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Chapter

View Synthesis Tool for VR
Immersive Video
Sarah Fachada, Daniele Bonatto, Mehrdad Teratani

and Gauthier Lafruit

Abstract

This chapter addresses the view synthesis of natural scenes in virtual reality (VR) using
depth image-based rendering (DIBR). This method reaches photorealistic results as it
directlywarps photos to obtain the output, avoiding the need to photograph every possible
viewpoint or to make a 3D reconstruction of a scene followed by a ray-tracing rendering.
An overview of the DIBR approach and frequently encountered challenges (disocclusion
and ghosting artifacts, multi-view blending, handling of non-Lambertian objects) are
described. Such technology finds applications in VR immersive displays and holography.
Finally, a comprehensivemanual of the Reference View Synthesis software (RVS), an
open-source tool tested on open datasets and recognized by theMPEG-I standardization
activities (where “I” refers to “immersive”) is described for hands-on practicing.

Keywords: DIBR, RVS, view synthesis, depth map, virtual reality, rendering, 3D
geometry, light field, non-Lambertian

1. Introduction

Photography has a vast history as it is used to preserve our lives’ most important
memories. As such, it tries to conserve a scene as realistically as possible. During the
years, it evolved from the camera obscura [1, 2] where scenes were captured only for a
brief moment, to black and white photography, requiring to stay still in front of the
camera for long hours, to nowadays imaging devices, where the picture is captured
instantaneously, digitalized, and the colors are close to what our eyes perceive [3].

Though it preserves the content of the scene, the immersion is lost, as well as the
depth information, since the camera projects the scene from 3D to 2D.

To increase the immersion, the next step is to recreate the parallax of the scene,
giving the opportunity to the viewer to move freely and see different perspectives,
exactly as if the subject was miniaturized in front of our eyes, or the environment
virtually rendered around us. Despite this desire, no device capable of acquiring the
scene in its entirety directly in 3D has been designed so far.

Creating the parallax effect assumes capturing the scene from all the possible
viewpoints and selecting the viewpoint to display on demand for the user’s viewing
position. This is physically impossible; instead, we may synthesize any viewpoint
from only a couple of captured viewpoints generating all missing information follow-
ing some basic assumptions [4, 5].
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There exist many approaches to generate novel viewpoints from input views. Early
methods were based on 3D reconstruction [6, 7] to render the obtained 3Dmodel. More
recently, neural radiance fields (NeRF) [8] used machine learning methods to recreate a
volumetric representation of the scene. Other methods avoid the explicit 3D informa-
tion reconstruction, such as depth image-based rendering (DIBR) [9] that will be
described in this chapter, or multiplane images [10, 11]. Finally, novel viewpoints can be
synthesized by an intelligent interpolation using physical invariants (the epipolar plane
image), rather than interpolating directly the image’s colors. Representatives of this last
category are the shearlet transform [12] and techniques using deep learning [13].

This chapter provides comprehensive elements to bring photographs of a natural
scene to the third dimension, for example, making the captured scene immersive,
through holography or virtual reality (VR). The presented 3D rendering technique
differs from traditional computer graphics by its input—instead of modeling 3D objects
with their geometry and materials that interact with light sources, we use photographs
that are warped to follow the viewer gaze direction using the reference view synthesis
(RVS) [14–16] software that follows the view synthesis process of Figure 1.

RVS has been developed during the exploration and standardization activities of
MPEG-I – where “I” refers to Immersive – focusing on developing new compression
and file formats for immersive video.

The chapter is structured as follows—the first part explains the principles of depth
image-based rendering, gives an overview of the possible artifacts that can be
encountered when creating a DIBR implementation, and finally, implementation
details of RVS are described. The second part provides practical advice for using RVS
on some example datasets.

