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Preface 

The development of information and communication infrastructures coupled with 
data science and artificial intelligence has led to major changes, not only in indus-
trial structures but also in social systems. This movement was promoted in accordance 
with the Fifth Science and Technology Basic Plan in Japan and is continuing with the 
current 6th Science and Technology Basic Plan. In particular, technological inno-
vation is progressing in new areas, such as “Connected, Autonomous/Automated, 
Shared, and Electric” (CASE) in the automotive industry, and the concept of the 
car itself, which supports both society and industry, is beginning to undergo major 
changes. In an immediate response to this trend, Toyota Motor Corporation has been 
working to realize future mobility society and has advocated becoming a future 
mobility company by departing from its previous role as an automobile company. 

Mathematical science supports the fundamental technologies of all industries and 
societies. Given its versatility, once a mathematical innovation occurs, its impact is 
far-reaching. The importance of mathematical science is expected to increase in the 
field of mobility; for example, blockchain and mechanism design are expected to 
become fundamental technologies for supporting sharing economy businesses in the 
future, however, basic research for shared mobility services has not progressed. In 
autonomous driving system, the automated movement of a group of cars is expected 
to become an issue, which extends beyond the automated movement of individual 
cars. Hence, mobility society requires the development of mathematical science. 

Mathematical science is inherently open-minded. Issues in mathematical science 
related to mobility are not always obvious in the beginning; research must start with 
a bird’s-eye view of related fields and identify the problems from there. Researchers 
must come together and integrate knowledge based on free ideas, rather than on 
experiments and observations. Mathematical science research on mobility cannot be 
restricted to a single researcher, laboratory, or academic society. Research projects 
that involve many diverse researchers, going beyond the framework of conventional 
academia-industry collaboration must be conceived. 

Yoshizawa approached Nakamura, who was Dean of the Graduate School of 
Informatics at Kyoto University, with a proposal for a specific initiative, and, in the
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vi Preface

process, solicited support for the realization of the concept. This secured the coop-
eration of Kazuhisa Makino, a Professor at the Research Institute for Mathematical 
Sciences at Kyoto University, who specializes in research on mathematics related to 
society. The research has since been promoted as an activity that makes the most of 
the networks of the participating researchers. After a preparatory phase in 2019, the 
joint research project, Advanced Mathematical Science for Mobility Society, between 
Kyoto University and Toyota Motor Corporation started in April 2020. After Naka-
mura’s retirement in March 2021, Nobuo Yamashita, a Professor at the Graduate 
School of Informatics, Kyoto University, took over the project. 

In the mobility society of the future, automobiles will be required to cooperate with 
infrastructure and provide safe and secure systems with exchanging large amounts 
of data. Therefore, we extended a definition of mobility to the flow of people, things, 
and information. The goal of this book is to create an original research field of 
mathematical science that can transform these flows into a mobility society where 
people can live happily with smiles on their faces. This book is published on the 
recommendation of Noboru Kikuchi, Director of the Genesis Research Institute. He 
is a former Director of the Frontier Research Center of Toyota Motor Corporation. 
This publication summarizes the results of the “Research on Advanced Mathematical 
Science for Mobility Society” project over a 3-year period, from April 2020 to March 
2023. We would be delighted if the results of these studies provide reliable ideas and 
methods for future research. 

Our academia-industry collaboration has received a great deal of support, and, at 
the time of its launch in April 2020, involved over 50 researchers from more than 
20 universities and research institutes across Japan, with Kyoto University as the 
research hub. We would like to express our deepest gratitude to those involved, as 
well as to the many administrative staff members who supported the operation of 
this research project. 

March 2023 Yoshimasa Nakamura 
Osaka Seikei University 

Osaka, Japan 

Emeritus of Kyoto University 
Kyoto, Japan 

Shintaro Yoshizawa 
Toyota Motor Corporation (Japan) 

Toyota, Aichi, Japan
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Introduction



Chapter 1 
Advanced Mathematical Science for 
Mobility Society 

Yoshiumi Kawamura, Kazuhisa Makino, and Nobuo Yamashita 

1.1 Current State of Mobility Society 

Due to the rapid information processing by computers and the evolution of communi-
cation equipment, we have become a society in which a large amount of information 
is constantly generated, stored, and transmitted. Information is becoming more and 
more important, and society has come to rely heavily on it in our daily lives. The 
5th Science and Technology Basic Plan in Japan, which has been implemented since 
2016, aims to realize a future society so-called a super smart society (Society 5.0) 
[ 1] that creates social prosperity through the evolution of Information and Commu-
nication Technology (ICT) and the creation of new values and services. In 2018, the 
Ministry of Economy, Trade and Industry in Japan compiled the Guidelines for Pro-
moting Digital Transformation (DX) [ 2]. In this guideline, DX means that companies 
(1) respond to drastic changes in the business environment, utilize data and digital 
technology, and create new products, services, and business models based on the 
needs of customers and society, and (2) establish competitive advantages by trans-
forming not only their business processes but also their organizations and corporate 
cultures. 

On the other hand, in the automotive industry, the concept of the car itself is 
about to change due to technological innovations called CASE and MaaS. CASE is  
a coined word that takes the initials of Connected, Autonomous/Automated, Shared, 

Y. Kawamura (B) 
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e-mail: yoshiumi_kawamura@mail.toyota.co.jp 

K. Makino 
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and Electric, and represents the axis of future new vehicle development, while MaaS 
stands for Mobility as a Service, and indicates the future that transportation including 
cars, trains, and airplanes aims for. Automobiles that automatically run on electric 
power while exchanging large amounts of data over the Internet are nothing more 
than information terminals, and automobiles that are not owned but shared are already 
part of the social infrastructure. 

In CASE, “Connected” means connection with the internet, and by connect-
ing the car to the network in real time, it is possible to send and receive all 
kinds of data obtained while driving, such as map, accident, and weather infor-
mation. “Autonomous/Automated” means self-driving without human intervention, 
and “Shared” means sharing the cars. It was common to purchase and use a car indi-
vidually. Currently, it is popular to share a car so that it can be used whenever you 
want. Finally, “Electric” means environmentally friendly electric vehicles. 

MaaS makes cloud-based and seamless transportation even if it consists of multi-
ple operating units such as bus, train, and airplane. Even now, when traveling using 
multiple modes of transportation, you can use the route search to find out how to get 
to your destination and how long it will take, without having to follow the timetables 
one by one to derive the itinerary. Even so, it is still inefficient, since reserving and 
purchasing tickets must be made by each operator. In the world of MaaS, it is possible 
to search for the most suitable means of transportation, make reservations, and make 
payments all at once using smartphone apps. 

By accelerating these technological innovations related to mobility, it is expected 
that significant contribution will be made to environmental issues that have become 
a challenge in recent years, particularly in reducing carbon emissions. 

1.2 Project Titled Advanced Mathematical Science for 
Mobility Society 

While the automotive industry has made steady progress in technological innovations 
under the names of CASE and MaaS, Toyota Frontier Research Center, one of Toyota 
Motor Corporation’s research bases, considers that mathematical science is the most 
important tool for conceiving future mobility services, in light of Toyota’s vision of 
turning mobility into social potential. 

Mathematical technologies are, of course, adopted in many situations through-
out the automotive industry. For example, mathematical optimization technique is 
widely used and contributes in some way, from design, manufacturing, to service 
design. In the future mobility society, however, it is not always possible to satisfy 
all requirements with today’s mathematical technologies. For example, design space 
for the mobility service will become complex and large scale. Therefore, further 
progress will be required in optimization technology to find the optimal conditions 
in such complex spaces. It is also necessary to search for better solution and control 
the systems while responding to changing environments every moment, dynamically.
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Furthermore, as individual values diversify in the future, we believe that it is neces-
sary to design a mechanism that is fair to match each individual’s value, not just the 
overall optimum, in order to provide a service in close contact with each customer. 

Based on the above motivation, we started the joint project of Kyoto University 
and Toyota Motor Corporation, titled “Advanced Mathematical Science for Mobility 
Society” in 2020. The project is a collaboration between Toyota Frontier Research 
Center, Toyota Motor Corporation and Graduate School of Informatics and Research 
Institute for Mathematical Sciences (RIMS), Kyoto University. However, it involves 
not only researchers at Kyoto University and Toyota Motor Corporation, but also 
prominent domestic researchers in the fields of mathematical science and informat-
ics. The project takes a broader view of the concepts of mobility and movement 
which includes the flow of people through public transportation, the distribution of 
information, and the energy flow to capture the essence of the future mobility society, 
and deals with the following three topics 

1. Mathematical models of flow, 
2. Mathematical methods for huge data and network analysis, and 
3. Algorithms for mobility society. 

The first topic is a mathematical model on flow. Here, we consider to handle the 
flow of objects (e.g., goods), people, and information. As for flow of objects and 
people, traffic flow is typical, but it also includes delivery of parts and products in the 
manufacturing process. The flow of “information” is also important for mobility soci-
ety. For example, Toyota Motor Corporation uses a well-known “Toyota Production 
System” [ 3] technique for the production processes. Here, a flow diagram of objects 
and information, called “Value Stream Map”, is created and the flow of information 
is visualized. This is because the stagnation of the information flow affects the stag-
nation of the production process. Thus, we have studied mathematical techniques to 
model the flow and to construct a smooth mobility society without stagnation. 

The second topic then describes mathematical techniques dealing with enormous 
data on mobility from the viewpoints of machine learning, numerical analysis, sta-
tistical physics, etc. Needless to say, handling of big data is an important issue in the 
future. Especially with the progress of the connected technology, the type and size of 
the data to be handled become enormous. Even if the computational power advances, 
it will be difficult to effectively handle these enormous data without ingenuity. In 
order to compress necessary information effectively, or to extract useful information, 
the progress of basic mathematical technology is necessary. We will also consider 
techniques for handling sensitive data, such as personal privacy and company secret 
information, as well as mathematical techniques for secure distributed systems such 
as block-chains. 

The last topic discusses algorithmic problems on mobile society. An example of 
a mobility system is a car-sharing service. Such a service requires, for example, both 
convenience for individuals and robustness and efficiency as a system. Mechanisms 
that are always optimal in response to changing situations every moment and the 
needs of people are also required. Furthermore, in the future society where the sense of 
value is diversifying, a mechanism that is fair to all customers will also be important.
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From these viewpoints, this topic examines a method for constructing and analyzing 
algorithms for controlling and optimizing systems and services. 

In this monograph, we discuss some of the results obtained by nine groups of the 
project on the three research topics above, as well as the related research areas. 

The rest of the monograph is organized as follows. Part 2 discusses mathematical 
models of flow, which consists of two chapters. 

Chapter 2: Analysis of Autonomous Many-Body Particle Models from Geometric 
Perspective and its Applications 

Chapter 3: Integrable Systems Related to Matrix .LR Transformations 

and Part 3 discusses mathematical methods for huge data and network analysis: 

Chapter 4: Numerical Analysis for Data Relationship 
Chapter 5: Application of Tensor Network Formalism for Processing Tensor Data 
Chapter 6: Machine Learning Approach to Mobility Analyses 
Chapter 7: Graph Optimization Problems and Algorithms for DAG-type 

Blockchains 

Finally, Part 4 treats algorithm issues for mobility society, consisting of the fol-
lowing three chapters. 

Chapter 8: System-Control-Based Approach to Car-Sharing Systems 
Chapter 9: Algorithms for Future Mobility Society 
Chapter 10: Mechanism Design for Mobility. 

Acknowledgements We would like to thank Ms. Maiko Hori for her assistance in writing this 
chapter. 
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Part II 
Mathematical Models of Flow



Chapter 2 
Analysis of Autonomous Many-Body 
Particle Models from Geometric 
Perspective and Its Applications 

Satoshi Tsujimoto, Tsuyoshi Kato, Ryosuke Kojima, Kazuki Maeda, 
and Francesco Zanlungo 

2.1 Introduction 

Autonomous many-body particle systems, such as traffic flow models, pedestrian 
flow models, and molecular biology models, are very important targets that appear 
in various fields. Since the behavior of these systems is essentially nonlinear and is 
rich in variety and flexibility, it is important to grasp the whole picture of the system 
not only numerically, but also through theoretical analysis. 

For interacting systems of many-body particles, we have been studying 

A. the development of analytical methods, 
B. the investigation and extension of fundamental models. 

For A., we have mainly worked on the following analytical methods from the 
viewpoint of geometry: (i) derivation and analysis of the Burgers cellular automaton 
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(BCA) and the box-ball system (BBS) by the methods of tropical geometry and ultra-
discrete systems, (ii) various studies on many-body particle interaction systems based 
on discrete Morse theory from a phase-geometric approach, and (iii) development 
of a fundamental model for B., which is a model of many-body particle interaction 
systems. As primary models to be treated in B., there are various models such as traffic 
flow, pedestrian flow, and molecular biology models. In this paper, we will mainly 
focus on BCA, BBS, and the totally asymmetric simple exclusion process (TASEP), 
which will be briefly introduced in this paper. The method of tropical geometry is 
effective not only in analytical methods but also in the derivation of new models. In 
the modeling of particle systems, there are examples of successful extraction of the 
skeletal part in particular, and the BBS obtained from the Korteweg-de Vries (KdV) 
equation and its ultra-discretization of the nonlinear partial differential equation is 
well known. Although research results from this perspective are not yet at the level 
of basic theory, it is possible to investigate various extensions of cellular automata 
and analytical solutions to their initial value problems. As an unexpected byproduct 
of the above research, we were also able to clarify the relationship between the BBS 
and a computational procedure for invariant factors of integer matrices. 

In Sect. 2.2, we outline the discrete Morse theory methods used. Section 2.3 
gives an example of the application of the discrete Morse theory method to traffic 
flow model analysis. In Sect. 2.4, we derive a model with more general degrees of 
freedom by adding internal degrees of freedom, such as explicit and implicit degrees 
of freedom, to the particle system, and we also derive a quantum version of TASEP 
and discuss its results. Finally, in Sect. 2.5, we will discuss pedestrian flow models 
as the next subject and summarize the current status and future prospects. 

2.2 Discrete Morse Theory 

In this section, we give a brief introduction to topology, especially homology, Morse 
theory, and discrete Morse theory. 

2.2.1 Homology 

The homology theory is a fundamental tool to study differentiable manifolds viewed 
as topological spaces. Homology groups .Hk(M), .k = 0, 1, 2, . . . , of a manifold . M
are abelian groups that represent topological invariants of . M ; i.e. two manifolds 
have the isomorphic homology groups if they can be continuously deformed into 
each other (homotopy equivalent; note that the reverse is not always true). In the 
simplest case, the . kth homology group .Hk(M) becomes .Zn that means 

• the case of .k = 0: the number of connected components in .M is . n; 
• the case of .k ≥ 1: roughly, the number of .k-dimensional holes in .M is . n,
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Fig. 2.1 Examples of homology groups. a A disk has no hole. b A circle has a 1-dimensional hole. 
c An annulus also has a 1-dimensional hole. A circle and an annulus are homotopy equivalent. d A 
sphere has a 2-dimensional hole 

where . n is called the Betti number. Figure 2.1 gives several examples. In more 
complicated cases, the homology groups may have finite subgroups called torsion 
subgroups, but we do not explain them here. 

If two manifolds have different homology, then they cannot be homotopy equiv-
alent. Hence, the computation of the homology groups of differentiable manifolds 
is a first step to study topology of manifolds (see, e.g. [ 15]). There is Morse theory 
that is useful for the construction of homology groups. 

2.2.2 Morse Theory 

Let us consider two differentiable functions on a manifold . f, g : M → R, where . f
and. g do not have any degenerate critical points. The Morse theory is able to construct 
the isomorphic homology groups of.M from both different functions. f and. g; i.e. any 
generic functions on a manifold .M reflect the topology of .M directly. A “simpler” 
function that has as few critical points as possible makes it easy to compute homology 
groups. 

We introduce gradient vector fields here. Consider a situation that a local coordi-
nate system with variables .x1, x2, . . . , xn is given on .U ⊂ M . A map. ϕU : U → R

n

represents this coordinate. Then, the tangent space at a point.p ∈ U denoted by. TpM
is defined as a linear space formally spanned by the differential operators . ∂

∂x1
, . ∂

∂x2
, 

.. . . , . ∂
∂xn

. The tangent bundle of .M is defined by .T M := ⊔p∈MTpM . For the tan-
gent space .TpM , we can consider a dual space .T ∗

p M , which is called the cotangent 
space. The cotangent bundle .T ∗M := ⊔p∈MT ∗

p M is also defined. There is a basis 
.{dx1, dx2, . . . , dxn} of .T ∗

p M satisfying
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. dxi

(
∂

∂x j

)
= δi j , i, j = 1, 2, . . . , n,

where .δi j is the Kronecker delta. 
For a function . f : M → R, the differential 1-form of . f at .p ∈ U is defined by 

. d f p :=
n∑

i=1

∂( f ◦ ϕ−1
U )

∂xi
dxi ∈ T ∗

p M.

If a Riemannian metric .gp ∈ T ∗
p M ⊗ T ∗

p M is given at each point .p ∈ M , then the 
gradient of. f denoted by.∇ f : M → T M; p |→ ∇ f (p) ∈ TpM is uniquely defined 
by the equation 

. gp(∇ f (p), vp) = d f p(vp)

for all .p ∈ M and .vp ∈ TpM . Although this definition may look a bit complicated, 
this is exactly a generalization of the gradient on the Euclidean space. (Consider the 
case.gp = ∑n

i=1 dxi ⊗ dxi for all.p ∈ M . That may be helpful for understanding the 
meaning.) 

A point.p ∈ M is called a critical point of. f if.∇ f (p) = 0. For the Hessian matrix 
of . f at a point . p defined by 

. Hf (p) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2( f ◦ϕ−1
U )

∂x21

∂2( f ◦ϕ−1
U )

∂x1∂x2
. . .

∂2( f ◦ϕ−1
U )

∂x1∂xn
∂2( f ◦ϕ−1

U )

∂x2∂x1

∂2( f ◦ϕ−1
U )

∂x22
. . .

∂2( f ◦ϕ−1
U )

∂x2∂xn
...

...
. . .

...
∂2( f ◦ϕ−1

U )

∂xn∂x1

∂2( f ◦ϕ−1
U )

∂xn∂x2
. . .

∂2( f ◦ϕ−1
U )

∂x2n

⎞
⎟⎟⎟⎟⎟⎟⎠

(ϕU (p)),

if .det Hf (p) /= 0 then . p is called a non-degenerate critical point. If all the critical 
points of . f are non-degenerate then . f is called a Morse function. It is known that 
Morse functions are generic in the set of smooth functions. The index of a critical 
point . p of . f , denoted by . λ in this section, is defined as the number of the negative 
eigenvalues of the Hessian matrix.Hf (p). Table 2.1 shows examples of critical points 
and their indices. We can see that critical points of index 0, 1, and 2 in the two-
dimensional Euclidean space correspond to local minimum points, saddle points, 
and local maximum points, respectively. In the examples, we consider critical points 
on the Euclidean space, but we also can consider critical points on any manifolds in 
general. See Fig. 2.2. 

From critical points and a gradient vector field, we can compute homology groups 
(called Morse homology) of . M . Let  .p and . q be critical points and .M(p, q) be 
the set of all the integral curves of .−∇ f from .p to . q; i.e. .γ ∈ M(p, q) means 
.
dγ

dt (t) = −∇ f (γ (t)), .limt→−∞ = p and .limt→+∞ = q. For example, in Fig. 2.2, 
.M(p3, p2) has two integral curves .γ1 and. γ2, and .γ1 − γ2 makes a cycle. We give a
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Table 2.1 Examples of critical points (the origin in these cases) and their indices . λ on the two-
dimensional Euclidean space 

Fig. 2.2 An example of critical points on a two-dimensional manifold called a torus. T 2 = S1 × S1

embedded in the three-dimensional Euclidean space. The Morse function is defined by the height 
function. f (p) = x3

sign of integral curves .∈ : M(p, q) → {±1} according to cycles if they exist. In the 
example, if we set .∈(γ1) = 1, then another should have opposite sign .∈(γ2) = −1. 

Let us define the Morse complex of index . λ by the free .Z-module generated by 
all the critical points of index . λ

.Cλ :=
⨁
λi=λ

Zpi ,
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Fig. 2.3 Integral curves on 
the torus.T 2 from critical 
points of index. λ to ones of 
index.λ − 1. There  exist two  
curves from.p2 to.p0 that are 
not drawn 

where.λi denotes the index of the critical point. pi , and boundary operators. dλ : Cλ →
Cλ−1, which are homomorphisms, by 

. dλ(pi ) :=
∑

λ j=λ−1
γ∈M(pi ,p j )

∈(γ )p j for all critical points pi ∈ Cλ.

Since we can see that .dλ−1 ◦ dλ = 0, .(C•, d•) is a chain complex. The . kth Morse 
homology group is defined by 

. Hk(M) := Ker dk/Im dk+1, k = 0, 1, 2, . . . .

For example, the Morse homology groups of the torus.T 2 (Fig. 2.2) are computed as 
follows (see also Fig. 2.3): the Morse complexes are .C0 = Zp0, .C1 = Zp1 ⊕ Zp2, 
.C2 = Zp3, and boundary operators are defined as .d0(p0) = 0, . d1(p1) = (+1 −
1)p0 = 0, .d1(p2) = (+1 − 1)p0 = 0, .d2(p3) = (+1 − 1)p1 + (+1 − 1)p2 = 0. 
Note that .Ck = 0 for .k ≥ 3 and .k = −1, and .dk = 0 for .k ≥ 3 and .k = 0. Hence, 
.Ker dk = Ck and .Im dk = 0 for all . k, then we obtain .H0(M) = C0

∼= Z, . H1(M) =
C1

∼= Z
2, and .H2(M) = C2

∼= Z. This example shows that the fewer critical points 
the Morse function has, the easier it is to compute the Morse homology. 

One can find more details in, for example, Milnor’s book [ 17]. 

2.2.3 Discrete Morse Theory 

The discrete Morse theory is a combinatorial analog of the Morse theory developed 
by Forman [ 11, 12]. Although the discrete Morse theory is constructed on CW 
complexes abstractly in general, we explain the theory more concretely for simplicity.
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We call the following .k-dimensional cells, or simply .k-cells: 

• .0-cell: a point; 
• .1-cell: a curve whose boundaries are points (.0-cells); 
• .2-cell: a surface whose boundaries are curves (.1-cells); 
• .3-cell: a solid whose boundaries are surfaces (.2-cells); 
• ... 

A set of cells .K is called a cell complex if a .k-cell . α is included in .K implies that 
all the boundaries of . α are included in . K. A cell . α is called a face of . β if .α ⊂ β, 
where we consider a cell as a set of vertices. A face . α of . β is called maximal if 
.dim α = dim β − 1. 

A function. f : K → R is called a discrete Morse function if the following condi-
tions are satisfied: for all .α ∈ K, 

1. .#{ β ∈ K : α is a maximal face ofβ and f (α) ≥ f (β) } ≤ 1; 
2. .#{ γ ∈ K : γ is a maxima face ofα and f (γ ) ≥ f (α) } ≤ 1. 

A cell .α ∈ K is called a critical cell if the following strict conditions are satisfied: 

1. .#{ β ∈ K : α is a maximal face ofβ and f (α) ≥ f (β) } = 0; 
2. .#{ γ ∈ K : γ is a maximal face ofα and f (γ ) ≥ f (α) } = 0. 

For a non-critical cell.α ∈ K, there exists a cell.β ∈ K, where. α is a maximal face of 
. β and . f (α) ≥ f (β), or  .γ ∈ K, where . γ is a maximal face of . α and . f (γ ) ≥ f (α). 
For these pairs of cells, we draw arrows from. α to. β or from. γ to. α. The set of these 
arrows is called a gradient vector field. For example, see Fig. 2.4. 

Given a gradient vector field of a discrete Morse function . f on . K, we call a 
sequence of.k-cells.αi and (.k + 1)-cells.βi alternately.(α1, β1, α2, β2, . . . , βr , αr+1) a 
gradient path of. f if, for each.i = 1, 2, . . . , r , a pair.(αi , βi ) is a vector of the gradient 
vector field,.αi+1 is a face of.βi and.αi+1 /= αi . By the definition, one can readily derive 
the relation. f (α1) ≥ f (β1) > f (α2) ≥ f (β2) > · · · ≥ f (βr ) > f (αr+1). Then, we 
can obtain a way to compute the homology groups of .K in a similar manner to the 
continuous Morse theory. Let .Cλ be the Morse complex of dimension . λ; i.e. . Cλ

Fig. 2.4 Examples of cell complexes and discrete Morse functions. There are 0-cells (points), 1-
cells (curves), and a 2-cell (surface; only in c), and numbers written next to each cell are the values 
of the discrete Morse functions. The function on a is not a discrete Morse function because blue 
cells do not satisfy the conditions. The functions on b and c are discrete Morse functions and red 
cells are critical cells. The orange arrows in b and c indicate a gradient vector fields
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Fig. 2.5 An example of gradient paths and Morse homology groups. a indicates the names of the 
cells. b indicates the values of the discrete Morse function, the critical cells, and the gradient vector 
field 

is the free .Z-module generated by all the critical .λ-cells. Let .dλ : Cλ → Cλ−1 be a 
boundary operator defined by 

. dλ(βi ) :=
∑

α j : critical (λ−1)−cell
γ∈M(βi ,α j )

∈(γ )α j for all critical cellsβi ∈ Cλ,

where .M(βi , α j ) is the set of all the gradient paths from a maximal face of . βi

to the cell . α j , and .∈(γ ) ∈ {±1} is determined depending on whether the chosen 
orientation on.βi induces the same orientation of the gradient path on.α j or the oppo-
site orientation. Then, the Morse homology is defined by .Hk(K) = Ker dk/Im dk+1, 
.k = 0, 1, 2, . . . . 

For example, consider the cell complex and the discrete Morse function in Fig. 2.5. 
There are a critical 0-cell .α2 and a critical 1-cell . β4, and gradient paths .(α4, . β5, 
.α2) whose sign is .+1 and .(α3, . β3, . α1, . β1, .α2) whose sign is  .−1. There are the 
complexes .C0 = Zα2, .C1 = Zβ4, .C2 = 0, and the boundary operators .d0(α2) = 0, 
.d1(β4) = (+1 − 1)α2 = 0,.d2 = 0. Hence,.Ker dk = Ck and.Im dk = 0 for all. k, then 
we obtain .H0(K) = C0

∼= Z, .H1(K) = C1
∼= Z, and .H2(K) = 0. 

2.3 Application of Discrete Morse Theory to Traffic Flow 
Models 

In this section, we consider an application of the discrete Morse theory, which was 
introduced in Sect. 2.2, to a simple traffic flow model called the Burgers cellular 
automaton.
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2.3.1 Algorithms for Constructing Discrete Morse Functions 
on Cubical Complexes 

To apply the discrete Morse theory, we first have to construct a complex and a discrete 
Morse function that possesses topological information of the data to be analyzed. We 
adapt the algorithms for constructing discrete Morse functions on cubical complexes 
to analyze 2D and 3D grayscale digital images proposed by Robins, Wood, and 
Sheppard [ 21]. The following is a brief exposition of the algorithm for 2D lattice. 
The algorithm for 3D lattice can be also described in the same manner. 

Let us consider a discrete lattice 

. D = { (i, j) ∈ Z
2 : 0 ≤ i ≤ I, 0 ≤ j ≤ J }.

We can derive a cubical complex .K from the lattice .D as follows: the vertices 
.(i, j) ∈ D are 0-cells of the complex . K. The unit edges between the vertices, and 
the unit squares are 1-cells and 2-cells of the complex . K, respectively. 

Let .g : D → R be a function that represents a given numerical data on the lattice 
. D. We assume that the vertices in. D can be strictly totally ordered as. g(x0) < g(x1) <

· · · < g(xN ). Note that this requirement is always satisfied by adding perturbation 
to . g without giving adverse effects to the results of the algorithm. Then, subsets of 
the neighboring cells of .x ∈ D, called the lower stars of . x , 

. L(x) = { α ∈ K : x ∈ α and g(x) = max
y∈α

g(y) }

give a disjoint partition of . K: 
. K =

⊓
x∈D

L(x).

The following algorithm works on each lower star.L(x) in parallel. As a prepara-
tion, for each .k-cell .α = {x, y1, . . . , y2k−1} ∈ L(x), define 

. G(α) = (
g(x), g(yi1), . . . , g(yi2k−1

)
) ∈ R

2k ,

where .g(x) > g(yi1) > · · · > g(yi2k−1
), and list these vectors lexicographically. 

1. If.L(x) = {x}, then the 0-cell. x is marked as critical and end. Otherwise, the 0-cell 
. x is paired with the 1-cell .δ ∈ L(x) that is minimal with respect to .G ordering. 

2. Add all other 1-cells in .L(x) to the priority queue PQzero, whose elements are 
ordered by . G. 

3. Add all cells .α ∈ L(x) such that . α is a face of . δ and the number of its unpaired 
faces is exactly one to the priority queue PQone, whose elements are ordered by 
. G. 

4. Iterate the following procedure while the queue PQone is not empty: 

• Pop the top cell . α in PQone.
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• If there are no unpaired faces of. α, then add. α to the queue PQzero. Otherwise, 
the .k-cell . α is paired with a .(k + 1)-cell . β that is a single available unpaired 
face for the cell. α. Remove the cell. β from the queue PQzero and add all cells 
.γ ∈ L(x) such that. γ is the face of both. α and. β and the number of its unpaired 
faces is exactly one to the queue PQone. 

5. If the queue PQzero is empty, then end. Otherwise, pop the top cell. γ in PQzero 
and mark . γ as critical, add all cells .α ∈ L(x) such that . α is a face of . γ and the 
number of its unpaired faces is exactly one to the queue PQone. Go to the step 4. 

After executing the algorithm above for all the lower stars .L(x), all the cells in 
.K are either marked as critical or paired with another cell. We can then define a 
discrete Morse function corresponding to . g as follows. For each .x ∈ D, if .L(x) has 
more than one cell, let . δ be the 1-cell that is minimal with respect to .G ordering. If 
.L(x) has .k > 2 cells, let .α1, α2, . . . , αk−2 be the remaining cells in .L(x), which are 
ordered by when they are marked or paired, where if the cells. α and. β are paired and 
. β is a face of . α then. β will immediately precede. α. Let.∈ = minx /=y{|g(x) − g(y)|}, 
then a discrete Morse function .m : K → R is defined by 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(δ) = g(x) − ∈

10
,

m(x) = g(x),

m(αi ) = g(x) + i∈

10
, i = 1, 2, . . . , k − 2.

(2.1) 

For this discrete Morse function, the pairings of cells yield its gradient vector field 
and the cells marked as critical become its critical cells. 

Figure 2.6 illustrates examples of constructed discrete Morse functions and critical 
cells. 

2.3.2 Application to Analysis of the Burgers Cellular 
Automaton 

The Burgers cellular automaton [ 20] is a simple traffic flow model. Its time evolution 
equation is given by 

. U (t+1)
n = U (t)

n + min
(
C −U (t)

n ,U (t)
n−1

)
− min

(
C −U (t)

n+1,U
(t)
n

)
,

where .n ∈ Z denotes the site number, .t ∈ Z is the discrete-time variable, and a 
positive constant.C ∈ Z denotes the capacity of each site, i.e..U (t)

n ∈ {0, 1, 2, . . . ,C}. 
First, let us consider the case of .C = 1: 

.U (t+1)
n = U (t)

n + min
(
1 −U (t)

n ,U (t)
n−1

)
− min

(
1 −U (t)

n+1,U
(t)
n

)
,
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Fig. 2.6 Examples of constructed discrete Morse functions and critical cells. In each subfigure, 
numbers indicate the values of the original given functions or the constructed discrete Morse func-
tions, orange arrows indicate the pairings of the cells in the algorithm or the gradient vector field, 
and red cells are critical, i.e. they have no paired cell. a The algorithm works on each lower star 
.L(x) in parallel. After pairing and marking, the values of a discrete Morse function are defined as 
equation (2.1). b An example of detecting a critical 0-cell, which is an analogue of a local minimum 
point in the continuous case. c An example of detecting a critical 1-cell, which is an analogue of a 
saddle point in the continuous case. d An example of detecting a critical 2-cell, which is an analogue 
of a local maximum point in the continuous case 

which is also known as the elementary cellular automaton of rule 184 [ 27]. The value 
.U (t+1)

n is determined by the values of 3-neighborhood .U (t)
n−1, .U

(t)
n , and .U (t)

n+1: 

.
U (t)

n−1U
(t)
n U (t)

n+1

U (t+1)
n

= 111

1
,
110

0
,
101

1
,
100

1
,
011

1
,
010

0
,
001

0
,
000

0
. (2.2) 

Note that.101110002 = 18410. We impose the periodic boundary condition. U (t)
n+K =

U (t)
n for all . n and a positive constant .K ∈ Z. Let us define the particle density . ρ by 

. ρ = 1

CK

K−1∑
n=0

U (t)
n .

Note that . ρ is a conserved quantity of the Burgers cellular automaton. Figure 2.7a 
and b show examples of the time evolution of the Burgers cellular automaton with 
.ρ > 0.5 and .ρ < 0.5, respectively. 

. 
For the data .{U (t)

n }T−1
t=0 , we consider the function . g defined by 

.g(n, t) = U (t)
n + (K − n) + Kt

20K (T − t)
, (2.3)



22 S. Tsujimoto et al.

Fig. 2.7 Examples of the time evolution of the Burgers cellular automaton in the case of.C = 1 and 
.K = 20. White and black cells indicate.U (t)

n = 0 and. 1, respectively. a In the case of .ρ > 0.5, the  
steady state is a congested flow state. b In the case of.ρ < 0.5, the steady state is a free flow state. c 
An example of applications of the discrete Morse theory to the states b. Blue, yellow, and red cells 
indicate that the lower star of the cell contains a critical 0-cell, a critical 1-cell, and a critical 2-cell, 
respectively 

where the second term of the right-hand side is perturbation. Figure 2.7c shows an 
example of the result of the algorithm in the previous subsection for this function 
. g. We can observe that critical 2-cells are detected at the points where a traffic jam 
disappears. This can be explained as follows. It is readily shown that the algorithm 
detects a critical 2-cell in a lower star.L(n, t) iff the value.g(n, t) is maximum in the 
Moore neighborhood of the point .(n, t). In addition, under the definition (2.3), 

• .g(ν, τ ) < g(n, t) for. (ν, τ ) = (n, t − 1), (n + 1, t − 1), (n + 1, t), (n + 1, t + 1)
iff .U (τ )

ν ≤ U (t)
n . 

• .g(ν, τ ) < g(n, t) for. (ν, τ ) = (n − 1, t − 1), (n − 1, t), (n − 1, t + 1), (n, t + 1)
iff .U (τ )

ν < U (t)
n . 

Since .U (t)
n ∈ {0, 1}, the condition above implies that the lower star .L(n, t) contains 

a critical 2-cell iff 

. 

⎛
⎝U (t−1)

n−1 U (t−1)
n U (t−1)

n+1

U (t)
n−1 U (t)

n U (t)
n+1

U (t+1)
n−1 U (t+1)

n U (t+1)
n+1

⎞
⎠ =

⎛
⎝0 ∗ ∗
0 1 ∗
0 0 ∗

⎞
⎠ ,

where . ∗ allows either . 0 or . 1. However, from the time evolution rule of the Burgers 
cellular automaton (2.2), the . ∗s above are uniquely determined as 

.

⎛
⎝U (t−1)

n−1 U (t−1)
n U (t−1)

n+1

U (t)
n−1 U (t)

n U (t)
n+1

U (t+1)
n−1 U (t+1)

n U (t+1)
n+1

⎞
⎠ =

⎛
⎝0 1 1
0 1 0
0 0 1

⎞
⎠ .
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Fig. 2.8 a An example of the time evolution of the Burgers cellular automaton in the case of. C = 2
and.K = 20. White, gray, and black cells indicate .U (t)

n = 0, . 1, and . 2, respectively. b An example 
of applications of the discrete Morse theory to the states a using the function defined by (2.3). Blue, 
yellow, and red cells indicate that the lower star of the cell contains a critical 0-cell, a critical 1-cell, 
and a critical 2-cell, respectively. c An example using the function defined by (2.4) instead of (2.3). 
The meaning of color cells are same as in b 

Therefore, a traffic jam disappears at the point.(n, t) iff the lower star.L(n, t) contains 
a critical 2-cell. 

For the case of .C = 2, we can also show almost the same result in the same 
manner. See Fig. 2.8b. As another application, if we consider 

.g(n, t) = U (t)
n + n + Kt

20KT
(2.4) 

instead of (2.3), we can show in a similar manner that critical 2-cells are detected at 
the points where a free flow disappears. See Fig. 2.8c. 

2.3.3 Application to Analysis of Pedestrian Flow 

As a more practical application, we tried to apply the algorithm to the states of a 
pedestrian simulator developed by one of the authors, Zanlungo (see also Sect. 2.5). 
In the simulator, pedestrians are walking in a 2D map that has a crisscross corridor. 
Therefore the simulator generates (.2 + 1)-dimensional (3D) data. From the data, 
we define a simple density function, pick its values on a lattice, construct the input 
function . g with perturbation, and apply the algorithm for 3D lattice. Figure 2.9 
shows an example of the result. At present, since this method detects a large number
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Fig. 2.9 An example of 
applications of the discrete 
Morse theory to the states of 
the pedestrian simulator by 
Zanlungo. Yellow, blue, 
green, and red cells indicate 
that the lower star of the cell 
contains a critical 0-cell, a 
critical 1-cell, a critical 
2-cell, and a critical 3-cell, 
respectively 

of critical cells, we are not able to interpret the result. It is left for future research to 
apply the discrete Morse theory not only to artificial simple data but also to practical 
data. 

2.4 A Traffic Flow Model Using Quantum Walks 

Quantum walk (QW), a quantum version of classical random walk, is widely applied 
to fast search algorithms by using quantum computers and modeling quantum sys-
tems [ 24]. Taking advantage of the flexibility of QWs, many extended QW models 
such as lattice models and many-particle models have been proposed [ 2, 24]. 

As discussed in the previous chapters, classical (non-quantum) particle models 
including cell automata have the potential to represent phenomena of traffic flow, 
and their properties have been studied for a long time. In real-world traffic flows, 
featured phenomena such as free running and congested phases and traffic vibration 
caused by repeated low-speed and high-speed states are known [ 16]. 

Although quantum computing has been widely applied to computational accel-
eration and modeling, quantum models have limited modeling of traffic flows. To 
investigate the applicability of quantum models to traffic flows, this section dis-
cusses how to construct a quantum model of traffic flows using QW, named one-way 
multi-particle quantum walks (OMQW). Also, by simulation, this section presents 
the behaviors of OMQW and displays the basic diagram of OMQW by using the 
“quantity of flow”.
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2.4.1 A Definition of One-Way Multi-particle Quantum Walks 

In this part, we introduce .n-particle discrete-time OMQW to discuss the quantum 
traffic flow model. Intuitively speaking, OMQW has two differences from standard 
discrete-time quantum walks. One is that it is composed of multiple particles (. n
particles), and the other is to introduce unidirectionality to express the flow. Sev-
eral quantum models composed of many particles have already been reported, and 
OMQW now adopts the same approach as Costa et al to handle multiple particles 
[ 8]. They defined the interaction between particles by collision to consider the quan-
tum version of gas model, i.e. collisions between particles occur if multiple particles 
arrive at the same coordinates as a result of movement. Their collision formulation 
is suitable for quantum models because it is unitary. Next, to realize unidirection-
ality, OMQW is a model which expands a quantum walk with two internal degrees 
of freedom, “move forward” and “stay”. These two internal degrees of freedom are 
inspired by TASEP, where these two actions are selected stochastically. Contrast-
ingly, OMQW treats them as states (of the coin) by means of quantum. 

Before defining OMQW, we describe the definition of symbols related to OMQW. 
Let .Hp be a Hilbert space and .Hc be a finite dimensional Hilbert space. Let us 
denote an orthonormal basis in .Hp by .{|x⟩}x∈Z, and an orthonormal basis in . Hc

by .{|c⟩}c∈{0,1}. Then, an orthonormal basis of .Hp ⊗ Hc can be written as . {|x, c⟩ :=
|x⟩ ⊗ |c⟩}x∈Z,c∈{0,1}. By expanding these notation to .n-particle, orthonormal set in 

.Ĥ :=
n⨁

i=1

(Hp ⊗ Hc) can be written as .{|x, c⟩}x=(x1,...,xn)∈Zn ,c=(c1,...,cn)∈{0,1}n . 

OMQW is represented by operators on. Ĥ, because the state transition of OMQW 
is identified by behaviors of . n particles and . n coins. More concretely, one step 
of OMQW consists of three operators: an .n-particle collision operator . T̂ , a shift  
operator . Ŝ, and coin operators .Ĉd . The exact definitions of these three operators are 
a bit complicated, so the overall OMQW definition is described first, and then define 
these operators. 

Definition 2.1 (One-Way Multi-particle Quantum Walks) If any states .|ψt ⟩ ∈ Ĥ at 
time .t ∈ Z≥1 satisfy the following conditions, we say that a dynamics of .|ψt ⟩ is 
one-way multi-particle quantum walk (OMQW). 

1. (Initial condition) The initial state .|ψ0⟩ is given. 
2. (Deterministic initial position) Let .s ∈ Z

n be initial position. For any .x ∈ Z
n , 

.c ∈ {0, 1}n , if .x /= s, then .||⟨x, c|ψ0⟩||2 = 0 holds. 
3. (State transition) The state transition is given by 

.|ψt ⟩ =
∑

d∈{0,1}n
T̂ ŜĈd |ψt−1⟩ (2.5) 

In the rest of this section, we define these three operators consisting of OMQW 
and describe their properties.
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2.4.1.1 Coin Operator 

First of all, let us introduce a coin matrix for one particle.D ∈ U (2), where.U means 
unitary group. We denote the .i-th row . j-th column element in .D by .αi, j ∈ C. Note  
that the index of this matrix starts at zero, i.e. .i, j ∈ 0, 1. 

Let .d ∈ {0, 1} be an index representing the next state of a coin. A coin operator 
for a single particle .Cd : Hp ⊗ Hc → Hp ⊗ Hc is defined as: . Cd := ∑

x∈Z
c∈{0,1}

αd,c

|x, d⟩⟨x, c|. Intuitively, this operation represents the change of the coin state from 
the current state . c to the next state . d. 

The next definition describes the coin operator for multiple particles by extending 
the above coin operator for a single particle. 

Definition 2.2 (Coin operator) For any .d ∈ {0, 1}n , .n-particle coin operator . Ĉd :
Ĥ → Ĥ is defined as: 

.Ĉd :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁
i=1

(Cdi |xi , ci ⟩⟨xi , ci |) (2.6) 

The following properties of the one-/.n-particle coin operator hold. 

• For any .d ∈ {0, 1}n , .x ∈ Z, and .c ∈ {0, 1}, the following equation holds: 

.Cd |x, c⟩ = αd,c|x, d⟩ (2.7) 

• For any .d ∈ {0, 1}n , .x ∈ Z
n , and .c ∈ {0, 1}n , the following equation holds: 

.Ĉd |x, c⟩ =
n⨁

i=1

(Cdi |xi , ci ⟩) = (

n∏
i=1

αdi ,ci )|x, c⟩ (2.8) 

2.4.1.2 Shift Operator 

The shift operator represents the one-time step movement of particles depending on 
the state of the coin. 

Definition 2.3 (Shift operator) A one-particle shift operator. S : Hp ⊗ Hc → Hp ⊗
Hc is defined as: . S := ∑

x∈Z
c∈{0,1}

|x + c, c⟩⟨x, c|
An.n-particle shift operator .Ŝ : Ĥ → Ĥ is defined as: 

.Ŝ :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁
i=1

(S|xi , ci ⟩⟨xi , ci |) (2.9)
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Then, the one-particle/.n-particle shift operator satisfies the following two state-
ments. 

• For any .x ∈ Z and .c ∈ {0, 1}, the following equation holds: . S|x, c⟩ = |x + c, c⟩
• For any.x = (x1, . . . , xn) ∈ Z

n and.c = (c1, . . . , cn) ∈ {0, 1}n , the following equa-
tion holds: 

.Ŝ|x, c⟩ =
n⨁

i=1

(S|xi , ci ⟩) = |x + c, c⟩ (2.10) 

2.4.1.3 Collision Operator 

Before defining the collision operator, we introduce a collision function that repre-
sents whether a particle collides with another particle. Let.i ∈ {1, . . . , n} be an index 
of particle. Collision function .ri : Zn × {0, 1} → {0, 1} is defined as 

.ri (x, c) :=
⎛
1 − c (

∑n
j=1 δxi ,x j i s even)

c (
∑n

j=1 δxi ,x j i s odd)
(2.11) 

where .δ·,· is Kronecker delta. By extending this function to n-particles, a collision 
function for n-particles .r̂ : Zn × {0, 1}n → {0, 1}n is defined as 

.r̂(x, c)i := ri (x, ci ) (2.12) 

where .r̂(x, c)i is .i-th element of .r̂(x, c). 

Definition 2.4 (Collision operator) .n-particle collision operator .T̂ : Ĥ → Ĥ is 
defined as 

.T̂ :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁
i=1

(|xi , ri (x, ci )⟩⟨xi , ci |) (2.13) 

The collision operator describes the change of internal states (“move forward” 
and “stay”) when particles collide. Typically, when two particles are at the same 
coordinates, the state of the particles is flipped. 

The collision operator and function have the following properties: 

• For .i ∈ {1, . . . , n} and .x ∈ Z
n , .ri (x, ·) is bijective. 

• For .x ∈ Z
n , .r̂(x, ·) is bijective. 

• For .x ∈ Z
n , .c ∈ {0, 1}n , applying a collision operator is represented as form: 

.T̂ |x, c⟩ = |x, r̂(x, c)⟩ (2.14)
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• For .x ∈ Z
n , and .c ∈ {0, 1}n , the following equation holds: 

.r̂(x, r̂(x, c)) = c (2.15) 

2.4.2 Probability Distribution of OMQW 

When the positions of particles in OMQW are observed after .t-step time evolution, 
the observation behaves stochastically due to their quantum nature. This quantum 
property of OMQW is derived from the standard single-particle one-dimensional 
QW. The standard QW does not have a property called locality, where probabilities 
concentrate at constant points as time goes to infinity, unlike classical random walks. 
In this section, to confirm the behavior related to the non-locality of OMQW exper-
imentally, we describe the formulation of the probability distribution of positions of 
particles and a computational method of such a probability. 

From the quantum nature, positions .x and internal states . c of particles are 
stochastically observed, and their joint probability at time . t is described as follows: 
.||⟨x, c|ψt ⟩||2. Note that, by the definition related to deterministic initial positions of 
OMQW, observation at .t = 0 should be observed at position . s. 

2.4.2.1 Computation of Probability 

In this section, we derive a recursive formula to compute the probabilities of states 
of OMQW. To express the state on the computer specifically, coefficients of the 
state .at,x,c ∈ C are introduced as .at,x,c := ⟨x, c|ψt ⟩. Since .{|x, c⟩}x∈Zn ,c∈{0,1}n is an 
orthonormal set on . Ĥ, a state .|ψt ⟩ can be represented as follows: 

.|ψt ⟩ =
∑
x∈Zn

c∈{0,1}n
at,x,c|x, c⟩ (2.16) 

By combining these coefficients with the definitions in the previous section, the 
following recursive formula with respect to .at,x,c can be deduced. 

Theorem 2.1 (Recursive expression for .at,x,c) For any .t ∈ Z≥1, x ∈ Z
n, and . c ∈

{0, 1}n, the following equation holds: 

.at,x,c =
∑

c̃∈{0,1}n
at−1,x−r̂(x,c),c̃(

n∏
i=1

αri (x,ci ),c̃i ) (2.17) 

Note that, the reachable area from the initial position in . t steps is limited by . t . 
Let the reachable area be .R(t) ⊂ Zn. If .x ∈ Zn \ R(t), then .at,x,c = 0.
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Fig. 2.10 This figure shows the time evolution of TASEP (left) and OMQW (center) where x-
axis is position and y-axis is time step. Color intensity indicates the expected number of particles 
present at the position. The right figure shows the distributions of particles after 32 steps, these are 
corresponding with the bottom line of left and center figures 

Fig. 2.11 Fundamental diagrams: quantity of flow related to the number of particles and time 
evolution for TASEP and OMQW (OMQW-1). OMQW-2 is experiments for an under periodic 
boundary conditions 

This theorem can be proven by mathematical induction. By using this theorem, 
we can computationally simulate the state after any steps by performing recursively 
calculating with the above formula. 

2.4.3 Simulation 

This section carried out computer simulations on OMQW and TASEP using the 
definition until previous section (Fig. 2.10). These figures show the distributions 
of OMQW and TASEP, which are computed by simulation at 1000 times for each 
time step. The TASEP result shows a unimodal distribution related to the particle 
positions, whose center moves to the right. Contrastingly, the distribution of OMQW 
dividing into two modalities: slow and fast modal. A normal quantum walk is known 
to have two distribution peaks, which are the same as OMQW. A difference point is 
that OMQW constitutes a flow due to the introduction of unidirectionality.
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Next, we introduce “quantity of flow” to discuss its properties as traffic flow. Let 
be position . x and be time . t . Quantity of flow.Qt is defined as 

Qt = 1/N 
N−1∑
0 

max(Ex,t − Ex,t−1, 0) 

where .Ex,t is expectation of the number of particles at time step . t in OMQW, the 
initial position is set at random. 

Figure 2.11 shows the relationship between this quantity, . x , and . t . Comparing 
the results of TASEP and those of OMQW, it can be seen that the quantity of flow 
of OMQW is oscillates related to time . t . These properties, unlike classical models, 
might be used for modeling phenomena in traffic flow. 

2.4.3.1 Summary 

In this section, we discussed applicability of quantum walk to a traffic model. We 
introduced an OMQW model, which is an extension of QW to a traffic flow model. 
In the first experiment, we visualized the flow rate and clarified the basic properties 
of OMQW. In the future, we plan to take advantage of this property and extend it to 
a more realistic and applied model. 

2.5 Pedestrian Flow and Future Perspectives 

Understanding the dynamics of pedestrian crowds is of fundamental importance in a 
plethora of practical applications related to modern life, in particular in large urban 
areas, such as the planning of large-scale events, buildings, transportation hubs [ 14], 
or whole urban areas [ 3], both in normal and emergency situations (e.g. during natural 
disasters, fires, or even during pandemics [ 7]). While most of these applications focus 
on the macroscopic (large-scale) aspects of crowd dynamics, also the understanding 
of how pedestrians behave at the microscopic (individual) level has considerable 
practical relevance, in particular to the field of automatic navigation of cars, robots, 
and other vehicles in urban areas where pedestrians may be present or even dominant 
[ 23, 36], and to safety and surveillance [ 25]. Furthermore, improved understanding of 
microscopic behavior may reflect on the ability of reproducing macroscopic dynam-
ics, as the latter may be strongly influenced by individual dynamics such as those 
determined by belonging to a social group [ 28, 30, 34, 35]. 

Along with the aforementioned practical relevance, crowd dynamics is also of 
extreme theoretical importance, as it may be described as a many-particle system 
(and, in the continuum limit, as a fluid) whose fundamental components are human 
beings, and thus represents a natural arena to try to apply the mathematical methods 
of statistical physics to social systems. Namely, while the relevant observables of
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the problems are the same as in a classical physics system (density, fluid velocity, 
pressure at the macroscopic level, position velocity, acceleration, orientation at the 
microscopic level), the laws determining the dynamics are related to human behavior, 
with all the related challenges that this implies [ 13]. 

The understanding of crowd dynamics relies mainly on three related, but concep-
tually different, scientific challenges: (1) data collection, (2) modeling, and (3) data 
analysis. All three fields have seen considerable improvements in recent years. It is 
nowadays possible to detect and track pedestrian positions in real time, allowing to 
collect a large amount of information concerning pedestrian behavior in controlled 
[ 5] and “ecological” [ 26, 29] settings. These data have obviously inspired mathe-
matical and computational models of pedestrian and crowd behavior, and allowed to 
calibrate such models [ 13]. 

In this project we are mainly interested in the third challenge, data analysis. 
Pedestrian flow presents obviously many common points with the vehicular flow, 
analyzed in Sect. 2.3, but it is inherently more complex than the former. By being 
less strictly regulated than vehicular traffic, and composed of basic units (pedestrians) 
whose motion is less dynamically constrained than that of cars, pedestrian flow is 
a completely 2-dimensional phenomenon, while vehicular flow presents strong 1-
dimensional features, and thus its topological properties are more complex. 

