
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

Chapter

XBot: A Cross-Robot Software
Framework for Real-Time Control
Luca Muratore, Arturo Laurenzi and Nikos G. Tsagarakis

Abstract

The widespread use of robotics in new application domains outside the indus-
trial workplace settings requires robotic systems which demonstrate functionalities
far beyond that of classical industrial robotic machines. The implementation of
these capabilities inevitably increases the complexity of the robotic hardware, con-
trol a and software components. This chapter introduces the XBot software archi-
tecture for robotics, which is capable of Real-Time (RT) performance with
minimum jitter at relatively high control frequency while demonstrating enhanced
flexibility and abstraction features making it suitable for the control of robotic
systems of diverse hardware embodiment and complexity. A key feature of the
XBot is its cross-robot compatibility, which makes possible the use of the frame-
work on different robots, without code modifications, based only on a set of con-
figuration files. The design of the framework ensures easy interoperability and
built-in integration with other existing software tools for robotics, such as ROS,
YARP or OROCOS, thanks to a robot agnostic API called XBotInterface. The
framework has been successfully used and validated as a software infrastructure for
collaborative robotic arms as KUKA lbr iiwa/lwr 4+ and Franka Emika Panda, other
than humanoid robots such as WALK-MAN and COMAN+, and quadruped
centaur-like robots as CENTAURO.

Keywords: software architecture for robotics, real-time control, cross-robot
framework, humanoid robotics, hardware abstraction layer, XBot, ROS

1. Introduction

Nowadays effective robotic solutions targeting new applications outside the
traditional industrial environment, are supposed to operate in partially known
spaces with unforeseen uncertainty and increased variability in the application
tasks. Hence, to be effective, they have to adapt rapidly and seemly their function-
alities in these demands, leading to an increase of the complexity in each layer of the
robotic system, from the hardware to the high level control.

To tackle this, several software frameworks for robotics have been developed in
the past twenty years, as stated in [1], aiming to provide flexible infrastructures,
which not only permit the seamless integration of new functionalities and interfaces
in the robotic system, but also ensure standardization, easy tracking and mainte-
nance of the software development, despite the increased complexity. Apart from
dealing with the software complexity, these frameworks have to provide hard Real-
Time (RT) performance, ensuring predictable response times [2] as required in
critical tasks when robots need to perform in autonomous mode, responding to

1

disturbances and interacting with the physical environment during the execution of
a task. Thus, a vital feature of a software framework for robotics is the Real-Time
safeness and scheduling, essential for precise robot control, especially when dealing
with high frequency and low jittering control cycles.

Furthermore, a software middleware needs to abstract the complex hardware
(e.g. actuators and sensors) of the robot providing an easy-to-use, standardized
Application Programming Interface (API). As a matter of fact, a robot can be
considered a distributed system composed of a set of hardware devices communi-
cating through a fieldbus. The fast prototype and development of control and
application software which can be shared, ported and reused in various robotic
platforms with minimum effort, is another fundamental requirement for the soft-
ware architecture. An important component needed to achieve this goal is the
Hardware Abstraction Layer (HAL), which can be incorporated to mask the phys-
ical hardware differences and limitations (e.g. control frequency, kinematics/
dynamics model, actuators type and size, sensors, etc) varying from one robot to
another. The HAL can provide a relatively uniform abstraction layer that assures
portability and code reuse: it permits the development of control modules that can
be easily ported from one robot to another.

The existing robotics software frameworks address different needs and require-
ments, therefore one of the key aspects for a brand-new middleware is the interop-
erability with well-known and established robotic software platforms.
Interoperability should ideally allow users to execute existing software without the
necessity of (i) changing the current code and (ii) writing hand-coded “bridges” for
each use case [3].

In this chapter the XBot software framework is presented. The development of
the XBot was driven by the need to provide a software framework that abstracts the
diverse variability of the robotic hardware (effectively becoming a cross robot
platform framework), providing deterministic hard Real-Time (RT) performance,
incorporating interfaces that permits it to integrate state of art robot control frame-
works and achieve enhanced flexibility through a plug-in architecture.

2. Related works

In this section the state of the art of robotic software architectures will be
analyzed.

In [4] the low level control framework, called OROCOS (Open Robot Control
Software), is introduced, which provides a set of components for RT control of
robotic systems. OROCOS relies on the Common Object Request Broker (CORBA)
architecture, that allows inter-process and cross-platform interoperability for dis-
tributed robot control. Depending on any Inter-Process-Communication (IPC)
framework can critically increase the complexity of the software platform. Despite
OROCOS is used in a fair number of robotics projects, the framework maintenance
as well as the community looks not being very active anymore1.

Very similar to OROCOS is OpenRT-M [5], developed in Japan from 2002
under NEDO’s (New Energy and Industrial Technology Development Organiza-
tion) “Robot challenge program”. It is based on CORBA, so similar considerations as
for OROCOS can be made with respect to the software complexity; moreover part
of OpenRT-M documentation is in Japanese.

1 In particular we refer to the discontinuity in maintaining the framework under last versions (≥3.X) of

Ubuntu Xenomai, where the OROCOS porting is still experimental.

