
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000



Chapter

HRTF Performance Evaluation:
Methodology and Metrics for
Localisation Accuracy
and Learning Assessment
David Poirier-Quinot, Martin S. Lawless, Peter Stitt

and Brian F.G. Katz

Abstract

Through a review of the current literature, this chapter defines a methodology
for the analysis of HRTF localisation performance, as applied to assess the quality of
an HRTF selection or learning program. A case study is subsequently proposed,
applying this methodology to a cross-comparison on the results of five contempo-
rary experiments on HRTF learning. The objective is to propose a set of steps and
metrics to allow for a systematic assessment of participant performance (baseline,
learning rates, foreseeable performance plateau limits, etc.) to ease future inter-
study comparisons.

Keywords: spatial hearing, binaural, localisation accuracy, evaluation, HRTF
selection, HRTF training

1. Introduction

If you reached this point, you are probably familiar with the concept of binaural
rendering. You likely also know that it is used for producing spatial sound over
headphones in most of today’s personal mixed reality experiences. While conceptu-
ally sound, binaural rendering is subject to several limitations in practice, some of
them leading users to perceive distorted versions of the encoded 3D scene. Those
distortions range from slight localisation blur to critical scenarios where auditory
events are perceived on the opposite hemisphere from their actual position.
Researchers have been working on techniques to address this problem of binaural
localisation accuracy for some time now. To establish the benefit of these tech-
niques, they predominantly, and quite naturally, rely on localisation performance
evaluations.

The problem that concerns us here is that there is no standard for said evalua-
tion. As a consequence, fully appreciating the value of a technique often requires
careful reading and interpretation of both protocols and associated results. This
becomes truly problematic when comparing the results of several studies, where
differences in protocol and evaluation metrics make for complicated analysis at
best, simply impossible in some cases. Without inter-study comparison, it becomes
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hard to reach any conclusion on the overall and added value of an HRTF selection,
synthesis, or learning method. The objective of this chapter is to lay the foundations
of such a standard.

1.1 Context

One of the most frequent causes of auditory space distortion in binaural render-
ing is related to the use of non-individual Head Related Transfer Functions
(HRTF)1. An HRTF is a collection of filter pairs that, applied to a mono signal,
modify it so that it has the same characteristics as if it had physically been travelling
from a specific point in space to our ears. The term HRTF refers to the set of filter
pairs, each corresponding to a different source position, typically forming a sphere
of fixed radius around the listener. When sound travels to our ears, the acoustic
wave interactions with our morphology causes deformations in the perceived signal.
From childhood, our brain learned to interpret these acoustic cues as different
source positions. Since there exist many variations of ear, head, and torso shapes
that each deform the sound differently, so too are there variations in HRTFs. While
we are quite adept at sound localisation with our own ears and our own HRTF, the
problem arises when we start using someone else’s.

In practice, most users will end up experiencing binaural rendering using an
HRTF that is not their own, as in the case of a non-individual HRTF, generally taken
from an existing database. Presently, measuring an individual’s HRTF most often
requires specific equipment and access to an anechoic room. Methods exist to
simulate an HRTF from geometrical head scans or morphological data, but they
suffer the same drawbacks: the techniques are either too costly or burdensome to
implement in practical scenarios, or they produce HRTFs that do not exactly match
the individual users. As mentioned, using a non-individual HRTF, which the brain
has not trained with, often results in distortions of the perceived auditory space.
Researchers have been working on this issue, proposing new simulation methods,
HRTF selection processes, and even HRTF training programs focused on the reduc-
tion of these distortions.

Naturally, all these lines of research end up using a localisation evaluation task
to assess the benefit of new techniques. As mentioned above, there exists no
standard method for this evaluation, hindering results appraisal and inter-study
comparisons.

1.2 Chapter scope and organisation

The objective of this chapter is to outline a set of metrics and propose a meth-
odology to assess localisation performance in the context of HRTF selection and
training programs. While the tools proposed can be applied to other contexts, they
were designed with HRTF training in mind as not only do they assess instantaneous
performance but also performance evolution, adding another dimension to the
analysis workflow.

Section 2 presents a state of the art of evaluation metrics used to assess
localisation accuracy in previous studies. Section 3 introduces the proposed meth-
odology and the set of metrics on which it is built. Section 4 is a case-study, using

1 We use the term individual to identify the HRTF of the user, individualised or personalised to indicated

an HRTF modified or selected to best accommodate the user, and non-individual or non-individualised to

indicate an HRTF that has not been tailored to the user. A so-called generic or dummy-head HRTF are

specific instances of non-individual HRTFs.
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the methodology to re-analyse and compare the results of five contemporary
experiments on HRTF learning. Section 4 concludes this chapter.

2. State of the art

This section presents and discusses a variety of metrics and methods of analysis
introduced in previous studies for the evaluation of auditory localisation perfor-
mance, in the context of HRTF selection and learning. Further, it discusses what
aspect of the data or human behaviour is highlighted by each metric.

2.1 Analysis based on angular distances

The majority of the metrics used in the literature to assess localisation perfor-
mance are derived from the angular distance from the source position to the par-
ticipant’s response. This section discusses the most common of these metrics, their
interpretation, and limitations. It builds upon the work presented in Letowski and
Letowski [1].

2.1.1 Egocentric coordinate systems

Many auditory localisation tasks have participants indicating perceived target
locations around them. As such, egocentric coordinate systems are a logical choice
for the assessment of pointing errors. The spherical coordinate system, illustrated in
Figure 1a, uses axes of azimuth and elevation angles. As most researchers are
familiar with this coordinate system, it provides an intuitive framework to view and
present results.

Alternatively, the interaural coordinate system has been proposed to evaluate
localisation results as a more natural representation of how sound is perceived. The
lateral angle, referred to as the “binaural disparity cue” by Morimoto and Aokata
[2], defines cones-of-confusion along which the binaural cues of Interaural Level
Difference (ILD) and Interaural Time Difference (ITD) are approximately con-
stant. A cone-of-confusion is a set of positions presenting binaural cue/localisation
ambiguities, that listeners may not be able to differentiate unless provided with
further spectral cues or head movement information [3]. While not truly ‘cones’,

Figure 1.
(a) Spherical, and (b) interaural coordinate systems used in the methodology, for a source positioned at angles
(55°, 46°) as defined in each coordinate system. Spherical azimuth angle θ is defined in [�180°:180°],
elevation angle φ in [�90°:90°]. Interaural lateral angle α is defined in [�90°:90°], polar angle β in
[�180°:180°]. The lateral angle used here is shifted by 90° compared to that originally defined by Morimoto
and Aokata [2]. In both systems, listeners are facing X with their left ear pointing towards Y.
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these constant ILD or ITD surfaces generally define a circle when the radius is fixed
(see [4] for more discussion on the variation with radius of these constant-value
surfaces). To maintain accepted terminology in the field, each of these circles is
termed a “cone-of-confusion”. The polar angle, or “spectral cue”, is primarily linked
with the monaural spectral cues in the HRTF. This independence of binaural and
monaural cues makes the interaural coordinate system a compelling choice when
assessing localisation performance, particularly when monaural cues are of special
interest as in HRTF selection and learning tasks.

Other conventions have been proposed, such as the double-pole [5] or three-pole
[6] coordinate systems. These systems have been designed to circumvent compres-
sion issues impacting single-pole (spherical and interaural) coordinate systems,
further discussed in Section 2.1.3. They can prove very helpful for some types of
data presentation [5], yet can confuse the analysis as more than one coordinate
vector can be assigned to any given point in space.

2.1.2 Azimuth, elevation, lateral, and polar errors

Regardless of the coordinate system used, angular errors can be calculated using
either the signed or absolute difference between target and response coordinates. The
signed error will give an indication on the “localisation bias” [5] where the absolute
error, more often used in the literature [7–10], provides a measure of how close a
response is to the target, regardless of error direction. Computing summary statis-
tics from these values can be a first and straightforward step to characterise both
the central tendency and dispersion, or “localisation blur” [11], of participant
responses [1].

