
 123

LN
BI

P
51

2

25th International Conference on Agile Software Development
XP 2024, Bozen-Bolzano, Italy, June 4–7, 2024
Proceedings

Agile Processes in Software
Engineering and Extreme
Programming

Darja Š mite · Eduardo Guerra ·
Xiaofeng Wang · Michele Marchesi ·
Peggy Gregory (Eds.)

Lecture Notes
in Business Information Processing 512

Series Editors
Wil van der Aalst , RWTH Aachen University, Aachen, Germany
Sudha Ram , University of Arizona, Tucson, AZ, USA
Michael Rosemann , Queensland University of Technology, Brisbane, QLD,
Australia
Clemens Szyperski, Microsoft Research, Redmond, WA, USA
Giancarlo Guizzardi , University of Twente, Enschede, The Netherlands

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896
https://orcid.org/0000-0002-3452-553X

LNBIP reports state-of-the-art results in areas related to business information systems
and industrial application software development – timely, at a high level, and in both
printed and electronic form.

The type of material published includes

• Proceedings (published in time for the respective event)
• Postproceedings (consisting of thoroughly revised and/or extended final papers)
• Other edited monographs (such as, for example, project reports or invited volumes)
• Tutorials (coherently integrated collections of lectures given at advanced courses,

seminars, schools, etc.)
• Award-winning or exceptional theses

LNBIP is abstracted/indexed in DBLP, EI and Scopus. LNBIP volumes are also
submitted for the inclusion in ISI Proceedings.

Darja Šmite · Eduardo Guerra · Xiaofeng Wang ·
Michele Marchesi · Peggy Gregory
Editors

Agile Processes in Software
Engineering and Extreme
Programming
25th International Conference on Agile Software Development
XP 2024, Bozen-Bolzano, Italy, June 4–7, 2024
Proceedings

Editors
Darja Šmite
Blekinge Institute of Technology
Karlskrona, Sweden

Xiaofeng Wang
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Peggy Gregory
University of Glasgow
Glasgow, UK

Eduardo Guerra
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Michele Marchesi
Emeritus Professor in Software Engineering,
University of Cagliari
Cagliari, Italy

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-61153-7 ISBN 978-3-031-61154-4 (eBook)
https://doi.org/10.1007/978-3-031-61154-4

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0003-1744-3118
https://orcid.org/0000-0001-8424-419X
https://orcid.org/0000-0001-7891-6666
https://orcid.org/0000-0001-5555-3487
https://doi.org/10.1007/978-3-031-61154-4
http://creativecommons.org/licenses/by/4.0/

Preface

Welcome to this special anniversary volume of research proceedings of XP 2024, the
25th International Conference onAgile SoftwareDevelopment, organized in picturesque
Bolzano, Italy, from June 4th to 7th, 2024.

For over a quarter of the century, the XP conference has served as the premier focus
for researchers, practitioners, educators, and visionaries. Originating with a focus on
eXtreme Programming, this conference has evolved to embrace the entire spectrum of
modern Agile methodologies and the broader landscape of Agility, Agile, and Lean
thinking, reaching beyond the boundaries of the software industry.

The theme of this special anniversary issue, “Reflect, Adapt, Envision,” prompts the
Agile community to pause, reflect on the progress made, and envision future directions
for both research and practice in the field.

In this volume, we proudly present 10 full papers and 2 short papers that exemplify
the ideas shaping the present state of our community. All papers underwent a thorough
double-blind review process with 3 reviewers and included papers were selected from a
total of 32 submissions.

The selected conference papers address awide rangeof topics and tackle diverse prac-
tical problems relevant to the Agile community, such as scaling Agile practices for large
development environments, facilitating Agile transformations, advancing Agile product
management, and supporting education and training. Additionally, this volume features
insights into the emergent topics of Artificial Intelligence (AI) and Sustainability. We
trust that the latest research will inspire fruitful discussions and ignite further initiatives
aimed at the adoption, refinement, and advancement of Agile software development
approaches.

Our sincerest gratitude goes out to all the authors whose contributions, interest, and
dedication have been integral to the success of the XP conferences. We also extend our
thanks to the reviewers for their passion and invaluable feedback, which have contributed
to the continuous development of the field. Special appreciation is owed to all the orga-
nizers, session chairs, and participants. Finally, we express our deepest gratitude to the
XP Conference Steering Committee and the Agile Alliance for the support that helps to
promote the XP conference as a leading forum for the Agile community.

June 2024 Darja Šmite
Eduardo Guerra
Peggy Gregory

Organization

Conference Co-chairs

Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Michele Marchesi Cagliari University, Italy

Program Co-chairs

Darja Šmite Blekinge Institute of Technology, Sweden
Eduardo Guerra Free University of Bozen-Bolzano, Italy

Publication Chair

Peggy Gregory University of Glasgow, UK

Program Committee

Ademar Aguiar University of Porto, Portugal
Abdullah Aldaeej University of Maryland, USA
Scott Ambler SA+A, Canada
Craig Anslow Victoria University of Wellington, New Zealand
Hubert Baumeister Technical University of Denmark, Denmark
Jan Bosch Chalmers University of Technology, Sweden
Frank Buschmann Siemens AG, Germany
Filipe Correia University of Porto, Portugal
Daniele Cruzes Norwegian University of Science and Technology,

Norway
Tiago Silva Da Silva Universidade Federal de São Paulo, Brazil
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Yael Dubinsky Kinneret Academic College, Israel
Jutta Eckstein Independent, Germany
Henry Edison Blekinge Institute of Technology, Sweden
Juan Garbajosa Universidad Politécnica de Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Peggy Gregory University of Glasgow, UK

viii Organization

Helena Holmström Olsson University of Malmö, Sweden
Kiyoshi Honda Osaka Institute of Technology, Japan
Eriks Klotins Blekinge Institute of Technology, Sweden
Fabio Kon University of São Paulo, Brazil
Marco Kuhrmann Reutlingen University, Germany
Casper Lassenius Aalto University, Finland
Ville Leppänen University of Turku, Finland
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Sabrina Marczak PUCRS, Brazil
Antonio Martini University of Oslo, Norway
Frank Maurer University of Calgary, Canada
Jorge Melegati Free University of Bozen-Bolzano, Italy
Tommi Mikkonen University of Jyväskylä, Finland
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF, Norway
Jürgen Münch Reutlingen University, Germany
Anh Nguyen Duc University College of Southeast Norway, Norway
Maria Paasivaara LUT University & Aalto University, Finland
Cécile Péraire Carnegie Mellon University, USA
Rafael Prikladnicki PUCRS, Brazil
Adam Przybylek Gdansk University of Technology, Poland
Pilar Rodríguez Universidad Politécnica de Madrid, Spain
Helen Sharp Open University, UK
Christoph J. Stettina Leiden University/Centre for Innovation,