2. Principles of depth image-based rendering

To recreate the parallax effect, we use the depth image-based rendering [9]
method. It warps or distorts the input color image as a function of its associated depth
map, which itself stores, for every pixel, the distance between the camera and the
projected point along the camera optical axis. This method is based on the observation
that a stereoscopic pair of images, for example, taken with a few centimeters shift

Figure 1.
DIBR brings photographs to 3D by using depth information to create new viewpoints. It preserves photorealism and
allows the user to experience motion parallax.
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between each other, carry the depth information of the photographed subject. As
shown in Figure 2, the relative shift d, aka. the disparity, of foreground objects is
larger than for background objects.

2.1 Projection equation and disparity

Let us consider two pinhole cameras facing an object at distance D (see Figure 2).
The projection of this object on each image will have a disparity d. Using the similar

triangles ratios of f
D and d1þd2

B , we obtain:

d ¼
B� f

D
(1)

where B is the baseline, i.e., the distance between the two camera centers, and f
their focal length.

This implies that, given two images and their depth maps, we can create a virtual
view in the middle, between the inputs, by shifting the pixels over half their disparity.

Eq. 1 can be generalized to any camera settings using the pose (translation and
rotation – extrinsic parameters, Eq. 2) and internal camera parameters (focal length

f x and f y expressed in pixels in the x and y directions, and principal point ppx, ppy

� �

–

intrinsic parameters, Eq. (3).
We call an input image and its camera parameters an input viewpoint. We aim to

recreate a new virtual view with given new parameters, called target viewpoint. For
this, we deproject (i.e., from 2D to 3D) the pixels of the input image to 3D, and
reproject (i.e., from 3D to 2D) them to the target image using the projection equation.

Let P ¼ Rjtð Þ be the inverse (i.e., world to camera) 3� 4 pose matrix of a camera
with R the rotation matrix and t the translation:

P ¼ R j tð Þ ¼

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0

B

@

1

C

A
, (2)

and K its 3� 3 intrinsic matrix:

K ¼

f x 0 ppx
0 f y ppy
0 0 1

0

B

@

1

C

A
: (3)

Figure 2.
Disparity d ¼ d2 � d1 between two pixels representing the same projected point.
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In homogeneous coordinates, a point X ¼ x, y, z, 1ð Þt at depth D from the input

camera pin ¼ u, v, 1ð Þt is projected to a pixel pin ¼ u, v, 1ð Þt following the projection
Equation [6]:

Dpin ¼ KinPinX (4)

Hence, given the input image and the depth value of the pixel, we can deproject X:

X ¼ D Rinj�R�1
in tin

� �T
K�1

in pin (5)

Eventually, this allows to reproject X in the new camera, using Eq. 4 with Pout and
Kout:

pout∝DKoutPout Rinj�R�1
in tin

� �T
K�1

in pin (6)

To obtain the pixel value, we divide the obtained vector by the third coordinate
(i.e., the depth of the point in the new camera).

Applying this operation to every pixel of the input image creates a novel view.
The core principle of DIBR is to apply this deprojection and reprojection to all the

pixels of the input images, using a depth map (i.e., a single-channel image encoding
the depth value of each pixel). RVS uses this basic principle, but of course, there are
many pitfalls one should handle correctly. This is further explained in the following
sections.

2.2 Frequent artifacts

We now know the basic principles of DIBR. Unfortunately, simply shifting the
pixels of an input image in the function of their depth does not create a photo-realistic
result.

The first problem is occlusion handling. When an object is visible in the input
image but hidden by an object lying more in the foreground in the target, it is
occluded and its pixels should not appear in the rendered image. This can be solved by
choosing, among all the pixels from various objects ending up in the same pixel on the
screen, the pixel with the minimal depth. A more critical problem is the one of
disocclusions, for example, when an object should be visible in the target image but
does not appear in the input image because it is hidden (Figure 3a). In that case, a

Figure 3.
(a) Disocclusion artifact (classroom dataset), (b) crack artifacts (Toystable dataset), (c) Artifacts due to
inconsistency in color among the input images. (dataset fencing, courtesy of Poznan University of Technology),
(d) ghosting artifacts (dataset Toystable).
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hole is created in the rendered image. One solution is to add more input images in the
hope to obtain this missing information [15, 17]. Another approach is to inpaint the
empty pixels [18, 19]. In RVS, it is possible to choose any number of viewpoints and a
basic inpainting fills the remaining disocclusions.

