

P13 25.62245 0.058428 P51 17.78637 0.068668

P14 20.10103 0.068064 P52 16.49458 0.06927

P15 15.54986 0.068064 P53 16.77918 0.068666

P16 23.90535 0.06144 P54 16.68903 0.070776

P17 17.90769 0.065354 P55 15.80121 0.068668

P18 20.16454 0.067462 P56 19.68019 0.068366

P19 17.25456 0.069572 P57 15.74979 0.080714

178 8. EVALUATION

Process
Difference Computation

Process
Difference Computation

(DoTA) [%] Time [s] (DoTA) [%] Time [s]

P20 16.56956 0.0067766 P58 24.44865 0.059934

P21 16.98214 0.067464 P59 29.57777 0.056318

P22 19.99930 0.081918 P60 28.17908 0.057524

P23 22.17637 0.062946 P61 17.98144 0.065354

P24 15.86590 0.065054 P62 16.67649 0.071982

P25 17.58791 0.073184 P63 31.87213 0.055416

P26 16.46475 0.087338 P64 28.11581 0.060838

P27 17.36096 0.067162 P65 18.68762 0.070172

P28 18.45034 0.069872 P66 24.61532 0.061438

P29 18.44861 0.080714 P67 18.42596 0.063548

P30 18.20959 0.073786 P68 21.21538 0.065052

P31 19.91532 0.072882 P69 19.74189 0.067464

P32 18.98483 0.089448 P70 15.89531 0.073486

P33 22.49819 0.065656 P71 16.69517 0.071074

P34 35.40044 0.067464 P72 18.53464 0.072584

P35 24.49537 0.067762 P73 16.41568 0.070172

P36 4.19010 0.091858 P74 16.55767 0.07138

P37 28.29331 0.063848 P75 18.26587 0.068968

P38 19.02603 0.07198

8.3.1.2. Steering System

For this industrial case study, a model of a steering system software is generated. The

system under investigation consists of 18 tasks and interrupt service routines. Alto-

gether, these call 130 different runnables. The employed hardware platform is a dual

core processor with a frequency of 120MHz for each processing unit. The starting

point of the reverse engineering is a trace recording that covers 30 s and contains all

task and runnable calls performed during that time. This resulted in roughly 27 ⋅ 106

events and a file of 1.7GB, i.e., the system produces roughly one million events per

8.3. INDUSTRIAL CASE STUDIES 179

second.

In contrast to the previous industrial case study, where only task events have been

recorded, the details added by also observing function calls lead to less spread. The

difference for each task lies just between 14.93% and 26.23% as shown in Fig. 8.7.

However, the overall difference of 15.54% is slightly higher than in the previous case

study, which is probably due to the trace containing more information. Neverthe-

less, the trace is missing knowledge about data accesses, so that the varying internal

behaviour due to data dependencies cannot be determined in full detail.

Although the trace recording used in this case study contains 300 times the amount

of events than that in the previous one, CoreTAna completes the reverse engineering

in around 14,450 s, resp., 4 h. This corresponds to the computation times that are

determined by the synthetic benchmark.

8.3.1.3. FMTV Challenge 2016

This industrial case study is inspired by the Formal Methods for Timing Verification

(FMTV) Challenge 2016 [68], where a model of an industrial real-time system has

been published in order to discuss solutions to concrete timing verification problems.

Although no trace recordings from the actual system are provided, we have used this

model and the TA Simulator [70] to generate a simulation trace. Because this model-

based timing simulation is a commercial tool that is employed by many Tier-1s and

OEMs in the automotive industry and because the provided model is very detailed, it

is reasonable to assume that the generated trace recording corresponds very closely

to the actual system behaviour.

The FMTVChallenge’smodel describes a full-blown enginemanagement software

that consists of 10 periodic tasks and 11 ISRs that interact with the system sporad-

ically. The functionality is provided by 1250 runnables, and roughly 10,000 differ-

ent data signals are accessed for communication. On the hardware side, a micro-

controller architecture with four symmetric cores is available for processing. Each

core has access to its local RAM and to the shared global RAM via a crossbar. Based

on this model, the system’s execution has been simulated for 30 s. During that time,

roughly 341 ⋅ 106 events have occurred and been recorded in a trace, which resulted
in a file size of roughly 17GB.

Fig. 8.7 visualises the resulting differences between each task and ISR, which are

listed in detail in Tab. 8.8. Although the trace contains all details of the system be-

haviour, the results are still around 30%. Motivated by this rather disappointing

180 8. EVALUATION

outcome, a closer examination showed that the hardware limitations of the cross-

bar together with cumulative data accesses caused tasks to wait. Because the correct

modelling of the hardware properties are not subject of our reverse engineering, we

have repeated the reconstruction with the hardware model as given input, so as to

evaluate CoreTAna’s performance regarding how closely the software model reflects

the actual behaviour. The results are shown in Fig. 8.7 as a dashed box plot. With the

differences mainly being around 1%, these results correspond more to the expected

outcome by being in line with our synthetic benchmark.

Noticeable in the figure is also the time it takes CoreTAna to generate a model

from the trace recording, which is again marked by a blue dot. Although the amount

of events in the trace recording increased by a factor of 13 compared to that in the

previous case study, the resulting computation time of 58,584 s, resp., 16.3 h is only

4 times longer. The reason for this is that the trace recordings that contain a high

level of details and that cover a long period of time reduce the amount of time that

CoreTAna has to spend on analysing the effects after all events have been processed by

adding more information to the decision process. This corresponds to the results of

the synthetic benchmark in Chapter 8.1 where processing a trace recording at system

level takes nearly the same amount of time than analysing one at process level.

Table 8.8.: Detailed Results of Case Study ‘FMTV Challenge 2016’.

Process Difference (DoTA) [%] Computation Time [ms]

Deduced HW Given HW Deduced HW Given HW

Angle_Sync 39.7789340124 0.3384393561 0.192448 0.106616

ISR_1 30.7453931113 6.8977576547 0.052102 0.055416

ISR_10 23.6108101193 1.6424759367 0.052104 0.058124

ISR_11 25.5212024697 2.0535186001 0.055416 0.056922

ISR_2 27.6081764748 1.5509465746 0.071078 0.052404

ISR_3 28.5702782510 5.8641149974 0.065658 0.06686

ISR_4 27.2891897052 1.6163047883 0.058426 0.061138

ISR_5 23.5894187879 0.2756244249 0.057222 0.06144

ISR_6 27.6144606314 1.1682904454 0.044574 0.046982

ISR_7 28.3381694067 2.1841490585 0.046982 0.05361

ISR_8 24.1850153803 1.3252726897 0.06415 0.066258

8.3. INDUSTRIAL CASE STUDIES 181

Process Difference (DoTA) [%] Computation Time [ms]

Deduced HW Given HW Deduced HW Given HW

ISR_9 21.5937426961 5.7907877851 0.066258 0.075594

Task_1000ms 45.3900874549 13.8088965717 0.057824 0.052404

Task_100ms 40.3456555802 1.7714186938 0.057524 0.057524

Task_10ms 40.2935588815 0.8648575138 0.13643 0.118962

Task_1ms 36.8073702601 0.2383956533 0.054512 0.054812

Task_200ms 43.0179164207 13.0182601801 0.442422 0.024778858

Task_20ms 40.3033767057 2.4341276595 0.106916 0.107518

Task_2ms 34.2606232091 0.5635644907 0.060836 0.059932

Task_50ms 39.3525579074 2.9851188616 0.10842 0.102396

Task_5ms 34.1450933199 2.8254274324 0.052402 0.05391

8.3.2. Further Case Study in Telecommunication

This industrial case study describes CoreTAna’s use in the context of an evaluation

project together with a customer from the telecommunication domain. The purpose

of this project was to collect requirements regarding the modelling and simulation

of real-time systems that are specific to the telecommunication domain in order to

estimate the effort required to expand into that domain.

The topic of this project was the analysis of the software for a Long-Term Evolu-

tion (LTE) chipset like it is used in mobile phones. Although this system deals also

with meeting hard real-time requirements, the design of the overall system is totally

different. The system consists of in total 127 ISRs and tasks. However, only 28 of

those are activated periodically. The other processes are chained which means the

periodically activated processes trigger them via inter-process activations they, again,

trigger other processes. To get different activation patterns that way, processes are

not activated every time but only every n-th time by the inter-process activation.

The employed hardware platform is a dual core processor with a frequency of

543MHz for each processing unit. The starting point of the reverse engineering is

a trace recording that covers 30 s of the system’s dynamic behaviour at process level,

i.e., it contains all process events performed by the system during that time. This

resulted in roughly 5.3 ⋅ 106 events and a file of 330MB.

182 8. EVALUATION

0 20 40 60 80 100 120
0%

10%

20%

30%

40%

Processes

D
iff

er
en

ce
[#

]

Figure 8.8.: Results of Telecommunication Case Study. Line chart showing in
blue the differences between each task/ISR in the telecommunication case study
according our distance measure DoTA. The dashed red lines mark the lower and
upper quartile and themedian of the results and the solid red linemarks the result
of the difference measure for the overall system.

The resulting differences between each task and ISR from the original trace re-

cording and one generated when simulating CoreTAna’s reversely engineeredmodel,

which takes CoreTAna roughly 283.7 s, resp., 4.7min to generate, are listed in detail

in Tab. 8.9 and are visualised in Fig. 8.8. There, the differences are ordered from

smallest to largest and go from 0.3% up to 40.9%. Thus, CoreTAna can reverse en-

gineer the dynamic behaviour of some processes quite accurately. Because the afore-

mentioned design in which processes are not activated every time but only every n-th

time by the inter-process activation cannot be reproduced in theAUTOSAR-compliant

model, there are also processes that do not behave fairly similar. This modelling de-

ficit leads to a significant spread of the results. Other than that, the 17% difference

of the overall system and the location of the quartiles (13.7% and 22% vs. 17% and

21% in EMS) are in line with those of the automotive case study EngineManagement

System (EMS).

8.3. INDUSTRIAL CASE STUDIES 183

Table 8.9.: Detailed Results of Case Study ‘Telecommunication’.

Process
Difference

Process
Difference

Process
Difference

(DoTA) [%] (DoTA) [%] (DoTA) [%]

P1 17.56 P44 15.63 P87 15.76

P2 6.82 P45 20.80 P88 7.77

P3 2.35 P46 15.43 P89 15.33

P4 16.37 P47 24.74 P90 15.94

P5 21.45 P48 29.38 P91 15.63

P6 14.41 P49 25.22 P92 21.93

P7 18.54 P50 14.08 P93 20.46

P8 21.29 P51 14.85 P94 13.62

P9 23.64 P52 19.90 P95 4.20

P10 24.58 P53 17.07 P96 24.24

P11 17.40 P54 15.56 P97 20.70

P12 39.69 P55 23.46 P98 0.36

P13 15.17 P56 21.24 P99 1.12

P14 20.90 P57 12.41 P100 30.60

P15 23.16 P58 24.11 P101 36.19

P16 16.61 P59 25.34 P102 17.68

P17 16.76 P60 21.48 P103 16.09

P18 6.17 P61 16.43 P104 16.63

P19 3.53 P62 21.62 P105 4.57

P20 1.42 P63 2.77 P106 2.09

P21 15.45 P64 12.60 P107 2.15

P22 20.20 P65 24.03 P108 2.10

P23 18.20 P66 30.95 P109 9.37

P24 20.16 P67 1.01 P110 3.34

P25 40.89 P68 12.07 P111 24.42

P26 16.06 P69 13.83 P112 27.22

184 8. EVALUATION

Process
Difference

Process
Difference

Process
Difference

(DoTA) [%] (DoTA) [%] (DoTA) [%]

P27 21.84 P70 19.26 P113 19.51

P28 22.30 P71 14.83 P114 20.71

P29 29.22 P72 20.22 P115 10.09

P30 22.49 P73 18.98 P116 17.87

P31 14.82 P74 14.41 P117 16.01

P32 11.34 P75 14.38 P118 27.86

P33 6.41 P76 23.44 P119 36.38

P34 26.57 P77 14.34 P120 6.20

P35 14.77 P78 25.05 P121 22.20

P36 14.45 P79 10.74 P122 29.03

P37 15.54 P80 10.36 P123 22.33

P38 14.61 P81 29.99 P124 15.43

P39 27.74 P82 14.29 P125 22.22

P40 14.34 P83 15.65 P126 14.13

P41 12.98 P84 3.50 P127 13.23

P42 15.05 P85 8.13

P43 17.77 P86 1.34

8.3.3. Summary

The industrial case studies show that CoreTAna is not only capable of handling com-

plex and series systems but also that it can reverse engineer a model of such a system

with an acceptable quality and in a reasonable amount of time. Although trace record-

ings at process level allow one only to get a rough description of a system’s internal

behaviour because of the missing level of detail in the trace, it constitutes the start-

ing point of the reverse engineering process by giving an overview of the system.

Based on the resulting difference of a process calculated by our measure DoTA, the

model can by refined afterwards, e.g., by using a trace recording of a specific process

at system level as input. Although it is technically not possible to record the internal

8.4. REASONING ON THE QUALITY OF A TRACE RECORDING 185

behaviour of an entire industrial system at the moment, the case study of the FMTV

challenge proves that CoreTAna yields a very good representation of the system from

trace recording with the necessary level of detail.

The conclusions of this chapter show that the content of CoreTAna’s input plays

a crucial part for how well a synthesised model reflects the timing behaviour of the

original system, which is why we have a closer look at the quality of trace recordings

next.

8.4. Reasoning on the Quality of a Trace

Recording for Reverse Engineering

The general drawback of reverse engineering is that only as much information can

be deduced as is available in the input. This means in our case that it is not possible

to reproduce the internal behaviour of tasks from trace recordings at process level

because of the missing runnable and data signal events. For this reason, our goal is

to put asmuch information about the system’s runtime behaviour in a trace recording

as possible.

One possibility to do so is to increase the period of time that is covered by a trace

recording as shown in Tab. 8.10 and visualised in Fig. 8.9. There, trace recordings

of the FMTV challenge model are employed to CoreTAna and compared to the traces

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ·104

Trace Length [ms]

FMTV

101.52

101.54

D
iff

er
en

ce
[%

]

Qality of CoreTAna’s Reverse Engineering Trace Variability

10−1

100

D
iff

er
en

ce
[%

]

Figure 8.9.: Comparison of Trace Variation and Quality of CoreTAna’s Reverse
Engineering for the ‘FMTV Challenge 2016’ Model. The blue line denotes the
resulting quality of CoreTAna’s reverse engineering with increasing trace length,
i.e., the result of our measure Distance of Timed Actions (DoTA) for comparing
a trace of the pattern with one generated when simulating CoreTAna’s reversely
engineered model. The red line shows how the information content within the
trace changes over time according DoTA.

186 8. EVALUATION

generated when simulating the synthesised model using our Distance of Timed Ac-

tions (DoTA) measure. With each trace the period of time that is covered is increased

by 333ms (1
1000). The resulting values are depicted in blue in Fig. 8.9 and show that

the quality of the reverse engineering tends to converge towards a limit. This means

that from a certain point on recording for an even longer period does not add fur-

ther information for reverse engineering. Thus, the big challenge is to determine

this point in the trace or, alternatively, to make a statement about the quality of the

synthesised model that can be expected from a given trace recording.

Table 8.10.: Detailed Results of Comparison of Trace Variation and Quality of
CoreTAna’s Reverse Engineering for the ‘FMTV Challenge 2016’ Model.

Length Quality Variation Length Quality Variation

[ms] (DoTA) [%] (DoTA) [%] [ms] (DoTA) [%] (DoTA) [%]

333 35.750679 8658 33.329179 0.438585

666 34.076924 4.648972 8991 33.311732 0.371765

999 33.228809 1.876520 9324 33.256415 0.562073

1332 35.228333 5.405618 9657 33.219371 0.395579

1665 35.088200 2.056216 9990 33.180795 0.424671

1998 34.469732 1.038171 10323 33.221688 0.444274

2331 34.501293 3.108156 10656 33.093740 0.486188

2664 34.057396 0.970886 10989 33.117108 0.089936

2997 34.272702 0.375603 11322 33.165323 0.557543

3330 34.175360 1.143149 11655 33.111601 0.398459

3663 34.367096 0.596195 11988 33.194851 0.157094

3996 34.387209 0.580546 12321 33.144646 0.714682

4329 33.896480 1.368369 12654 33.175625 0.404691

4662 34.028180 0.737704 12987 33.122849 0.126754

4995 34.108547 0.494351 13320 33.024830 0.504356

5328 33.756647 0.973412 13653 33.115016 0.345943

5661 33.658834 0.517732 13986 32.980784 0.114001

5994 33.812701 0.328096 14319 33.123689 0.368636

8.4. REASONING ON THE QUALITY OF A TRACE RECORDING 187

Length Quality Variation Length Quality Variation

[ms] (DoTA) [%] (DoTA) [%] [ms] (DoTA) [%] (DoTA) [%]

6327 33.566830 0.590101 14652 32.987357 0.119663

6660 33.494483 0.578175 14985 32.882363 0.452551

6993 33.566716 0.317032 15318 32.814908 0.568291

7326 33.449075 0.840793 15651 32.801490 0.126521

7659 33.481178 0.426744 15984 32.888858 0.375151

7992 33.456345 0.224319 16317 32.720938 0.527586

8325 33.448162 0.778120 16650 32.780569 0.086768

Huselius [9] tackles this challenge not explicitly but defines a step called ‘Resolu-

tion Analysis’ in his reverse engineering approach, which determines “whether recor-

ded data is sufficient to capture a model of the implementation” [9, p. 63]. This step

analyses the set of trace recordings used for model generation together with the res-

ulting model, and determines how many observations of each event are required for

making probabilistic choices in the model. Afterwards, the trace recordings intended

for validation are checked against this determined threshold. If this check fails, new

traces are recorded that cover a longer period of time until both, the trace recordings

used for generation and validation contain the same amount of information. The big

disadvantage of this approach is that it is performed after the reverse engineering

which consumes a lot of time. Thus, the goal must be to make a statement about the

quality of the reverse engineering solely based on the trace recordings.

A general way for achieving this is proposed by Hamou et al. [80], who define the

entropy of a trace, i.e., the average amount of information contained in the trace.

Various aspects of a trace recording such as the number of different events or repe-

titions and its nesting depth are analysed and used to summarise the complexity of

the trace. Although the authors show that this approach allows one to identify parts

of the trace that perform complex behaviour, the defined entropy measure does not

take any temporal aspects into consideration, which is essential in our case.

Due to this lack of a suitable existing solution for reasoning on the quality of a

trace recording for reverse engineering, we developed a way to do so based on the

DoTA measure. The general idea behind this approach is to take into consideration

how much a trace changes over time. In case of the FMTV challenge example, this

means that the trace is not compared to a trace that is generated when simulating

188 8. EVALUATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 ·104

Purely Peridoic without Communication

0 0.2 0.4 0.6 0.8 1 1.2 ·105

Client Sserver without Reply

0 0.2 0.4 0.6 0.8 1 1.2 ·105

State Machine

0 200 400 600 800 1,000 1,200

Feedback Loop

0 200 400 600 800 1,000 1,200

Amount of time covered by trace [s]

State Machine Feedback Loop

10−4

10−3.5

10−1

100

101

10−1

100

D
iff

er
en

ce
[%

]

10−1

100

10−1.5

10−1

Qality of CoreTAna’s Reverse Engineering Trace Variability

10−5

10−3

10−1

10−2

10−1

100

101

10−2

10−1

100

101

D
iff

er
en

ce
[%

]
10−2

10−1

100

10−4

10−2

100

Figure 8.10.: Comparison of Trace Variation and Quality of CoreTAna’s Reverse
Engineering. The blue line denotes the resulting quality of CoreTAna’s reverse
engineering with increasing trace length, i.e., the result of our Distance of Timed
Actions (DoTA) measure for comparing a trace of the pattern with one generated
when simulating CoreTAna’s reversely engineered model. The red line shows
how the information content within the trace changes over time according to
DoTA.

8.4. REASONING ON THE QUALITY OF A TRACE RECORDING 189

the synthesised model but to the one that covers 333ms less of the system’s temporal

behaviour. Expectedly, the results which are added in red in Fig. 8.9 also converge

towards a limit because at some point in time the trace recording contains already all

possible situations that can be observed during the runtime of a system and, thus, its

information content does not change any more.

To be able to generalise these observations, a larger pool of data is generated.

Therefore, we use trace recordings from each initial model of the common archi-

tectural patterns as defined by the synthetic benchmark. The length of the trace re-

cordings are chosen in such a way that they cover up to 400 hyper-periods of the

system’s internal behaviour. A trace at system level is employed to CoreTAna every

four hyper-periods and the traces generated when simulating the synthesised model

are compared with DoTA. Fig. 8.10 depicts these 100 measured values in blue along

with the continuous changes of trace recordings which are shown in red.

It is noticeable in all the examples that both the red and blue lines converge nearly

in equal measure. Just the amount of difference varies which indicates that there is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

6.67%

13.33%

20%

26.67%

Pearson Correlation Coefficient

F
re

q
u

en
cy

D
en

si
ty

[#
]

Figure 8.11.: Correlation of Trace Variation and Quality Variation of CoreTAna’s
Reverse Engineering. Histogram showing the distribution of results from de-
termining the Pearson correlation coefficient between the continuous variation
of a trace and the quality of CoreTAna’s reverse engineering over time, for all
model variations of the common architectural patterns as defined by our synthetic
benchmark.

190 8. EVALUATION

a linear correlation between the variation of a trace recording and CoreTAna’s cor-

responding results. This means that if a trace changes, the results of the reverse

engineering change alike. As a consequence, one can measure continuously the dif-

ference with our measure DoTA, which can be done at minimal expense even during

trace recording. And once the trace recording shows no substantial change anymore,

also the results of the reverse engineering have reached a local convergence.

To support this theory, we measure the linear correlation between the resulting

quality of CoreTAna’s reverse engineering (blue) and the continuous variation of a

trace (red) by determining the Pearson correlation coefficient [81]. Fig. 8.11 visualises

the corresponding results for all model variations of our common architectural pat-

terns. Despite a few outliers that have a Pearson correlation coefficient of less than

0.4, the histogram proves that there is a clear relationship between the two considered

aspects. Hence, determining how much a trace changes over time with the help of

our Distance of Timed Actions (DoTA) allows one to reason on the quality of a trace

recording for reverse engineering.

Part III.

Summary

9
Conclusions and Outlook

This work investigated the reverse engineering of real-time systemmodels from event

trace recordings. We focused on the applicability to the automotive domain, for mul-

tiple reasons. First, model-based development has experienced gradual acceptance in

the automotive domain over the last years because of the AUTOSAR standard [82].

This has resulted in the development of a variety of tools that work on the basis of

models. Second, the current shift towards multi-core architectures, and the rapid rise

of complexity that comes along with this shift, plays an essential part in contributing

to the increased use of models during the development process. Thirdly, the research

community has already developed a variety of solutions, but none is designed with the

conditions of the automotive domain in mind and, thus, is not applicable there. For

these reasons, we decided to pick up the considerations of an existing solution and to

extend them in such a way that they are applicable to the automotive domain.

Experiences
Not only does the generation of an AUTOSAR-compliant artefact that can be used for

further processing pose a major challenge. Also the fact that any reverse engineering

approachmust fit into the existing automotive development process. For example, the

latest research in reverse engineering from trace recordings makes the assumption

that as many traces as one desires can be produced if necessary, which would actually

mean that the byte code or even the source code is available. This might be feasible

in other domains, but the development in the automotive domain is distributed. The

software architecture and the main functionality is developed by Tier-1 companies,

but some functions of the system are also developed by the OEM itself, which means

that the complete source code is not available at any given time. Furthermore, most

related work assumes that the user spends much effort to achieve good results in the

reverse engineering, e.g., by using a set of trace recordings that allows the system’s

behaviour to be analysed extensively. However, this is not the case in our situation.

194 9. CONCLUSIONS AND OUTLOOK

The customer wishes to use model-based tools and benefit from their results, but it

does not matter how these results are obtained. For this reason, creating an initial

model of a system is not done by the OEM or Tier-1 but rather by the tool vendor

itself, which means that each necessary information to do so has to be requested and,

thus, must demand as little additional effort for the customer as possible.

In general, trace recording is considered improperly in existing solutions. It is, not

only, infeasible to produce traces in any number, as mentioned above, but also that

the system behaviour can be observed and recorded arbitrarily. The reason for assum-

ing the opposite is because most related work considers software tracing. Although

this technique allows one, in principle, to observe any part of the system, source code

is required for doing so. More critical is the fact that each observation of a piece

of information negatively impacts the timing behaviour. The current shift towards

multi-core architectures makes the use of software tracing even worse, because paral-

lelism generates even more information during execution. As a consequence, either

software tracing is only applied to smaller scaled systems or just the start and stop

of tasks are recorded in actual industrial applications. In contrast, hardware tracing

does not alter a system’s execution. However, it requires not only dedicated hardware

but also deep knowledge in the applied tracing technique. From our experience, es-

pecially the latter in not available in many OEM and Tier-1 companies. This is due to

the complexity of tracing and due to the fact that there is rarely a case of application

in daily use that requires such a deep knowledge.

Results
In summary, this thesis presented two major scientific contributions in the area of

reverse engineering in the automotive domain:

• CoreTAna: an automatic synthesis of an AUTOSAR-compliant model,

• DoTA: a measure for quantifying the difference between two trace recordings

regarding the recorded timing behaviour.

These contributions include methods, implementations, and evaluations for our pro-

posed reverse engineering approach, which is particularly tailored to the AUTOSAR

methodology [82]. The main focus of this work is set on the industrial applicability

of the contributions, i.e., assumptions that correspond to reality are considered in

order to make the developed solution feasible. CoreTAna not only builds upon an

existing approach, namely the one Huselius defined in [9], but is also built upon well

established techniques such as Eclipse [83] and constraint programming [84]. Thus,

195

it fits seamlessly into the tool environment of the automotive development process in

which such tools and techniques are in daily use. More important is the fact that the

user gets additional confidence in the approach and its results in this way. Another

achievement of CoreTAna is that it generates an AUTOSAR-compliant model, which

paves the way for interoperability to a multitude of existing tools such as timing sim-

ulators or code generators because there is no need for specific adaptions. This has a

major impact on companies such as newly emerged business ventures or ones from

a different domain like aviation or automation because they can build upon this solu-

tion in order to get easier access to the automotive domain. In addition, the model

is not closed or fixed to a special purpose but can be processed further and enriched

with additional information.

CoreTAna and, especially, its implemented algorithms were assessed extensively

in different ways. At first, they are evaluated on trace recordings from simulation

models. Each model represents a common architectural pattern in the real-time soft-

ware domain including feasible variations for the patterns. Besides this, CoreTAna

has evaluated on simulation models that describe fictive but realistic systems with

similar analysis challenges as observed in industrial systems. Finally, four indus-

trial case studies illustrated CoreTAna’s performance in actual customer projects. All

three evaluation scenarios produced consistent results, which allow us to make the

following general conclusions. In case trace recordings at system level are used as in-

put and the system does not utilise any characteristics that are not supported by our

reverse engineering approach, CoreTAna is able to create an AUTOSAR model that

reflects the actual timing behaviour very precisely. The differences that still arise are

so small that they do not matter to the intended use cases such as timing simulation

or optimisation. The results turn out to be even more precisely if just the timing be-

haviour of individual runnables is considered and not that of the complete system or

processes. By reducing the information in the trace to process level, the differences

of the individual processes turned out to be either still very small or too high to use

the results in a reasonable way. Nevertheless, a lot of valuable knowledge is acquired

by CoreTAna, which can be used directly for documentation or as the foundation for

model improvements with additional traces. Noticeable is the fact that adding in-

formation about the called functions, which is represented by the case study of the

steering system, did not have a noticeable impact on how well the generated model

reflects the actual timing behaviour of the system. The length and, thus, the amount

of information contained within a trace recording plays a crucial role for the qual-

196 9. CONCLUSIONS AND OUTLOOK

ity of CoreTAna’s results, too. If a long period of the system’s execution is recorded

and used as input reflects the actual timing behaviour roughly five times more accur-

ate. Regarding scalability, it takes CoreTAna to reversely engineer a model increases

roughly linearly with the amount of events in a trace recording due to the fact that

each event has to be processed once. Finally, some evaluation scenarios also high-

lighted CoreTAna’s drawbacks. Because not only didmissing information in the trace

recording lead to large differences between the trace recordings of the actual system

and those generated by simulating the synthesisedmodel, but so did CoreTAna’s lack

in reversely engineering characteristics of the hardware platform such as thememory

management unit. As a consequence, the resulting differences turned out to be too

high to be useful for further processing. Our approach is aware of this drawback and

can eliminate it if the user gives CoreTAna existing knowledge such as a model of the

used hardware as input for processing the trace recording.

CoreTAna initiated our second main scientific contribution, DoTA, due to of the

need to evaluate the quality of our reverse engineering approach. By choosing the

Euclidean distance as the basis of our measure, DoTA is designed in an extensible

way, which means that it can be customised arbitrarily by available real-time metrics.

This is necessary if the trace recording lacks some information like the activation

events, which are essential to determine activate-to-activate times. Another advant-

age of the Euclidean Distance is that the results of our measure show a predictable

behaviour. The common architectural patterns in the real-time software domain and

especially the feasible variations for each pattern that were elaborated for CoreTAna’s

evaluation confirmed this. Depending on how many entities and how many metrics

are affected by a change, our measure yielded a corresponding value. For example,

increasing the number of queued activation requests has an bigger impact on the pat-

terns ‘Client-Server without Reply’ and ‘State Machine’ because they consist of only

two tasks than the others that have at least five tasks. Our evaluation also showed that

the measures of descriptive statistics, on which we applied the Euclidean distance, is

a suitable method to determine even slight variations in the trace recordings such as

the fluctuation of execution times. Also the quadratic characteristic of the used Euc-

lidean distance helped us to highlight small changes. The assessment of CoreTAna’s

reverse engineering qualities is not the only application for which this metric can be

used. During development, we recognised that DoTA provides a helpful way to assess

changes between different versions of some real-time software, which allows one to

comprehend their impact. Furthermore, we built DoTA into our internal trace re-

197

cording process, where our measure successfully checks the consistency of changes

to trace configurations.

Summary
As a summary, the three research questions presented in Chapter 1.2 can be answered

by the five formal contributions of this thesis:

• Question Q1: To what extent is it possible to automatically synthesise an AUTO-

SAR-compliant model of a real-time system that covers the system’s temporal beha-

viour based on event trace recordings?

Answer: This is shown by the algorithms defined in this work and implemen-

ted by CoreTAna (Contribution C1).

• Question Q2: Can a synthesised model be validated with regards to the extent in

which its representation reflects the temporal behaviour of the corresponding actual

system?

Answer: On the one hand, it is possible by applying our defined approach that

employs a model-based timing simulation to verify whether the simulation

traces of the reversely engineered model and the hardware traces of the sys-

tem under investigation show similar temporal behaviour (Contribution C2).

On the other hand, it can be done by using our DoTA measure that expresses

the accordance of two sample event trace recordings with respect to their rep-

resented temporal behaviour (Contribution C3).

• Question Q3: To what extent is an approach for the automatic model synthesis of

a real-time system from event trace recordings applicable to industrial projects in the

automotive domain?

Answer: CoreTAna is an extensible realisation of the developed algorithms

to automatically synthesise a probabilistic system model from event trace re-

cordings that fits well within the AUTOSAR development process (Contribu-

tion C4). The presented case studies demonstrated not only the correctness

of the developed algorithms but also the applicability and usefulness of the

implementation for actual industrial projects (Contribution 5).

Although it has been proven that the proposed reverse engineering approach is

ready to generate a model that is accurate enough to serve as documentation of a sys-

tem’s timing behaviour or to simulate and optimise the timing of a real-time system,

there are further considerations possible, which are discussed next.

198 9. CONCLUSIONS AND OUTLOOK

Future Work
We mentioned the drawback of our solution, namely that characteristics that are not

supported by CoreTAna’s reverse engineering algorithms result in high differences

between the trace recordings of the actual system and those generated by simulating

the synthesised model. Hence, applying such trace recordings to CoreTAna, e.g., one

from a system whose communication is limited by a cross bar leads to poor models.

The reason for this lies in the foundation of our approach. To give the users additional

confidence in the results of CoreTAna, we decided to adopt a heuristic approach for

our algorithms instead of using statistical techniques. This means that the AUTO-

SAR specification was converted to an algorithm for every element in the model that

is reversely engineered by CoreTAna. This is possible because the standard not only

consists of a well-definedmeta-model but also of detailed documents that describe the

semantics and constraints for the individual model elements. However, AUTOSAR

has reached such a large scale since the release of version 3.0 in 2007 in consequence

of the multitude of development steps that have to be covered and of the backward

compatibility that has to be ensured and continues to grow further with every release

that it would take an immense effort to cover the entire standard. For this reason, we

propose to combine our reverse engineering algorithms with a meta-heuristic optim-

ization algorithm [85] in the future. First, a model should be synthesised based on

the existing knowledge from the AUTOSAR specifications, which conveys the essen-

tial confidence in the model. After that, an optimisation is started that tries to find a

model whose simulation trace is closer to the actual timing behaviour of the system,

by modifying individual characteristics of the model such as the task priorities. Such

a search strategy allows one to further improve the results from a heuristic without

loosing confidence in them.

Another aspect that has to be considered in more detail in the future is the re-

verse engineering of the hardware system on which the software is executed. The

case study of the FMTV challenge in Chapter 8.3.1 highlights this fact, in which the

accordance of the generated model to the actual timing behaviour of the system im-

proved from 68 to 98.4% by simply adding information on the hardware platform.

Especially, the design of the hardware, including the location of memories and their

connection to the processing cores, has a crucial impact on the timing behaviour of

the system. Reversely engineering these hardware characteristics poses a major chal-

lenge because of the missing details on the internals of the processing unit in the

trace recording. Thus, all aspects of the hardware platform have to be inferred from

199

existing information such as variations in the execution times. However, this also

implies that all real-time metrics have to be adapted such that the overhead produced

by the hardware is not included any more.

With the current progress in artificial intelligence and machine learning, another

possible future research topic is the definition of an approach that does not completely

rely on heuristics but that rather deduces information. This could, for example, en-

able the synthesis of model parts such as data dependencies for which usually a trace

recording at system level is required, from a trace at process level. But there are also

some model parts of the AUTOSAR model, e.g., design patterns such as a client-

server communication or software components that are currently not considered be-

cause they cannot be identified clearly in a heuristic manner and, thus, would require

the use of learning algorithms or statistical models.

201

Bibliography

[1] D. Kum, G.-M. Park, S. Lee and W. Jung, “AUTOSAR Migra-

tion from Existing Automotive Software”, in Intl. Conf. on Control,

Automation and Systems, IEEE, 2008, pp. 558–562.

[2] S. Anssi Saoussen and Tucci-Piergiovanni, S. Kuntz and F. Ger-

ard Sebastien and Terrier, “Enabling Scheduling Analysis for

AUTOSAR Systems”, in Intl. Symp. on Object/Component/Service-

oriented Real-time Distributed Computing, IEEE, 2011, pp. 152–

159.

[3] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M.

Mucha and J. Mottok, “Optimizing the Task Allocation Step for

Multi-Core Processors within AUTOSAR”, in Intl. Conf. on Ap-

plied Electronics, IEEE, 2013, pp. 247–252.

[4] J. Kraft, “Enabling Timing Analysis of Complex Embedded Soft-

ware Systems”, Dissertation, Mälardalen University, 2010.

[5] M. Krogmann Klaus and Kuperberg and R. Reussner, “Using

Genetic Search for Reverse Engineering of Parametric Behavior

Models for Performance Prediction”, IEEE Trans. Softw. Eng.,

vol. 36, pp. 865–877, 6 2010.

[6] L. Thiele, S. Chakraborty and M. Naedele, “Real-Time Calculus

for Scheduling Hard Real-Time Systems”, in Intl. Symposium on

Circuits and Systems, vol. 4, Geneva, CH: IEEE,May 2000, pp. 101–

104.

[7] H. M. Kienle, J. Kraft and H. A. Müller, “Software Reverse En-

gineering in the Domain of Complex Embedded Systems”, in Re-

202 BIBLIOGRAPHY

verse Engineering - Recent Advances and Applications, A. C. Telea,

Ed., InTech, Mar. 2012, Ǔǝǌǘ: 978-953-51-0158-1.

[8] K. Krogmann, “Reconstruction of Software Component Architec-

tures and Behaviour Models using Static and Dynamic Analysis”,

Dissertation, Karlsruher Institut für Technologie, 2012.

[9] J. Huselius, “Reverse Engineering of Legacy Real-Time Systems:

An Automated Approach Based on Execution-Time Recording”,

Dissertation, Mälardalen University, 2007.

[10] P. Altenbernd, A. Ermedahl, B. Lisper and J. Gustafsson, “Auto-

matic Generation of TimingModels for Timing Analysis of High-

Level Code”, in Intl. Conf. on Real-Time Networks and Systems, IR-

CCyN, 2011.

[11] F. Ciccozzi, “From Models to Code and Back: A Round-trip Ap-

proach for Model-driven Engineering of Embedded Systems”,

Dissertation, Mälardalen University, 2014.

[12] J. Andersson, J. Huselius, C. Nörström and A. Wall, “Extract-

ing Simulation Models from Complex Embedded Real-Time Sys-

tems”, in Intl. Conf. on Software Engineering Advances, IEEE, 2006.

[13] A. Sailer, M. Deubzer, G. Lüttgen and J. Mottok, “Comparing

Trace Recordings of Automotive Real-time Software”, in Intl.

Conf. on Real-Time Networks and Systems, ACM, 2017.

[14] A. Sailer, S. Schmidhuber, M. Hempe, M. Deubzer and J. Mot-

tok, “DistributedMulti-Core Development in the Automotive Do-

main – A Practical Comparison of ASAMMDX vs. AUTOSAR vs.

AMALTHEA”, in First Multi-Core Safe and Software-intensive Sys-

tems Improvement Community Workshop, VDE, 2016.

BIBLIOGRAPHY 203

[15] A. Sailer, M. Deubzer, G. Lüttgen and J. Mottok, “CoreTAna: A

Trace Analyzer for Reverse Engineering Real-Time Software”, in

Intl. Conf. on Software Analysis, Evolution, and Reengineering, IEEE,

2016, pp. 17–28.

[16] A. Sailer, “Towards an Automated Reverse Engineering of Design

Models from Trace Recordings”, in Jahrestagung der Gesellschaft

für Informatik, GI, 2014, pp. 2233–2245.

[17] A. Sailer, S. Schmidhuber, M. Deubzer and J. Mottok,

“AMALTHEA – Plattform für kontinuierliche, modellbasierte

Entwicklung”, in Embedded Software Engineering Kongress,

ELEKTRONIKPRAXIS Vogel Business Media GmbH & Co.

KG und MicroConsult Microelectronics Consulting & Training

GmbH, 2013, pp. 538–544.

[18] P. Harrer, “Development of an Algorithm for Comparing Traces”,

Master’s Thesis, Hochschule Nordhausen, 2016.

[19] F. Martin, “Transformation of Hardware Traces to System Traces

for Embedded Multi-Core Real-Time Systems”, Master’s Thesis,

Ostbayerische Technische Hochschule (OTH) Regensburg, 2015.

[20] X. Tang, “Trace-based Timing Verification of Real-Time Sys-

tems”, Master’s Thesis, University of Shanghai for Science and

Technology, 2014.

[21] M. Alfranseder, M. Mucha, S. Schmidhuber, A. Sailer, M.

Niemetz and J. Mottok, “A Modified Synchronization Model for

Dead-lock Free Concurrent Execution of Strongly Interacting

Task Sets in Embedded Systems”, in Intl. Conf. on Applied Elec-

tronics, IEEE, 2013, pp. 13–18.

204 BIBLIOGRAPHY

[22] J. Mottok, M. Alfranseder, S. Schmidhuber, M. Mucha and

A. Sailer, “How to Improve the Reactiveness and Efficiency of

Embedded Multi-core Systems by Use of Probabilistic Simula-

tion and Optimization Techniques”, in NATO Advanced Research

Workshop on Improving Disaster Resilience and Mitigation – IT

Means and Tools, Springer, 2013, ch. 16, pp. 253–268.

[23] A. W. Biermann, “On the Inference of Turing Machines from

Sample Computations”, Artificial Intelligence, vol. 3, pp. 181–198,

1972.

[24] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen and

R. Koschke, “A Systematic Survey of Program Comprehension

through Dynamic Analysis”, Trans. Softw. Eng., vol. 35, no. 5,

pp. 684–702, 2009.

[25] J. Huselius and J. Andersson, “Model Synthesis for Real-Time

Systems”, in European Conf. of Software Maintenance and Reen-

gineering, Manchester, UK: IEEE, 2005, pp. 52–60.

[26] J. Huselius, H. Hansson and S. Punnekkat, “Presenting: An

Automated Process for Model Synthesis”, Mälardalen University,

Västeras, SE, MRTC Report, Oct. 2005.

[27] J. Huselius, J. Andersson, H. Hansson and S. Punnekkat, “Auto-

matic Generation and Validation of Models of Legacy Software”,

in Intl. Conf. on Embedded and Real-Time Computing Systems and

Applications, Sydney, AU: IEEE, 2006, pp. 342–349.

[28] J. Andersson, “Modeling the Temporal Behavior of Complex Em-

bedded Systems: A Reverse Engineering Approach”, Licentiate

Thesis, Mälardalen University, 2005.

BIBLIOGRAPHY 205

[29] J. Sifakis, S. Tripakis and S. Yovine, “Building Models of Real-

Time Systems from Application Software”, Proc. IEEE, vol. 91,

no. 1, pp. 100–111, 2003.

[30] S. Chakraborty, S. Künzli and L. Thiele, “A General Framework

for Analysing System Properties in Platform-Based Embedded

System Designs”, in Design, Automation and Test in Europe, Mu-

nich, DE: IEEE, 2003.

[31] E. Wandeler, “Modular Performance Analysis and Interface-

Based Design for embedded Real-Time Systems”, Dissertation,

Swiss Federal Institute of Technology (ETH), 2006.

[32] F. Ciccozzi, A. Cicchetti and M. Sjödin, “Towards a Round-Trip

Support for Model-Driven Engineering of Embedded Systems”,

in EUROMICRO Copnf. Series on Software Engineering and Ad-

vanced Applications, Oulu, FI: IEEE, 2011.

[33] F. Ciccozzi, M. Saadatmand, A. Cicchetti and M. Sjödin, “An

Automated Round-Trip Support Towards Deployment Assess-

ment in Component-based Embedded Systems”, in Intl. ACM

Sigsoft Symposium on Component-Based Software Engineering, Van-

couver, CA: ACM, 2013.

[34] A. Terrasa and G. Bernat, “Extracting Temporal Properties from

Real-Time Systems by Automatic Tracing Analysis”, in Intl. Conf.

on Embedded and Real-Time Computing Systems and Applications,

IEEE, 2004, pp. 466–485.

[35] M. Auguston, “Building Program Behavior Models”, in Engin-

eering Automation for Reliable Software - Interrim Progress Re-

port, Naval Postgraduate School Monterey, Ed., Research Triangle

Park, NC: US. Army Research Office, 2000, pp. 35–55.

206 BIBLIOGRAPHY

[36] D. Murphy Gail C. and Notkin, “Reengineering with Reflexion

Models: A Case Study”, Computer, vol. 30, pp. 29–37, 8 1997.

[37] D. Murphy Gail C. and Notkin and K. J. Sullivan, “Software Re-

flexion Models: Bridging the Gap between Design and Imple-

mentation”, Transactions on Software Engineering, vol. 27, pp. 364–

380, 4 2001.

[38] A. van Hoorn, J. Waller and W. Hasselbring, “Kieker: A Frame-

work for Application PerformanceMonitoring and Dynamic Soft-

ware Analysis”, in Intl. Conf. on Performance Engineering, Boston,

MA: ACM, 2012.

[39] J. E. Cook andA. L.Wolf, “Automating ProcessDiscovery through

Event-Data Analysis”, in Intl. Conf. on Software Engineering, IEEE,

1995, pp. 73–73.

[40] J. E. Cook and A. L. Wolf, “Event-Based Detection of Con-

currency”, SIGSOFT Software Engineering Notes, vol. 23, no. 6,

pp. 35–45, 1998.

[41] W. van der Aalst, T. Weijters and L. Maruster, “WorkflowMining:

Discovering Process Models from Event Logs”, Trans. on Know-

ledge and Data Engineering, vol. 16, pp. 1128–1142, 9 2004.

[42] L. Wen, J. Wang, W. M. van der Aalst, B. Huang and J. Sun, “A

novel Approach for Process Mining Based on Event Types”, J. of

Intelligent Information Systems, vol. 32, no. 2, pp. 163–190, 2009.

[43] J. Kraft, A. Wall and H. Kienle, “Trace recording for embedded

systems: Lessons learned from five industrial projects”, in Intl.

Conf. on Runtime Verification, ser. Lecture Notes in Computer Sci-

ence, St. Julians, MT: Springer, Nov. 2010, pp. 315–329.

BIBLIOGRAPHY 207

[44] S. Künzli and L. Thiele, “Generating Event Traces Based on Ar-

rival Curves”, in Conf. on Measurement, Modelling and Evaluation

of Computer and Communication Systems, Nuremberg: VDE, Mar.

2006, pp. 1–18.

[45] “Der neue Maybach”, ATZ/MTZ extra, p. 125, 2002.

[46] I. Foster, Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering, 1st ed. Addison-Wesley,

1995, Ǔǝǌǘ: 0-201-57594-9.

[47] B. Blaise. (2018). Introduction to Parallel Computing. Last Ac-

cessed: February 18, 2018, [Online]. Available: https : / /
computing.llnl.gov/tutorials/parallel_comp/.

[48] L. Michel, T. Flaemig, D. Claraz and R. Mader, “Shared SW devel-

opment in multi-core automotive context”, in European Congress

on Embedded Real Time Software and Systems (ERTS 2016), 2016.

[49] M. Deubzer, “Robust Scheduling of Real-Time Applications on

Efficient Embedded Multicore Systems”, Dissertation, Technis-

che Universität München, 2011.

[50] A. Burns and A. Wellings, Real-Time Systems and Programming

Languages, 3rd ed. Pearson Education Limited, 2001.

[51] “Encyclopedia of Mathematics”, in, M. Hazewinkel, Ed., 1st ed.

Springer Science+Business Media B.V., 1994, ch. Weibull distri-

bution, Ǔǝǌǘ: 978-1-55608-010-4.

[52] “Encyclopedia of Mathematics”, in, M. Hazewinkel, Ed.,

1st ed. Springer Science+Business Media B.V., 1994, ch. Beta-

distribution, Ǔǝǌǘ: 978-1-55608-010-4.

[53] ASAM e.V., ASAMAEMDX –Metadata Exchange Format for Soft-

ware Module Sharing, Version 1.3.0, Jun. 2015.

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

208 BIBLIOGRAPHY

[54] AUTOSAR, Software Component Template, V 4.2.2, Jul. 2015.

[55] AUTOSAR, Specification of ECU Resource Template, V 4.2.2, Jul.

2015.

[56] AUTOSAR, Specification of Timing Extensions, V 4.2.2, Jul. 2015.

[57] AMALTHEA, AMALTHEA Documentation, V1.1.1, Nov. 2015.

[58] Eclipse Foundation. (2018). Application Platform Project forMul-

tiCore (APP4MC). Last Accessed: February 26, 2018, [Online].

Available: https://www.eclipse.org/app4mc/.

[59] Timing-Architects Embedded Systems GmbH. (2016). BTF-

Specification (Version 2.1.5). Last Accessed: July 13, 2017, [On-

line]. Available: https://www.eclipse.org/app4mc/docu/
standards/TA_BTF_Specification_2.1.5.pdf.

[60] D. Ferrari, Computer systems performance evaluation, 1st ed. Pren-

tice Hall, 1978, Ǔǝǌǘ: 0-13-165126-9.

[61] S. Rafiq and A. Schmidt, “Systematic Modeling of Workflows

in Trace-Based Software Debugging and Optimization”, in Intl.

Conf. on Software Engineering Advances, Venice, IT: IARIA, Oct.

2013, pp. 241–248.

[62] J. Trümper, S. Voigt and J. Döllner, “Maintenance of Embedded

Systems: Supporting Program Comprehension Using Dynamic

Analysis”, in Intl. Workshop on Software Engineering for Embedded

Systems, Zurich, CH: IEEE, Jun. 2012, pp. 58–64.

[63] International Organization for Standardization, “Road vehicles -

Functional safety”, no. ISO 26262, Nov. 2011.

https://www.eclipse.org/app4mc/
https://www.eclipse.org/app4mc/docu/standards/TA_BTF_Specification_2.1.5.pdf
https://www.eclipse.org/app4mc/docu/standards/TA_BTF_Specification_2.1.5.pdf

BIBLIOGRAPHY 209

[64] Stahleder, Elmar. (2005). Debugger mit Rückspiegel - Trace Tech-

niken im Überblick. Last Accessed: November 12, 2017, [On-

line]. Available: http://www.lauterbach.com/publications/
trace_methoden_d.pdf.

[65] AUTOSAR, Specification of Operating System, V 4.2.2, Jul. 2015.

[66] OSEK/VDX, Operating System Specification, Version 2.2.3, Jun.

2005.

[67] AUTOSAR, Specification of RTE, V 4.2.2, Jul. 2015.

[68] A. Hamann, D. Ziegenbein, S. Kramer and M. Lukasiewycz.

(2016). 7th Intl. Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems – Verification Challenge.

Last Accessed: March 24, 2017, [Online]. Available: https : / /
waters2016.inria.fr/challenge/.

[69] G. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, 3rd ed. Springer, 2011.

[70] Timing-Architects Embedded Systems GmbH. (2016). TA Tool-

suite Version 16.03.0. TA Academic & Research License Program.

Last Accessed: March 24, 2017, [Online]. Available: http://www.
timing-architects.com.

[71] B. Rüger,Test- und Schätztheorie – Band II: Statistische Tests, 1st ed.

Oldenburg, 2002, Ǔǝǌǘ: 3-486-25130-9.

[72] AUTOSAR, Specification of BSW Module Description Template, V

4.2.2, Jul. 2015.

[73] Y. Lu, T. Nolte, I. Bate, J. Kraft and C. Norström, “Assessment

of Trace-Differences in Timing Analysis for Complex Real-Time

Embedded Systems”, in Intl. Symposium on Industrial Embedded

Systems, Västeras, SE: IEEE, Jun. 2011, pp. 284–293.

http://www.lauterbach.com/publications/trace_methoden_d.pdf
http://www.lauterbach.com/publications/trace_methoden_d.pdf
https://waters2016.inria.fr/challenge/
https://waters2016.inria.fr/challenge/
http://www.timing-architects.com
http://www.timing-architects.com

210 BIBLIOGRAPHY

[74] “Handbook of Simulation: Principles, Methodology, Advances,

Applications, and Practice”, in, J. Banks, Ed., 1st ed. Wiley,

1998, ch. 10) Verification, Validation and Testing, Ǔǝǌǘ: 978-0-471-

13403-9.