As a result, practical and theoretical applications of discrete Morse theory to 
pedestrian flows are expected to be developed only after the relevant vehicular ones, 
and for this reason in the present section, we necessarily report a research plan more 
than actual accomplishments. Nevertheless, we believe that the contribution of the 
proposed framework to the study of crowd dynamics and pedestrian behavior may 
be extremely relevant and promising. 

While as stated above the pedestrian flow problem is inherently 2-dimensional, 
most literature works focus on simplified settings that basically reduce it to a 1-
dimensional one, such as corridors or bottlenecks [ 1, 9, 10, 19, 22, 37], and as a 
result also the related analysis tools are based on observables that do not rely on the 
2-dimensional structure of space, such as pedestrian density and average speed. 

On the other hand, a recent work [ 31] has introduced a novel metric, congestion 
number .CN , to assess the state of a pedestrian crowd. This metric, being based on 
the magnitude of the gradient of the only non-zero component (i.e. normal to the 
floor) of the rotor of the pedestrian velocity 

.||∇(∇ × v)z|| (2.18) 

(divided by a theoretical reference value to obtain a pure number), is more apt to study 
actual 2-dimensional phenomena, and has proved to provide additional information 
with respect to the traditional 1-dimensional tools. 

The aforementioned theoretical tool has been applied also to a geometrical setting 
that, although being still extremely simple if compared to the complexity of the real 
world, is fully two-dimensional, namely the cross-flow problem, i.e. the dynamics 
of two different pedestrian streams crossing at a non-trivial angle .θ /= nπ (. θ = nπ

corresponding to the well-studied corridor case).
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This problem, and in particular the related formation of self-organized patterns 
(stripes) in the crossing area, has been the object of a few recent contributions, 
focusing on how the dynamics are affected by the angle . θ [ 18] and by pedestrian 
density [ 32], on the ability of different collision avoidance models to reproduce 
the observed dynamics [ 33], and on a mathematical model of the self-organization 
phenomenon [ 4]. 

We believe the cross-flow scenario to be a benchmark to test the potential of 
the discrete Morse theory in studying flow properties that go beyond the vehicular 
applications analyzed in Sect. 2.3. We first of all aim to develop a way to use the 
discrete Morse theory to identify criticalities in the cross-flow scenario that may go 
beyond an analysis based only on density and speed, in a way similar to the results 
achieved by [ 31]. 

After this first goal is achieved, the method may be applied to still poorly under-
stood phenomena. The ultimate challenge is to apply the method to the study of 
real-world data, possibly to understand which geometrical settings and crowd con-
ditions may lead to dangerous circumstances and possibly to casualties. 

While this is an extremely difficult task, an intermediate goal may be to study more 
complex versions of the basic cross-flow scenario, i.e. by increasing the number of 
flows or introducing obstacles [ 6]. 

While, as stated above, this project is aimed at tackling the challenge of “data 
analysis”, such a task cannot be independent of data collection and modeling. We 
will use and further develop the computational models of [ 33] to obtain artificial 
data that may be used to test the proposed discrete Morse theory-based analysis on 
different crowd settings. 

Obviously, while artificial data have the merit of being easily and safely pro-
duced and analyzed, data concerning actual pedestrian behavior are indispensable to 
develop an analysis tool that aims to describe the real world. While in this project 
we will mainly rely on the increasing number of freely available data concerning 
controlled experiments and real-world behavior, we do not discard the possibility 
of performing some simple experiments with human participants explicitly aimed at 
the development of the proposed analysis methods. 
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Chapter 3 
Integrable Systems Related to Matrix L R  
Transformations 

Masashi Iwasaki, Masato Shinjo, Yusaku Yamamoto, Akiko Fukuda, 
Sennosuke Watanabe, Masaki Sekiguchi, and Emiko Ishiwata 

3.1 Introduction 

The definition of integrable systems has been the subject of various discussions. 
However, in applied mathematics, integrable systems can be regarded as a general 
term for systems that precisely grasp some concept, as well as for systems whose 
solutions can be written explicitly. One important development in the study of such 
integrable systems is soliton theory [ 4, 5, 12], which made great strides in the latter 
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Fig. 3.1 An example of discrete-time evolution from.n = 0 to.n = 6 of the BBS 

half of the twentieth century. During an interaction, soliton waves change their shape 
and velocity when the fast wave overtakes the slow wave. However, after an interac-
tion, both waves return to their pre-interaction states. Soliton equations that represent 
these interactions can be discretized with respect to the time variable by skillful man-
ners specific to integrable systems. The motions of soliton waves are typically drawn 
on a computer. The discrete soliton equations can be further simplified by quanti-
zation on the velocity of the soliton. This procedure, called the ultradiscretization, 
has resulted in the so-called box-and-ball systems (BBSs) [ 31], a type of cellular 
automaton. Cellular automata summarize various discrete phenomena by defining 
state-change rules for cells packed in a lattice. For example, they are useful for ana-
lyzing traffic flows to capture the motion of multiple cars. Therefore, we expect that 
BBSs will enrich the mathematical representation of mobility phenomena. 

In the first proposed BBS [ 31], each ball, in order from left to right, moves to the 
nearest empty box to its right along an infinite number of boxes, arranged in a straight 
line without gaps. An example of the discrete-time evolutions of this BBS is shown 
in Fig. 3.1. Interestingly, the velocity of each soliton translates into the number of 
successive balls in each ball group, which can be determined by observation. We can 
describe the motion of. m ball groups under a discrete-time evolution from. n to. n + 1
using the ultradiscrete Toda (udToda) equation: 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(n+1)
k = min

(
k∑

i=1

Q(n)
i −

k−1∑

i=1

Q(n+1)
i , E (n)

k

)

, k = 1, 2, . . . ,m,

Q(n+1)
k + E (n+1)

k = Q(n)
k+1 + E (n)

k , k = 1, 2, . . . ,m − 1,
E (n)
0 := +∞, E (n)

m := +∞,

(3.1) 

where .Q(n)
k and .E (n)

k are the number of successive balls in the . kth ball group from 
the left and the number of successive boxes in the box array between the . kth and 
.(k + 1)th ball groups at discrete-time . n, respectively. The udToda equation (3.1) is  
derived from the ultradiscretization of the discrete Toda (dToda) equation [ 13]: 

.

⎧
⎨

⎩

q(n+1)
k + e(n+1)

k−1 = q(n)
k + e(n)

k , k = 1, 2, . . . ,m,

q(n+1)
k e(n+1)

k = q(n)
k+1e

(n)
k , k = 1, 2, . . . ,m − 1,

e(n)
0 := 0, e(0)

m := 0,
(3.2)
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which is a famous discrete integrable system and has branches in fields other than 
mathematical physics. The soliton behavior in the BBS ascribes conserved quantities 
that remain unchanged under the discrete-time evolution in the udToda equation (3.1). 
Of course, these conserved quantities are derived from the dToda equation (3.2). 
We can capture conserved quantities of the dToda equation (3.2) in the following 
matrix representation that the dToda equation (3.2) satisfies, which is called the Lax 
representation: 

.L(n+1)R(n+1) = R(n)L(n), (3.3) 

.L(n) :=

⎡

⎢
⎢
⎢
⎣

1
e(n)
1 1

. . .
. . .

e(n)
m−1 1

⎤

⎥
⎥
⎥
⎦

, R(n) :=

⎡

⎢
⎢
⎢
⎢
⎣

q(n)
1 1

q(n)
2

. . .

. . . 1
q(n)
m

⎤

⎥
⎥
⎥
⎥
⎦

. (3.4) 

Using the equality of each entry in the Lax representation (3.3), we can easily obtain 
the dToda equation (3.2). Note that.R(n) is nonsingular. Consider.A(n) := L(n)R(n) as 
a tridiagonal matrix. Then we obtain .A(n+1) = R(n)A(n)(R(n))−1, which implies that 
the dToda equation yields the matrix transformations from .A(n) to .A(n+1) without 
changing the eigenvalues. Thus, Lax representations are a good starting point for 
understanding other soliton BBSs. 

Recapturing the Lax representation (3.3) in terms of a numerical technique in 
linear algebra can be regarded as an.LR transformation [ 24], which first decomposes 
.A(n) into a product of lower and upper bidiagonal matrices and then generates. A(n+1)

by inverting the product. The dToda equation can thus generate .LR transformations 
of tridiagonal matrices. In fact, the dToda equation (3.2) is the recursion formula of 
the well-known quotient-difference (qd) algorithm [ 24], which computes symmet-
ric tridiagonal eigenvalues. The qd algorithm was originally designed based on a 
sequence of tridiagonal .LR transformations. 

The discrete Lotka–Volterra (dLV) system [ 33] also has a close relationship with 
tridiagonal.LR transformations. This is consistent with the dToda equation and dLV 
system being linked by a variable transformation called the Bäcklund transformation 
(for the dToda-dLV case, this is specifically the Miura transformation). The dLV 
system is a time-discretization of the predator-prey Lotka–Volterra (LV) system, and 
is expressed using the time-discretization parameter .δ(n) as follows: 

.

{
u(n+1)
k (1 + δ(n+1)u(n+1)

k−1 ) = u(n)
k (1 + δ(n)u(n)

k+1), k = 1, 2, . . . , 2m − 1,
u(n)
0 := 0, u(n)

2m := 0,
(3.5) 

where.u(n)
k corresponds to the number of members of the. kth species at discrete-time 

. n. For  the  . kth species, the dLV system (3.5) assumes that the .(k − 1)th species is 
the predator and the .(k + 1)th species is the prey. A time-delay version of the dLV 
system (3.5) has been formulated by enforcing a time delay before preying and being 
preyed on; this is related to multifold .LR transformations of tridiagonal matrices
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[ 25]. Similar to dToda, the dLV and delayed dLV systems can be applied to compute 
the singular values of bidiagonal matrices, which is the mathematical equivalent of 
computing the eigenvalues of symmetric tridiagonal matrices. Here, we emphasize 
that the .LR transformation perspective transforms nonlinear phenomena into linear 
algebra. 

We now return to the topic of the BBSs. An extension of a simple BBS is a BBS 
with numbered balls, where each ball performs a more complicated motion than 
in the simple BBS [ 32]. This is called a numbered BBS (nBBS) and differs from 
the simple BBS because it is not designed based on the time-discretization of an 
integrable system and its ultradiscretization. The discrete integrable system associ-
ated with the nBBS was actually derived from the inverse ultradiscretization of its 
equation of motion. Considering the hungry extensions of the LV system [ 2, 14, 30] 
and its discretization, the resulting equation was named the discrete hungry Toda 
(dhToda) equation. Hungry LV (hLV) systems, sometimes referred to as Bogoy-
avlenskii lattices, describe multiple predator-prey interactions, which describes one 
species preying on multiple species because it is hungrier. 

The .LR transformation perspective plays a key role in determining the Bäck-
lund transformation between the dhToda equation and one discrete hLV (dhLV) 
system, as does formulating another type of dhToda equation that is different from 
the nBBS-origin equation and is linked to the other dhLV system. In addition, the. LR
transformation perspective is useful to clarify continuous-time analogues of dhToda 
equations [ 27]. Note that the Lax representation is equivalent to the related.LR trans-
formation for dToda, but not for dhTodas. With either approach, the dToda equation 
is translated into a single-matrix equation. In contrast, Lax representations of the 
dhToda equations are a single-matrix equation but .LR transformations related to 
the dhToda equations are expressed using a multiple-matrix equation. Moreover, by 
combining the.LR transformations with another matrix transformation, we can natu-
rally derive nonautonomous versions of the dhToda equations, which are the dhToda 
equations with an arbitrary parameter. 

The remainder of this chapter is organized as follows. In Sect. 3.2, we describe dis-
crete hungry integrable systems, which are dhToda equations, their nonautonomous 
versions, and dhLV systems, using the framework of .LR transformation. We also 
describe the relationship between discrete hungry integrable systems and comput-
ing matrix eigenvalues. In Sect. 3.3, we relate the discrete relativistic Toda (drToda) 
equation to .LR transformations, and clarify the link between the drToda equation 
and dhLV system by taking advantage of the flexibility of the .LR transformation 
perspective. In Sect. 3.4, by considering ultradiscrete analogues of the . L and . R fac-
tors in .LR transformations, we demonstrate that the udToda and udhToda equations 
generate matrix transformations that preserve an eigenvalue over min-plus algebra 
and can be used to compute the eigenvalues of the min-plus matrices. These prop-
erties correspond to the simple BBS and nBBS having conserved quantities under 
discrete-time evolution. In Sect. 3.5, we present an nBBS based on a dhToda equation 
derived from the .LR perspective. Finally, in Sect. 3.6, we give concluding remarks.
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3.2 Discrete Hungry Integrable Systems 

In this section, we first relate two types of dhToda equations to the.LR transformations 
of Hessenberg matrices. We then derive nonautonomous extensions of the dhToda 
equations by introducing shifts in the.LR transformations and show their relationship 
to dhLV systems. We also describe the asymptotic convergence of discrete hungry 
integrable systems as discrete-time tends to infinity. 

3.2.1 Discrete Hungry Toda Equations 

An extension of the dToda equation, the dhToda equation [ 32] is written as 

.

⎧
⎨

⎩

q(n+M)
k + e(n+1)

k−1 = q(n)
k + e(n)

k , k = 1, 2, . . . ,m,

q(n+M)
k e(n+1)

k = q(n)
k+1e

(n)
k , k = 1, 2, . . . ,m − 1,

e(n)
0 := 0, e(n)

m := 0, n = 0, 1, . . . ,
(3.6) 

where .M is a positive integer. We refer to (3.6) as the dhToda-I equation to 
distinguish it from other dhToda equations that will appear later. Note that the 
dhToda-I equation with .M = 1 coincides with the dToda equation (3.2). In gen-
eral, the values of . q and . e are uniquely determined at every discrete-time . n if 
.{q(0)

k }mk=1, {q(1)
k }mk=1, . . . , {q(M−1)

k }mk=1 and.{e(0)
k }m−1

k=1 are given. Using (3.4), we obtain 
the Lax representation of the dhToda-I equation: 

.L(n+1)R(n+M) = R(n)L(n), n = 0, 1, . . . . (3.7) 

By applying the discrete-time evolutions generated by (3.7) to the upper Hessenberg 
matrix .A(n) := L(n)R(n+M−1)R(n+M−2) · · · R(n), we derive 

.A(n+1) = R(n)A(n)(R(n))−1, n = 0, 1, . . . . (3.8) 

This implies that the dhToda-I equation generates.A(1), A(2), . . . with the same eigen-
values as those of .A(0). We can rewrite the similarity transformation (3.8) as  

.

{
A(n) = L(n)(R(n+M−1)R(n+M−2) · · · R(n)),

(R(n+M−1)R(n+M−2) · · · R(n))L(n) = A(n+M).
(3.9) 

Thus, the dhToda-I equation first decomposes .A(n) into the product of a lower bidi-
agonal .L and multiple upper bidiagonal .R factors, and then constructs .A(n+M) by 
swapping the . L and . R factors .M times. Moreover, by observing the entries of .A(n), 
the asymptotic convergence as .n → ∞ of this sequence of .LR transformations can 
be used to compute the eigenvalues of .A(0).
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Theorem 3.1 (Fukuda et al. [ 7]) Suppose that .A(0) is totally nonnegative (TN), that 
is, .q( j)

k > 0 for . j = 0, 1, . . . , M − 1 and .e(0)
k > 0. Then, .A(n) converges to an upper 

triangular matrix as .n → ∞ and 

. lim
n→∞ q(n)

k q(n−1)
k · · · q(n−M+1)

k = λk(A
(0)), k = 1, 2, . . . ,m,

lim
n→∞ e(n)

k = 0, k = 1, 2, . . . ,m − 1,

where .λk(A(0)) denotes the . kth largest eigenvalue of .A(0). 

Another hungry extension of the dToda equation is the dhToda-II equation [ 21] 
and is expressed as 

.

⎧
⎨

⎩

q(n+1)
k + e(n+M)

k−1 = q(n)
k + e(n)

k , k = 1, 2, . . . ,m,

q(n+1)
k e(n+M)

k = q(n)
k+1e

(n)
k , k = 1, 2, . . . ,m − 1,

e(n)
0 := 0, e(n)

m := 0, n = 0, 1, . . . .
(3.10) 

As for the dhToda-I equation, the dhToda-II equation with .M = 1 is the dToda 
equation (3.2). However, the dhToda-II equation differs from the dhToda-I equa-
tion in that the initial values required to uniquely determine all . q and. e are . {q(0)

k }mk=1

and .{e(0)
k }m−1

k=1 , {e(1)
k }m−1

k=1 , . . . , {e(M−1)
k }m−1

k=1 rather than . {q(0)
k }mk=1, {q(1)

k }mk=1, . . . ,

{q(M−1)
k }mk=1 and .{e(0)

k }m−1
k=1 . Additionally, in the Lax representation of the dhToda-

II equation, an arbitrary .M appears in the superscript of the . L factor instead of the 
. R factor, as follows: 

.L(n+M)R(n+1) = R(n)L(n), n = 0, 1, . . . . (3.11) 

Preparing the lower Hessenberg matrix .A(n) := L(n)L(n+1) · · · L(n+M−1)R(n) shows 
that the dhToda-II equation yields a sequence of matrices with the same eigenvalues 
as those of .A(0). This is because (3.11) leads to .A(n+1) = (L(n))

−1
A(n)L(n) for . n =

0, 1, . . . . Moreover, (3.11) leads to 

. 

{
A(n) = (L(n)L(n+1) · · · L(n+M−1))R(n),

R(n)(L(n)L(n+1) · · · L(n+M−1)) = A(n+M),

where the number of . L and .R factors is reversed compared with in (3.9). Here, we 
emphasize that (3.10) was originally formulated from an .LR transformation rather 
than realistic dynamics. As .n → ∞, the dhToda-II equation exhibits asymptotic 
convergence similar to that described in Theorem 3.1.
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Theorem 3.2 (Nishiyama et al. [ 21]) Suppose that .A(0) is TN, that is, .q(0)
k > 0 and 

.e( j)
k > 0 for . j = 0, 1, . . . , M − 1. Then, .A(n) converges to a lower triangular matrix 
as .n → ∞ and 

. lim
n→∞ q(n)

k = λk(A
(0)), k = 1, 2, . . . ,m,

lim
n→∞ e(n)

k = 0, k = 1x, 2, . . . ,m − 1.

3.2.2 Nonautonomous Discrete Hungry Integrable Systems 

We now consider the.LR transformations of upper Hessenberg matrices. Introducing 
shifts into the .LR transformations is useful for accelerating convergence. A shifted 
version of (3.9) is given by 

.

{
A(n) − s(n) I = L̂(n)

0 R̂(n),

R̂(n) L̂(n)
0 + s(n) I = A(n+M),

(3.12) 

where .L̂(n)
0 is a lower bidiagonal matrix, .R̂(n) is an upper triangle matrix, and . s(n)

denotes the shift parameter. Since .A(n+M) = (L̂(n)
0 )−1A(n) L̂(n)

0 in (3.12), the eigen-
values of .A(n+M) are identical to those of .A(n). Such a shift, which does not change 
the eigenvalues, is called an “implicit” shift. In contrast, an “explicit” shift changes 
the eigenvalues. We can verify that the implicit-shift .LR transformation (3.12) is  
generated by a pair of .LR and .LL transformations, such that 

.

{
L̂(n)

ℓ+1R
(n+M+ℓ) = R(n+ℓ) L̂(n)

ℓ , ℓ = 0, 1, . . . , M − 1,
L̂(n,0)
0 L(n+M) = L(n) L̂(n)

M ,
(3.13) 

where .L̂(n)
ℓ are bidiagonal matrices involving new variables .ê(n)

ℓ,k and are given by 

. L̂(n)
ℓ =

⎡

⎢
⎢
⎢
⎣

1
ê(n)
ℓ,1 1

. . .
. . .

ê(n)
ℓ,m−1 1

⎤

⎥
⎥
⎥
⎦

.

Using the entry identities and boundary conditions in (3.13), we can derive a recursion 
formula involving an arbitrary .s(n):
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. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(n+M+ℓ)
k + ê(n)

ℓ+1,k−1 = q(n+ℓ)
k + ê(n)

ℓ,k , k = 1, 2, . . . ,m, ℓ = 0, 1, . . . , M − 1,
q(n+M+ℓ)
k ê(n)

ℓ+1,k = q(n+ℓ)
k+1 ê(n)

ℓ,k , k = 1, 2, . . . ,m, ℓ = 0, 1, . . . , M − 1,
e(n+M)
k + ê(n)

0,k = e(n)
k + ê(n)

M,k, k = 1, 2, . . . ,m − 1,

ê(n)
0,1 = q(n)

1 q(n+1)
1 · · · q(n+M−1)

1

q(n)
1 q(n+1)

1 · · · q(n+M−1)
1 − s(n)

e(n)
1 ,

e(n+M)
k ê(n)

0,k+1 = e(n)
k+1ê

(n)
M,k, k = 1, 2, . . . ,m − 1,

ê(n)
ℓ,0 := 0, ê(n)

ℓ,m := 0, ℓ = 0, 1, . . . , M − 1,
e(n)
0 := 0, e(n)

m := 0.
(3.14) 

Since (3.14) with .s(n) = 0 simplifies to the dhToda-I equation, we can regard (3.14) 
as a nonautonomous dhToda-I equation with an arbitrary parameter. As.n → ∞, the  
nonautonomous dhToda-I equation exhibits the same asymptotic convergence to the 
upper Hessenberg eigenvalues as (3.6). 

Theorem 3.3 (Fukuda et al. [ 10]) Suppose that .A(0) is TN, that is, .q(0)
k > 0 and 

.e( j)
k > 0 for . j = 0, 1, . . . , M − 1. If  .s(nM) < λm(A(0)) for .n = 0, 1, . . . , then the 
following holds: 

. lim
ℓ→∞ q(ℓM)

k q(ℓM+1)
k · · · q(ℓM+M−1)

k = λk(A
(0)), k = 1, 2, . . . ,m,

lim
ℓ→∞ e(ℓM)

k = 0, k = 1, 2, . . . , ,m − 1.

The shift strategy and its effect on the computation of eigenvalues can be found 
in [ 11]. 

Similar to the dhToda-I equation, considering the implicit-shift.LR transformation 
of the lower Hessenberg matrices yields the nonautonomous dhToda-II equation with 
an arbitrary .s(n) [ 28]: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e(n+1)
ℓ,k−1 + q̂(n)

ℓ+1,k = e(n)
ℓ,k + q̂(n)

ℓ,k , k = 1, 2, . . . ,m, ℓ = 0, 1, . . . , M − 1,
e(n+1)
ℓ,k q̂(n)

ℓ+1,k = e(n)
ℓ,k q̂

(n)
ℓ,k+1, k = 1, 2, . . . ,m − 1, ℓ = 0, 1, . . . , M − 1,

q(n+1)
k + q̂(n)

0,k+1 = q(n)
k+1 + q̂(n)

M,k, k = 1, 2, . . . ,m,

q̂(n)
0,1 = q(n)

1 − s(n),

q(n+1)
k q̂(n)

0,k = q(n)
k q̂(n)

M,k, k = 1, 2, . . . ,m,

e(n)
ℓ,0 := 0, e(n)

ℓ,m := 0.
(3.15) 

We can rewrite the discrete-time evolutions generated by (3.15) using  the  .LR and 
.RR transformations as



3 Integrable Systems Related to Matrix L R Transformations 43

.

{
L(n+1)

ℓ R̂(n)
ℓ+1 = R̂(n)

ℓ L(n)
ℓ , ℓ = 0, 1, . . . , M − 1,

R(n+1) R̂(n)
0 = R̂(n)

M R(n),
(3.16) 

L(n)
ℓ := 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

1 
e(n)
ℓ,1 1 

. . . . . . 
e(n)
ℓ,m−1 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, R̂(n)
ℓ := 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

q̂(n)
ℓ,1 1 

q̂(n)
ℓ,2 

. . . 

. . . 1 
q̂(n)

ℓ,m 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

. 

Moreover, a combination of .LR and .RR transformations leads to the implicit-shift 
lower Hessenberg .LR transformation from.A(n) to .A(n+1): 

. 

{
A(n) − s(n) I = L̂(n) R̂(n)

0 ,

R̂(n)
0 L̂(n) + s(n) I = A(n+M),

where .L̂(n) is a lower triangular matrix and .R̂(n)
0 is an upper bidiagonal matrix. 

Expressing the solution to the nonautonomous dhToda-II equation using determi-
nants, and examining their asymptotic expansions as .n → ∞, we can clarify the 
asymptotic convergence for the nonautonomous dhToda-II equation as.n → ∞with-
out restricting .A(0) to being TN. 

Theorem 3.4 (Shinjo et al. [ 28]) If .q(0)
k /= 0 and .e(0)

ℓ,k /= 0 for .ℓ = 0, 1, . . . , M − 1, 
then 

. lim
n→∞ q(n)

k = λk(A
(0)), k = 1, 2, . . . ,m,

lim
n→∞ e(n)

ℓ,k = 0, k = 1, 2, . . . ,m − 1, ℓ = 0, 1, . . . , M − 1,

lim
n→∞ q̂(n)

ℓ,k = λk(A
(0)) − s∗, k = 1, 2, . . . ,m, ℓ = 0, 1, . . . , M,

where .s∗ is a constant such that .s(n) → s∗ as .n → ∞. 

For the nonautonomous dhToda-I equation, we can also obtain a convergence 
theorem similar to Theorem 3.4 by analyzing the determinant solution. 

We now introduce new variables.u(n)
k that comprise the nonautonomous dhToda-II 

variables: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(n)
k = u(n)

(M+1)(k−1)+1

M∏

j=1

(1 + δ(n)u(n)

(M+1)(k−1)+1− j ),

e(n)
ℓ−1,k = u(n)

(M+1)(k−1)+ℓ+1

M∏

j=1

(1 + δ(n)u(n)

(M+1)(k−1)+ j+1− j ),

q̂(n)
ℓ,k = 1

δ(n)

M∏

j=0

(1 + δ(n)u(n)

(M+1)(k−1)+ j+1− j ).

(3.17)
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Applying (3.17) to (3.15), we derive a dhLV system: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n+1)
k

M∏

j=1

(1 + δ(n+1)u(n+1)
k− j ) = u(n)

k

M∏

j=1

(1 + δ(n)u(n)
k+ j ),

k = 1, 2, . . . , (M + 1)m − M,

u(n)
ℓ−M := 0, u(n)

(M+1)m+ℓ−M := 0, ℓ = 1, 2, . . . , M, n = 0, 1, . . . .

(3.18) 

Equation (3.18) is the Bäcklund transformation between the nonautonomous dhToda-
II equation and dhLV system. We can systematically find this Bäcklund transforma-
tion from the perspective of the.LR transformation. Details of Bäcklund transforma-
tions between the nonautonomous dhToda-I equation and dhLV systems can be found 
in [ 9, 26]. Combining these Bäcklund transformations with Theorems 3.3 and 3.4, 
we can also obtain convergence theorems for dhLV systems. 

3.3 Discrete Relativistic Toda Equation 

The relativistic Toda equation is a Poincaré-invariant generalization of the Toda equa-
tion. Since its introduction by Ruijsenaars [ 23], it has received considerable attention, 
and various studies have been conducted on its integrability [ 23], special solutions 
[ 3, 22], integrable discretization [ 29] and its solutions [ 18, 19], Lax representations 
[ 29], and application to numerical algorithms [ 19]. In this section, we consider the 
following nonautonomous discrete relativistic Toda (drToda) equation [ 20, 36]: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a(n+1)
k + s(n+1)(1 + b(n+1)

k ) = a(n)
k

1 + b(n)
k+1

1 + b(n)
k

+ s(n)(1 + b(n)
k+1), k = 0, 1, . . . , K − 1,

a(n+1)
k−1 b(n+1)

k = a(n)
k b(n)

k

1 + b(n)
k+1

1 + b(n)
k

, k = 1, 2, . . . , K − 1,

b(n)
0 := 0, n = 0, 1, . . . ,

(3.19) 

where .a(n)
k and .b(n)

k are variables at the . kth grid point at discrete-time . n and . s(n)

is a scalar parameter that can be chosen arbitrarily for each . n. We consider this 
equation from the perspective of a shifted.LR transformation so that we can discuss 
its derivation, Lax representation, relationship with other discrete integrable systems, 
and conserved quantities in an elementary and unified manner.
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3.3.1 Derivation from the Perspective of a Shifted L R 
Transformation 

We derive the nonautonomous drToda equation from the autonomous drToda equa-
tion, which is given by 

. 

⎧
⎨

⎩

u(n)
k + v

(n+1)
k = u(n+1)

k + v
(n)
k+1, k = 0, 1, . . . , K − 1,

u(n+1)
k v

(n)
k = u(n)

k−1v
(n+1)
k , k = 1, 2, . . . , K − 1,

v
(n)
0 := 0, n = 0, 1, . . . .

This resembles the discrete Toda equation, except for the differences in the indices. 
Its Lax representation is given by 

.R(n)(L(n))−1 = (L(n+1))−1R(n+1), n = 0, 1, . . . , (3.20) 

where 

.R(n) =

⎡

⎢
⎢
⎢
⎢
⎣

u(n)
0 1

u(n)
1

. . .

. . . 1
u(n)
K−1

⎤

⎥
⎥
⎥
⎥
⎦

, L(n) =

⎡

⎢
⎢
⎢
⎣

1
v

(n)
1 1

. . .
. . .

v
(n)
K−1 1

⎤

⎥
⎥
⎥
⎦

. (3.21) 

Equation (3.20) can be viewed as an .LR transformation of the structured matrix 
.A(n) := (

L(n)
)−1

R(n). 
We now introduce a shift into the .LR transformation (3.20). To simplify the 

notation, we denote the variables at discrete-time . n without an asterisk, and those 
at discrete-time .n + 1 with an asterisk. The shifted .LR transformation can then be 
written as follows: 

.A − s I = L̆ R̆, (3.22) 

.R̆ L̆ + s I = A∗. (3.23) 

Here, (3.22) decomposes the shifted matrix.A − s I into a product of. L and. R factors, 
and (3.23) forms the matrix .A∗ at the next time step by reversing the order of the 
product and re-adding the shift. Interestingly, we can show that if the matrix . A can 
be written as .A = L−1R, then .A∗ can also be written as .A∗ = (L∗)−1R∗, where . L∗
and .R∗ are of the form of (3.21). Furthermore, the structures of .L̆ and .R̆ can be 
identified as follows. 

Lemma 3.1 (Yamamoto et al. [ 36]) Let .L = I + L ' and .R = D + J , where . J is 
an upper bidiagonal matrix with zeros on the diagonal and ones on the upper sub-
diagonal. Then, the matrices .L̆ and .R̆ defined by (3.22) with .A = L−1R can be 
expressed as
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.R̆ = D̆ + J, (3.24) 

.L̆ = (I + L ')−1(I − sL ' D̆−1), (3.25) 

where .D̆ is the solution to the matrix equation: 

.D̆ = D − s(I − L ' D̆−1 J ). (3.26) 

Now, we can write the two steps of the shifted .LR transformation (3.22) and 
(3.23) as  

.L−1R − s I = L̆ R̆, (3.27) 

.R̆ L̆ + s I = (L∗)−1R∗, (3.28) 

.(L∗)−1R∗ − s∗ I = L̆∗ R̆∗, (3.29) 

.R̆∗ L̆∗ + s∗ I = (L∗∗)−1R∗∗, (3.30) 

where the symbols with double asterisks denote the variables at discrete-time.n + 2. 
Then, we can regard . L̆ and .R̆ as basic variables and consider (3.28) and (3.29) as  
the equations that govern their discrete-time evolutions. Equations (3.28) and (3.29) 
can be rewritten as 

.R̆ L̆ − (s∗ − s)I = L̆∗ R̆∗. (3.31) 

This can be viewed as an explicitly shifted .LR transformation with the shift .s∗ − s. 
By changing the variables from.L ' to .L̃ ' := −L ' D̆−1, we can rewrite (3.25) as  

.L̆ = (I − L̃ ' D̆)−1(I + s L̃ '). (3.32) 

By substituting (3.24) and (3.32) into (3.31), we can express the explicitly shifted 
.LR transformation in terms of .D̆ and . L̃ ': 

. (D̆ + J )(I − L̃ ' D̆)−1(I + s L̃ ') + s I

= (I − L̃∗' D̆∗)−1(I + s∗ L̃∗')(D̆∗ + J ) + s∗ I. (3.33) 

Although this appears to be a complicated matrix equality, we can show that if the 
equalities between the diagonal entries and between the lower sub-diagonal entries 
hold, then equality automatically holds for the entire matrix. This leads to the fol-
lowing lemma. 

Lemma 3.2 (Yamamoto et al. [ 36]) Equation (3.33) is a combination of the follow-
ing two equations:
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.(I + J L̃ ')(D̆ + s I ) = (D̆∗ + s∗ I ) + L̃∗'(D̆∗ + s∗ I )J, (3.34) 

.(I + J L̃ ')(D̆ L̃ ') = (L̃∗' D̆∗)(I + J L̃ '). (3.35) 

Here, (3.34) and (3.35) represent the equality between the diagonal entries and 
between the lower sub-diagonal entries, respectively. 

To rewrite (3.34) and (3.35) entry-by-entry, let 

. D̆ =

⎡

⎢
⎢
⎢
⎣

a0
a1

. . .

aK−1

⎤

⎥
⎥
⎥
⎦

, L̃ ' =

⎡

⎢
⎢
⎢
⎣

0
b1 0

. . .
. . .

bK−1 0

⎤

⎥
⎥
⎥
⎦

,

b0 = bK = 0, (3.36) 

and assume the same expressions for the variables with asterisks. Then, (3.34) 
and (3.35) can be rewritten as 

.(1 + bk+1)(ak + s) = (a∗
k + s∗) + b∗

k (a
∗
k−1 + s∗), k = 0, 1, . . . , K − 1, (3.37) 

.(1 + bk+1)akbk = a∗
k−1b

∗
k (1 + bk), k = 1, 2, . . . , K − 1. (3.38) 

Equation (3.38) is the second equation of (3.19). Rewriting (3.37) and using (3.38), 
we obtain 

. a∗
k + s∗(1 + b∗

k ) = ak(1 + bk+1) − a∗
k−1b

∗
k + s(1 + bk+1)

= ak(1 + bk+1) − akbk
1 + bk+1

1 + bk
+ s(1 + bk+1)

= ak
1 + bk+1

1 + bk
+ s(1 + bk+1), k = 0, 1, . . . , K − 1, (3.39) 

which is the first equation of (3.19). We summarize this observation as the main 
theorem of this section. 

Theorem 3.5 ([ 36]) One step of the nonautonomous drToda equation is equivalent 
to the explicitly shifted LR transformation (3.31), where . L̆ and . R̆ are given by (3.32) 
and (3.24), respectively, and .D̆ and .L̃ ' are given by (3.36). 

This theorem enables us to derive a condition on . s to ensure the absence of a 
breakdown in the discrete-time evolution and the positivity of the variables. Further 
details can be found in [ 36].
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3.3.2 Relationship with the Discrete Hungry Lotka–Volterra 
System 

From the discussion in Sect. 3.3.1, we know that the nonautonomous drToda equation 
can be expressed by two equivalent systems. The first is to use. L̆ and. R̆ (or.D̆ and. L̃ ') 
as the basic variables and (3.28) and (3.29) (or  (3.38) and (3.39)) as the equations 
for discrete-time evolution. The second is to use .L and .R as the basic variables 
and use (3.27) and (3.28) for the discrete-time evolution. These two systems can be 
interchanged using (3.27) as the change-of-variables formula. 

Using this fact, we can construct a Bäcklund transformation between the drToda 
equation (3.19) and dhLV system (3.18). To illustrate this, note that the dhLV system 
can be expressed as the following implicitly shifted .LR transformation [ 6]: 

. 

{
L1L2 · · · LM R − s I = L̆ R̆,

R̆ L̆ + s I = L∗
1L

∗
2 · · · L∗

M R∗,

where .Li for .i = 1, 2, . . . , M and . R are given by 

. Li =

⎡

⎢
⎢
⎢
⎣

1
ei,1 1

. . .
. . .

ei,m−1 1

⎤

⎥
⎥
⎥
⎦

, R =

⎡

⎢
⎢
⎢
⎢
⎣

q1 1

q2
. . .

. . . 1
qm

⎤

⎥
⎥
⎥
⎥
⎦

.

Consider the special case where .m = K , .M = K − 1, and only one lower sub-
diagonal entry, .ei,K−i , is nonzero in each . Li . Thus, we have 

. L1L2 · · · LM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
−eK−1,1 1

. . .
. . .

−e2,K−2 1
−e1,K−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1

.

For this particular case, the dhLV system has the same form as that of (3.27) 
and (3.28). The relationship between the dhLV and drToda variables (expressed 
in terms of . L and . R) is  

.qk = uk−1, k = 1, 2, . . . , K , (3.40) 

.eK−k,k = −vk, k = 1, 2, . . . , K − 1. (3.41) 

The dhLV variables can also be related to the drToda variables expressed in terms 
of .D̆ and . L̃ '. To this end, we note the following relationship between the drToda 
variables:
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.uk = ak + s(1 + bk), n = 0, 1, . . . , K − 1, (3.42) 

.vk = −ak−1bk, k = 1, 2, . . . , K − 1. (3.43) 

Equation (3.42) is an entry-wise representation of (3.26), while (3.43) follows from 
.L̃ ' := −L ' D̆−1. Substituting these equations into (3.40) and (3.41) yields the Bäck-
lund transformation between the dhLV variables and drToda variables in (3.19): 

.qk = ak−1 + s(1 + bk−1), k = 1, 2, . . . , K , (3.44) 

.eK−k,k = ak−1bk, k = 1, 2, . . . , K − 1, (3.45) 

.ei,k = 0, i /= K − k, k = 1, 2, . . . , K − 1. (3.46) 

Finally, as an application of this Bäcklund transformation, we present the conserved 
quantities of the drToda equation. Because the conserved quantities of the dhLV 
system are known as functions of . q and . e variables [ 15], we only need to rewrite 
them in terms of the drToda variables using (3.45) and (3.46). The result is given by 
the following theorem. 

Theorem 3.6 Let .U1,U2, . . . ,U2K−1 be defined by 

. 

{
U2i−1 = ai−1 + s(1 + bi−1), i = 1, 2, . . . , K ,

U2i = ai−1bi , i = 1, 2, . . . , K − 1,

and define the relational operator .<< as 

. i << j ⇔ i + mod(i + 1, 2) + 2 ≤ j.

Then, 

. Cp =
∑

1≤i1<<i2<<···<<i p≤2K−1

Ui1Ui2 · · ·Uip , p = 1, 2, . . . , K

are conserved quantities of the drToda equation (3.19). 

Viewing a discrete integrable system from the perspective of a shifted .LR trans-
formation makes determining its relationship with other discrete integrable systems 
and exploiting the results obtained for the latter easier. The Bäcklund transformation 
and conserved quantities derived in this subsection illustrate the effectiveness of this 
approach. 

3.4 Ultradiscrete Toda Equation 

In this section, we demonstrate that the eigenvalues of matrices can be obtained using 
the discrete-time evolution of the udToda equation (3.1). The discussion here does 
not consider eigenvalues over ordinary linear algebra, but over min-plus algebra. In
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other words, we clarify a min-plus analogue of the qd algorithm for linear eigenvalue 
computation. 

3.4.1 Min-Plus Algebra 

Min-plus algebra is a commutative and idempotent semiring and is closely related 
to weighted directed graphs constructed with sets of nodes and directed edges with 
weights. Let .Rmin := R ∪ {+∞}. For .a, b ∈ Rmin, min-plus algebra has two binary 
operations: 

. 

{
a ⊕ b = min{a, b},
a ⊗ b = a + b.

Here,. ⊕ and. ⊗ are both associative and commutative;. ⊗ is distributive with respect to 
. ⊕; and.ε := +∞ and.e := 0 are the identities with respect to.⊕ and. ⊗, respectively. 
Moreover, let .⊘ be the inverse of .⊗ such that .a ⊗ b ⊘ b = a. 

The set of all .m-by-. n min-plus matrices is denoted as .Rm×n
min . For . A = (ai j ), B =

(bi j ) ∈ R
m×m
min , the matrix sum .A ⊕ B = ([A ⊕ B]i j ) and product . A ⊗ B = ([A ⊗

B]i j ) are respectively given by 

. 

⎧
⎪⎨

⎪⎩

[A ⊕ B]i j = ai j ⊕ bi j = min{ai j , bi j },

[A ⊗ B]i j =
m⊕

ℓ=1

(aiℓ ⊗ bℓj ) = min
ℓ=1,2,...,m

{aiℓ + bℓj }.

The following definition provides reasonable min-plus analogues for eigenvalues and 
eigenvectors. 

Definition 3.1 For .A ∈ R
m×m
min , if  .λ ∈ Rmin and the vector .x ∈ R

m
min, which is not 

equal to .(ε, ε, . . . , ε)T, satisfy 

. A ⊗ x = λ ⊗ x,

then. λ and. x are an eigenvalue of. A and its corresponding eigenvector, respectively. 

The following definition provides the min-plus analogue of determinants. 

Definition 3.2 The tropical determinant .tropdet(A) of .A ∈ R
m×m
min is defined as 

. tropdet(A) :=
⊕

σ∈Sm
a1σ(1) ⊗ a2σ(2) ⊗ · · · ⊗ amσ(m),

where.Sm denotes the symmetric group of permutations of .{1, 2, . . . ,m}. Moreover, 
the characteristic polynomial . f A(λ) for .A ∈ R

m×m
min is given by
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. f A(λ) := tropdet(A ⊕ λ ⊗ I ),

where . I denotes the .m-by-.m identity matrix, the .(i, j) entry of which is . 0 if . i = j
or . ε otherwise. 

Proposition 3.1 (Maclagan-Sturmfels [ 17]) The characteristic polynomial. f A(λ) of 
.A ∈ R

m×m
min is factorized as 

. f A(λ) ≡(λ ⊕ p1)
q1 ⊗ (λ ⊕ p2)

q2 ⊗ · · · ⊗ (λ ⊕ pk)
qk ,

where .p1 < p2 < · · · < pk, .q1 + q2 + · · · + qk = m, and the symbol “. ≡” indicates 
that the graphs of the functions are equal. The minimum root .p1 of . f A(λ) coincides 
with the eigenvalue of . A. 

For a weighted digraph. G involving. m vertices, the entries of the.m-by-. mweighted 
adjacency matrix .A(G) = (ai j ) ∈ R

m×m
min are given by 

. ai j =
{

w(e), if e = (vi , v j ) ∈ E,

ε, otherwise.

Conversely, for any .A ∈ R
m×m
min , there exists a weighted digraph .G(A) whose 

weighted adjacency matrix is . A. In a circuit .C on a weighted digraph .G(A), the  
number of edges and sum of edge weights are referred to as the length .ℓ(C) and 
weight .w(C) of . C , respectively. The average weight .wave(C) is the ratio of the 
weight .w(C) to the length .ℓ(C): 

. wave(C) = w(C)

ℓ(C)
.

The following theorem provides an interesting relationship between the eigenvalue 
of .A ∈ R

m×m
min and the average weight of the circuits on the weighted digraph .G(A). 

Theorem 3.7 (Baccelli et al. [ 1]) Let the weighted digraph .G(A) be strongly con-
nected. Then, the weighted adjacency matrix .A(G) only has one eigenvalue. More-
over, the minimum value of the average weights of the circuits in .G(A) coincides 
with the eigenvalue of .A(G). 

3.4.2 Relationship with Min-Plus Eigenvalue 

The ultradiscrete Toda (udToda) equation (3.1) is obtained by applying variable 
transformations.q(n)

k = e−Q(n)/ε and.e(n)
k = e−E (n)/ε to the dToda equation (3.2), taking 

the logarithm, multiplying both sides by . ε, and taking the limit .ε → +0. Using  the  
notation of min-plus algebra, that is, .⊕ and. ⊗, the udToda equation can be rewritten 
as
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. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(n+1)
k =

k⊗

j=1

Q(n)
j ⊘

k−1⊗

j=1

Q(n+1)
j ⊕ E (n)

k , k = 1, 2, . . . ,m,

E (n+1)
k = Q(n)

k+1 ⊗ E (n)
k ⊘ Q(n+1)

k , k = 1, 2, . . . ,m − 1,
E (n)
0 := ε, E (n)

m := ε, n = 0, 1, . . . .

Let.L(n) and.R(n) in.R
m×m
min be ultradiscrete analogues of.(R(n))T and.(L(n))T in (3.3), 

respectively. 

.L(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q(n)
1 ε · · · · · · ε

e Q(n)
2

. . .
...

ε
. . .

. . .
. . .

...
...

. . .
. . .

. . . ε

ε · · · ε e Q(n)
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, R(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e E (n)
1 ε · · · ε

ε e E (n)
2

. . .
...

...
. . .

. . .
. . . ε

...
. . .

. . . E (n)
m−1

ε · · · · · · ε e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.47) 

Similar to the discrete case, we define the tridiagonal matrix .A(n) ∈ R
m×m
min as the 

product of .L(n) and .R(n): 

. A(n) := L(n) ⊗ R(n)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q(n)
1 Q(n)

1 ⊗ E (n)
1 ε · · · ε

e Q(n)
2 ⊕ E (n)

1 Q(n)
2 ⊗ E (n)

2

. . .
...

ε
. . .

. . .
. . . ε

...
. . .

. . .
. . . Q(n)

m−1 ⊗ E (n)
m−1

ε · · · ε e Q(n)
m ⊕ E (n)

m−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To characterize the eigenvalues of .A(n) without the corresponding weighted 
digraph, we consider the characteristic polynomials of the min-plus tridiagonal matri-
ces .A(n). 

Theorem 3.8 (Watanabe et al. [ 34]) The characteristic polynomials . fA(n) (λ) of the 
tridiagonal matrices .A(n) ∈ R

m×m
min can be factorized as 

. fA(n) (λ) = (λ ⊕ Q(n)
1 ) ⊗ (λ ⊕ Q(n)

2 ⊕ E (n)
1 ) ⊗ · · · ⊗ (λ ⊕ Q(n)

m ⊕ E (n)
m−1).

Theorem 3.8 suggests that .Q(n)
1 , .Q(n)

2 ⊕ E (n)
1 , .. . . , .Q(n)

m ⊕ E (n)
m−1 are the roots of 

the characteristic polynomial . fA(n) (λ). From Proposition 3.1, the minimum root of 
. fA(n) (λ) is an eigenvalue of .A(n). Thus, we can express the eigenvalues .λ(n) using 
udToda variables:
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.λ(n) =
m⊕

k=1

Q(n)
k ⊕

m−1⊕

k=1

E (n)
k . (3.48) 

The right-hand side of (3.48) coincides with the conserved quantities of the udToda 
equation [ 32]. This means that.λ(n) is a constant, that is, it is independent of discrete-
time . n. Thus, the eigenvalue .λ = λ(0) of the tridiagonal .Rm×m

min matrix .A(0) is given 
by the right-hand side of (3.48) for any discrete-time. n. In the BBS, the interchange 
of ball groups terminates at a sufficiently large discrete-time . n. Simultaneously, 
the number of empty boxes between two neighboring ball groups monotonically 
increases as . n increases. Recall that .Q(n)

k corresponds to the number of successive 
balls in the. kth ball group. A property of the values of.Q(n)

k and.E (n)
k [ 32] is that there 

exists a discrete-time .N such that, for any .n ≥ N , the following holds: 

.Q(n)
1 ≤ E (n)

k , k = 1, 2, . . . ,m − 1, (3.49) 

.Q(n)
1 ≤ Q(n)

2 ≤ · · · ≤ Q(n)
m . (3.50) 

This implies that for a sufficiently large . n, .Q(n)
1 is equal to the minimum value of 

all udToda variables. Combining (3.49) and (3.50) with (3.48) leads to the following 
theorem. 

Theorem 3.9 (Watanabe et al. [ 34]) For the eigenvalue . λ of .A(0) ∈ R
m×m
min , the fol-

lowing holds for .n ≥ N: 

. λ = Q(n)
1 .

Under the initial condition that.Q(0)
1 ,.Q(0)

2 ,.. . . , .Q(0)
m and.E (0)

1 ,.E (0)
2 ,.. . . , .E (0)

m−1 are 
provided by the tridiagonal matrices .A(0) ∈ R

m×m
min , the udToda equation generates 

matrix transformations of .A(0) without changing an eigenvalue, and then makes 
the values of .Q(n)

1 equal to the eigenvalue after sufficient discrete-time evolution. 
Furthermore, in the weighted digraph .G(A(0)), the  value of  .Q(n)

1 for a sufficiently 
large . n is equal to the minimum value of the average weights of all circuits. 

The ultradiscrete hungry Toda-I (udhToda-I) equation, which is a hungry extension 
of the ultradiscrete Toda equation, can also be related to eigenvalues over the min-
plus algebra in a similar manner as for the udToda equation. The udhToda-I equation 
is obtained by the ultradiscretization of the dhToda-I equation (3.6) as follows:  

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(n+M)
k =

k⊗

j=1

Q(n)
j ⊘

k−1⊗

j=1

Q(n+M)
j ⊕ E (n)

k , k = 1, 2, . . . ,m,

E (n+1)
k = Q(n)

k+1 ⊗ E (n)
k ⊘ Q(n+M)

k , k = 1, 2, . . . ,m − 1,
E (n)
0 := ε, E (n)

m := ε, n = 0, 1, . . . .

(3.51)
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We define the lower Hessenberg matrix.A(n) ∈ R
m×m
min as the product of.L(n) and. R(n)

in (3.47): 

. A(n) := L(n) ⊗ L(n+1) ⊗ · · · ⊗ L(n+M−1) ⊗ R(n).

There exist some circuits for the weighted digraph .G(A(n)) for the min-plus matrix 
.A(n). The digraph is strongly connected; from Theorem 3.7, the eigenvalue of . A(n)

coincides with the minimum average weight of all circuits of .G(A(n)). Considering 
the udhToda-I equation, specifically the asymptotic behavior of the corresponding 
nBBS and its conserved quantities, we obtain the following theorem. 

Theorem 3.10 (Kan et al. [ 16]) For the eigenvalue . λ of .A(0) ∈ R
m×m
min , the following 

holds for .n ≥ N: 

. λ = Q(n)
1 ⊗ Q(n+1)

1 ⊗ · · · ⊗ Q(n+M−1)
1 .

Further details can be found in [ 16]. The ultradiscretization of the dLV system 
(3.5) can also be related to min-plus eigenvalues. Further details on this are provided 
in [ 8]. 

3.5 Numbered Box and Ball System 

According to [ 32], the udhToda-I equation (3.51) governs the nBBS, where every 
ball is numbered. Based on the ultradiscretization of the dhToda-II equation (3.10), 
found in the study of Hessenberg.LR transformations, we can design an nBBS where 
every box (rather than ball) is numbered [ 36]. To distinguish between the two types 
of nBBSs, we refer to the former and latter as nBBS-I and nBBS-II, respectively. 
In this section, we describe the numbering rules for the boxes, moving rules for the 
balls, and soliton behavior of the ball groups for the nBBS-II. 

At discrete-time. n, the nBBS-II with.M types of boxes enforces that all boxes and 
balls satisfy the following rules: 

(a) Only boxes between the leftmost and rightmost ball groups are numbered. 
(b) Each box is numbered by one of the following integers: . n, n + 1, . . . ,

n + M − 1. 
(c) Each box array, which is an array of successive empty boxes, contains at least 

one box with the number .n + i for .i = 0, 1, . . . , M − 1. 
(d) The boxes in each box array are lined up in the increasing order of their assigned 

numbers. 

The discrete-time evolution from. n to.n + 1 allows the identification numbers of the 
boxes to change. The balls move according to the following rules:
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Fig. 3.2 An example of discrete-time evolution from.n = 0 to.n = 6 for the  nBBS-II with. M = 3

(i) Starting from the leftmost ball, each ball moves, one by one, to the nearest 
empty box to its right with the number . n or without a number. 

(ii) Remove the number . n from the boxes that have been newly filled with a ball. 
Assign the number. n to the boxes that have become empty, except for the boxes 
to the left of the leftmost ball. 

(iii) Replace the . n assigned to the box with .n + M . 
(iv) Reorder the boxes between adjacent ball groups in ascending order of their 

assigned numbers. 