Care must be taken in calculating signed and absolute errors because of the
discontinuities in the azimuth and polar angles of the spherical and interaural
coordinate systems. If a source is close to the discontinuity and the response crosses
it (e.g. 179° to �179°), the calculated error will be artificially large. Likewise, sum-
mary statistics such as mean or standard deviation should also be computed away
from those discontinuities. Another problem that results from working with ego-
centric systems is that data distributions will be warped by the sphere curvature,
requiring in theory to use circular statistics when comparing statistical distribu-
tions. As discussed in [1], linear statistics can however be used in practice if the
directional judgements are relatively well concentrated around a central direction.

2.1.3 Compensating for spatial compression

Both the spherical and interaural coordinate systems introduce spatial compres-
sion at their poles. In the interaural coordinate system for example, the circumfer-
ence of the cone-of-confusion at 80° lateral angle is much smaller than that of a
cone at 0° lateral angle. Therefore, polar angle errors at the poles (near �90° lateral
angle) are more exaggerated than near the median plane. The same problem
impacts azimuth errors near the poles (near �90° elevation angle) for the spherical
coordinate system.

Previous studies have sought to avoid the spatial compression problem alto-
gether by limiting the analysis to targets away from the poles [12]. The downside of
this method is that it limits the scope of the study’s conclusions because a large
region of space cannot be studied. Still others have proposed compensation
schemes, using for example the lateral angle to weight the response contribution to
the average polar error [13–15]. Carlile et al. [13] for example weighted polar
response errors using the cosine of the target lateral angle, decreasing response
contributions as targets moved towards the interaural axis. This method more
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accurately reflects the arc length between the target and response locations on the
circle, keeping in mind that this weighting does not take the lateral angle of the
response into account.

2.1.4 Using directional statistics to analyse sound localisation accuracy

Due to the discontinuities and spatial compression in the angular metrics of the
typical coordinate systems, some work has simply examined the distance between
the participant responses and the true target positions to assess the extent of
localisation error. The most basic method, the great-circle error used in several
studies [9, 15, 16], is measured as the distance along the unit sphere between the
response and target locations. The great-circle error is independent of the selected
coordinate system, not affected by the issues related to discontinuity in the axes or
spatial compression.

Great-circle error on its own does not provide information about the direction of
the response. Paired with the angular direction, it becomes a vector that fully
describes the difference between the response and target positions [1]. Similar to
bearing used to navigate on the globe, angular direction is the angle between the
vector of the target towards the positive pole and that of the target towards the
response. This vector can be used to compute the mean position of the responses, or
centroid, and perform directional or spherical statistics. Alternatively, the centroid
of the response locations may be calculated by separately summing the x, y, and z
coordinates of the responses and dividing by the resultant length [17, 18], though
this method may experience some undesirable results for edge cases with widely-
scattered locations on the sphere.

To perform statistical analyses of the localisation accuracy, the variance in the
response locations must be quantified [19, 20]. Given the two-dimensionality of the
data, previous work has used Kent distributions on a sphere [17, 21] to determine
ellipses that portray the variance of the data along major and minor axes of the
spread of the responses. With Kent distributions, circular statistical tests may be
conducted to evaluate the significance of the distance between the centroid of the
responses and the target location (such as the Rayleigh z test) or the differences
between mean response locations for different conditions (such as the Watson two-
sample U2 test) [22]. Alternatively, Wightman and Kistler [18] suggest the use of
the “concentration parameter” κ to characterise the variance, or “dispersion”, of the
response locations on the sphere.

2.1.5 Further high level metrics based on angular distances

The spherical correlation coefficient has been used to provide an overall measure
of the correlation between target and response positions [13, 17, 18]. As with
standard correlation, the spherical correlation coefficient ranges from �1 to 1,
where a value of 1 is obtained for two identical data sets, and a value of �1 is
obtained for two sets that are reflections of one another. By construction, the
spherical correlation coefficient is invariant for global rotations between the two
sets.

Rather than looking at single or mean error values to assess localisation accuracy,
Hofman et al. [23] and Trapeau et al. [24] studied the linear regression between
targets and responses elevation angles. Termed “elevation gain”, the slope of this
regression provides a higher level metric that can be used to detect compression or
dilation effects in participant responses. Van Wanrooij and Van Opstal [25]
extended this technique, applying the regression on target versus response azimuth
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as well as elevation angles. To account for azimuthal dependence of the elevation
gain, they also introduced the notion of “local elevation gain”, averaging elevation
gain values based on a sliding azimuthal window. This metric allows the assessment
of how elevation compression and dilation effects impact different regions of the
sphere.

2.2 Analysis based on confusions classification

2.2.1 Confusions classification

An analysis based on angular distances alone would fail to distinguish local
accuracy misinterpretations from critical space confusions, where responses are
often on the opposite hemisphere from target positions. These kinds of errors are
very common in studies using non-individualised HRTFs [8, 10, 26, 27], though
they also occur when listening with one’s own ears or HRTF [5].

One of the simplest techniques is that used by Honda et al. [28], which defines a
hit-miss criterion based on a threshold great-circle error value. Though intuitive,
the method does not provide much information on the nature or potential origin of
the confusions.

A slightly more elaborate form of confusion classification was used by
Middlebrooks [12], which flags responses as confusions when they are in a different
hemisphere than that of the target. To avoid reporting small local accuracy errors as
confusions for targets near the hemispheres limits, only those responses with polar
angle errors greater than 90° were considered when searching for confusions. The
classification thus resulted in three types of “quadrant confusions”: front-back, up-
down, and left-right. Majdak et al. [14] further improved the definition, introduc-
ing a weighting factor to compensate for polar angle compression near the
interaural axis. A comparable strategy was adopted by Carlile et al. [13], excluding
from confusion checks those targets too close to the interaural axis.

A parallel classification was proposed by Martin et al. [29], determining confu-
sion types based on cone-of-confusion angle values rather than sphere quadrants.
The classification was further refined by Yamagishi and Ozawa [30], Parseihian and
Katz [8] and Zagala et al. [16], adding “precision” and “combined” confusions to
the already existing confusion types. This classification is discussed in more detail in
Section 3.1.4.

2.2.2 Separating angular and confusions errors contributions

Given the relatively high incidence of front-back confusions in non-individual
HRTF localisation tasks, results often exhibit a bi-modal distribution [10]. Analyses
applied to data that contain a large portion of front-back confusions will have large
variance and potentially inaccurate averages. The other confusion types also have a
similar, if somewhat less characteristic, impact on the data, artificially inflating
localisation errors. As such, it is common practice to split the data to analyse
confusions separately from local performance [1, 12, 14, 31]. A potential problem
with this approach is that excluding data from an analysis may result in an unbal-
anced data set, which limits the use of classical repeated-measures statistics.

Another approach that preserves the sample size of the data consists of ‘folding’
the responses into the same subspace as that of the target prior to the analysis. This
technique has only ever been applied to mirror front-back confusions [18], as it may
only apply to very specific circumstances and tends to inflate the power of the
resulting conclusions [1].
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2.3 Additional analysis methods

2.3.1 Decomposing the analysis across sphere regions

Several studies have shown variations in localisation accuracy as a function of
region on the sphere due to, amongst other things, cue interpretation [3] or
reporting method [32]. In these cases, decomposition schemes were used to better
characterise those variations and understand their origins. As mentioned in Section
2.1.5, Van Wanrooij and Van Opstal [25] for example decomposed the analysis of
elevation gain across azimuthal regions. Later, Majdak et al. [14] proposed an
analysis split into hemi-fields to detect higher accuracy variations for targets in the
rear region. Middlebrooks [12] applied a similar spatial decomposition to detect
high variability for responses in the upper-rear quadrant, temporarily excluding
them from the analysis to better assess variations in remaining regions. The princi-
pal drawback of decomposition is that it reduces the statistical power of the analy-
sis, and can result in unbalanced data sets if responses are not evenly spread across
the regions under consideration.