Cracks and dilation are other frequent DIBR artifacts. We can observe them in
Figure 3b. They are created as the user moves forward (step-in), increases the reso-
lution (zoom), or observes slanted objects. Those cracks correspond to pixels in the
target that do not have a preimage in the input view (i.e., no input pixel is mapped to
them). However, as their neighboring pixels have a preimage, their color can be
interpolated. In other words, the input pixels should be mapped to more than one
pixel to compensate for this effect. This can be done using superpixels [20], adapting
the pixels size to the camera movement [21], or linking neighboring pixels for
rasterization [15, 16] (chosen solution in RVS: adjacent pixels are grouped into tri-
angles that are colorized).

Even if increasing the number of input images can reduce the number of
disocclusions, it brings new challenges, as those views need to be consistent in color,
in estimated geometry, and in estimated pose. Notably, the depth estimation and the
blending of multiple views together rely on consistent colors between the images. As
not all camera sensors are equal, small differences in color rapidly generate incoherent
depth estimations or nonhomogeneous color patches during view blending
(Figure 3c). Color correction is usually needed prior to the view synthesis [22, 23] or
during the blending step [24, 25].

Moreover, as DIBR relies on the depth information, errors in the depth estimation,
a misalignment between the color image and the depth map, or errors in the camera
pose estimation lead to ghosting artifacts. When several views are blended together,
these artifacts make the objects or their borders appear doubled (Figure 3d). A depth
map refinement [26, 27] is one way to solve this problem. Another is to choose
weighted blending coefficients based on the reliability of each input image [11, 16]
(chosen solution in RVS).

Finally, DIBR is structurally limited to the rendering of diffuse objects. Indeed
shifting the pixels in the function of their depth assumes that they do not present
view-dependent aspects, such as transparency or specularity. When such objects,
so-called non-Lambertian, are present in the scene, the linear hypothesis in pixel
displacement in the function of the camera displacement is not valid anymore.
Adapting the DIBR principles to non-Lambertian objects is nevertheless possible by
exploiting additional information, such as structure, normal, and indexes of refraction
[28], or a more accurate approximation of the pixel displacement [29–31] (chosen
solution in RVS).

2.3 RVS in practice

The DIBR software RVS is designed to render novel viewpoints from any number
of input images and depth maps and their camera parameters, without suffering from
the above limitations. In order to create a novel view, the input images are warped
sequentially. The obtained result is then blended into an image accumulating the
outputs of each reprojected input image. This pipeline is shown in Figure 4. The
warping and blending operations are performed alternatively for each input image
using OpenGL [32] or on the CPU [15].

To obtain high-quality results, it is recommended to select candidate input views
properly. Therefore, the first step in RVS is an optional view selection. The n views the
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closest to the target image are selected in order to reduce the computation time.
Otherwise, all the input images are used to create a new viewpoint.

The second step in RVS is the warping phase. Each input image is divided into a grid
of triangles whose vertices are adjacent pixels (Figure 5a). Each of these vertices is
reprojected to fit to the new camera pose and parameters (Figure 5b) and rasterized to
avoid the cracks artifacts of Figure 3b. Then, each new triangle is given a score that will
be used in the blending phase. This score describes the quality of a warped triangle—if
the pixels lie on a disocclusion area, their triangle will be stretched and should hence be
discarded from the final result (black areas in Figure 4-warping and Figure 5c). The
remaining triangles are then rasterized according to their vertex color in the input image
(Figure 5c). A depth test prioritizes the pixels with the lowest depth.