This discrete-time evolution is mathematically formulated by the ultradiscretization 
of dhToda-II (udhToda-II) equation: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(n+1)
k = min

(
k∑

i=1

Q(n)
i −

k−1∑

i=1

Q(n+1)
i , E (n)

k

)

, k = 1, 2, . . . ,m,

Q(n+1)
k + E (n+M)

k = Q(n)
k+1 + E (n)

k , k = 1, 2, . . . ,m − 1,
E (n)
0 := +∞, E (n)

m := +∞.

(3.52) 

Note that, if rules (a)–(d) hold at discrete-time .n = 0, then they always hold under 
the discrete-time evolution generated by rules (i)–(iv). Figure 3.2 show an example 
of discrete-time evolution from.n = 0 to .n = 6 for the nBBS-II with .M = 3. 

To demonstrate the soliton behavior in the nBBS-II, we need to clarify the con-
served quantities of the udhToda-II equation. Thus, we need to determine the con-
served quantities of the dhToda-II equation (3.10) such that their ultradiscretization 
becomes a conserved quantity in the udhToda-II equation (3.52). The target quantities 
can be derived by reconsidering the similarity transformation of a Hessenberg matrix 
generated by the dhToda-II equation (3.10). Although these conserved quantities are 
equal to the coefficients of the Hessenberg eigenpolynomial, seeking them directly 
is not easy. Recall that the Hessenberg similarity transformation can be decomposed 
into multiple bidiagonal.LR transformations. Combining this with the Watkins’ the-
orem [ 35], we can then obtain the target quantities by computing the coefficients
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of the eigenpolynomial of the sparse band matrix instead of the dense Hessenberg 
matrix. Details of this process can be found in [ 15]. Using the resulting conserved 
quantities, we obtain a theorem concerning soliton behavior in the nBBS-II. 

Theorem 3.11 (Yamamoto et al. [ 36]) Suppose that .m ball groups contain .L1, .L2, 
.. . . , .Lm successive balls, which are sufficiently far from each other, at discrete-time 
.n = 0. Moreover, let . σ be a permutation of .{1, 2, . . . ,m} such that . Lσ(1) ≤ Lσ(2) ≤
· · · ≤ Lσ(m), and let .n∗ be the discrete time immediately after the completion of all 
interactions. Then, the following holds for .n = n∗, n∗ + 1, . . . : 

. Q(n)
1 = Lσ(1), Q(n)

2 = Lσ(2), . . . , Q(n)
m = Lσ(m).

3.6 Concluding Remarks 

In our chapter, we first demonstrated that various discrete integrable systems can be 
related to matrix.LR transformations. We also showed that their ultradiscretization of 
such systems can generate matrix transformations without changing an eigenvalue, 
and that these transformations can be used to compute the eigenvalue of matrices 
over min-plus algebra. Finally, we detailed an nBBS with numbered boxes, which 
arose from the .LR perspective of the discrete hungry integrable systems. 

Hessenberg matrices including tridiagonal matrices, frequently encountered in 
this chapter, have a special structure that can be decomposed into products of bidi-
agonal matrices. This suggests that we can find new discrete integrable systems, and 
BBSs based on them, by considering other decompositions of Hessenberg matrices 
from the .LR perspective. However, we do not need to only consider Hessenberg 
matrices in this way. We also do not need to only consider meticulous integrable 
systems where neighbors are always assumed to affect each other in some way. For 
example, not all drivers pay continuous attention to their environment. Therefore, 
tolerant integrable systems may be considered to capture realistic phenomena. We 
hope that the accumulation of studies on integrable systems and their related . LR
transformations presented in this chapter improves our ability to represent mobility 
phenomena. 

References 

1. F. Baccelli, G. Cohen, G.L. Olsder, J.P. Quadrat, Synchronization and Linearity (Wiley, New 
York, 1992) 

2. O.I. Bogoyavlensky, Integrable discretizations of the KdV equation. Phys. Lett. A 134, 34–38 
(1988) 

3. A. Common, S. Hafez, Linearization of the relativistic and discrete-time Toda-lattices for 
particular boundary-conditions. Inverse Probl. 8, 59–69 (1992) 

4. L.A. Dickey, Soliton Equations and Hamiltonian Systems (World Scientific, Singapore, 2003)



3 Integrable Systems Related to Matrix L R Transformations 57

5. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 
2007) 

6. A. Fukuda, E. Ishiwata, M. Iwasaki, Y. Nakamura, On the qd-type discrete hungry Lotka-
Volterra system and its application to the matrix eigenvalue algorithm. JSIAM Lett. 1, 36–39 
(2009) 

7. A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki, Y. Nakamura, Integrable discrete hungry 
systems and their related matrix eigenvalues. Annal. Mat. Pura Appl. 192, 423–445 (2013) 

8. A. Fukuda, S. Watanabe, A. Hanaoka, M. Iwasaki, Ultradiscrete Lotka-Volterra system com-
putes tropical eigenvalue of symmetric tridiagonal matrices. J. Phys. Conf. Ser. 1218, 012015 
(2019) 

9. A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata, Y. Nakamura, A Bäcklund transformation 
between two integrable discrete hungry systems. Phys. Lett. A 375, 303–308 (2011) 

10. A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata, Y. Nakamura, On a shifted LR  transfor-
mation derived from the discrete hungry Toda equation. Monatsh. Math. 170, 11–26 (2013) 

11. A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata, Y. Nakamura, Convergence acceleration of 
the shifted LR  transformations for totally nonnegative hessenberg matrices. Appl. Math. 65, 
677–702 (2020) 

12. C. Gu (ed.), Soliton Theory and Its Applications (Springer, Berlin, 1995) 
13. R. Hirota, Conserved quantities of random-time Toda equation. J. Phys. Soc. Jpn. 66, 283–284 

(1997) 
14. Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables. Prog. Theor. Phys. 

78, 507–510 (1987) 
15. S. Kakizaki, A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata, Y. Nakamura, Conserved 

quantities of the integrable discrete hungry systems. Discrete Contin. Dyn. Syst. - S 8, 889– 
899 (2015) 

16. M. Kan, A. Fukuda, S. Watanabe, The ultradiscrete hungry Toda equation and eigenvalues over 
min-plus algebra. J. Difference Equ. Appl. (2023) https://doi.org/10.1080/10236198.2023. 
2277714 

17. D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry (American Mathematical Soci-
ety, 2015) 

18. K. Maruno, K. Kajiwara, M. Oikawa, Casorati determinant solution for the discrete-time rela-
tivistic Toda lattice equation. Phys. Lett. A 241, 335–343 (1998) 

19. Y. Minesaki, Y. Nakamura, The discrete relativistic Toda molecule equation and a Padé approx-
imation algorithm. Numer. Algorithms 27, 219–235 (2001) 

20. Y. Nakamura, K. Takasaki, S. Tsujimoto, M. Okado, J. Inokuchi, Mathematics of Integrable 
Systems (in Japanese) (Asakura-Shoten, Tokyo, 2018) 

21. Y. Nishiyama, M. Shinjo, K. Kondo, M. Iwasaki, Integrable properties of a variant of the 
discrete hungry Toda equations and their relationship to eigenpairs of band matrices. East Asia 
J. Appl. Math. 7, 785–798 (2018) 

22. Y. Ohta, K. Kajiwara, J. Matsukidaira, J. Satsuma, Casorati determinant solution for the rela-
tivistic Toda lattice equation. J. Math. Phys. 34, 5190–5204 (1993) 

23. S.N.M. Ruijsenaars, Relativistic Toda systems. Commun. Math. Phys. 133, 217–247 (1990) 
24. H. Rutishauser, Lectures on Numerical Mathematics (Birkhäuser, Boston, 1990) 
25. M. Sekiguchi, K. Oka, M. Iwasaki, E. Ishiwata, Time-delay version of the integrable discrete 

Lotka-Volterra system in terms of the LR  transformations. IOP SciNotes 2, 035001 (2021) 
26. M. Shinjo, A. Fukuda, K. Kondo, Y. Yamamoto, E. Ishiwata, M. Iwasaki, Y. Nakamura, Discrete 

hungry integrable systems – 40 years from the Physica D paper by W.W. Symes. Physica D 
439, 133422 (2022) 

27. M. Shinjo, M. Iwasaki, K. Kondo, The Kostant-Toda equation and the hungry integrable sys-
tems. J. Math. Anal. Appl. 483, 123627 (2020) 

28. M. Shinjo, Y. Nakamura, M. Iwasaki, K. Kondo, Asymptotic analysis of non-autonomous 
discrete hungry integrable systems. J. Integr. Syst. 3, xyy001 (2018) 

29. Y.B. Suris, A discrete time relativistic Toda lattice. J. Phys. A: Math. Gen. 29, 451–465 (1996)

https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714
https://doi.org/10.1080/10236198.2023.2277714


58 M. Iwasaki et al.

30. Y.B. Suris, Integrable discretizations of the Bogoyavlensky lattices. J. Math. Phys. 37, 3982– 
3996 (1996) 

31. D. Takahashi, J. Satsuma, A soliton cellular automaton. J. Phys. Soc. Jpn. 59, 3514–3519 
(1990) 

32. T. Tokihiro, A. Nagai, J. Satsuma, Proof of solitonical nature of box and ball systems by means 
of inverse ultra-discretization. Inverse Probl. 15, 1639–1662 (1999) 

33. S. Tsujimoto, R. Hirota, S. Oishi, An extension and discretization of Volterra equation I. IEICE 
Techn. Rep. 92, 1–3 (1993) 

34. S. Watanabe, A. Fukuda, H. Shigitani, M. Iwasaki, Min-plus eigenvalue of tridiagonal matrices 
in terms of the ultradiscrete Toda equation. J. Phys. A: Math. Theor. 51, 444001 (2018) 

35. D.S. Watkins, Product eigenvalue problems. SIAM Rev. 47, 3–40 (2005) 
36. Y. Yamamoto, N. Minoshita, M. Iwasaki, Discrete relativistic Toda equation from the perspec-

tive of shifted LR  transformation. Physica D 440, 133485 (2022) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part III 
Mathematical Methods for Huge Data 

and Network Analysis



Chapter 4 
Numerical Analysis for Data Relationship 

Tetsuya Sakurai, Yasunori Futamura, Akira Imakura, and Xiucai Ye 

In recent years, a vast amount of data has been accumulated across various fields in 
industry and academia, and with the rise of artificial intelligence and machine learning 
technologies, knowledge discovery and high-precision predictions through such data 
have been demanded. However, real-world data is diverse, including network data that 
represent relationships, data with multiple modalities or views, data that is distributed 
across multiple institutions and requires a certain level of information confidentiality. 
There is also data that requires extracting latent features in complex subspaces for 
analysis. Therefore, analysis methods that can handle such diversity are needed. In 
this chapter, we introduce effective methods for such data using novel numerical 
analysis techniques. 

This chapter is organized as follows. Section 4.1 gives an overview of several spec-
tral methods for unsupervised dimensionality reduction and clustering. Section 4.2 
describes a recent advanced dimensionality reduction method based on complex 
moment-based subspace and matrix trace optimization. Section 4.3 shows methods 
that can utilize data relationships with multiple views simultaneously. In Sect. 4.4, 
we describe so-called data collaboration analysis that can securely utilize data dis-
tributed across multiple institutions. 

In this chapter, we denote the numerical dataset of interest by . X = [x1, x2, . . . ,
xn]T ∈ R

n×m , where. n is the number of samples (or data objects) and. m is the number 
of features (or attributes). .m is also referred to as dimensionality of the data objects. 
We use the symbol .:= for definition. We denote .[n] := {1, 2, . . . , n}. For matrix . A, 
the .(i, j)-element is denoted by .[A]i, j . .In and .On,m denote the identity matrix of 
order . n and the .n × m zero matrix, respectively. 
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4.1 Spectral Methods for Machine Learning 

In this section, we describe spectral methods for unsupervised dimensionality reduc-
tion and clustering. Spectral methods involve the decomposition or representation of 
data or relationships in terms of their spectral components. Many spectral methods 
rely on computing eigenspace of matrices derived from the data in some form. The 
spectral methods introduced in this section rely on a natively given graph or a graph 
computed by similarities between the data objects. 

Let .G := (V,E) be a (weighted) undirected graph where .V is the set of vertices 
and . E is the set of edges. Here we assume that .G is natively given, for example, 
as in the application in social network analysis. Well-known approaches to form 
the graph from the data matrix .X will be shown at the end of this section. Let . W
be the adjacency matrix (which is symmetric) of . G. .wi, j is .(i, j) element of . W . 
When .(i, j) ∈ E, a positive weight value is assigned to .wi, j , otherwise .wi, j = 0. 
.D is a diagonal matrix whose . i th diagonal element is .di := ∑

j wi, j (for .i ∈ [n]). 
.L := D − W is called graph-Laplacian and is known to be positive semi-definite. It 
is known that the number of zero eigenvalues of. L coincides the number of connected 
components of. G. When. G is connected, the values of all elements of the eigenvector 
corresponding to only zero eigenvalue are constant. In this section, we assume that 
.G is connected, for simplicity. For other cases, refer to [ 45]. 

The Laplacian eigenmap [ 1] is a dimensionality reduction method that mini-
mizes a matrix trace involving . L . When one considers dimensionality reduction to 
.l-dimension, the objective function is 

. min
U∈Rn×l

Tr(UTLU )

with the constraint.UTDU = Il. The solution of the minimization can be obtained by 
computing eigenvectors corresponding to smallest. l non-zero eigenvalues of the gen-
eralized eigenvalue problem.Lu = λDu. This minimization problem can be regarded 
as a continuous relaxation of the normalize cut problem [ 45]. The . i th row vector of 
.U is regarded as . l dimensional representation of the . i th data object. 

Spectral clustering [ 34, 45] is one of the most popular clustering methods. This 
clustering method is a method that applies .k-means for low-dimensional repre-
sentation obtained by the Laplacian eigenmap. The locality preserving projection 
(LPP) [ 12] can be regarded as a linear approximation of the Laplacian eigenmap. Its 
objective function is 

. min
Z∈Rm×l

ZTXTLX Z

with the constraint .ZTXTDXZ = Il. Here we show the algorithm of spectral clus-
tering in Algorithm 1. 

The modularity maximization [ 33] is a popular optimization function for graph 
clustering and is commonly used for community detection in social network graphs. 
Modularity maximization is a combinatorial optimization problem. In the modularity
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Algorithm 1 Spectral clustering 
Input: Data matrix X ∈ Rn×m . 
Output: Cluster memberships C . 
1: Form an undirected graph G from X by e.g. kNN. 
2: Let W and D be the adjacency matrix and the degree matrix of G, respectively. Let L := D − W . 

3: Compute eigenvectors {u}i∈[l] corresponding to l smallest nonzero eigenvalue {λi }i∈[l] of the 
generalized eigenproblem Lu = λDu. 

4: Let U := [u1, u2, . . . ,  ul]. Let  {zi }i∈[n] be vector of i-th row of X such that U = 
[zT 1 ; zT 2 ; . . .  ; zT n ]. 

5: Perform k−means clustering to {zi }i∈[n], then determine C . 

maximization, random graph model is introduced. .pi, j is the expected weight value 
of edge between vertex . i and . j of the random graph model (for unweighted case, 
.pi, j is the probability of the occurrence of an edge). Modularity .Q is defined as 

. Q := 1

Vol(G)

∑

i, j

[wi, j − pi, j ]δ(gi , g j ).

Here, .gi is the cluster index of the . i th vertex and .δ(gi , g j ) = 1 where .gi = g j oth-
erwise . 0. Large modularity indicates that the intra-cluster vertices of the graph are 
more densely connected than a given random graph model. In the Chung–Lu random 
graph model [ 33], we define .pi, j as .pi, j = 1

Vol(G)
Di,i D j, j where . Vol(G) = ∑

i Di,i

so that the expected degree of the random graph becomes same as those of . G. The  
modularity matrix is defined as 

. M := W − 1

Vol(G)
ddT,

where . d is the vector formed by the diagonal elements of . D. Here we introduce 
a cluster membership matrix . U . .[U ]i, j = 1 when the . i th vertex belongs to the . j th 
cluster and .[U ]i, j = 0 otherwise. Using this, modularity can be written as 

. Q = Tr(UTMU ).

Here we omitted the constant factor. When we relax the binary constraint and allow 
the continuous values (with constraint .UTU = In), the solution is obtained by com-
puting the eigenvectors corresponding to the . l largest eigenvalues of the standard 
eigenvalue problem 

. Mu = λu.

This dimensionality reduction method is not as widely used as the Laplacian eigen-
map, but could be an alternative to it. It is proposed as an anomaly detection method 
for densely connected subgraphs [ 9].
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Now we introduce methods for constructing a graph from the data matrix . X . 
One of the most popular approaches is to make the . kNN graph. Given pairwise 
similarity, . kNN graph we set .(i, j) ∈ E if vertex . i is a .k-nearest neighbor vertex 
of . j . Because the edge occurrence is not necessarily symmetric, some process for 
symmetrization is performed [ 45]. The complexity of a brute force approach to 
compute pairwise similarity (or distance) is .O(n2) that is not tractable for large . n. 
There are approximation methods such as recursive Lanczos bisection [ 2] and . kNN 
descent [ 5] that are aimed at reducing computational complexity. 

4.2 Complex Moment-Based Supervised Eigenmap for 
Dimensionality Reduction 

Increasing the number of features (dimensionality) seems to lead to better perfor-
mance. However, in practice, adding more features leads to worse performance, i.e. 
the curse of dimensionality. Dimensionality reduction reduces the number of fea-
tures (dimensionality) to avoid the curse of dimensionality. Using dimensionality 
reduction methods, we can speed up algorithms, reduce the risk of overfitting and 
improve the accuracy of prediction results. 

In this section, we briefly introduce dimensionality reduction methods based on 
matrix trace optimization. These methods use a few eigenvectors to construct a 
low-dimensional space while preserving certain properties of the original data. We 
also introduce a complex moment-based supervised eigenmap [ 17] that uses a large 
number of eigenvectors to improve recognition performance. 

4.2.1 Dimensionality Reduction Based on a Matrix Trace 
Optimization 

Let .m and .n be the number of the features and samples for training dataset 
.X = [x1, x2, . . . , xn]T ∈ R

n×m . Here, we consider linear and nonlinear dimensional-
ity reduction methods that construct low-dimensional data . Y = [ y1, y2, . . . , yn]T ∈
R

n×l, which retain some of the properties of the original data. Specifically, linear 
dimensionality reduction methods reduce the original data. X to the low-dimensional 
data . Y using a linear map .B ∈ R

m×l, i.e. 

. Y = XB.

In each dimensionality reduction method based on a matrix trace optimization, a 
symmetric matrix .A1 ∈ R

m×m and a symmetric positive definite matrix . A2 ∈ R
m×m

are defined, respectively. Then, the linear map . B is formulated by the minimization 
or maximization of a matrix trace:
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. min
B∈Rm×l

Tr
(
BTA1B

)
or max

B∈Rm×l
Tr

(
BTA1B

)
s.t. BTA2B = Il.

This is solved as. l eigenvectors of the corresponding generalized eigenvalue problem: 

.A1 t i = λi A2 t i . (4.1) 

Here, we have .B = [t1, t2, . . . , tl]. 
Principal component analysis (PCA) [ 24, 39] and locality preserving projections 

(LPP) [ 12] are two of the typical unsupervised dimensionality reduction methods in 
this class. PCA aims to maximize the variance of the projected vectors, while LPP 
aims to preserve the local similarity of the original data. Discriminant analysis is 
the typical supervised method that maximizes the between-class scatter and reduces 
the within-class scatter. A family of discriminant analysis methods are proposed for 
supervised dimensionality reduction, including Fisher discriminant analysis (FDA) 
[ 7, 8], local FDA (LFDA) [ 43], semi-supervised LFDA (SELF) [ 44] and locality 
adaptive discriminant analysis (LADA) [ 28]. 

Nonlinear dimensionality reduction methods, which use a nonlinear map and 
the kernel trick [ 42], are widely used as improvements over linear dimensionality 
reduction methods. Nonlinear dimensionality reduction methods transform the orig-
inal data.X to.φ(X) = [φ(x1), φ(x2), . . . , φ(xn)]T with a nonlinear kernel function 
and reduce the dimension of .φ(X) using a nonlinear map .~B such that .Y = φ(X)~B. 
With appropriate nonlinear functions, nonlinear dimensionality reduction methods 
are expected to improve the recognition performance. 

In general, we set .~B = φ(X)T↼B with.↼B ∈ R
n×l and directly set the Gram matrix 

.K = φ(X)φ(X)T ∈ R
n×n without computing .φ(X) to reduce the computational 

costs. The Gaussian kernel, polynomial kernel and sigmoid kernel are commonly 
used as the kernel functions. 

4.2.2 A Complex Moment-Based Supervised Eigenmap 

As written in Sect. 4.2.1, most of the existing dimensionality reduction methods 
use only . l eigenvectors to construct the low-dimensional space with a dimension . l, 
which may lead to loss of useful information for achieving successful classification. 
To overcome the deficiency of information loss, recently, a complex moment-based 
supervised eigenmap (CMSE) for dimensionality reduction has been proposed [ 17]. 
CMSE allows us to achieve better recognition performance by using a complex 
moment-based subspace that includes .d > l eigenvectors, where . d can be set inde-
pendently of the dimension . l of the low-dimensional space. 

The basic concepts of CMSE for high recognition performance are summarized 
as follows:
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• Use the complex moment-based subspace.SΩ, which is equivalent to the invariant 
subspace with respect to the multiple eigenvectors. 

• Use the novel minimization problem that combines the matrix trace derived from 
the dimensionality reduction methods and the squared error straightforwardly 
using the ground truth data .Z ∈ R

n×l. 

Let .A1 and .A2 be the matrices used in a given dimensionality reduction method 
such as LPP or LFDA. Based on the concept of complex moment-based eigensolvers 
[ 14, 40, 41], we also let .SΩ be a complex moment-based subspace with respect to a 
given real interval .Ω = [a, b] ⊂ R defined by 

. SΩ = R(S), S = [S0, S1, . . . , SM−1],
Sk := 1

2π i

{

[

zk(zA2 − A1)
−1A2V dz, (4.2) 

where.L , M ∈ N+, V ∈ R
m×L and. [ is a positively oriented Jordan curve around. Ω. 

Then, the subspace.SΩ = R(S) is equivalent to the subspace spanned by eigenvectors 
. t i corresponding to eigenvalues .λi ∈ Ω of (4.1), that is, 

. SΩ = R(S) = {t i |λi ∈ Ω}.

Then, using.d = rank(SΩ) ≥ l eigenvectors, CMSE introduces the following mini-
mization problem on .SΩ to obtain the linear map .B ∈ R

m×l: 

. min
B=[b1,b2,...,bl],bi∈SΩ

E(B) s.t. BTA2B = Il, (4.3) 

with 
. E(B) = (1 − μ)Tr

(
BT f (A1)B

) + μ||Z − XB||2F,

where the objective function .E(B) combines a matrix trace derived from dimen-
sionality reduction methods and a squared error straightforwardly using the ground 
truth data . Z . Here, .μ ∈ [0, 1] is a weight parameter for both terms and . f (·) is a 
(meromorphic) weight function of each eigenvector for minimization. 

In (4.3), the column vectors of the linear map. B are constrained by.A2-orthonormal 
bases of the complex moment-based subspace .SΩ. Let  .U ∈ R

m×d be an .A2-
orthogonal matrix (.UTA2U = Id ) whose columns are .A2-orthonormal bases of the 
complex moment-based subspace .SΩ and .T = UTA1U . Then, the minimization 
problem (4.3) can be written as 

. min
C∈Rd×l

|
|
|
|

|
|
|
|

[
μ1/2Z
Od,l

]

−
[

μ1/2XU
(1 − μ)1/2 f (T )1/2

]

C

|
|
|
|

|
|
|
|

2

F

s.t. CTC = Il, (4.4) 

where .B = UC . A minimization problem with an orthogonal constraint (4.4) is  
called an unbalanced orthogonal Procrustes (UOP) problem, which is solved using 
an iterative method [ 6, 38].
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Algorithm 2 Complex moment-based supervised eigenmap (CMSE) 

Input: Training dataset: X ∈ Rn×m , Z ∈ Rn×l and parameters: L , M, N ∈ N+, δ  ∈ R, V ∈ 
R
m×L , (z j , ω  j ) for j = 1, 2, . . . ,  N/2, Ω = [a, b], μ,  f (·). 

Output: Linear eigenmap B ∈ Rm×l

1: Construct a matrix pencil (A1, A2) from the training dataset X (and Z if required) 
2: Compute ↼Sk = ∑N /2 

j=1 Re(ω j zk j (z j A2 − A1)
−1 A2V ), and set ↼S = [↼S0,↼S1, . . . ,↼SM−1] 

3: Compute a low-rank approximation of ↼S using the threshold δ:
↼S = [↼U , ↼U '][↼∑, O; O, ↼∑'][ ↼W , ↼W 'T] ≈ ↼U↼∑ ↼W T such that ↼UT A2↼U = I↼d 

4: Solve UOP problem (4.6) and set B = ↼U↼C 

In practice, the contour integral (4.2) is approximated by a numerical integration 
rule such as the .N -point trapezoidal rule, as follows: 

.↼Sk = 2
N/2∑

j=1

Re(ω j z
k
j (z j A2 − A1)

−1A2V ), (4.5) 

using symmetric property. In addition, to improve the numerical stability, we apply 
a low-rank approximation of . ↼S with a truncated singular value decomposition on an 
.A2-inner product: 

. ↼S = [↼U , ↼U ']
[

↼∑
↼∑'

] [ ↼WT

↼W 'T
]

≈ ↼U↼∑ ↼WT, ↼UTA2↼U = I↼d , ↼WT ↼W = I↼d ,

where. ↼∑ is a diagonal matrix whose diagonal entries are the larger part of the singular 
values, i.e., .σi/σ1 ≥ δ .(σ1 ≥ σ2 ≥ · · · ≥ σLM). The columns of .↼U and . ↼W are the 
corresponding left and right singular vectors. Let . ↼d be a numerical rank, . σ↼d/σ1 ≥
δ > σ↼d+1/σ1. Then, the UOP problem (4.4) is rewritten as 

. min
↼C∈R↼d×l

|
|
|
|

|
|
|
|

[
μ1/2Z
O↼d,l

]

−
[

μ1/2X↼U
(1 − μ)1/2 f (↼T )1/2

]
↼C

|
|
|
|

|
|
|
|

2

F

s.t. ↼CT↼C = Il, (4.6) 

where .↼T = ↼UTA1↼U and the map is obtained from.B = ↼U↼C . 
The algorithm of CMSE is summarized in Algorithm 2. One of the most time-

consuming parts of CMSE is computing the solutions of the.N/2 linear systems with 
. L right-hand sides in (4.5) and Step 2 of Algorithm 2 as follows: 

. (z j A2 − A1)Pj = A2V, j = 1, 2, . . . , N/2.

Since CMSE has hierarchical parallelism for solving these linear systems, CMSE 
shows a high parallel efficiency demonstrated in [ 48].
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4.3 Multi-view Data Analysis 

Multi-view data are ubiquitous in real-world applications. Multi-view data refers 
to data that includes multiple sets of features or representations, each providing a 
different perspective or view of the objects or entities being observed. For instance, 
pictures often have textual tags and descriptions and the same semantic meaning can 
be represented in multilingual forms. Each individual view has its specific property 
in these data, while different views often contain complementary information [ 47]. 
Multi-view learning can be roughly divided into supervised and unsupervised meth-
ods. Here, we mainly introduce the unsupervised method, i.e., multi-view clustering, 
which has emerged as a powerful tool for exploring the underlying structure of data 
from different sources. 

Next, we introduce three kinds of multi-view clustering methods, including multi-
kernel learning, multi-view graph clustering and multi-view subspace clustering. 

4.3.1 Multi-Kernel Learning 

Multi-kernel learning has been widely applied in order to deal with multi-view data, 
which intends to optimally combine a group of predefined kernels in order to improve 
clustering performance [ 47]. The general method for multi-view data is to use a 
linear combination of several kernel functions. Since the weights of different views 
are important, the weights of different kernels should be taken into consideration. 
An auto-weighted multi-kernel method has been proposed to weigh the views and 
kernels simultaneously [ 51]. First, Kernel Principal Component Analysis (KPCA) is 
used on each view to reduce the dimension of multi-view data. Then, the designed 
weighted Gaussian kernel is applied to the low-dimensional multi-view data. The 
weighted Gaussian kernel integrates the advantage of the Gaussian kernel and the 
Polynomial kernel, which is formulated as 

. K (x, y) =
[

exp

(

− ||x − y||2
2σ 2

)

+ R

]d

, ∀R ≥ 0, d ≥ 0, d ∈ N .

The above formula can be expanded based on the binomial theorem as follows. 

. 

K (x, y) =
d∑

s=0

(
d
s

)

Rd−s exp

(

− s||x − y||2
2σ 2

)

= Rd +
d∑

s=1

(
d
s

)

Rd−s exp

(

− ||x − y||2
2σ 2/s

)

.

Thus, the weighted Gaussian kernel is a combination of . d Gaussian kernels with 
different widths in the range from .σ 2 to .σ 2/s. Weight .Rd−s is used to reflect the
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importance of the.d − s kernel and enlarge the linear translation of distance between 
points. 

For multi-view data with. m views,. n samples and. k clusters, the objective function 
based on the K-means and weighted Gaussian kernel is formulated as 

. 

min
m∑

v=1

n∑

i=1

ωiv

k∑

j=1

δi j||φv(xv
i ) − φv(cv

j )||2,

s.t., ωiv ≥ 0,
∏

v

ωiv = 1,

where.cv
j is the cluster center, and.δi j is the indicator variable with.δi j = 1 if.xi ∈ c j , 

otherwise .δi j = 0. This step drives the weight of each view and cluster center. After 
finite iterations, it arrives at the final clustering result. 

By replacing the weighted Gaussian kernel .K (x, y) = φ(x) · φ(y), the above 
formula can be rewritten as 

. 

min
m∑

v=1

n∑

i=1

ωiv

k∑

j=1

2δi j [(1 + R)d − K (xv
i , c

v
j )],

s.t., ωiv ≥ 0,
∏

v

ωiv = 1.

The above formula inherits the properties of K-means and kernel, while the 
weighted Gaussian kernel integrates the advantages of the Gaussian kernel and Poly-
nomial kernel. 

4.3.2 Multi-view Graph Clustering 

The objective of multi-view graph clustering is to find a fusion graph across all 
views and then use other methods such as spectral clustering on the fusion graph to 
obtain the final clustering result. Here, we introduce a parameter-free Auto-weighted 
Multiple Graph Learning (AMGL) method [ 37], which implements the automatic 
allocation of weights by modifying the traditional spectral clustering model without 
any hyperparameters. 

In spectral clustering, based on the Laplacian matrix, the objective function can 
be defined as follows. 

. min
FTF=I

Tr(FTLF).

Based on the above formula and replacing . L with .Lv , i.e., the Laplacian matrix 
in each view. v, a new general framework for multiple graph learning is proposed.
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. min
F∈C

m∑

v=1

√
Tr(FTLvF),

where no weight factors are explicitly defined. By taking the derivative of the 
Lagrange function of the above formula, the weight of each view.αv can be obtained 
based on .F as 

.αv = 1

2
√
Tr(FTLvF)

. (4.7) 

Then, the objective function of the AMGL method is set as 

. min
F∈C

m∑

v=1

αvTr(FTLvF).

In the above formula,. F will be continuously used to update.αv according to Eq. (4.7), 
which inspires taking an alternating optimization strategy to compute .F and . αv

iteratively. 

4.3.3 Multi-view Subspace Clustering 

Multi-view subspace clustering is to learn a unified representation or a latent space 
from all view data. Then, the unified representation is fed into an off-the-shelf cluster-
ing model to obtain the clustering results. Here, we introduce Non-Negative Matrix 
Factorization (NMF)-based method. 

NMF aims to find two non-negative matrices .U ∈ R
n×p and .V ∈ R

p×m to ade-
quately approximate the original matrix .X ∈ R

n×m . The reconstruction processes 
can be formulated as the following optimization problem. 

. min
U,V

||X −UV ||2F , s.t.,U ≥ 0, V ≥ 0.

Here,.U is termed as the basis matrix, while.V is the indicator matrix, and. p denotes 
the desired reduced dimension. Due to the non-negative constraints, it can learn a 
part-based representation. 

For multi-view data, the objective is to combine multi-view information in the 
NMF framework. Generally, a common indicator matrix.V ∗ is enforced in the NMF 
among different views to perform multi-view clustering. One of the widely used 
methods is to push each view-dependent indicator matrix .V v toward a common 
indicator matrix .V ∗ [ 29]. The optimization problem is formulated as
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. 

min
U v,V v,v=1,...,m

m∑

v=1

||Xv −U vV v||2F + λv||V v − V ∗||2F ,

s.t.,∀1 ≥ k ≥ K , ||U v
.,k||1 = 1,U v, V v, V ∗ ≥ 0.

The constraint .||U v
.,k||1 = 1 is to guarantee that .V v is within the same range for 

different views. After obtaining the consensus matrix .V ∗, the cluster label of the 
data point . i can be computed as .argmaxk V ∗

i,k . 

4.4 Data Collaboration Analysis 

In various real-world applications, there is a growing demand for the integrated data 
analysis, in which the datasets are owned by multiple parties in a distributed manner, 
and they are collaboratively analyzed. For example, in medical data analysis for 
rare diseases, it was reported that when the analysis is conducted using only data 
from a single institution, the accuracy is insufficient because of the small sample 
size [ 30]. However, sharing the original medical data is difficult because of privacy 
concerns, and even if it could be achieved, we have to pay huge costs for cross-
institutional cross-border communications. Therefore, methods to achieve privacy-
preserving analysis in which datasets are collaboratively analyzed without sharing 
the original data are attracting attention. 

In this section, we briefly introduce typical privacy-preserving methods and 
describe a data collaboration analysis. 

4.4.1 Privacy-Preserving Integrated Data Analysis 

A compelling application scenario for privacy-preserving integrated data analysis 
is medical data analysis involving multiple institutions. Consider a scenario where 
there are several municipalities, each with its own set of patients or data samples. 
Within each municipality, patients receive medical examinations or treatments at 
multiple medical institutions. There are a variety of medical data (i.e., features), 
such as red blood cell count and white blood cell count, assigned to each patient 
and the type of data varies by institution. Therefore, medical data are partitioned 
by samples into multiple municipalities (i.e., horizontal data partitioning) and by 
features into multiple medical institutions (i.e., vertical data partitioning). 

If the analysis is conducted using only data in a single institution (local analysis), 
the accuracy may be insufficient because of the small sample size and limited features. 
By integrating data from multiple medical institutions in multiple municipalities 
(centralized analysis), one can achieve a highly accurate analysis; however, data 
sharing is difficult because of the perspective of data confidentiality. Thus, privacy-
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preserving integrated data analysis for horizontally and vertically partitioned data is 
essential. 

Cryptographic computation is one of the most well-known methods used for 
ensuring privacy preservation [ 4, 11, 23]. Cryptographic methods can compute a 
function over distributed data while retaining the privacy of the data. Any given 
function can be computed by applying fully homomorphic encryption [ 10]. However, 
this method is not feasible for a machine learning model construction of large datasets 
because of the large computational cost even with the latest implementations [ 3, 50]. 

In the context of a model construction, a typical technology of a privacy-preserving 
integrated data analysis is federated learning systems introduced by Google. The 
concept of federated learning systems was first proposed by Google [ 25] typically 
for Android phone model updates [ 31]. Federated learning is primarily based on 
(deep) neural network and updates the model iteratively. 

To update the model, federated stochastic gradient descent (FedSGD) and feder-
ated averaging (FedAvg) are typical strategies [ 31]. FedSGD is a direct extension 
of the stochastic gradient descent method. In each iteration of the gradient descent 
method, each party locally computes a gradient from the shared model using the 
local dataset and sends it to the server. The shared gradients are averaged and used 
to update the model. Instead, in FedAvg, each party performs more than one batch 
update using the local dataset, and sends the updated model to the server. Then, 
the shared models are averaged to update. Federated learning including more recent 
methods, such as FedProx [ 27] and FedCodl [ 36], require cross-institutional com-
munication in each iteration. For more details, we refer to [ 26, 46] and references 
therein. 

Recently, non-model share-type federated learning called data collaboration (DC) 
analysis has been proposed [ 18, 21]. Instead of the above model share-type feder-
ated learning, the DC analysis centralizes the dimensionality-reduced intermedi-
ate representation. The centralized intermediate representations are transformed to 
incorporable forms called collaboration representations. Then, the collaborative rep-
resentation is analyzed as a single dataset. The DC analysis does not require iterative 
cross-institutional communications. 

The DC analysis has been developed to interpretable model construction [ 15], 
novelty detection [ 22], feature selection [ 49] and survival analysis [ 20]. Privacy and 
accuracy of DC analysis were analyzed in [ 13]. In addition, identifiability, which 
is essential for analyzing personal information, of the shared intermediate represen-
tation was analyzed [ 19]. The paper [ 19] proposed a non-readily identifiable DC 
analysis that realizes privacy-preserving analysis sharing only non-readily identifi-
able intermediate representations. 

4.4.2 Data Collaboration Analysis 

Let .m and . n denote the numbers of features (dimensionality of each data) and 
training data samples. Let .X = [x1, x2, . . . , xn]T ∈ R

n×m and .Y = [ y1, y2, . . . ,



4 Numerical Analysis for Data Relationship 73

. yn]T ∈ R
n×l be the training dataset and the corresponding ground truth or label. Here, 

for privacy-preserving integrated data analysis on multiple parties, we introduce the 
algorithm of the DC analysis for supervised learning of horizontal partitioned data, 
that is, data samples are partitioned into . c parties as follows: 

. X =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

Xc

⎤

⎥
⎥
⎥
⎦

, Y =

⎡

⎢
⎢
⎢
⎣

Y1
Y2
...

Yc

⎤

⎥
⎥
⎥
⎦

.

Then, the . i th party has a partial dataset and the corresponding ground truth, 

. Xi ∈ R
ni×m, Yi ∈ R

ni×l,

where.n = ∑c
i=1 ni . Note that DC analysis is applicable to the datasets with partially 

common features [ 32] and horizontal and vertical partitioned data [ 21]. 
DC analysis operates in two roles: worker and master. Workers have the private 

dataset .Xi and corresponding ground truth . Yi , which must be analyzed without 
sharing .Xi . Master supports the collaboration analysis. 

First, all workers generate the same anchor data .X anc ∈ R
r×m , which is share-

able data consisting of public data or dummy data that are randomly constructed. 
Although, random anchor data functions well for DC analysis in general [ 18, 21, 
22], using an anchor data whose distribution is close to that of the raw dataset can 
improve the recognition performance [ 16]. Then, each worker constructs intermedi-
ate representations, 

. ~Xi = fi (Xi ) ∈ R
ni×~mi , ~X anc

i = fi (X
anc) ∈ R

r×~mi ,

where.~mi < m, and centralizes them to the master. Here, we can use non-supervised 
and supervised dimensionality reduction methods, e.g., in Sect. 4.2. 

At the master side, mapping function .gi for the collaboration representation is 
constructed satisfying .gi (~X anc

i ) ≈ gi '(~X anc
i ' ) .(i, i ' = 1, 2, . . . , c) in some sense. In 

practice, .gi is set as a linear function .gi (~X anc
i ) = ~X anc

j G j with .Gi ∈ R
~mi×↼m and is 

constructed using the following minimal perturbation problem: 

. min
Ei ,G '

i (i=1,2,...,c),||Z||F=1

c∑

i=1

||Ei||2F s.t. (~X anc
i + Ei )G

'
i = Z .

This can be solved by a singular value decomposition (SVD)-based algorithm for 
total least squares problems. Let 

.[~X anc
1 , ~X anc

2 , . . . , ~X anc
c ] ≈ U↼m∑↼mV

T
↼m (4.8)
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Algorithm 3 Data collaboration (DC) analysis 
Input: Xi ∈ Rni×m , Yi ∈ Rni×l, and  X test 

i individually 

Output: Y pred i (i = 1, 2, . . . ,  c). 

Worker-side (i = 1, 2, . . . ,  c) 
1: Generate X anc and share to all workers 
2: Generate fi, j 
3: Compute ~Xi = fi (Xi ) and ~X anc 

i = fi (X anc) 
4: Share ~Xi , ~X anc 

i , and  Yi to master 

Master-side 

5: ↘ Obtain ~Xi , ~X anc 
i , and  Yi for all i 

6: Compute Gi from ~X anc 
i for all i by (4.8) and  (4.9) 

7: Compute ↼Xi = ~Xi Gi for all i , and set ↼X 
8: Analyze ↼X to obtain h such that Y ≈ h(↼X) 
9: ↙ Return Gi and h to each worker 

Worker-side (i = 1, 2, . . . ,  c) 
10: Obtain Gi and h 
11: Compute Y pred i = h( fi (X test 

i )Gi ) 

be the rank .↼m approximation based on SVD. Then, the target matrix .Gi is obtained 
as follows: 

.Gi = (~X anc
i )†U↼mC, (4.9) 

where. † denotes the Moore–Penrose inverse and.C ∈ R
↼m×↼m is a nonsingular matrix, 

for example, .C = I↼m and .C = ∑↼m are used in practice. The collaboration represen-
tations are analyzed as a single dataset, that is, 

. Y ≈ h(↼X), ↼X = [↼x1,↼x2, . . . ,↼xn]T =

⎡

⎢
⎢
⎢
⎣

↼X1
↼X2
...

↼Xc

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

~X1G1
~X2G2

...
~XcGc

⎤

⎥
⎥
⎥
⎦

∈ R
n×↼m

with the shared ground truth .Yi using some supervised machine learning or the 
deep learning methods for constructing the model function . h of the collaboration 
representation . ↼X . Functions .gi and . h are returned to the . i th worker. 

Let .X test
i ∈ R

si×m be a test dataset of the . i th party. For the prediction phase, the 
prediction result .Y pred

i of .X test
i is obtained by the following equation: 

. Y pred
i = h(gi ( fi (X

test
i )))

through the intermediate and collaboration representations.
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The algorithm of the DC analysis is summarized in Algorithm 3, where .gi is set 
by (4.9). The DC analysis requires only three cross-institutional communications, 
Steps 1, 4 and 9 in Algorithm 3. This is a major advantage over federated learning. 

As in [ 13], the DC analysis has the following double privacy layer for the protec-
tion of private data .Xi : 

• No one can infer the private data .Xi under the protocol; 
• Even if. fi is stolen, the private data.Xi is still protected regarding.ε-DR privacy [35]. 

Under the protocol (Algorithm 3), the function. fi for the intermediate representation 
is private and cannot be inferred by others because both the input and output of. fi are 
not possessed. Therefore, it is impossible to infer the original data .Xi only from the 
shared intermediate representation.~Xi = fi (Xi ). In addition, the function. fi is set to 
a dimensionality reduction function such that .~mi < m. Therefore, it is impossible to 
obtain the original data .Xi from.~Xi = fi (Xi ) even when using . fi . 
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Chapter 5 
Application of Tensor Network 
Formalism for Processing Tensor Data 

Kenji Harada, Hiroaki Matsueda, and Tsuyoshi Okubo 

5.1 Introduction 

The growth of new mobility services, such as automatic driving and ride-sharing, 
requires a huge amount of data, for example, sensor images and information about the 
movement of various objects. These data often have multiple attributes, and are stored 
as a multi-dimensional array called a tensor. When the number of attributes (indexes) 
of a tensor increases, the size of the tensor becomes huge because it increases expo-
nentially as the number of indexes increases. Therefore, the growth of future mobility 
services depends on the high-speed and high-quality use of tensor data of huge sizes. 

A tensor network (TN) is an effective tool for representing a huge composite tensor 
and has been extensively developed in quantum information and statistical physics 
research [ 2, 12, 13]. For example, it has been used to represent a ground state in 
quantum many-body systems, where the dimension of the tensor is the number of 
quantum objects as qubits [ 13]. Since the tensor network can effectively represent 
such high-dimensional data, we may efficiently process the general tensor data. 
Recently, various applications of TN for general tensor data processing have been 
proposed [ 1, 5, 7, 10, 14, 18, 24]. 

In this chapter, we introduce three research areas in statistical physics that use 
tensor-network formalism to process tensor data: tree tensor networks (TTNs), ten-
sor ring decomposition, and MERA, an extended tree tensor network. After briefly
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reviewing tensor-network formalism in statistical physics in Sect. 5.2, we explain 
generative modeling using a TTN for a multi-dimensional probability distribution [ 1, 
5]. In Sect. 5.3, we introduce a new optimization algorithm for the network structure 
of a TTN. In Sect. 5.4, we outline tensor ring decomposition [ 24] for the compression 
of tensor data and explain our new approach for removing redundant information in 
tensor ring decomposition. In Sect. 5.5, we introduce an extended tree tensor network 
called MERA [ 21], which represents the compression of quantum information. We 
consider the underlying mechanisms of the success of MERA through the MERA 
representation of the ground state of a one-dimensional quantum model. Finally, in 
Sect. 5.6, we summarize these tensor-network approaches for tensor data processing. 

5.2 Tensor-Network Formalism 

5.2.1 Tensor Contraction and Tensor Network 

Statistical causality between random variables is defined by conditional probability. 
For example, consider five random variables, .x1, x2, x3, x4, and. x5, and assume that 
.x4 and .x5 statistically depend on .(x1, x2) and .(x3, x4), respectively. If all these ran-
dom variables are discrete, and the support is finite, then the conditional probability 
.p(x5|x1, x2, x3) is defined by two conditional probabilities: 

.p(x5|x1, x2, x3) =
∑	

x4

pb(x5|x3, x4)pa(x4|x1, x2), (5.1) 

where .pa(|) and .pb(|) are conditional probabilities. If we define the elements of a 
tensor as a conditional probability, that is, 

. Ax1x2x3 ≡ pa(x3|x1, x2), Bx3x4x5 ≡ pb(x5|x3, x4),
Tx1x2x3x5 ≡ p(x5|x1, x2, x3),

then (5.1) can be rewritten as 

.Tx1x2x3x5 =
∑	

x4

Bx3x4x5 Ax1x2x4 . (5.2) 

The right-hand side of (5.2) is an example of a tensor contraction, which is a gener-
alization of a matrix product. A tensor contraction is defined as the summation of the 
multiplication of two tensor elements, with some indexes common to both tensors: 
for example,.x4 of. A and. B in (5.2). The composite tensor. T is defined by the tensor 
contraction of . A and . B for the index .x4 in (5.2).
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Fig. 5.1 Diagram notation of a the composite tensor. T in (5.3); b the tensor contractions in (5.3) 

Using tensor contractions, we can define a large tensor . T as 

.Tx1x2x3x4x5x6 =
∑	

y1

∑	

y2

∑	

y3

Ax1x2 y1By1x3 y2Cy2x4 y3Dy3x5x6 . (5.3) 

Visually understanding the relationship of each tensor in tensor contractions using 
only (5.3) is difficult; a diagram notation is useful for visualizing this. Figure 5.1a 
and b are diagram notations for the left-hand and right-hand sides of (5.3), respec-
tively. As shown in Fig. 5.1a, a geometrical object (circle) is used to represent a tensor 
. T . The open edges represent the indexes of the tensor. In Fig. 5.1b, an edge between 
two tensors denotes a tensor contraction. A connected edge indicates the connection 
of two edges (indexes) for a tensor contraction. In summary, a node and connection of 
nodes in these diagrams represent a tensor and tensor contraction, respectively. The 
diagram in Fig. 5.1b represents a composite tensor as a network of tensors; hence, 
we call this a tensor network. 

Since a tensor network defined by a diagram is a composite tensor, we can define 
the class of composite tensors as a tensor network. Several types of network structures 
for tensor networks have already been proposed. For example, a tensor network 
with the one-dimensional structure shown in Fig. 5.1b is called a matrix product 
state (MPS). Historically, tensor networks have been used in the field of quantum 
information. If quantum amplitudes in a wave function are defined by a tensor, the 
tensor can be mapped to a quantum state. For example, 

.T ↔ |ψ> =
∑	

x1,x2,x3

Tx1x2x3 |x1x2x3>, (5.4) 

where .|x1x2x3> is a base, that is, a tensor product of local bases in local Hilbert 
spaces. Thus, tensor networks can be called quantum states. In addition, an MPS 
is called a tensor train (TT) in applied mathematics [ 14]. Generally, if all tensors 
have open edges and are connected to their neighboring tensors, the tensor network 
is called a tensor product state (TPS) [ 9]. The one-dimensional TPS is the MPS, and 
the two-dimensional TPS is called a projected entangled paired state (PEPS) [ 20]. 
A tensor network without a loop structure is called a tree, as shown in Fig. 5.2, and 
various tree tensor networks (TTNs) exist. Note that an MPS belongs to the TTN 
class.
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Fig. 5.2 Diagram notation 
of a tree tensor network 

5.2.2 Tensor Decomposition and Tensor Compression 

The singular value decomposition of a.m × n matrix. A is.UΛV †, where.U and. V are 
isometries, as .U †U = V †V = I , and .Λ is a positive diagonal matrix. The diagonal 
part of .Λ consists of positive singular values. We can perform SVD for any matrix. 
If the number of singular values is smaller than .m and . n, or the number of singular 
values is reduced by removing small values, then the matrix .A can be compressed. 
Although the number of elements in .A is .m × n, the total number of independent 
elements in. U ,. V , and. Λ is.(m + n − k)k. Therefore, if.k < min(m, n), the SVD is a 
compression of the original matrix. The SVD with the. k largest singular values is the 
best approximation of .A within the rank-. k matrix: . ŨΛ̃Ṽ † = argmin Ã:rank−k | Ã −
A|F , where .|X |F is the Frobenius norm, .|X |F ≡ Tr[X†X ]. 

Tensor decomposition is the transformation of a tensor into a composite tensor. 
Since composite tensors can be defined as a tensor network, a tensor network rep-
resents a tensor decomposition. For example, we can regard a tensor as a matrix by 
splitting the indexes of the tensor into two groups and compositing the indexes in each 
group. Thus, using SVD, we can decompose a matrix into a product of two matrixes: 
.T = UΛV † = (U

√
Λ)(

√
ΛV †) = AT '. By decomposing composite indexes into 

original indexes, we can transform the original tensor into a tensor contraction of 
two tensors. Repeatedly applying this decomposition to the right-hand side, . T ', we  
can transform any tensor into an MPS without truncations, as shown in Fig. 5.1b. 
Therefore, an MPS (TT) is a tensor decomposition that is applicable to any tensor. 
If the dimension of each tensor index is .m and the number of indexes is . n, then 
the number of elements in .T is .mn . However, the number of elements in the MPS 
is .O(n × (χ2m)), where .χ is the dimension of the indexes between neighboring 
tensors in the MPS, called a bond dimension. Therefore, an MPS with a fixed bond 
dimension yields great compression. 

If the largest singular values are kept, the approximation can be controlled by 
the MPS. However, determining the best tensor network with a fixed number of 
parameters to approximate a given tensor is difficult. Thus, we use a tensor network 
as a variational ansatz. 

The computational cost of a tensor contraction is the product of all dimensions 
of the indexes in the tensor network that represent the tensor contraction. The com-
putational cost of a tensor network that contains many tensor contractions gener-
ally depends on the order in which the tensor contractions are processed; however, 
determining the best order is an NP-hard problem. In addition, even for a compact
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tensor network such as a PEPS, the computational cost and spatial one exponentially 
increase with the number of tensors. Therefore, various approximation methods for 
tensor contractions have been proposed. 

Using a tensor-network structure, we can efficiently calculate tensor contractions 
in some cases. For example, the computational cost of the inner product of two 
MPSs is only proportional to the length of the MPS. Therefore, compressing a huge 
tensor using a proper tensor-network decomposition can significantly reduce the 
computational cost of processing the tensor data. 