2.3.2 Performance evolution modelling and analysis

For the evaluation of HRTF learning, it is essential to assess the progression of
participant performance over multiple sessions. On the assumption that any adap-
tation to an HRTF is a process with diminishing returns with repeated training
sessions, localisation performances may be modelled as an exponential decay y ¼
y0 exp �t=τð Þ þ c [15, 31]. Here y0 is the initial performance, t is the time (training
day, session, etc.), τ is the improvement time constant, and c is the long term
performance. This model of performance over time allows for comparisons between
studies, such as determining if different protocols lead to faster learning rates or if
better long term performance can be achieved. If the training duration proves
insufficient to reach a performance plateau/asymptote, like that seen in Stitt et al.,
[10], the improvement data may be better modelled using the linear form axþ b
[9, 31]. In addition to performance modelling, the correlation between training
duration and performance metrics has been used to determine if factors other than
training duration, like participant attention, should be considered to explain per-
formance evolution [33].

Analysis of performance evolution can be performed per condition (grouping
participants) [8, 10] or per participant [23]. Participant performance evaluation
makes it harder to draw general conclusions, but potentially provides deeper insight
into performance as not all participants exhibit the same ability to adapt to a new
HRTF [24]. This adaptation capacity appears to be a function of initial HRTF
affinity or “perceptual quality” [10]. For inter-study comparisons, some form of
performance scaling or normalisation may first be required to compensate for such
affinities, highlighting performance improvement rather than absolute value [10].

3. Methodology for assessing localisation performance

From the literature review in the previous section, a methodology is derived for
assessing binaural localisation accuracy. Though it was designed with a focus on
HRTF training programs, it should be applicable to any HRTF-related study inter-
ested in localisation performance assessment. Section 3.1 introduces the conven-
tions and metrics used in the methodology, itself detailed in Section 3.2. The metrics
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proposed along with the notions they examine are summarised in Table 1 at the end
of this section. A MATLAB toolbox for the evaluation of all the metrics discussed
here is available online2.

3.1 Conventions and evaluation metrics

3.1.1 Coordinate systems

The methodology makes use of both spherical and interaural coordinate systems,
illustrated in Figure 1. While the spherical coordinate system provides an intuitive
perspective on the results, the interaural system has been especially designed to
separate the analysis of binaural and monaural cues, as discussed in Section 2.1.1,
making it a natural choice for the analysis of HRTF-related localisation perfor-
mance.

3.1.2 Protocol space coverage

Space coverage is a set of metrics, scangle and scshape, designed to provide insight
on the density of points tested during the localisation task, as well as on the homo-
geneity of their distribution on the sphere. scangle represents the density of the

Name Notion examined

Space coverage
statistic

Density and homogeneity of the evaluation grid

Confusion rates Percentage of errors resulting from cone-of-confusion or quadrant ambiguities

Great-circle error Overall localisation accuracy

Local great-circle
error

overall localisation accuracy, excluding confusions

Local lateral error Localisation accuracy in the horizontal plane, excluding confusions

Local polar error Localisation accuracy in the vertical plane, excluding confusions

Local azimuth error Localisation accuracy in the horizontal plane, excluding confusions

Local elevation
error

Localisation accuracy in the vertical plane, excluding confusions

Local lateral
compression

Whether localisation errors are distorted systematically towards the median
plane ZX, excluding confusions

Local elevation
compression

Whether localisation errors are distorted systematically towards the horizontal
plane XY, excluding confusions

Local lateral bias Whether there is a systematic rotational offset on responses around the Z axis,
excluding confusions

Local elevation bias Whether there is a systematic upward offset on responses, towards positive Z,
excluding confusions

Per-region metrics Decomposition of the analysis across target regions

Local responses
distribution

Whether two sets of responses, excluding confusions, belong to different
spherical distributions (using Kent distribution and circular statistics)

Table 1.
Summary of the evaluation metrics used in the methodology, grouped by concept similarity.

2 MATLAB auditory localisation evaluation toolbox: https://hal.archives-ouvertes.fr/hal-03265190.
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evaluated positions for a given test protocol. It is is computed based on the spherical
Voronoi diagram built from the evaluated positions, as the average over the solid
angles of its cells [34], accompanied, �, by its standard deviation. As illustrated in
Figure 2, denser grids result in smaller scangle, with standard deviation decreasing
for increasingly homogeneous distributions.

scshape is computed as the average over the shape indices of the cells of the
Voronoi diagram, defined as:

shape_index ¼ 4π
cell_area

cell_perimeterð Þ2
(1)

where the perimeter is computed as the sum of the great-circle values between
the cell vertices, expressed in radians. The squared value of the perimeter, as well
as a 4π normalisation factor, are used so that the final shape index value is defined
in 0, 1½ �. Cells shaped as circles will have an index close to 1, whereas the index
will decrease towards 0 as the cell grows into an elongated polygon. As illustrated
in Figure 2, scshape is used in addition to scangle standard deviation to detect
uneven evaluation grid distributions. Note that grid density has a negative impact
on scshape: dropping from 0.91 to 0.84 for uniform grids of 20 and 80 points
respectively [35].

3.1.3 Great circle error and angular direction

The great-circle error is defined as the minimum arc between the response
and the true target position. This metric provides an intuitive way to assess the
local localisation accuracy as the spherical distance between the responses and the
target. Given xyztarget and xyzresponse as the vectors in Cartesian coordinates of the
target and response positions respectively, the great-circle error is defined in
[0°:180°] as:

great_circle_error ¼ arctan
xyztarget � xyzresponse

�

�

�

�

�

�

xyztarget � xyzresponse

0

@

1

A (2)

where smaller values correspond to better localisation performances.

Figure 2.
Various test grids and associated space coverage statistics. (a) Homogeneous grid with large number of points,
(b) homogeneous grid with small number of points, (c) non-homogeneous grid with small number of points,
and (d) horizontal grid with small number of points.
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The angular direction is coupled to the great circle to enable vector summation
of target to response arcs on the sphere. The direction towards the right ear consti-
tutes the positive pole in the interaural coordinate system. The angular direction
may then be calculated from the interaural coordinates as:

angulardir: ¼ arctan
cos αresp

� �

sin βresp � βtarget

� �

cos αtarget
� �

sin αresp
� �

� sin αtarget
� �

cos αresp
� �

cos βresp � βtarget

� �

0

@

1

A

(3)

where α is the lateral angle and β is the polar angle.

3.1.4 Confusion classification

As discussed in Section 2.2, confusion classification schemes are primarily
designed to separate small localisation errors from larger errors caused by erroneous
localisation behaviours typically observed in binaural localisation tasks. The
scheme used in the methodology is designed around notions borrowed from both
cone-of-confusion [8, 10, 16, 29] and sphere quadrant [12, 14] classifications. It
separates responses into 4 categories: those near the target (precision errors),
those opposite the target compared to the YZ plane (front-back errors), those
within the target cone-of-confusion (in-cone errors), and the remainder (off-cone
errors).

The classification is illustrated in Figure 3a. Responses within a 45° radius cone
around the target are defined as precision errors. Responses within a 45° cone
around the symmetrical of the target position regarding the YZ plane, not already
classified as precision errors, are defined as front-back errors. Responses with a
lateral angle within 45° of that of the target, not already classified as either precision
or front-back confusions, are defined as in-cone errors. Remaining responses are
defined as off-cone errors. Figure 3b and c schematically show several alternate
approaches, evaluated before choosing the current method (discussed in more
detail below).