When the input images are warped to the target viewpoint, the results need to be
blended into one single image. For a given pixel, the final output color c is the
weighted mean of the color ci of each warped input:

c ¼
1

P

iwi

X

i

wici (7)

Figure 4.
Overview of the processing pipeline. (1) view selection (optional), (2) warping, (3) blending, (4) Inpainting
(optional).

Figure 5.
Adjacent pixels of an input image (a) are grouped into triangles independently of their depth before being
reprojected to their new image location (b). Triangles detected as lying on a disocclusion are discarded, resulting in
a new warped image (c).
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where wi is a weight representing the quality of a triangle [16], prioritizing fore-
ground objects and highest quality triangles.

Finally, as shown in the inpainting of Figure 4, when multiple views are blended
together, several occluded regions remain; if the occlusions are small enough, a basic
inpainting process can be applied to remove them. Of course, the quality of the
inpainting can compromise the overall image quality, hence, inpainting is not
recommended. In RVS, the inpainting is not automatic but can be activated. In that
case, the empty pixels take the color of the nearest non-empty pixel.

2.3.1 Non-Lambertian case

In the general case, DIBR uses depth maps to predict pixel displacement. However,
a point on a non-Lambertian surface does not have a proper color (its color can rapidly
change with a change in viewing direction); its appearance is a function of the
surrounding scene, the normal at that point, and the index of refraction for refractive
surfaces (see Figure 6). This not only makes depth estimation through stereo
matching impossible but also implies that even with a correct depth map, the object
cannot be rendered by a simple pixel shifting.

Alternatively, to model the non-Lambertian surface in itself, it is possible to track its
feature movements on the surface [29, 33, 34]. DIBR can be generalized to non-
Lambertian objects by replacing the usual depth maps with the coefficients of a polyno-
mial approximating the non-Lambertian features displacement [30, 31]. To clearly
understand what this means, let us start with what happens for diffuse objects, where for
a lateral camera movement x, yð Þ, the new position u, vð Þ of a pixel u0, v0ð Þ is given by:

u

v

� �

¼
u0

v0

� �

þ
f

D

x

y

� �

: (8)

Figure 6.
The aspect of non-Lambertian objects is view dependent—Their surface does not appear the same color in each
viewing direction.
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We extend this equation for non-Lambertian objects using polynomials:

u

v

� �

¼
u0

v0

� �

þ
Pu x, yð Þ

Pv x, yð Þ

� �

, (9)

with Pu x, yð Þ ¼
P

i

P

jaijx
iy j and Pv x, yð Þ ¼

P

i

P

jbijx
iy j. Clearly, the diffuse case

corresponds to a1,0 ¼ b0,1 ¼
f
D and all other coefficients aij, bij set to zero.

Consequently, Eq. 9 approximates by a polynomial the nonlinear displacement of a
refracted or reflected feature moving on non-Lambertian objects.

However, the polynomial expression rapidly diverges in extrapolation (e.g., when
synthesizing a target view that is outside of the input images’ hull). The computed
feature displacement becomes greater than the inverse of the non-Lambertian object’s
depth, making the feature to be rendered outside of the non-Lambertian surface. This
approximation is hence designed for interpolation and small extrapolation only.

Furthermore, these polynomials are not directly related to the physical reality of
the non-Lambertian object. Hence, contrary to the simple relation linking the depth to
the disparity of a diffuse object cf. Figure 2 and Eq. (1), the polynomials of Eq. (9) do
not give the object geometry or the index of refraction.

The polynomial is rather designed to “track” non-Lambertian features that move
nonlinearly across the input images. It nevertheless encounters the following limita-
tions. For content with semi-transparent objects, the maps should be divided into
several layers before applying the polynomial or depth image-based rendering. Scenes
with glints and glossiness make it difficult to track features on their surfaces, often
leading to a failure case of the proposed method.