5.3 Generative Model Using a Tree Tensor Network 

5.3.1 Generative Modeling 

Generative modeling finds a parametrized distribution .p(x) to approximate a data 
distribution.π(x) [ 16]. Since the distance between these distributions can be defined 
by the Kullback–Leibler (KL) divergence, 

.DKL(π ||p) =
∑	

x

π(x) ln
(

π(x)
p(x)

)
, (5.5) 

we can optimize .p(x) to minimize this KL divergence. 
Suppose that a data sample is a vector in which each element takes a state from a 

finite set of states:.{x|(x)i ∈ {1, 2, . . . ,m}}. A set of data samples,.M = {xμ}μ=1,...,M , 
defines an empirical distribution: 

.π(x) = 1

M

M∑	

μ=1

δ(x, xμ), (5.6) 

where .M is the number of data samples and .δ(x, y) is one if .x = y, otherwise it is 
zero. In practice, when the target distribution of generative modeling is the empirical 
data distribution, we minimize the negative log-likelihood (NLL) as the loss function 
during learning, 

.L = − 1

M

∑	

x∈M
ln[p(x)] = S(π) + DKL(π ||p), (5.7) 

where .S(π) is the entropy of the . π distribution.
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5.3.2 Tree Generative Model 

Here, we consider a generative model based on a quantum state [ 1, 5]. Following the 
Born rule, we define .p(x) as the square of the amplitude of a wave function: 

.p(x) = |ψ(x)|2
Z

, (5.8) 

where .ψ(x) is a wave function and . Z is the normalization factor. 
MPSs [ 5] and TTNs [ 1] have been proposed to define the wave function for 

generative modeling. Figure 5.1b shows the network structure of an MPS. Each tensor 
in the MPS has three edges, and these edges are sequentially connected. Figure 5.2 
shows the network structure of a TTN. The number of indexes of a tensor in this 
TTN is equal to that in the MPS. The only difference is the topology of the network; 
all physical indexes in the TTN,. xi , are connected, and the TTN network has no loop 
structure. Thus, an MPS is a specialized type of TTN. In the following, a generative 
model using a TTN is called a tree generative model. 

5.3.3 Canonical Form of TTN 

Using redundancy to insert a pair of matrices and their inverses on an edge in a tensor 
network, we can construct a useful canonical form of a TTN [ 17]. Since a TTN has 
no loop, we can decompose the network of a TTN into two trees by cutting an edge, 
as shown in Fig. 5.3a. If we regard the cut edge as the root edge of each tree, we can 
define the order of nodes from the terminal nodes (leaves) to the root and apply the 
following tensor transformations in this order. Each tensor has an edge toward the 
root node and the remaining two edges. By combining these two edges into an index, 
the tensor is transformed into a matrix: .Ti jk = Mi( jk). The SVD of the matrix splits 
the matrix into an isometry and a matrix connected to the edge toward the root node 
(see Fig. 5.3b): 

.Mi( jk) =
∑	

l

M '
ilUl,( jk), (5.9) 

where .U is an isometry as 

.

∑	

( jk)

Ul,( jk)Ul ',( jk) = δl,l ' . (5.10) 

The matrix .M ' is then absorbed by the next tensor (see Fig. 5.3c). This procedure 
is repeated from the leaf tensors to the root node. Then, two modified root tensors 
are obtained and combined into a tensor with four edges. Finally, the SVD of the
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Fig. 5.3 Constructing the canonical form of a TTN: a cutting an edge of the TTN; b splitting a 
tensor into an isometry (triangle) and a matrix (circle) using the SVD of a leaf; c matrices from 
the SVD are absorbed into an upper tensor; and d the canonical form of the TTN (the rhombus 
represents a diagonal matrix that consists of singular values) 

top tensor obtains two isometries and a diagonal matrix that consists of the singular 
values (see Fig. 5.3d). 

The canonical form of a TTN is useful as it enables a direct calculation of the 
normalization factor in (5.8). Since almost all tensors in the canonical form are isome-
tries with the property defined in (5.10), the normalization factor directly depends 
on the singular values of the canonical form of the TTN, .{λi }: 

.Z =
∑	

x

|ψ(x)|2 =
∑	

x

>ψ(x)|ψ(x)> =
∑	

i

(λi )
2. (5.11) 

To calculate the NLL, we need to estimate a set of quantum amplitudes for the 
data, useful for the network structure of a TTN. The data vector.xα of a sample. α can 
be decomposed to a direct product of local vectors: .(xα)(1) ⊗ (xα)(2) ⊗ · · · . The  set  
of local vectors for samples at a site . i is represented by the matrix .V (i)

kα , where . k is 
an index of the data at a site. i . Thus, the total data set is defined as a TTN defined by 
the same network structure of delta tensors, where the leaves are the matrices .V (i), 
as shown in Fig. 5.4a; the delta tensor is one if all indexes are the same, otherwise 
it is zero. Due to the network structure of a TTN, we can efficiently calculate the 
contraction of the TTN with a data TTN using recursive steps (see Fig. 5.4a–c.)

. 

5.3.4 Learning Algorithm 

Previous studies [ 1, 5] have used the learning algorithm for a single node (tensor) near 
the center of a canonical form with singular values, for example, the part enclosed 
by the dotted line in Fig. 5.4a. After combining the isometry and singular values in
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Fig. 5.4 Evaluation of quantum amplitude: a quantum amplitude.ψ(xα) for a sample. α; and  b and 
c recursive calculation of.ψ(xα), except for the part enclosed by the dotted line. The circles indicate 
data matrices at site . i and the squares indicate a delta tensor, which is one if all indexes are the 
same, otherwise, it is zero

the enclosed part into a single tensor (node) with 3-legs, it can be updated using the 
gradient of the NLL. The SVD of the update tensor into an isometry, singular values, 
and a unitary can recover the canonical form of the TTN. Since the center of the 
canonical form of a TTN can move to a neighboring position in the network using 
SVD [ 17], we sweep all nodes in a TTN with single node updates. 

5.3.5 Network Optimization 

The network structure of a TTN is important for generative modeling. The perfor-
mance of the balance tree generative model is better than that of the MPS in several 
scenarios [ 1]. Both the MPS and balance tree belong to the tree network class. The 
difference between them is the structure of their network. Therefore, optimizing the 
network for given data is effective for generative modeling. 

The DMRG algorithm [ 22, 23] is often used to find the ground state of a one-
dimensional quantum model, which is a variational method for an MPS. For a finite 
system, the DMRG algorithm sweeps and optimizes the tensors in the canonical 
form of an MPS to improve the variational energy for a target Hamiltonian. A two-
site DMRG algorithm simultaneously updates two neighboring tensors in an MPS. 
Two tensors that are directly connected can be combined into a 4-leg tensor, and 
this combined tensor can be updated. Finally, the combined tensor is decomposed 
into two 3-leg tensors using SVD, and the algorithm proceeds to the next pair. The 
corresponding algorithm for a tree generative model was proposed in [ 1]. In these 
studies[ 1, 22, 23], the network structure of the TTN does not change. The 4-leg 
tensor can be divided into two tensors in three possible ways, as shown in Fig. 5.5. 
Selecting a new division globally changes the network structure of the TTN.

We now propose a new algorithm to change the network structure of a TTN for 
generative modeling. First, two isometries and singular values are combined in the 
center of the canonical form into a 4-leg tensor. The 4-leg tensor is updated to improve 
the NLL and is then converted into a matrix. Three matrices are used to divide the



5 Application of Tensor Network Formalism for Processing Tensor Data 87

Fig. 5.5 Decomposition of a 4-leg tensor. The triangles and squares represent isometries and 
diagonal matrices of singular values, respectively

Fig. 5.6 Network structure of a tree generative model: a initial MPS structure for random patterns 
and b network structure after optimization by our proposed algorithm. Circles indicate probability 
variables and their color indicates their position in the line. Edges indicate the index of a tensor, 
which is a vertex with three legs

4-leg tensor into two groups. A better division is selected and the SVD of the matrix 
is conducted to produce a new canonical form. The center of the canonical form is 
moved, and the updates are repeated. Several strategies can be used to select a better 
division; further details can be found in [ 6]. 

We tested the proposed algorithm for the empirical probability distribution of 
10 random patterns, starting from the MPS structure shown in Fig. 5.6a, because 
the binary probability variable is on a line. The length of the line is 256. We fixed 
the center part of the line at 0 and divided the left- and right-hand sides into a 
random pattern, as shown in the top and bottom rows in Fig. 5.6a. The variables 
on the left-hand side strongly correlate to those on the right. In this case, when 
we start with a randomly initialized MPS, we cannot obtain the minimum NLL if 
the network structure is fixed as an MPS. However, we can find a tree generative 
model with the minimum NLL by changing the structure of the network using our 
proposed algorithm. Figure 5.6b shows the optimized structure of the network using 
the proposed algorithm; this interesting network structure spontaneously emerged. 
Since the probability variables of the left- and right-hand sides strongly correlate,
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they are embedded into a compact tree structure, shown in the upper right of Fig. 5.6b. 
However, the lower part of Fig. 5.6b consists of probability variables in the center, 
which are fixed to 0.

5.4 Tensor Ring Decomposition 

5.4.1 Introduction to Tensor Ring Decompositions 

As discussed in Sect. 5.2, we can consider a variety of tensor-network decomposi-
tions to represent a given tensor. When we perform approximation for such a tensor 
network decomposition, the efficiency of the data compression highly depends on 
the structure of the tensor-network and properties of the tensor data. For quantum 
many-body problems, the area law of entanglement entropy, which determines the 
scaling of the amount of correlation in the quantum state, plays an important role in 
selecting a better tensor network. However, the area law does not necessarily hold for 
general tensor data. Thus, it remains unclear which types of tensor networks, beyond 
the simplest form of MPS (TT), are suitable for decomposing general tensor data. 

In this section, we consider tensor ring decomposition (TRD), which is a fun-
damental decomposition of multidimensional tensors [ 24]. In TRD, tensors are 
decomposed into a form of matrix product states with periodic boundary condi-
tions (Fig. 5.7). For example, for the .N -leg tensor .Ti1,i2,...,iN , the TRD is expressed 
as 

. Ti1,i2,...,iN =
∑	

j1, j2, j3

M (1)
j1, j2

[i1]M (2)
j2, j3

[i2] · · · M (N )
jN , j1

[iN ]

= Tr
N∏

n=1

M (n)[in], (5.12) 

Fig. 5.7 Tensor ring 
decomposition (TRD) of a 
4-leg tensor. T into four 3-leg 
tensors, .M (i): a a symmetric 
TRD diagram and b an 
alternative representation of 
the TRD diagram
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where .M (n)
jn , jn+1

[in] is a 3-leg tensor, .in = 1, 2, . . . , dn , and . jn = 1, 2, . . . , Dn . Note  
that in the last expression, .M (n)[in] is regarded as a matrix for a fixed . in . Hereafter, 
we denote a tensor defined by (5.12) as.tTr

∏N
n=1 M

(n), where.tTr indicates the trace 
of a tensor network. We can obtain a TRD of a certain tensor, for example, by 
using successive SVDs; however, this yields an (open boundary) MPS, i.e., the bond 
dimensions of the two boundaries, .D1 and .DN , become one. However, an open 
boundary MPS solution is not usually optimal if we want to minimize the maximum 
or average bond dimension in the TRD, because information needs to flow through 
the entire system to represent correlations between two edges, which increases the 
bond dimension,.Dn . Thus, an efficient algorithm is required to find the optimal TRD 
for given tensors. 

We can also consider a related problem where we instead approximate an .N -leg 
tensor using TRD for given bond dimensions.Dn to find the exact TRD. The alternated 
least square (ALS) method [ 24] is often used to find a numerically approximate TRD. 
The aim of the ALS method is to find a TRD that minimizes the distance between 
the original tensor and a TRD representation defined by the Frobenius norm: 

.F =
||||||||||T − tTr

∏

n

M (n)

||||||||||

2

. (5.13) 

The optimal solution is iteratively searched for by solving local linear problems for 
.M (n) defined by fixing .M (m) for .m /= n. When a 3-leg tensor .M (n) is regarded as a 
vector, 

. (M)( j1, j2,i) = M (n)
j1, j2

[i], (5.14) 

the squared norm.F can be written as 

.F = ||T ||2 + M† N̂M − M†W − W†M, (5.15) 

where .N̂ and .W are defined as in Fig. 5.8. 
Note that the matrix .N is positive-semidefinite by construction. Because .F is a 

quadratic function of. M, its extrema are given by solving the linear equations defined 
by 

.N̂M = W. (5.16)

Fig. 5.8 Matrix.N̂ and vector.W in (5.15) for. n = 1
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Fig. 5.9 TRD that contains a redundant loop: a the TRD  of  a tensor. T , where the red line indicates 
the redundant loop; b the corresponding matrix. N̂ ; and  c the vector.W for. n = 1

Thus, when the matrix .N̂ is a regular matrix, we can obtain the optimal . M: 

.M = N̂−1W. (5.17) 

However, in general,.N̂ can have zero eigenvalues and its inverse matrix.N̂−1 may not 
exist. In this case, the linear problem becomes underdetermined. To solve this prob-
lem, the pseudo inverse (PI), .N̂+, is often used instead of the inverse. Alternatively, 
the conjugate gradient (CG) method can be used to obtain one of the solutions. 

The ALS algorithm often gets trapped at a local minimum of. F . In particular, if the 
initial estimate of .M (n) contains a “redundant loop”, removing such a contribution 
from the TRD is not easy; thus, it will not converge to the global minimum. We 
investigate such a situation in Sect. 5.4.2. 

5.4.2 Redundant Loops 

We now consider the numerically optimized TRD of . T , starting from an initial 
estimate that includes a redundant loop. For a general TRD, .tTr

∏
n M

(n), we define 
an ideal redundant loop by adding additional degrees of freedom in the virtual bond 
for all .M (n): 

.M̃ (n)

( jn ,kn),( jn+1,kn+1)
[in] ≡ σ

(n)
kn

δkn ,kn+1M
(n)
jn , jn+1

[in]. (5.18) 

This is also shown in Fig. 5.9a. Clearly, the TRD represented by .M̃ (n) is equiva-
lent to that of .M (n) up to a constant .

∑
k

∏
n σ

(n)
k . Thus, no essential information is 

represented by the additional indices . kn . 
When a TRD has redundant loops, the matrix .N̂ for .n = 1 is represented as 

in Fig. 5.9b. The redundant loops in the upper and bottom parts of this figure are 
disconnected, indicating that .N̂ has zero eigenvalues.
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Similarly, the vector .W for .n = 1 is represented as in Fig. 5.9c. We can easily 
confirm that the solution obtained by the pseudo inverse of . N , .M = N̂+W, main-
tains the redundant loop. However, the redundant loop can disappear in the general 
solution of the linear equation along with the eigenvectors that correspond to the 
zero eigenvalues. Thus, to remove redundant loops, we must properly determine the 
contribution of the zero eigenvectors. 

5.4.3 Entanglement Penalty Algorithm 

We now discuss an idea to improve the optimization of the TRD, inspired by quantum 
many-body problems. We consider the corner double line (CDL) tensor, which often 
appears in statistical physics [ 4], as a model tensor. Based on the CDL structure, 
we introduce a modified cost function that can avoid the previously discussed local 
minima. 

Let a tensor . T be represented by an exact TRD: 

.Ti1,i2,...,iN = Tr
N∏

n=1

C (n)[in]. (5.19) 

Assume that each index. in is represented by a set of two indices.(xn, yn) and that the 
3-leg tensor .C (n) has a CDL structure: 

.C (n)
jn , jn+1

[in = (xn, yn)] = λ
(n)
jn

δ jn ,xnδ jn+1,yn . (5.20) 

. T and.C (n) can be represented as in Fig. 5.10. More generally, we can consider unitary 
matrices that mix the indices .xn and . yn . In this case, .C (n) is written as 

.C (n)
jn , jn+1

[in = (xn, yn)] = λ
(n)
jn
U (n)

( jn , jn+1),(xn ,yn)
, (5.21) 

where .U (n) is a unitary matrix.
As discussed in Sect. 5.4.2, when the ALS algorithm is used to find an optimal TRD 

of. T , represented by (5.19), from an initial guess that includes redundant loops, it gets 
trapped at a local minimum. To avoid such local minima, we consider an additional 
term in the cost function. 

One of the differences between the redundant loop and CDL structure is the 
entanglement, or correlation, between the original indices, . in , and virtual indices in 
the TRD. For redundant loops, the original and virtual indices have no connection, 
but in the CDL structure they do. When we regard a 3-leg tensor .Mi, j1, j2 as a matrix 
.Mi,(k1,k2), the amount of such entanglement can be characterized by entanglement 
entropy, which is often used in quantum information [ 3] and is defined using the 
singular values of . M :
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Fig. 5.10 Ideal corner double line (CDL) tensors: a a local CDL tensor; b a 4-leg tensor consisting 
of general CDL tensors without unitary transformations; and c a 4-leg tensor consisting of general 
CDL tensors with unitary transformations. The blue squares indicate unitary matrices

.SE ≡ −
∑	

i

s̃i log s̃i , (5.22) 

where .s̃i = si/
∑

i si is the normalization of the singular value . si . When .M is an 
.N × M matrix and .r = min(M, N ), .SE is such that .0 ≤ SE ≤ log r : .SE = 0 for 
.s̃1 = 1 and.s̃i = 0(i /= 1), and.SE = log r for.s̃i = 1/r . Note that.S = 0 corresponds 
to the redundant loop, and .SE takes larger finite values for the CDL. Thus, when 
we consider an additional term (negatively) proportional to the entropy in the cost 
function, CDL-like solutions may be favored over the redundant loop. The new cost 
function is explicitly written as 

.F '(	∊) =
||||||||||T − tTr

∏

n

M (n)

||||||||||

2

− 	∊
1

N

∑	

n

SE(M
(n)), (5.23) 

where . 	∊ is a positive constant. For a finite . 	∊, the global minimum of .F ' yields a 
different TRD from that which minimizes. F . Thus, in practice, we may begin the ALS 
algorithm with a sufficiently large . 	∊ and adjust it toward .	∊ = 0 with each iteration. 
Using this procedure, the TRD may escape the local minimum and redundant loop 
during the initial iterations; then, when .	∊ = 0, the ALS algorithm is expected to 
converge to the global minimum of .F '(	∊ = 0) = F . 

5.4.4 Numerical Experiments 

We will now demonstrate how the entanglement entropy penalty works using numeri-
cal experiments. In these experiments, we performed ALS-like site-wise optimization 
with the cost functions .F and .F '(	∊) to find the optimal TRD. Each iteration of the 
ALS algorithm involves updating .N local 3-leg tensors. For .F ', the local problem
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Fig. 5.11 Optimization of TRD using the standard cost function with the PI and CG solvers versus 
the entanglement cost function for a random 4-leg tensor consisting of CDL tensors with a bond 
dimension of.16 for the outer indices: a the initial tensors are random dense tensors and b the initial 
tensors are random dense tensors with redundant loops with a bond dimension of 2, as in (5.18). 
For the entanglement cost function, .	∊ = 0.1 for the first five iterations, which was minimized by 
the CG method; then, .	∊ = 0, which was minimized by the PI. Each iteration optimizes.N tensors. 
Here,. N = 4

becomes nonlinear; we typically use the CG method to solve such a problem. For. F , 
we can use either the PI or CG method. 

As the simplest example, we show the typical optimization dynamics for the 
ideal CDL represented by (5.21). Figure 5.11a shows the convergence of the ALS 
algorithm, starting from random tensors, for a 4-leg tensor. T consisting of a CDL with 
a bond dimension of each index . i1 of 16. For the entanglement cost function (5.23), 
we set.	∊ > 0 for the first few steps and then.	∊ = 0, i.e.,.F '(	∊ = 0) = F , to obtain the 
true global minimum. We use the PI and CG methods to minimize the standard ALS 
cost function (5.13) and use the CG method for the entanglement cost function. The 
optimization with the usual cost function fails to converge to the global minimum with 
the PI and CG methods. However, the entanglement cost function (5.23) converges to 
the global minimum. When we consider initial tensors with the ideal redundant loops 
defined in (5.18), the standard ALS almost always gets trapped at a local minimum, as 
shown in Fig. 5.11b. However, the entanglement cost function avoids getting trapped 
at local minima and smoothly converges to the global minimum. Further details and 
results of these numerical experiments are presented elsewhere [ 11]. 

These numerical experiments indicate that the entanglement cost function works 
very well for CDL-type tensors. However, in general, the target of TRD can be very 
different from the ideal CDL. Our other experiments using tensors constructed from 
the TRD of general tensors indicate that a naive entanglement cost function does not 
always escape local minima; it depends on the balance of the bond dimensions of 
the outer and virtual indices [ 11].
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5.5 Exact MERA Network and Quantum Renormalization 
Group for Critical Spin Models 

5.5.1 Introduction 

In the previous sections of this chapter, we showed that tensor-network approaches are 
applicable to information-scientific problems. Thus, a deep understanding of these 
successes is highly desirable. In quantum physics, the approaches were originally 
proposed as efficient numerical methods for treating the ground and low-lying states 
of strongly interacting quantum many-body systems. In this section, we examine the 
underlying mechanisms of the success of a class of tensor networks called multiscale 
entanglement renormalization ansatz (MERA) [ 21]. 

Usually, two different types of tensor networks are considered depending on how 
close the target model is to quantum criticality. This is because the magnitude of non-
local quantum correlation or entanglement determines the structure of the network. 
Away from criticality, the quantum state can be well represented by the PEPS. The 
well-known MPS is a one-dimensional realization of PEPS, and the relevant matrix 
dimension characterizes the magnitude of the quantum entanglement. Alternatively, 
the algebraic Bethe ansatz is a mathematically exact method for one-dimensional 
solvable models, and this can also be transformed into an MPS. Thus, this recent 
approach also has a traditional root, and hence the underlying mathematics is clear. 
However, in quantum critical cases, the ability of PEPS greatly reduces because the 
tensor dimension must be increased to precisely numerically optimize the tensor-
network wave function. In this case, including an extra dimension, the so-called 
holographic dimension, in the network is a better approach. This extra dimension 
corresponds to the flow of real-space renormalization and also plays a role in greatly 
reducing the tensor dimension. The corresponding network is the MERA network. 

Surprisingly, the MERA concept stimulates string theorists because the structure 
of the network is quite similar to the spacetime concept that appears in gauge/gravity 
correspondence [ 8, 15, 19]. This correspondence is considered to be key to under-
standing the complementary relationship between quantum field theory and general 
relativity. Therefore, clarifying the mathematical structure of the MERA network is 
important interdisciplinary research beyond condensed matter and statistical physics. 

The traditional methods of a renormalization group (RG) are based on the flow of 
interaction parameters in the Hamiltonian, which is defined by the repetition of the 
renormalization group transformation in real or momentum space. By transforming 
the Hamiltonian, we can determine how the system approaches the fixed point and 
what the dominant parameters are. However, recent tensor-network approaches are 
mainly based on the optimization of the variational ansatz, and their relationship with 
the traditional RG concept is not very clear. We aim to overcome this discrepancy 
by bridging the tensor network with the RG of the Hamiltonian.
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5.5.2 Heisenberg Model and Quantum Entanglement 

We start with the antiferromagnetic Heisenberg Hamiltonian in one spatial dimen-
sion: 

.H = J
N∑	

i=1

Si · Si+1. (5.24) 

Here,. S is a quantum spin operator,.S = 1
2σ for Pauli matrix. σ ,. J is the exchange cou-

pling,.N is the number of lattice sites, and we assume the periodic boundary condition 
.SN+1 = S1. The ground state of this Hamiltonian is.|ψ> = ∑

s1,...,sN
ψ s1...sN |s1...sN >, 

where .|s1...sN > is the abbreviation of .|s1> ⊗ · · · ⊗ |sN >. 
As an example, we consider the 4-site case (.N = 4), for which we can obtain 

the exact eigenstates (this is a very pedagogical example to demonstrate the nature 
of the MERA network). The eigenvalues are.E = −2J,−J, 0, 0, 0, J . In particular, 
the ground state (.Sztot = 0) is given  by  

.
√
12 |ψ> = 2 (|↑↓↑↓> + |↓↑↓↑>) − (|↑↑↓↓> + |↑↓↓↑> + |↓↑↑↓> + |↓↓↑↑>) , (5.25) 

where the coefficient .
√
12 corresponds to a normalization factor of .|ψ>. In addition 

to the first term on the right-hand side of the equation, which is a classical anti-
ferromagnetic configuration, a second term exists due to quantum fluctuation. The 
second term represents domain excitation, .|↑↓>i,i+1 ⊗ |↓↑>i+2,i+3. This state can 
also be written as 

.

√
3 |ψ> = |s>12 ⊗ |s>34 + |s>23 ⊗ |s>41 , (5.26) 

where.|s>i j = (|↑↓>i j − |↓↑>i j
)
/
√
2. Thus, two singlets spatially fluctuate, and this 

state has a finite amount of quantum entanglement. To clarify this feature, we intro-
duce a reduced density matrix by taking the partial trace of the density matrix 
.ρ = |ψ> >ψ | as .ρ12 = tr34ρ. Then, the bipartite entanglement entropy is defined 
by 

.S12 = −tr12 (ρ12 log ρ12) = S12 = 2 log 2 − 1

2
log 3 = 0.83698 · · · . (5.27) 

Because of the finite .S12, simple treatments, such as mean-field theory, break 
down. Tensor-network methods can efficiently treat this entanglement. For a one-
dimensional case, this model can be solved exactly, even for a general . N . In this  
case, the wave function is represented by the Bethe ansatz. The algebraic version of 
this ansatz can be transformed into the matrix product state.
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Fig. 5.12 a MERA tensor network (.N = 4, periodic boundary condition) and b graphical rep-
resentation of the effective two-site Hamiltonian after the quantum RG processes represented by 
disentangling and isometry. Here, the two isometries correspond to the effective sites 

5.5.3 Construction of Exact MERA Network 

We would like to represent .|ψ> by the hierarchical tensor network (MERA) in 
Fig. 5.12. The hierarchical network matches the quantum critical systems since it can 
represent the presence of various energy scales due to the real-space renormaliza-
tion processes. This construction can greatly reduce the tensor dimension compared 
with the MPS representation. This is advantageous in terms of numerical simulation. 
Furthermore, the hierarchical network contains disentangling tensors. The presence 
of disentangling tensors is necessary to realize the success of the real-space RG in 
quantum systems. Because of quantum fluctuation, the spin correlation is essentially 
nonlocal, thus maintaining a good approximation using only local transformations is 
difficult. Before the RG, the disentangling tensors properly kill the nonlocal entan-
glement, and thus the real-space RG becomes successful. This is a key in MERA 
optimization. Note that such a network without the disentangling tensors is a tree 
tensor network. The tree tensor network has various applications, as presented earlier 
in this chapter, even though it may not match the quantum RG for quantum critical 
systems. 

We now consider a method for explicitly constructing the tensor elements of the 
MERA network. We first introduce the following representation with a singlet and 
triplet on each of the two sites: 

. 

√
12 |ψ> = 3 |s>23 ⊗ |s>41 + |t0>23 ⊗ |t0>41 − |t+>23 ⊗ |t−>41 − |t−>23 ⊗ |t+>41 ,

(5.28) 

where.|s> = (|↑↓> − |↓↑>) /
√
2,.|t0> = (|↑↓> − |↓↑>) /

√
2,.|t+> = |↑↑>, and. |t−> =

|↓↓>. The purpose of this representation is that it considers the nonlocal bases and 
connects them to disentangling tensors (see Fig. 5.12).
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We now introduce the disentangling transformation .|s> → |00>, .|t+> → |01>, 
.|t−> → |10>, and .|t0> → |11>. This is a unitary transformation that locally reduces 
the amount of entanglement. This change is quite powerful for understanding the 
properties of the MERA network. Then, we have 

. 

√
12 |ψ> = 3 |00>23 ⊗ |00>41 + |11>23 ⊗ |11>41 − |10>23 ⊗ |01>41 − |01>23 ⊗ |10>41

= 3 |0000>1234 + |1111>1234 − |1100>1234 − |0011>1234
= (|00>12 |11>12

) (
3 −1

−1 1

) (|00>34
|11>34

)
. (5.29) 

The vector .|aa> (.a = 0, 1) can be simply represented as .|a>, which compresses 
the information. The MERA representation of the ground state corresponds to the 
decomposition of the coefficient .ψ s1s2s3s4 by a set of functional tensors: 

.ψ s1s2s3s4 =
∑	

i1,i2

∑	

j1, j2, j3, j4

T i1i2W j1 j2
i1

W j3 j4
i2

Us2s3
j2 j3

Us4s1
j4 j1

. (5.30) 

Here we assume a spatially uniform network. Thus, the top tensor is defined by 

.T = 1√
12

(
3 −1

−1 1

)
, (5.31) 

and the isometry tensor is defined by 

.W j j '
i = δi jδ j j ' , i = 0, 1. (5.32) 

The disentangling tensor is defined by 

.

⎛

⎜⎜⎝

|00>
|01>
|10>
|11>

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

|s>
|t+>
|t−>
|t0>

⎞

⎟⎟⎠ = U

⎛

⎜⎜⎝

|↑↑>
|↑↓>
|↓↑>
|↓↓>

⎞

⎟⎟⎠ , U =

⎛

⎜⎜⎝

0 1/
√
2 −1/

√
2 0

1 0 0 0
0 0 0 1
0 1/

√
2 1/

√
2 0

⎞

⎟⎟⎠ . (5.33) 

The matrix elements of .U originate from the combination of .|s> and .|t0>, which 
resembles the Haal wavelet transformation. Thus, we conclude that the quantum RG 
can also be regarded as an extension of the scale control techniques that have been 
developed in classical systems. 

5.5.4 RG Flow 

The effective two-site Hamiltonian after the quantum RG flow using one layer of 
the disentangling and isometric transformations is obtained by taking the partial 
expectation value:
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. H eff
(i '1i '2)(i1i2)

=
∑	

s1,s2,s3,s4

∑	

s '
1,s

'
2,s

'
3,s

'
4

<
s '
1s

'
2s

'
3s

'
4 |H | s1s2s3s4

>
U

s '
2s

'
3

i '1i '2
U

s '
4s

'
1

i '2i '1
Us2s3

i1i2
Us4s1

i2i1
.

(5.34) 

The matrix representation of the effective Hamiltonian and vector representation of 
the top tensor are given by 

.H eff =

⎛

⎜⎜⎝

−3/2 1/2 1/2 −1/2
1/2 0 0 1/2
1/2 0 0 1/2

−1/2 1/2 1/2 1/2

⎞

⎟⎟⎠ , |T > = 1√
12

⎛

⎜⎜⎝

3
−1
−1
1

⎞

⎟⎟⎠ , (5.35) 

respectively, the basis set is .|00>, .|01>, .|10>, and .|11>. The ground state energy is 
given by 

.E = <
T

IIH eff
II T

> = >ψ |H | ψ> = −2J. (5.36) 

Here, the eigenvalues of .H eff are .E = −2J, 0, 0, J . 
We now calculate the bipartite entanglement entropy after the RG, which is defined 

by the entanglement entropy between the two effective sites (isometry tensors). The 
reduced density matrix is defined by 

. ρR = trL |T > >T | = 5

6
|0> >0| − 1

3
|0> >1| − 1

3
|1> >0| + 1

6
|1> >1| =

(
5/6 −1/3

−1/3 1/6

)
.

(5.37) 

Here, the eigenvalues of .ρR are .

(
3 ± 2

√
2
)

/6. The entropy is then calculated as 

.SR = −TrR (ρR log ρR) = log 6 − 2
√
2

3
log

(
3 + 2

√
2
)

= 0.12984 · · · .(5.38) 

Thus, we determine that .SR < S12. Hence, the disentangling procedure actually 
reduces the entanglement entropy, as discussed in the original paper by Vidal [ 21]. 

5.5.5 Concluding Remarks 

In this section, we presented the analytic properties of the MERA network to better 
understand the nature of the quantum RG. Although general cases with a larger . N
are still difficult, the present toy model largely demonstrates how the RG occurs in 
quantum cases. The practical use of a nonlocal basis to decompose the wave function 
is key to constructing the tensor network.
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5.6 Summary 

In this chapter, we presented two applications of tensor networks for tensor data 
processing and a discussion of the underlying mechanism of the success of a tensor 
network related to the compression of quantum information (MERA). Regarding 
further applications, parameter compression of neural networks by tensor networks 
is also interesting [ 10]; however, we could not introduce this here due to space 
limitations. As discussed in this chapter, research on tensor data processing using 
tensor networks is promising, and its future development is necessary to support 
next-generation mobility technologies. 
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Chapter 6 
Machine Learning Approach to Mobility 
Analyses 

Kazushi Ikeda and Takatomi Kubo 

6.1 Introduction 

Sociality is an essence of life in many species such as ants, bees, monkeys, and 
humans. Sociality is characterized by the interactions among the individuals in a 
group and/or those among groups, which appear in their behavior such as movement. 
The movement of agents has easily been recorded thanks to the IoT technologies and 
produces a huge amount of data. 

Recent technologies for mobility are so innovative that they have been changing 
even sports scenes [ 1]. However, the tools for science are not sufficiently developed 
since any sensors are not equipped on agents in scientific experiments or wildlife 
observations. In addition, the interactions among agents are not objectively analyzed 
so far due to the lack of tools. 

In short, therefore, we need the three steps below for the mobility analyses. The 
first step is to track and identify agents therein. The second step is to extract interac-
tions from the tracking data. The last step is to analyze graphs since the interactions 
are represented as a graph, where an agent and an interaction correspond to a node 
and an edge, respectively. 

This chapter introduces some tools recently developed for the three steps above. 
As an example of the first step, we introduce a deep learning-based multi-animal 
tracking system. The system is named Deep MAnTra and is applicable to non-
human primates studies [ 8], since they experience stress and show less movement 
when they are relocated and socially isolated [ 7, 12]. As an example of the second
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step, we introduce a method for horse herding [ 2]. An example of the last step is 
a technique for graph neural networks called MLAP (multi-level attention pooling) 
[ 5]. These tools help analyze mobility data given as videos. 

6.2 Deep Learning-Based Multi-animal Tracking 

The first step of the mobility analyses is to track and identify agents in videos. In 
this section, we introduce a deep learning-based multi-animal tracking system called 
the Deep MAnTra (Fig. 6.1) [  8]. Multi-animal tracking in a wild environment is a 
considerably hard challenge because animals show agile motions, however, it is an 
active research problem in computer vision, since this kind of methods is not only 
applicable to animals but also able to cover the mobility analyses.

In Deep MAnTra, a monkey detector using You Only Look Once (YOLOv4) [ 9] is  
trained with carefully designed transfer learning. Using the resulting box detections 
from our monkey detection model, SuperGlue [ 10] and Murty’s algorithm are used 
for re-identifying the monkey individuals across the succeeding frames. 

As a result, the Japanese macaque detection model trained using a YOLOv4 archi-
tecture with spatial attention module, combined with the Mish activation function 
based on a 3-stage training curriculum yielded the best performance with a mean 
AP50 of 96.59%, a precision score of 93%, a recall of 96%, and a mean IOUAP@50 
of 77.2%. Deep MAnTra can prove effective and reliable for animal behavior stud-
ies, since it achieved 91.35% MOTA (Multiple Object Tracking Accuracy) even on 
a heterogeneous dataset. 

6.3 Horse Herding Analysis 

The second step is to extract interactions from the tracking data. In this section, we 
introduce an example of interaction analyses, which proposed a mathematical model 
of feral horses [ 2]. 

The purpose of this model is to study the mechanism of group aggregation by 
herding, which is necessary for a stallion (the male leader horse of a group) to keep 
his harem of mares (female horses). Herding is also seen between a shepherd dog and 
a sheep, where the shepherd dog moves to aggregate a group of sheep and move the 
group in a certain direction with two crucial strategies [ 11]. While herding, different 
forces of interaction come into play, reflecting the dynamics of the movements of 
the sheep and the strategies of the dog. The herding of sheep by a shepherd dog 
is explained as a social force model [ 3] comprising self-propelled particles with a 
constant speed. In the case of mares, they do not move with a constant speed. Thus, 
we proposed a social force model where the motion is a linear combination of various 
forces such as repulsion from the stallion and attraction to the center of mass. 

The forces employed in our social force model are listed below (Fig. 6.2).
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Fig. 6.1 Image examples of 
multiple monkey detection 
with Deep MAnTra. Each 
green box indicates the 
region showing a monkey. 
Our approach successfully 
detected monkeys in these 
examples even if they are 
occluded

Inertia: A mare tends to move in the same direction as the 
previous one. 

Repulsion from the stallion: When a mare is within a certain distance from 
the stallion, she experiences a force of repulsion 
directed away from the stallion. 

Short-range repulsion: A mare experiences a force of repulsion from 
other mares when they are within the repulsion 
zone, which means that a mare tends to retain an 
exclusive zone around her.



104 K. Ikeda and T. Kubo

Fig. 6.2 Schematic diagram of the zones and forces of interaction experienced by a mare while 
being herded by a stallion  [  2]

Medium-range attraction: A mare experiences a force of attraction from 
other mares when they are within the attraction 
zone, which means that a mare likes to match its 
direction to her specific zone. 

Synchronization attraction: A mare matches her direction with the nearest 
moving mare within a set region, which means 
that a moving mare may be escaping from danger. 

Attraction to the center of mass: Mares experience a force of attraction toward the 
group’s center of mass, since divergent positions 
increase the risk of predation. 

The driving force of a mare is a weighted sum of these components. We assumed that 
each mare has specific weights and estimated them by minimizing the squared error 
between the trajectories of the model and the measurements subject to the condition 
that the coefficients are non-negative, which results in a non-negative factorization 
problem. 

The estimated weights and the reproduced trajectories are in Table 6.1 and in 
Fig. 6.3, respectively. We can see two points from the weights. One is that the weights 
.c4 and .c5 take small values compared to the others, which means that these com-
ponents are ignorable in our model. This is an advantage of using the non-negative 
optimization. The other is that the weights of the mares are widely distributed, except 
for Mares 1 and 2. This variation may indicate forms of relationships among indi-
viduals within the harem. In fact, Mares 1 and 2 are sisters.
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Table 6.1 Weights of the forces obtained 

Mare 
identity 

Inertia, .c1 Repulsion 
from the 
stallion,. c2

Short-
range 
repulsion, 
. c3

Medium-
range 
attraction, 
. c4

Synchronization 
attraction,. c5

Attraction 
to COM,. c6

1 0.600 0.009 0 0 0.134 0.051 

2 0.499 0.183 0.033 0 0.083 0.036 

3 0.353 0.399 0.204 0.024 0.015 0.592 

4 0.595 0.359 0.230 0 0.125 0.423 

5 0.912 0.399 0.037 0 0 0.287 

6 0.677 0.272 0 0.027 0 0.298 

Fig. 6.3 Comparison of 
actual mare trajectories with 
the best-fit model 

In this section, we introduced a mathematical model study for herding in mares 
as an example of interaction analyses. The social force model used therein is gen-
eral, easy to use, and explainable for interaction analyses. In addition, the weights 
represent a personality of the agent and then are useful for further analyses.
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6.4 Multi-level Attention Pooling for Graph Neural 
Networks 

As an example of machine learning techniques for graphs, we introduce deep graph 
neural networks called MLAP (multi-level attention pooling) [ 5]. 

Graph-structured data are found in many fields since a wide variety of natural and 
artificial objects can be expressed with graphs, such as molecular structural formula, 
biochemical reaction pathways, brain connection networks, social networks, and 
abstract syntax trees of computer programs as well as mobility analysis. Because of 
this ubiquity, machine learning methods on graphs have been actively studied. Thanks 
to rich information underlying the structure, graph machine learning techniques have 
shown remarkable performances in various tasks. 

In contrast to classical graph machine learning methods using hand-crafted fea-
tures, recent years have witnessed a surge in graph representation learning (GRL). 
Recently, graph neural networks (GNNs) have rapidly emerged as a new framework 
for GRL. 

Itoh et al. have proposed a method to learn graph representation for graph-level 
prediction tasks, such as molecular property classification, by using multiple repre-
sentations in different localities [ 5]. For this representation learning, they proposed a 
multi-level attention pooling (MLAP) architecture that introduces an attention pool-
ing layer [ 6] for each message passing step to compute layer-wise graph represen-
tations. Then, the proposed architecture aggregates them to compute the final graph 
representation. Thus, the MLAP architecture can focus on different nodes (or dif-
ferent subgraphs) in each layer with different levels of information localities, which 
leads to better modeling of both local structural information and global structural 
information (Fig. 6.4). 

The MLAP architecture is shown to improve the graph classification performance 
compared to the baseline architectures [ 5]. In addition, analyses of the layer-wise 
graph representations suggest that aggregating information from multiple levels of

Fig. 6.4 Architecture of a 
GNN with MLAP. There is a 
dedicated pooling layer for 
each message passing layer 
to compute layer-wise graph 
representation. The 
aggregator computes the 
final graph representation 
from the layer-wise graph 
representations. M.P.: 
message passing 
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localities indeed has the potential to improve the discriminability of learned graph 
representations. 

The MLAP architecture is applicable not only to classification task, but also to 
sequence generation task (Graph2Seq) [ 4]. Further studies will widen the applica-
bility more in the future. 

6.5 Conclusions 

This chapter introduced some tools for three steps for mobility analyses. The first 
is a multi-animal tracking system based on deep learning techniques called Deep 
MAnTra [ 8]. The second is a social force model that extracts interactions from the 
tracking data as well as characterizes the individuals, applied to horse herding [ 2]. 
The last is a graph neural network based on a representation learning called MLAP 
[ 5]. These techniques will help us analyze mobility data given as videos. 

References 

1. FIFA: Football technologies & Innovations at the FIFA World Cup Qatar (2022). https://www. 
fifa.com/technical/football-technology/ 

2. C.K. Go, M. Ringhofer, B. Lao, T. Kubo, S. Yamamoto, K. Ikeda, A mathematical model of 
herding in horse-harem group. J. Ethol. 38(3), 343–353 (2020) 

3. D. Helbing, P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282– 
4286 (1995) 

4. T.D. Itoh, T. Kubo, K. Ikeda, Compositionality-aware Graph2Seq learning (2022). 
arXiv:2201.12178 

5. T.D. Itoh, T. Kubo, K. Ikeda, Multi-level attention pooling for graph neural networks: unifying 
graph representations with multiple localities. Neural Netw. 145, 356–373 (2022) 

6. Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, in 
Proceedings of the 4th International Conference on Learning Representations (2016) 

7. J.S. Meyer, A.F. Hamel, Models of stress in nonhuman primates and their relevance for human 
psychopathology and endocrine dysfunction. ILAR J. 55, 347–360 (2014) 

8. R.R. Pineda, T. Kubo, M. Shimada, K. Ikeda, Deep MAnTra: deep learning-based multi-animal 
tracking for Japanese macaques. Artif. Life Robot. 28(1), 127–138 (2023) 

9. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object 
detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(2016), pp. 779–788 

10. P.-E. Sarlin, D. DeTone, T. Malisiewicz, A. Rabinovich, Superglue: learning feature matching 
with graph neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (2020), pp. 4938–4947 

11. D. Strömbom, R.P. Mann, A.M. Wilson, S. Hailes, A.J. Morton, D.J.T. Sumpter, A.J. King, 
Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. 
Soc. Interface 11(20140719) (2014) 

12. S.L. Willard, C.A. Shively, Modeling depression in adult female cynomolgus monkeys (Macaca 
fascicularis). Am. J. Primatol. 74, 528–542 (2012)

https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
https://www.fifa.com/technical/football-technology/
arXiv:2201.12178
 -318 34842 a -318 34842
a
 
http://arxiv.org/abs/2201.12178


108 K. Ikeda and T. Kubo

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 7 
Graph Optimization Problems and 
Algorithms for DAG-Type Blockchains 

Jun Kawahara 

7.1 Introduction 

A large amount of data must be processed when utilizing mobility technologies. For 
example, in car sharing, a large amount of data are generated, including information 
on rented vehicles, such as who is riding in which vehicle, when and where the 
vehicle travels, and the history of money received and paid. A database that stores 
such data must be fault-tolerant. A centralized database that manages all data in a 
single location results in massive confusion when a failure of that database occurs. 
Therefore, data should be managed in a distributed manner as much as possible; one 
way to do this is by using a distributed database. 

Although many distributed database technologies exist, blockchain technology 
has been attracting attention in recent years [ 9]. Blockchain is primarily used to 
realize virtual currencies without a centralized administrator. However, the simple 
line-type blockchain used in Bitcoin and other applications is limited by the amount 
of data that can be stored; it cannot withstand the large amount of data that is typical 
for mobility applications. 

A directed acyclic graph (DAG)-type blockchain has been proposed to increase 
the amount of data stored in the blockchain and improve scalability [ 8] (see Fig. 7.1). 
In a line-type blockchain, transactions of blocks of a chain other than the longest 
blockchain are discarded, which is inefficient. In a DAG-type blockchain, fewer 
transactions are discarded, which is expected to be more efficient.

In blockchain technology, dealing with malicious participants is a challenge. As a 
blockchain is realized using P2P network technology, all participants in the network 
play the same role. Any participant can create and add blocks to the blockchain that are 
favorable to them. In a line-type blockchain, a mechanism called “proof-of-work” [ 9] 
makes adding malicious blocks difficult; however, in a DAG-type blockchain, mali-
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Fig. 7.1 Example of a DAG-type blockchain

cious blocks must be detected differently. One method is to identify trusted blocks by 
solving some type of independent set problem on a DAG. However, the independent 
set problem is NP-hard and is difficult to solve quickly. 

In this chapter, we consider a DAG-type blockchain as a graph structure and 
analyze it based on graph algorithm theory. Many participants in a P2P network are 
expected to connect their blocks to those near the tail of the DAG-type blockchain. 
Therefore, a DAG-type blockchain is expected to have a structure that is similar to that 
of a directed path. In undirected graphs, a characteristic called the pathwidth [ 11] has 
been studied, which indicates how much a graph is close to a path. Various algorithms 
can deal with undirected graphs with small pathwidths efficiently. Several similar 
metrics exist for directed graphs [ 3, 6, 10], but they cannot be applied to DAGs. This 
chapter introduces the concept of the DAG-pathwidth introduced in the paper [ 7], in 
which we designed an algorithm to efficiently solve some independent set problems 
on DAGs by performing DAG-path decomposition. Note that finding a DAG-path 
decomposition with a minimum DAG-pathwidth is NP-hard [ 7]. 

7.1.1 Related Work 

The concept of the pathwidth was first proposed by Neil et al. [ 11]. Often, the 
treewidth is used to measure the width of undirected graphs (proposed by Neil et 
al. [ 12] and Rudolf et al. [ 5]), which represents the closeness of a graph to a tree. Many 
algorithms using treewidth have been proposed [ 2]. Calculating both pathwidths and 
treewidths is NP-complete [ 1]. 

Researchers have proposed various width measures for directed graphs, such as 
the directed pathwidth [ 10], directed treewidth [ 6], and DAG-width [ 3]. The reason 
for introducing a new graph parameter is that these existing widths are unsuitable 
for DAGs. This is the main difference between existing widths and our proposed 
width. Some studies have solved problems for a directed graph with a small width, 
for example, deciding the reachability of DAGs [ 4]. Sompolinsky and Zohar [ 13] 
formulated a problem for the DAG-type blockchain; they proposed a DAG-type 
protocol called PHANTOM. This is called a discord .k-independent set problem.
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7.2 Preliminaries 

In this section, we introduce some definitions and notation. A directed graph is a pair 
.D = (N , A), where.N is a set of elements, called nodes, and.A ⊆ N × N is a pair of 
nodes, called arcs. For an arc.(u, v) ∈ A, . u is called the tail and. v is called the head. 
For two nodes.v1, va ∈ N , if there are nodes.v2, . . . , va−1 such that.(vi , vi+1) ∈ A for 
.i = 1, . . . , a − 1, then .({v1, . . . , va}, {(vi , vi+1) | i = 1, . . . , a − 1}) is a directed 
path, and we say that .va is reachable from. v1. We also write .v1 ⇝D va . If . (va, v1) ∈
A additionally holds, .({v1, . . . , va}, {(vi , vi+1) | i = 1, . . . , a − 1} ∪ {(va, v1)}) is a 
directed cycle. A  directed acyclic graph (DAG) is a directed graph that has no directed 
cycle. For an arc subset .A' ⊆ A, if every two nodes .u, v in .A' are reachable to each 
other (i.e.,.u ⇝D v and.v ⇝D u),.A' is called a strongly connected component. Every  
strongly connected component of a DAG consists of exactly one node (otherwise, 
the DAG has a directed cycle). 

For a node subset.N ' ⊆ N , the  induced subgraph of.N ' is a graph whose node set 
is.N ' and whose arc set consists of the arcs such that both the head and tail are in.N '. 
We denote by .D[N '] the induced subgraph of .N '. That is, . D[N '] = (N ', {(u, v) ∈
A | u ∈ N ', v ∈ N '}). 

7.3 Blockchain 

This section provides the minimum necessary modeling of the blockchain. This 
is a greatly simplified version of the blockchain used in Bitcoin and other virtual 
currencies. First, we describe a blockchain whose shape looks like a chain, used in 
Bitcoin and other currencies, followed by a blockchain whose shape looks like a DAG. 
The former is called a chain-type blockchain (called line-type in the introduction) 
and the latter a DAG-type blockchain. 

7.3.1 Chain-Type Blockchain 

A blockchain operates as a distributed database that holds data generated by multiple 
participants in a consistent manner. There are multiple participants on the network 
that generate data such as money transfer transactions. The generated data is called a 
piece. A piece can be considered as a string of arbitrary length on.{0, 1}, but we will 
not be concerned with the contents of the piece here. There are several miners on 
the network, apart from the participants. A participant who generates the data may 
also play the role of a minor. Participants broadcast the pieces they wish to record 
in the blockchain on the network, i.e., they send data to the miners on the network. 
When a minor receives a piece from a participant, the minor temporarily stores it in 
the minor’s own memory, which is called a pool.
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A minor attempts to create a block. A block is defined by a triple .(h, P, c). The  
first element . h is a natural number as described below. .P is a set of pieces. The 
minor takes pieces from the pool when creating the block and stores them in the 
block as . P . The third element . c, called nonce, is a natural number at least . 0 and less 
than .UN, whose value must be appropriately determined by the block creator in the 
manner described below, where.UN is a fixed value determined by the protocol, e.g., 
.UN = 232 in the Bitcoin blockchain. 

Before we describe in detail how to create a block, we introduce the notion that 
for two blocks.B1 = (h1, P1, c1) and.B2 = (h2, P2, c2),.B2 refers to.B1. Consider the 
(cryptographic) hash function.h∗(s) : {0, 1}∗ −→ {0, 1, . . . ,UH − 1}whose domain 
is a string on.{0, 1} and whose value range is any natural number at least. 0 and less than 
.UH, where.{0, 1}∗ is the set of all strings on.{0, 1} and.UH is a fixed value determined 
by the protocol, e.g.,.UH = 2256 in the Bitcoin blockchain. The hash function.h∗(s) is 
a function defined by the protocol. For example, in the Bitcoin blockchain, a function 
based on SHA-256 is used. Consider obtaining the hash function value of the block’s 
data.h1, P1, c1..P1 is a set of strings (pieces), and each element is concatenated using 
delimiters. The values.h1 and.c1 are natural numbers and are properly encoded in the 
string. Finally,. h1,.P1, and.c1 are concatenated using delimiters. We omit the specific 
encoding method. By making the string for the input to the hash function. h∗, a natural 
number at least . 0 and less than.UH is obtained as output. The output value is written 
as .h∗(B1) or .h∗((h1, P1, c1)) with symbol abuse. We say that . h2 = h∗((h1, P1, c1))
and further that .B2 refers to .B1 if .h2 < T is satisfied for .T that is defined later. 
For a block .Bi = (hi , Pi , ci ), .i = 1, 2, . . ., a  chain in a chain-type blockchain is a 
sequence of blocks .B1, B2, . . . such that .Bi+1 refers to . Bi . We assume that . h1 = 0
and .c1 = 0. We call .B1 the genesis block. 

A minor creates a block and sends it by broadcast to another minor. A conscien-
tious minor will make every effort to ensure that the block reaches the entire minor 
as much as possible. However, the arrival of the block may be delayed due to net-
work congestion or other reasons. The set of blocks recognized by a minor .m (i.e., 
generated by itself or received from other minors) is denoted by.Cm . Blocks are data, 
not objects, and data are copied, not moved. That is, when a minor .m sends a block 
. B to a minor .m ', . B is contained in both .Cm and .Cm ' . 