The proposed 45° threshold value is somewhat arbitrary, based on a
segmentation of localisation error distributions of responses from previous studies
[8–10]. This value can be adapted depending on the context of the study and
the nominal localisation accuracy expected. To improve understanding, the

Figure 3.
Confusion type as a function of response position on the sphere, for a target at spherical coordinates (35°, 10°)
and a listener facing X with his left ear pointing towards Y. (a) Proposed classification scheme, (b)
classification used in Stitt et al. [10] based on polar angle only, and (c) attempt at solving pole compression
issues of (b).
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evolution of confusion zones for a 20° threshold and various target position is
illustrated in Figure 4. The sum of the four confusion category rates always sums
to 100%.

The distinction between in- and off-cone confusions is inspired from the duplex
theory [36, 37], separating responses based on whether they are caused by
misinterpreting monaural cues (in-cone confusions) or binaural cues (off-cone
confusions). The commonly cited front-back confusion category has been
maintained, despite not having a clearly identified origin in signal symmetry, as it
represents a behaviour frequently observed in localisation studies [38]. Other con-
fusion categories have been considered for this scheme, such as up-down or com-
bined up-down-front-back confusions. They have been discarded however, as their
representative patterns were not prevalent in the ≈10000 participant responses
analysed in Section 4 or the meta analysis on ≈80000 responses in free field by Best
et al. [38].

Compared to traditional cone-of-confusion classifications defined using only
polar angle [8, 10, 16, 29], the main drawback of the proposed scheme is that it is
susceptible to ITD mismatch. By only looking at the difference in polar angle
between target and response, these classifications are not impacted by participants
misinterpreting the ITD of the target, focusing on monaural cues interpretation
characterisation. As illustrated in Figure 3b, the problem of these classifications is
that they have high rate of false error detection at the poles of the interaural
coordinate system, were a small shift in response can be interpreted as e.g. a front-
back confusion instead of a precision error.

An attempt was made to propose a new scheme, inspired by the one used in Stitt
et al. [10], alleviating the pole issue by increasing the (polar) spread of the precision
zone as targets near the poles, constraining said spread to always span 45 of great-
circle angle when projected on the sphere. As illustrated in Figure 3c, this constraint
results in a undesirable warping of the precision error zone for targets within a
certain lateral distance from the poles.

The solution proposed for studies needing a classification based on monaural
cues interpretation alone is to extend the proposed scheme, artificially adjusting the
lateral position of targets prior to the classification to discard errors related to ITD
mismatch. This adjustment can be made on a per-participant/target basis, replacing
the lateral angle of targets by the mean lateral angle of their associated responses
prior to the classification. It can also be performed on a per-response basis by simply
assuming that targets and responses always have the same lateral position. The case
study of Section 4 uses the second, simple, non-adaptive form of the classification
scheme.

Figure 4.
Confusion type as a function of response position on the sphere for the proposed classification scheme with an
angle threshold of 20 and a listener facing X with his left ear pointing towards Y. Target at spherical
coordinates (a) (35°, 10°), (b) (70°, 40°), and (c) (80°, 10°).
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3.1.5 Azimuth, elevation, lateral, and polar errors and biases

Lateral and polar errors are defined as the absolute difference between target
and response positions in interaural coordinates. They are used to project
localisation errors onto spatial dimensions associated with separate cues in the
HRTF, allowing for an analysis of their independent contribution to the overall
performance. Both are defined in [0°:180°], where smaller values correspond to
better localisation performances. In the methodology, lateral and polar errors will
be evaluated only on responses classified as precision confusions, hence referred to
as local lateral and polar errors. This limitation allows to avoid the discontinuities
discussed in Section 2.1.2 as well as the hazardous interpretation of values
compounding local errors and spatial confusions.

As mentioned in Section 2.1.3, compression at the poles will lead to artificially
inflated polar errors for targets near the interaural axis. A weight, proportional to
the target lateral position, can be applied to the polar error to compensate for the
compression, defining the polar error weighted as:

polar_error_weighted ¼ polar_error ∗ cos αtarget
� �

(4)

This weight is designed so that, for a target and a response that share the same
lateral angle, the polar error weighted is equal to the arc length (great-circle) that
separates them, regardless of said lateral angle. Note that while lateral error is not
impacted by pole compression, it ‘folds’ near the interaural axis: random responses
will overall have a lower local lateral error for targets in this region. This is a
valuable feature of the interaural system when assessing the symmetric contribu-
tion of binaural cues (ITD/ILD) to localisation error. It can nonetheless lead to
artificially deflated lateral errors when used in a different context.

Azimuth and elevation errors are defined as the absolute difference between
target and response positions in spherical coordinates. They correspond to a more
traditional projection of spherical coordinates, more intuitive yet no longer guided
by auditory cue separation. Like interaural errors, azimuth and elevation errors are
defined [0°:180°] and will be used only for local precision evaluation. As for polar
error, azimuth error compression near the poles can be compensated for, defining
the azimuth error weighted as:

azimuth_error_weighted ¼ azimuth_error ∗ cos φtarget

� �

(5)

In addition to absolute errors, signed lateral and elevation errors are used in the
methodology. Mean signed errors, referred to as biases, are typically used to exam-
ine systematic rotational biases, induced for example by an offset between the
tracking system used for measuring the HRTF and that used during the evaluation
task, or reporting bias. As for absolute errors, usage of both metrics will be
restricted to responses classified as precision confusions.

Finally, lateral and elevation compression errors are used to highlight space
compression and dilation effects. Lateral compression, is defined as kαtargetk �
kαresponsek, so that a positive error corresponds to a compression towards the median
plane ZX. Respectively, a negative error corresponds to a dilation away from the
median plane. Similarly, the elevation compression is defined as kφtargetk � kφresponsek,
so that a positive error corresponds to a compression towards the horizontal
plane XY. Respectively, a negative error corresponds to a dilation away from the
horizontal plane. Compression errors are for example used to characterise a
pointing bias caused by the reporting interface, or to detect lateral compressions
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resulting from an ITD mismatch between the presented HRTF and that of the
participants.

3.1.6 Sphere regions

The decomposition of the analysis in sphere regions depends on the context. As
such, there exists no one ideal decomposition scheme. To support the case study
presented in the next section, the sphere will be split into 6 regions: front-up (x>0
and z>0), front-down (x>0 and z<0), back-up (x<0 and z>0), back-down (x<0
and z<0), left (y>0), and right (y<0). This scheme has been chosen to best
highlight region specific behaviours while remaining manageable, based on a pre-
liminary analysis of the experiments studied in Section 4. The redundant left and
right regions have been added for systematic checks on lateralisation discrepancies
in participant responses.

3.2 Methodology

The methodology is proposed as a set of analysis steps, each building on the
previous one to provide a comprehensive assessment of participants localisation
performance.

3.2.1 Evaluation task characterisation

The first step of the analysis is to assess how much of the space, i.e. sphere, has
been tested during the localisation task. In addition to depicting the grid of tested
positions, this step reports its space coverage statistics as defined in Section 3.1.2.
This provides readers with a simple set of metrics that reflect the spatial thorough-
ness of the evaluation, a value they can use to qualify the study’s conclusions as well
as for inter-study comparisons.

Atypical evaluation grids and their potential impact on participant results should
also be discussed here. An evaluation on frontal field positions alone is likely to result
in better overall performance compared to one encompassing the whole sphere, due
to known variations of perceptual accuracy across sphere regions [5]. When using
such grids, reporting metrics chance rates, i.e. their values for responses randomly
distributed on the sphere, as proposed by Majdak et al. [14] can greatly help readers
appreciate the presented results. Another problematic example is the use of evalua-
tion grids sparse enough for participants to identify and recall the tested positions,
likely impacting participants performance and associated conclusions.

Finally, the stimulus characteristics (type, duration, etc.) as well as the reporting
method should be described and discussed here, so that any systematic bias they
may have on participant responses can be detected during the analysis.

3.2.2 Assess global extent of localisation error

The objective here is to get a rough overview of participant performance during
the localisation task, simply answering the question “how far were responses from
the true target position?”. The assessment is based on the great-circle error as
defined in Section 3.1.3.