3. Reference view synthesis (RVS) software

This section provides practical recommendations for the use of the reference view
synthesizer (RVS) [14–16, 32, 35] (https://gitlab.com/mpeg-i-visual/rvs) developed as
a DIBR-based view synthesizer for the MPEG immersive video (MIV) standard
(https://mpeg-miv.org). Without further details on the compression and storage of
immersive content [36], we give a comprehensive method to practically use the
software on some test sequences (also provided to the MPEG community while
developing RVS).

The following paragraphs give documentation on the image format, the axis sys-
tem, and the data structure to synthesize new viewpoints from available ready-to-use
datasets and/or new content users may provide.

3.1 Input images

RVS can accept any number of input images with depth maps, the only limitation
being the computer memory. Each input color image must be provided along with its
corresponding depth map.

3.1.1 Color images

The color images can be encoded on three RGB color channels, with 8-bit integers
each, in any image format readable by OpenCV, for example, PNG or JPEG format.
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Additionally, raw images in YUV can be used, with a bit depth of 8, 10, or 16 bits.
In this case, multi-frame raw video can be used, applying the view synthesis on all
specified frames.

3.1.2 Depth maps

The depth maps represent the depth coordinate of every point in the image fol-
lowing the forward axis of the camera. Similar to color images, they can be provided in
different formats. They have to match the resolution of the input images, but they use
only one channel.

The first option is to use the OpenEXR format. In that case, the software reads the
depth value in float and uses it directly for reprojection.

In the case of integer coded formats, such as YUV or PNG, the precision can be set
to 8, 10, or 16 bit per depth value—the bit depth. YUV files can be encoded in
YUV420 or YUV400 format, only the Y channel being used. However, the quantiza-
tion does not allow to directly use the integer as a depth value. Indeed, it would be
impossible to use a depth map in meter units for objects in the range of a few meters
or centimeters from the cameras.

To overcome this problem, the depth value is encoded into MPEG’s disparity

format, mapping the closest object to 2bitdepth � 1, and the farthest to 1. To obtain the

actual depth value, first we divide the encoded depth map value by 2bitdepth � 1 to
obtain a value d in the range of 0, 1½ �, then remap the value in the range n, f½ � using:

d0 ¼
f � n

nþ d� f � nð Þ
: (10)

With n and f the near and far values of the scene and d0 the depth value lying
in n, f½ �.

For very far objects, this equation is simplified (f ≥ 1000) to

d0 ¼
n

d
(11)

The value 0 in the encoded depth maps is considered as invalid depth. It
corresponds, for example, to disocclusions in a depth-sensing device-acquired map.

Figure 7.
Encoded depth map on integer values. Due to the shift between the color sensor and the depth sensor, the depth map
reprojected to the color image misses some information, leaving invalid pixels, encoded on 0. The foreground objects
are encoded on high disparities, while the background objects are encoded on low disparities.

9

View Synthesis Tool for VR Immersive Video
DOI: http://dx.doi.org/10.5772/intechopen.102382



Figure 7 shows an encoded depth map with invalid pixels and objects at different
depths. Clearly, the foreground has high values, which corresponds to being a
disparity value, that is, the inverse of a depth, cf. Eq. (11).

In the case of polynomial maps for non-Lambertian objects, it is possible to encode
up to degree 3 polynomials, hence 18 coefficients, and pass an additional depth map
and mask for the non-Lambertian objects. Those coefficients are encoded similarly to
the depth maps, using EXR (directly the float value) or YUV (normalized) format.
The polynomial maps are numbered from 0 to 19 as follows.