Block creation is performed as follows. A minor .m obtains the longest chain 
from .Cm . That is, we consider the block sequence .B1, . . . , Bℓ ∈ Cm with the maxi-
mum length. ℓ such that.Bi+1 refers to.Bi for.i = 1, 2, . . . , ℓ − 1 and.B1 is the genesis 
block. The minor. m attempts to create a block.Bℓ+1 = (hℓ+1, Pℓ+1, cℓ+1). Let. hℓ+1 =
h∗(Bℓ). The  set.Pℓ+1 is created by taking several pieces from the pool of. m. The  value  
.cℓ+1 must be determined so that .h∗((hℓ+1, Pℓ+1, cℓ+1)) < T . Here, it is not compu-
tationally easy to determine .cℓ+1 so that the value of .h∗((hℓ+1, Pℓ+1, cℓ+1)) is less 
than. T . (The hash function.h∗ must be designed so.) We determine the value of . cℓ+1

by repeatedly and randomly choosing .cℓ+1 and calculating . h∗((hℓ+1, Pℓ+1, cℓ+1))

until it is less than . T . If a minor succeeds in finding such .cℓ+1, i.e., generating . Bℓ+1

that refers to .Bℓ, the minor .m removes all pieces of .Pℓ+1 from the pool, adds . Bℓ+1

to .Cm , and broadcasts .Bℓ+1. Another minor .m ' that receives .Bℓ+1 adds .Bℓ+1 to .Cm ' . 
The minors .m and .m ' attempt to create the next block in a similar process.
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Miners are given an incentive to generate blocks. In the Bitcoin blockchain, bit-
coins are awarded to a minor who creates a block .B (that information is written 
to . B). Thus, miners compete to create a block. The process of generating blocks 
is called mining. The  value of  .T mentioned above is called the target. In Bitcoin, 
.T is adjusted so that the average time interval for one of all miners to successfully 
create a block (to find a nonce that satisfies the condition) is ten minutes. The target 
.T at the creation of the block .Bℓ+1 following the chain .B1, . . . , Bℓ depends on the 
information contained in .B1, . . . , Bℓ. 

If many miners are conscientious, many miners are expected to have the same 
chain .B1, . . . , Bℓ. However, blocks near the end of the chain may not have arrived 
due to network congestion. There is an incentive to create blocks because there is 
an incentive to maintain the blockchain network. Therefore, many miners can be 
expected to be conscientious. The data stored in the blockchain is interpreted as 
.P1, . . . , Pℓ (this is not a mathematical definition). 

When creating a new block .Bℓ+1 = (hℓ+1, Pℓ+1, cℓ+1), a minor must check 
whether each piece in .Pℓ+1 is consistent with .P1, . . . , Pℓ, and the minor does not 
make an inconsistent piece belong to.Pℓ+1. A block.Bℓ+1 whose.Pℓ+1 is inconsistent 
with .P1, . . . , Pℓ will be ignored by the other miners. Therefore, the miner correctly 
tries to create .Bℓ+1 in order to gain incentives. This mechanism ensures the consis-
tency of data in the blockchain. Pieces in a block that are out of the longest chain 
are considered invalid. Note that .P1, . . . , Pℓ will never be fixed, as longer chains 
may be created later. In practice, however, for a sufficiently large . ℓ, overwriting all 
of .B1, . . . , Bℓ would require the creation of a chain longer than. ℓ and would require 
a large amount of computing power to compute the hash function. Miners with the 
ability to create chains longer than . ℓ would have less incentive to overwrite all of 
.B1, . . . , Bℓ because they would be incentivized to create chains behind.Bℓ according 
to the legitimate rules. 

Two blocks may be generated simultaneously by different miners. Suppose that 
two blocks, .Bℓ+1 and .B '

ℓ+1, are generated behind .Bℓ. Many miners receive both 
.Bℓ+1 and .B '

ℓ+1, but arbitrarily choose one of them (usually the block that arrived 
first) and attempt to create the block following the one they chose. If another 
miner successfully creates and broadcasts a block .Bℓ+2 behind .Bℓ+1, for example, 
.B1, . . . , Bℓ, Bℓ+1, Bℓ+2 is longer than .B1, . . . , Bℓ, B '

ℓ+1. Then, most miners try to 
create a block following.Bℓ+2. Even if a temporary chain split (called a fork) occurs, 
this mechanism often converges the fork. (Of course, it is not guaranteed that forks 
will converge, and the continued simultaneous creation of blocks will create chaos 
in the chain.) 

7.3.2 DAG-Type Blockchain 

Chain-type blockchains have the disadvantage that blocks that are out of the longest 
chain are discarded. In order to increase the amount of data stored, DAG-type 
blockchains were considered [ 8]. A DAG-type blockchain is a type of blockchain
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in which the directed graph composed of block references is a DAG rather than a 
directed path. We allow a block to refer to multiple blocks. We extend the definition 
of a block to .B = (H, P, c), where .P is a set of pieces, . c is a nonce, and .H is a 
sequence of integer values at least . 0 and less than .UH. For blocks .B1, . . . , Ba , we  
say that a block .B refers to blocks .B1, . . . , Ba if .hi = h∗(Bi ), .i = 1, . . . , a and 
.H = (h1, . . . , ha). 

For simplicity, let .Bgen = (∅,∅, 0) denote the genesis block in a DAG-type 
blockchain, and assume that all miners hold.Bgen. The concept of a chain in a chain-
type blockchain corresponds to a connected DAG containing the genesis block in 
a DAG-type blockchain. For two blocks .B, B ' ∈ Cm recognized by a minor . m, if  
there exist blocks.B1, B2, . . . , Ba , where.B1 = B,.Ba = B ', and.Bi+1 refers to.Bi for 
.i = 1, . . . , a − 1, we say that . B is reachable from. B '. Strictly speaking,. B is said to 
be reachable from.B ' if .Bi = (Hi , Pi , ci ) and for.i = 1, . . . , a − 1, the  value. h∗(Bi )

is contained in the sequence .Hi+1. Consider the set of blocks in .Cm consisting of 
all blocks reachable to .Bgen. We write it as .B(Cm). We also write .D = (N , A) for 
the DAG composed of .B(Cm) (as a graph structure). The elements of .N are called 
nodes, and .N has a one-to-one correspondence with .B(Cm). For an arc .(u, v) ∈ A, 
let .Bu and .Bv denote the blocks corresponding to . u and . v, respectively. Then, . Bu

refers to .Bv . .D has no directed cycle because when .Bu refers to .Bv , the time when 
.Bv is generated is before the time when.Bu is generated. From the way.D is created, 
there is exactly one node whose outgoing degree is . 0, which corresponds to .Bgen. 
We write the node as .vgen. 

7.3.3 PHANTOM Protocol 

When a block. B refers to a block. B ', the creator of the block. B believes that the piece 
held in the block .B ' is correct (consistent with the other pieces). Similarly, when a 
block. B is reachable to a block.B '', the creator of the block. B believes that the piece 
held in the block .B '' is correct. Thus, receiving references from many blocks would 
increase the reliability of the block. If many conscientious miners properly select 
and refer to blocks behind the DAG, the DAG will become closer and closer to the 
chain, and blocks closer to the beginning of the chain will accumulate trust. This 
makes the entire DAG-type blockchain more resistant to tampering and the system 
more stable. 

However, accepting every block in the DAG as a legitimate block causes the 
following problem. A malicious minor .me creates a block .B containing a piece 
beneficial to him/her, but does not broadcast .B and keeps it secret from others. 
He/she generates a new piece beneficial to himself/herself, creates a block, and 
makes it refer to . B. In this way, .me generates a block containing a piece beneficial 
to himself/herself one after another as a successor to . B. When enough blocks have 
been created, .me broadcasts .B and the subsequent blocks simultaneously. In the 
mechanism that recognizes all blocks in the DAG as legitimate blocks, blocks created 
in this way are recognized as legitimate blocks. As another example, in an extreme
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case, .Bgen could be referred to from all blocks created. Blocks that have not earned 
the trust of other miners are treated as legitimate blocks without restriction. 

The PHANTOM protocol [ 13] of the DAG-type blockchain solves this prob-
lem in the following way. Before this description, we define some terms. In the 
following, consider a DAG .D = (N , A) corresponding to .B(Cm) of some minor 
. m. For a node .v ∈ N of .D = (N , A), let  .past(v, D) be the set of nodes reach-
able from . v on . D. That is, .past(v, D) = {u ∈ N | D = (N , A), v ⇝D u}. Also,  
let .future(v, D) be the set of nodes reachable to . v on . D. That is . future(v, D) =
{u ∈ N | D = (N , A), u ⇝D v}. Let  .anticone(v, D) be the set of nodes in .N that 
are contained in neither .past(v, D) nor .future(v, D). That is, . anticone(v, D) =
N \ past(v, D) \ future(v, D). 

The PHANTOM protocol limits the number of blocks that have not earned 
the trust from other miners. Fix the natural number parameter . k. For any subset 
.N ' ⊆ N of nodes, .N ' is called a discord .k-independent set if for any node .v ∈ N ', 
.discord(v, N ', D) := |N ' ∩ anticone(v, D)| ≤ k. That is, for any node. v in.N ', we  
restrict the number of nodes in .N ' that cannot be reached from . v and cannot reach 
. v to at most . k. We consider the block corresponding to each node of .N ' as a valid 
block (for. m), and consider the pieces contained in a valid block as valid. Blocks not 
contained in.N ' are considered invalid blocks, and pieces contained in invalid blocks 
are ignored. It is expected that this mechanism will prevent miners from creating 
blocks that are not referred to as blocks generated by other miners. 

The PHANTOM protocol regards the discord .k-independent set of .D with the 
maximum number of nodes as the set of legitimate blocks. We need an efficient 
algorithm that computes the maximum discord .k-independent set of . D, which is 
discussed in Sect. 7.5. 

7.4 Pathwidth 

7.4.1 Pathwidth and Directed Pathwidth 

Many fast methods exist for solving optimization problems. Although integer pro-
gramming is a promising method, the problem we wish to solve must be solved 
by all minors. Therefore, fast commercial solvers for integer programming are not 
available. Since the problem we want to solve this time needs to be solved rigorously, 
approximation algorithms, heuristics, and genetic algorithms are not suitable. Here, 
we use parameterization algorithm techniques. Well-known techniques include the 
notions of pathwidth and treewidth for undirected graphs, as described in the intro-
duction section. These are natural numbers that represent the closeness of a graph to 
a path or a tree. The smaller the value is, the closer the graph is to the path or tree. 
When pathwidth and treewidth are small, it is possible to decompose the graph into 
smaller pieces that do not interfere with each other, and faster algorithm design based 
on decomposition is expected. Since a newly generated block refers to blocks at the
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tail of the DAG, the shape of the DAG is expected to be close to a straight line. (Since 
the shape is not expected to be close to a tree, treewidth is not used.) The concept of 
directed pathwidth exists for directed graphs [ 10], but as will be explained later, it is 
not applicable to DAGs. We will introduce a parameter that can be applied to DAGs. 

We describe path decomposition and pathwidth of an undirected graph. The path 
decomposition of an undirected graph .G = (V, E) is a sequence .(X1, X2, . . .) of 
subsets of .V satisfying the following conditions, where a subset .Xi of .V is called a 
bag: 

(P1) .
U

i=1,2,... Xi = V . 
(P2) For every edge .(u, v) ∈ E , there is a bag .Xi such that .u, v ∈ Xi . 
(P3) For all .i, j, k with .i < j < k, .Xi ∩ Xk ⊆ X j holds. 

(P1) is the condition that any element of.V is contained in at least one of the bags 
.X1, X2, . . .. (P2) is the condition that there exists a bag containing both endpoints 
of any edge in . E . (P3) means that for any node .v ∈ V , the subscripts of the bags 
containing . v are continuous as .Xi , Xi+1, . . . , Xk−1, Xk . 

The pathwidth for a path decomposition .(X1, X2, . . .) of .G is defined by 
.maxi {|Xi | − 1}. Among the path decompositions of . G, consider the path decom-
position with the smallest pathwidth, and define the pathwidth of.G as the pathwidth 
of the path decomposition. The .−1 appearing in the definition of pathwidth is for 
adjusting the pathwidth of a path to be . 1. 

An important property of path decomposition is the following property. For any 
.i = 2, 3, . . ., consider the following. Let .XL be the set of nodes in the bag before. Xi

that are not included in .Xi , and let .XR be the set of nodes in the bag after .Xi that 
are not included in.Xi . That is,.XL = U

j<i X j \ Xi and.XR = U
j>i X j \ Xi . Given  

any nodes .x ∈ XL and .y ∈ XR, the edge .(x, y) is not contained in . E . That is, . XL

and .XR are separated by .Xi . This is a property derived from (P1), (P2), and (P3). 
Based on path decomposition, various problems can be solved efficiently. As an 

example, consider solving the maximum independent set problem. An independent 
set.V ' ⊆ V of an undirected graph.G = (V, E) is a subset of. V satisfying the condi-
tion that for any edge .(u, v) ∈ E , at least one of . u and . v is not contained in .V '. The  
maximum independent set problem is the problem of finding an independent set of 
.G with the maximum number of elements. 

Suppose that a path decomposition.(X1, X2, . . .) of. G is obtained, and let. w be the 
pathwidth of the path decomposition. For any.i = 1, 2, 3, . . ., consider the following. 
Let .B be an arbitrary node set such that .B ⊆ Xi . On the subgraph .G[U j≤i X j ] of 
.G induced by .

U
j≤i X j , consider an independent set with the maximum number of 

nodes that contains all the nodes in. B, and let.pi (B) be the number of its elements (if 
such an independent set does not exist, .pi (B) = −∞). For any node.v ∈ Xi+1 \ Xi , 
there is no edge of .E connecting . v and any node in .XL(= U

j<i X j \ Xi ), by the  
above property. Therefore, we only need to look at the nodes of . B (contained in .Xi ) 
to determine whether to add . v as an element of the independent set. Although we 
omit the detail, from the value of.pi (B) for any node set.B ⊆ Xi , we can calculate the 
value of.pi+1(B ') for any node set.B ' ⊆ Xi+1, and by performing this calculation for 
.i = 1, 2, . . . in that order, the maximum independent set problem can be solved. The



7 Graph Optimization Problems and Algorithms for DAG-Type Blockchains 117

information to be stored in each step is the value of .pi (B) for any node set .B ⊆ Xi , 
the number of which is at most .2w+1. This algorithm runs in .2O(w)poly(|V |) time, 
where .poly(|V |) is a polynomial in .|V |. If .w can be regarded as a sufficiently small 
constant, this can be regarded as the input polynomial time. 

We describe path decomposition and pathwidth for directed graphs. For a directed 
path decomposition of a directed graph .D = (N , A), condition (P2) is changed to 
the following condition (P2. '). 

(P2. ') For any.(u, v) ∈ A, there are.i, j with.i ≤ j such that .u ∈ Xi and.v ∈ X j . 

Note that we replace .V in (P1) with .N for directed path decomposition. 
Directed pathwidth for directed graphs can be defined in the same way as path-

width for undirected graphs. 
The directed pathwidth of the DAG is always zero. This can be shown as follows. 

The nodes of a DAG .D = (N , A) can be ordered in a topological order. Here, a 
topological order is an order of the nodes of .v1, . . . , v|N | on .N such that .i < j for 
any.(vi , v j ) ∈ A. If we construct the bag.Xi = {v|N |−i+1} for.i = 1, . . . , |N |, we can 
confirm that .(X1, . . . , X |N |) satisfies (P1), (P2. '), and (P3). The directed pathwidth 
of this directed path decomposition is always . 0. Therefore, the directed pathwidth 
provides no information on the DAG. 

7.4.2 DAG-Pathwidth 

We explain DAG-path-decomposition (DAG-PD) and DAG-pathwidth [ 7]. The 
DAG-PD is defined for a general directed graph .D = (N , A). The DAG-PD of 
.D = (N , A) is a sequence .(X1, X2, . . .) of subsets of .N satisfying the following 
conditions ((D1) is equivalent to (P1) and (D3) to (P3)). 

(D1) .
U

i=1,2,... Xi = N . 
(D2) For every arc .(u, v) ∈ A, if  .u ∈ X1, .v ∈ X1 holds. Otherwise (.u /∈ X1), 

there is an integer .i ≥ 2 such that .u ∈ Xi , .u /∈ Xi−1 and .v ∈ Xi hold. 
(D3) For all .i, j, k with .i < j < k, .Xi ∩ Xk ⊆ X j holds. 

The condition (D2) is explained below. When .u /∈ X1, from condition (D1), . u
must be contained in one of the bags. Therefore, there is always an integer . i such 
that .u ∈ Xi and .u /∈ Xi−1. Also, from condition (D3), there exists only one such 
. i . (If there exists . i , . i ' (.i < i ') such that .u ∈ Xi , .u /∈ Xi−1, .u ∈ Xi ' , .u /∈ Xi '−1, then 
from (D3) for any . j , .i < j < i ', .Xi ∩ Xi ' ⊆ X j , but  .u ∈ Xi ∩ Xi ' and .u /∈ Xi '−1, 
a contradiction.) For such . i , (D2) requires that the endpoint . v of the arc .(u, v) is 
contained in.Xi . We write such. i , i.e., .min{i | v ∈ Xi }, as .fbX (v) or simply.fb(v). . fb
stands for the First Bag. Intuitively, condition (D2) implies that every endpoint of an 
arc whose tail is . u must be in .X fb(u). This direction condition differs from condition 
(P2) for undirected graphs. 

We have the following lemma on . fb.
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Lemma 7.1 ([ 7]) Let .D = (N , A) be a directed graph and .X = (X1, X2, . . .) be a 
DAG-PD of . D. Then, for any nodes .u, v ∈ N, if there is a directed path from . u to . v, 
.fb(v) ≤ fb(u) holds. 

The following lemma can be obtained from Lemma 7.1. 

Lemma 7.2 ([ 7]) Let .D = (N , A) be a directed graph and .X = (X1, X2, . . .) be a 
DAG-PD of . D. If two nodes .u, v ∈ N are included in the same strongly connected 
component, then .fb(u) = fb(v) holds. 

This lemma holds because .u, v are in the same strongly connected component, 
and thus there exist directed paths from. u to . v and from. v to . u. 

7.4.3 Nice DAG-PD 

Undirected path decomposition has the concept of a nice path decomposition that 
is useful in dynamic programming. A similar concept can be defined for DAG-
pathwidth. 

Let .D = (N , A) be a directed graph and .X = (X1, X2, . . .) be a DAG-PD of . D. 
.X is called a nice DAG-PD if the following conditions hold: 

1. . X1 = ∅.

2. For .i = 1, 2, . . ., exactly one of the following holds: 

(2-a) (Introduce) There is a strongly connected component. S such that. S ∩ Xi = ∅
and .Xi+1 = Xi ∪ S. 

(2-b) (Forget) There is a node .v ∈ Xi such that .Xi+1 = Xi \ {v}. 

A nice DAG-PD starts with .X1 = ∅. For  .i = 1, 2, . . ., we consider constructing 
.Xi+1 from .Xi by adding nodes to .Xi or deleting nodes from .Xi . If we try to add a 
node.v ∈ V to.Xi , all the nodes in the strongly connected component having. v must 
be added to .Xi at the same time because the .fb values of all the nodes are equal 
by Lemma 7.2. This operation is called “Introduce.” Therefore, (2-a) is defined as 
above. On the other hand, the bag obtained by deleting any single node from.Xi does 
not violate any conditions of DAG-PD. This operation is called “Forget.” Thus, (2-b) 
is defined as above. In this way, changes in consecutive two bags before and after 
are minimized to facilitate the design of dynamic programming. 

For any DAG-PD, we describe how to change the DAG-PD to a nice DAG-PD 
without changing its DAG-pathwidth. Let .X be the original DAG-PD. Let .Xi be the 
.i-th bag of . X . First, if the head of .X is not . ∅, add . ∅ to the beginning of . X . In the  
following, the bag after the modification is also written as . X . Next, when there are 
two bags such that.Xi = Xi+1,.Xi+1 is removed from. X . Finally, repeat the following 
operations (i), (ii), and (iii) for .X as many times as possible.
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(i) If there exist bags .Xi , Xi+1 such that .Xi ⊈ Xi+1 and .Xi+1 ⊈ Xi , then insert 
.Xi ∩ Xi+1 between .Xi and .Xi+1. (This results in .Xi ⊇ Xi ∩ Xi+1 ⊆ Xi+1.) 

(ii) If there exist bags .Xi , Xi+1 such that .Xi+1 ⊆ Xi and.|Xi | − |Xi+1| ≥ 2, insert 
.Xi \ {v} for some .v ∈ Xi \ Xi+1 between .Xi and .Xi+1. 

(iii) If there exist bags .Xi , Xi+1 such that .Xi ⊆ Xi+1 holds, and .Xi+1 \ Xi is not 
a strongly connected component of . D, insert .Xi+1 \ A between .Xi and .Xi+1, 
where. A is a strongly connected component of.D[Xi+1 \ Xi ] (subgraph induced 
by.Xi+1 \ Xi ) such that there is no directed path from the nodes in. (Xi+1 \ Xi \
A) to the nodes in . A. 

It is easy to check that the sequence of bags constructed in this way satisfies the 
conditions for a DAG-PD and a nice DAG-PD. Also, since there are a finite number 
of nodes in . N , the procedure always halts (we omit the proof). 

The problem of finding a DAG-PD with minimum DAG-pathwidth is proved to 
be NP-hard [ 7]. The proof is based on a reduction from the minimum cut linear 
arrangement problem, which is NP-hard. 

7.5 Discord .k-Independent Set Problem 

In this section, we describe an efficient algorithm for solving the maximum dis-
cord .k-independent set problem based on DAG-PD [ 7]. Assume that we are given 
a DAG .D = (N , A) and a nice DAG-PD .X = (X1, X2, . . . , Xr ) of .D as the input 
of the problem, where . r is a positive integer. We design a dynamic programming-
based algorithm using. X . Recall that when some strongly connected component. S is 
introduced in the DAG-PD,.Xi+1 = Xi ∪ S holds. Since.D is a DAG, every strongly 
connected component of.D consists of exactly one node. Therefore, in the nice DAG-
PD, if.Xi+1 = Xi ∪ S for some. i and some strongly connected component. S,. S = {v}
for some.v ∈ N . In this case, we call .Xi+1 an introduce bag. If .Xi+1 = Xi \ {w} for 
some .w ∈ N , we call .Xi+1 a forget bag. In those cases, we say that . v (resp. . w) is a  
node of the bag .Xi+1. 

The process of our algorithm is considered as the construction of a discord .k-
independent set by deciding whether we add each node to the set or not one by one 
in the order of the nodes of the introduce bags of the DAG-PD. Let us consider 
an example shown in Fig. 7.2. An example of an introduce bag . Xi+1 = Xi ∪ {v}
is shown in the figure. We are constructing a discord .k-independent set, denoted 
by . Y . Now, we add the node . v to . Y . Let  .Y ' = Y ∪ {v} and .Zi ' = U

j=1,...,i ' X j . 
We need to decide whether the discord condition . discord(u, Y ', D[Zi+1]) = |Y ' ∩
anticone(u, D[Zi+1])| ≤ k holds for all .u ∈ Xi+1 after adding . v to . Y . (Recall that 
.D[Zi+1] is the DAG induced by .Zi+1.)

First, consider.discord of the newly introduced node. v. There is no arc whose tail 
belongs to .Zi+1 and whose head is . v because for every arc .(w, v) ∈ A for .w ∈ N , 
. w first appears in.X j for. j ≥ i + 2 because of conditions (D2) and (D3) (note that . v
first appears in .Xi+1). Therefore, there is no node.w̄ ∈ Zi+1 such that .w̄ ⇝D[Zi+1] v.
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Fig. 7.2 Example of an introduce bag. The DAG shown in the figure is .D[Zi+1] =
D[U j=1,...,i+1 X j ]

Thus, we obtain . discord(v,Y ', D[Zi+1]) = |Y ' ∩ anticone(v, D[Zi+1])| = |{w ∈
Y '|v /⇝D[Zi+1] w}|; i.e., the number of nodes in .Y ' that are not reachable from . v on 
.D[Zi+1]. In the example, .v1, v2, v3, v5 and.v6 are in.Y ' and are not reachable from. v

on .D[Zi+1], which implies .discord(v,Y ', D[Zi+1]) = 5. 
Next, consider.discord of the nodes in. Zi . Let us observe how.discord of a node 

in.Zi increases by adding. v to. Y . As we mentioned above, there is no.w̄ ∈ Zi+1 such 
that.w̄ ⇝D[Zi+1] v. Therefore, if a node, say. v', in.Zi is reachable from. v on.D[Zi+1], 
.discord of .v' does not increase (see .v' in the figure). On the other hand, if a node 
(e.g., . v1) is not reachable from. v on.D[Zi+1], .discord of the node increases by one. 
In the example, .discord’s of .v1, v2, v3, v5 and .v6 increase by one and those of the 
other nodes in . Y do not increase. 

In our dynamic programming-based algorithm, we do not maintain .discord’s of 
all the nodes. Instead, we maintain the following information on the nodes in . Xi

when we have processed.X1, . . . , Xi . First, for each subset .S ⊆ Xi , we consider the 
set of nodes in . Y that are reachable from all the nodes in . S and reachable from none 
of the nodes in .Xi \ S, which we denote by .R(S). We define .P(S) by 

.P(S) = |R(S)| = |{v ∈ Y |∀u ∈ S, u ⇝D[Zi ] v,∀w ∈ Xi \ S, w /⇝D[Zi ] v}|. (7.1)



7 Graph Optimization Problems and Algorithms for DAG-Type Blockchains 121

We maintain.P(S) for each subset.S ⊆ Xi . In the example,. P({v7}) = |{v3, v5}| = 2
because .v3 and .v5 are reachable from .v7 and not reachable from . v6, v8, v9 (∈ Xi \
{v7}). Also,.P({v6, v7}) = |{v1}| = 1. By using.P(S) for all.S ⊆ Xi , we can compute 
.discord of . v when we add . v to . Y as follows: 

. discord(v,Y ', D[Zi+1]) =
I
I
I
I
I
I

∑

S:S⊆Xi ,S∩Tv=∅
P(S)

I
I
I
I
I
I
,

where.Tv is the set of nodes in.Xi that are reachable from. v. This is because. discord
of . v is the number of nodes that are not reachable from . v, and because any node in 
.R(S) is reachable from . v if .S ∩ Tv /= ∅. For example, .. discord(v,Y ', D[Zi+1]) =
|P({v6, v7})| + |P({v6})| + |P({v7})| + |P(∅)| = |{v1}| + |{v2, v6}| + |{v3, v5}|+
.0 = 5. 

Secondly, to compute .discord of the nodes in . Y , for each subset .S ⊆ Xi , we  
maintain the maximum value of.discord among the nodes in.R(S), which we denote 
by .Q(S). We have  

.Q(S) = max
u∈R(S)

{discord(u,Y, D[Zi ])}. (7.2) 

In the example, . Q({v7}) = max{discord(v3,Y, D[Zi ]),discord(v5,Y, D[Zi ])} =
max{8, 8} = 8 and.Q({v6, v7}) = max{discord(v1,Y, D[Zi ])} = 7. By using. Q(S)

for all .S ⊆ Xi , we can decide whether all .discords of the nodes .v' in . Y are at most 
. k after we add . v to .Y by checking if .Q(S') + 1 ≤ k for all subsets .S' ⊆ Xi such 
that .S' ∩ Tv = ∅, and by checking if .Q(S'') ≤ k for all subsets .S'' ⊆ Xi such that 
.S'' ∩ Tv /= ∅ (the latter always holds if we have conducted the check for the previous 
bags .X1, . . . , Xi−1). This is because .discord of a node in . Y increases by one if the 
node is not reachable from. v. .S'' ∩ Tv /= ∅ (resp. .S'' ∩ Tv = ∅) means that any node 
in .R(S'') is (resp. is not) reachable from. v. 

A state of our dynamic programming-based algorithm is defined as a triple 
.(i, P, Q). The first element . i of the state means that the bags .X1, . . . , Xi are pro-
cessed. .P and . Q, described above, are maps from a subset of .Xi to an integer. The 
update of a state .(i, P, Q) is given as follows: First, consider the case .Xi+1 is an 
introduce bag; that is, .Xi+1 = Xi ∪ {v} for some.v ∈ N . In this case, we divide this 
case into two subcases: (i) . v is added to a discord .k-independent set. (ii) . v is not 
added to a discord.k-independent set. For (i), let.(i + 1, P ', Q') be the updated state. 
Then, .P ' and .Q' are given as follows: 

.P '(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (S = {v}),
P(S) (S ∩ Tv = ∅),

P(S \ {v}) (S ∩ Tv ⊉ {v}),
0 otherwise,

(7.3)
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.Q'(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
S' :S'∩Tv=∅ P(S') (S = {v}),

Q(S) + 1 (S ∩ Tv = ∅ and P(S) > 0),

0 (S ∩ Tv = ∅ and P(S) = 0),

Q(S \ {v}) (S ∩ Tv ⊉ {v}),
0 otherwise,

(7.4) 

for a subset . S of .Xi . The detail is described in the paper [ 7]. For (ii), let . (i +
1, P '', Q'') be the updated state. Then, .P '' and .Q'' are given as follows [ 7]: 

.P ''(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (S = {v}),
P(S) (S ∩ Tv = ∅),

P(S \ {v}) (S ∩ Tv ⊉ {v}),
0 otherwise,

(7.5) 

.Q''(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (S = {v}),
Q(S) (S ∩ Tv = ∅),

Q(S \ {v}) (S ∩ Tv ⊉ {v}),
0 otherwise,

(7.6) 

for a subset . S of .Xi . 
Secondly, we consider (iii).Xi+1 is a forget bag; that is,.Xi+1 = Xi \ {v} for some 

.v ∈ N . In this case, let .(i + 1, P ''', Q''') be the updated state. Then, we obtain the 
following [ 7]: 

.P '''(S) = P(S) + P(S ∪ {v}), (7.7) 

.Q'''(S) = max{Q(S), Q(S ∪ {v})}, (7.8) 

for a subset . S of .Xi . 
Our algorithm maintains a table.table[i][P][Q], where.(i, P, Q) is a state. The 

value of.table[i][P][Q] is the maximum number.|Y | of discord.k-independent sets 
. Y such that . P , . Q, and . Y satisfy Eqs. (7.1) and (7.2). Let .P0 and .Q0 be maps such 
that .P0(∅) = Q0(∅) = 0 (note that .X1 = ∅ in the nice DAG-PD, and thus .P and . Q
for .X1 discussed above take only . ∅). The algorithm is given as follows [ 7]: 

1. .table[1][P0][Q0] ← 0 and .table[i][P][Q] ← −∞ for all .i = 1, . . . , r and 
all possible .P and .Q except for .i = 1, .P = P0 and .Q = Q0. 

2. For .i = 1, 2, . . . , r − 1, if .Xi+1 is an introduce bag, do the following: 

(i) For all possible .P and . Q, let  .P ' and .Q' be given by Eqs. (7.3) and 
(7.4). Then, if .Q'(S) ≤ k for all .S ⊆ Xi+1, then .. table[i + 1][P '][Q'] ←
max{table[i+1][P '][Q'],.table[i][P][Q]+1}. Otherwise,. table[i + 1]
.[P '][Q'] ← −∞.
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(ii) For all possible. P and. Q, let.P '' and.Q'' be given by Eqs. (7.5) and (7.6). Then, 
.. table[i + 1][P ''][Q''] ← max{table[i + 1][P ''][Q''],
.table[i][P][Q]}. 

Otherwise (if .Xi+1 is a forget bag), do the following: 

(iii) For all possible .P and . Q, let  .P ''' and .Q''' be given by Eqs. (7.7) and 
(7.8). Then, .. table[i + 1][P '''][Q'''] ← max{table[i + 1][P '''][Q'''],
.table[i][P][Q]}. 

3. Output the maximum value of .table[r ][P][Q] among all possible .P and . Q. 

We can prove the following theorem using the above algorithm. 

Theorem 7.1 ([ 7]) Given a DAG .D = (N , A) and a nice DAG-PD of .D with DAG-
pathwidth . W, we can solve the maximum discord .k-independent set problem in 
.O((k + 1)2

W+1
(k + 2)2

W+1
2WW 2|N |) time. 

If we can regard . k and the DAG-pathwidth .W of .D as (small) constants, our 
algorithm can solve the maximum discord .k-independent set problem in linear time 
in .|N |. 

7.6 Conclusion 

In this chapter, we provided an overview of the blockchain and introduced path-
width and directed pathwidth. We introduced DAG-path-decomposition and DAG-
pathwidth and described the characterization of DAGs by DAG-pathwidth. We used 
DAG-path-decomposition to design an algorithm that runs faster when the DAG-
pathwidth of the input DAG is small. The concept of DAG-path-decomposition is 
applicable not only to blockchain DAGs, but also to many DAG structures that appear 
in the real world, and is a subject for future work. Just as we defined DAG-pathwidth 
that extends (undirected) pathwidth, we can probably define DAG-treewidth that 
extends (undirected) treewidth, which is also future work. 
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Algorithms for Mobility Society



Chapter 8 
System-Control-Based Approach 
to Car-Sharing Systems 

Kazunori Sakurama, Kenji Kashima, Takuya Ikeda, Naoki Hayashi, 
Kenta Hoshino, Masaki Ogura, and Chengyan Zhao 

8.1 Introduction 

The development of information and communication technologies (ICT) and data 
science is changing the structure of society, including the movement of people and 
goods or mobility. To this day, various studies have been conducted to innovate 
mobility. Mobility-as-a-service (MaaS) is attracting attention and is being adopted 
worldwide. As an exemplar case, Whim in Finland [ 9, 30] provides a transportation 
package that converts road transportation and railroads into on-demand services. 
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This chapter focuses on car-sharing services, particularly one-way car-sharing 
services, as one of the forms of MaaS. One-way car-sharing services have multiple 
stations where vehicles are pooled, and users can return their vehicles to any of the 
available stations (i.e., parking lots). The service is expected to grow because of its 
high convenience to users and the ability to use ordinary parking lots as stations 
[ 51]. In Japan, government approval for these services was granted in 2014, and 
experimental operations are underway [ 55], including Ha:mo Ride TOYOTA. 

However, the current one-way car-sharing service poses a significant challenge to 
the operator, the most pertinent of which is the uneven distribution of vehicles. Thus, 
research is being conducted to solve these problems [ 41]. The uneven distribution 
of vehicles refers to the situation wherein some stations run out of parked vehicles 
whereas others run out of parking spaces due to asymmetrical user demand. An obvi-
ous and straightforward solution is for service staff to relocate vehicles to redistribute 
the number of vehicles among stations. However, this approach carries high labor 
costs of vehicle relocation (i.e., requiring provider staff to drive vehicles between 
stations); thus, cost-effective methods need to be considered, which has attracted 
considerable research attention. For example, in [ 5], a method to minimize the cost 
of relocation using the model predictive control method was proposed. Moreover, 
in [ 69], a model that considers staff behavior in relocation was developed. In [ 3], a 
study was conducted to minimize the number of relocations for a car-sharing system 
in a resort area in Southern California. 

This chapter discusses control system approaches to overcome the aforementioned 
issues. Thus, recent research trends are presented that show that a systems control 
approach is promising for mobility innovation. Section 8.2 provides the result of the 
optimization of the car-sharing system considering demand shift by dynamic pric-
ing. Section 8.3 presents sparse optimal control for networked systems. In Sect. 8.4, 
communication-aware cooperative car-sharing control is discussed. Section 8.5 con-
siders the rebalancing in car-sharing services as a control problem of probability 
distributions with costs determined by the Wasserstein distance. Section 8.6 presents 
the optimization of one-way car-sharing services via the DC program. 

Notation 

Let . R, .R+, and .R++ denote the set of real, non-negative, and positive numbers, 
respectively. Let . Z and.Z+ be the sets of integers and non-negative integers, respec-
tively. The set of corresponding vectors of size . n are denoted by .R

n , .Rn+, and .R
n++, 

respectively. We let .1n denote a column vector with all entries set to unity. The 
identity and zero matrices of order . n are denoted by .In and .On , respectively. For 
real numbers .a1, . . . , an ∈ R or a vector .a = [a1 · · · an]T ∈ R

n , . diag(a1, . . . , an)

represents the diagonal matrix whose .i-th entry is . ai . 
For a real number .κ ∈ R, let  .κZ = {. . . ,−2κ,−κ, 0, κ, 2κ, . . .}. The floor and 

ceiling functions for . κ are defined as
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. [x]κ = max{y ∈ κZ : y ≤ x}, [x]κ = min{y ∈ κZ : y ≥ x},

respectively. Consider a random variable .x : Z+ → Z+ of a non-negative integer at 
time.t ∈ Z+. The probability of.x(t)being.x ∈ Z+ is denoted as.P(x(t) = x) ∈ [0, 1]. 
The expectation of a function . f : Z+ → R of .x(t), . f (x(t)), is expressed as 

. E[ f (x(t))] =
∞Σ

x=0

f (x)P(x(t) = x).

For random variables.x, y : Z+ → Z+, the joint probability of.x(t), y(t) being. x, y ∈
Z+ is denoted as.P(x(t) = x, y(t) = y) ∈ [0, 1]. The conditional probability of. x(t)
being.x ∈ Z+ under the assumption that.y(t) takes.y ∈ Z+ is represented as. P(x(t) =
x |y(t) = y), which is defined as 

. P(x(t) = x |y(t) = y) = P(x(t) = x, y(t) = y)

P(y(t) = y)
.

For a function . f : Z+ → R of a variable .x(t), the expectation of . f (x(t)) under the 
assumption that .y(t) takes .y ∈ Z+ is defined as 

. E[ f (x(t))|y(t) = y] =
∞Σ

x=0

f (x)P(x(t) = x |y(t) = y).

For some natural number .m and set .Ω ⊂ R, .a ∈ Ωm implies that .ai ∈ Ω for any 
. i , where .a = [a1, a2, . . . , am]T ∈ R

m . Let  

. ||a||ℓ0 ≜ #{ j ∈ {1, 2, . . . , m} : a j /= 0},

||a||ℓ1 ≜
mΣ

j=1

|a j |

denote . ℓ0, .ℓ1 norm of vector . a, where . # returns the number of elements of a set. For 
the function 

. u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ R
m

on a time interval .[0, T ], let  

.||u||L0 ≜
mΣ

j=1

μ({t ∈ [0, T ] : u j (t) /= 0}),

||u||L1 ≜
mΣ

j=1

∫ T

0
|u j (t)|dt
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Fig. 8.1 Sparsity of signal 

denote its.L0,.L1 norm, where. μ is the length in the naive sense (Lebesgue measure in 
. R). Thus, the.L0 norm of the signals in Fig. 8.1 is. 5 for the blue one, and approximately 
.2.6 for the red one. Notably, .[0, 1] denotes a set of real number between. 0 and. 1, but  
.{0, 1} denotes a set of binary value . 0 and . 1. 

The real matrix . A is said to be non-negative (positive), and is denoted by . A ≥ 0
(.A > 0), if all entries of. A are non-negative (positive). The notion.B < A is defined as 
.B − A < 0. Let the Hadamard product of matrices . A and .B be denoted by .A ⊙ B. 
Let .A ⊗ B denote the Kronecker product of matrices .A and . B. If  .A and .B are 
square, the Kronecker sum of .A and .B is defined as .A ⊕ B = A ⊗ Im + In ⊗ B, 
where. n and.m denote the orders of . A and. B, respectively. We define the entry-wise 
exponential operation of a real vector . v as .exp[v] = [exp v1, . . . , exp vn]T and the 
entry-wise logarithm operation as.log[v] = [log v1, . . . , log vn]T. For a vector. v with 
scalar entries .v1, . . . , vn , we use .diag(v1, . . . , vn) to denote the diagonal matrix. 

8.2 Optimization of the Car-Sharing System Considering 
Demand Shift by Dynamic Pricing 

To solve the uneven distribution of vehicles in car-sharing services, we consider 
introducing dynamic prices. This is a method of voluntarily moving users so that the 
vehicles are evenly distributed by adjusting the prices of the service hourly. From this 
aspect, [ 45] proposes a model that determines the price to maximize the profits of both 
the user and the operator. The model in [ 75] aims to maximize profits by considering 
the allocation of relocating personnel. Reference [ 74] investigated optimal pricing 
and charging scheduling for an electric vehicle sharing system. In addition, [ 47, 72] 
examined pricing strategies for a one-way car-sharing service. Most of the models 
presented in these papers only consider that demand increases or decreases with 
changes in prices. However, these models do not adequately represent user behavior. 
Users will probably prefer and shift to less expensive links (i.e., change their starting 
and ending destinations on foot). Such a shift is particularly likely to occur in urban 
areas, where many stations are within walking distance of each other. The authors
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Fig. 8.2 Model of car-sharing system [ 66] 

proposed a demand shift model and a dynamic pricing model to represent such user 
behavior in [ 70], and addressed the optimal control problem of the traffic model in 
[ 66, 67]. In this section, the research results in [ 66, 67] will be presented. 

8.2.1 Modeling 

The car-sharing service considered here has dynamic prices, and users can reserve a 
car by referring to the prices via the Internet or other means. Prices are changed at 
regular intervals according to a policy determined by the organizer. The user makes 
a reservation by declaring both the departure and arrival stations. 

The number of stations is .n ∈ Z+. Let  .N = {1, 2, . . . , n} be the set of station 
indices. A move whose departure station is. j ∈ N and whose arrival station is. i ∈ N
is called a link. i j . The target car-sharing system consists of four models: the number 
of parking spaces, the number of reservations, the number of demands, and the 
number of demand shifts. Figure 8.2 shows the overall diagram. 

8.2.1.1 Model of the Number of Parking Spaces 

Consider station .i ∈ N . Let  .xi (t) ∈ Z+ denote the sum of the number of parking 
spaces already parked and spaces scheduled to be parked due to reservations. Denote 
the capacity of parking spaces by .xmax

i ∈ Z+. In other words, .xi (t) must satisfy 

.0 ≤ xi (t) ≤ xmax
i ∀t ∈ Z+. (8.1) 

Let .m ∈ Z+ be the total number of vehicles. The sum of the numbers of parked cars 
.xi (t) at all stations satisfies 

.

Σ

i∈N
xi (t) = m. (8.2) 

We assume that the total capacity of parking spaces
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.mmax =
Σ

i∈N
xmax

i (8.3) 

is sufficiently larger than the number of vehicles . m. 
Denote the number of reservations for link .i j by .ri j (t) ∈ Z+. Then, .xi (t) varies 

according to .ri j (t) as 

.xi (t + 1) = xi (t) +
Σ

j∈N
(ri j (t) − r ji (t)). (8.4) 

In this equation, .ri j (t) (.r ji (t)) denotes the number of vehicles entering (leaving) 
station . i . 

8.2.1.2 Model of Reservation Number 

Next, consider a model for the reservation number .ri j (t). This model is assumed to 
follow three rules: (i) The reservation number is smaller than the demand number 
.di j (t) ∈ Z+, i.e.,.ri j (t) ≤ di j (t) is satisfied. (ii) The number of parking spaces. xi (t +
1) at the next time satisfies condition (8.1). (iii) The unrealized demand . ui j (t) =
di j (t) − ri j (t) ∈ Z+ is minimized through the dynamic pricing of the organizer. 

Here, if service is provided on a first-come, first-serve basis, (iii) cannot be strictly 
satisfied. However, if the parking capacity is satisfied for demand, i.e., 

.0 ≤ x+
i (t) ≤ xmax

i , 0 ≤ x+
j (t) ≤ xmax

j (8.5) 

then .ui j (t) = 0, i.e., .ri j (t) = di j (t), is satisfied, where 

.x+
i (t) = xi (t) +

Σ

j∈N
(di j (t) − d ji (t)). (8.6) 

In such a case, even if we take the demand as the number of reservations as it is (i.e., 
.ri j (t) = di j (t)), (8.1) is satisfied because .xi (t + 1) in (8.4) is equal to .x+

i (t). 
From this perspective, to satisfy (iii), we consider controlling the demand number 

.di j (t) so that .x
+
i (t) satisfies (8.5). 

8.2.1.3 Model of Demand Number 

Consider a model of the demand number .di j (t) for link . i j . Assume that users move 
to nearby stations on foot according to the link’s price. The number of demands to 
shift from link .kℓ to .i j is denoted by .si j,kℓ(t) ∈ Z+. This means that the departure 
station is moved from. ℓ to . j and the arrival station is moved from. k to . i . Denote the 
original demand under a specific standard price by.d̂i j (t) ∈ Z+, which is assumed to 
be a random variable with expected value .δi j > 0, i.e.,
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.E[d̂i j (t)] = δi j . (8.7) 

A typical example is a Poisson process. Suppose that .d̂i j (t) is independent for any 
.i, j ∈ N and.t ∈ Z+. In this case, the demand number.di j (t) changes from the original 
number .d̂i j (t) according to the demand shift number .si j,kℓ(t) as 

.di j (t) = d̂i j (t) +
Σ

kℓ∈N2

(si j,kℓ(t) − skℓ,i j (t)). (8.8) 

8.2.1.4 Model of Demand Shift Number 

Next, we model the variation of the demand shift number .si j,kℓ(t) with the price. 
Denote the price for link .i j by .pi j (t) ∈ κZ, where .κ ∈ Z+ (.κ > 0) denotes the unit 
of the price in this service (e.g., 10 yen, 1 dollar, etc.). The ease of walking between 
stations . i and . k is denoted by .γik(= γki ) ≥ 0. In general, the larger the distance 
between stations. i and. k, the smaller is the value of.γik . Two pieces of information are 
provided to the users. (i) The price difference between the two links,. pkℓ(t) − pi j (t)
(the benefit of travel). (ii) Ease of walking.γik, γ jℓ (the cost of travel). Based on this 
information, we assume that demand moves stochastically based on the expectation 

.E[si j,kℓ(t)|P(t) = P] = γikγ jℓφ(pi j − pkℓ), (8.9) 

where .P(t) and .P ∈ Z
n×n denote the matrices with .pi j (t) and .pi j as the .(i, j)-

component, respectively. The function .φ : Z → R+ is a monotonically non-
increasing function satisfying .φ(p) = 0 for .p ≥ 0. This indicates that users are 
more likely to move to links with lower prices and never move to links with higher 
prices. 

8.2.2 Control Objective 

The control objective of the organizer is to evenly redistribute the number of vehi-
cles parked at each station to match the unrealized demand .ui j (t), minimizing the 
difference with actual availability. As described in Sect. 8.2.1.2, this is achieved by 
controlling .x+

i (t) so that the inequality in (8.5) is satisfied. Here, as a soft con-
straint corresponding to (8.5), the deviation from half of the capacity of parking 
spaces .x̄+

i (t) = x+
i (t) − xmax

i /2 is considered as a penalty. The goal here is to level 
this penalty across all stations. We consider the sum of the expected values as the 
evaluation function 

.Vx(x(t)) = 1

n

Σ

i∈N
E

[
x̄+

i (t) − 1

n

Σ

i∈N
x̄+

i (t)

]2

, (8.10)
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where .x(t) = [x1(t) x2(t) · · · xn(t)]T and .x+
i (t) is given by .xi (t) as (8.6). 

Here, to redistribute the number of parking spaces, the organizer introduces 
dynamic prices based on a common decentralized policy. The common decentralized 
policy is based on a common algorithm for all the links using only information from 
neighboring stations to determine prices for each link. Because this policy does not 
require information aggregation, it can be implemented regardless of the number of 
stations. Let . p̂i j = p̂ j i ∈ κZ be the standard price for travel between stations . i and 
. j . The dynamic price .pi j (t) is determined according to the policy .π : Z2+ → κZ as 

.pi j (t) = p̂i j + π(x̄i (t), x̄ j (t)), (8.11) 

where .x̄i (t) = xi (t) − xmax
i /2. 

For user convenience, the price.pi j (t) should be as close as possible to the standard 
price . p̂i j . From (8.11), this can be evaluated by 

.Vp(x(t)) = 1

n2

Σ

i, j∈N
E[π(x̄i (t), x̄ j (t))]2. (8.12) 

Here, for simplicity, .π : Z2+ → κZ is assumed to be an affine function as 

.π(x̄i , x̄ j ) = π̂a x̄i + π̂b x̄ j + π̂c, π̂a, π̂b, π̂c ∈ κZ, (8.13) 

where .π̂a, π̂b, π̂c ∈ κZ are design parameters. 
Consider designing a common decentralized policy .π such that the functions 

.Vx(x(t)) and .Vp(x(t)) are reduced. To take these terminal values into account, we 
employ the evaluation function 

.V (π̂a, π̂b, π̂c) = max
m∈Z

lim
t→∞(Vx(x̄(t)) + μVp(x(t))) + ν(π̂2

a + π̂2
b + π̂2

c ), (8.14) 

where .μ, ν > 0 are some constants and the last term is the normalization term. 
Maximization with respect to .m ∈ Z is considered to render the policy .π scalable 
independently of the number of vehicles . m. 

From the above, we consider the following problem. 

Problem 8.1 Consider the system consisting of (8.1)–(8.9). Find the solution to 
the following optimization problem as the parameters of the common decentralized 
policy .π : Z2+ → κZ in (8.11) that has the form of (8.13). 

. min
π̂a,π̂b,π̂c∈κZ

V (π̂a, π̂b, π̂c) (8.15)
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8.2.3 Main Result 

To obtain an analytical solution to Problem 8.1, we consider a linear system near an 
equilibrium point. This yields the following theorem. 

Theorem 8.1 Consider the system that linearizes (8.1)–(8.9) under the assump-
tion that the function . φ satisfies .dφ/dp(p∗) = −φ̂ at an equilibrium point . p∗ < 0
for a constant .φ̂ > 0. Let .xi (t) ∈ Z+ (.i ∈ N) be the solution of this system, and 
let .Δ,Γ ∈ R

n×n be the matrices whose .(i, j)-components are .δi j , γi j , respectively. 
Assume that the graph whose adjacent matrix is given by . Γ is connected. For the 
matrix .L = diag(Γ1n) − Γ ∈ R

n×n, let .λ1 = 0, λ2, . . . , λn(0 < λ2 ≤ · · · ≤ λn) be 
its eigenvalues and let .v1 = 1n/

√
n, v2, . . . , vn ∈ R

n be the corresponding eigen-
vectors. Then, the parameters .π̂a, π̂b, π̂c ∈ κZ of the solution to the optimization 
problem (8.15) in .π : Z2+ → κZ of the dynamic pricing policy (8.11) with (8.13) 
satisfy 

.π̂a ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I/
||h||

2
√
2nν

/

κ

,

[/
||h||

2
√
2nν

]

κ

,

⎢⎢⎢⎢⎢⎢⎣
1

λn

Σ

i, j∈N
γi j

⎥⎥⎥⎥⎥⎥⎦

κ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(8.16) 

.π̂a ≤

⎢⎢⎢⎢⎢⎢⎣
1

λn

Σ

i, j∈N
γi j

⎥⎥⎥⎥⎥⎥⎦

κ

(8.17) 

.π̂b = −π̂a (8.18) 

.π̂c = 0, (8.19) 

where . h is given as 

.h =

Σ

i∈{2,...,n}
λ−1

i viv
T
i (Δ − ΔT)1n

φ̂
Σ

i, j∈N
γi j

. (8.20) 

The minimum value of (8.15) is derived as 

. min
π̂a,π̂b,π̂c∈κZ

V (π̂a, π̂b, π̂c) = 1

n

||h||2
4π̂2

a

+ 2νπ̂2
a . (8.21) 

Proof From (8.4), (8.7), (8.8), (8.11), and (8.13), the expectation of. x̄i (t) = xi (t) −
xmax

i /2 is governed by the differential equation 

.E[x̄(t + 1)] = (In − (π̂a − π̂b)φ̂1
T
n Γ1n L)E[x̄(t)] + (Δ − ΔT)1n, (8.22)
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where .x̄(t) = [x̄1(t) · · · x̄n(t)]T ∈ R
n . Equation (8.22) is equivalent to a system 

under consensus control with external input, and its properties can be analyzed from 
the graph Laplacian . L by control theory based on algebraic graph theory [ 53]. The 
detailed proof is omitted for reasons of space limitation. ⃞

Equation (8.16) gives three candidates for . π̂a. If either of the first two terms is 
smaller than the last term, then this term is the solution. If both of the first two terms 
are smaller than the last term, then the solution is to substitute the two terms into (8.21) 
and output the smaller value. Otherwise, the last term is the solution. Equations (8.18) 
and (8.19) indicate that the skew-symmetric policy (i.e.,.π(x̄i , x̄ j ) = −π(x̄ j , bar xi )) 
is the most effective. 

8.2.4 Simulation Result 

To verify the effectiveness of the proposed method, a simulation is performed using 
the traffic simulator SOUND [ 34]. Figure 8.3 represents a scene in the simulation. 
The .n = 25 stations are scattered over an area of 6. ×8 km, and both vehicles under 
sharing service and regular vehicles are traveling. 