3.2.3 Assess critical localisation confusions

The next step consists in separating small precision errors from critical confu-
sions. The nature and types of confusions is characterised early on as they can have
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a critical impact on localisation performance, often far more detrimental than local
localisation accuracy issues. This characterisation is performed using one of the
classification methods defined in Section 3.1.3.

3.2.4 Assess local extent of localisation error

This next step takes a closer look at responses classified as precision errors, i.e.
the non-confused responses, to examine the local localisation performance. The
mean great-circle error and angular direction of responses classified as precision
confusions is computed to analyse the extent of local errors. Note that this metric
does not depend on the confusion classification method used, as precision errors are
defined using the same criterion in both methods. Conclusions drawn from this
local analysis should naturally be leveraged by the percentage of responses it
encompasses.

3.2.5 Horizontal and vertical decomposition of the localisation error

Whether or not this step should be included in the analysis, and which metrics it
should make use of, depends on the context of the study. An experiment focusing
on perceptual ITD adjustment for example would likely make use of both local
lateral error as well as lateral compression. A training program attempting to fine
tune participant interpretation of monaural cues would on the other hand base its
evaluation on the local polar error. For some studies, this decomposition will not
make sense and should be avoided to limit Type I error inflation.

3.2.6 Decompose the analysis across sphere regions

This final step consists in repeating all of the above, decomposing the analysis
based on target positions to assess how participants fared in specific regions of the
sphere. Given the loss of statistical power and the additional clutter that this analy-
sis represents, it only needs to apply to those studies interested in characterising
spatial imbalances in performance. The decomposition can then be performed using
either a sphere splitting scheme as the one described in Section 3.1.6, or on a per-
target position basis. For example, this approach can be used to support the design
of HRTF learning programs that would focus dynamically on those regions/confu-
sions that are the most problematic [9].

To further characterise local localisation behaviours, the analysis can be com-
pleted by evaluating average response positions and spherical response distribu-
tions. The former, computed by summing local great-circle error vectors, as
discussed in Section 3.1.3, will help characterise variations of localisation accuracy
across sphere regions [21]. The latter, characterised using Kent distributions (see
Section 3.1.3), will provide the statistical framework to assess the significance of
those variations.

4. Case study

The methodology defined in the previous section is applied here to build a
comparative analysis on a selection of studies, focusing on the use of, and adapta-
tion to, binaural cues for auditory localisation. The objective of this case study
collection is not so much to present a thorough comparison of these studies as to
illustrate how the methodology can be applied to a practical use case, and how its
constituting metrics react to concrete scenarios. To further focus the case-study on
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these points, significance assessment is based on the overlapping of estimated
distributions Confidence Intervals (CIs) rather than on null-hypothesis tests [39].

4.1 Study selection overview

Several studies of the impact of HRTF training on localisation accuracy have
been selected from existing literature, for which authors graciously provided raw
participant data used in the comparative analysis. A short description of each study
is provided in the next section, reporting only those elements that concern the
present analysis.

Common to most of the presented studies is the notion of HRTF perceptual
quality. This term refers to the perceptual matching, localisation wise, between a
participant and an HRTF. A low quality HRTF is one that results in bad localisation
accuracy. Inversely, the higher the quality, the better the localisation accuracy, the
highest quality match corresponding in theory to one’s own HRTF. Replicating the
potential outcomes of selecting an HRTF from an existing database, three degrees of
perceptual matching are considered in these studies in addition to individual HRTF:
worst-match, random-match, and best-match HRTF. Best and worst-match HRTFs
represent respectively a best and worst case outcome, typically obtained by asking
participants to perform a localisation task with, or a perceptual ranking of, an
existing set of HRTFs.

4.1.1 Study description: exp-majdak

Majdak et al. [14], a 2010 study on the impact of various reporting methods
during training with their individual HRTF. 10 participants trained on auditory
localisation: 5 reporting perceived localisation positions with their hand, 5 with their
head. Each participant completed 600–2200 localisation trials over a span of 2–32 d.
Training and evaluation were performed within each trial: a session was composed
of 50 trials, completed in 20–30 min. Each trial consisted of a localisation task with
feedback, testing participants on 1380 positions overall, distributed on a sphere,
using a 500 ms burst of white noise as stimulus. As the reporting method proved to
have only a small impact on training efficiency, the 10 participants have hereafter
been aggregated in a single group (grp-majdak-indiv), focusing the analysis on the
impact of HRTF quality on performance evolution.

4.1.2 Study description: exp-parseihian

Parseihian and Katz [8], a 2012 study on accommodation to non-individual
HRTF. 12 participants trained on auditory localisation, each completing 3 sessions of
12 min each on 3 consecutive days. Each session consisted of an interactive audio
localisation game followed by a localisation task evaluation testing participants on
25 positions distributed on a sphere, using a 180 ms sequence of white noise bursts
as stimulus. Before training, each participant ranked a set of 7 perceptually orthogo-
nal HRTFs [40, 41] from the LISTEN database [42] based on localisation accuracy
as perceived during predefined audio trajectories. The best and worst-match HRTF
for each participant was extracted from this ranking. Participants were then divided
into 3 groups: 2 that trained with their individual HRTF (grp-parse-indiv), 5 with
the best-match HRTF (grp-parse-best), and 5 with the worst-match HRTF (grp-
parse-worst). An additional 2 groups that performed only 1 training session are not
considered in the current analysis. The ITDs of all HRTFs were adjusted based on
individual participant head circumference, using a model derived from a regression
between measured ITDs and morphological parameters. This technique is used as a
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practical method, easily carried out by end-users, to maximise initial localisation
performance accuracy.

4.1.3 Study description: exp-stitt

Stitt et al. [10], a 2019 study on accommodation to non-individual HRTF. 16
participants trained on auditory localisation, each completing 10 sessions of 12 min
each over a span of 10–20 weeks. The worst-match HRTF selection, training game,
stimulus, and tested audio source positions during the localisation task evaluation at
the end of each training session were the same as those of exp-parseihian. Partici-
pants were divided into 2 groups: 4 training with individual HRTFs (grp-stitt-
indiv) and 8 with worst-match HRTFs (grp-stitt-worst). An additional 8 partici-
pants trained for only 4 sessions with their worst-match HRTFs are not considered
in the current analysis.

4.1.4 Study description: exp-steadman

Steadman et al. [15], a 2019 study on accommodation to non-individual HRTF.
27 participants trained on auditory localisation, each completing 9 sessions of
12 min each over a span of 3 d. A localisation task evaluation was conducted at the
beginning and end of each day as well as between each training session the first day,
testing participants on 12 positions distributed on a sphere using a 1.6 s stimulus
merging bursts of white noise and speech signal. All participants trained with the
same randomly-matched HRTF selected from the 7 LISTEN database of exp-
parseihian. Participants were distributed in 3 groups, training on various gamified
and interactive versions of an audio localisation game, aggregated as one group in
the current analysis (grp-steadman-random). An additional 9 participants, acting
as a control group not undertaking training, are also not considered in the current
analysis, as well as the results of a parallel evaluation task performed on another
HRTF than that used during training.

4.1.5 Study description: exp-poirier

Poirier-Quinot and Katz [9], a 2021 study on accommodation to non-individual
HRTF. 12 participants trained on auditory localisation (grp-poirier-best), each
completing 3 sessions of 12 min each over a span of 3–5 d. Participants trained using
a best-match HRTF selected from the 7 LISTEN database of exp-parseihian, though
the simplified subjective selection method was only concerned with identifying the
best-match HRTF. An additional 12 participants trained with their best-match
HRTF in a reverberant condition are not considered in the current analysis. Each
session consisted of an interactive audio localisation game followed by a localisation
task evaluation testing 20 positions distributed on a sphere using the same stimulus
as in exp-parseihian.