Pu x, yð Þ ¼ a0x
3 þ a1x

2yþ a2xy
2 þ a3y

3 þ a4x
2 þ a5xyþ a6y

2 þ a7xþ a8y,

Pv x, yð Þ ¼ b0x
3 þ b1x

2yþ b2xy
2 þ b3y

3 þ b4x
2 þ b5xyþ b6y

2 þ b7xþ b8y
(12)

with ai corresponding to the map i and bi to the map 10þ i. The remaining map 9
is used to encode the depth map for Lambertian objects and the map 19 is used as a
mask representing non-Lambertian objects (0 for Lambertian, 1 for non-Lambertian).
The coefficients not used are left to 0. If the coefficients are encoded in YUV format,
the depth (map n∘9) is normalized using Eq. 10, the mask (map n∘19) has 0 and 1
values and the other coefficients are linearly normalized between minimal m and
maximal M values: ai0 ¼ M�mð Þai þm.

3.2 Camera parameters

Additionally to the input images, the camera parameters must be known to create
a novel view with DIBR and RVS. The extrinsic parameters describe the position and
the rotation of the camera (Eq. 2), while the intrinsic parameters describe the projec-
tion matrix (Eq. 3). Perspective and equirectangular projections are also supported,
requiring a slightly different description, as explained hereafter.

3.2.1 Extrinsic parameters

Common graphics processing software and APIs, such as Blender [37],
COLMAP [38], OpenGL [39], Vulkan [40], specify their own coordinate system,
often admitting different axes and directions, and different image coordinates.
Transferring data from one application to the other requires then several coordinate
transformation steps, which will be summarized here. We use the Omnidirectional
Media Format (OMAF) [41] coordinate system of MPEG-I, combined with
yaw-pitch-roll angles.

OMAF is the first industry standard for VR. It specifies the coordinate system used
in VR applications, the projection and rectangular region-wise packing methods, the
metadata storage, encapsulation, signaling, and streaming of omnidirectional data,
and finally the media profiles and presentation profiles. For these reasons, it has been
adopted in the camera configuration files of RVS.

The OMAF coordinate system is described in Figure 8. The axes are defined as
follows:

• X: Back-to-front, forward

• Y: Lateral, left
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• Z: Vertical, up

The rotations in degrees are defined with the Yaw-pitch-roll:

• Yaw: Around the vertical axis

• Pitch: Around the lateral axis

• Roll: Around the back-to-front axis

A camera facing forward has all its rotation angles set to 0. The rotation matrix of
the camera (world to camera) in our axis coordinate system is then given by:

R ¼ Rz yaw
� �

Ry pitchð ÞRx rollð Þ (13)

In order to transform a coordinate system from an application to OMAF, one
needs to define the coordinate change matrix that matches the three axes, for
example:

P ¼

0 0 �1

1 0 0

0 �1 0

0

B

B

@

1

C

C

A

(14)

This matrix sets x0, y0, z0ð Þ (OMAF) = �z, x,�yð Þ (application), that is, it represents
a coordinate system with the axes (left, down, backward). To transfer from this
system to OMAF, we apply it to the rotation and position as follow:

R0 ¼ P:R:PT

p0 ¼ P:p
(15)

Figure 8.
The omnidirectional media format coordinate system.
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where R0 and p0 are the rotation and position of the OMAF system, while R and p
the rotation and position in the old coordinates.

The unit of the coordinate system does not have any prerequisite but must
correspond to one of the depth maps.

RVS handles any number of input and target cameras, each of them can
have its own parameters and projection types. In the case of a stereoscopic
head-mounted display for VR, two target views – one for each eye – need to be
synthesized with a relative position (interpupillary distance) corresponding to the
eye distance, usually given by the headset’s framework along with the intrinsic
parameters.

3.2.2 Intrinsic parameters

The intrinsic parameters can be defined for perspective or equirectangular
projections. In both cases, the resolution needs to be specified.

For perspective projection, the input images need to be undistorted. In that
way, only the focal length and the principal point need to be specified. Those
values are in pixel units, the sensor size corresponding to the image resolution.

The focals are given by f x, f y

� �

, corresponding to the horizontal and vertical axis.