The Netherlands
Paolo Tell IT University of Copenhagen, Denmark
Nirnaya Tripathi University of Oulu, Finland
John F. Tripp Clemson University, USA
Rini van Solingen Delft University of Technology, The Netherlands
Joost Visser Leiden University, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Agustin Yague Universidad Politécnica de Madrid, Spain
Luciana Zaina Universidade Federal de São Carlos, Brazil
Franz Zieris Blekinge Institute of Technology, Sweden

Steering Committee

Hubert Baumeister Technical University of Denmark, Denmark
François Coallier École de Technologie Supérieure, Canada

Organization ix

Jutta Eckstein Independent, Germany
Hendrik Esser Ericsson, Germany
Teresa Foster Agile Alliance, USA
Juan Garbajosa Universidad Politécnica de Madrid, Spain
Peggy Gregory (Chair) University of Glasgow, UK
Wouter Lagerweij Lagerweij Consultancy, The Netherlands
Maria Paasivaara LUT University & Aalto University, Finland
Viktoria Stray University of Oslo, Norway
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Sponsoring Organization

Teresa Foster Agile Alliance, USA

Contents

Agile at Scale

Investigating Communities of Practice in Large-Scale Agile Software
Development: An Interview Study . 3

Franziska Tobisch, Johannes Schmidt, and Florian Matthes

Slack Use in Large-Scale Agile Organizations: ESN Tools as Catalysts
for Alignment? . 20

Viktoria Stray and Astri Barbala

Coordination in Agile Product Areas: A Case Study from a Large FinTech
Organization . 36

Marthe Berntzen, Silje Alette Engdal, Maja Gellein, and Nils Brede Moe

Software Product Management in Large-Scale Agile . 53
Nils Brede Moe, Marthe Berntzen, Astri Barbala, and Viktoria Stray

Investigating Effort Estimation in a Large-Scale Agile ERP Transformation
Program . 70

Franziska Tobisch, Karla Weigelt, Pascal Philipp, and Florian Matthes

Value and Quality in Agile

The Current State of Operationalizing Value by Dutch Product Owners
in Agile Software Development . 89

Erik van Daalen and Rini van Solingen

Impact of the Kanban Maturity Model on a Team’s Agile Transformation:
Tripling Throughput and Elevating Quality in Three Months 107

Jacek Trzesicki, Krzysztof Marek, and Adam Przybylek

LLM-Based Agents for Automating the Enhancement of User Story
Quality: An Early Report . 117

Zheying Zhang, Maruf Rayhan, Tomas Herda, Manuel Goisauf,
and Pekka Abrahamsson

xii Contents

People and Teams in Agile

Comparing Stability and Sustainability in Agile Systems . 129
Robert Healy, Kieran Conboy, Tapajit Dey, Edwin Lewzey,
and Brian Fitzgerald

Onboarding for an Agile Software Development Company 144
Tomi Enberg, Sari Alander, and Maria Paasivaara

Exploring Human-AI Collaboration in Agile: Customised LLM Meeting
Assistants . 163

Beatriz Cabrero-Daniel, Tomas Herda, Victoria Pichler, and Martin Eder

The Role of TeamComposition in Agile Software Development Education:
A Gendered Perspective . 179

Gyda Elisa Sæter, Viktoria Stray, Steffen Almås, and Yngve Lindsjørn

Author Index . 197

Agile at Scale

Investigating Communities of Practice
in Large-Scale Agile Software

Development: An Interview Study

Franziska Tobisch(B) , Johannes Schmidt, and Florian Matthes

TUM School of Computation, Information and Technology, Department of Computer
Science, Technical University of Munich, Munich, Germany

{franziska.tobisch,johannes.schmidt,florian.matthes}@tum.de

Abstract. Nowadays, responsiveness is essential to be competitive, par-
ticularly in software development. Traditional methods face limitations in
meeting this demand for agility, which led to the rise of agile practices.
Inspired by their success in small projects, organizations have begun
to use agile methods in larger contexts. However, scaling agile prac-
tices introduces complexities and requires coordinating teams, manag-
ing dependencies, and collaboration. Communities of Practices (CoPs)
are argued to address these issues and support organizations in adopting
agile methods at scale. Still, empirical insights into the establishment
of CoPs in scaled agile settings are limited. This study fills this gap by
conducting expert interviews, exploring why organizations applying agile
methods at scale adopt CoPs, and examining their characteristics. Our
key findings include that, next to benefit from known advantages of CoPs,
like knowledge sharing, organizations establish them to foster empower-
ment, strengthen alignment, and drive their agile transformation. More-
over, CoPs focus not only on agile but also on classical themes such
as architecture. Communities are not necessarily established bottom-up
but are often initiated by management, e.g., to empower employees. In
general, CoPs are accepted by management and play an essential role in
decision-making.

Keywords: Agile software development · Large-scale agile ·
Communities of Practice

1 Introduction

Today’s fast-changing business environment forces companies to react quickly
to stay competitive [34]. In our digitalized world, software development is par-
ticularly impacted by this need for agility [6]. While traditional development
methods increasingly reach their limits [6], agile practices and frameworks, like
Scrum [26], started spreading widely due to their potential benefits regarding
responsiveness and resilience to change [2]. Motivated by the success of agile

c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 3–19, 2024.
https://doi.org/10.1007/978-3-031-61154-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_1&domain=pdf
http://orcid.org/0009-0004-7250-4635
http://orcid.org/0000-0002-6667-5452
https://doi.org/10.1007/978-3-031-61154-4_1

4 F. Tobisch et al.

methods in small projects, organizations have begun to use them in a larger con-
text [2,3], including the joint development of software by multiple agile teams
and the adoption of agile methods and principles across the organization [4].