4.2 Application of the methodology

4.2.1 Time alignment of evaluation sessions

In all these experiments, the training sessions lasted for 12 min, except for
exp-majdak where both training and evaluation were performed in a single block
of 20–30 min. According to exp-majdak, the evaluation itself took half that time,
leaving a per-session training duration equivalent to that of the other studies. A
time realignment across experiments was executed such that the evaluation sessions
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compared are separated by equivalent training durations. Thus, the sessions have
been renumbered to account for changes in protocol.

In the analysis, evaluation sessions are numbered from 1 to 11, each separated by
a 12 min training. Exp-poirier and exp-parseihian only performed 3 training
sessions, hence the missing data-points in subsequent figures. Likewise, exp-stitt
and exp-majdak did not report pre-training performances, missing session 1 data-
points. Finally, the number of evaluations in exp-steadman spreads out from ses-
sion 4 onward, switching from an evaluation session after each training to an
evaluation at the beginning and end of each 3-sessions training day.

4.2.2 Evaluation task characterisation

The space coverage of target positions evaluated during the localisation task of
each study are reported in Figure 5. The high density of the grid of exp-majdak
results in a very low average scangle compared to those of the other experiments. Its
comparatively high standard deviation is due to the absence of test positions in the
bottom part of the sphere (polar gap). For comparison, a homogeneous grid with
the same number of points would have yielded scangle ¼ 0:5°� 0:003. Distribution
homogeneity is also responsible for the lower scangle standard deviation value
observed in exp-poirier compared to that of exp-parseihian and exp-stitt. Finally,
exp-steadman, with fewer test points and a polar gap in the bottom hemisphere,
has the highest scangle value and standard deviation.

As could be expected, all the grids present high scshape values, being overall
evenly distributed on the sphere. Grid density around polar gaps impacts the met-
ric, explaining why exp-poirier value is higher than that of exp-majdak while both
grids are evenly distributed: removing polar gap contributions in these grids would
yield scshape values of 0.91 and 0.84 respectively.

Two different reporting methods were used in the five studies: head pointing
(exp-majdak and exp-steadman) and hand pointing (exp-majdak, exp-
parseihian, exp-steadman, exp-poirier). This should have little to no impact on
the comparative analysis however, as both methods lead to similar reporting biases
[32]. exp-parseihian, exp-stitt, and exp-poirier used the same stimulus: a 180
sequence of three white noise bursts. Exp-majdak used a slightly longer, unique
burst of 500 ms, and exp-steadman used a 1.6 s stimulus composed of both
white noise bursts and speech signal. All these stimuli are likely to present the
transient energy and the broad frequency content necessary for auditory space
discrimination [43, 44]. The difference in stimulus duration may have

Figure 5.
Space coverage statistics of the evaluation task in the selected studies (a) majdak, (b) parseihian/stitt, (c) poirier and
(d) steadman.
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repercussions in the analysis, as the participants can initiate more head movements
to facilitate auditory localisation during the presentation of longer stimuli [45].
While adaptive rendering (i.e. dynamic cues) was disabled during stimulus presen-
tation in exp-parseihian, exp-stitt, and exp-poirier, this is not explicitly stated in
exp-majdak and exp-steadman.

4.2.3 Assessing the global extent of localisation error

The evolution of great-circle angle error across studies and training sessions is
reported in Figure 6. Besides the clear benefit of training observed in all studies, the
metric also highlights the overall positive impact of HRTF quality on initial perfor-
mance. Interestingly, while the results from exp-parseihian suggest a similar intra-
HRTF quality/performance relationship, it reports larger great-circle angle errors
compared to those of the other experiments. This point already illustrates how
differences in evaluation protocols or inter-participant variations may complicate
the comparison of results across studies, as discussed in Section 4.3.

4.2.4 Assessing the critical localisation confusions

Much like the great-circle error, precision confusion rates can be used to assess
performance evolution during training, as illustrated in Figure 7. Trends observed on
initial precision rates and their evolution reflect the observation made on the great-
circle error analysis. Precision rates and great-circle angle values are indeed highly
correlated across training sessions, with correlation coefficients in [�1:0:�0:9] for all
studies. As each confusion rate aggregates all the responses of a participant during an
evaluation session however, their CI is by construction often wide enough to confuse
the analysis compared to that based on great-circle errors.

This widening of the CIs is particularly apparent in the comparison of the other
confusion rates, reported in Figure 8 for the evaluation that took place after the first
training session. While a trend indeed suggests that the amount of confusions
increases with decreasing HRTF quality, overlapping CIs often prevent any definite
conclusion. Observing these rates can still help inform the analysis, as the poor
performance of grp-parse-indiv on great-circle error observed in the previous sec-
tion can be partly attributed to their high in-cone confusion rates, while their off-
cone confusion rate is on par with that of grp-stitt-indiv and grp-majdak-indiv.

Maybe the most interesting use of confusion rates is to decompose the overall
performance evolution. As illustrated by its confusion rate evolution in Figure 9,
grp-stitt-worst performance evolution observed in Figure 6 should, confusion wise,
mainly be attributed to improvements in front-back confusions during training.

Figure 6.
Great-circle error mean and CI evolution across sessions and experiments. The great-circle error value for
random responses is of ≈90° for all experiments.
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4.2.5 Assessing the local extent of localisation error

Results of the confusion classification indicate that roughly 50% of responses
were within the vicinity of the target (precision errors) after the first training
session across experiments. The analysis here focuses on these responses, assessing
local accuracy issues to complete that on localisation confusions.

Figure 10 reports local great-circle errors across training sessions and experi-
ments. Looking once more at grp-stitt-worst, their local accuracy did not improve
during training, oscillating around 25°. The improvement seen on overall great-
circle error for that group can therefore be solely attributed to the reduction in
front-back confusions reported in the previous section. Likewise, the 10° improve-
ment on overall great-circle error observed for grp-parse-worst between sessions 2
and 3 can be attributed to a reduction in confusion rates, as it does not appear on
local great-circle error. Separating the contribution of confusions from that of local
accuracy also reveals a significant difference between grp-stitt-indiv and grp-

Figure 7.
Precision confusion rates mean and CI evolution across sessions and experiments. Grp-parse-indiv was
removed from the figure, composed of only 2 participants, resulting in a CI so large it confused the whole plot.

Figure 8.
Confusion rates after the first training session across experiments.

Figure 9.
Confusion rates mean and CI evolution across sessions for grp-stitt-worst.
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majdak-indiv improvement of local great-circle error between sessions 2 and 6, not
visible on global great-circle error.

4.2.6 Horizontal and vertical decomposition of the localisation error

Local lateral error evolution across sessions for all experiments is reported in
Figure 11a. As expected, initial performances indicate that participants using indi-
vidual HRTF were quite apt at lateral localisation, accustomed as they were to the
presented ITD and ILD cues. Exp-poirier, exp-stitt, and exp-parseihian used a
similar ITD adjustment scheme, slightly improved in its last iteration for exp-
poirier compared to that of exp-stitt, itself an incrementation on that of exp-
parseihian. As such, the progression of initial lateral errors between grp-parse-
worst, grp-stitt-worst, and grp-poirier-best can be expected. The performance of
grp-steadman-random, on par with that of participants using ITD-adjusted or
individual HRTFs, could be either attributed to the small number of evaluation
positions (similar to that used during training), or to the 1.6 s burst and voice
stimulus used as compared to the 180 ms to 500 ms burst trains used in the other
experiments.

Participants trained with individual HRTF did not improve much on local lateral
error overall, starting at ≈11° after the first training session and only improving to at
≈9° after the last. Comparison of performance evolution between groups training
with a worst-match HRTF (grp-parse-worst and grp-stitt-worst) against that of
groups training with a best-match HRTF (grp-parse-best and grp-poirier-best)
suggests a positive impact of HRTF quality on potential local lateral error improve-
ment. It would also seem that the ITD adjustment applied in exp-parseihian and
exp-stitt was not sufficient to compensate for poor HRTF quality regarding lateral
localisation accuracy.