[75] R. G. Sargent, “Verification and Validation of Simulation Mod-

els”, in Winter Simulation Conf., Washington, D.C.: IEEE, Dec.

2007, pp. 124–137.

[76] A.M. Law, “How to Build Valid and Credible SimulationModels”,

inWinter Simulation Conf., Austin, TX: IEEE, Dec. 2009, pp. 24–

33.

[77] J. Huselius, J. Kraft, H. Hansson and S. Punnekkat, “Evaluating

the Quality of Models Extracted from Embedded Real-Time Soft-

ware”, in Intl. Conf. andWorkshops on the Engineering of Computer-

Based Systems, Tucson, AZ: IEEE, 2007, pp. 577–585.

[78] A. V. Miranskyy, M. Davison, M. R. Reesor and S. S. Murtaza,

“Using Entropy Measures for Comparison of Software Traces”,

Information Sciences, vol. 203, pp. 59–72, 2012.

[79] F. Nemati, J. Kraft andC. Norström, “Validation of Temporal Sim-

ulation Models of Complex Real-Time Systems”, in Intl. Com-

puters, Software and Applications Conf., Turku, FI: IEEE, Jul. 2008,

pp. 1335–1340.

[80] A. Hamou-Lhadj, “Measuring the Complexity of Traces Using

Shannon Entropy”, in Intl. Conf. on Information Technology: New

Generations, IEEE, 2008, pp. 489–494.

[81] “Encyclopedia of Mathematics”, in, M. Hazewinkel, Ed., 1st ed.

Springer Science+Business Media B.V., 1994, ch. Pearson

product-moment correlation coefficient, Ǔǝǌǘ: 978-1-55608-010-

4.

BIBLIOGRAPHY 211

[82] AUTOSAR,Methodology, V 4.2.2, Jul. 2015.

[83] B. Steppan, Eclipse Rich Clients und Plug-ins: Modulare Desktop-

Anwendungen mit Java entwickeln, 1st ed. Hanser, 2015, Ǔǝǌǘ: 978-

3-446-43172-0.

[84] P. Hofstedt and A. Wolf, Einführung in die Constraint-

Programmierung. Grundlagen, Methoden, Sprachen, Anwendungen,

1st ed. Springer, 2007, Ǔǝǌǘ: 978-3-540-68194-6.

[85] “Artificial Intelligence: A Modern Approach”, in, S. Russel and P.

Norvig, Eds., 3rd ed. Pearson, 2016, ch. Local Search Algorithms

and Optimization Problems, Ǔǝǌǘ: 978-1292153964.

ACRONYMS 213

Acronyms

χ2 Test Chi-squared Test, see also Glossary: Chi-squared Test.

APP4MC Application Platform Project for Multi-Core, see also Glossary: APP4MC.

ASAM Association for Standardization of Automation and Measuring Systems.

ATDB AMALTHEA trace database.

AUTOSAR AUTomotive Open System ARchitecture, see also Glossary: AUTOSAR.

BTF Best Trace Format, see also Glossary: BTF.

CoreTAna Core Trace Analyser, see also Glossary: CoreTAna.

CSP Constraint Satisfaction Problem, see also Glossary: CSP.

CSV comma-separated values.

DoTA Distance of Timed Actions, see also Glossary: DoTA.

ECU Electronic Control Unit.

ET Execution Time, see also Glossary: ET.

GET Gross Execution Time.

ISR Interrupt Service Routine.

K-S Test Kolmogorov-Smirnov Test, see also Glossary: Kolmogorov-Smirnov Test.

LCM least common multiple.

MDX Model Data Exchange Format, see also Glossary: MDX.

NET Net Execution Time.

OEM Original Equipment Manufacturer, see also Glossary: OEM.

OS Operating System.

PIC Population, Imperfectness, or Complexity.

RT Response Time, see also Glossary: RT.

214 ACRONYMS

RTE Runtime Environment.

SoD Sum of Divergence, see also Glossary: Sum of Divergence.

TA Timing-Architects.

WCET Worst Case Execution Time.

GLOSSARY 215

Glossary

AMALTHEA is a data model originally defined by the ITEA research projects AMAL-

THEA and AMALTHEA4public. It is maintained within the Eclipse project

APP4MC and focuses on design, implementation and optimization of soft-

ware for multi- and many-core real-time systems.

APP4MC is an open source project hosted by the Eclipse Foundation. Goal of the

project is to develop a platform for engineering embedded multi- and many-

core software systems in order to support the interoperability and extensibility

and to unify data exchange in cross-organizational projects.

AUTOSAR is a cooperation of automotive companies that aims to improve complex-

ity management of integrated E/E architectures though model-based develop-

ment. They standardise a software architecture and methodology to increase

reuse and exchangeability of software modules between OEMs and suppliers.

BTF is a comma-separated values (CSV)-based format for representation of event-

traces in ASCII. It is designed for analysing the behaviour of a system in an

efficient and chronologically correctmanner in order to apply timing, perform-

ance, or reliability evaluations. The standard was initially defined by Contin-

ental Automotive GmbH and is now publicly available on the Eclipse APP4MC

website.

Chi-squared Test is also written as χ2 Test and is a statistical goodness-of-fit test that

evaluates how much an observed frequency distribution differs from a theor-

etical distribution.

CoreTAna is a tool that derives an AUTOSAR-compliant model of a real-time system

by conducting dynamic analysis using trace recordings.

CSP is a mathematical definition of a solution space that is limited by a number of

constraints.

DoTA is a measure based on the Euclidean distance that determines the difference

between trace recordings based on real-time metrics..

ET defines the time interval between the start and the termination of a process. Its

two manifestations gross and net execution time distinguish whether a pro-

cess was actually executing on a core or not.

216 GLOSSARY

Kolmogorov-Smirnov Test is also known as K-S Test and is a statistical goodness-of-

fit test that evaluates whether a random variable follows a specific statistical

distribution.

MDX is a model for data management and documentation standardised by the Asso-

ciation for Standardization of Automation and Measuring Systems (ASAM).

OEM refers in the automotive supply chain to a company that is manufacturing cars.

PATRICIA Trie PATRICIA (Practical Algorithm to Retrieve Information Coded in Al-

phanumeric) trie, which is also know as radix trie or compact prefix tree, is an

optimised data structure for retrieving strings with a common prefix. .

RT defines the time interval between the activation and the termination of a process.

Runnable is also known as Runnable Entity and is used interchangeably to software

function in automotive terminology. It represents a sequence of instructions

which can smallest unit of a software component that can be schedules inde-

pendently.

Sum of Divergence is a measure defined by J. Huselius that determines the differ-

ence between two series of sampled response times.

TA Tool Suite is collection of tools developed by Timing-Architects Embedded Sys-

tems GmbH for designing, developing and verifying embedded multi- and

many-core systems or trace recording.

Tier-1 refers in the automotive supply chain to a company that supplies parts or sys-

tems directly to OEMs.

Trace or trace recording is a sequence of events that have been detected and stored

during runtime of a system for later off-line analysis.

LIST OF FIGURES 217

List of Figures

1.1. Research Method . 7

3.1. Schematic Overview of ECUs in a Luxury Car from Year 2002 31

3.2. PCAM Method as originally introduced by Foster 33

3.3. Functional Decomposition . 34

3.4. Data Flow between Runnables. 35

3.5. Timing Constraints to annotate Data Flow. 36

3.6. Execution Order of Runnables. 36

3.7. Need for Data Stability and Coherency. 37

3.8. Pareto-optimal Solutions . 39

3.9. Screenshot of Simulation Results in TA Simulator. 41

3.10. Screenshot of Optimisation Results in TA Optimizer. 42

4.1. Hardware Model . 47

4.2. Process Model . 48

4.3. Call Graph . 51

4.4. Input–Process–Output (IPO) Model of a Process 52

4.5. Constant Value . 53

4.6. Uniform Distribution . 54

4.7. Normal/Gauss Distribution . 54

4.8. Weibull Distribution . 55

4.9. Beta Distribution . 55

4.10. Inter-process Stimulus . 57

4.11. Single Stimulus . 57

4.12. Periodic Stimulus . 58

4.13. Sporadic Stimulus . 59

4.14. Arrival Curve . 60

4.15. Software System Model of ASAM MDX 63

4.16. AUTOSAR Configuration Descriptions 65

4.17. Overview of the contents of the AMALTHEA meta-model 67

5.1. Bus Trace . 79

5.2. Flow Trace . 80

218 LIST OF FIGURES

5.3. On-Chip Trace . 81

5.4. Process State Model . 84

5.5. Runnable State Model . 85

5.6. Semaphore State Model . 87

5.7. Entity-Relationship Model of ATDB . 91

5.8. Gantt Chart of Trace Example . 93

6.1. CoreTAna’s Software Design . 98

6.2. Gantt Chart of Trace Example for Showing CoreTAna’s Algorithms . . 105

7.1. Trace Comparison . 129

7.2. Client-Server without Reply . 132

7.3. State Machine . 133

7.4. Feedback Loop . 134

7.5. State Machine Feedback Loop . 136

7.6. DoTA Approach . 143

7.7. Validation Results for DoTA . 146

7.8. Results for Use Case ‘Product Family’ . 147

7.9. Results for Use Case ‘Trace Check’ . 149

8.1. Results of CoreTAna for ‘Purely Periodic without Communication’ . . 153

8.2. Results of CoreTAna for ‘Client-Server without Reply’ 157

8.3. Results of CoreTAna for ‘State Machine’ 160

8.4. Results of CoreTAna for ‘Feedback Loop’ 164

8.5. Results of CoreTAna for ‘State Machine Feedback Loop’ 167

8.6. Results from Randomly Generated Systems 171

8.7. Results of Automotive Case Studies . 176

8.8. Results of Telecommunication Case Study 182

8.9. Comparison of Trace Variation and Quality of CoreTAna’s Reverse En-

gineering for the ‘FMTV Challenge 2016’ Model 185

8.10. Comparison of Trace Variation and Quality of CoreTAna’s Reverse En-

gineering . 188

8.11. Correlation of Trace Variation and Quality Variation of CoreTAna’s Re-

verse Engineering . 189

LIST OF TABLES 219

List of Tables

1.1. Research Questions . 12

2.1. Related Work . 18

4.1. Models defined by Automotive Standards 70

5.1. Trace Technique Categories . 74

5.2. Trace Techniques . 78

7.1. Metric Results of the Example . 142

7.2. Differences in Trace Recordings from Variations of different Architec-

tural Patterns. 144

7.3. Differences between the processes for comparing trace recordings

from different products using DoTA. 148

7.4. Differences between the processes for comparing a ‘clean’ trace and a

trace that contains errors using DoTA. 150

8.1. Detailed Results of CoreTAna for ‘Purely Periodic without Commu-

nication’. 154

8.2. Detailed Results of CoreTAna for ‘Client-Server without Reply’. 158

8.3. Detailed Results of CoreTAna for ‘State Machine’. 161

8.4. Detailed Results of CoreTAna for ‘Feedback Loop’. 165

8.5. Detailed Results of CoreTAna for ‘State Machine Feedback Loop’. . . . 168

8.6. Detailed Results of Randomly Generated Systems 172

8.7. Detailed Results of Case Study ‘Engine Management System (EMS)’ . 177

8.8. Detailed Results of Case Study ‘FMTV Challenge 2016’ 180

8.9. Detailed Results of Case Study ‘Telecommunication’ 183

8.10. Detailed Results of Comparison of Trace Variation and Quality of

CoreTAna’s Reverse Engineering for the ‘FMTV Challenge 2016’ Model186

LISTINGS 221

Listings

5.1. Trace FMTV Challenge 2016 . 89

5.2. Simple Trace Example . 92

6.1. SQL Query for Process Entities . 103

6.2. Example Trace Algorithm Allocation . 105

6.3. Example Trace Algorithm Scheduling Properties 109

6.4. Example Trace Algorithm Stimulation . 114

6.5. Example Trace Algorithm Execution Times 119

6.6. Example Trace Algorithm Call Graph . 125

7.1. Trace Sample 1 . 140

7.2. Trace Sample 2 . 140

A.1. Variation 1 of Purely Periodic without Communication 227

A.2. Variation 2 of Purely Periodic without Communication 231

A.3. Variation 3 of Purely Periodic without Communication 235

A.4. Variation 4 of Purely Periodic without Communication 241

A.5. Variation 5 of Purely Periodic without Communication 247

A.6. Variation 6 of Purely Periodic without Communication 253

A.7. Variation 7 of Purely Periodic without Communication 258

A.8. Variation 8 of Purely Periodic without Communication 264

A.9. Variation 1 of Client-Server without Reply 270

A.10.Variation 2 of Client-Server without Reply 276

A.11.Variation 3 of Client-Server without Reply 282

A.12.Variation 4 of Client-Server without Reply 288

A.13.Variation 5 of Client-Server without Reply 293

A.14.Variation 6 of Client-Server without Reply 299

A.15.Variation 7 of Client-Server without Reply 304

A.16.Variation 1 of State Machine . 310

A.17.Variation 2 of State Machine . 314

A.18.Variation 3 of State Machine . 319

A.19.Variation 4 of State Machine . 324

A.20.Variation 5 of State Machine . 329

222 LISTINGS

A.21.Variation 6 of State Machine . 333

A.22.Variation 7 of State Machine . 338

A.23.Variation 1 of Feedback Loop . 342

A.24.Variation 2 of Feedback Loop . 353

A.25.Variation 3 of Feedback Loop . 368

A.26.Variation 4 of Feedback Loop . 383

A.27.Variation 5 of Feedback Loop . 399

A.28.Variation 6 of Feedback Loop . 415

A.29.Variation 7 of Feedback Loop . 430

A.30.Variation 1 of State Machine Feedback Loop 446

A.31.Variation 2 of State Machine Feedback Loop 453

A.32.Variation 3 of State Machine Feedback Loop 465

A.33.Variation 4 of State Machine Feedback Loop 478

A.34.Variation 5 of State Machine Feedback Loop 491

A.35.Variation 6 of State Machine Feedback Loop 504

A.36.Variation 7 of State Machine Feedback Loop 516

LIST OF ALGORITHMS 223

List of Algorithms

1. Main Function . 102

2. Process Entities . 103

3. Allocation . 104

4. Preparation of Process Priority Determination 108

5. Process Pre-emptability . 109

6. Preparation of Stimulation Pattern Determination 112

7. Determination of Stimulation Patterns 113

8. Prepare Execution Times . 116

9. Determine Execution Time Distribution 118

10. Preparation of Call Graph . 122

11. Determination of Call Graph . 123

12. Create Branch . 124

Part IV.

Annex

227

A
Appendix

A.1. Architectural System Patterns

A.1.1. Purely Periodic without Communication

A.1.1.1. Variation 1

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="4" />

</customProperties>
16 </tasks>

<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

18 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">

20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="3" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="3" />

28 </customProperties>
</tasks>

30 <tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>

228 APPENDIX A. APPENDIX

32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />

34 </graphEntries>
</callGraph>

36 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

38 </customProperties>
<customProperties key="osekTaskGroup">

40 <value xsi:type="am:StringObject" value="2" />
</customProperties>

42 </tasks>
<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
44 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">
46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
48 </graphEntries>

</callGraph>
50 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
52 </customProperties>

<customProperties key="osekTaskGroup">
54 <value xsi:type="am:StringObject" value="1" />

</customProperties>
56 </tasks>

<runnables name="Runnable_4" callback="false" service="false">
58 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
60 <value xsi:type="am:NeedDeviation">

<deviation>
62 <lowerBound xsi:type="am:LongObject" value="8970000" />

<upperBound xsi:type="am:LongObject" value="9000000" />
64 <distribution xsi:type="am:UniformDistribution" />

</deviation>
66 </value>

</default>
68 </runnableItems>

</runnables>
70 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
72 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
74 <deviation>

<lowerBound xsi:type="am:LongObject" value="17970000" />
76 <upperBound xsi:type="am:LongObject" value="18000000" />

<distribution xsi:type="am:UniformDistribution" />
78 </deviation>

</value>
80 </default>

</runnableItems>
82 </runnables>

<runnables name="Runnable_6" callback="false" service="false">
84 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
86 <value xsi:type="am:NeedDeviation">

<deviation>
88 <lowerBound xsi:type="am:LongObject" value="23970000" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 229

<upperBound xsi:type="am:LongObject" value="24000000" />
90 <distribution xsi:type="am:UniformDistribution" />

</deviation>
92 </value>

</default>
94 </runnableItems>

</runnables>
96 <runnables name="Runnable_7_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
98 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
100 <deviation>

<lowerBound xsi:type="am:LongObject" value="35977500" />
102 <upperBound xsi:type="am:LongObject" value="36000000" />

<distribution xsi:type="am:UniformDistribution" />
104 </deviation>

</value>
106 </default>

</runnableItems>
108 </runnables>

<runnables name="Runnable_7_2" callback="false" service="false">
110 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
112 <value xsi:type="am:NeedDeviation">

<deviation>
114 <lowerBound xsi:type="am:LongObject" value="11992500" />

<upperBound xsi:type="am:LongObject" value="12000000" />
116 <distribution xsi:type="am:UniformDistribution" />

</deviation>
118 </value>

</default>
120 </runnableItems>

</runnables>
122 </swModel>

<hwModel>
124 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

126 </definitions>
<featureCategories name="Instructions" featureType="performance">

128 <features name="IPC_1.0" value="1.0" />
</featureCategories>

130 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

132 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
134 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

136 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

138 </structures>
</structures>

140 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

142 <defaultValue value="600.0" unit="MHz"/>
</domains>

230 APPENDIX A. APPENDIX

144 </hwModel>
<osModel>

146 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

148 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

150 <osDataConsistency mode="noProtection" />
</operatingSystems>

152 </osModel>
<stimuliModel>

154 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

156 <recurrence value="180" unit="ms" />
</stimuli>

158 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

160 <recurrence value="200" unit="ms" />
</stimuli>

162 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

164 <recurrence value="300" unit="ms" />
</stimuli>

166 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

168 <recurrence value="1000" unit="ms" />
</stimuli>

170 </stimuliModel>
<constraintsModel />

172 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

174 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />

176 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4" entity="Runnable_4?type=Runnable"

/>
178 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_6" entity="Runnable_6?type=Runnable"

/>
180 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=

Runnable" />
182 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=

PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=

PeriodicStimulus" />
184 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="" entity="

Stimulus_Task_6?type=PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=

PeriodicStimulus" />
186 </eventModel>

<mappingModel addressMappingType="offset">
188 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
190 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 231

192 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

</mappingModel>
194 <componentsModel />

</am:Amalthea>

Listing A.1: Variation 1 of Purely Periodic without Communication.

A.1.1.2. Variation 2

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="5" />

</customProperties>
16 </tasks>

<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

18 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">

20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="4" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="4" />

28 </customProperties>
</tasks>

30 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
34 </graphEntries>

</callGraph>
36 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
38 </customProperties>

<customProperties key="osekTaskGroup">
40 <value xsi:type="am:StringObject" value="3" />

</customProperties>
42 </tasks>

232 APPENDIX A. APPENDIX

<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

44 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />
</graphEntries>

48 </callGraph>
<customProperties key="priority">

50 <value xsi:type="am:StringObject" value="2" />
</customProperties>

52 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

54 </customProperties>
</tasks>

56 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
60 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

</graphEntries>
62 </callGraph>

<customProperties key="priority">
64 <value xsi:type="am:StringObject" value="1" />

</customProperties>
66 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
68 </customProperties>

</tasks>
70 <runnables name="Runnable_3" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
72 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
74 <deviation>

<lowerBound xsi:type="am:LongObject" value="11970000" />
76 <upperBound xsi:type="am:LongObject" value="12000000" />

<distribution xsi:type="am:UniformDistribution" />
78 </deviation>

</value>
80 </default>

</runnableItems>
82 </runnables>

<runnables name="Runnable_4" callback="false" service="false">
84 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
86 <value xsi:type="am:NeedDeviation">

<deviation>
88 <lowerBound xsi:type="am:LongObject" value="8970000" />

<upperBound xsi:type="am:LongObject" value="9000000" />
90 <distribution xsi:type="am:UniformDistribution" />

</deviation>
92 </value>

</default>
94 </runnableItems>

</runnables>
96 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
98 <default key="Instructions">

A.1. ARCHITECTURAL SYSTEM PATTERNS 233

<value xsi:type="am:NeedDeviation">
100 <deviation>

<lowerBound xsi:type="am:LongObject" value="17970000" />
102 <upperBound xsi:type="am:LongObject" value="18000000" />

<distribution xsi:type="am:UniformDistribution" />
104 </deviation>

</value>
106 </default>

</runnableItems>
108 </runnables>

<runnables name="Runnable_6" callback="false" service="false">
110 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
112 <value xsi:type="am:NeedDeviation">

<deviation>
114 <lowerBound xsi:type="am:LongObject" value="23970000" />

<upperBound xsi:type="am:LongObject" value="24000000" />
116 <distribution xsi:type="am:UniformDistribution" />

</deviation>
118 </value>

</default>
120 </runnableItems>

</runnables>
122 <runnables name="Runnable_7_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
124 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
126 <deviation>

<lowerBound xsi:type="am:LongObject" value="35977500" />
128 <upperBound xsi:type="am:LongObject" value="36000000" />

<distribution xsi:type="am:UniformDistribution" />
130 </deviation>

</value>
132 </default>

</runnableItems>
134 </runnables>

<runnables name="Runnable_7_2" callback="false" service="false">
136 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
138 <value xsi:type="am:NeedDeviation">

<deviation>
140 <lowerBound xsi:type="am:LongObject" value="11992500" />

<upperBound xsi:type="am:LongObject" value="12000000" />
142 <distribution xsi:type="am:UniformDistribution" />

</deviation>
144 </value>

</default>
146 </runnableItems>

</runnables>
148 </swModel>

<hwModel>
150 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

152 </definitions>
<featureCategories name="Instructions" featureType="performance">

154 <features name="IPC_1.0" value="1.0" />
</featureCategories>

234 APPENDIX A. APPENDIX

156 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

158 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
160 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

162 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

164 </structures>
</structures>

166 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

168 <defaultValue value="600.0" unit="MHz"/>
</domains>

170 </hwModel>
<osModel>

172 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

174 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

176 <osDataConsistency mode="noProtection" />
</operatingSystems>

178 </osModel>
<stimuliModel>

180 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
<offset value="0" unit="ms" />

182 <recurrence value="160" unit="ms" />
</stimuli>

184 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

186 <recurrence value="180" unit="ms" />
</stimuli>

188 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

190 <recurrence value="200" unit="ms" />
</stimuli>

192 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

194 <recurrence value="300" unit="ms" />
</stimuli>

196 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

198 <recurrence value="1000" unit="ms" />
</stimuli>

200 </stimuliModel>
<constraintsModel />

202 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

204 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

206 <events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

208 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4" entity="Runnable_4?type=Runnable"
/>

A.1. ARCHITECTURAL SYSTEM PATTERNS 235

210 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6" entity="Runnable_6?type=Runnable"
/>

212 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

214 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

216 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="" entity="
Stimulus_Task_6?type=PeriodicStimulus" />

218 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

</eventModel>
220 <mappingModel addressMappingType="offset">

<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
222 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
224 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
226 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
</mappingModel>

228 <componentsModel />
</am:Amalthea>

Listing A.2: Variation 2 of Purely Periodic without Communication.

A.1.1.3. Variation 3

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="7" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="7" />

</customProperties>
16 </tasks>

<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

18 <callGraph>

236 APPENDIX A. APPENDIX

<graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">
20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

</graphEntries>
22 </callGraph>

<customProperties key="priority">
24 <value xsi:type="am:StringObject" value="5" />

</customProperties>
26 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="5" />
28 </customProperties>

</tasks>
30 <tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />

34 </graphEntries>
</callGraph>

36 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

38 </customProperties>
<customProperties key="osekTaskGroup">

40 <value xsi:type="am:StringObject" value="4" />
</customProperties>

42 </tasks>
<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
44 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">
46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

</graphEntries>
48 </callGraph>

<customProperties key="priority">
50 <value xsi:type="am:StringObject" value="3" />

</customProperties>
52 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
54 </customProperties>

</tasks>
56 <tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />

60 </graphEntries>
</callGraph>

62 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

64 </customProperties>
<customProperties key="osekTaskGroup">

66 <value xsi:type="am:StringObject" value="2" />
</customProperties>

68 </tasks>
<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
70 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">
72 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 237

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
74 </graphEntries>

</callGraph>
76 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
78 </customProperties>

<customProperties key="osekTaskGroup">
80 <value xsi:type="am:StringObject" value="1" />

</customProperties>
82 </tasks>

<runnables name="Runnable_1" callback="false" service="false">
84 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
86 <value xsi:type="am:NeedDeviation">

<deviation>
88 <lowerBound xsi:type="am:LongObject" value="5970000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
90 <distribution xsi:type="am:UniformDistribution" />

</deviation>
92 </value>

</default>
94 </runnableItems>

</runnables>
96 <runnables name="Runnable_3" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
98 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
100 <deviation>

<lowerBound xsi:type="am:LongObject" value="11970000" />
102 <upperBound xsi:type="am:LongObject" value="12000000" />

<distribution xsi:type="am:UniformDistribution" />
104 </deviation>

</value>
106 </default>

</runnableItems>
108 </runnables>

<runnables name="Runnable_4" callback="false" service="false">
110 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
112 <value xsi:type="am:NeedDeviation">

<deviation>
114 <lowerBound xsi:type="am:LongObject" value="8970000" />

<upperBound xsi:type="am:LongObject" value="9000000" />
116 <distribution xsi:type="am:UniformDistribution" />

</deviation>
118 </value>

</default>
120 </runnableItems>

</runnables>
122 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
124 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
126 <deviation>

<lowerBound xsi:type="am:LongObject" value="17970000" />
128 <upperBound xsi:type="am:LongObject" value="18000000" />

<distribution xsi:type="am:UniformDistribution" />
130 </deviation>

238 APPENDIX A. APPENDIX

</value>
132 </default>

</runnableItems>
134 </runnables>

<runnables name="Runnable_6" callback="false" service="false">
136 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
138 <value xsi:type="am:NeedDeviation">

<deviation>
140 <lowerBound xsi:type="am:LongObject" value="23970000" />

<upperBound xsi:type="am:LongObject" value="24000000" />
142 <distribution xsi:type="am:UniformDistribution" />

</deviation>
144 </value>

</default>
146 </runnableItems>

</runnables>
148 <runnables name="Runnable_7_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
150 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
152 <deviation>

<lowerBound xsi:type="am:LongObject" value="35977500" />
154 <upperBound xsi:type="am:LongObject" value="36000000" />

<distribution xsi:type="am:UniformDistribution" />
156 </deviation>

</value>
158 </default>

</runnableItems>
160 </runnables>

<runnables name="Runnable_7_2" callback="false" service="false">
162 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
164 <value xsi:type="am:NeedDeviation">

<deviation>
166 <lowerBound xsi:type="am:LongObject" value="11992500" />

<upperBound xsi:type="am:LongObject" value="12000000" />
168 <distribution xsi:type="am:UniformDistribution" />

</deviation>
170 </value>

</default>
172 </runnableItems>

</runnables>
174 </swModel>

<hwModel>
176 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

178 </definitions>
<featureCategories name="Instructions" featureType="performance">

180 <features name="IPC_1.0" value="1.0" />
</featureCategories>

182 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

184 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
186 </modules>

A.1. ARCHITECTURAL SYSTEM PATTERNS 239

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

188 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

190 </structures>
</structures>

192 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

194 <defaultValue value="600.0" unit="MHz"/>
</domains>

196 </hwModel>
<osModel>

198 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

200 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

202 <osDataConsistency mode="noProtection" />
</operatingSystems>

204 </osModel>
<stimuliModel>

206 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

208 <recurrence value="80" unit="ms" />
</stimuli>

210 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
<offset value="0" unit="ms" />

212 <recurrence value="160" unit="ms" />
</stimuli>

214 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

216 <recurrence value="180" unit="ms" />
</stimuli>

218 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

220 <recurrence value="200" unit="ms" />
</stimuli>

222 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

224 <recurrence value="300" unit="ms" />
</stimuli>

226 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

228 <recurrence value="1000" unit="ms" />
</stimuli>

230 </stimuliModel>
<constraintsModel />

232 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

234 <events xsi:type="am:ProcessEvent" name="Event_Task_3">
<entity xsi:type="am:Task" href="amlt:/#Task_3?type=Task" />

236 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_4">

238 <entity xsi:type="am:Task" href="amlt:/#Task_4?type=Task" />
</events>

240 <events xsi:type="am:ProcessEvent" name="Event_Task_5">
<entity xsi:type="am:Task" href="amlt:/#Task_5?type=Task" />

242 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_6">

240 APPENDIX A. APPENDIX

244 <entity xsi:type="am:Task" href="amlt:/#Task_6?type=Task" />
</events>

246 <events xsi:type="am:ProcessEvent" name="Event_Task_7">
<entity xsi:type="am:Task" href="amlt:/#Task_7?type=Task" />

248 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
250 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3">

<entity href="amlt:/#Runnable_3?type=Runnable" />
252 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4">
254 <entity href="amlt:/#Runnable_4?type=Runnable" />

</events>
256 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5">

<entity href="amlt:/#Runnable_5?type=Runnable" />
258 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6">
260 <entity href="amlt:/#Runnable_6?type=Runnable" />

</events>
262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1">

<entity href="amlt:/#Runnable_7_1?type=Runnable" />
264 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2">
266 <entity href="amlt:/#Runnable_7_2?type=Runnable" />

</events>
268 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=

PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3">

270 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_3?type=PeriodicStimulus" /
>

</events>
272 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4">

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_4?type=PeriodicStimulus" /
>

274 </events>
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5">

276 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_5?type=PeriodicStimulus" /
>

</events>
278 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="">

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_6?type=PeriodicStimulus" /
>

280 </events>
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7">

282 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_7?type=PeriodicStimulus" /
>

</events>
284 </eventModel>

<mappingModel addressMappingType="offset">
286 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
288 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
290 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
292 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
</mappingModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 241

294 <componentsModel />
</am:Amalthea>

Listing A.3: Variation 3 of Purely Periodic without Communication.

A.1.1.4. Variation 4

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="7" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="7" />

</customProperties>
16 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

18 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_2_1">

20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2?type=Runnable" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="6" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="6" />

28 </customProperties>
</tasks>

30 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
34 </graphEntries>

</callGraph>
36 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
38 </customProperties>

<customProperties key="osekTaskGroup">
40 <value xsi:type="am:StringObject" value="5" />

</customProperties>
42 </tasks>

<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

44 <callGraph>

242 APPENDIX A. APPENDIX

<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">
46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />

</graphEntries>
48 </callGraph>

<customProperties key="priority">
50 <value xsi:type="am:StringObject" value="4" />

</customProperties>
52 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="4" />
54 </customProperties>

</tasks>
56 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

60 </graphEntries>
</callGraph>

62 <customProperties key="priority">
<value xsi:type="am:StringObject" value="3" />

64 </customProperties>
<customProperties key="osekTaskGroup">

66 <value xsi:type="am:StringObject" value="3" />
</customProperties>

68 </tasks>
<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
70 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">
72 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />

</graphEntries>
74 </callGraph>

<customProperties key="priority">
76 <value xsi:type="am:StringObject" value="2" />

</customProperties>
78 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
80 </customProperties>

</tasks>
82 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

84 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

86 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
</graphEntries>

88 </callGraph>
<customProperties key="priority">

90 <value xsi:type="am:StringObject" value="1" />
</customProperties>

92 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

94 </customProperties>
</tasks>

96 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

98 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

A.1. ARCHITECTURAL SYSTEM PATTERNS 243

100 <deviation>
<lowerBound xsi:type="am:LongObject" value="5970000" />

102 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

104 </deviation>
</value>

106 </default>
</runnableItems>

108 </runnables>
<runnables name="Runnable_2" callback="false" service="false">

110 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

112 <value xsi:type="am:NeedDeviation">
<deviation>

114 <lowerBound xsi:type="am:LongObject" value="17970000" />
<upperBound xsi:type="am:LongObject" value="18000000" />

116 <distribution xsi:type="am:UniformDistribution" />
</deviation>

118 </value>
</default>

120 </runnableItems>
</runnables>

122 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

124 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

126 <deviation>
<lowerBound xsi:type="am:LongObject" value="11970000" />

128 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

130 </deviation>
</value>

132 </default>
</runnableItems>

134 </runnables>
<runnables name="Runnable_4" callback="false" service="false">

136 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

138 <value xsi:type="am:NeedDeviation">
<deviation>

140 <lowerBound xsi:type="am:LongObject" value="8970000" />
<upperBound xsi:type="am:LongObject" value="9000000" />

142 <distribution xsi:type="am:UniformDistribution" />
</deviation>

144 </value>
</default>

146 </runnableItems>
</runnables>

148 <runnables name="Runnable_5" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

150 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

152 <deviation>
<lowerBound xsi:type="am:LongObject" value="17970000" />

154 <upperBound xsi:type="am:LongObject" value="18000000" />
<distribution xsi:type="am:UniformDistribution" />

156 </deviation>
</value>

244 APPENDIX A. APPENDIX

158 </default>
</runnableItems>

160 </runnables>
<runnables name="Runnable_6" callback="false" service="false">

162 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

164 <value xsi:type="am:NeedDeviation">
<deviation>

166 <lowerBound xsi:type="am:LongObject" value="23970000" />
<upperBound xsi:type="am:LongObject" value="24000000" />

168 <distribution xsi:type="am:UniformDistribution" />
</deviation>

170 </value>
</default>

172 </runnableItems>
</runnables>

174 <runnables name="Runnable_7_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

176 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

178 <deviation>
<lowerBound xsi:type="am:LongObject" value="35977500" />

180 <upperBound xsi:type="am:LongObject" value="36000000" />
<distribution xsi:type="am:UniformDistribution" />

182 </deviation>
</value>

184 </default>
</runnableItems>

186 </runnables>
<runnables name="Runnable_7_2" callback="false" service="false">

188 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

190 <value xsi:type="am:NeedDeviation">
<deviation>

192 <lowerBound xsi:type="am:LongObject" value="11992500" />
<upperBound xsi:type="am:LongObject" value="12000000" />

194 <distribution xsi:type="am:UniformDistribution" />
</deviation>

196 </value>
</default>

198 </runnableItems>
</runnables>

200 </swModel>
<hwModel>

202 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
204 </definitions>

<featureCategories name="Instructions" featureType="performance">
206 <features name="IPC_1.0" value="1.0" />

</featureCategories>
208 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
210 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

212 </modules>

A.1. ARCHITECTURAL SYSTEM PATTERNS 245

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

214 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

216 </structures>
</structures>

218 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

220 <defaultValue value="600.0" unit="MHz"/>
</domains>

222 </hwModel>
<osModel>

224 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

226 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

228 <osDataConsistency mode="noProtection" />
</operatingSystems>

230 </osModel>
<stimuliModel>

232 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

234 <recurrence value="80" unit="ms" />
</stimuli>

236 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
<offset value="0" unit="ms" />

238 <recurrence value="120" unit="ms" />
</stimuli>

240 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
<offset value="0" unit="ms" />

242 <recurrence value="160" unit="ms" />
</stimuli>

244 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

246 <recurrence value="180" unit="ms" />
</stimuli>

248 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

250 <recurrence value="200" unit="ms" />
</stimuli>

252 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

254 <recurrence value="300" unit="ms" />
</stimuli>

256 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

258 <recurrence value="1000" unit="ms" />
</stimuli>

260 </stimuliModel>
<constraintsModel />

262 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1">

264 <entity xsi:type="am:Task" href="amlt:/#Task_1?type=Task" />
</events>

266 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_3">

268 <entity xsi:type="am:Task" href="amlt:/#Task_3?type=Task" />
</events>

246 APPENDIX A. APPENDIX

270 <events xsi:type="am:ProcessEvent" name="Event_Task_4">
<entity xsi:type="am:Task" href="amlt:/#Task_4?type=Task" />

272 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_5">

274 <entity xsi:type="am:Task" href="amlt:/#Task_5?type=Task" />
</events>

276 <events xsi:type="am:ProcessEvent" name="Event_Task_6">
<entity xsi:type="am:Task" href="amlt:/#Task_6?type=Task" />

278 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_7">

280 <entity xsi:type="am:Task" href="amlt:/#Task_7?type=Task" />
</events>

282 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1">
<entity href="amlt:/#Runnable_1?type=Runnable" />

284 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2" entity="Runnable_2?type=Runnable"

/>
286 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3">

<entity href="amlt:/#Runnable_3?type=Runnable" />
288 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4">
290 <entity href="amlt:/#Runnable_4?type=Runnable" />

</events>
292 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5">

<entity href="amlt:/#Runnable_5?type=Runnable" />
294 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6">
296 <entity href="amlt:/#Runnable_6?type=Runnable" />

</events>
298 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1">

<entity href="amlt:/#Runnable_7_1?type=Runnable" />
300 </events>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2">
302 <entity href="amlt:/#Runnable_7_2?type=Runnable" />

</events>
304 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1">

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_1?type=PeriodicStimulus" /
>

306 </events>
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=

PeriodicStimulus" />
308 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3">

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_3?type=PeriodicStimulus" /
>

310 </events>
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4">

312 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_4?type=PeriodicStimulus" /
>

</events>
314 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5">

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_5?type=PeriodicStimulus" /
>

316 </events>
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="">

318 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_6?type=PeriodicStimulus" /
>

</events>
320 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7">

A.1. ARCHITECTURAL SYSTEM PATTERNS 247

<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_7?type=PeriodicStimulus" /
>

322 </events>
</eventModel>

324 <mappingModel addressMappingType="offset">
<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

326 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

328 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

330 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

332 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

</mappingModel>
334 <componentsModel />

</am:Amalthea>

Listing A.4: Variation 4 of Purely Periodic without Communication.

A.1.1.5. Variation 5

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="7" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="7" />

</customProperties>
16 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

18 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_2_1">

20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2?type=Runnable" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="6" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="6" />

28 </customProperties>
</tasks>

30 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

248 APPENDIX A. APPENDIX

<callGraph>
32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
34 </graphEntries>

</callGraph>
36 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
38 </customProperties>

<customProperties key="osekTaskGroup">
40 <value xsi:type="am:StringObject" value="5" />

</customProperties>
42 </tasks>

<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

44 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />
</graphEntries>

48 </callGraph>
<customProperties key="priority">

50 <value xsi:type="am:StringObject" value="4" />
</customProperties>

52 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="4" />

54 </customProperties>
</tasks>

56 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
60 </graphEntries>

</callGraph>
62 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
64 </customProperties>

<customProperties key="osekTaskGroup">
66 <value xsi:type="am:StringObject" value="3" />

</customProperties>
68 </tasks>

<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

70 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">

72 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />
</graphEntries>

74 </callGraph>
<customProperties key="priority">

76 <value xsi:type="am:StringObject" value="2" />
</customProperties>

78 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

80 </customProperties>
</tasks>

82 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="
non_preemptive" multipleTaskActivationLimit="1">

<callGraph>
84 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">

A.1. ARCHITECTURAL SYSTEM PATTERNS 249

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
86 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

</graphEntries>
88 </callGraph>

<customProperties key="priority">
90 <value xsi:type="am:StringObject" value="1" />

</customProperties>
92 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
94 </customProperties>

</tasks>
96 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
98 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
100 <deviation>

<lowerBound xsi:type="am:LongObject" value="5970000" />
102 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
104 </deviation>

</value>
106 </default>

</runnableItems>
108 </runnables>

<runnables name="Runnable_2" callback="false" service="false">
110 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
112 <value xsi:type="am:NeedDeviation">

<deviation>
114 <lowerBound xsi:type="am:LongObject" value="17970000" />

<upperBound xsi:type="am:LongObject" value="18000000" />
116 <distribution xsi:type="am:UniformDistribution" />

</deviation>
118 </value>

</default>
120 </runnableItems>

</runnables>
122 <runnables name="Runnable_3" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
124 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
126 <deviation>

<lowerBound xsi:type="am:LongObject" value="11970000" />
128 <upperBound xsi:type="am:LongObject" value="12000000" />

<distribution xsi:type="am:UniformDistribution" />
130 </deviation>

</value>
132 </default>

</runnableItems>
134 </runnables>

<runnables name="Runnable_4" callback="false" service="false">
136 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
138 <value xsi:type="am:NeedDeviation">

<deviation>
140 <lowerBound xsi:type="am:LongObject" value="8970000" />

<upperBound xsi:type="am:LongObject" value="9000000" />
142 <distribution xsi:type="am:UniformDistribution" />

250 APPENDIX A. APPENDIX

</deviation>
144 </value>

</default>
146 </runnableItems>

</runnables>
148 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
150 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
152 <deviation>

<lowerBound xsi:type="am:LongObject" value="17970000" />
154 <upperBound xsi:type="am:LongObject" value="18000000" />

<distribution xsi:type="am:UniformDistribution" />
156 </deviation>

</value>
158 </default>

</runnableItems>
160 </runnables>

<runnables name="Runnable_6" callback="false" service="false">
162 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
164 <value xsi:type="am:NeedDeviation">

<deviation>
166 <lowerBound xsi:type="am:LongObject" value="23970000" />

<upperBound xsi:type="am:LongObject" value="24000000" />
168 <distribution xsi:type="am:UniformDistribution" />

</deviation>
170 </value>

</default>
172 </runnableItems>

</runnables>
174 <runnables name="Runnable_7_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
176 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
178 <deviation>

<lowerBound xsi:type="am:LongObject" value="35977500" />
180 <upperBound xsi:type="am:LongObject" value="36000000" />

<distribution xsi:type="am:UniformDistribution" />
182 </deviation>

</value>
184 </default>

</runnableItems>
186 </runnables>

<runnables name="Runnable_7_2" callback="false" service="false">
188 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
190 <value xsi:type="am:NeedDeviation">

<deviation>
192 <lowerBound xsi:type="am:LongObject" value="11992500" />

<upperBound xsi:type="am:LongObject" value="12000000" />
194 <distribution xsi:type="am:UniformDistribution" />

</deviation>
196 </value>

</default>
198 </runnableItems>

</runnables>
200 </swModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 251

<hwModel>
202 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

204 </definitions>
<featureCategories name="Instructions" featureType="performance">

206 <features name="IPC_1.0" value="1.0" />
</featureCategories>

208 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

210 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
212 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

214 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

216 </structures>
</structures>

218 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

220 <defaultValue value="600.0" unit="MHz"/>
</domains>

222 </hwModel>
<osModel>

224 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

226 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

228 <osDataConsistency mode="noProtection" />
</operatingSystems>

230 </osModel>
<stimuliModel>

232 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

234 <recurrence value="80" unit="ms" />
</stimuli>

236 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
<offset value="0" unit="ms" />

238 <recurrence value="120" unit="ms" />
</stimuli>

240 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
<offset value="0" unit="ms" />

242 <recurrence value="160" unit="ms" />
</stimuli>

244 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

246 <recurrence value="180" unit="ms" />
</stimuli>

248 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

250 <recurrence value="200" unit="ms" />
</stimuli>

252 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

254 <recurrence value="300" unit="ms" />
</stimuli>

252 APPENDIX A. APPENDIX

256 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

258 <recurrence value="1000" unit="ms" />
</stimuli>

260 </stimuliModel>
<constraintsModel />

262 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

264 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

266 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

268 <events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

270 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2" entity="Runnable_2?type=Runnable"
/>

272 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4" entity="Runnable_4?type=Runnable"
/>

274 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6" entity="Runnable_6?type=Runnable"
/>

276 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

278 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

280 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

282 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="" entity="
Stimulus_Task_6?type=PeriodicStimulus" />

284 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

</eventModel>
286 <mappingModel addressMappingType="offset">

<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
288 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
290 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
292 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
294 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
</mappingModel>

296 <componentsModel />
</am:Amalthea>

A.1. ARCHITECTURAL SYSTEM PATTERNS 253

Listing A.5: Variation 5 of Purely Periodic without Communication.

A.1.1.6. Variation 6

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
8 </graphEntries>

</callGraph>
10 <customProperties key="priority">

<value xsi:type="am:StringObject" value="7" />
12 </customProperties>

<customProperties key="osekTaskGroup">
14 <value xsi:type="am:StringObject" value="7" />

</customProperties>
16 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

18 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_2_1">

20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2?type=Runnable" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="6" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="6" />

28 </customProperties>
</tasks>

30 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
34 </graphEntries>

</callGraph>
36 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
38 </customProperties>

<customProperties key="osekTaskGroup">
40 <value xsi:type="am:StringObject" value="5" />

</customProperties>
42 </tasks>

<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

44 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">

254 APPENDIX A. APPENDIX

46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />
</graphEntries>

48 </callGraph>
<customProperties key="priority">

50 <value xsi:type="am:StringObject" value="4" />
</customProperties>

52 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="4" />

54 </customProperties>
</tasks>

56 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
60 </graphEntries>

</callGraph>
62 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
64 </customProperties>

<customProperties key="osekTaskGroup">
66 <value xsi:type="am:StringObject" value="3" />

</customProperties>
68 </tasks>

<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

70 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">

72 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />
</graphEntries>

74 </callGraph>
<customProperties key="priority">

76 <value xsi:type="am:StringObject" value="2" />
</customProperties>

78 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

80 </customProperties>
</tasks>

82 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="
non_preemptive" multipleTaskActivationLimit="2">

<callGraph>
84 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
86 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

</graphEntries>
88 </callGraph>

<customProperties key="priority">
90 <value xsi:type="am:StringObject" value="1" />

</customProperties>
92 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
94 </customProperties>

</tasks>
96 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
98 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
100 <deviation>

A.1. ARCHITECTURAL SYSTEM PATTERNS 255

<lowerBound xsi:type="am:LongObject" value="5970000" />
102 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
104 </deviation>

</value>
106 </default>

</runnableItems>
108 </runnables>

<runnables name="Runnable_2" callback="false" service="false">
110 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
112 <value xsi:type="am:NeedDeviation">

<deviation>
114 <lowerBound xsi:type="am:LongObject" value="17970000" />

<upperBound xsi:type="am:LongObject" value="18000000" />
116 <distribution xsi:type="am:UniformDistribution" />

</deviation>
118 </value>

</default>
120 </runnableItems>

</runnables>
122 <runnables name="Runnable_3" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
124 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
126 <deviation>

<lowerBound xsi:type="am:LongObject" value="11970000" />
128 <upperBound xsi:type="am:LongObject" value="12000000" />

<distribution xsi:type="am:UniformDistribution" />
130 </deviation>

</value>
132 </default>

</runnableItems>
134 </runnables>

<runnables name="Runnable_4" callback="false" service="false">
136 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
138 <value xsi:type="am:NeedDeviation">

<deviation>
140 <lowerBound xsi:type="am:LongObject" value="8970000" />

<upperBound xsi:type="am:LongObject" value="9000000" />
142 <distribution xsi:type="am:UniformDistribution" />

</deviation>
144 </value>

</default>
146 </runnableItems>

</runnables>
148 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
150 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
152 <deviation>

<lowerBound xsi:type="am:LongObject" value="17970000" />
154 <upperBound xsi:type="am:LongObject" value="18000000" />

<distribution xsi:type="am:UniformDistribution" />
156 </deviation>

</value>
158 </default>

256 APPENDIX A. APPENDIX

</runnableItems>
160 </runnables>

<runnables name="Runnable_6" callback="false" service="false">
162 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
164 <value xsi:type="am:NeedDeviation">

<deviation>
166 <lowerBound xsi:type="am:LongObject" value="23970000" />

<upperBound xsi:type="am:LongObject" value="24000000" />
168 <distribution xsi:type="am:UniformDistribution" />

</deviation>
170 </value>

</default>
172 </runnableItems>

</runnables>
174 <runnables name="Runnable_7_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
176 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
178 <deviation>

<lowerBound xsi:type="am:LongObject" value="35977500" />
180 <upperBound xsi:type="am:LongObject" value="36000000" />

<distribution xsi:type="am:UniformDistribution" />
182 </deviation>

</value>
184 </default>

</runnableItems>
186 </runnables>

<runnables name="Runnable_7_2" callback="false" service="false">
188 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
190 <value xsi:type="am:NeedDeviation">

<deviation>
192 <lowerBound xsi:type="am:LongObject" value="11992500" />

<upperBound xsi:type="am:LongObject" value="12000000" />
194 <distribution xsi:type="am:UniformDistribution" />

</deviation>
196 </value>

</default>
198 </runnableItems>

</runnables>
200 </swModel>

<hwModel>
202 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

204 </definitions>
<featureCategories name="Instructions" featureType="performance">

206 <features name="IPC_1.0" value="1.0" />
</featureCategories>

208 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

210 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
212 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

A.1. ARCHITECTURAL SYSTEM PATTERNS 257

214 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

216 </structures>
</structures>

218 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

220 <defaultValue value="600.0" unit="MHz"/>
</domains>

222 </hwModel>
<osModel>

224 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

226 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

228 <osDataConsistency mode="noProtection" />
</operatingSystems>

230 </osModel>
<stimuliModel>

232 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

234 <recurrence value="80" unit="ms" />
</stimuli>

236 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
<offset value="0" unit="ms" />

238 <recurrence value="120" unit="ms" />
</stimuli>

240 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
<offset value="0" unit="ms" />

242 <recurrence value="160" unit="ms" />
</stimuli>

244 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
<offset value="0" unit="ms" />

246 <recurrence value="180" unit="ms" />
</stimuli>

248 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

250 <recurrence value="200" unit="ms" />
</stimuli>

252 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
<offset value="0" unit="ms" />

254 <recurrence value="300" unit="ms" />
</stimuli>

256 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
<offset value="0" unit="ms" />

258 <recurrence value="1000" unit="ms" />
</stimuli>

260 </stimuliModel>
<constraintsModel />

262 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

264 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

266 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

268 <events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

270 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

258 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2" entity="Runnable_2?type=Runnable"
/>

272 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4" entity="Runnable_4?type=Runnable"
/>

274 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6" entity="Runnable_6?type=Runnable"
/>

276 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

278 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

280 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

282 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="" entity="
Stimulus_Task_6?type=PeriodicStimulus" />

284 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

</eventModel>
286 <mappingModel addressMappingType="offset">

<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
288 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
290 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
292 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
294 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
</mappingModel>

296 <componentsModel />
</am:Amalthea>

Listing A.6: Variation 6 of Purely Periodic without Communication.