The principal point ppx, ppy

� �

is defined from the top-left corner of the image

as described in Figure 9(a). A principal point at the center of the image has a
value of half the resolution. In the case of equirectangular projection
(Figure 9b), the horizontal and vertical viewing range must be specified in
degrees. For a full 360∘ panoramic image, the horizontal range is �180, 180½ � and the
vertical range is �90, 90½ �. For a 180∘ image, the horizontal and vertical ranges are
�90, 90½ �.

3.2.3 Camera file

The image specifications and camera parameters are specified in a json file with
informative headers. An example with a perspective and an equirectangular camera is
given here.

Figure 9.
Intrinsic parameters of the camera for (a) a pinhole projection, (b) an equirectangular projection.
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Listing 1.1 Cameras calibration file. Cameras.Json.
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An optional parameter, DisplacementMethod, can be set to Polynomial
instead of default parameter Depth to specify that, instead of a depth map
(Eq. 10), RVS reads a displacement map (Eq. 12). In that case, similarly to the
Depth_range, a Multi_depth_range can be specified for the polynomial coefficients
in YUV format.

3.3 View synthesis file

In order to perform the view synthesis, an experiment setup file is created. It gives
camera views specifications (which views to synthesize given the input viewpoints) in
an easy to use json format. The file contains:

• Input and target camera parameters file paths—path to the camera file described
in the previous subsection. The same file can be used twice if all the input and
target cameras are in the same file;

• Input and target camera names matched with the camera names contained in the
camera files. Any number of inputs and outputs can be specified;

• Input images, output images, and depth maps file paths. In the case of polynomial
maps, numbered from 0 to 19, the number is replaced by a *;

• Number of output frames. Useful for uncompressed YUV video files.
The synthesized number of frames can exceed the number of frames in the
input videos by specifying an optional NumberOfOutputFrames. In that case,
the video will be played back and forth until the desired number of frames is
reached;

• Precision: super-resolution factor to reach sub-pixel accuracy;

• Colorspace: internal working color space, can be YUV or RGB. Following the
color space used, the result may present small color variations;

• Blending specifications: the method can be Simple (for CPU and GPU usage) or
Multispectral (for CPU). Multispectral blending detects the borders in the
images, to blend them with a hard threshold and therefore avoids ghosting. The
factor represents the power on the weights of Eq. 7.

Listing 1.2. Experiment configuration file. Experiment.Json.
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3.4 Datasets

To test the view synthesis, we provide references to datasets that are provided with
their cameras configuration json files. Publicly available datasets are available at the
following addresses, while others have been provided as test scenes for MPEG-I
immersive video exploration and standardization activities.

• Toystable [42, 43]: a natural dataset with perspective cameras (Figure 10a)
https://zenodo.org/record/5055542

• Magritte [44–48]: a synthetic dataset with polynomial non-Lambertian
maps (Figure 10b) https://zenodo.org/record/4488242, https://zenodo.org/record/
5047238, https://zenodo.org/record/5047676, https://zenodo.org/record/5047769

• Rabbit [49, 50]: the subaperture views of a multi-plenoptic camera dataset
(Figure 10c) https://zenodo.org/record/5053770
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• Bear [51]: a natural dataset with perspective cameras with estimated and
Lidar-sensed depth maps (Figure 10d): https://zenodo.org/record/5047463

• MPEG test sequences (including [52–55]): http://mpegx.int-evry.fr/
mpegcontent/

4. Displays

We provide in Figure 11 results obtained with the RVS software on various display
types—autostereoscopic or light field screen (Courtesy ETRO-VUB, Belgium), holo-
graphic stereograms [56], and head-mounted displays. Additional videos can be found
at the following links: https://youtu.be/ikJb9JaaE54 (holographic stereogram) and
https://youtu.be/vavw-TcbHf4 (head-mounted-display).

Displaying a dynamic scene in VR requires real-time view synthesis, preferably at
90 frames per second and at a minimum of 30 frames per second for each eye.