The parameters of the system are as follows. All parking spaces have a capacity of 
.xmax

i = 10 vehicles. The number of sharing vehicles is .m = 164. The time interval 
for changing prices is set to . 5 s, which is the sampling time of the model. We set the 
price elasticity.φ̂ = 2.5 × 10−5, the expected value of demand.δi j = 0.005 × 60−1– 
.3 × 60−1, and the ease of shift between stations.γik = e−η||ρi −ρk||, where.ρi ∈ R

2 is the 

Fig. 8.3 Simulation via SOUND: .25 stations (hollowed-out rectangle), vehicles under sharing 
service (solid squares), general vehicles (dots) [ 67]
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Fig. 8.4 Penalty. Vx(x(t))
for the number of parking 
vehicles: (A) dynamic 
pricing (solid line) and (B) 
without it (chain line) [ 67] 

Fig. 8.5 Deviation. Vp(x(t))
of prices from standard ones: 
(A) with dynamic pricing 
(solid line), (B) without it 
(chain line) [ 67] 

position of station. i in Fig. 8.3 and.η = 4.5 × 10−4. The common decentralized policy 
.π : Z2+ → κZ in (8.11) is given as in (8.13). Designing its parameters according to 
Theorem 8.1, we obtain.π̂a = −π̂b = 1 and.π̂c = 0 for.μ = ν = 0.01 and.κ = 1 from 
(8.16), (8.18), and (8.19). Simulations are performed (A) with dynamic pricing and 
(B) without it for comparison. 

Figure 8.4 shows the penalty .Vx(x(t)) for the number of parking vehicles given 
by (8.10). Figure 8.5 represents the deviation .Vp(x(t)) of prices from standard ones 
given by (8.12). In both cases, the solid lines represent the results (A) with dynamic 
pricing and the dashed lines represent the results (B) without it. Figure 8.4 shows 
that the penalty is smaller and the number of parking spaces is smoothed for (A) 
with dynamic pricing than (B) without it. Figure 8.6 denotes the cumulative total of 
unfulfilled demand.

∑
i j ui j (t). It can be seen that (A) with dynamic pricing has fewer 

unfulfilled demands and more services are provided than (B) without it.
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Fig. 8.6 Cumulative 
unrealized demand 
.
∑

t
∑

i j ui j (t): (A) with 
dynamic pricing (solid line), 
(B) without it (chain line) 
[ 67] 

8.3 Sparse Optimal Control for Networked Systems 

A signal that takes the value . 0 at most times and elements, such as the solid line 
in Fig. 8.1, is said to be sparse. In recent years, the effectiveness of sparsity-based 
methods in machine learning, such as regularization or feature extraction, has been 
attracting considerable research attention [ 23]. In control engineering, achieving the 
control goal with sparse input signals is also an important application problem [ 56]. 
The authors recently clarified the theoretical properties of sparse optimal control [ 36, 
39, 42] and developed a series of studies on a new problem setting for networked 
systems applications [ 35, 37, 38, 40, 60]. The main objective of this section is to 
apply these results to one-way car sharing services [ 19, 41]. 

8.3.1 Sparse Optimal Control Problem 

Here we introduce the sparse optimal control problem and show the validity proper-
ties of its convex relaxation. 

8.3.1.1 Formulation 

In this section, we formulate several sparse optimal control problems treated in this 
chapter. The first is the problem of finding sparse control inputs as described in the 
introduction [ 40]. 

Problem 8.2 For given .A(t) ∈ R
n×n , .B(t) ∈ R

n×m , .T > 0, .x0, xd ∈ R
n , . β ∈

{1, 2, . . . , m − 1}, find the solution to the following optimization problem:
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. 

minimize
u

||u||L0

subject to ẋ(t) = A(t)x(t) + B(t)u(t), ∀t ∈ [0, T ],
x(0) = x0, x(T ) = xd ,

||u(t)||ℓ0 ≤ β, ∀t ∈ [0, T ],
u(t) ∈ [0, 1]m, ∀t ∈ [0, T ].

. ⊲
This problem is to minimize the sum of the time durations over which the inputs 
are non-zero under the constraint that the number of elements that can be input at 
each time in a linear time-varying system is less than or equal to . β. Note that the 
box constraint on the input signal (although the upper and lower bounds can be other 
values) is an essential assumption from which the theoretical results are derived. 

The next problem is to maximize the controllability of the linear system [ 35]. 

Problem 8.3 For given .A ∈ R
n×n , .B ∈ R

n×m , .β, T > 0, define the matrix 

. Gc :=
∫ T

0
expA(T −τ) B Z(τ )BT expAT(T −τ) dτ.

In this case, find the solution to the following optimization problem: 

. 

maximize
z

Tr(Gc)

subject to Z(t) = diag(z(t)), z(t) ∈ {0, 1}m,

||z||L0 ≤ β.

. ⊲
In this problem, note that .Z(τ )Z(τ )T = Z(τ ) holds and the matrix .Gc is the con-
trollability Gramian corresponding to the continuous-time linear system 

. ẋ(t) = Ax(t) + B Z(t)u(t). (8.23) 

The larger 1 the controllability Gramian, the smaller the control inputs required for 
state transition. However, in the case of.zi (t) = 0, the. i th input channel is inactive at 
time . t and, therefore, unavailable. In other words, this is a scheduling problem, i.e., 
which actuator should be active at which time to maximize controllability. 

In the last problem, decision variables are included in the .A-matrix [ 37]. 

Problem 8.4 For given.A(t), Me(t) ∈ R
n×n ,.e = 1, . . . , m,.α ∈ R,.T > 0,. x0, xd ∈

R
n , find the solution to the following optimization problem:

1 The magnitude of the semi-positive definite matrix is formulated using traces here, but results for 
other indices are also given in [ 38, 60]. 
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. 

minimize
ν

||ν||L0 + α||x(T ) − xd||
subject to x(0) = x0, ẋ(t) = A(t)x(t),

A(t) = A(t) + Ā(t),

Ā(t) =
mΣ

e=1

νe(t)Me(t),

ν(t) ∈ {0, 1}m .

. ⊲
The main control goal of this problem is also to bring the end state.x(t) close to.xd like 
Problem 8.2, not by using conventional exogenous input signals, but by modifying the 
.A-matrix in a time-varying manner. Specifically, if the nominal.A-matrix is given by 
.A(t) and.νe(t) = 1,.Me(t) can be added to the.A-matrix. The problem is a scheduling 
problem to find which modifications should be made at which moment to achieve 
the control goal with as few time modifications as possible. 

8.3.1.2 Theoretical Results 

In each of these problems, sparsity is expressed by the .L0 or .ℓ0 norms, which are 
not convex with respect to their argument. Indeed, these problems are essentially 
combinatorial optimization problems that are difficult to solve. In sparse optimization 
in signal processing, many efficient computational algorithms have been obtained 
by relaxing the .0-norm to the .1-norm [ 23]. However, the optimal solution obtained 
by the relaxation problem is often different from the original problem. 

The problem discussed in the previous section seems to be even more difficult 
because the decision variables are infinite-dimensional (i.e., a combinatorial opti-
mization problem with an infinite number of decision variables), but in fact, it has 
the opposite property: the convex relaxation problem gives an exact solution. 2

Theorem 8.2 Under certain moderate assumptions, the same optimal solution can 
be obtained by replacing .|| · ||L0 , .|| · ||ℓ0 with .|| · ||L1 , .|| · ||ℓ1 in Problem8.2, respec-
tively. Moreover, every element of the optimal solution takes one of the binary values 
.{0, 1} at all times. . ⊲

A similar result is obtained when the decision variable is restricted to discrete 
values. 

Theorem 8.3 Under certain moderate assumptions, the same optimal solution can 
be obtained by replacing .|| · ||L0 with .|| · ||L1 and .{0, 1}m with .[0, 1]m in Problem8.3, 
respectively. . ⊲

The following result holds for Problem 8.4 [ 37].

2 Similar results hold for input-affine non-linear stochastic systems [ 42]. 
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Theorem 8.4 Under certain mild assumptions, the same optimal solution can be 
obtained by replacing .|| · ||L0 with .|| · ||L1 and .{0, 1}m with .[0, 1]m in Problem8.4, 
respectively. . ⊲

For both cases, the set of decision variables (functions on .[0, T ] taking values in 
.[0, 1]m) is convex. Therefore, if time discretization is carried out with a sufficiently 
small time interval, the relaxation problems in Problems 8.2 and 8.3, in which the 
evaluation function is linear with respect to the decision variables, can be solved 
using standard convex optimization solvers such as CVX. The relaxation problem 
in Problem 8.4 can also be solved using non-linear optimization solvers such as 
fmincon (MATLAB). 3

8.3.2 Application to the Rebalancing Problem 

In one-way car sharing services, users are free to choose where to return their vehicles, 
which may result in an unbalanced number of vehicles at each station. Therefore, the 
smooth operation of the service requires the adjustment (rebalancing) of the number 
of vehicles by the service provider at each station. Recently, the optimization problem 
for this vehicle transport scheduling has been studied [ 6, 77]. Here, we formulate 
the rebalancing problem as a sparse optimal control problem. 

8.3.2.1 Model of Car-Sharing Service 

In this section, we introduce the dynamics involved in rebalancing [ 40]. If the math-
ematical depth presented here is not of interest, the reader can skip the rebalancing 
dynamics described below and progress on to the next section. A total of . s sta-
tions are labeled by .S = {1, 2, . . . , s} and the amount of vehicle usage per unit 
time from station .i ∈ S to . j ∈ S is denoted by .gi j (t) ≥ 0. Similarly, let . ui j (t) ≥ 0
denote the amount of rebalancing per unit time from station . i to . j by the staff 
(.gii (t) = uii (t) = 0,∀i, t). First, the number of vehicles at station . i is denoted by 
.vi (t) ∈ R and its dynamics is assumed to follow: 

.v̇i (t) =
sΣ

j=1

γi j fi j (t) −
sΣ

j=1

(gi j (t) + ui j (t)), (8.24)

3 In [ 37], a numerical method for solving a problem similar to Problem 8.4 with Newton Raphson 
method is proposed. 
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where.γi j = 1
τi j

holds, and.τi j = τ j i > 0 represents the amount of time required for a 
user to travel between stations. i and. j , which is generally determined by the distance 
between .i, j , and traffic conditions. Furthermore, the dynamics of the number of 
vehicles . fi j that are driven by users from station . j ∈ S to .i ∈ S is assumed to be 

. ḟi j (t) = −γi j fi j (t) + gi j (t) + ui j (t). (8.25) 

Next, we introduce the concept of dynamic pricing. The usage fee from station. j
to . i is denoted by .pi j (t) ∈ R. Based on the model in the literature [ 61], the amount 
of movement between each station is assumed to vary with price, as follows: 

.gi j (t) = ḡi j (t) − θi j (t)pi j (t). (8.26) 

However, .ḡi j (t) ∈ R is the expected number of vehicles when .pi j (t) = 0, and 
.θi j (t) = θ j i (t) ≥ 0 denotes price elasticity. Moreover, by using standard price 

. p̄i j (t) = ḡi j (t)

θi j (t)
, (8.27) 

assume that the price .pi j (t) is determined according to the number of vehicles at 
stations . i and . j by the following equation: 

.pi j (t) = p̄i j (t) + νi j (t)vi (t) − ν j i (t)v j (t). (8.28) 

However, .νi j (t), ν j i (t) ∈ {0, 1} are parameters that determine whether the price . pi j

is adjusted according to the number of vehicles at stations . i and . j . Under such 
formulation, the price .pi j (t) increases as the number of vehicles .vi (t) increases, 
with the effect of reducing the number of vehicles to station . i (and vice versa). 

Therefore, by summarizing the above arguments, the following dynamics are 
obtained: 

.

v̇i (t) =
sΣ

j=1

(γi j fi j (t) + θ j i (t)(ν j i (t)v j (t) − νi j (t)vi (t)) − u ji (t)),
(8.29) 

. ḟi j (t) = −γi j fi j (t) − θi j (t)(νi j (t)vi (t) − ν j i (t)v j (t)) + ui j (t). (8.30) 

Finally, by defining
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. x(t) = [v1(t) · · · vs(t) f12(t) f13(t) · · · fs,s−1(t)]T,

u(t) = [u12(t) u13(t) · · · us,s−1(t)]T,

A =
[
0 Γ

0 −Δ

]
, Ā(t) =

[
ΞΛ(t) 0
−Λ(t) 0

]
, B(t) =

[−Ξ

I

]
,

Ξ = [Ê1 Ê2 · · · Ês]T, Êi = [e1 · · · ei−1ei+1 · · · es]T,

Λ(t) =

⎡

⎢⎢⎢⎣

θ12(ν12(t)e1 − ν21(t)e2)T
θ13(ν13(t)e1 − ν31(t)e3)T

...

θs,s−1(νs,s−1(t)es − νs−1,s(t)es−1)
T

⎤

⎥⎥⎥⎦ ,

Γ = [e1γ12 e1γ13 · · · esγs,s−1]T,

Δ = diag(γ12 γ13 · · · γs,s−1)

with.n = s2, m = s2 − s and.ei ∈ R
n as. i th standard basis, the dynamics of the whole 

system can be summarized as follows: 

.ẋ(t) = (A + Ā(t))x(t) + B(t)u(t). (8.31) 

• .x(t) is the number of waiting cars at each station 
• .u(t) is the amount of rebalancing carried out between each station 
• .ν(t) is whether or not dynamic splines are implemented between each station 
• .Ā(t) is linear with respect to each element of .ν(t). 

8.3.2.2 Sparse Rebalancing Problem 

Here, the rebalancing problem in car-sharing systems is formulated as a sparse opti-
mal control problem. 

Problem 8.2’ The initial number of vehicles.v0 ∈ R
s at all stations is generally non-

uniform and needs to be adjusted by the staff to the required number of vehicles 
.vd ∈ R

s to provide a smooth service. Consequently, regarding the state variable 
.x(t) in dynamics (8.31), we consider the problem of designing an input .u(t) for 
transitions from the initial state .x(0) = x0 to the target state .x(T ) = xd within . T . 
Here, each .ui j (t) corresponds to the number of vehicles that are rebalanced by staff 
between stations. i and. j . Therefore, when the number of staff teams is. β, the number 
of vehicles that can be transported simultaneously is at most . β, and the constraint 
.||u(t)||ℓ0 ≤ β is imposed on the input variables. In addition, as each team can only 
transport one vehicle at a time, .u(t) ∈ [0, 1] must be satisfied. Furthermore, as it 
is desirable for staff to have a shorter transportation time, .||u||L0 is defined as an 
evaluation function to achieve this goal. In other words, in the rebalancing scheduling,
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considering the cost of staff and treating this as a sparse optimal control problem, it 
is formulated as in Problem 8.2. 

Problem 8.3’ Problem 8.2’ is a problem of determining the specific rebalancing 
implementation method with given. xd . In contrast, although.xd is still undetermined 
in the previous day’s planning, having staff standing by at all stations all the time is not 
cost-efficient. Therefore, staff scheduling has to be determined to achieve effective 
rebalancing for any . xd . As the minimum energy required (on average) when the 
target state is unknown is characterized by the controllability Gramian, the decision 
of which station to keep staff ready and when can be formulated as in Problem 8.3. 

Problem 8.4’ Next, we formulate an optimal control problem for rebalancing to 
reduce the time spent on dynamic pricing by the service provider. Even if dynamic 
pricing is carried out over a long period of time, there may be situations in which 
users become used to it, and it does not have the expected effect. We assume that 
the service provider decides whether or not to implement .νi j (t). This means that 
dynamic pricing scheduling, which determines at which time and between which 
stations price interventions are made, can be formulated as in Problem 8.4. 

8.3.2.3 Numerical Examples 

To demonstrate the usefulness of the proposed method, numerical calculations are 
performed after convex relaxation for Problems 8.2’ and 8.4’. The number of stations 
was set to .s = 10, T = 4, the initial value of user vehicles at each station was 
determined according to an independent uniform distribution of .[10, 30], and the 
target state.xd was set to the average of the total number of user vehicles. Parameters 
such as the arrival rate.γi j and the coefficient of price elasticity.θi j (t)were determined 
in the same way as in [ 40]. 

First, the optimal trajectory .ui j resulting from solving Problem 8.2’ under 

.νi j (t) = 1, ∀i, j, t, (8.32) 

assuming that dynamic pricing is effective at all times and between stations, is shown 
in Fig. 8.7. This confirms that the optimal solution takes discrete values despite 
solving a convex relaxation problem. Note that there are times when values other 
than .{0, 1} are taken near the changeover of each trajectory, but this is due to the 
effect of time discretization. In other words, the time width must be sufficiently small 
to prevent such phenomena from becoming problematic. The total time length (. L0

norm of .ui j ) with rebalancing between stations is shown in Fig. 8.8. It can be seen 
that rebalancing is not performed between most stations (blue), which confirms the 
sparsity of the optimal solution. 

Consider the situation in which rebalancing by staff transport is not regarded here 
(i.e.,.u = 0), and the time to implement dynamic pricing is suppressed. The terminal 
error .||x(T ) − xd|| and the total time length of dynamic pricing .||ν||L0 are shown in
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Fig. 8.7 Each trajectory. ui j
in the optimal solution of 
Problem 8.2’ 

Fig. 8.8 Total time. ||ui j ||L0

of rebalancing 
implementation between 
each station in the optimal 
solution of Problem 8.2’ 

Fig. 8.9 when the optimal . ν for each parameter . α is used. Both are shown as a ratio 
to the case of (8.32), and the number on each point is the value of. α. Naturally, there 
is a trade-off between these two values; however, it can be seen, for example, that 
the ratio of .||ν||L0 can be kept below.0.1, while the ratio of the terminal error can be 
reduced to approximately .1.3. 

Finally, to confirm the implementation of dynamic pricing switches each time, 
snapshots of the optimal. ν for.α = 100 at .t = 16h, 24h, 32h are shown in Fig. 8.10, 
where h is the discretized step size. Yellow and blue in Fig. 8.10 represent. νi j (t) = 1
and.νi j (t) = 0, respectively, and it can be seen that the implementation point changes 
with time.
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Fig. 8.9 Implementation time length .||ν||L0 and terminal error .||x(T ) − xd|| (ratio to the fully 
active time) in the optimal solution of Problem 8.4’ 

Fig. 8.10 Snapshots of the price adjustment implementation point .νi j in the optimal solution of 
Problem 8.4’ (Top:.t = 16h, Middle:.t = 24h, Bottom:.t = 32h)
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8.4 Communication-Aware Cooperative Car-Sharing 
Control 

In this section, we present a framework of cooperative rebalancing control of one-
way car-sharing service based on distributed control and optimization [ 27, 28, 43, 
57, 58, 76]. We consider a group of service providers operate vehicles independently 
but share common rental stations. Since the deadheading of vehicles involves extra 
costs for the service providers, the deadhead vehicles should be minimized as much 
as possible. The cooperative rebalancing control to minimize the deadhead vehicles 
is formulated as a distributed optimization problem with a coupling inequality. The 
optimization problem can be solved by consensus-based algorithms [ 10, 11, 17, 79]. 
However, the conventional distributed optimization methods require communication 
between service providers at each iteration of the optimization algorithm, which may 
result in waste of communication resources [ 29]. To save limited communication 
resources, the distributed event-triggered methods have been considered in many 
applications of control and optimization [ 1, 7, 8, 25, 26, 46, 50]. In this section, we 
review a distributed primal-dual method with event-triggered communication [ 24], 
in which service providers communicate with other providers when the error of the 
estimated solution exceeds a predefined threshold. Each service provider updates the 
estimations of the primal and dual optimizers using a consensus-based primal-dual 
algorithm. We confirm that the estimations of all providers converge to an optimal 
rebalancing solution under the constraints of available vehicles and parking slots. 

8.4.1 Formulation of Cooperative Rebalancing Control 

We consider .N (≥1) service providers that cooperatively operate the car-sharing 
service among .S (≥2) stations. 

Let.ai, j [k] ∈ R+ and. fi, jℓ[k] ∈ R+ be the expected number of vehicles of provider 
.i ∈ V parked at station . j ∈ S at time .k ∈ N and the expected number of vehicles 
of provider .i ∈ V traveling from the station .ℓ ∈ S to . j ∈ S at time .k ∈ N, where 
.V = {1, 2, . . . , N } is the set of the service providers and.S = {1, 2, . . . , S} is the set 
of the stations. Suppose also that .si, jℓ[k] ∈ R+ and .wi, jℓ[k] ∈ R+ are respectively 
the expected rates of the number of deadhead vehicles and the demands of provider 
. i from station . ℓ to station . j at time . k. Then, the dynamics of the car-sharing system 
of provider . i is given as follows:
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. ai, j [k + 1] = ai, j [k] +
Σ

ℓ∈S\{ j}
c jℓ[k] fi, jℓ[k]

−
Σ

ℓ∈S\{ j}
(si,ℓj [k] + wi,ℓj [k]), j ∈ S, (8.33) 

. fi, jℓ[k + 1] = (1 − c jℓ[k]) fi, jℓ[k] + si, jℓ[k] + wi, jℓ[k], j, ℓ ∈ S, j /= ℓ,

(8.34) 

where .c jℓ[k] = 1 − e−1/τ jℓ[k] is the expected arrival rate from station . ℓ to station . j . 
The dynamics (8.33) shows that the number of the operator. i’s vehicles at station. j

for the subsequent time.k + 1, denoted as.ai, j [k + 1], is determined by the sum of the 
current number of vehicles at station. j and the influx of vehicles from other stations, 
subtracted by the number of vehicles departing from station. j toward other stations. 
Similarly, the dynamics (8.34) shows that the number of the operator . i’s vehicles in 
transit from station . ℓ to . j at the next time .k + 1, represented as . fi, jℓ[k + 1], equals 
the number of vehicles currently on route from station . ℓ to . j that won’t reach . j
by the next time, added to the total vehicles initiating their journey from station . ℓ
toward . j . 

8.4.2 Distributed Event-Triggered Optimization 

We consider the case when several service providers jointly use common car stations. 
Because the parking space of the stations is shared among providers, each provider 
manages the deadhead vehicles so that the number of these vehicles is as small as 
possible under the constraints of the parking space. 

Let .xi [k] = [ai,1[k], . . . , ai,S[k], fi,12[k], . . . , fi,S,S−1[k]]T ∈ R
n , . ui [k] =

[si,21[k], si,31[k], . . . , si,S−1,S[k]]T ∈ R
m , and . wi [k] = [wi,21[k], wi,31[k],

. . . , .wi,S−1,S[k]]T ∈ R
m be the state, the control input, and the external input of 

provider . i at time . k, where .m = S(S − 1) and .n = S2. From  (8.33) and (8.34), the 
dynamics of the car-sharing service is given as 

.xi [k + 1] = Ai xi [k] + Bi (ui [k] + wi [k]), xi [0] = xi0, (8.35) 

where .Ai ∈ R
n×n and .Bi ∈ R

n×m are the coefficient matrices, and .xi0 (≥ 0n) is the 
initial state of provider . i . 

Let .ui = [uT
i [0], uT

i [1], . . . , uT
i [T − 1]]T ∈ R

mT be the vector that represents 
the number of deadhead vehicles of provider . i during the time horizon .[0, T − 1]. 
Because both the expected number of vehicles between stations and the parked 
vehicles are non-negative, the non-negativeness condition for the state is required as 
follows: 

.xi [k] ≥ 0n, ∀i ∈ V, ∀k ∈ K, (8.36)
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where.K = {1, 2, . . . , T } and the inequality sign for vectors represents the element-
wise operation. The constraint on the limited parking space is represented as 

.Γ

NΣ

i=1

xi [k] ≤ ξ [k], ∀k ∈ K, (8.37) 

where .Γ = [IS OS×(n−S)] ∈ R
S×n extracts the variables related to the number of 

vehicles at stations and .ξ [k] ∈ R
S represents the number of vehicles that can be 

parked at . S stations at time. k. The constraint on the number of deadhead vehicles is 
given as 

.ui ∈ Ui = {u' ∈ R
mT | 0mT ≤ u' ≤ ηi }, ∀i ∈ V, (8.38) 

where.ηi ∈ R
mT is the upper bound of the number of dispatchable vehicles of provider 

. i . 
Then, the cooperative rebalancing control problem is summarized as follows. 

Problem 8.5 For the dynamics of the car-sharing service (8.33) and (8.34), find 
the control inputs .{ui }N

i=1 such that the number of deadhead vehicles is as small 
as possible under the constraints of dispatchable vehicles and parking space of the 
stations (8.36)–(8.38). 

The distributed optimization problem is formulated as follows: 

.minimize
{ui }N

i=1

NΣ

i=1

fi (ui ) (8.39a) 

.subject to
NΣ

i=1

gi (ui ) ≤ 0q , (8.39b) 

.ui ∈ Ui , i ∈ V. (8.39c) 

In the distributed optimization problem (8.39), . fi (ui ) = uT
i Hi ui , where . Hi=∑T −1

τ=0 ET[τ ]Ri E[τ ] ∈ R
mT ×mT , .E[k] = [Om×mk, Im, Om×m(T −k−1)] ∈ R

m×mT , 
and.Ri ∈ R

m×m is a positive-definite weight matrix. Moreover, .gi (ui ) = Ωi ui + ψi , 

where.Ωi=
[−Φ̂T

i , Φ̌T
i

]T ∈ R
q×mT ,.ψi = [−( Âiξi [0])T, μT

i

]T ∈ R
q , and. q = (n +

S)T . The matrices .Φ̂i , .Φ̌i , and . Âi , and the vector .μi are given by . Φ̂i = [ΦT
i [1],

ΦT
i [2], . . . , ΦT

i [T ]]T ∈ R
nT ×mT , .Φ̌i = [(ΓΦi [1])T, (ΓΦi [2])T, . . . , . (ΓΦi [T ])T]T

∈ R
ST ×mT , . Âi = [AT

i , (A2
i )

T, . . . , (AT
i )T]T ∈ R

nT ×n , and
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. μi =

⎡

⎢⎢⎢⎣

Γ
∑N

i=1 Ai xi [0] + Γ
∑N

i=1 Φi [1]wi − 1
N ξ [1]

Γ
∑N

i=1 A2
i xi [0] + Γ

∑N
i=1 Φi [2]wi − 1

N ξ [2]
...

Γ
∑N

i=1 AT
i xi [0] + Γ

∑N
i=1 Φi [T ]wi − 1

N ξ [T ]

⎤

⎥⎥⎥⎦ ∈ R
ST .

The dual problem for (8.39) is given as follows: 

.
maximize

NΣ

i=1

ϕi (λ)

subject to λ ≥ 0q ,

(8.40) 

where .ϕi (λ) = minui ∈Ui Li (ui , λ) and .Li (ui , λ) = fi (ui ) + λTgi (ui ) is the 
Lagrange function of provider . i . The Lagrange function for (8.39) is given as 
.L(u, λ) = ∑N

i=1 Li (ui , λ), where .u = [uT
1 , uT

2 , . . . , uT
N ]T ∈ U ⊂ R

m N T . 
Let. f (u) = ∑N

i=1 fi (ui ) and.g(u) = ∑N
i=1 gi (ui ) be the global objective function 

and the global constraint function. We assume Slater’s qualification for (8.39) [  79]. 

Assumption 8.1 There exists.u ∈ ◦U such that.g(u) < 0q , where.◦U is the relative 
interior of . U. 

If Slater’s qualification holds, we have. f ∗ = ϕ∗ and.Λ∗ /= ∅ [ 79], where.ϕ∗ is the 
optimal value of (8.40) and .Λ∗ is the set of the optimal dual solutions of (8.40). 

To solve the optimization problem (8.39), each service provider exchanges the 
estimation of the optimal solution of the dual problem (8.40) with other providers 
via a communication network. In this study, the communication network between 
providers is represented by an undirected graph .G = (V,E), where . E ⊂ {{i, j} |
i, j ∈ V, i /= j} is the set of undirected edges. The set of neighbors of provider . i
is denoted as .Ni = { j ∈ V | {i, j} ∈ E}. We make the following assumption for the 
communication network. 

Assumption 8.2 The communication network . G is connected. 

8.4.3 Event-Triggered Distributed Primal-Dual Algorithm 

Let .u∗
i ∈ U∗

i and .λ∗ ∈ Λ∗ be an optimal primal solution for (8.39) and an optimal 
dual solution for the dual problem (8.40), where .U∗

i ⊂ Ui is the set of the optimal 
primal solutions of provider . i . Each provider . i has the estimations of the optimal 
primal solution.u(s)

i ∈ R
mT and the optimal dual solution.λ

(s)
i ∈ R

q at iteration. s ∈ N

of the distributed algorithm. 
Each service provider sends the estimation of the optimal dual solution .λ(s)

i to 
the neighboring providers only when the difference between the current and most 
recently transmitted estimates exceeds a certain threshold. The iteration in which
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service provider . i sends the estimation to the neighboring providers is called the 
trigger time of provider . i . Let .sℓ

i be the . ℓth trigger time of provider . i , where .ℓ ∈ N. 
The latest estimation sent by provider . i to the neighboring providers is defined as 
follows: 

.λ̃
(s)
i =

{
λ

(s)
i , if s ∈ κi ,

λ̃
(s−1)
i , if s /∈ κi ,

(8.41) 

where .κi = {s0i , s1i , . . . } is the set of the trigger times of provider . i . In the event-
triggered algorithm, each service provider . i sends the estimation to neighboring 
providers only at iterations that satisfy the following condition: 

.||λ(s)
i − λ̃

(s)
i || ≥ ε

(s)
i , (8.42) 

where .ε
(s)
i > 0 is a trigger threshold of provider . i . Then, for any .i ∈ V, we get 

.||λ(s)
i − λ̃

(s)
i || ≤ ε(s), ∀s ∈ N, (8.43) 

where .ε(s) = maxi∈V ε
(s)
i . 

Assumption 8.3 The upper bound of the allowable error satisfies 

. lim
s→∞ ε(s) = 0,

∞Σ

s=0

(ε(s))2 < ∞,

∞Σ

s=0

ε(s) = ∞.

We define.Λi as.Λi = {λ ∈ R
q
≥0 | ||λ|| ≤ ( f (ǔ) − ϕ̌)/Δ(ǔ) + ωi } for some. ωi >

0, where .ǔ ∈ U is a point that satisfies Assumption 8.1, . Δ(u) = min1≤p≤q

{−[∑N
i=1 gi (ui )]p}, and .ϕ̌ = minu∈U L(u, λ) for .λ ∈ R

q
+. 

After the information exchange between the neighboring providers, provider . i
updates the estimations of the optimal solutions of the primal problem (8.39) and 
the dual problem (8.40) by the following event-triggered distributed primal-dual 
algorithm: 

.w
(s)
i = λ

(s)
i +

NΣ

j=1

pi j

(
λ̃

(s)
j − λ̃

(s)
i

)
, (8.44) 

.λ
(s+1)
i = ΠΛi

[
w

(s)
i + α(s)dLλ,i (u

(s)
i , w

(s)
i )

]
, (8.45) 

.u(s+1)
i = ΠUi

[
u(s)

i − α(s)dLu,i (u
(s)
i , w

(s)
i )

]
, (8.46) 

where.dLλ,i and.dLu,i are the subgradients of.Li with respect to. λ and. ui , and. ΠC[x]
is the projection of a point .x ∈ R

n to a closed convex set . C.
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Assumption 8.4 The step-size satisfies 

. lim
s→∞ α(s) = 0,

∞Σ

s=0

(α(s))2 < ∞,

∞Σ

s=0

α(s) = ∞.

Assumption 8.5 The weight .pi j is given as 

. pi j =
{

p ji > pmin, if {i, j} ∈ E,

0, if {i, j} /∈ E, i /= j,

pii = 1 −
Σ

j∈V\{i}
pi j > pmin,

where .0 < pmin < 1. 

In the event-triggered distributed primal-dual algorithm, the information on the 
estimation.u(s)

i , the local cost function. fi , and the local constraints of sharing services 
(8.36)–(8.38) are not disclosed to the other providers. Therefore, any service provider 
can determine the appropriate control input while retaining the anonymity of their 
customers’ information. 

The following theorem shows that the estimations of all providers converge to the 
optimal solutions of (8.39) and (8.40) [  24]. 

Theorem 8.5 If each provider updates the estimations by the distributed event-
triggered primal-dual algorithm (8.44)–(8.46), then .lims→∞ ||u(s)

i − u∗
i || = 0 and 

.lims→∞ ||λ(s)
i − λ∗|| = 0 for any .i ∈ V. 

Theorem 8.5 shows that each provider can cooperatively solve Problem 8.5 by the 
proposed event-triggered primal-dual algorithm. 

8.4.4 Numerical Simulation 

We consider a car-sharing problem with.N = 4 and.S = 15, in which each provider 
dispatches up to .400 vehicles for the car-sharing service. The maximum number 
of vehicles that can be parked at each time is given by .ξ j [k] = 50 for any station 
. j . The expected demands of each provider were given randomly from the interval 
between . 0 and . 15. The arrival rate .c jℓ is given in the interval .[0.95, 0.99] and the 
maximum number of dispatchable vehicles .ηi is .10. The step-size is given as . α(s) =
1/(s + 2 × 107)0.51 and the trigger function for the event-triggered algorithm is given 
as .ε(s)

i = CE/(s + 1) for all .i ∈ V, where .CE is a positive constant. The weight 
matrix is set as .Ri = Im for .i ∈ V. 

Figures 8.11 and 8.12 show the normalized error . (
∑n

i=1 | f (u(s)
i ) − f ∗|)/

(
∑n

i=1 | f (u(0)
i ) − f ∗|), and the number of triggers for the different values of the 

threshold parameter .CE of the event-triggered communication, where . f ∗ is the cost
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Fig. 8.11 The normalized 
errors with different values 
of. CE

Fig. 8.12 The number of 
triggers with different values 
of. CE

obtained by a centralized computation with CVXPY [ 16]. These results show that 
the accuracy of the estimation by the event-triggered algorithm (ET) is comparable 
to that by the time-triggered algorithm (TT) [ 79]. Moreover, the number of commu-
nications by the event-triggered algorithm can be efficiently reduced compared with 
that by the time-triggered algorithm. 

8.5 Optimal Control Problem of Probability Distributions 
for Rebalancing in One-Way Car-Sharing Service 

This section treats the operation of car-sharing services as a control problem of prob-
ability distributions, which is a current focus in control theory [ 2, 12, 22, 32]. As 
discussed in previous sections, we examine the rebalancing problem in one-way car-
sharing services, where users can return vehicles to arbitrary slots, not necessarily 
the ones from which the users rented them. This can result in an uneven distribution
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of vehicles at parking slots. To address this issue, the service operator performs a 
rebalancing operation by dispatching the vehicles to eliminate the uneven distribu-
tion [ 5, 44, 48, 69]. The section assumes that car-sharing systems dispatch vehicles 
to match user demand, formulating the rebalancing problem as controlling the num-
bers of vehicles to match the demand. As discussed in the following, the number of 
vehicles at each station corresponds to the probability distribution, considering that 
the total number of vehicles remains the same (i.e., no additional cars are brought 
into or removed from the total pool), and so does the required number of vehicles in 
demand. Therefore, the rebalancing problem can be considered as the minimization 
of the difference between the probability distributions of the actual availability of 
vehicles and the demand for required vehicles. The section presents an approach 
based on the Wasserstein distance to measure this difference and formulates the 
rebalancing problem as the optimal control problem of probability distributions with 
Wasserstein costs. 

8.5.1 Optimal Control Problem of Probability Distributions: 
Problem Formulation and Optimal Condition 

Here we describe the optimal control problem of probability distributions with costs 
determined by the Wasserstein distances. The formulation of the control problem is 
based on [ 33] focusing on the discrete setting. The continuous setting can be found 
in [ 32]. 

The control problem focuses on discrete state variables, i.e., the state space con-
sists of a finite set .S = {s1, s2, . . . , sN }. The problem takes probability distributions 
on the state space . S into consideration. The value of the probability .P [xt = si ] that 
an .S-valued random variable .xt at time . t (.t = 1, 2, . . . ) takes the value .si ∈ S is 
denoted by 

.P [xt = si ] = (pt )i , (8.47) 

where.(pt )i ∈ [0, 1] for.i ∈ Z1:N . The values.(pt )i (.i = 1, . . . , N ) satisfy. 
∑N

i=1(pt )i

= 1 for each . t . The probability distribution of .xt is given by a probability vector 
.pt = [(pt )1, (pt )2, . . . , (pt )N ]

T , consisting of the set of probability distributions 
.P(S). 

The above setting enables the introduction of Markov decision processes. We 
assume that the transition matrix of the Markov decision process depending on the 
control input .ut ∈ U ⊂ R

d , for .t ∈ Z0:T −1, is given in the form of 

.P
[
xt+1 = si | xt = s j

] = Pi j (ut , t) for ∀i, j ∈ Z1:N , (8.48) 

where .P
[
xt+1 = si | xt = s j

]
is the conditional probability of the event . xt+1 = si

under the event .xt = s j . The elements of the matrix .Pi j (ut , t) is a map from . U ×
Z0:T −1 to .[0, 1] and satisfies
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.

NΣ

i=1

Pi j (u, t) = 1 for u ∈ U, t ∈ Z0:T −1. (8.49) 

Then, a Markov chain is determined by 

.pt+1 = P(ut , t)pt , t ∈ Z0:T −1 (8.50) 

and the initial value of .p0 ∈ P(S). In this section, we discuss the application of the 
Markov decision process to the rebalancing in car-sharing services. As mentioned 
above and discussed in detail below, rebalancing through vehicle dispatching can be 
regarded as controlling the number of available vehicles to match user demand. We 
regard this matching problem as minimizing the difference between the number of 
vehicles and user demand. In terms of the Markov decision process, this problem 
reduces to the minimization between the actual and desired probability distributions 
of vehicles at parking slots when the numbers of vehicles at the parking slots are 
normalized. 

To measure the difference between probability distributions in the rebalancing 
problem, the study [ 33] introduced Wasserstein distances. To introduce it, the state 
.si ∈ S is associated with a point located at .zi in the Euclidean space .R

n . 

Definition 8.1 Assume that the states.si , s j are associated with the positions. zi , z j ∈
R

n , respectively, and assume that the distance between .zi and .z j is given by . di j =
||zi − z j|| (.i, j ∈ Z1:N ). For two probability distributions . p, .q ∈ P(S), consider the 
set of joint probability distributions. π of.S-valued random variables.X and. Y whose 
probability distributions. p and. q, respectively, are as follows, i.e.,.π = {πi j } satisfies 

.πi j = P
[
X = si , Y = s j

]
(8.51) 

and 

.

NΣ

j=1

πi j = pi ,

NΣ

i=1

πi j = q j . (8.52) 

With the notation of the set of joint probability distributions .π by .Π(p, q), the  
Wasserstein distance between . p and . q, .W : P(S) × P(S) → R, is given by 

.W (p, q) = min
π∈Π(p,q)

⎛

⎝
NΣ

i, j=1

di jπi j

⎞

⎠ . (8.53) 

The set of joint probability distributions.Π(p, q) is called the coupling of probability 
distributions of . p and . q. Please note that the Wasserstein distance of Definition 8.1 
is precisely referred to as the .1-Wasserstein distance because it uses the first power 
of the distance .di j .
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We use the following result to present an optimality condition of the control 
problem later. It follows from the definition that the Wasserstein distance is given as 
a solution of a linear programming problem. The following result gives the duality 
result of the linear programming problem. 

Proposition 8.1 ([ 62]) The Wasserstein distance admits another expression given 
by 

.W (p, q) = max
( f,g)∈R(d)

f T p + gT q, (8.54) 

where the set .R(d) is defined as 

.R(d) = {
f ∈ R

N , g ∈ R
N | ∀i, j ∈ Z1:N , fi + g j ≤ di j

}
, (8.55) 

where . fi and . g j , .i, j ∈ Z1:N are the . i th element of . f and the . j th element of . g, 
respectively. 

In expression (8.54), . f and . g are called Kantorovich potentials. 
Given the Wasserstein distance, we can formulate the optimal control problem 

here. We consider the Markov decision process given by (8.50) and assume that the 
desired probability distributions .pt,d ∈ P(S) for each .t ∈ Z1:T are given. The prob-
lem formulated here is the minimization of the differences between the probability 
vector.pt of (8.50) and the desired distribution.pt,d for each.t ∈ Z1:T . As mentioned 
above, the differences between the two distributions are measured by the Wasserstein 
distance. The following gives the mathematical formulation of the control problem 
of this section. 

Problem 8.6 Consider system (8.50), a probability distribution at the initial time, 
.p0 ∈ P(S) at .t = 0, and desired probability distributions .pt,d , .t ∈ Z1:T . Find a  
sequence of the control inputs .u = {ut }T −1

t=0 that minimizes the cost function 

.J (u) =
T −1Σ

t=0

{
W (pt+1, pt+1,d) + g(pt , ut )

}
, (8.56) 

where .g : P(S) × U → R is continuous on .P(S) × U and continuously differen-
tiable on the interior of .P(S) × U . 

As seen below, we introduce the function.g(pt , ut ) in (8.56) to impose the control 
cost. Additionally, .g(pt , ut ) can also be used to take constraints on the control input 
such that .ut ∈ U ⊂ R

d into consideration, for example, using barrier functions for 
.u ∈ U . 

Problem 8.6 is the optimal control problem with respect to the probability dis-
tributions. In standard optimal control problems, Pontryagin’s minimum principle 
enables the characterization of the optimality and the optimal control inputs. As for 
the current problem, we can obtain a condition based on Pontryagin’s minimum 
principle.
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Theorem 8.6 Assume that given the initial probability distribution .p0 ∈ P(S) and 
the target probability distributions.pt,d ∈ P(S),.t ∈ Z1:T , for the system (8.50), there 

exists a sequence of control inputs.
{
u∗

t

}T −1
t=0 that attains the minimum of the cost func-

tion (8.56). Then, there exist sequences .
{

p∗
t

}T

t=0 and .
{
Λ∗

t

}T

t=0 such that the following 
conditions hold: 

.p∗
t+1 = P(u∗

t , t)p∗
t , Λ∗

t = Λ∗
t+1P(u∗

t , t) + f ∗
t

T + ∂g

∂p
(p∗

t , u∗
t ) (8.57) 

.Λ∗
t+1

∂ P

∂um
(u∗

t , t)p∗
t + ∂g

∂um
(p∗

t , u∗
t ) = 0, t ∈ Z1:T −1, m ∈ Z1:d , (8.58) 

with boundary conditions 
.p∗

0 = p0, Λ∗
T = f ∗

T
T
, (8.59) 

where . f ∗
t , .t ∈ Z1:T is a Kantorovich potential of .W (p∗

t , pt,d) as given in (8.54). 

Note that .Λ∗
t is given as an .N -dimensional row vector. 

The optimality condition in Theorem 8.6 enables the development of a gradient 
descent-type algorithm. The algorithm developed in [ 33] is summarized in the fol-
lowing. 

Algorithm 8.1 Gradient descent-type algorithm for Problem 8.6 

1: Let k = 0, and determine the initial value of
{

u(k) 
t

}T −1 

t=0 
and the number of the maximal iteration 

Nmax . 

2: Obtain
{

p(k) 
t

}T 

t=0 
and

{
Λ

(k) 
t

}T 

t=0 
using the state and the adjoint equations in (8.57). 

3: Update
{

u(k) 
t

}T −1 

t=0 
as u(k+1) 

t = u(k) 
t − αδu(k) 

t , where  

δu(k) 
t,m = Λ

(k) 
t+1 

∂ P 

∂um 
(u(k) 

t , t)p(k) 
t + 

∂g 

∂um 
(p(k) 

t , u(k) 
t ). (8.60) 

and α >  0 is a small constant. 
4: k → k + 1. If k = Nmax, stop; otherwise, go to step 2. 

8.5.2 Application to Rebalancing in One-Way Car-Sharing 
Services 

The optimal control problem discussed above is now adapted to the rebalancing 
problem in one-way car-sharing systems. As mentioned above, the one-way car-
sharing services enable users to return vehicles in arbitrary slots, not necessarily 
the same slots that the users rented. This framework provides convenience to users
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Fig. 8.13 Setting in One-way Car-sharing system [ 33] 

but requires the rebalancing of vehicles between parking slots for service providers. 
This issue requires determining an optimal dispatching strategy in the rebalancing of 
available vehicles. The current framework deals with this issue from the perspective 
of the probability distribution control problem. 

The rebalancing problem is formulated as an optimal control problem as follows 
(see also Fig. 8.13). We assume that .Nall vehicles is prepared in the car-sharing ser-
vice and the number of the vehicles does not change during the operation. Addi-
tionally, .N parking slots are assumed to be provided, and each parking slot is 
denoted by.s1, . . . , sN . Then,.s1, . . . , sN forms the state space in the control problem 
.S = {s1, . . . , sN }. Moreover, we assume that each parking slot is located at the posi-
tion .zi ∈ R

2 and .di j = ||zi − z j|| denotes the distance between the locations .zi and 
. z j . Given the vehicles and parking slots, the. i th parking slot possesses.Ni (t) vehicles 
at time . t . The fractions of vehicles at parking slots determine a probability distribu-
tion of a vehicle staying at the . i th slots at time . t , that is, the probability distribution 
.pt ∈ P(S) possesses the element .(pt )i given by 

.P[xt = si ] = (pt )i := Ni (t)

Nall
, (8.61) 

where. xt denotes the state of a vehicle at time. t , and.xt = si expresses that the vehicle 
is locating at or moving to the parking slot . si . We introduce the desired probability 
vectors .

{
pt,d

}T

t=1 to express the user demand of vehicles in parking slots. 
We consider a dynamical model to determine the movements of vehicles between 

parking slots as a Markov chain (8.50). The Markov chain model of the movements 
of vehicles is given by 

.pt+1 = pt − Lt pt − Lu
t pt , (8.62)
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where .Lt , Lu
t are matrices, and .Lu

t is a control input. This equation is obtained by 
replacing the matrix .P(ut , t) in (8.50) with 

.P(ut , t) = I − Lt − Lu
t , (8.63) 

where .ut = Lu
t . The matrix .Lt is assumed to have the form 

.Lt =

⎡

⎢⎢⎢⎢⎣

∑N
i=2 lt,i1 −lt,12 . . . −lt,1N

−lt,21
∑N

i=1
i /=2

lt,i2 . . . −lt,2N

...
...

. . .
...

−lt,N1 −lt,N2 . . .
∑N−1

i=1 lt,i N

⎤

⎥⎥⎥⎥⎦
. (8.64) 

.Lu
t also has the same form as (8.64), where the element .lt,i j is replaced with .lu

t,i j . 
The element .lt,i j in .Lt determines the fraction of vehicles moved by users from slot 
.s j to . si at time . t . Additionally, .lu

t,i j of .L
u
t models the fraction of vehicles moved in 

the rebalancing from .s j to . si . The elements .lt,i j of .Lt satisfy that .lt,i j ∈ [0, 1] and 
.
∑N

k=1,k /= j lt,k j ≤ 1 for . j ∈ Z1:N . Given the matrix . Lt , the matrix .Lu
t has to satisfy 

conditions for the matrix .I − Lt − Lu
t to be a transition matrix. The elements . lu

t,i j
satisfy that for .i, j ∈ Z1:N , .i /= j , 

.lu
t,i j ≥ 0, (8.65) 

and for . j ∈ Z1:N , 

.

NΣ

i=1,i /= j

lu
t,i j ≤ 1 −

NΣ

i=1,i /= j

lt,i j . (8.66) 

These conditions on.Lu
t guarantee that the matrix.I − Lt − Lu

t becomes the transition 
matrix of the Markov chain. 

The cost function of .J (u) in the optimal control problem of Problem 8.6 is 
designed as follows. The stage cost consists of the Wasserstein distance and the 
control cost .g(pt , Lu

t ), where .ut is replaced with .Lu
t . The Wasserstein distance is 

given by .W (pt , pt,d) to measure the closeness of the actual and desired distribution 
of vehicles at parking slots, where the distances between parking slots determine 
the distances.di j in Definition 8.1. This setting means that the rebalancing strategy is 
designed to dispatch the vehicles to meet the user demand. Additionally, we introduce 
the control cost in the rebalancing as follows: 

.g
(

pt , Lu
t

) = C1

NΣ

i, j=1
j /=i

(
lu
t,i j pt, j

)2 + C2gB
(
Lu

t

)
, (8.67)
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where.C1 and.C2 are non-negative constants, and.gB : RN×N → R is a barrier func-
tion for .Lu

t to satisfy the constraints (8.65) and (8.66). In [ 33], the barrier function 
.gB(Lu

t ) is given by 

.gB
(
Lu

t

) =
NΣ

i, j=1
i /= j

1

lu
t,i j

+
NΣ

j=1

1

1 − ∑N
i=1
i /= j

lt,i j − ∑N
i=1
i /= j

lu
t,i j

(8.68) 

The design of the stage cost with the Wasserstein distance and the control cost 
including the barrier function yields the rebalancing strategy taking both the user 
demand and the rebalancing cost into consideration. 

We show a numerical example of the optimal control for yielding the rebalancing 
strategy in the one-way car-sharing services. Consider the setting of the car-sharing 
service with six parking slots and the total time step.T = 10. Additionally, the loca-
tions of parking slots are randomly determined so that the distances between every 
pair of the parking slots,.di j , is in.[0.5, 5.0]. The desired probability distribution. pt,d

and the matrices.Lt (.t ∈ Z1:T ) are also randomly generated. Moreover, the following 
parameters are used;.Ct = 100, 0.1,.C2 = 10−6,.β = 1. The parameters. α = 0.0002
and .Nmax = 20, 0000 are used in Algorithm  8.1. In the following, we refer to the 
cases of .C1 = 100 and .C1 = 0.1 as cases 1 and 2, respectively. Case 1 focuses on 
reducing the control cost, i.e., the rebalancing strategies prioritize reducing the cost 
for the dispatching in the rebalancing rather than the matching between the actual 
numbers of vehicles and the desired numbers determined by user demand. Con-
versely, case 2 prioritizes meeting the actual and required distributions of vehicles 
by finding the optimal strategy. Figure 8.14 shows the values of the Wasserstein 
distances between .pt and .pt,d on the horizon .t ∈ Z1:T for cases 1 and 2. Case 2 
has a stronger focus on reducing Wasserstein costs than case 1. Therefore, the val-
ues of the Wasserstein distances in case 2 are smaller than in case 1. In case 1, 
we obtained.

∑T
t=1 W

(
pt , pt,d

) = 3.69 and.
∑T −1

t=0 g
(

pt , Lu
t

) = 0.006. Case 2 yields 

.
∑T

t=1 W
(

pt , pt,d
) = 3.08 and .

∑T −1
t=0 g

(
pt , Lu

t

) = 0.026. These results imply that 
the value of .C1 can adjust preferences in yielding the rebalancing strategy from the 
optimal control and that the Wasserstein distance between the actual distribution of 

Fig. 8.14 Values of Wasserstein distances.W (pt , pt,d ) for.t ∈ Z1:T [ 33]
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vehicles and the desired distribution determined by user demand can be reduced by 
choosing a sufficiently small value of .C1. 

8.6 Optimization of One-Way Car-Sharing Services via DC 
Program 

One-way car-sharing services can be considered as a special class of buffer networks. 
Recently, the study of buffer networks has emerged in which the nodes among them 
behave as buffers to exchange the inflow/outflow with their neighbors. Several appli-
cations, such as environment [ 54], power [ 71], and network-on-chip design [ 63], have 
triggered the interest for conducting this type of study. Moreover, there are emerg-
ing applications in the mobility systems domain, such as the optimization of traffic 
flows [ 13, 20, 73] and the design of efficient and effective mobility-on-demand sys-
tems [ 5, 41]. A standard model used to study buffer networks is the positive linear 
system model [ 64]. Using this model, a number of fundamental control and opti-
mization problems have been studied. An example is the stability analysis studied 
in [ 14, 52]. Moreover, the positive linear system model enables the study of con-
trol and optimization problems [ 59]. Further, the robust control problem has been 
studied in [ 65, 68]. The goal of this section is to show that the DC (Difference of 
Convex Functions) program is an adequate mathematical tool to address the problem 
of efficient control. 