The complexity of scaling agile methods and resulting changes in the orga-
nizational structure, e.g., toward cross-functional teams, lead to challenges
[2,3]. Besides efficiently coordinating multiple teams, organizations struggle with
undiscovered dependencies, redundant work, silo thinking, lacking collaboration,
and inconsistent agile practices [2,3]. Also, knowledge and experience regarding
agile are often lacking [2,3]. To avoid the mentioned problems, concepts for cross-
organizational communication and collaboration [2,4], continuous improvement
[2], and alignment [3] are crucial. Several scaling agile frameworks recommend
Communities of Practice (CoPs) [5,12,14,24], groups of people with a common
interest who regularly exchange ideas, share experiences and knowledge, and
learn from each other [35]. Despite extensive research in other contexts, limited
empirical insights about CoPs exist in scaled agile settings. By now, researchers
have mainly studied individual communities in-depth or analyzed communities in
one organization, not providing a broad overview of communities established in
practice. To fill this need for further research [3,20,21,33], we conducted a large
expert interview study investigating why organizations applying agile methods
at scale establish CoPs and what characteristics these communities have. We
defined the following research questions (RQs) for our study:

RQ1: What are reasons for establishing CoPs in large-scale agile environments?
RQ2: What CoPs exist in organizations applying agile methods at scale?

2 Background and Related Work

CoPs are “groups of people who share a concern, a set of problems, or a passion
about a topic, and who deepen their knowledge and expertise by interacting on an
ongoing basis” [35]. Those groups can exist in various contexts (e.g., organiza-
tions, governments, and education) [35]. A CoP has three crucial characteristics
[35]: (1) Domain, the shared interest of its members; (2) Community, the inter-
action between the CoP members in the form of collaboration, support, and
knowledge sharing; and (3) Practice, a shared set of experiences, knowledge,
and approaches the CoP creates. According to Wenger et al. [35], CoPs can be
distinguished from other group structures, like formal departments, operational
teams, project teams, and informal networks, based on their purpose, members,
boundaries, motivation, and lifespan. The authors argue that CoPs are intended
“to create, expand, and exchange knowledge, and to develop individual capabili-
ties.” Moreover, people join the community based on their “expertise or passion
for a topic”, its boundaries are fuzzy, and members stay together due to “pas-
sion, commitment, and identification with the group and its expertise.” Finally, a
CoP “evolves and ends organically”, if no longer needed. In contrast, other group
structures differ in at least one of the mentioned characteristics.

Multiple researchers found that CoPs can vary in different aspects. For exam-
ple, Wenger et al. [35] state that communities can differ in their scope, which can

Investigating CoPs in Large-Scale Agile 5

be within a business unit, across business units, and organizational boundaries
[35]. Moreover, how official the CoPs are can vary from unrecognized to insti-
tutionalized, influencing the degree of organizational steering and support [35].
According to Wenger et al. [35], CoPs also differ in their size, lifetime, member
distribution, homogeneity, and initiation (top-down vs. bottom-up) [35]. Jassbi
et al. [9] extend these aspects, e.g., by member selection (open vs. closed), enroll-
ment (voluntary vs. mandatory), and organizational support (high vs. low).

According to Wenger et al. [35], CoPs can have short- and long-term values
for their members and the organization. Members can get help with challenges,
access to expertise, feel a sense of belonging, develop personally, and create a
network [35]. Likewise, Fontaine and Millen [7] report a potential to improve
the working environment, job satisfaction, and collaboration. Organizations can
benefit from problem-solving, time savings, knowledge sharing, identified syner-
gies across units, and reused resources [35]. In the long term, CoPs can positively
influence innovation, strategic capabilities, or new strategies [35]. According to
Lesser and Storck [15] and Fontaine and Millen [7], the communities can help
respond faster and improve operational efficiency.

Scaled agile frameworks, such as SAFe [24], Spotify [12], LeSS [14], or Disci-
plined Agile [5] recommend organizations applying agile methods at scale to
establish CoPs. According to the frameworks, the communities are relevant
to connect experts with specific capabilities, typically distributed over cross-
functional teams, to allow them to exchange and evolve shared practices [5,24].
CoPs can help foster self-organization [14], continuous learning [5,24], and lever-
age all experiences and knowledge existing within an organization [24].

Multiple researchers have studied CoPs in large-scale agile software develop-
ment. Several of these authors investigated individual communities in-depth. For
example, Silva and Doss [28] report on their experience establishing a company-
wide Agile Coach CoP, which helped encourage learning, mutual support, and
agile methods. Sporsem et al. [31] investigated a CoP that supported inter-
nal start-ups through experience and knowledge sharing, problem-solving, and
the creation of shared experiences. Detofeno et al. [1] report on the establish-
ment of a CoP within an organization that successfully contributed to technical
debt management. Moe et al. [17] and Paasivaara and Lassenius [22] studied a
corporate-level CoP at Ericsson, focusing on their decision-making power. Moe
et al. [17] conclude that CoPs can serve as a bottom-up alignment mechanism
between teams and empower them to make decisions.

Other authors investigated the establishment of CoPs within a single organi-
zation. Kähkönen [10] studied different CoPs within Nokia and emphasized their
importance to succeed in agile multi-team settings. Korbel [13] reports on his
experience of establishing different CoPs within an agile program to align dis-
tributed teams and individuals and foster continuous improvement. The teams
were highly involved in the creation, proposing the CoPs’ themes such as Scrum
Mastering, DevOps, and UX. A few researchers provided an overview of what dif-
ferent CoPs they found within the organization they investigated. For example,
Šmite et al. [30] investigated corporate-level communities at Ericsson, imple-
mented to support the agile transformation and promote a participative culture.