Focusing on local lateral compression evolution, Figure 11b reveals a systematic
over-estimation of the lateral angle across experiments, i.e. participants overall
reported targets closer to the inter-aural axis poles than they truly were. Analysis of
session 2, after the first training session, indicates that 62% of the 73 participants
presented an overall lateral compression of less than �5°, against only 4%
presenting one above 5°.

Local polar error evolution across sessions for all experiments is reported in
Figure 12a. Overall performance was still a function of HRTF quality, but for grp-
parse-indiv poor performance prior to training and grp-steadman-random, on par
with exp-stitt and exp-majdak control groups using individual HRTFs. The impact
of training is hardly more pronounced than that observed on local lateral error.
Training still helped lower local polar error overall, with even participants using
individual HRTFs slightly improving during training: grp-stitt-indiv and grp-

Figure 10.
Local great-circle error mean and CI evolution across sessions and experiments.

20

Advances in Fundamental and Applied Research on Spatial Audio



majdak-indiv gained ≈3° in local polar accuracy over the course of training,
roughly identical to the improvement observed on local lateral accuracy. Note here
that an analysis based on the overall polar error, i.e. taking into account confusions,
would have suggested ≈12° improvement after training for these two groups.
Finally, most of the improvement on local polar error occurred during the early
stage of the training, decreasing of ≈7° between sessions 1 and 2 in average over all
experiments, not considering exp-stitt and exp-majdak as participants were not
tested prior to training, and of only ≈7° between sessions 2 and 4.

The analysis of local elevation compression also reveals a stronger tendency to
under-estimate target elevation, i.e. responses closer to the horizontal plane than the
true target, than that observed on local lateral compression. Across experiments,
38% of the 73 participants presented a local elevation compression of more than 5°
after the first training session, compared to 14% for elevation dilation. A trend
suggests that local elevation compression is quickly corrected during the first train-
ing session and remains at a relatively constant value regardless of the method or
number of training sessions. The surprisingly high plateau reached by grp-majdak-
indiv compared to grp-stitt-indiv, also training on individual HRTFs, could be
attributed to the the difference in tested grid positions: exp-majdak presented far
more targets near the 90° elevation pole than exp-stitt.

4.2.7 Decompose the analysis across sphere regions

This section illustrates how splitting results analysis across sphere regions might
highlight spatial imbalances in performance. To avoid further cluttering the chap-
ter, only two example decompositions will be presented: confusion rates based on
sphere regions, and local great-circle error based on individual target locations.

Decomposition of confusion rates based on the regions defined in Section 3.1.6 is
illustrated Figure 13. Results displayed are aggregated over all five studies, to focus
the analysis on general binaural localisation behaviours. The first noticeable result is

Figure 11.
(a) local lateral error, and (b) local lateral compression evolution across sessions and experiments.
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that targets in the front-down region were the most susceptible to front-back and
in-cone confusions initially, resulting in a very low precision rate (30% vs. 47% and
more for the other regions) prior to the first training session. Interestingly, confu-
sion rates in the front-down region were systematically higher than those in the
front-up region, for all but off-cone confusions. The initial rate of front-back con-
fusions of targets in front of participants, more than twice that of targets behind
them, is likely due to the absence of visual feedback during the localisation task,
increasing likelihood of perceiving a sound as behind if they cannot see its source,
regardless of HRTF cues.

A second interesting result is the negligible evolution of front-back confusions
for targets in the back regions throughout training (i.e. back-to-front). While the
precision rate of all regions increased, and front-back confusions dropped for front
regions, training seemed to have no impact on front-back rates in the back region.
Analysis of per-region accuracy however revealed that the local great-circle error
decreased evenly across regions, from ≈25° in session 1 to ≈21° in session 11.

Figure 12.
Participants (a) local polar error, and (b) local elevation compression across training sessions and experiments.

Figure 13.
Evolution of confusion rates across sessions, decomposed based on sphere regions, aggregated over all experiments.
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These observations suggest that future training programs could be improved by
focusing slightly more on reducing front-back and in-cone confusions in the front-
down region. Stagnating rates, such as that of front-back confusions in the back-up
region, around 15% across sessions, would also suggest that there is room for
improvement in the design of didactic training programs that would aid partici-
pants towards reaching 0% confusion rates.

Further refining the analysis, Figure 14 focuses on the assessment of mean
response locations for each target presented in exp-poirier. Mean response loca-
tions were obtained by summing local great-circle error vectors as discussed in
Section 3.2.6. Their positions relative to targets, and the evolution of these positions
during training, provides a thorough characterisation of participant’s local accuracy
evolution on the sphere. Additionally, the lateral and elevation compression effects
observed in Section 4.2.6 are clearly visible, where mean responses are generally
biased towards the interaural axes and/or the horizontal plane.

4.2.8 Handling initial performance offsets

This additional step in the analysis can be seen as an extension of the evaluation
task characterisation proposed in Section 4.2.2 specific to the assessment of
localisation performance evolution. It presents some of the techniques that exist to
compare said evolution despite unbalanced initial conditions across studies or
groups of participants.

Techniques have been proposed to conduct training efficiency analysis on
unbalanced initial conditions. Stitt et al. [10] for example applied per-participant
arithmetic normalisation, based on group baseline performances. Realigning initial
conditions, this technique allows to focus the analysis on relative improvement, as
illustrated in Figure 15.

Another technique for relative improvement comparison, used for example by
Majdak et al. [31] and Poirier-Quinot and Katz [9], is to compare the coefficients of
a regression applied on performance evolution. As mentioned in Section 2.3.2, two
main regression models have been adopted to fit said evolution depending on the
training stages represented in the data. Figure 16 illustrates how both can be fitted
to local great-circle error evolution across experiments. Groups performance evo-
lution was first fitted to the exponential form in Figure 16a, resorting to the linear

Figure 14.
Evolution of mean response locations across targets and sessions in exp-poirier. Hollow circles represent target
positions. Filled circles represent mean response locations, surrounded by standard error ellipses computed using
Kent distributions.
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form in (b) when the evolution did not follow an exponential form, resulting in
regression parameters CIs so wide as to prevent any meaningful interpretation.
The use of a regression is particularly attractive, as it reduces the performance
evolution analysis to a simple high level coefficient comparison, coefficients
that can usually be interpreted in simple terms such as initial performance or
improvement rate.

As mentioned, these techniques are generally applied to compensate for unbal-
anced initial performance. Although they are perfectly valid to assess the impact of
HRTF quality or training efficiency on relative improvement, the scope of any
conclusion made using them is greatly limited as the potential improvement margin
naturally depends on initial performance.

Figure 15.
Great-circle error evolution across sessions and experiments. Data normalised (subtraction) with group mean
results of session 2 as reference.

Figure 16.
Regressions on local great-circle error evolution across training and experiments, (a) exponential regression
“y

0
� exp �sessionID=τð Þ þ c”, and (b) linear regression “a� sessionID þ b”. y

0
represents the initial

performance, τ the improvement time constant, and c the long term performance. b represents the initial
performance, a the improvement rate.
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4.3 Discussion

As illustrated throughout Section 4.2, drawing clear cut conclusions from the
comparison of results from several studies is difficult at best. Most of the time, it is
simply impossible, generally because of uncontrolled variations across test condi-
tions. These variations, limiting both intra- and inter-study analysis, are discussed
in this section.

4.3.1 Evaluation task

Variations in the evaluation protocols and procedures between studies in the
literature present a challenge for comparing the multiple experiments. Different
experimental design choices, such as reporting method, spectral content and dura-
tion of the stimulus, and evaluation grid, have a direct impact on the baseline
performance of participants [32]. For example, given the choice by exp-steadman
to use a random-match HRTF, the notable results of grp-steadman-random com-
pared to those of the other groups could be attributed to the training program.
However, the 1.6 sec stimulus (that may have enabled the use of head movements
during the evaluation) may also have contributed to the improved performance of
grp-steadman-random compared to the other studies that used 180 or 500 ms
bursts [46].