8.6.1 Problem Formulation 

8.6.1.1 Service Model 

Here, we consider a one-way car-sharing service in which the stations providing 
parking slots enable customers to rent vehicles at any stations. Let . n be the num-
ber of stations in an area. We assume that the structure of the service network is 
described by the graph.G = (V,E,W), where .V = {v1, . . . , vn} represents the set 
of . n stations within the service and .E = {e1, . . . , em} ⊆ V × V represents the set 
of directed edges indicating possible usage between stations. We suppose that there 
exist two special sets of stations that serve as origins (i.e., the stations having an 
empty in-neighborhood node) and destinations (i.e., the stations having an empty 
out-neighborhood node). We let .Vo = {1, . . . , |Vo|} and .Vd denote the set of ori-
gins and destinations of the car-sharing service, respectively. 

Inspired by [ 40], we construct a mathematical model of the system of the one-way 
car-sharing service as follows. Let .xi (t) ∈ R+ (.i ∈ N) denote the expectation of the 
number of vehicles parking at station. i and at time.t ≥ 0. Moreover, let . ui j (t) ∈ R+
(.(i, j) ∈ E) be the expectation of the number of customers who travel from station. i
to. j at time. t . Let. f ini ∈ R+ (. f outi ∈ R+) be the expectation of the number of vehicles
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moving to (from) this area from (to) other areas. Then, we suppose that .xi obeys the 
following differential equation 

.
dxi

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ini −
Σ

j∈Nout
i

ui j , if i ∈ Vo,

Σ

j∈N in
i

u ji −
Σ

j∈Nout
i

ui j , if i /∈ Vo ∪ Vd ,

Σ

j∈N in
i

u ji − f outi , if i ∈ Vd ,

(8.69) 

where .N in
i = { j ∈ V : ( j, i) ∈ E} denotes the set of in-neighborhoods of station . i

and .Nout
i = { j ∈ V : (i, j) ∈ E} denotes the set of out-neighborhoods of station . i . 

Further, we assume 
. f outi = βi xi , (8.70) 

where .β = {βi }i∈Vd are the parameters to be tuned by the designer of the service. 
We adopt the following model of the demand of customers that can change with 

prices. Assume that the expectation of the demand is .ūi j (t) ∈ R+ when the price 
is . p̄i j (t) ∈ R+ and that the change of the demand is governed with an affine model 
around this point. Let.pi j ∈ R+ be the price for traveling from stations. i to. j , and let 
.δi j ∈ R+ be the price elasticity. Then, we consider the affine price model 

.ui j = ūi j − δi j (pi j − p̄i j ). (8.71) 

As a pricing strategy, we suppose that the price .pi j is adjusted according to the 
number .xi of vehicles at station . i as 

.pi j = p̂i j − wi j xi , (8.72) 

where . p̂i j ∈ R+ and .wi j ∈ R+ are design parameters. Here, we set . p̂i j = p̄i j +
ūi j/δi j . Then, from (8.71) and (8.72), the demand model is reduced to 

.ui j = δi jwi j xi . (8.73) 

We suppose that .δ = {δi j }(i, j)∈E can also be tuned by the operator of the service. 
To formulate our optimization problem for designing the car-sharing service, we 

rewrite the model described above into a standard linear system. Let 

.[AG]i j =
{

w j i , if ( j, i) ∈ E,

0, otherwise.
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be the adjacency matrix of the graph . G. To measure the performance of the buffer 
network, we adopt the output .y = [xT αuT]T, where .α > 0 is a weight constant 
and .u ∈ R

n×n
+ includes the information of the edges. If we define 

. Bi j =
{

βi , if i = j,

0, otherwise,
Di j =

{
δ j i , if (i, j) ∈ E,

0, otherwise,

then the dynamic model can be expressed as 

. Σ :
⎧
⎨

⎩

dx

dt
=

(
D ⊙ AG − diag

(
1T

n (D ⊙ AG)
) − B

)
x + G in f in,

y = Gout(δ)x,

where the vector. f in and the matrices.G in,.Gout(δ) are defined by. f in=[ f in1 · · · f in|Vo|]T
and 

.G in =
[

I|Vo|
On−|Vo|,|Vo|

]
, Gout(δ) =

[
In

αH(δ)

]
, (8.74) 

while the matrix .H(δ) is defined by 

. H(δ)ℓi =
{

δeℓ
weℓ

, if i = eℓ(1),

0, otherwise.

We remark that, as .G in and .Gout(δ) are non-negative matrices and . D ⊙ AG −
diag

(
1T

n (D ⊙ AG)
) − B is the Metzler matrix, following the definition in [ 18], the 

dynamic model (8.74) is a positive linear system [ 59]. 

8.6.1.2 Optimization Problem 

As stated in the previous section, the parameters.βi and.δi j are assumed to be tunable 
by the operator to improve the performance of the car-sharing system. We consider 
the situation in which adopting a specific parameter. β and. δ requires a cost. L(β, δ) =∑

i∈Vd
gi (βi ) + ∑

(i, j)∈E hi j (δi j ). We allow the following interval constraint: 

.0 < βi ≤ β̄i , 0 < δi j ≤ δ̄i j . (8.75) 

In this section, we adopt the .H∞ norms to measure the performance of the 
buffer network. If system .Σ is stable, then the .H∞ norm of the system is defined 
as .||Σ||∞ = supw∈L2 ||Ω ∗ w||2/||w||2, where .Ω /= 0 and . ∗ denotes a convolution 
product and .L2 = { f : [0,∞) → R

n | 	∫	 ∞
0 || f (t)||2dt < ∞} denotes the space of 

Lebesgue measurement functions. 
We are now ready to state the optimization problem studied in this section.
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Problem 8.7 (.H∞ norm-constrained optimization) Given the desired .H∞ perfor-
mance .γ∞ > 0. Find the parameters . β and . δ minimizing the parameter tuning cost 
.L(β, δ), under the constraint that the parameter constraints (8.75) are satisfied, .Σ is 
stable, and the system requirement .||Σ||∞ < γ∞ is satisfied. 

8.6.2 DC Programming 

We present the solutions to the.H 2 and.H∞ norm-constrained optimization problems 
in terms of DC (Difference of Convex Functions) programming [ 31, 49]. To state 
the main results, we begin this section by introducing the preliminary knowledge of 
posynomials, DC functions, and DC program. 

Definition 8.2 Let . v1, .. . . , and .vn denote . n real positive variables. We state that 
a real function .g(v) is a monomial if .c > 0 and .a1, . . . , an ∈ R such that . g(v) =
cva1

1 · · · van
n . We state that a real function . f (v) is a posynomial [ 4] if . f is the sum of 

the monomials of . v. 

The following lemma shows the log-convexity of posynomials [ 4]. 

Lemma 8.1 If . f : Rn++ → R++ is a posynomial function, then the log-transformed 
function .F : Rn → R : w I→ log[ f (exp[w])] is convex. 

The property shown in Lemma 8.1 enables us to establish a relationship with a 
general class of mathematical programming that deals with the difference between 
two convex functions, called DC programming. 

Definition 8.3 (DC functions [ 31]) Let .C be a convex subset of .Rn . A real-valued 
function. f : C → R is called a DC function on. C if there exist two convex functions 
.g, h : C → R such that . f can be expressed in the form. f (x) = g(x) − h(x). 

Any continuous function can be approximated by a DC function with the desired 
accuracy. In fact, based on decomposition methods [ 31], it is possible to transform a 
nonconvex optimization problem into a DC programming problem. 

Definition 8.4 (DC programming problem [ 31]) Programming problems dealing 
with DC functions are called DC programming problems. Let . C be a closed convex 
subset of .Rn , and the general form of DC programming problem considered in this 
brief is 

. minimize
x∈C

f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , m,

where . f0(x) = g0(x) − h0(x) and . fi (x) = gi (x) − hi (x) are the differences of the 
two convex functions.
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To optimally solve the DC programming problem, we can choose the branch-and-
bound type and outer-approximation algorithms [ 15], which lead to more efficient 
procedures. 

We place the following assumption on the cost functions. 

Assumption 8.6 The functions .gi (βi ) and .hi j (δi j ) are posynomials for all . i and . j . 

The following theorem states that Problem 8.7 reduces to a DC program. For the 
proof, readers are referred to [ 78]. 

Theorem 8.7 ([ 78])Under the aforementioned assumptions and lemma, the solution 
of Problem8.7 is given by 

.B = exp[γ ], D = exp[η], (8.76) 

where . γ and . η are the solution of the DC programming 

. minimize
γ,η∈R

μ,ν,ξ,ζ∈Rn++

log[L(exp[γ ], exp[η])]

subject to log[Gout(exp[η])ξ ] − log[γ∞ν] < 0,

log[(exp[η] ⊙ AG)ξ + G inμ]−
log[(diag(1T

n exp[η] ⊙ AG) + exp[γ ])ξ ] < 0,

log[G inTζ ] − log[γ∞μ] < 0,

log[(exp[η] ⊙ AG)Tζ + Gout(exp[η])Tν]−
log[(diag(1T

n exp[η] ⊙ AG) + exp[γ ])Tζ ] < 0,

log[exp[γ ]] − log[exp[γ̄ ]] < 0,

log[exp[η]] − log[exp[η̄]] < 0.

8.6.3 Numerical Simulation 

In this simulation, we construct a network with 30 nodes (see Fig. 8.15). We config-
ure the network structure to contain one origin, one destination, and .60 edges. For 
simplicity, we set .α = 0. We also assume that .gi (βi ) = βi and.hi j (δi j ) = δi j , which 
indicates that the increment of the variable has a positive correlation with the tuning 
cost. 

We solve the .H∞ norm-constrained optimization problem for various cost 
bounds . L̄ . To solve the DC program obtained from the theorem, we employ the 
proximal bundle method presented in [ 15]. As a baseline approach, we take the 
optimization methodology based on geometric programming [ 59]. Specifically, we 
reduce the DC problem to a geometric program by imposing the constraint . δi j = δik

for all . k, which enables solving the optimization problem with geometric program-
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Fig. 8.15 Buffer network 
comprising 30 nodes (red: 
origin, blue: destination) 

Fig. 8.16 Optimized. H∞
norm versus the cost 
constraints 

Fig. 8.17 Plot of the 
.γ∞DC/γ∞G P ratio versus 
the size of network..γ∞DC : 
the optimized.H∞ norm 
solved by Theorem 8.7. 
.γ∞G P : optimal.H∞ norm 
solved by geometric 
programming (colorbar: size 
of network) 

ming. In Fig. 8.16, the triangles show the optimized .γ∞ for various . L̄ , and the cir-
cles show the optimal solution from geometric programming. We note that our DC 
programming-based results showed higher performance (Fig. 8.17).
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8.7 Conclusion 

This chapter discussed the problem of the uneven distribution in one-way car-sharing 
services. The authors discussed this issue from system control approaches as follows. 

In Sect. 8.2, we designed a common decentralized policy for dynamic prices to 
solve the uneven distribution of vehicles in car-sharing services. We focused on the 
demand shift of users to less expensive links and modeled it as a stochastic process. 
Then, an optimization problem was solved to determine the best parameters of the 
dynamic pricing policy. The effectiveness of the model was verified using the traffic 
simulator SOUND (Simulation On Urban road Network with Dynamic route choice). 

Section 8.3 introduced the sparse optimal control theory for networked control sys-
tems and then examined the engineering significance of the problem setting through 
the rebalancing problem in a one-way car-sharing service. We hope this chapter 
sparks the reader’s interest in the sparse optimal control of network systems. 

Section 8.4 reviewed distributed rebalancing control for cooperative car-sharing 
service. The service providers operate a sharing service in which the number of dead-
head vehicles is as small as possible by dispatching vehicles to match user demand. 
To solve the control problem in a distributed manner, we presented a consensus-based 
primal-dual method with event-triggered communication. We showed that the esti-
mation of each provider converges to an optimal solution of the rebalancing control 
problem. 

Section 8.5 discussed an optimal control of probability distributions of Markov 
decision processes and its application to the rebalancing operations of one-way car-
sharing services. We formulated the optimal control problem of probability dis-
tributions as the minimization of the Wasserstein distance between the controlled 
and desired distributions. This formulation was applied to the rebalancing problem, 
which requires the minimization of the difference between the distributions of the 
availability of vehicles and the user demand for required vehicles. We showed that 
the control formulation provides rebalancing strategies that match availability and 
user demand while taking rebalancing costs into consideration. 

In Sect. 8.6, we studied the.H∞ norm-constrained optimization problem for one-
way car-sharing services. Using the log-log convexity property of posynomials, we 
showed that the optimization problem reduces to a standard DC program. We also 
presented numerical simulations to illustrate the numerical scalability and effec-
tiveness of the proposed optimization framework. There are several future research 
directions to be explored. One of them is the consideration of the .L1 induced norm. 
Another direction is to apply our results to other socio-technical systems. 

These results show that the control system approach is promising for mobility 
innovation.
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Chapter 9 
Algorithms for Future Mobility Society 

Yasushi Kawase, Kazuhisa Makino, and Hanna Sumita 

9.1 Introduction 

Algorithms for mobility have been studied for decades in the areas such as operations 
research, optimization, and graph theory. Typical examples include algorithms for the 
shortest path, the minimum spanning tree, the maximum flow, the traveling salesman, 
the Steiner tree, and the facility location problems. These algorithms are used to solve 
real-world problems in networks such as traffic, information, communication, and 
social networks. For example, automotive navigation systems are based on shortest 
path algorithms [ 48]. Mobility algorithms are fundamental to our daily lives. 

In the fields of optimization and computer science, a lot of effort has been made to 
construct efficient algorithms for various types of optimization problems. However, 
it is often difficult to model real-world problems as traditional optimization ones, 
and there exist computational barriers for problems such as NP-hardness, which is 
briefly described in Sect. 9.2. 

As an example of the difficulty of modeling, we may not know the complete 
information needed to solve the optimization problem in advance. Suppose someone 
is driving to a restaurant and wants to arrive as early as possible. In this scenario, the 
next direction in the route map is sequentially selected considering the dynamically 
changing traffic conditions. Sometimes, we must choose an action in each step based 
on the current information without knowing the complete information, which will
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be revealed piece by piece in the future. Such sequential problems are called online 
problems, whereas traditional problems, in which the entire input is given in advance, 
are called offline problems. As another example, real-world problems often have 
multiple agents, each of whom aims to optimize their own objectives. However, in 
traditional optimization problems, only one agent makes decisions. In the former 
case, achieving an outcome that is satisfactory for everyone is desirable. Problems 
with multiple agents have been studied in economics and game theory under the 
name of mechanism design, which aims to design economic mechanisms for the 
desired objectives, where agents behave rationally and self-interested. 

Algorithms for mobility have been studied in a joint project between Kyoto Uni-
versity and Toyota Motor Corporation, titled “Advanced Mathematical Science for 
Mobility Society,” which started in 2020, with a focus on traditional optimization, 
online optimization, and mechanism design. In this chapter, we briefly introduce 
online optimization and mechanism design and present some of the results obtained 
from this project. 

The remainder of this chapter is organized as follows. In Sect. 9.2, we describe 
approaches to solve traditional combinatorial optimization problems by taking the 
shortest path and traveling salesman problems as examples. Subsequently, we discuss 
our results for the reallocation problem. In Sect. 9.3, we introduce the framework for 
online optimization problems and present a competitive analysis. In particular, we 
focus on the problems called the online traveling salesman and the online dial-a-ride 
problems, which occur naturally in a mobility society. Subsequently, we describe 
our results for the online machine scheduling problem, which is a generalization 
of the two aforementioned online optimization problems. Finally, in Sect. 9.4, we  
describe the fair division of resources, which is one of the main topics that appear 
in multi-agent systems. We introduce solution concepts for fair division, such as 
envy-freeness and proportionality, and present known results for the envy-free and 
proportional division of divisible resources (so-called cake-cutting), and indivisible 
resources. We also describe our results for indivisible resources with and without 
monetary transfers. 

9.2 Basic Problems and Algorithms for Mobility Society 

In this section, we introduce the fundamental optimization problems: the shortest 
path and the traveling salesman problems. We then outline their differences from 
the viewpoint of the computational complexity. Additionally, we briefly describe a 
series of studies on developing efficient algorithms. 

The primary task of an automotive navigation system is to determine a shortest 
route from an individual’s current location to a given destination. This problem is 
modeled as the shortest path problem, which is described as follows. Let. G = (V, E)

be a directed graph with a vertex set .V and an edge set .E ⊆ V × V . The vertices 
correspond to road intersections, and the edges correspond to road segments. Each 
edge .(u, v) ∈ E has a positive real number .ℓ(u, v) called weight, which represents
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the length of the corresponding road segment, or the cost to travel from . u to . v on 
the road segment. The shortest path problem is given an edge-weighted graph and 
two vertices, . s and . t , called the source and sink, respectively, to find a path from 
the source . s to the sink . t such that the sum of the weights in the path is minimized. 
In general, we may allow for negative edge weights in the shortest path problem. 
However, in this chapter, we only allow nonnegative edge weights because the edge 
weights in many mobility-related applications often correspond to length, time, or 
nonnegative costs. 

The traveling salesman problem (TSP) is the problem of determining a shortest 
tour that visits all the vertices exactly once for a given edge-weighted graph. The 
TSP has been extensively studied since it has several applications, such as planning, 
logistics, and microchip manufacturing. As a logistical example, let us consider a 
single van driver who delivers packages from a depot station to customers’ homes. 
The driver needs a shortest tour that visits all the homes and returns to the depot. In this 
case, we have a complete graph.G = (V, V × V ) with the vertices.V corresponding 
to the depot and homes, and edge weights representing the travel time or cost between 
the depot and homes, corresponding to the edges’ endpoints. Then, the problem of 
finding a shortest tour is formulated as the TSP. 

The shortest path problem admits an algorithm that runs in polynomial time [ 17]. 
Theoretically, such an algorithm is considered to be efficient. Thus, constructing 
polynomial-time algorithms for problems is one of the ultimate goals in the field of 
optimization and computational complexity. On the other hand, the TSP is known to 
be NP-hard [ 32], which implies that the TSP is unlikely to be solved in polynomial 
time. 

Meanwhile, many NP-hard problems, including the TSP, arise in the real world. 
Hence, considerable effort has been made to develop fast algorithms for NP-hard 
problems from both theoretical and practical viewpoints. Owing to the NP-hardness, 
we need to compromise the running time of the algorithms and/or the optimality 
of their outcomes, which leads to two main approaches: finding an exact optimal 
solution as quickly as possible and finding a sufficiently good solution quickly. 

9.2.1 Approaches for Hard Problems 

Most combinatorial optimization problems can be trivially solved by a brute-force 
search, that is, enumerating and checking all possible solutions. Thus, determining 
how to yield a performance better than a brute-force search is an important research 
topic. Theoretical research aimed at answering this question began in the 1960s. For 
example, the dynamic programming algorithms proposed by Bellman [ 8] and Held 
and Karp [ 27] in 1962 were used to solve the TSP with . n vertices in .O(2nn2) time. 
This bound is considerably faster than a simple brute-force search, which requires 
.O(n · n!) time. Currently, these algorithms are referred to as the exact exponential 
algorithms. For further details, see the book of Fomin and Kratsch [ 20]. Param-
eterized complexity theory, a similar area of research introduced by Downey and
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Fellows [ 18], aims to provide a refined analysis of NP-hard problems by using their 
parameters. In particular, this theory focuses on the existence of algorithms whose 
running times are bounded by a polynomial in the input length and a function for the 
parameters. An overview of this approach has been presented by Flum and Grohe [19] 
and Niedermeier [ 43]. From a practical viewpoint, many useful methods are based 
on logic such as satisfiability (SAT) solvers, and mathematical programming such as 
mixed integer programming (MIP) solvers. There are several mixed integer program-
ming formulations of the TSP. Practical MIP solvers enable us to obtain an (exact) 
optimal solution for the medium-scale TSP. 

In real-world applications, it is often adequate to determine a sufficiently good 
solution quickly instead of taking much time to find an optimal solution. Therefore, 
researchers have developed approximation algorithms and heuristics to solve real-
world problems. Here, an approximation algorithm is referred to as a polynomial-
time algorithm with a performance guarantee. For a problem instance . I of a mini-
mization problem, let .ALG(I ) denote the objective value obtained by an algorithm 
.ALG, and let .OPT(I ) denote the optimal value of the instance. I . For .ρ (≥ 1), algo-
rithm .ALG is said to be a .ρ-approximation if .ALG(I ) ≤ ρ · OPT(I ) holds for any 
problem instance . I . Approximation algorithms for various difficult problems have 
been extensively studied since the 1990s. 

Unfortunately, the general TSP is known to be hard even to approximate, unless 
.P = NP. This means that, for any polynomial-time algorithm, there exists a problem 
instance in which the output value of the algorithm is infinitely large compared with 
the optimal value, unless .P = NP. On the other hand, the metric TSP, which is an 
important special case of the TSP, admits approximation algorithms. Let.R+ be the set 
of nonnegative real numbers. The TSP is called metric if the vertex set. V and the edge 
weight.ℓ : V × V → R+ form a metric space, that is,. ℓ satisfies three conditions: (1) 
non-degeneracy.ℓ(u, v) = 0 if and only if.u = v, (2) the symmetry. ℓ(u, v) = ℓ(v, u)

for any .u, v ∈ V , and (3) the triangle inequality .ℓ(u, v) ≤ ℓ(u, w) + ℓ(w, v) for 
any .u, v, w ∈ V . A celebrated result of Christofides [ 12] is a  .1.5-approximation 
algorithm for the metric TSP. This algorithm finds a tour with a length no more than 
.1.5 times the minimum tour length. A typical example of the metric TSP is when the 
vertices are assumed to be embedded in the Euclidean space, and the edge weights 
are defined as the Euclidean distances .ℓ(u, v) = ||u − v||2. This problem is called 
the Euclidean TSP, and is naturally occurring from real-world applications such 
as microchip manufacturing. The Euclidean TSP further admits a polynomial-time 
approximation scheme [ 3]. Specifically, for each fixed positive number .ε > 0, we  
can find a .(1 + ε)-approximate solution in polynomial time. The Christofides’ .1.5-
approximation algorithm has been the best approximation algorithm for the general 
metric TSP for several decades. Recently, improved algorithms for the general metric 
TSP have also been developed [ 30, 31]. In addition, substantial progress has been 
made in regard to algorithms for a special case, called graphic TSP [ 21, 40, 42, 45]. 

Simultaneously, considerable effort has been devoted to developing better heuris-
tics from a practical viewpoint. A well-known heuristic for the TSP is.k-opt. The basic 
idea of .k-opt is to repeatedly remove . k disjoint edges and reassemble the fragments 
into a different tour. Generalizing this, the Lin–Kernighan method [ 35] repeats the
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.k-opt procedure by varying . k. This is one of the core techniques to construct better 
heuristics for the TSP when the edge weights are symmetric. Some studies have also 
applied general heuristics, such as genetic algorithms and simulated annealing, to 
the TSP. 

Finally, we note that a polynomial-time algorithm does not necessarily run quickly 
in practice, particularly when the problem is large. Therefore, even though the short-
est path problem is solvable in polynomial time, a lot of additional effort has been 
made to find a short path quickly. For example, Dijkstra’s algorithm [ 17], which is a 
well-known polynomial-time algorithm for the shortest path problem, is impractical 
for a large given graph (e.g., a huge load network or SNS network). This is because 
this algorithm essentially determines a shortest path tree, which consists of short-
est paths from the source to all the other vertices. To overcome this drawback, the 
.A∗ algorithm [ 26] was proposed to determine a shortest path from the source to the 
sink, rather than a shortest path tree, by incorporating heuristics into Dijkstra’s algo-
rithm. Approximation algorithms for the shortest path problem have also attracted 
attention [ 1, 7]. 

9.2.2 Reallocation Scheduling 

In this subsection, we present the results for reallocation scheduling, which are 
obtained in the project. Reallocation scheduling is a fundamental problem in var-
ious fields, such as supply chain management, logistics, and transportation science. 
Many reallocation models have been studied from both theoretical and practical per-
spectives. Reallocation models are categorized based on three aspects: (i) reallocation 
cost, (ii) fungibility of products, and (iii) parallel/sequential execution. 

For example, let us consider the dial-a-ride problem, which involves designing 
schedules for vehicles to handle customer requests. Specifically, we consider a com-
pany that provides delivery services. This company dispatches identical delivery 
vehicles to pick up and drop off packages at the requested locations. Each request 
involves carrying a package between two specified locations. To process a request, 
a vehicle must first move to the pickup location, and then the vehicle transports the 
package to its drop-off location. The vehicle completes the process by handing over 
the package. The problem is to find a schedule that minimizes some objective, for 
example, the makespan or sum of the completion times of the vehicles. Here, the 
makespan is the time at which all vehicles return to the depot after completing all 
requests. This problem can be regarded as a vehicle routing problem for realloca-
tion [ 15, 25, 28]. In the dial-a-ride problem, (i) the reallocation cost depends on the 
route; (ii) customers are not fungible; and (iii) reallocation is performed sequentially 
for each vehicle. Another example is the bike-share rebalancing problem, which 
involves scheduling trucks to redistribute shared bikes with the objective of mini-
mizing the total cost [ 16]. In this problem, conditions (i) and (iii) for the dial-a-ride 
problem also apply: the reallocation cost depends on the route, and reallocation is 
performed sequentially for each truck. However, condition (ii) does not apply: shared
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bikes are fungible. That is, we can fulfill the desired bike distribution without distin-
guishing between bikes. In both of these problems, costs arise from the transportation 
of the delivery vehicles rather than the reallocation of the products. 

In the project, Ishii et al. [ 29] considered reallocation scheduling in which (i) the 
cost (i.e., transit time) of reallocating a product is given in advance; (ii) products are 
not fungible; and (iii) reallocations are performed in a parallel manner. We refer to this 
problem as the reallocation problem. For example, suppose that several warehouses 
store many products (or items). Some products are already stored in their designated 
warehouses, whereas others are stored in temporary warehouses; the latter must 
be reallocated to their designated warehouses. To reallocate a product . p, a certain 
amount of time is required, which is called the transit time of . p. Each product also 
has a size, and each warehouse has three types of capacity: (a) the capacity of the 
warehouse itself, (b) the carry-in size capacity, and (c) the carry-out size capacity. 
The capacity of type (a) restricts the total number of products that can be stored in 
a warehouse at any moment, while (b) and (c) restrict the total size of products that 
are simultaneously carried in and out, respectively. For this setting, we provided an 
algorithm to find a reallocation schedule with the minimum completion time. 

The project investigated the computational complexity of the reallocation problem 
under various scenarios and obtained the following results. 

Theorem 9.1 (Ishii et al. [ 29]) The reallocation problem with uniform product sizes 
and uniform transit times can be solved in .O(mn logm) time, where .m and . n denote 
the number of products and warehouses, respectively. 

Theorem 9.2 (Ishii et al. [ 29]) The reallocation problem is NP-hard in general. 

The paper [ 29] also provided approximation algorithms for the reallocation prob-
lem under several scenarios that arise in real applications. 

9.3 Online Optimization for Mobility Society 

In online problems, the complete data are not known in advance, but are revealed piece 
by piece. Decisions must be made based only on the currently nown information, 
and not on future information. Online problems have been actively studied in the 
field of theoretical computer science since the seminal paper by Sleator and Tarjan 
in 1985 [ 46]. The authors suggested comparing an online algorithm with an optimal 
offline algorithm to measure the performance of the online algorithm in a manner 
similar to an approximation ratio. For an input sequence. σ , let.ALG(σ ) and.OPT(σ ), 
respectively, denote the costs obtained by an online algorithm.ALG and the optimal 
offline algorithm .OPT. For  .ρ (≥ 1), algorithm .ALG is said to be (asymptotically) 
.ρ-competitive if a nonnegative constant . α exists such that 

. ALG(σ ) ≤ ρ · OPT(σ ) + α

for any input sequence . σ .
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Sleator and Tarjan [46] studied the paging problem, which is an important problem 
in implementing computer operating systems. For example, consider a two-level 
memory system consisting of primary and secondary memories. A primary memory 
is typically small, while a secondary one is large. Suppose that we have a sequence 
of requests, each of which specifies a page in the memory system. A request is served 
if the corresponding page is in the primary memory. If a page is not in the primary 
memory, a page fault occurs. Then, some pages must be removed from the primary 
memory, and the requested page must be loaded from the secondary memory into the 
primary memory. The aim is to minimize the number of page faults incurred in the 
request sequence. Sleator and Tarjan [ 46] proved that any algorithm for the paging 
problem is at least .k-competitive, and that algorithms so-called least recently used 
and first-in first-out are .k-competitive. 

The .k-server problem proposed by Manasse et al. [ 39] is a generalization of the 
paging problem and is one of the most extensively studied online problems. As an 
example, suppose that we have . k mobile servers located in a metric space. In this 
problem, we are given a sequence of service requests, each of which specifies a 
point to visit in the space. When a request arrives, we must immediately select a 
server to move to the requested point without knowing future requests. The next 
request is known when the current request is completed. The aim is to determine 
how to assign servers to requests to minimize the total moving distance moved by 
the servers. Manasse et al. [ 39] conjectured that a .k-competitive algorithm exists 
for the .k-server problem. Koutsoupias and Papadimitriou [ 34] proved that the work 
function algorithm has a competitive ratio of at most .2k − 1 for any metric. Despite 
many efforts, the conjecture is still open. 

Coester and Koutsoupias [ 13] studied the online .k-taxi problem, which is a gener-
alization of the.k-server problem. In this problem,. k taxis serve a sequence of requests 
in a metric space; a request consists of two points . s and . t , representing a passenger 
who wants to be carried by a taxi from. s to . t . 

The online .k-server and .k-taxi problems assume that a new request arrives after 
the current request has been processed. To handle a situation in which each request 
arrives at a certain time, we require a real-time model. The online .k-TSP problem is 
a real-time version of the.k-server problem, wherein each request arrives at a release 
time, and the servers can move at a unit speed. When the requests are provided 
in advance, and there is only one server, the problem coincides with the TSP. The 
online .k-dial-a-ride problem is a real-time version of the .k-taxi problem. This is 
also a generalization of the online .k-TSP. The goal of this problem is to minimize 
the makespan. Ascheuer et al. [ 4] proposed the SMARTSTART algorithm, which 
achieves the best possible competitive ratio of . 2. 

Goko et al. [ 23] introduce a scheduling problem called the online .(M, k)-
scheduling problem, which generalizes the online.k-dial-a-ride problem. In the prob-
lem,. k machines move in the metric space.M. For example, let us consider a company 
that provides on-demand delivery services. Similar to the online .k-dial-a-ride prob-
lem, we need to design schedules for vehicles to process all requests such that the 
makespan is minimized. However, unlike the online.k-dial-a-ride problem, we do not 
know the destination state of a request until we begin to process it. Furthermore, the
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time required to process a request is not known until the end of the process, because 
the time required for pickup at the source and handing over at the destination are also 
included. Here, we assume that each vehicle can only carry one package at a time. 

In the paper [ 23], Goko et al. provided the following result. 

Theorem 9.3 (Goko et al. [ 23]) The online.(M, k)-scheduling problem is.Θ(
log k

log log k )-
competitive. 

This theorem means that there exists an .O(log k/ log log k)-competitive online 
algorithm and every online algorithm is .Ω(log k/ log log k)-competitive. This result 
is obtained in the following two steps. First, to address the unknown release times, we 
provide frameworks for producing a .min{2ρ + 1/2, ρ + 2}-competitive algorithm 
using a .ρ-competitive algorithm for the basic online.(M, k)-scheduling problem, in 
which all jobs are released at time. 0. Then, to address the unknown destination states 
and processing times, we construct an .O(log k/ log log k)-competitive algorithm for 
the basic problem. We also improved the competitive ratios of the online .(M, k)-
scheduling problem for certain special cases. 

9.4 Mechanism Design for Mobility Society 

In traditional optimization problems, only one agent makes decisions. However, 
real-world problems often involve multiple agents, each of whom aims to optimize 
their own gains. In this scenario, an outcome should be satisfactory for everyone. 
The preferable outcome is formulated as a solution that satisfies concepts such as 
equilibrium, stability, envy-freeness, proportionality, and popularity. An algorithm 
that achieves a desirable outcome is essential for our livelihood. For example, when 
several passengers ride in the same taxi, they typically wish to split the taxi fare 
fairly. In terms of mechanism design, one way to achieve this end is to calculate the 
payment for each passenger based on the Shapley value, which is a basic solution 
concept in cooperative game theory. A Shapley value of a passenger is, roughly 
speaking, the passenger’s average marginal contribution to the taxi fare of any subset 
of other passengers. 

In the joint project, we have studied stable matchings [ 24, 38] and fair division [ 2, 
22, 33, 37]. In the remainder of this section, we describe the results for fair division 
in [ 33, 37]. Specifically, we define the solution concepts of fair division, such as 
envy-freeness and proportionality in the fair division. Then we outline the related 
results from the joint project. 

Fair division is the problem of dividing a set of resources among several agents 
in such a way that agents receive their due share. This problem arises in various 
real-world settings, such as the division of inheritance, electronic frequency allo-
cation, and airport traffic management. Cake-cutting is a fundamental fair division 
problem, which has been studied in economics and mathematics since 1940s. Let 
.N = {1, 2, . . . , n} be a set of . n agents. A cake . C is a heterogeneous divisible good;
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let. C be represented by the interval.[0, 1]. Let. C denote the Borel subsets of. C . 1 Each 
agent.i ∈ N has a valuation measure .vi : C → R+. An.n-tuple.(C1, . . . ,Cn) ∈ Cn is 
called a partition of. C if.

U
i∈N Ci = C and.Ci ∩ C j = ∅ for any distinct.i, j ∈ N . For  

a partition .(C1, . . . ,Cn) of . C , let agent .i ∈ N receive . Ci . A partition . (C1, . . . ,Cn)

of .C is called envy-free (EF) if  .vi (Ci ) ≥ vi (C j ) for any .i, j ∈ N . This means that 
every agent. i has no incentive to exchange the agent’s own piece.Ci with another.C j . 

In the literature, we assume that each valuation measure .vi (.i ∈ N ) satisfies the 
following natural properties: 

1. Normalization: .vi (C) = 1 and .vi (∅) = 0. 
2. Non-atomicity: .vi ({x}) = 0 for every single point .x ∈ C . 
3. .σ -additivity: .vi (

U∞
k=1 Xk) = Σ∞

k=1 vi (Xk) for every sequence of disjoint sets 
.X1, X2, . . . ⊆ C. 

For such valuations, an EF partition of the cake always exists [ 47]. For example, if 
.n = 2, the  cut-and-choose (also called divide-and-choose) protocol can find an EF 
partition. In this protocol, one agent, called the cutter, cuts the cake into two pieces, 
the other agent, called the chooser, chooses one of the pieces, and the cutter receives 
the remaining piece. 

Proportionality is another fairness criterion. A partition.(C1, . . . ,Cn)of. C is called 
proportional (PROP) if  .vi (Ci ) ≥ 1/n · vi (C) for any .i ∈ N . This means that every 
agent receives at least the agent’s due share according to the agent’s own valuation 
measure. By definition, envy-freeness implies proportionality; hence, a proportional 
partition always exists if valuation measures satisfy the properties above. 

Recently, the fair division of a set of indivisible goods, such as cars and houses, 
has been studied extensively in computer science. This problem can be modeled as 
follows. Let .M = {1, 2, . . . ,m} be a set of .m indivisible goods. Each agent . i ∈ N
has a valuation function .vi : 2M → R+ with.vi (∅) = 0. We assume that the valuation 
functions are monotone: .vi (X) ≤ vi (Y ) for any.X ⊆ Y ⊆ M . An allocation of indi-
visible goods.A = (A1, . . . , An) is a partition of.M into. n bundles, that is, it satisfies 
that .

U
i∈N Ai = M and .Ai ∩ A j = ∅ for any distinct . i and . j in . N . 

Unlike the cake-cutting problem, an EF or PROP partition of indivisible goods 
may not exist. As an extreme example, if there is only one good which is demanded 
by every agent, it is given to a single agent; however, the other agents have envy. 
Specifically, any partition is not PROP, and hence, not EF. 

Thus, the following relaxed criteria of EF have been studied in the literature by 
Budish [ 9] and Caragiannis et al. [ 10]. 

• EFX [ 10]: an allocation .A is called envy-free up to any good (EFX) if for any 
agents .i, j ∈ N , we have .vi (Ai ) ≥ vi (A j \ {e}) for every .e ∈ A j . 

• EF1 [ 9]: an allocation. A is called envy-free up to one good (EF1) if for any agents 
.i, j ∈ N , either .vi (Ai ) ≥ vi (A j ) or there exists an .e ∈ A j such that . vi (Ai ) ≥
vi (A j \ {e}).

1 The Borel subsets of. C are the sets formed by taking all possible countable unions, intersections, 
and complements of open sets within. C . 
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Any set of indivisible goods admits an EF1 allocation [ 36]. It is known that there 
exists an EFX allocation for . 2 agents [ 44], while the existence is open for at least 
. 3 agents. When each agent has an additive valuation, i.e., a valuation function .vi of 
each agent . i satisfies .vi (X) = Σ

e∈X vi ({e}) for any subset .X ⊆ M , it is known that 
an EFX allocation always exists for . 3 agents [ 11], while its existence is open for at 
least . 4 agents. 

In the joint project, Mahara [ 37] revealed a new class of fair division instances 
that admit EFX allocations. 

Theorem 9.4 (Mahara [ 37]) An EFX allocation exists when each agent has one of 
two valuation functions. 

Similar to the relaxation of EF to EF1 and EFX, two relaxed concepts of PROP 
have been proposed by Conitzer et al. [ 14] and Moulin [ 41]. 

• PROPx [ 5, 41]: an allocation .A is called proportional up to the least valued 
good (PROPx) if for any agent .i ∈ N , either .vi (Ai ) ≥ 1/n · vi (M) or for every 
.e ∈ M \ Ai , we have .vi (Ai ∪ {e}) ≥ 1/n · vi (M). 2

• PROP1 [ 14]: an allocation . A is called proportional up to the highest valued good 
(PROP1) if for any agent .i ∈ N , either .vi (Ai ) ≥ 1/n · vi (M) or there exists an 
.e ∈ M \ Ai such that .vi (Ai ∪ {e}) ≥ 1/n · vi (M). 

A PROPx allocation may not exist [ 5, 41], while a PROP1 allocation always 
exists [ 14]. 

In the joint project, a new concept related to PROP1 and PROPx was proposed 
for additive valuations [ 33]. An allocation. A is called proportionality up to the least 
valued good on average (PROPavg) if it holds that 

.vi (Ai ) + 1

n − 1

Σ

k∈N\{i}
Min
e∈Ak

vi ({e}) ≥ 1

n
vi (M), (9.1) 

where we define.Min(S) = min(S) for.S /= ∅ and.Min(∅) = 0. In other words, agent 
. i receives a set of goods that she values as at least .1/n fraction of the total value 
of all goods, minus the average minimum value of the set of goods received by any 
other agent. Note that for additive valuations, PROPavg is a concept that lies between 
PROP1 and PROPx: any PROPx allocation is PROPavg, and any PROPavg allocation 
is PROP1. Moreover, PROPavg is a relaxation of Avg-EFX, which is introduced by 
Baklanov et al. [ 6]. The notion of Avg-EFX is obtained by replacing .n − 1 with . n
on the left-hand-side of Eq. (9.1): 

.vi (Ai ) + 1

n

Σ

k∈N\{i}
Min
e∈Ak

vi ({e}) ≥ 1

n
vi (M).

2 The name of PROPx is proposed by Aziz et al. [ 5]. 
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In the paper [ 33] of the project, Kobayashi and Mahara demonstrated that a PROPavg 
allocation always exists; however, the existence of Avg-EFX allocations remains 
open [ 6]. 

Theorem 9.5 (Kobayashi and Mahara [ 33]) A PROPavg allocation always exists 
when each agent has an additive valuation. 

The joint project also studied EF allocations with subsidies [ 22] and fair ride 
allocations based on the Shapley value [ 2]. 
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Chapter 10 
Mechanism Design for Mobility 

Tsubasa Harada, Toshiya Itoh, Shigeo Matsubara, Shuichi Miyazaki, 
and Makoto Yokoo 

10.1 Introduction 

This chapter discusses mechanism design for mobility. With goals such as reducing 
carbon dioxide emissions and promoting resource conservation being imposed glob-
ally, car sharing becomes increasingly important. On the other hand, with various 
services coming online, we are now in an era where the needs of individual users can 
be met more flexibly. The same is true for car sharing and other transportation ser-
vices. Uber, for example, is no different from a conventional cab in that it transports 
people to their destinations. However, it offers added value to both drivers and users, 
such as improved user experience in that payment is completed on a smartphone 
application and a driver evaluation system is introduced, as well as a response to 
supply-demand mismatches by adjusting the fare. 

Here, because the physical movement of people and vehicles is the essence of 
mobility services, mobility services have different properties from other services 
that are completed online. In other words, an important issue of developing mobility 
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technology is how to integrate physical constraints with digital services’ flexibility so 
that it meets the needs of many potential users and is accepted by them. In examining 
this question, it is helpful to introduce the concept of mechanism design. 

Mechanism design is a branch of economics that aims to design rules that enable 
autonomous/decentralized realization of goals in areas such as resource allocation 
and social decision-making. Mechanism design studies are not limited to basic 
research but have also been very successful in real-world applications, including 
spectrum auctions, school choice mechanisms in public schools, and kidney donor 
matching. 

In recent years, computational approaches to mechanism design have become 
popular and have developed significantly as an interdisciplinary area with artificial 
intelligence and theoretical computer science [ 35]. In particular, the contributions of 
computer science have been remarkable, such as the development of algorithms for 
kidney donor matching that can obtain a solution in a reasonable amount of time, 
even when the number of donors is large [ 1] 

This chapter presents two topics in developing basic research on matching theories 
and one topic in applying the matching theory to car sharing. Section 10.2 discusses 
online facility assignment problems on a line. One challenge for developing basic 
research toward mobility applications is its online nature [ 33]. For example, ride-
hailing, one form of car sharing, involves passengers hiring a driver to take them 
to their destinations. The operator of the ride-hailing system must decide which 
car to assign to each usage request without knowing in advance exactly when and 
where future requests will occur. Here, it is important to understand what algorithm 
effectively achieves social goals such as minimizing total travel distance. 

Section 10.3 discusses two-sided matching with flexible quotas: student-project-
resource matching-allocation problem. 1 Another challenge for developing basic 
research toward mobility applications is dealing with preferences. Here, in the design 
of vehicle-sharing systems, the medium-term issues include how to provide proper 
incentives to users, and the long-term issues include how to design parking facili-
ties [ 12]. Some studies have introduced the preference argument into mobility design. 
However, the previous studies have discussed the matching problem for the medium-
term issues and the resource allocation problem for the long-term issues separately. 
Integrating these two problems will produce more desirable outcomes for individuals 
and society. 

On the application side, Sect. 10.4 shows how matching theory can be applied 
to station-based one-way car sharing. So far, the target of applying matching theory 
is often ride-sharing in that drivers and riders have preferences for each other [ 47]. 
However, station-based car sharing is also widely deployed in which multiple drivers 
share a single car, and a supply-demand mismatch problem still needs to be solved. 
Therefore, we focus on negotiations among drivers to solve a supply-demand mis-
match problem, which can be naturally expressed as preference matching.

1 The term student is used because the many-to-one matching problem is often discussed in the 
context of the school choice problem. Here, it can be considered as representing passengers or 
vehicles. 
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Note that the studies in this chapter aim to build the essential elements of the 
next-generation car-sharing system, but they can also be applied to other mobility 
applications, such as controlling logistics systems. 

10.2 Online Facility Assignment Problems on a Line 

In this section, we summarize the results of the competitive analysis for the online 
facility assignment problem on a line, which appear in [ 17, 20]. 

10.2.1 Background and Known Results 

Online optimization (profit maximization or cost minimization) problems are real-
time computations, in which a sequence of requests is an input, each request is given 
to an online algorithm one by one, and an online algorithm must decide how to deal 
with the current request before the next one is given. Once the decision is made for 
a request, it cannot be changed later. In general, the efficiency of online algorithms 
is measured by competitive analysis, which is initiated by Sleator and Tarjan [ 44]. 
Informally, we say that an online algorithm alg is .c-competitive (or the competitive 
ratio of alg is at most . c) if the cost of the solution output by alg is at most . c times 
worse than the optimal cost (the formal definition will be given in Sect. 10.2.2.2). 

The online metric matching problem is initiated independently by 
Kalyanasundaram and Pruhs [ 22] and Khuller et al. [ 26] as an online variant of the 
minimum cost bipartite matching problem, and is formulated as follows: . k servers 
are located on a given metric space and . k requests (on the same metric space) are 
given one by one in an online manner. The task of an online algorithm is to match 
each request immediately with one of the . k servers. The cost of matching a request 
with a server is determined by the distance between them. The goal of the problem 
is to minimize the sum of the costs of matching . k requests to . k distinct servers. For 
this problem, Kalyanasundaram and Pruhs [ 22] and Khuller et al. [ 26] presented a 
deterministic online algorithm, which is called Permutation [ 22], and showed that it 
is .(2k − 1)-competitive and best possible. 

Later, Kalyanasundaram and Pruhs [ 23] restricted the underlying metric space to 
a line and introduced a problem referred to as the online matching problem on a line. 
For this restricted problem, the best upper bound on the competitive ratio is. O(log k)
[ 34, 39], which is achieved by the robust- matching algorithm [ 38]. While the best 
lower bound on the competitive ratio has been 9.001 for a long time [ 10], Peserico 
and Scquizzato [ 37] drastically improved it to .Ω(

√
log k). 

As a variant of the online metric matching problem, Ahmed et al. [ 2] formulated 
the online facility assignment problem as follows: There exist . k servers located 
equidistantly on a line and each request appears (one by one) on the line. Each 
server has a capacity, which corresponds to the possible number of requests that
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can be matched to the server. Ahmed et al. [ 2] showed (with rough proofs) that the 
greedy algorithm is .4k-competitive. They also proposed an Optimal-fill algorithm 
and showed that the algorithm is .k-competitive for any .k > 2. 

10.2.2 Preliminaries 

10.2.2.1 Problem Definition 

Let .(X, d) be a metric space, where .X is a (possibly infinite) set of points and 
.d : X × X → R is a distance function. We use .S = {s1, . . . , sk} to denote the set of 
. k servers and use.σ = r1 · · · rn to denote a request sequence, where each. ri is a request. 
For each .1 ≤ j ≤ k, a server  .s j is characterized by the position .p(s j ) ∈ X and . s j
has capacity .c j ∈ N, i.e., .s j can be matched with at most .c j requests. We assume 
that .n ≤ c1 + · · · + ck , so that every request can be matched with some server. For 
each .1 ≤ i ≤ n, a request . ri is also characterized by the position .p(ri ) ∈ X . 

The set . S is given to an online algorithm in advance, while requests are given 
one by one from .r1 to . rn . At any time of the execution of an algorithm, a server is 
called free if the number of requests matched with it is less than its capacity, and full 
otherwise. When a request. ri is revealed, an online algorithm must match. ri with one 
of the free servers. If . ri is matched with . s j , the pair .(ri , s j ) is added to the current 
matching and the cost .cost(ri , s j ) = d(p(ri ), p(s j )) is incurred for this pair. The 
cost of the matching is the sum of the costs of all the pairs contained in it. The goal 
of online algorithms is to minimize the cost of the final matching. We refer to such 
a problem as the online facility assignment problem with . k servers and denote it by 
.OFA(k, {c j }kj=1). For the special case that.c1 = · · · = ck = 	ℓ ≥ 1, we simply denote 
the problem by .OFA(k, 	ℓ), and call this setting uniform capacity. 

By setting .X = R, we can regard the underlying metric as a line, and we denote 
such a problem by.OFAL(k, {c j }kj=1) for general capacities and.OFAL(k, 	ℓ) for uni-
form capacities. Note that in this case, .p(s j ) and .p(ri ) are real numbers. Without 
loss of generality, we assume that.p(s1) < · · · < p(sk) and let. d j = p(s j+1) − p(s j )
for each .1 ≤ j ≤ k − 1. When .d1 = · · · = dk−1 = d with some constant .d > 0, we  
attach the subscript “eq” to the problem name to indicate that. k servers are of equidis-
tant, such as .OFALeq(k, {c j }kj=1) and.OFALeq(k, 	ℓ). For the subsequent discussion, 
we assume without loss of generality that .d = 1 for both .OFALeq(k, {c j }kj=1) and 
.OFALeq(k, 	ℓ). 

In the rest of the section, we will abuse the notations .ri ∈ R and .s j ∈ R for 
.OFAL(k, {c j }kj=1) instead of .p(ri ) ∈ R and .p(s j ) ∈ R, respectively, when it causes 
no confusion.
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10.2.2.2 Competitive Ratio 

To evaluate the performance of an online algorithm alg, we use the (strict) com-
petitive ratio. For .OFA(k, {c j }kj=1), let  .S = {s1, . . . , sk} be the set of . k servers. For 
an online algorithm alg for .OFA(k, {c j }kj=1) and a request sequence .σ = r1 · · · rn , 
we use .alg(σ ) to denote the total cost incurred by alg when processing . σ . Also,  
let .opt(σ ) denote the optimal cost for a request sequence . σ , i.e., the total cost 
incurred by an optimal offline algorithm for . σ . We say that alg is .c-competitive 
if .alg(σ ) ≤ c · opt(σ ) for any request sequence . σ . The  competitive ratio . R(alg)

of alg is defined to be the infimum of .c ≥ 1 such that alg is .c-competitive, i.e., 
.R(alg) = inf{c ≥ 1 : alg is c-competitive}. 

10.2.2.3 Technical Lemmas 

As mentioned in Sect. 10.2.2.1, servers may have different capacities . c1, c2, . . . , ck
and the condition is that .n ≤ c1 + · · · + ck . However, as we show below, for the 
design of online algorithms for.OFA(k, {c j }kj=1), it is sufficient to deal with the case 
that .n = c1 + · · · + ck (Lemma 10.1) and that .c1 = · · · ck = 	ℓ (Lemma 10.2). 

Lemma 10.1 For .OFA(k, {c j }kj=1), let  .L = c1 + · · · + ck. Then for any .c ≥ 1 and 
any online algorithm alg, .alg(σ ) ≤ c · opt(σ ) holds for any request sequence . σ
such that .|σ | = L iff .alg(σ ') ≤ c · opt(σ ') holds for any request sequence .σ ' such 
that .|σ '| ≤ L. 

Lemma 10.2 For any .	ℓ ≥ 1, any .c1, . . . , ck such that .1 ≤ c1, . . . , ck ≤ 	ℓ, and any 
.c ≥ 1, there exists a .c-competitive algorithm for .OFA(k, 	ℓ) iff there exists a .c-
competitive algorithm for .OFA(k, {c j }kj=1). 

Based on Lemmas  10.1 and 10.2, we can focus on the case that. c1 = · · · = ck = 	ℓ

and the number of requests is exactly . k	ℓ. 

10.2.2.4 Greedy Algorithm 

Finally, we give the definition of the greedy algorithm (denoted by .grdy) for  
.OFA(k, 	ℓ). 

Definition 10.1 The greedy algorithm (denoted by grdy) matches each request 
with the nearest free server. If there exist at least two nearest free servers for the 
request . ri , then grdy chooses the one with the largest index to match . ri .
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10.2.3 Online Facility Assignment with a Small Number of 
Servers 

In this subsection, we review the results in [ 20], which studies .OFA(k, 	ℓ) and 
.OFALeq(k, 	ℓ) for small . k, i.e., .k = 2, 3, 4, and . 5. For .k = 2, we have the following 
two theorems. 

Theorem 10.1 For any .	ℓ ∈ N, the competitive ratio of grdy is at most 3 for 
.OFA(2, 	ℓ). 

Theorem 10.2 For any .	ℓ ∈ N, the competitive ratio of any deterministic online 
algorithm for .OFA(2, 	ℓ) is at least 3. 

These two theorems imply that grdy is one of the best online algorithms for 
.OFA(2, 	ℓ) in terms of the competitive ratio. Since .OFALeq(2, 	ℓ) is a special case 
of .OFA(2, 	ℓ), Theorem 10.1 applies also for .OFALeq(2, 	ℓ). Since the adversarial 
requests in the proof of Theorem 10.2 are constructed on line metric, we have the 
following corollary (note that the problem with two servers is trivially an equidistant 
case): 

Corollary 10.1 For any .	ℓ ∈ N, the competitive ratio of grdy is at most 3 and the 
competitive ratio of any deterministic online algorithm is at least 3 for.OFALeq(2, 	ℓ). 

