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Chapter

Deep Multiagent Reinforcement
Learning Methods Addressing the
Scalability Challenge

Theocharis Kravavis and George A. Vouros

Abstract

Motivated to solve complex demand-capacity imbalance problems in air traffic
management at the pre-tactical stage of operations, with thousands of agents (flights)
daily, even in a restricted airspace, in this paper, we review deep multiagent rein-
forcement learning methods under the prism of their ability to scale toward solving
problems with large populations of heterogeneous agents, where agents have to
unavoidably decide on their joint policy, without communication constraints.

Keywords: deep reinforcement learning, multiagent systems, scalability

1. Introduction

Scalability in training large numbers of deep reinforcement learning agents, which
must decide on actions jointly, is a major issue that becomes apparent in many real-life
problems. This issue is related to numerous aspects of deep multiagent reinforcement
learning (DMARL), such as assignment of credits to the learners for their choices,
assumptions regarding homogeneity or interchangeability of the agents, society
structure due to interaction of agents’ decisions, agents’ communication require-
ments, abilities, and constraints.

In this chapter, we provide a review of deep multiagent reinforcement learning
(DMARL) methods, examining their ability to scale up to large agent populations.
“Large” here could mean anything from hundreds up to several thousands of agents.

We are motivated to solve complex demand-capacity balancing problems in air
traffic management (congestion problems regarding air sectors), where we may have
6000 flights daily, even in a restricted airspace (e.g., the Spanish airspace). Specifi-
cally, in the air-traffic management (ATM) domain, demand and capacity balancing
problems (DCBs) are a kind of congestion problems that arise naturally whenever
demand of airspace use exceeds capacity, resulting to “hotspots.” Hotspots are resolved
via capacity management or flow management solutions, including regulations that
generate delays and reroutings to flights, causing unforeseen effects for the entire
system, and increasing uncertainty regarding the scheduling of (ground and airspace)
operations. For instance, flight delays cause the introduction/increase of time buffers
in operations’schedules and may accumulate demand for resources within specific
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periods. These are translated into costs and negative effects on airlines’ reliability,
customers’ satisfaction, and environmental footprint. Representing flights by self-
interested, heterogeneous agents (each with its own possible regulations, preferences,
and constraints), the automation of problems’ resolution requires agents to jointly
decide on their policies regarding their own regulations [1]. Driven by the resolution
of problems at the pre-tactical phase of operations (i.e., from some hours to few days
before the actual flights), there are no communication or observation constraints for
agents: In any case, agents need to coordinate with any agent with whom they partic-
ipate to any specific congestion problem, given also that these problems may emerge
dynamically in space and time.

In such large-scale, complex multiagent settings, we need to consider quality of
solutions (as regulations incur additional costs to operations) and DMARL methods’
training scalability. Factors that affect training scalability are as follows:

* The training paradigm adopted: Agents may train independent, centralized, or
shared models.

* The types of models learnt following any paradigm: A policy model, a value model,
or both types of models may be fit, following any of the training paradigms.

* Assumptions regavding agents homogeneity: Agents may be considered to be
heterogeneous, homogeneous (i.e., following the same policy, which may be
however differentiated due to contextual features), or even interchangeable.

* Effectiveness of communication: Communication between agents may be explicit
(i.e., passing information by any means) or implicit (i.e., via the environment, or
via sharing models’ parameters), and orthogonal, either be performed in a global
(e.g., broadcasting messages to all agents) or local scale (i.e., in a
“neighborhood”). Here, optimality of communication is something that agents
could learn via elaborated (e.g., attention) mechanisms.

In addition to the above factors, decomposing rewards among agents is a relevant
issue, affecting both scalability and the quality of joint policies. This issue of credit
assignment concerns designating high reward to the agents with a desirable behavior,
thus avoiding agents enjoying the rewards without contributing in achieving the
intended joint goal.

2. Deep MARL

Tabular function representations in reinforcement learning (RL) have many suc-
cesses [2] in relatively low-dimensional problems, but it has two major drawbacks: (a)
The designer of the application had to hand-craft the state representations, and (b)
methods store each state or state-action value (V-value or Q-value, respectively)
independently, resulting in slow learning in large state-action spaces and poor gener-
alization abilities.

To resolve these problems, the deep Q-network [3] method successfully combined
RL with neural networks (NNs). It is well established that the combination of RL with
nonlinear function approximators such as NNs can be unstable and result in diver-
gence [4]. This instability has several causes: the correlations present in the sequence
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of observations, the fact that small updates to Q values may significantly change the
policy—and therefore change the data distribution of the samples produced by the
rollouts, and the correlations between the action values and the target values. Deep Q-
Network (DQN) [3] uses an NN to approximate Q-values, modeling the agent’s policy.

Two vital elements of DQN that address these issues are the target network and the
experience replay memory. The target network mitigates the effect of constantly
moving targets, by incorporating a second network from which the targets are sam-
pled. This network is periodically updated with the weights of the online network. The
addition of a uniform experience replay memory decorrelates the samples collected
during rollouts, by randomizing over the data, thereby smoothing over changes in the
data distribution. During learning, the method applies Q-learning updates on samples
(or minibatches) of experience drawn uniformly at random from the pool of samples
stored.

Since the original DQN publication, many extensions have emerged [5-9], with
double DQN [10] and prioritized experience replay [11] being the most well known.
Double Q learning was originally introduced by H. Hasselt [12] and aims to address
the problem of overestimating action values, a phenomenon inherent to the Q-
learning method. This addition to the original method is considered to be standard
practice and is particularly useful in the multiagent domain, where nonstationarity is a
common phenomenon. Originally, the idea behind this method is to utilize two inde-
pendent tabular representations of the Q function during training, where each Q
function is updated with targets produced from the other Q function. Double DQN
transfers this approach in the Deep RL setting, by exploiting the second approximator
using a target network.

In the initial DQN approach, experience transitions are uniformly sampled from a
replay memory. This approach ignores the significance of samples, replaying them at
the same frequency that they were originally observed in the environment. Prioritized
experience replay [11] enforces a priority over the samples, aiming to replay impor-
tant transitions more frequently, and subsequently improve learning efficiency. In
particular, the method proposes to assign higher priority to transitions with high
expected learning progress, as measured by the magnitude of their temporal-
difference (TD) error.

This new paradigm of combining Q-learning with NNs swiftly crossed over to the
multiagent (MAS) field. Tampuu et al. [13] studied cooperation and competition
between two DQN agents. The publication investigates the interaction between two
agents in the well-known video game Pong, by utilizing two independent DQN archi-
tectures, one for each agent. By solely adjusting the rewarding scheme, competitive
and collaborative behaviors emerge.

Deep deterministic policy gradient (DDPG) [14] combines DQN with determinis-
tic policy gradient (DPG) [15] to address continuous actions. As a variant of actor-
critic algorithms it incorporates two separate NNs: the actor, which models the policy,
and the critic, which provides feedback on the desirability of an action 4 in a state s.
This desirability can be expressed by means of learnt V-values, Q-values, or advan-
tages. MADDPG [16] extends DDPG in MAS settings: Each agent is given a dedicated
policy network. This approach renders the method not scalable: It is not viable to
maintain and train hundreds, if not thousands, of policy networks. In addition, detri-
mental to the scalability is the fact that, during training, the method utilizes a cen-
tralized critic, which takes as input the observations and actions of all agents. The
input size of the critic can explode, depending on the size of the agent population and
the state dimensions.
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Multiagent deep deterministic policy gradient (MADDPG) employs a technique
that has many variants and is vital in understanding deep MARL. This technique is
called centralized training and decentralized execution (CTDE). A naive way to pro-
vide agents with a joint policy is to train in parallel independent policies, one for each
agent, following the independent learners paradigm. This approach can produce
results in low-dimensional problems, but in real-world scenarios is inefficient and
unstable. In order to alleviate these problems produced by the nonstationarity of an
MAS environment, many algorithms, one of which is MADDPG, employ some form
of centralized training, thus exploiting information that is available during training
but often unavailable during execution. In particular, MADDPG trains a centralized
critic, which takes as input the global state and agents’ joint action. During the
execution phase, this information is inaccessible by agents, and agents act in a
decentralized manner. Another well-known application of CTDE is QMIX [17]. Dur-
ing training, the learning algorithm has access to all local action observation histories
and global state, but each agent learns a policy that conditions actions on local agent
observations.

Parameter sharing, first introduced by Gupta et al. [18], is the extreme case of
CTDE: It learns a single policy shared by many agents. The main idea is that this single
policy should be able to adequately describe the behavior of different agents with the
same goals. Immediately apparent is the important assumption that the agents are
homogeneous, meaning that they decide on the same state-action space. This
assumption is relaxed by the same publication [18], which “tagged” observations with
agent identifiers, allowing differentiating agents according to their goals, and
responding accordingly. The resulting policy can be more robust, given the fact that it
has been trained with samples that potentially belong to different parts of the state
space, explored by different agents. We consider the parameter sharing approach to
be the cornerstone of any scalable algorithm.

Castafleda proposes two multiagent variants of DQN [19]. Repeated update
Q-learning extends DQN by updating each action inversely proportional to the
probability of selecting it, practically changing the learning rate based on the action
probability. It is designed to mitigate the inherit overestimation of state values by
Q-learning, much like double Q-learning [10]. Loosely coupled Q-learning defines a
diffusion function and utilizes eligibility traces in order to associate negative rewards
with states. The combination of the diffusion function with eligibility traces is used to
define a function, which indicates the necessity for cooperation, expressing the
probability of an agent carrying on an action independently. It combines this with
Dec-MDP and two Q-value functions, one for independent acting (when appropriate)
and one for coordinating with others.

Credit assignment concerns the difficulty to give credit and provide higher reward
to the agents with a desirable behavior, thus accelerating learning in MAS settings. A
common phenomenon, called “lazy agent,” occurs when an agent does not participate
actively in a cooperative solution, enjoying the rewards resulting from the cooperation
of others. Various approaches have been proposed to deal with this problem, with the
difference reward [20] and reward shaping [21, 22] being the most well known.

Difference reward [20] introduces a method to visualize the desirable properties of
a reward function, thus facilitating the creation of new reward structures based on the
specific needs of the domain. Specifically, the authors in [20] focus on two aspects of
the reward function. The first is called factordness and expresses how well the reward
promotes coordination among agents in different parts of a domain’s state-space. The
second is called learnability and expresses how easy it is for an agent to learn to
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maximize its reward, by measuring the reward’s sensitivity to the agent’s actions. The
main idea behind reward shaping is to utilize some prior knowledge while engineering
the reward function, in order to reduce the training time, by reducing the number of
suboptimal actions taken [22]. In the most general form, reward shaping can be as
simple as R’ = R + F, where R is the original reward and F a positive scalar reward,
designed to encourage the agent to move toward the goal. Here, most of the research
focuses on the principles, which would lead to an effective reward design, as well as
how the optimal policy changes as an effect of reward design.

Value decomposition network (VDN) [23] is the first DMARL method that
addresses the credit assignment problem. VDN represents joint action value as a sum-
mation of local (individual agents’) action values conditioned on agents’ local observa-
tions. The fact that the agents’ local value function depends only on local observations
facilitates agents’ understanding of the received rewards. This method is not scalable,
because it utilizes distinct NNs for each agent’s policy. QMIX [17] provides a more
general case of VDN using a mixing NN that combines all independent Q-values into
Qsor> thus approximating a broader class of functions for joint action values. Specifically,
moving from the VDN’s assumption of additivity, QMIX’s mixing network can approx-
imate monotonic relations between individual and the global Q-values. Both works are
based on the individual-global-max (IGM) principle, according to which, the joint
greedy action should be equivalent to the set of individual greedy actions of agents.

VDN and QMIX address a subset of factorizable MARL tasks due to their structural
constraint in factorization of additivity and monotonicity, respectively. Later works
have improved the representation ability of the mixing network. QTRAN [24]
achieves more general factorization by transforming the original joint action-value
function into a new, easily factorizable one with the same optimal actions as the
original. NDQ [25] combines value function factorization learning with communica-
tion learning, by introducing an information-theoretic regularizer, aiming to reduce
interagent communication while maintaining performance.

ROMA [26] combines MARL, mixing networks in particular, with the role concept
[27-33]. A role is a comprehensive pattern of behavior, often specialized in some
tasks. Agents with similar roles will show similar behaviors and thus can share their
experiences to improve performance. The main drawback of this approach is the
demand of exploitation of prior domain knowledge in order to decompose tasks and
predefine the responsibilities of each role, which necessitates adding to role-based
MAS dynamic and adaptive abilities to perform effectively in dynamic and
unpredictable settings. However, the specification of roles may not be appropriate for
any domain. ROMA introduces two regularizers to enable roles to be dynamically
identifiable, in order to exploit the benefits of both, role-based and learning para-
digms. Following the QMIX [17] framework, it utilizes independent policy networks
and a centralized mixing network.

QPLEX [34] focuses on ensuring that the IGM principle (as specified above)
stands, while reformalizing it as an advantaged-based IGM. QPLEX replaces the
original mixing network of QMIX [17] with a duplex dueling network architecture [5],
which induces the joint and local (duplex) advantage functions, to factorize the joint
action-value function into individual action-value functions. This duplex dueling
structure encodes the IGM principle into the neural network architecture. The archi-
tecture uses an individual action-value function for each agent in combination with
the centralized duplex dueling component. The method manages to achieve higher
win rates in numerous Starcraft II scenarios [35] against multiple baselines such as
VDN, QMIX, and QTRAN [17, 23, 24] in experiments with up to 27 agents.
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Another well-known approach is the counterfactual multiagent policy gradients
method (COMA) [36]: It decomposes the global reward to the agents, utilizing a
counterfactual baseline inspired by difference rewards [20]. Similarly to MADDPG,
COMA utilizes a centralized critic and each agent has a distinct policy network, so the
drawbacks regarding scalability are common to MADDPG.

Concluding the above, the line of research on value decomposition has different
focal points rather than scalability, thus does not produce methods ideal to scale up to
thousands of agents. In addition to that, as far as credit assignment problem is
concerned, although a vital aspect of MARL, we do not consider that the resolution of
this problem is a prerequisite toward methods’ scalability. However, it is a related
issue in settings where rewards are not inherently decomposed to individual agents.

3. Scalable deep MARL

Differentiable interagent learning (DIAL) [37] is the first proposal for learnable
communication utilizing DQNs. Agents generate real-valued messages, which are
broadcasted to the other agents. During centralized training, these messages are prac-
tically gradients, allowing end-to-end training across agents. During decentralized
execution, messages are discretized and mapped to a predefined set of communication
actions. There are two major reasons that this approach can not scale effectively: With
no parameter sharing in place, each agent uses its own, independent policy NN. Also,
every agent communicates with everyone else throughout training. This, beyond the
communication cost, could result in agents receiving misleading or noisy information,
in the form of gradients.

CommNet [38] aims to learn a communication protocol alongside the policies of
cooperating agents. CommNet consists of a centralized feed-forward NN, with the
observations of all agents as input and their actions as output. Each layer represents a
communication step between the agents and consists of one decision module per
agent. While the first layer uses an encoder function, every hidden layer module takes
the internal state / as well as the broadcasted communication vector ¢ as input and
outputs the next internal state. These internal states are averaged and broadcasted as
the next communication vector. CommNet has three major limitations regarding
scalability. First, all agents use the same centralized network, which has to be big
enough to accommodate this design approach, due to the size of the input in the form
of the global state. In addition, this renders the method unsuitable for heterogenous
agents. Second, CommNet calculates the mean of messages between layers, therefore
assuming that all agents are of equal importance, which could be unsuitable in some
settings. Finally, the most important disadvantage is the fact that all agents have to
communicate with everyone. This could result in significant communication overhead
with noise in the communication channel: e.g., an agent could receive a communica-
tion vector consisting of the average observations of irrelevant agents. The last draw-
back could be mitigated by the local connectivity model extension proposed in the
original CommNet publication [38]. According to this extension, agents can only
receive messages from a dynamic group of agents, which are within a certain range.
However, no experiments are provided for this extension.

Toward resolving the mandatory global communication problem, an extension of
CommNet, called vertex attention interaction network (VAIN) [39], employs an
attention mechanism. This attention mechanism improves the performance of the
original method by modeling the locality of interactions and thus determining which
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agents will share information. The authors claim that this method can make CommNet
suitable for as many as 1000 agents. In the experiments provided, VAIN achieved
better score than CommNet, although for a small number of agents.

Another method with scalability potential is BiCNet, [40]. BiCNet is an extension
of the actor-critic formulation where agents use a bidirectional recurrent NN (RNN)
[41]. The recurrent network serves as a bidirectional communication channel but also
as a local memory saver: Each agent is able to maintain its own internal states, as well
as to share information with its neighbors. Similarly to CommNet, the communication
channel serves to broadcast agents’ local observations. Contrary to CommNet agents,
BiCNet agents utilize additive messages, while the method makes no assumptions on
agents’ homogeneity/interchangeability. The major drawback is that, similarly to
CommNet, all agents communicate with everyone. Later works [42] show that the
ability of BiCNet to learn effective policies is reduced as the number of the agents
increases. This deterioration of effectiveness is attributed to the lack of a mechanism
capable of capturing the importance of information from different agents.

TarMAC [43] proposes an architecture designed specifically to allow each agent to
chose to which other agents to address messages to, as well as to which messages it will
pay attention to. It introduces a signature-based soft attention mechanism with a key,
which encodes properties of intended recipients (as opposed to specific agent identifi-
cation), to be part of the message. The receiver of the message takes this key into
consideration and decides whether it is relevant. The method is enhanced by multiple
rounds of communication and collaborative reasoning. TarMAC utilizes the actor-critic
framework, with a shared policy network and a centralized critic. It is evaluated on four
diverse environments against CommNet [38], as well with variants of itself without the
attention mechanism or communication at all. The sophistication of the communication
scheme could be a disadvantage regarding scalability, as multiple rounds of communi-
cation between thousands of agents would result in significant overhead. The main
drawback of the method though, with scalability in mind, is the usage of a centralized
critic, which takes as input the predicted actions and hidden states of all agents.

Coder [44] is a hierarchical approach, with three distinct hierarchical levels to
solve a traffic congestion problem with agents being the traffic intersections. First, a
centralized base environment is trained, which is a small and simple subproblem
compared with the original one, i.e., a single intersection managing incoming traffic.
Here, two training alternatives are considered, a DQN variant and a DDPG variant
called Wolpertinger architecture [45]. The next step is called regional DRL, where the
parameters of the base environment are shared to a small number of neighboring
agents controlling similar but not identical parts of the environment (e.g., different
traffic dynamics). To tackle these differences, additional refinement through training
is required. The final level combines all regional policies and adds a global dense layer.
In order to choose actions while incorporating some form of coordination between the
regional policies, an iterative action search is employed. This search starts with the
concatenation of the actions produced by the regional nets and attempts to find a
globally better alternative. This approach is shown to work with a maximum size of 96
adjacent intersections. A similar approach to Coder [44], we call it here KT DQN [46]
expands DQN. Aiming to speed up training and produce better results, it uses single
agent training before applying the policy to MAS settings. In doing so, the method
freezes all the weights of the single-agent policy network model that are transferred to
the MAS scenario, with the exception of the ones between the last hidden layer and
the output. Coder and KT DQN utilize a hierarchical approach that initializes learning
from a simplified single agent environment. This can indeed speed-up learning, in
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contrast to start learning from scratch. However, this approach is not straightfor-
wardly transferable between applications. For example, using the regional DRL step of
coder calls for a separate design, i.e., decomposing the problem into subproblems, for
different applications.

An interesting take on how to utilize an agent population in order to facilitate
exploration is presented by J. Leibo [47]. The method proposed is a variant of
IMPALA [48]: In the simulation used every agent is a member of an animal species.
These homogeneous agents share the same policy network. The paper does not
address interagent communication or cooperation, explicitly. Instead, it utilizes the
multiagent framework mainly to encourage a more robust exploration. Cooperative
behavior emerged when incentives are given to the agents: For example, experiments
are presented with agents rewarded for specializing in eating a specific kind of food.
The total number of agents present in the simulation reported are 960, and the
population is considered to be dynamic.

Mean field MARL [49] proposes two algorithms with the explicit aim to improve
MARL scalability. The main idea is to calculate the mean action of an agent’s neigh-
borhood, considering that each agent interacts with a virtual mean agent instead of n
agents. The two proposed alternatives are mean field Q (MF-Q) and mean field actor-
critic (MF-AC), among which the MF-Q approach has superior sample efficiency,
which becomes more apparent as the number of agents gets bigger. MF-Q has been
empirically shown to scale up to 1000 agents. Mean field MARL does not explicitly
address credit assignment, but provides rigorous mathematical proof of convergence
to Nash equilibrium. Although both algorithms are scalable, their main drawback lies
in the coordination scheme: Averaging the neighborhood of an agent can result in loss
of important information and lackluster cooperation [50].

Inspired by the factorization machines [51, 52], FQL [53] utilizes a composite deep
neural network architecture, combining Q and V nets, for computing a low-rank
approximation of the Q-function, by reformulating the multiagent joint-action Q-
function into a factorized form. Depending on agent roles, agents are divided into G
groups, and agents within each group share network parameters. While ensuring
efficiency, the uniformity assumption between agents might not be suitable for vari-
ous real-world applications. In addition, since the factorized Q-function for each agent
requires the knowledge of the other agents’ current states and their last actions for
both training and execution, the algorithm mainly addresses the MARL problems with
a central controller that communicates the global information to all the agents. In the
experimental section, the method produces competitive results in settings with agent
populations as large as 500 agents. As the size of the agent population is increased,
from 100 to 500, MF-Q [49], which is one of the baselines used, seems to be a more
suitable method.

CoLight [54] aims to enable agent cooperation in a large-scale road network with
hundreds of traffic signals, recognizing that RL-based methods at the time fail to reach
optimal interagent communication. To achieve this, authors introduce the utilization
of graph attentional networks. At the core of the method is a Q-value prediction deep
network. This network incorporates an observation embedding layer, the hidden
neighborhood cooperation layers, and the output Q-value prediction layer. Similarly
to mean field MARL [49], the method “averages” neighbors’ influence in the broad-
casted messages. Although experiments with simulated as well as real-world data
involve up to 196 agents, authors claim scalability to thousands of agents, based on
method’s complexity analysis [54]. Contrasted against various baselines, CoLight
shows advanced scalability, as well as sample efficiency.
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As already pointed out, many major approaches such as DIAL, CommNet, and
BicNet [37, 38, 40] suffer from the lack of agents’ ability to differentiate between
useful information driving interagent cooperation from noisy or misleading informa-
tion. ATOC [42] strives to eliminate this specific issue by proposing an attentional
communication model that achieves interagent communication between a large
amount of agents. The method expands DDPG and uses an attention module as well as
a bidirectional LSTM, which serves as a communication channel. The LSTM module
plays the role of integrating neighboring agents’ internal states, thus creating a mes-
sage from their combined intentions, and guiding the agents toward coordinated
decision-making. Actor and critic networks share parameters to ensure scalability.
Indeed, the method seems to challenge the known approaches (DDPG [14],
CommNet [38], and BicNet [40]), while agents show division of work and meaning-
ful cooperation.

Graph convolutional reinforcement learning (DGN) [50] has the explicit goal to
handle highly dynamic environments, where agents constantly change neighbor-
hoods. Toward this goal, the paper proposes an MAS framework in which agents are
connected in a graph where each agent is a node and edges connect neighbors.
Neighborhoods are determined by agent distance or other measures, e.g., communi-
cation range or critical interactions, and can vary over time. Communication is
allowed only between neighbors, in order to minimize inefficiency. DGN consists of
an observation encoder, convolutional layers with relation kernels, and a Q network.
The method was compared against well-known algorithms such as CommNet [38] and
MFQ [49] and is shown to achieve very competitive results in environments with up
to 140 agents. However, experiments with greater agent population are needed in
order to assess the effectiveness of the method as the environment gets more complex.

Lin et al. [55] proposes two distinct methods, which, very closely to our aims, aim
to solve large-scale demand-capacity imbalance problems in the air traffic manage-
ment domain. The environment simulates a population of approx. 5000 homogeneous
agents, acquiring identical rewards. Both methods assume that agents have the same
action values. In practice, this assumption means that the agents are not simply
homogeneous, but interchangeable. This assumption allows the building of a central-
ized action-value table, which is utilized for coordination of agents’ actions. The first
method is called contextual deep Q-learning. It utilizes a table with centralized action
values to form a collaborative context, which prevents agents from choosing
suboptimal actions, thus avoiding unwanted or redundant behavior such as agents
exchanging positions with one another. The second proposed method, called contex-
tual actor-critic, describes an actor critic variant of the contextual DQN. It uses a
centralized value function shared by all agents and a parameter-sharing policy net-
work.

Closely related works, with scalability in mind, are those presented by Nguyen
et al. [56-58]. In particular, AC for CDec-POMDPs [57] is based on the FEM algorithm
[56] and presents an actor-critic algorithm for optimizing collective decentralized
POMDPs. It achieves extreme scalability and provides experiments with up to 8000
agents. Subsequent work proposes MCAC [58], which focuses on difference rewards,
also addressing the credit assignment problem. A fundamental idea underlining the
work described in these papers and a vital aspect in order to achieve scalability is
exploiting the count of agents taking the same action 4 in a state s. This count, as well
as other, more complex measures based on this, serves a statistical basis for training,
eliminating the need to collect trajectory samples from every agent. Instead, the
resulting policy is dependent on count-based observations. Therefore, this method
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does not explicitly assume communication. It rather assumes full access to all the

count-based information during training. During execution, agents execute individual

policies without accessing centralized functions. Similarly to contextual DQN [55],

Method QNet V Net Agents Communication MAS
(s) population
DQN [3] I — Het — 2
PS DQN [18] PS — Hom Impl, global (policy) 200
MADDPG [16] I C Het Impl, global (critic) 6
VDN [23] I — Het Impl, global (policy) 2
QMIX [17] I — Het Impl, global (mixing net) 8
QTRAN [24] I C Het Impl, global (mixing net) 4
NDQ [25] I C Het Expl, local (message encoder) 10
ROMA [26] I C Het Impl, global (mixing net) 27
QPLEX [34] I C Het Impl, global 27
COMA [36] I C Het Impl, global (critic) 5
DIAL [37] I — Het Expl, global (messages) 4
CommNet [38] C — Hom Expl, global (communication 500
vectors)
VAIN [39] C — Hom  Expl, local (attention mechanism) 50
BiCNet [40] PS PS Het Expl, global (messages in RNN) 32
TarMAC [43] PS C Hom Expl, local (soft attention 20
mechanism)
Coder [44] PS PS Hom Impl, global (policy) 96
(KT) (KT)
KT DQN [46] PS — Hom Impl, global (policy) 20
(KT)
MF-Q [49] PS — Hom Expl, local (mean agent) 1000
MF-AC [49] PS PS Hom Expl, local (mean agent) 1000
FQL [53] PS PS Het Impl, global (policy) 500
CoLight [54] PS _ Hom  Expl, local (attention mechanism) 196
ATOC [42] PS PS Hom  Expl, local (attention mechanism/ 100
LSTM)
DGN [50] PS — Hom Expl, local (observations in conv 140
layers)
cDQN [55] PS — IC Expl, local (collaborative context) 5000
cA2C [55] PS C IC Expl, local (collaborative context) 5000
FEM [56] PS PS IC Impl, global (policy) 20
AC CDec-POMDPs PS PS IC Impl, Global (policy) 8000
[57]
MCAC [58] PS PS IC Impl, Global (policy) 8000
Table 1.

Reviewed methods’ chavacteristics.
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this approach assumes that the agents are interchangeable. This assumption is neces-
sary to achieve the required scalability, but is not applicable to every problem.

4. Concluding remarks

In this paper, we provide a review of state of the art DMARL methods with
significant scalability potential and interagent coordination capabilities in large-scale
MAS settings. Table 1 lists all the reviewed methods with the characteristics, which
are considered essential for their scalability, as mentioned in the introductory section.
The abbreviations used are the following: Independent learners (I), Parameter Sharing
(PS), Centralized model (C), Knowledge Transfer (KT), Hetero/Homo-geneous
agents (Het/Hom), Interchangeable agents (IC), Implicit (Impl), Explicit (Expl).

The first conclusion we can draw is the importance of parameter sharing in large
agent populations. As the number of agents grows, parameter sharing shows by far the
most potential for scalability. It is impractical to train thousands of independent
networks for each agent or to utilize a centralized approach whose input size would
explode as the number of agents and the size of their observations grow larger. We
can clearly see in Table 1 that all works that provide experiments with large agent
populations concur on that approach.

Another important conclusion from this study is the fact that, as scalability poten-
tial gets more prominent, stricter assumptions are made on the agents and on their
environment. Specifically, the approach that manages to scale up to the largest agent
population [57] assumes interchangeable agents. In order for these methods to find
broad practical applicability, such assumptions have to be relaxed. In numerous prac-
tical applications, agents are not homogeneous, but more importantly, interchange-
able agents are a more rare occurrence. Additions to the methods, in order to
incorporate heterogeneous agents, would be of great value. An important point here is
that parameter sharing assumes homogeneous agents. Further research and
experimenting on the direction of techniques such as labeling agents, as proposed in
the original parameter sharing publication [18], should be beneficial in that regard.

Finally, we can conclude that as the need for scalability becomes more prevalent,
targeted and detailed communication becomes more challenging to achieve. For
example, MF-Q [49], a method that shows great scalability capabilities, assumes that
all agents affect the recipient of their messages equally. Local communication, on the
other hand, affects the scalability of methods, while further studies on the use of
attention and messages’ combination mechanisms are necessary to prove the potential
to operate in environments with thousands of agents.
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