2

Robotics Software Design and Engineering

YARP (Yet Another Robot Platform) [6] and ROS (Robot Operating System)
[7] are popular component-based frameworks for IPC that do not guarantee RT
execution among modules/nodes. It is essential for a robotic system to have a
component responsible for the RT control of the robot, making these frameworks
only viable as external (high-level) software frameworks. It is worth to mention
that a new ROS version, called ROS 22 has been released: it is still in an early stage
development phase, so it cannot be used in real-world scenario3.

PODO [8], is the framework used by KAIST in HUBO during the DRC (Darpa
Robotics Challenge) Finals. Its control system has RT control capabilities and its
inter-process communication facilities are based on POSIX IPC; moreover it uses a
shared memory system called MPC to exchange data between processes in the same
machine. This heterogeneous system has the potential to cause confusion as it is
unclear which architectural style must be used to communicate with a specific
component [9].

In [10] an RT architecture based on OpenJDK is introduced (used by IHMC
during the DRC Finals). Nevertheless, to their own admission [11], none of the
commercially available implementations of the Java Real Time Specification had the
performance required to run their controller. Existing Real-time Java Support is
insufficient.

Considering the above limitations, summarized in Table 1, the XBot [12–14] was
developed from scratch, in order to have a reliable RT control framework with HAL
support and without depending on complex IPC frameworks.

3. XBot framework

The development of XBot was driven by the need to provide a software infra-
structure that abstracts the diverse variability of the robotic hardware (effectively
becoming a cross-robot framework), provides deterministic hard Real-Time (RT)
performance, incorporates interfaces that permit its integration with state of art
robot control frameworks and achieves enhanced flexibility through a plug-in
architecture.

Framework RT HAL IPC

Complexity

Ready-to-Use Community

ROS No Yes Low Yes Big and active

YARP No Yes High Yes Medium and active

OROCOS Yes No Very High Yes Medium and inactive

OpenRT-M Yes Yes Very High Yes Part of docs in Japanese

ROS 2 Yes Yes High No Small and Active

PODO Yes Yes Very High No, not available KAIST group only

IHMC OpenJDK Yes, low

performance

No Medium Yes Small

XBot Yes Yes Low Yes Small

Table 1.
Summary of the features of the available software frameworks for robotics: The XBot was developed from
scratch given the limitations and the missing features of the presented existing framework.

2 https://index.ros.org/doc/ros2/
3 https://index.ros.org/doc/ros2/Features/

3

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

In the next sections, the XBot design goals and the software architecture insights
are going to be described following a bottom-up approach going from the hardware
towards the high-level control of the robotic system.

3.1 Design goals

The considerations and limitations of the existing frameworks, described in
detail in the previous section, motivated the development of the XBot framework
bearing in mind that the design of a software platform, which lies at the foundations
of such complex and diverse robotic systems, is the most crucial phase in the
software development process. XBot was designed to be both an RT control system
and a user friendly, flexible and reusable middleware for RT and non-RT control
software modules. XBot was developed starting from the following design goals and
features:

• Hard RT control performance: it must perform computation inside specific
timing constraints with minimum timing jitter. There are several operating
systems or platforms which support RT operation, including Windows CE,
INtime, RTLinux, RTAI, Xenomai, QNX and VXWorks. Xenomai4 [15], a
Linux based Real-Time Operating System (RTOS) was selected to avoid a
licensed product that does not give the possibility to modify and adapt the
source code to fit it to the specifications of the system. Moreover Xenomai
satisfies the requirements for extensibility, portability and maintainability as
well as ensuring low latency as stated. in [16, 17].

• High control frequency: robotics applications may often require high
frequency control loops, e.g. RT pattern generator for bipedal walking,
impedance regulation controllers or force feedback modules.

• Cross-Robot compatibility: it should be possible to use it with any robot,
without code modification. It is crucial to be able to reuse the software
platform with different robots, or subsystems of the same robotic platform.

• External Framework integration: it should be possible to use XBot as a
middleware for any kind of external software framework (RT or non RT)
without tailored software or specific bridges for every different case.

• Plug-in Architecture: users and third parties should be able to develop and
integrate their own modules. In a robotic system platform a highly expandable
software structure is needed.

• Light-weight: small number of dependencies on other libraries, it should be
easy to install and set up. It is expected to run XBot on embedded PCs with low
performance requirements in terms of memory and CPU. Therefore, it should
demonstrate a small footprint to avoid high CPU usage.

• Simplicity: it must be simple. Complex systems may have unneeded and over-
engineered features. For robotics application full control over the software
platform is required. KISS (“Keep It Simple, Stupid”) principle is essential and
unnecessary complexity should be avoided.

4 https://xenomai.org/

4

Robotics Software Design and Engineering

• Flexibility: XBot has to be easily modified or extended to be used in systems
and applications other than those for which it was specifically designed.