A.1.1.7. Variation 7

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 259

8 </graphEntries>
</callGraph>

10 <customProperties key="priority">
<value xsi:type="am:StringObject" value="7" />

12 </customProperties>
<customProperties key="osekTaskGroup">

14 <value xsi:type="am:StringObject" value="7" />
</customProperties>

16 </tasks>
<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
18 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_2_1">
20 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2?type=Runnable" />

</graphEntries>
22 </callGraph>

<customProperties key="priority">
24 <value xsi:type="am:StringObject" value="6" />

</customProperties>
26 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="6" />
28 </customProperties>

</tasks>
30 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
<callGraph>

32 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

34 </graphEntries>
</callGraph>

36 <customProperties key="priority">
<value xsi:type="am:StringObject" value="5" />

38 </customProperties>
<customProperties key="osekTaskGroup">

40 <value xsi:type="am:StringObject" value="5" />
</customProperties>

42 </tasks>
<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
44 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">
46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />

</graphEntries>
48 </callGraph>

<customProperties key="priority">
50 <value xsi:type="am:StringObject" value="4" />

</customProperties>
52 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="4" />
54 </customProperties>

</tasks>
56 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
<callGraph>

58 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

60 </graphEntries>
</callGraph>

260 APPENDIX A. APPENDIX

62 <customProperties key="priority">
<value xsi:type="am:StringObject" value="3" />

64 </customProperties>
<customProperties key="osekTaskGroup">

66 <value xsi:type="am:StringObject" value="3" />
</customProperties>

68 </tasks>
<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
70 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">
72 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />

</graphEntries>
74 </callGraph>

<customProperties key="priority">
76 <value xsi:type="am:StringObject" value="2" />

</customProperties>
78 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
80 </customProperties>

</tasks>
82 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="

non_preemptive" multipleTaskActivationLimit="2">
<callGraph>

84 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

86 <calls xsi:type="am:SchedulePoint" />
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

88 </graphEntries>
</callGraph>

90 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

92 </customProperties>
<customProperties key="osekTaskGroup">

94 <value xsi:type="am:StringObject" value="1" />
</customProperties>

96 </tasks>
<runnables name="Runnable_1" callback="false" service="false">

98 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

100 <value xsi:type="am:NeedDeviation">
<deviation>

102 <lowerBound xsi:type="am:LongObject" value="5970000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

104 <distribution xsi:type="am:UniformDistribution" />
</deviation>

106 </value>
</default>

108 </runnableItems>
</runnables>

110 <runnables name="Runnable_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

112 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

114 <deviation>
<lowerBound xsi:type="am:LongObject" value="17970000" />

116 <upperBound xsi:type="am:LongObject" value="18000000" />
<distribution xsi:type="am:UniformDistribution" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 261

118 </deviation>
</value>

120 </default>
</runnableItems>

122 </runnables>
<runnables name="Runnable_3" callback="false" service="false">

124 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

126 <value xsi:type="am:NeedDeviation">
<deviation>

128 <lowerBound xsi:type="am:LongObject" value="11970000" />
<upperBound xsi:type="am:LongObject" value="12000000" />

130 <distribution xsi:type="am:UniformDistribution" />
</deviation>

132 </value>
</default>

134 </runnableItems>
</runnables>

136 <runnables name="Runnable_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

138 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

140 <deviation>
<lowerBound xsi:type="am:LongObject" value="8970000" />

142 <upperBound xsi:type="am:LongObject" value="9000000" />
<distribution xsi:type="am:UniformDistribution" />

144 </deviation>
</value>

146 </default>
</runnableItems>

148 </runnables>
<runnables name="Runnable_5" callback="false" service="false">

150 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

152 <value xsi:type="am:NeedDeviation">
<deviation>

154 <lowerBound xsi:type="am:LongObject" value="17970000" />
<upperBound xsi:type="am:LongObject" value="18000000" />

156 <distribution xsi:type="am:UniformDistribution" />
</deviation>

158 </value>
</default>

160 </runnableItems>
</runnables>

162 <runnables name="Runnable_6" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

164 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

166 <deviation>
<lowerBound xsi:type="am:LongObject" value="23970000" />

168 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

170 </deviation>
</value>

172 </default>
</runnableItems>

174 </runnables>
<runnables name="Runnable_7_1" callback="false" service="false">

262 APPENDIX A. APPENDIX

176 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

178 <value xsi:type="am:NeedDeviation">
<deviation>

180 <lowerBound xsi:type="am:LongObject" value="35977500" />
<upperBound xsi:type="am:LongObject" value="36000000" />

182 <distribution xsi:type="am:UniformDistribution" />
</deviation>

184 </value>
</default>

186 </runnableItems>
</runnables>

188 <runnables name="Runnable_7_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

190 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

192 <deviation>
<lowerBound xsi:type="am:LongObject" value="11992500" />

194 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

196 </deviation>
</value>

198 </default>
</runnableItems>

200 </runnables>
</swModel>

202 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
204 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
206 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
208 </featureCategories>

<structures name="System" structureType="System">
210 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
212 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

214 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
216 </modules>

</structures>
218 </structures>

</structures>
220 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
222 </domains>

</hwModel>
224 <osModel>

<operatingSystems name="Generic_OS">
226 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
228 </taskSchedulers>

<osDataConsistency mode="noProtection" />
230 </operatingSystems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 263

</osModel>
232 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
234 <offset value="0" unit="ms" />

<recurrence value="80" unit="ms" />
236 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
238 <offset value="0" unit="ms" />

<recurrence value="120" unit="ms" />
240 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
242 <offset value="0" unit="ms" />

<recurrence value="160" unit="ms" />
244 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">
246 <offset value="0" unit="ms" />

<recurrence value="180" unit="ms" />
248 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
250 <offset value="0" unit="ms" />

<recurrence value="200" unit="ms" />
252 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
254 <offset value="0" unit="ms" />

<recurrence value="300" unit="ms" />
256 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
258 <offset value="0" unit="ms" />

<recurrence value="1000" unit="ms" />
260 </stimuli>

</stimuliModel>
262 <constraintsModel />

<eventModel>
264 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
266 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
268 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
270 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

272 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2" entity="Runnable_2?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

274 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4" entity="Runnable_4?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

276 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6" entity="Runnable_6?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

278 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

264 APPENDIX A. APPENDIX

280 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

282 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

284 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="" entity="
Stimulus_Task_6?type=PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

286 </eventModel>
<mappingModel addressMappingType="offset">

288 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

290 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

292 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

294 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
296 </mappingModel>

<componentsModel />
298 </am:Amalthea>

Listing A.7: Variation 7 of Purely Periodic without Communication.

A.1.1.8. Variation 8

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus"
multipleTaskActivationLimit="2">

<callGraph>
6 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
8 </graphEntries>

</callGraph>
10 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus"
multipleTaskActivationLimit="2">

12 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_2_1">

14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2?type=Runnable" />
</graphEntries>

16 </callGraph>
</tasks>

18 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus"
multipleTaskActivationLimit="2">

<callGraph>
20 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 265

22 </graphEntries>
</callGraph>

24 </tasks>
<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus"

multipleTaskActivationLimit="2">
26 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_4_1">
28 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4?type=Runnable" />

</graphEntries>
30 </callGraph>

</tasks>
32 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus"

multipleTaskActivationLimit="2">
<callGraph>

34 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

36 </graphEntries>
</callGraph>

38 </tasks>
<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus"

multipleTaskActivationLimit="2">
40 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_6_1">
42 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6?type=Runnable" />

</graphEntries>
44 </callGraph>

</tasks>
46 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus"

multipleTaskActivationLimit="2">
<callGraph>

48 <graphEntries xsi:type="am:CallSequence" name="CallSequence_7_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

50 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
</graphEntries>

52 </callGraph>
</tasks>

54 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

56 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

58 <deviation>
<lowerBound xsi:type="am:LongObject" value="5970000" />

60 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

62 </deviation>
</value>

64 </default>
</runnableItems>

66 </runnables>
<runnables name="Runnable_2" callback="false" service="false">

68 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

70 <value xsi:type="am:NeedDeviation">
<deviation>

72 <lowerBound xsi:type="am:LongObject" value="17970000" />
<upperBound xsi:type="am:LongObject" value="18000000" />

74 <distribution xsi:type="am:UniformDistribution" />
</deviation>

266 APPENDIX A. APPENDIX

76 </value>
</default>

78 </runnableItems>
</runnables>

80 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

82 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

84 <deviation>
<lowerBound xsi:type="am:LongObject" value="11970000" />

86 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

88 </deviation>
</value>

90 </default>
</runnableItems>

92 </runnables>
<runnables name="Runnable_4" callback="false" service="false">

94 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

96 <value xsi:type="am:NeedDeviation">
<deviation>

98 <lowerBound xsi:type="am:LongObject" value="8970000" />
<upperBound xsi:type="am:LongObject" value="9000000" />

100 <distribution xsi:type="am:UniformDistribution" />
</deviation>

102 </value>
</default>

104 </runnableItems>
</runnables>

106 <runnables name="Runnable_5" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

108 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

110 <deviation>
<lowerBound xsi:type="am:LongObject" value="17970000" />

112 <upperBound xsi:type="am:LongObject" value="18000000" />
<distribution xsi:type="am:UniformDistribution" />

114 </deviation>
</value>

116 </default>
</runnableItems>

118 </runnables>
<runnables name="Runnable_6" callback="false" service="false">

120 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

122 <value xsi:type="am:NeedDeviation">
<deviation>

124 <lowerBound xsi:type="am:LongObject" value="23970000" />
<upperBound xsi:type="am:LongObject" value="24000000" />

126 <distribution xsi:type="am:UniformDistribution" />
</deviation>

128 </value>
</default>

130 </runnableItems>
</runnables>

132 <runnables name="Runnable_7_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

A.1. ARCHITECTURAL SYSTEM PATTERNS 267

134 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

136 <deviation>
<lowerBound xsi:type="am:LongObject" value="35977500" />

138 <upperBound xsi:type="am:LongObject" value="36000000" />
<distribution xsi:type="am:UniformDistribution" />

140 </deviation>
</value>

142 </default>
</runnableItems>

144 </runnables>
<runnables name="Runnable_7_2" callback="false" service="false">

146 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

148 <value xsi:type="am:NeedDeviation">
<deviation>

150 <lowerBound xsi:type="am:LongObject" value="11992500" />
<upperBound xsi:type="am:LongObject" value="12000000" />

152 <distribution xsi:type="am:UniformDistribution" />
</deviation>

154 </value>
</default>

156 </runnableItems>
</runnables>

158 </swModel>
<hwModel>

160 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
162 </definitions>

<featureCategories name="Instructions" featureType="performance">
164 <features name="IPC_1.0" value="1.0" />

</featureCategories>
166 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
168 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

170 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
172 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
174 </structures>

</structures>
176 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
178 <defaultValue value="600.0" unit="MHz"/>

</domains>
180 </hwModel>

<osModel>
182 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
184 <schedulingAlgorithm xsi:type="am:EarliestDeadlineFirst" />

</taskSchedulers>
186 <osDataConsistency mode="noProtection" />

</operatingSystems>
188 </osModel>

268 APPENDIX A. APPENDIX

<stimuliModel>
190 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
192 <recurrence value="80" unit="ms" />

</stimuli>
194 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="0" unit="ms" />
196 <recurrence value="120" unit="ms" />

</stimuli>
198 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="0" unit="ms" />
200 <recurrence value="160" unit="ms" />

</stimuli>
202 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">

<offset value="0" unit="ms" />
204 <recurrence value="180" unit="ms" />

</stimuli>
206 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
208 <recurrence value="200" unit="ms" />

</stimuli>
210 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">

<offset value="0" unit="ms" />
212 <recurrence value="300" unit="ms" />

</stimuli>
214 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">

<offset value="0" unit="ms" />
216 <recurrence value="1000" unit="ms" />

</stimuli>
218 </stimuliModel>

<constraintsModel>
220 <requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_1" severity="Critical"

process="Task_1?type=Task">
<limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

222 <limitValue value="10" unit="ms" />
</limit>

224 </requirements>
<requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_2" severity="Critical"

process="Task_2?type=Task">
226 <limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

<limitValue value="40" unit="ms" />
228 </limit>

</requirements>
230 <requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_3" severity="Critical"

process="Task_3?type=Task">
<limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

232 <limitValue value="60" unit="ms" />
</limit>

234 </requirements>
<requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_4" severity="Critical"

process="Task_4?type=Task">
236 <limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

<limitValue value="75" unit="ms" />
238 </limit>

</requirements>
240 <requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_5" severity="Critical"

process="Task_5?type=Task">
<limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

A.1. ARCHITECTURAL SYSTEM PATTERNS 269

242 <limitValue value="115" unit="ms" />
</limit>

244 </requirements>
<requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_6" severity="Critical"

process="Task_6?type=Task">
246 <limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

<limitValue value="300" unit="ms" />
248 </limit>

</requirements>
250 <requirements xsi:type="am:ProcessRequirement" name="Deadline_Task_7" severity="Critical"

process="Task_7?type=Task">
<limit xsi:type="am:TimeRequirementLimit" limitType="UpperLimit" metric="ResponseTime">

252 <limitValue value="960" unit="ms" />
</limit>

254 </requirements>
</constraintsModel>

256 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1">

258 <entity xsi:type="am:Task" href="amlt:/#Task_1?type=Task" />
</events>

260 <events xsi:type="am:ProcessEvent" name="Event_Task_2">
<entity xsi:type="am:Task" href="amlt:/#Task_2?type=Task" />

262 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_3">

264 <entity xsi:type="am:Task" href="amlt:/#Task_3?type=Task" />
</events>

266 <events xsi:type="am:ProcessEvent" name="Event_Task_4">
<entity xsi:type="am:Task" href="amlt:/#Task_4?type=Task" />

268 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_5">

270 <entity xsi:type="am:Task" href="amlt:/#Task_5?type=Task" />
</events>

272 <events xsi:type="am:ProcessEvent" name="Event_Task_6">
<entity xsi:type="am:Task" href="amlt:/#Task_6?type=Task" />

274 </events>
<events xsi:type="am:ProcessEvent" name="Event_Task_7">

276 <entity xsi:type="am:Task" href="amlt:/#Task_7?type=Task" />
</events>

278 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1">
<entity href="amlt:/#Runnable_1?type=Runnable" />

280 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2">

282 <entity href="amlt:/#Runnable_2?type=Runnable" />
</events>

284 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3">
<entity href="amlt:/#Runnable_3?type=Runnable" />

286 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4">

288 <entity href="amlt:/#Runnable_4?type=Runnable" />
</events>

290 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5">
<entity href="amlt:/#Runnable_5?type=Runnable" />

292 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_6">

294 <entity href="amlt:/#Runnable_6?type=Runnable" />
</events>

296 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1">
<entity href="amlt:/#Runnable_7_1?type=Runnable" />

270 APPENDIX A. APPENDIX

298 </events>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2">

300 <entity href="amlt:/#Runnable_7_2?type=Runnable" />
</events>

302 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1">
<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_1?type=PeriodicStimulus" /

>
304 </events>

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2">
306 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_2?type=PeriodicStimulus" /

>
</events>

308 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3">
<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_3?type=PeriodicStimulus" /

>
310 </events>

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4">
312 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_4?type=PeriodicStimulus" /

>
</events>

314 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5">
<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_5?type=PeriodicStimulus" /

>
316 </events>

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" description="">
318 <entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_6?type=PeriodicStimulus" /

>
</events>

320 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7">
<entity xsi:type="am:PeriodicStimulus" href="amlt:/#Stimulus_Task_7?type=PeriodicStimulus" /

>
322 </events>

</eventModel>
324 <mappingModel addressMappingType="offset">

<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
326 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
328 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
330 <taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
332 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
</mappingModel>

334 <componentsModel />
</am:Amalthea>

Listing A.8: Variation 8 of Purely Periodic without Communication.

A.1.2. Client-Server without Reply

A.1.2.1. Variation 1

<?xml version="1.0" encoding="UTF-8"?>

A.1. ARCHITECTURAL SYSTEM PATTERNS 271

2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI
" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">

<swModel>
4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

6 <graphEntries xsi:type="am:ProbabilitySwitch">
<entries probability="20.0">

8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />

10 </items>
</entries>

12 <entries probability="30.0">
<items xsi:type="am:CallSequence" name="CallSequence_1_2">

14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />
</items>

16 </entries>
<entries probability="15.0">

18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />

20 </items>
</entries>

22 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_1_1">

24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
</items>

26 </entries>
<entries probability="15.0">

28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

30 </items>
</entries>

32 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">

34 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
</graphEntries>

36 </callGraph>
<customProperties key="priority">

38 <value xsi:type="am:StringObject" value="2" />
</customProperties>

40 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

42 </customProperties>
</tasks>

44 <tasks name="Task_2" stimuli="Stimulus_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
46 <graphEntries xsi:type="am:ModeSwitch">

<entries name="Content_2">
48 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_2?type=ModeLiteral"/>

50 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_2_2">

52 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />
</items>

54 </entries>
<entries name="Content_3">

272 APPENDIX A. APPENDIX

56 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_3?type=ModeLiteral"/>
58 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_2_3">
60 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />

</items>
62 </entries>

<entries name="Content_1">
64 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_1?type=ModeLiteral"/>

66 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_2_1">

68 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />
</items>

70 </entries>
<entries name="Content_4">

72 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_4?type=ModeLiteral"/>
74 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_2_4">
76 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />

</items>
78 </entries>

<defaultEntry>
80 <items xsi:type="am:CallSequence" name="CallSequence_2_default">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />
82 </items>

</defaultEntry>
84 </graphEntries>

</callGraph>
86 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
88 </customProperties>

<customProperties key="osekTaskGroup">
90 <value xsi:type="am:StringObject" value="1" />

</customProperties>
92 </tasks>

<runnables name="Runnable_1_1" callback="false" service="false">
94 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />
</runnables>

96 <runnables name="Runnable_2_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

98 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

100 <deviation>
<lowerBound xsi:type="am:LongObject" value="594" />

102 <upperBound xsi:type="am:LongObject" value="600" />
<distribution xsi:type="am:UniformDistribution" />

104 </deviation>
</value>

106 </default>
</runnableItems>

108 </runnables>
<runnables name="Runnable_2_2" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 273

110 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

112 <value xsi:type="am:NeedDeviation">
<deviation>

114 <lowerBound xsi:type="am:LongObject" value="29700" />
<upperBound xsi:type="am:LongObject" value="30000" />

116 <distribution xsi:type="am:UniformDistribution" />
</deviation>

118 </value>
</default>

120 </runnableItems>
</runnables>

122 <runnables name="Runnable_2_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

124 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

126 <deviation>
<lowerBound xsi:type="am:LongObject" value="594000" />

128 <upperBound xsi:type="am:LongObject" value="600000" />
<distribution xsi:type="am:UniformDistribution" />

130 </deviation>
</value>

132 </default>
</runnableItems>

134 </runnables>
<runnables name="Runnable_2_4" callback="false" service="false">

136 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

138 <value xsi:type="am:NeedDeviation">
<deviation>

140 <lowerBound xsi:type="am:LongObject" value="23760000" />
<upperBound xsi:type="am:LongObject" value="24000000" />

142 <distribution xsi:type="am:UniformDistribution" />
</deviation>

144 </value>
</default>

146 </runnableItems>
</runnables>

148 <runnables name="Runnable_2_default" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

150 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

152 <deviation>
<lowerBound xsi:type="am:LongObject" value="59" />

154 <upperBound xsi:type="am:LongObject" value="60" />
<distribution xsi:type="am:UniformDistribution" />

156 </deviation>
</value>

158 </default>
</runnableItems>

160 </runnables>
<runnables name="Runnable_1_2" callback="false" service="false">

162 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />

</runnables>
164 <runnables name="Runnable_1_3" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />

274 APPENDIX A. APPENDIX

166 </runnables>
<runnables name="Runnable_1_4" callback="false" service="false">

168 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />

</runnables>
170 <runnables name="Runnable_1_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />

172 </runnables>
<runnables name="Runnable_1" callback="false" service="false">

174 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

176 <value xsi:type="am:NeedDeviation">
<deviation>

178 <lowerBound xsi:type="am:LongObject" value="5994000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

180 <distribution xsi:type="am:UniformDistribution" />
</deviation>

182 </value>
</default>

184 </runnableItems>
</runnables>

186 <modes name="MessageMode">
<literals name="MessageContent_0">

188 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

190 </customProperties>
</literals>

192 <literals name="MessageContent_1">
<customProperties key="enumValue">

194 <value xsi:type="am:LongObject" value="1" />
</customProperties>

196 </literals>
<literals name="MessageContent_2">

198 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

200 </customProperties>
</literals>

202 <literals name="MessageContent_3">
<customProperties key="enumValue">

204 <value xsi:type="am:LongObject" value="3" />
</customProperties>

206 </literals>
<literals name="MessageContent_4">

208 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="4" />

210 </customProperties>
</literals>

212 </modes>
<modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">

214 <size value="8" unit="bit" />
</modeLabels>

216 </swModel>
<hwModel>

218 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
220 </definitions>

A.1. ARCHITECTURAL SYSTEM PATTERNS 275

<featureCategories name="Instructions" featureType="performance">
222 <features name="IPC_1.0" value="1.0" />

</featureCategories>
224 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
226 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

228 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
230 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
232 </structures>

</structures>
234 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
236 <defaultValue value="600.0" unit="MHz"/>

</domains>
238 </hwModel>

<osModel>
240 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
242 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
244 <osDataConsistency mode="noProtection" />

</operatingSystems>
246 </osModel>

<stimuliModel>
248 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_2">

<offset value="1" unit="ms" />
250 <recurrence value="50" unit="ms" />

</stimuli>
252 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">

<offset value="0" unit="ms" />
254 <recurrence value="100" unit="ms" />

</stimuli>
256 </stimuliModel>

<constraintsModel />
258 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
260 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

276 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

270 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

272 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" entity="Stimulus_2?type=
PeriodicStimulus" />

274 </eventModel>
<mappingModel addressMappingType="offset">

276 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

278 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="
message?type=ModeLabel" />

280 </mappingModel>
<componentsModel />

282 </am:Amalthea>

Listing A.9: Variation 1 of Client-Server without Reply.

A.1.2.2. Variation 2

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">
18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />
20 </items>

</entries>
22 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
26 </entries>

<entries probability="15.0">
28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

A.1. ARCHITECTURAL SYSTEM PATTERNS 277

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
30 </items>

</entries>
32 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
34 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

</graphEntries>
36 </callGraph>

<customProperties key="priority">
38 <value xsi:type="am:StringObject" value="2" />

</customProperties>
40 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
42 </customProperties>

</tasks>
44 <tasks name="Task_2" stimuli="Stimulus_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

46 <graphEntries xsi:type="am:ModeSwitch">
<entries name="Content_2">

48 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_2?type=ModeLiteral"/>
50 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_2_2">
52 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />

</items>
54 </entries>

<entries name="Content_3">
56 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_3?type=ModeLiteral"/>

58 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_2_3">

60 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />
</items>

62 </entries>
<entries name="Content_1">

64 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_1?type=ModeLiteral"/>
66 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_2_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />

</items>
70 </entries>

<entries name="Content_4">
72 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_4?type=ModeLiteral"/>

74 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_2_4">

76 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />
</items>

78 </entries>
<defaultEntry>

80 <items xsi:type="am:CallSequence" name="CallSequence_2_default">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />

278 APPENDIX A. APPENDIX

82 </items>
</defaultEntry>

84 </graphEntries>
</callGraph>

86 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

88 </customProperties>
<customProperties key="osekTaskGroup">

90 <value xsi:type="am:StringObject" value="1" />
</customProperties>

92 </tasks>
<runnables name="Runnable_1_1" callback="false" service="false">

94 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />

96 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
98 <runnables name="Runnable_2_1" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

100 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

102 <value xsi:type="am:NeedDeviation">
<deviation>

104 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

106 <distribution xsi:type="am:UniformDistribution" />
</deviation>

108 </value>
</default>

110 </runnableItems>
<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

release" />
112 </runnables>

<runnables name="Runnable_2_2" callback="false" service="false">
114 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

request" />
<runnableItems xsi:type="am:ExecutionNeed">

116 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

118 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

120 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

122 </deviation>
</value>

124 </default>
</runnableItems>

126 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
128 <runnables name="Runnable_2_3" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

130 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

A.1. ARCHITECTURAL SYSTEM PATTERNS 279

132 <value xsi:type="am:NeedDeviation">
<deviation>

134 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

136 <distribution xsi:type="am:UniformDistribution" />
</deviation>

138 </value>
</default>

140 </runnableItems>
<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

release" />
142 </runnables>

<runnables name="Runnable_2_4" callback="false" service="false">
144 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

request" />
<runnableItems xsi:type="am:ExecutionNeed">

146 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

148 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

150 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

152 </deviation>
</value>

154 </default>
</runnableItems>

156 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
158 <runnables name="Runnable_2_default" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

160 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

162 <value xsi:type="am:NeedDeviation">
<deviation>

164 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

166 <distribution xsi:type="am:UniformDistribution" />
</deviation>

168 </value>
</default>

170 </runnableItems>
<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

release" />
172 </runnables>

<runnables name="Runnable_1_2" callback="false" service="false">
174 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

request" />
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />
176 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

release" />
</runnables>

178 <runnables name="Runnable_1_3" callback="false" service="false">
<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="

request" />

280 APPENDIX A. APPENDIX

180 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

182 </runnables>
<runnables name="Runnable_1_4" callback="false" service="false">

184 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />

186 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
188 <runnables name="Runnable_1_0" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

190 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

192 </runnables>
<runnables name="Runnable_1" callback="false" service="false">

194 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

196 <value xsi:type="am:NeedDeviation">
<deviation>

198 <lowerBound xsi:type="am:LongObject" value="5994000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

200 <distribution xsi:type="am:UniformDistribution" />
</deviation>

202 </value>
</default>

204 </runnableItems>
</runnables>

206 <modes name="MessageMode">
<literals name="MessageContent_0">

208 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

210 </customProperties>
</literals>

212 <literals name="MessageContent_1">
<customProperties key="enumValue">

214 <value xsi:type="am:LongObject" value="1" />
</customProperties>

216 </literals>
<literals name="MessageContent_2">

218 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

220 </customProperties>
</literals>

222 <literals name="MessageContent_3">
<customProperties key="enumValue">

224 <value xsi:type="am:LongObject" value="3" />
</customProperties>

226 </literals>
<literals name="MessageContent_4">

228 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="4" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 281

230 </customProperties>
</literals>

232 </modes>
<modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">

234 <size value="8" unit="bit" />
</modeLabels>

236 </swModel>
<hwModel>

238 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
240 </definitions>

<featureCategories name="Instructions" featureType="performance">
242 <features name="IPC_1.0" value="1.0" />

</featureCategories>
244 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
246 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

248 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
250 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
252 </structures>

</structures>
254 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
256 <defaultValue value="600.0" unit="MHz"/>

</domains>
258 </hwModel>

<osModel>
260 <semaphores name="Semaphore" initialValue="0" maxValue="1" priorityCeilingProtocol="true" />

<operatingSystems name="Generic_OS">
262 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
264 </taskSchedulers>

<osDataConsistency mode="noProtection" />
266 </operatingSystems>

</osModel>
268 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_2">
270 <offset value="1" unit="ms" />

<recurrence value="50" unit="ms" />
272 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">
274 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
276 </stimuli>

</stimuliModel>
278 <constraintsModel />

<eventModel>
280 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
282 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>

282 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

284 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=
Runnable" />

286 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

288 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

290 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

292 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

294 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" entity="Stimulus_2?type=
PeriodicStimulus" />

<events xsi:type="am:SemaphoreEvent" name="Event_Semaphore" entity="Semaphore?type=Semaphore"
/>

296 </eventModel>
<mappingModel addressMappingType="offset">

298 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

300 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="
message?type=ModeLabel" />

302 </mappingModel>
<componentsModel />

304 </am:Amalthea>

Listing A.10: Variation 2 of Client-Server without Reply.

A.1.2.3. Variation 3

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

A.1. ARCHITECTURAL SYSTEM PATTERNS 283

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">
18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />
20 </items>

</entries>
22 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
26 </entries>

<entries probability="15.0">
28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
30 </items>

</entries>
32 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
34 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_2?type=InterProcessStimulus"

/>
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

36 </graphEntries>
</callGraph>

38 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

40 </customProperties>
<customProperties key="osekTaskGroup">

42 <value xsi:type="am:StringObject" value="2" />
</customProperties>

44 </tasks>
<tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">

46 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

48 <entries name="Content_2">
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_2?type=ModeLiteral"/>

</condition>
52 <items xsi:type="am:CallSequence" name="CallSequence_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />
54 </items>

</entries>
56 <entries name="Content_3">

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_3?type=ModeLiteral"/>
</condition>

60 <items xsi:type="am:CallSequence" name="CallSequence_2_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />

62 </items>
</entries>

64 <entries name="Content_1">
<condition>

66 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_1?type=ModeLiteral"/>

284 APPENDIX A. APPENDIX

</condition>
68 <items xsi:type="am:CallSequence" name="CallSequence_2_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />
70 </items>

</entries>
72 <entries name="Content_4">

<condition>
74 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_4?type=ModeLiteral"/>
</condition>

76 <items xsi:type="am:CallSequence" name="CallSequence_2_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />

78 </items>
</entries>

80 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_2_default">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />
</items>

84 </defaultEntry>
</graphEntries>

86 </callGraph>
<customProperties key="priority">

88 <value xsi:type="am:StringObject" value="1" />
</customProperties>

90 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

92 </customProperties>
</tasks>

94 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />
96 </runnables>

<runnables name="Runnable_2_1" callback="false" service="false">
98 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
100 <value xsi:type="am:NeedDeviation">

<deviation>
102 <lowerBound xsi:type="am:LongObject" value="594" />

<upperBound xsi:type="am:LongObject" value="600" />
104 <distribution xsi:type="am:UniformDistribution" />

</deviation>
106 </value>

</default>
108 </runnableItems>

</runnables>
110 <runnables name="Runnable_2_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
112 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
114 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700" />
116 <upperBound xsi:type="am:LongObject" value="30000" />

<distribution xsi:type="am:UniformDistribution" />
118 </deviation>

</value>
120 </default>

</runnableItems>
122 </runnables>

A.1. ARCHITECTURAL SYSTEM PATTERNS 285

<runnables name="Runnable_2_3" callback="false" service="false">
124 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
126 <value xsi:type="am:NeedDeviation">

<deviation>
128 <lowerBound xsi:type="am:LongObject" value="594000" />

<upperBound xsi:type="am:LongObject" value="600000" />
130 <distribution xsi:type="am:UniformDistribution" />

</deviation>
132 </value>

</default>
134 </runnableItems>

</runnables>
136 <runnables name="Runnable_2_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
138 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
140 <deviation>

<lowerBound xsi:type="am:LongObject" value="23760000" />
142 <upperBound xsi:type="am:LongObject" value="24000000" />

<distribution xsi:type="am:UniformDistribution" />
144 </deviation>

</value>
146 </default>

</runnableItems>
148 </runnables>

<runnables name="Runnable_2_default" callback="false" service="false">
150 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
152 <value xsi:type="am:NeedDeviation">

<deviation>
154 <lowerBound xsi:type="am:LongObject" value="59" />

<upperBound xsi:type="am:LongObject" value="60" />
156 <distribution xsi:type="am:UniformDistribution" />

</deviation>
158 </value>

</default>
160 </runnableItems>

</runnables>
162 <runnables name="Runnable_1_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />

164 </runnables>
<runnables name="Runnable_1_3" callback="false" service="false">

166 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />

</runnables>
168 <runnables name="Runnable_1_4" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />

170 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

172 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />

</runnables>
174 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
176 <default key="Instructions">

286 APPENDIX A. APPENDIX

<value xsi:type="am:NeedDeviation">
178 <deviation>

<lowerBound xsi:type="am:LongObject" value="5994000" />
180 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
182 </deviation>

</value>
184 </default>

</runnableItems>
186 </runnables>

<modes name="MessageMode">
188 <literals name="MessageContent_0">

<customProperties key="enumValue">
190 <value xsi:type="am:LongObject" value="0" />

</customProperties>
192 </literals>

<literals name="MessageContent_1">
194 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
196 </customProperties>

</literals>
198 <literals name="MessageContent_2">

<customProperties key="enumValue">
200 <value xsi:type="am:LongObject" value="2" />

</customProperties>
202 </literals>

<literals name="MessageContent_3">
204 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="3" />
206 </customProperties>

</literals>
208 <literals name="MessageContent_4">

<customProperties key="enumValue">
210 <value xsi:type="am:LongObject" value="4" />

</customProperties>
212 </literals>

</modes>
214 <modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">

<size value="8" unit="bit" />
216 </modeLabels>

</swModel>
218 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

220 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

222 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

224 </featureCategories>
<structures name="System" structureType="System">

226 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

228 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

</modules>
230 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

A.1. ARCHITECTURAL SYSTEM PATTERNS 287

232 </modules>
</structures>

234 </structures>
</structures>

236 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

238 </domains>
</hwModel>

240 <osModel>
<operatingSystems name="Generic_OS">

242 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

244 </taskSchedulers>
<osDataConsistency mode="noProtection" />

246 </operatingSystems>
</osModel>

248 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">

250 <offset value="0" unit="ms" />
<recurrence value="100" unit="ms" />

252 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_2" />

254 </stimuliModel>
<constraintsModel />

256 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

258 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
260 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=

Runnable" />
264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=

Runnable" />
266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=

Runnable" />
268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default

?type=Runnable" />
270 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=

PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" />

272 </eventModel>
<mappingModel addressMappingType="offset">

274 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

276 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

288 APPENDIX A. APPENDIX

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="
message?type=ModeLabel" />

278 </mappingModel>
<componentsModel />

280 </am:Amalthea>

Listing A.11: Variation 3 of Client-Server without Reply.

A.1.2.4. Variation 4

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">
18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />
20 </items>

</entries>
22 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
26 </entries>

<entries probability="15.0">
28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
30 </items>

</entries>
32 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
34 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_2?type=InterProcessStimulus"

/>
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

36 </graphEntries>
</callGraph>

38 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

40 </customProperties>
<customProperties key="osekTaskGroup">

42 <value xsi:type="am:StringObject" value="1" />
</customProperties>

A.1. ARCHITECTURAL SYSTEM PATTERNS 289

44 </tasks>
<tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">

46 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

48 <entries name="Content_2">
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_2?type=ModeLiteral"/>

</condition>
52 <items xsi:type="am:CallSequence" name="CallSequence_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />
54 </items>

</entries>
56 <entries name="Content_3">

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_3?type=ModeLiteral"/>
</condition>

60 <items xsi:type="am:CallSequence" name="CallSequence_2_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />

62 </items>
</entries>

64 <entries name="Content_1">
<condition>

66 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_1?type=ModeLiteral"/>

</condition>
68 <items xsi:type="am:CallSequence" name="CallSequence_2_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />
70 </items>

</entries>
72 <entries name="Content_4">

<condition>
74 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_4?type=ModeLiteral"/>
</condition>

76 <items xsi:type="am:CallSequence" name="CallSequence_2_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />

78 </items>
</entries>

80 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_2_default">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />
</items>

84 </defaultEntry>
</graphEntries>

86 </callGraph>
<customProperties key="priority">

88 <value xsi:type="am:StringObject" value="2" />
</customProperties>

90 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

92 </customProperties>
</tasks>

94 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />
96 </runnables>

290 APPENDIX A. APPENDIX

<runnables name="Runnable_2_1" callback="false" service="false">
98 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
100 <value xsi:type="am:NeedDeviation">

<deviation>
102 <lowerBound xsi:type="am:LongObject" value="594" />

<upperBound xsi:type="am:LongObject" value="600" />
104 <distribution xsi:type="am:UniformDistribution" />

</deviation>
106 </value>

</default>
108 </runnableItems>

</runnables>
110 <runnables name="Runnable_2_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
112 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
114 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700" />
116 <upperBound xsi:type="am:LongObject" value="30000" />

<distribution xsi:type="am:UniformDistribution" />
118 </deviation>

</value>
120 </default>

</runnableItems>
122 </runnables>

<runnables name="Runnable_2_3" callback="false" service="false">
124 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
126 <value xsi:type="am:NeedDeviation">

<deviation>
128 <lowerBound xsi:type="am:LongObject" value="594000" />

<upperBound xsi:type="am:LongObject" value="600000" />
130 <distribution xsi:type="am:UniformDistribution" />

</deviation>
132 </value>

</default>
134 </runnableItems>

</runnables>
136 <runnables name="Runnable_2_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
138 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
140 <deviation>

<lowerBound xsi:type="am:LongObject" value="23760000" />
142 <upperBound xsi:type="am:LongObject" value="24000000" />

<distribution xsi:type="am:UniformDistribution" />
144 </deviation>

</value>
146 </default>

</runnableItems>
148 </runnables>

<runnables name="Runnable_2_default" callback="false" service="false">
150 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
152 <value xsi:type="am:NeedDeviation">

<deviation>
154 <lowerBound xsi:type="am:LongObject" value="59" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 291

<upperBound xsi:type="am:LongObject" value="60" />
156 <distribution xsi:type="am:UniformDistribution" />

</deviation>
158 </value>

</default>
160 </runnableItems>

</runnables>
162 <runnables name="Runnable_1_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />

164 </runnables>
<runnables name="Runnable_1_3" callback="false" service="false">

166 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />

</runnables>
168 <runnables name="Runnable_1_4" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />

170 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

172 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />

</runnables>
174 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
176 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
178 <deviation>

<lowerBound xsi:type="am:LongObject" value="5994000" />
180 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
182 </deviation>

</value>
184 </default>

</runnableItems>
186 </runnables>

<modes name="MessageMode">
188 <literals name="MessageContent_0">

<customProperties key="enumValue">
190 <value xsi:type="am:LongObject" value="0" />

</customProperties>
192 </literals>

<literals name="MessageContent_1">
194 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
196 </customProperties>

</literals>
198 <literals name="MessageContent_2">

<customProperties key="enumValue">
200 <value xsi:type="am:LongObject" value="2" />

</customProperties>
202 </literals>

<literals name="MessageContent_3">
204 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="3" />
206 </customProperties>

</literals>
208 <literals name="MessageContent_4">

292 APPENDIX A. APPENDIX

<customProperties key="enumValue">
210 <value xsi:type="am:LongObject" value="4" />

</customProperties>
212 </literals>

</modes>
214 <modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">

<size value="8" unit="bit" />
216 </modeLabels>

</swModel>
218 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

220 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

222 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

224 </featureCategories>
<structures name="System" structureType="System">

226 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

228 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

</modules>
230 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

232 </modules>
</structures>

234 </structures>
</structures>

236 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

238 </domains>
</hwModel>

240 <osModel>
<operatingSystems name="Generic_OS">

242 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

244 </taskSchedulers>
<osDataConsistency mode="noProtection" />

246 </operatingSystems>
</osModel>

248 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">

250 <offset value="0" unit="ms" />
<recurrence value="100" unit="ms" />

252 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_2" />

254 </stimuliModel>
<constraintsModel />

256 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

258 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
260 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 293

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

270 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" />
272 </eventModel>

<mappingModel addressMappingType="offset">
274 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
276 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
278 </mappingModel>

<componentsModel />
280 </am:Amalthea>

Listing A.12: Variation 4 of Client-Server without Reply.

A.1.2.5. Variation 5

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">

294 APPENDIX A. APPENDIX

18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />

20 </items>
</entries>

22 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_1_1">

24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
</items>

26 </entries>
<entries probability="15.0">

28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

30 </items>
</entries>

32 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">

34 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_2?type=InterProcessStimulus"
/>

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
36 </graphEntries>

</callGraph>
38 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
40 </customProperties>

<customProperties key="osekTaskGroup">
42 <value xsi:type="am:StringObject" value="1" />

</customProperties>
44 </tasks>

<tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">
46 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
48 <entries name="Content_2">

<condition>
50 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_2?type=ModeLiteral"/>
</condition>

52 <items xsi:type="am:CallSequence" name="CallSequence_2_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />

54 </items>
</entries>

56 <entries name="Content_3">
<condition>

58 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_3?type=ModeLiteral"/>

</condition>
60 <items xsi:type="am:CallSequence" name="CallSequence_2_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />
62 </items>

</entries>
64 <entries name="Content_1">

<condition>
66 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_1?type=ModeLiteral"/>
</condition>

68 <items xsi:type="am:CallSequence" name="CallSequence_2_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />

70 </items>
</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 295

72 <entries name="Content_4">
<condition>

74 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_4?type=ModeLiteral"/>

</condition>
76 <items xsi:type="am:CallSequence" name="CallSequence_2_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />
78 </items>

</entries>
80 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_2_default">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />

</items>
84 </defaultEntry>

</graphEntries>
86 </callGraph>

<customProperties key="priority">
88 <value xsi:type="am:StringObject" value="2" />

</customProperties>
90 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
92 </customProperties>

</tasks>
94 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />

96 </runnables>
<runnables name="Runnable_2_1" callback="false" service="false">

98 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

100 <value xsi:type="am:NeedDeviation">
<deviation>

102 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

104 <distribution xsi:type="am:UniformDistribution" />
</deviation>

106 </value>
</default>

108 </runnableItems>
</runnables>

110 <runnables name="Runnable_2_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

112 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

114 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

116 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

118 </deviation>
</value>

120 </default>
</runnableItems>

122 </runnables>
<runnables name="Runnable_2_3" callback="false" service="false">

124 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

126 <value xsi:type="am:NeedDeviation">
<deviation>

296 APPENDIX A. APPENDIX

128 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

130 <distribution xsi:type="am:UniformDistribution" />
</deviation>

132 </value>
</default>

134 </runnableItems>
</runnables>

136 <runnables name="Runnable_2_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

138 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

140 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

142 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

144 </deviation>
</value>

146 </default>
</runnableItems>

148 </runnables>
<runnables name="Runnable_2_default" callback="false" service="false">

150 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

152 <value xsi:type="am:NeedDeviation">
<deviation>

154 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

156 <distribution xsi:type="am:UniformDistribution" />
</deviation>

158 </value>
</default>

160 </runnableItems>
</runnables>

162 <runnables name="Runnable_1_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />
164 </runnables>

<runnables name="Runnable_1_3" callback="false" service="false">
166 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />
</runnables>

168 <runnables name="Runnable_1_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />
170 </runnables>

<runnables name="Runnable_1_0" callback="false" service="false">
172 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />
</runnables>

174 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

176 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

178 <deviation>
<lowerBound xsi:type="am:LongObject" value="5994000" />

180 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 297

182 </deviation>
</value>

184 </default>
</runnableItems>

186 </runnables>
<modes name="MessageMode">

188 <literals name="MessageContent_0">
<customProperties key="enumValue">

190 <value xsi:type="am:LongObject" value="0" />
</customProperties>

192 </literals>
<literals name="MessageContent_1">

194 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

196 </customProperties>
</literals>

198 <literals name="MessageContent_2">
<customProperties key="enumValue">

200 <value xsi:type="am:LongObject" value="2" />
</customProperties>

202 </literals>
<literals name="MessageContent_3">

204 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

206 </customProperties>
</literals>

208 <literals name="MessageContent_4">
<customProperties key="enumValue">

210 <value xsi:type="am:LongObject" value="4" />
</customProperties>

212 </literals>
</modes>

214 <modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">
<size value="8" unit="bit" />

216 </modeLabels>
</swModel>

218 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
220 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
222 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
224 </featureCategories>

<structures name="System" structureType="System">
226 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
228 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

230 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
232 </modules>

</structures>
234 </structures>

</structures>
236 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

298 APPENDIX A. APPENDIX

<defaultValue value="600.0" unit="MHz"/>
238 </domains>

</hwModel>
240 <osModel>

<operatingSystems name="Generic_OS">
242 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
244 </taskSchedulers>

<osDataConsistency mode="noProtection" />
246 </operatingSystems>

</osModel>
248 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">
250 <offset value="0" unit="ms" />

<recurrence value="50" unit="ms" />
252 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_2" />
254 </stimuliModel>

<constraintsModel />
256 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
258 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

260 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

270 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" />
272 </eventModel>

<mappingModel addressMappingType="offset">
274 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
276 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
278 </mappingModel>

<componentsModel />
280 </am:Amalthea>

A.1. ARCHITECTURAL SYSTEM PATTERNS 299

Listing A.13: Variation 5 of Client-Server without Reply.

A.1.2.6. Variation 6

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">
18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />
20 </items>

</entries>
22 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
26 </entries>

<entries probability="15.0">
28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
30 </items>

</entries>
32 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
34 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_2?type=InterProcessStimulus"

/>
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

36 </graphEntries>
</callGraph>

38 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

40 </customProperties>
<customProperties key="osekTaskGroup">

42 <value xsi:type="am:StringObject" value="1" />
</customProperties>

44 </tasks>
<tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">

46 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

300 APPENDIX A. APPENDIX

48 <entries name="Content_2">
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_2?type=ModeLiteral"/>

</condition>
52 <items xsi:type="am:CallSequence" name="CallSequence_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />
54 </items>

</entries>
56 <entries name="Content_3">

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_3?type=ModeLiteral"/>
</condition>

60 <items xsi:type="am:CallSequence" name="CallSequence_2_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />

62 </items>
</entries>

64 <entries name="Content_1">
<condition>

66 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_1?type=ModeLiteral"/>

</condition>
68 <items xsi:type="am:CallSequence" name="CallSequence_2_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />
70 </items>

</entries>
72 <entries name="Content_4">

<condition>
74 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_4?type=ModeLiteral"/>
</condition>

76 <items xsi:type="am:CallSequence" name="CallSequence_2_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />

78 </items>
</entries>

80 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_2_default">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />
</items>

84 </defaultEntry>
</graphEntries>

86 </callGraph>
<customProperties key="priority">

88 <value xsi:type="am:StringObject" value="2" />
</customProperties>

90 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

92 </customProperties>
</tasks>

94 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />
96 </runnables>

<runnables name="Runnable_2_1" callback="false" service="false">
98 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
100 <value xsi:type="am:NeedDeviation">

A.1. ARCHITECTURAL SYSTEM PATTERNS 301

<deviation>
102 <lowerBound xsi:type="am:LongObject" value="594" />

<upperBound xsi:type="am:LongObject" value="606" />
104 <distribution xsi:type="am:UniformDistribution" />

</deviation>
106 </value>

</default>
108 </runnableItems>

</runnables>
110 <runnables name="Runnable_2_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
112 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
114 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700" />
116 <upperBound xsi:type="am:LongObject" value="30300" />

<distribution xsi:type="am:UniformDistribution" />
118 </deviation>

</value>
120 </default>

</runnableItems>
122 </runnables>

<runnables name="Runnable_2_3" callback="false" service="false">
124 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
126 <value xsi:type="am:NeedDeviation">

<deviation>
128 <lowerBound xsi:type="am:LongObject" value="594000" />

<upperBound xsi:type="am:LongObject" value="606000" />
130 <distribution xsi:type="am:UniformDistribution" />

</deviation>
132 </value>

</default>
134 </runnableItems>

</runnables>
136 <runnables name="Runnable_2_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
138 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
140 <deviation>

<lowerBound xsi:type="am:LongObject" value="23760000" />
142 <upperBound xsi:type="am:LongObject" value="24240000" />

<distribution xsi:type="am:UniformDistribution" />
144 </deviation>

</value>
146 </default>

</runnableItems>
148 </runnables>

<runnables name="Runnable_2_default" callback="false" service="false">
150 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
152 <value xsi:type="am:NeedDeviation">

<deviation>
154 <lowerBound xsi:type="am:LongObject" value="58" />

<upperBound xsi:type="am:LongObject" value="60" />
156 <distribution xsi:type="am:UniformDistribution" />

</deviation>
158 </value>

302 APPENDIX A. APPENDIX

</default>
160 </runnableItems>

</runnables>
162 <runnables name="Runnable_1_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />

164 </runnables>
<runnables name="Runnable_1_3" callback="false" service="false">

166 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />

</runnables>
168 <runnables name="Runnable_1_4" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />

170 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

172 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />

</runnables>
174 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
176 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
178 <deviation>

<lowerBound xsi:type="am:LongObject" value="5994000" />
180 <upperBound xsi:type="am:LongObject" value="6060000" />

<distribution xsi:type="am:UniformDistribution" />
182 </deviation>

</value>
184 </default>

</runnableItems>
186 </runnables>

<modes name="MessageMode">
188 <literals name="MessageContent_0">

<customProperties key="enumValue">
190 <value xsi:type="am:LongObject" value="0" />

</customProperties>
192 </literals>

<literals name="MessageContent_1">
194 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
196 </customProperties>

</literals>
198 <literals name="MessageContent_2">

<customProperties key="enumValue">
200 <value xsi:type="am:LongObject" value="2" />

</customProperties>
202 </literals>

<literals name="MessageContent_3">
204 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="3" />
206 </customProperties>

</literals>
208 <literals name="MessageContent_4">

<customProperties key="enumValue">
210 <value xsi:type="am:LongObject" value="4" />

</customProperties>
212 </literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 303

</modes>
214 <modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">

<size value="8" unit="bit" />
216 </modeLabels>

</swModel>
218 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

220 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

222 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

224 </featureCategories>
<structures name="System" structureType="System">

226 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

228 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

</modules>
230 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

232 </modules>
</structures>

234 </structures>
</structures>

236 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

238 </domains>
</hwModel>

240 <osModel>
<operatingSystems name="Generic_OS">

242 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

244 </taskSchedulers>
<osDataConsistency mode="noProtection" />

246 </operatingSystems>
</osModel>

248 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">

250 <offset value="0" unit="ms" />
<recurrence value="50" unit="ms" />

252 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_2" />

254 </stimuliModel>
<constraintsModel />

256 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

258 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
260 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=

Runnable" />

304 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

270 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" />
272 </eventModel>

<mappingModel addressMappingType="offset">
274 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
276 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
278 </mappingModel>

<componentsModel />
280 </am:Amalthea>

Listing A.14: Variation 6 of Client-Server without Reply.