Figure 10.
Overview of the open-source datasets. (a) Toystable consists of two camera arrays at 25 cm (5� 5 cameras) and
55 cm (3� 5 cameras) from the scene. (b) Magritte is a 21� 21 camera array. (c) Rabbit is a 3� 7 array of
5� 5 subaperture images of a plenoptic camera. (d) Bear (4� 8 cameras) is a dataset captured by a Lidar
camera with estimated and sensed depth maps.

Figure 11.
Instead of acquiring the 100 of views needed for the different kinds of display, RVS recreates them using four input
images. (a) Autostereoscopic screen, (b) holographic stereogram, (c) head-mounted display.
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However, the processing time depends on the number of input images and their
resolution – since their pixels form the mesh – resulting in different frame rates [16]
(see Table 1). Using a NVIDIA GTX 1080TI GPU, around four input images at a full
HD resolution can be processed to obtain a high visual quality while reaching real-
time navigation.

In the case of the currently developed light field head-mounted display [57], the
constraint is double—in addition to the real-time requirement, all the light rays
reaching the user’s pupils need to be displayed to make the eye accommodation
possible on the close objects, that is, not only one image per eye but all the
micro-parallax views around the eye position are rendered.

4.1 Additional tools

In this section, we provide references for additional tools, which are not
directly involved in the view synthesis but are nevertheless useful to prepare a dataset.

4.1.1 Camera calibration

The first step prior to DIBR is finding the camera parameters. Accurate intrinsic
parameters, including distortion parameters, can be found using a calibration
checkerboard-pattern, if the scene has a large enough baseline, or directly during the
scene reconstruction (structure-from-motion (SfM) with the retrieval of intrinsic
parameters). Using a pattern gives more accurate results but requires a supplementary
preprocessing step. There exists open-source software such as Kalibr [58] and
OpenCV [59] for camera calibration.

Extrinsic parameters of a set of cameras are retrieved using SfM, with or without
the intrinsic parameters known as prior [60]. There exist many open-source software
such as COLMAP [38] or AliceVision [61]. Those softwares calibrate the camera and
automatically undistort the images.

4.1.2 Depth estimation

Besides parameters estimation, DIBR requires corresponding depth maps for each
input view. If they are not acquired with a depth-sensing device, they can be com-
puted using stereo-matching algorithms. Among many algorithms, Depth Estimation

Number of input images

Dataset Resolution 1 2 3 4 5 6 7 8

Toystable [42, 43] 1920� 1080 90 51 46 49 37 36 31 29

Fencing [52] 1920� 1080 90 90 88 56 52 47 46 40

Painter [53] 2048� 1088 90 90 90 80 60 56 53 46

Museum [54] 2048� 2048 52 53 47 31 22 21 16 16

Classroom [55] 4096� 2048 55 31 30 19 15 11 9 8

Table 1.
The frame rate for view synthesis in VR depends on the number of input images and their resolution. The output
images all have the resolution of oculus rift (i.e., 1080�1200 pixels). Those results have been obtained on a
windows PC with Intel Xeon E5–2680@2.7GHz CPU and NVIDIA GTX 1080TI GPU.
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Reference Software (DERS) [62] and Immersive Video Depth Estimation (IVDE)
[63, 64] are recognized by the MPEG-I community.

5. Conclusions

In this chapter, an overview of the main steps and frequent problems of view
synthesis are described. By starting from sparse input pictures, we showed a DIBR
method that renders the parallax effect on a multitude of displays, allowing a user to
experience new aspects of multimedia immersion. In the second part, a description of
how one can start experimenting with the state-of-the-art RVS software is thoroughly
explained to avoid common pitfalls.

As research progresses, novel methods to create view synthesis emerge, such as
NeRF, however, recent research results demonstrate that DIBR methods will still
reach high-quality performances [16], in real time, that will be highly applicable in
immersive applications, for example, in the context of MPEG immersive video.
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