The use of a unique grid for localisation tasks across studies would assuredly
simplify results comparisons. Said grid could, for example, be designed to be
homogeneously distributed on the sphere [35]. For more flexible test conditions, a
series of test grids of increasing point densities could be defined, where test posi-
tions of any given grid would be present on its higher density neighbours, easing
down-sampling for comparison. Regarding the stimulus used or the reporting
method, a simple solution would be to settle on those that respectively optimise
localisation accuracy [47] and minimise reporting bias [32]. Pending the adoption of
common practices, the bias induced by those design choices could technically be
assessed from the results of a control group using individual HRTFs.

Another issue when comparing performance evolution across studies is the
alignment of the evaluation sessions for fair comparison. As proposed in Section
4.2.1, a simple solution is to align them based on training duration. Time alignment
would seem a better option than its alternative, based on the number of positions
presented during the training. Time is of direct interest for end-users, and an
alignment based on presented positions would bias the analysis in favour of slower
exploratory training paradigms.

Finally, the merging of both evaluation and training sessions, as used in exp-
majdak, is not ideal in the context of inter-study comparison. Although this prac-
tice allows for a more granular analysis of performance evolution, it systematically
leads to confusing analysis compared to studies alternating between training and
evaluation sessions. Additionally, it would seem that the alternating design imposes
a lesser constraint on the training paradigm itself, allowing for implicit learning
strategies not focused on target localisation [48].

4.3.2 Intra- and inter-participant variations

Variations between participants’ performance is an issue common to most psy-
chophysical studies studies. Two aspects of these variations can become critical in
the context of HRTF learning studies.

The first aspect concerns imbalances in initial participant performance across
tested conditions. As discussed in Section 4.2.8, such imbalance is likely to weaken
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or void conclusions resulting from the analysis. For within experiment compari-
sons, a simple solution is to run a pre-training evaluation session, to then create
groups of equivalent performance based on the metrics used in the analysis. The
problem naturally worsens when dealing with inter-study analysis. The use of a
control group using individual HRTF is again advised to serve as a baseline refer-
ence for the comparative analysis.

The second aspect concerns the difference in participants’ immediate sensitivity
to HRTF quality, and their ability to adapt to a non-individual HRTF. Both have
been discussed in previous studies, where some participants were more prone to
instantly benefit from a best-match HRTF [49] or to adapt to a poorly matched
HRTF [10]. To avoid missing out on interesting behaviours due to the variance
introduced by some participants, it is recommended to conduct a second pass of the
analysis on sub-groups, for example aggregated based on their improvement rate
[10]. Although the conclusions from the sub-group analysis may be weaker com-
pared to an overall analysis, the technique provides readers with a more thorough
understanding of the training as well as the potential advantages and limitations of
the tested conditions.

4.3.3 Procedural versus perceptual learning

In the present context, procedural learning refers to participants becoming
familiar with the various aspects of the localisation task, resulting in a performance
improvement that is not due to an accommodation to HRTF specific cues (percep-
tual learning). As of yet, there exists no model for a posteriori dissociating the
contribution of both types of learning to performance evolution. Intra-study com-
parisons would most likely not be affected since one could generally assume that the
procedural learning has a similar impact on all tested conditions. However, by not
allowing the procedural learning to plateau before the first evaluation, the general-
isation of a study conclusions become problematic when one needs to compare the
results from various studies based on different protocols.

Results of control groups generally prove extremely valuable during inter-study
comparison. Participants only taking part in the evaluation and not the training, as
in exp-steadman, can provide a good insight on the impact of the evaluation task
implementation on performance across experiments. Even better, the inclusion of a
control group using their own HRTF, as in exp-stitt and exp-parseihian, provides a
solid baseline to dissociate procedural from perceptual learning during both intra-
and inter-study analysis.

Additionally, simple experimental design choices can be applied to avoid having
to deal with certain forms of procedural training. The proprioceptive adjustment
required for accurately reporting perceived positions [14] can for example be
greatly accelerated by using a natural 3D reporting method coupled to a visual
pointer [9], as well as providing a reference grid to help orientation in the sphere
[31]. Thorough beta testing can further eliminate design flaws that participants can
exploit to improve their performance, such as the use of too small a set of test
positions, or unconstrained tracking allowing for small head movements during the
stimulus presentation phase of the localisation task.

Other aspects of procedural training, such as having participants focus on the
listening task, can only be removed by introducing a pre-experimental training
session. Such a session was applied in exp-majdak, where participants trained for
approximately 30 min on a localisation task coupling visual feedback and stereo
panning. This pre-experimental training likely contributed to the smooth improve-
ment in great-circle error by grp-majdak-indiv from session 2 onward compared to
the disjointed improvement observed for grp-stitt-indiv between sessions 2 and 3
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in Figure 6. Paradoxically, the only limitation of the pre-training proposed in exp-
majdak, which did not use actual binaural signals, is that it does not familiarise
participants with binaural rendering. Pending formal evidence, one may assume
that there exists an adaptation process during which participants will grow consis-
tent in their localisation estimation, even in the absence of feedback, much like the
effect observed on HRTF quality ratings reported by Andreopoulou and Katz [50].
Regardless of whether this adaptation should be labelled as perceptual or procedural
training, it will still interfere with the evaluation of training efficiency itself.

Overall, it is reasonable to assume that one could design a pre-training session
that accommodates procedural learning in roughly 15 min, even taking into account
this last point, and relaxing the time constraint imposed in exp-majdak. This
session however still takes a non-negligible amount of time, which will contribute to
participant fatigue and loss of focus. Because of this, it is likely that most experi-
mental designs will continue to include aspects of procedural learning as a shared
effect, equally impacting all tested conditions. An alternative solution would be to
conduct a set of studies to measure and model the various aspects of procedural
learning in the present context, so that its contribution to performance evolution
could be dissociated from that of perceptual improvement even in the absence of a
pre-training session.

5. Conclusion

This chapter presented a methodology for the assessment of auditory localisation
accuracy in the context of HRTF selection and learning tasks. Based on existing
metrics and decomposition schemes, the methodology consists of a series of steps
guiding analysis towards the creation of comprehensive and repeatable perfor-
mance assessments. A collected case-study was then proposed that compared the
results of five contemporary experiments on HRTF learning and illustrates how the
methodology can be applied to better understand participant performances and
their evolution.

The initial intent of this chapter was to propose a set of metrics and an analysis
workflow that would be adopted and adapted by the community to standardise the
evaluation of localisation performance. In time, the standardisation would help
simplify the comparison of results from different studies, allowing to assess
hypotheses and draw conclusions beyond the scope of the constituting studies.
While the proposed case-study provides a glimpse at the benefits of such
standardisation, it is limited by one of, if not the most, major issue of inter-study
comparison: the lack of a reference between tested conditions. Without this refer-
ence, conclusions drawn from the analysis can hardly be generalised, much like
those that would result from a comparison between language learning techniques
without a priori knowledge of participants learning abilities, or how different is the
language learnt compared to their mother tongue.

As of now, the only applicable solution to provide such reference across studies
is to systematically add a control group composed of participants using their own
HRTF to the experiment. A large enough group composed of experts and novices
alike would indeed provide a stable reference that can be used to assert a certain
equivalence in e.g. the evaluation task before proceeding to inter-study performance
comparison. However, this solution is rarely practical due to the complexity of the
HRTF measurement process, which is the main incentive for HRTF learning in the
first place. A somewhat less constraining, yet highly unlikely, scenario would be the
creation and adoption of a unique evaluation platform, shared across all studies to
formalise future HRTF selection methods and training program comparisons.
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With luck, the issue will solve itself as the next generation of HRTF individua-
lisation techniques render selection and training obsolete. In the meantime, meth-
odologies such as the one proposed here should help improve the rigour of studies
and consequently the understanding of the fundamental issues regarding auditory
localisation and spatial hearing accommodation to non-individual HRTFs and their
applications.
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