6 F. Tobisch et al.

The CoPs, consisting of unit representatives, were responsible for aligning all
distributed units, promoting autonomy, and sharing knowledge. According to
the authors, the CoPs created value for the organization, its units, and its mem-
bers. The authors analyzed the CoPs regarding their mission and scope, author-
ity, membership characteristics, scope, and meetings. Šmite et al. [29] studied
multiple CoPs at Spotify (called “Guilds”), intended to improve decision-making,
enhance support, and promote collaboration and cross-organizational knowledge
sharing. The authors analyzed aspects like community members, scope, distribu-
tion, meetings, size, values, challenges, and focus (e.g., learning, onboarding and
support, alignment, strategy development). Moreover, Paasivaara and Lassenius
[20,21] studied CoPs at a unit of Ericsson with members located at multiple sites.
The authors identified knowledge sharing and learning, coordination, technical
work, and organizational development as purposes of the studied CoPs.

Uludağ et al. [32] identified Architecture CoPs applying collaborative
decision-making in two organizations as part of their research on enterprise archi-
tecture in scaled agile contexts. Finally, Monte et al. [18] take an overarching view
by investigating how CoPs are used to support agile teams through a literature
review. The authors identified knowledge sharing, coordination, decentralized
decision making, and fostering agile at scale as applications.

Almost all mentioned research endeavors studied individual or multiple CoPs
within a single organization, hereby providing initial insights on why and what
CoPs are established in large-scale agile software development. Still, no broad
empirical overview across organizations exists.

3 Methodology

Study Design. We conducted semi-structured expert interviews to answer our
RQs [8,19,27]. To ensure rigorous data collection, we respected the guidelines of
Myers and Newman [19]. The chosen research design relies on qualitative data
collection and is suitable as establishing CoPs in large-scale agile contexts is
a problem in practice [27]. This study combines exploratory, descriptive, and
explanatory elements. Table 1 presents an overview of the study participants.
In two rounds, we interviewed 39 experts from 18 organizations. We combined
convenience and purposive sampling [11]. Potential interview partners were con-
tacted directly, e.g., via e-mail, and we shared our research endeavor with existing
contacts and networks. Still, the selection was intentional to interview experts
who work in scaled agile organizations or contexts [4], having CoPs established.
We only interviewed experts involved in the communities as leads, members,
or stakeholders (e.g., managers supporting CoPs). Some experts are involved
in multiple CoPs in different roles. The interviewees have various job roles and
industry backgrounds, leading to a “variety of voices” covering multiple view-
points [19].

Data Collection. We conducted the first interview round between February and
May 2023 (23 experts, 13 organizations) and the second (16 experts, five organi-
zations) between November 2023 and January 2024. The majority of interviews

Investigating CoPs in Large-Scale Agile 7

Table 1. Interview partners

Expert Organization Role CoP Role Experience
(Years)*

E1 SoftwareCo1 Manager Lead, Stakeholder 11–15
E2 InsureCo1 Enterprise Architect Member 1–2
E3 SoftwareCo2 Agile Coach, Program Manager Lead 11–15
E4 ConsultCo1 Manager Lead 6–10
E5 SoftwareCo2 Software Architect Member 16–20
E6 ConsultProj Consultant, Q&A Specialist Member 1–2
E7 CarCo1 Manager, Agile Coach, CoP Lead Lead 6–10
E8 SoftwareCo2 Security & Infrastructure Expert, Scrum Master Lead, Member 3–5
E9 SoftwareCo2 Developer, Scrum Master Member 11–15
E10 CarCo2 Agile Coach Lead, Member 3–5
E11 ConsultCo1 Business Analyst Lead 6–10
E12 SoftwareCo2 Scrum Master Lead 3–5
E13 ElectroCo Agile Coach, Manager Member 6–10
E14 ElectroCo Agile Coach Lead 1–2
E15 FoodCo Agile Coach Lead, Member 6–10
E16 SoftwareCo2 Scrum Master Lead 6–10
E17 ConsultCo2 Agile Coach, Consultant, Product Owner (PO) Lead 11–15
E18 ConsultCo1 Agile Coach, Scrum Master Lead 6–10
E19 ConsultCo3 Consultant Lead 16–20
E20 TeleCo1 Developer, Agile Coach Lead 11–15
E21 InsureCo1 CoP Lead Lead 3–5
E22 HealthCo Software Architect Member 11–15
E23 InsureCo1 Agile Coach, Enterprise Architect Lead 6–10
E24 FashionCo Enterprise Architect Lead 3–5
E25 TransportCo Solution Architect Member 1–2
E26 TransportCo Solution Architect Lead, Member 1–2
E27 RetailCo Manager Lead, Member 16–20
E28 TransportCo System Architect Lead, Member 3–5
E29 TransportCo Enterprise Architect, Manager Member 6–10
E30 RetailCo Project Manager Lead 1–2
E31 TeleCo2 Manager Stakeholder 11–15
E32 TransportCo PO Lead 6–10
E33 TeleCo2 Organizational Developer Stakeholder 6–10
E34 TeleCo2 Enterprise Architect Member 6–10
E35 InsureCo2 Enterprise Architect Lead, Member 6–10
E36 TeleCo2 Agile Master Member 3–5
E37 TeleCo2 Organizational Developer Lead, Member 1–2
E38 TeleCo2 Disciplinary Leader Member 11–15
E39 TeleCo2 Agile Master Lead 6–10

had a duration of 40–60minutes. Each interview started with an introduction
to ensure a shared understanding of relevant concepts. All interviews had the
same outline, with slight changes after the first round, to improve the data col-
lection based on the experience gained and to collect data about challenges and
best practices. We divided the interviews into three consecutive phases: (1) ques-
tions about the interviewees’ backgrounds (e.g., experience in large-scale agile
settings*), (2) questions about CoPs within their organization, (3) questions
on how research can support practice in establishing CoPs in the first round

8 F. Tobisch et al.

and regarding challenges in the second round. The questions of the last two
sections were open, allowing our interview partners to share their thoughts in
detail. We conducted all interviews using videoconferencing tools. All interviews,
besides one, were recorded and subsequently transcribed. Besides the interviews,
we included relevant data sources (e.g., websites) shared by the interviewees to
facilitate the data triangulation.

Data Analysis. The results presented are a subset of the collected data. We
plan to communicate our other insights in later publications. We coded and
analyzed the collected data based on the guidelines by Miles et al. [16] and
Saldaña [25], with a two-cycle approach. First, we used inductive coding and
summarized meaningful data fragments with descriptive codes. Then, these codes
were assigned to second-cycle codes of two abstraction levels: (1) a set of high-
level codes developed deductively based on the interview design and relevant
concepts (2) lower-level codes developed inductively while analyzing the first-
cycle codes, reflecting discovered concepts and patterns. In case of uncertainties
or missing information, we contacted the interviewees. We included all group
structures fulfilling the CoP definition [35], independent of their naming.

4 Results

In the following, we present the results of our interview study.

4.1 Context

Table 2 provides an overview of the experts’ development organizations, which
do not necessarily equal the whole IT department of the experts’ companies.

4.2 Reasons for Establishing CoPs

We identified various reasons for establishing CoPs, summarized in Table 3,
sorted by frequency. In the following, we present the most common reasons.

Promoting Knowledge Sharing. All CoPs we studied were established to
foster knowledge sharing regarding different topics or a specific craft. The com-
munities are intended to break down knowledge silos and allow benefiting from
the knowledge and experience of others. For example, E15 explains that the
Agile Coach CoP within FoodCo was founded as the Agile Coaches “need some
way of distributing experiences, [so] not everybody needs to learn from the same
mistakes by themselves. But we want to create a shared pool of knowledge.”

Promoting Collaboration. Another common reason for establishing commu-
nities is to promote collaboration between employees and different organizational
areas. E18 highlights that the communities are “not only [for] exchanging ideas
but really getting support from others and working on topics together.” The mem-
bers support each other, build knowledge, and collaborate to create results and

Investigating CoPs in Large-Scale Agile 9

Table 2. Development organization of the interview partners

Organization Description

SoftwareCo1 20–30 employees split into two teams develop one software solution. E1 works with both teams. The company
applies no specific scaling agile framework.

InsureCo1 E2, E21, and E23 work for the IT department of the company’s German part, which applies a custom scaling
agile framework containing elements of Spotify, LeSS, and SAFe. More than 2000 employees are working in 20
tribes, each having 2–25 teams.

SoftwareCo2 The company employs more than 30.000 developers. E9, E12, and E16 work on commerce, E5 and E8 on
manufacturing software products. E3 works in software delivery. The areas we investigated combine elements of
different frameworks.

ConsultCo1 The development part of ConsultCo1 comprises more than 6000 employees. The applied scaling agile
framework is project-specific, often based on LeSS. E4, E11, and E18 all work on the same customer project:
450 employees divided into 35 feature teams grouped in eight programs are responsible for 40 applications.

ConsultProj E6 is a consultant supporting a project of a company with more than 100 employees, including seven Scrum
teams, combining elements of multiple frameworks.

CarCo1 E7 is working in a particular area of the company’s enterprise IT, which has around 600 internal employees
and consists of several domains. Within the company’s overall IT, the scaled agile framework depends on the
area, e.g., SAFe, LeSS, or custom.

CarCo2 E10 is working in the company’s enterprise IT, consisting of around 900 internal employees and externals,
divided into 120 to 140 different teams. The applied scaled agile framework is custom, oriented on SAFe.

ElectroCo The company’s IT department comprises more than 800 employees in more than 100 product teams, grouped
into group-domains and sub-domains. E13 and E14 are involved in several domains. The organization is
organized inspired by Spotify.

FoodCo Over 2000 employees work in the company’s IT organization, organized in 150–200 teams in different domains.
The applied framework is custom, based on LeSS. E15 works on the IT organizational level.

ConsultCo2 ConsultCo2 is a sub-company of a large consulting firm. The sub-company consists of multiple hundred
employees. E17 is part of a team of around 50 consultants. The applied scaling agile frameworks depend on the
client.

ConsultCo3 E19 is an independent consultant, leading and organizing a cross-organizational CoP with members of multiple
organizations.

HealthCo The company’s IT organization has over 1000 employees, organized in projects. E22’s project involves around
250 developers divided into 30 teams. The applied scaling agile framework is custom, containing elements of
SAFe.

TeleCo1 E20’s department has its own framework combining elements of LeSS and Scrum-of-Scrums. One hundred
developers in eight teams develop a software solution.

FashionCo The company’s IT department has around 400–500 employees, working in different domains. Some parts of the
IT work agile, applying a custom framework inspired by SAFe. E24 works independently of any agile team
structure.

TransportCo The IT applies SAFe, with overall more than 1300 employees. E25, E26, and E28 work in different ARTs and
large solutions, E29 and E32 work independently. TransportCo is supported by an IT sub-company without a
specific framework.

RetailCo The company’s IT has over 2500 employees in different departments. E27’s department has around 230
employees and 30 product teams. Twenty so-called streams cover cross-departmental projects. The IT
organization applies its own framework. E30 works on the overall IT department level.

TeleCo2 The IT department is part of the technology area and has around 1000 employees. The department uses a
custom framework, with naming based on Spotify. The 10–15 tribes consist of in total 30 teams. All
interviewees work either with multiple teams or on the overall IT department level. E37 organizes a
cross-company CoP.

InsureCo2 Within the agile part of the company’s IT more than 220 employees work in four value streams of 4–8 teams,
following a customized framework. In addition, the IT has multiple projects running. E35 works on the overall
IT department level

10 F. Tobisch et al.

solutions. For example, within ConsultProj’s Scrum Master CoP, the members
collaboratively develop “common values, [...] plan suggestions, improvements
that might be a bit more sound than if you just asked single individuals” (E6).

Fostering People Development. Many organizations establish CoPs to foster
the development of their employees. CoP members can learn and improve their
skills together, and new employees can benefit from the knowledge of experienced
members. E11 highlights that with CoPs “people can learn faster, [...] become
better in their job because they know the right people to talk to, [...] to learn
from.”

Improving Efficiency. Another motive for establishing CoPs is to improve
efficiency. The communities can help identify synergies, solve common challenges,
and reuse, e.g., solutions. At SoftwareCo2, for instance, a technology-specific CoP
helps developers to be aware of what “other teams are doing with this technology
so that whether we can reuse it or we can benefit from this” (E5).

Fostering Networking. Another purpose of CoPs is to promote networking, as
they can help their members meet people interested in a specific topic or with a
particular role working in other areas. For example, E16 explains that the Scrum
Master CoP within SoftwareCo2’s commerce area helps “to meet each other and
to know what kind of Scrum Masters [...] we have in our organization.”

Distributing Information. Another common reason for establishing CoPs is
distributing information to a target group. E14 highlights that the communities
can help “to get information from other areas [...] so that you can also create
a bigger picture, a clearer picture about the things which are going on in the
company.” Within SoftwareCo2, e.g., a CoP for Scrum Masters in commerce
helps communicate information relevant to all employees in this role. According
to E16, the “CoP is a very crucial [...] place where we can communicate changes.”

Fostering Empowerment. Many CoPs are established to empower employ-
ees to act self-organized, take responsibility, make decisions, and influence
actively. For example, E22 argues that the communities help “avoiding discus-
sions between people who are not really involved in the topics [...], have to feel
the pain about their decision.” According to E11, communities are empowering
employees as they “give them the platform also to involve themselves.”

Aligning Across the Organization. Within several organizations, CoPs were
established to align teams, areas, and specific roles across the organization. For
example, for the ConsultProj, communities are needed “to get people aligned” as
the project is “very large”, spanning “different geographical areas, [..] time zones,
[...] [and] various companies” (E6). Likewise, E7 highlights that “people with a
certain task, [...] should align horizontally over the organization.’ ’

Supporting the Agile Transformation. Some CoPs we investigated were
established to support transitioning to agile. The communities can help to spread
and create knowledge and experience regarding agile practices. Moreover, E29
highlights CoPs themselves “bring agility into the organization.” Within Soft-
wareCo2, e.g., a central Scrum Master CoP was formed as “there was the need

Investigating CoPs in Large-Scale Agile 11

Table 3. Reasons for establishing CoPs

Reason Organization(s) Expert(s)

Promoting
knowledge
sharing

All organizations E1–12, E14–33, E35–39

Promoting
collaboration

CarCo1&2, ConsultCo1–3, ConsultProj, ElectroCo, FashionCo,
FoodCo, HealthCo, InsureCo1&2, RetailCo, SoftwareCo1&2,
TeleCo2, TransportCo

E1, E2, E4–11, E13, E15, E17–19,
E21–26, E28–31, E34, E35–39

Fostering
people
development

CarCo1, ConsultCo1, ElectroCo, FashionCo, FoodCo, HealthCo,
InsureCo1&2, RetailCo, SoftwareCo1&2, TeleCo1&2,
TransportCo

E1, E2, E4, E7, E8, E11, E13–15,
E20–24, E27–29, E31, E33, E36, E38

Improving
efficiency

CarCo1, ConsultCo1&2, ConsultProj, FoodCo, HealthCo,
InsureCo1, RetailCo, SoftwareCo1&2, TeleCo1&2, TransportCo

E1, E2, E4–8, E11, E12, E15–18,
E20–E23, E25–28, E30–32, E34,
E36, E37, E39

Fostering
networking

CarCo1, ConsultCo1–3, ElectroCo, FashionCo, FoodCo,
InsureCo1&2, RetailCo, SoftwareCo2, TransportCo

E2–5, E7, E11, E13–19, E23–30, E35

Distributing
information

CarCo1, ConsultCo1–3, ConsultProj, ElectroCo, InsureCo1,
SoftwareCo2, TeleCo2, TransportCo

E2, E5–9, E11, E14, E16–19, E23,
E25, E26, E28, E37

Fostering
empowerment

ConsultCo1&2, ElectroCo, FashionCo, FoodCo, HealthCo,
InsureCo1, RetailCo, TeleCo2, TransportCo

E2, E11, E13, E15, E17, E19,
E22–25, E27–29, E32, E34, E38

Aligning
across the
organization

CarCo1, ConsultCo1, ConsultProj, ElectroCo, InsureCo1&2,
RetailCo, SoftwareCo2, TeleCo2, TransportCo

E2, E5–7, E11, E13, E16, E23,
E25–28, E30, E34, E35

Supporting
agile trans-
formation

CarCo1&2, ConsultCo1, FashionCo, HealthCo, InsureCo1,
RetailCo, SoftwareCo2, TeleCo2, TransportCo

E2, E3, E7, E8, E10, E11, E22, E24,
E27–29, E37, E39

Improving
products and
services

ConsultCo1&2, FoodCo, InsureCo2, RetailCo, SoftwareCo1&2,
TeleCo2, TransportCo

E1, E5, E9, E11, E15, E17, E18,
E25, E34, E35

Coordinating
organizational
units

CarCo1, ConsultProj, FoodCo, RetailCo, TransportCo E6, E7, E15, E27, E28, E30, E32

Establishing
a safe
environment

ConsultCo1&3, ElectroCo, FoodCo, TeleCo2 E11, E14, E15, E19, E36, E38

Integrating
new topics
and trends

CarCo2, SoftwareCo1, TransportCo E1, E10, E28

then to offer a capability to exchange among each other because Scrum master
is really a special role compared to a traditional project manager” (E3).

4.3 Characteristics of the Established CoPs

In the following, we present the characteristics of the CoPs we investigated,
without considering how they are organized internally (e.g., meeting frequency).

Initiation. In most organizations we investigated, CoPs initiated top-down by
a management decision, and CoPs created bottom-up by employees exist. In a
few cases, we only found communities initiated bottom-up (CarCo2, TeleCo1) or
top-down (ConsultCo1, ConsultProj, HealthCo). The driver for initiating CoPs
can change over time. Initially, in FoodCo, communities for agile topics and
roles were started by individuals who saw a need. Then, management recog-
nized the value of CoPs and initiated them for non-agile themes like security. In

12 F. Tobisch et al.

ConsultCo2 and ElectroCo, management initiated the first CoPs, and employ-
ees later followed. Overall, slightly more than half of the CoPs we found were
top-down-initiated. Most communities created to empower employees, establish
safety, and improve offerings were initiated top-down. CoPs for new trends were
mainly initiated bottom-up. Employees of one participating firm initiated the
cross-company CoPs.