A.1.2.7. Variation 7

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_3?type=Runnable" />
10 </items>

</entries>
12 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_2">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_2?type=Runnable" />

</items>
16 </entries>

<entries probability="15.0">
18 <items xsi:type="am:CallSequence" name="CallSequence_1_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_4?type=Runnable" />
20 </items>

</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 305

22 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_1_1">

24 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
</items>

26 </entries>
<entries probability="15.0">

28 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

30 </items>
</entries>

32 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_1">

34 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_2?type=InterProcessStimulus"
/>

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
36 </graphEntries>

</callGraph>
38 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
40 </customProperties>

<customProperties key="osekTaskGroup">
42 <value xsi:type="am:StringObject" value="1" />

</customProperties>
44 </tasks>

<tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="2">
46 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
48 <entries name="Content_2">

<condition>
50 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_2?type=ModeLiteral"/>
</condition>

52 <items xsi:type="am:CallSequence" name="CallSequence_2_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_2?type=Runnable" />

54 </items>
</entries>

56 <entries name="Content_3">
<condition>

58 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_3?type=ModeLiteral"/>

</condition>
60 <items xsi:type="am:CallSequence" name="CallSequence_2_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_3?type=Runnable" />
62 </items>

</entries>
64 <entries name="Content_1">

<condition>
66 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

MessageMode/MessageContent_1?type=ModeLiteral"/>
</condition>

68 <items xsi:type="am:CallSequence" name="CallSequence_2_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_1?type=Runnable" />

70 </items>
</entries>

72 <entries name="Content_4">
<condition>

74 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
MessageMode/MessageContent_4?type=ModeLiteral"/>

306 APPENDIX A. APPENDIX

</condition>
76 <items xsi:type="am:CallSequence" name="CallSequence_2_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_4?type=Runnable" />
78 </items>

</entries>
80 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_2_default">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_default?type=Runnable" />

</items>
84 </defaultEntry>

</graphEntries>
86 </callGraph>

<customProperties key="priority">
88 <value xsi:type="am:StringObject" value="2" />

</customProperties>
90 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
92 </customProperties>

</tasks>
94 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="MessageMode/MessageContent_1?type=ModeLiteral" />

96 </runnables>
<runnables name="Runnable_2_1" callback="false" service="false">

98 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

100 <value xsi:type="am:NeedDeviation">
<deviation>

102 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="606" />

104 <distribution xsi:type="am:UniformDistribution" />
</deviation>

106 </value>
</default>

108 </runnableItems>
</runnables>

110 <runnables name="Runnable_2_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

112 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

114 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

116 <upperBound xsi:type="am:LongObject" value="30300" />
<distribution xsi:type="am:UniformDistribution" />

118 </deviation>
</value>

120 </default>
</runnableItems>

122 </runnables>
<runnables name="Runnable_2_3" callback="false" service="false">

124 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

126 <value xsi:type="am:NeedDeviation">
<deviation>

128 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="606000" />

130 <distribution xsi:type="am:UniformDistribution" />
</deviation>

A.1. ARCHITECTURAL SYSTEM PATTERNS 307

132 </value>
</default>

134 </runnableItems>
</runnables>

136 <runnables name="Runnable_2_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

138 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

140 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

142 <upperBound xsi:type="am:LongObject" value="24240000" />
<distribution xsi:type="am:UniformDistribution" />

144 </deviation>
</value>

146 </default>
</runnableItems>

148 </runnables>
<runnables name="Runnable_2_default" callback="false" service="false">

150 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

152 <value xsi:type="am:NeedDeviation">
<deviation>

154 <lowerBound xsi:type="am:LongObject" value="58" />
<upperBound xsi:type="am:LongObject" value="60" />

156 <distribution xsi:type="am:UniformDistribution" />
</deviation>

158 </value>
</default>

160 </runnableItems>
</runnables>

162 <runnables name="Runnable_1_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_2?type=ModeLiteral" />
164 </runnables>

<runnables name="Runnable_1_3" callback="false" service="false">
166 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_3?type=ModeLiteral" />
</runnables>

168 <runnables name="Runnable_1_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_4?type=ModeLiteral" />
170 </runnables>

<runnables name="Runnable_1_0" callback="false" service="false">
172 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="MessageMode/MessageContent_0?type=ModeLiteral" />
</runnables>

174 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

176 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

178 <deviation>
<lowerBound xsi:type="am:LongObject" value="5994000" />

180 <upperBound xsi:type="am:LongObject" value="6060000" />
<distribution xsi:type="am:UniformDistribution" />

182 </deviation>
</value>

184 </default>
</runnableItems>

308 APPENDIX A. APPENDIX

186 </runnables>
<modes name="MessageMode">

188 <literals name="MessageContent_0">
<customProperties key="enumValue">

190 <value xsi:type="am:LongObject" value="0" />
</customProperties>

192 </literals>
<literals name="MessageContent_1">

194 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

196 </customProperties>
</literals>

198 <literals name="MessageContent_2">
<customProperties key="enumValue">

200 <value xsi:type="am:LongObject" value="2" />
</customProperties>

202 </literals>
<literals name="MessageContent_3">

204 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

206 </customProperties>
</literals>

208 <literals name="MessageContent_4">
<customProperties key="enumValue">

210 <value xsi:type="am:LongObject" value="4" />
</customProperties>

212 </literals>
</modes>

214 <modeLabels name="message" initialValue="MessageMode/MessageContent_0?type=ModeLiteral">
<size value="8" unit="bit" />

216 </modeLabels>
</swModel>

218 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
220 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
222 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
224 </featureCategories>

<structures name="System" structureType="System">
226 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
228 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

230 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
232 </modules>

</structures>
234 </structures>

</structures>
236 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
238 </domains>

</hwModel>
240 <osModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 309

<operatingSystems name="Generic_OS">
242 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
244 </taskSchedulers>

<osDataConsistency mode="noProtection" />
246 </operatingSystems>

</osModel>
248 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_1">
250 <offset value="0" unit="ms" />

<recurrence value="50" unit="ms" />
252 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_2" />
254 </stimuliModel>

<constraintsModel />
256 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
258 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

260 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

262 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_2" entity="Runnable_1_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_3" entity="Runnable_1_3?type=
Runnable" />

264 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_4" entity="Runnable_1_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_1" entity="Runnable_2_1?type=
Runnable" />

266 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_2" entity="Runnable_2_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_3" entity="Runnable_2_3?type=
Runnable" />

268 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_4" entity="Runnable_2_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_default" entity="Runnable_2_default
?type=Runnable" />

270 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_1" entity="Stimulus_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_2" />
272 </eventModel>

<mappingModel addressMappingType="offset">
274 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
276 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
278 </mappingModel>

<componentsModel />
280 </am:Amalthea>

Listing A.15: Variation 7 of Client-Server without Reply.

310 APPENDIX A. APPENDIX

A.1.3. State Machine

A.1.3.1. Variation 1

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
20 </graphEntries>

</callGraph>
22 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
24 </customProperties>

<customProperties key="osekTaskGroup">
26 <value xsi:type="am:StringObject" value="2" />

</customProperties>
28 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

30 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

32 <entries name="State_1">
<condition>

34 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral"/>

</condition>
36 <items xsi:type="am:CallSequence" name="CallSequence_State_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />
38 </items>

<items xsi:type="am:ModeSwitch" />
40 </entries>

<entries name="State_0">
42 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral"/>

44 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_State_0">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
</items>

48 <items xsi:type="am:ModeSwitch" />
</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 311

50 <entries name="State_2">
<condition>

52 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral"/>

</condition>
54 <items xsi:type="am:CallSequence" name="CallSequence_State_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />
56 </items>

<items xsi:type="am:ModeSwitch" />
58 </entries>

</graphEntries>
60 </callGraph>

<customProperties key="priority">
62 <value xsi:type="am:StringObject" value="1" />

</customProperties>
64 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
66 </customProperties>

</tasks>
68 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_1?type=ModeLiteral" />

70 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

72 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

74 <value xsi:type="am:NeedDeviation">
<deviation>

76 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

78 <distribution xsi:type="am:UniformDistribution" />
</deviation>

80 </value>
</default>

82 </runnableItems>
</runnables>

84 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

86 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

88 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

90 <upperBound xsi:type="am:LongObject" value="60000" />
<distribution xsi:type="am:UniformDistribution" />

92 </deviation>
</value>

94 </default>
</runnableItems>

96 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

98 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

100 <value xsi:type="am:NeedDeviation">
<deviation>

102 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

104 <distribution xsi:type="am:UniformDistribution" />
</deviation>

312 APPENDIX A. APPENDIX

106 </value>
</default>

108 </runnableItems>
</runnables>

110 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

112 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

114 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

116 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

118 </deviation>
</value>

120 </default>
</runnableItems>

122 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

124 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_0?type=ModeLiteral" />

</runnables>
126 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

128 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

130 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

</runnables>
132 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

134 </runnables>
<modes name="State">

136 <literals name="State_0">
<customProperties key="enumValue">

138 <value xsi:type="am:LongObject" value="0" />
</customProperties>

140 </literals>
<literals name="State_1">

142 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

144 </customProperties>
</literals>

146 <literals name="State_2">
<customProperties key="enumValue">

148 <value xsi:type="am:LongObject" value="2" />
</customProperties>

150 </literals>
</modes>

152 <modes name="Message">
<literals name="MessageContent_0">

154 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

156 </customProperties>
</literals>

158 <literals name="MessageContent_1">
<customProperties key="enumValue">

A.1. ARCHITECTURAL SYSTEM PATTERNS 313

160 <value xsi:type="am:LongObject" value="1" />
</customProperties>

162 </literals>
</modes>

164 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">
<size value="8" unit="bit" />

166 </modeLabels>
<modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">

168 <size value="1" unit="bit" />
</modeLabels>

170 </swModel>
<hwModel>

172 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
174 </definitions>

<featureCategories name="Instructions" featureType="performance">
176 <features name="IPC_1.0" value="1.0" />

</featureCategories>
178 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
180 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

182 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
184 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
186 </structures>

</structures>
188 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
190 <defaultValue value="600.0" unit="MHz"/>

</domains>
192 </hwModel>

<osModel>
194 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
196 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
198 <osDataConsistency mode="noProtection" />

</operatingSystems>
200 </osModel>

<stimuliModel>
202 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
204 <recurrence value="100" unit="ms" />

</stimuli>
206 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="15" unit="ms" />
208 <recurrence value="60" unit="ms" />

</stimuli>
210 </stimuliModel>

<constraintsModel />
212 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
214 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

314 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

222 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

224 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

226 </eventModel>
<mappingModel addressMappingType="offset">

228 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

230 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?
type=ModeLabel" />

232 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="
message?type=ModeLabel" />

</mappingModel>
234 <componentsModel />

</am:Amalthea>

Listing A.16: Variation 1 of State Machine.

A.1.3.2. Variation 2

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 315

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
20 </graphEntries>

</callGraph>
22 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
24 </customProperties>

<customProperties key="osekTaskGroup">
26 <value xsi:type="am:StringObject" value="2" />

</customProperties>
28 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

30 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

32 <entries name="State_1">
<condition>

34 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral"/>

</condition>
36 <items xsi:type="am:CallSequence" name="CallSequence_State_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />
38 </items>

<items xsi:type="am:ModeSwitch" />
40 </entries>

<entries name="State_0">
42 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral"/>

44 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_State_0">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
</items>

48 <items xsi:type="am:ModeSwitch" />
</entries>

50 <entries name="State_2">
<condition>

52 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral"/>

</condition>
54 <items xsi:type="am:CallSequence" name="CallSequence_State_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />
56 </items>

<items xsi:type="am:ModeSwitch" />
58 </entries>

</graphEntries>
60 </callGraph>

<customProperties key="priority">
62 <value xsi:type="am:StringObject" value="1" />

</customProperties>
64 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
66 </customProperties>

</tasks>
68 <runnables name="Runnable_1_1" callback="false" service="false">

316 APPENDIX A. APPENDIX

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

70 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_1?type=ModeLiteral" />

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

72 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

74 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

76 <value xsi:type="am:NeedDeviation">
<deviation>

78 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

80 <distribution xsi:type="am:UniformDistribution" />
</deviation>

82 </value>
</default>

84 </runnableItems>
</runnables>

86 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

88 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

90 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

92 <upperBound xsi:type="am:LongObject" value="60000" />
<distribution xsi:type="am:UniformDistribution" />

94 </deviation>
</value>

96 </default>
</runnableItems>

98 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

100 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

102 <value xsi:type="am:NeedDeviation">
<deviation>

104 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

106 <distribution xsi:type="am:UniformDistribution" />
</deviation>

108 </value>
</default>

110 </runnableItems>
</runnables>

112 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

114 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

116 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

118 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

120 </deviation>
</value>

122 </default>
</runnableItems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 317

124 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

126 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_0?type=ModeLiteral" />

128 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
130 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

132 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

134 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

136 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

138 <runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

</runnables>
140 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
request" />

142 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

<runnableItems xsi:type="am:SemaphoreAccess" semaphore="Semaphore?type=Semaphore" access="
release" />

144 </runnables>
<modes name="State">

146 <literals name="State_0">
<customProperties key="enumValue">

148 <value xsi:type="am:LongObject" value="0" />
</customProperties>

150 </literals>
<literals name="State_1">

152 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

154 </customProperties>
</literals>

156 <literals name="State_2">
<customProperties key="enumValue">

158 <value xsi:type="am:LongObject" value="2" />
</customProperties>

160 </literals>
</modes>

162 <modes name="Message">
<literals name="MessageContent_0">

164 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

166 </customProperties>
</literals>

168 <literals name="MessageContent_1">
<customProperties key="enumValue">

318 APPENDIX A. APPENDIX

170 <value xsi:type="am:LongObject" value="1" />
</customProperties>

172 </literals>
</modes>

174 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">
<size value="8" unit="bit" />

176 </modeLabels>
<modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">

178 <size value="1" unit="bit" />
</modeLabels>

180 </swModel>
<hwModel>

182 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
184 </definitions>

<featureCategories name="Instructions" featureType="performance">
186 <features name="IPC_1.0" value="1.0" />

</featureCategories>
188 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
190 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

192 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
194 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
196 </structures>

</structures>
198 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
200 <defaultValue value="600.0" unit="MHz"/>

</domains>
202 </hwModel>

<osModel>
204 <semaphores name="Semaphore" initialValue="0" maxValue="1" priorityCeilingProtocol="true" />

<operatingSystems name="Generic_OS">
206 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
208 </taskSchedulers>

<osDataConsistency mode="noProtection" />
210 </operatingSystems>

</osModel>
212 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
214 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
216 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
218 <offset value="15" unit="ms" />

<recurrence value="60" unit="ms" />
220 </stimuli>

</stimuliModel>
222 <constraintsModel />

<eventModel>
224 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 319

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
226 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
228 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?

type=Runnable" />
230 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?

type=Runnable" />
232 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="

Runnable_Transition_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="

Runnable_Transition_1?type=Runnable" />
234 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="

Runnable_Transition_2?type=Runnable" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=

PeriodicStimulus" />
236 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=

PeriodicStimulus" />
<events xsi:type="am:SemaphoreEvent" name="Event_Semaphore" entity="Semaphore?type=Semaphore"

/>
238 </eventModel>

<mappingModel addressMappingType="offset">
240 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
242 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?

type=ModeLabel" />
244 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

message?type=ModeLabel" />
</mappingModel>

246 <componentsModel />
</am:Amalthea>

Listing A.17: Variation 2 of State Machine.

A.1.3.3. Variation 3

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>

320 APPENDIX A. APPENDIX

12 <entries probability="25.0">
<items xsi:type="am:CallSequence" name="CallSequence_1_1">

14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
</items>

16 </entries>
</graphEntries>

18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

20 </graphEntries>
</callGraph>

22 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

24 </customProperties>
<customProperties key="osekTaskGroup">

26 <value xsi:type="am:StringObject" value="1" />
</customProperties>

28 </tasks>
<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
30 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
32 <entries name="State_1">

<condition>
34 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral"/>
</condition>

36 <items xsi:type="am:CallSequence" name="CallSequence_State_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

38 </items>
<items xsi:type="am:ModeSwitch" />

40 </entries>
<entries name="State_0">

42 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral"/>
44 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_0">
46 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

</items>
48 <items xsi:type="am:ModeSwitch" />

</entries>
50 <entries name="State_2">

<condition>
52 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral"/>
</condition>

54 <items xsi:type="am:CallSequence" name="CallSequence_State_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

56 </items>
<items xsi:type="am:ModeSwitch" />

58 </entries>
</graphEntries>

60 </callGraph>
<customProperties key="priority">

62 <value xsi:type="am:StringObject" value="2" />
</customProperties>

64 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 321

66 </customProperties>
</tasks>

68 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_1?type=ModeLiteral" />
70 </runnables>

<runnables name="Runnable_State_0" callback="false" service="false">
72 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
74 <value xsi:type="am:NeedDeviation">

<deviation>
76 <lowerBound xsi:type="am:LongObject" value="59" />

<upperBound xsi:type="am:LongObject" value="60" />
78 <distribution xsi:type="am:UniformDistribution" />

</deviation>
80 </value>

</default>
82 </runnableItems>

</runnables>
84 <runnables name="Runnable_State_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
86 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
88 <deviation>

<lowerBound xsi:type="am:LongObject" value="59400" />
90 <upperBound xsi:type="am:LongObject" value="60000" />

<distribution xsi:type="am:UniformDistribution" />
92 </deviation>

</value>
94 </default>

</runnableItems>
96 </runnables>

<runnables name="Runnable_State_2" callback="false" service="false">
98 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
100 <value xsi:type="am:NeedDeviation">

<deviation>
102 <lowerBound xsi:type="am:LongObject" value="29700000" />

<upperBound xsi:type="am:LongObject" value="30000000" />
104 <distribution xsi:type="am:UniformDistribution" />

</deviation>
106 </value>

</default>
108 </runnableItems>

</runnables>
110 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
112 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
114 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
116 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
118 </deviation>

</value>
120 </default>

</runnableItems>
122 </runnables>

322 APPENDIX A. APPENDIX

<runnables name="Runnable_1_0" callback="false" service="false">
124 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_0?type=ModeLiteral" />
</runnables>

126 <runnables name="Runnable_Transition_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_0?type=ModeLiteral" />
128 </runnables>

<runnables name="Runnable_Transition_1" callback="false" service="false">
130 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_1?type=ModeLiteral" />
</runnables>

132 <runnables name="Runnable_Transition_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_2?type=ModeLiteral" />
134 </runnables>

<modes name="State">
136 <literals name="State_0">

<customProperties key="enumValue">
138 <value xsi:type="am:LongObject" value="0" />

</customProperties>
140 </literals>

<literals name="State_1">
142 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
144 </customProperties>

</literals>
146 <literals name="State_2">

<customProperties key="enumValue">
148 <value xsi:type="am:LongObject" value="2" />

</customProperties>
150 </literals>

</modes>
152 <modes name="Message">

<literals name="MessageContent_0">
154 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
156 </customProperties>

</literals>
158 <literals name="MessageContent_1">

<customProperties key="enumValue">
160 <value xsi:type="am:LongObject" value="1" />

</customProperties>
162 </literals>

</modes>
164 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

<size value="8" unit="bit" />
166 </modeLabels>

<modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">
168 <size value="1" unit="bit" />

</modeLabels>
170 </swModel>

<hwModel>
172 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

174 </definitions>
<featureCategories name="Instructions" featureType="performance">

A.1. ARCHITECTURAL SYSTEM PATTERNS 323

176 <features name="IPC_1.0" value="1.0" />
</featureCategories>

178 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

180 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
182 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

184 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

186 </structures>
</structures>

188 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

190 <defaultValue value="600.0" unit="MHz"/>
</domains>

192 </hwModel>
<osModel>

194 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

196 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

198 <osDataConsistency mode="noProtection" />
</operatingSystems>

200 </osModel>
<stimuliModel>

202 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

204 <recurrence value="100" unit="ms" />
</stimuli>

206 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">
<offset value="15" unit="ms" />

208 <recurrence value="60" unit="ms" />
</stimuli>

210 </stimuliModel>
<constraintsModel />

212 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

214 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?

type=Runnable" />
220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="

Runnable_Transition_0?type=Runnable" />
222 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="

Runnable_Transition_1?type=Runnable" />

324 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

224 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

226 </eventModel>
<mappingModel addressMappingType="offset">

228 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

230 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?
type=ModeLabel" />

232 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="
message?type=ModeLabel" />

</mappingModel>
234 <componentsModel />

</am:Amalthea>

Listing A.18: Variation 3 of State Machine.

A.1.3.4. Variation 4

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
20 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_Task_2?type=

InterProcessStimulus" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="1" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

28 </customProperties>
</tasks>

A.1. ARCHITECTURAL SYSTEM PATTERNS 325

30 <tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">
<callGraph>

32 <graphEntries xsi:type="am:ModeSwitch">
<entries name="State_1">

34 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral"/>
36 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
38 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
40 <items xsi:type="am:ModeSwitch" />

</entries>
42 <entries name="State_0">

<condition>
44 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral"/>
</condition>

46 <items xsi:type="am:CallSequence" name="CallSequence_State_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

48 </items>
<items xsi:type="am:ModeSwitch" />

50 </entries>
<entries name="State_2">

52 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral"/>
54 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
56 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
58 <items xsi:type="am:ModeSwitch" />

</entries>
60 </graphEntries>

</callGraph>
62 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
64 </customProperties>

<customProperties key="osekTaskGroup">
66 <value xsi:type="am:StringObject" value="2" />

</customProperties>
68 </tasks>

<runnables name="Runnable_1_1" callback="false" service="false">
70 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_1?type=ModeLiteral" />
</runnables>

72 <runnables name="Runnable_State_0" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

74 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

76 <deviation>
<lowerBound xsi:type="am:LongObject" value="59" />

78 <upperBound xsi:type="am:LongObject" value="60" />
<distribution xsi:type="am:UniformDistribution" />

80 </deviation>
</value>

82 </default>
</runnableItems>

326 APPENDIX A. APPENDIX

84 </runnables>
<runnables name="Runnable_State_1" callback="false" service="false">

86 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

88 <value xsi:type="am:NeedDeviation">
<deviation>

90 <lowerBound xsi:type="am:LongObject" value="59400" />
<upperBound xsi:type="am:LongObject" value="60000" />

92 <distribution xsi:type="am:UniformDistribution" />
</deviation>

94 </value>
</default>

96 </runnableItems>
</runnables>

98 <runnables name="Runnable_State_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

100 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

102 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700000" />

104 <upperBound xsi:type="am:LongObject" value="30000000" />
<distribution xsi:type="am:UniformDistribution" />

106 </deviation>
</value>

108 </default>
</runnableItems>

110 </runnables>
<runnables name="Runnable_1" callback="false" service="false">

112 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

114 <value xsi:type="am:NeedDeviation">
<deviation>

116 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

118 <distribution xsi:type="am:UniformDistribution" />
</deviation>

120 </value>
</default>

122 </runnableItems>
</runnables>

124 <runnables name="Runnable_1_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_0?type=ModeLiteral" />
126 </runnables>

<runnables name="Runnable_Transition_0" callback="false" service="false">
128 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_0?type=ModeLiteral" />
</runnables>

130 <runnables name="Runnable_Transition_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_1?type=ModeLiteral" />
132 </runnables>

<runnables name="Runnable_Transition_2" callback="false" service="false">
134 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_2?type=ModeLiteral" />
</runnables>

136 <modes name="State">
<literals name="State_0">

A.1. ARCHITECTURAL SYSTEM PATTERNS 327

138 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

140 </customProperties>
</literals>

142 <literals name="State_1">
<customProperties key="enumValue">

144 <value xsi:type="am:LongObject" value="1" />
</customProperties>

146 </literals>
<literals name="State_2">

148 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

150 </customProperties>
</literals>

152 </modes>
<modes name="Message">

154 <literals name="MessageContent_0">
<customProperties key="enumValue">

156 <value xsi:type="am:LongObject" value="0" />
</customProperties>

158 </literals>
<literals name="MessageContent_1">

160 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

162 </customProperties>
</literals>

164 </modes>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

166 <size value="8" unit="bit" />
</modeLabels>

168 <modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">
<size value="1" unit="bit" />

170 </modeLabels>
</swModel>

172 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
174 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
176 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
178 </featureCategories>

<structures name="System" structureType="System">
180 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
182 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

184 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
186 </modules>

</structures>
188 </structures>

</structures>
190 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
192 </domains>

328 APPENDIX A. APPENDIX

</hwModel>
194 <osModel>

<operatingSystems name="Generic_OS">
196 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
198 </taskSchedulers>

<osDataConsistency mode="noProtection" />
200 </operatingSystems>

</osModel>
202 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
204 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
206 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_Task_2" />
208 </stimuliModel>

<constraintsModel />
210 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
212 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

214 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

222 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" />
224 </eventModel>

<mappingModel addressMappingType="offset">
226 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
228 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?

type=ModeLabel" />
230 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

message?type=ModeLabel" />
</mappingModel>

232 <componentsModel />
</am:Amalthea>

Listing A.19: Variation 4 of State Machine.

A.1. ARCHITECTURAL SYSTEM PATTERNS 329

A.1.3.5. Variation 5

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
20 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_Task_2?type=

InterProcessStimulus" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="1" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

28 </customProperties>
</tasks>

30 <tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">
<callGraph>

32 <graphEntries xsi:type="am:ModeSwitch">
<entries name="State_1">

34 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral"/>
36 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
38 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
40 <items xsi:type="am:ModeSwitch" />

</entries>
42 <entries name="State_0">

<condition>
44 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral"/>
</condition>

46 <items xsi:type="am:CallSequence" name="CallSequence_State_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

48 </items>
<items xsi:type="am:ModeSwitch" />

50 </entries>
<entries name="State_2">

330 APPENDIX A. APPENDIX

52 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral"/>
54 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
56 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
58 <items xsi:type="am:ModeSwitch" />

</entries>
60 </graphEntries>

</callGraph>
62 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
64 </customProperties>

<customProperties key="osekTaskGroup">
66 <value xsi:type="am:StringObject" value="2" />

</customProperties>
68 </tasks>

<runnables name="Runnable_1_1" callback="false" service="false">
70 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_1?type=ModeLiteral" />
</runnables>

72 <runnables name="Runnable_State_0" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

74 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

76 <deviation>
<lowerBound xsi:type="am:LongObject" value="59" />

78 <upperBound xsi:type="am:LongObject" value="60" />
<distribution xsi:type="am:UniformDistribution" />

80 </deviation>
</value>

82 </default>
</runnableItems>

84 </runnables>
<runnables name="Runnable_State_1" callback="false" service="false">

86 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

88 <value xsi:type="am:NeedDeviation">
<deviation>

90 <lowerBound xsi:type="am:LongObject" value="59400" />
<upperBound xsi:type="am:LongObject" value="60000" />

92 <distribution xsi:type="am:UniformDistribution" />
</deviation>

94 </value>
</default>

96 </runnableItems>
</runnables>

98 <runnables name="Runnable_State_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

100 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

102 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700000" />

104 <upperBound xsi:type="am:LongObject" value="30000000" />
<distribution xsi:type="am:UniformDistribution" />

106 </deviation>
</value>

A.1. ARCHITECTURAL SYSTEM PATTERNS 331

108 </default>
</runnableItems>

110 </runnables>
<runnables name="Runnable_1" callback="false" service="false">

112 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

114 <value xsi:type="am:NeedDeviation">
<deviation>

116 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

118 <distribution xsi:type="am:UniformDistribution" />
</deviation>

120 </value>
</default>

122 </runnableItems>
</runnables>

124 <runnables name="Runnable_1_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_0?type=ModeLiteral" />
126 </runnables>

<runnables name="Runnable_Transition_0" callback="false" service="false">
128 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_0?type=ModeLiteral" />
</runnables>

130 <runnables name="Runnable_Transition_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_1?type=ModeLiteral" />
132 </runnables>

<runnables name="Runnable_Transition_2" callback="false" service="false">
134 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_2?type=ModeLiteral" />
</runnables>

136 <modes name="State">
<literals name="State_0">

138 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

140 </customProperties>
</literals>

142 <literals name="State_1">
<customProperties key="enumValue">

144 <value xsi:type="am:LongObject" value="1" />
</customProperties>

146 </literals>
<literals name="State_2">

148 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

150 </customProperties>
</literals>

152 </modes>
<modes name="Message">

154 <literals name="MessageContent_0">
<customProperties key="enumValue">

156 <value xsi:type="am:LongObject" value="0" />
</customProperties>

158 </literals>
<literals name="MessageContent_1">

160 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

332 APPENDIX A. APPENDIX

162 </customProperties>
</literals>

164 </modes>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

166 <size value="8" unit="bit" />
</modeLabels>

168 <modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">
<size value="1" unit="bit" />

170 </modeLabels>
</swModel>

172 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
174 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
176 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
178 </featureCategories>

<structures name="System" structureType="System">
180 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
182 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

184 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
186 </modules>

</structures>
188 </structures>

</structures>
190 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
192 </domains>

</hwModel>
194 <osModel>

<operatingSystems name="Generic_OS">
196 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
198 </taskSchedulers>

<osDataConsistency mode="noProtection" />
200 </operatingSystems>

</osModel>
202 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
204 <offset value="0" unit="ms" />

<recurrence value="50" unit="ms" />
206 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_Task_2" />
208 </stimuliModel>

<constraintsModel />
210 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
212 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

214 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 333

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

222 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" />
224 </eventModel>

<mappingModel addressMappingType="offset">
226 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
228 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?

type=ModeLabel" />
230 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

message?type=ModeLabel" />
</mappingModel>

232 <componentsModel />
</am:Amalthea>

Listing A.20: Variation 5 of State Machine.

A.1.3.6. Variation 6

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

334 APPENDIX A. APPENDIX

20 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_Task_2?type=
InterProcessStimulus" />

</graphEntries>
22 </callGraph>

<customProperties key="priority">
24 <value xsi:type="am:StringObject" value="1" />

</customProperties>
26 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
28 </customProperties>

</tasks>
30 <tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">

<callGraph>
32 <graphEntries xsi:type="am:ModeSwitch">

<entries name="State_1">
34 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral"/>

36 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_State_1">

38 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />
</items>

40 <items xsi:type="am:ModeSwitch" />
</entries>

42 <entries name="State_0">
<condition>

44 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral"/>

</condition>
46 <items xsi:type="am:CallSequence" name="CallSequence_State_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
48 </items>

<items xsi:type="am:ModeSwitch" />
50 </entries>

<entries name="State_2">
52 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral"/>

54 </condition>
<items xsi:type="am:CallSequence" name="CallSequence_State_2">

56 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />
</items>

58 <items xsi:type="am:ModeSwitch" />
</entries>

60 </graphEntries>
</callGraph>

62 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

64 </customProperties>
<customProperties key="osekTaskGroup">

66 <value xsi:type="am:StringObject" value="2" />
</customProperties>

68 </tasks>
<runnables name="Runnable_1_1" callback="false" service="false">

70 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_1?type=ModeLiteral" />

</runnables>
72 <runnables name="Runnable_State_0" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 335

<runnableItems xsi:type="am:ExecutionNeed">
74 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
76 <deviation>

<lowerBound xsi:type="am:LongObject" value="58" />
78 <upperBound xsi:type="am:LongObject" value="60" />

<distribution xsi:type="am:UniformDistribution" />
80 </deviation>

</value>
82 </default>

</runnableItems>
84 </runnables>

<runnables name="Runnable_State_1" callback="false" service="false">
86 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
88 <value xsi:type="am:NeedDeviation">

<deviation>
90 <lowerBound xsi:type="am:LongObject" value="59400" />

<upperBound xsi:type="am:LongObject" value="60600" />
92 <distribution xsi:type="am:UniformDistribution" />

</deviation>
94 </value>

</default>
96 </runnableItems>

</runnables>
98 <runnables name="Runnable_State_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
100 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
102 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700000" />
104 <upperBound xsi:type="am:LongObject" value="30300000" />

<distribution xsi:type="am:UniformDistribution" />
106 </deviation>

</value>
108 </default>

</runnableItems>
110 </runnables>

<runnables name="Runnable_1" callback="false" service="false">
112 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
114 <value xsi:type="am:NeedDeviation">

<deviation>
116 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
118 <distribution xsi:type="am:UniformDistribution" />

</deviation>
120 </value>

</default>
122 </runnableItems>

</runnables>
124 <runnables name="Runnable_1_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/MessageContent_0?type=ModeLiteral" />

126 </runnables>
<runnables name="Runnable_Transition_0" callback="false" service="false">

128 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

336 APPENDIX A. APPENDIX

</runnables>
130 <runnables name="Runnable_Transition_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

132 </runnables>
<runnables name="Runnable_Transition_2" callback="false" service="false">

134 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

</runnables>
136 <modes name="State">

<literals name="State_0">
138 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
140 </customProperties>

</literals>
142 <literals name="State_1">

<customProperties key="enumValue">
144 <value xsi:type="am:LongObject" value="1" />

</customProperties>
146 </literals>

<literals name="State_2">
148 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="2" />
150 </customProperties>

</literals>
152 </modes>

<modes name="Message">
154 <literals name="MessageContent_0">

<customProperties key="enumValue">
156 <value xsi:type="am:LongObject" value="0" />

</customProperties>
158 </literals>

<literals name="MessageContent_1">
160 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
162 </customProperties>

</literals>
164 </modes>

<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">
166 <size value="8" unit="bit" />

</modeLabels>
168 <modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">

<size value="1" unit="bit" />
170 </modeLabels>

</swModel>
172 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

174 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

176 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

178 </featureCategories>
<structures name="System" structureType="System">

180 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

182 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

A.1. ARCHITECTURAL SYSTEM PATTERNS 337

</modules>
184 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

186 </modules>
</structures>

188 </structures>
</structures>

190 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

192 </domains>
</hwModel>

194 <osModel>
<operatingSystems name="Generic_OS">

196 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

198 </taskSchedulers>
<osDataConsistency mode="noProtection" />

200 </operatingSystems>
</osModel>

202 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

204 <offset value="0" unit="ms" />
<recurrence value="50" unit="ms" />

206 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_Task_2" />

208 </stimuliModel>
<constraintsModel />

210 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

212 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
214 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?

type=Runnable" />
218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="

Runnable_Transition_0?type=Runnable" />
220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="

Runnable_Transition_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="

Runnable_Transition_2?type=Runnable" />
222 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=

PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" />

224 </eventModel>
<mappingModel addressMappingType="offset">

226 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

228 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

338 APPENDIX A. APPENDIX

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?
type=ModeLabel" />

230 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="
message?type=ModeLabel" />

</mappingModel>
232 <componentsModel />

</am:Amalthea>

Listing A.21: Variation 6 of State Machine.

A.1.3.7. Variation 7

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="75.0">
8 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
10 </items>

</entries>
12 <entries probability="25.0">

<items xsi:type="am:CallSequence" name="CallSequence_1_1">
14 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

</items>
16 </entries>

</graphEntries>
18 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
20 <calls xsi:type="am:InterProcessTrigger" stimulus="Stimulus_Task_2?type=

InterProcessStimulus" />
</graphEntries>

22 </callGraph>
<customProperties key="priority">

24 <value xsi:type="am:StringObject" value="1" />
</customProperties>

26 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

28 </customProperties>
</tasks>

30 <tasks name="Task_2" preemption="preemptive" multipleTaskActivationLimit="1">
<callGraph>

32 <graphEntries xsi:type="am:ModeSwitch">
<entries name="State_1">

34 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral"/>
36 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
38 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
40 <items xsi:type="am:ModeSwitch" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 339

</entries>
42 <entries name="State_0">

<condition>
44 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral"/>
</condition>

46 <items xsi:type="am:CallSequence" name="CallSequence_State_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

48 </items>
<items xsi:type="am:ModeSwitch" />

50 </entries>
<entries name="State_2">

52 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral"/>
54 </condition>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
56 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
58 <items xsi:type="am:ModeSwitch" />

</entries>
60 </graphEntries>

</callGraph>
62 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
64 </customProperties>

<customProperties key="osekTaskGroup">
66 <value xsi:type="am:StringObject" value="2" />

</customProperties>
68 </tasks>

<runnables name="Runnable_1_1" callback="false" service="false">
70 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_1?type=ModeLiteral" />
</runnables>

72 <runnables name="Runnable_State_0" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

74 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

76 <deviation>
<lowerBound xsi:type="am:LongObject" value="58" />

78 <upperBound xsi:type="am:LongObject" value="60" />
<distribution xsi:type="am:UniformDistribution" />

80 </deviation>
</value>

82 </default>
</runnableItems>

84 </runnables>
<runnables name="Runnable_State_1" callback="false" service="false">

86 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

88 <value xsi:type="am:NeedDeviation">
<deviation>

90 <lowerBound xsi:type="am:LongObject" value="59400" />
<upperBound xsi:type="am:LongObject" value="60600" />

92 <distribution xsi:type="am:UniformDistribution" />
</deviation>

94 </value>
</default>

340 APPENDIX A. APPENDIX

96 </runnableItems>
</runnables>

98 <runnables name="Runnable_State_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

100 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

102 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700000" />

104 <upperBound xsi:type="am:LongObject" value="30300000" />
<distribution xsi:type="am:UniformDistribution" />

106 </deviation>
</value>

108 </default>
</runnableItems>

110 </runnables>
<runnables name="Runnable_1" callback="false" service="false">

112 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

114 <value xsi:type="am:NeedDeviation">
<deviation>

116 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6060000" />

118 <distribution xsi:type="am:UniformDistribution" />
</deviation>

120 </value>
</default>

122 </runnableItems>
</runnables>

124 <runnables name="Runnable_1_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/MessageContent_0?type=ModeLiteral" />
126 </runnables>

<runnables name="Runnable_Transition_0" callback="false" service="false">
128 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_0?type=ModeLiteral" />
</runnables>

130 <runnables name="Runnable_Transition_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_1?type=ModeLiteral" />
132 </runnables>

<runnables name="Runnable_Transition_2" callback="false" service="false">
134 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_2?type=ModeLiteral" />
</runnables>

136 <modes name="State">
<literals name="State_0">

138 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

140 </customProperties>
</literals>

142 <literals name="State_1">
<customProperties key="enumValue">

144 <value xsi:type="am:LongObject" value="1" />
</customProperties>

146 </literals>
<literals name="State_2">

148 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 341

150 </customProperties>
</literals>

152 </modes>
<modes name="Message">

154 <literals name="MessageContent_0">
<customProperties key="enumValue">

156 <value xsi:type="am:LongObject" value="0" />
</customProperties>

158 </literals>
<literals name="MessageContent_1">

160 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

162 </customProperties>
</literals>

164 </modes>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

166 <size value="8" unit="bit" />
</modeLabels>

168 <modeLabels name="message" initialValue="Message/MessageContent_0?type=ModeLiteral">
<size value="1" unit="bit" />

170 </modeLabels>
</swModel>

172 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
174 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
176 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
178 </featureCategories>

<structures name="System" structureType="System">
180 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
182 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

184 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
186 </modules>

</structures>
188 </structures>

</structures>
190 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
192 </domains>

</hwModel>
194 <osModel>

<operatingSystems name="Generic_OS">
196 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
198 </taskSchedulers>

<osDataConsistency mode="noProtection" />
200 </operatingSystems>

</osModel>
202 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
204 <offset value="0" unit="ms" />

342 APPENDIX A. APPENDIX

<recurrence value="50" unit="ms" />
206 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="Stimulus_Task_2" />
208 </stimuliModel>

<constraintsModel />
210 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
212 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

214 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

216 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

218 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

220 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

222 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" />
224 </eventModel>

<mappingModel addressMappingType="offset">
226 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
228 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="state?

type=ModeLabel" />
230 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

message?type=ModeLabel" />
</mappingModel>

232 <componentsModel />
</am:Amalthea>

Listing A.22: Variation 7 of State Machine.

A.1.4. Feedback Loop

A.1.4.1. Variation 1

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

A.1. ARCHITECTURAL SYSTEM PATTERNS 343

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>
12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=

ModeLiteral" />
</condition>

14 </entries>
<entries>

16 <items xsi:type="am:CallSequence" name="CS_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />

18 </items>
<condition>

20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=
ModeLiteral" />

</condition>
22 </entries>

</graphEntries>
24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">

<calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />
26 </graphEntries>

</callGraph>
28 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
30 </customProperties>

<customProperties key="osekTaskGroup">
32 <value xsi:type="am:StringObject" value="3" />

</customProperties>
34 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

36 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

38 <entries>
<items xsi:type="am:CallSequence" name="CS_state_0">

40 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />

42 </items>
<items xsi:type="am:ModeSwitch">

44 <entries>
<items xsi:type="am:CallSequence" name="CS_0_to_0">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
</items>

48 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
50 </condition>

</entries>
52 <entries>

<items xsi:type="am:CallSequence" name="CS_0_to_1">
54 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

</items>
56 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

344 APPENDIX A. APPENDIX

58 </condition>
</entries>

60 </items>
<condition>

62 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral" />

</condition>
64 </entries>

<entries>
66 <items xsi:type="am:CallSequence" name="CS_state_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />
68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CS_1_to_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
74 </items>

<condition>
76 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

78 </entries>
<entries>

80 <items xsi:type="am:CallSequence" name="CS_1_to_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral" />

90 </condition>
</entries>

92 <entries>
<items xsi:type="am:CallSequence" name="CS_state_2">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />

96 </items>
<items xsi:type="am:ModeSwitch">

98 <entries>
<items xsi:type="am:CallSequence" name="CS_2_to_1">

100 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
</items>

102 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
104 </condition>

</entries>
106 <entries>

<items xsi:type="am:CallSequence" name="CS_2_to_2">
108 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

</items>
110 <condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 345

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

112 </condition>
</entries>

114 </items>
<condition>

116 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral" />

</condition>
118 </entries>

</graphEntries>
120 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="0.3">
122 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=
InterProcessStimulus" />

124 </items>
</entries>

126 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_notrigger" />

128 </entries>
</graphEntries>

130 <graphEntries xsi:type="am:CallSequence" name="CS_R2">
<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />

132 </graphEntries>
</callGraph>

134 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

136 </customProperties>
<customProperties key="osekTaskGroup">

138 <value xsi:type="am:StringObject" value="2" />
</customProperties>

140 </tasks>
<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
142 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
144 <entries>

<items xsi:type="am:CallSequence" name="CS_y_0">
146 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />

</items>
148 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=
ModeLiteral" />

150 </condition>
</entries>

152 <entries>
<items xsi:type="am:CallSequence" name="CS_y_1">

154 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />
</items>

156 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type

=ModeLiteral" />
158 </condition>

</entries>
160 <entries>

<items xsi:type="am:CallSequence" name="CS_y_2">
162 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />

346 APPENDIX A. APPENDIX

</items>
164 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?
type=ModeLiteral" />

166 </condition>
</entries>

168 </graphEntries>
</callGraph>

170 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

172 </customProperties>
<customProperties key="osekTaskGroup">

174 <value xsi:type="am:StringObject" value="1" />
</customProperties>

176 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
178 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
180 <entries>

<items xsi:type="am:ProbabilitySwitch">
182 <entries probability="0.3">

<items xsi:type="am:CallSequence" name="CS_w_0_e_0">
184 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
186 </entries>

<entries probability="0.7">
188 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
190 </items>

</entries>
192 </items>

<condition>
194 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=

ModeLiteral" />
</condition>

196 </entries>
<entries>

198 <items xsi:type="am:ProbabilitySwitch">
<entries probability="0.5">

200 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

202 </items>
</entries>

204 <entries probability="0.5">
<items xsi:type="am:CallSequence" name="CS_w_50_e_1">

206 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
</items>

208 </entries>
</items>

210 <condition>
<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type

=ModeLiteral" />
212 </condition>

</entries>
214 <entries>

<items xsi:type="am:ProbabilitySwitch">
216 <entries probability="0.7">

A.1. ARCHITECTURAL SYSTEM PATTERNS 347

<items xsi:type="am:CallSequence" name="CS_w_100_e_0">
218 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
220 </entries>

<entries probability="0.3">
222 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
224 </items>

</entries>
226 </items>

<condition>
228 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?

type=ModeLiteral" />
</condition>

230 </entries>
</graphEntries>

232 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">
<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />

234 </graphEntries>
</callGraph>

236 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

238 </customProperties>
<customProperties key="osekTaskGroup">

240 <value xsi:type="am:StringObject" value="1" />
</customProperties>

242 </tasks>
<runnables name="Set_e_0" callback="false" service="false">

244 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

</runnables>
246 <runnables name="Set_e_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

248 </runnables>
<runnables name="Set_state_0" callback="false" service="false">

250 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

</runnables>
252 <runnables name="Set_state_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

254 </runnables>
<runnables name="Set_state_2" callback="false" service="false">

256 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

</runnables>
258 <runnables name="Set_y_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

260 </runnables>
<runnables name="Set_y_50" callback="false" service="false">

262 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

</runnables>
264 <runnables name="Set_y_100" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

348 APPENDIX A. APPENDIX

266 </runnables>
<runnables name="R_3_0" callback="false" service="false">

268 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

270 <value xsi:type="am:NeedDeviation">
<deviation>

272 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

274 <distribution xsi:type="am:UniformDistribution" />
</deviation>

276 </value>
</default>

278 </runnableItems>
</runnables>

280 <runnables name="R_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

282 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

284 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400000" />

286 <upperBound xsi:type="am:LongObject" value="60000000" />
<distribution xsi:type="am:UniformDistribution" />

288 </deviation>
</value>

290 </default>
</runnableItems>

292 </runnables>
<runnables name="R_3_1" callback="false" service="false">

294 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

296 <value xsi:type="am:NeedDeviation">
<deviation>

298 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

300 <distribution xsi:type="am:UniformDistribution" />
</deviation>

302 </value>
</default>

304 </runnableItems>
</runnables>

306 <runnables name="Set_w_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
308 </runnables>

<runnables name="Set_w_50" callback="false" service="false">
310 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
</runnables>

312 <runnables name="Set_w_100" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
314 </runnables>

<runnables name="Set_u_0" callback="false" service="false">
316 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
</runnables>

318 <runnables name="Set_u_1" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 349

<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"
modeValue="U/U_1?type=ModeLiteral" />

320 </runnables>
<runnables name="R1" callback="false" service="false">

322 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

324 <value xsi:type="am:NeedDeviation">
<deviation>

326 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

328 <distribution xsi:type="am:UniformDistribution" />
</deviation>

330 </value>
</default>

332 </runnableItems>
</runnables>

334 <runnables name="R2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

336 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

338 <deviation>
<lowerBound xsi:type="am:LongObject" value="594000" />

340 <upperBound xsi:type="am:LongObject" value="600000" />
<distribution xsi:type="am:UniformDistribution" />

342 </deviation>
</value>

344 </default>
</runnableItems>

346 </runnables>
<runnables name="R_4" callback="false" service="false">

348 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

350 <value xsi:type="am:NeedDeviation">
<deviation>

352 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

354 <distribution xsi:type="am:UniformDistribution" />
</deviation>

356 </value>
</default>

358 </runnableItems>
</runnables>

360 <modes name="E">
<literals name="E_0">

362 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

364 </customProperties>
</literals>

366 <literals name="E_1">
<customProperties key="enumValue">

368 <value xsi:type="am:LongObject" value="1" />
</customProperties>

370 </literals>
</modes>

372 <modes name="U">
<literals name="U_0">

374 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

350 APPENDIX A. APPENDIX

376 </customProperties>
</literals>

378 <literals name="U_1">
<customProperties key="enumValue">

380 <value xsi:type="am:LongObject" value="1" />
</customProperties>

382 </literals>
</modes>

384 <modes name="Y">
<literals name="Y_0">

386 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

388 </customProperties>
</literals>

390 <literals name="Y_50">
<customProperties key="enumValue">

392 <value xsi:type="am:LongObject" value="50" />
</customProperties>

394 </literals>
<literals name="Y_100">

396 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="100" />

398 </customProperties>
</literals>

400 </modes>
<modes name="W">

402 <literals name="W_0">
<customProperties key="enumValue">

404 <value xsi:type="am:LongObject" value="0" />
</customProperties>

406 </literals>
<literals name="W_50">

408 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="50" />

410 </customProperties>
</literals>

412 <literals name="W_100">
<customProperties key="enumValue">

414 <value xsi:type="am:LongObject" value="100" />
</customProperties>

416 </literals>
</modes>

418 <modes name="State">
<literals name="State_0">

420 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

422 </customProperties>
</literals>

424 <literals name="State_1">
<customProperties key="enumValue">

426 <value xsi:type="am:LongObject" value="1" />
</customProperties>

428 </literals>
<literals name="State_2">

430 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

432 </customProperties>
</literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 351

434 </modes>
<modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">

436 <size value="1" unit="bit" />
</modeLabels>

438 <modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">
<size value="8" unit="bit" />

440 </modeLabels>
<modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">

442 <size value="8" unit="bit" />
</modeLabels>

444 <modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">
<size value="1" unit="bit" />

446 </modeLabels>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

448 <size value="8" unit="bit" />
</modeLabels>

450 </swModel>
<hwModel>

452 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
454 </definitions>

<featureCategories name="Instructions" featureType="performance">
456 <features name="IPC_1.0" value="1.0" />

</featureCategories>
458 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
460 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

462 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
464 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
466 </structures>

</structures>
468 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
470 <defaultValue value="600.0" unit="MHz"/>

</domains>
472 </hwModel>

<osModel>
474 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
476 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
478 <osDataConsistency mode="noProtection" />

</operatingSystems>
480 </osModel>

<stimuliModel>
482 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
484 <recurrence value="600" unit="ms" />

</stimuli>
486 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="20" unit="ms" />
488 <recurrence value="300" unit="ms" />

352 APPENDIX A. APPENDIX

</stimuli>
490 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="50" unit="ms" />
492 <recurrence value="500" unit="ms" />

</stimuli>
494 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

</stimuliModel>
496 <constraintsModel />

<eventModel>
498 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
500 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
502 <events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />
504 <events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />
506 <events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />
508 <events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />
510 <events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable

" />
<events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable

" />
512 <events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable

" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />

514 <events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />

516 <events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />

518 <events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />

520 <events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=

PeriodicStimulus" />
522 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=

PeriodicStimulus" />
<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=

PeriodicStimulus" />
524 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=

InterProcessStimulus" />
</eventModel>

526 <mappingModel addressMappingType="offset">
<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

528 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

530 <taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
532 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
534 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 353

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?
type=ModeLabel" />

536 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state
?type=ModeLabel" />

</mappingModel>
538 <componentsModel />

</am:Amalthea>

Listing A.23: Variation 1 of Feedback Loop.