For .k = 3, 4, and . 5, we obtained lower bounds on the competitive ratio for 
.OFALeq(k, 	ℓ). In order to analyze the lower bound, the following notions and lemma 
play key roles. 

Definition 10.2 (Surrounding servers [ 3, 30]) Given a request . r for .OFAL(k, 	ℓ), 
the surrounding servers for . r are .sL and .sR , where .sL is the closest free server to 
the left of . r (if any) and.sR is the closest free server to the right of . r (if any). If there 
is  a free server .s ∈ S such that .s = r , then the surrounding server of . r is only . s. 

Definition 10.3 (Surrounding-oriented [ 3, 30]) Let alg be an online algorithm for 
.OFAL(k, 	ℓ). We say that alg is surrounding-oriented for a request sequence . σ if 
it matches every request. r of. σ with one of the surrounding servers of . r . We say that 
alg is surrounding-oriented if it is surrounding-oriented for any request sequence. 

Lemma 10.3 ([ 3, 20]) Let alg be an online algorithm for .OFAL(k, 	ℓ). Then there 
exists a surrounding-oriented algorithm .alg' for .OFAL(k, 	ℓ) such that . alg'

(σ ) ≤
alg(σ ) for any . σ . 

For the purpose of discussing lower bounds on the competitive ratio, it suffices by 
Lemma 10.3 to consider only surrounding-oriented algorithms. Using this property, 
we obtained the following three theorems. 

Theorem 10.3 The competitive ratio of any deterministic online algorithm for 
.OFALeq(3, 	ℓ) is at least .1 + √

6 (> 3.449).
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Theorem 10.4 The competitive ratio of any deterministic online algorithm for 
.OFALeq(4, 	ℓ) is at least . 4+

√
73

3 (> 4.181). 

Theorem 10.5 The competitive ratio of any deterministic online algorithm for 
.OFALeq(5, 	ℓ) is at least . 133 (> 4.333). 

10.2.4 Capacity-Insensitive Algorithms 

This subsection introduces the results in [ 17], which studies .OFA(k, 	ℓ) and 
.OFALeq(k, 	ℓ) for general . k. The competitive analysis for .OFA(k, 	ℓ) for general 
capacity . 	ℓ looks harder than that for .OFA(k, 1). In order to make the algorithm 
design much easier, we define the capacity-insensitive property [ 17]. We say that an 
online algorithm alg has capacity-insensitive property if the .c-competitiveness of 
alg for.OFA(k, 1) is equivalent to the.c-competitiveness of alg for.OFA(k, 	ℓ) with 
general . 	ℓ. 

10.2.4.1 MPFS Algorithms 

To begin with, we introduce the class of MPFS (Most Preferred Free Servers) algo-
rithms and show that any MPFS algorithm has the capacity-insensitive property 
(Theorem 10.6). 

Definition 10.4 Let alg be an online algorithm for .OFA(k, 	ℓ). We say that alg is 
an MPFS (Most Preferred Free Servers) algorithm if for any request sequence 
.σ = r1 · · · rn such that .n = k	ℓ, it behaves as follows: For each .1 ≤ i ≤ n, 

1. the priority (a total order) of servers for . ri is determined by only the position of 
. ri ; 

2. alg matches . ri with the server with the highest priority among free servers. 

Let .MPFS be the class of MPFS algorithms. If alg’s priority is sorted by the dis-
tance from a request, then alg is the greedy algorithm. Therefore, the class. MPFS
contains the greedy algorithm. 

Theorem 10.6 Let .alg ∈ MPFS. For any .c ≥ 1 and any .	ℓ ≥ 1, alg is .c-
competitive for .OFA(k, 1) if and only if alg is .c-competitive for .OFA(k, 	ℓ). 

This theorem enables us to focus on .OFA(k, 1) once an online algorithm for 
.OFA(k, 	ℓ) is confirmed to be in .MPFS. 

10.2.4.2 Competitive Analysis for grdy 

Based on the above idea, we succeeded in showing the exact competitive ratio of 
grdy for .OFALeq(k, 	ℓ).
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Theorem 10.7 For .OFALeq(k, 	ℓ) such that .k ≥ 2, the competitive ratio of grdy is 
exactly .4k − 5. 

Note that Theorem 10.7 generalizes Corollary 10.1 to .k > 2. Here we show only 
the proof for the lower bound. 

Proof (of the lower bound) For simplicity, assume that .s j = j − 1 for each . 1 ≤
j ≤ k. We construct a request sequence . σ such that .grdy(σ ) = (4k − 5) · opt(σ ). 
First, for each . j , we give  .	ℓ − 1 requests to the position . j − 1 (where the server . s j
is placed), and without loss of generality, both opt and grdy match them with . r j
with zero cost. We then give . k requests .r1 · · · rk where .r1 = 1

2 and . r j = s j = j − 1
for each .2 ≤ j ≤ k. By Definition 10.1, 

. grdy(σ ) = 1

2
+ (k − 2) + (k − 1) = 4k − 5

2
;

opt(σ ) = 1

2
.

Thus for the request sequence . σ defined above, it follows that 

. 
grdy(σ )

opt(σ )
=

4k−5
2
1
2

= 4k − 5

and this implies that .R(grdy) ≥ 4k − 5. ⃞

10.2.4.3 Competitive Analysis for idas and MPFS Algorithms 

Now we give an MPFS algorithm idas (Interior Division for Adjacent Servers) that 
performs better than grdy. We show that its competitive ratio is at most .2k − 1 for 
.OFALeq(k, 	ℓ). We also show that idas is best among MPFS algorithms, by showing 
a lower bound on the competitive ratio of any MPFS algorithm. We first formally 
state the lower bound. 

Theorem 10.8 The competitive ratio of any MPFS algorithm for .OFALeq(k, 	ℓ) is 
at least .2k − 1. 

Next, we show the definition of idas. Before doing so, we provide several nota-
tions. Fix.a, b ∈ Rwith.a < b arbitrarily. For any.x, y ∈ R such that.a ≤ x < y ≤ b, 
let .B(x, y) be the point that internally divides the line segment .[x, y] into .b − x to 
.y − a, i.e., 

. B(x, y) = (b − x)y + (y − a)x

(b − x) + (y − a)
= by − ax

b − a + y − x
.

Note that .x < B(x, y) < y and .B(x, y) implies a boundary between . x and . y. 
Given the set .S = {s1, . . . , sk} of . k servers with .s1 < · · · < sk , we fix param-

eters .a, b ∈ R such that .a ≤ s1 < sk ≤ b. Then the algorithm .idas[a,b] can be 
described in Algorithm 10.1.
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Algorithm 10.1 idas[a,b] (Interior Division for Adjacent Servers) 
For a request r , let  ss(r) be the set of surrounding servers for r . 

1. If |ss(r )| =  1, then match r with the unique surrounding server. 
2. If |ss(r )| =  2, then let sL be the left surrounding server for r and s R be the 

right surrounding server for r . 

(a) If r ≤ B(sL , s R ), then match r with sL . 
(b) If B(sL , s R ) <  r , then match r with s R . 

To observe that .idas[a,b] ∈ MPFS, the following property of .B(∗, ∗) is useful 
and the boundary .B(∗, ∗) naturally induces a total order .≼ρ . 

Property 10.2 Fix.a, b ∈ Rwith.a < b arbitrarily. For any.x, y, z ∈ R such that. a ≤
x < y < z ≤ b, .B(x, y) < B(x, z) < B(y, z). 

Proof This follows from the straightforward calculations: 

. B(x, z) − B(x, y) = (b − a)(z − y)(b − x)

(b − a + z − x)(b − a + y − x)
> 0;

B(y, z) − B(x, z) = (b − a)(y − x)(z − a)

(b − z + y − a)(b − a + z − x)
> 0,

where the inequalities follow from the assumption that .a ≤ x < y < z ≤ b. ⃞

We define the following binary relation .≼ρ on .[a, b] with a parameter .ρ ∈ R. 

Definition 10.5 For any .a, b ∈ R, let  .[a, b] be the closed interval and fix . ρ ∈ R

arbitrarily. For any.x, y ∈ [a, b], we write .x ≼ρ y if one of the following conditions 
holds: (1) .x = y; (2) .x < y and .B(x, y) < ρ; (3) .y < x and .ρ ≤ B(y, x). 

For the binary relation .≼ρ on .[a, b], the following result holds. 
Theorem 10.9 For any .ρ ∈ R, .≼ρ is a total order on the closed interval .[a, b]. 
We summarize the properties of the total order .≼ρ in the following remark. 

Remark 10.1 For any .a, b ∈ R such that .a < b, let  .[a, b] be the closed interval. 
Then for any .x, y ∈ [a, b] and any .ρ ∈ R, the following properties hold: 

(1) if .ρ < x < y, then .y ≼ρ x ≼ρ ρ; 
(2) if .x < y < ρ, then .x ≼ρ y ≼ρ ρ; 
(3) if .ρ < a, then .x ≼ρ y iff .x ≥ y; 
(4) if .b < ρ, then .x ≼ρ y iff .x ≤ y; 
(5) if .ρ ∈ [a, b], then .x ≼ρ ρ. 

The property (5) implies that . ρ is the maximum in .[a, b] w.r.t. the total order .≼ρ . ⃞
From Remark 10.1, the following Definition 10.6 of .idas[a,b] is equivalent to 

Algorithm 10.1. For a request . r , we say that .s ∈ S is the highest free server w.r.t. . ≼r

if . s is free and .s ' ≼r s for all free servers .s ' ∈ S just before matching . r to a server.
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Definition 10.6 For a request sequence .σ = r1 · · · ri · · · rk	ℓ, the algorithm. idas[a,b]
for .OFAL(k, 	ℓ) works as follows: For each .1 ≤ i ≤ k	ℓ, it matches a request . ri with 
the highest free server .s ∈ S w.r.t. the total order .≼ri . 

From Definition 10.6, it is immediate that .idas[a,b] ∈ MPFS. The following 
theorem claims that .idas[s1,sk ] is one of the best MPFS algorithms. 

Theorem 10.10 The competitive ratio of .idas[s1,sk ] for .OFALeq(k, 	ℓ) is at most 
.2k − 1. 

10.2.5 Conclusions 

In this section, we gave overview on the competitive analysis for the online facility 
assignment problem on a line, which appear in [ 17, 20]. One of the most interesting 
future works is to design an online algorithm better than idas. Since no algorithm in 
.MPFS can be better than idas, we need to invent a capacity-insensitive algorithms 
not in .MPFS. 

10.3 Two-Sided Matching with Flexible Quotas: 
Student-Project-Resource Matching-Allocation 
Problem 

This section presents a new framework called a student-project-resource matching-
allocation problem, where students have preferences over projects and the projects 
have preferences over students [ 32]. Liu et al. [ 32] show that no strategyproof mech-
anism satisfies fairness and weak efficiency requirements, and develop a new class 
of strategyproof mechanisms called Sample and Deferred Acceptance (SDA), which 
satisfies several properties of fairness and efficiency. 

10.3.1 Introduction 

This section introduces a simple, but fundamental problem called student-project-
resource matching-allocation problem (SPR) presented in [ 32]. On one hand, SPR 
can be considered as a two-sided, many-to-one matching problem [ 41] since students 
are matched to projects based on their preferences. On the other hand, it is also a 
discrete resource allocation problem [29] since resources are allocated to each project. 
However, unlike the standard setting of two-sided many-to-one matching, where the 
capacity of each project is exogenously determined, we assume the capacities are 
endogenously determined by resource allocation.
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If the mechanism designer knows the preferences of the students, she can allocate 
resources to projects using combinatorial optimization techniques. If each project’s 
capacity is determined, even if the mechanism designer does not know the students’ 
preferences beforehand, she can find a matching that satisfies desirable properties 
with a strategyproof mechanism, e.g., Deferred Acceptance mechanism (DA) [ 11], 
such that students voluntarily disclose their true preferences. However, the mech-
anism designer usually does not know their preferences. Thus, a common practice 
for solving this problem is to determine its resource allocation part based on the 
expectations or the past data and set the capacities of the projects. Then the actual 
matching of students to projects is determined by a matching mechanism. In this 
approach, if the expectations used in the first problem are incorrect, the outcome 
can be sub-optimal; excess demand and supply for seats can coexist, which can be 
avoided by better resource allocation. 

One instance where such a practice is applied is a school choice program for 
assigning students to public schools. In a standard setting, each school has a max-
imum quota that is determined in advance. Assume a local government (e.g., a 
city/prefecture/state) has spare resources, e.g., sufficient budget to hire temporary 
teachers, which can be allocated based on the demand. Then the maximum quota of 
each school is no longer fixed in advance, but it can be flexibly modified based on 
the actual demand utilizing extra budget/resources. 

This article follows previous works that address constrained matching problems. 
Two-sided matching has attracted considerable attention from AI and theoretical 
computer science researchers. A standard market deals with maximum quotas, i.e., 
capacity limits that cannot be exceeded. However, many real-world matching markets 
are subject to a variety of distributional constraints [28], including regional maximum 
quotas, which restrict the total number of students assigned to a set of schools [ 24], 
minimum quotas, which guarantee that a certain number of students are assigned 
to each school [ 9, 14, 16], and diversity constraints [ 7, 15, 27, 31, 46]. The rest 
of this section is organized as follows. Section 10.3.2 introduces a model of an 
SPR. Section 10.3.3 shows that no mechanism is fair, weakly nonwasteful, resource 
efficient, and strategyproof. Section 10.3.4 introduces a class of mechanisms called 
Sample and Deferred Acceptance (SDA). Finally, Sect. 10.3.5 concludes the section. 

10.3.2 Model 

A student-project-resource matching-allocation problem (SPR) is defined as follows: 

Definition 10.7 (Student-Project-Resource allocation (SPR) Instance) An SPR 
instance is a tuple .(S, P, R,>S,>P , qR, TR). 

• .S = {s1, . . . , s|S|} is a set of students. 
• .P = {p1, . . . , p|P|} is a set of projects. 
• .R = {r1, . . . , r|R|} is a set of indivisible resources.
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• .>S= (>s)s∈S are the student’s strict preferences over set.P ∪ {∅}. Symbol. ∅means 
that a student is not assigned to any project. 

• .>P= (>p)p∈P are the projects’ strict preferences over set.S ∪ {∅}. Symbol. ∅means 
that a project is assigned no student. 

• .qR = (qr )r∈R are the capacities of resources; .qr ∈ N>0 for every .r ∈ R. 
• .TR = (Tr )r∈R is a profile of the resource compatibility lists, where each.Tr ⊆ P is a 
set of projects to which resource. r can be allocated. Since resource. r is indivisible, 
it must be allocated to exactly one project in . Tr . 

Note that since we assume a resource indivisible, we cannot allocate a resource. r
with the capacity of two to the projects .p1 and.p2 with the capacity of one each. We 
illustrate our setting with the following example. 

Example 10.1 

There are four students,.s1, s2, s3, s4, four projects,.p1, p2, p3, p4, and two resources, 
.r1, r2, where.Tr1 = {p1, p2}, .Tr2 = {p3, p4}, and.qr1 = 2,.qr2 = 1. The following are 
their preferences: 

. 

s1 : p1 > p2 > p4 > p3 > ∅, p1 : s4 > s3 > s2 > s1 > ∅,

s2 : p1 > p2 > p3 > p4 > ∅, p2 : s4 > s3 > s2 > s1 > ∅,

s3 : p1 > p2 > p3 > p4 > ∅, p3 : s1 > s2 > s3 > s4 > ∅,

s4 : p4 > p3 > p2 > ∅ > p1, p4 : s1 > s2 > s3 > s4 > ∅.

Since we assume resources are indivisible, it is impossible to allocate students to 
three different projects although the total capacity of all the resources equals three. 
A resource can only be allocated to a compatible project, e.g., .r1 can be allocated 
to either .p1 or .p2. The following are the possible capacities of the four projects: 
.(2, 0, 1, 0), .(2, 0, 0, 1), .(0, 2, 1, 0), or .(0, 2, 0, 1). 

We follow the matching with a contracts model [ 18]. Contract . (s, p) ∈ S × P
means that student. s is matched to project. p. Contract.(s, p) is acceptable to student 
. s (resp. project. p) if.p >s ∅ holds (resp..s >p ∅). Let. X denote the set of all contracts 
that are acceptable to the projects. 2

A matching is a set of contracts satisfying the following conditions. 

Definition 10.8 (Matching) A matching is a subset.Y ⊆ X , where for every student 
.s ∈ S, .Ys = {(s, p) | (s, p) ∈ X}, either .|Ys | = 0 or .Ys = {(s, p)} and .p >s ∅ hold. 

For matching . Y , let  .Y (s) denote the project to which . s is matched (.Y (s) = ∅ if 
. s is not matched to any project in . Y ), and let .Y (p) ⊆ S denote the set of students 
assigned to project . p (.Y (p) = ∅ means no student is allocated to . p in . Y ).

2 In designing a strategyproof mechanism, we assume student preferences are private information, 
and the other information is public. Thus, we assume. X , i.e., the set of all contracts that are acceptable 
to the projects is public. 
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Fig. 10.1 SPR instance: matching. Ŷ and allocation. μ̂ in Example 10.1 

In an SPR, we also need to describe how resources are allocated to projects. A 
matching’s feasibility is defined based on this description. 

Definition 10.9 (Allocation) An allocation .μ : R → P maps each resource . r to a 
project .μ(r) ∈ Tr . Let .qμ(p) = ∑

r∈μ−1(p) qr . 
3

In other words, a project’s maximum quota is defined by the sum of all resources 
that are allocated to it. Note that multiple resources can be allocated to a single 
project. 

Definition 10.10 (Feasibility) A feasible matching .(Y, μ) is a matching-allocation 
pair where .|Y (p)| ≤ qμ(p) holds for every .p ∈ P . 

In the setting of Example 10.1, assume matching . Ŷ is .{(s1, p1), . (s2, p1), (s3,∅),

(s4, p3)} and allocation . μ̂ distributes .r1 to .p1 and.r2 to .p3. Then .(Ŷ , μ̂) is a feasible 
matching. See Fig. 10.1 for an illustration. 

Next, we introduce a concept related to efficiency called nonwastefulness. First, 
we define a situation where a student claims that the current matching is inefficient 
since her welfare can be improved without disadvantaging other students. 

Definition 10.11 (Claiming an Empty Seat with . μ) Given feasible matching.(Y, μ), 
student . s claims an empty seat in project . p with. μ if the following conditions hold: 

• .p >s Y (s) and 
• .Y \ {(s,Y (s))} ∪ {(s, p)} is feasible with . μ. 

In other words, student. s claims an empty seat in project. p with. μ if she can move 
to . p from current project .Y (s) (which can be . ∅) in current allocation . μ. 

Definition 10.12 (Nonwastefulness) Given feasible matching.(Y, μ), student. s pos-
sibly claims an empty seat in project . p if .∃μ' such that . s claims an empty seat in . p
with . μ'. A feasible matching .(Y, μ) is nonwasteful if no student possibly claims an 
empty seat in any project.

3 For.μ−1(p) = ∅, we assume.qμ(p) = 0. 
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In other words, . s possibly claims an empty seat in .p if . s can be moved to a 
more preferred project. p without changing the assignment of the other students with 
allocation . μ'. Note that .μ' can be different from . μ. Thus, . s can possibly claim an 
empty seat in . p even if it is impossible to move her to . p with current allocation . μ, 
as long as it becomes possible with a different/better allocation . μ'. In a traditional 
setting, since each project’s maximum quota (capacity limit) is fixed, it suffices to 
check whether a student can be moved to another project under the fixed maximum 
quotas. In contrast, in our setting, maximum quotas are endogenous and flexible. 
Thus, the definition of nonwastefulness is modified to reflect this flexibility. In the 
setting of Example 10.1 in Fig. 10.1, .s4 cannot claim an empty seat in .p4 in current 
allocation . μ̂ because no resource is allocated to .p4 and it is impossible to move her 
from.p3 to.p4. However, she possibly claims an empty seat in.p4 since by allocating 
.r2 to.p4, we can move her to.p4 without disadvantaging other students. Thus,. (Ŷ , μ̂)

does not satisfy nonwastefulness. 
Next, we introduce a concept called fairness. 

Definition 10.13 (Fairness) Given feasible matching .(Y, μ), student . s has justified 
envy toward student . s ' if for project . p such that .s ' ∈ Y (p), .p >s Y (s), and . s >p s '
hold. A feasible matching .(Y, μ) is fair if no student has justified envy. 

In other words, student . s has justified envy toward. s ' if . s ' is assigned to project . p
although . s prefers . p over her current project .Y (s) and project . p prefers . s over . s '. 

Next, we formally define a mechanism and introduce the desirable properties a 
mechanism should satisfy: strategyproofness. 

Definition 10.14 (Mechanism) Given any SPR instance, a mechanism outputs a 
feasible matching .(Y, μ). If a mechanism always yields a feasible matching that 
satisfies property A (e.g., fairness), we say that this mechanism is A (e.g., fair). 

Definition 10.15 (Strategyproofness) A mechanism is strategyproof if no student 
has an incentive to misreport her preference. 

10.3.3 Impossibility Theorems 

In an SPR, resources should be flexibly allocated to projects for more efficient match-
ing. However, such flexibility is hard to combine with fairness. First, we show that 
fairness and nonwastefulness are incompatible. 

Theorem 10.11 An SPR instance exists where no feasible matching is fair and non-
wasteful. 

Proof Consider the following SPR instance 4: two students, .s1, s2, two projects, 
.p1, p2, and a unitary resource compatible with both. The student preferences are

4 This example is identical to the example [ 24], which shows that a strongly stable matching may 
not exist with regional quotas. 
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.p1 >s1 p2 >s1 ∅ and .p2 >s2 p1 >s2 ∅. The project preferences are . s2 >p1 s1 >p1 ∅
and .s1 >p2 s2 >p2 ∅. By symmetry, we can assume the resource is allocated to . p1
w.l.o.g. For fairness, .s2 must be allocated to .p1. Then .s1 possibly claims an empty 
seat in .p2 since moving her to .p2 is possible by allocating the resource to .p2. ⃞

Given this impossibility theorem, let us introduce weaker conditions on efficiency. 

Definition 10.16 (Weak Nonwastefulness) For feasible matching .(Y, μ), student . s
strongly claims an empty seat if .Y (s) = ∅ and . s claims an empty seat in project . p
with . μ. A feasible matching is weakly nonwasteful if no student strongly claims an 
empty seat. 

In the setting of Example 10.1, feasible matching .(Ŷ , μ̂) in Fig. 10.1 is weakly 
nonwasteful because .s3 cannot strongly claim an empty seat. Although .Ŷ (s3) = ∅, 
she cannot be assigned to any project with current allocation . μ̂. 

Definition 10.17 (Very Weak Nonwastefulness) For feasible matching .(Y, μ), stu-
dent . s very strongly claims an empty seat if .Y (s) = ∅, and .∀μ', such that .(Y, μ') is 
feasible, .∃p in which . s claims an empty seat with . μ'. A feasible matching is very 
weakly nonwasteful if no student very strongly claims an empty seat. 

In other words, student . s very strongly claims an empty seat if she is currently 
unassigned, and under any feasible resource allocation. μ', project . p exists such that 
. s claims an empty seat in . p with . μ'. Note that . p can be different for each . μ'. 

If student . s very strongly claims an empty seat, she is currently unassigned and 
claims an empty seat in project. pwith current allocation. μ, and thus she also strongly 
claims an empty seat. If she claims an empty seat in. p under the current assignment, 
she also possibly claims an empty seat in . p. Thus, nonwastefulness implies weak 
nonwastefulness, and weak nonwastefulness implies very weak nonwastefulness. 

To define another concept called resource efficiency, let us first define unanimous 
preferences. 

Definition 10.18 (Unanimous Preference) Students unanimously prefer . p over . p'
if for every .s ∈ S, .(s, p) ∈ X , and .p >s p' hold. 

This condition means that project . p accepts all students and all students prefer . p
over . p'. If students unanimously prefer . p over . p', allocating any resource (which is 
compatible with both. p and. p') to.p' is inefficient in terms of students’ welfare. The 
following formalizes this intuition. 

Definition 10.19 (Resource Efficiency) Resource allocation . μ is resource efficient 
if no resource . r , such that .p, p' ∈ Tr and students unanimously prefer . p over . p', 
is allocated to . p'. A mechanism is resource efficient if it always returns a resource 
efficient allocation. 

Now we are ready to introduce another impossibility theorem. 

Theorem 10.12 No mechanism exists that is fair, very weakly nonwasteful, resource 
efficient, and strategyproof.
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Proof Consider the following situation: three students, .s1, s2, s3, three projects, 
.p1, p2, p3, one resource, . r with .qr = 2, and .Tr = {p1, p2, p3}. The following are 
their preferences: 

. 

s1 : p2 > p3 > p1 > ∅, p1 : s1 > s2 > s3 > ∅,

s2 : p3 > p1 > p2 > ∅, p2 : s2 > s3 > s1 > ∅,

s3 : p1 > p2 > p3 > ∅, p3 : s3 > s1 > s2 > ∅.

Recall that since all the resources must be distributed, resource . r must be allocated 
to a project. From very weak nonwastefulness and fairness, the following are the 
possible matchings: allocating. s1 and. s2 to.p1, allocating. s2 and. s3 to.p2, or allocating 
.s3 and.s1 to.p3. From the symmetry, we can assume. r is allocated to.p1 and.s1 and. s2
are assigned to .p1 w.l.o.g. Next, we examine the case where the preference of .s3 is 
changed to.p3 > p1 > p2 > ∅. From resource efficiency,. r cannot be allocated to. p1
since all students prefer.p3 over.p1. If . r is allocated to.p2 (or.p3), then from fairness 
and very weak nonwastefulness, .s3 must be assigned to .p2 (or .p3). This violates 
strategyproofness since .s3 is not assigned to any project in the original situation. ⃞

10.3.4 Sample and Deferred Acceptance (SDA) Mechanism 

Theorem 10.12 shows that fairness cannot be achieved without significantly sacri-
ficing efficiency. To establish a good balance between fairness and efficiency in SPR 
problems, Liu et al. [ 32] introduce a new class of mechanisms called Sample and 
Deferred Acceptance (SDA). Before describing SDA, let us introduce two mech-
anisms, which are utilized in SDA. First, the Serial Dictatorship mechanism (SD) 
uses a serial order among the students. Although the order can be arbitrary, it must 
be determined independently of student preferences to guarantee strategyproofness. 
W.l.o.g., we assume this order is .s1, s2, . . .. In SD, a student is chosen based on 
the serial order. Each student is assigned to her most preferred project . p, such that 
a feasible allocation exists for the (partial) matching obtained so far. This mecha-
nism is clearly strategyproof and nonwasteful, but it is very unfair since it does not 
use projects’ preferences at all. Next, we briefly describe the well-known Deferred 
Acceptance (DA) [ 11]. In DA, each student first applies to her most preferred project. 
Then each project provisionally accepts students up to its capacity limit based on 
its preference and rejects the rest of them. A rejected student applies to her second 
choice. Each project provisionally accepts students who have applied without dis-
tinguishing between newly applied and already provisionally accepted students, and 
so forth. To apply DA, the maximum quota (i.e., capacity limit) of each project must 
be predetermined. As long as maximum quotas are determined independently from 
students’ preferences, it is strategyproof and nonwasteful. 

Now, we are ready to introduce SDA.
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Mechanism 10.1 (Sample and Deferred Acceptance (SDA)) 

Step 1: Select .S' ⊆ S independently of .>S , which we call sampled students, and 
.S' /= ∅. We call.S \ S' the regular students. Then run SD and find (partial) match-
ing .YS' for . S'. 

Step 2: Allocate.R' ⊆ R to projects such that.YS' is feasible and.R' is minimal: no 
.R''

⊊ R' makes.YS' feasible. Then allocate.R \ R' based on the preferences of. S'. 
Step 3: Run DA for .S \ S'. The capacity of . p is .qμ(p) − |YS'(p)|, where . μ is the 

resource allocation determined in Step 2. 

The entire mechanism is carefully designed to guarantee strategyproofness. We 
adopt a popular technique used in auction domains to ensure strategyproofness, where 
a mechanism has some parameters and their selection affects participants’ welfare [ 4, 
13]. The idea is first dividing students/participants into two groups, then extracting 
the information from one group, and lastly setting the parameters of the mechanism 
applied to the other group based on the obtained information. 

By using different methods to determine resources in Step 2, we can create a 
variety of sample-based mechanisms that can strike a good balance between fairness 
and efficiency by slightly sacrificing fairness to improve efficiency. We introduce 
a first strategyproof sample-based mechanism, which we call Sample and Deferred 
Acceptance with Voting (SDA-V). In Step 2 of Mechanism 10.1, SDA-V determines 
resource allocation. μ based on the voting among sampled students. More specifically, 
each sampled student (hypothetically) votes for all projects based on .>s , where 
each project obtains a Borda score, i.e., the top project obtains .|P|, the second 
project obtains .|P| − 1, and so on. Then for each project, the sum of these scores is 
calculated. Finally, each resource. r is allocated to the project that obtains the highest 
total score within . Tr . The details of this voting procedure do not affect SDA-V’s 
theoretical properties, e.g., whether a student can vote for a project to which she is 
unacceptable, or how ties are broken. Thus, they can be arbitrarily determined. 

SDA-V uses a simple voting scheme for deciding resource allocation. However, if 
students are divided into several groups in terms of their preferences, we might obtain 
a sub-optimal result. Actually, the Borda count is somewhat too coarse-grained to 
determine an appropriate resource allocation. More specifically, for each resource. r , 
we choose a single winner among projects .Tr in SDA-V. By using the Borda count, 
we can choose a broadly acceptable project among candidates . Tr . 

Liu et al. [ 32] develop yet another way for deciding resource allocation, which 
does not rely on any voting scheme. Instead of aggregating the preference by voting, 
we create copies of sampled students and run a simulation for them to decide the 
resource allocation. More specifically, we (imaginarily) perform an SD mechanism 
for these copied students and obtain a resource allocation. We call this mechanism 
Sample and Deferred Acceptance with Simulation (SDA-S). Compared to SDA-V, 
SDA-S fully utilizes the preference of each sampled student, i.e., not only her first-
choice project, but also her second-choice, third-choice, and so on. 

In SDA-S, the detailed procedure of Step 2 in Mechanism 10.1 is given as follows: 

1. Make .|S| − |S'| copies of sampled students (i.e., for each sampled student, we 
create either .L |S|−|S' |

|S'| [ or .] |S|−|S' |
|S' | ] copies).
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2. Run SD for these copies to determine the resource allocation. First, we create 
copied students and the serial order of them is determined as follows. Assume 
sampled students are .s1, s2, . . . , s|S' |. Let  .di

j denote the . j-th copy of student . si . 

Then the serial order is .d1
1 , d

2
1 , . . . , d

|S' |
1 , d1

2 , d
2
2 , . . . , d

|S' |
2 , d1

3 , . . ., i.e., using a 
round-robin order among the sampled students to determine the serial order of 
the copied students. Second, we run SD for these copied students to find an 
(imaginary) matching that is feasible with the remaining resources. The resources 
allocated by the imaginary matching are used for DA in Step 3 of Mechanism 10.1. 

We describe that the family of SDA mechanisms satisfy several fundamental 
desiderata. 

Theorem 10.13 Any SDA instance is strategyproof, weakly nonwasteful, fair among 
students in .S \ S', and no sampled student has justified envy toward another regular 
student. 

Proof First, the sampled students .S' are chosen independently of students’ prefer-
ences (e.g., by random sampling). Thus, students cannot affect who will be selected 
in. S'. Then, for each student in. S', she has no incentive to misreport since her assign-
ment is determined by SD, and the resource allocation for students .S \ S' (which is 
determined using her preference) is irrelevant to her. Next, for each student in.S \ S', 
the capacity of each project is determined independently of her preference. Also, 
since DA is strategyproof [ 6, 40], she has no incentive to misreport her preference. 

Assume student . s is matched to . p (which can be . ∅). She applied to project . p', 
which outranks . p, and was rejected. If .s ∈ S', then no feasible allocation .μ' exists 
such that. s can be assigned to. p'. If.s ∈ S \ S',. s cannot be assigned to.p' with current 
allocation . μ. Hence, any SDA instance is weakly nonwasteful. 

Regarding fairness, since DA is fair [ 11], no regular student has justified envy 
toward another regular student. If sampled student .s ∈ S' is rejected by . p, then no 
more students can be assigned to. p. Thus,. s never has justified envy toward a regular 
student who is assigned after . s. ⃞

Whether an SDA instance satisfies resource efficiency depends on how the 
resources are allocated based on the preferences of the sampled students. We show 
that the procedures for allocating resources in SDA-V and SDA-S are carefully 
designed such that they satisfy resource efficiency. 

Theorem 10.14 SDA-V and SDA-S are resource efficient. 

Proof Assume students unanimously prefer .p over . p'. When assigning sampled 
students . S', students apply to . p before applying to . p'. Thus, we do not require that 
any resource. r is allocated to.p' such that.p, p' ∈ Tr holds. This property holds when 
assigning copied students by SD in SDA-S. Furthermore,.p' never wins in the voting 
procedure in SDA-V. Thus, these mechanisms satisfy resource efficiency. ⃞
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10.3.5 Conclusions 

This section introduced the SPR model presented by Liu et al. [ 32], where the max-
imum quota of each project is determined endogenously via resource allocation, as 
well as a general class of mechanisms called SDA. Besides the theoretical results 
presented in this article, Liu et al. [ 32] perform experimental evaluations to illustrate 
that SDA strikes a good balance between fairness and efficiency. 

10.4 Formalizing Station-Based One-Way Car Sharing as 
Three-Sided Matching 

This section presents a matching mechanism for station-based one-way car-sharing 
services. This service model allows users to travel one way and pick up and drop off 
cars at any station in a dedicated service area. 

10.4.1 Background 

One-way car sharing provides high flexibility of usage to users, but on the other 
hand, it causes an imbalance between the distribution of available vehicles and origin-
destination (OD) demand, which ends up decreasing service efficiency. Many studies 
have tried to solve this problem by pricing usage [ 8, 21, 36, 45, 48] and predicting 
demand [ 5, 42, 49]. 

In price-based control, price elasticity is assumed. However, it can change from 
time to time. If it differs from the assumption at the time of price calculation, realizing 
the expected level of efficient utilization of vehicles is difficult. The mechanism 
proposed by [ 43] applied an extension of the budgeted multi-armed bandit algorithm 
to bike sharing. It tries to find an appropriate amount of monetary incentives to 
users to encourage them to pick up a vehicle at stations with vehicles higher than a 
threshold and drop off a vehicle at stations with vehicles lower than the threshold. 
Their mechanism can mitigate the problem of the difficulty of obtaining accurate 
predictions. However, it still assumes the demands change gradually. 

To overcome this difficulty, we formulate the problem as a stable matching prob-
lem, i.e., we consider car-sharing regulation as a problem in finding an appropriate 
user-vehicle match based on user preferences. This formalization enables us to utilize 
many research results on the stable matching problem, such as stability, efficiency, 
and fairness lessons. However, many existing studies on stable matching assume that 
all participants appear in advance. Thus, it needs to devise a mechanism to apply 
them to mobility matching. Some studies have dealt with mobility matching as a 
stable matching problem [ 47, 52], but their target is limited to ride-sharing. That is, 
there are still few that formulate vehicle sharing as a matching problem.
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To solve the imbalance problem in car sharing, we introduce the drop-off station 
adjustment and formulate it as a three-sided matching problem. In conventional car-
sharing systems, a drop-off user selects a drop-off station, and then a pick-up user 
chooses which station to rent the vehicle. Here, vehicle usage can be viewed as vehicle 
relocation for other pick-up users. Thus if a pick-up user indirectly asks drop-off users 
to place the car closer to their current location, and drop-off users may change their 
initially intended drop-off stations, it may increase the vehicle usage level. To realize 
such coordination, we simultaneously consider the drop-off users’ and pick-up users’ 
preferences and try to find a matching between a drop-off user and a pick-up user via 
a station. We assume that a drop-off user has a preference for stations. A station has 
a preference for pick-up users. A pick-up user has a preference for a combination 
of vehicles and stations. Under this assumption, we apply a three-sided matching 
mechanism to find a stable matching. 

The previous mechanisms, such as [ 8, 21, 36, 48], can be considered as centralized 
regulation in that the operator examines the aggregated demands and supplies and 
then designs adequate incentives assuming that demand predictions are accurate. In 
contrast, our mechanism can also be viewed as centralized regulation but examines 
the individual preferences of pick-up and drop-off users. To the best of our knowledge, 
our mechanism is the first regulation strategy for station-based one-way car-sharing 
systems that realize (1) stable matching for pick-up users appearing dynamically and 
(2) no requirement for monetary transfer, which mitigates the problem of accurate 
prediction for price elasticity. 

10.4.2 Problem Setting and Formulation 

We formulate a three-sided matching problem for car sharing regulation, including 
drop-off agents, stations, and pick-up agents. Here, agents driving cars are drop-off 
agents. The set of drop-off agents, stations, and pick-up agents are represented by. B, 
. S, and. A, respectively. Drop-off agent.b j has his preference on stations,.P(b j ⇒ S). 
For example, their types consist of the distance from the drop-off station to their final 
destination. Pick-up agent.at has her preference on the tuple of stations and vehicles, 
.P(at ⇒ B × S). For example, their preferences include the vehicle types. θ j , such as 
size and radar cruise control availability. Also, station. si has its preference on pick-up 
agents, .P(si ⇒ A), which the system operator sets. For example, their preferences 
consist of the waiting time length of pick-up agents and the scarcity of vehicles at 
the destination of pick-up agents. 

We assume a road network .L consisting of nodes and links and parking stations 
are located at some nodes. There are.nst stations. Station.si ∈ S has.nsi parking spots. 
Different parking stations may have different numbers of parking spots. Cars can be 
parked at any station with at least an unoccupied parking spot. 

The car-sharing system operates .nv cars in a dedicated service area. The location 
. l of a car corresponds to positions of the road networks.l ∈ L. We use a discrete-time
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model, .t = 0, 1, 2, · · · . At .t = 0, the status of each vehicle is “driving” or “parked” 
at some locations. 

At each time from .t = 1, at most one pick-up agent .at appears. We assume that 
if more than one pick-up agents demand car usage simultaneously, these requests 
are sequenced in an arbitrary order by reducing the time resolution. Pick-up agent 
.at wants to leave location .loat at time . t ' (.t ' > t) and move to . ldat . Agents will show 
up (.t ' − t)-time units before the desired usage time. If pick-up agent .at realizes the 
intended trip by using the vehicle whose type is . θ j , she obtains positive valuation 
.vat (θ j ). Also, pick-up agent.at has disutility.− fat (x)(≤ 0) depending on the elapsed 
time. x from. t ' required to pick up a vehicle by walking from.loat to the station location 
or by waiting for the arrival of the arranged car. Pick-up agent .at may use a parked  
car. We assume a virtual drop-off agent .b j for each parked car. Pick-up agent . at ’s 
preference list on the tuple of stations and vehicles can be composed of .vat (θ j ) and 
.− fat (x). We assume that the preference list has no tie. 

Agents driving cars are drop-off agents. .Bt represents the set of drop-off agents 
at time. t . Drop-off agent.b j ∈ Bt whose destination is.ldb j

tries to drop off the vehicle 

at the station.ld
'

b j
nearest to.ldb j

and walk to. ldb j
. His drop-off station might be different 

from the nearest station to his destination because the nearest station is occupied, 
or he enters into a contract with a pick-up agent. In such cases, he has disutility 
.−gbj (x)(≤ 0) by the delay in arriving at the destination . ldb j

, i.e., the difference in 
time . x between the new and original itineraries. Because the driving speed is faster 
than the walking speed, if he changes his itinerary, . x is larger than zero. After pick-
up agent .at starts using a vehicle, she changes its role to drop-off agent .b j ' . We  
allow. fat (x) /= gbj ' (x). This is because the pick-up agent may change her trip plan, 
e.g., she can use public transportation instead or cancel her trip before departure but 
cannot do so once she has started using the vehicle. Drop-off agent . b j ’s preference 
list on stations can be composed of .−gbj (x). We assume that the preference list has 
no tie. For virtual agent. b j , its preference list has one element of the currently parked 
station. 

Station. si ’s preference list on pick-up agents is given by the system operator. The 
system operator can learn pick-up agents’ current locations and the time their usage 
request is reported. We assume that the preference list has no tie. 

For pick-up agent. at ,.(b j , sk, at ) denotes the matching contract under which drop-
off agent.b j drops off his car at station. sk , which might be different from the original 
drop-off station . ld

'
b j
. .b j might be a virtual drop-off agent corresponding to a vehi-

cle parked at station . sk . .tat ((b j , sk, at )) is a function that returns the time from . t '
required to pick up a vehicle under matching contract .(b j , sk, at ) for pick-up agent 
. at . .tb j ((b j , sk, at )) is a function that returns the delay in arriving at the final destina-
tion for drop-off agent . b j . Here, we assume that the agents and the operators have 
accurate information on the trip duration between two locations either by walking or 
driving. 

If matching contract .(b j , sk, at ) is entered into, the utilities for pick-up agent . at
and drop-off agent .b j are represented as follows.
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.uat = vat (θ j ) − fat (tat ((b j , sk, at ))) (10.1) 

.ubj = −gbj (tb j ((b j , sk, at ))) (10.2) 

The arguments in the utility functions are measured by time. For example, if a car 
is dropped off at a station near the current location of a pick-up agent, but the car’s 
arrival at the station takes a long time, the pick-up agent’s utility would decrease, and 
she would not confirm such a contract. Once the matching contract is entered into, 
neither the pick-up agent nor the drop-off agent is allowed to break the contract. Our 
objective is to find a matching that maximizes a metric the system operator specifies. 

10.4.3 Proposed Mechanism 

We propose a novel regulation mechanism for station-based one-way car-sharing 
systems. The imbalance between vehicle distribution and demand will be reduced 
through the pick-up agent-station-drop-off agent contract by executing a three-sided 
matching mechanism, i.e., the adjustment of the drop-off/pick-up station. We assume 
the system operator holds information on current locations and intended drop-off 
locations for pick-up agents. 

So far, a three-sided matching problem has been studied. In this paper, we extend 
the mechanism of Zhang and Zhong [ 51]. They discussed the case where the way of 
preference is restricted as follows. There are three groups . B, . S, and . A. An element 
belonging to . B has a preference for each element of . S. An element belonging to . S
has a preference for each element of. A. An element belonging to.A has a preference 
for a product of each element of . B and each element of . S. 

In the context of car sharing,. B, . S, and.A correspond to drop-off agents, stations, 
and pick-up agents, respectively. A drop-off agent prefers a station that minimizes the 
time required to reach the final destination. The station has a preference for pick-up 
agents based on the service policy of the operator. A pick-up agent has a preference 
for a combination of cars and stations. Here, although . B is a set of drop-off agents, 
a car’s type, such as its size and equipment, can be specified once a drop-off agent 
is chosen. A pick-up agent can express her preference on the tuple of .B × S. 

In our mechanism, we introduce a batch size. A batch size means how often 
the matching mechanism is executed. In the conventional setting of the matching 
problem, all the participants appear at the beginning. On the other hand, pick-up 
agents appear sequentially in our setting. Thus, the batch size is a control parameter 
in our mechanism. If the batch size is set to one, i.e., matching is executed whenever 
a pick-up agent appears, our mechanism is close to the no-regulation case. This is 
because few drop-off agents can participate in the matching process. The larger the 
batch size, the greater the room for adjustment. On the other hand, it asks pick-up 
agents to declare their preference list in advance, reducing trip planning flexibility.
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Mechanism 10.2 (Drop-off/Pick-up Station Adjustment) 

Step 1: Set batch size to .nba . 
Step 2: Wait until receiving .nba usage requests. 
Step 3: Determine the set of drop-off agents.Bdriving and the set of virtual drop-off 

agents .Bparked . Let .B = Bdriving ∪ Bparked . 
Step 4: All.b ∈ B is active, and let.M = ∅..M represents the set of accepted match-

ing. 
Step 5: For each active agent.b ∈ Bdriving , according to the preference list. P(b ⇒

S), propose the most preferable active one in . S and mark it as . s. For each active 
agent .b ∈ Bparked , propose the one in . S that . b is currently parked and mark it as 
. s. Thus, we get a pair .(b, s), and all pairs obtained in this way are denoted as . K . 
Let .K (s) = {b ∈ B|(b, s) ∈ K }, that is, all .b ∈ K (s) proposed to . s. 

Step 6: For the resulting pairs.(b, s) ∈ K , according to the preference list. P((b, s)
⇒ A), which is virtually equal to.P(s ⇒ A), propose the most preferable one in 
.A and mark it as . a. Thus, we get a triple .(b, s, a), and all triples obtained in this 
way are denoted as. Q. Note that any two different elements.(b, s, a) and. (b', s ', a')
in . Q, there must be .b /= b'. Let .R = Q ∪ M , and .R|A = {a ∈ A|(b, s, a) ∈ R}. 

Step 7: For each.ā ∈ R|A according to the preference list.P(ā ⇒ B × S), choose 
the most preferable one in all the pairs proposed to it (if .MB×S(ā) = (b'', s ''), 
then .(b'', s '') is included) and mark it as .(b̄, s̄). Reject the other pairs .(b', s ') and 
remove . ā from the preference list .P((b', s ') ⇒ A). 

Step 8: If .MB×S(ā) = ∅, then let .M := M ∪ {(b̄, s̄, ā)}, and marked . b̄ and . s̄ as 
inactive. If .MB×S(ā) = (b'', s '') and .(b̄, s̄, ā) /= (b'', s '', ā), then let . M = M ∪
{(b̄, s̄, ā)}\{(b'', s '', ā)}, and marked. b̄ and. s̄ as inactive,.b'' and.s '' are reactivated. 

Step 9: If there is at least one rejected pair of .(b', s '), repeat Steps 5, 6, 7, 8. 
Step 10: Repeat Steps 5, 6, 7, 8, 9 until each .a ∈ A has her matching contract or 

has no more choice on pairs .(b, s). 
Step 11: Let .S' be the set of stations with at least one empty spot that have not 

rejected any drop-off users having contracts during the period. Then, if nonvirtual 
drop-off users have no contract, determine their parking stations using the Serial 
Dictatorship mechanism. That is, they are ordered by some criteria and, in turn, 
select the most preferred parking station from . S'. If, after this process, there 
are still drop-off users who do not have a parking station, they turn to the next 
matching period. 

By Step 11, when a drop-off agent’s application for a station is rejected and he is 
matched with a pick-up agent, other drop-off agents are not allowed to park their cars 
at the rejected station during the period. This fact will satisfy fairness. Furthermore, 
the nature of the three-sided matching mechanism by Zhang and Zhong will ensure 
that stable matching is obtained within the period. 

Some existing mechanisms include monetary transfer. For example, in [ 43], 
financial compensation is paid to those who take actions that reduce the imbalance. 
Although we do not include monetary transfer into a mechanism in this study, it is 
possible to pay compensation to drop-off agents who change their drop-off station 
as long as they do not significantly change the preference order.
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10.4.4 Experiment Settings and Simulation Process 

We constructed a one-way car-sharing simulator to evaluate the effectiveness and 
characteristics of our mechanism. Our mechanism was compared with an important 
previous regulation mechanism and non-regulation scenario. The regulation mecha-
nism by [ 43] was compared as a baseline with our proposal, although Singla’s mech-
anism includes monetary transfer among pick-up agents, drop-off agents, and the 
operator. Non-regulation scenario means that all drop-off users go to their intended 
drop-off locations, and pick-up agents use cars parked nearest their current locations 
if doing so offers a non-negative utility. 

10.4.4.1 Experiment Settings 

We follow the simulation setting in [45]. We configured the parameters of the one-way 
car-sharing simulator by referring to the literature [ 19, 50]. We used the following 
experiment settings. A service area is a rectangular area 8 km in width and 16 km 
in length with 13,041 nodes and 25,840 links. To prevent the moving distances from 
having the same value for multiple routes, we fluctuate each node by a maximum 
of .±20 m in the x and y coordinates. Each station is located in an approx. 500 m . ×
500 m rectangle. Two parking spots exist in each station, i.e., .nsi = 2 for all . si . The  
walking speed is 80 m/min (4.8 km/h). The driving speed is 500 m/min (30 km/h). For 
pick-up agents, we calculate the larger value of (a) the distance between the pick-up 
and the current locations divided by the walking speed and (b) the distance between 
the negotiated drop-off location and the drop-off agent’s current location divided 
by the driving speed. For drop-off agents, we calculate (i) the distance between 
the negotiated drop-off and current locations divided by the driving speed + (ii) the 
distance between the negotiated drop-off and initial drop-off locations divided by the 
walking speed – (iii) the distance between the initial drop-off and current locations 
divided by the driving speed. Vehicles are scattered uniformly at the beginning. The 
number of vehicles .nv is set to 50 or 150. Demand occurs in intervals of 30 s. The 
batch size .nba is set to 5, 10, or 15. 

We referred to [ 19] and constructed reasonable utility functions. The utility func-
tion of pick-up agent .at is composed of the positive valuation .vat obtained by the 
trip and the disutility obtained by the time . x required to pick up a vehicle. Here, we 
assume that all vehicles are of the same type. 

.uat (x) = vat − 0.0001αat x
4 (10.3) 

. (vat , αat ) ∈ {(6, 6), (5, 5), (4, 4), (3, 3), (2, 2), (1, 1)}

This function means that the pick-up agent can get a parked car at most 10 mins 
away. One of the above six different parameter values will be assigned to each agent
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in accordance with a uniform distribution. On the basis of studies such as [ 25], we 
assumed that drop-off agent . b j ’s disutility function can be formulated as follows. 

.ubj (x) = −0.21x (10.4) 

10.4.4.2 Metrics 

We evaluate the proposed mechanism regarding service levels, social surplus, and 
drop-off agents’ disutilities. Here, the service level is the ratio of the number of users 
who succeed in picking up a vehicle to the number of users who apply for usage, 
which is defined as follows. 

.Service level = Potential customers − No-service events

Potential customers
(10.5) 

The social surplus is defined as the total utilities of the agents obtained through the 
service process. It can be denoted as below. 

.Social surplus = (Va − Wa) − Db (10.6) 

We denoted the cumulative positive valuations obtained by the pick-up agents for 
the trips as.Va , the cumulative disutilities suffered by the pick-up agents for the time 
required to pick up vehicles .−Wa and the cumulative disutilities suffered by the 
drop-off agents for the delay in reaching the initially intended destination .−Db. 

10.4.4.3 Simulation Process 

At the beginning of the process, all vehicles are parked in the service area following 
a uniform distribution. Then, the system operator takes an application from a pick-
up agent. According to the batch size, the matching mechanism is executed. The 
iteration process finishes when the system operator takes a certain number of usage 
applications. 

10.4.5 Results 

Table 10.1 shows the average service levels, social surplus, and drop-off agents’ disu-
tilities of 4,320 applications over 10 simulations under the different regulation mech-
anisms. The standard deviation is shown in parentheses. Our mechanism achieved 
higher service levels and a higher social surplus.
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Table 10.1 Simulation results. The standard deviation is shown in parentheses 

50 vehicles 150 vehicles 

Service 
levels 

Social 
surplus 

Disutility Service 
levels 

Social 
surplus 

Disutility 

No 
regulation 

0.300 
(0.0043) 

3,077 (59) 0 0.651 
(0.0054) 

7,380 (92) 0 

Baseline 0.304 
(0.0038) 

3,111 (92) –44 (8) 0.654 
(0.0100) 

7,159 (147) –486 (14) 

Batch 05 0.329 
(0.0058) 

3,167 (78) –194 (26) 0.677 
(0.0063) 

7,439 (110) –216 (21) 

Batch 10 0.356 
(0.0076) 

3,200 (78) –420 (24) 0.690 
(0.0100) 

7,270 (144) –489 (26) 

Batch 15 0.374 
(0.0065) 

3,159 (76) –609 (27) 0.694 
(0.0107) 

6,929 (149) –788 (50) 

10.4.6 Conclusions 

We proposed a novel regulation mechanism based on a matching among drop-off 
agents, stations, and pick-up agents to reduce the imbalance between vehicle distri-
bution and demand in station-based one-way car sharing. Our mechanism introduced 
three-sided matching to ask drop-off agents to change their drop-off stations to neigh-
boring stations. We evaluated our mechanism with the baseline and a non-regulation 
scenario in a one-way car-sharing simulator. The experimental results showed that the 
proposed mechanism achieved higher service levels than those used for comparison. 
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