Target Group. Most organizations we studied have CoPs for specific roles
(role-based) and independent of any role (topic-based). A few organizations
have mainly one type (e.g., SoftwareCo1, ConsultCo1, ConsultProj, TeleCo1&2).
Role-based CoPs are often open to others, e.g., for interested employees.

Themes. We identified various themes for which CoPs are established (see
Table 4). The interviewees reported at least one community around Agility for
almost every organization. Most of these communities are role-based, e.g., for
Scrum Masters. Also, the cross-company CoPs are about agility. Another com-
mon theme is Architecture. Most Architecture CoPs are role-based. Many orga-
nizations also have communities for Software Development, some focusing on a
particular technology or method, such as Citizen Development (TransportCo).
Moreover, several organizations have, mainly top-down initiated, communities
for classical and agile Management and Leadership roles (e.g., Disciplinary Lead-
ership CoP (CarCo1, TeleCo2)) and Security. Most CoPs around Product Man-
agement are role-based PO CoPs. In addition, several organizations have mainly
top-down initiated communities dealing with Testing, UI/UX, and Quality,
e.g., software quality. Some organizations established, mainly topic-based, CoPs
for Cloud and Transformation and Change. The latter include, e.g., cultural
(CarCo1) and agile transformation (FashionCo). Finally, some communities for
Business Analysis and Digitialization and Innovation exist, for example, for dig-
italizing transportation at TransportCo. Next to the presented themes, we found
others implemented by only a few organizations, e.g., AI, or DevOps.

Openness. In many expert organizations, CoPs are open to everyone. Still,
in multiple organizations, at least a few closed communities exist (Consult-
Proj, ConsultCo2, FashionCo, FoodCo, InsureCo1&2, RetailCo, SoftwareCo2,
TeleCo2, TransportCo). These closed communities are mostly role-based or, if
topic-based, initiated top-down. One studied cross-company CoP is closed.

Organizational Acceptance. Top-down-initiated CoPs are, by nature,
accepted by management. Also, the bottom-up established communities we
investigated are tolerated by the management, either due to official approval or
as employees generally have the freedom to establish them. A few CoPs in some
companies are even led by managers (e.g., ConsultCo1, ConsultProj, RetailCo,
SoftwareCo1&2, TeleCo2). For example, the PO CoP within RetailCo is led by
the Head of Product. We only found two CoPs of which management is unaware:
a local Scrum Master CoP at SoftwareCo2 and the cross-company CoP of E37.
Still, the companies’ culture gives employees enough freedom to engage in such

Investigating CoPs in Large-Scale Agile 13

Table 4. CoP themes

Theme Organization(s)

Agility CarCo1&2, ConsultCo1–3, ConsultProj, ElectroCo, FashionCo, FoodCo, HealthCo,
InsureCo1, RetailCo, SoftwareCo2, TeleCo1&2, TransportCo

Architecture CarCo1&2, ConsultCo1, ElectroCo, FashionCo, FoodCo, HealthCo, InsureCo1&2,
RetailCo, SoftwareCo2, TeleCo2, TransportCo

Software
Development

ConsultCo1, ElectroCo, FashionCo, FoodCo, HealthCo, InsureCo1&2, RetailCo,
SoftwareCo1&2, TransportCo

Management and
Leadership

CarCo1, ConsultCo1, ConsultProj, ElectroCo, FoodCo, InsureCo1, RetailCo, TeleCo2,
TransportCo

Security ConsultProj, FoodCo, InsureCo1&2, SoftwareCo2, TeleCo1, TransportCo
Product
Management

FoodCo, HealthCo, InsureCo1, RetailCo, SoftwareCo2, TransportCo

Testing CarCo1, ConsultProj, HealthCo, TeleCo2
UI/UX ConsultCo1, InsureCo1, SoftwareCo2, TransportCo
Quality HealthCo, InsureCo1, SoftwareCo1&2
Cloud ConsultProj, FoodCo, InsureCo1
Transformation
and Change

CarCo1, ConsultCo2, FashionCo

Digitalization and
Innovation

ConsultCo2, RetailCo, TransportCo

Business Analysis ConsultCo1, InsureCo2, TeleCo2

an exchange. In ConsultCo2 and FoodCo, establishing a CoP is formalized. For
example, FoodCo has a “form which needs to be filled [...] to create a CoP” (E15).

Decision-Making Power. In some organizations, all CoPs we investigated
can either make decisions affecting their area of expertise or influence them
(CarCo1, ConsultCo1&2, ConsultProj, FoodCo, HealthCo, InsureCo1&2, Soft-
wareCo1, TeleCo1&2). In many other organizations, the decision-making power
depends on the community (CarCo2, FashionCo, RetailCo, SoftwareCo2, Trans-
portCo). Overall, most communities we studied have decision-making power or
can influence decisions. CoPs established to foster empowerment largely have
the power to at least influence decisions. The communities without the power to
make decisions were mainly initiated bottom-up. Community decisions are often
agreements, best practices, guidelines, or standards. For example, CoPs within
ConsultCo1 are “working on a guideline on how certain roles should behave in a
project. [...] It’s not forcing any projects to apply this, but it’s definitely some-
thing that will [have] an influence” (E18). The cross-company CoPs we studied
are not entitled to make any decisions affecting the involved organizations.

Organizational Support. While the time employees spend within CoPs is
funded, most communities we studied have no dedicated budget. Only within a
few organizations (some) CoPs have a budget or sponsor funding, e.g., external
guest speakers (CarCo2, FoodCo, InsureCo1, RetailCo, TeleCo1, TransportCo).
A minority of CoPs have full-time leads. Often, Agile Coaches or a team support
(ConsultProj, ElectroCo, FoodCo, HealthCo, InsureCo1, RetailCo, TeleCo2) and
management promotes (some) CoPs actively (ConsultProj, ConsultCo2, Fash-
ionCo, HealthCo, InsureCo1, RetailCo, SoftwareCo1&2, TeleCo2, TransportCo).