Finally, the XBot software framework was not developed to address the require-
ments of a specific robotic platform, instead its implementation is flexible, generic
and cross-robot. Furthermore it does not directly depend on any existing software
or control platform, but it provides to the user the functionality to easily integrate
any RT or non-RT framework. To obtain the above features, a user of the XBot with
a generic robotic platform to control, has to provide a set of configuration files,
mainly related to the kinematics and dynamics of the robot, the control plugins to
execute, the HAL implementation, the high level communication framework and
the kinematic/dynamic engine to use.

3.2 Software architecture

As presented in Figure 1, the XBot software architecture is composed of differ-
ent components, described in detail within the following sections. In particular the
design choices, from a software engineer point of view, are the results of the design
goals described in Section 3.1. To avoid scheduling issues and keep the complexity
of the software infrastructure as low as possible only two RT threads and one non-
RT thread are currently employed in the framework as presented in Figure 2. The
RT layer contains the R-HAL (Robotics Hardware Abstraction Layer) to assure
cross-robot compatibility and seamless porting of the higher level code from the
simulation to the real robot. The communication mechanism employed in this layer
is a shared memory one using basic synchronization methods (i.e. mutex and
condition variables). On top of the R-HAL, the Plugin Handler is designed using a

Figure 1.
XBot software architecture: components overview and interaction. From the bottom the R-HAL and the plugin
handler inside the RT Xenomai layer are presented, with the shared memory communication between them. The
non-RT layer and the external software integration component of the XBot is represented by the
Communication Handler which is able to communicate with the robot/simulation through a XDDP
mechanism which assures lock-free IPC. Thanks to the XBotInterface on the left, all the layers of the framework
have an uniform way (through an API) to send commands and receive state from the robot.

5

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

component-based software design paradigm by featuring a clear component con-
cept (the plugin as a shared library) with well-defined structure and communica-
tion interfaces. In order to be able to assure external software integration, the
communication with the non-RT layer, represented by a standalone component
called Communication Handler, is implemented using a lock-free Inter Process
Communication (IPC) mechanism based on XDDP (described in details in the
following sections). The same concept is applied to communicate with other RT
frameworks (e.g. OROCOS), using a mechanism based on IDDP. The idea of the
NRT Deployer came from the need to have a behavior similar to the one of the Plugin
Handler but completely in the non-RT layer. Finally a standard way of communi-
cating with the robot regardless of its specific structure (humanoid, quadruped,
manipulator, etc), and also independently of the particular software layer that the
user wants to operate within, is provided by mean of the XBotInterface.

3.2.1 R-HAL

The Cross-Robot compatibility feature is achieved through the development of a
suitable hardware abstraction layer [18], which enables the user to efficiently port
and run the same control modules on different robots, both in simulation and on the
real hardware platforms. The main goal of this software component is to provide an
independent layer in between the robot hardware and the high-level control,
enabling the seamless integration of new actuators, sensors or other hardware
components.

Concerning the threads configuration, XBot employs a separate thread to exe-
cute the low-level robot control loop and permits to realize separate controllers with
different frequencies. The synchronization between the Plugin Handler thread and
the R-HAL thread is implemented using condition variables, assuring the safe access
of the shared data structures.

XBot currently supports EtherCAT (for robots like WALK-MAN, CENTAURO
and COMAN+), Ethernet (for COMAN), and KUKA LWR 4/KUKA LBR arm based
robots [19–21]. The possibility to simulate the robot and its controllers behaviors
prior to testing on the real hardware is essential, especially when dealing with
complex robotic systems. To achieve this we provide an R-HAL implementation for
the well known Gazebo5 simulator environment Figure 3. In particular we rely on
the Gazebo ModelPlugin class to be part of the Gazebo internal loop.

Figure 2.
XBot threads structure and communication mechanisms: To keep the complexity of the framework low and
assure full control over the software infrastructure, only two RT threads and one non-RT thread are currently
employed.

5 http://gazebosim.org/

6

Robotics Software Design and Engineering

3.2.2 Plugin handler

The main component of the XBot architecture is called PluginHandler and it is
represented in Figure 1 with the dark pink color. The software design of this
component relies on two core requirements for a robotic system (described in 3.1):
the RT control and the highly expandable software structure. To achieve this the
PluginHandler is implemented using a single RT thread running at high frequency
(e.g. 1 kHz) and it is responsible for the following actions with the order they
appear below: load the set of plugins requested by the user from a configuration file,
initialize all the loaded plugins, and start them upon user request, execute the
plugins that have been started sequentially, reload and reinitialize a plugin upon
user request, close and unload all the loaded plugins. In Figure 4, the UML state
diagram representing the life-cycle of a plugin is presented.

The Plugin implementation is compiled as a shared object library (.so). In details
a Plugin is a simple class inherited from the abstract class XBotControlPlugin; this
means that writing a Plugin is straightforward for the user, as the only need is to
implement three basic functions:

• an init_control_plugin() function, which is called by the PluginHandler after the
plugin is loaded/reloaded and is useful to initialize the variables of the Plugin

• a control_loop() function, which is called in the run loop of the PluginHandler
after the plugin is started

• a close() function, which is called in the PluginHandler closing phase

After the design and the implementation of the latency-free, hard real-time layer
the next significant feature is accompanied by the implementation of flexible

Figure 3.
COMAN+ robot controlled inside the gazebo simulator (left) and CENTAURO robot in RViZ (right): Both
using two different implementations of the R-HAL provided in the XBot software architecture.

7

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

interfaces, called XBotInterface, which permit our framework to integrate with
state-of-art, widely spread robot control frameworks.

3.2.3 Communication handler

The above mentioned software components do not give the possibility to com-
municate with external modules/hosts outside the robot: for this purpose the soft-
ware framework of a robotic system should incorporate a set of non-RT threads that
permit the communication of the system with remote pilot stations or cloud ser-
vices. XBot provides this with the implementation of the Communication Handler

component (represented in Figure 1 with the yellow color) that is a non-RT thread
exploiting an XDDP (Cross Domain Datagram Protocol) handler with the ready-to
use XBot non-RT API for a set of components called CommunicationInterface(s).
The non-RT API uses XDDP Xenomai pipes to achieve asynchronous communica-
tion between RT and non-RT threads. A lock-free inter-process communication
(IPC) is employed to permit the RT control threads to exchange messages with the
non-RT communication threads without any context switch. The execution loop of
the Communication Handler thread is responsible for updating the internal robot
state using the XDDP pipe with the non-RT robot API, sending the robot state to all
the communication frameworks implemented as CommunicationInterface(s),
receiving the new reference from the “master” CommunicationInterface (to avoid
having multiple external frameworks commanding the robot) and finally for send-
ing the received reference to the robot using the XDDP non-RT robot API.

It is relatively straightforward to add a new CommunicationInterface in the
framework: XBot provides built-in support for YARP and ROS communication

Figure 4.
UML state diagram showing a XBot plugin life-cycle.

8

Robotics Software Design and Engineering

frameworks, meaning that the end-users has YARP control board wrappers / analog
sensors and ROS joint state / command messages already available. Interoperability
for YARP/ROS framework and XBot is one of the key feature offered by the Com-
munication Handler.

In the specific ROS case, XBot provides two families of interfaces:

1.a joint space interface, consisting of standard ROS topics that are advertised/
subscribed by the Communication Handler itself in order to publish the robot
state (including sensors) and accept commands

2.a set of tools for using a subset of ROS inter-process communication
capabilities from the RT domain

ROS-powered robots expose to their users an interface that is mainly based on
topics. For instance, the robot joint state is usually published to a /joint_state topic
through sensor_msgs/JointState messages. The same kind of message can be
published by the user on a /command topic in order to control the robot.

Inside XBot a similar interface to the ROS middleware is offered, the only
difference lies in the message type being used. Broadly speaking, XBot uses an
extended joint state message that make it possible to perform more flexible control
of the robot than is allowed with standard ROS.

The XBot framework provides also the integration with any external RT software
framework (e.g. OROCOS) thanks to the use of the IDDP (Intra Domain Datagram
Protocol) pipes for the RT inter-process communication.

Inside the Communication Handler component, the XBot framework provides
the user with the possibility of running non-RT plugins that are useful for
performing Input/Output operation from the non-RT layer to the RT layer. The so
called IOPlugins are very similar to the Plugin used in the RT layer, in fact the
implementation is compiled as a shared object library (.so). In detail, an IOPlugin is
a simple class inheriting from the abstract class XBot::IOPlugin, which gives to the
user simple access to the shared memory component and the pipes to communicate
between the non-RT layer and the RT one. As for the standard Plugin, XBot
provides a ready-to-use skeleton (simple script to run) for the user.

4. Experimental validation

In this section the results of the validation of the overall framework is going to
be presented with particular focus on the flexibility in terms of integration with
different robots and external software frameworks, and also on the overhead intro-
duced by the XBot while assuring predictable response time at high frequency (i.e.
1 kHz) control loop.

4.1 Experimental setup

To evaluate the performance of the XBot software platform, two sets of experi-
ments were performed: in the experiment set 1 the WALK-MAN [22, 23] robot was
used, a humanoid with 33 Degree-Of-Freedom, 4 custom F/T sensors and 1 VN-100
imu. The WALK-MAN vision system is composed of a CMU Multisense-SL sensor
that includes a stereo camera, a 2D rotating laser scanner, and an IMU. The robot
control modules were based on GYM [24] (Generic Yarp Module), a component
model to easily develop software modules for robotics leveraging the YARP ecosys-
tem: YARP Based Plugins for Gazebo Simulator were used to validate the control

9

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

modules in simulation. Whole-body control and inverse kinematics are solved
through the OpenSoT control framework [25]. Figure 5 reports a representation of
the software components in use for experiment set 1.

In the set 1 evaluation different high-level software frameworks were success-
fully integrated on top of XBot: ArmarX [26] perceptual pipeline for hierarchical
affordance extraction [27], OpenSoT previewer based on the MoveIt! ROS library

Figure 6.
XBot validation experiment. On the left set 1 setup: WALK-MAN needs to remove a set of objects in order to
perform the task of turning the valve. On the right CENTAURO bi-manual robot platform used in experiment
set 2.

Figure 5.
XBot validation experiment set 1 software components: How they are allocated in the two WALK-MAN
embedded PCs (i.e. N-RT WALKMAN EXP and RT WALKMAN EXP).

10

Robotics Software Design and Engineering

for motion feasibility analysis and collision checking and a manipulation GYM
module, OpenSoT based, using the YARP communication framework.

The set 1 experiments were carried out in a DRC-inspired scenario targeting the
removal of debris in front of a valve. In Figure 6 the experimental setup is shown.

In [28], ArmarX was integrated with the robot software environment YARP
taking advantage of the built-in YARP CommunicationInterface for the external
software framework integration with XBot.

In the experiment set 2 an RT end-effector Cartesian Control on two different
robots was performed: the aforementioned WALK-MAN and CENTAURO (in
Figure 6). CENTAURO [20, 29, 30] upper body is a high performance human size
and weight compatible bi-manual manipulation platform with 15 DOFs. Each arm
has 7 DOF and the trunk has 1 DOF that permits the yaw motion of the entire upper
body and extends the manipulation workspace of the robot.

In the set 2 experiments two RT Plugins were used: the first one, called
IKCommunication to receive the end-effector pose from the Communication Han-

dler (with the built-in ROS CommunicationInterface) through the XDDP pipes
and OpenSoTRTIK to solve the inverse kinematics. The evaluation was focused on
the overhead introduced by the IKCommunication RT plugin that exploits two
communication mechanism offered by XBot: XDDP to receive the data from the
non-RT layer and XBotSharedMemory to communicate these data to the other RT
plugin (OpenSoTRTIK).

4.2 Results

In the set 1, XBot performance in terms of control period of the RT plugin
XBotCommunicationPlugin and CPU usage were analyzed: during the experi-
ments, each millisecond, all the data flowing from/to the R-HAL were recorded,
using the XBot RT low-level logging tools.

Figure 7.
Experiment set 1: WALK-MAN EtherCAT slaves RTT measured by EtherCAT master during manipulation
actions: XBot assures always a control period below 1000 μs while providing integration with external software
frameworks as described in Figure 5.

11

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

In Figure 7 the RTT (Round Trip Time) measured by the EtherCAT master
implementation of the R-HAL during the set 1 experiments in the worst-case
scenario is shown, i.e. while the robot was performing the manipulation actions: it is

Figure 8.
Experiment set 1: XBot CPU core usage comparison: Robot idle vs. robot running the experiments. The
difference between the two bold lines represents the actual overhead introduced by the middleware when
executing the control modules described in the experimental setup for set 1.

Figure 9.
Experiment set 2: Communication overhead (RT - RT and N-RT - RT) introduced by XBot. Experiment
results on both WALK-MAN and CENTAURO are shown.

12

Robotics Software Design and Engineering

clear that the mean control period is below the 1000 μs (i.e. 1 kHz control fre-
quency) even if the RT system is communicating with the high-level software
components through XBot the built-in YARP CommunicationInterface non-RT
threads. Only two of the RTT measurement (over 200000) were above the
requested control period because of missing PDO (Process Data Objects) round in
the beckhoff6 chip responsible for the EtherCAT communication.

In Figure 8 a comparison is presented between XBot CPU usage while the robot
is idle (i.e. not moving, nor communicating with external software frameworks)
and when the set 1 manipulation experiments are running: the CPU core usage
overhead introduced by XBotwhen the robot is performing the manipulation task as
described above, is only 1.2% (on average). Furthermore it is clear that the CPU
usage of XBot is very low (always ranging from 11.7% to 14.2%).

In the set 2 the focus was placed on the communication overhead introduced by
XBot: both the XDDP pipes (communication between RT and non-RT layers) and
the XBotSharedMemory (RT plugins communication) are taken into account. As
shown in Figure 9 the mean execution time of the IKCommunication RT plugin is
around 1.2 μs for both WALK-MAN and CENTAURO experiments. This means that
it is possible to send end-effector reference poses and receive back the robot state
from a non-RT framework, while controlling the robot (at 1 kHz in the experi-
ments) using a RT plugin implementing the IK (OpenSoTRTIK in the experiments),
with negligible overhead (Figure 10).

Figure 10.
XBot framework usage examples: WALK-MAN robot in Pisa (top left), CENTAURO robot untethered and
outdoor (bottom left), and the COMAN and its scaled-up version COMAN+ humanoid robots shaking hands
(right).

6 https://www.beckhoff.it/

13

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

5. Conclusions

In this chapter the XBot7 RT software architecture was presented. It provides to
the users a software infrastructure which can be used with any robotic systems
enabling fast and seamless porting of the code from one robot to the other, requir-
ing no code changes, assuring flexibility and reusability. The implementation of the
framework ensures easy interoperability and built-in integration with other existing
software tools for robotics, such as ROS, YARP or OROCOS. The component-based
development of the XBot includes a Robotic Hardware Abstraction Layer (R-HAL)
interface and a set of ready-to-use tools to control robots either within a simulation
environment or the real hardware.

The framework has been successfully used an validated as a main software
infrastructure (Figure 5) for humanoid robots such as WALK-MAN (result of
WALK-MAN EU FP7 project8, notably XBot received the EU innovation radar
award in this context9.) and COMAN+ (result of COGIMON EU H2020 project10)
or for quadruped centaur-like robots as CENTAURO (result of the CENTAURO EU
H2020 project11). Moreover the cross-robot functionality has been exploited to
develop both RT and non-RT control modules not only for the above mentioned
robots, but also for commercial robotic systems such as KUKA LBR, KUKA 4+ or
Franka Emika Panda, or other humanoid robots like COMAN or iCub.

Regarding the simulation part, XBot enables the direct porting of the control mod-
ules tested in the simulator to the real hardware using the same interfaces and without
requiring any code modifications. The built-in simulator supported in the framework
is Gazebo, but there is the option to support other simulation environments (as it
happened inside the CENTAURO H2020 project with the VEROSIM simulator12).

XBot currently relies on a dual-kernel approach using Xenomai, which performs
better than PREEMPT_RT13, both in terms of system predictability and absolute
latencies. Nevertheless Xenomai in the long term can introduce disadvantages by
making the software development more complex, which means harder maintain-
ability and lower portability.

Further development of the framework will target to provide synchronized
distributed execution of multiple RT threads in multiple computational units. In
fact currently the Plugin Handler is only able to execute a set of plugins in sequence,
without any concurrency. This makes the maintenance of the framework easier, but
restricts the performance in terms of computation power. Moreover the current
architecture is characterized by a unique point of failure since both the R-HAL
thread and the Plugin Handler (which executes RT plugins) thread run in the same
process. In fact, there is the possibility that a misbehaving RT plugin might cause
memory corruption, or crash altogether, causing also the R-HAL to crash. Currently
only expert users are allowed to load their RT plugins in the Plugin Handler, but it is
desirable to eventually separate the R-HAL and Plugin Handler either in two
different processes or in two different machines to improve isolation.

7 https://github.com/ADVRHumanoids/XBotControl
8 https://www.walk-man.eu/
9 https://www.innoradar.eu/innovation/30632
10 https://cogimon.eu/
11 https://www.centauro-project.eu/
12 https://www.verosim-solutions.com/en/
13 PREEMPT_RT was introduced to have RT capabilities in the Linux kernel avoiding the adoption of a

dual-kernel.

14

Robotics Software Design and Engineering

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 101016007
CONCERT, and the European Union’s Horizon 2020 Research and Innovation
Programme (H2020-ICT-2019-2/ 2019-2023) under grant agreement No. 871237
SOPHIA and the Italian Fondo per la Crescita Sostenibile – Sportello “Fabbrica
intelligente”, PON I&C 2014 - 2020, project number F/190042/01-03/X44 RELAX.

Author details

Luca Muratore*, Arturo Laurenzi and Nikos G. Tsagarakis
Humanoids and Human Centered Mechatronics (HHCM), Istituto Italiano di
Tecnologia, Genova, Italy

*Address all correspondence to: luca.muratore@iit.it

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

15

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

References

[1] A. Elkady and T. Sobh, “Robotics
middleware: A comprehensive literature
survey and Attribute-Based
bibliography,” Journal of Robotics, 2012.
[Online]. Available: http://dx.doi.org/
10.1155/2012/959013

[2] G. C. Buttazzo, Hard Real-time
Computing Systems: Predictable
Scheduling Algorithms And Applications
(Real-Time Systems Series). Santa Clara,
CA, USA: Springer-Verlag TELOS,
2004.

[3]M. Aragão, P. Moreno, and A.
Bernardino, “Middleware
interoperability for robotics: A ros–yarp
framework,” Frontiers in Robotics and
AI, vol. 3, p. 64, 2016. [Online].
Available: https://www.frontiersin.org/a
rticle/10.3389/frobt.2016.00064

[4]H. Bruyninckx, “OROCOS: design
and implementation of a robot control
software framework,” Proc. IEEE RAS
EMBS Int. Conf. Biomed. Robot.
Biomechatron., 2002. [Online].
Available: https://pdfs.semanticscholar.
org/f32c/9806be8bd1a702a9732fc9cbe
1626b3d37e6.pdf

[5]N. Ando, T. Suehiro, K. Kitagaki, T.
Kotoku, and W.-K. Yoon, “Rt-
middleware: distributed component
middleware for rt (robot technology),”
in 2005 IEEE/RSJ International
Conference on Intelligent Robots and
Systems. IEEE, 2005, pp. 3933–3938.
[Online]. Available: https://doi.org/
10.1109/IROS.2005.1545521

[6] G. Metta, P. Fitzpatrick, and L.
Natale, “Yarp: Yet another robot
platform,” International Journal on
Advanced Robotics Systems, 2006.
[Online]. Available: http://journals.sage
pub.com/doi/pdf/10.5772/5761

[7]M. Quigley, K. Conley, B. P. Gerkey,
J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source

robot operating system,” in ICRA
Workshop on Open Source Software,
2009.

[8] L. Jeongsoo, L. Jungho, and O. Jun-
Ho, “Development of robot software
framework podo: Toward multi-
processes and multi-users,” Workshop
on software architectures and
methodologies for developing humanoid
robots, IEEE HUMANOIDS 2014, 2014.
[Online]. Available: http://blog.pal-rob
otics.com/wp-content/uploads/2014/
09/Lim_WSAH.pdf

[9] T. Houliston, J. Fountain, Y. Lin, A.
Mendes, and others, “NUClear: A
loosely coupled software architecture
for humanoid robot systems,” Frontiers
in Robotics, 2016. [Online]. Available: h
ttps://doi.org/10.3389/frobt.2016.00020

[10] J. Smith, D. Stephen, A. Lesman,
and J. Pratt, “Real-time control of
humanoid robots using openjdk,” in
Proceedings of the 12th International
Workshop on Java Technologies for Real-
time and Embedded Systems, ser. JTRES
‘14. New York, NY, USA: ACM, 2014,
pp. 29:29–29:36. [Online]. Available: h
ttp://doi.acm.org/10.1145/
2661020.2661027

[11]M. Johnson, B. Shrewsbury, S.
Bertrand, T. Wu, D. Duran, M. Floyd, P.
Abeles, D. Stephen, N. Mertins, A.
Lesman, J. Carff, W. Rifenburgh, P.
Kaveti, W. Straatman, J. Smith, M.
Griffioen, B. Layton, T. de Boer, T.
Koolen, P. Neuhaus, and J. Pratt, “Team
IHMC’s lessons learned from the
DARPA robotics challenge trials,” J.
Field Robotics, vol. 32, no. 2, pp. 192–
208, 2015. [Online]. Available: http://
onlinelibrary.wiley.com/doi/10.1002/
rob.21571/abstract

[12] L. Muratore, A. Laurenzi, E. M.
Hoffman, A. Rocchi, D. G. Caldwell,
and N. G. Tsagarakis, “XBotCore: A
Real-Time Cross-Robot Software

16

Robotics Software Design and Engineering

Platform,” in IEEE International
Conference on Robotic Computing, 2017.
[Online]. Available: https://doi.org/
10.1109/IRC.2017.45

[13] L. Muratore, A. Laurenzi, E.
Hoffman, A. Rocchi, D. Caldwell, and
N. Tsagarakis, “On the design and
evaluation of xbotcore, a cross-robot
real-time software framework,” Journal
of Software Engineering for Robotics, Jun.
2017. [Online]. Available: https://joser.
unibg.it/index.php?journal=joser&
page=article&op=viewFile&path[]=
112&path[]=46

[14] L. Muratore, A. Laurenzi, E. M.
Hoffman, and N. G. Tsagarakis, “The
xbot real-time software framework for
robotics: From the developer to the user
perspective,” IEEE Robot. Autom. Mag.,
vol. 27, no. 3, pp. 133–143, 2020.

[15] P. Gerum, “Xenomai-implementing
a rtos emulation framework on gnu/
linux,” White Paper, Xenomai, p. 81,
2004.

[16] J. H. Brown and B. Martin, “How
fast is fast enough? choosing between
xenomai and linux for real-time
applications,” Twelfth Real-Time Linux
Workshop, 2012. [Online]. Available: h
ttps://pdfs.semanticscholar.org/9eb5/
1dbe38fb23034e80b8664d8281996d2a
5ef6.pdf?_ga=2.115305735.
1422742923.1510677552-
1828769110.1510677552

[17] A. Barbalace, A. Luchetta, G.
Manduchi,M. Moro, A. Soppelsa, and C.
Taliercio, “Performance comparison of
vxworks, linux, rtai, and xenomai in a
hard real-time application,” IEEE
Transactions on Nuclear Science, vol. 55,
no. 1, pp. 435–439, 2008.

[18]G. F. Rigano, L. Muratore, A.
Laurenzi, E. M. Hoffman, and N. G.
Tsagarakis, “A mixed real-time robot
hardware abstraction layer (r-hal),”
Encyclopedia with Semantic Computing
and Robotic Intelligence, vol. 02, no. 01,

p. 1850010, 2018. [Online]. Available: h
ttps://doi.org/10.1142/
S2529737618500107

[19]N. G. Tsagarakis, D. G. Caldwell, F.
Negrello, W. Choi, L. Baccelliere, V.
Loc, J. Noorden, L. Muratore, A.
Margan, A. Cardellino et al., “Walk-
man: A high-performance humanoid
platform for realistic environments,”
Journal of Field Robotics, vol. 34, no. 7,
pp. 1225–1259, 2017.

[20]N. Kashiri, L. Baccelliere, L.
Muratore, A. Laurenzi, Z. Ren, E. M.
Hoffman, M. Kamedula, G. F. Rigano, J.
Malzahn, S. Cordasco, P. Guria, A.
Margan, and N. G. Tsagarakis,
“Centauro: A hybrid locomotion and
high power resilient manipulation
platform,” IEEE Robotics and
Automation Letters, vol. 4, no. 2,
pp. 1595–1602, 2019.

[21]N. G. Tsagarakis, S. Morfey, G. M.
Cerda, L. Zhibin, and D. G. Caldwell,
“Compliant humanoid coman: Optimal
joint stiffness tuning for modal
frequency control,” in Robotics and
Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013,
pp. 673–678.

[22]N. G. Tsagarakis, D. G. Caldwell, F.
Negrello, W. Choi, L. Baccelliere, V.
Loc, J. Noorden, L. Muratore, A.
Margan, A. Cardellino, L. Natale, E.
Mingo Hoffman, H. Dallali, N. Kashiri,
J. Malzahn, J. Lee, P. Kryczka, D.
Kanoulas, M. Garabini, M. Catalano, M.
Ferrati, V. Varricchio, L. Pallottino, C.
Pavan, A. Bicchi, A. Settimi, A. Rocchi,
and A. Ajoudani, “WALK-MAN: A
High-Performance Humanoid Platform
for Realistic Environments,” Journal of
Field Robotics, Jun. 2017. [Online].
Available: http://doi.wiley.com/
10.1002/rob.21702

[23]N. G. Tsagarakis, F. Negrello, M.
Garabini, W. Choi, L. Baccelliere, V. G.
Loc, J. Noorden, M. Catalano, M.
Ferrati, L. Muratore, P. Kryczka, E. M.

17

XBot: A Cross-Robot Software Framework for Real-Time Control
DOI: http://dx.doi.org/10.5772/intechopen.97066

Hoffman, A. Settimi, A. Rocchi, A.
Margan, S. Cordasco, D. Kanoulas, A.
Cardellino, L. Natale, H. Dallali, J.
Malzahn, N. Kashiri, V. Varricchio, L.
Pallottino, C. Pavan, J. Lee, A. Ajoudani,
D. G. Caldwell, and A. Bicchi, WALK-
MAN Humanoid Platform. Cham:
Springer International Publishing, 2018,
pp. 495–548. [Online]. Available: h
ttps://doi.org/10.1007/978-3-319-74666-
1_13

[24]M. Ferrati, A. Settimi, L. Muratore,
A. Cardellino, A. Rocchi, E. Mingo
Hoffman, C. Pavan, D. Kanoulas, N. G.
Tsagarakis, L. Natale, and L. Pallottino,
“The walk-man robot software
architecture,” Frontiers in Robotics and
AI, vol. 3, p. 25, 2016. [Online].
Available: https://www.frontiersin.org/a
rticle/10.3389/frobt.2016.00025

[25] E. Mingo Hoffman, A. Rocchi, A.
Laurenzi, and N. G. Tsagarakis, “Robot
control for dummies: Insights and
examples using opensot,” in 17th IEEE-
RAS International Conference on
Humanoid Robots, Humanoids 2017,
Birmingham, UK, November 15–17, 2017,
2017.

[26]N. Vahrenkamp, M. Wächter, M.
Kröhnert, K. Welke, and T. Asfour,
“The robot software framework
ArmarX,” it - Information Technology,
vol. 57, no. 2, 2015. [Online]. Available:
https://doi.org/10.1515/itit-2014-1066

[27] P. Kaiser, D. Kanoulas, M. Grotz, L.
Muratore, A. Rocchi, E. M. Hoffman, N.
G. Tsagarakis, and T. Asfour, “An
affordance-based pilot interface for
high-level control of humanoid robots in
supervised autonomy,” in IEEE/RAS
International Conference on Humanoid
Robots (Humanoids), 2016. [Online].
Available: https://doi.org/10.1109/
HUMANOIDS.2016.7803339

[28] A. Paikan, D. Schiebener, M.
Wächter, T. Asfour, G. Metta, and L.
Natale, “Transferring object grasping
knowledge and skill across different

robotic platforms,” in Advanced Robotics
(ICAR), 2015 International Conference
on, Jul. 2015, pp. 498–503.

[29] L. Baccelliere, N. Kashiri, L.
Muratore, A. Laurenzi, M. Kamedula, A.
Margan, J. Malzahn, and N. G.
Tsagarakis, “Development of a human
size and strength compatible bi-manual
platform for realistic heavy
manipulation tasks,” in 2017 IEEE/RSJ
International Conference on Intelligent
Robots and Systems (IROS 2017), 2017.
[Online]. Available: https://doi.org/
10.1109/IROS.2017.8206447

[30] T. Klamt, M. Schwarz, C. Lenz, L.
Baccelliere, D. Buongiorno, T. Cichon,
A. DiGuardo, D. Droeschel, M. Gabardi,
M. Kamedula, N. Kashiri, A. Laurenzi,
D. Leonardis, L. Muratore, D.
Pavlichenko, A. S. Periyasamy, D.
Rodriguez, M. Solazzi, A. Frisoli, M.
Gustmann, J. Rossmann, U. Suss, N. G.
Tsagarakis, and S. Behnke, “Remote
mobile manipulation with the centauro
robot: Full-body telepresence and
autonomous operator assistance,”
Journal of Field Robotics. [Online].
Available: https://onlinelibrary.wiley.c
om/doi/abs/10.1002/rob.21895

18

Robotics Software Design and Engineering