A.1.4.2. Variation 2

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>
12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=

ModeLiteral" />
</condition>

14 </entries>
<entries>

16 <items xsi:type="am:CallSequence" name="CS_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />

18 </items>
<condition>

20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=
ModeLiteral" />

</condition>
22 </entries>

</graphEntries>
24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">

<calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />
26 </graphEntries>

</callGraph>
28 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
30 </customProperties>

<customProperties key="osekTaskGroup">
32 <value xsi:type="am:StringObject" value="3" />

</customProperties>
34 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

36 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

38 <entries>
<items xsi:type="am:CallSequence" name="CS_state_0">

354 APPENDIX A. APPENDIX

40 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />

42 </items>
<items xsi:type="am:ModeSwitch">

44 <entries>
<items xsi:type="am:CallSequence" name="CS_0_to_0">

46 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
</items>

48 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
50 </condition>

</entries>
52 <entries>

<items xsi:type="am:CallSequence" name="CS_0_to_1">
54 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

</items>
56 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

58 </condition>
</entries>

60 </items>
<condition>

62 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral" />

</condition>
64 </entries>

<entries>
66 <items xsi:type="am:CallSequence" name="CS_state_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />
68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CS_1_to_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
74 </items>

<condition>
76 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

78 </entries>
<entries>

80 <items xsi:type="am:CallSequence" name="CS_1_to_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral" />

90 </condition>
</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 355

92 <entries>
<items xsi:type="am:CallSequence" name="CS_state_2">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />

96 </items>
<items xsi:type="am:ModeSwitch">

98 <entries>
<items xsi:type="am:CallSequence" name="CS_2_to_1">

100 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
</items>

102 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
104 </condition>

</entries>
106 <entries>

<items xsi:type="am:CallSequence" name="CS_2_to_2">
108 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

</items>
110 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

112 </condition>
</entries>

114 </items>
<condition>

116 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral" />

</condition>
118 </entries>

</graphEntries>
120 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="0.3">
122 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=
InterProcessStimulus" />

124 </items>
</entries>

126 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_notrigger" />

128 </entries>
</graphEntries>

130 <graphEntries xsi:type="am:CallSequence" name="CS_R2">
<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />

132 </graphEntries>
</callGraph>

134 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

136 </customProperties>
<customProperties key="osekTaskGroup">

138 <value xsi:type="am:StringObject" value="2" />
</customProperties>

140 </tasks>
<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
142 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
144 <entries>

356 APPENDIX A. APPENDIX

<items xsi:type="am:CallSequence" name="CS_y_0">
146 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />

</items>
148 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=
ModeLiteral" />

150 </condition>
</entries>

152 <entries>
<items xsi:type="am:CallSequence" name="CS_y_1">

154 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />
</items>

156 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type

=ModeLiteral" />
158 </condition>

</entries>
160 <entries>

<items xsi:type="am:CallSequence" name="CS_y_2">
162 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />

</items>
164 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?
type=ModeLiteral" />

166 </condition>
</entries>

168 </graphEntries>
</callGraph>

170 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

172 </customProperties>
<customProperties key="osekTaskGroup">

174 <value xsi:type="am:StringObject" value="1" />
</customProperties>

176 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
178 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
180 <entries>

<items xsi:type="am:ProbabilitySwitch">
182 <entries probability="0.3">

<items xsi:type="am:CallSequence" name="CS_w_0_e_0">
184 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
186 </entries>

<entries probability="0.7">
188 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
190 </items>

</entries>
192 </items>

<condition>
194 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=

ModeLiteral" />
</condition>

196 </entries>
<entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 357

198 <items xsi:type="am:ProbabilitySwitch">
<entries probability="0.5">

200 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

202 </items>
</entries>

204 <entries probability="0.5">
<items xsi:type="am:CallSequence" name="CS_w_50_e_1">

206 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
</items>

208 </entries>
</items>

210 <condition>
<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type

=ModeLiteral" />
212 </condition>

</entries>
214 <entries>

<items xsi:type="am:ProbabilitySwitch">
216 <entries probability="0.7">

<items xsi:type="am:CallSequence" name="CS_w_100_e_0">
218 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
220 </entries>

<entries probability="0.3">
222 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
224 </items>

</entries>
226 </items>

<condition>
228 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?

type=ModeLiteral" />
</condition>

230 </entries>
</graphEntries>

232 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">
<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />

234 </graphEntries>
</callGraph>

236 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

238 </customProperties>
<customProperties key="osekTaskGroup">

240 <value xsi:type="am:StringObject" value="1" />
</customProperties>

242 </tasks>
<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
244 <callGraph>

<graphEntries xsi:type="am:ProbabilitySwitch">
246 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_0">
248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />

</items>
250 </entries>

<entries probability="20.0">
252 <items xsi:type="am:CallSequence" name="CallSequence_5_1">

358 APPENDIX A. APPENDIX

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
254 </items>

</entries>
256 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_2">
258 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</items>
260 </entries>

<entries probability="20.0">
262 <items xsi:type="am:CallSequence" name="CallSequence_5_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />
264 </items>

</entries>
266 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_4">
268 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />

</items>
270 </entries>

</graphEntries>
272 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
274 </graphEntries>

</callGraph>
276 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
278 </customProperties>

<customProperties key="osekTaskGroup">
280 <value xsi:type="am:StringObject" value="5" />

</customProperties>
282 </tasks>

<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

284 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

286 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_6_1">

288 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />
</items>

290 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
292 </condition>

</entries>
294 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_6_2">
296 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />

</items>
298 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

300 </condition>
</entries>

302 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_6_3">

304 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />
</items>

306 <condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 359

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

308 </condition>
</entries>

310 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_6_4">

312 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />
</items>

314 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
316 </condition>

</entries>
318 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_6_x">
320 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />

</items>
322 </defaultEntry>

</graphEntries>
324 </callGraph>

<customProperties key="priority">
326 <value xsi:type="am:StringObject" value="4" />

</customProperties>
328 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="4" />
330 </customProperties>

</tasks>
332 <runnables name="Set_e_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

334 </runnables>
<runnables name="Set_e_1" callback="false" service="false">

336 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

</runnables>
338 <runnables name="Set_state_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

340 </runnables>
<runnables name="Set_state_1" callback="false" service="false">

342 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

</runnables>
344 <runnables name="Set_state_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

346 </runnables>
<runnables name="Set_y_0" callback="false" service="false">

348 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

</runnables>
350 <runnables name="Set_y_50" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

352 </runnables>
<runnables name="Set_y_100" callback="false" service="false">

354 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

360 APPENDIX A. APPENDIX

</runnables>
356 <runnables name="R_3_0" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
358 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
360 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
362 <upperBound xsi:type="am:LongObject" value="600000" />

<distribution xsi:type="am:UniformDistribution" />
364 </deviation>

</value>
366 </default>

</runnableItems>
368 </runnables>

<runnables name="R_3_2" callback="false" service="false">
370 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
372 <value xsi:type="am:NeedDeviation">

<deviation>
374 <lowerBound xsi:type="am:LongObject" value="59400000" />

<upperBound xsi:type="am:LongObject" value="60000000" />
376 <distribution xsi:type="am:UniformDistribution" />

</deviation>
378 </value>

</default>
380 </runnableItems>

</runnables>
382 <runnables name="R_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
384 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
386 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
388 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
390 </deviation>

</value>
392 </default>

</runnableItems>
394 </runnables>

<runnables name="Set_w_0" callback="false" service="false">
396 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
</runnables>

398 <runnables name="Set_w_50" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
400 </runnables>

<runnables name="Set_w_100" callback="false" service="false">
402 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
</runnables>

404 <runnables name="Set_u_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
406 </runnables>

<runnables name="Set_u_1" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 361

408 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"
modeValue="U/U_1?type=ModeLiteral" />

</runnables>
410 <runnables name="R1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
412 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
414 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
416 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
418 </deviation>

</value>
420 </default>

</runnableItems>
422 </runnables>

<runnables name="R2" callback="false" service="false">
424 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
426 <value xsi:type="am:NeedDeviation">

<deviation>
428 <lowerBound xsi:type="am:LongObject" value="594000" />

<upperBound xsi:type="am:LongObject" value="600000" />
430 <distribution xsi:type="am:UniformDistribution" />

</deviation>
432 </value>

</default>
434 </runnableItems>

</runnables>
436 <runnables name="R_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
438 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
440 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
442 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
444 </deviation>

</value>
446 </default>

</runnableItems>
448 </runnables>

<runnables name="Runnable_5" callback="false" service="false">
450 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
452 <value xsi:type="am:NeedDeviation">

<deviation>
454 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
456 <distribution xsi:type="am:UniformDistribution" />

</deviation>
458 </value>

</default>
460 </runnableItems>

</runnables>
462 <runnables name="Runnable_5_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_0?type=ModeLiteral" />

362 APPENDIX A. APPENDIX

464 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

466 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

</runnables>
468 <runnables name="Runnable_5_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_2?type=ModeLiteral" />

470 </runnables>
<runnables name="Runnable_5_3" callback="false" service="false">

472 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_3?type=ModeLiteral" />

</runnables>
474 <runnables name="Runnable_5_4" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_4?type=ModeLiteral" />

476 </runnables>
<runnables name="Runnable_6_x" callback="false" service="false">

478 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

480 <value xsi:type="am:NeedDeviation">
<deviation>

482 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

484 <distribution xsi:type="am:UniformDistribution" />
</deviation>

486 </value>
</default>

488 </runnableItems>
</runnables>

490 <runnables name="Runnable_6_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

492 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

494 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

496 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

498 </deviation>
</value>

500 </default>
</runnableItems>

502 </runnables>
<runnables name="Runnable_6_2" callback="false" service="false">

504 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

506 <value xsi:type="am:NeedDeviation">
<deviation>

508 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

510 <distribution xsi:type="am:UniformDistribution" />
</deviation>

512 </value>
</default>

514 </runnableItems>
</runnables>

516 <runnables name="Runnable_6_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

A.1. ARCHITECTURAL SYSTEM PATTERNS 363

518 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

520 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

522 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

524 </deviation>
</value>

526 </default>
</runnableItems>

528 </runnables>
<runnables name="Runnable_6_4" callback="false" service="false">

530 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

532 <value xsi:type="am:NeedDeviation">
<deviation>

534 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

536 <distribution xsi:type="am:UniformDistribution" />
</deviation>

538 </value>
</default>

540 </runnableItems>
</runnables>

542 <modes name="E">
<literals name="E_0">

544 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

546 </customProperties>
</literals>

548 <literals name="E_1">
<customProperties key="enumValue">

550 <value xsi:type="am:LongObject" value="1" />
</customProperties>

552 </literals>
</modes>

554 <modes name="U">
<literals name="U_0">

556 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

558 </customProperties>
</literals>

560 <literals name="U_1">
<customProperties key="enumValue">

562 <value xsi:type="am:LongObject" value="1" />
</customProperties>

564 </literals>
</modes>

566 <modes name="Y">
<literals name="Y_0">

568 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

570 </customProperties>
</literals>

572 <literals name="Y_50">
<customProperties key="enumValue">

574 <value xsi:type="am:LongObject" value="50" />
</customProperties>

364 APPENDIX A. APPENDIX

576 </literals>
<literals name="Y_100">

578 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="100" />

580 </customProperties>
</literals>

582 </modes>
<modes name="W">

584 <literals name="W_0">
<customProperties key="enumValue">

586 <value xsi:type="am:LongObject" value="0" />
</customProperties>

588 </literals>
<literals name="W_50">

590 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="50" />

592 </customProperties>
</literals>

594 <literals name="W_100">
<customProperties key="enumValue">

596 <value xsi:type="am:LongObject" value="100" />
</customProperties>

598 </literals>
</modes>

600 <modes name="State">
<literals name="State_0">

602 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

604 </customProperties>
</literals>

606 <literals name="State_1">
<customProperties key="enumValue">

608 <value xsi:type="am:LongObject" value="1" />
</customProperties>

610 </literals>
<literals name="State_2">

612 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

614 </customProperties>
</literals>

616 </modes>
<modes name="Message">

618 <literals name="Message_0">
<customProperties key="enumValue">

620 <value xsi:type="am:LongObject" value="0" />
</customProperties>

622 </literals>
<literals name="Message_1">

624 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

626 </customProperties>
</literals>

628 <literals name="Message_2">
<customProperties key="enumValue">

630 <value xsi:type="am:LongObject" value="2" />
</customProperties>

632 </literals>
<literals name="Message_3">

A.1. ARCHITECTURAL SYSTEM PATTERNS 365

634 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

636 </customProperties>
</literals>

638 <literals name="Message_4">
<customProperties key="enumValue">

640 <value xsi:type="am:LongObject" value="4" />
</customProperties>

642 </literals>
</modes>

644 <modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">
<size value="1" unit="bit" />

646 </modeLabels>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

648 <size value="8" unit="bit" />
</modeLabels>

650 <modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">
<size value="8" unit="bit" />

652 </modeLabels>
<modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">

654 <size value="8" unit="bit" />
</modeLabels>

656 <modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">
<size value="1" unit="bit" />

658 </modeLabels>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

660 <size value="8" unit="bit" />
</modeLabels>

662 </swModel>
<hwModel>

664 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
666 </definitions>

<featureCategories name="Instructions" featureType="performance">
668 <features name="IPC_1.0" value="1.0" />

</featureCategories>
670 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
672 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

674 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
676 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
678 </structures>

</structures>
680 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
682 <defaultValue value="600.0" unit="MHz"/>

</domains>
684 </hwModel>

<osModel>
686 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
688 <schedulingAlgorithm xsi:type="am:OSEK" />

366 APPENDIX A. APPENDIX

</taskSchedulers>
690 <osDataConsistency mode="noProtection" />

</operatingSystems>
692 </osModel>

<stimuliModel>
694 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
696 <recurrence value="600" unit="ms" />

</stimuli>
698 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="20" unit="ms" />
700 <recurrence value="300" unit="ms" />

</stimuli>
702 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="50" unit="ms" />
704 <recurrence value="500" unit="ms" />

</stimuli>
706 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
708 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
710 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
712 <offset value="15" unit="ms" />

<recurrence value="60" unit="ms" />
714 </stimuli>

</stimuliModel>
716 <constraintsModel />

<eventModel>
718 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
720 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
722 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
724 <events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />
726 <events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />
728 <events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />
730 <events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />
732 <events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable

" />
<events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable

" />
734 <events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable

" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />

736 <events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />

738 <events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />

740 <events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />

742 <events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 367

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

744 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

746 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

748 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" entity="Stimulus_Task_6?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

750 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

752 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

754 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

756 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

758 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

760 </eventModel>
<mappingModel addressMappingType="offset">

762 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

764 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

766 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

768 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type
=ModeLabel" />

770 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type
=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type
=ModeLabel" />

772 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?
type=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state
?type=ModeLabel" />

774 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="
message?type=ModeLabel" />

</mappingModel>
776 <componentsModel />

368 APPENDIX A. APPENDIX

</am:Amalthea>

Listing A.24: Variation 2 of Feedback Loop.

A.1.4.3. Variation 3

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>
12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=

ModeLiteral" />
</condition>

14 </entries>
<entries>

16 <items xsi:type="am:CallSequence" name="CS_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />

18 </items>
<condition>

20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=
ModeLiteral" />

</condition>
22 </entries>

</graphEntries>
24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">

<calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />
26 </graphEntries>

</callGraph>
28 <customProperties key="priority">

<value xsi:type="am:StringObject" value="3" />
30 </customProperties>

<customProperties key="osekTaskGroup">
32 <value xsi:type="am:StringObject" value="3" />

</customProperties>
34 </tasks>

<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

36 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

38 <entries>
<items xsi:type="am:CallSequence" name="CS_state_0">

40 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />

42 </items>
<items xsi:type="am:ModeSwitch">

44 <entries>
<items xsi:type="am:CallSequence" name="CS_0_to_0">

A.1. ARCHITECTURAL SYSTEM PATTERNS 369

46 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
</items>

48 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
50 </condition>

</entries>
52 <entries>

<items xsi:type="am:CallSequence" name="CS_0_to_1">
54 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

</items>
56 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

58 </condition>
</entries>

60 </items>
<condition>

62 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral" />

</condition>
64 </entries>

<entries>
66 <items xsi:type="am:CallSequence" name="CS_state_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />
68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CS_1_to_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
74 </items>

<condition>
76 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

78 </entries>
<entries>

80 <items xsi:type="am:CallSequence" name="CS_1_to_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral" />

90 </condition>
</entries>

92 <entries>
<items xsi:type="am:CallSequence" name="CS_state_2">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />

96 </items>
<items xsi:type="am:ModeSwitch">

370 APPENDIX A. APPENDIX

98 <entries>
<items xsi:type="am:CallSequence" name="CS_2_to_1">

100 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
</items>

102 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
104 </condition>

</entries>
106 <entries>

<items xsi:type="am:CallSequence" name="CS_2_to_2">
108 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

</items>
110 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

112 </condition>
</entries>

114 </items>
<condition>

116 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral" />

</condition>
118 </entries>

</graphEntries>
120 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="0.3">
122 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=
InterProcessStimulus" />

124 </items>
</entries>

126 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_notrigger" />

128 </entries>
</graphEntries>

130 <graphEntries xsi:type="am:CallSequence" name="CS_R2">
<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />

132 </graphEntries>
</callGraph>

134 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

136 </customProperties>
<customProperties key="osekTaskGroup">

138 <value xsi:type="am:StringObject" value="2" />
</customProperties>

140 </tasks>
<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
142 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
144 <entries>

<items xsi:type="am:CallSequence" name="CS_y_0">
146 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />

</items>
148 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=
ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 371

150 </condition>
</entries>

152 <entries>
<items xsi:type="am:CallSequence" name="CS_y_1">

154 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />
</items>

156 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type

=ModeLiteral" />
158 </condition>

</entries>
160 <entries>

<items xsi:type="am:CallSequence" name="CS_y_2">
162 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />

</items>
164 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?
type=ModeLiteral" />

166 </condition>
</entries>

168 </graphEntries>
</callGraph>

170 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

172 </customProperties>
<customProperties key="osekTaskGroup">

174 <value xsi:type="am:StringObject" value="1" />
</customProperties>

176 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
178 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
180 <entries>

<items xsi:type="am:ProbabilitySwitch">
182 <entries probability="0.3">

<items xsi:type="am:CallSequence" name="CS_w_0_e_0">
184 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
186 </entries>

<entries probability="0.7">
188 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
190 </items>

</entries>
192 </items>

<condition>
194 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=

ModeLiteral" />
</condition>

196 </entries>
<entries>

198 <items xsi:type="am:ProbabilitySwitch">
<entries probability="0.5">

200 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

202 </items>
</entries>

372 APPENDIX A. APPENDIX

204 <entries probability="0.5">
<items xsi:type="am:CallSequence" name="CS_w_50_e_1">

206 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
</items>

208 </entries>
</items>

210 <condition>
<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type

=ModeLiteral" />
212 </condition>

</entries>
214 <entries>

<items xsi:type="am:ProbabilitySwitch">
216 <entries probability="0.7">

<items xsi:type="am:CallSequence" name="CS_w_100_e_0">
218 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
220 </entries>

<entries probability="0.3">
222 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
224 </items>

</entries>
226 </items>

<condition>
228 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?

type=ModeLiteral" />
</condition>

230 </entries>
</graphEntries>

232 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">
<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />

234 </graphEntries>
</callGraph>

236 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

238 </customProperties>
<customProperties key="osekTaskGroup">

240 <value xsi:type="am:StringObject" value="1" />
</customProperties>

242 </tasks>
<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
244 <callGraph>

<graphEntries xsi:type="am:ProbabilitySwitch">
246 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_0">
248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />

</items>
250 </entries>

<entries probability="20.0">
252 <items xsi:type="am:CallSequence" name="CallSequence_5_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
254 </items>

</entries>
256 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_2">
258 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 373

</items>
260 </entries>

<entries probability="20.0">
262 <items xsi:type="am:CallSequence" name="CallSequence_5_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />
264 </items>

</entries>
266 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_4">
268 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />

</items>
270 </entries>

</graphEntries>
272 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
274 </graphEntries>

</callGraph>
276 <customProperties key="priority">

<value xsi:type="am:StringObject" value="5" />
278 </customProperties>

<customProperties key="osekTaskGroup">
280 <value xsi:type="am:StringObject" value="5" />

</customProperties>
282 </tasks>

<tasks name="Task_6" stimuli="Stimulus_Task_6?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

284 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

286 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_6_1">

288 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />
</items>

290 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
292 </condition>

</entries>
294 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_6_2">
296 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />

</items>
298 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

300 </condition>
</entries>

302 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_6_3">

304 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />
</items>

306 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
308 </condition>

</entries>
310 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_6_4">
312 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />

374 APPENDIX A. APPENDIX

</items>
314 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

316 </condition>
</entries>

318 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_6_x">

320 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />
</items>

322 </defaultEntry>
</graphEntries>

324 </callGraph>
<customProperties key="priority">

326 <value xsi:type="am:StringObject" value="4" />
</customProperties>

328 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="4" />

330 </customProperties>
</tasks>

332 <tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
334 <graphEntries xsi:type="am:CallSequence" name="CS_Task_7">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
336 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

</graphEntries>
338 </callGraph>

</tasks>
340 <runnables name="Set_e_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

342 </runnables>
<runnables name="Set_e_1" callback="false" service="false">

344 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

</runnables>
346 <runnables name="Set_state_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

348 </runnables>
<runnables name="Set_state_1" callback="false" service="false">

350 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

</runnables>
352 <runnables name="Set_state_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

354 </runnables>
<runnables name="Set_y_0" callback="false" service="false">

356 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

</runnables>
358 <runnables name="Set_y_50" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

360 </runnables>
<runnables name="Set_y_100" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 375

362 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

</runnables>
364 <runnables name="R_3_0" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
366 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
368 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
370 <upperBound xsi:type="am:LongObject" value="600000" />

<distribution xsi:type="am:UniformDistribution" />
372 </deviation>

</value>
374 </default>

</runnableItems>
376 </runnables>

<runnables name="R_3_2" callback="false" service="false">
378 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
380 <value xsi:type="am:NeedDeviation">

<deviation>
382 <lowerBound xsi:type="am:LongObject" value="59400000" />

<upperBound xsi:type="am:LongObject" value="60000000" />
384 <distribution xsi:type="am:UniformDistribution" />

</deviation>
386 </value>

</default>
388 </runnableItems>

</runnables>
390 <runnables name="R_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
392 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
394 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
396 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
398 </deviation>

</value>
400 </default>

</runnableItems>
402 </runnables>

<runnables name="Set_w_0" callback="false" service="false">
404 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
</runnables>

406 <runnables name="Set_w_50" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
408 </runnables>

<runnables name="Set_w_100" callback="false" service="false">
410 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
</runnables>

412 <runnables name="Set_u_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
414 </runnables>

376 APPENDIX A. APPENDIX

<runnables name="Set_u_1" callback="false" service="false">
416 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_1?type=ModeLiteral" />
</runnables>

418 <runnables name="R1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

420 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

422 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

424 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

426 </deviation>
</value>

428 </default>
</runnableItems>

430 </runnables>
<runnables name="R2" callback="false" service="false">

432 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

434 <value xsi:type="am:NeedDeviation">
<deviation>

436 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

438 <distribution xsi:type="am:UniformDistribution" />
</deviation>

440 </value>
</default>

442 </runnableItems>
</runnables>

444 <runnables name="R_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

446 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

448 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

450 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

452 </deviation>
</value>

454 </default>
</runnableItems>

456 </runnables>
<runnables name="Runnable_5" callback="false" service="false">

458 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

460 <value xsi:type="am:NeedDeviation">
<deviation>

462 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

464 <distribution xsi:type="am:UniformDistribution" />
</deviation>

466 </value>
</default>

468 </runnableItems>
</runnables>

470 <runnables name="Runnable_5_0" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 377

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_0?type=ModeLiteral" />

472 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

474 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

</runnables>
476 <runnables name="Runnable_5_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_2?type=ModeLiteral" />

478 </runnables>
<runnables name="Runnable_5_3" callback="false" service="false">

480 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_3?type=ModeLiteral" />

</runnables>
482 <runnables name="Runnable_5_4" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_4?type=ModeLiteral" />

484 </runnables>
<runnables name="Runnable_6_x" callback="false" service="false">

486 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

488 <value xsi:type="am:NeedDeviation">
<deviation>

490 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

492 <distribution xsi:type="am:UniformDistribution" />
</deviation>

494 </value>
</default>

496 </runnableItems>
</runnables>

498 <runnables name="Runnable_6_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

500 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

502 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

504 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

506 </deviation>
</value>

508 </default>
</runnableItems>

510 </runnables>
<runnables name="Runnable_6_2" callback="false" service="false">

512 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

514 <value xsi:type="am:NeedDeviation">
<deviation>

516 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

518 <distribution xsi:type="am:UniformDistribution" />
</deviation>

520 </value>
</default>

522 </runnableItems>
</runnables>

378 APPENDIX A. APPENDIX

524 <runnables name="Runnable_6_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

526 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

528 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

530 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

532 </deviation>
</value>

534 </default>
</runnableItems>

536 </runnables>
<runnables name="Runnable_6_4" callback="false" service="false">

538 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

540 <value xsi:type="am:NeedDeviation">
<deviation>

542 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

544 <distribution xsi:type="am:UniformDistribution" />
</deviation>

546 </value>
</default>

548 </runnableItems>
</runnables>

550 <runnables name="Runnable_7_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

552 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

554 <deviation>
<lowerBound xsi:type="am:LongObject" value="35640000" />

556 <upperBound xsi:type="am:LongObject" value="36000000" />
<distribution xsi:type="am:UniformDistribution" />

558 </deviation>
</value>

560 </default>
</runnableItems>

562 </runnables>
<runnables name="Runnable_7_2" callback="false" service="false">

564 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

566 <value xsi:type="am:NeedDeviation">
<deviation>

568 <lowerBound xsi:type="am:LongObject" value="11880000" />
<upperBound xsi:type="am:LongObject" value="12000000" />

570 <distribution xsi:type="am:UniformDistribution" />
</deviation>

572 </value>
</default>

574 </runnableItems>
</runnables>

576 <modes name="E">
<literals name="E_0">

578 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

580 </customProperties>
</literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 379

582 <literals name="E_1">
<customProperties key="enumValue">

584 <value xsi:type="am:LongObject" value="1" />
</customProperties>

586 </literals>
</modes>

588 <modes name="U">
<literals name="U_0">

590 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

592 </customProperties>
</literals>

594 <literals name="U_1">
<customProperties key="enumValue">

596 <value xsi:type="am:LongObject" value="1" />
</customProperties>

598 </literals>
</modes>

600 <modes name="Y">
<literals name="Y_0">

602 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

604 </customProperties>
</literals>

606 <literals name="Y_50">
<customProperties key="enumValue">

608 <value xsi:type="am:LongObject" value="50" />
</customProperties>

610 </literals>
<literals name="Y_100">

612 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="100" />

614 </customProperties>
</literals>

616 </modes>
<modes name="W">

618 <literals name="W_0">
<customProperties key="enumValue">

620 <value xsi:type="am:LongObject" value="0" />
</customProperties>

622 </literals>
<literals name="W_50">

624 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="50" />

626 </customProperties>
</literals>

628 <literals name="W_100">
<customProperties key="enumValue">

630 <value xsi:type="am:LongObject" value="100" />
</customProperties>

632 </literals>
</modes>

634 <modes name="State">
<literals name="State_0">

636 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

638 </customProperties>
</literals>

380 APPENDIX A. APPENDIX

640 <literals name="State_1">
<customProperties key="enumValue">

642 <value xsi:type="am:LongObject" value="1" />
</customProperties>

644 </literals>
<literals name="State_2">

646 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

648 </customProperties>
</literals>

650 </modes>
<modes name="Message">

652 <literals name="Message_0">
<customProperties key="enumValue">

654 <value xsi:type="am:LongObject" value="0" />
</customProperties>

656 </literals>
<literals name="Message_1">

658 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

660 </customProperties>
</literals>

662 <literals name="Message_2">
<customProperties key="enumValue">

664 <value xsi:type="am:LongObject" value="2" />
</customProperties>

666 </literals>
<literals name="Message_3">

668 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

670 </customProperties>
</literals>

672 <literals name="Message_4">
<customProperties key="enumValue">

674 <value xsi:type="am:LongObject" value="4" />
</customProperties>

676 </literals>
</modes>

678 <modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">
<size value="1" unit="bit" />

680 </modeLabels>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

682 <size value="8" unit="bit" />
</modeLabels>

684 <modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">
<size value="8" unit="bit" />

686 </modeLabels>
<modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">

688 <size value="8" unit="bit" />
</modeLabels>

690 <modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">
<size value="1" unit="bit" />

692 </modeLabels>
<modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

694 <size value="8" unit="bit" />
</modeLabels>

696 </swModel>
<hwModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 381

698 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
700 </definitions>

<featureCategories name="Instructions" featureType="performance">
702 <features name="IPC_1.0" value="1.0" />

</featureCategories>
704 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
706 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

708 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
710 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
712 </structures>

</structures>
714 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
716 <defaultValue value="600.0" unit="MHz"/>

</domains>
718 </hwModel>

<osModel>
720 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
722 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
724 <osDataConsistency mode="noProtection" />

</operatingSystems>
726 </osModel>

<stimuliModel>
728 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
730 <recurrence value="600" unit="ms" />

</stimuli>
732 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="20" unit="ms" />
734 <recurrence value="300" unit="ms" />

</stimuli>
736 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="50" unit="ms" />
738 <recurrence value="500" unit="ms" />

</stimuli>
740 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
742 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
744 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_6">
746 <offset value="15" unit="ms" />

<recurrence value="60" unit="ms" />
748 </stimuli>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
750 <offset value="0" unit="ms" />

<recurrence value="1000" unit="ms" />
752 </stimuli>

382 APPENDIX A. APPENDIX

</stimuliModel>
754 <constraintsModel />

<eventModel>
756 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
758 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
760 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
762 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />
764 <events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />
766 <events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />
768 <events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />
770 <events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable
" />

772 <events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable
" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable
" />

774 <events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />

776 <events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />

778 <events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />

780 <events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

782 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

784 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

786 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_6" entity="Stimulus_Task_6?type=
PeriodicStimulus" />

788 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

790 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

792 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

794 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 383

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

796 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

798 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

800 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

802 </eventModel>
<mappingModel addressMappingType="offset">

804 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

806 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

808 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

810 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
812 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
814 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?

type=ModeLabel" />
816 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state

?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="

message?type=ModeLabel" />
818 </mappingModel>

<componentsModel />
820 </am:Amalthea>

Listing A.25: Variation 3 of Feedback Loop.

A.1.4.4. Variation 4

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />

384 APPENDIX A. APPENDIX

10 </items>
<condition>

12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=
ModeLiteral" />

</condition>
14 </entries>

<entries>
16 <items xsi:type="am:CallSequence" name="CS_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />
18 </items>

<condition>
20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=

ModeLiteral" />
</condition>

22 </entries>
</graphEntries>

24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"

/>
26 <calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />

</graphEntries>
28 </callGraph>

<customProperties key="priority">
30 <value xsi:type="am:StringObject" value="3" />

</customProperties>
32 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
34 </customProperties>

</tasks>
36 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

38 <graphEntries xsi:type="am:ModeSwitch">
<entries>

40 <items xsi:type="am:CallSequence" name="CS_state_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />

42 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />
</items>

44 <items xsi:type="am:ModeSwitch">
<entries>

46 <items xsi:type="am:CallSequence" name="CS_0_to_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />

48 </items>
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

</condition>
52 </entries>

<entries>
54 <items xsi:type="am:CallSequence" name="CS_0_to_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
56 </items>

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
</condition>

60 </entries>
</items>

A.1. ARCHITECTURAL SYSTEM PATTERNS 385

62 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral" />
64 </condition>

</entries>
66 <entries>

<items xsi:type="am:CallSequence" name="CS_state_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />

<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />
70 </items>

<items xsi:type="am:ModeSwitch">
72 <entries>

<items xsi:type="am:CallSequence" name="CS_1_to_0">
74 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />

</items>
76 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

78 </condition>
</entries>

80 <entries>
<items xsi:type="am:CallSequence" name="CS_1_to_2">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />
</items>

84 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
86 </condition>

</entries>
88 </items>

<condition>
90 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral" />
</condition>

92 </entries>
<entries>

94 <items xsi:type="am:CallSequence" name="CS_state_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />

96 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />
</items>

98 <items xsi:type="am:ModeSwitch">
<entries>

100 <items xsi:type="am:CallSequence" name="CS_2_to_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

102 </items>
<condition>

104 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

</condition>
106 </entries>

<entries>
108 <items xsi:type="am:CallSequence" name="CS_2_to_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />
110 </items>

<condition>
112 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
</condition>

386 APPENDIX A. APPENDIX

114 </entries>
</items>

116 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral" />
118 </condition>

</entries>
120 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CS_IPA_T3">
122 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_3?type=InterProcessStimulus"

/>
</graphEntries>

124 <graphEntries xsi:type="am:ProbabilitySwitch">
<entries probability="0.3">

126 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=

InterProcessStimulus" />
128 </items>

</entries>
130 <entries probability="0.7">

<items xsi:type="am:CallSequence" name="CS_w_notrigger" />
132 </entries>

</graphEntries>
134 <graphEntries xsi:type="am:CallSequence" name="CS_R2">

<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />
136 </graphEntries>

</callGraph>
138 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
140 </customProperties>

<customProperties key="osekTaskGroup">
142 <value xsi:type="am:StringObject" value="2" />

</customProperties>
144 </tasks>

<tasks name="Task_3" stimuli="IPA_Task_3?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

146 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

148 <entries>
<items xsi:type="am:CallSequence" name="CS_y_0">

150 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />
</items>

152 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=

ModeLiteral" />
154 </condition>

</entries>
156 <entries>

<items xsi:type="am:CallSequence" name="CS_y_1">
158 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />

</items>
160 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type
=ModeLiteral" />

162 </condition>
</entries>

164 <entries>
<items xsi:type="am:CallSequence" name="CS_y_2">

A.1. ARCHITECTURAL SYSTEM PATTERNS 387

166 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />
</items>

168 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?

type=ModeLiteral" />
170 </condition>

</entries>
172 </graphEntries>

</callGraph>
174 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
176 </customProperties>

<customProperties key="osekTaskGroup">
178 <value xsi:type="am:StringObject" value="1" />

</customProperties>
180 </tasks>

<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

182 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

184 <entries>
<items xsi:type="am:ProbabilitySwitch">

186 <entries probability="0.3">
<items xsi:type="am:CallSequence" name="CS_w_0_e_0">

188 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
</items>

190 </entries>
<entries probability="0.7">

192 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

194 </items>
</entries>

196 </items>
<condition>

198 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=
ModeLiteral" />

</condition>
200 </entries>

<entries>
202 <items xsi:type="am:ProbabilitySwitch">

<entries probability="0.5">
204 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
206 </items>

</entries>
208 <entries probability="0.5">

<items xsi:type="am:CallSequence" name="CS_w_50_e_1">
210 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

</items>
212 </entries>

</items>
214 <condition>

<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type
=ModeLiteral" />

216 </condition>
</entries>

218 <entries>
<items xsi:type="am:ProbabilitySwitch">

388 APPENDIX A. APPENDIX

220 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_100_e_0">

222 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
</items>

224 </entries>
<entries probability="0.3">

226 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

228 </items>
</entries>

230 </items>
<condition>

232 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?
type=ModeLiteral" />

</condition>
234 </entries>

</graphEntries>
236 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">

<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />
238 </graphEntries>

</callGraph>
240 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
242 </customProperties>

<customProperties key="osekTaskGroup">
244 <value xsi:type="am:StringObject" value="1" />

</customProperties>
246 </tasks>

<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

248 <callGraph>
<graphEntries xsi:type="am:ProbabilitySwitch">

250 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_0">

252 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />
</items>

254 </entries>
<entries probability="20.0">

256 <items xsi:type="am:CallSequence" name="CallSequence_5_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />

258 </items>
</entries>

260 <entries probability="30.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_2">

262 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />
</items>

264 </entries>
<entries probability="20.0">

266 <items xsi:type="am:CallSequence" name="CallSequence_5_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />

268 </items>
</entries>

270 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_4">

272 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />
</items>

274 </entries>
</graphEntries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 389

276 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_6?type=InterProcessStimulus"

/>
278 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

</graphEntries>
280 </callGraph>

<customProperties key="priority">
282 <value xsi:type="am:StringObject" value="5" />

</customProperties>
284 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="5" />
286 </customProperties>

</tasks>
288 <tasks name="Task_6" stimuli="IPA_Task_6?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

290 <graphEntries xsi:type="am:ModeSwitch">
<entries>

292 <items xsi:type="am:CallSequence" name="CallSequence_6_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />

294 </items>
<condition>

296 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_1?type=ModeLiteral" />

</condition>
298 </entries>

<entries>
300 <items xsi:type="am:CallSequence" name="CallSequence_6_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />
302 </items>

<condition>
304 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_2?type=ModeLiteral" />
</condition>

306 </entries>
<entries>

308 <items xsi:type="am:CallSequence" name="CallSequence_6_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />

310 </items>
<condition>

312 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

</condition>
314 </entries>

<entries>
316 <items xsi:type="am:CallSequence" name="CallSequence_6_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />
318 </items>

<condition>
320 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
</condition>

322 </entries>
<defaultEntry>

324 <items xsi:type="am:CallSequence" name="CallSequence_6_x">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />

326 </items>
</defaultEntry>

390 APPENDIX A. APPENDIX

328 </graphEntries>
</callGraph>

330 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

332 </customProperties>
<customProperties key="osekTaskGroup">

334 <value xsi:type="am:StringObject" value="4" />
</customProperties>

336 </tasks>
<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
338 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CS_Task_7">
340 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
342 </graphEntries>

</callGraph>
344 </tasks>

<runnables name="Set_e_0" callback="false" service="false">
346 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"

modeValue="E/E_0?type=ModeLiteral" />
</runnables>

348 <runnables name="Set_e_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"

modeValue="E/E_1?type=ModeLiteral" />
350 </runnables>

<runnables name="Set_state_0" callback="false" service="false">
352 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_0?type=ModeLiteral" />
</runnables>

354 <runnables name="Set_state_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_1?type=ModeLiteral" />
356 </runnables>

<runnables name="Set_state_2" callback="false" service="false">
358 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"

modeValue="State/State_2?type=ModeLiteral" />
</runnables>

360 <runnables name="Set_y_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"

modeValue="Y/Y_0?type=ModeLiteral" />
362 </runnables>

<runnables name="Set_y_50" callback="false" service="false">
364 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"

modeValue="Y/Y_50?type=ModeLiteral" />
</runnables>

366 <runnables name="Set_y_100" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"

modeValue="Y/Y_100?type=ModeLiteral" />
368 </runnables>

<runnables name="R_3_0" callback="false" service="false">
370 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
372 <value xsi:type="am:NeedDeviation">

<deviation>
374 <lowerBound xsi:type="am:LongObject" value="594000" />

<upperBound xsi:type="am:LongObject" value="600000" />
376 <distribution xsi:type="am:UniformDistribution" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 391

</deviation>
378 </value>

</default>
380 </runnableItems>

</runnables>
382 <runnables name="R_3_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
384 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
386 <deviation>

<lowerBound xsi:type="am:LongObject" value="59400000" />
388 <upperBound xsi:type="am:LongObject" value="60000000" />

<distribution xsi:type="am:UniformDistribution" />
390 </deviation>

</value>
392 </default>

</runnableItems>
394 </runnables>

<runnables name="R_3_1" callback="false" service="false">
396 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
398 <value xsi:type="am:NeedDeviation">

<deviation>
400 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
402 <distribution xsi:type="am:UniformDistribution" />

</deviation>
404 </value>

</default>
406 </runnableItems>

</runnables>
408 <runnables name="Set_w_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"
modeValue="W/W_0?type=ModeLiteral" />

410 </runnables>
<runnables name="Set_w_50" callback="false" service="false">

412 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"
modeValue="W/W_50?type=ModeLiteral" />

</runnables>
414 <runnables name="Set_w_100" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"
modeValue="W/W_100?type=ModeLiteral" />

416 </runnables>
<runnables name="Set_u_0" callback="false" service="false">

418 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"
modeValue="U/U_0?type=ModeLiteral" />

</runnables>
420 <runnables name="Set_u_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"
modeValue="U/U_1?type=ModeLiteral" />

422 </runnables>
<runnables name="R1" callback="false" service="false">

424 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

426 <value xsi:type="am:NeedDeviation">
<deviation>

428 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

392 APPENDIX A. APPENDIX

430 <distribution xsi:type="am:UniformDistribution" />
</deviation>

432 </value>
</default>

434 </runnableItems>
</runnables>

436 <runnables name="R2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

438 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

440 <deviation>
<lowerBound xsi:type="am:LongObject" value="594000" />

442 <upperBound xsi:type="am:LongObject" value="600000" />
<distribution xsi:type="am:UniformDistribution" />

444 </deviation>
</value>

446 </default>
</runnableItems>

448 </runnables>
<runnables name="R_4" callback="false" service="false">

450 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

452 <value xsi:type="am:NeedDeviation">
<deviation>

454 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

456 <distribution xsi:type="am:UniformDistribution" />
</deviation>

458 </value>
</default>

460 </runnableItems>
</runnables>

462 <runnables name="Runnable_5" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

464 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

466 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

468 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

470 </deviation>
</value>

472 </default>
</runnableItems>

474 </runnables>
<runnables name="Runnable_5_0" callback="false" service="false">

476 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_0?type=ModeLiteral" />

</runnables>
478 <runnables name="Runnable_5_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

480 </runnables>
<runnables name="Runnable_5_2" callback="false" service="false">

482 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_2?type=ModeLiteral" />

</runnables>
484 <runnables name="Runnable_5_3" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 393

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_3?type=ModeLiteral" />

486 </runnables>
<runnables name="Runnable_5_4" callback="false" service="false">

488 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_4?type=ModeLiteral" />

</runnables>
490 <runnables name="Runnable_6_x" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
492 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
494 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700000" />
496 <upperBound xsi:type="am:LongObject" value="30000000" />

<distribution xsi:type="am:UniformDistribution" />
498 </deviation>

</value>
500 </default>

</runnableItems>
502 </runnables>

<runnables name="Runnable_6_1" callback="false" service="false">
504 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
506 <value xsi:type="am:NeedDeviation">

<deviation>
508 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
510 <distribution xsi:type="am:UniformDistribution" />

</deviation>
512 </value>

</default>
514 </runnableItems>

</runnables>
516 <runnables name="Runnable_6_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
518 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
520 <deviation>

<lowerBound xsi:type="am:LongObject" value="594" />
522 <upperBound xsi:type="am:LongObject" value="600" />

<distribution xsi:type="am:UniformDistribution" />
524 </deviation>

</value>
526 </default>

</runnableItems>
528 </runnables>

<runnables name="Runnable_6_3" callback="false" service="false">
530 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
532 <value xsi:type="am:NeedDeviation">

<deviation>
534 <lowerBound xsi:type="am:LongObject" value="29700" />

<upperBound xsi:type="am:LongObject" value="30000" />
536 <distribution xsi:type="am:UniformDistribution" />

</deviation>
538 </value>

</default>
540 </runnableItems>

394 APPENDIX A. APPENDIX

</runnables>
542 <runnables name="Runnable_6_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
544 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
546 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
548 <upperBound xsi:type="am:LongObject" value="600000" />

<distribution xsi:type="am:UniformDistribution" />
550 </deviation>

</value>
552 </default>

</runnableItems>
554 </runnables>

<runnables name="Runnable_7_1" callback="false" service="false">
556 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
558 <value xsi:type="am:NeedDeviation">

<deviation>
560 <lowerBound xsi:type="am:LongObject" value="35640000" />

<upperBound xsi:type="am:LongObject" value="36000000" />
562 <distribution xsi:type="am:UniformDistribution" />

</deviation>
564 </value>

</default>
566 </runnableItems>

</runnables>
568 <runnables name="Runnable_7_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
570 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
572 <deviation>

<lowerBound xsi:type="am:LongObject" value="11880000" />
574 <upperBound xsi:type="am:LongObject" value="12000000" />

<distribution xsi:type="am:UniformDistribution" />
576 </deviation>

</value>
578 </default>

</runnableItems>
580 </runnables>

<modes name="E">
582 <literals name="E_0">

<customProperties key="enumValue">
584 <value xsi:type="am:LongObject" value="0" />

</customProperties>
586 </literals>

<literals name="E_1">
588 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
590 </customProperties>

</literals>
592 </modes>

<modes name="U">
594 <literals name="U_0">

<customProperties key="enumValue">
596 <value xsi:type="am:LongObject" value="0" />

</customProperties>
598 </literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 395

<literals name="U_1">
600 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
602 </customProperties>

</literals>
604 </modes>

<modes name="Y">
606 <literals name="Y_0">

<customProperties key="enumValue">
608 <value xsi:type="am:LongObject" value="0" />

</customProperties>
610 </literals>

<literals name="Y_50">
612 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="50" />
614 </customProperties>

</literals>
616 <literals name="Y_100">

<customProperties key="enumValue">
618 <value xsi:type="am:LongObject" value="100" />

</customProperties>
620 </literals>

</modes>
622 <modes name="W">

<literals name="W_0">
624 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
626 </customProperties>

</literals>
628 <literals name="W_50">

<customProperties key="enumValue">
630 <value xsi:type="am:LongObject" value="50" />

</customProperties>
632 </literals>

<literals name="W_100">
634 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="100" />
636 </customProperties>

</literals>
638 </modes>

<modes name="State">
640 <literals name="State_0">

<customProperties key="enumValue">
642 <value xsi:type="am:LongObject" value="0" />

</customProperties>
644 </literals>

<literals name="State_1">
646 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
648 </customProperties>

</literals>
650 <literals name="State_2">

<customProperties key="enumValue">
652 <value xsi:type="am:LongObject" value="2" />

</customProperties>
654 </literals>

</modes>
656 <modes name="Message">

396 APPENDIX A. APPENDIX

<literals name="Message_0">
658 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
660 </customProperties>

</literals>
662 <literals name="Message_1">

<customProperties key="enumValue">
664 <value xsi:type="am:LongObject" value="1" />

</customProperties>
666 </literals>

<literals name="Message_2">
668 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="2" />
670 </customProperties>

</literals>
672 <literals name="Message_3">

<customProperties key="enumValue">
674 <value xsi:type="am:LongObject" value="3" />

</customProperties>
676 </literals>

<literals name="Message_4">
678 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="4" />
680 </customProperties>

</literals>
682 </modes>

<modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">
684 <size value="1" unit="bit" />

</modeLabels>
686 <modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

<size value="8" unit="bit" />
688 </modeLabels>

<modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">
690 <size value="8" unit="bit" />

</modeLabels>
692 <modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">

<size value="8" unit="bit" />
694 </modeLabels>

<modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">
696 <size value="1" unit="bit" />

</modeLabels>
698 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

<size value="8" unit="bit" />
700 </modeLabels>

</swModel>
702 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

704 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

706 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

708 </featureCategories>
<structures name="System" structureType="System">

710 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

712 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

A.1. ARCHITECTURAL SYSTEM PATTERNS 397

</modules>
714 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

716 </modules>
</structures>

718 </structures>
</structures>

720 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

722 </domains>
</hwModel>

724 <osModel>
<operatingSystems name="Generic_OS">

726 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

728 </taskSchedulers>
<osDataConsistency mode="noProtection" />

730 </operatingSystems>
</osModel>

732 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

734 <offset value="0" unit="ms" />
<recurrence value="600" unit="ms" />

736 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />

738 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_3" />
<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

740 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

742 <recurrence value="100" unit="ms" />
</stimuli>

744 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_6" />
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">

746 <offset value="0" unit="ms" />
<recurrence value="1000" unit="ms" />

748 </stimuli>
</stimuliModel>

750 <constraintsModel />
<eventModel>

752 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

754 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

756 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />

758 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />

760 <events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />

762 <events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />

764 <events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />

766 <events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable

" />

398 APPENDIX A. APPENDIX

768 <events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable
" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable
" />

770 <events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />

772 <events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />

774 <events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />

776 <events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

778 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" description="" entity="IPA_Task_2?
type=InterProcessStimulus" />

780 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_3" entity="IPA_Task_3?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

782 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_6" entity="IPA_Task_6?type=
InterProcessStimulus" />

784 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

786 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

788 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

790 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

792 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

794 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

796 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

798 </eventModel>
<mappingModel addressMappingType="offset">

800 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

802 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 399

804 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

806 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
808 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
810 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?

type=ModeLabel" />
812 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state

?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="

message?type=ModeLabel" />
814 </mappingModel>

<componentsModel />
816 </am:Amalthea>

Listing A.26: Variation 4 of Feedback Loop.