14 F. Tobisch et al.

Steering. In many organizations, at least some CoPs we investigated are mon-
itored and steered by management to a certain degree, e.g., regarding con-
tent and strategy (CarCo1&2, ConsultCo1&2, ConsultProj, FashionCo, FoodCo,
InsureCo1, RetailCo, SoftwareCo1&2, TeleCo2, TransportCo). More top-down
than bottom-up initiated communities belong to this group.

Participation. In most experts’ organizations, participation in CoPs is volun-
tary or sometimes expected. Some companies additionally have a few manda-
tory communities (CarCo2, FashionCo, InsureCo1, SoftwareCo2). These CoPs
are officially approved or initiated, and often steered by management. Also,
these CoPs mostly have access to funding and decision-making power. The cross-
company CoPs are voluntary.

Scope. Within some organizations we only found CoPs spanning across the
whole development organization (ConsultCo2, ConsultProj, TeleCo1&2, Soft-
wareCo1). These development organizations often have no “team of teams” struc-
ture grouping teams, e.g., into ARTs. Other organizations with “teams of teams”
or even more complex structures mostly have communities on additional lev-
els. Some organizations have CoPs restricted to a single or a few “team of
teams” (CarCo1, FashionCo, FoodCo, HealthCo, InsureCo1&2, RetailCo, Soft-
wareCo2, TransportCo), for representatives of each “team of teams”, or for
roles with leadership responsibility, e.g., for a “team of teams,” mainly with
decision-making power (ConsultCo1, ElectroCo, FoodCo, InsureCo1, RetailCo,
SoftwareCo2, TransportCo). For example, InsureCo1 has a community for its
Tribe Leads. The most common scope of CoPs we found is the overall devel-
opment organization. Especially topic-based communities tend to have a broad
scope. Moreover, some companies (e.g., CarCo2, TransportCo) have CoPs cov-
ering the whole organization, not just IT. The cross-company CoPs go beyond
a single organization. Almost all CoPs we investigated have members from dif-
ferent sites in Germany or other countries. The only single-site communities we
found were all communities of TeleCo1 and InsureCo2, and two Scrum Master
CoPs and a PO CoP at SoftwareCo2.

Size. The size of the CoPs we investigated ranges from less than ten members
to several hundred. Naturally, the organization’s size plays a role. For example,
CoPs within SoftwareCo1, a small company, could not reach hundreds of mem-
bers. The topic-based and open communities we studied are often bigger than
role-based and closed ones. Likewise, the CoPs with a broader scope are in many
cases bigger than ones, e.g., for a single “team of teams”. The CoPs we found
intended to be a safe space for employees tend to have less than 50 members.

5 Discussion

In this section, we discuss our key findings and the limitations of our study.

Investigating CoPs in Large-Scale Agile 15

5.1 Key Findings

Our study identified promoting knowledge sharing as the most common reason
for establishing CoPs. Likewise, Paasivaara and Lassenius [21] and Šmite et al.
[30] found knowledge sharing as at least an implicit goal behind all communities
in the scaled agile organizations they studied. As in both studies, the CoPs we
investigated have various purposes. The most common reasons are to enhance
collaboration, people development, efficiency, and networking. These findings
align with the values CoPs can provide according to Wenger et al. [35] and
the results of other authors studying communities in scaled agile settings [17,
21,28–31]. Moreover, we identified promoting empowerment, alignment and the
agile transformation as common motives. Likewise, Moe et al. [17] found that
CoPs can empower through community-based decision-making. Other authors
report on CoPs intended to align distributed units and teams within scaled agile
settings [13,29,30] and conclude that CoPs can support the agile transformation
[18,21,30].

The communities we studied cover a variety of themes not specific to agile
methods. Besides CoPs for agile roles or about agility, we identified numer-
ous ones for themes like architecture or security. Likewise, other related studies
mainly found CoPs for themes not specific to agile practices [21,29,30]. While
both topic- and role-based communities were common in our study, some themes
(e.g., architecture) are mainly addressed in role-based CoPs, and others (e.g.,
transformation and change) are the subject of topic-based CoPs.

Our study shows that in most organizations, CoPs are initiated top-down
and bottom-up. Communities for several themes, like quality, were primarily
initiated by managers. The same applies to CoPs created for specific reasons, like
empowerment. CoPs focusing on new trends were mainly created bottom-up. We
also found that the drivers for CoPs can change over time, e.g., if management
or individuals start recognizing their value. Likewise, Paasivaara and Lassenius
[21] report a change in the initiation from managers to those who needed them.

Most communities we investigated are open and voluntary. In line with our
findings, other studies found mainly open [29] and voluntary communities [21,
30]. According to several authors [21,35], openness is crucial. Moreover, Wenger
et al. [35] see mandatory participation as a weakness, whereas Šmite et al. [30]
found that it can ensure all organizational areas are represented.

The CoPs in our study are accepted by management due to top-down ini-
tiation, approval, or the overall organizational culture. While the time spent
in communities is funded, most lack a dedicated budget, regardless of whether
they are initiated top-down. Similarly, in other studies [21,29,30], CoPs are offi-
cially recognized. Only Šmite et al. [29] report a dedicated CoP budget. Most
CoPs we studied, particularly if established to foster empowerment, can make
or influence decisions in their areas of expertise. Several authors (e.g., [21,30])
investigated CoPs entitled to make decisions or give recommendations and con-
cluded that this authority is needed. Our study also showed that management
often steers communities, particularly if initiated top-down. Likewise, Wenger et
al. [35] connect institutionalization with potential overmanagement.

16 F. Tobisch et al.

In our study, CoPs most often span the whole development organization,
especially if topic-based. In addition, most organizations with a “team of teams”
structure have CoPs on more levels. The scopes we found align with the cate-
gories Wenger et al. [35] and the scopes in agile organizations other researchers
describe [21,29,30]. As in these studies, the CoPs we studied mainly cover dif-
ferent sites. The size of the communities we investigated ranges from less than
10 to several hundred members. Topic-based and open CoPs tend to have more
members than role-based and closed ones, potentially due to a broader target
group. