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Preface

This volume contains the proceedings of the jubilee X Hotine-Marussi Symposium on
Mathematical Geodesy, which was held from 13 to 17 June 2022 at the Politecnico di Milano,
Milan, Italy.

This series of symposia focused on theoretical geodesy started in 1959 when Antonio
Marussi organized the first Symposium on Three-Dimensional Geodesy in Venice. The name
of the symposia was changed in 1965 when the third Symposium on Mathematical Geodesy
was held in Torino. The first three symposia were strongly influenced by the prominent British
geodesist Martin Hotine. After his death in 1968, the series was renamed again and the first
Hotine Symposium on Mathematical Geodesy was held in Trieste, 1969. This symposium and
following four symposia were organized by Antonio Marussi. After his death in 1984, the
series was renamed to the Hotine-Marussi Symposia, the title used up to now. The first five
Hotine-Marussi Symposia (1985, 1989, 1994, 1998 and 2003) were organized by Fernando
Sansò, the driving force behind the series of Hotine-Marussi symposia over more than three
decades.

Since 2006, the organization of the Hotine-Marussi Symposia has been under the respon-
sibility of the Inter-Commission Committee on Theory (ICCT) within the International
Association of Geodesy (IAG). The ICCT organized the last five Hotine-Marussi Symposia
held in Wuhan (2006), Rome (2009, 2013, and 2018), and Milan (2022). The overall goal of
the Hotine-Marussi Symposia is aligned with the main objective of the ICCT, i.e., to advance
geodetic theory in all branches of geodesy, reflecting developments in geodetic observing
systems and interactions of geodesy with other Earth-related sciences. Thus, the Hotine-
Marussi Symposia on Mathematical Geodesy are a primary venue for theoretically oriented
geodesists.

The X Symposium in Milan attracted 60 participants from 30 countries who contributed
80 papers (62 oral and 18 poster presentations). The scientific program of the symposium was
organized in 10 regular sessions thematically modelled according to the topics of the ICCT
study groups and mostly convened by their chairs:

I Advanced numerical methods in geodesy
Robert Čunderlík, Zuzana Minarechová

II Theory of geodetic reference frames and Earth’s rotation
Zuheir Altamimi

III Theory of multi-GNSS parameter estimation
Amir Khodabandeh

IV Multi-sensor and time series data analysis
Anna Klos, Krzysztof Sośnica

V Theory of global gravity field modelling
Mirko Reguzzoni, Michal Šprlák

VI Probing Earth’s inner structure using geodetic methods
Daniele Sampietro, Robert Tenzer

VII Theoretical aspects of heights and height systems
Riccardo Barzaghi

v
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VIII Estimation theory and stochastic modelling
Peter Teunissen

IX Geodetic methods in Earth system science
Mattia Crespi, Nico Sneeuw

X Theory of local gravity field modelling
Hussein Abd-Elmotaal, Jianliang Huang

Participants of the X Hotine-Marussi Symposium, 15 June 2022, Politecnico di Milano, Italy

Additionally, a special session was held on 15 June 2022, organized by Pavel Novák,
president of ICCT (2015–2023). Its program consisted of five invited talks focused on the
two basic concepts of physical geodesy – geoid and quasigeoid:
1. Sansò F, Barzaghi R, Reguzzoni M: Molodensky’s and Helmert’s theories – two equivalent

geodetic approaches to the determination of the gravity potential.
2. Sideris MG, Sansò F: The equivalence of the linearized original and ‘Helmertised’ geodetic

boundary value problems of Stokes and Molodensky.
3. Sjöberg LE: Geoid or quasigeoid? – a short comparison.
4. Kingdon R, Vaníček P, Santos M, Sheng M, Foroughi I: The quasigeoid: why Molodensky

heights fail.
5. Huang J, Wang Y: Numerical aspects of local and regional geoid and quasi-geoid

determination.
Based on the debate over the geoid and quasi-geoid, a motion critical of the use of the quasi-
geoid as a reference surface for physical heights in scientific and engineering applications was
proposed to the Assembly of the X Hotine-Marussi Symposium. The Assembly recommended
further discussion of this issue within the geodetic community.

The scientific program of the symposium was complemented by a great social program
including a tour of the Duomo (Cathedral) and Centro Storico (Historic Center) di Milano.



Preface vii

The symposium was organized as a classic meeting with on-site participation; however, due
to pandemic restrictions, a limited number of presentations were delivered using online tools.
Although the number of participants did not match the number of previous Hotine-Marussi
symposia, the meeting was attended by numerous geodesists, both young and senior ones.

We would like to acknowledge all who contributed to the success of the X Hotine-Marussi
Symposium. The study group chairmen and the entire Scientific Committee (P. Novák, M.
Crespi, N. Sneeuw, F. Sansò, R. Barzaghi, C. Kotsakis, M. Reguzzoni, J. Bogusz, A. Kealy, M.
Schmidt, J. Müller, B. Li, M. Santos, M. Šprlák, K. Sośnica, R. Tenzer, J. Huang, A. Calabia,
D. Tsoulis, B. Soja, Y. Tanaka, A. Khodabandeh, A. Kłos, S. Claessens, R. Čunderlík, G.
Savastano, D. Carrion) put much effort in organizing and convening their sessions. The peer-
review process was led by Jeffrey Freymueller and Laura Sánchez, the IAG Symposia Series
editors. Although most of the reviewers remain anonymous for the authors, a complete list of
reviewers is printed in this volume to express our gratitude for their dedication.

The Symposium was financially and promotionally supported by the Politecnico di Milano.
The IAG provided travel support to selected young participants of the Symposium.

However, most of our gratitude goes to the Local Organizing Committee of the Symposium.
The team chaired by Riccardo Barzaghi consisted of members of the Department of Civil and
Environmental Engineering of the Politecnico di Milano: B. Betti, F. Migliaccio, A. Albertella,
M. Reguzzoni, G. Venuti, D. Carrion, C. De Gaetani, L. Rossi, and C. Vajani. Through their
effort and organization skills, Riccardo and his team significantly contributed to the success of
the Symposium.

Pilsen, Czech Republic Pavel Novák
Rome, Italy Mattia Crespi
Stuttgart, Germany Nico Sneeuw
Milan, Italy Fernando Sansò
Milan, Italy Riccardo Barzaghi
November 2023
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On the Estimation of Time Varying AR Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Johannes Korte, Till Schubert, Jan Martin Brockmann, and Wolf-Dieter Schuh

Refinement of Spatio-Temporal Finite Element Spaces for Mean Sea Surface and
Sea Level Anomaly Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Moritz Borlinghaus, Christian Neyers, and Jan Martin Brockmann

On the Coestimation of Long-Term Spatio-Temporal Signals to Reduce the
Aliasing Effect in Parametric Geodetic Mean Dynamic Topography Estimation. . . . . 129
Jan Martin Brockmann, Moritz Borlinghaus, Christian Neyers, and Wolf-Dieter Schuh

A Flexible Family of Compactly Supported Covariance Functions Based on Cutoff
Polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Till Schubert and Wolf-Dieter Schuh

Modeling of Inhomogeneous Spatio-Temporal Signals by Least Squares
Collocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Wolf-Dieter Schuh, Johannes Korte, Till Schubert, and Jan Martin Brockmann

A Multi-Epoch Processing Strategy for PPP-RTK Users. . . . . . . . . . . . . . . . . . . . . . . . . . 159
A. Khodabandeh, P. J. G. Teunissen, and D. Psychas

Part IV Geoid and Quasi-Geoid

Geoid or Quasi-Geoid? A Short Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Lars E. Sjöberg and Majid Abrehdary

The Quasigeoid: Why Molodensky Heights Fail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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Remarks on the Terrain Correction
and the Geoid Bias

Lars E. Sjöberg and Majid Abrehdary

Abstract

The incomplete knowledge of the topographic density distribution causes a topographic bias
in all gravimetric geoid determinations. This bias becomes critical in aiming for accurate
geoid models in high mountainous regions. The bias can be divided into two components:
the bias of the Bouguer shell (or Bouguer plate) and that of the remaining terrain. Starting
from the known (disturbing) potential at the Earth’s surface, we study the possible location
of the bias caused by incomplete reduction of the terrain masses in the computational
process, We show that there is no such bias for terrain masses located exterior to the Bouguer
plate/shell and/or inside the Bouguer plate at a lateral distance exceeding the height HP of
the topography at the computational point. We conclude that the only possible terrain bias

could be generated by masses inside a dome of height
�p

2 � 1
�

HP centered along the

radius vector through the computational point with its base of radius HP at sea-level.

Keywords

Downward continuation � Terrain bias � Terrain correction � Topographic correction

1 Introduction

The topographic corrections in gravimetric geoid determina-
tion can be decomposed into the corrections for the Bouguer
shell/plate and the terrain (e.g., Heiskanen and Moritz 1967,
Sect. 3-3). If one assumes that the mass distribution of the
topography is rather random, it is suitable to define the
Bouguer shell as spherically symmetric with density distribu-
tion as that given along the radius vector at the computation
point. This implies that there are terrain corrections to be
considered all-over the Earth except along the radius at the
computation point. Here we assume that the computation
point is located at the Earth’s surface, and we will consider

L. E. Sjöberg (�)
Uppsala University, Uppsala, Sweden

Royal Institute of Technology, Stockholm, Sweden
e-mail: lsjo@KTH.se

M. Abrehdary
Uppsala University, Uppsala, Sweden

the locations of masses causing possible terrain bias in
analytical downward continuation (DWC) of the (disturbing)
potential to sea-level. (The Bouguer shell bias can be found,
e.g., in Sjöberg 2007 and in Sjöberg and Bagherbandi (2017,
Sect. 5.2.5).

In the DWC process of the surface disturbing potential
to sea level, it is only the topographic potential that may
cause a bias. Below we will divide the study of the possible
bias caused by the terrain masses located in the exterior zone
(i.e. the zone exterior to the Bouguer plate) as well as in the
remote and near zones inside the Bouguer plate. In each zone
we search for the answer to the question whether there could
be a source of mass causing a bias.

The method we use to answer the question is to compare
the effect of each surface potential (dVP) generated by a point
mass in the zone when downward continued to sea level�
dV �

P

�
and its true potential at sea level (dVg). The DWC

is formulated by the Taylor series:

dV �
P D

¥X
kD0

.�HP /k

kŠ

@kdVP

@H k
P

; (1)

© The Author(s) 2023
J. T. Freymueller, L. Sánchez (eds.), X Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 155, https://doi.org/10.1007/1345_2023_191
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4 L. E. Sjöberg and M. Abrehdary

Fig. 1 The shaded area describes
the dome � generated by Eq. (14)

where HP is the orthometric height of the topography at point
P. If dV �

P ¤ dV g (which may be due to that the series
diverges or converges to the wrong value), there is a bias,
otherwise not.

Assuming that sea-level is located on a flat Earth, the
terrain potentials at the surface point P and at sea-level gener-
ated by a point mass of density d� (more precisely, denoting
the gravitational constant times the density) located at lateral
distance s from P and at height h become (see Fig. 1)

dV P D d�=D and dV g D d�=D0; (2a)

where

D D
p

s2 C �2; D0 D
p

s2 C h2 and � D HP � h:

(2b)

2 The Terrain Correction for Masses
Located in the Remote Zone
of the Bouguer Shell

Let us define the remote zone as the location of all points
at lateral distance s exceeding the height of the computation
point, i.e. s > s0 D HP.

Then the potential at sea-level of the point mass can be
developed in the series

dV t
g D

�

s

1X
kD0

�
�1=2

k

�
d k D

�

s

�
1 �

d

2
C

3d 2

8
�

	
: (3)

where d D (h/s)2.
Also, for HP � h the surface potential at P becomes

dV t
P D

�

s

1X
kD0

�
�1=2

k

�k

tk D
�

s

�
1 �

t

2
C

3t2

8
�

	
; (4)

where t D (�/s)2.
We note that each term tk is a polynomial in HP, implying

that it is downward continued by simply putting HP D 0.
Hence, inserting (4) into (1) with (tk)� ! dk for all k > 0,

it follows that

.dV P /� D dV g; (5)

i.e. there is no terrain correction needed in this zone.
Note that the exterior part of the far-zone (where HP < h)

is not yet included. See the next section.

3 The Terrain Correction for Masses
Located Outside the Bouguer Plate

In the exterior zone (outside the Bouguer plate at height HP)
it holds that HP < h (the height of the point mass) and D0 > D
(see notations in Fig. 1). Then the inverse distances in Eq.
(2b) are related by the sequence

A D 1
D

D 1p
s2C�2

D
1q

B2C.�2�h2/
D Bq

1CB2.�2�h2/
D Bp

1Cq
; (6a)

where

B D 1=D0 D 1=
p

s2 C h2 and q D B2
�
�2 � h2

�
D B2

�
H 2

P � 2HP h
�

:

(6b)

Hence, the potential at P can be written

dV P D �A D �B=
p

1 C q; (7)

and, if jqj < 1, the inverse square-root can be expanded as
a power series in q as for t in Eq. (4). However, outside the
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Bouguer shell h > HP, so that

jqj D
HP .2h � HP /

s2 C h2
< 1; (8)

and, accordingly, one can expand A as a convergent power
series of q. Then, after applying Eq. (1) follows

.dV P /� D �A� D �B D dV g; (9)

which means that there is no geoid bias generated in the
DWC process by the masses in the exterior to the Bouguer
plate.

4 The Terrain Correction Due toMasses
in the Near-Zone Inside the Bouguer
Plate

Next, let us replace s0 D HP by s1 < s0 in Eq. (2b). Then the
DWC effect on the inverse distance

C D 1
D

D 1p
s2
1C.HP �h/2

D

1p
s2
1Ch2

1p
1Cp

D 1p
s2
1Ch2

1P
kD0

�
�1=2

k

�
pk;

(10)

will approach 1=

q
s2

1 C h2, if

ˇ̌�
H 2

P � 2hH P

�
=

�
s2

1 C h2
�ˇ̌

< 1; (11)

which yields

dV �
P D �C � D �=

q
s2

1 C h2 D dV g: (12)

Recalling that inside the Bouguer plate HP > h, so that
inequality (11) becomes

�
H 2

P � 2hH P

�
=

�
s2

1 C h2
�

< 1; (13a)

or

s2
1 C .HP C h/2

2H 2
P

> 1: (13b)

This inequality is met for all masses located at points (s, h)
outside the dome � (with a hole of radius 0 < s1 < s0 D HP

in its center) generated by the circle

s2 C .HP C h/2

2H 2
P

D 1 (14)

within the sector s1 � s � HP and height 0 � h ��p
2 � 1

�
HP , rotating round its vertical axis. See Fig. 1.

Inside � (s,h) violates (13b). (See the shaded area in Fig. 1
with vertex at point Q0 .)

5 Conclusions

If the Bouguer shell is modelled with a spherically symmetric
density distribution that changes radially according to the
topographic density distribution along the radius vector r
through the computation point on the Earth’s surface, there
will remain terrain masses all over the Earth, except along
r. Assuming that the disturbing potential is known at the
Earth’s surface at height HP, the study shows that only terrain

mass inside a dome � of height
�p

2 � 1
�

HP along r with

its base of radius HP at sea level, is likely to cause a bias.
Masses located outside � cannot produce a bias in the geoid
determination, and if there are no terrain masses inside �,
the only topographic bias will be that caused by the Bouguer
plate.
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Why a Height Theory Must Be Rigorous
and Physically Correct

Petr Vaníček, Marcelo Santos, Robert Kingdon, Ismael Foroughi,
and Michael B. Sheng

Abstract

Let us start with defining what we understand by a height system. A height system is a
conglomerate of reference surface upon which height H D 0, and a recipe for how heights
above that surface are obtained from observations. Two such systems, which we call the
classical or Gauss-Stokes’s system and the Molodensky system, are used in practical height
measurement.

The reference surface used by the classical system is the Geoid and its usage is based
on valid physical arguments. Determination of the height above the geoid requires data
at the surface of the Earth obtained by levelling, gravimetry, sea level measurements, and
topographical density from geological measurements. This system served us well when
decimetre height accuracy was required and will continue doing so even now when one or
even two orders of magnitude better accuracy is needed. On the other hand, Molodensky’s
system uses the quasigeoid as a reference surface; this surface is ill suited for a global height
system. This paper argues the case that the standard classical reference surface, the geoid,
should be used in practice everywhere.

Keywords

Geodetic heights � Geoid � Height system � Quasigeoid

1 Review

Heights are the vertical coordinates in a 3D curvilinear
coordinate system and as such can have different metric for
different height systems. The role of the Earth gravity field
is much more important in the vertical dimension than in
horizontal dimensions. [But look at the error in the length
of a metre where the effect of gravity overwhelms the
contribution of measurement error 50-times (Vaníček and

P. Vaníček · M. Santos · R. Kingdon · M. B. Sheng (�)
Department of Geodesy and Geomatics, University of New Brunswick,
Fredericton, NB, Canada

I. Foroughi
Department of Geodesy and Geomatics, University of New Brunswick,
Fredericton, NB, Canada

Department of Earth and Space Science and Engineering,
York University, Toronto, ON, Canada

Foroughi 2019)]. It is clearly a greater intellectual challenge
to work with heights then to work with horizontal positions.
Also the term “vertical” associated with heights implies that
a horizontal, a.k.a., level surface should serve as the reference
surface for heights.

Horizontality brings in the notion of a gravity equipoten-
tial surface (by definition) and a natural extension of this
notion, the Geopotential numbers C. These are defined as

C .�; H/ D W0 � W .�; H/ ; (1)

where W stands for real gravity potential, � for the couple
of horizontal coordinates (ª, œ) and H for the height above
the height reference surface. As W0 is the potential of the
reference surface, C can be used as a height indicator (a
pseudo-height) if we were willing to use physical units of
potential (Gal m) as “units of heights”.

© The Author(s) 2023
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Table 1 Overview of height systems discussed in this paper

Height system family System Reference surface Holonomic Metric Practical applications
Geopotential numbers Pseudo-height Geoid Yes Riemannian As a theoretical basis
Classical Orthometric Geoid Yes Euclidean Most useful

Dynamic Geoid Yes Riemannian Special uses
Normal Geoid Yes Riemannian Unknown

Molodensky Molodensky Quasigeoid No Euclidean Locally applicable, not recommended
Satellite Geodetic Reference ellipsoid Yes Euclidean Useful if geoid is known

There are three kinds of terrestrial heights H used in
practice: Orthometric HO, Dynamic HD and Normal HN, all
referred to the geoid W(˝) D W0. They are all defined by a
similar equation

H .�/ D C .�; H/ = j rV .�/ j; (2)

where j rV .�/ j is the integral mean absolute value of the
gradient of potential V between the reference surface and
the point of interest on the Earth surface. The value of the
denominator in Eq. (2) for the three varieties of terrestrial
heights H are:

• HO : : : real gravity (V D W),
• HD : : : agreed constant value of gravity and
• HN : : : normal gravity (V D U).

We understand the normal height HN was introduced by
Vignal in France in 1957 although the term “normal” might
have been used already by Molodensky a few years earlier.
In any case, there is a slight difference between Vignal’s
and Molodensky’s versions of Normal heights in the way
the mean normal gravity is computed. As a reference, the
various height systems, including some to be discussed later,
are summarized in Table 1.

The three classical height systems are described, for
example, in Vaníček and Krakiwsky (1986). Orthometric
height is the only height system to use Euclidean metric,
i.e., HO is the real height above the geoid as measured by a
constant metre. Note that we are here talking about rigorous
Orthometric height and not the approximate Helmert variety
(Tenzer et al. 2005) and the term “metric” is taken in the
mathematical sense as the way of measuring distances. The
Dynamic height HD is the only physically meaningful height
(fluid does not flow between two points of equal dynamic
heights), its Riemannian metric being dictated by the shape
of gravity field. The Normal height HN is comparable in some
ways to the Orthometric height, as it was originally meant as
an approximation of Orthometric height, but like Dynamic
height, is measured by a “rubber metre”. Its metric has no
real meaning.

2 Problems with Molodensky’s
Approach

In the mid-twentieth century, Russian physicist M.S. Molo-
densky observed that the lack of information on topograph-
ical density at that time caused too large an error in H
to satisfy the practical accuracy requirements. To eliminate
this problem, Molodensky devised an interesting alternative
theory of heights and of the external gravity field, which does
not require any knowledge of topographical density. Molo-
densky’s practical heights use the quasigeoid as the reference
surface and are numerically quite close to Vignal’s Normal
heights. The metric of Molodensky’s (practical) heights is
Euclidean. We distinguish between Normal and Moloden-
sky’s heights because while Molodensky was writing mostly
about Normal heights, geodetic practise uses what we call
here Molodensky’s heights; the commonly used terminology
follows Heiskanen and Moritz (1967) explanations that is
much the same as ours.

It has been known for some time that Molodensky’s
theory has two flaws: (1) It calls for integration over a
surface (Telluroid) which is reflective of topography and is
thus not integra-ble and (2) the reference surface it uses, the
quasigeoid, is not globally continuous. Being reflective of
topography, it has folds, reflecting the folds of topographi-
cal surface, which cause the discontinuity and other funny
features reflecting topography (Vaníček and Santos 2019).

How large can quasigeoid’s folds be? The size of the fold
is given as

��AB D �A � �B D .WA–UA/ =� � .WB–UB/ =�

D .WA–WB/ =� � .UA–UB/ =�:
(3)

Now,

.WA–WB/ D �gAB�HAB (4)

and similarly

.UA–UB/ D �”AB�HAB: (5)
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Thus,

��AB D .�gAB C ”AB/ �HAB=� D �ıgAB�HAB=�;

(6)

where ıgAB stands for mean gravity disturbance between
points A and B. Let us assume ıgAB to be 100 mGal and
4 HAB to be 1,000 m. For this situation, the magnitude of the
fold 4�AB would be about 10 cm, but larger folds plausibly
exist in the real world. There are also other problems with
the quasigeoid, which is not a well mathematically behaving
surface at all and neither has it any physical meaning even
where it is defined.

The basic requirement of a height system is holonomity
which, in brief really means a uniqueness of definition: for
each horizontal position ˝ there must be only one value
of height H referred to the point of interest on the Earth
surface (Sansò and Vaníček 2006). In other words, heights
must be true coordinates. This property is also demanded by
the classical treatment of levelled differences so that height
differences between any two points on the Earth surface
are the same whichever levelling route between them is fol-
lowed. Clearly, if the terrain has overhangs then in the areas
of overhangs we shall have to use some non-standard tool to
vertically locate points that are underneath the upper topo-
graphical surface. Consequently, if the topographical surface
is not a one-valued mathematical function; the uniqueness
can be guaranteed if the reference surface is continuous. This
is not the case with the quasigeoid as discussed above. Hence
Molodensky’s heights cannot be used in a global height
system.

3 Arrival of Satellites and the Problem
of Height Congruency

Since the late 1960s satellite positioning techniques have
become widespread. For the first time in history there appears
an alternative approach to height determination – but the
heights are of a different kind. They are Geodetic heights
referred to the reference ellipsoid. These should not be called
ellipsoidal heights as this would imply heights of an ellipsoid
surface above some other reference surface, per common
English usage (e.g., “sea surface heights”, “topographical
heights”, “geoidal heights”, etc.). They are obtained through
a geometrical transformation of the 3D positions derived
from observations to satellites such as GNSS. Geodetic
heights have the Euclidean metric but are not referred to a
horizontal surface as the reference ellipsoid is not a hori-
zontal surface. To assure the congruency between the exist-
ing Orthometric and the Geodetic systems of heights, we
must introduce the height of the geoid above the reference

ellipsoid N, a.k.a., Geoidal height and, forgetting about
the negligeable differences among the lengths of different
plumblines, we get the following simple relation

8� 2 �0 W h .�/ D H O .�/ C N .�/ : (7)

The congruency with the other existing terrestrial height
systems, Dynamic and Normal, is a-chieved simply through
multiplication by the appropriate ratio of potential gradients,
c.f., Eq. (2).

Satellite techniques have become so accurate that the
accuracy of Geodetic heights h is now equivalent to that
of standard Orthometric heights HO. It is thought that the
standard deviation of Geodetic heights and the standard
deviations of individual, or point terrestrial height is about
the same, 2–3 cm. Since the standard deviation, as a measure
of error of the computed Geoidal height N, can be about five-
times smaller if the data available for geoid determination
are of good quality and quantity (Foroughi et al. 2019) and
the topographical heights are reasonably low. It is now more
economical than using the classical levelling technique to
determine Orthometric height as a difference of Geodetic
height h and Geoidal height N.

As an aside, there is a very often asked question that
makes sense as the ease with which we can measure and
calculate Geodetic heights h for almost any point on the
surface of the Earth with an accuracy good enough for most
applications becomes obvious: Why not use Geodetic heights
as practical heights? The problem is its datum: in the Geode-
tic height system the height of the sea shore height varies
between �100 m and C100 m which makes it difficult to
work with in a technically meaningful way. Clearly, Geodetic
heights must be transformed to Orthometric, Dynamic or
Normal heights which all have the same reference surface,
the geoid, selected so that it approximates the mean sea level
and are thus useful in practice.

It is impossible to use a simple equation like Eq. (7)
to make the Molodensky heights congruent with geodetic
heights since it is non-holonomic due to using the quasigeoid
as its reference surface. The difference between the geoid
and quasigeoid can be evaluated only approximately. Hence
as a consequence of the quasigeoid being a discontinuous
surface, the Molodensky height system cannot be made
globally congruent with Geodetic height system.

4 Conclusions

The maintenance of the congruency of a terrestrial height
system with the Geodetic system is an ongoing process.
This process includes, of course, the increasing accuracy of
geoidal height determination. Thus the congruency of the
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terrestrial and Geodetic height systems should be assured as
much as possible at any stage of height densification process.
The height systems are developed in successive iterations as
the understanding of the involved problems improves and
more and increasingly denser observations of the real world
become available. To ensure that these iterations converge
to a correct result, i.e., to the true congruency, the individ-
ual parts have to be formulated correctly in the physical
sense.

As an aside, let us take, for illustration, the downward
continuation of gravity. It is a well posed problem for
reasonably low topography and reasonably large steps [more
than 1 or 2 arc-minutes (Martinec 1996)] in the description of
topography. When the step gets too small and/or topography
gets too high the process becomes unstable and can be
solved only by some artificial means (like regularization or,
preferably, by Moore-Penrose generalized matrix inversion).
But, if the combination of step size and topography yields
a regular matrix, there exists a unique and physically correct
solution. It seems that the existing regular geoid solutions can
be accurate to 1 cm (Foroughi et al. 2019) and a more detailed
solution will probably not give any real improvement. This
would be true if the geoidal deflection of vertical does not
change more than 1 second-of-arc in a horizontal distance of
1 km which may plausibly be the case worldwide. Hence, if
the combination of step size and topographical heights yields
a regular downward continuation system of equations then
this process gives an example of a well posed problem that
satisfies the requirement: each successive iteration will bring
the real congruency closer and closer to the ideal.

On the other hand, Molodensky’s system suffers from
flaws that come from the theoretical formulation rather than
practical implementation. To use this system requires the
user to evaluate integrals over a surface that does not allow
integration over it. Similarly, the heights are defined so that
the reference surface reflects the folds that exist on the topo-
graphical surface and no successive iterations are going to
get rid of this problem. This behaviour makes the quasigeoid
as a global reference surface for heights needed for the
United Nations’ resolution on the “Global Geodetic Ref-

erence Frame (UN-GGRF) for Sustainable Development”
unacceptable.

In the real world, when solving a practical problem, some
people use an approach that is known to be somewhat suspect
just because it is easier to use, it works to the presently
required accuracy and it “satisfies the need” of the instant.
We have written this paper to address specifically these
geodesists who are doing a disservice to their profession by
preparing the ground for future problems arising from using
Molodensky’s height system that are bound to appear. Please
abandon Molodensky’s height system, i.e., forget about using
the quasigeoid and make sure that the height system you are
working with has a chance to have the necessary congruency
with the Geodetic height system, that it is physically rigorous
and correct and has the potential to improve the height
control with future iterations.
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Foroughi I, Vaníček P, Kingdon R, Goli M, ShengM, Afrasteh Y, Novák
P, Santos M (2019) Sub-centimetre geoid. J Geod 93(6):849–868.
https://doi.org/10.1007/s00190-019-01257-7

HeiskanenWA,Moritz H (1967) Physical geodesy. Freeman & Co., San
Francisco

Martinec Z (1996) Stability investigations of a discrete downward
continuation problem for geoid determination in the Canadian Rocky
Mountains. J Geod 70:805–828
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Geodetic Heights and Holonomity

Fernando Sansò, Riccardo Barzaghi, and Mirko Reguzzoni

Abstract

It is sometimes stated in the geodetic literature that the normal height system, so important
in both geodetic theory and practice, is nonholonomic, i.e. the normal height of a point in
reality depends also on the integration path of a certain differential. On the contrary, this
paper proves that the normal height system is holonomic also identifying the critical point
on which the nonholonomic statement is based. Besides that, the general concepts related
to the definition of the height system are revised and an overview of the current heights is
given.

Indeed, given the theorical and practical importance of the subject, this is a key item
in Geodesy that must be clearly stated by using definitions and results well known in
mathematics.

Keywords

Ellipsoidal heights � Geopotential � Normal heights � Orthometric heights

1 Introduction

Geodetic heights are tools used in Geodesy as coordinates
to place in 3D space points that belong to the surface of the
earth S or to a layer extending dozens of kilometres above or
below it, a set that we will call �.

There are four principal height systems in use in Geodesy:
the gravity potential W(P) or the geopotential number
C(P)DW0 �W(P), or the dynamic heightHD(P)DC(P)/�0,
which are linear functions of it (for these definitions see
e.g. § 4.2 of Heiskanen and Moritz 1967); the orthometric
height, which is mostly preferred by surveyors as it is
considered much akin to the levelling observations; the
normal height, introduced as a tool for the linearization of
the Geodetic Boundary Value Problem (Sansò and Sideris
2013; Yanushauskas 1989); the ellipsoidal height, which is
a purely geometric concept, though nowadays accessible by
direct observations from GNSS satellites.

F. Sansò · R. Barzaghi (�) · M. Reguzzoni
DICA – Politecnico di Milano, Milano, Italy
e-mail: riccardo.barzaghi@polimi.it

The first and the last systems are, so to say, naturally
global and adapt to build unambiguously a world-wide sys-
tem (height datum).

On the contrary, orthometric and normal heights, may be
for their closeness to the levelling increments

ıL D �dW =g .g Earth gravity/ (1.1)

have been adopted as local systems where corrections to the
integral along levelling lines of the differential form (1.1)
could be neglected.

Therefore, a practical idea was to assign a height 0
conventionally to some origin point and then give a height
to other points connected by levelling lines by integrating ıL
along them. In this way, many local levelling height systems
have been created.

Yet (1.1) is not an exact differential form, as it is proved
in e.g. Sansò and Vaniček (2006). So, the integral of ıL over
a large, closed loop is significantly different from zero. In
other words, levelled height systems brought to a global (or
even only large) scale clearly show their non-holonomity.

© The Author(s) 2023
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Is such a property inherited by orthometric or by normal
heights? As for orthometric heights, there has been a long-
lasting discussion in the geodetic community. Yet, the ques-
tion has been completely and satisfactorily solved in Sansò
and Vaniček (2006), where it is shown that the orthometric
height is a continuously differentiable single-valued function
and, as such, it is a regular holonomic coordinate in the layer
around S described above.

Now, the question seems to arise again in relation to the
normal heights, if the quasi-geoid is claimed to be a reference
surface and to display potentially such irregular features that
make normal heights a non-holonomic system (Sansò and
Vaniček 2006).

In the paper, the authors consider once again the question
of holonomity and show that the mentioned proposition
descends from a misinterpretation of the quasi-geoid as
reference surface of normal heights.

2 What Is a Geodetic Heigh?

A regular system of coordinates in a domain � � R
3 is a

triple of points functions (q1, q2, q3).
Such that, the correspondence

P 2 � $ .q1; q2; q3/ (2.1)

is biunivocal and continuously differentiable, i.e. rPqi(P)
should be continuous vector fields in� (Marussi 1985; Sansò
et al. 2019). The above condition implies that, when � is
simply connected, the integral of dqi on any closed rectifiable
curve in � is zero (Sansò and Vaniček 2006).

Since the idea of height is related to represent something
that is “above” or “below” an observer, one of the 3 coordi-
nates qi (i D 1, 2, 3), say q3 for the sake of definiteness, will
be considered a “height” if it has a relation to the direction of
the physical vertical, namely to the unit vector

nP D �
g.P /

g.P /
(2.2)

where g.P / is the vector of the Earth gravity field.
In Sansò et al. (2019), we have stipulated that q3 is a

geodetic height if the tangent t 3 to the q3 line at P makes
an acute angle with n.P /, i.e.

nP � t 3.P / � 1 � " (2.3)

for some value ", 0 � " < 1.
In fact, an observer moving from P in the direction of t 3

will see the gravity potential value W(P) decrease which is
a distinctive property of being higher, at least up to some

distance from the centre of the Earth, at which the centrifugal
term of W(P) is still a perturbation of the main gravitational
term.

Yet, such a definition has a logical limit in that the q3 line
is, as a matter of fact, defined by the other two coordinates,
which have to be consistent along it. Indeed, q3 has to change
monotonously along its coordinate line, otherwise the one-
to-one correspondence (2.1) can fail, so that condition (2.3)
makes sense. However, there are many directions in which
both q3 and W(P) can change, one increasing and the other
decreasing. So, we prefer to make a slightly generalization of
(2.3) that could be verified on the basis of the function q3(P)
alone.

2.1 A NewDefinition of a General Geodetic
Height HG

HG is defined in a layer �, a closed set as in Fig. 1, by means
of the following three elements:
a) a surface RS � � (Reference Surface) defined as a

Lipschitz function of the ellipsoidal coordinates of its
point

RS D
˚
P I rP D rPe

C hP �Pe

�
(2.4)

hP D ellipsoidal height of P; Pe D projection of P on the
Ellipsoid; �Pe

D normal to the Ellipsoid passing through P
b) a family I of lines in �

I D fLP ; P 2 �g (2.5)

with the following characteristics: for every P 2 � passes
one and only one line

LP D
n
rQ D �

P
.Q/

o
(2.6)

Fig. 1 The ellipsoid E and the set �
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Fig. 2 �, ellipsoid E, Reference Surface RS, cos� D 1 � �, PRS

projection of P on RS, PRSe projection of PRS on E

each LP has a continuous tangent field, pointing upward

tP .Q/ D

(
d�

P
.Q/

dl
I Q 2 LP

)
: (2.7)

As such, each LP is then rectifiable. We also require that each
LP pins the RS at one point only PRS; the correspondence
P ! PRS is called the projection of P on RS along I. By
pointing upward, we mean that at any point P in �, direction
of the vertical nP and upward tangent of LP, tP , form and
acute angle (see Fig. 2), namely

nP � tP D 1 � � .0 � � � 1/ (2.8)

c) let us first define a linear coordinate on LP, namely the
arclength lP

PRS
D lP , counted positively outside RS and

negatively inside; now fix a functional of the arc LP
PRS

D

LP , a function F(lP), which is monotonic in the sense that

lP 0

> lP ) F
�
lP

�
> F

�
lP 0

�
(2.9)

and such that

lP D 0 .P D PRS / ) F
�
LPRS

�
D 0 (2.10)

Then we define the general geodetic height HG as

HG.P / D F
�
lP

�
(2.11)

As it is obvious by the above definitions, the RS surface
corresponds exactly to the points P where HG(P) D 0.

We will verify in the next section that all the four height
systems, mentioned in the Introduction, comply with such a
definition.

In doing so, we will clarify a small incongruence, which
is present even in classical textbooks, in the definition of
normal height.

Remark 2.1 It might seem that the new definition of HG is
on the one hand too complicated and on the other hand too
generic since it depends on the ambiguous constant ˜, as
it was previously from ". Yet, we must underline that our
definition is as a matter of fact tailored on that of orthometric
height and that, when we consider practical height systems,
" or ˜ are in fact very small quantities making such systems
numerically not very different from one another.

This is typically of the Earth gravity fields which seems a
“black night where all cows are black” (F. Hegel) in the sense
that variables related to it, though defined in different ways,
appear often not well numerically distinguishable one from
the other (particularly in small areas, although globally they
display a different behaviour).

3 The Four Height Systems Are
Geodetic Heights

We want to verify that: 1) the dynamic height HD; 2) the
ellipsoidal height h; 3) the orthometric height Ho; 4) the
normal height H� , are in fact geodetic heights according to
the definition of the previous section.
1) Let us recall that

HD.P / D
W0 � W .P /

�0

(3.1)

where, W0 is the potential assigned to the geoid as an
equipotential surface, satisfying also

W0 D U0 (3.2)

with U0 the value of the normal equipotential on the Earth
Ellipsoid E; �0 on the contrary is a reference constant value
for the normal gravity, typically taken as � on E at latitude
® D 45ı (see e.g. Heiskanen and Moritz 1967). The choice
of �0 is just to give to HD the dimension of a length and a
numerical value not too distant from other height systems.

For HD we have:
a) RS is the geoid

P 2 RS; W .P / D W0 D U0 (3.3)

In fact, this corresponds also to HD D 0.
b) The family I for HD is that of plumb lines

I D fLPbg (3.4)
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Therefore, the tangent field to LPb is directly n and the
condition (2.8) is satisfied with

� D 0 (3.5)

c) Taking an integral along the plumbline from PRS and P,
we can clearly write

HD.P / D
1

�0

Z P

PRS

g.Q/dl D F
�
lP
Pb

�
(3.6)

And since g(Q) is positive everywhere on LPb
T

�, HD is
clearly monotonous.
2) The ellipsoidal height h has its own geometric definition

by means of the normal to the ellipsoid, �P I

h.P / D

Z P

Pe

dh D F
�
lP
Pe

�
(3.7)

a) RS for h is the ellipsoid E
b) The family I for h is the family of straight lines

I D fh�P I Pe C h�P 2 �g (3.8)

We have therefore that the tangent field to LP is

tP D �P (3.9)

And

tP � nP D �P � nP D cosıp (3.10)

where ıp is the deflection of the vertical at P. Since

1 � �P � nP Š
1

2
ı2

P (3.11)

Even assuming for ıp the overwhelming upper bound

ıp < 10�2 (3.12)

we see that, from (2.8)

� < 0:5 � 10�4 (3.13)

c) It is clear from the definition (3.7) that

hP D lP (3.14)

The length of the ellipsoidal normal between Pe and P. So,
F

�
lP
Pe

�
is indeed tautologically monotonous.

3) The orthometric height Ho is defined as the arclength
of the plumbline between the geoid and the point P.
Therefore, we have

a) The reference surface RS in this case is the geoid

RS D fP I W .P / D W0g (3.15)

P 2 RS H) Ho.P / D 0 (3.16)

b) The family of I is in this case the family of plumblines
again

I D fLPbg (3.17)

and, once more, one has

tP D nP (3.18)

and

� D 1 � t � n D 0 (3.19)

c) Since Ho is directly the length of the plumbline, one has
that

F .LP / D H0.P / D lP (3.20)

which is indeed monotonous.
4) The normal height H� is defined as the ellipsoidal

height of the point P� such that the geodetic coordinates
� D (� ,	), the normal potentialU and the actual potential
W satisfy the following conditions

�P � D �P ; U
�
P �

�
D W .P / or H �

P D hP � (3.21)

i.e. P� is on the same normal to E as P and the second of
(3.21) is verified.1

A little thought shows that, calling Pe the orthogonal pro-
jection of P on E, this definition can be written analytically
as

U
�
Pe C H �

P �P

�
D W .P / (3.22)

a) from (3.22) it is clear that

H �
P D 0 ” W .P / D U .Pe/ D U0 D W0 (3.23)

1Usually, this definition refers to the International Reference Ellipsoid.
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namely P is on the geoid and Pe is its projection on E. In
other words, this means that

RS � Geoid (3.24)

b) the family I in this case is

I D fPe C H �
P �P g

i.e. the family of ellipsoidal normal lines.
So,

tP D �P (3.25)

and, again, we have what we have seen in (3.10) and (3.18),
namely a very small �.
c) Let us write (3.22) for a generic point Q D Pe C hQ�P

on the ellipsoidal normal �P , as

U
�
Pe C H �

Q�P

�
D W

�
Pe C hQ�P

�
(3.26)

We fix P and hence Pe and �P , move onlyQ along the normal
and differentiate, getting the relation

�P � � �
�
H �

Q

�
dH � D �P � g

�
hQ

�
dh (3.27)

We exploit the fact that �P � D �P , namely constant along
LP, and

�P � � �
�
H �

Q

�
Š ��

�
H �

Q

�
(3.28)

�P � g
�
hQ

�
D �g

�
hQ

�
�P � nQ (3.29)

g
�
hQ

�
D �

�
H �

Q

�
C 
g (3.30)

write (3.27) in the form

dH �
Q D

�
1 C


g

�

�
�P � nQdh (3.31)

or

H �
Q D

Z Q

PRS

�
1 C


g

�

�
�P � nQdh (3.32)

We stress once more that the integral in (3.32) is along the
ellipsoidal normal and that PRS is just the projection of P
along the normal on the geoid so that

lQ D

Z Q

PRS

dh D hQ � NPe (3.33)

with NPe the geoid undulation, i.e. it is the same as the
orthometric height of Q.

Since both
�
1 C 
g

�

�
and �P � nQ are quite close to 1,

hence positive, we see that

H � D F .lP / (3.34)

is an increasing functional of lP according to (2.9). Therefore,
also H� is complying with our definition of general geodetic
height.

Remark 3.1 It might be worth here to amend an excusable
imprecision present in the definition of the normal height in
classical books as Heiskanen and Moritz (1967).

In fact, instead of (3.32), as it is defined H� in Heiskanen
and Moritz (1967), § 8.3, one finds often the following
alternative definition:

RS D Geoid (3.35)

I D

	
�

LP D force lines of �



(3.36)

H �0 D

Z P �0

P 0

e

�
�

LP

�dl (3.37)

which corresponds to integrating along the normal plumb
line, instead of the ellipsoidal normal, until

U
�
P �0

�
D W .P / (3.38)

The situation is illustrated in Fig. 3.
Since the curvature of the normal plumbline is very small

in � and the corresponding normal deflection of the vertical
�

ı is of the order of

O

�
�

ı

�
D 5 	 10�3 h

R
(3.39)

Fig. 3 A comparison between H�and H�0
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with R the mean radius of the Earth, one can easily see that

O
�ˇ̌

H �0 � H �
ˇ̌�

D O

�
1

2

�

ı
2

h

�
(3.40)

which is well below the mm level in our set �.
So, this alternative definition which leads to the other form

of widespread use (see Heiskanen and Moritz 1967, § 4.5)

(
H �0 D W0�W .P /

�

� D 1
H �0

R H �0

0
�.z/d z

(3.41)

has no relevant numerical difference with H� , although one
could comment that this change of integration path has a
logical relation also to the difference between the vector and
the scalar Boundary Value Problem in linearized form (Sansò
1995).

4 Holonomity of the Geodetic Heights

We define a regular holonomic coordinate in a simply con-
nected set �, a function q(P), P 2 �, such that its differential

dq D rq.P / � dP (4.1)

is a continuous function of P. So, holonomity is a matter
of regularity and of the set �. In this sense, if q(P) is
directly defined, its holonomity is guaranteed by inspecting
its regularity in � and, as a consequence, for any closed
rectifiable curve C in �, one has

Z

C

dq � 0 (4.2)

Different might be the conclusion if q(P) was not directly
defined but we rather define a 1-differentiable form
! D !(P, dP), we assign a conventional value to q at some
point Po internal to � and we put

q.P / D q .P0/ C

Z P

Po

! (4.3)

the integral being along some line joining Po to P.
In this sense, q in general is not a function of P only but

also of the path L. This can be a non-holonomic coordinate.
Only when !(P, dP) is an exact differential form, namely

! .P ; dP / D df .P ; dP / D rf .P / � dP ; (4.4)

then we can say that

q.P / D q .P0/ C Œf .P / � f .P0/� (4.5)

i.e. q is holonomic.

Fig. 4 The angular coordinates �P D sP in R
2

If we write !, for instance, in 3D cartesian coordinates,

! .P ; dP / D v � dr D Adx C Bdy C Cd z�
v D Aex C Bey C C ez

� (4.6)

and we further assume regularity of A, B, C, we know that !

is exact iff

r ^ v D 0 (4.7)

This is the universally known Stokes theorem. So, the ques-
tion of non-holomomity is posed only if q is defined starting
from a differential form. Alternatively, we might have a
non-holonomity problem when q is not a proper coordinate
because it is multivalued. Since holonomic coordinates are
common, we give a counter example for a coordinate in 2D
that is not regular holonomic over the whole R2.

Example 4.1 Let us take the angular coordinate � in R2 (see
Fig. 4).

It is clear that � is singular at PD0 where it is not defined.
Therefore, we can say that � is holonomic in �1 but not in �2

(see Fig. 5), because in �1 every closed curve can be shrunk
to a point without exiting from the set, while it is not in the
�2 because this circular crown is not simply connected. In
fact, the integral of d� along the curve L in �2 is non-zero

Z

L

d� D 2� (4.8)

Clearly, the line L in Fig. 5 cannot be shrunk to a point
remaining in �2.

Another way to look at the problem is to say that indeed
� is a multivalued function of P

�P D �P C 2n�

The only way to avoid that and return to a single valued
function is to cut the plane along a straight line issued from
the origin. Therefore, �1 in Fig. 5 is acceptable for � while
�2 is not because it includes one part of the forbidden cut.
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Fig. 5 The �1 and the �2 domains

So, returning to geodetic heights, we need only to verify
whether our definition of regular holonomity is satisfied by
them.

First of all, we underline that our set � in R
3, which

is similar to a spherical crown, is simply connected. In
fact, every loop in � can b continuously shrunk to a point
remaining in �. So, the only thing to be verified is that HG is
continuously differentiable.

Proposition 4.1
The geodetic heights HD,Ho,H� , h are regular holonomic

variables in �.

Proof As for h(P) it is enough to observe that

dh .P ; dP / D �.P /� dP (4.9)

i.e.

rh D �.P / (4.10)

which is certainly a continuous function of P in a layer
around the Earth ellipsoid.

The proof for HD, Ho, H� is just a check on the regularity
of W(P) and g.P / D rW .P / as they are all defined by
means of the gravity field. The result comes if we consider
that W .P / D V .P / C 1

2
!2

�
x2 C y2

�
, where the centrifugal

part is clearly continuously differentiable in R3.
As for the Newtonian potential V(P) we need to remember

that the mass density (P) generating V(P) is bounded on
the compact set B, the body of the Earth, and zero outside.
Therefore, we have too (P) 2 LP(R3), 8 p > 3. Then, as
we know from potential theory (e.g. see Miranda 1970, §
13), we have that the potential V(P) generated by (P) in any
bounded domain (like a sphere with a large but fixed radius)
is in C1, ˛ with ˛ < 1 � 3

p
: We recall that C1, ˛ functions

are not only continuous with their first derivatives but even
Hölder continuous with exponent ˛. So, V .P /; g.P / are ˛-
Hölder continuous for any exponent ˛ < 1.

Therefore, that HD is regular holonomic, is just tautolog-
ical. That Ho is regular holonomic has been proven in Sansò

and Vaniček (2006) with a detailed geometric analysis of
dHo.

That H� is regular holonomic descends from its definition
(3.26). In fact, differentiating such relation in the direction of
�P we get

�
�
P �

�
� �P dH � D g.P / � �P dh (4.11)

since P� is a continuous function of P, according to the
implicit function theorem, �P and g.P / are continuous
functions of P, because � .P �/ � �P ¤ 0 in � (in fact,
� .P �/ � �P Š �� .P �/); so we see that dH� is a continuous
function of P too, and the proof is complete.

Remark 4.1 In geodetic practice there is in use a true non-
holonomic height, namely the so called normal orthometric
height Hno defined as (Sansò et al. 2019, §6.5)

Hno.P / D �
1

�

Z P

P0

�.Q/

g.Q/
dW .Q/ (4.12)

where P0P is a levelling line, � dW .Q/

g.Q/
is the levelling

increment and � is the average of � (Q) on the ellipsoidal
normal between the geoid and Hno, under the point P. Such
a height system is applied in the Australian continent (see
Featherstone and Kuhn 2006).

As a matter of fact

! D �
�

g
dW (4.13)

is not an exact differential form, as otherwise �

g
should be

constant on equipotential surfaces, which is not.

5 Comparisons and Conclusions

The paper has examined four fundamental geodetic height
systems with the purpose of clarifying that they are proper
regular coordinates and none of them is non-holonomic.
Moreover, the reference surface of the four height sys-
tems have been identified: they are the geoid for dynamic,
orthometric and normal heights, the ellipsoid for ellipsoidal
heights.

The question then arises on which height should be
utilized in practice. The answer of the authors is that it
depends on the use we want to make of it.

Certainly, the ellipsoidal height is the neatest concept
from the geometrical point of view, and it is the natural to use
it when GNSS observations play a main role; as an example,
consider aerial navigation. On the contrary, the other height
systems enter more naturally where the gravity fields play a
role, for instance throughout levelling lines observations as
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it happens in many engineering applications. In this respect,
it seems useful to us to evaluate the order of magnitude of
the corrections to be applied to the integral of the levelling
increment 4LPQ along the levelling line, namely


LPQ D

Z Q

P

ıL D

Z Q

P

n � dr (5.1)

In this sense it is interesting to compare such corrections that
we will call

C .HD/ D 
LPQ � 
HDPQ (5.2)

C .h/ D 
LPQ � 
hPQ (5.3)

C
�
H �

�
D 
LPQ � 
H �

PQ (5.4)

C .Ho/ D 
LPQ � 
HoPQ (5.5)

Such corrections are a metric index of the difference between
the levelling increment added along a line, and the specific
height difference of the two extreme points. The larger the
correction, the larger are errors entering in its computation.

Based on formulas by Heiskanen and Moritz (1967),
section 4.4, further elaborated in Sansò et al. (2019), section
6, it is easy to derive the following rough estimates of the
four corrections, all referring to the worst case:

O .C .HD// 
 10�3
HPQ (5.6)

O .C .h// 
 10�4lPQ (5.7)

O
�
C

�
H �

��

 10�4
HPQ (5.8)

O .C .Ho// 
 10�4
HPQ (5.9)

where 4HPQ is the height difference between the end points
of a levelling line and lPQ its horizontal length.

Yet it is necessary to recall that the computation of C(Ho),
contrary to that of C(H� ), requires some knowledge of the
density of the topographic masses, so introducing one further
uncertainty in its computation.

We conclude then that H� is better suited than Ho to
treat levelling observations, without introducing unnecessary
uncertainties due to poor knowledge of the mass density. Of
course, H� is also the natural coordinate to be used when
tackling the solution of the GBVP.
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Physical Heights of Inland Lakes

Nico Sneeuw, Muriel Bergé-Nguyen, and Jean-François Crétaux

Abstract

Inland satellite altimetry has gained traction over the past decade and is now routinely used
to monitor the water levels of rivers, lakes and reservoirs. The accuracy of such inland water
height measurements, at least from radar altimetry is still relatively poor from a geodetic
viewpoint, namely in the range of several decimeter. Accuracies from spaceborne laser
altimetry, in particular from the ICESat-2 mission, are at cm-level, however, and further
progress in the radar altimetry domain is expected from swath-based altimetry by the SWOT
mission, (to be) launched December 2022. With accuracies down to cm-level one needs to
reconsider the height system definition of inland lake surfaces as obtained from satellite
altimetry. Conventionally one subtracts a global geoid model from the altimetry-derived
ellipsoidal height to obtain an orthometric height. Without wind stress, seiches and other
time-variable height disturbances the lake water surfaces will conform to equipotential
surfaces in the Earth’s gravity field. Thus lake surfaces are surfaces of constant dynamic
height, from which follows that a lake surface cannot be a surface of constant orthometric
or normal height. Because equipotential surfaces are inherently non-parallel, two points at a
lake surface can and will have different orthometric height. Although being well-understood
in physical geodesy, we will here model this effect and quantify it for various case studies.
We demonstrate that the effects can be as large as a few dm for large lakes at high altitudes,
which is an order of magnitude that is relevant in terms of satellite altimetry error levels.

Keywords

Gravity � Lake surface � Orthometric height � Satellite altimetry

1 Introduction

Satellite altimetry fundamentally provides the range between
satellite and water surface. After proper corrections and
with knowledge of the spacecraft’s orbital position the basic
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product of satellite altimetry is the water surface height h

above (and normal to) the reference ellipsoid.
By subtracting a geoid N one obtains orthometric height

H by virtue of h D H C N . Typically a global geoid model
is used, which obviously comes with its own model errors
(commission, omission). As a consequence of H D h � N

these model errors end up fully in the determined orthometric
height. For many applications such model geoid errors,
considered as bias over the water body of interest, hardly play
a role, particularly if variations over time are more interesting
than absolute levels. In other applications, the altimetry-
derived ellipsoidal heights over a lake are specifically used to
improve the local geoid. The underlying assumption in such
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cases is that the orthometric height over a lake surface be
constant.

Satellite altimeters have repeat cycles of 10 nodal days
(TOPEX/Poseidon and Jason family), 35 days (ERS and
Envisat family) or 27 days (Sentinel-3 family). These are
sampling rates that cannot capture the faster hydrological
dynamics, so single-track overpasses are temporally insuf-
ficient to create lake height time series. Therefore, over large
lakes and reservoirs it is only natural to combine the height
information from different groundtracks, either from the
same satellite or from different ones, in order to densify the
temporal sampling or to extend the length of the time series.
After geoid correction, and potentially after inter-satellite
bias correction, the height information from the different
tracks are combined into a single height time series of the
lake, e.g. Bergé-Nguyen et al. (2021), although the tracks
refer to different locations on the lake. The combination of
track information therefore assumes that the lake surface is a
surface of constant orthometric height.

It is known from physical geodesy that the system of
orthometric heights does provide unique and physically
defined heights, but that surfaces of constant orthometric
heights are not equipotential surfaces. That means that even
with error-free satellite altimetry and with perfect geoid
knowledge the orthometric heights from H D h � N will
not be constant over a lake. It also means that satellite-
altimetric lake surfaces cannot be used to improve geoids
without further precautions.

Although these effects are conceptually known from
physical geodesy, it seems that the satellite altimetric
literature largely ignores them, presumably because they
are small. In this contribution we will formulate the
orthometric height variation analytically and quantify its
effects numerically.

2 Orthometric Height

The physical height of a surface point P is fundamentally
defined through the geopotential number CP , which is the
gravity potential difference between the geoid and the surface
(Heiskanen and Moritz 1967, §4-4):

CP D W0 � WP :

The potential difference is obtained by the work integral (per
unit of mass) in the gravity field g from geoid to point P :

CP D

0Z

P

g � dr ;

which is a general path integral, typically evaluated over the
surface of the Earth. In practice it is discretized as

P
i gi li ,

i.e. the sum over the product of leveling increments li and
surface gravity gi along the leveling line. The geopoten-
tial number can be evaluated conceptually also along the
plumbline between the surface point P and its footpoint P0

on the geoid. With g being tangent to the local plumbline,
the scalar product of two vectors under the integral reduces
to a product of two scalars:

CP D

P0Z

P

g � dr D �

P0Z

P

g dH D

PZ

P0

g dH :

By simultaneously multiplying and dividing by the length of
this stretch of plumbline, called HP , one arrives at:

CP D HP

2
4 1

HP

PZ

P0

g dH

3
5 D HP NgP ;

in which NgP denotes the average gravity along the plumbline
between surface point P and the geoid. Finally, the above
equation is recast into the definition of orthometric height:

HP D
CP

NgP

; (1)

i.e. the height of surface point P above the geoid, measured
along the curved plumbline. Although the orthometric height
constitutes a clear and physical definition of height above
the geoid, two weaknesses are pointed out in the geodetic
literature:

1. The orthometric height is the length of the plumbline,
which is fundamentally curved. Hence, strictly speaking
h ¤ H CN . However, given the typical size of deflections
of the vertical in the order of several arc seconds, this
effect of mismatch between plumbline and ellipsoid nor-
mal is minor relative to the error level in satellite altimetry.

2. Gravity is unknown along the plumbline inside the Earth’s
crust. It can only be approximated by a model (or hypoth-
esis) of the nearby density distribution. An often-used
model is the Poincaré-Prey reduction, which assumes a
linear gravity decay between surface and geoid, so that
the mean gravity NgP equals the gravity value at mid-
height g. 1

2
HP /. To obtain this value a second assumption

is made, namely that the topography around P is flat, so
that the topographic effect can be computed through a
Bouguer-plate. The Poincaré-Prey reduction then consists
of (a) removing a Bouguer-plate of thickness 1

2
HP , (b)

going down the plumbline towards the mid-point in free
air, and (c) restoring the Bouguer-plate. The resulting
height is called Helmert orthometric height and is obvi-
ously an approximation to the true length of the curved
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plumbline. A reduction of the approximation error may
be achieved if one uses a better topographic model and
sub-surface density information.

These weaknesses are physical geodesy textbook material
and will not concern us in this contribution.

3 Orthometric Height Variation at Lake
Surface

A further consequence of plumblines being curved does
concern us here, though. With equipotential surfaces being
perpendicular to the plumbline, a plumbline curvature will
necessarily lead to equipotential surfaces at altitude being
not parallel to the geoid. In other words, different points
on the equipotential surface at altitude have different dis-
tances to the geoid, i.e. different orthometric heights. Hence,
an equipotential surface is fundamentally not a surface of
constant orthometric height. The only exception is the geoid
itself with a constant H D 0.

This geometric description becomes mathematically obvi-
ous in definition (1): the geopotential number will be con-
stant at the equipotential surface, but the mean gravity will
spatially vary, depending on surrounding topography or on
lake bathymetry or on density variation in the crust. If we
identify the surface of a lake or reservoir as an equipotential
surface, we thus must conclude that the orthometric height
of the lake surface is spatially variable. The main assumption
made here is that the lake or reservoir is at rest. Any
wind stress or dynamic lake topography would violate the
assumption.

Consider now the difference in orthometric height
between two points, P and Q, on the lake surface:

�HPQ D HQ � HP D
CQ

NgQ

�
CP

NgP

:

With some manipulation, and setting CQ D CP ,

�HPQ D
NgP

NgP

CQ

NgQ

�
CP

NgP

NgQ

NgQ

D
NgP � NgQ

NgQ

CP

NgP

;

we arrive at

�HPQ D
NgP � NgQ

NgQ

HP �
gP � gQ

gQ

HP : (2)

In the latter approximation the mean gravity values along the
plumbline are replaced by their surface values. Appendix 1
justifies this step numerically.

The orthometric height variation HQ � HP (2) is propor-
tional to the gravity difference gP � gQ (in this order). This

makes sense, as scalar gravity represents the gradient of the
potential along the plumbline. Loosely speaking it represents
the density of equipotential surfaces along the plumbline.
The higher the gravity, the denser the level surfaces and,
hence, the lower the height. The orthometric height variation
is also proportional to the height of the lake itself. This also
makes sense: the longer the plumbline, the more damage
curvature can do.

A numerical rule-of-thumb can be derived from (2) by
setting its denominator to 10m=s2. If the gravity variations
are then given in units of mGal and the height in km, the left
hand side is provided in mm. This rule-of-thumb resembles
(Heiskanen and Moritz 1967, eqn. (4-34))

ıHmm PD ı NgmgalHkm ;

although that equation was meant to evaluate the effect of an
error in mean gravity Ng on H .

4 Quantification: Case Studies

In order to quantify how serious the orthometric height
variation can get, we will have a look at a number of case
studies of lakes either with large gravity variation at its
surface or at large altitude. The number of case studies is
limited, however, because gravimetry over lakes is rare. And
if data exist, their availability may be restricted.

It would not make sense to synthesize lake surface gravity
from global geopotential models if real lake gravimetry did
not enter such models. In such cases the global models would
act as interpolators, smoothening the gravity field over the
lake while underestimating the gravity variation.

The “lake” with the potentially largest gravity variation
would be the global ocean. Despite a considerable gravity
range of about 500mGal, the oceans, being the embodiment
of the geoid, have orthometric heights very close to zero.
Therefore the orthometric height variation is near-zero, too.

4.1 Lake Vänern, Sweden

Lake Vänern has a surface area of 5650 km2. At a surface
elevation of just 44m one cannot expect a large orthometric
height variation, but the high quality of the gravity data
material makes for an interesting case study nonetheless.
Landmäteriet, the national mapping, cadastral and land reg-
istration authority of Sweden, performed gravimetry over the
ice in 2011 by hovercraft while the lake was frozen.

With a gravity range of about 50mGal and a surface
altitude of just 44m the range of orthometric height variation
is only 2mm (Fig. 1). In Eq. (2) the points P and Q can
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Fig. 1 Gravity (top) and corresponding orthometric height variation
(bottom) over Lake Vänern

be chosen freely. Here Q represents any of the surface
points, whereas P is selected such that the height variation
is centered. Although the orthometric height variation is
negligible in the context of satellite altimetry, the case study
demonstrates that the flattening alone explains the North-
South gravity variation to a large extent. Consequently, the
orthometric height variations can be approximated partially
by the normal gravity already. For Lake Vänern this would
amount to about 60% of the full effect (not shown here).

4.2 LakeMichigan, USA

The GRAV-D project of NOAA/NGS, the US National
Geodetic Survey, provides a wealth of airborne gravity data.
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Fig. 2 Gravity (top) and corresponding orthometric height variation
(bottom) over Lake Michigan

Over the wider area of the Great Lakes the data have been
downward continued by Li et al. (2016). Michigan Lake
was selected here as case study because of its North-South
extension of nearly 500 km (Fig. 2).

Due to its sheer size one can expect Lake Michigan to
have a considerable gravity variation. Indeed, it shows a
range of about 350mGal. Even after subtracting the normal
field at the surface, the gravity disturbances still show a range
of 80mGal (not shown here). Despite a moderate surface
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Fig. 3 Gravity (top) and corresponding orthometric height variation
(bottom) over Issyk Kul

altitude of about 140m the large gravity range guarantees
an orthometric height variation of the lake surface of about
5 cm, a level that starts to become interesting in radar
altimetry, and that certainly is relevant to laser altimetry.

4.3 Issyk Kul, Kyrgyzstan

With a surface elevation of about 1600m, a length of 178 km
and surrounded by mountain ranges, Issyk Kul might have
been an interesting case study. As an endorheic lake Issyk
Kul would not suffer from drainage-related surface slope and
would suitably fulfil the condition of being an equipotential
surface. However, no observed gravity data is available. The
example is used here to demonstrate the use of gravity
data synthesized from a global geopotential model. Since
no lake gravimetry was ingested into the global geopotential
model EGM2008 used here, the gravity variation over the
lake will be too smooth. Moreover it shows interpolation
artefacts. As a result the orthometric height variation will be
underestimated and will also contain artefacts (Fig. 3).

4.4 Salar de Uyuni, Bolivia

The Salar de Uyuni is not a lake, it is a salt flat high up in the
Andes at an altitude of 3700m. Occasional rainfall creates a
thin layer of water that solves the top salt layer and restores
topographical deformations back to an equipotential surface
before it evaporates, cf. (Borsa et al. 2008a). Gravimetry was
part of geophysical prospecting in the 1970s (Cady and Wise
1992). Borsa et al. (2008b) assessed the equipotential surface
properties of this salt flat.

The gravity variation range of about 80mGal is less
impressive than in the case study of Lake Michigan. How-
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Fig. 4 Gravity (top) and corresponding orthometric height variation
(bottom) over Salar de Uyuni

ever, the high altitude creates a large orthometric height
variation in the range of 3 dm (Fig. 4).

5 Conclusions and Outlook

Since a water surface at rest conforms to the local gravity
field potential, a lake surface will be an equipotential surface.
As a consequence it cannot be a surface of constant ortho-
metric height. We here formulated the orthometric height
variation across the lake surface. A rule-of thumb says that
its effect (in units of mm) is calculated as the amount of
gravity variation at the surface (in mGal) times the overall
orthometric height of the lake surface (in km). For several
case studies we have shown that orthometric height variation
can amount to 2–3 dm for lakes at high altitudes. However,
for most lakes worldwide the orthometric height variation
effect will be around the mm- to cm-level, i.e. hardly relevant
in the context of satellite radar altimetry.

Because North-South gravity variation is to a large extent
due to the flattening of the Earth, the orthometric height
variation can be modeled to that extent accordingly. In the
case studies shown here the flattening-induced orthometric
height variation can explain roughly 50–60% of the total
effect, the remainder due to density-induced gravity anomaly.

The database of globally available lake gravity is poor.
Using gravity information derived from global geopotential
models will not be an alternative as these models lack spatial
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resolution and will underestimate gravity variation over the
lake, if lake gravimetry has not been ingested into the model.
A further alternative, namely deriving gravity information
from satellite altimetry itself, a well-established technique
over the open ocean and big lakes, was not part of this study,
and must be the object of further exploration.

The orthometric height variation at the lake surface is a
geometric expression of the fact that equipotential surfaces
are not parallel to each other. Therefore, as a word of
warning to geoid modelers: it would be a mistake to use a
geometrically derived lake surface, e.g. from laser altimetry,
as a proxy for the geoid in areas where gravity information
is sparse. The surface of the lake at rest is simply not parallel
to the geoid.
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Appendix 1: Approximation

In Eq. (2) the mean gravity NgP was replaced by surface
gravity gP . It will be shown here that this approximation is
allowed when comparing with Poincaré-Prey reduced grav-
ity, which is the next-best approximation of mean gravity.
In Sect. 2 this reduction was explained by the 3 steps: (a)
removing a Bouguer plate of thickness 1

2
HP , (b) going down

to the mid-point along the plumbline in free air, and (c)
restoring the Bouguer plate. This leads to the approximation:

NgP D g. 1
2
HP /

D gP � BO � 1
2
HP C FA � 1

2
HP � BO � 1

2
HP

D gP C . 1
2
FA � BO/HP

D gP C PP � HP :

The conventional value for the free-air gradient FA D

0:3086mGal=m. For the crustal density one conventionally
takes � D 2670 kg=m3 leading to a Bouguer gradient of
BO D 0:1119mGal=m. Hence the Poincaré-Prey gradient
becomes

PP D 0:0424mGal=m D 4:24 � 10�7 s�2 D 424E :

Let us see now how this small correction gradient affects the
orthometric height variation (2).

�HPQ D
NgP � NgQ

NgQ

HP

�
gP � gQ � PP � �HPQ

gQ C PP � HQ

HP : (3)

The orthometric height variation �HPQ has been shown to
be at mm- to cm-level for most lakes. Only in extreme cases
like the Salar de Uyuni does it become a few dm. After
multiplication with PP a very small number remains that
does little to change the numerator. In the denominator PP

is multiplied by the lake height itself. But even if the lake is
situated at a few km altitude, the resulting correction is still
small relative to the full gravity value.

Of course, the Poincaré-Prey reduction is a first
approximation to determining the mean gravity along the
plumbline. An improved approximation would require
topographic, bathymetric and density information. It is
believed that such a refinement will not numerically change
the presented results. Hence, the approximation of Eq. (2)
seems more than sufficient.

Appendix 2: Normal Height Variation

Along the same lines as above it can be derived how much
normal height H n will vary along a lake surface:

�H n
PQ D

N�P � N�Q

N�Q

H n
P : (4)

The mean normal gravity along the plumbline in the normal
field is measured from the ellipsoid footpoint P0 upwards:

N�P D �. 1
2
H n

P / D �P0 � 1
2
FA � H n

P :

Inserting this mean normal gravity for P and Q into Eq. (4)
leads to a similar discussion as above. Despite the fact
that the free-air gradient FA is numerically larger than PP,
we conclude that such a refinement can be neglected and
that the normal height variation at the lake surface can be
approximated by

�H n
PQ �

�P0 � �Q0

�Q0

H n
P ; (5)

or

�H n
PQ �

�P � �Q

�Q

H n
P : (6)
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The former version makes use of normal gravity at the
footpoint on the ellipsoid. The latter version, which uses
normal gravity at the lake surface, is exactly the part of the
orthometric height variation due to flattening. Thus, it can
be predicted by the normal gravity variation with latitude.
Alternatively, one can resort to formulas for N� as provided in
Heiskanen and Moritz (1967, §4-5).
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The Uncertainties of the Topographical Density
Variations in View of a Sub-Centimetre Geoid

Ismael Foroughi, Mehdi Goli, Spiros Pagiatakis, Stephen Ferguson,
Petr Vanicek, Marcelo Santos, and Michael Sheng

Abstract

We estimate the uncertainty of the modelled geoid heights based on the standard deviations
of the topographic mass density variation. Wemodel the geoid using the one-step integration
method considering mass density variations along with their associated error estimates to
calculate the direct and indirect topographic density effects on the geoid heights in the
Helmert space. We employ the UNB_TopoDensT_2v01 global lateral density model and its
standard deviations and test our algorithms in the Auvergne test area, in central France. Our
results show that the topographic mass density variations are currently known well enough
to model the geoid with sub-centimetre internal error in topographically mild regions such
as Auvergne.

Keywords

Density variation � Geoid error � Gravimetric inversion � One-step integration

1 Introduction

Regional gravimetric geoid models are solutions to the
Geodetic Boundary Value Problems (GBVPs). The GBVPs
are solved in a fictitious harmonic space where there is
no topographic mass above the boundary surface (geoid or
reference ellipsoid) on which various gravity functionals
(e.g., gravity anomalies or gravity disturbances) furnish the
boundary values. Consequently, the solutions of the GBVP
require that the topographic mass elevation and density be
available to compute its gravitational attraction on the points
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where gravity is observed, prior to attempting their removal
and the calculation of the boundary values (Heiskanen and
Moritz 1967, Ch. 3). The Helmert second condensation
method provides a mechanism to remove the mass above
the boundary surface by condensing the topographic mass
to a very thin layer (Vaníček and Martinec 1994). The
gravitational attraction of the topography at the observation
points is used to reduce the gravity measurements down to
the boundary surface through an empty (harmonic) space.
This downward continuation is possible via the calculation
of the Direct Topographic Effect (DTE) and the Secondary
Indirect Topographic Effect (SITE). To transfer back to the
real space in presence of the topography, the Primary Indirect
Topographic Effect (PITE) is used.

In the past, due to lack of knowledge of the variable
topographic mass density, a constant density value of 2670 kg

m3

has exclusively been used to compute the topographic effects
mentioned above. The departure of the actual density value
from its constant value, hereafter called anomalous density,
and its impact on the geoid heights was first investigated at
the University of New Brunswick by Martinec (1993) and
then implemented over the years by Fraser et al. (1998),
Pagiatakis et al. (1999), and Huang et al. (2001). It was
shown that this effect may reach the decimetre level, which is
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far from the ever growing need for a sub-centimetre accurate
geoid (Huang et al. 2001; Foroughi et al. 2017; Janák et
al. 2018; Tenzer et al. 2021). The anomalous density is a
3D function, however, it has been shown that the laterally
anomalous density is dominant compared to its radial coun-
terpart in the topographic reduction calculations, e.g., DTE,
SITE, PITE, and consequently, it is important in the geoid
modelling (Kingdon et al. 2009). When the topographic
reductions are computed using the anomalous density, they
are called direct density effect (DDE), secondary indirect
density effect (SIDE), and primary indirect density effect
(PIDE), respectively (Huang et al. 2001).

The UNB_TopoDensT_2v01 is a global model of the
variable topographic density considered as a function of
the horizontal coordinates, and it provides three different
resolutions namely, 3000 � 3000, 50 � 50, and 1

ı

� 1
ı

along
with their corresponding standard deviations (STDs). This
model provides valuable information in the computation
of the contribution of the anomalous density on the geoid
heights and the estimation of their uncertainties (internal
error). The contribution of the anomalous density in regional
geoid modelling has been well studied before, see for exam-
ple (Hunegnaw 2001; Kuhn 2002; Sjöberg 2004; Kiamehr
2006; Sjöberg and Bagherbandi 2011; Chaves and Ussami
2013; Janák et al. 2018; Albarici et al. 2019; Vajda et al.
2020; Lin and Li 2022). However, the effect of the standard
deviation of the anomalous density on the internal error of the
geoid heights has not (or just partially) been addressed in the
literature, see e.g., Huang et al. (2001) for Canada, Foroughi
et al. (2019) for the Auvergne test case, and Foroughi et al.
(2023) for the Colorado 1-cm geoid experiment.

The internal error estimate of the geoid heights in the
Auvergne test area was performed by Foroughi et al. (2019).
In their study, the STD of the DDE on the geoid heights
was disregarded and only the Bouguer shell for the PIDE
was considered for error propagation. In this contribution
we aim to address two missing parts namely, (a) investigate
whether our internal error estimate of the geoid heights in
Auvergne still stays below one centimetre when considering
the complete terms of the PIDE for error propagation and (b)
include the errors of the DDE on the geoid heights. In this
study, we use the one-step integration method for the geoid
determination, which is a combination of the inverse Poisson
integral and Stokes or Hotine integral transform (Novák
2003; Goli et al. 2019b). This method provides equivalent
results to the two-step geoid determination method
developed by the gravity research group at the University of
New Brunswick (Vaníček and Martinec 1994). We apply our
formulations in the Auvergne test area which has been used
by other researchers for geoid determination using different
methodologies (Duquenne 2007; Goyal et al. 2021).

2 Theory

Using the one-step integration method (Novák 2003), the
regional geoid heights are computed as:

N DD
�
ıgC ıgt �

�
ıgL C ıgtL

��
C

�
NL C ıN t

L

�
C ıN t ;

(1)

where ıg is the observed gravity disturbance (usually
predicted at grid points of various grid sizes for numerical
simplicity), ıgt and ıNt are the DTE and PITE respectively;
ıgL and NL are the long wavelength (reference) of the gravity
disturbances and the geoid heights computed using an Earth
gravity model (EGM) up to a maximum degree/order L; ıgtL
and ıN t

L are the computed long-wavelength components of
the DTE and PITE, using the spherical harmonic coefficients
of the topography or by numerical integration over a refer-
ence topography. D stands for the one-step inverse operator.
Our focus in this study is on the contribution of topographic
reductions (Nt) on the geoid heights (and their STDs) when
the anomalous density rather than a constant mean density is
used. Neglecting the density variations in the reference DTE
and PITE (ıgtL and ıN t

L) we limit our formulations to:

N t D D
�
ıgt

�
C ıN t : (2)

Note that, there are other small terms in Eq. (1) that we
neglected here, such as the ellipsoidal corrections, and the
atmospheric effects because of their small contributions and
irrelevance to the topic of this study. We also did not include
the SITE here since we are using gravity disturbances as
opposed to gravity anomalies, therefore the SITE term is not
required; please see Vaníček and Martinec (1994) and Janák
et al. (2018) for further details.

As mentioned above, according to the Helmert second
condensation method, the topography above the boundary
surface (here spherical approximation of the reference ellip-
soid) is condensed to a thin layer on the same surface. The
topographic reductions in Helmert space are applied by using
the residual gravitational potential (ıV) as the difference
between the gravitational potential of the real (VT ) and of
the condensed topography (VC), i.e.,

ıV D V T � V C : (3)

Using Bruns formula in Eq. (3), the PITE reads:

ıN t D
ıV

�0
; (4)

where �0 is the normal gravity computed on the reference
ellipsoid. The DTE on the gravity disturbances is computed
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Table 1 Definition of the kernels and spatial distances in the Helmert topographical corrections
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by the radial derivative of the ıV, i.e.,

ıgt D
@ıV

@r
: (5)

Computation of the ıV is achieved by using the following
equation (Martinec 1998, Eqs. (3.3) and (3.4)):

ıV .r;�/ D G
’
�0

�.�0/
R RCH.�0/

r0DR
r 02

L.r; ;r 0/
dr 0d�0

�R2
“

�0

�.�0/

L .r;  ;R/
d�0;

(6)

where, R is the mean radius of the Earth; � and �0 are
indicators of the spherical latitude(') and longitude (�); r
and r 0 are the radii at the computation and integration points,
respectively; G is the gravitational constant;  and L are
the angular and spatial distance between the two points; and
� and � are the indicators of topographic and condensed
mass density, respectively. As mentioned above, the constant
density value of �0 D 2670

kg

m3
is used when computing

topographic reductions in Helmert space and the anomalous
topographic density is limited to only the lateral variations
(ı�(�)), i.e.,

�.�/ D �0 C ı�.�/ : (7)

Inserting Eq. (7) into Eq. (2) and only keeping the terms
with density variation will result in the total effect of the
anomalous density on the geoid heights:

N t
ı� D D

h
ıgtı�

i
C ıN t

ı�: (8)

The DDE on gravity measurements can be written as
(Martinec 1998, Eq. (6.7))
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and the PIDE on the geoid is (ibid, Eq. (6.10)):
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where ı� (�) is the anomalous mass density of the condensed
layer (ibid, Eq. (6.4)):
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whereH is the height of the points and the kernels and spatial
distances are defined in Table 1.

By propagating the anomalous topographic density (ı�)
error in Eq. (9) and by neglecting the correlation between the
two terms, the uncertainties of DDE are
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where ı� .�/ D
h
H .�/
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R
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, and s is the

standard deviation. Similar to DDE, the error of PIDE can be
obtained by applying the error of propagation to Eq. (10) :
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The one-step integration method is a combination of the
Hotine integral transforms and the inverse of the Poisson
integral equation (Novák 2003). The integration kernel of
the one-step method relates the disturbing potential at the
boundary level to the gravity disturbances above this surface.
Given its inverse operator and the numerical instability of
the downward continuation, the solution to this method is
achieved iteratively(Goli et al. 2019b). Returning to our main
attempt, we intend to propagate the anomalous topograph-
ical density error in Eq. (8). The error propagation in the
iterative techniques is not a simple task, therefore, we seek
an alternative regularized solution using classic Tikhonov
regularization. Neglecting the correlation between two terms
of Eq. (8), the generalized formula of the geoid internal error
due to the errors of the topographical density variation reads:

CN t
ı�

D BTCıgtı�B C CıN t
ı�
;

B D
�
DT D C 	I

��1
DT (14)

where, D is a coefficient matrix containing discretized values
of the one-step integration kernel (Novák 2003; Goli et
al. 2019b), Cıgtı� and CıN t

ı�
are the covariance matrices

of DDE and PIDE, respectively, and 	 is a regularisation
parameter that is estimated to provide an equivalent solution
to the that of the iterative approch. Please see Foroughi
et al. (2023) for further details on the estimation of the
regularization parameter in the one-step integration method.
In the digital density models, only the STDs of the laterally
varying density models are provided and the correlation
between these values is complicated to estimate and therefore
not available. Consequently, we assume that the Cıgtı� and

CıN t
ı�
are diagonal matrices with their diagonal elements

computed by discretization of the integrals in Eqs. (12) and
(13), therefore, the STDs of the anomalous density on the
geoid heights read:
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��
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3 Numerical Results

We consider the Auvergne test area to evaluate our formu-
lations because this area has been used for international col-
laborations of different geoid determination methods (Valty
et al. 2012; Foroughi et al. 2017; Mahbuby et al. 2017;
Janák et al. 2018; Foroughi et al. 2019; Goyal et al. 2021;
Abbak et al. 2022; Klees et al. 2022). Besides, we already
have an internal error estimate of the geoid heights in this
area where the contribution of the anomalous topographic
density was missing so we can simply include this new
contribution here. The Auvergne test case was introduced by
Duquenne (2007) for comparing different geoid determina-
tion methods and determining whether the effort should be on
methodological improvement or more gravity observations
for more accurate geoid models. The Auvergne gravity data
coverage is limited by �1

ı

< � < 7
ı

and 43
ı

< ' < 49
ı

and the geoid computation area is the 3
ı

� 2
ı

centre block
between �1.5

ı

< � < 4.5
ı

and 45
ı

< ' < 47
ı

with medium
topography (maximum height of 2000m). The geoid heights
have been sought with a resolution grid of 10 � 10 this area.
We extract the lateral density variations and their STDs from
the global model UNB_TopoDensT_2v01 (Sheng et al. 2019)
with two different resolutions of 3000 � 3000 and 50 � 50. Table
2 provides the statistics of the anomalous topographic mass
density and their standard deviation in the study area.

Please note that the STDs of the UNB_TopoDensT_2v01
are estimated using the range of density values suggested for
the 15 rock types included in the global lithospheric model
of GLiM (Hartmann and Moosdorf 2012) and further incor-
porated into UNB_TopoDensT_2v01. The range of STDs of
the lateral density variation in this model is large and it will
improve with a better estimate of the rock density structure.
Both DDE and PIDE are computed by integration over the
inner zone, near zone, and far zone areas. The inner zone
covers an area of 50 � 50 containing grid values of 300 � 300

around each computation point. The finer 300 � 300 anomalous
density grid was interpolated from the 3000 � 3000 grid to

Table 2 Laterally anomalous density values and their standard devia-
tions in the Auvergne test case

Area Data kg/m3 Min Max Mean STD
Auvergne ı� �184 596 372 245

sı� 0 470 210 NA
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Fig. 1 Lateral anomalous density variations (a) and their STDs in Auvergne (b) [kg/m3]
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Fig. 2 The effect of the anomalous density on the DTE (i.e., DDE) (a) and the DDE STDs (b) in Auvergne [mGal]

match the resolution of the existing DEMs used for comput-
ing DTE and PITE when integrating over the inner zone. The
near and far zones cover 100 � 100 and 3

ı

� 3
ı

comprising
grid values on 3000 � 3000 and 50 � 50 spacing, respectively.
At first, the point values of the DDE and PIDE (and their
STDs) were computed on a 1500 � 1500 computation grid and
then the mean values on a 10 � 10 grid was estimated. The
calculation of the mean values is recommended (especially
in the rough topography area) since the mean gravity values
are typically used for the calculation of the local gravimetric
geoid (Vaníček and Martinec 1994; Janák and Vaníček 2005;

Afrasteh et al. 2019; Goli et al. 2019a). We have computed
the DDE for the whole data coverage and the PIDE for the
geoid computation area.

The anomalous lateral density is shown in Fig. 1(a) and
their STDs are shown in Fig. 1(b). Figures 2 and 3 show
DDE and PIDE along with their STDs respectively with a
summary of their statistics provided in Table 3.

Please note that the minimum STD of zero in Table 3 is
due to the Mediterranean Sea in the southeast part of the
Auvergne area where its density was set to 1027 kg

m3
and the

uncertainty was set to zero in the UNB_TopoDensT_2v01.
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Table 3 DDE, PIDE and their STDs in Auvergne

Data Unit Min Max Mean STD
DDE (ıgtı�) mGal �25:41 90:57 0.63 3.03
sıgtı� 0:0 0:75 0.16 NA

PIDE (ıN t
ı�) cm �1:00 5:17 0.24 0.48

sıN t
ı�

0:02 1:46 0.14 NA

Figure 2 represents the effect of DDE on the gravity
observations and its estimated STDs. Using the one-step
integration method we also compute the effect of DDE on
the geoid heights that is shown in Fig. 4(a) and estimate its
STDs (i.e., the first term on the right-hand side of Eq. (14))

that is shown in Fig. 4(b) and are mostly below 1mm in this
area. Statistics are provided in Table 4.

The total effect of the anomalous density on the geoid
heights (i.e., Eq. (8)) is displayed in Fig. 5(a) and the STDs
(sıN t

ı�
) are displayed in Fig. 5(b) and statistics are provided

in Table 4.
By adding the sıN t

ı�
to the total error estimate of the geoid

heights reported by Foroughi et al. (2019), the error estimate
of the geoid heights including the errors of the anomalous
density is shown in Fig. 6 with statistics provided in Table 5.
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Fig. 4 The effect of DDE on the geoid heights and STD



The Uncertainties of the Topographical Density Variations in View of a Sub-Centimetre Geoid 33

Table 4 Statistics of the total effects of DDE and PIDE on the geoid heights in Auvergne

Data Unit Min Max Mean STD

DDE only D
h
ıgtı�

i
cm 1 21.37 5.30 3.48

DDE and PIDE N t
ı� D D

h
ıgtı�

i
C ıN t

ı� 0.88 23.78 5.54 3.68

STDs sN t
ı�

0.01 1.49 0.15 NA

Fig. 5 Total effect of density anomalous on the geoid (a) and STDs (b)

Fig. 6 Total error estimate of the geoid heights in Auvergne including
all error sources (Foroughi et al. 2019) plus the STDs of the anomalous
density

Table 5 Statistics of the uncertainties of the geoid heights including
all error sources (Foroughi et al. 2019) plus DDE and PIDE

Data Unit Min Max Mean
sN cm 0.22 6.44 0.56

4 Conclusion and Remarks

With the existence of the global models of the topographi-
cal density variations, the topographic reductions for geoid
determination can be computed using the actual density
instead of a constant density value which may be far from
reality, up to 20% (Kuhn 2002). The knowledge of the
anomalous topographic density variation is increasing and
with a better understanding of the rock types and their
density structure, we will be able to compute the topo-
graphic reductions more accurately. We used the recently
available global laterally varying topographic mass density
model UNB_TopoDensT_2v01 to compute the direct and
indirect density effects (DDE and PIDE respectively) and
their uncertainties on the gravity and geoid heights using
the Helmert second condensation method. Due to numerical
complexity and lack of information on the covariance of
the topographical density variations, we only considered the
variances and neglected the correlations between error terms.
Given the structure of the UNB_TopoDensT_2v01, finding
the correlation between density variations is not an easy task.
All we can say is that the correlations are predominantly pos-
itive and neglecting them will give a larger error estimate of
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the geoid heights and vice versa. Since a negative correlation
is unlikely, our results are an overly pessimistic estimate of
the geoid error, i.e., the internal error estimate of this study
can be well trusted.

We tested our formulations in the Auvergne test area and
showed that PIDE is the dominant source of uncertainty in
the geoid heights. In a medium topography area, like the
Auvergne region, the maximum uncertainty of the geoid
heights due to the errors in the anomalous density is less
than 2 cm with a mean value of only 1.5 mm which is below
the target sub-centimetre threshold for internal error of geoid
heights. We also added our DDE and PIDE error estimates
to those computed by Foroughi et al. (2019) for the same
region and confirmed that even using a comprehensive error
propagation of the STDs of the anomalous density in the
geoid determination, the mean value of the internal error is
still below one-centimetre threshold. The STDs of the geoid
heights including the uncertainties caused by the inclusion of
anomalous density are larger than 1 cm in higher topography
where the mean STD of the geoid heights is higher than
1 cm anyway. The results of this contribution confirm that
topographical density information is now known well enough
(errors in the density variation values are small enough) to
make the resulting geoid more accurate than when the geoid
is computed with assumed constant topographical density.
We showed that a geoid with an internal error estimate of
better than one centimetre is achievable considering the
density variation for most of the globe where the topography
is lower than 2000 m.
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Janák J, Vaníček P (2005) Mean free-air gravity anomalies in the
mountains. Studia Geophysica et Geodaetica 49(1):31–42. https://
doi.org/10.1007/s11200-005-1624-6
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Estimation of Height Anomalies fromGradients
of the Gravitational Potential Using a Spectral
CombinationMethod

Martin Pitoňák, Michal Šprlák, and Pavel Novák

Abstract

In this study, we apply a spectral combination method for estimation of height anoma-
lies from gradients of the gravitational potential measured by satellites. The spectral
combination method is used for solving over-determined problems within gravity field
modelling when multiple types of gravity data are collected and used for recovery of
unobservable quantities (typically the gravitational potential). The method applies solutions
to geodetic boundary-value problems formulated in spherical approximation for gradients
of the gravitational potential of up to the third order. Spectral forms of the solutions are
combined using spectral weights defined under the condition of minimizing the global
mean-square error of the estimators. Mathematical models are implemented and tested
using gradients synthesized from a global geopotential model which allows for closed-loop
testing of the estimators. The tests reveal among others that horizontal derivatives of the
gravitational potential influence recovered values more than their vertical counterparts.

Keywords

Boundary-value problem � Earth’s gravity field � Gradients of the disturbing potential �

Height anomaly � Spectral combination method

1 Introduction

Boundary-value problems (BVPs) and their solutions repre-
sent an important tool for describing and modelling potential
fields such as the Earth’s gravitational field. Solutions to
spherical geodetic BVPs lead to spherical harmonic series or
surface convolution integrals with Green’s kernel functions.
New BVPs have recently been formulated reflecting the
development of new sensors. BVPs have also been developed
for observables measured by kinematic sensors on moving
platforms, i.e., airplanes and satellites. Solutions to BVPs
for higher-order gradients of the gravitational potential as
boundary conditions are represented by multiple integral
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transforms. For example, solutions to gravimetric BVP are
represented by two integral transforms (Grafarend 2001, Eqs.
(199) and (142)):
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to the gradiometric BVP by three integral transforms (Mar-
tinec 2003, Eq. (19)):
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and to the gravitational curvature BVP by four integral
transforms (Šprlák and Novák 2016, Eqs. (49)–(52)):
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The notation in the previous equations is defined as follows.
An Earth-fixed coordinate system is used with the geocentric
radius r , spherical latitude ' and longitude �. Moreover,
in a point positioned in the 3-D space by a triplet of the
spherical coordinates .r; '0; �0/ D .r;˝ 0/, a right-handed
local Cartesian system is defined with the z-axis aligned
with the geocentric radius and pointing outwards, and the
x-axis pointing to the geodetic North. The symbol T rep-
resents the disturbing potential and components of the first-,
second- and third-order gradient tensors are Ti ; Tij and Tijk
(with indexes i ; j ; k running over the Cartesian coordinates
x; y; z). The spherical distance  and the backward azimuth
˛0 are defined between the computation point .r;˝/ and
the integration point .R;˝ 0/ located at the mean Earth’s
sphere with the radius R. Pn;m are the associated Legendre
functions of the degree n and order m. The minimum degree
was homogenized to the smallest common degree n D 3

recoverable from all gradients. The series in Eqs. (1) to (9)
theoretically extends to infinity; however, it will always be
truncated at the degree Nmax for the satellite data where
the gravitational signal is attenuated. Note that expressions
in curly brackets represent the integral kernel functions
in the spectral forms. The superscripts in Eqs. (1) to (9)
stand for the name of the corresponding solution (V—
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vertical, H—horizontal) and could be expressed by a more
general index i . For example, the superscript VHH means
the vertical-horizontal-horizontal solution. The solutions of
geodetic BVPs defined by Eqs. (1) to (9) represent the direct
problem. The components of the first-, second- and third-
order gradient tensors Ti ; Tij and Tijk are located at the mean
sphere while the unknown disturbing potential is estimated at
the sphere with radius r (r > R).

2 Spectral Combination

The goal of this study is to apply Eqs. (1) to (9) for downward
continuation (DWC), i.e., to estimate values of the disturbing
potential at the mean Earth’s sphere with the radius ofR from
the components of the first-, second- and third-order gradient
tensors Ti ; Tij and Tijk located at the mean orbital sphere.
The well-known example of such a problem is an estimation
of the spherical harmonic coefficients from the satellite
observables. To do so, we change the ratio .R=r/, called
an attenuation factor, to .r=R/ in Eqs. (1) to (9). Further,
the arguments in brackets on the left-hand side of Eqs. (1)
to (9) from .r;˝/ to .R;˝/ and the arguments related to
the components of the first-, second- and third-order gradient
tensors Ti ; Tij and Tijk on the right-hand side from .R;˝ 0/

to .r;˝ 0/. Note that in the same way we modified Eqs. (1)
to (9) but their exact formulas are omitted here and we
provide two examples in terms of the simplest V solution and
the most complicatedHHH solution modified for the DWC:
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(11)

The geometry of this problem is depicted in Fig. 1. Note
that all symbols used in this figure are explained in the
text above. The problem presented by modified Eqs. (1)
to (9) represents DWC. To solve it, we need to control
the signal-to-noise ratio of results. Among many methods,
we decided to apply the least-squares spectral combination
method developed for combination of then-available gravity
data by Sjöberg (1980) and Wenzel (1982). Since then it
has been used by many scholars for geoid determination.
The very first publication, which discussed the application of
the spectral combination method for combining solutions of
boundary-value problems (BVPs) of the potential theory, was
published by Eshagh (2011). Using the spectral combination
method, Eshagh (2012) combined three analytical solutions
to the spherical gradiometric BVP and applied the spectral
combination method for DWC of second-order gradients of
the gravitational potential simulated at the satellite orbit.
The spectral combination of solutions to the spherical grav-
itational curvature BVP for estimation of the gravitational
potential was investigated by Pitoňák et al. (2018). The
method can be used not only for combination of various
data types but it can also continue observables from an
observation level down to the irregular Earth’s surface (or
elsewhere as long as the harmonicity of the gravitational
potential is guaranteed) and transform them to correspond-
ing gravitational field quantity, e.g., Sjöberg and Eshagh
(2012), Eshagh (2012) or Pitoňák et al. (2018). Despite DWC
being an inverse problem, the method does not need any
matrix inversion and the signal-to-noise ratio of results is
controlled by spectral weights. However, DWC can still be
problematic as one continues gradient data inside a geocen-
tric sphere which encloses completely Earth’s masses (Bril-
louin’s sphere). In this space, an external form of a spherical
harmonic series representing the gravitational potential may
not be converging.

In this study, we apply the spectral combination method
to all gradients of the gravitational potential of up to
the third order. The method combines nine solutions
of the respective BVPs, two for the gravimetric BVP,
three for the gradiometric BVP and four for the third-
order gravitational curvature BVP. The integral kernel
functions in Eqs. (1) to (9) can be modified by adding
spectral weights an which respect signal and error degree
variances of measured gravitational gradients. Moreover, the
various solutions can be combined in the spectral domain
which provides a minimum expected global mean-square
error of estimated parameters. In order to obtain height
anomalies we apply the well-known Bruns’s equation (e.g.,
Heiskanen and Moritz 1967, Eq. 2–144, p. 85) to Eqs. (1)–
(9).
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Fig. 1 Geometry of the downward continuation of satellite data

The height anomaly estimator based on a single gradient
group has the spectral form:

�.i/.˝/ D
1

�

NmaxX
nD3

ai;n bi;n Ti;n.˝/ ; (12)

which is obtained from spherical harmonics Ti;n derived by
spherical analysis of the gradient group Ti . Spectral weights

ai;n are defined as follows (Eshagh 2012; Pitoňák et al.
2020):

ai;n D
cn tn

cn t2n C �2i;n b
2
i;n

; (13)

with the signal degree variances of the height anomaly cn and
the error degree variance of the particular gradient group �2i;n.
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Numerical coefficients for the order of the gradient ` are:

bi;n D R`
.n � j /Š

.nC `/Š
; ` D f1; 2; 3g ;

and the respective attenuation factors tn are defined as fol-
lows:
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The index j represents the order of the gradient in the
horizontal coordinates x and y (number of repetitions of the
index H , j = {0,1,2,3}). Note that in the practical compu-
tation we used modified integral transforms. Two examples
in terms of the simplest V and the most complicated HHH
solutions are:
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Two or more gradient groups can be then combined in
the spectral domain. The combined solution based on two
gradient groups reads:
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with the respective spectral weights defined as follows
(Eshagh 2012):
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In contrary to a single group estimator in Eq. (12), which
is based on the signal degree variances cn of estimated
parameters, the two- and more-group estimators are based
only on the error degree variances of input data. We present
their unbiased forms herein. Combining two gradient groups
in Eq. (16) yields already 36 different combined solutions.
One example for the combination of the V and H gradient
groups in the integral form is:
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Similarly, the solution based on three gradient groups
reads:

�.i;j ;k/.˝/

D
1

�

NmaxX
nD3

�
a.i;j ;k/n b.i/n Ti;n.r;˝/C a.j ;i ;k/n b.j /n (19)

�Tj ;n.r;˝/C a.k;i ;j /n b.k/n Tk;n.r;˝/
�
;

with the spectral weights defined as follows (Eshagh 2012):
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Fig. 2 Scheme of the three-group estimator

An integral form of the combination of the V , V V and V V V
gradient groups is:
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There are 84 solutions based on the three-group estimator
in Eq. (19). Its scheme is then presented in Fig. 2. Each
integral transform is represented by one line. Here we select
5 possible solutions out of 84. The four- to nine-group
estimators can be derived analogously. The four- and five-
group estimators provide the maximum number of combined
solutions, 126 solutions each. For more groups, the number
of combined solutions decreases again with the nine-group
estimator providing a single solution. Generally, the number
of the combined solutions is given by the factorial coefficient.

3 Numerical Experiments

The spectral combination method was tested using synthetic
disturbing gradients derived from the global geopotential
model GO_CONS_GCF_2_TIM_R6e (Zingerle et al. 2019)
up to the maximum degree Nmax D 250. The Geodetic
Reference System 1980 was used as the normal field (Moritz
2000). In total, 19 disturbing gradients of up to the third order
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Fig. 3 Signal and error degree variances of the first-order gradients (a), the second-order gradients (b) and the third-order gradients (c)

were synthesized at the equiangular coordinate grid with the
resolution of 0.2 arc-deg. The global grid was located at the
mean satellite orbit with the geocentric radius 6,633,850 m.
The error variances were calculated from the formal errors of
the applied global geopotential model.

The height anomalies were computed in the area of
Himalayas limited by ' 2 Œ24:75ı; 45:25ı� and � 2

Œ69:75ı; 105:25ı� from global grids of the gradient groups
by the spectral combination method at the Brillouin sphere
of radius 6,383,850 m, thus safely outside solid Earth’s
masses. Brillouin’s sphere was used instead of the real
Earth surface since the solutions of corresponding BVPs
are based on the external spherical harmonic series of the
gravitational potential, and its first- , second- and third-
order gradients. To combine the solutions based on groups

of the disturbing gradients in the spectral domain, respective
spectral weights must be computed first. Figure 3 shows the
required signal and error spectra (signal and error degree
variances) corresponding to the first-, second- and third-
order gradients, respectively. Note that we calculated signal
and error spectra from the spherical harmonic coefficients of
GO_CONS_GCF_2_TIM_R6e and their uncertainties.

Based on the estimated spectral weights, the combined
solutions were computed. As the synthetic gradient data have
been used, the closed-loop tests could be performed. We
divided values of the disturbing potential by normal gravity
generated by the mean sphere of radius 6,383,850 m in
order to obtain height anomalies. Thus, the numerical results
include basic statistics of the differences between values
computed by the spectral combination method and their
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Table 1 Statistics of the differences between estimated values of the
height anomaly by the one-group estimators and their reference coun-
terparts synthesized from the global geopotential model (in metres).

The indexes 1; : : : ; 9 stand for the V ,H , V V , VH ,HH , V V V , V VH ,
VHH and HHH solutions, respectively

1 2 3 4 5 6 7 8 9
Std 0:034 0:012 0:030 0:000 0:001 0:010 0.000 0:000 0:001

Min �0:112 �0:026 �0:119 �0:001 �0:002 �0:015 0.000 �0:001 �0:001

Max 0:139 0:022 0:116 0:001 0:002 0:015 0.000 0:000 0:001

Mean 0:000 0:000 0:000 0:000 0:000 0:000 0.000 0:000 0:000

Table 2 Statistics of the differences between values of the height
anomaly estimated by the selected two-group estimators and their ref-
erence counterparts synthesized from the global geopotential model
(in metres)

(1,2) (1,5) (2,3) (1,9) (2,9)
Std 0:012 0:001 0:012 0:001 0:012

Min �0:026 �0:002 �0:026 �0:001 �0:026

Max 0:022 0:002 0:022 0:001 0:022

Mean 0:000 0:000 0:000 0:000 0:000

Table 3 Statistics of the differences between values of the height
anomaly estimated by the selected three-group estimators and their
reference counterparts synthesized from the global geopotential model
(in metres)

(1,5,6) (1,3,6) (3,4,5) (2,5,9) (2,3,9)
Std 0:001 0:010 0:001 0:001 0:001

Min �0:002 �0:015 �0:002 �0:001 �0:001

Max 0:002 0:015 0:002 0:001 0:001

Mean 0:000 0:000 0:000 0:000 0:000

counterparts synthesized directly from the global geopoten-
tial model in the bandwidth 3-250. In total, there are 511
combined solutions; thus, only few selected examples can
be presented in this study. As it is clear from the statistics
for the one-group estimator, see Table 1, the worst fit with
respect to the true values was obtained from the first-order
vertical gradient Tz, while the best fit was achieved for the
second-order gradient group VH and the third-order gradient
groups V VH and VHH . From the statistics obtained using
the two-group estimator, see Table 2, one can conclude that
the more accurate group (based on results from the one-group
estimator) improves the less accurate solutions from the one-
group estimator. The same pattern can be observed for the

three-group estimator as well as for the rest of the gradient
groups, see Tables 3 and 4, respectively.

4 Conclusion

The spectral combination method was applied for the estima-
tion of the height anomaly from gradients of the gravitational
potential up to the third order as potentially observed by
satellites. The method has been applied to synthetic gradient
data synthesized at the global equiangular grids from the
state-of-the-art global geopotential model which allowed for
applying the closed-loop test. Obtained numerical results
revealed some interesting properties of the spectral combina-
tion method applied to satellite gradients of the geopotential,
namely: (i) The best fit was obtained from the mixed vertical
and horizontal second- and third-order gradient groups and
their respective combination; (ii) Horizontal gradients of
the disturbing gravitational potential in the local coordinate
frame influence results more than vertical gradients; and (iii)
The combination of more than six groups is not beneficial
and does not improve obtained solution.
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(6,7,8,9) (1,2,4,6,9) (1,2,3,5,6,9) (1,2,3,4,5,6,9) (1,2,3,4,5,6,7,9) (1,2,3,4,5,6,7,8,9)
Std 0:000 0:001 0:000 0:000 0:000 0:000

Min �0:001 �0:001 �0:001 �0:001 �0:001 �0:001

Max 0:001 0:001 0:001 0:001 0:001 0:001

Mean 0:000 0:000 0:000 0:000 0:000 0:000
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Data Availability The global geopotential model GO_CONS_GCF_2
_TIM_R6e is freely available via ICGEM (International Centre for
Global Earth Models) website.
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Evaluation of the Recent African Gravity
Databases V2.x

Hussein A. Abd-Elmotaal, Norbert Kühtreiber, Kurt Seitz, Bernhard Heck,
and Hansjörg Kutterer

Abstract

In the framework of the activities of the IAG Sub-Commission on the gravity and geoid
in Africa, a recent set of gravity databases has been established. They are namely:
AFRGDB_V2.0 and AFRGDB_V2.2. The AFRGDB_V2.0 has been created using the
window remove-restore technique employing EGM2008 as geopotential Earth model
complete to degree and order 1800. The AFRGDB_V2.2 has been established using the
Residual Terrain Model (RTM) reduction technique employing GOCE DIR_R5 complete
to degree and order 280, using the best RTM reference surface. The available gravity data
set for Africa, used to establish the above mentioned two independently derived databases,
consists of shipborne, altimetry derived gravity anomalies and of land point gravity data.
In particular, the data set of point gravity values shows clear deficits with regard to a
homogeneous data coverage over the completely African continent. The establishment
of the gravity databases has been carried-out using the weighted least-squares prediction
technique, in which the point gravity data on land has got the highest precision, while
the shipborne and altimetry gravity data got a moderate precision. In this paper a new
gravity data set on land and on sea, which became recently available for the IAG Sub-
Commission on the gravity and geoid in Africa, located partly in the gap areas of the data
set used for generating the gravity databases, has been employed to evaluate the accuracy
of the previously created gravity databases. The results show reasonable accuracy of the
established gravity databases considering the large data gaps in Africa.
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1 Introduction

The International Association of Geodesy (IAG) has
established, some years ago, the Sub-Commission on the
gravity and geoid in Africa. The main task of that Sub-
Commission is to determine a precise regional geoid for
the continent. In order to achieve its main goal, the IAG
Sub-Commission on the gravity and geoid in Africa has
established a recent set of gravity databases. This set
comprises the AFRGDB_V2.0 (Abd-Elmotaal et al. 2018)
and AFRGDB_V2.2 (Abd-Elmotaal et al. 2020). The aim
of this investigation is to perform an external validation of
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the above mentioned gravity databases employing a recently
available gravity data set. This data set was not used in
creating V2.x gravity databases and is located partly in the
gap areas of the data.

In the following, the gravity data sets used to establish the
recent gravity databases AFRGDB_V2.x will be presented.
The different methodologies applied for establishing the
AFRGDB_V2.x gravity databases will be described. The
recently available gravity data set used for the validation pro-
cess will be presented. The validation of the AFRGDB_V2.x
will be performed and discussed.

2 Data Used for Establishing the
AFRGDB_V2.x Gravity Databases

The basis for the creation of a gravity anomaly database
across the entire African continent in a homogeneous and
comprehensive manner is formed by three complementary
data sets. There are three types of data available.

The available land point gravity data, is the most impor-
tant data set for determining the geoid at the continent.
Before they enter the merging scheme, they have to pass a
laborious gross-error detection process. This data screening
step was developed by Abd-Elmotaal and Kühtreiber (2014)
using the least-squares prediction technique (Moritz 1980).
During this gross-error detection the gravity anomaly at
the computational point is predicted using the neighbouring
points and then compared to the measured gravity anomaly
value. A possible erroneous measurement is removed from
the data if the difference between the measurement and the
predicted value exceeds a certain threshold. Afterwards, a
grid-filtering scheme (Abd-Elmotaal and Kühtreiber 2014)
on a grid of 10 � 10 is applied to the screened land data to
improve the behaviour of the empirical covariance function
especially near the origin (Kraiger 1988). The statistics of
the land free-air gravity anomalies, after the gross-error
detection and the grid-filtering, are illustrated in Table 1. The
distribution of the available land gravity data set, with its
obvious large data gaps, is shown in Fig. 1a.

The gravity data set used to generate AFRGDB_V2.x
comprises in addition data over the oceanic region. The
goal of the African Geoid Project is the calculation of
the geoid on the African continent. Data within the data

Table 1 Statistics of the gravity anomalies used to generate
AFRGDB_V2.x. Units in [mgal]

Data No. of Statistical parameters
category points Min Max Mean Std.
Land 126;202 �163:20 465.50 9:84 40.93
Shipborne 148;674 �238:30 354.40 �6:21 34.90
Altimetry 70;589 �172:23 156.60 4:09 18.23

window which are located on the oceans are used to stabilize
the solution at the continental margins to avoid the Gibbs
phenomenon. The sea data consists of shipborne point data
and altimetry-derived gravity anomalies along tracks. The
altimetry-derived data set was derived from the average of 44

repeated cycles of the satellite altimetry mission GEOSAT
by the National Geophysical Data Center NGDC (www.
ngdc.noaa.gov) (Abd-Elmotaal and Makhloof 2013, 2014).
The derived gravity anomalies are given along its ground
tracks and have a good spatial coverage as can be realized
from Fig. 1c. The distribution of the shipborne data is
given in Fig. 1b. The shipborne and altimetry-derived free-air
anomalies have passed a gross-error detection scheme devel-
oped by Abd-Elmotaal and Makhloof (2013), also based
on the least-squares prediction technique. It estimates the
gravity anomaly at the computational point utilizing the
neighbourhood points, and defines a possible blunder by
comparing it to the given data value which is currently
being examined for an error. The gross-error technique works
in an iterative scheme till it reaches 1:5 mgal or better
for the discrepancy between the predicted and data values.
A stochastic weighting combination between the shipborne
and altimetry data took place (Abd-Elmotaal and Makhloof
2014) in order to merge both data sets into one homogeneous
data set. Then a grid-filtering process on a grid of 30 � 30 has
been applied to the shipborne and altimetry-derived gravity
anomalies to decrease their dominating effect on the gravity
data set. The statistics of the shipborne and altimetry-derived
free-air anomalies, after the gross-error detection and grid-
filtering, are listed in Table 1.

More details about the used data sets can be found in Abd-
Elmotaal et al. (2018).

3 Methodology for Creating
AFRGDB_V2.x

The two gravity databases for the African continent (versions
V2.0 and V2.2) which are here evaluated, have been created
based on principally different methodologies. In the follow-
ing subsections the applied methodologies will be shortly
described. They mainly differ in the way how the high-
frequency part of the gravity anomalies is reduced before a
suitable interpolation or prediction technique is applied to get
gridded data.

3.1 Methodology for Creating
AFRGDB_V2.0

The version V2.0 of AFRGDB relies on the window remove-
restore technique which is used to smooth the signal of

www.ngdc.noaa.gov
www.ngdc.noaa.gov
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Fig. 1 Distribution of the (a)
land, (b) shipborne and (c)
altimetry gravity data points for
Africa used to generate
AFRGDB_V2.x
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the gravity attraction and avoids the double consideration
of topographical masses. This leads to un-biased reduced
anomalies with minimum variance. The window technique,
which was introduced by Abd-Elmotaal and Kühtreiber
(1999, 2003), consists of a remove and a restore step. When
performing the remove step, the measured free-air gravity
anomalies �gF are decomposed into the contribution of
the topographic-isostatic masses for the fixed data window
(�gTI win), the long wavelength component modelled
by a global geopotential model (GPM) (�gGPM ), the
contribution of the topographic-isostatic masses in terms
of spherical harmonics up to d/o nmax of the same data
window (�gwincof ). The synthesis of �gGPM and �gwincof

is performed to the maximum degree nmax D 1800.
Furthermore, the EGM2008 geopotential model (Pavlis et al.
2012) is used as the GPM. From this spectral decomposition
the window-reduced gravity anomalies can be expressed by
Abd-Elmotaal and Kühtreiber (1999, 2003) (cf. Fig. 2)

�gwin-red D �gF � �gTI win � �gGPM

ˇ̌
ˇnmax

nD2

C

C �gwincof

ˇ̌
ˇnmax

nD2
: (1)

a

Adapted GM

P

data window

TC

Fig. 2 The window remove-restore technique

The reduced and smoothed gravity anomalies represented
in Eq. (1) are point values. They are interpolated on the
50�50 target grid covering the geographical window (�40ı �

� � 42ıI �20ı � � � 60ı) of the African continent. The
technique used to get the �gG

win-red is an unequal weight
least-squares interpolation technique (Moritz 1980). A smart
fitting technique of the empirically determined covariance
function by employing a least-squares regression algorithm
(Abd-Elmotaal and Kühtreiber 2016) has been implemented
in the interpolation process.
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The effects which have to be subtracted in the remove-step
in order to smooth the point wise given gravity anomalies to
improve the interpolation results are added back, but now in
the nodes of the equidistant target grid. The applied tech-
nique is described in Abd-Elmotaal and Kühtreiber (1999,
2003) and can be formally expressed by

�gG
F D �gG

win-red C �gG
TI win C �gG

EGM2008

ˇ̌
ˇnmax

nD2

�

� �gG
wincof

ˇ̌
ˇnmax

nD2

: (2)

The superscript G which is added to the involved values
(compare (1) and (2)) indicates the gridded values. �gG

F

computed by (2) represent the values for the AFRGDB_V2.0
gravity database for Africa. In Abd-Elmotaal et al. (2018)
more details about the establishment of AFRGDB_V2.0 can
be found.

It is worth mentioning, that the harmonic analysis (Abd-
Elmotaal and Kühtreiber 2021; Abd-Elmotaal et al. 2013) of
the topographic-isostatic masses needed to compute the term
�gwincof in Eq. (1) is the most time consuming part in the
window remove-restore process employed for the creation of
the AFRGDB_V2.0 gravity database.

3.2 Methodology for Creating
AFRGDB_V2.2

The creation of version V2.2 of the gravity database for
Africa is based on the RTM reduction technique, proposed
first by Forsberg (1984). The remove step of the modified
RTM technique used in the creation of the AFRGDB_V2.2
gravity database, employing the best smoothed DHM as
RTM surface, can mathematically be expressed by

�gRTM-red D �gF � �gRTM win � �gDir_R5

ˇ̌
ˇnmax

nD2

; (3)

where�gRTM-red refers to the RTM-reduced gravity anoma-
lies, �gF refers to the measured free-air gravity anoma-
lies, �gDir_R5 stands for the contribution of the GOCE
Dir_R5 global reference geopotential model (Bruinsma et al.
2014). The RTM effect on gravity �gRTM win of the topo-
graphic masses is computed from a fixed data window. Here
nmax D 280 is the used upper maximum degree. The
reduced anomalies are interpolated on a 50 � 50 grid for the
African result window using the same technique described in
Sect. 3.1 yielding the interpolated gridded reduced anomalies
�gG

RTM-red . The restore step for the modified RTM tech-
nique used for creating the AFRGDB_V2.2 gravity database

for Africa can mathematically be expressed by

�gG
F D �gG

RTM-red C �gG
RTM win C �gG

Dir_R5

ˇ̌
ˇnmax

nD2

; (4)

where the superscript G stands again for values computed
at the grid points. �gG

F computed by (4) represent the
values for the AFRGDB_V2.2 gravity database for Africa.
More details about the establishment of the AFRGDB_V2.2
gravity database can be found in Abd-Elmotaal et al. (2020).

It should be mentioned, that the required computations
to establish the AFRGDB_V2.2 gravity database for Africa
described in Sect. 3.2 are fairly faster than the technique used
to create the AFRGDB_V2.0 gravity database described in
Sect. 3.1.

4 The NewData Set Used for the
Validation

A new gravity data set, covering part of the gaps appearing in
the AFRGDB_V2.x gravity data (cf. Fig. 1), became recently
available for the IAG Sub-Commission on the gravity and
geoid in Africa. This gridded gravity data set comprises
27,121 grid points on land and 16,659 grid points on sea.
The distribution of the new gravity data is illustrated in
Fig. 3. Table 2 gives the statistics of the new gravity anomaly

Fig. 3 The distribution of the new gravity data used to evaluate
AFRGDB_V2.x (green: land data, blue: sea data)



Evaluation of the Recent African Gravity Databases V2.x 51

Table 2 Statistics of the new gravity anomalies used to evaluate
AFRGDB_V2.x. Units in [mgal]

Data No. of Statistical parameters
category points Min Max Mean Std.
Land 27,121 �55:70 350.28 6:70 28.76
Sea 16,659 �210:50 234.49 �37:63 53.52

data. In the validation of AFRGDB_V2.x presented here,
the new data is not used for an update of the database. The
recent two solutions AFRGDB_V2.0 and AFRGDB_V2.2
are interpolated on the grid of the newly acquired data. The
resulting residuals (differences) are used for the validation.

5 Validation of AFRGDB_V2.0 and
AFRGDB_V2.2

The new gravity data set has been used to evaluate the
accuracy of the AFRGDB_V2.x. As can be clearly seen in
Fig. 1, the data collected so far show large gaps especially
in the north-eastern region of the African continent. With
the different methods used to create the AFRGDB_V2.x
databases, the influence of this shortcoming should also be

reduced. With the new data, a validation can be carried out
under unfavorable data conditions.

Figure 4 shows the histogram of the residuals from the
difference between the AFRGDB_V2.x and the new land
data contained in the new data grid. It can be concluded, that
the AFRGDB_V2.0 adjusts better than the AFRGDB_V2.2
because the precision index of the AFRGDB_V2.0 is larger
than that of AFRGDB_V2.2.

Figure 5 shows the histogram of the validation of the
AFRGDB_V2.x gravity database in respect to the new grid
data on sea. Here also, Fig. 5 shows, using the precision index
as decision parameter, that the accuracy of AFRGDB_V2.0
is better than that of AFRGDB_V2.2, at least in this region
under consideration.

Figure 6 shows the histogram of the validation of
the full data for the AFRGDB_V2.x gravity databases.
This figure also confirms the previous conclusion that the
AFRGDB_V2.0 fits better than the AFRGDB_V2.2 to the
new data.

While 68.03% of the new grid points have differences less
than 10 mgal for the AFRGDB_V2.0, this holds for 57.66%
of the AFRGDB_V2.2. The respective residuals are shown
in Fig. 7.

Fig. 4 Histogram of the validation on land for the (a) AFRGDB_V2.0 and (b) AFRGDB_V2.2 gravity database for Africa

Fig. 5 Histogram of the validation on sea for the (a) AFRGDB_V2.0 and (b) AFRGDB_V2.2 gravity database for Africa
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Fig. 6 Histogram of the validation of the full data for the (a) AFRGDB_V2.0 and (b) AFRGDB_V2.2 gravity database for Africa

Fig. 7 Validation of the (a) AFRGDB_V2.0 and (b) AFRGDB_V2.2 gravity database for Africa. Units in [mgal]

6 Conclusion

A validation of the recently established AFRGDB_V2.0
and AFRGDB_V2.2 gravity databases for Africa has been
successfully carried out. The new data which are used for
validation, covers the north-eastern region of the African
continent. In this region occur large data gaps in the pre-
vious database, particularly in the point values on land.
The performed validation shows that the AFRGDB_V2.0
gravity database is more precise in this region than the
AFRGDB_V2.2 gravity database. This becomes obvious
from the residuals between the new data used for validation
and the respective model (cf. Fig. 7). While 68.03% of
the data points have differences less than 10mgal for the
AFRGDB_V2.0, for the AFRGDB_V2.2 this holds only for
57.66% of the data points. This statement is also supported
by the statistical parameters in Table 3. They show that

Table 3 Statistics of the validation of the AFRGDB_V2.0 and
AFRGDB_V2.2 gravity data bases. Units in [mgal]

Gravity Statistical parameters
database Min Max Mean Std.
AFRGDB_V2.0 �54:82 54.53 �0:69 12.06
AFRGDB_V2.2 �55:98 56.04 �1:13 14.55

the AFRGDB_V2.0 fits better than the AFRGDB_V2.2 to
the new data. However, the computation efforts and CPU-
time for the AFRGDB_V2.2 gravity database are much less
compared to those of the AFRGDB_V2.0 gravity database.
The validation, as an external check of the quality of the grav-
ity databases AFRGDB_V2.x for Africa, shows reasonable
accuracy of the established gravity databases considering the
large data gaps in Africa. The performed validation of the so
far used data for establishing the AFRGDB_V2.x databases
shows significant discrepancy concerning the new data set
for Sinai, which deserves deeper investigation.
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Estimation Theory



PDF Evaluation of Elliptically Contoured GNSS
Integer Ambiguity Residuals

Peter J. G. Teunissen and Sandra Verhagen

Abstract

In this contribution we will present and evaluate the joint probability density function (PDF)
of the multivariate integer GNSS carrier phase ambiguity residuals, thereby assuming that
the GNSS data belong to the very general class of elliptically contoured (EC) distributions.
Examples of distributions belonging to this class are the multivariate normal distribution,
the t-distribution and the contaminated normal distribution. Since the residuals and their
properties depend on the integer estimation principle used, we will present the PDF of the
ambiguity residuals for the whole class of admissible integer estimators. This includes the
estimation principles of integer rounding, integer bootstrapping, and integer least squares.
The probabilistic properties of these estimators vary with the distributions from the EC-
class. In order to get a better understanding of the various features of the joint PDF of the
ambiguity residuals we will use a step-by-step construction aided by graphical means.

Keywords

Ambiguity success-rate � GNSS � Integer ambiguity resolution � Integer least-squares
(ILS) � Pull-in region � Z-transformation

1 Introduction

Several studies have indicated the occurrence of GNSS
instances where working with distributions that have tails
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heavier than the normal would be more appropriate. In Heng
et al (2011), for instance, it is shown that GPS satellite clock
errors and instantaneous UREs have heavier tails than the
normal distribution for about half of the satellites. Similar
findings can be found in Dins et al (2015). Also in fusion
studies of GPS and INS, Student’s t -distribution has been
proposed as the more suited distribution, see e.g. Zhu et al.
(2012), Zhong and Xu (2018), Wang and Zhou (2019). And
similar findings can be found in studies of multi-sensor GPS
fusion for personal and vehicular navigation (Dhital et al
2013; Al Hage et al 2019).

An appropriate class of distributions that can be used to
model distributions with heavy tails is the class of elliptically
contoured (EC) distributions. Many distributions belong to
this class (Chmielewski 1981; Cabane et al 1981), with
important examples being the multivariate normal distribu-
tion, the contaminated normal distribution and the multivari-
ate t -distribution (Kibria and Joarder 2006; Roth 2013).

If we assume our GNSS data vector y, with mean

E.y/ D Aa C Bb ; y 2 R
m; a 2 Z

n; b 2 R
p (1)
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and design matrix ŒA; B�, to be elliptically contoured, then by
virtue of linearity, also the least-squares ambiguity estimator
Oa of a is elliptically contoured. Our starting point will
therefore be to assume that the probability density function
(PDF) of Oa is a member from the class of EC-distributions
and thus given as

f Oa.x/ D j† Oa Oaj�1=2g.kx � ak2
†

OaOa
/ (2)

where a 2 Z
n, † Oa Oa 2 R

n�n is positive definite, and
g W R 7! Œ0; 1/ is a decreasing function that satisfiesR
Rn g.xT x/dx D 1 (Cabane et al 1981; Teunissen 2020). As
the PDF is completely determined by the three ingredients:
the mean E. Oa/ D a, the matrix † Oa Oa, and the function g, we
write Oa � ECn.a; † Oa Oa; g/.

As Oa is an unbiased estimator of a 2 Z
n, the real-

valued ambiguity-float solution Oa is used to estimate a as
La D I. Oa/ 2 Z

n, where I W Rn 7! Z
n is an admissible integer

estimator. Popular examples of I.:/ are: integer least-squares
(ILS), integer bootstrapping (IB) and integer rounding (IR)
(Teunissen 1998, 1999). With both Oa and La available, the
ambiguity residual is defined as

L� D Oa � La 2 R
n (3)

In current GNSS practice, the ambiguity residual is used
for various inferences and ambiguity validation purposes
(Verhagen and Teunissen 2004; Teunissen and Montenbruck
2018). To be able to do such in a statistically meaningful way
requires knowledge of the PDF of L�.

2 Normal, Contaminated Normal and
Student’s t-Distribution

Before we commence deriving the PDF of L�, we first pro-
vide a comparative insight into the behaviors of three EC-
distributions, namely the normal, the contaminated normal
and the Student t -distribution. Their g-functions are given as

g.x/ D .2�/� m
2 e

�
1
2

x
.normal/

g.x/ D .1 � �/ e
�

1
2

x

.2�/
m
2

C � ı
�

m
2 e

�

1
2ı

x

.2�/
m
2

.cont:norm/

g.x/ D
�. mCd

2 /

.d�/
d
2 �. d

2 /

�
1 C x

d

�� mCd
2 .Student/

in which x 2 R, �.:/ denotes the gamma-function, and
d the degrees of freedom of the Student distribution. Both
the contaminated normal and the multivariate t -distribution
have tails heavier than the normal. The contaminated normal
distribution is an �-mixture of two normal distributions
having the same mean but ı-proportional variance matrices.

The relevance of the contaminated distribution stems from
the fact that it is a finite mixture distribution particularly
useful for modeling data that are thought to contain a distinct
subgroup of observations and thus can be used to model
experimental error or contamination.

Note, since (2) is symmetric with respect to a, that a in
(2) is indeed the mean of Oa, E. Oa/ D a. The positive-definite
matrix † Oa Oa in (2) however, is in general not the variance
matrix of Oa. It can be shown that the variance matrix of Oa,
which we will denote as Q Oa Oa, is a scaled version of † Oa Oa.
For the above three distributions, their Q and †-matrices are
related as

Normal W Q Oa Oa D † Oa Oa

Cont:normal W Q Oa Oa D .1 � � C �ı/† Oa Oa

Student distr: W Q Oa Oa D d
d�2

† Oa Oa

Figure 1 shows the three univariate PDFs for the case they
have the same † (left) and for the case they have the same
Q (right). This shows that when the three distributions are
compared with the same †, the contaminated normal and
Student distribution indeed have heavier tails than the normal
and are also less peaked than the normal distribution. This
situation changes however when the distributions are com-
pared having the same variance. Although the contaminated
and Student distribution then still have heavier tails than the
normal distribution, this is less pronounced (see the zoom-
ins), while now the normal distribution is the less-peaked of
the three distributions. This shows that in practice one has to
exercise some caution when comparing these distributions,
especially since often one will already have determined or
know the precision of the observables and therefore work
under the assumption that the three distributions have the
same variance.

3 Distribution of the Ambiguity
Residual

We will now provide the PDF of the ambiguity residual
L� assuming that the PDF of the GNSS data is member of
the class of elliptically contoured distributions. We have the
following result.

Theorem Let Oa � ECn.a; † Oa Oa; g/ and La D I. Oa/. Then the
PDF of L� D Oa � La is given as

fL�.x/ D
X
z2Zn

g.kx � a � zk2
†

OaOa
/p

j† Oa Oaj
p0.x/ (4)

where p0.x/ is the indicator function of the origin-centred
pull-in region of the integer-map I.:/ (Teunissen 2002).
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Fig. 1 The univariate PDFs of the normal (blue), contaminated normal
(green; � D 0:5, ı D 5) and Student (red; d D 3) distribution,
together with their zoom-ins. Left: all PDFs have the same � D 0:1

(thus different variances); Right: all PDFs have the same variance (thus
different �’s). The normal distribution is shown for � D 0:1 (Left and
Right)

In constructing fL�.x/ from f Oa.x/ we follow the distribu-
tional steps as graphically depicted in Fig. 2:

1. From f Oa.x/ we can determine the joint PDF f Oa; La.x; z/ D

f Oa.x/pz.x/, in which pz.x/ is the indicator function of
the pull-in region of I.:/, centred at z.

2. Note that integration over x of the joint PDF gives the
PDF f Oa.x/ and that summation over z gives the probabil-
ity mass function (PMF) PŒ La D z�.

3. Application of the PDF transformation rule on the 1 � 1

transformation between Oa; La and L�; La gives the joint PDF
fL�; La.x; z/ D f Oa; La.x C z; z/ D f Oa.x C z/pz.x C z/.

4. Summing this joint PDF over z gives then finally fL�.x/ DP
z2Zn f Oa.x C z/p0.x/ and therefore, with the use of (2),

the result (4).

Note that the domain of the PDF fL�.x/ is that of the indi-
cator function p0.x/ and thus dependent on which integer
ambiguity estimator is used for computing La. Also note that
we have not yet made the assumption in (4) that a 2 Z

n. This
is the reason why a is still present in the expression of (4);
otherwise it would vanish because of the infinite integer sum.
This therefore allows us to consider the distribution also for

non-integer values of the ambiguities. We will come back
to this in Sect. 6. First however, we will consider for the
case a 2 Z

n, the shape of the ambiguity-residual PDF for
some different EC-distributions and some different integer
ambiguity estimators.

4 PDF fL� .x/: One-Dimensional Case

For the one-dimensional univariate case, integer rounding
(IR) is the only admissible integer estimator, the pull-in
region of which is given by the origin-centred interval of
length 1. Figure 3 shows the univariate PDF fL�.x/ for when
the data is distributed as normal (blue), contaminated normal
(green) and Student (red), in case of different values for
sigma (0:1, 0:25, 0:5). The PDFs at the top all have the same
†, while those at the bottom all have the same Q (variance).
The following conclusions can be drawn:
1. The difference between the two PDFs fL�.x/ and f Oa.x/ is

small if � is sufficiently small with respect to 1 (the length
of the pull-in interval). This can be understood as follows:
the smaller � gets, the larger the probability of correct
integer estimation (i.e. ambiguity success-rate) and thus
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Fig. 2 From the float PDF fOa.x/, via the joint PDF fOa;La.x; z/, to the ambiguity-residual PDF fL�.x/

the less uncertain the outcome of the integer estimator La

becomes. The uncertainty of L� D Oa� La will then resemble
that of f Oa.x/.

2. When � gets larger, the PDF fL�.x/ tends to the uniform
distribution. This happens sooner in case f Oa.x/ is less
peaked (the case ‘same †’).

3. Although in both cases, ‘same †’ and ‘same Q’, the tails
of the contaminated normal and Student distribution are
heavier than that of the normal distribution, this property
is not propagated into the PDF of ambiguity-residual. For
‘same Q’, the PDF fL�.x/ under the normal distribution
has now the heaviest tail.

5 PDF fL� .x/: Two-Dimensional Case

In the multivariate case (n � 1) not only the type of EC-
distribution that is assumed for the data, but now also the
choice of integer estimator has its impact on the PDF of the
ambiguity residual. To show this, we consider the PDF of
the two-dimensional double-differenced ambiguity residual
vector of a single-epoch, GNSS dual-frequency geometry-
free model, thereby assuming that the data follows a normal

distribution. Figure 4 shows by colors the function values of
the PDFs of Oa and L� D Oa � La for three different integer
estimators (IR, IB, ILS), for the case the ambiguities are
in double-differenced (DD) form (top row) and for the case
the ambiguities are in Z-transformed or ƒ-decorrelated form
(bottom row). As the two dimensional pull-in regions of
IR, IB and ILS are a unit-square, a parallellogram and an
hexagon, respectively, these are also the domains of the
corresponding fL�.x/.

As the DD ambiguities are highly correlated, the contour-
lines of f Oa.x/ are very elongated (Fig. 4, top-left). The
impact of this extreme elongation is seen reflected in the
three PDFs of the ambiguity-residual vector (Fig. 4, top row).
For IR and IB this results in multi-modality and ridges in
their PDFs.This is not the case for ILS, as the shape of its
pull-in region provides the best-possible approximation to
the shape of the contour lines of f Oa.x/ (Teunissen 1999).

As integer ambiguities are usually not resolved in DD-
form, but rather in ƒ-decorrelated form using the LAMBDA-
method (Teunissen 1995), the corresponding PDFs are
shown in the bottom row of Fig. 4. We now see, when
compared to the DD-case (Fig. 4, top row), that the shapes of
the three ambiguity-residual PDFs are over a larger domain
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Fig. 3 Univariate PDF of ambiguity residual L� D Oa � La when the data
is distributed as normal (blue), contaminated normal (green, � D 0:5,
ı D 5) and Student (red, d D 3), for different values of sigma (0:1,

0:25, 0:5). Top: same † for all three distributions. Bottom: Same Q for
all three distributions

Fig. 4 PDFs of Oa and L� D Oa � La for three different integer estimators (IR, IB, ILS), when ambiguities are in double-differenced form (top row)
and ƒ-decorrelated form (bottom row)
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Fig. 5 PDFs fOa.x/ (top row) and fL�.x/ (bottom row) for different a … Z (0:1, 0:5) and different � (0:1, 0:25), when data is assumed to be
distributed as normal (blue), contaminated normal (green, � D 0:5, ı D 5) or Student (red, d D 3)

similar to that of f Oa.x/. The differences between fL�.x/ and
f Oa.x/ are now more confined to the boundaries of the pull-in
regions and are also different for the different pull-in regions.
These differences will of course get smaller, the more precise
the ambiguities are.

6 The Case a … Z
n

So far we assumed the ambiguities to be integer. As a result
the PDF of the ambiguity residual L� D Oa� La was shown to be
symmetric with respect to the origin. This situation changes
drastically however when the ambiguities fail to be integer,
a … Z

n. Note when we change the value of a, that the EC-
PDF f Oa.x/ simply translates over this change in a, without
changing its shape. This is not the case however for the PDF
of the ambiguity-residual. This difference in behaviour of
f Oa.x/ and fL�.x/ under changes of a is illustrated in Fig. 5.
The lack of translational invariance in fL�.x/ is due to the
finite extent of its domain as dictated by the pull-in region.
Due to this constraint, the shape of fL�.x/ has to change
when changing a over a noninteger value. Its shape will only
remain the same when the change in a is over an integer
value.

7 Summary and Conclusion

In this contribution we provided the PDF fL�.x/ of the
ambiguity-residuals for the case the distribution of the GNSS
data is elliptically contoured. The normal, the contaminated
normal and the Student distribution were hereby taken as
examples. We then evaluated several characteristics of fL�.x/

in its dependence on both the shape of the elliptically
contoured data distributions (‘same †’ vs ‘same Q’) as well
as the chosen integer ambiguity estimator (IR, IB or ILS).
Finally we highlighted the lack of translational invariance of
fL�.x/, which is a property that really discriminates it from
the PDF f Oa.x/ of the float ambiguities.

In many empirical GNSS studies, the evaluation of the
ambiguity residuals is still done by comparing their his-
tograms with the PDF f Oa.x/. This is incorrect and should not
be done, since, as the above has shown, the two PDFs f Oa.x/

and fL�.x/ can have very different characteristics. Moreover,
there is no need to use f Oa.x/ for comparative purposes, since
the exact analytical expression for the PDF of the ambiguity
residuals is available (cf. Fig. 4).
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Spatio-Spectral Assessment of Some Isotropic
Polynomial Covariance Functions on the Sphere

Dimitrios Piretzidis, Christopher Kotsakis, Stelios P. Mertikas, and Michael
G. Sideris

Abstract

In gravity field modeling, covariance functions are mainly associated with least squares
collocation. Prior to the implementation of least squares collocation, the characteristics of
the selected analytical covariance function need to be well understood. In this contribution,
we study four polynomial covariance functions, i.e., the spherical, Askey, C2-Wendland
and C4-Wendland models. All of them are defined on the sphere and correspond to
isotropic, positive definite and compactly supported functions. We examine them in the
spatial and spectral domains, and assess their characteristics, such as the correlation length,
the curvature parameter, the spectral maximum and the spectral decay rate. We also provide
analytical expressions and numerical estimates for these parameters.

Keywords

Askey model � Polynomial covariance functions � Spherical harmonic coefficients � Wend-
land model

1 Introduction

Covariance functions (CFs) are routinely used in geosta-
tistical analysis to model the stochastic behavior of spatial
random fields. The study of CFs in physical geodesy is
usually conducted within the context of least squares collo-
cation for the estimation of functionals related to the Earth’s
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disturbing potential. Spatial CFs are categorized in several
ways, depending on their mathematical properties. With
respect to the surface they are defined on, CFs are classified
into planar or spherical (i.e., defined on the plane or sphere,
respectively), with the former ones used mostly in local-scale
applications and the latter ones in global-scale applications.
Regarding their structural properties (Devaraju and Sneeuw
2018), CFs can be classified based on their invariance under
translation (homogeneous/non-homogeneous) and under
rotation (isotropic/non-isotropic). The examination of their
support length (i.e., maximum distance at which the CF
is non-zero) gives rise to yet another distinction. That
is, CFs with an infinite support length, which are usually
called global CFs, and CFs with a finite support length, also
known as local, finite or compactly supported CFs. Lastly,
depending on their validity, CFs are classified as positive
definite and non-positive definite, with only the former ones
to provide physically meaningful modeling options.

The design of CFs and the study of their properties is
an active topic of research in the field of applied mathe-
matics (e.g., Emery et al. 2022), with applications to all
branches of geosciences. In this contribution, we focus only
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on polynomial CFs, which are still regarded as appealing
models mostly due to the simplicity of their mathematical
expressions. We examine four polynomial CFs, namely, the
spherical, Askey, C2-Wendland and C4-Wendland CFs. The
spherical CF represents the normalized volume resulted from
the convolution of two identical balls. The Askey covariance
model was firstly used as a radial basis function by Askey
(1973), who also proved its positive definiteness. The Wend-
land CFs (Wendland 1995) are constructed by the repeated
integration of the Askey CF using the “Montée” integral
operator I ff .r/g D

R 1

r
tf .t/ dt , which produces CFs of

arbitrary smoothness k (termed Ck-Wendland CFs). Based
on this design principle, the Askey CF is also considered
as the C0-Wendland CF. The selection of these models
is motivated from their frequent use in previous studies
that primarily investigate them from a purely mathematical
perspective (Gneiting 2013; Guinness and Fuentes 2016). All
models correspond to isotropic, positive definite, compactly
supported functions defined on the spherical surface.

The paper is structured as follows. In Sect. 2 the spatial
and spectral representation of the four polynomial CFs is
presented. Some alternative expressions for the evaluation of
the Askey and Wendland CFs in the spatial domain are also
provided. In Sect. 3 two spatial characteristics (correlation
length and curvature parameter) and two spectral charac-
teristics (spectral maximum and decay rate) are discussed.
For the correlation length, curvature parameter and spectral
maximum, analytical expressions are derived, whereas the
spectral decay rate is evaluated numerically. Finally, Sect. 4
summarizes the most important conclusions of this study.

2 Isotropic Polynomial Covariance
Functions

2.1 Spatial Representation

Since the four CFs under study correspond to isotropic
functions, they only depend on the distance between two

points on the spherical surface. Their adaptation from the line
(or plane) to the sphere is done by replacing the Euclidean
distance with the spherical distance  2 Œ0; ��. The standard
expressions used to describe them in the spatial domain are
given in Table 1. All CFs depend on the variance c0, which
represents the CF value at  D 0, and the support length  0
that denotes the spatial extent of the CF, i.e., the distance for
which C. / D 0; 8 >  0. The Askey and Wendland CFs
also depend on the shape parameter � . The numerical range
of c0,  0 and � that results in a positive definite CF on the
sphere is also provided in Table 1. The variable 1I denotes
the indicator function, given by

1I . / D

(
1;  2 I

0;  … I
: (1)

The intervals I1 and I2 are defined as I1 D Œ0;min. 0; �/�
and I2 D Œ0;  0�. It is also evident by the expressions in
Table 1 that CS, CA, CW2 and CW4 are polynomials of order
three, � , �C1 and �C2, respectively. Figure 1 presents some
CF examples for different values of  0 and � . The spherical
and Askey CFs demonstrate a sharp decrease at  D 0,
whereas the Wendland CFs have a smoother, Gaussian-like
behavior in the same vicinity.

Several alternative formulations of the Askey and Wend-
land CFs can be found in the literature. Hubbert (2012)
derived expressions in terms of the associated Legendre func-
tion of the first kind Pm

n of degree n and orderm, with n;m 2

N0 and n � m. These expressions are normalized in this
work so that C.0/ D c0, resulting in the following equations:

CA. ; �/ D g0;�

�
1 �

 2

 2
0

� �
2

P��
0

�
 0

 

�
1I1. / (2a)

CW2. ; �/ D g1;�  

�
1 �

 2

 2
0

� �
2

P��
1

�
 0

 

�
1I2. / (2b)

CW4. ; �/ D g2;�  
2

�
1 �

 2

 2
0

� �
2

P��
2

�
 0

 

�
1I2. /; (2c)

Table 1 Isotropic polynomial covariance functions on the sphere (Gneiting 2013)

Name Expression Parameter rangea

Spherical CS. / D c0

�
1�

3 

2 0
C

 3

2 3
0

�
1I1 . / c0;  0 2 R

�

C

Askey CA. ; �/ D c0

�
1�

 

 0

��
1I1 . /

c0;  0 2 R
�

C

� D fx 2 Z W x � 2g

C2-Wendland CW2. ; �/ D c0

�
1C

� 

 0

��
1�

 

 0

��
1I2 . /

c0 2 R
�

C

 0 D fx 2 R W x > 0 and x � �g

� D fx 2 Z W x � 4g

C4-Wendland CW4. ; �/ D c0

�
1C

� 

 0
C
.�2 � 1/ 2

3 2
0

��
1�

 

 0

��
1I2 . /

c0 2 R
�

C

 0 D fx 2 R W x > 0 and x � �g

� D fx 2 Z W x � 6g

a
R

�

C
denotes the set of all positive real numbers, i.e., R�

C
D fx 2 R W x > 0g
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Fig. 1 Examples of (a) spherical, (b) Askey, (c) C2-Wendland and (d) C4-Wendland CFs in the spatial domain for different  0 (a) and � values
(b,c,d). A variance of c0 D 1 is selected in all cases

with the parameter gs;� defined as:

gs;� D
2s sŠ.� C s/Š

.2s/Š
c0 

�s
0 (3)

and the associated Legendre function of negative order P�m
n

given by the expression (Hubbert 2012):

P�m
n .x/ D

�
x � 1

x C 1

�m
2

nX
jD0

.j C n/Š.x � 1/j

2j j Š.j Cm/Š.n � j /Š
: (4)

We note that the associated Legendre function Pm
n includes

the Condon-Shortley phase .�1/m, therefore the relation
Pm
n D .�1/mPn;m applies, with Pn;m being the standard

definition of the associated Legendre function used in
physical geodesy. Hubbert (2012) developed additional
closed-form expressions for Eqs. (2a)–(2c) using analytical
relations for Pm

n . These results were later used by Chernih
and Hubbert (2014) to derive expression in standard
polynomial form. The expressions of Chernih and Hubbert
(2014), again normalized here so that C.0/ D c0, read:

CA. ; �/ D

�X
mD0

k0;m;� 
m1I1. / (5a)

CW2. ; �/ D

�C1X
mD0

k1;m;� 
m1I2. / (5b)

CW4. ; �/ D

�C2X
mD0

k2;m;� 
m1I2. /; (5c)

with

ks;m;� D
.�1/m�

�
mC1
2

�
�

�
1
2

� s
�
.� C s/Š

�
�
mC1
2

� s
�
�

�
1
2

�
.� C s �m/ŠmŠ

c0 
�m
0 (6)

and with �.x/ denoting the gamma function (Gradshteyn
and Ryzhik 2014, p. xxxii). Additional representations of the

Askey and Wendland CFs, e.g., in terms of hypergeometric
functions, can be found in Hubbert (2012).

2.2 Spectral Representation

The spherical harmonic coefficients G.n/ of an isotropic
covariance function are derived via the application of the
Legendre transform J , as follows (Jekeli 2017, p. 54):

G.n/ D J fC. /g

D
1

2

Z �

0

C . /Pn.cos / sin d ;
(7)

where Pn denotes the Legendre polynomials of degree n.
Applying the linearity property of the Legendre transform
to the expressions of Sect. 2.1, the spherical harmonic coeffi-
cients of the four CFs under study are given by:

GS.n/ D c0

�
�0;I1.n/ �

3�1;I1 .n/

2 0
C
�3;I1.n/

2 3
0

�
(8a)

GA.n/ D

�X
mD0

k0;m;� �m;I1.n/ (8b)

GW2.n/ D

�C1X
mD0

k1;m;� �m;I2.n/ (8c)

GW4.n/ D

�C2X
mD0

k2;m;� �m;I2.n/; (8d)

where �m;I is the Legendre transform of the monomial  m

in I , i.e.,

�m;I .n/ D
1

2

Z

I

 mPn.cos / sin d : (9)
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Fig. 2 Examples of (a) spherical, (b) Askey, (c) C2-Wendland and (d) C4-Wendland CFs in the spherical harmonic domain for different  0 (a)
and � values (b,c,d). A variance of c0 D 1 is selected in all cases

The spherical harmonic representation of the CFs of Fig. 1
is shown in Fig. 2. Since all CFs are positive definite,
the Schoenberg criteria should apply, i.e., G.n/ � 0 andP1

nD0 G.n/ < 1 (Schoenberg 1942). The first Schoenberg
criterion can be easily noted in Fig. 2, where it is also evident
that, in all cases, the coefficients G.n/ decrease at a constant
rate in higher degrees. The coefficients of the spherical CF
exhibit a strong oscillating pattern that also appears (in a
much lesser extent) in the rest of the CFs for small � values.

3 Characteristics

3.1 Spatial Characteristics

The three main spatial characteristics of a CF is the variance,
the correlation length and the curvature parameter (Moritz
1976). The variance is defined as the CF value at  D 0 and
equals to c0 for all the models of Table 1. The correlation
length, denoted as � , represents the spherical distance at
which the CF decreases to half the variance, i.e.,

C.�/ D
C.0/

2
: (10)

Since all the CFs of Table 1 are strictly monotonic (i.e.,
strictly decreasing) on Œ0;  0�, it can be deduced by the virtue
of the intermediate value theorem that there exists a unique
� 2 Œ0;  0� satisfying Eq. (10). The determination of an
analytical expression for � is performed by solving Eq. (10)
explicitly, and therefore it depends on the mathematical com-
plexity of C. /. For the correlation length of the spherical
CF, with the aid of MATLAB’s computer algebra system
(MATLAB 2020), we find the expression:

�S D

�
p
3 sin

�
2�

9

�
� cos

�
2�

9

��
 0 � 0:3473 0; (11)

whereas, for the Askey CF the following expression can be
easily derived:

�A D

�
1 �

1
�
p
2

�
 0: (12)

Obtaining an analytical expression for the correlation
length of the Wendland CFs is not a simple task, since
it requires (a) the derivation of analytical expressions for
the roots of a polynomial of arbitrary order and (b) a
subsequent investigation on whether these roots are real and
belong to Œ0;  0�. Regarding the first requirement, analytical
expressions for the roots of polynomials up to order four
exist but become too complicated to be used in practice for
orders greater than two. In addition, based on the Abel–
Ruffini theorem, no algebraic expressions exist for the roots
of general polynomial equations of order greater than four.
We are also not aware of any method that addresses the
second requirement.

Instead of a rigorous analytical expression for the correla-
tion length of C2- and C4-Wendland CFs, denoted as �W2

and �W4, we seek for an approximate expression that can
be easily generalized for any � . In the sequel, we outline
the procedure employed for deriving such an expression for
�W2. We firstly define the scaling parameter sW2 2 Œ0; 1� as
sW2 D �W2= 0 and rewrite Eq. (10) for the C2-Wendland
function as follows:

.1C �sW2/.1 � sW2/
� D

1

2
: (13)

We solve Eq. (13) numerically (e.g., using the bisection
method or MATLAB’s vpasolve function; The Math-
Works Inc., 2022) for several � values and only keep the
real solutions in Œ0; 1�, which are unique for each � . These
solutions are plotted in Fig. 3 up to � D 50. It is evident
that sW2 smoothly decreases for increasing � and can be
approximated quite well by the rational model:

sW2 �
˛W2

ˇW2 C �
; (14)
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Fig. 3 Scaling parameters s, and approximations (fitted rational mod-
els) for sW2 and sW4

where the parameter values ˛W2 D 1:679 and ˇW2 D

1:350 are estimated using ordinary least-squares. Substitut-
ing Eq. (14) into the defining expression for sW2 and solving
with respect to �W2, we derive the following approximation:

�W2 �
˛W2

ˇW2 C �
 0: (15)

Performing the same procedure for the C4-Wendland CF
yields:

�W4 �
˛W4

ˇW4 C �
 0; (16)

with ˛W4 D 2:330 and ˇW4 D 2:312. The corresponding
values of the scaling parameter sW4 D �W4= 0 are also
provided in Fig. 3, along with sS � 0:3473 and sA D

1 �
��
p
2 that are directly derived from Eqs. (11) and (12),

respectively. The maximum absolute error of sW2 and sW4

using the approximations of Eqs. (15) and (16) does not
exceed 6 � 10�5 and 10�5, respectively, in the examined �
range. The overall behavior of the four s groups indicates
that for the same  0 and � , the following inequality applies:
sS > sW4 > sW2 > sA. The same inequality is also true for �;
hence, the Askey and spherical models always produce a CF
with the smallest and largest correlation length, respectively,
and the C2-Wendland CF always has a smaller correlation
length than the C4-Wendland CF for a given f 0; �g pair.
An example of this behavior is shown in Figs. 1c and 1d for
� D 6, where the C2-Wendland CF (red line) is sharper than
the corresponding C4-Wendland CF (blue line). A simple
investigation of Eqs. (11), (12), (15) and (16) also shows
that a decreasing  0 or an increasing � yields a smaller
correlation length � , which corresponds to a sharper CF. This
is again corroborated by the examples in Fig. 1.

The curvature parameter � of a CF is defined as:

� D 	.0/
�2

C .0/
; (17)

where 	. / is the curvature (or reciprocal radius of curva-
ture) of C. /, given by:

	. / D
C 00. /

h
1C

�
C 0. /

�2i 3
2

: (18)

Evaluating 	.0/ using Eq. (18) and substituting to Eq. (17)
results in the following expressions:

�S D 0 (19a)

�A D
�.� � 1/ 0�
c20�

2 C  2
0

� 3
2

�2A (19b)

�W2 D �
�.� C 1/

 2
0

�2W2 (19c)

�W4 D �
�2 C 3� C 2

3 2
0

�2W4: (19d)

The zero curvature parameter (i.e., infinite radius of curva-
ture) of the spherical CF indicates thatCS. / is linear at D

0, whereas the positive and negative curvature parameters of
the Askey and Wendland CFs, respectively, show that the
former is convex and the latter concave at  D 0. Finally,
only �A shows a dependence on c0.

3.2 Spectral Characteristics

The two spectral characteristics discussed in this section
are the magnitude of the zeroth-degree spherical harmonic
coefficient and the spectral decay rate. The magnitude of
the zeroth-degree coefficient G.0/ denotes the spectral max-
imum. Substituting n D 0 in Eq. (7) yields the expression:

G.0/ D
1

2

Z �

0

C . / sin d ; (20)

which also corresponds to the average of C. / over the
sphere. The analytical solution of Eq. (20) for the spherical
CF results in:

GS.0/ D
c0Œ 

3
0 � 3 sin. 0/C 3 0 cos. 0/�

2 3
0

: (21)

The integral of Eq. (20) is rewritten for the Askey CF as:

GA.0/ D
c0

2 �
0

Z  0

0

. 0 �  /� sin d (22)
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Fig. 4 Evaluation of G.0/ for the (a) spherical, (b) Askey, (c) C2-Wendland and (d) C4-Wendland CFs. A variance of c0 D 1 is selected in all
cases. The magnitude of G.0/ is provided in a logarithmic scale

and has the following analytical solution (Prudnikov et al.
1986, §2.5.5, eq. 1):

GA.0/ D
c0 

2
0

2.�2 C 3� C 2/
1F2

�
1I �C3

2
; �C4

2
I �

 20
4

	
; (23)

where pFq.a1; : : : ; apI b1; : : : ; bqI x/ is the generalized
hypergeometric series (Gradshteyn and Ryzhik 2014, §9.14,
eq. 1). Proceeding in the same way and using the relation
of Prudnikov et al. (1986, §2.5.7, eq. 1), we derive the
expression

GW2.0/ D GA.0/ �
i�c0 0

4
B.2; � C 1/�

Œ1F1.2I � C 3I i 0/ � 1F1.2I � C 3I �i 0/�

(24)

for the C2-Wendland CF and

GW4.0/ D GW2.0/ �
i.�2 � 1/c0 0

12
B.3; � C 1/�

Œ1F1.3I � C 4I i 0/ � 1F1.3I � C 4I �i 0/�

(25)

for the C4-Wendland CF, with i being the imaginary unit
and B.x; y/ the beta function (Gradshteyn and Ryzhik 2014,
§8.380, eq. 1). The magnitude of G.0/ is presented in Fig. 4
with respect to different  0 and � values, and for c0 D

1. The corresponding magnitude for c0 ¤ 1 is given by
G.0/jc0Da D aG.0/jc0D1. It is evident from Fig. 4 that G.0/
has a larger magnitude for increasing  0 and decreasing � .
The inequality GS.0/ > GW4.0/ > GW2.0/ > GA.0/ also
holds true for a specific triplet of fc0;  0; �g values.

The spectral decay rate describes how the magnitude of
G.n/ changes for increasing degree n. It is defined in decibel
per octave using the equation:

u D �
GŒdB�.n2/ �GŒdB�.n1/

log2.n2/ � log2.n1/
; (26)

where the coefficients GŒdB�.n/ are expressed in decibels as
follows:

GŒdB�.n/ D 20 log

�ˇ̌
ˇ̌G.n/
G.0/

ˇ̌
ˇ̌
�
: (27)

Equation (26) represents the magnitude change every time
n doubles. A positive value of u indicates magnitude decay,
whereas a negative value shows magnitude gain. Based on
the results of Fig. 2, the decay rate ofG.n/ is relatively small
for lower degrees and converges to a maximum value, which
remains constant at higher degrees. This is also evident in
Fig. 5, where the spectral decay rate of the C4-Wendland CF,
denoted as uW4, is evaluated for consecutive degrees (i.e.,
n1 D n and n2 D n C 1). The strong fluctuations of uW4

for � D 6 occur due to the oscillating behavior of GW4 for
small � values. Additional numerical experiments show that
the convergent value of u for a specific CF is not influenced
by c0,  0 or � . For n1 D 100 and n2 D 200, the decay rate of

Fig. 5 Spectral decay rate of C4-Wendland CF for consecutive degrees
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the four CFs under study is estimated in decibel per octave
as follows: uS D 18, uA D 18, uW2 D 30 and uW4 D 42.

4 Summary and Conclusions

In this contribution, we examined the spatial and spectral
properties of the spherical, Askey, C2- and C4-Wendland
CFs, which are all isotropic, positive-definite and compactly
supported functions defined on the sphere.

The spatial assessment is performed by analyzing the CFs
shape, correlation length and curvature parameter. The shape
of the spherical and Askey CFs exhibits a sharp decay of
their covariance value at  D 0, therefore these models
are better suited for modeling the stochastic behavior of
geophysical signals with a sharply-decreasing empirical CF
at the origin. Analytical expressions are developed that allow
the rigorous calculation of the spherical and Askey CFs
correlation length. Due to theoretical limitations, similar
rigorous expressions cannot be derived for the Wendland
models. At the present time, this issue is resolved with the
development of approximate expressions. The examination
of the correlation length � for the four CFs using the same
set of parameters resulted in the following inequality: �S >
�W4 > �W2 > �A. Analytical expressions for the evaluation
of the curvature parameter of the four CFs under study are
also developed. Since the curvature parameter depends on the
correlation length, these expressions are again exact for the
spherical and Askey CFs, and approximate for the Wendland
models. The spherical CF has a zero curvature parameter,
which suggests a linear decrease of the covariance values at
 D 0. The positive and negative curvature parameter of the
Askey and Wendland CFs, respectively, is also reflected in
their convex and concave shape at the origin.

The assessment of the four CFs in the spectral domain is
performed by calculating the spherical harmonic coefficients
and examining the spectral maximum and spectral decay
rate. All spherical harmonic coefficients are positive, as a
result of the first Schoenberg criterion for positive-definite
functions on the sphere. The spectral maximum G.0/ can
be evaluated using analytical expressions that are given in
terms of the hypergeometric function for the Askey and
Wendland CFs. A smaller spectral maximum, which repre-
sents the mean value of the CF over the sphere, appears to
be associated with a smaller correlation length. Although
this connection is not mathematically proven, it is empiri-
cally corroborated by the inequality GS.0/ > GW4.0/ >

GW2.0/ > GA.0/, which is based on numerical evidence.
The visual inspection of the CF spectrum and the evaluation
of the spectral decay rate for consecutive degrees shows
that the decay rate increases in low degrees and converges
to a maximum value in higher degrees. This maximum
value is estimated numerically in the convergence region.

Results showed that the spherical and Askey CFs have a
similar spectral decay rate (18 dB/octave), whereas the C2-
and C4-Wendland CFs have higher decay rates (30 and 42
dB/octave, respectively). Additional experiments show that
the maximum spectral decay rate of each CF does not depend
on any of its parameters.

Due to their spatial structure, all CFs examined in this
work can be used to model positively-correlated signals. In
practice, empirical CFs of geophysical signals often exhibit
an oscillatory behavior for large distances that can result in
negative correlations. The design of compactly supported,
positive-definite CFs that account for such oscillations is
therefore of great need, since they can provide better mod-
eling options.

The analysis presented in this work contributes to the gen-
eral understanding of the behavior of some frequently used
polynomial CFs on the sphere. The same investigation and
comparison can be performed for various other models and
the results can be further utilized in the context of stochastic
modeling of spatial signals for geodetic applications.
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Abstract

Statistical testing procedures employed in geodetic quality control often consist of two
steps: detection and identification. In the detection step, the null hypothesis (working model)
H0 undergoes a validity check. If the outcome of the detection step is the rejection of
H0, identification of potential source of model error is exercised through a search among
the specified alternative hypotheses. The testing performance is thus not only led by its
ability to detect biases but to correctly identify them as well. The detection capability of a
testing regime is usually assessed by its Minimal Detectable Bias (MDB) given a certain
correct detection probability. The information provided by the MDB only concerns correct
detection and not correct identification. The testing identification performance should be
evaluated by its Minimal Identifiable Bias (MIB) given a certain correct identification
probability. In this contribution, we demonstrate the difference between MDB and MIB.
It is hereby highlighted that a small MDB (or a high probability of correct detection)
does not necessarily imply a small MIB (or a high probability of correct identification).
The factors driving the difference between detection and identification performance are
illustrated using a simple example. Our analysis is then continued in the framework of
deformation monitoring.
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1 Introduction

In geodetic quality control, statistical testing procedures
often consist of two steps: detection and identification
(Baarda 1968; Teunissen 1985; Caspary and Borutta 1987;
Kösters and Van der Marel 1990; Amiri Simkooei 2001;
Perfetti 2006; Lehmann and Lösler 2017; Klein et al. 2019;
Nowel 2020). In the detection step, the validity of the
null hypothesis H0 is checked. If H0 is rejected in the
detection step, an identification is carried out as to which
of the alternative hypotheses to select. In case there is
only one alternative hypothesis, say H1, the rejection of
H0 is equivalent to the selection of H1. Thus, ‘correct
detection’ of mismodelling error would be equivalent to
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‘correct identification’ of it when working with a single
alternative hypothesis. This is however not the case if one
has to deal with multiple alternative hypotheses. In this
contribution, for multiple-alternative testing, we study the
performance of the detection and identification steps using
the concepts of the minimal detectable bias (MDB) and the
minimal identifiable bias (MIB), respectively, and highlight
the factors driving the difference between them.

This contribution is structured as follows. In Sect. 2, we
describe the null and alternative hypotheses, and highlight
the role of the misclosure space partitioning in testing these
hypotheses. The testing decisions and their probabilities
are discussed, whereby the following events are defined:
correct acceptance (CA), false alarm (FA), correct detection
(CD), missed detection (MD), correct identification (CI) and
wrong identification (WI). The concepts of MDB and MIB
are discussed in Sect. 3 for a testing procedure comprising
detection and identification steps. It is hereby highlighted
that the MDB provides information about correct detection
and not about correct identification. To provide insight into
the difference between the MDB and the MIB, we compare
them in Sect. 4, for a simple multiple-hypothesis testing
example. It is demonstrated, in graphical form, that the MIB
could be significantly larger than the MDB. The MDB-
MIB comparison is then continued for actual deformation
measurement system examples in Sect. 5. Finally a summary
with conclusions is presented in Sect. 6.

We use the following notation: The n-dimensional space
of real numbers is denoted as Rn, and the set of points on
the circumference of the n-dimensional zero-centered unit
sphere as S

n. Random vectors are indicated by use of the
underlined symbol ‘�’. Thus t 2 R

n is a random vector,
while t is not. The squared weighted norm of a vector,
with respect to a positive-definite matrix Q, is defined as
k � k2

Q D .�/T Q�1.�/.H is reserved for statistical hypotheses,
P for regions partitioning the misclosure space, andN .x; Q/

for the normal distribution with mean x and variance matrix
Q. P.�/ denotes the probability of the occurrence of the

event within parentheses. The symbol
H
� should be read as

‘distributed as : : : under H’. The superscripts T and �1 are
used to denote the transpose and the inverse of a matrix.

2 Statistical Hypothesis Testing

In any quality control procedure, a set of hypotheses, includ-
ing a null and several alternative hypotheses, are postu-
lated to explain the phenomenon in question. For example,
in geodetic deformation monitoring, the null hypothesis
describes the ‘all-stable, no movement’ model, while the
alternative hypotheses capture different dynamic behaviors
of the structure under consideration. Let the observational

model under the null hypothesis H0, a.k.a. working hypoth-
esis, be given as

H0 W E.y/ D AxI D.y/ D Qyy (1)

with E.�/ the expectation operator, D.�/ the dispersion oper-
ator, y 2 R

m the normally distributed random vector of
observables linked to the estimable unknown parameters x 2

R
n through the design matrix A 2 R

m�n of rank.A/ D n,
and Qyy 2 R

m�m the positive-definite variance matrix of y.
The redundancy of H0 is r D m � rank.A/ D m � n.

The validity of the null hypothesis can be violated if the
functional model and/or the stochastic model are misspec-
ified. Here we assume that a misspecification is restricted
to an underparametrization of the mean of y, which is the
most common error that occurs when formulating the model
(Teunissen 2017). Thus, the alternative hypothesis Hi is
formulated as

Hi W E.y/ D Ax C Ci bi I D.y/ D Qyy (2)

for some vector Ci bi 2 R
m n f0g such that ŒA Ci � is a known

matrix of full rank and bi is an unknown vector.

2.1 Misclosure Space Partitioning

Let us assume that there are k types of mismodelling errors
in the form of Ci bi (cf. 2) when parametrizing the mean
of observations. The information required to validate the
hypotheses at hand is contained in the misclosure vector
t 2 R

r given as (Teunissen 2006)

t D BT y (3)

where B 2 R
m�r is a full-rank matrix, with rank.B/ D r ,

such that ŒA B� 2 R
m�m is invertible and AT B D 0. With

C0b0 D 0 and given that y
Hi
� N .Ax C Ci bi ; Qyy/ for i D

0; 1; : : : ; k, the misclosure vector is then distributed as

t
Hi
� N .Cti bi ; Qtt D BT QyyB/; for i D 0; 1; : : : k (4)

with Cti D BT Ci . As t has a known Probability Density
Function (PDF) under H0, which is the PDF of N .0; Qtt /,
any statistical testing procedure is driven by the misclosure
vector t and its known PDF under H0.

An unambiguous testing procedure can be established
through assigning the outcomes of t to the statistical
hypotheses Hi for i D 0; 1; : : : ; k, which can be realized
through a partitioning of the misclosure space Rr (Teunissen
2018). Let Pi � R

r (i D 0; 1; : : : ; k) be a partitioning of the
misclosure space, i.e. [k

iD0 Pi D R
r and Pi \ Pj D ; for
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i ¤ j . The unambiguous testing procedure is then defined
as

select Hi if and only if t 2 Pi for i D 0; 1 : : : ; k (5)

We note, although in (5) the statistical testing is formulated in
the misclosure vector t , that one can equally well work with
the least-squares residual vector Oe0 D y � A Ox0 where Ox0 D

.AT Q�1
yy A/�1AT Q�1

yy y. By using the relation t D BT Oe0,
there is no explicit need of having to compute t as testing
can be expressed directly in Oe0 (Teunissen 2006).

2.2 Testing Decisions

As (5) shows, the testing decisions are driven by the outcome
of the misclosure vector t . Under each hypothesis Hi (i D

0; 1; : : : ; k), the outcome of t can lead to k C 1 different
decisions out of which only one is correct, i.e. when t 2 Pi .
With k C 1 hypotheses Hi ’s (i D 0; 1; : : : ; k), one can
define different statistical events including Correct Accep-
tance (CA), False Alarm (FA), Missed Detection (MD), Cor-
rect Detection (CD), Correct Identification (CI) and Wrong
Identification (WI). The definitions of these events together
with their links are illustrated in Fig. 1. In this figure, the
events under alternative hypotheses are given an identify-
ing index, as they differ from alternative to alternative. In

addition, the contributions of different alternative hypotheses
to the events of false alarm and wrong identification are
distinguished by means of an index.

Given the translational property of the PDF of t under the
null and alternative hypotheses (cf. 4), the probabilities of
the events in Fig. 1 can be computed based on the misclosure
PDF under H0, denoted by ft .� jH0/, as

PFA D P.t … P0jH0/ D
R
Rr nP0

ft .� jH0/ d�

PCA D 1 � PFA

PCDi D P.t … P0jHi / D
R
Rr nP0

ft .� � Cti bi jH0/ d�

PMDi D 1 � PCDi

PCIi D P.t 2 Pi jHi / D
R
Pi

ft .� � Cti bi jH0/ d�

PWIi D PCDi � PCIi
(6)

The probability of false alarm PFA is usually set a priori by
the user. We note that the last four probabilities all depend
on the unknown bi which one needs to set to evaluate the
mentioned four probabilities.

Here, it is important to note the difference between the
probabilities of correct detection and correct identification,
i.e. PCDi � PCIi . These two probabilities would be identical
if there is only one alternative hypothesis, sayHi , since then
Pi D R

r nP0. Similar to the CD- and CI-probability, we have
the concepts of the minimal detectable bias (MDB) (Baarda
1968) and the minimal identifiable bias (MIB) (Teunissen

Fig. 1 An overview of testing decisions, driven by the misclosure vector t , under null and alternative hypotheses
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2018). In the following sections, we highlight the difference
between the MDB (PCDi ) and the MIB (PCIi ).

3 Testing Performance

Statistical testing procedures employed in quality control
often comprises two steps (Baarda 1968; Teunissen 1985;
Caspary and Borutta 1987; Kösters and Van der Marel 1990;
Amiri Simkooei 2001; Perfetti 2006; Lehmann and Lösler
2017; Nowel 2020), as follows

• Detection: The null hypothesis H0 undergoes a validity
check, without considering a particular set of alternatives.

• Identification: If H0 is rejected in the detection step, i.e.
t … P0, a search is carried out among the specified
alternatives Hi (i D 1; : : : ; k) to pinpoint the potential
source of model error.

The testing performance is thus not only led by its ability to
detect biases but to correctly identify them as well. While
the former is measured by means of the MDB (or alterna-
tively CD-probability), the latter should be measured using
the MIB (or alternatively CI-probability) (Teunissen 2018;
Zaminpardaz and Teunissen 2019; Imparato et al. 2019).
Note, in single-redundancy case r D 1, that P1 D : : : D

Pk D R
r n P0, implying that the alternative hypotheses are

not distinguishable from one another, and thus identification
would not be possible.

3.1 Minimal Detectable Bias (MDB)

The concept of the MDB was introduced in Baarda (1967,
1968) as a diagnostic tool for measuring the ability of the
testing procedure to detect misspecifications of the model.
The MDB, for each alternative hypothesis Hi , is defined as
the smallest size of bi that can be detected given a certain
CD- and FA-probability. As the third equality in (6) shows,
PCDi depends, in addition to the PDF of t under H0 and
bi , also on P0 which is commonly defined as (Baarda 1968;
Teunissen 2006)

P0 D
n
t 2 R

r jktk2
Qtt

� �2
1�PFA

.r; 0/
o

(7)

where �2
1�PFA

.r; 0/ is the .1 � PFA/ quantile of the central
Chi-square distribution with r degrees of freedom. Using
(7), one in fact compares the test statistic ktk2

Qtt
against the

critical value �2
1�PFA

.r; 0/, with user-defined PFA, to decide
whether H0 is valid or not. This testing process is called
the overall model test, which would be a Uniformly Most
Powerful Invariant (UMPI) detector test in case of dealing

with a single alternative hypothesis (Arnold 1981; Teunissen
2006; Lehmann and Voß-Böhme 2017).

With (7), the CD-probability ofHi is given by

PCDi D P
�
ktk2

Qtt
> �2

1�PFA
.r; 0/jHi

�
(8)

where, according to (4), ktk2
Qtt

under Hi has a non-central
Chi-square distribution with r degrees of freedom and the
non-centrality parameter �2

i D kCti bi k
2
Qtt

. One can compute
�2

i D �2.PFA;PCDi ; r/ from the Chi-square distribution for
a given model redundancy r , CD-probability PCDi and FA-
probability PFA. If bi 2 R is a scalar, then Cti takes the
form of a vector cti , and the MDB is given by (Baarda 1968;
Teunissen 2006)

bi 2 R W jbi;MDBj D
�.PFA;PCDi ; r/

kcti kQtt

(9)

which shows that for a given set of fPFA;PCDi ; rg, the MDB
depends on kcti kQtt . For the higher-dimensional case when
bi 2 R

q>1 is a vector instead of a scalar, a similar expression
can be obtained. Let the bias vector be parametrized, in terms
of its magnitude kbi k and its unit direction vector d , as bi D

kbi k d . Then the MDB along the direction d 2 S
q�1 is given

by (Teunissen 2006)

bi 2 R
q>1 W kbi;MDB.d/k D

�.PFA;PCDi ; r/

kCti dkQtt

I d 2 S
q�1

(10)

If the unit vector d sweeps the surface of the unit sphere
S

q�1, an ellipsoidal region is obtained of which the boundary
defines the MDBs in different directions. The shape and
the orientation of this ellipsoidal region is governed by the
variance matrix Q Obi

Obi
D .C T

ti
Q�1

t t Cti /
�1, and its size is

determined by �.PFA;PCDi ; r/ (Zaminpardaz et al. 2015;
Zaminpardaz 2016).

The MDB concept expresses the sensitivity of the detec-
tion step of the testing procedure. One can compare the
MDBs of different alternative hypotheses for a given set of
fPFA;PCD; rg, which provides information on how sensitive
is the rejection of H0 for the Hi -biases the size of their
MDBs. The smaller the MDB is, the more sensitive is the
rejection of H0.

3.2 Minimal Identifiable Bias (MIB)

As the last equality in (6) shows, a high CD-probability PCDi

does not necessarily imply a high CI-probability PCIi unless
we have the special case of only a single alternative hypoth-
esis. Therefore, in case of multiple hypotheses, the MDB
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does not provide information about correct identification.
To assess the sensitivity of the identification step, one can
analyse the MIBs of the alternative hypotheses. The MIB
of the alternative hypothesis Hi is defined as the smallest
size of bi that can be identified given a certain CI probability
(Teunissen 2018).

The MIB corresponding with Hi can be found from
inverting the fifth equality in (6). This inversion is, however,
not trivial as PCIi is an r-fold integral over the complex
region Pi . One can take resort to numerical evaluation
techniques. For example, the MIBs in Sect. 4 are numerically
computed as follows. The probability PCIi is computed, by
means of Monte Carlo simulation, see e.g. Teunissen (2018),
at discrete biases bi and then the bias at which PCIi gets close
enough to the pre-set CI-probability is the MIB sought.

According to the fifth equality in (6), the MIB for a
given PCIi depends on the probability mass of the PDF of
t under Hi over Pi . This probability mass is driven by the
shape and size of Pi , magnitude of E .t jHi / and its direction
with respect to the borders of Pi . Note, if bi 2 R

q>1 is
a vector, then, a given CI-probability yields different MIBs
along different directions in R

q . In this case, a pre-set CI-
probability defines a region in R

q the boundary of which
defines the MIBs in different directions. The MIB of Hi for
a given CI-probability is denoted by jbi;MIBj if bi 2 R, and
kbi;MIB.d/k along the unit direction d 2 S

q�1 if bi 2 R
q>1.

4 MDB Versus MIB

As for a given bias bi , the CD-probability exceeds the CI-
probability, i.e. PCDi � PCIi , then for a given PCDi D PCIi ,
we have

bi 2 R W jbi;MIBj � jbi;MDBj

bi 2 R
q>1 W kbi;MIB.d/k � kbi;MDB.d/k for any d 2 S

q�1

(11)

The following example elaborates more on the above link
between the MDB and the MIB.

Example Let y 2 R
4 contain two pairs of observations

of an unknown distance x 2 R made using two different
instruments, e.g., two different tape measures. The observa-
tions are assumed uncorrelated and equally precise with the
same standard deviation � . Under the null hypothesisH0, the
observations are assumed to be bias-free, whereas under the
alternative hypotheses Hi (i D 1; 2), it is assumed that the
observation pair made by one of the instruments are biased
by Ci bi (i D 1; 2) with Ci 2 R

4�2 and bi 2 R
2. These

hypotheses are formulated as

H0 W E.y/ D e4 x; D.y/ D �2I4

Hi W E.y/ D e4 x C
�
u2

i ˝ I2

�
bi ; D.y/ D �2I4

(12)

where ˝ shows the Kronecker product (Henderson and
Pukelsheim 1983), e� 2 R

� the vector of ones, I� 2 R
���

the identity matrix, and u2
i 2 R

2 the canonical unit vector
having one as its i th element and zeros otherwise.

The redundancy of H0-model is r D 4 � 1 D 3 > 1,
which means, upon the rejection ofH0, that the identification
of potential source of error would be possible. Under H1,
it is assumed that the mean-difference of the observables
of the second instrument is zero, while under H2, this is
assumed for the first instrument. To test the three hypotheses
in consideration, the following detection and identification
steps are exercised:

• Detection: The null hypothesis H0 is accepted if t 2 P0

with P0 given by (7).
• Identification: If H0 is rejected in the detection step, then

Hi (i D 1; 2) is selected if t 2 Pi with

Pi D

�
t 2 R

r n P0

ˇ̌
ˇ̌ Ti D max

j 2f1;:::;kg
Tj

�
(13)

where

Ti D tT Q�1
t t Cti

�
C T

ti
Q�1

t t Cti

��1
C T

ti
Q�1

t t t (14)

would be a realization of the Generalized Likelihood
Ratio (GLR) test statistic in case there is only one single
alternative hypothesis (Teunissen 2006).

We note that the vector of misclosures t is not uniquely
defined. This, however, does not affect the outcome of the
above testing procedure as both the detector ktk2

Qtt
and the

test statistic T i remain invariant for any linear one-to-one
transformation of the misclosure vector. Therefore, instead
of t , one can for instance also work with

Nt D G�T t

( H0
� N .0; Ir /
Hi
� N . NCti bi ; Ir /

(15)

with NCti D G�T Cti and the Cholesky-factor GT of the
Cholesky-factorisation Qtt D GT G. The advantage of using
Nt over t lies in the ease of visualizing certain effects due to
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Fig. 2 Partitioning of the misclosure space R
3 corresponding with Nt

(15) using (7) and (13). The blue sphere shows the boundary of P0

with PFA D 0:1, while the orthogonal green and red planes separate P1

from P2

the identity-variance matrix of Nt (Zaminpardaz and Teunissen
2019). The partitioning corresponding with Nt is denoted by
P i for i D 0; 1; 2.

The misclosure space (R3) partitioning corresponding
with (7) and (13) is shown in Fig. 2. For the sake of visu-
alization, instead of t , we work with Nt defined in (15). The
blue sphere shows the boundary of P0 choosing PFA D 0:1,
while the green and red planes separate P1 from P2. The two
planes are orthogonal to each other implying that P1 and P2

are the same in shape and size.
As bi in (12) is a 2-vector, i.e. bi D Œbi;1; bi;2�T ,

the MDBs and the MIBs of the alternative hypotheses are
dependent not only on the pre-set CD- and CI-probability,
but also on the bias direction in R

2. Figure 3 shows the
MDB and MIB curves for Hi (i D 1; 2) given � D 0:1,
PFA D 0:1 and for different values of PCDi D PCIi . In each

panel, in agreement with (11), it can be seen that the MIB
curve encompasses the MDB curve.

Note, if E.Nt jHi / D NCti bi lies on the border of P1 and
P2, that the CI-probability ofHi cannot reach above 0:5. As
shown in Fig. 2, the regions P1 and P2 are separated from
each other by the following two planes

N�T

 
NC ?
t1

k NC ?
t1 k

˙
NC ?
t2

k NC ?
t2 k

!
D 0I N� 2 R

3 (16)

with NC ?
ti

2 R
3 being a vector of which the range space is

the orthogonal complement of the range space of NCti . It can
be easily verified, if bi is parallel to Œ1; 1�T , that E.Nt jHi /

will lie on the intersection of the above planes. This explains
the bands around the direction of Œ1; 1�T in Fig. 3 when
PCIi is set to be larger than 0:5. On the other hand, when
bi is parallel to Œ1; � 1�T , the MDB and the MIB are very
close to each other. A bias along the direction of Œ1; � 1�T

makes E.Nt jHi / lie at its farthest position from the planar
borders of P1 and P2. Thus, under Hi (i D 1; 2), most of
the probability mass of the PDF of Nt that lies outside P0 falls
into the region P i . As a result PCDi and PCIi are very close to
each other for a given bias along Œ1; � 1�T , or alternatively
the MDB and the MIB are very close to each other along
Œ1; � 1�T for a pre-set PCDi D PCIi . ut

The above example clearly shows that the detection and
identification performance of a testing procedure could be
completely different from each other.

5 DeformationMonitoring

In this section, we continue our MDB-MIB comparison for a
dam deformation monitoring case, inspired by an example in
Heunecke et al. (2013, p. 227), see also (Zaminpardaz et al.
2020). Figure 4 [top] shows a top view of a dam over a lake,

P P
MDB
MIB

P P P P P P

Fig. 3 Illustration of the MDB versus the MIB curves for testing the hypotheses in (12) using (7) and (13), given � D 0:1 and PFA D 0:1. The
panels from left to right correspond to PCDi D PCIi of 0.4, 0.6, 0.8 and 0.99, respectively



MDBs Versus MIBs in Case of Multiple Hypotheses: A Study in Context of Deformation Analysis 79

Fig. 4 Deformation monitoring of a dam (Zaminpardaz et al. 2020).
[Top] The horizontal monitoring network consists of four reference
points around the dam and two object points on the dam (points 5
and 6). The blue lines indicate the distance+direction measurements
between their ending points, and the arrows point from total station

to target. [Bottom] The graphs of MDB (solid lines) and MIB (dashed
lines) of different alternative hypotheses in (18) as function of the pre-
set probability. The results correspond with the testing procedure in (7)
and (13), given PFA D 0:01

together with two different 2-D terrestrial survey networks
designed to monitor the dam’s horizontal displacement. For
simplicity, it is assumed that the dam is vertically stable.
The survey networks consist of two object points on the
dam subject to displacement (points 5, 6), and four reference
points in a stable area close to the dam (points 1, 2, 3, 4).
To determine horizontal deformations of the dam, two sets

of measurements are collected at two times (or epochs),
l D 1; 2.

In the survey network shown in Fig. 4 [top-left], each
measurement set contains 60 measurements; five distance
measurements and five direction measurements taken from
each of the six points to the rest of the points by a total sta-
tion. The distance and direction measurements are assumed
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to be normally distributed with standard deviations of 1 cm
and 10 s of arc, respectively. The measurements are assumed
to be all uncorrelated. To make the scale, orientation and
location of the 2-D survey network estimable, the coordinates
of the reference points 1 and 2 (black triangles in Fig. 4
[top]) are assumed given. The 60 distance and direction
observations at epoch l are then used to estimate the Easting
and Northing of points i D 3; : : : ; 6, together with the
unknown instrument scale factor (one for the whole network)
and six unknown orientations (one per instrument set-up).

To analyse the dam’s horizontal displacement, we make
use of the epoch-wise estimated coordinatesof points i D

3; : : : ; 6 and their corresponding variance matrices. Let xi;l 2

R
2 (for i D 3; : : : ; 6 and l D 1; 2) be the coordinate vector

of point i at epoch l , and let xl D ŒxT
3;l ; xT

4;l ; xT
5;l ; xT

6;l �
T 2

R
8 for l D 1; 2. Under the null hypothesis H0, where

deformation is absent, we assume

H0 W x2 D x1 .all stable/ (17)

The redundancy under H0 is r D 8. The dam is supposed
to be subject to load of the water in the lake, and hence it is
assumed that either only one or both of the dam points may
be pushed back in the direction perpendicular to the dam.
Thus we have three alternative hypotheses as

Hi W x2 D x1 C .u4
iC2 ˝ d/ bi .point i C 4 is unstable; i D 1; 2/

H3 W x2 D x1 C .u ˝ d/ b3 .points 5 and 6 are unstable/
(18)

with u4
iC2 2 R

4 the canonical unit vector having one as
its .i C 2/th element and zeros otherwise, u D u4

3 C u4
4,

d 2 S the known unit vector in the direction perpendicular
to the dam, and bi 2 R the unknown scalar deformation size
parameter. Note, under H3, that we assume that the object
points 5 and 6 deform with the same amount.

We note that since r D 8 > 1, our testing procedure
involves both the detection and identification step (7) and
(13). Assuming PFA D 0:01, Fig. 4 [bottom-left] shows the
MDB as a function of the CD-probability in solid curves,
and the MIB as a function of the CI-probability in dashed
curves for the three hypotheses in (18). For each hypothesis,
its MIB graph lies above its MDB graph corroborating the
first inequality in (11). For example, for a given pre-set
probability of PCDi D PCIi D 0:98, there is an offset of
almost 6mm between the MIB and the MDB in case of H1

and H3, while the H2’s MDB and MIB difference is at sub-
mm level.

The MIB-MDB difference will change if the survey
network measurement set-up changes. Figure 4 [top-right]
shows a survey network obtained by removing 17 pairs of
distance/direction measurements from the top-left network.
As a result of loosing 34 measurements compared to the
previous survey network, both the MDBs and the MIBs
increase as shown in Fig. 4 [bottom-right]. It is observed
that the MIB and the MDB can differ significantly from
each other. For example, for a given pre-set probability of
PCDi D PCIi D 0:98, there is an offset of almost 16mm
between the MIB and the MDB in case ofH1 and H3.

As shown in Fig. 4 [bottom], the MDB and the MIB, for
a pre-set probability, differ from hypothesis to hypothesis.
For example, for the range of probabilities shown in Fig. 4

[bottom-left], it is observed that

jb2;MDBj > jb3;MDBj > jb1;MDBj

jb2;MIBj > jb3;MIBj > jb1;MIBj
(19)

As the MDB, for a given set of fPFA;PCDi ; rg, is driven by
kcti kQtt , the first expression in the above equation can be
explained by comparing kcti kQtt for i D 1; 2; 3. The larger
the value of kcti kQtt , the smaller the MDB is expected to be.
For example, for the survey network shown in Fig. 4 [top-
left], we have

kct1kQtt � 180I kct2kQtt � 105I kct3kQtt � 158 (20)

which are driven by the network geometry, measurement
precision and the direction of displacement. The above equa-
tion implies that H1 and H2 should, respectively, have the
smallest and the largest MDBs among the three alternatives
for a pre-set CD-probability. The MIB inequalities in (19)
are due to a combination of (20), the shape and size of Pi ,
magnitude of E.t jHi / and its direction with respect to the
borders of Pi .

6 Summary and Concluding Remarks

In this contribution, a comparative analysis was provided
of the detection and identification steps of statistical test-
ing procedures. The detection step aims to validate the
null hypothesis H0, while the identification step, upon the
rejection of H0, aims to select the most likely alternative
hypothesis among those in consideration.In case there is only
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one alternative hypothesis, say H1, the rejection of H0 is
equivalent to the identification ofH1. This is however not the
case when working with multiple alternatives. Having dif-
ferent functionalities, the detection and identification perfor-
mance of the testing procedure should then be assessed using
two different diagnostic tools. The detection capability of a
testing regime is usually assessed by its Minimal Detectable
Bias (MDB), whereas the testing identification performance
should be evaluated by its Minimal Identifiable Bias (MIB).

Using the concept of misclosure space partitioning, we
discussed testing decisions and their probabilities. Through
this partitioning, it was shown that the distribution of the
misclosure vector can be used to determine the correct
detection (CD) and correct identification (CI) probabilities
of each of the alternative hypotheses. One can then ‘invert’
these probabilities to determine their corresponding minimal
biases, i.e. the MDB and the MIB. It was highlighted that a
small MDB (or high probability of correct detection) does
not necessarily imply a small MIB (or a high probability of
correct identification), unless one is dealing with the special
case of having only one single alternative hypothesis. The
factors driving the difference between detection and identifi-
cation performance were illustrated using a simple multiple-
alternative testing example. Our evaluations were extended to
basic deformation measurement system examples with multi-
ple alternative hypotheses, where monitoring measurements
were provided by a 2D terrestrial survey network.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00190-017-1045-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A Simple TLS-Treatment of the Partial
EIV-Model as One with Singular Cofactor
Matrices I: The Case of a KRONECKER Product
forQA D Q0 ˝ Qx

Shahram Jazaeri, Burkhard Schaffrin, and Kyle Snow

Abstract

Following the pioneering work in the PhD dissertation by Snow (PhD thesis, Rep. No. 502,
Div. of Geodetic Sci, School of Earth Sciences, The Ohio State University, Columbus,
OH, USA, 2012), the two articles by Schaffrin et al. (J Geodetic Sci 4(1):28–36, 2014)
and by Jazaeri et al. (Z für Vermessungswesen 139(4):229–240, 2014) provided a broad
overview of the Total Least-Squares (TLS) adjustment within EIV-Models with singular
cofactor matrices. Around the same time, Xu et al. (J Geodesy 86:661–675, 2012) proposed
a specific algorithm to find the TLS solution within a partial EIV-Model, which has been
improved by various authors since, including Shi et al. (J Geodesy 89(1):13–16, 2015),
Wang et al. (Cehui Xuebao/Acta Geodaet et Cartograph Sinica 46(8):978–987, 2017), Zhao
(Surv Rev 49(356):346–354, 2017), and Han et al. (Surv Rev 52(371):126–133, 2020), to
name a few. On the other hand, it is easy to see that the partial EIV-Model is a special
case of the general EIV-Model with singular cofactor matrices and thus does not need a
separate class of algorithms unless they are more efficient than the standard algorithms.
This, however, does not seem to be guaranteed as will be shown in this contribution for the
straight-line adjustment under QA D Q0 ˝ Qx . As a consequence, we shall argue that,
rather than discussing the partial EIV-Model, it would be more worthwhile to make the
respective developments within an EIV-Model with singular cofactor matrices directly.

Keywords

Errors-In-Variables model � Singular cofactor matrices � Total least squares

1 Introduction

About a decade ago, Xu et al. (2012) introduced the partial
Errors-In-Variables (PEIV) model in order to accommodate
for nonrandom elements within the coefficient matrix A,
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which describes the connection of the unknown parame-
ters with the observations that were collected in order to
determine them. Obviously, nonrandom elements can as well
be considered as “random with zero variance” (and zero
covariance if applicable), thus leading to a singular cofactor
matrix Dfvec Ag D �2

0 QA that is positive semidefinite.
Incidentally, at about the same time, Snow (2012) pub-

lished his PhD dissertation in which a large part is concerned
with exactly the much wider subclass of EIV-Models where
the cofactor matrix QA is allowed to be singular (and, quite
possibly, the cofactor matrix Qy , too). There, a variety of
algorithms is proposed to handle all the cases in which a
unique Total Least-Squares (TLS) solution exists.

Here, however, most of the attention will be directed to
the case where QA shows a Kronecker product structure:
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QA :D Q0 ˝ Qx . For this special case, the original algo-
rithm of Schaffrin and Wieser (2008) to find the Weighted
TLS solution had been designed, with particular efficiency
whenever Qx :D Qy can be assumed. More often than
not, this assumption is fulfilled when it comes to straight-
line adjustment in two or three dimensions. Therefore, the
prominent example in this study will be taken from this class.

In Sects. 2.1 and 2.2, a review is provided for the EIV-
Model with singular cofactor matrix, resp. with a Kronecker-
product structure for QA. A similar review for the PEIV-
Model will be found in Sect. 3, followed by a selection of
algorithms for the various options in Sect. 4. Finally, the key
algorithms will be compared in terms of their efficiency when
applied to a number of typical examples in Sect. 5, before
certain conclusions can be drawn in Sect. 6.

2 The EIV-Model and theWeighted TLS
Solution—A Review

2.1 Potentially Singular Cofactor Matrices

The definition of the EIV-Model is given as

y D .A � EA/„ ƒ‚ …
n�m

� C ey; eA
nm�1

:D vec EA;

rk A D m < n;

(1a)

�
ey

eA

�
� .

�
0

0

�
; �2

0 Q D �2
0

2
4

Qy
n�n

QyA

QAy QA
nm�nm

3
5/; (1b)

Q symmetric, nonnegative-definite, with the usual notation
as in Snow (2012) and Schaffrin et al. (2014), for instance;
see also Fang (2011) whose derivation is reviewed in the
following while temporarily assuming that Q is positive-
definite with

Q�1 :D

�
P11 P12

P21 P22

�
;

P11 D P T
11; P21 D P T

12; P22 D P T
22:

(2)

Thus, the target function reads (with � as n � 1 vector of
Lagrange multipliers):

ˆ.ey; eA; �; �/ :D eT
y P11ey C 2eT

y P12eAC

CeT
AP22eA C 2�T

�
y � A� � ey C

�
�T ˝ In

�
eA

�
;

(3)

which must be stationary, leading to the necessary Euler-
Lagrange conditions:

1

2

@ˆ

@ey

D P11 Qey C P12 QeA � O�
:

D 0; (4a)

1

2

@ˆ

@eA

D P21 Qey C P22 QeA C
�
O� ˝ In

�
O�

:
D 0; (4b)

1

2

@ˆ

@�
D �AT O� C QET

A
O�

:
D 0; (4c)

1

2

@ˆ

@�
D y � A O� � Qey C

�
O�

T
˝ In

�
QeA

:
D 0; (4d)

and the sufficient condition:

1

2

@2ˆ

@

�
ey

eA

�
@

�
eT

y ; eT
A

� D

�
P11 P12

P21 P22

�

is positive-definite.

(5)

Taking (4a) and (4b) together and solving for the combined
residual vector gives

�
Qey

QeA

�
D

�
Qy QyA

QAy QA

�
�

�
In

�. O� ˝ In/

�
� O� D

D

"
Qy � QyA

�
O� ˝ In

�
QAy � QA

�
O� ˝ In

�
#

� O�

(6a)

and, with (4d),

y � A O� D
h
In �. O�

T
˝ In/

i �
Qey

QeA

�
DW Q1 � O�I (6b)

thus,

O� D Q�1
1 .y � A O�/ (7a)

for

Q1
n�n

:D
h
In �. O�

T
˝ In/

i �
Qy QyA

QAy QA

� �
In

�. O� ˝ In/

�

DW BQBT (7b)

and

B
n�n.mC1/

:D
h
In �. O�

T
˝ In/

i
D B. O�/;

rk B D n (“full row-rank”).
(7c)
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Finally, the TLS solution can be obtained from (4c)
through

0 D .A � QEA/T O� D (8a)

D .A � QEA/T Q�1
1

�
.y � QEA

O�/ � .A � QEA/ O�
�

as estimated parameter vector

O� D
�
.A � QEA/T Q�1

1 .A � QEA/
��1

�

�
�
.A � QEA/T Q�1

1 .y � QEA
O�/

� (8b)

with the residual vector

�
Qey

QeA

�
D QBT � Q�1

1 .y � A O�/ (8c)

and the estimated variance component

O�2
0 D .y � A O�/T Q�1

1 .y � A O�/=.n � m/: (8d)

This would be a “Fang-type” algorithm after Fang (2011).
Alternatively, (4c) and (7a) can be combined to

AT Q�1
1 .y � A O�/ D AT O� D QET

A
O� D

D vec. O�
T

QEA/ D .Im ˝ O�
T

/ QeA

(9a)

and, using (6a), to

AT Q�1
1 .y � A O�/ D

D .Im ˝ O�
T

/
�
QAy

O� � QA. O� ˝ O�/
�

D

D .Im ˝ O�
T

/
�
QAy

O� � QA.Im ˝ O�/ O�
�

(9b)

from which the following equation can be obtained:

�
AT Q�1

1 A � .Im ˝ O�/T QA.Im ˝ O�/
�
O� D

D AT Q�1
1 y � .Im ˝ O�/T QAy

O�:
(9c)

Apparently, (9c) turns out to be a generalized form of formula
(18a) in Schaffrin (2015) that allows treatment of EIV-
Models with cross-covariances QAy that are non-zero. This
would be part of a modified “Mahboub-type” algorithm after
Mahboub (2012) and Schaffrin (2015).

It is now noticed that, for a unique TLS solution to be
obtained, only Q1 needs to be nonsingular, not Q itself! This
means that the more restrictive rank condition

rk BQ D rk B D n (10)

ought to hold for the algorithms (8b)–(8d), resp. (9c) with
(7a)–(7b) to work. But Neitzel and Schaffrin (2016) have
already proved that the more general “Neitzel-Schaffrin con-
dition”

rk
�
BQ A

�
D rk B D n; B D B.�/; (11)

is necessary and sufficient for the uniqueness of the
Weighted TLS solution. So, there must be a way
to generalize the algorithm (8b)–(8d) for the case
that (10) is violated (rk BQ < n) but (11) is ful-
filled. The generalization of (9c) is left for a future
publication; but see Snow (2012, ch. 3.2) for some
preliminary results, particularly the system (3.21) shown
therein.

Assuming that rkŒBQ | A � QEA� D n holds true as well,
the extended matrix

Q3 :D Q1 C .A � QEA/S.A � QEA/T > 0 (12)

will be nonsingular for any symmetric, positive-definite
matrix S (that needs to be suitably chosen as it may affect
the efficiency of our algorithms), where

Q3 � O� D .y � A O�/ C .A � QEA/SŒ.A � QEA/T O�� D

D y � A O� D Q1 � O� (13a)

due to (4c). Thus, wherever O� D Q�1
1 .y � A O�/ appears

in algorithm (8b)–(8d), it can simply be replaced by O� D

Q�1
3 .y � A O�/ giving us the more general algorithm (13b)–

(13d) as follows:

O� D
�
.A � QEA/T Q�1

3 .A � QEA/
��1

�

�
�
.A � QEA/T Q�1

3 .y � QEA
O�/

�
;

(13b)

�
Qey

QeA

�
D QBT � Q�1

3 .y � A O�/; (13c)

O�2
0 D .y � A O�/T Q�1

3 .y � A O�/=.n � m/: (13d)

We note that the interpretation of the vector y � QEA
O� is still

not clear!



86 S. Jazaeri et al.

2.2 QA D Q0 ˝ Qx with Kronecker-Product
Structure

Now, a special case should be treated where a Kronecker-
product structure can be assumed for

QA
nm�nm

:D Q0
m�m

˝ Qx
n�n

with QAy D 0 D QT
yA: (14)

Then, Q1 D BQBT can be rewritten as

Q1 D (15a)

D
h
In �. O�

T
˝ In/

i �
Qy 0

0 Q0 ˝ Qx

� "
In

�. O�
T

˝ In/

#

D Qy C O�
T

Q0
O� � Qx (15b)

and O� (if Q1 is nonsingular) as

O� D Q�1
1 .y � A O�/ D

D .Qy C O�
T

Q0
O� � Qx/�1.y � A O�/; (15c)

which leads to the residual vector

Qey D Qy.Qy C O�
T

Q0
O� � Qx/�1.y � A O�/ (15d)

and to the residual matrix

QEA D �Qx.Qy C O�
T

Q0
O� � Qx/�1.y � A O�/ O�

T
Q0: (15e)

From (4c), it now follows that

�AT O� D AT .Qy C O�
T

Q0
O� � Qx/�1.A O� � y/ D

D � QET
A

O� D Q0
O� � O�; (16a)

with the scalar

O� :D .y � A O�/T .Qy C O�
T

Q0
O� � Qx/�1Qx �

�.Qy C O�
T

Q0
O� � Qx/�1.y � A O�/

(16b)

and, thus, ultimately the estimated parameter vector as

O� D
�
AT .Qy C O�

T
Q0

O� � Qx/�1A � O� � Q0

��1
�

� AT .Qy C O�
T

Q0
O� � Qx/�1y; (16c)

which needs to be computed iteratively using (16b)–(16c)
until convergence. This constitutes the original algorithm by
Schaffrin and Wieser (2008) that only requires the invert-
ibility of Q1 in (15b) and leads to the estimated variance
component

O�2
0 D O�

T
.y � A O�/=.n � m/ D

D .y � A O�/T .Qy C O�
T

Q0
O� � Qx/�1.y � A O�/�

� .n � m/�1: (16d)

Obviously, Q1 D Qy C O�
T

Q0
O� � Qx will be nonsin-

gular as long as Qy is nonsingular, which is, however, not
always necessary due to the second term. On the other hand,
oftentimes the cofactor matrices Qy and Qx turn out to be
identical:

Qx :D Qy; (17)

in which case the algorithm (16b)–(16d) simplifies to

O� D Q�1
y .y � A O�/ � .1 C O�

T
Q0

O�/�1; (18a)

O� D O�
T

Qy
O� D O�

T
.y � A O�/ � .1 C O�

T
Q0

O�/�1; (18b)

O� D
�
AT Q�1

y A � O�
T

.y � A O�/ � Q0

��1
AT Q�1

y y; (18c)

O�2
0 D O�

T
.y � A O�/=.n � m/ D

D O� � .1 C O�
T

Q0
O�/=.n � m/; (18d)

but requires Qy to be invertible; in contrast, Q0 and—thus—
QA may be singular! In particular, Q0 :D 0 refers to the
classical Gauss-Markov Model (GMM).

Although the algorithm (18a)–(18d) loses its validity in
case of a singular matrix Qy and thus singular Q1 D .1 C

O�
T

Q0
O�/ � Qy , it is still possible to handle this case along

the lines of algorithm (13b)–(13d), but without the “gain
in efficiency” from the Kronecker-product structure of the
matrix QA.

3 The Special Case of the Partial
Errors-In-Variables (PEIV) Model

This special subgroup covers all the EIV-Models where
some of the elements within the matrix A happen to be
nonrandom. But, instead of introducing zero variances (and
zero covariances) with the corresponding singular cofactor
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matrix QA, Xu et al. (2012) preferred a dualistic view-
point and re-wrote the observation equations from (1a) as

y D .A � EA/� C ey D

D .�T ˝ In/.vec A � eA/ C ey DW

DW .�T ˝ In/ � �A
nm�1

C ey;

(19a)

where �A is split into

�A :D ˛ C G � �a with �a :D a
t�1

� ea: (19b)

Here the t � 1 vector a contains a basis for the random
elements of A, whereas the nm � 1 vector ˛ shows all
nonrandom elements of vec A plus zeros elsewhere. As
a result, the actual random elements within A are gener-
ated through the product of the vector a of basis elements
with the (given) nm � t matrix G, and they show up
in all those places where the nm � 1 vector ˛ shows
zeros.

In addition, let the random error vectors be specified by

�
ey
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�
� .

�
0

0

�
; �2

0 Q D �2
0

2
4

Qy
n�n

0

0 Qa
t�t

3
5/; (19c)

with symmetric, positive-definite matrix Q. Any cross-
covariances between y and a could also be considered,
but they are avoided here to keep the following development
of formulas relatively simple.

In analogy to the GMM variant in Schaffrin (2015), let the
target function be defined by

ˆ.�a; �/ :D .a � �a/T Q�1
a .a � �a/C

C
�
y � .�T ˝ In/.˛ C G�a/

�T
�

� Q�1
y

�
y � .�T ˝ In/.˛ C G�a/

�
; (20)

which must be made stationary, leading to the necessary
Euler-Lagrange conditions
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where the terms ˛i
n�1

and Gi
n�t

come from

˛T

1�nm
:D

�
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1 ; � � �; ˛T
m

�
and
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t�nm
:D

�
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1 ; � � �; GT
m

�
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Reordering (21a) and (21b) yields first

�
Q�1

a C GT . O� ˝ In/Q�1
y . O�

T
˝ In/G

�
O�a DW

DW
�
Q�1

a C ST
O�

Q�1
y SO�

�
O�a D

D Q�1
a � a C ST

O�
Q�1

y

�
y � ˛1 � O�1 � � � � � ˛m � O�m

�
; (22a)

with

SO�
n�t

:D G1 � O�1 C � � � C Gm � O�m; (22b)

and then

�
Œ˛i C Gi O�a�T Q�1

y Œ˛i C Gi O�a�
�

� O� D

D Œ˛i C Gi O�a�T Q�1
y � y:

(22c)

Furthermore, the residual vectors result from

Qey D y � . O�
T

˝ In/.˛ C G O�a/ and

Qea D a � O�a;
(22d)

and the estimated variance component from

O�2
0 D . QeT

y Q�1
y Qey C QeT

a Q�1
a Qea/=.n � m/: (22e)

The above just describes the original approach by Xu et al.
(2012). Various improvements in terms of computational
efficiency were later achieved by Shi et al. (2015), Wang
et al. (2016), and Zhao (2017). Moreover, Wang et al. (2017)
and Han et al. (2020) also allowed for cross-covariances
between Qy and Qa, a case that is included in the numerical
experiments of Sect. 5.

4 The Various Algorithms

The various algorithms for weighted TLS solutions com-
pared in this contribution are listed below in bulleted form
with brief descriptions. For further details about them, the
reader is referred to the references provided.
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Algorithms for Weighted TLS Solutions Within the
EIV-Model
1. Snow’s (2012) algorithm, (8b)–(8d), referred to as A

herein: Presented as Algorithm 1 on p. 18 of Snow (2012),
this algorithm handles cross-covariances via matrix QyA

but requires matrix Q1 of (7b) to be non-singular. Obvi-
ously, it works too when QyA D 0. This algorithm was
also presented in Fang (2011).

2. Snow’s (2012) algorithm, (13b)–(13d), referred to as B
herein: Presented as Algorithm 3 on p. 31 of Snow
(2012), this algorithm handles both cross-covariances via
matrix QyA and a singular matrix Q1. This is the only
algorithm we consider here that can handle a singular
matrix Q1. We note that we only experimented with S :D
Im in our formulation of matrix Q3 defined in (12).

3. Schaffrin’s (2015) algorithm, (7a)–(7b) with (9c), referred
to as D herein: This algorithm is encapsulated in equations
(8b), (9), and (18b) of Schaffrin (2015). However, in light
of (7b) and (9c), it now allows for a non-zero cross-
covariance matrix QyA.

4. Schaffrin and Wieser’s (2008) algorithm, (16b)–(16d),
which requires that the cofactor matrix QA can be
expressed as a Kronecker product according to (14)
and does not currently allow for a cross-covariance
matrix QyA. Full details can be found in Schaffrin and
Wieser (2008).

Algorithms for Weighted TLS Solutions Within the
Partial EIV-Model
5. Xu’s et al. (2012), (22c)–(22e), algorithm: Reviewed

in Sect. 3 above, this is the original algorithm for the
weighted TLS solution within the partial EIV-model. It
does not allow for a cross-covariance matrix QyA.

6. Shi’s et al. (2015) algorithm: The authors’ stated purpose
was to provide an improvement in efficiency to Xu et al.
(2012) for the case when the number of independent
random variables in the coefficient matrix A was much
larger than the length of the observation vector y . It was
also stated that if the converse was true, Xu’s original
algorithm would be superior. Like Xu’s original algo-
rithm, this algorithm also does not allow for a cross-
covariance matrix QyA.

7. Wang’s et al. (2017) algorithm: Wang et al. (2016) and
Wang et al. (2017) published papers on the partial EIV-
Model in Chinese, the latter of which extended the model
to accommodate a cross-covariance matrix QyA. Han
et al. (2020) described an algorithm that also handles
cross-covariances, but we found that it is often about half
as fast as Wang’s, so we did not include it in the tabulated
results below.

8. Zhao’s (2017) algorithm: Stating a motivation to improve
upon the algorithms by Xu et al. (2012) and Shi et al.
(2015), Zhao (2017) developed yet another algorithm for a

TLS solution within the partial EIV-Model that he argued
should be preferred over those earlier algorithms because
of a reduction he found in both the number of iterations
and total time required to solve 2D affine and similarity
transformation problems. He also compared these algo-
rithms to a “Fang-type” algorithm, listing his results in
his Tables 5 and 8, which show a drastic reduction in both
iterations and time compared to Xu et al. (2012) and Shi
et al. (2015), but a more marginal improvement in time
over Fang’s type without any reduction in the number of
iterations. We note that Zhao’s algorithm also does not
allow for a cross-covariance matrix QyA.

Classical Algorithm Without Direct Reference to an
EIV-Model as Described Herein
9. Deming’s (1931, 1934) algorithm (within a Gauss-

Helmert Model): Finally, we mention the classical least-
squares solution within the Gauss-Helmert Model, which
might also be referred to as “Deming’s algorithm.”
Because of its long-time usage and well-known behavior,
we chose to include it in our experiments for comparison
purposes. An example of a rigorous presentation of it
can be found in Schaffrin and Snow (2010) as well as in
chapter 4 of Snow (2012), among others.

4.1 Uniformity of Algorithm Coding

Many factors that are beyond the scope of our work here
could be considered when writing computer code to optimize
efficiency (time) in numerical computing. However, our
aim was not to try write code that could run as fast as
possible, which would have been a somewhat arduous task
considering the number of algorithms we chose to compare.
In fact, because we had already written some algorithms in
MATLAB in the past, and because other authors cited above
have published or shared their algorithms in MATLAB, we
decided to stick with that language, though we might have
written faster code in C++, for example.

What we were mainly concerned with was following a few
simple practices for writing efficient code in MATLAB while
keeping the code relatively easy to read. We strove to do this
consistently for all the algorithms we tested. To summarize,
we used the following guidelines to help ensure all the
algorithms were coded with a similar level of efficiency:

• The MATLAB inverse function was never used to solve a
system of equations. Instead its “backslash operator” was
used.

• When a cofactor matrix had to be inverted to obtain a
weight matrix, its Cholesky factor was computed and
inverted to save time.

• The inversion of a cofactor matrix to obtain a weight
matrix was never done more than once in any algorithm.
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Thus, if a weight matrix appeared multiple times in
formulas, its inverse was saved and reused within the
algorithm.

• Likewise, certain matrix products that occurred multiple
times within an algorithm were computed once, saved,
and reused.

• Product involving two matrices, say A and B , and a
trailing vector, say c, were grouped as A(Bc) to reduce
the number of dot products.

• Matrices that were populated in conditional loops were
appropriately sized first, so that memory was not repeat-
edly reallocated at successive iterations in the loop—a
notoriously slow process.

• MATLAB sparse matrices were used for diagonal cofactor
matrices and for identity matrices appearing in Kronecker
products, though this was not necessary for most of our
small datasets.

Other time-saving techniques or operations that we might
have left out were, at least, done so consistently among
all algorithms. We do not suspect that any inefficiencies
remaining in our code would affect the number of iterations
required by the algorithms.

Regarding the reporting of execution times in the fol-
lowing chapter, we acknowledge that what counts most
here is the relative times among the algorithms, since many
factors related to hardware, software, and available com-
puting resources could influence the absolute times. To try
to minimize these factors, we wrote a high-level script that
called all algorithms sequentially 5000 times each for each
problem. Any open programs other than MATLAB were
closed before executing the script. This means that the
same computer was in more-or-less the same state for all
algorithms used in the comparisons. Nevertheless, the times
surely will vary between repeated instances of the same test.
As such, we would not distinguish between two algorithms
with times (per 5000 runs) that agree within 10 percent of
each other.

5 Numerical Experiments

A motivation for the experiments that follow were the claims
or suggestions in many of the cited papers on the partial
EIV-Model that TLS solutions within that model should be
preferred over those within the standard EIV-Model laid
out in Sect. 2 above. The arguments are usually made in
favor of computational efficiency, viz. fewer iterations to
convergence or faster overall computational times. Or the
argument is sometimes made that the partial EIV model and
associated TLS solutions are easier to formulate. One only

needs to peruse those papers to find such statements. We
certainly reject the argument regarding ease of model and
algorithm formulation, as we take the standard model to be
more elegant and simpler in form; that does seem obvious to
us, but of course others may think differently.

In any case, we would not argue with anyone who selects
an algorithm based on its savings in time, especially when
computations are being made in time-critical situations. Thus
we conducted the following experiments to see how the
various algorithms listed above compared in a variety of
problems and datasets. The problem types we explored were
2D line fitting, 2D affine and similarity transformations, and
a third-order auto-regressive problem. However, for the sake
of space, we only report on the 2D line-fitting problem here.

Table 1 lists some results obtained from six different
datasets identified in the first column, together with their
number of points. The first dataset is a combination of two
that appear in section 17 of Deming (1964). The datasets
labeled Haneberg, Pearson, and Niemeier can be found in
Schaffrin and Snow (2020). Neri’s data can be found in Snow
(2012) and Kelly’s data in Kelly (1984). The table also lists
Neri*, which are the original Neri data with simulated cross-
covariances added in Snow (2012).

The table shows the number of iterations to convergence
and the time in seconds for 5000 consecutive executions.
Note that each consecutive execution represents an inde-
pendent call to the algorithm’s function so that no results
from a previous execution are used in a subsequent one. The
convergence criterion requires the norm of the incremental
vector of estimated parameters to be less than a specified
value; the value used was 10�10. We do not bother listing
estimated parameter, residuals, or total SSR, as these values
were the same for at least six digits beyond the decimal point
for all algorithms.

The lowest and highest times for each dataset are high-
lighted in bold typeface (and those within 0.2 s, too). The
algorithms from Wang et al. (2017) and Schaffrin and Wieser
(2008) have the lowest times, and the “Fang-type” algorithm
B from Snow (2012) or that of Xu et al. (2012) has the
highest. For Snow’s algorithm, we do not know whether
“better choices” for matrix S :D Im appearing in Q3 might
have led to lower times. However, we should say again that
among the algorithms featured here, only Snow’s A and B
(also Fang 2011), and now Schaffrin’s D, and that of Wang
et al. (2017), resp. Deming’s can handle a cross-covariance
matrix QyA; and only algorithm B can handle a singular
cofactor matrix Q1. Moreover, the algorithm of Schaffrin
and Wieser (2008), which performs admirably here, can-
not be used in transformation problems, since the cofactor
matrix QA cannot easily be expressed as a Kronecker product
in those problems.
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Table 1 Results of 2D line-fitting: data set, number of points, and number of iterations/times in s for 5000 executions. Low and high times shown
in bold, and those within 0.2 s. Neri* includes a non-zero cross-covariance matrix, which some of the algorithms cannot accommodate

Dataset Snow-A Snow-B Sch.-D Sch.&W. Xu Shi Wang Zhao Deming
Deming, 4 4/1.70 7/3.24 4/1.84 8/1.16 14/3.79 14/1.83 4/0.96 4/1.74 8/1.39
Haneberg, 14 6/2.46 7/3.83 3/1.60 7/1.12 8/2.87 8/1.55 6/1.33 6/2.72 12/1.76
Kelly, 20 12/4.07 24/11.2 5/2.04 60/6.09 45/12.4 45/5.54 12/2.15 12/5.00 23/3.00
Neri, 10 8/2.86 13/6.17 9/3.20 18/2.16 474/116 456/44.0 8/1.45 8/3.23 13/2.01
Neri*, 10 9/3.41 13/6.19 11/3.86 – – – 9/1.90 – 16/2.37
Niemeier, 6 2/1.15 6/3.11 3/1.55 3/0.73 15/4.27 15/2.05 2/0.79 2/1.25 3/0.88
Pearson, 10 6/2.39 9/4.24 4/1.81 11/1.45 16/4.50 16/2.40 6/1.29 6/2.54 11/1.79

6 Conclusions and Outlook

Our study has confirmed that a variety of published algo-
rithms for the TLS solution within (partial) EIV-Models yield
equivalent numerical results for the estimated parameters and
residuals across a number of tested datasets. This is to be
expected. It also suggests that one can do just fine working
within the standard EIV-Model rather than resorting to the
partial EIV-Model, though it might be worth adopting the
latter in certain cases. We suggest the following logic for
choosing a TLS algorithm, beginning with more general
cases and moving towards more specific ones.

• If the cofactor matrix Q1 is singular, choose Snow’s
algorithm B.

• If the cross-covariance matrix QyA is nonzero, choose
between Snow’s algorithm A, Schaffrin’s D, and that of
Wang et al. (2017).

• If the cross-covariance matrix QyA is zero, consider
Schaffrin’s D and that of Wang et al. (2016).

• If the cofactor matrix QA can be expressed as a Kronecker
product according to (14), consider first the algorithm
from Schaffrin and Wieser (2008).

Our future work will consider making further efficiency
improvements to the algorithms as we have coded them and
will report on their performance among a wider variety of
problems and datasets.
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Bayesian Robust Multivariate Time Series
Analysis in Nonlinear RegressionModels with
Vector Autoregressive and t-Distributed Errors

Alexander Dorndorf, Boris Kargoll, Jens-André Paffenholz,
and Hamza Alkhatib

Abstract

Geodetic measurements rely on high-resolution sensors, but produce data sets with many
observations which may contain outliers and correlated deviations. This paper proposes a
powerful solution using Bayesian inference. The observed data is modeled as a multivariate
time series with a stationary autoregressive (VAR) process and multivariate t-distribution for
white noise. Bayes’ theorem integrates prior knowledge. Parameters, including functional,
VAR coefficients, scaling, and degree of freedom of the t-distribution, are estimated with
Markov Chain Monte Carlo using a Metropolis-within-Gibbs algorithm.

Keywords

Metropolis-within-Gibbs algorithm � Robust Bayesian time series analysis � t-distribution �

VAR process

1 Introduction

In statistical modeling and hypothesis testing, models and
procedures exist for estimating parameters from observa-
tions. These models often include a functional model, cor-
relation model, and stochastic model, with the latter usually
assumed to be normally distributed. However, this assump-
tion can lead to incorrect results if outliers are present.
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Various approaches exist to address the issue of outliers
in observations. One such approach is robust parameter
estimation, which aims to reduce the impact of outliers on the
estimation result. In Bayesian inference, robust estimation
is achieved by substituting the initially assumed distribution
for the observations with a distribution having heavy tails.
Consequently, to obtain a robust estimator for the assumption
of normally distributed observations, one option is to replace
this distribution with a heavy-tailed t-distribution (Lange
et al. 1989).

Modeling multivariate time series has been approached by
Alkhatib et al. (2018) and Kargoll et al. (2020). Alkhatib
et al. (2018) proposed a nonlinear functional model with a
t-distributed error model, while Kargoll et al. (2020) intro-
duced two different outlier models for nonlinear determinis-
tic and vector-autoregressive (VAR) models. The VAR pro-
cess models auto- and cross-correlations, but both Alkhatib
et al. (2018) and Kargoll et al. (2020) do not consider prior
knowledge of the parameters. Kargoll et al. (2020) derived
a generalized expectation maximization (GEM) algorithm
to approximate parameters but it does not include prior
knowledge, and the variance-covariance matrix (VCM) of
the parameters can only be estimated with a computation-
ally intensive algorithm with bootstrapping. However, it
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is possible to integrate prior knowledge and estimate the
VCM of the parameters in Bayesian inference, under the
assumption that the prior knowledge is available in the form
of a distribution function.

In Dorndorf et al. (2021), the model in Alkhatib et al.
(2018) was extended to consider prior information using
Bayesian inference. This paper focuses on the VAR model.
For an overview of Bayesian time series analysis mod-
els, see Steel (2010). In Bayesian time series analysis, the
VAR coefficients are treated as random variables (Box and
Jenkins 2015) and require a prior density for estimation.
A Bayesian AR model with a non-informative prior and
normally distributed white noise is presented in Box and
Jenkins (2015). Ni and Sun (2005) introduced a Bayesian
VAR model structured similarly to Kargoll et al. (2020) and
solved with a Gibbs sampler, but it requires the time series to
be detrended.

The algorithm from Dorndorf et al. (2021) will be
extended to handle a VAR process (described in detail
in Sect. 2), and the posterior density function will be
approximated through Markov-Chain Monte Carlo (MCMC)
algorithm (outlined in Sect. 3). A multi-variate time series
model for laser tracker observations of a circle in 3D
will be proposed in Sect. 4 and evaluated through Monte
Carlo simulation. The findings will be used to evaluate
the performance of the implemented Metropolis-Hastings-
within Gibbs algorithm.

2 The Bayesian Time Series Model

The observation `t are expressed in the observation matrix

L D
�
`1 � � � `n

�T
. The observation model is defined to be a

regression time series

Lt D Q̀
t C E t D ht

�
Q̌
�

C E t ; t D 1; : : : ; n; (1)

where the random variable Lt consists of a deterministic part
Q̀
t and a stochastic part E t . Here Q̀

t is a true value and can be
described by an arbitrary possibly nonlinear (differentiable)
function ht .�/ over the true functional parameters Q̌ . The
stochastic component E t represents a colored noise for the
time series Lt that is obtained from a VAR model with

E t D QA1E t�1 C : : :C QApE t�p C U t : (2)

The matrix QAj contains the true VAR coefficients of the p-th
VAR order and the matrix is thus given with

QAj D

2
64

Q̨j I1;1 � � � Q̨j I1;N

:::
: : :

:::

Q̨j IN;1 � � � Q̨j IN;N

3
75 ; j D 1; : : : ; p; (3)

where U t in Eq. 2 is the white noise and follows from the
approximation of a multivariate Student distribution U t �

t
�
0; Q‰ ; Q�

�
where the expectation value of white noise U t is

0; Q‰ denotes the true scale matrix of white noise and Q� is the
true degree of freedom for the multivariate t-distribution; N
in Eq. 3 is the dimension of the multivariate time series. The
scaling matrix has the structure of a VCM resulting in

Q‰ D

2
64

Q 2
1 � � � Q�1;N Q 1 Q N
:::

: : :
:::

Q�N;1 Q 1 Q N � � � Q 2
N

3
75 (4)

with the true correlation coefficient Q�i;k and the true scaling
factors Q 2

i on the diagonal.
It follows that the random variable Lt of Eq. 1 can be

specified by the parameters Q̌ , Q‰ , QAj , and Q�, where the
scaling matrix Q‰ according to Eq. 4 consist of Q 2

i (with
i 2 f1 : : : ; N g) and Q�k;o (with k 2 f1 : : : ; N � 1g and
o 2 f2 : : : ; N g). These parameters are now grouped into the
true parameter vector:

Q� D

�
Q̌ T

�
Q 
2
�T

Q�T QaT Q�

�T
: (5)

Thus, this vector consists of Q̌ D
h

Q̌
1; : : : ; Q̌

m

iT
, Q 

2
D

�
Q 2
1 ; : : : ;

Q 2
N

�T
; Q�D Œ Q�1;2; : : : ; Q�1;N ; Q�2;3; : : : ; Q�N�1;N �

T and
Qa D Œ Q̨1I1;1; : : : ; Q̨1IN;1; Q̨1I1;2; : : : ; Q̨1IN;N ; Q̨2I1;1; : : : ; Q̨pIN;N �

T .
Hence, the dimension of the parameter vector Q� is B D

mCN C N2�N
2

CN2 �pC1, wherem is the total number of
the functional parameters Q̌ , N is the dimension of the mul-
tivariate time series and p is the order of the VAR process.

In general, all parameters in Eq. 5 are unknown for the
observed data L, and thus, the estimated values O� need
to be calculated. In the context of Bayesian inference, the
parameter vector O� is estimated based on the corresponding
random variable‚, whose density function is also unknown.
Assuming that the time series data Lt from the model in
Eq. 1 is given, this data depends on the random variable ‚.
This relationship can be expressed as a likelihood function
fLj‚ . the random variable ‚ that can be expressed as a
probability distribution f‚ called prior density function.
Let’s assume that we possess prior knowledge about the ran-
dom variable ‚, which can be represented as a probability
distribution f‚ known as the prior density function. We can
then update this prior knowledge with the observed data L
using the Bayes theorem, resulting in the calculation of the
posterior density function f‚jL as follows:

f‚jL
�
ˇ; 2;�; a; � j L

	
/ f‚

�
ˇ; 2;�; a; �

	

�fLj‚.L j ˇ; 2;�; a; �/: (6)
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According to Kargoll et al. (2020) the joint likelihood func-
tion leads to:

fLj‚.L j �/

D

nY
tD1

0
@ �

�
�CN
2

	

�
�
�
2

	 p
.��/N

j‰ j�1=2

"
1C

uTt ‰
�1ut
�

#� �CN
2

1
A

(7)

where � is the gamma function, and ut in Eq. 7 is:

ut D et �

pX
jD1

�
Aj � et�j

	

D `t � ht .ˇ/ �

pX
jD1

�
Aj �

�
`t�j � ht�j .ˇ/

�	
: (8)

Thus, the calculation of the likelihood function for the obser-
vationsL is based on the product of the unknown white noise
ut that results from the relation of Eq. 8. Due to assumed
stochastic independence, the joint prior density function in
Eq. 6 can be written as

f‚.ˇ; 
2;�; a; �/

D f‚ˇ
.ˇ/ � f‚

 2

�
 2

	
� f‚�

.�/ � f‚a
.a/ � f‚� .�/ :

(9)

In this paper, we only consider the case of a non-formative
prior density because the Bayes model is compared to a com-
parable classical adjustment model for validation purposes.
The used non-informative prior density for the parameters
are:

f‚ˇ
.ˇ/ / 1; �1 < ˇ < 1; f‚

 2

�
 2

	
/ 1; 0 <  2 < 1;

f‚�
.�/ / 1; �1 � � � 1; f‚a

.a/ / 1; �1 < a < 1; (10)

f‚� .�/ / 1; 2 < � � 120:

The prior densities used have values of ˙1, which are
considered improper. But combining these densities with
the likelihood results in a proper posterior density. For the
parameter �, an improper density could have been used,
but due to mathematical constraints it is only possible for
a correlation coefficient to be between ˙1. Similarly, the
scaling factor  2 was excluded from having a value smaller
than zero. For the degree of freedom �, a proper density
was defined according to Kargoll et al. (2020) to prevent
an improper posterior density and ensure a fair compari-
son between the Bayesian and classical GEM models. The
computation of the exact posterior density function given
in Eq. 6 is not feasible, so approximation techniques must
be used. To solve these problems, a MCMC algorithm
has been developed and will be described in the next sec-
tion.

3 The DevelopedMCMC Algorithm

The goal of the MCMC methods is now to generate the ran-
dom numbers � .1/ ! � .2/ ! � � � ! � .b/ as a Markov chain.
The MCMC method, therefore, generates a total of b random
numbers as realizations of ‚. The Markov chain defined
here is related to the full parameter vector � .y/, whereby y
is the current number of the sample of the Markov chain.

However, since the density function f‚jL
�
� .y/ j � .y�1/;L

�

is unknown here, the Markov chain cannot be generated
directly with the Gibbs sampler. For this reason, this density

function at time y of the Markov chain is decomposed into a
univariate conditional density function as follows

f‚jL
�
�.y/z j �

.y/

1 ; : : : ; �
.y/

z�1; �
.y�1/
zC1 ; : : : �

.y�1/
B ;L

�
: (11)

Applying the formula in Eq. 11 to the posterior density from
Eq. 6, it means for example for the parameter ˇ2 that the con-

ditional posteriori density is f‚ˇ2
jL

�
ˇ
.y/

2 j ˇ
.y/

1 ; ˇ
.y�1/
3 ; : : : ,

ˇ
.y�1/
m

�
 2

	.y�1/
;�.y�1/a.y�1/; �.y�1/;L

�
.

To generate the random numbers � .y/ using the MCMC
methods now, one of the different existing Monte Carlo algo-
rithms for generating Markov chains needs to be selected. In
this paper, the Metropolis-Hastings algorithm and the Gibbs
sampler are chosen for this purpose, which are two of the
most important algorithms for MCMC methods (refer to
Gelman et al. (2013)). Both algorithms can be integrated into
a so-called Metropolis-within-Gibbs algorithm, shown in
Algorithm 1. The Gibbs sampler is the “For loop” in line 2 of
the algorithm. This requires as the start value the parameter
b as length for the Markov chain to be generated. The
Metropolis algorithm starts in line 4, where this algorithm
is executed once for each component z of � using the “For
loop” in line 3. To run the Metropolis algorithm, the proposal

density f‚�

z j�z

�
��
z j �

.y�1/
z

�
is required for generating the

random realization ��
z . In this paper, a normal distribution

is always used as proposal density and therefore results from

‚�
�z

� N
�
�
.y�1/
z ; �2�z

�
.
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Algorithm 1 Metropolis-within-Gibbs
Require: Set the number of iterations b and the start position � .0/

Require: Posterior density f‚jL .� j L/ from Eq. 6
Require: For all components z of � , a univariate symmetric proposal density

have to be f‚�

z j‚z



��

z j �
.y�1/
z

�
with a suitable jump parameter �z selected.

Ensure: Realizations from the generated Markov chain: � .1;:::;b/

1: Initialize the auxiliary vector # D � .0/ as a run variable.
2: for y D 1 : : : b do
3: for z D 1 : : : B do

4:
Drawing a random realization ��

z from the proposal density

f‚�

z j‚z



��

z j �
.y�1/
z

�

5: Create �� D Œ#1; : : : ; #z�1; �
�

z ; #zC1; : : : #B �
T

6: Calculate the ratio with r D
f‚jL.��

jL/

f‚jL.#jL/

7:
Calculate the acceptance probability for �� with 	

.y/
z D min .r; 1/

and draw a random realization 

.y/
z from T � U .0; 1/

8: Acceptance / Rejection Step: # D

8<
:
� .�/ for 


.y/
z � 	

.y/
z

# for 

.y/
z > 	

.y/
z

9: end for
10: Saving �.y/ D #

11: end for

The mean of the distribution is set by the previous value in
the Markov chain and the variance �2�z determines the jump

distance and affects convergence to the desired posterior den-
sity. Optimal convergence is achieved when the acceptance
rate is around 44% with a normal distribution as the proposal
density, as shown in Gelman et al. (1996).

Automating the selection of �2�z with adaptive MCMC
algorithms, such as the one presented in Roberts and Rosen-
thal (2009), is recommended when B is large. In Algo-
rithm 1, the acceptance rate decides if � .�/ or # is accepted
as the realization in step y of the chain. To optimize the jump
values, the approach presented in Dorndorf et al. (2019) was
used to achieve an acceptance rate between 40–50%. This
method requires initial values, the posterior density, and the
conditional density functions to be constructed.

The mean value of the different parameter groups can be
estimated from the generated Markov chain � .y/ using:

O�z D
1

b � o

bX
yDoC1

�.y/z for z D 1; : : : ; B; (12)

where o is the Warm Up Phase. Based on the mean values
estimated in Eq. 12 and the realizations of the Markov chain
generated by Algorithm 1, the VCM of the parameters can
be estimated (refer to Gelman et al. (2013)):

O† O� O�Iz;i D
1

b � o

bX
yDoC1

�
�.y/z � O�z

� �
�
.y/

i � O�i

�
for z D 1; : : : ; B ; i D 1; : : : ; B: (13)

4 Closed LoopMonte Carlo Simulation

The Closed Loop Simulation (CLS) in this chapter is
based on an experiment conducted at the Geodetic Institute
Hanover using a multi-sensor system consisting of a laser
scanner and GNSS equipment. The experiment aimed to
determine the transformation parameters between the global
coordinate system defined by the GNSS equipment and the
laser scanner’s local, sensor-defined coordinate system using
a high-precision laser tracker. For further details, refer to
Paffenholz (2012). The CLS was developed to estimate the

expected accuracy of the parameters and was used to validate
the Bayesian model presented in Algorithm 1. The advantage
of a CLS is that the true functional and stochastic model in
Eq. 1 to Eq. 4 are known. Real data processing is beyond the
scope of this paper.

4.1 The Framework of the Simulation

The CLS involves a 3D non-linear regression model of a
circle with 6 parameters: two for orientation (' and !/, one
for radius (r), and three for center (cx; cy; cz). The observable
3D circle points are described by

Q̀
x;t WD Q̀

1;t D h1;t

�
Q̌
�

D Qr sin . Q�t / cos . Q'/C Qcx; (14)

Q̀
y;t WD Q̀

2;t D h2;t

�
Q̌
�

D Qr sin . Q�t / sin . Q'/ sin . Q!/C r cos . Q�t / cos . Q!/C Qcy; (15)

Q̀
z;t WD Q̀

3;t D h3;t

�
Q̌
�

D �Qr sin . Q�t / sin . Q'/ cos . Q!/C r cos . Q�t / sin . Q!/C Qcz; (16)
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where t D 1; : : : ; n (with n D 1000) and Q�t D Q�O C Q�� �

.t � 1/. In this equation the parameter �O is the unknown
orientation and the parameter �� is the angle of rotation of
the TLS between two observations.

In this simulation, the functional parameters are the 3D
circle parameters ˇ, which were assumed to take the true
values Qcx D 0:12 Œm�, Qcy D �3:36 Œm�, Qcz D �0:10 Œm�,
Qr D 0:50 Œm�, Q! D �0:05 Œdeg�, Q' D 0:01 Œdeg�, Q�O D

184:00 Œdeg� and Q�� D 0:36 Œdeg�. The model of Eq. 2
with a VAR order of p D 1 is used in the CLS as
the stochastic model for generating the realisations of the
coloured noise. The VAR matrix QA1 then results according
to Eq. 3 for the chosen true coefficients to Q̨1I1;1 D 0:50,
Q̨1I1;2 D �0:10, Q̨1I1;3 D 0:15, Q̨1I2;1 D 0:10, Q̨1I2;2 D

�0:20, Q̨1I2;3 D 0:25, Q̨1I3;1 D 0:20, Q̨1I3;2 D �0:05 and
Q̨1I3;3 D 0:75. For the generation of the random white

noise, the stochastic model U t � t
�
0; Q‰ ; Q�

�
is used in

the CLS. The scaling matrix in Eq. 4 is initialized with the

scaling factors Q D
�
8:8 6:1 11:9

�T
Œm� and the correlation

coefficients Q� D
�
0:37 �0:15 0:09

�T
. The degree of freedom

of the Student distribution is fixed to Q� D 4:14.

4.2 Results of the Simulation

In the CLS, the results of the developed Bayesian MCMC
Algorithm 1 in Sect. 3 are compared with the results of the
GEM algorithm in Kargoll et al. (2020). The GEM model
in the CLS was run twice: once with the estimation of the
parameter � (referred to as GEM), and once with a known
degree of freedom � D 10;000;000. The latter scenario rep-
resents the case where the likelihood function corresponds
to a multivariate normal distribution. The purpose of these
runs is to show the effect of incorrect noise assumption
on the estimation results. The initial values for the MCMC
algorithm were set to b D 5000 and o D 2000, and the initial
values for the parameters were set to the true parameters of
CLS to avoid any biases in the results.

In the following analysis, the parameters estimated by
MCMC Algorithm 1 and GEM algorithm are subtracted
from the true values Q� given in Sect. 4.1. From this follows
� O�z;s D O�z;s � Q�z with z D 1; : : : ; B , s is the index for
Monte Carlo run of the CLS with s D 1; : : : ; 10;000 and B
is the total number of the parameters. The estimated reduced
parameter values are shown for specific chosen parameters
in Fig. 1 using the boxplot. The parameters estimated by
MCMC and GEM algorithms are compared with true values
and shown in Fig. 1. The results show that the parameters
estimated by MCMC and GEM algorithms are almost the
same, with wider confidence intervals for functional parame-
ters in the GEM estimator with � D 1. The estimated VAR
coefficients are comparable among all estimators, with unbi-

ased estimates for the other two estimators. The estimated
correlation coefficients show that the GEM estimator with
� D 1 scatters more around the true values compared to the
other two estimators. The results of the MCMC and GEM
solutions are similar but there are differences in the degree
of freedom (�) and the parameters in the scaling matrix (‰).
The median of the boxplots for � and  x deviates more
for the GEM compared to MCMC, but the deviation is not
noticeable for the correlation coefficients (�). However, the
larger deviation of the median in the GEM does not affect the
dispersion of the estimated parameters, which is comparable
for both MCMC and GEM.

The performance of both algorithms was compared by
using the estimated Ǒ to determine Ò , and then calculating
the residuals Qvi;t ;s (i D x; y; z and t D 1 : : : 1000, s D

1 : : : 10;000) to see how well the predictions matched the true
observations. The mean, standard deviation, minimum, and
maximum of the residuals were determined and are shown in
Table 1.

The GEM algorithm generates residuals with slightly
smaller values compared to the MCMC algorithm. The
differences between the estimated parameters � O� and � O x
presented in Fig. 1 have no influence on the calculated
results of Table 1, because the residuals Qvx , Qvy and Qvz are
only calculated on the basis of the estimated parameters Ǒ .
However, the differences shown in Table 1 are not significant
compared to the parameters Q , which was used to create the
white noise for the CLS. The prediction of Q̀

x and Q̀
y have

less deviations than the Q̀ z component due to the symmet-
rical circle trajectory in the x-y component, which supports
estimation. However, in the z-component, inaccuracies in the
estimated parameters have a stronger effect.

5 Conclusions

In this paper, a robust Bayesian model with VAR process
was presented and compared to a classical model based on
a GEM algorithm and a VAR model with multivariate nor-
mal distribution assumption for the white noise. The robust
Bayesian model showed almost identical results to the robust
classical model, with differences arising from the use of
different estimators for the parameters. The robust Bayesian
model offers the advantage of being able to determine the
precision of the parameters and to apply different estimators
for the parameters, which is not possible with the classical
model without a significant increase in computational cost.
The limitations of the robust Bayesian model and its future
applications, such as investigating the quality of the VCM
and the convergence of the Markov chains, as well as defin-
ing an informative prior density and validating the model on
real data, will be explored in future work.
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Fig. 1 Differences between the estimated values and true values for the 10,000 CLS runs as a box plot. For GEM � D 1 the degree of freedom
is fixed at � D 10;000;000

Table 1 Descriptive statistics for estimated residuals between pre-
dicted observations and true observations

Parameter/Alg. Mean � Min Max
Qvx Œm� GEM Œ� D 1� �0:001 0:121 �0:635 0:545

GEM 0:000 0:098 �0:473 0:477

MCMC 0:000 0:100 �0:490 0:489

Qvy Œm� GEM Œ� D 1� 0:000 0:083 �0:385 0:489

GEM 0:000 0:068 �0:327 0:284

MCMC 0:000 0:069 �0:336 0:322

Qvz Œm� GEM Œ� D 1� �0:001 0:332 �1:461 2:246

GEM 0:000 0:269 �1:378 1:103

MCMC 0:001 0:276 �1:333 1:253
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An Estimate of the Effect of 3D Heterogeneous
Density Distribution on Coseismic Deformation
Using a Spectral Finite-Element Approach

Yoshiyuki Tanaka, Volker Klemann, and Zdeněk Martinec

Abstract

The advancement of the Global Geodetic Observing System (GGOS) has enabled mon-
itoring of mass transport and solid-Earth deformation processes with unprecedented
accuracy. Coseismic deformation is modelled as an elastic response of the solid Earth
to an internal dislocation. Self-gravitating spherical Earth models can be employed in
modelling regional to global scale deformations. Recent seismic tomography and high-
pressure/high-temperature experiments have revealed finer-scale lateral heterogeneities in
the elasticity and density structures within the Earth, which motivates us to quantify the
effects of such finer structures on coseismic deformation. To achieve this, fully numerical
approaches including the Finite Element Method (FEM) have often been used. In our
previous study, we presented a spectral FEM, combined with an iterative perturbation
method, to consider lateral heterogeneities in the bulk and shear moduli for surface loading.
The distinct feature of this approach is that the deformation of the entire sphere is modelled
in the spectral domain with finite elements dependent only on the radial coordinate. By
this, self-gravitation can be treated without special treatments employed when using an
ordinary FEM. In this study, we extend the formulation so that it can deal with lateral
heterogeneities in density in the case of coseismic deformation. We apply this approach
to a longer-wavelength vertical deformation due to a large earthquake. The result shows
that the deformation for a laterally heterogeneous density distribution is suppressed mainly
where the density is larger, which is consistent with the fact that self-gravitation reduces
longer-wavelength deformations for 1-D models. The effect on the vertical displacement
is relatively small, but the effect on the gravity change could amount to the same order
of magnitude of a given heterogeneity if the horizontal scale of the heterogeneity is large
enough.
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1 Introduction

Recent advancements in terrestrial and satellite gravity
observations have enabled us to monitor mass transports
associated with physical processes in the atmosphere, ocean,
hydrosphere, and cryosphere with an unprecedent accuracy
(Crossley et al. 2013; Wouters et al. 2014). These surface
mass transports cause elastic and anelastic deformations of
the solid Earth. The resultant deformation of the density
interfaces (atmosphere-crust and crust-mantle boundaries,
etc.) and compression/dilatation of the solid-Earth material
lead to an additional change in the gravity field. By
physically modelling this process and comparing the model
results, we can learn about deformation mechanisms and
rheological properties of the material (e.g., crustal rigidity,
mantle viscosity) (Whitehouse 2018).

In addition to surface loading, co- and post-seismic grav-
ity changes induced by large earthquakes have been observed
by satellite observations with spatial scales of �300 km
and amplitudes of several �Gals (1 �Gal D 10�8 m s�2)
(e.g., Matsuo and Heki 2011). It is widely accepted that
coseismic deformation is physically represented by the elas-
tic response to an internal dislocation. To interpret gravity
changes due to large earthquakes, dislocation models have
been proposed, which assume a self-gravitating sphere with
a 1-D (i.e., spherically symmetric) internal structure (Sun
2014; Zhou et al. 2019). However, seismic tomography
and high-temperature/high-pressure experiments nowadays
reveal increasingly finer internal structures, particularly in
plate subduction zones (Hasegawa and Nakajima 2017). This
motivates us to estimate the effects of laterally heterogeneous
structures on gravity changes.

So far, several methods have been proposed to calculate
coseismic deformation of a laterally heterogeneous Earth
model. They can be categorized into two types. (Semi-
)analytical perturbation approaches (e.g., Pollitz 2003;
Fu and Sun 2008) give a physically clear image on the
causes of the deformation. However, the perturbation
methods employed make it difficult to deal with strong
lateral heterogeneities. On the other hand, fully numerical
approaches such as the finite element method (FEM) and the
spectral element method can treat such heterogeneities (e.g.,
Cheng et al. 2019; Pollitz 2020). However, the inclusion
of self-gravitation can cause modelling errors when using
a commercial package of the FEM. To prevent this, special
treatments of self-gravitation are necessary (e.g., Wu 2004;
Nield et al. 2022; Vachon et al. 2022).

To address the above difficulties associated with strong
heterogeneity and self-gravitation, Tanaka et al. (2019)
employed a spectral finite-element approach (Martinec
2000) which combines the advantages of the analytical
and numerical approaches. Tanaka et al. (2019) considered

lateral heterogeneities in the bulk and shear moduli in
modelling of the elastic response to surface loading. This
model was applied to ocean tide loading (Huang et al. 2021).
However, lateral heterogeneities in density have not yet been
considered.

The purpose of this study is to extend the method by
Tanaka et al. (2019) for the case of laterally heterogeneous
density distributions when modelling coseismic deforma-
tion. In Sect. 2, we first explain the way that the spectral
finite-element approach facilitates computation of global
deformation. Next, we estimate the effect of a 3-D density
distribution. In Sect. 3, after some checks of the method,
we demonstrate the effects of 3-D density distribution on the
coseismic vertical displacement and gravity change due to a
megathrust earthquake. Finally, in Sect. 4, results and future
work are summarized.

2 Method

2.1 An Overview of the Spectral
Finite-Element Approach

We apply the approach to the governing equations for the
elastic deformation of a self-gravitating sphere (Farrell 1972)
under free-surface and internal source conditions represented
by double-couple forces that are equivalent to a disloca-
tion. No terms are ignored/approximated in the governing
equations and no additional forces/boundary conditions are
added. The governing equations are converted into a cor-
responding variational problem associated with the elastic
strain and gravitational energies (E � Ebulk C Eshear C Egrav)
and the work derived from the surface and source conditions
(ıF) (Tanaka et al. 2014):

ıE .u; ıu; �1; ı�1/ D ıF .ıu; ı�1/ ; (1)

where u, �1 and ı denote the displacement, the incremental
gravity potential and the variation, respectively. The variation
in the shear strain energy is given as

ıEshear .u; ıu/ �

Z

V

2� .�� ı�/ dV ; (2)

where� and � denote the shear modulus and the strain tensor,
respectively, and V indicates a volume integral over the entire
sphere. The source time function included in ıF is assumed
to be a step function. The solution of Eq. (1) gives the static
deformation which balances the double-couple forces.

Commercial FEM packages usually employ 3-D finite
elements to compute Eqs. (1) and (2). In our approach,
however, Eq. (2) is decomposed into the 1-D and residual
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3-D parts:

ıEshear D

Z

V

2�0.r/ .�� ı�/ dV

C

Z

V

2�� .r; �; '/ .�� ı�/ dV ;
(3)

where (r, � ,®) denote the radial distance, colatitude and
longitude, respectively, and �0 and 4� represent the shear
modulus of the reference 1-D model and the difference from
�0, respectively. We apply 1-D finite elements in the radial
direction and represent angular dependencies of the strain
field by tensor spherical harmonics. Then, thanks to their
orthogonal properties, the first term on the LHS of Eq.
(3) becomes straightforward for numerical evaluation. The
second term is numerically evaluated (Martinec 2000). We
assume that lateral heterogeneities exist only within a small
volume 4V near the source (i.e., 4� D 0 outside 4V and
4V � V). Then, we can take the integration domain of
the second term to be much smaller than the entire sphere.
These treatments reduce costs for computing the global
deformation to a large extent.

2.2 Inclusion of Laterally Heterogeneous
Density Distributions

The variation in the gravitational energy for the 1-D case is
given by Eq. (42) of Martinec (2000) as

ıEgrav
�
u; �1; ıu; ı�1

�

�

Z

V

�0

�
grad

�
u� grad �0

��

� div u grad �0 C grad �1

�
� ıudV

C

Z

V

� 1

4�G

�
grad �1� grad ı�1

�
C �0

�
u� grad ı�1

��
dV ;

(4)

where G is the gravitational constant and �0(r) and
g0(r) � grad �0 denote the density and gravity for the initial
state before deformation takes place. In the following, we
extend this energy variation to the laterally heterogeneous
case and will come back to the remaining 3-D part of the
energy variation which is not included in Eq. (4).

When there is a small lateral heterogeneity, the initial
stress field, before an earthquake occurs, deviates only
slightly from the hydrostatic state. In the following, u
and �1 represent the coseismic deformation with respect
to this laterally heterogeneous initial state. We substitute
�0 C 4�(r, � ,®) and g0 C 4g(r, � ,®) into �0 and g0 in Eq.
(4), respectively. Here, 4� denotes the difference from the
1-D density distribution at the initial state due to a given
lateral heterogeneity. Since gravity is linearly dependent

on density, Poisson’s equation is valid for the incremental
density. Therefore, div grad 4� D 4�G4� holds and
4g (� grad 4�) denotes the static gravity increment due
to 4�. Subtracting the energy variation for the 1-D case
from the result, neglecting the terms including the product of
4�4g, and considering the orthogonality of vector spherical
harmonics, we obtain

ıE�
grav;jm D ıEI

grav;jm .��/ C ıEII
grav;jm .�g/ ; (5)

where

ıEI
grav;jm D

X
j 0m0

Z
�V

�� .r; �; '/

2
4

�
�

4g0Ujm

r
C

Jg0Vjm

r
C

dFjm

dr
C8�G�0Ujm

�
ıU �

j0m0

C
�

g0Ujm

r
C

Fjm

r

�
ıV �

j0m0C
�
Ujm

dıF �

j0m0

dr
C

Vjm

r
ıF �

j0m0

�
3
5 dV

(6)

and

ıEII
grav;jm

D
X
j 0m0

Z

V

�g .r; �; '/ �0.r/

�	
�

4Ujm

r
C

J Vjm

r



ıU �

j0m0 C

	
Ujm

r



ıV �

j0m0

�
dV

(7)

(c.f., Eq. (65) of Martinec (2000)). Here, (U(r),V(r),F(r))jm
denote spherical harmonic coefficients for the vertical and
horizontal displacements and the incremental gravity poten-
tial at degree j, order m. The asterisks represent complex
conjugates and J D j(j C 1) is a factor originating from
div u, and 4g represents the magnitude of 4g in the radial
direction. The products of the vector spherical harmonics in
the integrands (e.g., S.�1/

jm �S.�1/

j0m0 /(see, Eq. (B1) of Martinec
(2000)) are omitted for simplicity. Note that, in the 3-D
case, summations over j 0 and m 0 appear, indicating a modal
coupling with other degrees and orders.

The integrands in Eqs. (6) and (7) have a common term

	
�

4Ujm

r
C

J Vjm

r



ıU �

j0m0 C

	
Ujm

r



ıV �

j0m0

� KU .r/ıU �
j0m0 C KV .r/ıV �

j0m0:

(8)

By this notation, the corresponding energy variations for j0,
m0 can be written as

ıEI 0
grav;jm �

Z
�V

�� .r; �; '/ g0

h
KU ıU �

j0m0CKV ıV �
j0m0

i
dV

(9)
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and

ıEII 0
grav;jm �

Z

V

�0.r/�g .r; �; '/
h
KU ıU �

j0m0CKV ıV �
j0m0

i
dV :

(10)

It is expected that
ˇ̌
ˇıEI 0

grav;jm

ˇ̌
ˇ �

ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ for two

reasons. First, 4�/�0 is �10�2 and 4g/g0 is �10�5

(10 mGal/980 Gal) in the real Earth, which means
4�g0 � �04g. Second, 4g and KU, V are smaller outside
4V in Eq. (10) (note that the source is located within4V and
the deformation (i.e., Ujm and Vjm included in KU, V ) decays
with the square of the epicentral distance (Okada 1992).
Assuming that 4V has a shape of a spherical cap, we will
roughly estimate a ratio between the magnitudes of Eqs. (9)
and (10). We assume that KU�K V�D/r, where D D1 within
4V and D D ds/(a � r)2 outside 4V. Here, ds (D40 km)
and a (D6,371 km) are the depth of the point source and the
Earth’s radius. The density of the 1-D case, �0, is homoge-
neous within the Earth and 4� is set to 1

100
�0 within 4V.

The integration is performed by an elementary numerical
difference method. The result is shown in Sect. 3.1.

Now, we come back to the part which is excluded in the
energy variation in Eq. (4). In the 3-D case, the last three
terms in Eq. (A7) of Martinec (2000) add to Eq. (4). The last
term of Eq. (A7) associated with discontinuities within the
Earth vanishes in the present case because we do not consider
lateral heterogeneities near the core-mantle boundary (CMB)
and the normal vector of the fault is orthogonal to the
displacement (shear slip is assumed). The third term in Eq.
(A7) associated with the surface integral vanishes when 4V
and the deformation field caused by the source are line
symmetric, as employed in Sect. 2.4. The second term in Eq.
(A7) is given as

1
2

R
V

�
.grad �0� ıu/ .u� grad �0/ � .grad �0�u/

.ıu� grad �0/
�
dV :

(11)

Substituting �0 C 4�(r, � ,®) and g0 C 4g(r, � ,®) into Eq.
(11), and based on the same argument as for Eq. (10), we can
approximate Eq. (11) as

g0

2

Z

�V

Œ.grad��� ıu/ U � .grad���u/ ıU 	 dV : (12)

We consider the case where 4� is constant within 4V.
Then, grad4� takes non-zero values only on the boundary
of 4V. Furthermore, we note that the terms including the
vertical gradient of the density in Eq. (12) cancel out on a
horizontal surface. Therefore, we consider only the vertical
surface which consists of the boundary of 4V. We derive a
weak formulation and evaluate the magnitude of Eq. (12).
The result is shown in Sect. 3.1.

2.3 Iteration

The effect of the lateral heterogeneity is finally determined
by solving the following equation iteratively, as described in
Tanaka et al. (2019).

ıE1D
�
ui ; ıu; �i

1; ı�1

�
D ıF .ıu; ı�1/ � ıE�

grav

�
ui�1; ıu; �i�1

1 ; ı�1

�
;

(13)

where ıE 1D denotes the energy variation excluding the
effects of lateral heterogeneities. At the first step (i D 1),
ıE�

grav is set to zero. For i � 2, ıE�
grav is computed with

the solution obtained at the previous step. This iteration
is repeated until (u,�1)i Š (u,�1)i � 1. The convergence
behavior is shown in Sect. 3.1.

2.4 Model Setting

We use a synthetic rectangular fault model to simulate coseis-
mic deformation due to a megathrust earthquake. The length
and width of the fault are 550 km and 100 km, respectively,
and a slip of 10 m is uniform on the fault (MW D 8.7).
The strike, dip and rake angles are (0

ı

, 25
ı

, 90
ı

) and the
fault is dipping to the west (Fig. 1). The fault is distributed
within �2.5

ı

	 ˇ 	 2.5
ı

and 104.1
ı

	 ® 	 105
ı

, where
ˇ and ® denote latitude and longitude, respectively, and the
fault is located at depths ranging from 15 km to 57 km.

PREM (Dziewonski and Anderson 1981) is considered as
the reference Earth model. In Model A, we assume that the
density is larger by 5% than in the reference model within a
region of �20

ı

	 ˇ 	 20
ı

, 80
ı

	 ® 	 110
ı

and depths from
0 to 670 km, including the above fault (Fig. 1). In Model B,
the heterogeneity of Model A is given in a region excluding
the fault (80

ı

	 ® 	 104
ı

). The elastic parameters in Models
A and B are the same as in PREM. The results shown below
are proportional to the magnitude of the heterogeneity. If the

a b

West
ϕ=80°

ϕ=80° 104° 110°

β=20°

−20°

West

104°
110°

East East

AB

North

0 km

670 km

AB

Fig. 1 The fault and Earth structure models used in the computation.
(a) A cross section of the Earth model at latitude ˇ D 0. The rectangular
reverse fault (green line) consists of 92 point sources having the same
dip-slip mechanism. The density in the upper mantle is increased by
5% with respect to the PREM for the longitudinal ranges (®) shown by
the black (Model A) and red (Model B) arrows. (b) A top view. The
green box shows a vertical projection of the fault. The horizontal ranges
where the density is increased are shown by the black (Model A) and
red (Model B) boxes



An Estimate of the Effect of 3D Heterogeneous Density Distribution on Coseismic Deformation Using a Spectral Finite-. . . 107

lateral heterogeneity is 1% instead of 5%, then, the effect
on the deformation becomes 1/5 the magnitude of the case
shown here

Assuming a future satellite gravity mission, we set the cut-
off spherical harmonic degree as 100 and applied no spatial
filter such as a Gaussian filter to the computational results.
The radial intervals of the finite elements, 4r, depend on
depth and are set as follows: 4r D 1 km for depths 0–
100 km, 5 km for 100–150 km, 10 km for 150–300 km,
15 km from 300 km to the CMB and 20 km below the
CMB. The horizontal grid needed for numerical compu-
tations of the 3-D part is set according to the method
described in Martinec (2000). The numbers of the grid
points are 152 and 512 in latitude and longitude, respec-
tively.

The effects of lateral heterogeneities of Models A and B
are evaluated as the differences with respect to the reference
model. The results are shown in Sects. 3.2–3.3.

3 Results and Discussions

3.1 Check of the Approximations Used

Table 1 shows the ratio
ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ =

ˇ̌
ˇıEI 0

grav;jm

ˇ̌
ˇ for density

distributions with different radii and thicknesses. The ratios
are less than 0.5% for all the cases. The reason why the
result for depths 0–670 km is equal to that for depths
0–100 km is that the deformation is concentrated in the
proximity of the source, which is located at the depth of
40 km, and the integrand in ıEII 0

grav;jm below the depth of
100 km is much smaller than in 4V. These results allow us
to neglect ıEII

grav;jm (Eq. 7) for practical applications because
the effects of lateral heterogeneities in the density are at most
a few percent of the peak coseismic deformation as shown
later, and hence neglecting ıEII

grav;jm causes an error of the
order of only 0.01%, which is below detectable levels of
geodetic observations.

Next, we compare the surface deformation for Model
B obtained by including and excluding the energy varia-
tion represented by Eq. (12). The results show that, when
the energy variation of Eq. (12) is included, the vertical
displacement and the gravity change decrease by 0.4 mm
and 0.04 �Gal at the most, where the density distribution
laterally changes near the west side of the fault (®�104

ı

).
The magnitudes of these decreases are less than 0.1%, if
compared with the deformation at the corresponding location
in the 1-D case (peak p2 in Figs. 2a and 3a). However,
for the vertical displacement, a difference of 0.4 mm is not
negligible because the effect of the lateral heterogeneity is
of the same order of magnitude. Figure 2b, c show that the
differences between the cases including and excluding the

Table 1 The ratio of the gravitational energies
ˇ̌
ˇıEII 0

grav;jm

ˇ̌
ˇ =ˇ̌

ˇıEI 0

grav;jm

ˇ̌
ˇ estimated for different density distributions. The density

is increased by 1% within a cap-like volume occupying 0 � � � ˛,
0 � ® � 2� and the depths shown below (� and ® denote colatitude
and longitude, respectively). A point source is located 40 km below the
north pole (i.e., � D 0)

˛ Depth II/I
(deg) (km) (%)

10 0–30 0.28

20 0–100 0.43

20 0–670 0.43

30 0–100 0.45

45 0–100 0.48

energy variation are visible. For the gravity change, the effect
of lateral heterogeneity is of the order of �Gal. Therefore, a
difference of 0.04 �Gal amounts to only �1% of the effect of
lateral heterogeneity. In the subsequent sections, we discuss
results obtained by including the energy variation of Eq.
(12).

Table 2 shows the result of iterations for Model B. We see
that the difference is largest between i D 1 and 2, amounting
to 0.03–0.3%. After i D 2, the differences are smaller than
0.02%, indicating that the spherical harmonic coefficients for
the vertical displacement converged at 10�4 level. A similar
tendency is seen for Model A.

These results are summarized as follows. As far as a
relatively large-scale heterogeneity like Models A and B is
concerned, the energy variation arising from 4g (Eq. 7) is
negligible and the energy variation represented by Eq. (12) is
not, in estimating the effect due to the lateral heterogeneity
on the coseismic deformation. A few steps of iteration are
sufficient.

3.2 Vertical Displacement

Figure 2a shows the vertical displacement along the latitude
line passing through the center of the fault (ˇ D 0

ı

and
80

ı

	 ® 	 130
ı

) computed for the reference model. We see
an uplift of �1 m at ®�105

ı

above the shallower edge of
the fault (p1) and a subsidence of 0.5 m at ®�102

ı

above
the deeper edge of the fault (p2), which is a well-known
pattern observed for thrust-type fault motion. The blue curve
in Fig. 2c shows the difference between model A relative
to the reference model. We see that the pattern is roughly
opposite to that in Fig. 2a (compare p1 with p3 and p2 with
p4), but the effect is very small. The largest lower peak (p3)
has amplitude of 1 mm, indicating that a 5% increase in
density reduces the coseismic maximum uplift seen at p1 by
�0.1%.
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Fig. 2 Coseismic vertical displacements at latitude ˇ D 0 for different
Earth models. The horizontal axes denote longitude (Fig. 1). The green
line denotes the fault, and the cut-off spherical harmonic degree is
100. (a) The vertical displacement, U, for the reference 1-D model
(PREM). (b) The difference in the vertical displacements computed for

the reference model and Model A (blue)/B (red). The energy variation
of Eq. (12) is excluded. The blue and red boxes denote the ranges where
the density in the upper mantle is increased. (c) The same as in (b) but
Eq. (12) is included. (d) The same as in (c) but the shear modulus in the
upper mantle is increased instead of the density (Model C)
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Fig. 3 The same as in Fig. 2, but the coseismic gravity change is shown. (a) The gravity change, g0, for the reference 1-D model. (b) The difference
in the gravity changes computed for the reference model and Model A (blue)/B (red). Note that the patterns are opposite to those in the vertical
displacements in Fig. 2 (b) and that the relative magnitude amounts to a few percent (compare peaks p1 and p3 or p2 and p6)

The reduction of the vertical displacement is consistent
with the fact that the inclusion of self-gravitation suppresses
longer-wavelength deformations for a flat-Earth model
(Barbot and Fialko 2010). This can be understood if
we consider that an increase in density enhances the
gravitational effect (i.e., �0g0 is replaced by (�0 C 4�)g0
where 4� > 0).

For comparison, Fig. 2d shows a result when the shear
modulus is increased by �10% for the same region as the
region where the heterogeneity is considered in Model A.
We see that the pattern of the difference is the same as in
the coseismic change and that amplitude increases by �10%.
This indicates that the difference in the vertical displacement
is proportional to the difference in the shear modulus. This
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Table 2 A convergence of the solution for Model B. The first column
(i) shows numbers of iterations (Sect. 2.3). Ujm denote the real part of
the spherical harmonic coefficient of the vertical displacement at the
surface (r D a) for degree j and order m

i U10, 0 U20, 10 U60, 40 U100,100

1 �8.589E-4 �7.490E-4 �2.584E-4 3.055E-3

2 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

3 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

4 �8.617E-4 �7.496E-4 �2.585E-4 3.054E-3

is because the energy of the seismic source is proportional
to the shear modulus. In contrast, the effect of the density is
only �1/20 of the given heterogeneity in magnitude (namely,
the 5% increase in the density caused the 0.1% increases in
the vertical displacement).

Next, we compare Models A and B. The red curve in
Fig. 2c shows the result for Model B. We see that, when
the heterogeneity is excluded from the source region, the
largest negative peak at ®�105

ı

for Model A (p3) is reduced
(p5) and that Model B shows a close pattern to Model A on
® < 104

ı

. This indicates that the reduction of the vertical
displacement occurs mainly in the region where the density
is increased.

3.3 Gravity Change

We have seen that the effect of the laterally heterogeneous
density distribution on the vertical displacement is as small
as 0.1% of the coseismic change. However, the effect on the
gravity change is an order of magnitude larger, as will be
shown below.

Figure 3a shows the coseismic gravity change computed
for the reference model. The pattern resembles the vertical
displacement in Fig. 2a. The blue curve in Fig. 3b shows the
difference between Model A and the reference model. We
see that the pattern is similar to the coseismic change in Fig.
3a and that the increase in amplitude amounts to �2% of the
coseismic gravity change (compare p1 with p3).

The reason why the effect on the gravity change is larger
than on the vertical displacement can be explained by a
Bouguer (slab) approximation:

�
g0 C �g0

�ˇ̌
rDa

� 2�G .�0 C ��/jr�a .U C �U /

Š 2�G .�0U C �0�U C U ��/jr�a:
(14)

In this equation, a denotes the Earth’s radius, and g 0 and U
are the surface gravity change and the vertical displacement
caused by the deformation for the reference model. 4 means
the difference from the reference model due to the inclusion
of the lateral heterogeneity. The first term in the rightmost
side of Eq. (14) represents the gravity change due to the

deformation in the 1-D case. In the second term, 4U is
opposite to U and is significantly smaller than U (Sect. 3.2).
So, the last term is dominant as the effect of the lateral
heterogeneity, indicating that the deformation for the 1-D
model and the local density distribution take effects and that
the ratio of the third term to the first term is 4�/�0.

The red curve in Fig. 3b shows the result for model B. We
see that the difference between Models A and B is small on
® 	 104

ı

where the heterogeneity in Model B is present and
that amplitudes of Model B become smaller for ® > 104

ı

.
This result suggests that the effect of the lateral heterogeneity
on the gravity change is larger where the heterogeneity is
present, as seen for the vertical displacement.

Fu and Sun (2008) estimated coseismic gravity changes
for a 3-D heterogeneous spherical Earth model. The magni-
tude of the lateral heterogeneity in the density used in their
computation was �˙0.5% with respect to the PREM. In
the shallow upper mantle, the main sources of heterogeneity
are subducting slabs. Their result shows that the effect of
lateral heterogeneity on the gravity change caused by a point
dislocation placed at 100 km or below was 0.01–0.03%. In
our result, the effect on the gravity change is of the same
order of magnitude as for the heterogeneity. That means that,
if a heterogeneity was 0.5%, the effect on the gravity change
would be �0.5% in our model. A few reasons are considered
to explain why our result is an order of magnitude larger
than their result; In our study, (1) the horizontal scale of the
heterogeneity given is much larger than the thickness of slab,
(2) the source depth is shallower than 100 km, (3) the cut-off
degree is lower and thus longer-wavelength deformations are
dominant, which are more strongly affected by the gravity
field (generated by the initial static density distribution).
To examine the effect due to a fine 3-D density structure
for a shallow seismic source, higher-degree terms must be
computed, which will be done in a next study.

4 Conclusions

We developed a spectral finite-element approach for estimat-
ing the effects of laterally heterogeneous density distribu-
tions on coseismic deformations. Considering that deforma-
tions due to a great earthquake will be observed by a future
satellite gravity mission, we computed a coseismic vertical
displacement and gravity change up to jmax D 100 for Earth
models with a large-scale lateral heterogeneity being present
near the seismic fault. The results show that the increase in
the density within the upper mantle by 5% over a horizontal
scale of �3,000 km could suppress the vertical displacement
by an order of 0.1% and amplify the gravity change by an
order of 1% with respect to the case for the reference 1-
D model. The differences from the 1-D model were larger
where the heterogeneity was present, and a larger increase in
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the gravity change than in the vertical displacement occurs,
because the local density structure maps directly into the
gravity change.

In this study, we imposed a few limitations on the hetero-
geneity: a large horizontal scale, being present in the vicinity
of the source, and simple (symmetric) geometry. Under these
conditions, we showed that the estimation of the energy
variation of Eq. (A7) of Martinec (2000) could be simplified.
For more complex density distributions by subducting slabs,
plumes, surface topography and bathymetry, it might be more
effective to directly compute the energy variation of Eq.
(A2), which is an alternative representation of Eq. (A7).
Furthermore, for surface loading, gravity increments due to
lateral heterogeneities in the density enter into the boundary
conditions. In this case, it should be examined whether
neglecting the second term of the gravitational energy (Sect.
2.2) is valid. To extend the applicability of the spectral FEM
to more general cases is a future challenge.
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On the Estimation of Time Varying AR Processes

Johannes Korte, Till Schubert, Jan Martin Brockmann,
and Wolf-Dieter Schuh

Abstract

In time series analysis auto regressive (AR) modelling of zero mean data is widely used for
system identification, signal decorrelation, detection of outliers and forecasting. An AR
process of order p is uniquely defined by r coefficients and the variance of the noise.
The roots of the characteristic polynomial can be used as an alternative parametrization
of the coefficients, which is used to construct a continuous covariance function of the AR
processes or to verify that the AR processes are stationary. In this contribution we propose
an approach to estimate an AR process of time varying coefficients (TVAR process). In the
literature, roots are evaluated at discrete times, rather than a continuous function like we
have for time varying systems. By introducing the assumption that the movement of the
roots are linear functions in time, stationarity for all possible epochs in the time domain is
easy to accomplish. We will illustrate how this assumption leads to TVAR coefficients where
the k-th coefficient is a polynomial of order k with further restrictions on the parameters
of the coefficients. At first we study how to estimate TVAR process parameters by using a
Least Squares approach in general. As any AR process can be rewritten as a combination of
AR processes of order two with two complex conjugated roots and AR processes of order
one, we limit our investigations to these orders. Higher order TVAR processes are computed
by successively estimating TVAR processes of orders one or two. Based on a simulation, we
will demonstrate the advantages of a time varying model and compare them to the stationary
time stable model. In addition, we will give a method to identify time series, for which the
model of the TVAR processes with linear roots is suitable.

Keywords

AR process � Motions of the roots � Non-stationarity � Time varying AR coefficients

1 Introduction

In time series analysis the choice of auto regressive (AR)
processes is often used, for example as decorrelation filter
(see Schubert et al. (2019), Schuh et al. (2014), or Schuh and
Brockmann (2019)) or to estimate discrete covariances (see
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Schuh (2016, p. 32, eq. (182))). The transition to time vari-
able AR processes (TVAR processes) for non-stationary time
series has proven to be a suitable extension (see Charbonnier
et al. (1987), or Kargoll et al. (2018)). In this paper we
concentrate on TVAR(p) process of order p D 1 or p D 2

and its estimation. The most common way to estimate TVAR
processes is to chose the function of the coefficients, without
going further into the characteristics of the processes. This
has been done with either trigonometric functions, modified
Legendre polynomials, or even spheroidal sequences (see
Grenier (1983), Hall et al. (1977) and Slepian (1978)).
Kamen (1988) also includes the motion of roots for time
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varying coefficients of a TVAR(2) process in the case that
the first parameter is constant and the second is a linear
function. Here we go the other way around and determine
the TVAR(p) coefficients assuming a linear model for the
motion of the roots. This is done in seven sections. In
Sect. 2 we derive the TVAR process and the associated
auxiliary equations which represents the connection between
the coefficients and the roots. Section 3 proves that in the
case of linear motions of the roots, the k-th coefficient of the
TVAR process is a polynomial of order k. The polynomial
representation results in a parameter change from the actual
coefficients of the AR process to the coefficients of the
individual polynomials. A new estimation equation is derived
in Sect. 4. In order to guarantee that the motion of the roots
is linear, the parameters must meet further conditions, which
are derived in Sect. 5. The robustness of this estimation is
tested on a simulation, in Sect. 6. A short summary of the
paper as well as the results are presented in Sect. 7.

2 Relating Time Varying AR Process
Coefficients to the Time Varying Roots

The definition of the time stable AR (TSAR) process can
be found in a variety of books.1 The process St is called
time stable AR process of order p (TSAR(p) process) if it
is described by the recursive equation

St D ˛1St�1 C ˛2St�2 C ::: C ˛pSt�p C Et ; (1)

where ˛1, ˛2, ..., ˛p are the coefficients of the AR process
and Et is an i.i.d. sequence with variance �2

E (see Hamilton
(1994, p. 58, eq. (3.4.31))).

For an AR(p) process the auxiliary equation is defined by:

b.x/ D xp � ˛1xp�1 � ˛2xp�2 � ::: � ˛p (2)

D .x � r1/.x � r2/:::.x � rp/: (3)

In (3) the rk , (with k D 1; 2; :::; p), are the roots (b.x/
Š

D 0)
of the auxiliary equation. These are either real values or they
appear as complex conjugated pairs. In Hamilton (1994, p.
34) it is shown that the AR process is stationary if and only
if these roots are inside the unit-circle (krkk < 1). For a time
varying AR (TVAR) process of order p the definition is given
by Kamen (1988) as:

St D ˛1.t/St�1 C ˛2.t/St�2 C ::: C ˛p.t/St�p C Et : (4)

1The following definition could be found in Box et al. (2008), Brock-
well and Davis (1991), Buttkus (2000), Hamilton (1994), Priestley
(1981). Here the notation of Hamilton (1994) is used.

where ˛1.t/, ˛2.t/, ..., ˛p.t/ are the time varying coefficients
of the TVAR(p) process, which change their value with the
time t . Et remains an i.i.d. sequence with variance �2

E . The
TVAR process should be stationary at any fixed but arbitrary

time � in a given interval I . This is equal to krk.�/k
Š
< 1

8 � 2 I . So for t D � the auxiliary equation can be
computed by

b� .x/ D xp � ˛1.�/xp�1 � ˛2.�/xp�2 � ::: � ˛p.�/ (5)

D .x � r1.�//.x � r2.�//:::.x � rp.�//: (6)

If (6) is converted into a polynomial again, and then
a coefficient comparison with (5) is made, the coefficients
˛k.�/ can be calculated directly:

˛k.t/

D .�1/kC1

p�kC1X
m1D1

p�kC2X
m2Dm1C1

p�kC3X
m3Dm2C1

:::

pX
mkDmk�1C1

rm1.t/rm2.t/rm3.t/:::rmk
.t/ (7)

This means that ˛k.�/ can be written as the sum of all possi-
ble products of k different roots multiplied with .�1/kC1.

3 Derivation of the Time Varying AR(p)
Process Coefficients from Linear Root
Motions

To keep it simple, we assume a linear polynomial for the
motion of the roots

rk.t/ D ak C bkt : (8)

Analogous to the time stable approach, the rk.t/ occur again
as real roots or as pairs of complex conjugated roots, and
therefore this also applies to ak and bk . So it follows from
the linear root motions in (8) that the coefficients ˛k.t/ from
(7) are polynomials of order k:

˛k.t/ D

kX
j D0

ˇ
.k/
j t j : (9)

In this context the ˇ
.k/
j , with k 2 Œ1; 2; :::; p] and j 2

Œ0; 1; 2; :::; k�, is the .j C 1/ parameter of the function ˛k.t/.
It should be mentioned that in this way the number of

unknown parameters increased from p to p2C3p

2
parameters.

Unfortunately, the representation of coefficients by poly-
nomials in (9) is not sufficient to guarantee linear root
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movements. Therefore, it is shown in Sect. 4 how the TVAR
coefficients ˇ

.k/
j are generally estimated and in Sect. 5

we derive the restrictions for linear root motions for the
TVAR(1) and TVAR(2) process.

4 Parameter Estimation for TVAR
Processes

In this section we will show how the parameters (ˇ.k/
j ) are

estimated. First, the parameter vector with the dimension
p2C3p

2
� 1 is set up in ascending order j . This means that

the ˇ
.k/
j belonging to ˛k.t/ do not follow each other, but the

ˇ
.k/
j are sorted according to the order of the monomials (k):

ˇ WD Œˇ
.1/
0 ˇ

.2/
0 ::: ˇ

.p/
0„ ƒ‚ …

p

ˇ
.1/
1 ˇ

.2/
1 ::: ˇ

.p/
1„ ƒ‚ …

p

ˇ
.2/
2 ::: ˇ

.p/
2„ ƒ‚ …

p�1

::: ˇ
.p�1/
p�1 ˇ

.p/
p�1„ ƒ‚ …

2

ˇ.p/
p„ƒ‚…
1

�T : (10)

With this reorganisation and using (9), the transformation
between ˛k.t/ and ˇ

.k/
j is given by

2
666664

˛1.t/

˛2.t/

˛3.t/

:
:
:

˛p.t/

3
777775

D

2
666664

10 0 0 ::: 0

0 1 0 ::: 0

0 0 1 ::: 0

: : :

0 0 0 ::: 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

t 0 0 ::: 0

0 t 0 ::: 0

0 0 t ::: 0

: : :

0 0 0 ::: t

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0 0 ::: 0

t2 0 ::: 0

0 t2 ::: 0

: : :

0 0 ::: t 2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0 ::: 0

0 ::: 0

t3 ::: 0

: : :

0 ::: t 3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
� � �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

0

0

0

:
:
:

tp

3
777775

„ ƒ‚ …

ˇ

(11)

D M ˇ

(12)

We estimate the parameters directly from the observations
by solving the least squares problem St C vt D T ˛.t/. By
equating the noise and the negative residuals (Et D �vt ),
we can derive the linear relationship between the TVAR
coefficients ˛.t/ and the observations St from (4). So the
design matrix T is given by

T D

2
664

Sp�1 Sp�2 Sp�3 ::: S0

Sp Sp�1 Sp�2 ::: S1

:::

Sn�1 Sn�2 Sn�3 ::: Sn�p

3
775 with n �

p2 C 3p

2
> p:

(13)

If we exchange the parameters for the LS problem from ˛k.t/

to ˇ
.k/
j like it is seen in (11), then the new estimation problem

is given by

2
66664

Sp

SpC1

SpC2

:::

SpCn

3
77775

Š
D T Mˇ

Š
D

�
T jT ˇ tj

�
T ˇ t:2

�
.1 W n; 2 W p/j:::j .T ˇ t:p/ .1 W n; p W p/

�
ˇ:

(14)

Now t is a vector containing the observation times. Here the
l-th row of T ˇ t results from the l-th row of T multiplied
by the l-th element in t, and t:h is the element-by-element
exponentiation of t to power h.

5 Additional Conditions for Linear Root
Motions

In this section we show which conditions must apply to
the TVAR(1) and TVAR(2) estimation processes of Sect. 4
to result in linear root motion. For higher order TVAR
processes, successive TVAR(1) and TVAR(2) processes are
estimated in all possible combinations. The best combination
is then found via the AIC for AR processes (see Buttkus
(2000, p. 261, eq. (11.85))).

5.1 The TVAR(1) Process with Linear Motion
of the Roots

Using (5) and (6) for the TVAR(1) process shows that
r1.�/ D ˛1.�/. Since it follows from (9) that ˛1.t/ is a
linear function, the same is true for r1.t/. So every TVAR(1)
process estimated by (14) has linear root motions.

5.2 The TVAR(2) Process with Linear
Motions of the Roots

The analytical conversion from coefficients ˛1.�/ and ˛2.�/

to roots r1.�/ and r2.�/ for a TVAR process is given by
the solution of the quadratic auxiliary equation (5), see
Abramowitz and Stegun (1965, p. 17, eq. 3.8.1):

r1;2.�/ D
˛1.�/

2
˙

s�
˛1.�/

2

�2

C ˛2.�/: (15)

Because of (9) ˛1.t/ is linear. But as we assume a linear
root motion, the expression under the root must be a linear
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function to the square so that the sum of both remains
linear:

�
˛1.�/

2

�2

C ˛2.�/
Š

D .f C g�/2: (16)

Both sides are quadratic equations which are equal if and
only if each of the three polynomial coefficients are equal.
Coefficients comparison leads to three conditions, for which
two are used to determine f and g. After f and g have been
inserted into the third condition, and ˛.�/ has been replaced
by the ˇ

.k/
j (see (9)), the non-linear condition is given by

�
ˇ

.1/
0

	2

ˇ
.2/
2 C

�
ˇ

.1/
1

	2

ˇ
.2/
0 � ˇ

.1/
0 ˇ

.1/
1 ˇ

.2/
1

C 4ˇ
.2/
0 ˇ

.2/
2 �

�
ˇ

.2/
1

	2 Š
D 0: (17)

Adding this condition to the estimation in (14) leads to a
TVAR(2) process with linear root motions.

6 Robustness of the Estimate Against
Deviations

In this section we will simulate 100 TVAR(3) processes, each
consisting of 1000 observations. In each simulation, both the
same linear roots and the same standard derivation of the
noise (�n D 10�3) are used. The true roots are chosen as:

r1 D 0:2 C 0:9 � t

r2;3 D 0:3 ˙ 0:6i C .0:5 � 0:2i/ � t with t 2 Œ0; 1�: (18)

Furthermore each TVAR process is initialized by p inde-
pendent and identically distributed random variables with
standard derivation �n and passes through a warm-up phase
over 500 observations. To show the robustness of the TVAR
estimate the process is modelled 100 times with different
noise. As a reference we use the estimates of time stable AR
coefficients under the assumption of a stationary processes.
(I.e. the TSAR coefficients are calculated using the Yule-
Walker equations (Hamilton 1994, p. 59, eq. (3.4.36)).)

One of the 100 realizations can be seen in Fig. 1. Each
dot in Fig. 2 shows one out of three roots of an AR process
estimated from a window of 100 observations using the
Yule-Walker equations. The change in brightness (from dark
to light) visualizes the shift of the window. A new point
represents a shift of an observation. The green lines represent
the roots of the true TVAR process (from Eq. (18)) and it can
be seen that they follow the estimated roots of the moving

0 200 400 600 800 1000
time t

-5

0

5

10-3

Fig. 1 A time series for one set of white noise
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Fig. 2 Roots of the windowed estimate, compared to the roots of the
time variable estimate for the timeseries on the right

window. For all other estimates, the whole time series was
used instead of switching to a windowing.

In Fig. 4 the estimated root motions of the TVAR estimate
for all 100 simulations are shown. Comparing the roots of
the TSAR process (Fig. 3) with the TVAR root motion (Fig.
4), it is noticeable that the roots of the TSAR process scatter
around constant values, but the time-varying estimate tends
to vary around the true root motions (which are shown in
red).

Figure 5 shows the difference between one of the two
estimation methods (TVAR (green) or TSAR (blue) estima-
tion) and the true root movement. Instead of considering all
100 realizations individually, the deviations for each time are
averaged over all realizations.

It is immediately noticeable that the residuals for the
real root in the TVAR estimate (on the right side of Fig. 5)
are consistently smaller than in the TSAR estimate. And
even in the case of complex roots, the time variable root
has on average smaller deviations although the time stable
estimation performs better in the interval t 2 Œ130; 420�.
Due to the two dimensional representation in Fig. 4 it seems
that smaller residuals occur with the real root than with the
complex roots, but this is refuted by Fig. 5 where it can be
seen that the residuals for the complex roots are smaller than
those for the real root.
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Fig. 3 All root motions of the TSAR estimates for the 100 simulations
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Fig. 4 All root motions of the TVAR estimates for the 100 simulations
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Fig. 5 Residuals between the roots from the TSAR and the true roots
(blue), and the residuals between the roots from the TVAR estimate and
the true roots (green). Furthermore a distinction is made between the
complex roots, on the left side, and the real root on the right side

7 Conclusion and Outlook

In this paper we have shown that the use of TVAR processes
with linear motions of the roots leads towards an estima-
tion where the k-th coefficient of the TVAR process is a
polynomial of order k. But to construct linear root motions,
additional conditions are necessary which we derived here
for the TVAR(1) and the TVAR(2) process. By successively
calculating TVAR(1) and TVAR(2) processes, TVAR pro-
cesses of higher order can also be estimated, whose roots
then also moves linearly. This can be seen directly in the

example where a TVAR(3) process was assembled from a
TVAR(1) and a TVAR(2) process.

To show the robustness of the TVAR estimate, 100 time
series were simulated and the linear roots of the TVAR
estimate were first compared with the roots of AR processes
of a moving window. Since the root movement of the TVAR
estimate is the averaged over time by the root computed by
the moving window, the window can be used as a test if the
model of the TVAR estimate with linear roots is suitable for
a time series.

Second, 100 time series were simulated by which a TVAR
or TSAR process was estimated. The results show, that
the roots from the TVAR estimate fit better with the true
roots than the roots of the TSAR estimation. This means
that the introduction of TVAR processes with linear root
moves provides a suitable extension for time series analysis.
The results also show that the estimation with the TVAR
processes remains reasonably stable.

One problem that has gone unnoticed here is that the
linear roots run out of the unit circle over time. In order
to solve this problem, future research should focus on root
movements which guarantee stationarity for any length of
time.
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Refinement of Spatio-Temporal Finite Element
Spaces for Mean Sea Surface and Sea Level
Anomaly Estimation

Moritz Borlinghaus, Christian Neyers, and Jan Martin Brockmann

Abstract

The mean sea surface (MSS) is an important reference surface for oceanographic or geodetic
applications such as sea level studies or the geodetic determination of the steady-state ocean
circulation. Models of the MSS are derived from averaged along-track radar altimetry which
provides instantaneous measurements of the sea surface heights (SSH). SSH observations
corrected for tides and other physical signals and can be modeled as the sum of the MSS and
sea level anomalies (SLA) which describe the temporal variability of the ocean. The typical
MSS products are defined as grids of heights at a specific reference epoch and result from
spatial and temporal prediction and filtering of the along-track SSH observations, whereas
SLA products are computed with respect to an MSS model and are also defined as e.g. daily
or averaged monthly grids.

In this contribution a one-step least-squares approach is used to estimate a continuous
spatio-temporal model of the MSS and filtered SLAs from along-track altimetric SSH
measurements using C 1-smooth finite element spaces for the spatial representation. The
finite elements are defined on triangulations with different edge lengths and, thus, different
spatial resolutions for MSS and SLA modeling. To model the temporal ocean variability
finite B-Splines base functions are combined with the spatial finite elements to construct
a spatio-temporal model. This contribution presents a concept to adapt the triangulations
to the spatial characteristics of the signal of the MSS and SLA in a study region south of
Africa. Least-squares residuals are studied to detect areas which show unmodeled spatial
signal. These serve as input for the refinement of the triangulation. The results show that
the residuals are indeed a good indicator for unmodeled signal, but as they are significantly
influenced by unmodeled temporal signals as well, the refinement has only a small local
impact on the obtained MSS and SLA models.
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1 Introduction

To estimate a continuous model in the spatial and temporal
domain of both, the mean sea surface (MSS) and sea level
anomalies (SLA) from altimetric sea surface height (SSH)
measurements is the key idea of the proposed work. The
sea surface can be represented as the sum of the long time
mean (i.e. MSS) and its temporal variability (i.e. SLA).
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Both products have various areas of application such as the
computation of mean dynamic topography (MDT) models
and the derived long-term stable ocean currents (Knudsen
et al. 2011; Becker et al. 2014; Mulet et al. 2021). Sea
level anomalies can be furthermore used to detect mesoscale
eddies (Bolmer et al. 2022).

Common MSS estimation approaches use multi-step pro-
cedures in which the temporal variability is eliminated from
the SSH observations in a first step (e.g. Pujol et al. 2018;
Andersen and Knudsen 2009; Jin et al. 2016). Whereas
temporal averaging of all cycles is done for the exact repeat
missions (ERM) to obtain a mean profile along the reference
track, prior information like gridded SLA products (e.g.
Taburet et al. 2019) are used to reduce the ocean variabil-
ity from SSH observations obtained in Geodetic Mission
phases (GM). Alternatively, binned SSH observations can
be approximated by a temporal model per grid cell, to
estimate a cell dependent temporal correction. Afterwards,
collocation-like interpolation and gridding techniques are
used to combine the corrected data and to estimate MSS (e.g.
Pujol et al. 2018; Andersen and Knudsen 2009; Jin et al.
2016) models on pre-defined over-sampled grids.

In contrast to this, the approach used here is a generic one-
step approach based on finite elements as basis functions to
describe the spatial signal of both, the MSS and the SLA
(Borlinghaus et al. 2023). In this context, the SLA model
is mainly used to absorb the temporal ocean variability.
The finite elements are set up on triangulations which have
initially a constant edge length over the entire study area to
start with a homogeneous spatial resolution. To describe the
temporal domain, B-Splines with a constant node spacing are
used as finite basis function to obtain a high flexibility. But,
these initial models show – especially in high variable areas –
large least-squares residuals. In this study the spatial distribu-
tion of the residuals are used as an indicator of an insufficient
parameterization and thus to refine the triangulations.

The manuscript is organized as follows, in Sect. 2 the
theoretical background to construct the C 1-smooth finite
element space (FES) is summarized. Based on this space the
least-squares observation equations are set up to estimate the
spatio-temporal model. The used altimetric satellite data and
the analyzed estimation scenarios are explained in Sect. 3.
In Sect. 4 a reference scenario configuration is introduced
which serves as a basis for the refinements. The scenario with
the refined FES for the static model component is analyzed
in Sect. 5. In Sect. 6 the impact of the refinement of the FES
for the temporal model component is evaluated. Finally, a

summary, some conclusions and an outlook are provided in
Sect. 7.

2 Summary of theMSS Estimation
Approach

The basis for this study is the finite element based spatio-
temporal estimation approach for the MSS and the SLA as
proposed in Borlinghaus et al. (2023). Here the key idea
is shortly summarized (cf. Borlinghaus et al. 2023). The
geophysically corrected SSH is represented as the sum of the
long time mean (MSS) and the sea level anomalies (SLA)

fSSH.�; �; �t/ D gMSS.�; �/ C fSLA.�; �; �t/ (1)

where both gMSS W R2 ! R and fSLA W R3 ! R are contin-
uous functions and the time is represented as �t WD t � t0
with the reference epoch t0. To model the temporal behavior
of the SLA, it is assumed that changes in time are continuous
and separable from spatial variability. The spatial domain
is modeled with finite elements as basis functions, which
have only a local support. This allows to model complex
signals by a continuous mathematical function which have
no accessible closed expression that is directly derived from
physical laws. Within this study finite elements defined on
triangular meshes are chosen, as they can easily be adapted
to regions with complex boundaries (e.g. coastal regions).
There are different finite elements which guarantee a C 1-
smooth surface. Here the Argyris element (Argyris et al.
1968) is selected because it is the element with lowest
degrees of freedom which guarantees C 1-continuity while
spanning a complete polynomial space. In particular this is
the local space of polynomials of degree 5 with 21 degrees
of freedom including the function value, two first and three
second derivatives for each of the three nodes, as well as the
three normal derivatives in the centers of the edges.

The entire domain of interest is partitioned into a finite
number of triangular sub-regions, each of which has its own
locally defined basis functions and corresponding parame-
ters. To construct the triangulations utilized in this study
the software package JIGSAW (Engwirda 2017) is used. It
allows for an automatic generation of meshes given geo-
metrical boundary constraints which define the local study
area. The desired location specific size of the triangles can
be configured via an input map which defines the target
length of the edges in the region of interest. Based on that
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input a mesh of well-defined triangles is optimized by the
software.

As described in Eq. (1), the SSH is modeled by two
components, one for the static part and one for the temporal
ocean variability. The static MSS signal is described by the
function

gMSS.�; �/ D
X

i2IMSS

aMSS;i bMSS;i .�; �/ (2)

where i 2 IMSS describes the indexing of all IMSS piece-
wise defined basis functions bMSS;i .�; �/ and aMSS;i the
corresponding scaling coefficients/parameters.

To model the spatio-temporal SLA signal

fSLA.�; �; �t/ D
X

i2ISLA

X
j 2J

eSLA;i ;j bSLA;i .�; �/B3
j .�t/

(3)

is used, which is build by tensor product of the spatial
and temporal basis functions. Here eSLA;i ;j are the unknown
spatio-temporal parameters and bSLA;i .�; �/ again the spatial
finite elements.

In detail, uniform B-Splines of degree 3 (cf. De Boor
2001; Fahrmeir et al. 2021) with a constant node spacing of
�� Ð 6 d of the temporal nodes � are used in this study
to obtain a high temporal resolution. B3

j .�t/ describes the
j -th B-Spline basis function .j 2 �/. As the chosen B-
Spline function corresponds to a low-pass filter with cut-
off frequency of �c � 1

2��
D 1=12 1/d (Sünkel 1985),

the model can represent signals down to a 12 d period.
Given a single ERM of the Jason family with a temporal
repeat of ıt D 10 d, the Nyquist frequency �N D 1

2ıt
D

1=20 1/d follows, thus 20 d periods are resolvable. Given a
combination of simultaneous operating ERM missions (e.g.
Jasons and SARAL, HY-2A, and Sentinel-3) it turned out
that in the joint spatio-temporal analysis the 6 d node spacing
in close to the highest possible temporal resolution which can
be estimated stably.

In Borlinghaus et al. (2023) it is shown that for a sta-
ble estimation of both components, two different FES are
required. A fine resolution for gMSS to capture the high fre-
quency static (geoid) signal, and a significantly coarser space
for fSLA. Consequently, the resolvable spatial resolution is
limited. As for both functions the Argyris element is selected,
the spatial resolution of the functions completely depends on
the mesh.

To estimate the unknown parameters aMSS;i and eSLA;i ;j

in a least-squares adjustment, Eq. (1) is used to setup the
linear observation equations for all SSH observations as left
hand side. Here, the SSH observations are assumed to be
uncorrelated with a variance of �2

0 , i.e the covariance matrix

of all SSH observations L is

†fLg D �2
0 I ; (4)

although it is known that the noise standard deviation of
SSHs is spatially not homogeneous.

To be complete, the estimation is stabilized applying a
Tikhonov regularization (cf. Tikhonov et al. 1977) with man-
ually adapted individual weights from variance component
analysis (cf. Koch and Kusche 2002) for each parame-
ter group (i.e. individual identity matrices for parameters
of the same kind, i.e. SLA and MSS as well as for the
function values, first and second derivatives which are the
local parameters of the finite elements). This compensates
spatial or temporal data gaps and inappropriate observation
distribution close to the boundary of the region of interest.
Furthermore, linear zero-mean constraints are applied to the
SLAmodel to prevent leakage of static MSS signal into fSLA.
Additionally, the temporal model is stabilized at its borders
via forcing the second derivatives to zero (for further details
see Borlinghaus et al. 2023).

3 Real Data Experiment

Focus of the presented study is the improvement of the
triangulations for both the spatial MSS modeling and the
spatial SLA modeling. Therefore, the approach summarized
in Sect. 2 is applied in a real data experiment to obtain
optimized triangulations. In Borlinghaus et al. (2023), it is
assumed that both meshes are known a priori, they have been
generated as homogeneous meshes, i.e. homogeneous edge
lengths which have been chosen motivated by the spatial
sampling of the satellites and computational resources.

Figure 1 shows the investigated region south of Africa
where the methodology is tested. This region is selected
because of its high spatial and temporal variability and

Fig. 1 Test region south of Africa with an estimated model of the mean
sea surface
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Table 1 Description of the three estimation scenarios with the
involved FES and the temporal node spacing ��

MSS SLA
Scenario FES Edge length FES Edge length ��

R F35 35 km F175 175 km Ð 6 d
S F17;35 17 to 35 km F175 175 km Ð 6 d
T F35 35 km F130;200 130 to 200 km Ð 6 d

to keep the computational effort handy. The high spatial
variability results from high frequency geoid signal and is
especially visible in the southwest of the region. Furthermore
the Agulhas current is the dominant temporal feature in this
region which is subject to large temporal variability.

To obtain a best possible spatial resolution for the MSS
and a sufficient temporal resolution to compensate the SLA,
observations of both exact repeat altimetry missions (ERM,
e.g. Jason-1) and geodetic missions (GM, e.g. CryoSat-2)
have to be jointly analyzed. Because of the high temporal
resolution ERMs have a poor spatial resolution. For GMs,
the opposite is true.

Thus, all available ERM and GM altimetry missions
for which a L2P data product is available on AVISO+ for
the study region and period (2010 to 2019, inclusive) are
selected.1 These are in total 3:2 � 106 observations collected
by nine satellite missions. The reference epoch t0 is set to
January 1st, 2015, which is in the mid of the study period.

This study configuration is used to estimate models of
the MSS and the SLA utilizing the summarized estimation
approach, while targeting a data adaptive refinement of the
meshes of both FES. Table 1 summarizes the main configu-
ration details of the three scenarios considered here.

4 Reference Scenario and Objectives of
the Study

The initial scenario R serves as a reference. MSS and SLA
are estimated in order to have a kind of internal baseline for
comparisons of models estimated with refined triangulations.
This reference scenario utilizes a FES with a homogeneous
target edge length of 35 km in the entire domain for the MSS
and 175 km for the SLA. Please note that it is not easy to
provide a precise measure of the spatial resolution of the
FES. But, given the definition of the ARGYRIS element, the
local polynomials within a triangle are of degree five. Con-
sequently, this corresponds to one dimensional polynomials

1 The L2P data product as processed on behalf of CNES (Cen-
tre National d’Etudes Spatiales) SALP project and distributed
by AVISO+ are used. A detailed product description and data
access see https://www.aviso.altimetry.fr/en/data/products/sea-surface-
height-products/global/along-track-sea-level-anomalies-l2p.html (last
accessed 25/10/22).

of degree five along all slices as well. Given the six param-
eters of the polynomial, the polynomial has four degrees of
freedom accounting for two constraints required to guarantee
the C 1-smoothness at the borders of the triangles. Thus,
we expect a spatial resolution in the order of edge length
divided by four kilometer, which is confirmed by numerical
experiments (mot shown here). For the MSS it is �9 km, and
thus slightly above the along-track sampling of the 1Hz SSH
sampling (�7:5 km).

In Borlinghaus et al. (2023) it is shown that the FES for
the temporal model component requires a coarser resolution
to avoid overparameterization. As it is mainly determined
by the ERMs, the reference edge length is tailored to the
ground track spacing of the ERMs which is in the order of
100 km to 315 km (e.g. Sentinel-3 and the Jason family). For
the reference scenario, a edge length of 175 km was chosen.
The temporal resolution given by the node spacing of the B-
Splines (cf. Table 1) remains constant for all scenarios. It is
chosen as �� Ð 6 d, thus differences in the results obtained
only relate to the refined triangulation.

The configuration of the reference scenario summarized
above is used to estimate a MSS and the model for the
SLAs. Based on the resulting least-squares residuals, this
study addresses the research question, whether it is possible
to improve the spatial meshes of both – MSS and SLA –
based on this internal quality measure.

Figure 2 shows the empirical standard deviations of all
residuals within a single triangle for the reference scenario
R. Whereas Fig. 2a uses the fine MSS mesh for the com-
putation of the standard deviations, Fig. 2b shows them
computed for the coarser SLAmesh. The standard deviations
in both figures are not homogeneous, they are in a range of
4 cm to 5 cm in the northwestern and southeastern part, but
reach more than 8 cm in the central part where the Agulhas
current is the dominant feature. Additionally, some small
regions with higher values are visible in the southwestern
part in Fig. 2a. The higher variances are an indicator for
an insufficient parameterization, either in the spatial or in
the temporal domain. Furthermore, larger difference at the
eastern boundary become visible, which are attributed to
numerical issues and boundary effects. The overall stan-
dard deviation of the residuals in the test region of R is
5:5 cm.

The goal of this study is to use the maps shown in Fig. 2
to refine both triangulations, for the MSS as well as the SLA
to identify the unmodeled higher resolution signals. As the
larger standard deviations can either result from (i) unmod-
eled spatial high resolution MSS signal, (ii) unmodeled
spatial higher resolution SLA signal, or (iii) unmodeled high-
resolution temporal SLA signal, these maps are a good proxy
for mesh refinement. They are converted to a to JIGSAW input
map of target edge lengths, from which optimized meshes
are generated. For regions of lower standard deviation, edge

https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html
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Fig. 2 Standard deviation of the residuals per triangle of R of the FESs (F35 and F175) for the static (a) and temporal (b) model component

length at the upper limit are requested, whereas for regions
of high standard deviations edge length of the lower limit are
requested. In scenario S , this is studied for the mesh of the
MSS, where the target edge length is allowed to vary between
17 km to 35 km depending on the standard deviation (F17;35).
Consequently the spatial resolution is doubled in regions of
highest variance. Technically speaking, the spatial map of
standard deviation (cf. Fig. 2a) is converted to a map of target
edge lengths, mapping the standard deviation to a target edge
length of the interval 17 km to 35 km. Based on this, a new
mesh is optimized by JIGSAW, trying to obtain the regionally
requested edge lengths. The mesh for the SLA is not changed
(F175, cf. Table 1).

This is modified in scenario T , which uses the homoge-
neous F35 for the MSS, but refines the mesh for the SLA
component to 130 km to 200 km, again depending on the
regional standard deviations shown in Fig. 2b. As the mesh
of the SLA component dominates the number of unknown
parameters and to avoid overparameterization, the lower
bound of the interval for the target edge length is limited to
130 km. Here, the upper limit is chosen as 200 km, which
allows even larger triangles in regions of low variance.

In the following two sections (Sects. 4 and 5), the results
obtained with the newly generated meshes in the two dif-
ferent scenarios are analyzed and compared to the reference
scenario R.
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5 RefinedMSS Component

The first refined scenario S combines the refined FES for the
MSS with the original homogeneous F175 for the SLA. The
homogeneous reference mesh is shown in Fig. 3a and the
refined mesh optimized by JIGSAW is shown in Fig. 3b with
the area of the individual triangles color coded. Although the
correlation of the mesh to the map of standard deviations
is visible (cf. Fig. 2a), it is obvious that the mesh, due to
the transition from coarse to fine, is blurry. As targeted, the
major refinements are seen in the area of the Agulhas current
with the highest standard deviation of the residuals, but also

some refinements with a smaller extend can be seen in the
southwest.

After estimating the MSS and SLAmodel with the refined
mesh for the MSS, new residuals are computed. Figure 3c
shows the standard deviation of the residuals per triangle of
F17;35. Compared to Fig. 2a there is no difference in magni-
tude of the standard deviation visible and the Agulhas current
is still the dominant feature. Compared to the reference
scenario in Fig. 2a, no obvious difference is visible. Figure 3d
shows the differences of the standard deviations evaluated on
F35. Here, red colors indicate a reduced standard deviation of
the refined scenario compared to the reference scenario. The

Fig. 3 Approximate triangle sizes of the reference (F35, a) and refined
FES (F17;35, b), the standard deviation of the residuals per triangle (c)
and the change of the standard deviations per triangle compared to

the reference scenario (d), the RMS per triangle of the differences to
CNES_CLS15 MSS (e) and the differences of the RMS compared to
the reference scenario (f)
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highest improvements can be seen in the southwestern part,
but additional improvements are visible in the northern part.
But, in the center of the region where the main refinement
happens, improvements are only minor. However, the overall
standard deviation of the residuals could not be improved
significantly (sub mm level).

To only rely on the residuals to judge the quality of the
refinement is disadvantageous. As external comparison, the
MSS model component is compared to the well established
model CNES_CLS15 MSS2 (Pujol et al. 2018). To do so the
model is evaluated on the grid provided by the comparison
model. Figure 3e shows the RMS of the difference between
the estimated MSS and the CNES_CLS15 computed per
triangle. In general, a good agreement of 1 cm to 4 cm is
achieved. The differences have a more or less random struc-
ture over the complete study area with highest values in
the region of the Agulhas current and in the southwestern
region. To show again the effect of the mesh refinement, the
differences of the RMS of differences to the CNES_CLS15
MSS are computed (see Fig. 3f). Again, red colors show
a reduced RMS and thus an improvement, green colors
correspond to larger RMS and thus a degradation.

The highest improvement are again visible in the south-
west and northern part. This confirms, that the refined model
captures an additional MSS signal. But, the central area
shows higher RMS values of the difference of the refined
model to the CNES_CLS15 MSS compared to the reference
model from scenario R. This can either indicate an over-
parameterization or a lower filtering effect caused by the
smaller triangles in this area. Due to the smaller triangles the
refined model has 27,446 degrees of freedom, compared to
14,043 of the reference solution. This suggests the conclu-
sion, that the increased standard deviation of the residuals
in the central area cannot be attributed to unmodeled MSS
signal. It has to be attributed to unmodeled spatio-temporal
SLA signal, which is studied in scenario T which uses the
reference mesh for the MSS (cf. Table 1).

6 Refined SLA Component

For the second model the refined FES (F130;200) for temporal
model component is used together with the original homo-
geneous mesh for the MSS (as for the reference solution).
Figures 4a and b show the reference and refined mesh. As
desired the main refinement appears in the high variable area
of the Agulhas current, but especially in the northwestern
and southeastern part regions with a coarser triangle sizes
are visible. Because of more then 600 temporal B-Spline

2 In order to adjust the different reference epochs an epoch adjustment
using DUACS Level 4 gridded SLA DT2018 maps (Taburet et al. 2019)
is performed.

nodes, small changes in the degrees of freedom of the spatial
FES have a large impact on the total number of unknown
parameters. Therefore the lower and the upper limit for
the target edge length are defined as 130 km to 200 km and
optimized by JIGSAW depending on the standard deviation
to obtain F130;200. This leads to only small changes in the
total number of parameters of the spatio-temporal SLA from
414,864 to 416,673.

Figure 4c shows the standard deviation of the residuals
of the model T . Again the main features in the area of the
Agulhas current are visible. To highlight the difference to the
reference solution, the differences of the standard deviations
are computed and are shown in Fig. 4d. The differences of the
standard deviations computed from the residuals of scenario
R and the refined scenario T show the largest improvements
as expected in the area of the refinement. But, some higher
values are visible in regions with a coarser triangulation
structure. The overall standard deviation of the residuals is
slightly reduced by 1mm, it is 5:4 cm.

For an external comparison, DUACS Level 4 gridded SLA
DT2018 maps are used. The spatio-temporal SLA model
(cf. Eq. 3) is evaluated on the grid and at the time stamps
provided by the product. Then the differences between both
time series are computed and the RMS is computed for each
pixel of the grid. Afterwards, RMS values for the triangles of
the different epochs are averaged (see Fig. 4e). Here the trend
of the Agulhas current is not visible as a dominant feature
but again larger mean RMS values are visible in regions with
higher temporal variability.

To get an impression of the improvement obtained by the
refinement the differences of the mean RMS values of the
reference model and the refined model are computed (see
Fig. 4f). Here the differences show a more or less random
characteristic with no dominant features in the area of the
FES refinement. Additionally the regional improvements
visible in Fig. 4d are not visible in Fig. 4f. This shows that,
due to the regional refinements, signal is modeled which
has no impact on the differences to the DUACS SLA maps.
Again, the overall mean RMS is slightly improved by 1mm
from 5:7 cm to 5:6 cm.

7 Summary, Discussion and Outlook

In this contribution, the refinement of the triangulation of
the FES which are used to model the MSS and the SLA
as a continuous mathematical function are studied. MSS and
SLA are jointly estimated from along-track SSH observation
in a least-squares adjustment. For the refinement, least-
squares observation residuals from an initial reference solu-
tion with a homogeneous mesh are used to identify conspicu-
ous spatial regions which are candidates for mesh refinement.
The model functions used in this study are compound by
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Fig. 4 Approximate triangle sizes of the reference (F175, a) and refined
FES (F130;200, b), the standard deviation of the residuals per triangle (c)
and the change of the standard deviations per triangle compared to the

reference scenario (d), the mean RMS per triangle of the differences to
DUACS SLA maps (e) and the differences of the mean RMS compared
to the reference scenario (f)

two components, one is static which models the MSS and
one spatio-temporal which approximates the temporal ocean
variability (SLA). Both parts utilize finite element basis
functions for spatial description, a high resolution FES for
theMSS and a lower resolution FES for the SLA. The latter is
composed to a spatio-temporal model using B-Splines basis
functions for the temporal domain.

To test this strategy, a small region south of Africa is
selected where a high temporal as well as high spatial
variability is expected. The reference scenario R for MSS
modeling uses a homogeneous FES with a target edge length
of 35 km and 175 km for the SLA component. In this con-

tribution, the refinement of both components is individually
studied, to better access the effects on the derived MSS and
SLA. The first scenario S refines the mesh for the MSS
to a target edge length of 17 km to 35 km depending on the
empirically derived standard deviation of the least-squares
residuals within a triangle of the mesh. The second scenario
T adjusts the FES for the temporal model component, to
target edge lengths of 130 km to 200 km, again depending on
the empirically derived standard deviations of the residuals.
For both refined scenarios, MSS as well as SLA models
are estimated and used to access the performance of the
refinement.
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The spatial pattern of estimated standard deviations per
triangle are a good internal quality measure to indicate
potential regions of an insufficient parameterization. It is
shown that they can help locally to better adapt the FES in
high-residual regions, e.g. the south-western part. In regions
of high temporal variability, the mesh can be refined as
well, leading to smaller least-squares residuals. But, when
comparing the results to reference models for the MSS,
degradations are visible as well, which indicates the risk
of overparameterization. However, the impact of the FES
refinement on both resulting scenarios is small, we conclude
that the choice of the initial meshes based on the data
sampling was reasonable. The regions of lowest standard
deviation are in the order of 4 cm which is inline with the
typical assumption of the accuracy of a few centimeter of a
single SSH measurement. The largest problem for the FES
refinement based on lest-squares residuals is to differentiate
between larger standard deviations resulting from (i) unmod-
eled MSS signal, (ii) unmodeled spatial SLA signal or (iii)
insufficient temporal resolution. This can lead to an iterative
process to compute refined FES. In general three different
design choices related to the approximation capabilities can
be adjusted:

• The fine spatial FES for the static model component
(MSS).

• The coarser spatial FES for the temporal model compo-
nent (SLA).

• The temporal resolution defined by the node spacing ��

of the B-Spline basis functions.

The first two design criteria were shown to have a negligible
impact on the overall results. For the FES of the MSS com-
ponent, the positive impact of the refinement is only visible
in some very local areas. Thus, the iterative refinement seems
to be a useful technique to refine the FES locally to avoid an
overparameterization in smoother areas.

But still, the highest potential to improve the estimated
models seems to be an increased resolution of the temporal
domain by reducing the node spacing of the B-Splines.
However, this is on the one hand limited by the available
data – i.e. the repeat cycle of the ERM (10 d) and the
number of available satellite missions operating in parallel.
On the other hand, this significantly increases the number
of unknown parameters which results in computational chal-
lenges and might cause numerical problems. This requires
more advanced and adopted regularization techniques.
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On the Coestimation of Long-Term
Spatio-Temporal Signals to Reduce the Aliasing
Effect in Parametric Geodetic Mean Dynamic
Topography Estimation

Jan Martin Brockmann, Moritz Borlinghaus, Christian Neyers,
and Wolf-Dieter Schuh

Abstract

The geodetic estimation of the mean dynamic ocean topography (MDT) as the difference
between the mean of the sea surface and the geoid remains, despite the simple relation,
still a difficult task. Mainly, the spectral inconsistency between the available altimetric
sea surface height (SSH) observations and the geoid information causes problems in the
separation process of the spatially and temporally averaged SSH into geoid and MDT. This
is aggravated by the accuracy characteristics of the satellite derived geoid information, as it
is only sufficiently accurate for a resolution of about 100 km.

To enable the direct use of along-track altimetric SSH observations, we apply a
parametric approach, where a C 1-smooth finite element space is used to model the MDT
and spherical harmonics to model the geoid. Combining observation equations for altimetric
SSH observations with gravity field normal equations assembled from dedicated gravity
field missions in a least-squares adjustment, allows for a joint estimation of both – i.e. the
MDT and an improved geoid.

In order to enable temporal averaging and to obtain a proper spatial resolution, satellite
altimetry missions with an exact repeat cycle are combined with geodetic missions. Whereas
the temporal averaging for the exact repeat missions is implicitly performed due to the
regular temporal sampling, aliasing is introduced for the geodetic missions, because of the
missing repeat characteristics. In this contribution, we will summarise the used approach
and introduce the coestimation of long-term temporal sea level variations. It is studied how
the additional spatio-temporal model component, i.e. linear trends and seasonal signals,
reduces the aliasing problem and influences the estimate of the MDT and the geoid.

Keywords

Finite elements � Geoid � Mean dynamic topography � Sea surface height � Signal separa-
tion � Spatio-temporal modelling

1 Introduction

The difference between the sea surface height (SSH) above
a reference ellipsoid and the geoid is the ocean’s dynamic

J. M. Brockmann (�) · M. Borlinghaus · C. Neyers · W.-D. Schuh
Institute of Geodesy and Geoinformation, University of Bonn, Bonn,
Germany
e-mail: brockmann@geod.uni-bonn.de; borlinghaus@geod.uni-bonn.
de; neyers@geod.uni-bonn.de; schuh@geod.uni-bonn.de

topography. The accurate knowledge of its steady-state part,
the mean dynamic ocean topography (MDT) is crucial for
both oceanographers (e.g. Wunsch and Gaposchkin 1980;
Fu 2014; Wunsch and Stammer 1998), as it gives valuable
information about the ocean’s circulation and geostrophic
surface currents, and geodesists (Rummel 2001), as it permits
the unification of independent local vertical datums. The
geodetic estimation of the MDT can be represented, under
the concept of signal de-convolution, as the separation of
the Mean Sea Surface (MSS) height into the MDT and the

© The Author(s) 2023
J. T. Freymueller, L. Sánchez (eds.), X Hotine-Marussi Symposium on Mathematical Geodesy,
International Association of Geodesy Symposia 155, https://doi.org/10.1007/1345_2023_224

129

http://crossmark.crossref.org/dialog/?doi=10.1007/1345_224&domain=pdf
mailto:brockmann@geod.uni-bonn.de
mailto:borlinghaus@geod.uni-bonn.de
mailto:borlinghaus@geod.uni-bonn.de
mailto:neyers@geod.uni-bonn.de
mailto:schuh@geod.uni-bonn.de
https://doi.org/10.1007/1345_2023_224


130 J. M. Brockmann et al.

geoid height. For the separation process, additional inde-
pendent information about the geoid, the MDT or both is
required. When omitting any kind of oceanographic input
data (ocean salinity, temperature, pressure), instead relying
only on satellite derived geoid and SSH data, the resulting
MDT estimate is called geodetic. A remaining scientific
challenge is the spectral inconsistency of the involved data
sets (e.g. Albertella et al 2008; Woodworth et al 2015).

Several approaches were developed and applied to deter-
mine a MDT from altimetric measurements and geoid infor-
mation at the global or regional scale. Basis are the altimetric
SSH measurements hSSH D horb � halt � c C o C e,
which result from the difference between the altitude of the
satellite (horb) and the raw altimeter range (halt) which have
to be corrected due to environmental conditions (c). These
include instrument and sea state bias, atmospheric, tidal and
inverted barometer corrections (Aviso 2020). Additionally,
the measurements contain random and systematic errors e

and a mission specific bias o. Due to the highly complex
signal structure of the SSH observations, containing a multi-
tude of individual constituents, most of the MDT estimation
approaches use preprocessed MSS products (e.g. Andersen
et al 2015; Schaeffler et al 2016) instead of the original
along-track SSH measurements. These result from a spatial
and temporal gridding and averaging of multi-mission along-
track observations, utilizing either deterministic or stochastic
approaches and taking care of data homogenization, removal
of the temporal ocean variability (OV) and a reduction of
errors. The MSS products are provided as fine grids (e.g.
10�10) and contain the averaged SSH of multiple mission
collected over decades with spatial resolution of a few
kilometers (Andersen et al 2015).

The geoid information is typically based on a spherical
harmonic model generated from satellite observations, e.g.
GRACE and GOCE. Consequently, it has a limited spa-
tial resolution of about 100 km with an accuracy level of
1 cm to 3 cm (e.g. Brockmann et al 2021).

To derive a consistent MDT from the difference of a MSS
and the geoid information (N )

� D MSS � N (1)

filtering is required to overcome the spatial inconsistencies.
The approaches mostly differ in the chosen filtering strategy,
the filter characteristics or the domain the filtering is applied
in (e.g. Albertella et al 2008; Bingham et al 2008; Čunderlík
et al 2013; Siegismund 2013; Gilardoni et al 2015; Knudsen
et al 2021).

In this study, we utilize a parametric least-squares
approach (cf. Becker et al 2014; Neyers 2017) which jointly
estimates both, a refined geoid as well as a model of the
MDT. Here, we analyse the feasibility of coestimating
a spatio-temporal model component which is supposed

to compensate the OV. This will reduce the reliance on
prior models used for reduction and/or assumptions about
implicit canceling. For this purpose, Sect. 2 summarizes the
parametric approach and introduces the applied estimation
strategy. Section 3 introduces the data, study region and the
configuration details for the numerical experiments applied
to study the extended model. The results obtained for both
configurations, i.e. with and without the spatio-temporal
extension, are presented and compared in Sect. 4. Finally,
Sect. 5 summarizes the results and draws conclusions.

2 Parametric Modelling Approach

2.1 Parametric Model Functions

2.1.1 Modelling the Geoid
The Earth’s gravity field is typically modelled by global
spherical harmonic basis functions. Although not optimal
when working regionally, this representation results from the
used gravity field information (cf. Sect. 3.2). The disturbing
potential at an evaluation point with spherical coordinates (r ,
�, ') then reads (e.g. Hofmann-Wellenhof and Moritz 2005)

T .r; �; '/ D
GM

R

lmaxX
lD0

�
R

r

�lC1 lX
mD0

Plm .sin'/

.clm cos.m�/ C slm sin.m�// � U .r; '/ ;

(2)

with the maximum degree lmax of the expansion. GM and R

are the gravitational constant of the Earth and the equatorial
radius, and Plm.�/ the fully normalized associated Legendre
basis functions andU .�/ the normal potential. clm and slm are
the Stokes coefficients. Using this representation, the geoid
can be approximated in the spherical harmonic domain and
represented as a function of ellipsoidal coordinates (h D 0,
�, �)

N .�; �/ D T .r .0; �; �/ ; �; ' .0; �; �// =�.�/; (3)

where �.�/ is the normal gravity.

2.1.2 Modelling theMDT
Since there is no natural choice of suitable basis functions
for the MDT, a finite element approach on a triangulation is
chosen to approximate the unknown function. The MDT is
modelled by the continuous function

�.�; �/ D
X
k2K

aMDT;k bk.�; �/ (4)

where aMDT;k areK unknown scaling coefficients of the basis
functions bk.�; �/ resulting from the chosen finite element
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space. In this study, the Argyris element (Argyris et al 1968)
is selected to achieve a C 1-smooth definition of � over the
domain of interest �. Within each triangle, polynomials of
degree 5 are spanned by 21 degrees of freedom. The spatial
resolution of zeta is then controlled by the mesh resolution,
i.e. triangle size.

2.1.3 Modelling the Ocean Variability
Similar to Borlinghaus et al (2023), a spatio-temporal finite
element space is constructed by a tensor product of spatial
and temporal basis functions. Whereas for the spatial domain
the same finite element space as for the MDT is chosen
(cf. (4)), the temporal model function is a linear combination
of a trend and seasonal harmonics

aOV;l .t / D eOV;1;l .t � t0/C

eOV;2;l sin .!.t � t0// C eOV;3;l cos .!.t � t0//
(5)

with reference epoch t0 and the fixed annual frequency !.
Combining these functions with a tensor product as in

Borlinghaus et al (2023) yields the spatio-temporal model
function

OV .�; �; t/ D
X
l2L

aOV;l .t /bl .�; �/ (6)

D
X
l2L

eOV;1;l .t � t0/bl .�; �/

CeOV;2;l sin .!.t � t0//bl .�; �/

CeOV;3;l cos .!.t � t0//bl .�; �/ (7)

which can be used to absorb long term signals of the ocean
variability. The scaling coefficients eOV;m;l of the spatio-
temporal basis functions are estimated in the least-squares
adjustment from the altimetric SSH observations.

2.2 Combined Estimation Procedure

The unknown Stokes coefficients clm and slm for the geoid,
aMDT;k for the MDT as well as optionally eOV;m;l for the
ocean variability are estimated from a joint adjustment of the
satellite-based geoid information and the altimetric sea sur-
face height measurements. As the gravity field information
is already available in form of normal equations of global
satellite-only gravity field models in spherical harmonic
domain, observation equations have to be set up for the
altimetric SSH measurements only.

SSH Observation Equations for Scenario A No ocean vari-
ability is estimated. Thus, it is assumed that the ocean
variability cancels due to the implicit spatio-temporal aver-
aging within the least-squares adjustment. Consequently the

observation equation for the i -th SSH measurement li at
location �i ; �i simply reads

li C vi D N .�i ; �i / C �.�i ; �i / C oj ; (8)

Here, vi are the residuals and oj is a mission specific bias
correction parameter which is estimated in addition. The bias
of one selected reference mission is fixed to zero.

SSH Observation Equations for Scenario B The ocean vari-
ability is coestimated using the model function from (6).
Especially for the geodetic missions it is not guaranteed
that the ocean variability cancels, due to the missing, or at
least very long repeat cycle. Thus, the observation equations,
which now depend on the measurement epoch, read

li C vi DN .�i ; �i / C �.�i ; �i /

C OV .�i ; �i ; ti / C oj :
(9)

Parts of the ocean variability can now be absorbed by
the deterministic function OV .�i ; �i ; ti /, which can reduce
aliasing signals in the MDT.

2.3 Smoothness Conditions

To support the separation and to make the resulting system
of equations solvable, smoothness conditions are formulated
for the geoid, the MDT and optionally the ocean variability.
For this purpose, regularization matrices are constructed and
applied in the adjustment process.

Regularization of the Spherical Harmonics The Kaula rule
is used to determine degree dependent weights of a diagonal
regularization matrix for all spherical harmonic coefficients
above degree 200, which cannot – at least not accurately
– be determined from the satellite based geoid information
assembled (indicated as SH medium and SH high deg in
Fig. 1). Regularization towards zero is applied using a small
weight of 10�4 just to make all spherical harmonic coeffi-
cients estimable.

Regularization of the MDT The separation of the SSH into
geoid and MDT only works for the long wavelengths, for
which the geoid is accurately known from the satellite based
geoid. To support the separation, the assumption that the
MDT is smooth can be added. For that purpose, the least-
squares objective function is extended by the minimization
of the norm of the gradient of the MDT, i.e. kr�kL2.�/. As
the Argyris element uses full polynomials of degree five, the
condition can be expressed as a (non-diagonal) regularization
matrix, which is derived by a numerical quadrature using
the control points and weights from Taylor et al (2005). An
empirical weight is used in the combination.
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+

altimetry regularization xcs

+ +

regularization xMDT
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FE MDT

(b)
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+

gravity field altimetry regularization xcs
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regularization xMDT regularization xOV

SH stable

SH medium
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FE MDT
FE OV trend
FE OV sin
FE OV cos

Fig. 1 Schematic view on the combination of normal equations for scenario A without, and B with coestimation of OV. (a) Structure of normal
equations without estimating the ocean variability. (b) Structure of normal equations when coestimating the ocean variability

Regularization of OV Similar to the MDT, a regularization
matrix is derived for the function which represents the ocean
variability. Consequently, the objective function is further
extended by adding the norm of OV’s spatial gradient,
krOV kL2.�T /. This leads to a block-diagonal regularization
matrix with three blocks, that are all identical to the MDT’s
regularization block. Individual weights for the amplitudes
and the trend are determined by variance component estima-
tion, resulting in 5:7, 2:9 and 6,816,929.4 respectively.

2.4 Combined Solution

With the contributors, i.e. the satellite based geoid informa-
tion, the SSH normal equations as derived from the observa-
tion equations in (8) or (9) and the regularization matrices,
the least-squares normal equations can be assembled and
solved for the unknown parameters.

For scenario A, without coestimation of the ocean vari-
ability, the schematic overview of the normal equations
which are assembled and solved is provided in Fig. 1a.
For scenario B, which coestimates the ocean variability,
the structure of normal equations is provided in Fig. 1b.
The large dimensional normal equations are assembled and
solved in a massive parallel implementation on a high perfor-
mance compute cluster.

3 Configuration for the Numerical
Experiments

3.1 Study Region andMesh

To study the proposed coestimation of the long-term ocean
variability, a numerical real data experiment is conducted.

Fig. 2 Overview of the Agulhas study region used in the numerical
experiments: the expected signal from the CNES-CLS18 MDT and the
used triangulation (gray)

The Agulhas region (10 ı E to 40 ı E and 42 ı S to 20 ı S, cf.
Fig. 2) is chosen as a local study region as it contains both
regions with smooth and strong geoid signal as well as of low
and high ocean variability. The domain of the finite element
space is limited by a polygon derived from these borders
and the coastlines. Using the jigsaw-geo package (Engwirda
2017), a triangulation is generated (see Fig. 2) inside the
polygon. The resulting mean length of the edges is about
175 km in the region of interest.

3.2 Used Data Sets

For the gravity field information, the unregularized normal
equations from the GOCO06s satellite-only gravity field
model (Kvas et al 2021) are used. They are assembled in the
spherical harmonic domain for degrees 2 to 300 and can be
directly included in the estimation (cf. Fig. 1).
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Table 1 Characteristics of the used altimetry missions

Period Spacing Repeat #obs
C-2 01/11-12/19 8 km 369 d 1.87M
J-1 01/10-03/12 315 km 10 d 0.52M
J-1 GM 05/12-06/13 7:5 km 406 d 0.27M
J-2 01/10-05/17 315 km 10 d 1.79M
J-2 GM 07/17-09/17 8:5 km 371 d 0.04M
J-3 02/16-12/19 315 km 10 d 0.95M

Ten years of along-track SSH measurements are anal-
ysed for the period 01/2010 to 12/2019. The corrected L2P
data as distributed by Aviso+ is selected and used for the
ERM Jason-1, Jason-2 and Jason-3 and the GM Cryosat-2.
Geodetic mission phases from the Jason missions are used
in addition (see Table 1). In total more then 5 � 106 SSH
observations are used. In the experiment, they are assumed
to be uncorrelated with a mission specific variance which is
derived by variance component estimation.

3.3 Scenario Configuration

To show the effect of the coestimation of ocean variability
on the target quantities, i.e. the MDT and the geoid, two sce-
narios are computed. In scenario A, geoid and the MDT are
estimated (cf. Fig. 1a) using (8) as least-squares observation
equations for altimetric SSH. Contrary, scenario B utilizes
(9) to jointly estimate geoid, MDT and the spatio-temporal
model for the ocean variability (Fig. 1b).

In both scenarios, the basic settings are the same to obtain
comparable solutions: The geoid is estimated from spherical
harmonic degree 2 to lmax D 600, i.e. 361,197 parameters. As
only local SSH data are used, medium and high degree global
spherical harmonics are regularized towards zero using the
Kaula rule for the degree dependent weighting. In both
scenarios, the MDT is estimated with the same finite element
space, i.e. using the mesh shown in Fig. 2 and the Argyris
element. This results in 1195 unknown parameters for the
MDT. To support the separation, the MDT is regularized
applying the smoothness condition (cf. Sect. 2.3). Scenario

B additionally coestimates the ocean variability in form
of a linear trend and annual harmonics (cf. 6) and thus
estimates 3�1195 additional parameters for which additional
smoothness conditions are applied.

Full altimetry normal equations are assembled which
takes about 15 h to 20 h with 576 cores on the JUWELS
supercomputer with a massive parallel implementation. The
combination and solution of the normal equations (cf. Fig.1)
for the unknown parameters takes additional 1 h to 2 h.
Weights are derived by variance component estimation and
some empirical tuning. The derived results for the geoid, the
MDT and the ocean variability are presented and discussed
in Sect. 4.

4 Results and Evaluation

4.1 Comparison of theMDT and Geoid
Estimates

For both scenarios the parameters aMDT;k for the MDT and
clm/slm for the Earth’s gravity field are estimated. From these
parameters, the MDT as well as the geoid can be evaluated
and compared among each other and to reference models.

Figure 3 shows both MDT solutions as a difference to the
established CNES-CLS18 MDT (Mulet et al 2021), which
is adopted to the reference epoch 01/01/2015, as well as the
difference between both solutions. In terms of RMS theMDT
estimated in scenario A shows a consistency of 5:1 cm com-
pared to CNES-CLS18. It is dominated by a large systematic
difference close to the coast of South Africa. The RMS in
regions of low ocean variability is about 1 cm to 2 cm, i.e.
0:9 cm in the north-western part (orange box in Fig. 3a) and
1:6 cm in the north-eastern part (green box in Fig. 3a). It is
significantly larger close to the main Agulhas current with
3:6 cm (red box in Fig. 3a) where a higher OV is expected.
Despite the large systematic difference, the solutions shows
a good agreement to CNES-CLS18. The RMS is in the same
order of magnitude as the RMS between the CNES-CLS18
MDT and the alternative DTU22 MDT model (Knudsen et al
2022), which is about 3:1 cm in the region of interest. But,

Fig. 3 Differences of the two
MDT solutions evaluated on the
grid as provided by the
CNES-CLS18 MDT. The
coloured boxes indicate regions
for which the statistics are
provided in the discussion. (a) A
� CNES-CLS18 MDT. (b) B �
CNES-CLS18 MDT. (c) A � B
MDT
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the strong coastal difference indicates a systematic error in
the MDT derived in scenario A – the MDT estimate does not
include the strong coastal gradient which clearly shows up in
both CNES-CLS18 (cf. Fig. 2) and DTU22 MDT.

Figure 3b shows the same for the MDT estimated in
scenario B (including the coestimation of OV). A comparison
of Fig. 3a and b as well as the direct difference in Fig. 3c
shows that both solutions are very similar and thus equiv-
alent. RMS values with respect to CNES-CLS18 are the
same, and the RMS of the difference is below 2mm (and
maximal/minimal differences are below ˙1 cm in regions
of strongest variations). At the level of the MDT and the
comparison shown here, it can not be concluded that the
estimated MDT benefits from the coestimation of OV.

Similarly, the estimated gravity field can be compared to
existing higher resolution models. For this purpose, Fig. 4
shows both estimated spherical harmonic series evaluated
to degree 600 in terms of geoid height differences to the
XGM2019 (Zingerle et al 2019) model evaluated to degree
760. As a comparison, Fig. 4a shows the difference of the
used GOCO06S (at degree 250) model to the XGM2019
model (degree 760). This difference is dominated by the
additional higher frequency signal of XGM2019 and the
RMS is about 20 cm. The difference for the estimated geoid
from scenario A is shown in Fig. 4b. Obviously, the dif-
ferences are significantly reduced, the RMS is 2:0 cm for
the orange, 3:5 cm for the green and 5:3 cm for the red
region. In the entire region, the RMS is 10:0 cm and again
dominated by a large difference close to the coast of South
Africa. This allows to draw two conclusions: Firstly, as the
RMS is significantly reduced, the geoid of GOCO06S is
significantly improved for the higher frequencies in the joint
estimation. Thus, the estimated gravity field is successfully
improved locally from the SSH measurements. Secondly, as
now the large coastal difference shows up with an inverted
sign compared to the MDT, it is confirmed that the separation
failed in the coastal area, the missing strong gradient in the
MDT entered the geoid.

Similar to the MDT results, the geoid determined in
scenario B is equivalent to the geoid derived in scenario
A, Fig. 4c shows hardly a difference. Figure 4d shows
the differences for which the RMS is below 1:0 cm. Same
conclusions as for the MDT solutions can be drawn: it cannot
be demonstrated, that the solution which coestimates OV is
superior compared to the solution without.

4.2 Estimates of Ocean Variability

As neither MDT nor the geoid improved, the estimates for the
ocean variability are compared to gridded sea level anomaly
products (daily DUACS Level 4 gridded SLADT2018, Tabu-
ret et al (2019)) to validate the coestimated spatio-temporal
signal. For this purpose, trends, amplitudes and phases are
estimated independently for each cell of the DUACS grid
(see Fig. 5, first row) using a least-squares regression.

Using (7), the same quantities can be derived for all the
grid locations from the parameters estimated in scenario
B. There,

P
l2L eOV;1;l bl .�; �/ reflects the trend estimated

for location .�; �/. Similarly, amplitudes and phases of the
seasonal harmonic can be derived from

P
l2L eOV;2;l bl .�; �/

and
P

l2L eOV;3;l bl .�; �/ in the domain of interest. These
derived quantities are shown in Fig. 5, second row. A good
agreement is visible, most of the dominant features which
are visible in the maps derived from the gridded data are
visible in the maps derived from the coestimated quantities
as well. This confirms, that the coestimation works – under
the assumption that the chosen model (5) sufficiently reflects
the true OV.

To show the quality of this simple model, individual time
series can be analysed. From the gridded SLA product, a
time series for a single grid point at location .�c; �c/ can
be easily extracted. The time series for the coestimated
model follows from (7) for the location .�c; �c/ as a one-
dimensional function in the time domain

f .t/ WD OV .�c; �c; t/ R 7! R: (10)

Fig. 4 Differences of the two gravity field solutions evaluated for geoid heights. The coloured boxes indicate regions for which the statistics are
provided in the discussions. (a) GOCO06S(lmax D 250) � XGM2019. (b) A � XGM2019. (c) B � XGM2019. (d) A � B
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Fig. 5 Spatial maps for trends,
seasonal amplitudes (cm) and
phases (ı). First row: from
regression of the DUACS gridded
SLA maps, Second row: derived
from the parameters estimated in
scenario B. (a) Trends (cm/yr).
(b) Amplitudes (cm). (c) Phases
(ı). (d) Trends (cm/yr). (e)
Amplitudes (cm). (f) Phases (ı)

Figure 6 shows both, the time series from the DUACS
product as well as the function estimated in scenario B
for a region of low as well as a region of high ocean
variability. The first time series is evaluated in the north of
the orange region of very low ocean variability (13:375 ı E,
20:875 ı S). It is visible in Fig. 6a, that the seasonal sig-
nal is dominant, but seasonal variations are below ˙5 cm.
The estimated model (blue curve) nicely captures this main
feature and approximates the variability. On the contrary,
the second time series shown in Fig. 6b is close to the
Agulhas current, thus strong ocean variability is expected
(red box, 17:325 ı E, 39:125 ı S). The DUACS SLA prod-
uct shows strong high-frequency variations in the range of
˙1m, whereas the seasonal signal is hardly visible. Con-
sequently, the estimated model is a poor approximation of
the OV, the dominant signal is not captured by a model
like (5).

5 Summary and Conclusion

In this contribution, the parametric joint estimation of the
MDT and geoid is extended for the coestimation of a spatio-
temporal model component. This is supposed to model and
compensate long-term ocean variability to avoid aliasing into
the mean – i.e. static – geoid and MDT models.

For this purpose, a parametric approach is chosen in
which both geoid and MDT are modelled by continuous
functions. The geoid in terms of spherical harmonics and
the MDT by finite element basis functions. Similar to Bor-

linghaus et al (2023), combining separable functions – finite
element basis functions in the spatial and a trend and seasonal
harmonic functions in the time domain – a spatio-temporal
function is designed to model the OV. The parameters are
jointly estimated from altimetric SSH measurements with
(9) and (6) as flexible observation equations, and a satellite-
based gravity field model, applying some smoothness condi-
tions.

A numerical real-data experiment is performed to study
the coestimation of the OV. For this purpose, MDT and geoid
are estimated without (scenario A) and with this extension
(scenario B). Comparing the results among each other and to
reference models, no obvious improvements could be shown
for MDT or geoid. It is concluded that

• the analysed 10 year period is too short for stable trend
estimate and strong regional signals cause leakage,

• due to the mean mesh spacing of 175 km of the MDT
model, the implicit spatio-temporal filtering effect of the
finite elements is already quite strong, as the temporal
sampling of SSH observations in each triangle is suffi-
cient,

• there is a quite homogeneous data sampling of geodetic
and exact repeat altimetry missions in the study region (in
the analysed period), which supports the implicit filtering
of the least-squares approach.

Although it is shown that a basic model of (linear) trend
and annual harmonic is not sufficient to model the OV
close to strong current systems, it is demonstrated that
the coestimation is working in general. Estimated trends,
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Fig. 6 Sea level anomaly time
series from the DUACS product
(orange) for two grid points
compared to the function
coestimated in scenario B (blue).
(a) Location in region of low
ocean variability. (b) Location in
region of high ocean variability

amplitudes and phases are similar compared to those derived
from gridded sea level anomaly products.

Consequently, more advanced models in the temporal
domain are required. E.g. Borlinghaus et al (2023) proposed
the use of B-Splines when coestimating the OV while esti-
mating the mean sea surface. But, this will significantly
increase the parameter space, which is already large (more
than 360,000 parameters), by additional hundreds of thou-
sands parameters, which is not yet operational and subject to
future work.
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A Flexible Family of Compactly Supported
Covariance Functions Based on Cutoff
Polynomials

Till Schubert and Wolf-Dieter Schuh

Abstract

In time series analysis, signal covariance modeling is an essential part of stochastic methods
like prediction or filtering. In geodetic applications, covariance functions are rarely treated
as true compactly supported functions although large amounts of data would approve such.
Covariance models for complex correlation shapes are also rare. Ideally, general families of
covariance functions with a large flexibility are desirable to model complex correlations
structures like negative correlations. In this paper, we derive isotropic finite covariance
functions that are parametrized in a way that positive definiteness is guaranteed. These
are based on cutoff polynomials which are derived from operations such as autoconvolution
and autocorrelation. Next to the compact support, the resulting autocovariance models share
the advantages of (a) positive definiteness by design, (b) extensibility to arbitrary orders
and (c) extensive flexibility by employing multiple tunable shape parameters. All these
realize various correlation shapes such as negative correlations (the so-called hole effect)
and several oscillations. The methodological concepts are derived for homogeneous and
isotropic random fields in Rd . The family of covariance functions is then derived for one-
dimensional applications. A data example demonstrates the covariance modeling approach
using stationary time-series data.

Keywords

Collocation � Covariance modeling � Finite covariance functions � Stochastic processes

1 Introduction and RelatedWork

Signal covariance modeling is an important part of many
stochastic prediction methods. Within that, finite covariance
functions are of important use. The finite support leads to
many zero-elements in the covariance matrices which allows
the use of sparse data structures and efficient solvers. Both
yield advantages in runtime and data allocation and also
enable the handling of large tasks. In geostatistical appli-
cations, covariance functions are rarely treated as true com-
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Theoretical Geodesy Group, Institute of Geodesy and Geoinformation,
University of Bonn, Bonn, Germany
e-mail: schubert@geod.uni-bonn.de

pactly supported functions although the enormous amount of
data would approve such, see e.g. Sansò and Schuh (1987)
and Schuh (2016).

In time series analysis simply parametrized covariance
functions are helpful for statistical analysis of data. This
implies the use of functions depending on a number of
tunable shape parameters. Such a parametrization is achieved
by a construction using certain operations such as autocon-
volution and autocorrelation.

Several covariance functions organized as a family or
class exist. Sansò and Schuh (1987), Wendland (1995), Wu
(1995), Gaspari and Cohn (1999) and Buhmann (2001) have
introduced such classes of finite covariance functions, either
given by (a) polynomials, (b) they contain trigonometric
expressions, (c) they comprise rational functions or (d) are
built from combined expressions of the former. All are
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defined on a compact support and might be given in a
piecewise definition within the finite support.

One well known compactly supported covariance model
of interest is the so-called spherical covariance function
(Wackernagel 1998; Chilès and Delfiner 1999) which is very
often used in geostatistics (Webster and Oliver 2007) and
also appears in textbooks on stochastic processes (Priestley
1981). The derivations in this paper use the spherical covari-
ance function

�.�/ D

(
�2
�
1 � 3

2
j� j
b

C 1
2

j� j3

b3

�
; for j� j � b ;

0 ; otherwise ;
(1)

(Matheron 1965, p. 57; Priestley 1981, Eq. (3.7.93); Wacker-
nagel 1998, p. 56; Chilès and Delfiner 1999, p. 81; Webster
and Oliver 2007, p. 87) as an initial example and a starting
point. Notably, the spherical covariance model can be con-
structed by a 3D-autoconvolution of a unit sphere but also
by a 1D-autocorrelation of a first order monomial cut on the
interval Œ0; 1�.

This present article uses techniques different from those
given in the established families primarily by means of using
self-correlation instead of self-convolution. Furthermore, the
suggested autocovariance models combine the advantages
of (a) guaranteed positive definiteness in R1, similar to
the models of Sansò and Schuh (1987) and Gaspari and
Cohn (1999), (b) extensibility to arbitrary orders as e.g.
the families of Wendland (1995) and Wu (1995) and (c)
extensive flexibility by employing multiple tunable shape
parameters as is partially done in Gaspari and Cohn (1999).

Many empirical covariance structures of real-world prob-
lems decrease to a minimum below zero, i.e. obtaining
negative correlations in a certain interval, cf. e.g. Daley
et al. (2015). This phenomenon is called the hole effect (e.g.
Journel and Froidevaux 1982; Webster and Oliver 2007) and
several globally supported covariance models exist for that
purpose, e.g. a damped cosine, see e.g. Gneiting (1999) and
Schubert et al. (2020).

The family of covariance functions presented here is able
to handle different correlation patterns, such as negative
correlations and several oscillations and furthermore pro-
vide finite support. Furthermore, we show a way of easily
constraining the function to higher classes of continuous
differentiability. All in all, this flexibility is needed when
the functions are fitted to data-derived empirical autocovari-
ances.

The paper is organized in the following way. Section 2
provides the basic methodology on autocovariance functions.
Section 3 introduces the new methodological concepts and
the definition of the family of covariance functions which
is followed by a data example in Sect. 4. The family of
covariance functions is derived only for validity in R1, but
an outlook is given for deriving similar families with validity
in R2 and R3.

2 Methodology

2.1 Autocovariance Functions and Positive
Semi-Definiteness

Autocovariance functions �.h/ of a discrete stochastic pro-
cess have to be positive semi-definite, i.e.,

NX
i ;j D1

zi �.ti � tj /zj � 0 for any zi ; zj 2 R (2)

with discrete lag h D jti � tj j D k �t; k 2 Z (cf. Brockwell
and Davis 1991, Prop. 1.5.1; Yaglom 1987, Eq. (1.28)).

For analytical covariance functions �.�/ depending on a
lag � the positive definiteness requirement (Eq. 2) translates
to non-negativity of the Fourier transform of the covari-
ance function, known as Bochner’s theorem (Bochner 1955;
Schuh 2016).

In this paper, we will define a family of covariance
functions �n.�/ where n is the order, which can for instance
be the degree of an expansion as a polynomial. Furthermore,
for the sake of brevity we define � � 0 and omit the vertical
bars.

In this paper, we deal with autocovariance functions �.�/

of compact support. For reasons of brevity, the common
notation of the plus subscript .1 � �/C which corresponds
to max .0; 1 � �/, i.e. signifying a cutoff at 1, is extended
to .1 � �=b/C indicating a cutoff at the range parameter b as
in Eq. (1). However, due to the fact that we deal with non-
monotonous functions we use the notation .1 � �=b/.��b/.

2.2 Operations on Covariance Functions

It is well known that operations such as summation, scaling,
multiplication and convolution are admissible operations to
be applied to positive semi-definite covariance functions,
naturally with positive weights to preserve positive defi-
niteness. For instance, covariance tapering is known as the
multiplication of an arbitrary covariance function with a
finite one to obtain a function of finite support, see e.g. Furrer
et al (2006). However, it is a matter of fact that even if one
negative definite function is involved in a product the result
can nonetheless be positive definite. Hence, it is beneficial to
define covariance models that are positive definite by design
due to the fact that general models exploit the full parameter
space whilst nested models imply restrictions.

This work focuses on the operations autoconvolution and
autocorrelation. The former gives rise to the use of B-splines
(linear and higher orders) as autocovariance functions, for
example. The operations self-convolution (autoconvolution)

�.�/ D .f � f / .�/ D

Z

Rd

f .t/ f .� � t / dt (3)
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and self-correlation (autocorrelation)

�.�/ D .h ? h/ .�/ D

Z

Rd

h.t/ h.� C t / dt (4)

of the indicator functions f(t) and h(t) differ only in the
sign of t in the second function. Let us use the following
notation to introduce, analogous to self-convolution (auto-
convolution) .f � f /, the operation self-correlation (auto-
correlation)

�.�; �; b; d/ D .h ? h/ .�; �; b; d/ (5)

and denote the involved functions by the autoconvolution
kernel f .t ; b; d/ and autocorrelation kernel h.t ; b; d/.
f .t/ and h.t/ are also called indicator functions. b is the
range parameter signifying the length of support while the
di in vector d are shape parameters. The autocovariance
function �.�/ has a scale parameter given by the variance
�2 such that �.0/ D �2.

2.3 Positive Definiteness in Rd

The application in spatial domains requires positive semi-
definiteness of the covariance function in higher dimensions
Rd , which is derived here.

In multivariate problems the distance r is taken as
the Euclidean distance of the d -dimensional vector
h and the isotropic (radial) covariance function reads
�.r/ D �.khk/with h 2 Rd . For applications with
data in higher dimensions, e.g. spatial data, the reduction
to a one-dimensional distance-like norm (e.g. Euclidean)
does not guarantee positive definiteness of the covariance
function. Instead, the Bochner theorem is generalized to
non-negativity Hd f�.r/g WD S.s/ � 0 8 s of the Hankel
transform Hd f�.r/g building a spectrum S.s/ (Bochner
1955; Moritz 1976; Lantuéjoul 2002, p. 25).

The Hankel transform Hd f g of order d for an isotropic
covariance function �.r/ in Rd is generally defined as (see
e.g. Sneddon 1951, Sec. 12; Yaglom 1987, p. 353; Chilès and
Delfiner 1999, p. 68; Lantuéjoul 2002, p. 241)

Hd f�.r/g WD S.s/ D
1

.2�/d=2 sd=2�1

Z 1

0

Jd=2�1.s r/ rd=2 �.r/ dr

(6)

where J�. / is the Bessel function of the first kind (called J-
Bessel) and order �.

Next to the transition to the spectral domain given by
the Hankel transform, convolution and correlation theorem
also translate to the higher dimensions and their respective
transforms. As a result, a self-convolution (Eq. 3) of a
function f .r/ in Rd to generate �.r/ corresponds to a
squaring of Hd ff .r/g (convolution theorem)

S.s/ WD Hd f�.r/g D Hd ff .r/g2 (7)

and hence guaranteed positive definiteness only if f .r/ is
symmetric.

The crucial difference between self-convolution and self-
correlation is that the autocorrelation operation (Eq. 4) trans-
lates to the operation of a true absolute value (Euclidean
norm) in the (potentially complex-valued) spectral domain
(correlation theorem)

S.s/ WD Hd f�.r/g D jHd fh.r/gj2 (8)

which ensures non-negativity (Bochner’s theorem) for what-
ever parity of h.r/, see e.g. Chilès and Delfiner (1999,
Eq. (2.30)). Thus, autocorrelation allows non-symmetric and
even one-sided indicator functions h.t/, whereas autoconvo-
lution restricts to symmetric indicator functions. A reason-
able assumption now is that self-correlation can in general
produce more flexible functions due to the non-symmetric
nature of the indicator function and guaranteed non-negative
spectrum S.s/.

3 Methodological Advances

Established families for compactly supported rarely exhibit
negative correlations, the hole effect. Gneiting (2002,
Sec. 2.3) introduces oscillatory compactly supported
functions based on the so-called turning bands operator
(e.g. Matheron 1973; Lantuéjoul 2002). In fact, the turning
bands operator (also TBM, Turning Bands Method) can
retrieve the covariance model of the same type which has
maximum hole effect and which can build the boundary of
the domain of validity, i.e. positive semi-definiteness in a
dimension of interest. For details see e.g. the covariance
model when applying the TBM operator to the spherical
model, which amounts to �.�/ D

�
1 � 3� C 2�3

�
.��1/

, see
Chilès and Delfiner (1999, Tab. A.2), and builds a limit case
for positive definiteness in 1D.

As this only retrieves limit cases and not fully flexible
models, allowing polynomial coefficients to vary arbitrarily
within the bounds of validity can provide the full flexibility.
This is the general idea of this paper and will be derived in
the next sections.
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3.1 Covariance Functions Given by Cutoff
Polynomials

We desire covariance models �.�/ or �.r/ of polynomial
type. The general idea is an extension to allow variable
polynomial coefficients ai and define

�.�/ D

(
�2
�
1 C

Pn
iD1 ai

�
�
b

�i�
; � � b ;

0 ; � > b :
(9)

The vector a D
�
a0; a1; : : : ; an

�
includes the polynomial

coefficients ai , among which a0 is covered by the variance
�2. With the purpose of defining a family of covariance
functions in this section, the family is subscripted by the
degree m of the indicator function as �m.�/ and thus linked
to the number of defining shape parameters. This is favorable
to a subscript by the polynomial degree n which takes only
odd degrees.

For functions �.r/ with finite support the integration
Eq. (6) is done up to a fixed upper limit which leads to a
particular form of a Riemann-Liouville integral. The Hankel

transform of compactly supported monomials Hd

n
rk

.r�1/

o
is

given by algebraic combinations of rational, trigonometric,
J-Bessel, Struve and Lommel functions (cf. Gradshteyn and
Ryzhik 2000, Eqs. (6.561)) but has a compact notation given
by (cf. Gradshteyn and Ryzhik 2000, Eq. (6.569); Erdélyi
1954, Eq. (13.1.56), p. 193)

Hd

n
rk

.r�1/

o
WD S.s/ D

21�d

�d=2 	
�

d
2

�
.d C k/

1F2

�
d C k

2
I

d

2
;

d C k

2
C 1I �

s2

4

	

(10)

where 1F2. � I � ; � I � / is one particular form of the gener-
alized hypergeometric function. Eventually, linear combi-
nations of Eq. (10), given by the weighted sum using the
polynomial coefficients ai , provide the result for the Hankel
transform of a general compactly supported polynomial and
thus an evaluation of the positive definiteness in various
dimensions Rd . Eq. (10) is independent of the support range

b and the transforms Hd

n
rk

.r�1/

o
are solely weighted by the

ai .
The spectra S.s/ for covariance models given by combi-

nations of Eq. (10) may follow typical spectra for shaping
filters in the sense that designated extrema in the spectrum
are modelled, corresponding to the oscillating behavior of the
autocovariance function. Beyond that however, they are of
oscillating and slowly attenuating nature. It should be noted
here that the validation of S.s/ � 0 can be cumbersome as
the spectrum might asymptotically reach a negative value.

The use of an indicator function bypasses the problem and
can guarantee positive semi-definiteness in Rd . This will be
done in the next section, however only for R1.

Note that Hristopulos (2015) uses compactly supported
polynomials in the spectral domain and achieves a linear
combination of Eq. (10) as a family of globally supported
covariance functions in time domain, called the Bessel-
Lommel covariance functions.

3.2 Idea of Parametrization

From this point on the paper will deal only with univariate
autocorrelation leading to a family of covariance functions
valid in R1.

The idea is that the autocovariance function is generated
from an analytical (univariate) self-correlation

�.�/ D .h ? h/ .�/ D

Z 1

�1

h.t/ h.t C �/ dt (11)

(see e.g. Yaglom 1987, Eq. (2.45); Chilès and Delfiner 1999,
Eq. (2.30); Eq. (7.22); Lantuéjoul 2002, p. 190; Schlather
2012, Eq. (2.12) and Iske 2018, Cor. 8.12) of an indica-
tor function h.t/. In order to achieve compactly supported
covariance functions one has to use a compactly supported
indicator function.

In general, it proves beneficial to assess the function as
generated from autocorrelation operation such that several
properties of covariance functions are automatically satisfied
and the covariance functions are positive definite by design.

In order to achieve valid covariance models for 1D, we
first restrict ourselves to covariance functions generated from
one-dimensional (univariate) autocorrelation operations. The
resulting functions can nonetheless suit as isotropic covari-
ance functions in Rd only if positive definiteness in the
higher dimension is ensured additionally.1 On the other hand,
covariance models valid in a certain dimensions can always
be used in a lower dimension.

In contrast to autoconvolution, autocorrelation allows
non-symmetric and even one-sided indicator functions. What
is not demonstrated here, self-correlation has the advantages
of enabling to model one more lobe with each order,
which is not possible with self-convolution. Furthermore,
the maximum hole effect can only be achieved by self-
correlation. As a result, we acknowledge the assumption
that self-correlation can in general produce more flexible
functions. In addition, the indicator functions are restricted
without loss of generality to one-sided functions.

1Equation (10) serves as an evaluation of the spectrum given by
Hd f�.r/g which can be checked for non-negativity.
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Clearly, the number of intervals in the piece-wise def-
inition of the indicator function plays a role. A desirable
property of the self-correlation is the possibility to achieve
an autocovariance function consisting of just one defined
interval (apart from the symmetric counterpart and the zero
outside the support range b) by an arbitrary indicator func-
tion that shares this property. Hence, we restrict to one-
sided indicator functions defined by a polynomial in a single
interval, although multi-interval covariance models are also
common, see Gaspari and Cohn (1999).

3.3 Parameterizing Polynomials by
Univariate Self-Correlation

In order to achieve valid covariance functions for 1D the
idea is that the autocovariance function is generated from a
univariate self-correlation (Eq. 11). Doing that using a one-
sided indicator function h.t/ of cutoff polynomial type of
degree m

h.t/ D

(
˛
Pm

iD0 di

�
t
b

�i
; 0 � t � b ;

0 ; t < 0; t > b ;
(12)

constructs an autocovariance function by

�.�/ D

Z b��

0

h.t/ h.t C �/ dt (13)

which automatically fulfills the symmetry �.�/ D �.��/.
The operation yields covariance models �.�/ of polyno-

mial type (Eq. 9) of degree n D 2m C 1 with coefficients
ai depending on a set of defining parameters di . The scalar
˛ signifies a scaling by the total overlapping area in the
integration and is applied to realize �.0/ D �2. It depends
on all parameters di but is not specified further, as it will be
replaced by �2.

We exemplarily look at the self-correlation of a finite
straight-line indicator function, i.e. m D 1. For this case
only, the operation requires only one2 defining parameter d1

and the result is a cubic polynomial with only constant, linear
and cubic term given by

�mD1.�/ D�2

 
1 �

 
d1

2

2 d1
2 C 6 d1 C 6

C 1

!
�

b

C

 
d1

2

2 d1
2 C 6 d1 C 6

! ��

b

�3

!

.��b/

:

(14)

2Without loss of generality, d0 has been set to d0 D 1.
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Fig. 1 Covariance models corresponding to the flexible family
�mD1.�/ (Eq. 14). The colors are used for visual separability. The
spherical model (dashed line) is the subcase for d1 D �1 or c0 D 0:5

For this case, the expressions for a1 and a3 fulfill the linear
condition a1 C a3 D �1 such that

a D
�
1; �c0 � 1; 0; c0

�
(15)

can be given as an equivalent expression for Eq. (14) using a
different defining parameter c0. However, the rational expres-
sion for a3 in Eq. (14) leads to c0 2 Œ0; 2�. These parameter
bounds need to be additionally enforced when using Eq. (15),
whilst they are guaranteed by the parametrization (14). As a
result, the parametrization using di and Eq. (12) is favored
despite its non-linear nature.

Figure 1 shows this family of functions for a selection
of defining parameters d1 over its full range of values. The
triangular and spherical model as well as the model with
extreme hole effect (TBM operator) are part of this family.
Naturally, all functions of this family are at least valid in
R1. For dimensions d D 2 and d D 3, only the spherical
model (Eq. 1) (d1 D �1, c0 D 0:5) is valid which can be
shown by evaluation of Eq. (10) as well as by the geometrical
considerations of convolving the unit sphere in 3D.

With the generation by Eqs. (13) and (12) we introduce a
family of covariance functions that is extensible to arbitrary
orders m which yields lengthy, non-linear expressions for the
polynomial coefficients ai similar to Gaspari et al (2006,
Eqs. (33), (C.1) and (C.2)). Despite being long and non-
linear the formulas are manageable and converge when fitting
the tuning parameters. The equations for m D 2 to 5 are
given in the Appendix Eqs. (A.1) to (A.4). There, similar
to Eq. (15), a formulation using linear constraint relations
among shape parameters can be achieved, if c10 to c16 are
considered as the defining tuning parameters, whose bounds
are not materialized though.

Higher order models of this family naturally provide more
flexibility than for m D 1 and realize covariance functions
with a bigger hole effect compared to Fig. 1.
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So in general, nonlinear expressions are obtained. The
big advantage however is that the covariance function is
well-shaped and, by virtue of the univariate self-correlation,
positive semi-definiteness in R1 is also guaranteed.

In general, the number of defining parameters is m C 1,
see Eq. (12), but can collapse to less as in the case of Eq. (14)
which does not involve d0. The covariance functions are
polynomials of degree n where in general m D .n � 1/ =2

holds. The variance �2 takes the role of a0 and a factor to all
other ai and is also a parameter to be estimated. In addition
there is the finite range b. In total, the number of parameters
to estimate is m C 3.

Clearly, the continuity properties of the indicator function
define the continuity class of the covariance function. With
no specifications to the continuity of h.t/, �.�/ from Eq. (13)
will in general only be C0 at � D b. The covariance function’s
property of continuous differentiability at � D b can be
easily increased to higher classes, e.g. C1. This can be done
by setting the parameters d0, d1, etc. to exactly zero which
result in C1, C2, etc., respectively.

4 An Example: Milan Cathedral
Deformation Time Series

This example is the well known deformation time series of
Milan Cathedral (Sansò 1985). The time series measure-
ments are levelling heights of a pillar in the period of 1965
to 1977. For details see also Schubert et al. (2020). The time
series is detrended using a linear function and the remaining
residuals define the stochastic signal. Based on the detrended
time series, the biased estimator is used to determine the
empirical covariances.

The fitting of the analytical covariance function is done
using the MATLAB function fmincon (MathWorks 2022)
with the optimization with respect to the parameters � , b

and d0 to dm formulated in the least-squares sense. If needed
the support range b and variance �2 can be constrained by
lower and upper bounds. The other shape parameters di can
be left unconstrained unless higher continuity classes should
be achieved.

A first fitted covariance model of order m D 2 obtains a
compact support of b D 6:04 years where the transition is of
C0, see Fig. 2.

During the model fitting it became apparent that a model
with two lobes requires C1 continuity at � D b. Hence, a
linear equality constraint is applied directly to the parameter
d0, i.e. d0 D 0.

The fitted covariance model is of degree m D 5

and exhibits two lobes up to the support range of b D

10:24 years. The shape is comparable to a damped oscillatory
behavior, as would result from a modelling using AR and

Fig. 2 Compactly supported covariance models fitted to the empirical
covariances of the Milan Cathedral deformation time series

ARMA-processes (see Schubert et al. 2020), but it has finite
support.

Performing the collocation prediction of the pillar
deformation, the residual sum of squares (RSS) in a leave-
one-out cross-validation (LOOCV) shows a reduction from
0:5314mm2 for the first model to 0:5011mm2 for the second
model. This demonstrates the better representation of the
stochastic behavior by the higher order model.

5 Conclusions

We introduced a family of compactly supported autocovari-
ance functions based on cutoff polynomials. The functions
are parameterized by a set of defining parameters which build
the polynomial coefficients in a non-linear fashion resulting
from the construction by self-correlation. These covariance
models define a general family with a large flexibility and
the ability to model various oscillatory shapes.

In summary, we have introduced versatile compactly sup-
ported functions suited for geodetic applications with large
amounts of data. The resulting autocovariance models are
flexible due to multiple tunable shape parameters and share
the advantages of being positive definite by design, exten-
sible to arbitrary orders and easy to constrain to different
continuity classes. As an extension to this paper, families
of covariance functions that are guaranteed to be positive
definite in 2D, 3D and on the sphere have been derived and
will be published soon.
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Appendix A: Higher Order Covariance
Models of the 1D Family

These families are given for �2 D 1 and for a support range
of b D 1. For arbitrary b replace � by �=b. The expressions
involve auxiliary variables cl and defining parameters di .

For m D 2:

c0 D d2
2 ;

c1 D �5 d1
2 C d2

2 C 20 d0 d2 ;

c2 D 5 d1
2 C 15 d1 d2 C 9 d2

2 C 10 d0 d2 ;

c3 D 30 d0
2 C 30 d0 d1 C 20 d0 d2 C 10 d1

2 C 15 d1 d2 C 6 d2
2 ;

c10 D
c0

c3

; c11 D
c1

c3

; c12 D
c2

c3

;

�mD2.�/ D
�

� c10 �5 C .c10 � c11/ �3 C .c11 C c12/ �2 C .�c12 � 1/ � C 1
�

.��1/
(A.1)

For m D 3:

c0 D 3 d3
2 ;

c1 D �14 d2
2 C 3 d3

2 C 42 d1 d3 ;

c2 D �70 d1
2 C 168 d1 d3 C 14 d2

2 C 140 d2 d3 C 280 d0 d2 C 102 d3
2 C 420 d0 d3 ;

c3 D 70 d1
2 C 210 d1 d2 C 252 d1 d3 C 126 d2

2 C 280 d2 d3 C 140 d0 d2 C 150 d3
2 C 210 d0 d3 ;

c4 D 420 d0
2 C 420 d0 d1 C 280 d0 d2 C 210 d0 d3 C 140 d1

2 C 210 d1 d2 C 168 d1 d3 C 84 d2
2 C 140 d2 d3 C 60 d3

2 ;

c10 D
c0

c4

; c11 D
c1

c4

; c12 D
c2

c4

; c13 D
c3

c4

;

�mD3.�/ D
�
c10 �7 C .c11 � c10/ �5 C .�c11 � c12/ �3 C .c12 C c13/ �2 C .�c13 � 1/ � C 1

�
.��1/

(A.2)

For m D 4:

c0 D 2 d4
2 ;

c1 D �9 d3
2 C 2 d4

2 C 24 d2 d4 ;

c2 D 42 d2
2 C 504 d0 d4 � 126 d1 d3 ;

c3 D 756 d0 d4 C 126 d1 d3 C 630 d1 d4 C 396 d2 d4 C 315 d3 d4 � 42 d2
2 C 9 d3

2 C 250 d4
2 ;

c4 D �210 d1
2 C 504 d1 d3 C 1050 d1 d4 C 42 d2

2 C 420 d2 d3 C 864 d2 d4 C 840 d0 d2 C 306 d3
2 C 945 d3 d4

C 1260 d0 d3 C 590 d4
2 C 1764 d0 d4 ;

c5 D 210 d1
2 C 630 d1 d2 C 756 d1 d3 C 840 d1 d4 C 378 d2

2 C 840 d2 d3 C 900 d2 d4 C 420 d0 d2

C 450 d3
2 C 945 d3 d4 C 630 d0 d3 C 490 d4

2 C 756 d0 d4 ;

(A.3)
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c6 D 1260 d0
2 C 1260 d0 d1 C 840 d0 d2 C 630 d0 d3 C 504 d0 d4 C 420 d1

2 C 630 d1 d2 C 504 d1 d3

C 420 d1 d4 C 252 d2
2 C 420 d2 d3 C 360 d2 d4 C 180 d3

2 C 315 d3 d4 C 140 d4
2 ;

c10 D
c0

c6

; c11 D
c1

c6

; c12 D
c1 C c2

c6

; c13 D
c3

c6

; c14 D
c4

c6

; c15 D
c5

c6

;

�mD4.�/ D
�

� c10 �9 C .c10 � c11/ �7 C .c11 � c12/ �5 C .c12 C c13/ �4 C .�c13 � c14/ �3

C .c14 C c15/ �2 C .�c15 � 1/ � C 1
�

.��1/

For m D 5:

t0 D 5 d5
2 ;

t1 D �22 d4
2 C 5 d5

2 C 55 d3 d5 ;

t2 D 99 d3
2 C 660 d1 d5 � 264 d2 d4 ;

t3 D 5544 d0 d4 � 1386 d1 d3 C 13860 d0 d5 C 6270 d1 d5 C 264 d2 d4 C 4620 d2 d5 C 3410 d3 d5 C 2772 d4 d5

C 462 d2
2 � 99 d3

2 C 22 d4
2 C 2305 d5

2 ;

t4 D 8316 d0 d4 C 1386 d1 d3 C 20790 d0 d5 C 6930 d1 d4 C 16830 d1 d5 C 4356 d2 d4 C 12705 d2 d5 C 3465 d3 d4

C 10450 d3 d5 C 11088 d4 d5 � 462 d2
2 C 99 d3

2 C 2750 d4
2 C 7595 d5

2 ;

t5 D �2310 d1
2 C 5544 d1 d3 C 11550 d1 d4 C 17820 d1 d5 C 462 d2

2 C 4620 d2 d3 C 9504 d2 d4 C 15015 d2 d5

C 9240 d0 d2 C 3366 d3
2 C 10395 d3 d4 C 14960 d3 d5 C 13860 d0 d3 C 6490 d4

2 C 16632 d4 d5 C 19404 d0 d4

C 9730 d5
2 C 25410 d0 d5 ;

t6 D 2310 d1
2 C 6930 d1 d2 C 8316 d1 d3 C 9240 d1 d4 C 9900 d1 d5 C 4158 d2

2 C 9240 d2 d3 C 9900 d2 d4

C 10395 d2 d5 C 4620 d0 d2 C 4950 d3
2 C 10395 d3 d4 C 10780 d3 d5 C 6930 d0 d3 C 5390 d4

2

C 11088 d4 d5 C 8316 d0 d4 C 5670 d5
2 C 9240 d0 d5 ;

t7 D 13860 d0
2 C 13860 d0 d1 C 9240 d0 d2 C 6930 d0 d3 C 5544 d0 d4 C 4620 d0 d5 C 4620 d1

2 C 6930 d1 d2

C 5544 d1 d3 C 4620 d1 d4 C 3960 d1 d5 C 2772 d2
2 C 4620 d2 d3 C 3960 d2 d4 C 3465 d2 d5 C 1980 d3

2

C 3465 d3 d4 C 3080 d3 d5 C 1540 d4
2 C 2772 d4 d5 C 1260 d5

2 ;

t10 D
t0

t7
; t11 D

t1

t7
; t12 D

t1 C t2

t7
; t13 D

t3

t7
; t14 D

t4

t7
; t15 D

t5

t7
; t16 D

t6

t7
;

�.�/ D
�
t10 �11 C .t11 � t10/ �9 C .t12 � t11/ �7 C .�t12 � t13/ �5 C .t13 C t14/ �4 C .�t14 � t15/ �3

C .t15 C t16/ �2 C .�t16 � 1/ � C 1
�

.��1/

(A.4)
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Modeling of Inhomogeneous Spatio-Temporal
Signals by Least Squares Collocation

Wolf-Dieter Schuh, Johannes Korte, Till Schubert,
and Jan Martin Brockmann

Abstract

Through inverse modeling and adjustment techniques, the geodesists try to derive mathe-
matical models from their measurements to get a better understanding of various processes
in the system Earth. Sophisticated deterministic and stochastic models are developed to
achieve the best possible reflection of reality and the remaining uncertainty.

The main focus of this article is on the further development of stochastic model
representations, with the capability to switch from the usual assumption of homogeneous
(time-stationary) to inhomogeneous (time-variable) stochastic models. To accomplish this
we build up and extend a methodical framework to connect the filter and the covariance
approach represented by time-variable autoregressive processes (AR) and time-variable
(inhomogeneous) covariance models for least squares collocation.

We apply these time-variable covariance models to describe the temporal component
of a spatio-temporal point stack of surface displacements derived from a DInSAR-SBAS
analysis of the ERS1 and ERS2 missions from the Lower-Rhine Embayment in North
Rhine-Westphalia. The construction of a time-variable spatio-temporal covariance model
allows to use the least squares collocation approach to predict the vertical movements at
any location and at any time. Furthermore, a report on the uncertainty of the prediction is
provided.

Keywords

Collocation � Non-stationarity � Time-variable AR processes � Time-variable covariances

1 Introduction

Concepts like stationarity and homogeneity (invariance with
respect to transformation) play a central role in the treat-
ment of stochastic processes. According to the definition of
(Brockwell and Davis 1991, Def. 1.3.1) stationary processes
are defined on the one hand by the unchanged (marginal) dis-
tribution function, but according to definition (Brockwell and
Davis 1991, Def. 1.3.2) stationarity can also be defined by

W.-D. Schuh (�) · J. Korte · T. Schubert · J. M. Brockmann
Theoretical Geodesy Group, Institute of Geodesy and Geoinformation,
University Bonn, Bonn, Germany
e-mail: schuh@geod.uni-bonn.de; korte@geod.uni-bonn.de;
schubert@geod.uni-bonn.de; brockmann@geod.uni-bonn.de

covariance stationarity. This means that the covariance func-
tion is invariant with respect to a linear transformation (see
also Moritz (1980, Sec. 12)). In practice, many phenomena
modelled by stochastic processes do not satisfy this require-
ment and exhibit a time- or location-varying character.

The term time-variable is often used differently. Follow-
ing Priestley (1989, Sec. 6.1), time-variable processes can be
subdivided into models with a deterministic trend (e.g. poly-
nomial or seasonal) or with an “explosive” ARmodels where
the roots of the characteristic polynomial are not only inside
but also outside the unit circle. Here we want to study another
type of non-stationary processes, where the coefficients of a
discrete AR process St ; t 2 Z

C are variable in time.
However, the motion of the coefficients must be con-

strained to ensure a finite variance of the resulting process,
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E
˚
St � EfSt g/

2
�

< 1. Korte et al. (2022) restricts the
variability of the time-varying coefficients of an AR process
by the restriction that the roots of the characteristic polyno-
mials should be only within the unit circle. Since only linear
motions of the roots (poles) are allowed, this requirement
can be guaranteed also for higher order processes. For
general (infinite) time-variable AR processes of first order,
TVAR(1), however, the condition of convergence of the
product sequence of the time-variable AR coefficients is a
sufficient condition to guarantee finite variances/covariances
(Knopp 1922, Sec. VII). For finite AR processes these
restrictions simplify accordingly.

The article is organized as follows. In the Sect. 2, we
examine the time-variable AR process of first order and
put special focus on the inhomogeneity of the first and
second central moment of the density function (expectation
and covariances). In Sect. 3 we use this time-variable AR
process to construct a time-variable spatio-temporal covari-
ance model for a DInSAR-SBAS point stack of surface
displacements from ERS1 and ERS2 data from the Lower-
Rhine Embayment in North Rhine-Westphalia. A summary
and outlook concludes the work.

2 Time-Variable Autoregressive Process
of First Order (TVAR(1))

The focus of this section is to derive the first and second
central moments of a time-variable autoregressive process of
first order, TVAR(1), which is defined by

St WD ˛t St�1 C Et ; t 2 Z (1)

where
˚
˛t

�
�t

2 R form a sequence of time-variable coeffi-

cients under the condition that the product series lim
t!1

tQ
j D1

˛2
j

converges.
˚
Et

�
�t

represents an independent and identically
distributed (i.i.d.) sequence of random variables with expec-
tation E fEt g D 0 and a constant variance † fEt g D �2

e .
�t denotes the sampling rate.

Process Definition and Moving Average Representation
of a TVAR(1) Process
To find an equivalent representation of the TVAR(1) process
by a moving average process, we have to substitute the past
signals

St D ˛t St�1 C Et (2)

D ˛t

�
˛t�1St�2 C Et�1

�
C Et (3)

and obtain the general representation

St D ˛t

�
˛t�1

�
: : : ˛2

�
˛1 S0 C E1

�
: : :

�
C Et�1

�
C Et (4)

where S0 denotes the signal at the initial point t D 0. This
results in compact form to

St D

tY
j D1

˛j S0 C

tX
kD1

tY
j DkC1

˛j Ek (5)

(notice:
tQ

j DtC1

˛j WD 1). With this moving average represen-

tation of a TVAR(1) process it is now straightforward to
compute the expectation and the covariances of the process.

Expectation of a TVAR(1) Process
The expectation

E fSt g D Ef

tY
j D1

˛j S0 C

tX
kD1

tY
j DkC1

˛j Ekg (6)

D

tY
j D1

˛j E fS0g C

tX
kD1

tY
j DkC1

˛j E fEkg (7)

depends on the expectation of the initial state S0 and the
stochastic behavior of the noise Et , which is by definition
(1) of the AR process E

˚
Ej

�
D 0 for j D 1; : : : ; t . The

expectation of the initial state S0 is unknown, but we can
deduce from (7) the conditional expectation of St given a
known initial condition E fS0gDs0

E fSt js0g D

tY
j D1

˛j s0 : (8)

In the following we restrict this general formulation of
TVAR(1) processes by assuming that S0 has the same
stochastic properties as a long convergent AR(1) process
with constant coefficient j˛j<1,

Si D ˛ Si�1 C Ei ; for i D : : : ; �2; �1; 0 : (9)

Taking the properties of the i.i.d. sequence of the ran-
dom variables Et into account, we can state that Si�1 and
Ei are uncorrelated and due to the convergence behaviour
lim

t!1
˛t D 0, the expectation and variance of S0 is asymptoti-

cally independent of the initial state of this process and given
by

E fS0gD0 and �2
S0

D
1

1 � ˛2
�2

e (10)

cf. e.g. Box and Jenkins (1970, pp. 57-58). Applying the
expectation E fS0g D 0 in (7) or (8) this immediately results
in

E fSt g D 0 (11)
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for the TVAR(1) process under the assumption (9) for S0.
This choice of the initial state has of course an influence on
the further deviations of the variances and covariances. In
contrast to Wegman (1974) where the second moments are
defined as conditional moments we integrate the stochastic
properties of the initial state S0 under assumption (10) of a
long convergent AR(1) process.

Variance/Covariance of a TVAR(1) Process
The covariance as joint second central moment is defined by

† fSt ;StChgDE f.St �E fSt g/.StCh�E fStChg/g : (12)

where t and t C h denote the time points. Substituting
the moving average representation (5) and noting that the
expectation value vanishes due to (11) we obtain

† fSt ;StChg D E

8<
:

� tY
j D1

˛j S0 C

tX
kD1

tY
j DkC1

˛j Ek

�

� tChY
mD1

˛m S0 C

tChX
`D1

tChY
mD`C1

˛m E`

�)
: (13)

A reordering with respect to the expectation and the products
provides

† fSt ;StChg D

tY
j D1

˛j

tChY
mD1

˛m E fS0S0g C

C

tY
j D1

˛j

tChX
`D1

tChY
mD`C1

˛m E fS0 E`g C

C

tChY
mD1

˛m

tX
kD1

tY
j DkC1

˛j E fEk S0g C

C

tX
kD1

tY
j DkC1

˛j

tChX
`D1

tChY
mD`C1

˛m E fEk E`g : (14)

Taking into account the properties of the i.i.d. sequence of
the random variables Et , we can state

EfEk E`g D �2
Eık`;

EfS0 E`g D 0 for ` ¤ 0; and

EfS0 S0g D �2
S0

; (15)

where ık` denotes the Kronecker-Delta.

From (14) one obtains

† fSt ;StChg D

tChY
nDtC1

˛n

tY
j D1

˛2
j �2

S0
C

tX
kD1

tY
j DkC1

˛2
j

tChY
mDkC1

˛m �2
E for h > 0 : (16)

This can be reformulated to

† fSt ;StChg D

tChY
nDtC1

˛n

0
@

tY
j D1

˛2
j �2

S0
C

tX
kD1

tY
j DkC1

˛2
j �2

E

1
A ; h > 0

(17)

which gives the covariance sequence of a TVAR(1) process
for the times t and tCh, for a positive lag h. Note that because
of the symmetry properties of covariances † fSt ;StChg D

† fStCh;St g holds.
The covariance sequence (17) can be split into two parts.

The first part involving only the future events connected with
the index n and the second part involving only the events
before time t including the time itself linked to the indices
j and k. The expression in the brackets defines the variance
(i.e. lag 0) at time t

�t .0/ WD † fSt ;St g D

tY
j D1

˛2
j �2

S0
C

tX
kD1

tY
j DkC1

˛2
j �2

E : (18)

The variance �t .0/ is influenced by two quantities. The
variance of the initial value S0 characterizes the warm up
behavior of the process and the constant variance of the
process �2

E establish in connection with the time-variable
coefficients ˛j the further variance behaviour of the process.
It is thus clear that the variance of the TVAR(1) process is
time-variant (see also Fig. 1).

Often it is convenient to use a simple recursion formula
instead of (18). If we rewrite (18) and use t �1 as maximal
upper bound instead of t we get

�t .0/ WD ˛2
t

t�1Y
j D1

˛2
j �2

S0
C

tY
j DtC1

˛2
j �2

E C

t�1X
kD1

˛2
t

t�1Y
j DkC1

˛2
j �2

E (19)
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Fig. 1 Variance sequence of a TVAR(1) process. The time-variable
coefficients follow the third degree polynomial ˛t D 0:7 C 0:016t �
0:00035t2 C 0:000002t3 (a). The variances (b) are computed in three
different ways. (1) by (18) (2) by the filter approach and (3) by the
filter approach supplemented by the influence of the variance of the

initial state added by the S0. The figure shows, that all three approaches
delivers the same result taking into account the warm up phase of the
filter approach without prior information of the statistics of initial signal
S0

which can be rewritten to

�t .0/ WD ˛2
t

0
@

t�1Y
j D1

˛2
j �2

S0
C

t�1X
kD1

t�1Y
j DkC1

˛2
j �2

E

1
A C �2

E : (20)

Here the term in the brackets represents �t�1.0/. Therefore
we end up with the simple recursion equation

�t .0/ WD ˛2
t �t�1.0/ C �2

E (21)

for the variances at time t , with the initial state �0.0/ D �2
S0
.

The covariances with respect to a time lag h follows from
(17) and (18)

† fSt ;StChg D

tChY
nDtC1

˛n �t .0/ ; h > 0 : (22)

The covariance matrix †S of the TVAR(1) process of finite
length tmax can now be computed by arranging the covari-
ances † fSt ;StChg for t D 0; : : : ; tmax and h D 0; : : : ; tmax�t

into the upper triangle of a matrix. The lower triangle part
is completed symmetrically accordingly. Figure 2 gives an
example for the covariance matrix of a TVAR(1) process.

Filter Representation and Covariance Matrix
It should be mentioned, that the same covariance matrix
†S can be derived from the filter approach (cf. Schuh and

Fig. 2 Covariance matrix †S of a TVAR(1) process. The time-variable
coefficients follow the third degree polynomial ˛t D 0:7 C 0:016t �
0:00035t2 C 0:000002t3. The computation of the matrix can be per-
formed by (17) or by the recursion (21) in connection with (22)

Brockmann (2020)). The covariance matrix †S consists of
of the filter part †F

S and the warm up part †W
S

†S D †F
S C†W

S : (23)
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The filter matrix H is defined by

H D

2
666664

1

�˛1 1

�˛2 1

: : :
: : :

�˛t 1

3
777775

(24)

and the covariance matrix †F
S for the filter part follows from

†F
S D H �1

�
H �1

�T
: (25)

(cf. Schuh and Brockmann (2020, Sec. 5)). Because of the
warm up phase of the filter approach this covariance matrix
must be modified with respect to the influence of S0 by
the matrix †W

S which elements are computed according
to (17) by

�W

Si
0

2 D

iY
nD1

˛2
n�2

S0
; i D 1; : : : ; t (26)

�W

Sij
0

D �W

Sj i
0

D

jY
nDiC1

˛n �W

Si
0

2 ;
i D 1; : : : ; t

j D i ; : : : ; t :
(27)

The complete covariance matrix †S of a TVAR(1) process
results from the sum of the two parts according to (23) and is
identical to the calculation of the covariance matrix by (17)
or (21) and (22) respectively (see also Fig. 1).

3 Time-Variable Collocation of a
DInSAR Point Stack

We apply these inhomogeneous covariances to model the
temporal component of a spatio-temporal point stack derived
from a DInSAR-SBAS analysis. The test region is the Lower-
Rhine Embayment in North Rhine-Westphalia, Germany,
with the still active open-cast mines Garzweiler, Hambach
and Inden and the already closed coal mines Sophia-Jacoba
in the mining region Erkelenz and Emil Mayrisch in the
mining region Aachen. The Remote Sensing Software Graz
(RSG) is used to analyze the data from the ERS1 and ERS2
mission. This results in a spatio-temporal point stack of
surface displacements with respect to the initial frame 1992,
May 5th up to 2000, Dec. 12th (cf. Esch et al. (2019)).

The construction of a time-variable spatio-temporal
covariance model allows to use the least squares collocation
approach to estimate the surface displacements at any place
and at any time and provide a report on the uncertainty of
this estimation.

When evaluating the deformations, the estimation error of
the prediction should be minimized according to the Wiener-
Kolmogorov-Principle. For this purpose, we consider the
measured deformations as a special realization of a ran-
dom process. Since the distribution function of this random
process is unknown and no assumptions are to be made
about it, we choose a linear approach via the principle of
the Best Linear Predictor (BLP) (Teunissen 2007). Due to
the pre-processing of the DInSAR data it can be assumed
that the expected value of the signal (deformations) becomes
zero over the entire area. This implicitly transforms the best
linear predictor into the Best Linear Unbiased Predictor
(BLUP) (cf. e.g. Schuh (2016, Sec. 3.2) or Teunissen (2007,
Corollary I(i))). The BLUP corresponds to the Least Squares
Collocation approach (cf. e.g. Moritz (1980, Sec. 11) or
Schuh (2016)) and the predictor is defined by

esp D †Sfxp; xog
�

†Sfxo; xogC†N fxo; xog„ ƒ‚ …
WD †SCN fxo; xog

��1

�` (28)

where †Sfxo; xog denotes the covariance matrix between
the observed locations xo, whereas †Sfxp; xog represents
the covariance matrix between the observed locations xo

and the location xp which are supposed to be predicted.
†N fxo; xog reflects the noise characteristics. Here �` rep-
resents the observed displacements of the point stack. In this
example 144.302 scatterers are identified in 64 time frames.
The data points are clustered in urban regions. To achieve a
homogeneous data distribution as well in urban regions as in
rural regions the whole area is divided in Œ9x7� tiles and in
each tiles the same number of points are randomly selected.

The huge computational effort to solve

�
†SCN fxo; xog

��1

�` ; (29)

for which the dimension follows from the number of mea-
surements can be significantly reduced in case the covari-
ances can be separated into a spatial and temporal domain
and by the use of finite covariance functions (Schuh 1989).

Spatial Covariance Model
To make the covariances in space independent from the time
we only consider the observed displacements of the same
time difference to compute the spatial empirical covariance
function. For each chosen time difference the empirical
covariance function is computed and provides a sample of
the stochastic behavior. All samples are documented in Fig. 3
(left). By plotting the confidence region for the estimates it
can be stated that the spatial behavior is homogenous with
respect to the time. These samples of empirical covariance
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Fig. 3 Spatial covariance functions of the DInSAR point stack. (left) empirical covariance function of the distortions with respect to equal time
differences (right) analytic model of the spatial covariance function

functions are approximated by a finite covariance function
which is constructed by the autocorrelation of truncated
polynomial base functions (cf. Schubert and Schuh (2022)).
The positive definite finite analytical covariance function
can be seen in Fig. 3 (right). Due to the finite support of
this positive semidefinite function the covariance matrix is
sparse.

Temporal Covariance Model
The data characteristics in the time domain are characterized
by the epochs of the available SAR recordings. Especially
for the images of the ERS1 and ERS2 satellites the recorded
data are irregularly distributed in time. From the variance
plot in Fig. 4 (a) the time dependence of this signal is
obvious. We approximate these variances by an equidistant
TVAR(1) process with a sampling that is twice as high as the
time difference of the ERS1 and ERS2 recordings. The time
variation of the coefficients is modeled by a polynomial of
degree three.

The variances of the TVAR(1) model can also be seen
in Fig. 4 (a). The covariance matrix for all equidistant time
points of the TVAR(1) model follows (22) and can be down-
sampled to the measurement epochs. The identification of the

measurement dates is done by the nearest neighbors. Thus,
we obtain the temporal covariance matrix at the identified
measurement dates from the TVAR(1) model which is shown
in Fig. 4 (b).

It should be mentioned, that the temporal covariance can
be computed only for discrete times, but of arbitrarily small
time intervals.

Separable Spatio-Temporal Collocation Approach
The above investigations have shown that the spatio-temporal
covariance function can be separated into a time-variable
temporal �t .t ; t C h/ and a homogeneous spatial component
�sp.�x/,

�.�x; t ; t C h/ D �t .t ; t C h/ � �sp.�x/ : (30)

Since only permanent back scatterers, which are detected
in all recordings, are included in the SBAS solution, the
temporal distances are, however, the same for all scatterers.
This allows for a compact representation of the covariance
matrices by the Kronecker product

†Sfxk; tk I xo; tog D †t
Sftk; tog ˝ †sp

S fxk; xog; (31)

Fig. 4 Temporal covariance
modeling of the DInSAR point
stack. (a) empirical variances of
the distortions with respect to
dates compared with the
variances derived from the
approximated TVAR(1) model
(b) empirical determined
temporal covariance matrix (c)
covariance matrix derived from
the TVAR(1) model thinned for
the measurement dates

(b) empirical covariance
 matrix

(c) TVAR(1) model
covariance matrix
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with k 2 fp; og and (28) can thus be represented by

esp D †t
Sftp; tog ˝ †sp

S fxp; xog

�
†t

Sfto; tog ˝ †sp
S fxo; xog C †N„ ƒ‚ …

†SCN fxo; toI xo; tog

��1

�` ; (32)

where †N characterizes the noise component. If the noise
is designed appropriately, the calculations of the estimator
can be split into a temporal and spatial component according
to the rules of array algebra (cf. e.g. Blaha (1977); Rauhala
(1974))

eS p D †sp
S fxp; xog

�
†

sp
SCN fxo; xog

��1

�L
�
†t

SCN fto; tog
��1

†t
Sfto; tpg : (33)

Here the observations are arranged in the matrix �L, each
column represents the displacement of all scatterers for a
specific epoch, i.e.

�L WD reshape.�`; nsp
o ; nt

o/ ; (34)

where n
sp
o denotes the number of observed scatterers and nt

o

the number of recordings (time frames). The same rearrange-
ment is done for the predicted values

eS p WD reshape.esp; nsp
p ; nt

p/ ; (35)

with n
sp
p the number of points to predict and nt

p the number
of time frames to be predicted. According to the rules of
array algebra the noise can be designed in two different ways
without destroying the Kronecker structure, either

†N D †t
Sfto; tog ˝ 1sp �2

sp or

†N D 1t �2
t ˝ †sp

S fxo; xog : (36)

But in both cases the interpretation of the noise behaviour
is not straightforward. A much more obvious choice for the
noise would be

†N D 1t ˝ 1sp �2
N D 1�2

N : (37)

As shown in Schuh et al. (2022) an eigenvalue decompo-
sition of †sp

S fxo; xog into U spƒspU T
sp or †t

Sfxo; xog into

U t ƒt U
T
t again gives a separable form for the prediction,

eS p D †sp
S fxp; xog

� nBX
kD1

U sp

�
.ƒt /kƒsp C1sp�2

N

��1

U T
sp�L U t .W; k/ U t .W; k/T

�
†t

Sfto; tpg : (38)

The great advantage of the collocation approach is that
besides the predicted values, the accuracy of the prediction
can also be determined by variance propagation (Moritz
1980, Sec. 17). Also these calculations can be separated into
a temporal and spatial component (cf. Schuh et al. (2022)).

Results of the Rigorous Collocation of a DInSAR-Stack
Our test region is, as mentioned above the Lower-Rhine
Embayment in North Rhine-Westphalia, Germany. For ERS1
and ERS2, the DInSAR-SBAS analysis results in a spatio-
temporal point stack with 144.302 permanent scatterers in 64
time frames. The covariances are separated in a time-variant
temporal component and a homogeneous space component.
Since the data are available strictly at the respective recording
times, a Kronecker representation of the covariance matrices
is possible, which allows to split the calculations into a
temporal and a spatial one. Thus, the numerical complexity
of the task can be reduced significantly and it becomes
possible to compute this very extensive collocation task on
a workstation or notebook within about one to two hours.

With the collocation methods, surface deformations can
be predicted for any location at any discrete time point. The
tailored collocation approach elaborated here thus provides a
continuous prediction in space for previously freely defined
discrete time points. Beside the predicted values, their uncer-
tainty is also quantified. In Fig. 5 the effects caused by
groundwater management from the active opencast mines
Garzweiler, Hambach and Inden are clearly recognizable by
subsidence. Whereas in the already closed coal mines, an
uplift is taking place. The accuracy (standard deviation) of
the prediction is in a range 5–15 [mm] and it is immediately
apparent that this accuracy is very heterogeneous. The bright
points correspond to the measured permanent scatterers,
while measurements in the vicinity are missing for the brown
areas or they correspond to an extrapolation outside the
image scene.

The orange line from the northwest to the southeast shown
in Fig. 5 (left) marks a profile. Figure 6 (left) displays the
behaviour of the displacement in time along this profile.
Figure 6 (right) shows the displacement for the time span
1992:4 to 2000:9 [yr] and their predicted accuracies. These
are just a few examples to illustrate the many possibilities of
the collocation approach. In Schuh et al. (2022) the patterns
of movement in time are provided as an animation.

To study the benefit of the time-variable covariance model
it will be now of interest to show the difference between
modeling with a time-variable and a static temporal covari-
ance function. As static covariance function, a Gaussian
function with a standard deviation of 5 [mm] and a half-
value width of approx. 4 [yr] years is fitted to the mean
empirical covariances calculated from all ’training points’.
To stabilize the temporal covariance matrix, an additional
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Fig. 5 Predicted surface displacements (left) and their uncertainties (right) in the Lower-Rhine Embayment in North Rhine-Westphalia

Fig. 6 Time-dependent behavior of the surface displacement along the northwest-southeast profile (see shown in Fig. 5) (left) behavior in time
predicted profile (right) distortion in a fixed time span and their uncertainties

i.i.d. noise of with a standard deviation of 2 [mm] has to
be introduced. Using the residuals between predicted and
measured deformations on 912 randomly selected test loca-
tions, the mean, standard deviation, RMS and maximum
deviations for each time epoch is empirically determined
and compared to the predicted formal standard deviations.
Figure 7 summarizes the differences between static and
time-varying modeling. While only minor differences can

be observed in the predicted values, the predicted formal
variances show a significantly different behavior. While in
the static case the variances are constant over time, the time-
variable modeling shows a steady increase in the variances in
line with the empirical values. In contrast to static modeling,
the time-variable formulation thus results in better consistent
behavior between the model and the data and opens up
further possibilities to fit the model even better to the data.
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Fig. 7 Statistics of the residuals between predicted and measured distortions on 912 randomly distributed test locations. (left) static (right) time-
variable temporal covariance function

4 Summary and Outlook

In addition to the many advantages of the collocation method
as a data-adaptive method, it is repeatedly stated that there
is a lack of flexibility in the modeling of the covariances and
that the models cannot be implemented due to the enormous
computational effort. In this work, we demonstrate that these
limitations can be overcome by appropriate methodological
approaches. The advantages of the collocation method can
be even used in case of time-varying behavior and extensive
measurement points. Since the collocation method can be
used to estimate function values and their uncertainties for
arbitrary locations and times, this method is also very well
suited for the fusion of SAR data with other data, e.g. epoch-
wise levelling campaigns, which will be investigated in the
future.
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AMulti-Epoch Processing Strategy for PPP-RTK
Users

A. Khodabandeh, P. J. G. Teunissen, and D. Psychas

Abstract

The present contribution aims to address why the stochastic model of the PPP-RTK
user-filter is misspecified, and how one can limit the precision-loss associated with user
parameter solutions. By developing tools for measuring the stated precision-loss under
existing formulations of the user’s Kalman filter, we propose an alternative formulation that
recursively delivers close-to-minimum-variance filtered solutions when certain conditions
hold. Such conditions are discussed, and their impact on the user ambiguity-resolved
positioning performance is illustrated by supporting numerical results.

Keywords

Global Navigation Satellite System (GNSS) � Integer ambiguity resolution enabled precise
point positioning (PPP-RTK) � Kalman filter � Time-correlated corrections

1 Introduction

In PPP-RTK, one employs state-space representation for
positioning corrections so as to reduce their transmission
rate, i.e. the frequency with which the corrections are to
be provided to single-receiver GNSS users (Wubbena et al
2005; Laurichesse and Mercier 2007; Collins et al 2010;
Teunissen et al 2010). However, a reduction in the trans-
mission rate comes at the cost of delivering time-delayed
corrections. The user is therefore required to time-predict the
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corrections so as to bridge the gap between the corrections’
generation time and the user positioning time. Consequently,
next to the intrinsic uncertainty brought by the randomness of
GNSS measurements, ‘multi-epoch’ PPP-RTK corrections
also inherit extra uncertainty that is associated with their
time-prediction (Wang et al 2017).

As the user’s Kalman filter relies on the provision of
such random positioning corrections, his corrected observa-
tion equations become correlated in time. This violates the
Kalman filter’s key assumption, namely, that the input mea-
surements must be time-uncorrelated. As a consequence, the
user’s Kalman filter loses its minimum-variance optimality
property.

In this contribution we aim to identify the main factor
that makes the stochastic model of the PPP-RTK user-filter
misspecified, and thereby address how the user can limit
the precision-loss associated with his parameter solutions.
By developing tools for measuring the stated precision-
loss under existing formulations of the user’s Kalman filter,
alternative multi-epoch formulations are developed that can
recursively deliver close-to-minimum-variance filtered solu-
tions of the user parameters. To bound the corresponding
precision-loss experienced by the filtered solutions of such
formulations, certain conditions must hold. These condi-
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tions are discussed, and their impact on the user ambiguity-
resolved positioning performance is illustrated by supporting
numerical results.

2 User Model Aided by External
Corrections

Consider the (linearized) system of observation equations of
a single-receiver PPP-RTK user

u D B b C C c C n ; (1)

where the user observation vector u, together with the zero-
mean random noise n, are linked to the user’s unknown
parameter vector b and the unknown correction vector
c through the full-rank design matrices B and C . The
augmented design matrix ŒB; C � is rank-defect though,
meaning that the system is not solvable for both b and c.
The observation vector u may contain GNSS carrier-phase
and pseudorange (code) measurements, with b containing
the position coordinates, carrier-phase ambiguities, receiver
clock parameters, and instrumental biases. On the other
hand, the correction vector c may contain estimable
forms of satellite orbit and clock parameters, atmospheric
parameters, and phase/code biases (Leick et al 2015;
Odijk et al 2015; Teunissen and Montenbruck 2017).
The underscore symbol indicates the ‘randomness’ of
quantities.

Due to the rank-deficiency of ŒB; C � in (1), the user
cannot unbiasedly determine the unknown parameters b with
the sole use of his measurements. To obtain b unbiasedly,
the user has to take recourse to an external provider, e.g.,
a network of permanent GNSS stations (Wubbena et al
2005), to receive an unbiased solution of the correction
vector c. Let Oc denote such external correction solution.
With the provision of Oc, the user can extend his model (1)
to �

u
Oc

�
D

�
B C

0 I

� �
b

c

�
C

�
n

�

�
; (2)

with � being the zero-mean random noise vector that char-
acterises the ‘randomness’ of the correction solution Oc.
Since the user design-matrix B is of full-column rank, and
that the correction vector c can now be determined by
Oc, the system (2) is solvable. As far as the estimation of
the user parameters b is concerned, the system of equa-
tions (2) can be reduced for c. Such reduced model is
formed by pre-multiplying the matrix ŒI ; �C � with (2). This
gives

u � C Oc D B b C Qn ; with Qn WD n � C � (3)

The reduced model (3), with the user corrected observation
vector u � C Oc, forms the basis of existing PPP-RTK mod-
els (Wubbena et al 2005; Laurichesse and Mercier 2007;
Collins et al 2010; Teunissen et al 2010). In contrast to the
model (2) where both b and c are jointly estimated, (3)
does not directly allow a further update on the correction
solution Oc. From the perspective of a single-receiver user
who is merely interested in his parameters b, the reduced
model (3) is more appealing in the sense that it involves
fewer unknowns. In fact, the reduced model (3) can be
shown to deliver user parameter solutions that are identical
to those of (2) if the (co)variance propagation law to the
corrected observation vector u�C Oc is properly applied (Teu-
nissen 2000). This means all the information required for
the estimation of b is preserved when the user weights
the corrected observation vector u � C Oc in accordance
with the inverse-variance matrix of the noise vector Qn D

n � C �. In practice however, the variance matrix of the
correction solution Oc, i.e. the dispersion of � in Qn, may only
be partially known to the user. As a consequence, the user
takes recourse to the known part of such variance matrix
to weight his corrected observation vector u � C Oc, miss-
ing part of the required information, thereby experiencing
precision-loss in the estimation of b. The following theorem
provides a general means for measuring such precision-
loss.

Theorem (�-Suboptimality) Let the zero-mean random
vector p, with the full-column rank matrix L, perturb the
system of observation equations

y D A x C e C L p; (4)

in which the observation vector y, with its zero-mean resid-
ual vector e, is linked to the unknown parameter vector x by
the full-column rank design matrix A. Also, let the variance
matrix of e be given by the positive-definite matrix Qe . In
the absence of the variance matrix of p, say Qp , the least-
squares estimator

Ox D AC y; with AC WD .AT Q�1
e A/�1AT Q�1

e ; (5)

is not minimum-variance, and therefore, suboptimal. Its
precision-loss, in estimating every function � D f T x, can
be measured by the following variance-ratio bounds

1 C �min.MLAML
A?

/ �
Var.f T Ox/

Var.f T Ox�/

�1 C �max.MLAML
A?

/ (6)

with Ox� denoting the optimal (minimum-variance) least-
squares estimator. Matrices MLA and ML

A?
are given
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by MLA D QpLT
A.Qe C LQpLT /�1LA and ML

A?
D

QpLT
A?

.Qe C LA?QpLT
A?

/�1LA? , where LA D AACL

and LA? D L � LA. The symbols �min.�/ and �max.�/

denote the minimum and maximum eigenvalues of a matrix,
respectively. �

Proof The proof is given in Appendix. ut

To better appreciate the bounds in (6), compare the subop-
timal least-squares estimator (5) with its minimum-variance
counterpart (Koch 1999; Teunissen 2000)

Ox�D.AT Q�1
y A/�1AT Q�1

y y; with QyDQe C LQpLT

(7)

The theorem states that if, instead of the full variance matrix
Qy , the weighting of the observation vector y in (4) is
conducted based on the known part Qe , the increase in the
variance of the solutions f T Ox relative to that of their optimal
counterparts f T Ox� can always be bounded by (6). Ideally,
we wish to have the bounds .1 C �min/ and .1 C �max/ close
to unity. Their deviation from unity is due to the presence
of the nonnegative eigenvalues �min and �max. They indicate
smallest and largest precision-loss that is experienced by the
suboptimal estimator (5), respectively.

Such precision-loss is driven by the product of the two
matrices MLA and ML

A?
, each of which being a function

of the orthogonal projections LA and LA? of matrix L,
respectively. Here, the orthogonality is defined with respect
to the inner-product metric Q�1

e . Thus LT
AQ�1

e LA? D 0 and
L D LA C LA? . This implies, for nonzero matrices L, that
the two matrices MLA and ML

A?
cannot simultaneously be

made zero. In fact, these two matrices ‘compete’ to limit the
precision-loss experienced by the estimator Ox. To see this,
let us consider two extreme competing cases: (1) when L

completely lies in the column-space of the design matrix A

(i.e. when LA? D 0), and (2) when L is orthogonal to the
column-space of A (i.e. when LA D 0). The first case is
when L can be expressed as L D AP for some matrix P .
For this case, the random vector p is completely absorbed
by the parameter vector x, thus simplifying the model (4)
as y D A .x C P p/ C e. As a result, the model cannot
distinguish between x and x D x C P p, meaning that the
uncertainty due to p cannot be adjusted by any weighted
least-squares adjustment. Both the optimal and suboptimal
estimators Ox� and Ox would therefore experience the same
amount of uncertainty. This is also corroborated by the
bounds in (6) as the eigenvalues �min and �max become zero
through the equality LA? D 0 (or ML

A?
D 0).

The second case is when AT Q�1
e L D 0. For this case,

both the optimal and suboptimal estimators Ox� and Ox are
uncorrelated with the random vector p, i.e. Cov. Ox�; p/ D

Cov. Ox; p/ D 0. This follows by applying the covari-

ance propagation law, respectively, between (7) and p, and
between (5) and p, together with the equalities Cov.y; p/ D

LQp , AT Q�1
e L D 0 and Q�1

y D Q�1
e � Q�1

e L.Q�1
p C

LT Q�1
e L/�1LT Q�1

e . Thus, both the estimators Ox� and Ox

remain intact irrespective of the uncertainty-level of p. The
bounds in (6) also support this as the eigenvalues �min and
�max become zero through the equality LA D 0 (or MLA D

0). Apart from the two extreme cases discussed above, the
maximum eigenvalue �max is different from zero, leading the
estimator (5) to lose its minimum-variance property.

The result (6) can be used to quantify the suboptimality
level of PPP-RTK user parameter solutions when the correc-
tional uncertainty, i.e. the variance matrix of � in the reduced
model (3), is unknown to the user. To set the stage for mea-
suring the largest possible precision-loss that the user estima-
tor can experience, one needs to make the following settings
y 7! .u�C Oc/, A 7! B , e 7! n, p 7! �, and L 7! �C . In the
next section we employ the result (6) to assess the precision-
performance of ‘multi-epoch’ formulations that are used to
determine the user parameter vector b in a recursive manner.

3 Multi-epoch Formulations of the User
Model

In the context of PPP-RTK, the user parameter solutions
are to be computed in a near real-time manner, requiring
the application of least-squares estimation in its ‘recursive’
Kalman filter forms (Kalman 1960; Simon 2006; Teunissen
2001). Accordingly, the user parameter vector b may be
partitioned into a time-series of parameter vectors bj

(j D i ; i C 1; : : :), where the subscripts i and j indicate
the time-instance (epoch). Likewise, the time-uncorrelated
observation vectors uj (j D i ; i C 1; : : :) replace u. This
gives the ‘multi-epoch’ version of the user observation
equations (1) as follows

uj D Bj bj C Cj cj C nj ; j D i ; i C 1; : : : (8)

Given the system of equations (8), the user needs to receive
solutions of the correction vectors cj from an external
provider at every epoch j . In practice however, the provider
disseminates state-space correction solutions at � -second
intervals to minimize the amount of information required to
be transmitted to the user (Wubbena et al 2005). The longer
the sampling period � , the less the bandwidth required for
data-transmission. While each individual correction type
(e.g. satellite orbits versus clocks) can have its own sampling
period � , such distinction is not made here just for the sake of
presentation. We instead only show one common sampling
period � for all correction types. Let Ock� jk� denote the
solution of the correction vector ck� that is obtained based on
all the provider observations collected up to and including the
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epoch k� , where k is a positive integer indicating the number
of the � -second intervals. The user would need a correction
solution at epoch i � k� though. To this end, such solution
can be time-predicted using the delayed solution Ock� jk� if
information about the time-behavior of the corrections would
be known to the user. Such information can be expressed in
terms of the corrections’ dynamic models (Teunissen 2001)

oc
t D ct � ˆc ct�1 C wc

t ; t D 2; 3 : : : (9)

where the randomness of the zero-sampled pseudo-
observation oc

t is characterized by the time-uncorrelated
process noises wc

t . The transition matrix ˆc links the
correction parameters between two successive epochs. Thus,
ˆc

.j �i/ D
Qj �i

hD1 ˆc (j > i ) links the corrections from epoch
i to epoch j . Accordingly, the sought-for correction solution
can be time-predicted as Oci jk� D ˆc

.i�k�/ Ock� jk� .
As with the corrections, the time-behavior of the user

parameter vectors bj can also be incorporated into the esti-
mation process to improve the corresponding parameter solu-
tions. They are expressed by the following dynamic models

ob
j D bj � ˆb bj �1 C wb

j ; j D i C 1; i C 2 : : : (10)

where the transition matrix ˆb links the user parameters
over time, with the zero-sampled pseudo-observation ob

t and
time-uncorrelated process noises wb

j (j D i ; i C 1 : : :).

3.1 Representation in Batch Forms

The user can feed the time-predicted correction solution Oci jk�

into his measurement and dynamic models (8) and (10) so as
to run his recursive Kalman-filter. As the below will show,
different formulations for the user-filter can be established,
and the user ideally wishes to adopt the formulation that can
deliver parameter solutions with smallest precision-loss. To
measure the precision-loss under different formulations, one
can employ the result of the theorem given in (6). To do
so, one first needs to form the multi-epoch version of (2),
and consequently, identify the corresponding reduced model
(3).

Consider the epochs within a � -second time-interval j D

i ; : : : ; .k C 1/� � 1, where it is assumed that the user initial
epoch i is larger than or equal to the correction transmission-
time k� , i.e. i � k� . During this time-interval, the user-
filter relies on the provider filtered correction Ock� jk� . In
the next time-interval, i.e. at epoch j D .k C 1/� , the
user-filter can replace the out-dated correction Ock� jk� by
its newer counterpart Oc.kC1/� j.kC1/� . With this in mind, the
multi-epoch version of (2) follows by augmenting the user
measurement and dynamic models (8) and (10), with the
dynamic models of the corrections (9). This reads (Teunissen
2001)
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C " (11)

On the left-hand side of (11), the user observation vectors
uj (j D i ; i C 1; : : : ; .k C 1/� ) are accompanied by the
correction solutions of the two successive time-intervals Oci jk�

and Oc.kC1/� j.kC1/� , together with the zero-sampled pseudo-
observations ob

j and oc
j . On the right-hand side of the equa-

tion, all the involved unknowns (both the user and correction
parameters bj and cj ) are linked to the measurements via
the ‘batch’ structure of the design matrices Bj and Cj ,
together with the transition matrices ˆb and ˆc . As with any
system of observation equations, the batch-form (11) is also
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accompanied by a zero-mean random vector ". This vector
can be expressed as a summation of four uncorrelated terms

as follows

"D
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(12)

The first term I contains the user-specific measurement
and process noises that are time-uncorrelated. The second
term II contains the accumulative process noise due to the
correction latency i � k� , i.e., the delay in time after the
corrections are filtered by the provider and the time they
are provided to the user. The third term III contains the
correction process noises that are also time-uncorrelated. In
contrast to the first three terms however, the fourth (last)
term IV contains the correction estimation-errors O�k� jk� D

Ock� jk� � ck� and O�.kC1/� j.kC1/� D Oc.kC1/� j.kC1/� � c.kC1/�

which are correlated, see e.g. Teunissen and Khodaban-
deh (2013). This implies that the variance matrix of "

is not ‘block-diagonal’, preventing the recursive computa-
tion of minimum-variance parameter solutions (Teunissen
2001). This shows that the stochastic model of the PPP-RTK
user-filter is always misspecified, and therefore, suboptimal
in the minimum-variance sense, no matter which formu-
lation is adopted. However, the user can still recursively
compute suboptimal parameter solutions by approximating
the stated variance matrix using a block-diagonal positive-
definite matrix. Each approximation adopted leads to a differ-
ent formulation of the user-filter. In the following we discuss
three different formulations and assess their corresponding
precision-loss in estimating the user parameters bj .

3.2 Case 1: Correctional Uncertainty
Ignored

A straightforward choice of the block-diagonal matrix that
can approximate the variance matrix of " is made by ignoring
the uncertainty of the corrections. In other words, the external

corrections Ocj jk� (j D i ; i C 1; : : : ; .k C 1/� ) are assumed
precise enough to be treated as non-random, the scenario
that is commonly exercised in practice (Khodabandeh 2021).
According to this choice, the presence of the last three terms
II, III and IV in (12) is discarded. Therefore, only the variance
matrix of the first term I is used to weight the underlying
observation vectors. At every epoch j , the user would then
work with the following measurement model

�
uj

Ocj jk�

�
�

�
Bj Cj

0 I

� �
bj

cj

�
C

�
nj

0

�
(13)

The reduced form of the above system, together the user
dynamic model (10), is used to setup the underlying user-
filter, that is

Case 1 W

�
measurement-model W uj �Cj Ocj jk� � Bj bj Cnj

dynamic-model W ob
j D bj �ˆb bj �1Cwb

j

(14)

Since the measurement noises nj are time-uncorrelated, the
user can run his Kalman-filter in its recursive form (Teunis-
sen 2001).

3.3 Case 2: Correction Process Noise
Ignored

The second choice for approximating the variance matrix of
" can be made by ignoring the uncertainty of the correction
process noises wc

j over the epochs j D i C 1; : : : ; .k C

1/� � 1. According to this choice, the presence of the last
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two terms III and IV in (12) is discarded. The user chooses the
variance matrix of ICII to weight his observation vectors. At
every epoch j , the user would then work with the following
measurement model

�
uj

Ocj jk�

�
�

�
Bj Cj

0 I

� �
bj

cj

�
C

2
4

nj
jP

hDk�C1

ˆc
.j �h/ w

c
h

3
5 (15)

Similar to Case 1, the reduced form of the above system,
together (10), is used to setup the underlying user-filter, that
is (compare with 14)

Case 2 W8̂
ˆ̂<
ˆ̂̂:

measurement-model W uj � Cj Ocj jk� � Bj bj

C .nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h/

dynamic-model W ob
j D bj � ˆb bj �1 C wb

j

(16)

Since the uncertainty of wc
j is ignored, the reduced measure-

ment noise vectors nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h can be treated as

if they are time-uncorrelated, allowing the recursive compu-

tation of the user parameter solutions. As with Case 1, Case
2 also delivers suboptimal parameter solutions. In contrast
to Case 1 however, Case 2 incorporates the uncertainty
due to the time-prediction of the corrections Ocj jk� into the
measurement model.

3.4 Case 3: Correction Estimation-Error
Ignored

As stated previously, it is only the last term IV in (12)
that makes the user-filter misspecified. One may therefore
approximate the variance matrix of " by neglecting the
presence of IV. The rationale behind such approximation
is that the provider filtered solutions Ock� jk� can become
precise enough so as to neglect their estimation error O�k� jk�

when the duration of the provider-filter initialization, i.e. the
time-difference between the epoch k� and the initial epoch
t D 1, becomes sufficiently large (e.g., �1 h), see (Wang
et al 2017; Khodabandeh 2021; Psychas et al 2022). Upon
making this approximation, the user would then work with
the following measurement and dynamic models (compare
with 16)
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Note the difference between the formulation of Case
3 and those of the two earlier cases. In Case 3, the
system is not reduced for the correction parameters cj .
This is because the reduced measurement noise vectors

nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h are time-correlated. In order to

run the filter in its recursive form, the user therefore
has to work with the augmented state-vector ŒbT

j ; cT
j �T

instead.
To numerically evaluate the maximum precision-loss

experienced by the user-filter under the formulation of the
three cases discussed above, we employ the result (6) and
compute the square-root of the upper-bound, i.e.

p
1C�max,

for the case where a dual-frequency Galileo user (E1/E5a)
is provided with clock-, bias- and ionospheric- corrections
every � seconds. The eigenvalue �max is evaluated on the
basis of the variance matrix corresponding to the multi-

epoch batch model (11). The corresponding results as a
function of the correction latency i � k� is shown in Fig. 1.
As illustrated in the figure, the stated upper-bounds of all the
three cases are close to unity in the absence of correction
latency (i.e. when i D k� ), indicating that they would
deliver parameter solutions almost as precise as those of the
minimum-variance estimation. However, the suboptimality
levels of Cases 1 and 2 rapidly get worse the higher the
latency becomes (the red and blue curves). Provided that
the duration of the provider-filter initialization is sufficiently
long, the precision-loss associated with Case 3 remains
marginal though (see the green curves in the right-panel of
the figure).

Next to the primary evaluation in Fig. 1, we also make
use of a Galileo dual-frequency (E1/E5a) real-world data-
set to study the positioning performance of the misspecified
user-filter. The data-set was collected with a 1Hz sampling-
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Fig. 1 The maximum increase in the standard-deviation ratio of the
suboptimal-to-optimal estimation of the user parameters using network-
derived corrections of a single station (thick lines) and twenty stations

(dashed lines). The duration of the provider-filter initialization is set to
5 min (left) and 1 h (right). The results of Cases 1, 2 and 3 are indicated
in red, blue and green, respectively

Fig. 2 Ambiguity-float results: The medians (50% percentiles) of the
absolute positioning errors corresponding to 300 user-filter realizations
within the area of their 25% and 75% percentiles. The horizontal axes

indicate the time lapsed (in seconds) since the user-filter has started.
The results of Cases 1, 2 and 3 are indicated in red, blue and green,
respectively

rate on 21 January 2022 by two GNSS permanent stations:
CUT0 and UWA0, both located in Western Australia. The
precise orbital corrections are a-priori applied to the data.
To emphasize the performance of the proposed filter for-
mulations (i.e. Cases 2 and 3) in handling time-delayed
corrections, we consider rather high correction latencies
than the typical latency of 5–10 s of current IGS real-time
PPP corrections (https://igs.org/rts/), see, e.g., Leandro et al
(2011). The clock corrections are made available to the user
every 10 s, ionospheric corrections every 30 s, and phase-
bias corrections every 10 min. The corrections are generated
via a single-station PPP-RTK setup (Khodabandeh 2021),
where the duration of the provider-filter initialization is set
to 1 h. Station CUT0 serves as correction-provider, whereas
station UWA0 serves as user that is about 8km away from the
provider.

In order to infer the overall performance of the user-filter
under the formulations offered by Cases 1, 2 and 3, we
generate 300 different realizations of the filtered positioning
solutions by shifting the user-filter starting epoch i every
15 s. The time-series of the medians (i.e. 50% percentiles)
of these realizations within the area of their 25% and 75%
percentiles are presented in Figs. 2 and 3 for the both the user
ambiguity-float and-fixed options, respectively. The medians
of the positioning errors corresponding to Cases 2 and 3 are
shown to be considerably smaller than those of Case 1. The
results also indicate that Case 3 outperforms Case 2 as it, on
average, delivers smaller medians of the positioning errors.
In particular, the difference in their performance becomes
considerable when the user fixes his float ambiguities. Note
also the presence of periodic jumps of the medians for all
the three cases. This behaviour is due to the periodic nature

https://igs.org/rts/
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Fig. 3 Ambiguity-fixed results: The medians (50% percentiles) of the
absolute positioning errors corresponding to 300 user-filter realizations
within the areas of their 25% and 75% percentiles. The horizontal axes

indicate the time lapsed (in seconds) since the user-filter has started.
The results of Cases 1, 2 and 3 are indicated in red, blue and green,
respectively

of the correction latencies that vary from zero to � � 1 s for
each data-transmission interval. The corresponding periodic
peaks become more pronounced in the solutions of the east
component when the float ambiguities are wrongly fixed.

4 Concluding Remarks

In this contribution we presented a general means for measur-
ing the precision-loss that is experienced by the misspecified
PPP-RTK user-filter. It was addressed why the stochastic
model of the user-filter is always misspecified, irrespective
of the multi-epoch formulation adopted, cf. term IV in (12).

By discussing three different formulations for the user-
filter, it was demonstrated that the user can potentially limit
the suboptimality level of his filter, i.e. when the correction
latency is not high and when the duration of the provider-
filter initialization is sufficiently long. In contrast to the
commonly-used multi-epoch formulation (Case 1), our pro-
posed formulations (Cases 2 and 3) were shown to deliver
user parameter solutions that are almost as precise as those
of the minimum-variance estimation.
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Appendix

Proof of the Theorem Let Q Ox and Q Ox� be the variance
matrices of the estimators Ox and Ox�, respectively. To prove
(6), we employ the following Rayleigh quotient-bounds of
the matrix-pair .Q Ox; Q Ox�/ (Magnus and Neudecker 2017)

�min.Q Ox Q�1
Ox� / �

f T Q Oxf

f T Q Ox�f
� �max.Q Ox Q�1

Ox� /: (18)

Defining matrix M D .Q Ox � Q Ox�/ Q�1
Ox�
, (18) can be

expressed as

1 C �min.M/ �
f T Q Oxf

f T Q Ox�f
� 1 C �max.M/; (19)

as Q Ox Q�1
Ox�

D I C M . What remains to show is �.M/ D

�.MLAML
A?

/. Application of the variance propagation law
to (5) and (7) gives the variance matrices of the estimators
Ox and Ox� as Q Ox D ACQyACT and Q Ox� D .AT Q�1

y A/�1,
respectively. Therefore, the matrix difference .Q Ox � Q Ox�/
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can be expressed as

Q Ox � Q Ox� D AC .Qy � AQ Ox�AT /„ ƒ‚ …
Q

Oe�

ACT

D AC QyA?.A?T QyA?/�1A?T Qy„ ƒ‚ …
Q

Oe�

ACT

D ACLQpA?.A?T QyA?/�1A?T QpLT ACT

(20)

The first equality follows from the identity ACA D I and
the least-squares residuals’ variance matrix QOe� D Qy �

AQ Ox�AT , while the second equality follows by expressing
QOe� in its conditional adjustment form (Teunissen 2000),
with A? being an orthogonal-complement basis matrix of A.
Thus AT A? D 0, and ŒA; A?� is a square, invertible matrix.
The last (third) equality follows from Qy D Qe C LQpLT

and ACQeA
? D 0. Substitution of the last expression, with

Q�1
Ox�

D .AT Q�1
y A/, into M D .Q Ox � Q Ox�/ Q�1

Ox�
gives

M D ACLQpA?.A?T QyA?/�1A?T

„ ƒ‚ …
U

QpŒAACL�T Q�1
y A„ ƒ‚ …

V

(21)

As the nonzero eigenvalues of the matrix-product U V

remain invariant for switching the order of the involved
matrices as V U (Magnus and Neudecker 2017, p. 16), the
following matrix

V U D QpŒAACL�T Q�1
y ŒAACL�„ ƒ‚ …

MLA

� QpA?.A?T QyA?/�1A?T

„ ƒ‚ …
ML

A?

(22)

inherits the same nonzero eigenvalues as those of (21). ut
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Geoid and Quasi-Geoid



Geoid or Quasi-Geoid? A Short Comparison

Lars E. Sjöberg and Majid Abrehdary

Abstract

This article is a short introduction to the debate on choosing the geoid and orthometric
heights or the quasi-geoid and normal heights as the vertical coordinate system. It mainly
compiles some more or less already known facts for comparing the two systems.

Keywords

Geoid � Normal height � Orthometric height � Quasi-geoid

1 Introductory Comparison Between
Geoid and Quasi-Geoid

The geoid is simple to explain to the layman but not so the
quasi-geoid. Also, only the geoid is an equipotential surface
of interest in geophysics. Mathematically, to determine the
geoid is an inverse problem while to determine the quasi-
geoid is a forward problem, and the geoid problem is also
a free boundary value problem (bvp) in the sense that the
boundary itself is unknown (over dry land). On the contrary
the quasi-geoid, or rather the height anomaly (�), can be
achieved by solving one of the following problems. (See
also Heiskanen and Moritz 1967, Chap. 8 and Sjöberg and
Bagherbandi 2017, Sect. 6.3.)

Problem 1 (Molodensky’s problem) Derive � from the
known gravity and potential at the unknown topographic
surface. This is a free bvp.

Problem 2 (a modern problem) Derive � from the known
gravity at the known topographic surface and orthometric
height. This is a fixed bvp.
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e-mail: lsjo@kth.se

M. Abrehdary
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Problem 3 (A second modern problem) Derive � from
the known potential at the topographic surface and geodetic
height (h). This is a fixed bvp.

In the sequel we will denote the solution of Problem 1
by Stokes’ formula, Method 1, the solution of Problem 2,
Method 2, and the solution of Problem 3, Method 3. In
the rest of the paper we will mainly refer to Methods 2
and 3. Geoid problems are caused by the partly unknown
topographic density distribution and its extension down to the
(unknown) geoid, problems that do not occur in quasi-geoid
determination. On the other hand, in rough topography with
over-hangs and vertical topography the quasi-geoid height is
as ambiguous as the topography (e.g., Sjöberg 2018a).

The geoid height N is given by Bruns’ formula:

N D Tg=�0; (1)

where Tg is the disturbing potential at the geoid and �0 is
normal gravity at the reference ellipsoid.

On the contrary, the height anomaly � is given by the
disturbing potential at point P on the Earth’s surface and
normal gravity at the point Q on the telluroid (see Fig. 1):

� D TP =�Q: (2)

Note 1 The telluroid is defined as the surface, where the
normal potential at each point Q equals the Earth’s surface
potential at point P along the normal to reference ellipsoid
(see Fig. 1).
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Fig. 1 Illustrations of the geodetic height (h), geoid height (N), ortho-
metric height (H), height anomaly (−) and normal height (HN )

Note 2 The height anomaly is the height from the telluroid
to the Earth’s surface. The end user of the height anomaly
usually places � at the reference ellipsoid under the name
quasigeoid height, so that the height from this surface to the
Earth’s surface becomes the normal height (HN).

Note 3 The fact that the orthometric height (between points
P and P0) is slightly curved along the plumbline is practically
irrelevant.

2 Computational Steps for Geoid
and Quasi-Geoid Determination

The determination of the geoid by Stokes’ formula requires
downward continuation (DWC; e.g., by remove-compute
restore technique) of gravimetric data to sea-level, while
quasi-geoid determination in modern methods either requires
DWC of gravity to sea-level or point level in Method 2
or direct employment of surface potentials in Method 3.
These methods are illustrated below (see also Sjöberg and
Bagherbandi 2017, Sects. 6.2–6.3.):

2.1 Geoid Determination by Stokes’
Formula

QN D R
4��0

’
�

S . /
�
�g C�gT

dir

��
d� C dNT

I
(3)

where R is sea-level radius, � is the unit sphere, S( ) is
Stokes function with argument  being the geocentric radius
between computation and integration points, �gTdir is the
direct topographic effect on the gravity anomaly �g, []�D

DWC to sea-level, and dNT
I is the indirect topographic effect.

Note 4 In Eq. (3) and below for quasigeoid determination
�g is the “modern” Earth surface gravity anomaly (intro-
duced by M.S. Molodensky in 1945), i.e., surface gravity
minus normal gravity at the telluroid/normal height (Fig.
1). However, geoid determination is traditionally conducted
from a more approximate gravity anomaly determined by
applying its free-air reduction to mean sea-level minus nor-
mal gravity at the reference ellipsoid.

2.2 Quasi-Geoid Determination

Method 1 (M.S. Molodensky 1945)
Here the disturbing potential is introduced as a surface
integral of an unknown surface density (�) on the telluroid
(†). A Fredholm integral equation of the second kind relates
� to the known surface gravity anomaly. Assuming that
normal heights are known all over the Earth and introducing
several approximations, the latter integral can be solved for
� and � by successive iterations. However, the series will
hardly converge for terrain slopes larger than 45ı, which
calls for a solution of low resolution or accuracy. (For more
details, see Heiskanen and Moritz 1967, Chap. 8.)

Method 2 (Stokes Formula)
Approach 1 (Remove-Compute-Restore)

� D
R

4��Q

“

�

S . ; rP /
�
�g C�gT

dir

��
d� C d�T

I ; (4)

where (S( , rP) is the extended Stokes’ formula, d�T
I is the

indirect topographic effect and rP is the geocentric radius at
point P.

or
Approach 2 (Direct DWC according to Bjerhammar

1962)

� D
R

4��Q

“

s

S . ; rP / Œ�g��d�: (5)

Approach 3 (DWC to point level of radius rP)

� D
rP

4��Q

“

s

S . / Œ�g���d�; (6)

where []�� D DWC to point level.

Method 3 (Direct Determination from Known Surface
Potential and Geodetic Height)
Assuming that the topographic surface is known from satel-
lite geodetic positioning and the Earth’s potential at the
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surface from Earth Gravitational Models or in the future
from direct determination by atomic clocks (e.g., Bjerham-
mar 1975, 1985), one can determine the surface disturbing
potential and normal gravity at normal height (by iteration).
Then the height anomaly/quasi-geoid follows from Eq. (2).

3 A Geoid Validation Problem

Let us assume that the geodetic height (h) is known from
GNSS-leveling, and that the geoid and orthometric heights
N and H are functions of the topographic density �. Then it
holds that

h D N .�/CH .�/ ” N .�/ D h �H .�/ : (7)

(Note that Eq. (7) is an approximation, as the orthometric
height is slightly curved along the plumbline, but that will
not significantly affect the following result.)

If � is in error, it follows that the errors of N and H are
related by:

dN .	/ D -dH .	/ ; (8)

so that the erroneous density provides equal errors with
opposite signs for geoid and orthometric heights. Hence,
validating a gravimetric geoid model by GNSS-levelling
ignores the error in topographic density. (See also Sjöberg
2018b.) One can show that this problem occurs also in
validating a gravimetric geoid model by astro-gravimetric
leveling, e.g., by using a zenith camera (Sjöberg 2022). That
is, the true topographic density distribution cannot be verified
by this validation process.

One may assume that Eq. (8) does not hold except for the
true density �, arguing that estimated geoid and orthometric
heights are affected in different ways by the erroneous mass
density, such that the estimated geodetic height Oh .�/ by
Eq. (7) would disagree with its true value h (obtained by
accurate geodetic positioning, e.g. GNSS). Then one could
think of adjusting the density in Oh .�/ such that it matches h.
However, this procedure would not be realistic, as one cannot
solve the inverse gravimetric problem of the density of mass
of the Earth by exterior gravity and geometric data. Hence,
Eq. (8) must hold for any assumed density distribution.

On the other hand, if the gravimetric geoid and orthome-
tric height models use different topographic density models,
Eq. (8) does not hold.

Sometimes one justifies the accuracy of a gravimetric
geoid model determined by adjusting overdetermined gravi-
metric data in a least-squares procedure (e.g., Foroughi et
al. 2019). However, then the reported standard error can
only estimate the internal accuracy, while any remaining
topographic DWC problem is missing. See Sjöberg (2022).

The above verification problems do not occur in quasi-
geoid determination.

4 Orthometric Height vs. Normal Height

Using the geoid as the reference surface, the natural height
system is based on the orthometric height. However, deter-
mining the true orthometric height is an inverse problem just
as the geoid problem. In practice one frequently introduces
a topographic density model both for the geoid and the
orthometric height to get a consistent system. Typical hereby
is Helmert orthometric heights with a constant topographic
density of 2,670 kg/m3. One should also remember that
orthometric heights are curved along the plumbline, but the
curvature can usually be ignored.

The normal height is the normal to the reference ellipsoid
between the reference ellipsoid and telluroid. Assuming that
the topographic height h (e.g., from GNSS positioning),
normal gravity at the reference ellipsoid (�0), its vertical
gradient (a D 0.3086 mGal/m) as well as the disturbing
potential T at the point of computation are known (not
necessarily at the Earth’s surface), the normal height HN can
be determined in an iterative procedure simultaneously with
normal gravity at normal height (�Q) by using the start values
�Q � �0 � ha and HN � h. Then one iterates the solution by
alternating between the following solutions until numerical
convergence:

HN D h � T =�Q (9a)

and

�Q D �0 � aHN : (9b)

In this way the reference ellipsoid is the zero-level of the
normal height system. On the contrary, using the quasi-
geoid as the zero-level of the normal height system will
cause ambiguity problems in rough topography of a non-star
shaped Earth model.

5 Concluding Remarks

– In geophysics the quasi-geoid does not make sense, while
the geoid is useful as a reference surface.

– Geoid and orthometric heights depend on topographic
density. This is not the case for quasi-geoid and normal
heights.

– No topographic reduction is needed for quasi-geoid and
normal height determination.

– Both the geoid and quasi-geoid can be evaluated by Stokes
formulas after DWC of gravity anomalies to mean sea-
level and point level, respectively.
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– The geoid validation problem in high topography due
to the density uncertainty does not apply to quasi-geoid
determination.

– The topographic height, surface disturbing potential and
normal gravity at the reference ellipsoid are sufficient
information to determine the quasi-geoid height.

– The quasi-geoid will be ambiguous in rough topography
for a non-star shaped Earth model. In practice this prob-
lem can be solved by a mean quasi-geoid model corre-
sponding to a specified resolution and mean topographic
model.
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The Quasigeoid: WhyMolodensky Heights Fail

Robert Kingdon, Petr Vaníček, Marcelo Santos, Michael Sheng,
and Ismael Foroughi

Abstract

Any height system has two constituents: A reference surface upon which all heights are
equal to zero, and a prescription for how observed heights and height differences will be
related to that surface. That prescription is typically formulated with reference to Earth’s
gravity field, but in this contribution, we will use the concept of metric spaces instead.
In most height systems, the height of a point can be interpreted as the length of the 3-
dimensional path from a point of interest to the reference surface in a particular metric
space. The geometry of the path is that of the space associated with the height system.
This submission explores the definition of a height system simply as a metric space
and a reference surface, applies it to common height systems used in geodesy (geodetic,
orthometric, dynamic, normal), and examines their characteristics through that lens.
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1 Introduction

Any height system requires two constituents: A horizontal
reference surface upon which all heights are equal to zero,
and a prescription for how observed heights and height
differences will be related to that surface. This is consistent
with standard works such as Heiskanen and Moritz (1967)
who define heights as path lengths from points of interest to
reference surfaces and prescribe methods for using levelling
observations to define heights of points. In the modern
world, satellite positioning observations of heights above a
superficial surface, an ellipsoid, must also be related to a
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reference surface, which is done using models of geoid-
ellipsoid separation (geoidal heights) or of height anomaly.
While traditional approaches often focus on heights of points
on the topographical surface, we here intentionally discuss
how height systems define heights more generally for points
anywhere in a three-dimensional space near Earth’s sur-
face.

The traditional interpretation of height systems and of
relationships between them applies concepts of potential
fields and their corresponding gradient vector fields to
describe the form of reference surfaces and the paths along
which heights are measured. The mathematical apparatus of
this approach has been well-developed over many years by a
progression of authors (e.g. Gauss 1828; Molodensky et al.
1962; Hotine 1969; Marussi 1985; Sansò and Vanìček 2006;
Sansò et al. 2019). In this paper, we apply a mathematically
equivalent interpretation whereby for almost all common
height systems a 3-manifold (a 3-dimensional space that is
locally Euclidian) can be defined such that the height of a
point is the length in a Euclidean space of the line of steepest
descent following the gradient of the manifold from the point
to a reference surface.
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Each 3-manifold, if it is to be used in this way, should be
Riemannian. This implies a metric space, where a distance
function can be defined. The level surfaces of the manifold
comprise a family of 2D subspaces, called horizontal in our
case. The 1-dimensional subspaces, orthogonal to the family
of 2D horizontal subspaced are identical to what Sansò et
al. (2019) call the “lines of the vertical”, and we will adopt
that terminology here. Precisely one line of the vertical goes
through every point in the region of interest, and the height
of a point is the length measured in this 1-dimensional
subspace from that point to the reference surface. While
several different “lines of the vertical” arise in different
height systems, their variations in curvature and torsion are
not very significant. Their differing lengths, associated with
differing “height metrics” of the 1-dimensional subspaces,
are their important characteristic and are part of the 3-
dimensional metric of the manifold.

The idea of describing heights based on the character-
istics of metric spaces is not new. The physical space and
approximate physical spaces discussed here, for example,
can be understood mathematically according to Hotine’s
discussion of N surfaces as coordinates (Hotine 1969, Chap.
12), reflected in Sansò et al.’s discussion of the Hotine-
Marussi coordinate triad (2019, Sect. 5.3). Here we invoke
the interpretation of heights via three-dimensional Rieman-
nian manifolds only to explore differences between height
systems. Similar comparisons of the geometry implied of
different height systems have been undertaken before (e.g.
Heiskanen and Moritz 1967; Vaníček and Krakiwsky 1986;
Featherstone and Kuhn 2006; Sansò et al. 2019), but not with
the same framework of manifolds and mappings between
them. We will not in this paper present a mathematical
framework for these systems’ implementation; this work has
already been done in the references cited above. The intent is
to use the concept of metric spaces as a lens to assess existing
height systems.

2 Common Height Systems Defined
by Their Metric Space and Reference
Surface

We will next use the context of metric spaces to discuss some
of the common height systems. We will exclude geopotential
numbers, focusing instead on systems that deal with heights
in linear units. We will also mostly exclude dynamic heights.
While these systems fit within the understanding of height
systems outlined above, and are important for some practical
engineering applications, they have been excluded in the
interest of space.

A

Fig. 1 Geodetic height system, showing normal to the ellipsoid
through point A, along which height is measured, as medium dashed
line; and other lines to the ellipsoid from A as faint narrower dashed
lines

We begin with geodetic height, also sometimes called the
ellipsoidal height (wouldn’t these be heights of the ellipsoid
above the ellipsoid?), which is used here to mean the vertical
coordinate h in the triplet of geodetic coordinates (®, �,
h). These heights are associated with a space we call the
geometric space, G, which is a Euclidean manifold. Since
the space is flat, no single line of steepest descent can be
defined, and lines minimizing Euclidean distance (straight
lines) are used instead. The reference surface is a reference
ellipsoid, and the geodetic height h of a point is simply the
shortest distance from the ellipsoid to the point. The system
is illustrated in Fig. 1.

The geometric space is so called because it has a role
in relating any other space to geometrical measurements
on Earth’s surface. In particular, the gometrical space is
used for describing the position of points, which is the
ultimate concern in geodesy. Other quantities, such as gravity
potential, may be used as coordinates to represent the curved
intrinsic geometry of the other spaces involved, but they must
ultimately be related back to positions. The geopotential
numbers, which do not use linear units, still operate by
specifying a geometric location along a line of the verti-
cal – in particular, that point where a equipotential surface
having a specific potential intersects the line. We may thus
consider all other spaces to be embedded in the geometric
space.

Next, we discuss. The orthometric height system. In this
system, the metric space used for defining the lines of height
is the physical space, which we will call P, and the reference
surface is the geoid. The physical space is a Riemannian
manifold with a shape defined by the gravity potential func-
tion W D W(x), where x is a coordinate triad representing
the position of any point in the geometrical space. In P, the
family of equipotential surfaces are the level surfaces, and
the plumblines, which are everywhere orthogonal to those
surfaces, will be lines of the vertical. In the orthometric
heights, the geoid, which is one of the level surfaces of P,
serves as the reference surface. The system is illustrated in
Fig. 2.
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A

Fig. 2 A point A in the physical space, with plumblines and equipoten-
tial surfaces represented by thin grey lines, the geoid by a thick grey
line, topography by a medium black line, and orthometric height of
point A by a medium dotted black line

The formula for orthometric height HO above the geoid
induced by this definition is exactly the plumbline length
given by the standard formula (Heiskanen and Moritz 1967,
Eqs. 4–21):

H O D C
.

g ; (1)

where C is the geopotential number and g is the integral
mean of the vertical gradient of gravity potential along
the plumbline between the geoid and the point of inter-
est. The denominator in Eq. (1) arises from the choice
of the plumbline as the line of the vertical, and uniquely
transforms the geopotential numbers associated with the
physical space into Euclidean lengths in the geometrical
space. Any other denominator, unless it is just a scaling
of the denominator in Eq. (1) by a constant value, would
transform the geopotential number to a non-Euclidean space.
A practical challenge exists in calculating g, because this
requires sufficiently accurate topographical density models.
Current methods for calculating g (Santos et al. 2006) allow
orthometric heights accurate to 1 cm or better except in high
mountains.

Next we turn to the normal height systems, which we
discuss as the Vignal or Molodensky type. Vignal heights,
first called altitudes orthodynamiques were developed in
the 1940s and 1950s (e.g. Eremeev 1965; Simonsen 1965),
roughly parallel to Molodensky’s (Molodensky 1945) sys-
tem. The goal was to replace dynamic heights with a system
more closely matched to Earth’s gravity field. In Vignal’s
system, the mean gravity value in the denominator of Eq. (1)
is replaced with the integral mean normal gravity � between
the ellipsoid and a point displaced above the ellipsoid by an
amount equal to the height of the point of interest (Eremeev
1965). Vignal’s method takes � as a better approximation
of g than the arbitrary value used in dynamic heights, and
thus an improved approximation of orthometric height in an
era when real gravity not known as well as it is now. The
heights arising from this system are given by the equation
for the length of the normal plumbline from the reference

ellipsoid to the telluroid (Heiskanen and Moritz 1967, Eqs.
4–55):

H N D C
.

� : (2)

From this formula, it is immediately clear that the geoid must
be the zero-height surface for Vignal normal heights because
for C D 0 (on the geoid), HN D 0. However, is it also clear
that the Vignal normal heights of points will be different
from their orthometric heights, because the denominator in
Eq. (2) is different from that in Eq. (1). If we attempt to
understand Vignal heights as lengths of a line of the vertical
from the geoid to a point, this difference in denominator
implies that those lengths are defined using a non-Euclidean
metric. Interpreted in the context presented in this paper, this
is a consequence of Vignal heights being defined using a
space N that is not equivalent to the physical space P, but
is only an approximation of it.

N is of a category that we will call approximate physi-
cal spaces, which comprise simplifications of the physical
space. Such spaces are common in geodesy and survey-
ing: Widespread examples include the planar and spherical
approximations, where the shape of Earth’s gravity field and
topography is distorted by simplification of Earth’s gravity
field.

Like the spaces used in the planar and spherical approxi-
mations, the normal space N is also an approximate physical
space. It is a bit closer to the real space, and improves upon
the spherical approximation by using an ellipsoidal approxi-
mation of Earth’s gravity field. In N, the real plumblines map
to the normal plumblines, which are the lines of the vertical
in the Vignal system. The equipotential surfaces map to the
ellipsoidal equipotential surfaces of the normal gravity field,
of which the reference ellipsoid serves as the reference sur-
face for Vignal heights. The shape of the space is described
by the function U D U(x) in the same way that the function
W D W(x) describes the physical space. The physical space P
maps to N by a smooth mapping MN, as shown in Fig. 3, and
based on Eqs. (1) and (2) the mapping of plumbline lengths is
given by g=� . The approximation error of the normal space is
distributed globally, and is on the order of no more than about
150 m for the region of interest (several kilometres above or
below the topographical surface). The error in normal heights
arising from this approximation is less than 4 m globally
(Foroughi and Tenzer 2017), and much smaller than that in
most areas.

Approximate physical spaces are important for simplify-
ing the mathematical formulations involved in positioning.
For example, the “reduction” of an observed vector between
two points to a horizontal distance becomes more simple if
a planar or spherical approximation is used. Likewise, the
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A

MN

NP
A'

Fig. 3 The physical space mapped to the Normal approximation space
N by mapping MN, with Vignal normal height indicated by the medium
dotted black line in the Normal space

normal space provides a very important “reference space” for
positioning and gravity field computations in geodesy, where
it is often used as a first approximation of Earth’s gravity
field. Differences between quantities in the physical space
and the normal space can then be treated as small anoma-
lies that can be dealt with in subsequent refinements more
easily than if the full quantities were used. More detailed
“spheroidal” approximations are also frequently made in
geoid modelling computations. However, such simplification
comes at the expense of geometry and should be applied with
care. In the case of Vignal heights, while the normal space is
a sufficient approximation of P for the accuracy goals and
data availability of the 1950s, nowadays far better estimates
of orthometric heights are available, like the rigorous ortho-
metric heights (Santos et al. 2006).

We now turn to what we call the Molodensky normal
heights. Molodensky, in his creation of a comprehensive
normal height system (Molodensky et al. 1962) applies a
definition similar to Vignal’s but more exactly calculated,
and also applies two other definitions that were meant to be
equivalent to it:

1. The height along a normal to the ellipsoid of a point
displaced by some amount � (the height anomaly) from
the topographical surface, i.e., the telluroid; and

2. The height of a point above the quasigeoid, along a normal
to the ellipsoid.

Because the height anomaly is the vertical displacement
between a point of potential W and a point of normal
potential U D W, it represents the mapping of vertical point
positions from P to N. Thus Definition 1 should theoreti-
cally produce heights identical to Vignal’s, apart from the
difference between the normal plumbline and the ellipsoidal
normal. Furthermore, since � can be calculated not only at
the topographical surface but anywhere in the space near
it, Definition 1 can be extended from Molodensky’s usage
to provide a viable route for those wishing to transform
geodetic heights to Vignal normal heights. However, because
Molodensky’s approach to calculating � requires a regu-
larized Earth surface (Molodensky 1945) it does not yield
heights exactly equivalent to Vignal’s: An additional layer of

A

Fig. 4 The Molodensky normal height system, showing normal to the
ellipsoid through point A, along which height is measured, as a medium
dashed line, and the quasigeoid as a thin black line

approximation is added, as well as some ambiguity unless
the choice of regularized Earth surface is specified.

Definition 2 is more problematic. As highlighted at the
2018 Hotine-Marussi symposium and discussed in subse-
quent publications (e.g. Kingdon et al. 2022), the quasigeoid
is a folded and creased surface not well-suited as a reference
surface for heights. Thus, a regularized topography must
again be used to construct a usable quasigeoid. The quasi-
geoid constructured in this way will still not be a physically
meaningful surface however: A marble placed on the geoid
would not roll; a marble placed on the quasigeoid would
navigate a path among the variations of topography and
gravity anomalies. Furthermore, the quasigeoid is associated
with the values of � at the (regularized) surface of topography
only, and so Definition 2 will provide incorrect heights for
points not situated at the topographical surface.

Because the use of the height anomalies was uniquely
associated with the Molodensky system, herein we use the
term “Molodensky heights” to refer to heights defined using
height anomalies. There heights may be defined according
to Definition 1, in which case they are equivalent to Vignal
heights. However, if defined according to Definition 2 as
shown in Fig. 4, they are defined with the quasigeoid as
the reference surface and the ellipsoidal normals as the lines
of the vertical. Notably, the lines of the vertical are not
perpendicular to the reference surface in this definition, and
all of the problems with the quasigeoid listed above are
inherited. Any attempt to define an approximate physical
space associated with the Definition 2 Molodensky heights
would be quite complex, given their association with the
irregular quasigeoid.

3 Conclusions

Consistent interpretations of each height system are possible
in the context of vertical lines in selected metric spaces from
points of interest to defined reference surfaces. Such inter-
pretation reveals that for most systems of heights, including
the Vignal normal heights, the geoid is the reference surface.
These systems all have the property that height is a member
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of a 1-dimensional space perpendicular to the level surfaces
of the manifold in which they are defined, and the height
dimension extends perpendicular to the reference surface.
The only system that does not cleanly fit into this framework
is the Molodensky system that uses the quasigeoid. The
Vignal normal heights present a more consistent system, and
Molodensky’s use of the height anomaly to define his normal
heights presents a path to their use.

In the longer term, we have seen that any variety of normal
height relies on an approximation of Earth’s gravity field,
and this gives rise to certain challenges. The differences in
accuracy between normal and orthometric heights are small,
but as measurement precision increases small differences
may become significant. At the same time, as better density
models and gravity observation allow improved characteri-
zation of Earth’s gravity field, the arguments for using an
approximate physical space for defining heights wane. Like
the planar and spherical approximation, the normal approx-
imation will always have a role in geodetic computation,
generating reference ellipsoids and gravity anomalies, and
for other purposes where a simplified or approximate gravity
field is called for. However, the time to set it aside in the
ultimate definition of height systems is near.
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Molodensky’s and Helmert’s Theories:
Two Equivalent Geodetic Approaches to the
Determination of the Gravity Potential and the
Earth Surface

Fernando Sansó, Riccardo Barzaghi, and Mirko Reguzzoni

Abstract

A fundamental problem of physical geodesy is the determination of the “Surface of the
Earth” and its gravitational potential from various types of observations performed on
the Earth surface S itself or in the outer space. When data are derived from gravimetry
on S we speak of Molodensky’s problem. Since the gravity field depends linearly on its
source, i.e. the mass distribution, it follows that we can manipulate the (unknown) internal
density in a known way and still return to the same external solution once the effects of the
manipulation have been eliminated (restored). This is used, in the frame of Molodensky’s
theory, with the Residual Terrain Correction that is removed (and then restored) before
approximating the solution by some regularized (collocation or other) approach. Differently,
Helmert’s approach shifts the masses of the topographic layer, compressing them to some
internal surface and substituting their effects on gravity by that of a single layer. Data are
thus lowered to some internal ellipsoid or sphere and a solution is then easily computed.
The effects of the internal changes are then inverted and added back to the solution. Despite
the apparent completely different approach one can prove that the final solutions, when
data are given continuously on the boundary and the errors are made to tend to zero,
converge to the true potential on the surface S and then in the outer space. So the two
solutions are geodetically equivalent and do not create any scientific conflict. Different is
what happens inside S , down to the geoid level. Here Helmert’s approach, that introduces
the density of the topographic layer as data, is certainly less erroneous in approximating
the true potential. Yet due to the imperfect knowledge of the density and even more to
the ill-posedness of the downward continuation operator, the internal potential can have
large errors, unless the solution is duly regularized and an appropriate tuning is introduced
between the regularization parameter and the size of data errors.
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1 The Gravimetric Surface of the Earth

The purpose of physical geodesy is to find the potential W

of the gravity field of the Earth in the space outside the
masses and possibly even a little below their surface S to
be used in geological and geophysical interpretation. This
has to be done by exploiting all the information we have on
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W , primarily observations of potential differences between
couples of points on S , the gravity modulus at points on
the surface and many others, including satellite altimetry
on the oceans, satellite gravimetry and gradiometry, satellite
tracking, etc.

One fundamental feature of geodetic problems is that the
surface S itself has to be considered as unknown. This holds
despite satellite observations of the Earth seem to supply us
with a geometric determination of S , for instance by radar
altimetry on the ocean and by SAR or photogrammetry on
land. Yet, apart from the fact that the accuracy of the geome-
try is e.g. on land of about 1 m and of a few centimeters for
the quasi stationary sea surface, the true issue is that such a
surface is not the same we are looking for, from the gravity
field view angle.

For instance a circular tower with a radius of 30 m and a
height of 40 m produces an attraction of less than 0.03 mGal
on top of its roof, on account of the fact its concrete occupies
less than 1% of its volume. On the other hand, the same tower
is well determined by space photogrammetry, i.e. it enters
into the geometric surface of the Earth in photogrammetric
sense, but not in the gravimetric sense.

For these reasons we have to accept that the gravimetric
surface S is an unknown characterized by the fact that at its
points we know the minimal information on the gravity field
necessary to solve our problem. We will not repeat the long
road leading from observations to the scalar Molodensky
Problem (or scalar GBVP) for which we rather send to the
literature (Heiskanen and Moritz 1967; Moritz 1980; Krarup
2006; Sacerdote and Sansò 1986; Sansò 1997; Heck 1989,
1997; Martinec 1998; Sansò and Sideris 2013). We only
recall that the above definition of S within the scalar GBVP,
the same given in Sansò and Sideris (2017), needs some
more discussion. In fact we can observe that we have two
sources of information on S ; one is the coordinates of points
at which we make gravimetric measurements, the other is
the information coming from Digital Terrain Models (or
Ocean Models) derived from space. So we can first of all
smooth our gravimetric signal by applying a residual terrain
modelling (Forsberg 1984; Forsberg and Tscherning 1997),
namely by subtracting the gravimetric effect on W and g

of a layer between some reference surface and the actual
surface of the Earth, as it is known by a DTM, and then
use the smoothed signal to produce a “local interpolation”
to some surface that is only locally known with respect to the
measurement stations, but globally a part of the unknowns
of the GBVP. Of course in doing so we will significantly
smooth the actual geometric S , particularly in mountain
regions, avoiding sharp vertical discontinuities, ravines and
especially overhangs, that would destroy the results of the
mathematical analysis of the GBVP. In fact, it is well known
that the oblique derivative BVP for the Laplace operator,
in our case the direction of the vertical, the direction of

the derivative should never be tangent to the boundary to
guarantee existence and uniqueness theorems (Yanushauakas
1989; Miranda 1970). So we can imagine that S is at least
a Lipschitz surface and that lines orthogonal to the Earth
ellipsoid E cross S at one point only. In other words, we
can assume the surface S to be in one-to-one correspondence
with the ellipsoid E by orthogonal projection. This implies
that S has an equation

h D H .�/ ; (1)

with h indicating the ellipsoidal height, � the couple of angu-
lar ellipsoidal coordinates, � D .�; �/, and H a Lipschitz
function of the point P on E with coordinates � .

So we can summarize our problem of knowing W outside
the masses as the solution of a free BVP for the Laplace equa-
tion that can be formalized as follows (scalar Molodensky’s
problem)

W .P / D V .P / C
1

2
!2

�
x2

P C y2
P

�
; (2)

8̂
<̂
ˆ̂:

4V D 0 outside S

W .H .�/ ; �/ D W0 .�/ on S

jrW .H .�/ ; �/j D g0 .�/ on S

V ! 0 for h ! 1 :

(3)

where the unknowns are W .P /, i.e. V .P /, in � �

fh > H .�/g, and H .�/ itself.

Remark 1.1 Why do we insist so much to transform our
“exterior” problem into a BVP? This is because, although
non linear and difficult, the problem can be mathematically
analyzed and proved to have a unique solution in functional
Hölder spaces under “reasonable” conditions on the datum
fW0 .�/ ; g0 .�/g and, even more important, such a solu-
tion is continuously dependent on data (Sansò 1976, 1989;
Hörmander 1976). Further on, the linearized version of (3)
has a well understood behaviour and its solution is well posed
in quite general Sobolev Spaces.

Remark 1.2 What about estimating W .P / inside the
masses, for instance in the topographic layer, which has
a maximum width of roughly 9 km, between the ellipsoid
E and the surface S? The problem, crossing S from outside
towards the inner body, changes its mathematical nature.
First of all in the body, B D fh < H .�/g, the gravitational
potential V D W � 1

2
!2

�
x2 C y2

�
is not any more harmonic,

but it rather satisfies the Poisson equation

4V .P / D �4�G� .P / in B ; (4)

with G the Newton constant and � .P / the density of topo-
graphic masses. Once S has been determined, and assum-
ing we know � .P / between S and E , the solution of (4)



Molodensky’s and Helmert’s Theories: Two Equivalent Geodetic Approaches to the Determination of the Gravity. . . 183

complemented with the boundary conditions

8
ˆ̂<
ˆ̂:

V C
1

2
!2

�
x2 C y2

�ˇ̌ˇ̌
S

D W0 .�/
ˇ̌
ˇ̌r

�
W C

1

2
!2

�
x2 C y2

��ˇ̌
ˇ̌
S

D g0 .�/

(5)

has the form of an “initial” or Cauchy problem for the
Laplace operator. Quoting Miranda (1970, page 60) “In this
case we do not usually think of an extension of the Existence
Theorem for Cauchy’s problem, inasmuch as this problem
is not to be considered well posed for the elliptic equation
in other than the analytical field. Hadamard in fact observed
that the problem does not admit in general a solution, and
that when it does, this solution does not depend continuously
on the data”. We will return on this point later, showing that
despite the above statements, the calculus of W in a thin layer
like the topographic one is approximately possible, although
with an error which might become unacceptable the deeper
we go inside S .

2 The Ambiguous Gravimetric Surface S
and the Linearization Band

As we have seen from the discussion of Section 1, the
gravimetric surface S is not exactly fixed, but it rather
depends on a number of preliminary operations we apply
to the measurements to derive W0 .�/ and g0 .�/. Once this
step is fixed, the surface S D fh D H .�/g comes from the
solution of the scalar Molodensky problem. Then a natural
question is: since W0 .�/ and g0 .�/ might be referred to the
same surface in a layer of width ˙ıH0, can we claim that we
have different solutions of the GBVP? Of course this should
not be the case, because our physical gravity field is only one.

The answer comes from a sensitivity analysis to the shift
of data between two surfaces, S and S 0, with respect to the
gap

ıH .�/ D H 0 .�/ � H .�/ : (6)

This resembles strictly the reasoning done to evaluate the
linerization band for the nonlinear problem (3); in fact the
idea is to make an evaluation of the second order terms
arising in a Taylor formula and verify that they can be
neglected. Such a reasoning has been developed in a very
fine numerical analysis in Heck (1989, 1997) as well as by
some rougher estimates in Sansò and Sideris (2017), in any
way leading to the conclusion that the linearization band has
a width somewhere between 100 m and 200 m. Note that
the more optimistic estimate in Sansò and Sideris (2017)
with respect to those in Heck (1989, 1997) is due to the fact
that it is based on the mean square value of the curvature of

equipotential surfaces (see Sansò and Sideris 2013) and since
this is a quite oscillating function, especially in mountainous
areas, it can easily reach as much as 10 times the value of the
r.m.s.

We aim to show that if we stay in such a band we can
safely switch from one surface S to another S 0, shifting our
data W0 ! W 0

0 and g0 ! g0
0 by a linear Taylor formula,

without changing substantially the solution of (3). Let us note
that our shift has to be considered in free air since we assume
that we have already cleared the masses in the space around
S by the residual terrain correction.

We have, for some t .�/, � .�/ < 1,

W 0
0 .�/ � W0 .�/ D W

�
H 0 .�/ ; �

�
� W .H .�/ ; �/ D

@W .H .�/ ; �/

@h
ıH .�/ C

1

2

@2W .H .�/ C t .�/ ıH .�/ ; �/

@h2
ıH .�/2 (7)

g0
0 .�/ � g0 .�/ D g

�
H 0 .�/ ; �

�
� g .H .�/ ; �/ D

@g .H .�/ ; �/

@h
ıH .�/ C

1

2

@2g .H .�/ C � .�/ ıH .�/ ; �/

@h2
ıH .�/2 : (8)

For the sake of an estimate of orders of magnitude, we can
substitute in (7) and (8)

.	 D GM/
@2W

@h2
� �2

	

r3
� �

2

r
g0 (9)

@2g

@h2
� 6

	

r4
� �

6

r2
g0 : (10)

So that we get, with O Œ�
 denoting the orders of magnitude,

O

�
1

2

@2W

@h2
ıH 2

�
D

ıH 2

r
g0 (11)

O

�
1

2

@2g

@h2
ıH 2

�
D 3

�
ıH

r

�2

g0 : (12)

With ıH D 200 m and r � 6 � 106 m, dividing (11)
by g0 to transform the variation of potential into a shift of
equipotential surfaces, we get

O

�
1

g0

�
1

2

@2W

@h2
ıH 2

��
� 0:6 cm (13)

O

�
1

2

@2g

@h2
ıH 2

�
� 3 �Gal : (14)
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We consider these figures negligible and we can conclude
that we can shift from any surface to another by a simple
linear Taylor formula in the linearization band, getting sub-
stantially equivalent nonlinear scalar Molodensky problems.

As for the linearization of (3), we do not need to repeat the
procedure well established in literature (see Sacerdote and
Sansò 1986, Heck 1997, Sansò and Sideris 2013, Sansò and
Sideris 2017); we rather underline some aspects of the almost
equivalence between linearized and nonlinear BVP by the
following remarks.

Remark 2.1 Let us recall that the linearization of (3) is
done, following the lesson of T. Krarup (2006), by choos-
ing an approximate surface QS D

˚
h D QH .�/

�
, such that

ıH .�/ D H .�/ � QH .�/ is known to belong to the
linearization band, and on the same time splitting the actual
potential W into normal plus anomalous potential

W .h; �/ D U .h; �/ C T .h; �/ I (15)

ıH and T are considered as first order infinitesimals. Then
the equations linearized starting from QS result to be

DW0 .�/ D W0 .�/ � U
�

QH .�/ ; �
�

D

T
�

QH .�/ ; �
�

� �
�

QH .�/ ; �
�

ıH .�/ ; (16)

Dg0 .�/ D g0 .�/ � �
�

QH .�/ ; �
�

D

� 0
�

QH .�/ ; �
�

ıH .�/ � T 0
�

QH .�/ ; �
�

I (17)

here we have denoted by a prime the derivative of a function
f .h; �/ with respect to h, and, as usual,

� .h; �/ D jrU .h; �/j : (18)

Typically (16) is used to derive ıH .�/

ıH .�/ D
1

�
�

QH .�/ ; �
� 	

T
�

QH .�/ ; �
�

� DW0 .�/



;

(19)

known as generalized Bruns equation; then we substitute
it into (18) to get a boundary condition on QS for the sole
unknown T , namely

�T 0
�

QH .�/ ; �
�

C
� 0

�
QH .�/ ; �

�

�
�

QH .�/ ; �
� T

�
QH .�/ ; �

�
D

Dg0 .�/ C
� 0

�
QH .�/ ; �

�

�
�

QH .�/ ; �
� DW0 .�/ : (20)

The new boundary conditions (16) and (17) defined on QS

neglect second order terms; among them, that of the Eq. (17)
is the most worrying. It reads (Sansò and Sideris 2017)

Q2.g/ D �T 00
�

QH .�/ ; �
�

ıH .�/ C

1

2�
�

QH .�/ ; �
�

hˇ̌
rT

�
QH .�/ ; �

�ˇ̌2
� T 002

�
QH .�/ ; �

�i
I

(21)

it has been shown (see Heck 1997 and references therein)
that locally in mountainous areas Q2 .g/ can reach the level
of 0.3 mGal, which is too large to be neglected. Yet, by
using (19) and (21) with T substituted by some global model
TM , even with a moderate maximum degree, we can reduce
the neglected part of Q2 by at least an order of magnitude.
In other words, computing Q2 .g/ with a model TM and
subtracting it to Dg0 .�/ brings the linear boundary value
problem (20), complemented by Bruns equation (19), to be
practically equivalent to the nonlinear (3).

3 Equivalent LinearizedMolodensky
Problems

Summarizing the discussion of the previous section, we can
say that we can accomplish the aim of physical geodesy
by solving the linearized Molodensky problem. This boils
down to: choose an approximate QS in the linearization band
around the gravimetric surface S and then solve the oblique
derivative BVP

8<
:

4T D 0 in Q� �
˚
h � QH .�/

�

�T 0 C
� 0

�
T

ˇ̌
ˇ̌

QS

D Dg0 C
� 0

�
DW0

I (22)

the generalized Bruns relation (19) will then provide us with
the height anomaly ıH .�/ that allows to reconstruct S ,
i.e. H .�/ D QH .�/ C ıH .�/.

As we know, typically in the asymptotic development
of T in spherical harmonics, the terms of degree 0 and
1, i.e. the coefficients T0;0 and T1;k (k D �1; 0; 1/, are
skipped as they are related to the total mass of the Earth,
accounted for the normal potential, and to the coordinates of
the barycentre which are chosen as origin of the coordinates
(see Sansò and Sideris 2013). This implies that usually (22)
is complemented by the asymptotic relation

T D O

�
1

r3

�
; r ! 1 : (23)
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Since this item is not central in the following discussion, we
do not dwell on it.

What is important is that since the solution of (22) on a
practical ground is still a quite challenging task, according
to different approaches, many efforts are done to reduce (22)
to a problem on a Bjerhammar sphere (i.e. a sphere totally
internal to the masses) to make it numerically tractable.

In fact:

1. the old classical Stokes solution (Heiskanen and Moritz
1967, section 3.9) was based, as a matter of fact, on
reducing the data from QS (in fact in this case from S ) to
the geoid, then approximated by a sphere,

2. the classical solution given by Molodensky et al. (1962),
further adapted to the scalar Molodensky problem as in
Moritz (1980, section 8.6), refers to the use of a single
layer, which seemingly is spread on the approximate
surface QS but since it is derived by the Molodensky
series, which is based on a Bjerhammar sphere, in reality
provides a solution computed term by term by a spherical
solution,

3. modern global models are based by a downward continu-
ation of the observations, down to the ellipsoid and then
solved for by spherical formulas, with suitable ellipsoidal
corrections (Pavlis 2013),

4. collocation solutions are based on the remark that func-
tional spaces of functions harmonic out of a Bjerhammar
sphere are “dense” in the space of functions harmonic
out of QS (Krarup 2006; Sansò and Sideris 2013); then,
considering the discrete (pointwise) character of actual
measurements, a formal solution can be written down
with the help of spherical reproducing kernels. When
these are tailored to the empirical covariance function
of data, always exploiting the hypothesis of spherical
isotropy of the field, the method becomes least squares
collocation, and it is always framed into the family of
spherical methods.

Since all the mentioned methods extend the harmonicity
domain of T at least down to the ellipsoid or a sphere and,
as we shall discuss in the next section, this operation is
improperly posed basically because high frequency errors
tend to be amplified, it is convenient to perform computations
on data as smooth as possible. To this purpose we can
use to our best the freedom that we have in designing the
BVP (22).

The choices that we can exploit are two: one is the choice
of QS , always remaining in the linearization band, the other is
to change in a known way the mass distribution below S and
modify accordingly the data. This known change can then be
retrieved at the end of the computation procedure.

Remark 3.1 Let us notice that already an early use of the
Residual Terrain Correction to modify our data goes exactly
in the wanted direction.

3.1 The Classical Molodensky Choice

This is to introduce as QS the so called telluroid defined by the
relation

QS � S� �
˚
h D h� .�/ I U

�
h� .�/ ; �

�
D W0 .�/

�
:

(24)

The height h� of a point, P D .h; �/, identified by the
relation

U
�
h�; �

�
D W .h; �/ (25)

is called normal height of P ; the set of points fQg that have
an ellipsoidal height equal to the normal height of P , when
it runs on S , is the telluroid.

Remark 3.2 Let us notice that the original choice of Molo-
densky was to use isozenithal lines instead of the ellipsoidal
normal. This leads to the formulation of a free BVP which
is now called the vector Molodensky problem (Heck 1997;
Sansò and Sideris 2013), the linearization of which has been
first rigorously done in Krarup (2006). On the contrary, the
above exposition is along the lines of the scalar Molodensky
BVP, which has been developed by the Russian School
(Brovar 1964; Pellinen 1982) and presented in Heiskanen
and Moritz (1967), Moritz (1980) as well as theoretically
systematized in Sacerdote and Sansò (1986).

Returning to our object, we notice that the choice (25)
implies

DW D W0 .�/ � U
�
h� .�/ ; �

�
� 0 : (26)

Therefore, in this case the known term of the oblique deriva-
tive problem (22) becomes

Dg0 C
� 0

�
DW0 D Dg0 D g .H .�/ ; �/ � � .h� .�/ ; �/

D g .�/ ;

(27)

namely the ordinary free air geodetic gravity anomaly. On
the same time ıH .�/ becomes

ıH .�/ D H .�/ � h� .�/ D � .�/ ; (28)

also called height anomaly, and (19) reduces to the ordinary
Bruns relation

� .�/ D
T .h� .�/ ; �/

� .h� .�/ ; �/
: (29)

It turns out that physically the height anomaly is every-
where less than � 120 m in absolute value, so confirming
that (22), maybe applying the correction Q2 .g/ (see 21)
for mountainous areas, is fully in the linearization band,
i.e. equivalent to the original nonlinear problem.
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In conclusion the linearized Molodensky problem writes

8<
:

4T D 0 in Q�

�T 0 C
� 0

�
T D 4g0 on Q�

: (30)

3.2 The Helmert Approach

The Helmert idea was to combine both possibilities, first
dislocating the topographic masses from their 3D distribution
to a single layer on a condensation surface S0, the con-
densation process, and then substituting in W the attraction
of the column with that of the single layer element at its
basis (Vaníček and Martinec 1994). In formula, accepting a
spherical approximation where the ellipsoid is substituted by
a sphere of radius R0, this reads

dM D d�

Z R.�/DR0CH.�/

R0�D.�/

r2� .r; �/ dr D � .�/ dS0 ;

(31)

where D .�/ is the depth of the condensation surface, dS0 is
its area element and dM is the mass contained in the column.

In practice, an approximation is applied to (31), namely
� is considered as constant along the column, implying that
(31) can be written as

� .�/ D � ŒH .�/ C D .�/


�

�
R2

0 C R0 .H .�/ � D .�// C
1

3
H .�/2 C

1

3
D .�/2

�
d�

dS0

I

(32)

no doubt that the approximation � .r; �/ = constant is one
of the weakest points of Helmert’s approach. Investigations
on the impact of using density models with lateral or even
3D variations has been done in Kingdon et al. (2009). Yet,
this is not to the extent of invalidating the approach, as far
as what we subtract at the beginning we add back at the end.
Only the conclusion that all masses above the geoid are so
removed has to be regarded as an approximate statement.

The term d�
dS0

depends on what condensation surface
S0 is chosen; in literature two choices are considered (see
Heck 2003). The first condensation method corresponds to
D .�/ D 0; the second method, the one mostly applied
in recent literature (see for instance Vaníček et al. 1999),
consists in putting D .�/ D �N .�/ (the geoid undulation),
namely in choosing the geoid itself as S0. This has the effect
of transforming the term H .�/ � D .�/ into

H0 .�/ D H .�/ � N .�/ ; (33)

i.e. the orthometric height of the point on S with horizontal
coordinates � . H0 .�/ is considered as known on S , although
this statement is not so firm because once more to know
H0 .�/ one would need to know as well � .h; �/ below the
point P � .h; �/ to compute the necessary orthometric
corrections (see Heiskanen and Moritz 1967, Sansò et al.
2019).

Yet, by taking the geoid as S0, one has

dS0 D
R2

0

cos ı0

d� (34)

with ı0 the deflection of the vertical. Since we have at most
ı0 � 3 � 10�4, (34) can be safely written as dS0 D R2

0 d�

and (32), after one further simplification, becomes just

� .�/ D � H0 .�/ : (35)

The Helmert potential correction is then defined as

ıV H .h; �/ D VT .h; �/ � VC .h; �/ ; (36)

where VT is the potential of the topographic masses, i.e. the
masses between the geoid and S , and VC is the potential of
the single layer with density (35).

Remark 3.3 The topographic potential VT is strictly speak-
ing not computable as it is given on S by the formula (in
spherical approximation)

VT .H .�/ ; �/ D G�

Z
d� 0

Z R0CH0.� 0/CN .� 0/

R0CN .� 0/

r2dr

`�� 0

;

(37)

where `�� 0 is the distance between P � .R0 C H .�/ ; �/

and the running point .r; � 0/. As we see, VT on S depends
on N .�/ which is in fact unknown. Yet, as proved in Sansò
and Sideris (2017), (37) can be substituted, with a small error,
by

VT .H .�/ ; �/ Š G�

Z
d� 0

Z R0CH0.� 0/

R0

r2dr

`�� 0

(38)

which is then computable with the available information and
may be then refined by iterating on (37). The same holds
therefore for ıV H .h; �/ in (36).

One fundamental statement of empirical nature we will
need in the next development is that

O

�
max

ıV H .�/

� .�/

�
D 2 m (39)
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(see Vaníček et al. 1999). Since this is two orders of magni-
tude smaller than the width of the band, where two nonlinear
formulations of Molodensky’s problem can be transformed
linearly one into the other, we can safely assume that the
use of the corrective term ıV H .h; �/ will not change the
problem yielding the sought potential.

By definition the Helmert potential W H is given by

W H .h; �/ D W .h; �/ � ıV H .h; �/

D W .h; �/ � VT .h; �/ C VC .h; �/ ;
(40)

namely it is the actual potential where the topographic
part VT is substituted by the potential of the same masses
squeezed on the geoid S0. As such, W H , apart from its
centrifugal component, is harmonic down to the geoid, at
least if the hypothesis of constant density � has to be
considered correct.

Since ıV H .h; �/ is computable at the level of S , we come
to know W H

0 .�/ on it. With the same accuracy we have
now to transform g0 .�/ into gH

0 .�/. Denoting with nH the
vertical direction of the Helmert field, according to (39) one
has for P 2 S

g .P / D
ˇ̌
rW H .P / C rıV H .P /

ˇ̌

Š gH .P / � nH � rıV H .P /

Š gH .P / �
@

@h
ıV H .P / : (41)

All approximations here are easily justified on the basis of
Remark 3.3.

Now we have transformed our original nonlinear problem
for W into an equivalent nonlinear problem for W H D W �

ıV H by claiming that W H minus the centrifugal term has
to be harmonic outside S and on (the unknown) S one must
have

W H
0 .�/ D W0 .�/ � ıV H .�/ (42)

gH
0 .�/ D g0 .�/ C

@ ıV H

@h
.�/ : (43)

The two scalar nonlinear Molodensky problems for W

and W H are equivalent by construction. So if we go to the
respective linearized version for the anomalous potential T

and T H , i.e.

T D W � U ; (44)

T H D W H � U D W � U � ıV H D T � ıV H ; (45)

we would not need to make any computation to claim that
also the two linearized problems are equivalent since each of
them is equivalent to its nonlinear version. Yet, for the sake
of clarity we proceed to verify this statement.

For this purpose we notice that we can define a Helmert
telluroid S�H D

˚
h D h�H .�/

�
by stating that

W H .H .�/ ; �/ D U
�
h�H .�/ ; �

�
: (46)

Then (46) suitably linearized gives us the Helmert-Bruns
relation

�H .�/ D H .�/ � h�H .�/ D
T H

�
h�H .�/ ; �

�

� .h�H .�/ ; �/
: (47)

We observe that from (44) one has too

�H D
T H

�
D

T

�
�

ıV H

�
D � �

ıV H

�
(48)

and from (28) and (46)

h�H .�/ � h� .�/ D � .�/ � �H .�/ D
ıV H

�
: (49)

Finally the linearized boundary condition for T H reads

@

@h
T H

�
h�H .�/ ; �

�
C

� 0

�
T H

�
h�H .�/ ; �

�
D

gH
0 .�/ � �

�
h�H .�/ ; �

�
D gH

0 .�/ : (50)

Now let T be the solution of (28) with boundary condition
on S�

�
@T

@h

�
h� .�/ ; �

�
C

� 0

�
T

�
h� .�/ ; �

�

D g0 .�/ � �
�
h� .�/ ; �

�
(51)

and T H the solution of the same problem on S�H with
boundary condition (50). We prove that T � T H D ıV H .�/

so that (49) holds too and then

H .�/ D h� .�/ C � .�/ D h�H .�/ C �H .�/ ; (52)

i.e. the gravimetric surface reconstructed from the two prob-
lems is the same and on the same time

W0 .�/ D W H
0 .�/ C ıV H .�/ ; (53)

i.e. the potential of the gravity field is the same outside S . All
that in the usual linear approximation since we are moving
well inside the linearization band.
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If we take (51) minus (50) and consider that h�H .�/ �

h� .�/ is of the order of few meters, we can write

�
@

@h

�
T � T H

�
C

� 0

�

�
T � T H

�ˇ̌ˇ̌
S�

D

g0 .�/ � gH
0 .�/ � �

�
h� .�/ ; �

�
C �

�
h�H .�/ ; �

�
D

�
@ıV H

@h
C � 0 �

�
h�H .�/ � h� .�/

�
: (54)

On the other hand, by the very definition of S� and S�H , we
have

ıV .�/ D W0 .�/ � W H
0 .�/

D U
�
h� .�/ ; �

�
� U

�
h�H .�/ ; �

�

D �� �
�
h� .�/ � h�H .�/

�
; (55)

namely

h�H .�/ � h� .�/ D
ıV .�/

�
: (56)

Substituting (56) into (54) we see that

�
@

@h

�
T � T H

�
C

� 0

�

�
T � T H

�ˇ̌ˇ̌
S�

D �
@ ıV H

@h
C

� 0

�
ıV H

(57)

and therefore, by the uniqueness of the solution of Moloden-
sky’s problem, also recalling that we do not consider here the
first degree harmonics problem, we find

T � T H D ıV H (58)

as we wanted to prove.
The conclusions of this section are that:

• the gravimetric surface S , once assigned by giving both
W0 .�/ and g0 .�/ on it, is achievable either by Molo-
densky’s approach, starting from the telluroid S�, or by
Helmert’s approach and the Helmertized data W H

0 .�/

and gH
0 .�/, starting from the Helmertized telluroid S�H ;

the two solutions are equivalent within second order
approximation errors, i.e. at centimetric level, in terms of
shift of the equipotential surfaces;

• the two potentials determined either by Molodensky’s
method or by Helmert’s method, after restoring ıV H , are
also equivalent from S outward.

4 The Problem of the Internal Potential

The question we want to focus on is not so much the equiv-
alence between Molodensky’s and Helmert’s solutions in the
topographic layer (i.e. between S and the geoid), but rather to
clarify what are the error sources that limit the knowledge of
W in this layer. Such errors are then reflected on the accuracy
of the determination of internal equipotential surfaces, in
particular of the geoid, defined as the equipotential surface
corresponding to some conventional value W 0 of W .

In fact the problem has to be set in the following way, as
already recalled in Sect. 1:

given S D fr D R .�/g (59)

and

�
W .R .�/ ; �/ D W0 .�/

jrW .R .�/ ; �/j D g0 .�/
(60)

and given the mass density � D � .r; �/ in a layer L D

.S0; S/ below S , we have to determine W satisfying the
conditions (60) on S and the Poisson equation

4V D 4

�
W �

1

2
!2

�
x2 C y2

��
D �4�G� (61)

in the layer L.
There are two possible versions of the problem:

(a) one is to fix S0 � fr D R0 .�/g and then try to determine
W in the fixed L,

(b) the other one is to try to solve the problem in a layer with
S0 as deep as possible and then to determine S0 in such
a way that

W .R0 .�/ ; �/ D W 0 (62)

with W 0 a constant such that

W 0 > max
�

W .R .�/ ; �/ : (63)

It is clear that (a) includes (b) as soon as we are able to fix a
surface S0 such that S0 is placed in an intermediate position
between S0 itself and S ; this can be verified a posteriori if
the solution W found in L is such that on S0

min
�

W .R .�/ ; �/ > W 0 : (64)

For the Earth, for instance, an S0 inside the ellipsoid, down
some 150 m, will do if S0 has to be the geoid. The reason
for stating the condition (63) or the check (64) is that W is
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increasing going downward, so W 0 on the geoid is larger
than W at any point with positive height and W is larger
than W 0 at any point on S0.

Remark 4.1 In any event an important remark is necessary
here to interpret the initial conditions (60). In fact we have
to recall that as far as V D W � 1

2
!2

�
x2 C y2

�
is a

Newtonian potential generated by a bounded density, we
expect this function to be globally continuous together with
its first derivatives, which are even Hölder continuous for
any exponent � < 1. This is an easy combination of a
majorization of W and rW , derived from Newton’s integral,
when � is in Lp .B/, 8p (what is true because the Earth
body B is bounded and � is bounded too) (Miranda 1970)
and well known embedding theorems of Sobolev spaces in
Hölder spaces (see e.g. Adams 1975). Physically it means
that any sensible solution for the potential W cannot have
a discontinuity in the first derivatives across S because
otherwise we would have a single layer (i.e. an unbounded
�) on this surface. Therefore, we can expect that W0 and
g0 are pointwise well defined functions, as they are traces
of spacewise Hölder functions on a surface S which, as a
minimum requirement, is Lipschitz continuous.

At this point it is convenient to observe that it is useless
to carry on (60), i.e. a nonlinear condition on rW on S .
In fact from W0 .�/ and g0 .�/, we can reconstruct any first
derivative of W on S . Assume for instance we want to have
W 0jS D @W

@r

ˇ̌
S

; after defining

@� W .R .�/ ; �/ D r� W .r; �/jrDR.�/ ; (65)

we can write the system

r� W0 .�/ D W 0 .R .�/ ; �/ r� R .�/ C @� W .R .�/ ; �/

(66)

g2
0 .�/ D W 0 .R .�/ ; �/2 C

1

R .�/2
j@� W .R .�/ ; �/j2 :

(67)

Deriving @� W from (66) and substituting it into (67), we get
an easily solvable quadratic equation in W 0 .R .�/ ; �/. In a
similar fashion, by using T .r; �/ D W .r; �/�U .r; �/ and
T 0 .r; �/ D W 0 .r; �/ � U 0 .r; �/, we can get hold on S of
the initial values

T0 .�/ D T .R .�/ ; �/ (68)

and
ıg0 .�/ D �T 0 .R .�/ ; �/ (69)

or even, equivalently,

g0 .�/ D �T 0 �
2

R .�/
T : (70)

Clearly the symbols ıg and 4g refer to gravity disturbance
ıg and gravity anomaly 4g, here in spherical approxima-
tion.

In any way the problem we are facing now is a Cauchy
problem for the Poisson equation for T , which, as recalled in
Sect. 1, in general has a solution which, when it exists, is not
continuously dependent on data.

Referring to the formulation a) of a fixed layer L and to
the initial data (68) and (69) on S , it seems natural as a first
step to subtract the known “topographic” potential VT (see
(31)) to data and then solve the downward continuation of
T � VT , which has now to be harmonic in L.

As we see in the following elementary Example 4.1,
however this leads to correct T with a term VT which
can easily be 10 times larger than the former, especially
in mountainous areas. Since this is never a good idea,
as it multiplies by 10 as well the various model errors,
Helmert has invented his “trick” of substituting VT by its
condensed version VC on the geoid. In this way in fact
the residual (Helmertized) potential is still close to T , but
harmonic in L and the downward continuation problem is
put in its pure form. To be precise, since we fixed S0, the
above refers to the first Helmert condensation method (see
Heck 2003); this however has little relevance to the present
discussion.

Example 4.1 Let us consider the rather simplistic case that
S is a sphere of radius R, S0 a sphere of radius R0, with
R D R0 C 1 (in km), R0 Š 6 � 103 km and the layer L

between S0 and S is filled with a mass of a constant density
� � 2:67 g cm�3 so that 4�G� Š 0:2 Gal km�1. Moreover
let us assume that � � 103 Gal, as it is approximately true in
reality. Then

VT .R0; �/

�
D

4

3
�G�

h
.R0 C 1/3 � R3

0

i

R0�

D
4�G�

�

�
R0 C 1 �

1

3R0

�

Š 1:2 km C 0:2 � 10�3 km C 10�8 km :

As we see, in terms of shifts of the equipotential surfaces,
the first term is very large (10 times the order of magnitude
of the geoid), the second term amounts to only 20 cm and
the third term is negligible. But the first term is exactly the
effect of the condensed Helmert layer, so the second term is
essentially the Helmert correction to the potential. Indeed,
in high mountain and with a more complicated geometry,
this term can rise by an order of magnitude, as stated in
(39).

At this point would we know already ıg .r; �/ or
g .r; �/ inside L, then we could simply integrate a first
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order differential equation, namely

@T

@r
D ıg ! T .r; �/ D T0 .�/ C

Z R.�/

r

ıg .s; �/ ds

(71)
or

@T

@r
C

2

r
T D �g ! T .r; �/ D T0 .�/ C

Z R.�/

r

s2

r2
g .s; �/ ds :

(72)

So the problem is to continue say ıg, for the sake of definite-
ness, in L either in free air, if we refer to the Helmert version,
or following the classical Bouguer theory (Heiskanen and
Moritz 1967), if we leave the masses in L. In both cases we
solve essentially the approximate Bruns equation

@ıg

@r
D �

2

r
ıg � 4�G� ; (73)

the last term being absent in the Helmert approach.
In Sansò and Sideris (2013, appendix A2), (73) has been

justified by using in the exact Bruns equation the estimate on
the difference between the true equipotentials mean curva-
ture C and the corresponding normal counterpart K

jC � Kj �
10�3

2R
(74)

which has been derived as a mean square value for the high
resolution global model EGM96 (Lemoine et al 1998).

To better understand the error committed in this
approximation, one can simply compare (73) with Poisson’s
equation, written in spherical coordinates, and recall that
ıg D T 0; then one sees that in (73) the term

E .ıg/ D
1

r2
4� T (75)

is lost. Although this can have a relative small r.m.s., satisfy-
ing (74), it is clear that it can become quite large in rugged
areas. This suggests that a much better approximation could
be obtained by substituting (73) with

@ıg

@r
D �

2

r
ıg � 4�G� �

1

r2
4� TM ; (76)

where TM is some high resolution global model of T . Calling

f D 4�G� C
1

r2
4� TM ; (77)

(76) has the solution

ıg .r; �/ D
R2 .�/

r2
ıg0 .�/ C

Z R.�/

r

s2

r2
f .s; �/ ds : (78)

This substituted in (71) gives the sought solution T .r; �/ in
L. After some computations the result is

T .r; �/ D T0 .�/ C ıg0 .�/ R2 .�/

�
1

r
�

1

R .�/

�

C

Z R.�/

r

�
1

r
�

1

s

�
f .s; �/ ds : (79)

One has to underline that this line of thought is already
contained in Heiskanen and Moritz (1967).

5 Conclusions

Two main conclusions can be drawn from the presented
analysis:

• As for the determination of the surface of the Earth S and
the outer potential W , i.e. the solution of the nonlinear,
scalar Molodensky problem, the two approaches of Molo-
densky and Helmert are basically equivalent at centimetric
level.

• As for the propagation of W (or T ) inside the masses and
then the computation of the geoid (not discussed here),
both methods are affected by two errors:
– the imperfect knowledge of �; this gives the same error

in both approaches,
– the downward continuation error; since this can be

reduced by computing correction terms with the help of
a global model TM , the use of Helmert’s approach that
removes discontinuities and of a Helmertized model
T H

M , is likely to produce better results.
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