A.1.4.5. Variation 5

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>
12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=

ModeLiteral" />
</condition>

14 </entries>
<entries>

16 <items xsi:type="am:CallSequence" name="CS_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />

18 </items>
<condition>

20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=
ModeLiteral" />

</condition>
22 </entries>

</graphEntries>
24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"
/>

26 <calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />

400 APPENDIX A. APPENDIX

</graphEntries>
28 </callGraph>

<customProperties key="priority">
30 <value xsi:type="am:StringObject" value="3" />

</customProperties>
32 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
34 </customProperties>

</tasks>
36 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

38 <graphEntries xsi:type="am:ModeSwitch">
<entries>

40 <items xsi:type="am:CallSequence" name="CS_state_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />

42 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />
</items>

44 <items xsi:type="am:ModeSwitch">
<entries>

46 <items xsi:type="am:CallSequence" name="CS_0_to_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />

48 </items>
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

</condition>
52 </entries>

<entries>
54 <items xsi:type="am:CallSequence" name="CS_0_to_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
56 </items>

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
</condition>

60 </entries>
</items>

62 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_0?type=ModeLiteral" />
64 </condition>

</entries>
66 <entries>

<items xsi:type="am:CallSequence" name="CS_state_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />

<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />
70 </items>

<items xsi:type="am:ModeSwitch">
72 <entries>

<items xsi:type="am:CallSequence" name="CS_1_to_0">
74 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />

</items>
76 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

78 </condition>
</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 401

80 <entries>
<items xsi:type="am:CallSequence" name="CS_1_to_2">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />
</items>

84 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
86 </condition>

</entries>
88 </items>

<condition>
90 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_1?type=ModeLiteral" />
</condition>

92 </entries>
<entries>

94 <items xsi:type="am:CallSequence" name="CS_state_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />

96 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />
</items>

98 <items xsi:type="am:ModeSwitch">
<entries>

100 <items xsi:type="am:CallSequence" name="CS_2_to_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

102 </items>
<condition>

104 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

</condition>
106 </entries>

<entries>
108 <items xsi:type="am:CallSequence" name="CS_2_to_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />
110 </items>

<condition>
112 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
</condition>

114 </entries>
</items>

116 <condition>
<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/

State_2?type=ModeLiteral" />
118 </condition>

</entries>
120 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CS_IPA_T3">
122 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_3?type=InterProcessStimulus"

/>
</graphEntries>

124 <graphEntries xsi:type="am:ProbabilitySwitch">
<entries probability="0.3">

126 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=

InterProcessStimulus" />
128 </items>

</entries>
130 <entries probability="0.7">

402 APPENDIX A. APPENDIX

<items xsi:type="am:CallSequence" name="CS_w_notrigger" />
132 </entries>

</graphEntries>
134 <graphEntries xsi:type="am:CallSequence" name="CS_R2">

<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />
136 </graphEntries>

</callGraph>
138 <customProperties key="priority">

<value xsi:type="am:StringObject" value="2" />
140 </customProperties>

<customProperties key="osekTaskGroup">
142 <value xsi:type="am:StringObject" value="2" />

</customProperties>
144 </tasks>

<tasks name="Task_3" stimuli="IPA_Task_3?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

146 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

148 <entries>
<items xsi:type="am:CallSequence" name="CS_y_0">

150 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />
</items>

152 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=

ModeLiteral" />
154 </condition>

</entries>
156 <entries>

<items xsi:type="am:CallSequence" name="CS_y_1">
158 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />

</items>
160 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type
=ModeLiteral" />

162 </condition>
</entries>

164 <entries>
<items xsi:type="am:CallSequence" name="CS_y_2">

166 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />
</items>

168 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?

type=ModeLiteral" />
170 </condition>

</entries>
172 </graphEntries>

</callGraph>
174 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
176 </customProperties>

<customProperties key="osekTaskGroup">
178 <value xsi:type="am:StringObject" value="1" />

</customProperties>
180 </tasks>

<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

182 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

A.1. ARCHITECTURAL SYSTEM PATTERNS 403

184 <entries>
<items xsi:type="am:ProbabilitySwitch">

186 <entries probability="0.3">
<items xsi:type="am:CallSequence" name="CS_w_0_e_0">

188 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
</items>

190 </entries>
<entries probability="0.7">

192 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

194 </items>
</entries>

196 </items>
<condition>

198 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=
ModeLiteral" />

</condition>
200 </entries>

<entries>
202 <items xsi:type="am:ProbabilitySwitch">

<entries probability="0.5">
204 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
206 </items>

</entries>
208 <entries probability="0.5">

<items xsi:type="am:CallSequence" name="CS_w_50_e_1">
210 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

</items>
212 </entries>

</items>
214 <condition>

<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type
=ModeLiteral" />

216 </condition>
</entries>

218 <entries>
<items xsi:type="am:ProbabilitySwitch">

220 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_100_e_0">

222 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />
</items>

224 </entries>
<entries probability="0.3">

226 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />

228 </items>
</entries>

230 </items>
<condition>

232 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?
type=ModeLiteral" />

</condition>
234 </entries>

</graphEntries>
236 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">

<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />
238 </graphEntries>

404 APPENDIX A. APPENDIX

</callGraph>
240 <customProperties key="priority">

<value xsi:type="am:StringObject" value="1" />
242 </customProperties>

<customProperties key="osekTaskGroup">
244 <value xsi:type="am:StringObject" value="1" />

</customProperties>
246 </tasks>

<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

248 <callGraph>
<graphEntries xsi:type="am:ProbabilitySwitch">

250 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_0">

252 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />
</items>

254 </entries>
<entries probability="20.0">

256 <items xsi:type="am:CallSequence" name="CallSequence_5_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />

258 </items>
</entries>

260 <entries probability="30.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_2">

262 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />
</items>

264 </entries>
<entries probability="20.0">

266 <items xsi:type="am:CallSequence" name="CallSequence_5_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />

268 </items>
</entries>

270 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_5_4">

272 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />
</items>

274 </entries>
</graphEntries>

276 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_6?type=InterProcessStimulus"

/>
278 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />

</graphEntries>
280 </callGraph>

<customProperties key="priority">
282 <value xsi:type="am:StringObject" value="5" />

</customProperties>
284 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="5" />
286 </customProperties>

</tasks>
288 <tasks name="Task_6" stimuli="IPA_Task_6?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

290 <graphEntries xsi:type="am:ModeSwitch">
<entries>

292 <items xsi:type="am:CallSequence" name="CallSequence_6_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 405

294 </items>
<condition>

296 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_1?type=ModeLiteral" />

</condition>
298 </entries>

<entries>
300 <items xsi:type="am:CallSequence" name="CallSequence_6_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />
302 </items>

<condition>
304 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_2?type=ModeLiteral" />
</condition>

306 </entries>
<entries>

308 <items xsi:type="am:CallSequence" name="CallSequence_6_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />

310 </items>
<condition>

312 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

</condition>
314 </entries>

<entries>
316 <items xsi:type="am:CallSequence" name="CallSequence_6_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />
318 </items>

<condition>
320 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
</condition>

322 </entries>
<defaultEntry>

324 <items xsi:type="am:CallSequence" name="CallSequence_6_x">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />

326 </items>
</defaultEntry>

328 </graphEntries>
</callGraph>

330 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

332 </customProperties>
<customProperties key="osekTaskGroup">

334 <value xsi:type="am:StringObject" value="4" />
</customProperties>

336 </tasks>
<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
338 <callGraph>

<graphEntries xsi:type="am:CallSequence" name="CS_Task_7">
340 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />
342 </graphEntries>

</callGraph>
344 </tasks>

<runnables name="Set_e_0" callback="false" service="false">

406 APPENDIX A. APPENDIX

346 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

</runnables>
348 <runnables name="Set_e_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

350 </runnables>
<runnables name="Set_state_0" callback="false" service="false">

352 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

</runnables>
354 <runnables name="Set_state_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

356 </runnables>
<runnables name="Set_state_2" callback="false" service="false">

358 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

</runnables>
360 <runnables name="Set_y_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

362 </runnables>
<runnables name="Set_y_50" callback="false" service="false">

364 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

</runnables>
366 <runnables name="Set_y_100" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

368 </runnables>
<runnables name="R_3_0" callback="false" service="false">

370 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

372 <value xsi:type="am:NeedDeviation">
<deviation>

374 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

376 <distribution xsi:type="am:UniformDistribution" />
</deviation>

378 </value>
</default>

380 </runnableItems>
</runnables>

382 <runnables name="R_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

384 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

386 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400000" />

388 <upperBound xsi:type="am:LongObject" value="60000000" />
<distribution xsi:type="am:UniformDistribution" />

390 </deviation>
</value>

392 </default>
</runnableItems>

394 </runnables>
<runnables name="R_3_1" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 407

396 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

398 <value xsi:type="am:NeedDeviation">
<deviation>

400 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

402 <distribution xsi:type="am:UniformDistribution" />
</deviation>

404 </value>
</default>

406 </runnableItems>
</runnables>

408 <runnables name="Set_w_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
410 </runnables>

<runnables name="Set_w_50" callback="false" service="false">
412 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
</runnables>

414 <runnables name="Set_w_100" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
416 </runnables>

<runnables name="Set_u_0" callback="false" service="false">
418 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
</runnables>

420 <runnables name="Set_u_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_1?type=ModeLiteral" />
422 </runnables>

<runnables name="R1" callback="false" service="false">
424 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
426 <value xsi:type="am:NeedDeviation">

<deviation>
428 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
430 <distribution xsi:type="am:UniformDistribution" />

</deviation>
432 </value>

</default>
434 </runnableItems>

</runnables>
436 <runnables name="R2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
438 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
440 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
442 <upperBound xsi:type="am:LongObject" value="600000" />

<distribution xsi:type="am:UniformDistribution" />
444 </deviation>

</value>
446 </default>

</runnableItems>
448 </runnables>

408 APPENDIX A. APPENDIX

<runnables name="R_4" callback="false" service="false">
450 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
452 <value xsi:type="am:NeedDeviation">

<deviation>
454 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
456 <distribution xsi:type="am:UniformDistribution" />

</deviation>
458 </value>

</default>
460 </runnableItems>

</runnables>
462 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
464 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
466 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
468 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
470 </deviation>

</value>
472 </default>

</runnableItems>
474 </runnables>

<runnables name="Runnable_5_0" callback="false" service="false">
476 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

478 <runnables name="Runnable_5_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_1?type=ModeLiteral" />
480 </runnables>

<runnables name="Runnable_5_2" callback="false" service="false">
482 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
</runnables>

484 <runnables name="Runnable_5_3" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
486 </runnables>

<runnables name="Runnable_5_4" callback="false" service="false">
488 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
</runnables>

490 <runnables name="Runnable_6_x" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

492 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

494 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700000" />

496 <upperBound xsi:type="am:LongObject" value="30000000" />
<distribution xsi:type="am:UniformDistribution" />

498 </deviation>
</value>

500 </default>
</runnableItems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 409

502 </runnables>
<runnables name="Runnable_6_1" callback="false" service="false">

504 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

506 <value xsi:type="am:NeedDeviation">
<deviation>

508 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6000000" />

510 <distribution xsi:type="am:UniformDistribution" />
</deviation>

512 </value>
</default>

514 </runnableItems>
</runnables>

516 <runnables name="Runnable_6_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

518 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

520 <deviation>
<lowerBound xsi:type="am:LongObject" value="594" />

522 <upperBound xsi:type="am:LongObject" value="600" />
<distribution xsi:type="am:UniformDistribution" />

524 </deviation>
</value>

526 </default>
</runnableItems>

528 </runnables>
<runnables name="Runnable_6_3" callback="false" service="false">

530 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

532 <value xsi:type="am:NeedDeviation">
<deviation>

534 <lowerBound xsi:type="am:LongObject" value="29700" />
<upperBound xsi:type="am:LongObject" value="30000" />

536 <distribution xsi:type="am:UniformDistribution" />
</deviation>

538 </value>
</default>

540 </runnableItems>
</runnables>

542 <runnables name="Runnable_6_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

544 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

546 <deviation>
<lowerBound xsi:type="am:LongObject" value="594000" />

548 <upperBound xsi:type="am:LongObject" value="600000" />
<distribution xsi:type="am:UniformDistribution" />

550 </deviation>
</value>

552 </default>
</runnableItems>

554 </runnables>
<runnables name="Runnable_7_1" callback="false" service="false">

556 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

558 <value xsi:type="am:NeedDeviation">
<deviation>

410 APPENDIX A. APPENDIX

560 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36000000" />

562 <distribution xsi:type="am:UniformDistribution" />
</deviation>

564 </value>
</default>

566 </runnableItems>
</runnables>

568 <runnables name="Runnable_7_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

570 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

572 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

574 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

576 </deviation>
</value>

578 </default>
</runnableItems>

580 </runnables>
<modes name="E">

582 <literals name="E_0">
<customProperties key="enumValue">

584 <value xsi:type="am:LongObject" value="0" />
</customProperties>

586 </literals>
<literals name="E_1">

588 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

590 </customProperties>
</literals>

592 </modes>
<modes name="U">

594 <literals name="U_0">
<customProperties key="enumValue">

596 <value xsi:type="am:LongObject" value="0" />
</customProperties>

598 </literals>
<literals name="U_1">

600 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

602 </customProperties>
</literals>

604 </modes>
<modes name="Y">

606 <literals name="Y_0">
<customProperties key="enumValue">

608 <value xsi:type="am:LongObject" value="0" />
</customProperties>

610 </literals>
<literals name="Y_50">

612 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="50" />

614 </customProperties>
</literals>

616 <literals name="Y_100">
<customProperties key="enumValue">

A.1. ARCHITECTURAL SYSTEM PATTERNS 411

618 <value xsi:type="am:LongObject" value="100" />
</customProperties>

620 </literals>
</modes>

622 <modes name="W">
<literals name="W_0">

624 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

626 </customProperties>
</literals>

628 <literals name="W_50">
<customProperties key="enumValue">

630 <value xsi:type="am:LongObject" value="50" />
</customProperties>

632 </literals>
<literals name="W_100">

634 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="100" />

636 </customProperties>
</literals>

638 </modes>
<modes name="State">

640 <literals name="State_0">
<customProperties key="enumValue">

642 <value xsi:type="am:LongObject" value="0" />
</customProperties>

644 </literals>
<literals name="State_1">

646 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

648 </customProperties>
</literals>

650 <literals name="State_2">
<customProperties key="enumValue">

652 <value xsi:type="am:LongObject" value="2" />
</customProperties>

654 </literals>
</modes>

656 <modes name="Message">
<literals name="Message_0">

658 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

660 </customProperties>
</literals>

662 <literals name="Message_1">
<customProperties key="enumValue">

664 <value xsi:type="am:LongObject" value="1" />
</customProperties>

666 </literals>
<literals name="Message_2">

668 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

670 </customProperties>
</literals>

672 <literals name="Message_3">
<customProperties key="enumValue">

674 <value xsi:type="am:LongObject" value="3" />
</customProperties>

412 APPENDIX A. APPENDIX

676 </literals>
<literals name="Message_4">

678 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="4" />

680 </customProperties>
</literals>

682 </modes>
<modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">

684 <size value="1" unit="bit" />
</modeLabels>

686 <modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">
<size value="8" unit="bit" />

688 </modeLabels>
<modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">

690 <size value="8" unit="bit" />
</modeLabels>

692 <modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">
<size value="8" unit="bit" />

694 </modeLabels>
<modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">

696 <size value="1" unit="bit" />
</modeLabels>

698 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">
<size value="8" unit="bit" />

700 </modeLabels>
</swModel>

702 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
704 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
706 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
708 </featureCategories>

<structures name="System" structureType="System">
710 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
712 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

714 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
716 </modules>

</structures>
718 </structures>

</structures>
720 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
722 </domains>

</hwModel>
724 <osModel>

<operatingSystems name="Generic_OS">
726 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
728 </taskSchedulers>

<osDataConsistency mode="noProtection" />
730 </operatingSystems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 413

</osModel>
732 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
734 <offset value="0" unit="ms" />

<recurrence value="450" unit="ms" />
736 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />
738 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_3" />

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />
740 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
742 <recurrence value="60" unit="ms" />

</stimuli>
744 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_6" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
746 <offset value="0" unit="ms" />

<recurrence value="575" unit="ms" />
748 </stimuli>

</stimuliModel>
750 <constraintsModel />

<eventModel>
752 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
754 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
756 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
758 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />
760 <events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />
762 <events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />
764 <events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />
766 <events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable
" />

768 <events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable
" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable
" />

770 <events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />

772 <events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />

774 <events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />

776 <events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

778 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" description="" entity="IPA_Task_2?
type=InterProcessStimulus" />

780 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_3" entity="IPA_Task_3?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

414 APPENDIX A. APPENDIX

782 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_6" entity="IPA_Task_6?type=
InterProcessStimulus" />

784 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

786 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

788 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

790 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

792 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

794 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

796 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

798 </eventModel>
<mappingModel addressMappingType="offset">

800 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

802 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

804 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

806 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
808 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
810 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?

type=ModeLabel" />
812 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state

?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="

message?type=ModeLabel" />
814 </mappingModel>

<componentsModel />
816 </am:Amalthea>

A.1. ARCHITECTURAL SYSTEM PATTERNS 415

Listing A.27: Variation 5 of Feedback Loop.

A.1.4.6. Variation 6

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>
12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=

ModeLiteral" />
</condition>

14 </entries>
<entries>

16 <items xsi:type="am:CallSequence" name="CS_e_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />

18 </items>
<condition>

20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=
ModeLiteral" />

</condition>
22 </entries>

</graphEntries>
24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"
/>

26 <calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />
</graphEntries>

28 </callGraph>
<customProperties key="priority">

30 <value xsi:type="am:StringObject" value="3" />
</customProperties>

32 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="3" />

34 </customProperties>
</tasks>

36 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
38 <graphEntries xsi:type="am:ModeSwitch">

<entries>
40 <items xsi:type="am:CallSequence" name="CS_state_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />
42 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />

</items>
44 <items xsi:type="am:ModeSwitch">

416 APPENDIX A. APPENDIX

<entries>
46 <items xsi:type="am:CallSequence" name="CS_0_to_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
48 </items>

<condition>
50 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

52 </entries>
<entries>

54 <items xsi:type="am:CallSequence" name="CS_0_to_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />

56 </items>
<condition>

58 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
60 </entries>

</items>
62 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral" />

64 </condition>
</entries>

66 <entries>
<items xsi:type="am:CallSequence" name="CS_state_1">

68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />

70 </items>
<items xsi:type="am:ModeSwitch">

72 <entries>
<items xsi:type="am:CallSequence" name="CS_1_to_0">

74 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
</items>

76 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
78 </condition>

</entries>
80 <entries>

<items xsi:type="am:CallSequence" name="CS_1_to_2">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

</items>
84 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

86 </condition>
</entries>

88 </items>
<condition>

90 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral" />

</condition>
92 </entries>

<entries>
94 <items xsi:type="am:CallSequence" name="CS_state_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />
96 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 417

</items>
98 <items xsi:type="am:ModeSwitch">

<entries>
100 <items xsi:type="am:CallSequence" name="CS_2_to_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
102 </items>

<condition>
104 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

106 </entries>
<entries>

108 <items xsi:type="am:CallSequence" name="CS_2_to_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

110 </items>
<condition>

112 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
114 </entries>

</items>
116 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral" />

118 </condition>
</entries>

120 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CS_IPA_T3">

122 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_3?type=InterProcessStimulus"
/>

</graphEntries>
124 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="0.3">
126 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=
InterProcessStimulus" />

128 </items>
</entries>

130 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_notrigger" />

132 </entries>
</graphEntries>

134 <graphEntries xsi:type="am:CallSequence" name="CS_R2">
<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />

136 </graphEntries>
</callGraph>

138 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

140 </customProperties>
<customProperties key="osekTaskGroup">

142 <value xsi:type="am:StringObject" value="2" />
</customProperties>

144 </tasks>
<tasks name="Task_3" stimuli="IPA_Task_3?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
146 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
148 <entries>

418 APPENDIX A. APPENDIX

<items xsi:type="am:CallSequence" name="CS_y_0">
150 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />

</items>
152 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=
ModeLiteral" />

154 </condition>
</entries>

156 <entries>
<items xsi:type="am:CallSequence" name="CS_y_1">

158 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />
</items>

160 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type

=ModeLiteral" />
162 </condition>

</entries>
164 <entries>

<items xsi:type="am:CallSequence" name="CS_y_2">
166 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />

</items>
168 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?
type=ModeLiteral" />

170 </condition>
</entries>

172 </graphEntries>
</callGraph>

174 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

176 </customProperties>
<customProperties key="osekTaskGroup">

178 <value xsi:type="am:StringObject" value="1" />
</customProperties>

180 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
182 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
184 <entries>

<items xsi:type="am:ProbabilitySwitch">
186 <entries probability="0.3">

<items xsi:type="am:CallSequence" name="CS_w_0_e_0">
188 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
190 </entries>

<entries probability="0.7">
192 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
194 </items>

</entries>
196 </items>

<condition>
198 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=

ModeLiteral" />
</condition>

200 </entries>
<entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 419

202 <items xsi:type="am:ProbabilitySwitch">
<entries probability="0.5">

204 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

206 </items>
</entries>

208 <entries probability="0.5">
<items xsi:type="am:CallSequence" name="CS_w_50_e_1">

210 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
</items>

212 </entries>
</items>

214 <condition>
<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type

=ModeLiteral" />
216 </condition>

</entries>
218 <entries>

<items xsi:type="am:ProbabilitySwitch">
220 <entries probability="0.7">

<items xsi:type="am:CallSequence" name="CS_w_100_e_0">
222 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
224 </entries>

<entries probability="0.3">
226 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
228 </items>

</entries>
230 </items>

<condition>
232 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?

type=ModeLiteral" />
</condition>

234 </entries>
</graphEntries>

236 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">
<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />

238 </graphEntries>
</callGraph>

240 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

242 </customProperties>
<customProperties key="osekTaskGroup">

244 <value xsi:type="am:StringObject" value="1" />
</customProperties>

246 </tasks>
<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
248 <callGraph>

<graphEntries xsi:type="am:ProbabilitySwitch">
250 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_0">
252 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />

</items>
254 </entries>

<entries probability="20.0">
256 <items xsi:type="am:CallSequence" name="CallSequence_5_1">

420 APPENDIX A. APPENDIX

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
258 </items>

</entries>
260 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_2">
262 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</items>
264 </entries>

<entries probability="20.0">
266 <items xsi:type="am:CallSequence" name="CallSequence_5_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />
268 </items>

</entries>
270 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_4">
272 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />

</items>
274 </entries>

</graphEntries>
276 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_6?type=InterProcessStimulus"
/>

278 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
</graphEntries>

280 </callGraph>
<customProperties key="priority">

282 <value xsi:type="am:StringObject" value="5" />
</customProperties>

284 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="5" />

286 </customProperties>
</tasks>

288 <tasks name="Task_6" stimuli="IPA_Task_6?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
290 <graphEntries xsi:type="am:ModeSwitch">

<entries>
292 <items xsi:type="am:CallSequence" name="CallSequence_6_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />
294 </items>

<condition>
296 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
</condition>

298 </entries>
<entries>

300 <items xsi:type="am:CallSequence" name="CallSequence_6_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />

302 </items>
<condition>

304 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

</condition>
306 </entries>

<entries>
308 <items xsi:type="am:CallSequence" name="CallSequence_6_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />
310 </items>

A.1. ARCHITECTURAL SYSTEM PATTERNS 421

<condition>
312 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
</condition>

314 </entries>
<entries>

316 <items xsi:type="am:CallSequence" name="CallSequence_6_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />

318 </items>
<condition>

320 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

</condition>
322 </entries>

<defaultEntry>
324 <items xsi:type="am:CallSequence" name="CallSequence_6_x">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />
326 </items>

</defaultEntry>
328 </graphEntries>

</callGraph>
330 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
332 </customProperties>

<customProperties key="osekTaskGroup">
334 <value xsi:type="am:StringObject" value="4" />

</customProperties>
336 </tasks>

<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

338 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CS_Task_7">

340 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

342 </graphEntries>
</callGraph>

344 </tasks>
<runnables name="Set_e_0" callback="false" service="false">

346 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

</runnables>
348 <runnables name="Set_e_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

350 </runnables>
<runnables name="Set_state_0" callback="false" service="false">

352 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

</runnables>
354 <runnables name="Set_state_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

356 </runnables>
<runnables name="Set_state_2" callback="false" service="false">

358 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

</runnables>
360 <runnables name="Set_y_0" callback="false" service="false">

422 APPENDIX A. APPENDIX

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

362 </runnables>
<runnables name="Set_y_50" callback="false" service="false">

364 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

</runnables>
366 <runnables name="Set_y_100" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

368 </runnables>
<runnables name="R_3_0" callback="false" service="false">

370 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

372 <value xsi:type="am:NeedDeviation">
<deviation>

374 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="606000" />

376 <distribution xsi:type="am:UniformDistribution" />
</deviation>

378 </value>
</default>

380 </runnableItems>
</runnables>

382 <runnables name="R_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

384 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

386 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400000" />

388 <upperBound xsi:type="am:LongObject" value="60600000" />
<distribution xsi:type="am:UniformDistribution" />

390 </deviation>
</value>

392 </default>
</runnableItems>

394 </runnables>
<runnables name="R_3_1" callback="false" service="false">

396 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

398 <value xsi:type="am:NeedDeviation">
<deviation>

400 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6060000" />

402 <distribution xsi:type="am:UniformDistribution" />
</deviation>

404 </value>
</default>

406 </runnableItems>
</runnables>

408 <runnables name="Set_w_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
410 </runnables>

<runnables name="Set_w_50" callback="false" service="false">
412 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
</runnables>

A.1. ARCHITECTURAL SYSTEM PATTERNS 423

414 <runnables name="Set_w_100" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
416 </runnables>

<runnables name="Set_u_0" callback="false" service="false">
418 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
</runnables>

420 <runnables name="Set_u_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_1?type=ModeLiteral" />
422 </runnables>

<runnables name="R1" callback="false" service="false">
424 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
426 <value xsi:type="am:NeedDeviation">

<deviation>
428 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
430 <distribution xsi:type="am:UniformDistribution" />

</deviation>
432 </value>

</default>
434 </runnableItems>

</runnables>
436 <runnables name="R2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
438 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
440 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
442 <upperBound xsi:type="am:LongObject" value="606000" />

<distribution xsi:type="am:UniformDistribution" />
444 </deviation>

</value>
446 </default>

</runnableItems>
448 </runnables>

<runnables name="R_4" callback="false" service="false">
450 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
452 <value xsi:type="am:NeedDeviation">

<deviation>
454 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
456 <distribution xsi:type="am:UniformDistribution" />

</deviation>
458 </value>

</default>
460 </runnableItems>

</runnables>
462 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
464 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
466 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
468 <upperBound xsi:type="am:LongObject" value="6060000" />

424 APPENDIX A. APPENDIX

<distribution xsi:type="am:UniformDistribution" />
470 </deviation>

</value>
472 </default>

</runnableItems>
474 </runnables>

<runnables name="Runnable_5_0" callback="false" service="false">
476 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

478 <runnables name="Runnable_5_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_1?type=ModeLiteral" />
480 </runnables>

<runnables name="Runnable_5_2" callback="false" service="false">
482 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
</runnables>

484 <runnables name="Runnable_5_3" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
486 </runnables>

<runnables name="Runnable_5_4" callback="false" service="false">
488 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
</runnables>

490 <runnables name="Runnable_6_x" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

492 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

494 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700000" />

496 <upperBound xsi:type="am:LongObject" value="30300000" />
<distribution xsi:type="am:UniformDistribution" />

498 </deviation>
</value>

500 </default>
</runnableItems>

502 </runnables>
<runnables name="Runnable_6_1" callback="false" service="false">

504 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

506 <value xsi:type="am:NeedDeviation">
<deviation>

508 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6060000" />

510 <distribution xsi:type="am:UniformDistribution" />
</deviation>

512 </value>
</default>

514 </runnableItems>
</runnables>

516 <runnables name="Runnable_6_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

518 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

520 <deviation>
<lowerBound xsi:type="am:LongObject" value="594" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 425

522 <upperBound xsi:type="am:LongObject" value="606" />
<distribution xsi:type="am:UniformDistribution" />

524 </deviation>
</value>

526 </default>
</runnableItems>

528 </runnables>
<runnables name="Runnable_6_3" callback="false" service="false">

530 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

532 <value xsi:type="am:NeedDeviation">
<deviation>

534 <lowerBound xsi:type="am:LongObject" value="29700" />
<upperBound xsi:type="am:LongObject" value="30300" />

536 <distribution xsi:type="am:UniformDistribution" />
</deviation>

538 </value>
</default>

540 </runnableItems>
</runnables>

542 <runnables name="Runnable_6_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

544 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

546 <deviation>
<lowerBound xsi:type="am:LongObject" value="594000" />

548 <upperBound xsi:type="am:LongObject" value="606000" />
<distribution xsi:type="am:UniformDistribution" />

550 </deviation>
</value>

552 </default>
</runnableItems>

554 </runnables>
<runnables name="Runnable_7_1" callback="false" service="false">

556 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

558 <value xsi:type="am:NeedDeviation">
<deviation>

560 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36360000" />

562 <distribution xsi:type="am:UniformDistribution" />
</deviation>

564 </value>
</default>

566 </runnableItems>
</runnables>

568 <runnables name="Runnable_7_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

570 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

572 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

574 <upperBound xsi:type="am:LongObject" value="12120000" />
<distribution xsi:type="am:UniformDistribution" />

576 </deviation>
</value>

578 </default>
</runnableItems>

426 APPENDIX A. APPENDIX

580 </runnables>
<modes name="E">

582 <literals name="E_0">
<customProperties key="enumValue">

584 <value xsi:type="am:LongObject" value="0" />
</customProperties>

586 </literals>
<literals name="E_1">

588 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

590 </customProperties>
</literals>

592 </modes>
<modes name="U">

594 <literals name="U_0">
<customProperties key="enumValue">

596 <value xsi:type="am:LongObject" value="0" />
</customProperties>

598 </literals>
<literals name="U_1">

600 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

602 </customProperties>
</literals>

604 </modes>
<modes name="Y">

606 <literals name="Y_0">
<customProperties key="enumValue">

608 <value xsi:type="am:LongObject" value="0" />
</customProperties>

610 </literals>
<literals name="Y_50">

612 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="50" />

614 </customProperties>
</literals>

616 <literals name="Y_100">
<customProperties key="enumValue">

618 <value xsi:type="am:LongObject" value="100" />
</customProperties>

620 </literals>
</modes>

622 <modes name="W">
<literals name="W_0">

624 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

626 </customProperties>
</literals>

628 <literals name="W_50">
<customProperties key="enumValue">

630 <value xsi:type="am:LongObject" value="50" />
</customProperties>

632 </literals>
<literals name="W_100">

634 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="100" />

636 </customProperties>
</literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 427

638 </modes>
<modes name="State">

640 <literals name="State_0">
<customProperties key="enumValue">

642 <value xsi:type="am:LongObject" value="0" />
</customProperties>

644 </literals>
<literals name="State_1">

646 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

648 </customProperties>
</literals>

650 <literals name="State_2">
<customProperties key="enumValue">

652 <value xsi:type="am:LongObject" value="2" />
</customProperties>

654 </literals>
</modes>

656 <modes name="Message">
<literals name="Message_0">

658 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

660 </customProperties>
</literals>

662 <literals name="Message_1">
<customProperties key="enumValue">

664 <value xsi:type="am:LongObject" value="1" />
</customProperties>

666 </literals>
<literals name="Message_2">

668 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

670 </customProperties>
</literals>

672 <literals name="Message_3">
<customProperties key="enumValue">

674 <value xsi:type="am:LongObject" value="3" />
</customProperties>

676 </literals>
<literals name="Message_4">

678 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="4" />

680 </customProperties>
</literals>

682 </modes>
<modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">

684 <size value="1" unit="bit" />
</modeLabels>

686 <modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">
<size value="8" unit="bit" />

688 </modeLabels>
<modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">

690 <size value="8" unit="bit" />
</modeLabels>

692 <modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">
<size value="8" unit="bit" />

694 </modeLabels>
<modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">

428 APPENDIX A. APPENDIX

696 <size value="1" unit="bit" />
</modeLabels>

698 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">
<size value="8" unit="bit" />

700 </modeLabels>
</swModel>

702 <hwModel>
<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
704 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

</definitions>
706 <featureCategories name="Instructions" featureType="performance">

<features name="IPC_1.0" value="1.0" />
708 </featureCategories>

<structures name="System" structureType="System">
710 <structures name="Ecu_1" structureType="ECU">

<structures name="Processor_1" structureType="Microcontroller">
712 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
</modules>

714 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

<ports name="port" bitWidth="32" priority="0" portType="initiator"/>
716 </modules>

</structures>
718 </structures>

</structures>
720 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

<defaultValue value="600.0" unit="MHz"/>
722 </domains>

</hwModel>
724 <osModel>

<operatingSystems name="Generic_OS">
726 <taskSchedulers name="Scheduler_1">

<schedulingAlgorithm xsi:type="am:OSEK" />
728 </taskSchedulers>

<osDataConsistency mode="noProtection" />
730 </operatingSystems>

</osModel>
732 <stimuliModel>

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
734 <offset value="0" unit="ms" />

<recurrence value="450" unit="ms" />
736 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />
738 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_3" />

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />
740 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
742 <recurrence value="60" unit="ms" />

</stimuli>
744 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_6" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">
746 <offset value="0" unit="ms" />

<recurrence value="575" unit="ms" />
748 </stimuli>

</stimuliModel>
750 <constraintsModel />

A.1. ARCHITECTURAL SYSTEM PATTERNS 429

<eventModel>
752 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
754 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
756 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />
758 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />
760 <events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />
762 <events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />
764 <events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />
766 <events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable
" />

768 <events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable
" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable
" />

770 <events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />

772 <events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />

774 <events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />

776 <events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

778 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" description="" entity="IPA_Task_2?
type=InterProcessStimulus" />

780 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_3" entity="IPA_Task_3?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

782 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_6" entity="IPA_Task_6?type=
InterProcessStimulus" />

784 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

786 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

788 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

790 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

430 APPENDIX A. APPENDIX

792 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

794 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

796 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

798 </eventModel>
<mappingModel addressMappingType="offset">

800 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

802 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

804 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

806 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
808 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
810 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?

type=ModeLabel" />
812 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state

?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="

message?type=ModeLabel" />
814 </mappingModel>

<componentsModel />
816 </am:Amalthea>

Listing A.28: Variation 6 of Feedback Loop.

A.1.4.7. Variation 7

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:CallSequence" name="CS_e_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_0?type=Runnable" />
10 </items>

<condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 431

12 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_0?type=
ModeLiteral" />

</condition>
14 </entries>

<entries>
16 <items xsi:type="am:CallSequence" name="CS_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_u_1?type=Runnable" />
18 </items>

<condition>
20 <entries xsi:type="am:ModeValue" valueProvider="e?type=ModeLabel" value="E/E_1?type=

ModeLiteral" />
</condition>

22 </entries>
</graphEntries>

24 <graphEntries xsi:type="am:CallSequence" name="CS_R1">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"

/>
26 <calls xsi:type="am:TaskRunnableCall" runnable="R1?type=Runnable" />

</graphEntries>
28 </callGraph>

<customProperties key="priority">
30 <value xsi:type="am:StringObject" value="3" />

</customProperties>
32 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
34 </customProperties>

</tasks>
36 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
<callGraph>

38 <graphEntries xsi:type="am:ModeSwitch">
<entries>

40 <items xsi:type="am:CallSequence" name="CS_state_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_0?type=Runnable" />

42 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_0?type=Runnable" />
</items>

44 <items xsi:type="am:ModeSwitch">
<entries>

46 <items xsi:type="am:CallSequence" name="CS_0_to_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />

48 </items>
<condition>

50 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?
type=ModeLiteral" />

</condition>
52 </entries>

<entries>
54 <items xsi:type="am:CallSequence" name="CS_0_to_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
56 </items>

<condition>
58 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?

type=ModeLiteral" />
</condition>

60 </entries>
</items>

62 <condition>

432 APPENDIX A. APPENDIX

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_0?type=ModeLiteral" />

64 </condition>
</entries>

66 <entries>
<items xsi:type="am:CallSequence" name="CS_state_1">

68 <calls xsi:type="am:TaskRunnableCall" runnable="Set_y_50?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Set_w_50?type=Runnable" />

70 </items>
<items xsi:type="am:ModeSwitch">

72 <entries>
<items xsi:type="am:CallSequence" name="CS_1_to_0">

74 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_0?type=Runnable" />
</items>

76 <condition>
<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
78 </condition>

</entries>
80 <entries>

<items xsi:type="am:CallSequence" name="CS_1_to_2">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

</items>
84 <condition>

<entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

86 </condition>
</entries>

88 </items>
<condition>

90 <entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_1?type=ModeLiteral" />

</condition>
92 </entries>

<entries>
94 <items xsi:type="am:CallSequence" name="CS_state_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_y_100?type=Runnable" />
96 <calls xsi:type="am:TaskRunnableCall" runnable="Set_w_100?type=Runnable" />

</items>
98 <items xsi:type="am:ModeSwitch">

<entries>
100 <items xsi:type="am:CallSequence" name="CS_2_to_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_1?type=Runnable" />
102 </items>

<condition>
104 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_0?

type=ModeLiteral" />
</condition>

106 </entries>
<entries>

108 <items xsi:type="am:CallSequence" name="CS_2_to_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_state_2?type=Runnable" />

110 </items>
<condition>

112 <entries xsi:type="am:ModeValue" valueProvider="u?type=ModeLabel" value="U/U_1?
type=ModeLiteral" />

</condition>
114 </entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 433

</items>
116 <condition>

<entries xsi:type="am:ModeValue" valueProvider="state?type=ModeLabel" value="State/
State_2?type=ModeLiteral" />

118 </condition>
</entries>

120 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CS_IPA_T3">

122 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_3?type=InterProcessStimulus"
/>

</graphEntries>
124 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="0.3">
126 <items xsi:type="am:CallSequence" name="CS_Trigger_Task_4">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=
InterProcessStimulus" />

128 </items>
</entries>

130 <entries probability="0.7">
<items xsi:type="am:CallSequence" name="CS_w_notrigger" />

132 </entries>
</graphEntries>

134 <graphEntries xsi:type="am:CallSequence" name="CS_R2">
<calls xsi:type="am:TaskRunnableCall" runnable="R2?type=Runnable" />

136 </graphEntries>
</callGraph>

138 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

140 </customProperties>
<customProperties key="osekTaskGroup">

142 <value xsi:type="am:StringObject" value="2" />
</customProperties>

144 </tasks>
<tasks name="Task_3" stimuli="IPA_Task_3?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
146 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
148 <entries>

<items xsi:type="am:CallSequence" name="CS_y_0">
150 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_0?type=Runnable" />

</items>
152 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_0?type=
ModeLiteral" />

154 </condition>
</entries>

156 <entries>
<items xsi:type="am:CallSequence" name="CS_y_1">

158 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_1?type=Runnable" />
</items>

160 <condition>
<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_50?type

=ModeLiteral" />
162 </condition>

</entries>
164 <entries>

<items xsi:type="am:CallSequence" name="CS_y_2">
166 <calls xsi:type="am:TaskRunnableCall" runnable="R_3_2?type=Runnable" />

434 APPENDIX A. APPENDIX

</items>
168 <condition>

<entries xsi:type="am:ModeValue" valueProvider="y?type=ModeLabel" value="Y/Y_100?
type=ModeLiteral" />

170 </condition>
</entries>

172 </graphEntries>
</callGraph>

174 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

176 </customProperties>
<customProperties key="osekTaskGroup">

178 <value xsi:type="am:StringObject" value="1" />
</customProperties>

180 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
182 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
184 <entries>

<items xsi:type="am:ProbabilitySwitch">
186 <entries probability="0.3">

<items xsi:type="am:CallSequence" name="CS_w_0_e_0">
188 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
190 </entries>

<entries probability="0.7">
192 <items xsi:type="am:CallSequence" name="CS_w_0_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
194 </items>

</entries>
196 </items>

<condition>
198 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_0?type=

ModeLiteral" />
</condition>

200 </entries>
<entries>

202 <items xsi:type="am:ProbabilitySwitch">
<entries probability="0.5">

204 <items xsi:type="am:CallSequence" name="CS_w_50_e_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

206 </items>
</entries>

208 <entries probability="0.5">
<items xsi:type="am:CallSequence" name="CS_w_50_e_1">

210 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
</items>

212 </entries>
</items>

214 <condition>
<entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_50?type

=ModeLiteral" />
216 </condition>

</entries>
218 <entries>

<items xsi:type="am:ProbabilitySwitch">
220 <entries probability="0.7">

A.1. ARCHITECTURAL SYSTEM PATTERNS 435

<items xsi:type="am:CallSequence" name="CS_w_100_e_0">
222 <calls xsi:type="am:TaskRunnableCall" runnable="Set_e_0?type=Runnable" />

</items>
224 </entries>

<entries probability="0.3">
226 <items xsi:type="am:CallSequence" name="CS_w_100_e_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Set_e_1?type=Runnable" />
228 </items>

</entries>
230 </items>

<condition>
232 <entries xsi:type="am:ModeValue" valueProvider="w?type=ModeLabel" value="W/W_100?

type=ModeLiteral" />
</condition>

234 </entries>
</graphEntries>

236 <graphEntries xsi:type="am:CallSequence" name="CS_Task_4_Post">
<calls xsi:type="am:TaskRunnableCall" runnable="R_4?type=Runnable" />

238 </graphEntries>
</callGraph>

240 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

242 </customProperties>
<customProperties key="osekTaskGroup">

244 <value xsi:type="am:StringObject" value="1" />
</customProperties>

246 </tasks>
<tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
248 <callGraph>

<graphEntries xsi:type="am:ProbabilitySwitch">
250 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_0">
252 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_0?type=Runnable" />

</items>
254 </entries>

<entries probability="20.0">
256 <items xsi:type="am:CallSequence" name="CallSequence_5_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
258 </items>

</entries>
260 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_2">
262 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</items>
264 </entries>

<entries probability="20.0">
266 <items xsi:type="am:CallSequence" name="CallSequence_5_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_3?type=Runnable" />
268 </items>

</entries>
270 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_5_4">
272 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_4?type=Runnable" />

</items>
274 </entries>

</graphEntries>
276 <graphEntries xsi:type="am:CallSequence" name="CallSequence_5">

436 APPENDIX A. APPENDIX

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_6?type=InterProcessStimulus"
/>

278 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5?type=Runnable" />
</graphEntries>

280 </callGraph>
<customProperties key="priority">

282 <value xsi:type="am:StringObject" value="5" />
</customProperties>

284 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="5" />

286 </customProperties>
</tasks>

288 <tasks name="Task_6" stimuli="IPA_Task_6?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
290 <graphEntries xsi:type="am:ModeSwitch">

<entries>
292 <items xsi:type="am:CallSequence" name="CallSequence_6_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_1?type=Runnable" />
294 </items>

<condition>
296 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
</condition>

298 </entries>
<entries>

300 <items xsi:type="am:CallSequence" name="CallSequence_6_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_2?type=Runnable" />

302 </items>
<condition>

304 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

</condition>
306 </entries>

<entries>
308 <items xsi:type="am:CallSequence" name="CallSequence_6_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_3?type=Runnable" />
310 </items>

<condition>
312 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
</condition>

314 </entries>
<entries>

316 <items xsi:type="am:CallSequence" name="CallSequence_6_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_4?type=Runnable" />

318 </items>
<condition>

320 <entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

</condition>
322 </entries>

<defaultEntry>
324 <items xsi:type="am:CallSequence" name="CallSequence_6_x">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_6_x?type=Runnable" />
326 </items>

</defaultEntry>
328 </graphEntries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 437

</callGraph>
330 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
332 </customProperties>

<customProperties key="osekTaskGroup">
334 <value xsi:type="am:StringObject" value="4" />

</customProperties>
336 </tasks>

<tasks name="Task_7" stimuli="Stimulus_Task_7?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

338 <callGraph>
<graphEntries xsi:type="am:CallSequence" name="CS_Task_7">

340 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_1?type=Runnable" />
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_7_2?type=Runnable" />

342 </graphEntries>
</callGraph>

344 </tasks>
<runnables name="Set_e_0" callback="false" service="false">

346 <runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_0?type=ModeLiteral" />

</runnables>
348 <runnables name="Set_e_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="e?type=ModeLabel" access="write"
modeValue="E/E_1?type=ModeLiteral" />

350 </runnables>
<runnables name="Set_state_0" callback="false" service="false">

352 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_0?type=ModeLiteral" />

</runnables>
354 <runnables name="Set_state_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_1?type=ModeLiteral" />

356 </runnables>
<runnables name="Set_state_2" callback="false" service="false">

358 <runnableItems xsi:type="am:ModeLabelAccess" data="state?type=ModeLabel" access="write"
modeValue="State/State_2?type=ModeLiteral" />

</runnables>
360 <runnables name="Set_y_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_0?type=ModeLiteral" />

362 </runnables>
<runnables name="Set_y_50" callback="false" service="false">

364 <runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_50?type=ModeLiteral" />

</runnables>
366 <runnables name="Set_y_100" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="y?type=ModeLabel" access="write"
modeValue="Y/Y_100?type=ModeLiteral" />

368 </runnables>
<runnables name="R_3_0" callback="false" service="false">

370 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

372 <value xsi:type="am:NeedDeviation">
<deviation>

374 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="606000" />

376 <distribution xsi:type="am:UniformDistribution" />
</deviation>

438 APPENDIX A. APPENDIX

378 </value>
</default>

380 </runnableItems>
</runnables>

382 <runnables name="R_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

384 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

386 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400000" />

388 <upperBound xsi:type="am:LongObject" value="60600000" />
<distribution xsi:type="am:UniformDistribution" />

390 </deviation>
</value>

392 </default>
</runnableItems>

394 </runnables>
<runnables name="R_3_1" callback="false" service="false">

396 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

398 <value xsi:type="am:NeedDeviation">
<deviation>

400 <lowerBound xsi:type="am:LongObject" value="5940000" />
<upperBound xsi:type="am:LongObject" value="6060000" />

402 <distribution xsi:type="am:UniformDistribution" />
</deviation>

404 </value>
</default>

406 </runnableItems>
</runnables>

408 <runnables name="Set_w_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_0?type=ModeLiteral" />
410 </runnables>

<runnables name="Set_w_50" callback="false" service="false">
412 <runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_50?type=ModeLiteral" />
</runnables>

414 <runnables name="Set_w_100" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="w?type=ModeLabel" access="write"

modeValue="W/W_100?type=ModeLiteral" />
416 </runnables>

<runnables name="Set_u_0" callback="false" service="false">
418 <runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_0?type=ModeLiteral" />
</runnables>

420 <runnables name="Set_u_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="u?type=ModeLabel" access="write"

modeValue="U/U_1?type=ModeLiteral" />
422 </runnables>

<runnables name="R1" callback="false" service="false">
424 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
426 <value xsi:type="am:NeedDeviation">

<deviation>
428 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
430 <distribution xsi:type="am:UniformDistribution" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 439

</deviation>
432 </value>

</default>
434 </runnableItems>

</runnables>
436 <runnables name="R2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
438 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
440 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
442 <upperBound xsi:type="am:LongObject" value="606000" />

<distribution xsi:type="am:UniformDistribution" />
444 </deviation>

</value>
446 </default>

</runnableItems>
448 </runnables>

<runnables name="R_4" callback="false" service="false">
450 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
452 <value xsi:type="am:NeedDeviation">

<deviation>
454 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
456 <distribution xsi:type="am:UniformDistribution" />

</deviation>
458 </value>

</default>
460 </runnableItems>

</runnables>
462 <runnables name="Runnable_5" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
464 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
466 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
468 <upperBound xsi:type="am:LongObject" value="6060000" />

<distribution xsi:type="am:UniformDistribution" />
470 </deviation>

</value>
472 </default>

</runnableItems>
474 </runnables>

<runnables name="Runnable_5_0" callback="false" service="false">
476 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

478 <runnables name="Runnable_5_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_1?type=ModeLiteral" />
480 </runnables>

<runnables name="Runnable_5_2" callback="false" service="false">
482 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
</runnables>

484 <runnables name="Runnable_5_3" callback="false" service="false">

440 APPENDIX A. APPENDIX

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_3?type=ModeLiteral" />

486 </runnables>
<runnables name="Runnable_5_4" callback="false" service="false">

488 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_4?type=ModeLiteral" />

</runnables>
490 <runnables name="Runnable_6_x" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
492 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
494 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700000" />
496 <upperBound xsi:type="am:LongObject" value="30300000" />

<distribution xsi:type="am:UniformDistribution" />
498 </deviation>

</value>
500 </default>

</runnableItems>
502 </runnables>

<runnables name="Runnable_6_1" callback="false" service="false">
504 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
506 <value xsi:type="am:NeedDeviation">

<deviation>
508 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6060000" />
510 <distribution xsi:type="am:UniformDistribution" />

</deviation>
512 </value>

</default>
514 </runnableItems>

</runnables>
516 <runnables name="Runnable_6_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
518 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
520 <deviation>

<lowerBound xsi:type="am:LongObject" value="594" />
522 <upperBound xsi:type="am:LongObject" value="606" />

<distribution xsi:type="am:UniformDistribution" />
524 </deviation>

</value>
526 </default>

</runnableItems>
528 </runnables>

<runnables name="Runnable_6_3" callback="false" service="false">
530 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
532 <value xsi:type="am:NeedDeviation">

<deviation>
534 <lowerBound xsi:type="am:LongObject" value="29700" />

<upperBound xsi:type="am:LongObject" value="30300" />
536 <distribution xsi:type="am:UniformDistribution" />

</deviation>
538 </value>

</default>
540 </runnableItems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 441

</runnables>
542 <runnables name="Runnable_6_4" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
544 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
546 <deviation>

<lowerBound xsi:type="am:LongObject" value="594000" />
548 <upperBound xsi:type="am:LongObject" value="606000" />

<distribution xsi:type="am:UniformDistribution" />
550 </deviation>

</value>
552 </default>

</runnableItems>
554 </runnables>

<runnables name="Runnable_7_1" callback="false" service="false">
556 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
558 <value xsi:type="am:NeedDeviation">

<deviation>
560 <lowerBound xsi:type="am:LongObject" value="35640000" />

<upperBound xsi:type="am:LongObject" value="36360000" />
562 <distribution xsi:type="am:UniformDistribution" />

</deviation>
564 </value>

</default>
566 </runnableItems>

</runnables>
568 <runnables name="Runnable_7_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
570 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
572 <deviation>

<lowerBound xsi:type="am:LongObject" value="11880000" />
574 <upperBound xsi:type="am:LongObject" value="12120000" />

<distribution xsi:type="am:UniformDistribution" />
576 </deviation>

</value>
578 </default>

</runnableItems>
580 </runnables>

<modes name="E">
582 <literals name="E_0">

<customProperties key="enumValue">
584 <value xsi:type="am:LongObject" value="0" />

</customProperties>
586 </literals>

<literals name="E_1">
588 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
590 </customProperties>

</literals>
592 </modes>

<modes name="U">
594 <literals name="U_0">

<customProperties key="enumValue">
596 <value xsi:type="am:LongObject" value="0" />

</customProperties>
598 </literals>

442 APPENDIX A. APPENDIX

<literals name="U_1">
600 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
602 </customProperties>

</literals>
604 </modes>

<modes name="Y">
606 <literals name="Y_0">

<customProperties key="enumValue">
608 <value xsi:type="am:LongObject" value="0" />

</customProperties>
610 </literals>

<literals name="Y_50">
612 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="50" />
614 </customProperties>

</literals>
616 <literals name="Y_100">

<customProperties key="enumValue">
618 <value xsi:type="am:LongObject" value="100" />

</customProperties>
620 </literals>

</modes>
622 <modes name="W">

<literals name="W_0">
624 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
626 </customProperties>

</literals>
628 <literals name="W_50">

<customProperties key="enumValue">
630 <value xsi:type="am:LongObject" value="50" />

</customProperties>
632 </literals>

<literals name="W_100">
634 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="100" />
636 </customProperties>

</literals>
638 </modes>

<modes name="State">
640 <literals name="State_0">

<customProperties key="enumValue">
642 <value xsi:type="am:LongObject" value="0" />

</customProperties>
644 </literals>

<literals name="State_1">
646 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
648 </customProperties>

</literals>
650 <literals name="State_2">

<customProperties key="enumValue">
652 <value xsi:type="am:LongObject" value="2" />

</customProperties>
654 </literals>

</modes>
656 <modes name="Message">

A.1. ARCHITECTURAL SYSTEM PATTERNS 443

<literals name="Message_0">
658 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
660 </customProperties>

</literals>
662 <literals name="Message_1">

<customProperties key="enumValue">
664 <value xsi:type="am:LongObject" value="1" />

</customProperties>
666 </literals>

<literals name="Message_2">
668 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="2" />
670 </customProperties>

</literals>
672 <literals name="Message_3">

<customProperties key="enumValue">
674 <value xsi:type="am:LongObject" value="3" />

</customProperties>
676 </literals>

<literals name="Message_4">
678 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="4" />
680 </customProperties>

</literals>
682 </modes>

<modeLabels name="e" initialValue="E/E_0?type=ModeLiteral">
684 <size value="1" unit="bit" />

</modeLabels>
686 <modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

<size value="8" unit="bit" />
688 </modeLabels>

<modeLabels name="y" initialValue="Y/Y_0?type=ModeLiteral">
690 <size value="8" unit="bit" />

</modeLabels>
692 <modeLabels name="w" initialValue="W/W_0?type=ModeLiteral">

<size value="8" unit="bit" />
694 </modeLabels>

<modeLabels name="u" initialValue="U/U_0?type=ModeLiteral">
696 <size value="1" unit="bit" />

</modeLabels>
698 <modeLabels name="state" initialValue="State/State_0?type=ModeLiteral">

<size value="8" unit="bit" />
700 </modeLabels>

</swModel>
702 <hwModel>

<definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

704 <definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
</definitions>

706 <featureCategories name="Instructions" featureType="performance">
<features name="IPC_1.0" value="1.0" />

708 </featureCategories>
<structures name="System" structureType="System">

710 <structures name="Ecu_1" structureType="ECU">
<structures name="Processor_1" structureType="Microcontroller">

712 <modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

444 APPENDIX A. APPENDIX

</modules>
714 <modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
<ports name="port" bitWidth="32" priority="0" portType="initiator"/>

716 </modules>
</structures>

718 </structures>
</structures>

720 <domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
<defaultValue value="600.0" unit="MHz"/>

722 </domains>
</hwModel>

724 <osModel>
<operatingSystems name="Generic_OS">

726 <taskSchedulers name="Scheduler_1">
<schedulingAlgorithm xsi:type="am:OSEK" />

728 </taskSchedulers>
<osDataConsistency mode="noProtection" />

730 </operatingSystems>
</osModel>

732 <stimuliModel>
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

734 <offset value="0" unit="ms" />
<recurrence value="450" unit="ms" />

736 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />

738 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_3" />
<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

740 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

742 <recurrence value="60" unit="ms" />
</stimuli>

744 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_6" />
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_7">

746 <offset value="0" unit="ms" />
<recurrence value="575" unit="ms" />

748 </stimuli>
</stimuliModel>

750 <constraintsModel />
<eventModel>

752 <events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

754 <events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

756 <events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_6" entity="Task_6?type=Task" />

758 <events xsi:type="am:ProcessEvent" name="Event_Task_7" entity="Task_7?type=Task" />
<events xsi:type="am:RunnableEvent" name="Event_R_3_0" entity="R_3_0?type=Runnable" />

760 <events xsi:type="am:RunnableEvent" name="Event_R_3_1" entity="R_3_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_R_3_2" entity="R_3_2?type=Runnable" />

762 <events xsi:type="am:RunnableEvent" name="Event_R_4" entity="R_4?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_R1" entity="R1?type=Runnable" />

764 <events xsi:type="am:RunnableEvent" name="Event_R2" entity="R2?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_e_0" entity="Set_e_0?type=Runnable" />

766 <events xsi:type="am:RunnableEvent" name="Event_Set_e_1" entity="Set_e_1?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_state_0" entity="Set_state_0?type=Runnable

" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 445

768 <events xsi:type="am:RunnableEvent" name="Event_Set_state_1" entity="Set_state_1?type=Runnable
" />

<events xsi:type="am:RunnableEvent" name="Event_Set_state_2" entity="Set_state_2?type=Runnable
" />

770 <events xsi:type="am:RunnableEvent" name="Event_Set_u_0" entity="Set_u_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_u_1" entity="Set_u_1?type=Runnable" />

772 <events xsi:type="am:RunnableEvent" name="Event_Set_w_0" entity="Set_w_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_w_50" entity="Set_w_50?type=Runnable" />

774 <events xsi:type="am:RunnableEvent" name="Event_Set_w_100" entity="Set_w_100?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_0" entity="Set_y_0?type=Runnable" />

776 <events xsi:type="am:RunnableEvent" name="Event_Set_y_50" entity="Set_y_50?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Set_y_100" entity="Set_y_100?type=Runnable" />

778 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" description="" entity="IPA_Task_2?
type=InterProcessStimulus" />

780 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_3" entity="IPA_Task_3?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

782 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_IPA_Task_6" entity="IPA_Task_6?type=
InterProcessStimulus" />

784 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_7" entity="Stimulus_Task_7?type=
PeriodicStimulus" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5" entity="Runnable_5?type=Runnable"
/>

786 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_0" entity="Runnable_5_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

788 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_3" entity="Runnable_5_3?type=
Runnable" />

790 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_4" entity="Runnable_5_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_1" entity="Runnable_6_1?type=
Runnable" />

792 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_2" entity="Runnable_6_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_3" entity="Runnable_6_3?type=
Runnable" />

794 <events xsi:type="am:RunnableEvent" name="Event_Runnable_6_4" entity="Runnable_6_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_6_x" entity="Runnable_6_x?type=
Runnable" />

796 <events xsi:type="am:RunnableEvent" name="Event_Runnable_7_1" entity="Runnable_7_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_7_2" entity="Runnable_7_2?type=
Runnable" />

798 </eventModel>
<mappingModel addressMappingType="offset">

800 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

802 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

446 APPENDIX A. APPENDIX

804 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_6?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

806 <taskAllocation task="Task_7?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
808 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="u?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="1" abstractElement="e?type

=ModeLabel" />
810 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="2" abstractElement="y?type

=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="w?

type=ModeLabel" />
812 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="18" abstractElement="state

?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="26" abstractElement="

message?type=ModeLabel" />
814 </mappingModel>

<componentsModel />
816 </am:Amalthea>

Listing A.29: Variation 7 of Feedback Loop.

A.1.5. State Machine Feedback Loop

A.1.5.1. Variation 1

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
16 </entries>

<entries>
18 <items xsi:type="am:CallSequence" name="CallSequence_State1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"
/>

20 </items>
<condition>

22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 447

</condition>
24 </entries>

</items>
26 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="
MessageToT1/MessageToT1_1?type=ModeLiteral" />

28 </condition>
</entries>

30 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />

32 </defaultEntry>
</graphEntries>

34 <graphEntries xsi:type="am:ModeSwitch">
<entries>

36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

38 </items>
<condition>

40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
42 </entries>

<entries>
44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
46 </items>

<condition>
48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

50 </entries>
</graphEntries>

52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

54 </graphEntries>
</callGraph>

56 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

58 </customProperties>
<customProperties key="osekTaskGroup">

60 <value xsi:type="am:StringObject" value="2" />
</customProperties>

62 </tasks>
<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
64 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
66 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CallSequence_2_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=
Runnable" />

74 </items>
<condition>

448 APPENDIX A. APPENDIX

76 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
78 </entries>

<entries>
80 <items xsi:type="am:CallSequence" name="CallSequence_2_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_1?type=ModeLiteral" />

90 </condition>
</entries>

92 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_State_0">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
</items>

96 <items xsi:type="am:ModeSwitch">
<entries>

98 <items xsi:type="am:CallSequence" name="CallSequence_2_0_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
100 </items>

<condition>
102 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
</condition>

104 </entries>
<entries>

106 <items xsi:type="am:CallSequence" name="CallSequence_2_0_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=

Runnable" />
108 </items>

<condition>
110 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
</condition>

112 </entries>
</items>

114 <condition>
<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_0?type=ModeLiteral" />
116 </condition>

</entries>
118 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
120 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
122 <items xsi:type="am:ModeSwitch">

<entries>
124 <items xsi:type="am:CallSequence" name="CallSequence_2_2_1">

A.1. ARCHITECTURAL SYSTEM PATTERNS 449

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

126 </items>
<condition>

128 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
130 </entries>

<entries>
132 <items xsi:type="am:CallSequence" name="CallSequence_2_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

134 </items>
<condition>

136 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
138 </entries>

</items>
140 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_2?type=ModeLiteral" />

142 </condition>
</entries>

144 </graphEntries>
</callGraph>

146 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

148 </customProperties>
<customProperties key="osekTaskGroup">

150 <value xsi:type="am:StringObject" value="1" />
</customProperties>

152 </tasks>
<runnables name="Runnable_1_1" callback="false" service="false">

154 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</runnables>
156 <runnables name="Runnable_State_0" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
158 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
160 <deviation>

<lowerBound xsi:type="am:LongObject" value="59" />
162 <upperBound xsi:type="am:LongObject" value="60" />

<distribution xsi:type="am:UniformDistribution" />
164 </deviation>

</value>
166 </default>

</runnableItems>
168 </runnables>

<runnables name="Runnable_State_1" callback="false" service="false">
170 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
172 <value xsi:type="am:NeedDeviation">

<deviation>
174 <lowerBound xsi:type="am:LongObject" value="59400" />

<upperBound xsi:type="am:LongObject" value="60000" />
176 <distribution xsi:type="am:UniformDistribution" />

450 APPENDIX A. APPENDIX

</deviation>
178 </value>

</default>
180 </runnableItems>

</runnables>
182 <runnables name="Runnable_State_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
184 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
186 <deviation>

<lowerBound xsi:type="am:LongObject" value="29700000" />
188 <upperBound xsi:type="am:LongObject" value="30000000" />

<distribution xsi:type="am:UniformDistribution" />
190 </deviation>

</value>
192 </default>

</runnableItems>
194 </runnables>

<runnables name="Runnable_1" callback="false" service="false">
196 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
198 <value xsi:type="am:NeedDeviation">

<deviation>
200 <lowerBound xsi:type="am:LongObject" value="5940000" />

<upperBound xsi:type="am:LongObject" value="6000000" />
202 <distribution xsi:type="am:UniformDistribution" />

</deviation>
204 </value>

</default>
206 </runnableItems>

</runnables>
208 <runnables name="Runnable_1_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />

210 </runnables>
<runnables name="Runnable_Transition_0" callback="false" service="false">

212 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_0?type=ModeLiteral" />

</runnables>
214 <runnables name="Runnable_Transition_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

216 </runnables>
<runnables name="Runnable_Transition_2" callback="false" service="false">

218 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

</runnables>
220 <runnables name="Runnable_1_State0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

222 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

</runnables>
224 <runnables name="Runnable_1_State1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

226 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 451

</runnables>
228 <runnables name="Runnable_2_Overflow" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

230 </runnables>
<modes name="MessageToT1">

232 <literals name="MessageToT1_0">
<customProperties key="enumValue">

234 <value xsi:type="am:LongObject" value="0" />
</customProperties>

236 </literals>
<literals name="MessageToT1_1">

238 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

240 </customProperties>
</literals>

242 </modes>
<modes name="MessageToT2">

244 <literals name="MessageToT2_0">
<customProperties key="enumValue">

246 <value xsi:type="am:LongObject" value="0" />
</customProperties>

248 </literals>
<literals name="MessageToT2_1">

250 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

252 </customProperties>
</literals>

254 </modes>
<modes name="StateT1">

256 <literals name="StateT1_0">
<customProperties key="enumValue">

258 <value xsi:type="am:LongObject" value="0" />
</customProperties>

260 </literals>
<literals name="StateT1_1">

262 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

264 </customProperties>
</literals>

266 </modes>
<modes name="StateT2">

268 <literals name="StateT2_0">
<customProperties key="enumValue">

270 <value xsi:type="am:LongObject" value="0" />
</customProperties>

272 </literals>
<literals name="StateT2_1">

274 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

276 </customProperties>
</literals>

278 <literals name="StateT2_2">
<customProperties key="enumValue">

280 <value xsi:type="am:LongObject" value="2" />
</customProperties>

282 </literals>
</modes>

452 APPENDIX A. APPENDIX

284 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

286 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

288 <size value="1" unit="bit" />
</modeLabels>

290 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

292 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

294 <size value="8" unit="bit" />
</modeLabels>

296 </swModel>
<hwModel>

298 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
300 </definitions>

<featureCategories name="Instructions" featureType="performance">
302 <features name="IPC_1.0" value="1.0" />

</featureCategories>
304 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
306 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

308 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
310 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
312 </structures>

</structures>
314 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
316 <defaultValue value="600.0" unit="MHz"/>

</domains>
318 </hwModel>

<osModel>
320 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
322 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
324 <osDataConsistency mode="noProtection" />

</operatingSystems>
326 </osModel>

<stimuliModel>
328 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
330 <recurrence value="300" unit="ms" />

</stimuli>
332 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="15" unit="ms" />
334 <recurrence value="250" unit="ms" />

</stimuli>
336 </stimuliModel>

<constraintsModel />
338 <eventModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 453

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
340 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

342 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

344 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?
type=Runnable" />

346 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="
Runnable_2_Overflow?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

348 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

350 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

352 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

354 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

</eventModel>
356 <mappingModel addressMappingType="offset">

<taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
358 <taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

360 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="
stateT2?type=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="
stateT1?type=ModeLabel" />

362 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="
messageToT1?type=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="
messageToT2?type=ModeLabel" />

364 </mappingModel>
<componentsModel />

366 </am:Amalthea>

Listing A.30: Variation 1 of State Machine Feedback Loop.

A.1.5.2. Variation 2

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

454 APPENDIX A. APPENDIX

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
16 </entries>

<entries>
18 <items xsi:type="am:CallSequence" name="CallSequence_State1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"
/>

20 </items>
<condition>

22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
24 </entries>

</items>
26 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="
MessageToT1/MessageToT1_1?type=ModeLiteral" />

28 </condition>
</entries>

30 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />

32 </defaultEntry>
</graphEntries>

34 <graphEntries xsi:type="am:ModeSwitch">
<entries>

36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

38 </items>
<condition>

40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
42 </entries>

<entries>
44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
46 </items>

<condition>
48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

50 </entries>
</graphEntries>

52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 455

54 </graphEntries>
</callGraph>

56 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

58 </customProperties>
<customProperties key="osekTaskGroup">

60 <value xsi:type="am:StringObject" value="2" />
</customProperties>

62 </tasks>
<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
64 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
66 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CallSequence_2_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=
Runnable" />

74 </items>
<condition>

76 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
78 </entries>

<entries>
80 <items xsi:type="am:CallSequence" name="CallSequence_2_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_1?type=ModeLiteral" />

90 </condition>
</entries>

92 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_State_0">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
</items>

96 <items xsi:type="am:ModeSwitch">
<entries>

98 <items xsi:type="am:CallSequence" name="CallSequence_2_0_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
100 </items>

<condition>
102 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
</condition>

456 APPENDIX A. APPENDIX

104 </entries>
<entries>

106 <items xsi:type="am:CallSequence" name="CallSequence_2_0_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=

Runnable" />
108 </items>

<condition>
110 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
</condition>

112 </entries>
</items>

114 <condition>
<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_0?type=ModeLiteral" />
116 </condition>

</entries>
118 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
120 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
122 <items xsi:type="am:ModeSwitch">

<entries>
124 <items xsi:type="am:CallSequence" name="CallSequence_2_2_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

126 </items>
<condition>

128 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
130 </entries>

<entries>
132 <items xsi:type="am:CallSequence" name="CallSequence_2_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

134 </items>
<condition>

136 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
138 </entries>

</items>
140 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_2?type=ModeLiteral" />

142 </condition>
</entries>

144 </graphEntries>
</callGraph>

146 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

148 </customProperties>
<customProperties key="osekTaskGroup">

150 <value xsi:type="am:StringObject" value="1" />
</customProperties>

152 </tasks>

A.1. ARCHITECTURAL SYSTEM PATTERNS 457

<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

154 <callGraph>
<graphEntries xsi:type="am:ProbabilitySwitch">

156 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_3">

158 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />
</items>

160 </entries>
<entries probability="30.0">

162 <items xsi:type="am:CallSequence" name="CallSequence_3_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />

164 </items>
</entries>

166 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_4">

168 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />
</items>

170 </entries>
<entries probability="20.0">

172 <items xsi:type="am:CallSequence" name="CallSequence_3_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />

174 </items>
</entries>

176 <entries probability="15.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_0">

178 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />
</items>

180 </entries>
</graphEntries>

182 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

184 </graphEntries>
</callGraph>

186 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

188 </customProperties>
<customProperties key="osekTaskGroup">

190 <value xsi:type="am:StringObject" value="4" />
</customProperties>

192 </tasks>
<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
194 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
196 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_2">
198 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />

</items>
200 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

202 </condition>
</entries>

204 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_3">

206 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />
</items>

458 APPENDIX A. APPENDIX

208 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
210 </condition>

</entries>
212 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_1">
214 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />

</items>
216 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_1?type=ModeLiteral" />

218 </condition>
</entries>

220 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_4">

222 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />
</items>

224 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
226 </condition>

</entries>
228 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_4_x">
230 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />

</items>
232 </defaultEntry>

</graphEntries>
234 </callGraph>

<customProperties key="priority">
236 <value xsi:type="am:StringObject" value="3" />

</customProperties>
238 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
240 </customProperties>

</tasks>
242 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />

244 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

246 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

248 <value xsi:type="am:NeedDeviation">
<deviation>

250 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

252 <distribution xsi:type="am:UniformDistribution" />
</deviation>

254 </value>
</default>

256 </runnableItems>
</runnables>

258 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

260 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

A.1. ARCHITECTURAL SYSTEM PATTERNS 459

262 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

264 <upperBound xsi:type="am:LongObject" value="60000" />
<distribution xsi:type="am:UniformDistribution" />

266 </deviation>
</value>

268 </default>
</runnableItems>

270 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

272 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

274 <value xsi:type="am:NeedDeviation">
<deviation>

276 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

278 <distribution xsi:type="am:UniformDistribution" />
</deviation>

280 </value>
</default>

282 </runnableItems>
</runnables>

284 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

286 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

288 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

290 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

292 </deviation>
</value>

294 </default>
</runnableItems>

296 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

298 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</runnables>
300 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_0?type=ModeLiteral" />

302 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

304 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

</runnables>
306 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

308 </runnables>
<runnables name="Runnable_1_State0" callback="false" service="false">

310 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

312 </runnables>
<runnables name="Runnable_1_State1" callback="false" service="false">

460 APPENDIX A. APPENDIX

314 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

316 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

318 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
320 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

322 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

324 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

326 <value xsi:type="am:NeedDeviation">
<deviation>

328 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

330 <distribution xsi:type="am:UniformDistribution" />
</deviation>

332 </value>
</default>

334 </runnableItems>
</runnables>

336 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

338 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

340 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

342 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

344 </deviation>
</value>

346 </default>
</runnableItems>

348 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

350 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

352 <value xsi:type="am:NeedDeviation">
<deviation>

354 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

356 <distribution xsi:type="am:UniformDistribution" />
</deviation>

358 </value>
</default>

360 </runnableItems>
</runnables>

362 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

364 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

366 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 461

368 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

370 </deviation>
</value>

372 </default>
</runnableItems>

374 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

376 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

378 <value xsi:type="am:NeedDeviation">
<deviation>

380 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

382 <distribution xsi:type="am:UniformDistribution" />
</deviation>

384 </value>
</default>

386 </runnableItems>
</runnables>

388 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
390 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
392 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

394 <runnables name="Runnable_3_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
396 </runnables>

<runnables name="Runnable_3_0" callback="false" service="false">
398 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

400 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

402 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

404 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

406 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

408 </deviation>
</value>

410 </default>
</runnableItems>

412 </runnables>
<modes name="Message">

414 <literals name="Message_0">
<customProperties key="enumValue">

416 <value xsi:type="am:LongObject" value="0" />
</customProperties>

418 </literals>
<literals name="Message_1">

420 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

462 APPENDIX A. APPENDIX

422 </customProperties>
</literals>

424 <literals name="Message_2">
<customProperties key="enumValue">

426 <value xsi:type="am:LongObject" value="2" />
</customProperties>

428 </literals>
<literals name="Message_3">

430 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

432 </customProperties>
</literals>

434 <literals name="Message_4">
<customProperties key="enumValue">

436 <value xsi:type="am:LongObject" value="4" />
</customProperties>

438 </literals>
</modes>

440 <modes name="MessageToT1">
<literals name="MessageToT1_0">

442 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

444 </customProperties>
</literals>

446 <literals name="MessageToT1_1">
<customProperties key="enumValue">

448 <value xsi:type="am:LongObject" value="1" />
</customProperties>

450 </literals>
</modes>

452 <modes name="MessageToT2">
<literals name="MessageToT2_0">

454 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

456 </customProperties>
</literals>

458 <literals name="MessageToT2_1">
<customProperties key="enumValue">

460 <value xsi:type="am:LongObject" value="1" />
</customProperties>

462 </literals>
</modes>

464 <modes name="StateT1">
<literals name="StateT1_0">

466 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

468 </customProperties>
</literals>

470 <literals name="StateT1_1">
<customProperties key="enumValue">

472 <value xsi:type="am:LongObject" value="1" />
</customProperties>

474 </literals>
</modes>

476 <modes name="StateT2">
<literals name="StateT2_0">

478 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 463

480 </customProperties>
</literals>

482 <literals name="StateT2_1">
<customProperties key="enumValue">

484 <value xsi:type="am:LongObject" value="1" />
</customProperties>

486 </literals>
<literals name="StateT2_2">

488 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

490 </customProperties>
</literals>

492 </modes>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

494 <size value="8" unit="bit" />
</modeLabels>

496 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

498 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

500 <size value="1" unit="bit" />
</modeLabels>

502 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

504 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

506 <size value="8" unit="bit" />
</modeLabels>

508 </swModel>
<hwModel>

510 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
512 </definitions>

<featureCategories name="Instructions" featureType="performance">
514 <features name="IPC_1.0" value="1.0" />

</featureCategories>
516 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
518 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

520 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
522 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
524 </structures>

</structures>
526 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
528 <defaultValue value="600.0" unit="MHz"/>

</domains>
530 </hwModel>

<osModel>
532 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
534 <schedulingAlgorithm xsi:type="am:OSEK" />

464 APPENDIX A. APPENDIX

</taskSchedulers>
536 <osDataConsistency mode="noProtection" />

</operatingSystems>
538 </osModel>

<stimuliModel>
540 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
542 <recurrence value="300" unit="ms" />

</stimuli>
544 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="15" unit="ms" />
546 <recurrence value="250" unit="ms" />

</stimuli>
548 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="0" unit="ms" />
550 <recurrence value="100" unit="ms" />

</stimuli>
552 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">

<offset value="15" unit="ms" />
554 <recurrence value="60" unit="ms" />

</stimuli>
556 </stimuliModel>

<constraintsModel />
558 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
560 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
562 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

564 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

566 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?
type=Runnable" />

568 <events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="
Runnable_2_Overflow?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

570 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=
Runnable" />

572 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=
Runnable" />

574 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=
Runnable" />

576 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=
Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 465

578 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=
Runnable" />

580 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

582 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

584 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

586 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

588 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

590 </eventModel>
<mappingModel addressMappingType="offset">

592 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

594 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

596 <schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=
ProcessingUnit" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="
stateT2?type=ModeLabel" />

598 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="
stateT1?type=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="
messageToT1?type=ModeLabel" />

600 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="
message?type=ModeLabel" />

<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="
messageToT2?type=ModeLabel" />

602 </mappingModel>
<componentsModel />

604 </am:Amalthea>

Listing A.31: Variation 2 of State Machine Feedback Loop.

A.1.5.3. Variation 3

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

466 APPENDIX A. APPENDIX

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
16 </entries>

<entries>
18 <items xsi:type="am:CallSequence" name="CallSequence_State1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"
/>

20 </items>
<condition>

22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
24 </entries>

</items>
26 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="
MessageToT1/MessageToT1_1?type=ModeLiteral" />

28 </condition>
</entries>

30 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />

32 </defaultEntry>
</graphEntries>

34 <graphEntries xsi:type="am:ModeSwitch">
<entries>

36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

38 </items>
<condition>

40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
42 </entries>

<entries>
44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
46 </items>

<condition>
48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

50 </entries>
</graphEntries>

52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

54 </graphEntries>
</callGraph>

A.1. ARCHITECTURAL SYSTEM PATTERNS 467

56 <customProperties key="priority">
<value xsi:type="am:StringObject" value="2" />

58 </customProperties>
<customProperties key="osekTaskGroup">

60 <value xsi:type="am:StringObject" value="2" />
</customProperties>

62 </tasks>
<tasks name="Task_2" stimuli="Stimulus_Task_2?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
64 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
66 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_1">
68 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

</items>
70 <items xsi:type="am:ModeSwitch">

<entries>
72 <items xsi:type="am:CallSequence" name="CallSequence_2_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=
Runnable" />

74 </items>
<condition>

76 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
78 </entries>

<entries>
80 <items xsi:type="am:CallSequence" name="CallSequence_2_1_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

82 </items>
<condition>

84 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
86 </entries>

</items>
88 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_1?type=ModeLiteral" />

90 </condition>
</entries>

92 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_State_0">

94 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
</items>

96 <items xsi:type="am:ModeSwitch">
<entries>

98 <items xsi:type="am:CallSequence" name="CallSequence_2_0_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
100 </items>

<condition>
102 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
</condition>

104 </entries>
<entries>

468 APPENDIX A. APPENDIX

106 <items xsi:type="am:CallSequence" name="CallSequence_2_0_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=

Runnable" />
108 </items>

<condition>
110 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
</condition>

112 </entries>
</items>

114 <condition>
<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_0?type=ModeLiteral" />
116 </condition>

</entries>
118 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_State_2">
120 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

</items>
122 <items xsi:type="am:ModeSwitch">

<entries>
124 <items xsi:type="am:CallSequence" name="CallSequence_2_2_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

126 </items>
<condition>

128 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</condition>
130 </entries>

<entries>
132 <items xsi:type="am:CallSequence" name="CallSequence_2_2_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

134 </items>
<condition>

136 <entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

</condition>
138 </entries>

</items>
140 <condition>

<entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_2?type=ModeLiteral" />

142 </condition>
</entries>

144 </graphEntries>
</callGraph>

146 <customProperties key="priority">
<value xsi:type="am:StringObject" value="1" />

148 </customProperties>
<customProperties key="osekTaskGroup">

150 <value xsi:type="am:StringObject" value="1" />
</customProperties>

152 </tasks>
<tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
154 <callGraph>

A.1. ARCHITECTURAL SYSTEM PATTERNS 469

<graphEntries xsi:type="am:ProbabilitySwitch">
156 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_3">
158 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />

</items>
160 </entries>

<entries probability="30.0">
162 <items xsi:type="am:CallSequence" name="CallSequence_3_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />
164 </items>

</entries>
166 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_4">
168 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />

</items>
170 </entries>

<entries probability="20.0">
172 <items xsi:type="am:CallSequence" name="CallSequence_3_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />
174 </items>

</entries>
176 <entries probability="15.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_0">
178 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />

</items>
180 </entries>

</graphEntries>
182 <graphEntries xsi:type="am:CallSequence" name="CallSequence_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
184 </graphEntries>

</callGraph>
186 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
188 </customProperties>

<customProperties key="osekTaskGroup">
190 <value xsi:type="am:StringObject" value="4" />

</customProperties>
192 </tasks>

<tasks name="Task_4" stimuli="Stimulus_Task_4?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

194 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

196 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_2">

198 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />
</items>

200 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_2?type=ModeLiteral" />
202 </condition>

</entries>
204 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_3">
206 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />

</items>
208 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

470 APPENDIX A. APPENDIX

210 </condition>
</entries>

212 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_1">

214 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />
</items>

216 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
218 </condition>

</entries>
220 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_4">
222 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />

</items>
224 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

226 </condition>
</entries>

228 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_4_x">

230 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />
</items>

232 </defaultEntry>
</graphEntries>

234 </callGraph>
<customProperties key="priority">

236 <value xsi:type="am:StringObject" value="3" />
</customProperties>

238 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="3" />

240 </customProperties>
</tasks>

242 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
244 <graphEntries xsi:type="am:CallSequence" name="CS_Task_5">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
246 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</graphEntries>
248 </callGraph>

</tasks>
250 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />

252 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

254 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

256 <value xsi:type="am:NeedDeviation">
<deviation>

258 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

260 <distribution xsi:type="am:UniformDistribution" />
</deviation>

262 </value>
</default>

A.1. ARCHITECTURAL SYSTEM PATTERNS 471

264 </runnableItems>
</runnables>

266 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

268 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

270 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

272 <upperBound xsi:type="am:LongObject" value="60000" />
<distribution xsi:type="am:UniformDistribution" />

274 </deviation>
</value>

276 </default>
</runnableItems>

278 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

280 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

282 <value xsi:type="am:NeedDeviation">
<deviation>

284 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

286 <distribution xsi:type="am:UniformDistribution" />
</deviation>

288 </value>
</default>

290 </runnableItems>
</runnables>

292 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

294 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

296 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

298 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

300 </deviation>
</value>

302 </default>
</runnableItems>

304 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

306 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</runnables>
308 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_0?type=ModeLiteral" />

310 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

312 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

</runnables>
314 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

316 </runnables>
<runnables name="Runnable_1_State0" callback="false" service="false">

472 APPENDIX A. APPENDIX

318 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

320 </runnables>
<runnables name="Runnable_1_State1" callback="false" service="false">

322 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

324 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

326 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
328 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

330 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

332 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

334 <value xsi:type="am:NeedDeviation">
<deviation>

336 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

338 <distribution xsi:type="am:UniformDistribution" />
</deviation>

340 </value>
</default>

342 </runnableItems>
</runnables>

344 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

346 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

348 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

350 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

352 </deviation>
</value>

354 </default>
</runnableItems>

356 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

358 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

360 <value xsi:type="am:NeedDeviation">
<deviation>

362 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

364 <distribution xsi:type="am:UniformDistribution" />
</deviation>

366 </value>
</default>

368 </runnableItems>
</runnables>

A.1. ARCHITECTURAL SYSTEM PATTERNS 473

370 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

372 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

374 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

376 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

378 </deviation>
</value>

380 </default>
</runnableItems>

382 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

384 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

386 <value xsi:type="am:NeedDeviation">
<deviation>

388 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

390 <distribution xsi:type="am:UniformDistribution" />
</deviation>

392 </value>
</default>

394 </runnableItems>
</runnables>

396 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
398 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
400 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

402 <runnables name="Runnable_3_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
404 </runnables>

<runnables name="Runnable_3_0" callback="false" service="false">
406 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

408 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

410 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

412 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

414 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

416 </deviation>
</value>

418 </default>
</runnableItems>

420 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

422 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

474 APPENDIX A. APPENDIX

424 <value xsi:type="am:NeedDeviation">
<deviation>

426 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36000000" />

428 <distribution xsi:type="am:UniformDistribution" />
</deviation>

430 </value>
</default>

432 </runnableItems>
</runnables>

434 <runnables name="Runnable_5_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

436 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

438 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

440 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

442 </deviation>
</value>

444 </default>
</runnableItems>

446 </runnables>
<modes name="Message">

448 <literals name="Message_0">
<customProperties key="enumValue">

450 <value xsi:type="am:LongObject" value="0" />
</customProperties>

452 </literals>
<literals name="Message_1">

454 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

456 </customProperties>
</literals>

458 <literals name="Message_2">
<customProperties key="enumValue">

460 <value xsi:type="am:LongObject" value="2" />
</customProperties>

462 </literals>
<literals name="Message_3">

464 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

466 </customProperties>
</literals>

468 <literals name="Message_4">
<customProperties key="enumValue">

470 <value xsi:type="am:LongObject" value="4" />
</customProperties>

472 </literals>
</modes>

474 <modes name="MessageToT1">
<literals name="MessageToT1_0">

476 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

478 </customProperties>
</literals>

480 <literals name="MessageToT1_1">
<customProperties key="enumValue">

A.1. ARCHITECTURAL SYSTEM PATTERNS 475

482 <value xsi:type="am:LongObject" value="1" />
</customProperties>

484 </literals>
</modes>

486 <modes name="MessageToT2">
<literals name="MessageToT2_0">

488 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

490 </customProperties>
</literals>

492 <literals name="MessageToT2_1">
<customProperties key="enumValue">

494 <value xsi:type="am:LongObject" value="1" />
</customProperties>

496 </literals>
</modes>

498 <modes name="StateT1">
<literals name="StateT1_0">

500 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

502 </customProperties>
</literals>

504 <literals name="StateT1_1">
<customProperties key="enumValue">

506 <value xsi:type="am:LongObject" value="1" />
</customProperties>

508 </literals>
</modes>

510 <modes name="StateT2">
<literals name="StateT2_0">

512 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

514 </customProperties>
</literals>

516 <literals name="StateT2_1">
<customProperties key="enumValue">

518 <value xsi:type="am:LongObject" value="1" />
</customProperties>

520 </literals>
<literals name="StateT2_2">

522 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

524 </customProperties>
</literals>

526 </modes>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

528 <size value="8" unit="bit" />
</modeLabels>

530 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

532 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

534 <size value="1" unit="bit" />
</modeLabels>

536 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

538 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

476 APPENDIX A. APPENDIX

540 <size value="8" unit="bit" />
</modeLabels>

542 </swModel>
<hwModel>

544 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
546 </definitions>

<featureCategories name="Instructions" featureType="performance">
548 <features name="IPC_1.0" value="1.0" />

</featureCategories>
550 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
552 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

554 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
556 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
558 </structures>

</structures>
560 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
562 <defaultValue value="600.0" unit="MHz"/>

</domains>
564 </hwModel>

<osModel>
566 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
568 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
570 <osDataConsistency mode="noProtection" />

</operatingSystems>
572 </osModel>

<stimuliModel>
574 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
576 <recurrence value="300" unit="ms" />

</stimuli>
578 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_2">

<offset value="15" unit="ms" />
580 <recurrence value="250" unit="ms" />

</stimuli>
582 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

<offset value="0" unit="ms" />
584 <recurrence value="100" unit="ms" />

</stimuli>
586 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_4">

<offset value="15" unit="ms" />
588 <recurrence value="60" unit="ms" />

</stimuli>
590 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
592 <recurrence value="1000" unit="ms" />

</stimuli>
594 </stimuliModel>

A.1. ARCHITECTURAL SYSTEM PATTERNS 477

<constraintsModel />
596 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
598 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
600 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
602 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
604 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?

type=Runnable" />
606 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="

Runnable_2_Overflow?type=Runnable" />
608 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=

Runnable" />
610 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=

Runnable" />
612 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=

Runnable" />
614 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=

Runnable" />
616 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=

Runnable" />
618 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=

Runnable" />
620 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?

type=Runnable" />
622 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?

type=Runnable" />
624 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="

Runnable_Transition_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="

Runnable_Transition_1?type=Runnable" />
626 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="

Runnable_Transition_2?type=Runnable" />

478 APPENDIX A. APPENDIX

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

628 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_2" entity="Stimulus_Task_2?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

630 <events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_4" entity="Stimulus_Task_4?type=
PeriodicStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

632 </eventModel>
<mappingModel addressMappingType="offset">

634 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

636 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

638 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
640 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="

stateT2?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="

stateT1?type=ModeLabel" />
642 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

messageToT1?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
644 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="

messageToT2?type=ModeLabel" />
</mappingModel>

646 <componentsModel />
</am:Amalthea>

Listing A.32: Variation 3 of State Machine Feedback Loop.

A.1.5.4. Variation 4

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 479

16 </entries>
<entries>

18 <items xsi:type="am:CallSequence" name="CallSequence_State1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"

/>
20 </items>

<condition>
22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

24 </entries>
</items>

26 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="

MessageToT1/MessageToT1_1?type=ModeLiteral" />
28 </condition>

</entries>
30 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />
32 </defaultEntry>

</graphEntries>
34 <graphEntries xsi:type="am:ModeSwitch">

<entries>
36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
38 </items>

<condition>
40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_0?type=ModeLiteral" />
</condition>

42 </entries>
<entries>

44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

46 </items>
<condition>

48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
50 </entries>

</graphEntries>
52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"
/>

54 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
</graphEntries>

56 </callGraph>
<customProperties key="priority">

58 <value xsi:type="am:StringObject" value="2" />
</customProperties>

60 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

62 </customProperties>
</tasks>

64 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
66 <graphEntries xsi:type="am:ModeSwitch">

480 APPENDIX A. APPENDIX

<entries>
68 <items xsi:type="am:CallSequence" name="CallSequence_State_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />
70 </items>

<items xsi:type="am:ModeSwitch">
72 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_1_0">
74 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=

Runnable" />
</items>

76 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
78 </condition>

</entries>
80 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_1_2">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=

Runnable" />
</items>

84 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
86 </condition>

</entries>
88 </items>

<condition>
90 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_1?type=ModeLiteral" />
</condition>

92 </entries>
<entries>

94 <items xsi:type="am:CallSequence" name="CallSequence_State_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

96 </items>
<items xsi:type="am:ModeSwitch">

98 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_0_0">

100 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

</items>
102 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

104 </condition>
</entries>

106 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_0_1">

108 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=
Runnable" />

</items>
110 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

112 </condition>
</entries>

114 </items>
<condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 481

116 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_0?type=ModeLiteral" />

</condition>
118 </entries>

<entries>
120 <items xsi:type="am:CallSequence" name="CallSequence_State_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />
122 </items>

<items xsi:type="am:ModeSwitch">
124 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_2_1">
126 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=

Runnable" />
</items>

128 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
130 </condition>

</entries>
132 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_2_2">
134 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
</items>

136 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
138 </condition>

</entries>
140 </items>

<condition>
142 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_2?type=ModeLiteral" />
</condition>

144 </entries>
</graphEntries>

146 </callGraph>
<customProperties key="priority">

148 <value xsi:type="am:StringObject" value="1" />
</customProperties>

150 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

152 </customProperties>
</tasks>

154 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
156 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
158 <items xsi:type="am:CallSequence" name="CallSequence_3_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />
160 </items>

</entries>
162 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_2">
164 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />

</items>
166 </entries>

482 APPENDIX A. APPENDIX

<entries probability="15.0">
168 <items xsi:type="am:CallSequence" name="CallSequence_3_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />
170 </items>

</entries>
172 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_1">
174 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />

</items>
176 </entries>

<entries probability="15.0">
178 <items xsi:type="am:CallSequence" name="CallSequence_3_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />
180 </items>

</entries>
182 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_3">
184 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=InterProcessStimulus"

/>
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

186 </graphEntries>
</callGraph>

188 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

190 </customProperties>
<customProperties key="osekTaskGroup">

192 <value xsi:type="am:StringObject" value="4" />
</customProperties>

194 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
196 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
198 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_2">
200 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />

</items>
202 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

204 </condition>
</entries>

206 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_3">

208 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />
</items>

210 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
212 </condition>

</entries>
214 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_1">
216 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />

</items>
218 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_1?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 483

220 </condition>
</entries>

222 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_4">

224 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />
</items>

226 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
228 </condition>

</entries>
230 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_4_x">
232 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />

</items>
234 </defaultEntry>

</graphEntries>
236 </callGraph>

<customProperties key="priority">
238 <value xsi:type="am:StringObject" value="3" />

</customProperties>
240 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
242 </customProperties>

</tasks>
244 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

246 <graphEntries xsi:type="am:CallSequence" name="CS_Task_5">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />

248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />
</graphEntries>

250 </callGraph>
</tasks>

252 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write

" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />
254 </runnables>

<runnables name="Runnable_State_0" callback="false" service="false">
256 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
258 <value xsi:type="am:NeedDeviation">

<deviation>
260 <lowerBound xsi:type="am:LongObject" value="59" />

<upperBound xsi:type="am:LongObject" value="60" />
262 <distribution xsi:type="am:UniformDistribution" />

</deviation>
264 </value>

</default>
266 </runnableItems>

</runnables>
268 <runnables name="Runnable_State_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
270 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
272 <deviation>

<lowerBound xsi:type="am:LongObject" value="59400" />
274 <upperBound xsi:type="am:LongObject" value="60000" />

484 APPENDIX A. APPENDIX

<distribution xsi:type="am:UniformDistribution" />
276 </deviation>

</value>
278 </default>

</runnableItems>
280 </runnables>

<runnables name="Runnable_State_2" callback="false" service="false">
282 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
284 <value xsi:type="am:NeedDeviation">

<deviation>
286 <lowerBound xsi:type="am:LongObject" value="29700000" />

<upperBound xsi:type="am:LongObject" value="30000000" />
288 <distribution xsi:type="am:UniformDistribution" />

</deviation>
290 </value>

</default>
292 </runnableItems>

</runnables>
294 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
296 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
298 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
300 <upperBound xsi:type="am:LongObject" value="6000000" />

<distribution xsi:type="am:UniformDistribution" />
302 </deviation>

</value>
304 </default>

</runnableItems>
306 </runnables>

<runnables name="Runnable_1_0" callback="false" service="false">
308 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write

" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />
</runnables>

310 <runnables name="Runnable_Transition_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"

modeValue="StateT2/StateT2_0?type=ModeLiteral" />
312 </runnables>

<runnables name="Runnable_Transition_1" callback="false" service="false">
314 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"

modeValue="StateT2/StateT2_1?type=ModeLiteral" />
</runnables>

316 <runnables name="Runnable_Transition_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"

modeValue="StateT2/StateT2_2?type=ModeLiteral" />
318 </runnables>

<runnables name="Runnable_1_State0" callback="false" service="false">
320 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"

modeValue="StateT1/StateT1_0?type=ModeLiteral" />
<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write

" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />
322 </runnables>

<runnables name="Runnable_1_State1" callback="false" service="false">
324 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"

modeValue="StateT1/StateT1_1?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 485

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

326 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

328 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
330 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

332 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

334 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

336 <value xsi:type="am:NeedDeviation">
<deviation>

338 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

340 <distribution xsi:type="am:UniformDistribution" />
</deviation>

342 </value>
</default>

344 </runnableItems>
</runnables>

346 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

348 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

350 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

352 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

354 </deviation>
</value>

356 </default>
</runnableItems>

358 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

360 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

362 <value xsi:type="am:NeedDeviation">
<deviation>

364 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

366 <distribution xsi:type="am:UniformDistribution" />
</deviation>

368 </value>
</default>

370 </runnableItems>
</runnables>

372 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

374 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

376 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

378 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

486 APPENDIX A. APPENDIX

380 </deviation>
</value>

382 </default>
</runnableItems>

384 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

386 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

388 <value xsi:type="am:NeedDeviation">
<deviation>

390 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

392 <distribution xsi:type="am:UniformDistribution" />
</deviation>

394 </value>
</default>

396 </runnableItems>
</runnables>

398 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
400 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
402 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

404 <runnables name="Runnable_3_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
406 </runnables>

<runnables name="Runnable_3_0" callback="false" service="false">
408 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

410 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

412 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

414 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

416 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

418 </deviation>
</value>

420 </default>
</runnableItems>

422 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

424 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

426 <value xsi:type="am:NeedDeviation">
<deviation>

428 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36000000" />

430 <distribution xsi:type="am:UniformDistribution" />
</deviation>

432 </value>
</default>

A.1. ARCHITECTURAL SYSTEM PATTERNS 487

434 </runnableItems>
</runnables>

436 <runnables name="Runnable_5_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

438 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

440 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

442 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

444 </deviation>
</value>

446 </default>
</runnableItems>

448 </runnables>
<modes name="Message">

450 <literals name="Message_0">
<customProperties key="enumValue">

452 <value xsi:type="am:LongObject" value="0" />
</customProperties>

454 </literals>
<literals name="Message_1">

456 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

458 </customProperties>
</literals>

460 <literals name="Message_2">
<customProperties key="enumValue">

462 <value xsi:type="am:LongObject" value="2" />
</customProperties>

464 </literals>
<literals name="Message_3">

466 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

468 </customProperties>
</literals>

470 <literals name="Message_4">
<customProperties key="enumValue">

472 <value xsi:type="am:LongObject" value="4" />
</customProperties>

474 </literals>
</modes>

476 <modes name="MessageToT1">
<literals name="MessageToT1_0">

478 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

480 </customProperties>
</literals>

482 <literals name="MessageToT1_1">
<customProperties key="enumValue">

484 <value xsi:type="am:LongObject" value="1" />
</customProperties>

486 </literals>
</modes>

488 <modes name="MessageToT2">
<literals name="MessageToT2_0">

490 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

488 APPENDIX A. APPENDIX

492 </customProperties>
</literals>

494 <literals name="MessageToT2_1">
<customProperties key="enumValue">

496 <value xsi:type="am:LongObject" value="1" />
</customProperties>

498 </literals>
</modes>

500 <modes name="StateT1">
<literals name="StateT1_0">

502 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

504 </customProperties>
</literals>

506 <literals name="StateT1_1">
<customProperties key="enumValue">

508 <value xsi:type="am:LongObject" value="1" />
</customProperties>

510 </literals>
</modes>

512 <modes name="StateT2">
<literals name="StateT2_0">

514 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

516 </customProperties>
</literals>

518 <literals name="StateT2_1">
<customProperties key="enumValue">

520 <value xsi:type="am:LongObject" value="1" />
</customProperties>

522 </literals>
<literals name="StateT2_2">

524 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

526 </customProperties>
</literals>

528 </modes>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

530 <size value="8" unit="bit" />
</modeLabels>

532 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

534 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

536 <size value="1" unit="bit" />
</modeLabels>

538 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

540 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

542 <size value="8" unit="bit" />
</modeLabels>

544 </swModel>
<hwModel>

546 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
548 </definitions>

A.1. ARCHITECTURAL SYSTEM PATTERNS 489

<featureCategories name="Instructions" featureType="performance">
550 <features name="IPC_1.0" value="1.0" />

</featureCategories>
552 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
554 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

556 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
558 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
560 </structures>

</structures>
562 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
564 <defaultValue value="600.0" unit="MHz"/>

</domains>
566 </hwModel>

<osModel>
568 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
570 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
572 <osDataConsistency mode="noProtection" />

</operatingSystems>
574 </osModel>

<stimuliModel>
576 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
578 <recurrence value="300" unit="ms" />

</stimuli>
580 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
582 <offset value="0" unit="ms" />

<recurrence value="100" unit="ms" />
584 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />
586 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
588 <recurrence value="1000" unit="ms" />

</stimuli>
590 </stimuliModel>

<constraintsModel />
592 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
594 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
596 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
598 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
600 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />

490 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?
type=Runnable" />

602 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="
Runnable_2_Overflow?type=Runnable" />

604 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=
Runnable" />

606 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=
Runnable" />

608 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=
Runnable" />

610 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=
Runnable" />

612 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=
Runnable" />

614 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

616 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

618 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

620 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

622 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

624 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" entity="IPA_Task_2?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

626 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

628 </eventModel>
<mappingModel addressMappingType="offset">

630 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 491

632 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

634 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
636 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="

stateT2?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="

stateT1?type=ModeLabel" />
638 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

messageToT1?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
640 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="

messageToT2?type=ModeLabel" />
</mappingModel>

642 <componentsModel />
</am:Amalthea>

Listing A.33: Variation 4 of State Machine Feedback Loop.

A.1.5.5. Variation 5

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
16 </entries>

<entries>
18 <items xsi:type="am:CallSequence" name="CallSequence_State1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"
/>

20 </items>
<condition>

22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
24 </entries>

</items>
26 <condition>

492 APPENDIX A. APPENDIX

<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="
MessageToT1/MessageToT1_1?type=ModeLiteral" />

28 </condition>
</entries>

30 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />

32 </defaultEntry>
</graphEntries>

34 <graphEntries xsi:type="am:ModeSwitch">
<entries>

36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

38 </items>
<condition>

40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
42 </entries>

<entries>
44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
46 </items>

<condition>
48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

50 </entries>
</graphEntries>

52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"

/>
54 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

</graphEntries>
56 </callGraph>

<customProperties key="priority">
58 <value xsi:type="am:StringObject" value="2" />

</customProperties>
60 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
62 </customProperties>

</tasks>
64 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

66 <graphEntries xsi:type="am:ModeSwitch">
<entries>

68 <items xsi:type="am:CallSequence" name="CallSequence_State_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

70 </items>
<items xsi:type="am:ModeSwitch">

72 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_1_0">

74 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=
Runnable" />

</items>
76 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 493

78 </condition>
</entries>

80 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_1_2">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

</items>
84 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

86 </condition>
</entries>

88 </items>
<condition>

90 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_1?type=ModeLiteral" />

</condition>
92 </entries>

<entries>
94 <items xsi:type="am:CallSequence" name="CallSequence_State_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
96 </items>

<items xsi:type="am:ModeSwitch">
98 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_0_0">
100 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
</items>

102 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
104 </condition>

</entries>
106 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_0_1">
108 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=

Runnable" />
</items>

110 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
112 </condition>

</entries>
114 </items>

<condition>
116 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_0?type=ModeLiteral" />
</condition>

118 </entries>
<entries>

120 <items xsi:type="am:CallSequence" name="CallSequence_State_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

122 </items>
<items xsi:type="am:ModeSwitch">

124 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_2_1">

126 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

494 APPENDIX A. APPENDIX

</items>
128 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

130 </condition>
</entries>

132 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_2_2">

134 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

</items>
136 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

138 </condition>
</entries>

140 </items>
<condition>

142 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_2?type=ModeLiteral" />

</condition>
144 </entries>

</graphEntries>
146 </callGraph>

<customProperties key="priority">
148 <value xsi:type="am:StringObject" value="1" />

</customProperties>
150 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
152 </customProperties>

</tasks>
154 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

156 <graphEntries xsi:type="am:ProbabilitySwitch">
<entries probability="20.0">

158 <items xsi:type="am:CallSequence" name="CallSequence_3_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />

160 </items>
</entries>

162 <entries probability="30.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_2">

164 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />
</items>

166 </entries>
<entries probability="15.0">

168 <items xsi:type="am:CallSequence" name="CallSequence_3_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />

170 </items>
</entries>

172 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_1">

174 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />
</items>

176 </entries>
<entries probability="15.0">

178 <items xsi:type="am:CallSequence" name="CallSequence_3_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 495

180 </items>
</entries>

182 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_3">

184 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=InterProcessStimulus"
/>

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
186 </graphEntries>

</callGraph>
188 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
190 </customProperties>

<customProperties key="osekTaskGroup">
192 <value xsi:type="am:StringObject" value="4" />

</customProperties>
194 </tasks>

<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

196 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

198 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_2">

200 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />
</items>

202 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_2?type=ModeLiteral" />
204 </condition>

</entries>
206 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_3">
208 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />

</items>
210 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

212 </condition>
</entries>

214 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_1">

216 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />
</items>

218 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
220 </condition>

</entries>
222 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_4">
224 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />

</items>
226 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

228 </condition>
</entries>

230 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_4_x">

496 APPENDIX A. APPENDIX

232 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />
</items>

234 </defaultEntry>
</graphEntries>

236 </callGraph>
<customProperties key="priority">

238 <value xsi:type="am:StringObject" value="3" />
</customProperties>

240 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="3" />

242 </customProperties>
</tasks>

244 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
246 <graphEntries xsi:type="am:CallSequence" name="CS_Task_5">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</graphEntries>
250 </callGraph>

</tasks>
252 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />

254 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

256 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

258 <value xsi:type="am:NeedDeviation">
<deviation>

260 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

262 <distribution xsi:type="am:UniformDistribution" />
</deviation>

264 </value>
</default>

266 </runnableItems>
</runnables>

268 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

270 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

272 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

274 <upperBound xsi:type="am:LongObject" value="60000" />
<distribution xsi:type="am:UniformDistribution" />

276 </deviation>
</value>

278 </default>
</runnableItems>

280 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

282 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

284 <value xsi:type="am:NeedDeviation">
<deviation>

286 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30000000" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 497

288 <distribution xsi:type="am:UniformDistribution" />
</deviation>

290 </value>
</default>

292 </runnableItems>
</runnables>

294 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

296 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

298 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

300 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

302 </deviation>
</value>

304 </default>
</runnableItems>

306 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

308 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</runnables>
310 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_0?type=ModeLiteral" />

312 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

314 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

</runnables>
316 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

318 </runnables>
<runnables name="Runnable_1_State0" callback="false" service="false">

320 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

322 </runnables>
<runnables name="Runnable_1_State1" callback="false" service="false">

324 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

326 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

328 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
330 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

332 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

334 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

498 APPENDIX A. APPENDIX

336 <value xsi:type="am:NeedDeviation">
<deviation>

338 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="600" />

340 <distribution xsi:type="am:UniformDistribution" />
</deviation>

342 </value>
</default>

344 </runnableItems>
</runnables>

346 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

348 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

350 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

352 <upperBound xsi:type="am:LongObject" value="30000" />
<distribution xsi:type="am:UniformDistribution" />

354 </deviation>
</value>

356 </default>
</runnableItems>

358 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

360 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

362 <value xsi:type="am:NeedDeviation">
<deviation>

364 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="600000" />

366 <distribution xsi:type="am:UniformDistribution" />
</deviation>

368 </value>
</default>

370 </runnableItems>
</runnables>

372 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

374 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

376 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

378 <upperBound xsi:type="am:LongObject" value="24000000" />
<distribution xsi:type="am:UniformDistribution" />

380 </deviation>
</value>

382 </default>
</runnableItems>

384 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

386 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

388 <value xsi:type="am:NeedDeviation">
<deviation>

390 <lowerBound xsi:type="am:LongObject" value="59" />
<upperBound xsi:type="am:LongObject" value="60" />

392 <distribution xsi:type="am:UniformDistribution" />
</deviation>

A.1. ARCHITECTURAL SYSTEM PATTERNS 499

394 </value>
</default>

396 </runnableItems>
</runnables>

398 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
400 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
402 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

404 <runnables name="Runnable_3_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
406 </runnables>

<runnables name="Runnable_3_0" callback="false" service="false">
408 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

410 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

412 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

414 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

416 <upperBound xsi:type="am:LongObject" value="6000000" />
<distribution xsi:type="am:UniformDistribution" />

418 </deviation>
</value>

420 </default>
</runnableItems>

422 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

424 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

426 <value xsi:type="am:NeedDeviation">
<deviation>

428 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36000000" />

430 <distribution xsi:type="am:UniformDistribution" />
</deviation>

432 </value>
</default>

434 </runnableItems>
</runnables>

436 <runnables name="Runnable_5_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

438 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

440 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

442 <upperBound xsi:type="am:LongObject" value="12000000" />
<distribution xsi:type="am:UniformDistribution" />

444 </deviation>
</value>

446 </default>
</runnableItems>

500 APPENDIX A. APPENDIX

448 </runnables>
<modes name="Message">

450 <literals name="Message_0">
<customProperties key="enumValue">

452 <value xsi:type="am:LongObject" value="0" />
</customProperties>

454 </literals>
<literals name="Message_1">

456 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

458 </customProperties>
</literals>

460 <literals name="Message_2">
<customProperties key="enumValue">

462 <value xsi:type="am:LongObject" value="2" />
</customProperties>

464 </literals>
<literals name="Message_3">

466 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

468 </customProperties>
</literals>

470 <literals name="Message_4">
<customProperties key="enumValue">

472 <value xsi:type="am:LongObject" value="4" />
</customProperties>

474 </literals>
</modes>

476 <modes name="MessageToT1">
<literals name="MessageToT1_0">

478 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

480 </customProperties>
</literals>

482 <literals name="MessageToT1_1">
<customProperties key="enumValue">

484 <value xsi:type="am:LongObject" value="1" />
</customProperties>

486 </literals>
</modes>

488 <modes name="MessageToT2">
<literals name="MessageToT2_0">

490 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

492 </customProperties>
</literals>

494 <literals name="MessageToT2_1">
<customProperties key="enumValue">

496 <value xsi:type="am:LongObject" value="1" />
</customProperties>

498 </literals>
</modes>

500 <modes name="StateT1">
<literals name="StateT1_0">

502 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

504 </customProperties>
</literals>

A.1. ARCHITECTURAL SYSTEM PATTERNS 501

506 <literals name="StateT1_1">
<customProperties key="enumValue">

508 <value xsi:type="am:LongObject" value="1" />
</customProperties>

510 </literals>
</modes>

512 <modes name="StateT2">
<literals name="StateT2_0">

514 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

516 </customProperties>
</literals>

518 <literals name="StateT2_1">
<customProperties key="enumValue">

520 <value xsi:type="am:LongObject" value="1" />
</customProperties>

522 </literals>
<literals name="StateT2_2">

524 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

526 </customProperties>
</literals>

528 </modes>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

530 <size value="8" unit="bit" />
</modeLabels>

532 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

534 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

536 <size value="1" unit="bit" />
</modeLabels>

538 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

540 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

542 <size value="8" unit="bit" />
</modeLabels>

544 </swModel>
<hwModel>

546 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
548 </definitions>

<featureCategories name="Instructions" featureType="performance">
550 <features name="IPC_1.0" value="1.0" />

</featureCategories>
552 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
554 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

556 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
558 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
560 </structures>

502 APPENDIX A. APPENDIX

</structures>
562 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
564 <defaultValue value="600.0" unit="MHz"/>

</domains>
566 </hwModel>

<osModel>
568 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
570 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
572 <osDataConsistency mode="noProtection" />

</operatingSystems>
574 </osModel>

<stimuliModel>
576 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
578 <recurrence value="220" unit="ms" />

</stimuli>
580 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
582 <offset value="0" unit="ms" />

<recurrence value="50" unit="ms" />
584 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />
586 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
588 <recurrence value="500" unit="ms" />

</stimuli>
590 </stimuliModel>

<constraintsModel />
592 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
594 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
596 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
598 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
600 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?

type=Runnable" />
602 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="

Runnable_2_Overflow?type=Runnable" />
604 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=

Runnable" />
606 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=

Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 503

608 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=
Runnable" />

610 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=
Runnable" />

612 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=
Runnable" />

614 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

616 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

618 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

620 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

622 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

624 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" entity="IPA_Task_2?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

626 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

628 </eventModel>
<mappingModel addressMappingType="offset">

630 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

632 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

634 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
636 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="

stateT2?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="

stateT1?type=ModeLabel" />
638 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

messageToT1?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />

504 APPENDIX A. APPENDIX

640 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="
messageToT2?type=ModeLabel" />

</mappingModel>
642 <componentsModel />

</am:Amalthea>

Listing A.34: Variation 5 of State Machine Feedback Loop.

A.1.5.6. Variation 6

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">
<swModel>

4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

<callGraph>
6 <graphEntries xsi:type="am:ModeSwitch">

<entries>
8 <items xsi:type="am:ModeSwitch">

<entries>
10 <items xsi:type="am:CallSequence" name="CallSequence_State0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"
/>

12 </items>
<condition>

14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
16 </entries>

<entries>
18 <items xsi:type="am:CallSequence" name="CallSequence_State1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"
/>

20 </items>
<condition>

22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
24 </entries>

</items>
26 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="
MessageToT1/MessageToT1_1?type=ModeLiteral" />

28 </condition>
</entries>

30 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />

32 </defaultEntry>
</graphEntries>

34 <graphEntries xsi:type="am:ModeSwitch">
<entries>

36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />

38 </items>
<condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 505

40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_0?type=ModeLiteral" />

</condition>
42 </entries>

<entries>
44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />
46 </items>

<condition>
48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

50 </entries>
</graphEntries>

52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">
<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"

/>
54 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />

</graphEntries>
56 </callGraph>

<customProperties key="priority">
58 <value xsi:type="am:StringObject" value="2" />

</customProperties>
60 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="2" />
62 </customProperties>

</tasks>
64 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

66 <graphEntries xsi:type="am:ModeSwitch">
<entries>

68 <items xsi:type="am:CallSequence" name="CallSequence_State_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />

70 </items>
<items xsi:type="am:ModeSwitch">

72 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_1_0">

74 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=
Runnable" />

</items>
76 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

78 </condition>
</entries>

80 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_1_2">

82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

</items>
84 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

86 </condition>
</entries>

88 </items>
<condition>

506 APPENDIX A. APPENDIX

90 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_1?type=ModeLiteral" />

</condition>
92 </entries>

<entries>
94 <items xsi:type="am:CallSequence" name="CallSequence_State_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />
96 </items>

<items xsi:type="am:ModeSwitch">
98 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_0_0">
100 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
</items>

102 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
104 </condition>

</entries>
106 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_0_1">
108 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=

Runnable" />
</items>

110 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
112 </condition>

</entries>
114 </items>

<condition>
116 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_0?type=ModeLiteral" />
</condition>

118 </entries>
<entries>

120 <items xsi:type="am:CallSequence" name="CallSequence_State_2">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />

122 </items>
<items xsi:type="am:ModeSwitch">

124 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_2_1">

126 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=
Runnable" />

</items>
128 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

130 </condition>
</entries>

132 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_2_2">

134 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

</items>
136 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 507

138 </condition>
</entries>

140 </items>
<condition>

142 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_2?type=ModeLiteral" />

</condition>
144 </entries>

</graphEntries>
146 </callGraph>

<customProperties key="priority">
148 <value xsi:type="am:StringObject" value="1" />

</customProperties>
150 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="1" />
152 </customProperties>

</tasks>
154 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="1">
<callGraph>

156 <graphEntries xsi:type="am:ProbabilitySwitch">
<entries probability="20.0">

158 <items xsi:type="am:CallSequence" name="CallSequence_3_3">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />

160 </items>
</entries>

162 <entries probability="30.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_2">

164 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />
</items>

166 </entries>
<entries probability="15.0">

168 <items xsi:type="am:CallSequence" name="CallSequence_3_4">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />

170 </items>
</entries>

172 <entries probability="20.0">
<items xsi:type="am:CallSequence" name="CallSequence_3_1">

174 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />
</items>

176 </entries>
<entries probability="15.0">

178 <items xsi:type="am:CallSequence" name="CallSequence_3_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />

180 </items>
</entries>

182 </graphEntries>
<graphEntries xsi:type="am:CallSequence" name="CallSequence_3">

184 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=InterProcessStimulus"
/>

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />
186 </graphEntries>

</callGraph>
188 <customProperties key="priority">

<value xsi:type="am:StringObject" value="4" />
190 </customProperties>

<customProperties key="osekTaskGroup">
192 <value xsi:type="am:StringObject" value="4" />

508 APPENDIX A. APPENDIX

</customProperties>
194 </tasks>

<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

196 <callGraph>
<graphEntries xsi:type="am:ModeSwitch">

198 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_2">

200 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />
</items>

202 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_2?type=ModeLiteral" />
204 </condition>

</entries>
206 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_3">
208 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />

</items>
210 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_3?type=ModeLiteral" />

212 </condition>
</entries>

214 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_1">

216 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />
</items>

218 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_1?type=ModeLiteral" />
220 </condition>

</entries>
222 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_4">
224 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />

</items>
226 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_4?type=ModeLiteral" />

228 </condition>
</entries>

230 <defaultEntry>
<items xsi:type="am:CallSequence" name="CallSequence_4_x">

232 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />
</items>

234 </defaultEntry>
</graphEntries>

236 </callGraph>
<customProperties key="priority">

238 <value xsi:type="am:StringObject" value="3" />
</customProperties>

240 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="3" />

242 </customProperties>
</tasks>

244 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="1">

A.1. ARCHITECTURAL SYSTEM PATTERNS 509

<callGraph>
246 <graphEntries xsi:type="am:CallSequence" name="CS_Task_5">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />
248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />

</graphEntries>
250 </callGraph>

</tasks>
252 <runnables name="Runnable_1_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />

254 </runnables>
<runnables name="Runnable_State_0" callback="false" service="false">

256 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

258 <value xsi:type="am:NeedDeviation">
<deviation>

260 <lowerBound xsi:type="am:LongObject" value="58" />
<upperBound xsi:type="am:LongObject" value="60" />

262 <distribution xsi:type="am:UniformDistribution" />
</deviation>

264 </value>
</default>

266 </runnableItems>
</runnables>

268 <runnables name="Runnable_State_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

270 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

272 <deviation>
<lowerBound xsi:type="am:LongObject" value="59400" />

274 <upperBound xsi:type="am:LongObject" value="60600" />
<distribution xsi:type="am:UniformDistribution" />

276 </deviation>
</value>

278 </default>
</runnableItems>

280 </runnables>
<runnables name="Runnable_State_2" callback="false" service="false">

282 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

284 <value xsi:type="am:NeedDeviation">
<deviation>

286 <lowerBound xsi:type="am:LongObject" value="29700000" />
<upperBound xsi:type="am:LongObject" value="30300000" />

288 <distribution xsi:type="am:UniformDistribution" />
</deviation>

290 </value>
</default>

292 </runnableItems>
</runnables>

294 <runnables name="Runnable_1" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

296 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

298 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

300 <upperBound xsi:type="am:LongObject" value="6060000" />
<distribution xsi:type="am:UniformDistribution" />

510 APPENDIX A. APPENDIX

302 </deviation>
</value>

304 </default>
</runnableItems>

306 </runnables>
<runnables name="Runnable_1_0" callback="false" service="false">

308 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write
" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />

</runnables>
310 <runnables name="Runnable_Transition_0" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_0?type=ModeLiteral" />

312 </runnables>
<runnables name="Runnable_Transition_1" callback="false" service="false">

314 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

</runnables>
316 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

318 </runnables>
<runnables name="Runnable_1_State0" callback="false" service="false">

320 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

322 </runnables>
<runnables name="Runnable_1_State1" callback="false" service="false">

324 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

326 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

328 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
330 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

332 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

334 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

336 <value xsi:type="am:NeedDeviation">
<deviation>

338 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="606" />

340 <distribution xsi:type="am:UniformDistribution" />
</deviation>

342 </value>
</default>

344 </runnableItems>
</runnables>

346 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

348 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

A.1. ARCHITECTURAL SYSTEM PATTERNS 511

350 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

352 <upperBound xsi:type="am:LongObject" value="30300" />
<distribution xsi:type="am:UniformDistribution" />

354 </deviation>
</value>

356 </default>
</runnableItems>

358 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

360 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

362 <value xsi:type="am:NeedDeviation">
<deviation>

364 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="606000" />

366 <distribution xsi:type="am:UniformDistribution" />
</deviation>

368 </value>
</default>

370 </runnableItems>
</runnables>

372 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

374 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

376 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

378 <upperBound xsi:type="am:LongObject" value="24240000" />
<distribution xsi:type="am:UniformDistribution" />

380 </deviation>
</value>

382 </default>
</runnableItems>

384 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

386 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

388 <value xsi:type="am:NeedDeviation">
<deviation>

390 <lowerBound xsi:type="am:LongObject" value="58" />
<upperBound xsi:type="am:LongObject" value="60" />

392 <distribution xsi:type="am:UniformDistribution" />
</deviation>

394 </value>
</default>

396 </runnableItems>
</runnables>

398 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
400 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
402 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

404 <runnables name="Runnable_3_4" callback="false" service="false">

512 APPENDIX A. APPENDIX

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_4?type=ModeLiteral" />

406 </runnables>
<runnables name="Runnable_3_0" callback="false" service="false">

408 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_0?type=ModeLiteral" />

</runnables>
410 <runnables name="Runnable_3" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
412 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
414 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
416 <upperBound xsi:type="am:LongObject" value="6060000" />

<distribution xsi:type="am:UniformDistribution" />
418 </deviation>

</value>
420 </default>

</runnableItems>
422 </runnables>

<runnables name="Runnable_5_1" callback="false" service="false">
424 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
426 <value xsi:type="am:NeedDeviation">

<deviation>
428 <lowerBound xsi:type="am:LongObject" value="35640000" />

<upperBound xsi:type="am:LongObject" value="36360000" />
430 <distribution xsi:type="am:UniformDistribution" />

</deviation>
432 </value>

</default>
434 </runnableItems>

</runnables>
436 <runnables name="Runnable_5_2" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
438 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
440 <deviation>

<lowerBound xsi:type="am:LongObject" value="11880000" />
442 <upperBound xsi:type="am:LongObject" value="12120000" />

<distribution xsi:type="am:UniformDistribution" />
444 </deviation>

</value>
446 </default>

</runnableItems>
448 </runnables>

<modes name="Message">
450 <literals name="Message_0">

<customProperties key="enumValue">
452 <value xsi:type="am:LongObject" value="0" />

</customProperties>
454 </literals>

<literals name="Message_1">
456 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="1" />
458 </customProperties>

</literals>
460 <literals name="Message_2">

A.1. ARCHITECTURAL SYSTEM PATTERNS 513

<customProperties key="enumValue">
462 <value xsi:type="am:LongObject" value="2" />

</customProperties>
464 </literals>

<literals name="Message_3">
466 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="3" />
468 </customProperties>

</literals>
470 <literals name="Message_4">

<customProperties key="enumValue">
472 <value xsi:type="am:LongObject" value="4" />

</customProperties>
474 </literals>

</modes>
476 <modes name="MessageToT1">

<literals name="MessageToT1_0">
478 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
480 </customProperties>

</literals>
482 <literals name="MessageToT1_1">

<customProperties key="enumValue">
484 <value xsi:type="am:LongObject" value="1" />

</customProperties>
486 </literals>

</modes>
488 <modes name="MessageToT2">

<literals name="MessageToT2_0">
490 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
492 </customProperties>

</literals>
494 <literals name="MessageToT2_1">

<customProperties key="enumValue">
496 <value xsi:type="am:LongObject" value="1" />

</customProperties>
498 </literals>

</modes>
500 <modes name="StateT1">

<literals name="StateT1_0">
502 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
504 </customProperties>

</literals>
506 <literals name="StateT1_1">

<customProperties key="enumValue">
508 <value xsi:type="am:LongObject" value="1" />

</customProperties>
510 </literals>

</modes>
512 <modes name="StateT2">

<literals name="StateT2_0">
514 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="0" />
516 </customProperties>

</literals>
518 <literals name="StateT2_1">

514 APPENDIX A. APPENDIX

<customProperties key="enumValue">
520 <value xsi:type="am:LongObject" value="1" />

</customProperties>
522 </literals>

<literals name="StateT2_2">
524 <customProperties key="enumValue">

<value xsi:type="am:LongObject" value="2" />
526 </customProperties>

</literals>
528 </modes>

<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">
530 <size value="8" unit="bit" />

</modeLabels>
532 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">

<size value="1" unit="bit" />
534 </modeLabels>

<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">
536 <size value="1" unit="bit" />

</modeLabels>
538 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">

<size value="1" unit="bit" />
540 </modeLabels>

<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">
542 <size value="8" unit="bit" />

</modeLabels>
544 </swModel>

<hwModel>
546 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/

IPC_1.0?type=HwFeature" puType="CPU"/>
<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">

548 </definitions>
<featureCategories name="Instructions" featureType="performance">

550 <features name="IPC_1.0" value="1.0" />
</featureCategories>

552 <structures name="System" structureType="System">
<structures name="Ecu_1" structureType="ECU">

554 <structures name="Processor_1" structureType="Microcontroller">
<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">
556 </modules>

<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">

558 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>
</modules>

560 </structures>
</structures>

562 </structures>
<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">

564 <defaultValue value="600.0" unit="MHz"/>
</domains>

566 </hwModel>
<osModel>

568 <operatingSystems name="Generic_OS">
<taskSchedulers name="Scheduler_1">

570 <schedulingAlgorithm xsi:type="am:OSEK" />
</taskSchedulers>

572 <osDataConsistency mode="noProtection" />
</operatingSystems>

A.1. ARCHITECTURAL SYSTEM PATTERNS 515

574 </osModel>
<stimuliModel>

576 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">
<offset value="0" unit="ms" />

578 <recurrence value="220" unit="ms" />
</stimuli>

580 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />
<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">

582 <offset value="0" unit="ms" />
<recurrence value="50" unit="ms" />

584 </stimuli>
<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />

586 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">
<offset value="0" unit="ms" />

588 <recurrence value="500" unit="ms" />
</stimuli>

590 </stimuliModel>
<constraintsModel />

592 <eventModel>
<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />

594 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />

596 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />
<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />

598 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=
Runnable" />

600 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?
type=Runnable" />

602 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="
Runnable_2_Overflow?type=Runnable" />

604 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"
/>

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=
Runnable" />

606 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=
Runnable" />

608 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=
Runnable" />

610 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=
Runnable" />

612 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=
Runnable" />

614 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=
Runnable" />

516 APPENDIX A. APPENDIX

<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=
Runnable" />

616 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=
Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?
type=Runnable" />

618 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?
type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?
type=Runnable" />

620 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="
Runnable_Transition_0?type=Runnable" />

<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="
Runnable_Transition_1?type=Runnable" />

622 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

624 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" entity="IPA_Task_2?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

626 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

628 </eventModel>
<mappingModel addressMappingType="offset">

630 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

632 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

634 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
636 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="

stateT2?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="

stateT1?type=ModeLabel" />
638 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

messageToT1?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
640 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="

messageToT2?type=ModeLabel" />
</mappingModel>

642 <componentsModel />
</am:Amalthea>

Listing A.35: Variation 6 of State Machine Feedback Loop.

A.1.5.7. Variation 7

<?xml version="1.0" encoding="UTF-8"?>
2 <am:Amalthea xmlns:am="http://app4mc.eclipse.org/amalthea/0.9.1" xmlns:xmi="http://www.omg.org/XMI

" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmi:version="2.0">

A.1. ARCHITECTURAL SYSTEM PATTERNS 517

<swModel>
4 <tasks name="Task_1" stimuli="Stimulus_Task_1?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
<callGraph>

6 <graphEntries xsi:type="am:ModeSwitch">
<entries>

8 <items xsi:type="am:ModeSwitch">
<entries>

10 <items xsi:type="am:CallSequence" name="CallSequence_State0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State1?type=Runnable"

/>
12 </items>

<condition>
14 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_0?type=ModeLiteral" />
</condition>

16 </entries>
<entries>

18 <items xsi:type="am:CallSequence" name="CallSequence_State1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_State0?type=Runnable"

/>
20 </items>

<condition>
22 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_1?type=ModeLiteral" />
</condition>

24 </entries>
</items>

26 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT1?type=ModeLabel" value="

MessageToT1/MessageToT1_1?type=ModeLiteral" />
28 </condition>

</entries>
30 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_Nothing" />
32 </defaultEntry>

</graphEntries>
34 <graphEntries xsi:type="am:ModeSwitch">

<entries>
36 <items xsi:type="am:CallSequence" name="CallSequence_1_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_0?type=Runnable" />
38 </items>

<condition>
40 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="

StateT1/StateT1_0?type=ModeLiteral" />
</condition>

42 </entries>
<entries>

44 <items xsi:type="am:CallSequence" name="CallSequence_1_1">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1_1?type=Runnable" />

46 </items>
<condition>

48 <entries xsi:type="am:ModeValue" valueProvider="stateT1?type=ModeLabel" value="
StateT1/StateT1_1?type=ModeLiteral" />

</condition>
50 </entries>

</graphEntries>
52 <graphEntries xsi:type="am:CallSequence" name="CallSequence_1">

518 APPENDIX A. APPENDIX

<calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_2?type=InterProcessStimulus"
/>

54 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_1?type=Runnable" />
</graphEntries>

56 </callGraph>
<customProperties key="priority">

58 <value xsi:type="am:StringObject" value="2" />
</customProperties>

60 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="2" />

62 </customProperties>
</tasks>

64 <tasks name="Task_2" stimuli="IPA_Task_2?type=InterProcessStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
66 <graphEntries xsi:type="am:ModeSwitch">

<entries>
68 <items xsi:type="am:CallSequence" name="CallSequence_State_1">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_1?type=Runnable" />
70 </items>

<items xsi:type="am:ModeSwitch">
72 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_1_0">
74 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_0?type=

Runnable" />
</items>

76 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
78 </condition>

</entries>
80 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_1_2">
82 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=

Runnable" />
</items>

84 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
86 </condition>

</entries>
88 </items>

<condition>
90 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_1?type=ModeLiteral" />
</condition>

92 </entries>
<entries>

94 <items xsi:type="am:CallSequence" name="CallSequence_State_0">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_0?type=Runnable" />

96 </items>
<items xsi:type="am:ModeSwitch">

98 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_0_0">

100 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=
Runnable" />

</items>
102 <condition>

A.1. ARCHITECTURAL SYSTEM PATTERNS 519

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_0?type=ModeLiteral" />

104 </condition>
</entries>

106 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_2_0_1">

108 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_2?type=
Runnable" />

</items>
110 <condition>

<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"
value="MessageToT2/MessageToT2_1?type=ModeLiteral" />

112 </condition>
</entries>

114 </items>
<condition>

116 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="
StateT2/StateT2_0?type=ModeLiteral" />

</condition>
118 </entries>

<entries>
120 <items xsi:type="am:CallSequence" name="CallSequence_State_2">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_State_2?type=Runnable" />
122 </items>

<items xsi:type="am:ModeSwitch">
124 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_2_1">
126 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_Transition_1?type=

Runnable" />
</items>

128 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_0?type=ModeLiteral" />
130 </condition>

</entries>
132 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_2_2_2">
134 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_2_Overflow?type=

Runnable" />
</items>

136 <condition>
<entries xsi:type="am:ModeValue" valueProvider="messageToT2?type=ModeLabel"

value="MessageToT2/MessageToT2_1?type=ModeLiteral" />
138 </condition>

</entries>
140 </items>

<condition>
142 <entries xsi:type="am:ModeValue" valueProvider="stateT2?type=ModeLabel" value="

StateT2/StateT2_2?type=ModeLiteral" />
</condition>

144 </entries>
</graphEntries>

146 </callGraph>
<customProperties key="priority">

148 <value xsi:type="am:StringObject" value="1" />
</customProperties>

150 <customProperties key="osekTaskGroup">
<value xsi:type="am:StringObject" value="1" />

520 APPENDIX A. APPENDIX

152 </customProperties>
</tasks>

154 <tasks name="Task_3" stimuli="Stimulus_Task_3?type=PeriodicStimulus" preemption="preemptive"
multipleTaskActivationLimit="2">

<callGraph>
156 <graphEntries xsi:type="am:ProbabilitySwitch">

<entries probability="20.0">
158 <items xsi:type="am:CallSequence" name="CallSequence_3_3">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_3?type=Runnable" />
160 </items>

</entries>
162 <entries probability="30.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_2">
164 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_2?type=Runnable" />

</items>
166 </entries>

<entries probability="15.0">
168 <items xsi:type="am:CallSequence" name="CallSequence_3_4">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_4?type=Runnable" />
170 </items>

</entries>
172 <entries probability="20.0">

<items xsi:type="am:CallSequence" name="CallSequence_3_1">
174 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_1?type=Runnable" />

</items>
176 </entries>

<entries probability="15.0">
178 <items xsi:type="am:CallSequence" name="CallSequence_3_0">

<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3_0?type=Runnable" />
180 </items>

</entries>
182 </graphEntries>

<graphEntries xsi:type="am:CallSequence" name="CallSequence_3">
184 <calls xsi:type="am:InterProcessTrigger" stimulus="IPA_Task_4?type=InterProcessStimulus"

/>
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_3?type=Runnable" />

186 </graphEntries>
</callGraph>

188 <customProperties key="priority">
<value xsi:type="am:StringObject" value="4" />

190 </customProperties>
<customProperties key="osekTaskGroup">

192 <value xsi:type="am:StringObject" value="4" />
</customProperties>

194 </tasks>
<tasks name="Task_4" stimuli="IPA_Task_4?type=InterProcessStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
196 <callGraph>

<graphEntries xsi:type="am:ModeSwitch">
198 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_2">
200 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_2?type=Runnable" />

</items>
202 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_2?type=ModeLiteral" />

204 </condition>
</entries>

A.1. ARCHITECTURAL SYSTEM PATTERNS 521

206 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_3">

208 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_3?type=Runnable" />
</items>

210 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_3?type=ModeLiteral" />
212 </condition>

</entries>
214 <entries>

<items xsi:type="am:CallSequence" name="CallSequence_4_1">
216 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_1?type=Runnable" />

</items>
218 <condition>

<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="
Message/Message_1?type=ModeLiteral" />

220 </condition>
</entries>

222 <entries>
<items xsi:type="am:CallSequence" name="CallSequence_4_4">

224 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_4?type=Runnable" />
</items>

226 <condition>
<entries xsi:type="am:ModeValue" valueProvider="message?type=ModeLabel" value="

Message/Message_4?type=ModeLiteral" />
228 </condition>

</entries>
230 <defaultEntry>

<items xsi:type="am:CallSequence" name="CallSequence_4_x">
232 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_4_x?type=Runnable" />

</items>
234 </defaultEntry>

</graphEntries>
236 </callGraph>

<customProperties key="priority">
238 <value xsi:type="am:StringObject" value="3" />

</customProperties>
240 <customProperties key="osekTaskGroup">

<value xsi:type="am:StringObject" value="3" />
242 </customProperties>

</tasks>
244 <tasks name="Task_5" stimuli="Stimulus_Task_5?type=PeriodicStimulus" preemption="preemptive"

multipleTaskActivationLimit="2">
<callGraph>

246 <graphEntries xsi:type="am:CallSequence" name="CS_Task_5">
<calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_1?type=Runnable" />

248 <calls xsi:type="am:TaskRunnableCall" runnable="Runnable_5_2?type=Runnable" />
</graphEntries>

250 </callGraph>
</tasks>

252 <runnables name="Runnable_1_1" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write

" modeValue="MessageToT2/MessageToT2_1?type=ModeLiteral" />
254 </runnables>

<runnables name="Runnable_State_0" callback="false" service="false">
256 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
258 <value xsi:type="am:NeedDeviation">

522 APPENDIX A. APPENDIX

<deviation>
260 <lowerBound xsi:type="am:LongObject" value="58" />

<upperBound xsi:type="am:LongObject" value="60" />
262 <distribution xsi:type="am:UniformDistribution" />

</deviation>
264 </value>

</default>
266 </runnableItems>

</runnables>
268 <runnables name="Runnable_State_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
270 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
272 <deviation>

<lowerBound xsi:type="am:LongObject" value="59400" />
274 <upperBound xsi:type="am:LongObject" value="60600" />

<distribution xsi:type="am:UniformDistribution" />
276 </deviation>

</value>
278 </default>

</runnableItems>
280 </runnables>

<runnables name="Runnable_State_2" callback="false" service="false">
282 <runnableItems xsi:type="am:ExecutionNeed">

<default key="Instructions">
284 <value xsi:type="am:NeedDeviation">

<deviation>
286 <lowerBound xsi:type="am:LongObject" value="29700000" />

<upperBound xsi:type="am:LongObject" value="30300000" />
288 <distribution xsi:type="am:UniformDistribution" />

</deviation>
290 </value>

</default>
292 </runnableItems>

</runnables>
294 <runnables name="Runnable_1" callback="false" service="false">

<runnableItems xsi:type="am:ExecutionNeed">
296 <default key="Instructions">

<value xsi:type="am:NeedDeviation">
298 <deviation>

<lowerBound xsi:type="am:LongObject" value="5940000" />
300 <upperBound xsi:type="am:LongObject" value="6060000" />

<distribution xsi:type="am:UniformDistribution" />
302 </deviation>

</value>
304 </default>

</runnableItems>
306 </runnables>

<runnables name="Runnable_1_0" callback="false" service="false">
308 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT2?type=ModeLabel" access="write

" modeValue="MessageToT2/MessageToT2_0?type=ModeLiteral" />
</runnables>

310 <runnables name="Runnable_Transition_0" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"

modeValue="StateT2/StateT2_0?type=ModeLiteral" />
312 </runnables>

<runnables name="Runnable_Transition_1" callback="false" service="false">

A.1. ARCHITECTURAL SYSTEM PATTERNS 523

314 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_1?type=ModeLiteral" />

</runnables>
316 <runnables name="Runnable_Transition_2" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="stateT2?type=ModeLabel" access="write"
modeValue="StateT2/StateT2_2?type=ModeLiteral" />

318 </runnables>
<runnables name="Runnable_1_State0" callback="false" service="false">

320 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_0?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

322 </runnables>
<runnables name="Runnable_1_State1" callback="false" service="false">

324 <runnableItems xsi:type="am:ModeLabelAccess" data="stateT1?type=ModeLabel" access="write"
modeValue="StateT1/StateT1_1?type=ModeLiteral" />

<runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_0?type=ModeLiteral" />

326 </runnables>
<runnables name="Runnable_2_Overflow" callback="false" service="false">

328 <runnableItems xsi:type="am:ModeLabelAccess" data="messageToT1?type=ModeLabel" access="write
" modeValue="MessageToT1/MessageToT1_1?type=ModeLiteral" />

</runnables>
330 <runnables name="Runnable_3_1" callback="false" service="false">

<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"
modeValue="Message/Message_1?type=ModeLiteral" />

332 </runnables>
<runnables name="Runnable_4_1" callback="false" service="false">

334 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

336 <value xsi:type="am:NeedDeviation">
<deviation>

338 <lowerBound xsi:type="am:LongObject" value="594" />
<upperBound xsi:type="am:LongObject" value="606" />

340 <distribution xsi:type="am:UniformDistribution" />
</deviation>

342 </value>
</default>

344 </runnableItems>
</runnables>

346 <runnables name="Runnable_4_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

348 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

350 <deviation>
<lowerBound xsi:type="am:LongObject" value="29700" />

352 <upperBound xsi:type="am:LongObject" value="30300" />
<distribution xsi:type="am:UniformDistribution" />

354 </deviation>
</value>

356 </default>
</runnableItems>

358 </runnables>
<runnables name="Runnable_4_3" callback="false" service="false">

360 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

362 <value xsi:type="am:NeedDeviation">
<deviation>

524 APPENDIX A. APPENDIX

364 <lowerBound xsi:type="am:LongObject" value="594000" />
<upperBound xsi:type="am:LongObject" value="606000" />

366 <distribution xsi:type="am:UniformDistribution" />
</deviation>

368 </value>
</default>

370 </runnableItems>
</runnables>

372 <runnables name="Runnable_4_4" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

374 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

376 <deviation>
<lowerBound xsi:type="am:LongObject" value="23760000" />

378 <upperBound xsi:type="am:LongObject" value="24240000" />
<distribution xsi:type="am:UniformDistribution" />

380 </deviation>
</value>

382 </default>
</runnableItems>

384 </runnables>
<runnables name="Runnable_4_x" callback="false" service="false">

386 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

388 <value xsi:type="am:NeedDeviation">
<deviation>

390 <lowerBound xsi:type="am:LongObject" value="58" />
<upperBound xsi:type="am:LongObject" value="60" />

392 <distribution xsi:type="am:UniformDistribution" />
</deviation>

394 </value>
</default>

396 </runnableItems>
</runnables>

398 <runnables name="Runnable_3_2" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_2?type=ModeLiteral" />
400 </runnables>

<runnables name="Runnable_3_3" callback="false" service="false">
402 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_3?type=ModeLiteral" />
</runnables>

404 <runnables name="Runnable_3_4" callback="false" service="false">
<runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_4?type=ModeLiteral" />
406 </runnables>

<runnables name="Runnable_3_0" callback="false" service="false">
408 <runnableItems xsi:type="am:ModeLabelAccess" data="message?type=ModeLabel" access="write"

modeValue="Message/Message_0?type=ModeLiteral" />
</runnables>

410 <runnables name="Runnable_3" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

412 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

414 <deviation>
<lowerBound xsi:type="am:LongObject" value="5940000" />

416 <upperBound xsi:type="am:LongObject" value="6060000" />
<distribution xsi:type="am:UniformDistribution" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 525

418 </deviation>
</value>

420 </default>
</runnableItems>

422 </runnables>
<runnables name="Runnable_5_1" callback="false" service="false">

424 <runnableItems xsi:type="am:ExecutionNeed">
<default key="Instructions">

426 <value xsi:type="am:NeedDeviation">
<deviation>

428 <lowerBound xsi:type="am:LongObject" value="35640000" />
<upperBound xsi:type="am:LongObject" value="36360000" />

430 <distribution xsi:type="am:UniformDistribution" />
</deviation>

432 </value>
</default>

434 </runnableItems>
</runnables>

436 <runnables name="Runnable_5_2" callback="false" service="false">
<runnableItems xsi:type="am:ExecutionNeed">

438 <default key="Instructions">
<value xsi:type="am:NeedDeviation">

440 <deviation>
<lowerBound xsi:type="am:LongObject" value="11880000" />

442 <upperBound xsi:type="am:LongObject" value="12120000" />
<distribution xsi:type="am:UniformDistribution" />

444 </deviation>
</value>

446 </default>
</runnableItems>

448 </runnables>
<modes name="Message">

450 <literals name="Message_0">
<customProperties key="enumValue">

452 <value xsi:type="am:LongObject" value="0" />
</customProperties>

454 </literals>
<literals name="Message_1">

456 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="1" />

458 </customProperties>
</literals>

460 <literals name="Message_2">
<customProperties key="enumValue">

462 <value xsi:type="am:LongObject" value="2" />
</customProperties>

464 </literals>
<literals name="Message_3">

466 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="3" />

468 </customProperties>
</literals>

470 <literals name="Message_4">
<customProperties key="enumValue">

472 <value xsi:type="am:LongObject" value="4" />
</customProperties>

474 </literals>
</modes>

526 APPENDIX A. APPENDIX

476 <modes name="MessageToT1">
<literals name="MessageToT1_0">

478 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

480 </customProperties>
</literals>

482 <literals name="MessageToT1_1">
<customProperties key="enumValue">

484 <value xsi:type="am:LongObject" value="1" />
</customProperties>

486 </literals>
</modes>

488 <modes name="MessageToT2">
<literals name="MessageToT2_0">

490 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

492 </customProperties>
</literals>

494 <literals name="MessageToT2_1">
<customProperties key="enumValue">

496 <value xsi:type="am:LongObject" value="1" />
</customProperties>

498 </literals>
</modes>

500 <modes name="StateT1">
<literals name="StateT1_0">

502 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

504 </customProperties>
</literals>

506 <literals name="StateT1_1">
<customProperties key="enumValue">

508 <value xsi:type="am:LongObject" value="1" />
</customProperties>

510 </literals>
</modes>

512 <modes name="StateT2">
<literals name="StateT2_0">

514 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="0" />

516 </customProperties>
</literals>

518 <literals name="StateT2_1">
<customProperties key="enumValue">

520 <value xsi:type="am:LongObject" value="1" />
</customProperties>

522 </literals>
<literals name="StateT2_2">

524 <customProperties key="enumValue">
<value xsi:type="am:LongObject" value="2" />

526 </customProperties>
</literals>

528 </modes>
<modeLabels name="message" initialValue="Message/Message_0?type=ModeLiteral">

530 <size value="8" unit="bit" />
</modeLabels>

532 <modeLabels name="messageToT1" initialValue="MessageToT1/MessageToT1_0?type=ModeLiteral">
<size value="1" unit="bit" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 527

534 </modeLabels>
<modeLabels name="messageToT2" initialValue="MessageToT2/MessageToT2_0?type=ModeLiteral">

536 <size value="1" unit="bit" />
</modeLabels>

538 <modeLabels name="stateT1" initialValue="StateT1/StateT1_1?type=ModeLiteral">
<size value="1" unit="bit" />

540 </modeLabels>
<modeLabels name="stateT2" initialValue="StateT2/StateT2_0?type=ModeLiteral">

542 <size value="8" unit="bit" />
</modeLabels>

544 </swModel>
<hwModel>

546 <definitions xsi:type="am:ProcessingUnitDefinition" name="DefaultCore" features="Instructions/
IPC_1.0?type=HwFeature" puType="CPU"/>

<definitions xsi:type="am:MemoryDefinition" name="DefaultMemory">
548 </definitions>

<featureCategories name="Instructions" featureType="performance">
550 <features name="IPC_1.0" value="1.0" />

</featureCategories>
552 <structures name="System" structureType="System">

<structures name="Ecu_1" structureType="ECU">
554 <structures name="Processor_1" structureType="Microcontroller">

<modules xsi:type="am:Memory" name="Memory_1" frequencyDomain="Frequency_1?type=
FrequencyDomain" definition="DefaultMemory?type=MemoryDefinition">

556 </modules>
<modules xsi:type="am:ProcessingUnit" name="Core_1" frequencyDomain="Frequency_1?type=

FrequencyDomain" definition="DefaultCore?type=ProcessingUnitDefinition">
558 <ports name="port" bitWidth="32" priority="0" portType="initiator"/>

</modules>
560 </structures>

</structures>
562 </structures>

<domains xsi:type="am:FrequencyDomain" name="Frequency_1" clockGating="false">
564 <defaultValue value="600.0" unit="MHz"/>

</domains>
566 </hwModel>

<osModel>
568 <operatingSystems name="Generic_OS">

<taskSchedulers name="Scheduler_1">
570 <schedulingAlgorithm xsi:type="am:OSEK" />

</taskSchedulers>
572 <osDataConsistency mode="noProtection" />

</operatingSystems>
574 </osModel>

<stimuliModel>
576 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_1">

<offset value="0" unit="ms" />
578 <recurrence value="220" unit="ms" />

</stimuli>
580 <stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_2" />

<stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_3">
582 <offset value="0" unit="ms" />

<recurrence value="50" unit="ms" />
584 </stimuli>

<stimuli xsi:type="am:InterProcessStimulus" name="IPA_Task_4" />
586 <stimuli xsi:type="am:PeriodicStimulus" name="Stimulus_Task_5">

<offset value="0" unit="ms" />
588 <recurrence value="500" unit="ms" />

528 APPENDIX A. APPENDIX

</stimuli>
590 </stimuliModel>

<constraintsModel />
592 <eventModel>

<events xsi:type="am:ProcessEvent" name="Event_Task_1" entity="Task_1?type=Task" />
594 <events xsi:type="am:ProcessEvent" name="Event_Task_2" entity="Task_2?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_3" entity="Task_3?type=Task" />
596 <events xsi:type="am:ProcessEvent" name="Event_Task_4" entity="Task_4?type=Task" />

<events xsi:type="am:ProcessEvent" name="Event_Task_5" entity="Task_5?type=Task" />
598 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1" entity="Runnable_1?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_0" entity="Runnable_1_0?type=

Runnable" />
600 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_1" entity="Runnable_1_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State0" entity="Runnable_1_State0?

type=Runnable" />
602 <events xsi:type="am:RunnableEvent" name="Event_Runnable_1_State1" entity="Runnable_1_State1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_2_Overflow" entity="

Runnable_2_Overflow?type=Runnable" />
604 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3" entity="Runnable_3?type=Runnable"

/>
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_0" entity="Runnable_3_0?type=

Runnable" />
606 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_1" entity="Runnable_3_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_2" entity="Runnable_3_2?type=

Runnable" />
608 <events xsi:type="am:RunnableEvent" name="Event_Runnable_3_3" entity="Runnable_3_3?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_3_4" entity="Runnable_3_4?type=

Runnable" />
610 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_1" entity="Runnable_4_1?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_2" entity="Runnable_4_2?type=

Runnable" />
612 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_3" entity="Runnable_4_3?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_4_4" entity="Runnable_4_4?type=

Runnable" />
614 <events xsi:type="am:RunnableEvent" name="Event_Runnable_4_x" entity="Runnable_4_x?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_5_1" entity="Runnable_5_1?type=

Runnable" />
616 <events xsi:type="am:RunnableEvent" name="Event_Runnable_5_2" entity="Runnable_5_2?type=

Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_0" entity="Runnable_State_0?

type=Runnable" />
618 <events xsi:type="am:RunnableEvent" name="Event_Runnable_State_1" entity="Runnable_State_1?

type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_State_2" entity="Runnable_State_2?

type=Runnable" />
620 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_0" entity="

Runnable_Transition_0?type=Runnable" />
<events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_1" entity="

Runnable_Transition_1?type=Runnable" />

A.1. ARCHITECTURAL SYSTEM PATTERNS 529

622 <events xsi:type="am:RunnableEvent" name="Event_Runnable_Transition_2" entity="
Runnable_Transition_2?type=Runnable" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_1" entity="Stimulus_Task_1?type=
PeriodicStimulus" />

624 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_2" entity="IPA_Task_2?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_3" entity="Stimulus_Task_3?type=
PeriodicStimulus" />

626 <events xsi:type="am:StimulusEvent" name="Event_IPA_Task_4" entity="IPA_Task_4?type=
InterProcessStimulus" />

<events xsi:type="am:StimulusEvent" name="Event_Stimulus_Task_5" entity="Stimulus_Task_5?type=
PeriodicStimulus" />

628 </eventModel>
<mappingModel addressMappingType="offset">

630 <taskAllocation task="Task_1?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_2?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

632 <taskAllocation task="Task_3?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<taskAllocation task="Task_4?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />

634 <taskAllocation task="Task_5?type=Task" scheduler="Scheduler_1?type=TaskScheduler" />
<schedulerAllocation scheduler="Scheduler_1?type=TaskScheduler" responsibility="Core_1?type=

ProcessingUnit" />
636 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="11" abstractElement="

stateT2?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="10" abstractElement="

stateT1?type=ModeLabel" />
638 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="8" abstractElement="

messageToT1?type=ModeLabel" />
<memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="0" abstractElement="

message?type=ModeLabel" />
640 <memoryMapping memory="Memory_1?type=Memory" memoryPositionAddress="9" abstractElement="

messageToT2?type=ModeLabel" />
</mappingModel>

642 <componentsModel />
</am:Amalthea>

Listing A.36: Variation 7 of State Machine Feedback Loop.

eISBN: 978-3-86309-691-5

Model-driven approaches are experiencing an increasing acceptance in
the automotive domain thanks to the availability of the AUTOSAR stan-
dard. However, the process of creating models of existing system com-
ponents is often difficult and time consuming, especially when legacy
code is involved or information about the exact timing is needed.

This work focuses on reversely engineering an AUTOSAR-compliant
model, which can be used for further processing including timing simu-
lation and optimisation, via a dynamic analysis from trace recordings
of a real-time system. Huselius, whose work is among the publications
most related to the topic of this thesis, proposes a technique to reverse
engineer a model that reflects the general temporal behaviour of the
original real-time software. However, like other existing solutions, it
was not developed with AUTOSAR in mind.

We want to tackle this deficiency by introducing an approach that
seizes on Huselius’s considerations and extends them in order to make
them applicable to the automotive domain. To do so, we present Core-
TAna, a prototypical tool that derives an AUTOSAR compliant model
of a real-time system by conducting dynamic analysis using trace re-
cordings. Motivated by the challenge of assessing the quality of reverse
engineered models of real-time software, we also introduce a mathema-
tical measure for comparing trace recordings from embedded real-time
systems regarding their temporal behaviour and a benchmark frame-
work based on this measure, for evaluating reverse engineering tools
such as CoreTAna.

	1 Introduction
	1.1 Motivation
	1.1.1 Documentation
	1.1.2 Simulation
	1.1.3 Optimisation

	1.2 Contributions
	1.3 Research Method
	1.4 Outline

	I Background
	2 Related Work
	2.1 Embedded Software Domain
	2.2 Other Software Domains
	2.3 Other Domains

	3 Software Development for Multi-core Architecture
	3.1 Target Mapping
	3.1.1 Partitioning
	3.1.2 Communication
	3.1.3 Agglomeration
	3.1.4 Mapping

	3.2 Timing Simulation
	3.3 Model-based Optimisation

	4 Real-time Automotive Model
	4.1 Processing Units
	4.2 Processes
	4.2.1 Call Graph
	4.2.2 Runnable
	4.2.3 Stimulation

	4.3 Schedulers
	4.4 Standards in the Automotive Industry
	4.4.1 ASAM MDX
	4.4.2 AUTOSAR
	4.4.3 AMALTHEA

	5 Trace Recordings
	5.1 Trace Categories
	5.1.1 Software Tracing
	5.1.2 Hardware Tracing
	5.1.3 Hybrid Tracing

	5.2 Trace Techniques
	5.2.1 Bus Trace
	5.2.2 Flow Trace
	5.2.3 On-Chip Trace
	5.2.4 Software Trace Target
	5.2.5 Software Trace Host
	5.2.6 Snooper Trace
	5.2.7 Advanced Register Trace

	5.3 Trace Format
	5.3.1 Process Level
	5.3.2 System Level
	5.3.3 Trace Events
	5.3.4 Database Representation
	5.3.5 Trace Analysis

	II Contributions
	6 CoreTAna
	6.1 Design
	6.2 Approach
	6.3 Algorithms
	6.3.1 OS Configuration
	6.3.2 Scheduling Properties
	6.3.3 Stimulation
	6.3.4 Runtime Behaviour
	6.3.5 Call Graph

	6.4 Summary

	7 Distance of Timed Actions
	7.1 Challenges of Comparing Real-time Behaviour
	7.1.1 Purely Periodic without Communication
	7.1.2 Client-Server without Reply
	7.1.3 State Machine
	7.1.4 Feedback Loop
	7.1.5 State Machine Feedback Loop

	7.2 Related Work
	7.3 Definition
	7.3.1 Example
	7.3.2 Analysing Differences in Trace Recordings

	7.4 Validation
	7.5 Other Use Cases
	7.5.1 Product Family
	7.5.2 Trace Check

	8 Evaluation
	8.1 Synthetic Benchmark
	8.1.1 Purely Periodic without Communication
	8.1.2 Client-Server without Reply
	8.1.3 State Machine
	8.1.4 Feedback Loop
	8.1.5 State Machine Feedback Loop

	8.2 Randomly Generated Systems
	8.3 Industrial Case Studies
	8.3.1 Automotive Case Studies
	8.3.2 Further Case Study in Telecommunication
	8.3.3 Summary

	8.4 Reasoning on the Quality of a Trace Recording

	III Summary
	9 Conclusions and Outlook
	Bibliography
	Acronyms
	Glossary
	List of Figures
	List of Tables
	Listings
	List of Algorithms

	IV Annex
	A Appendix
	A.1 Architectural System Patterns
	A.1.1 Purely Periodic without Communication
	A.1.2 Client-Server without Reply
	A.1.3 State Machine
	A.1.4 Feedback Loop
	A.1.5 State Machine Feedback Loop

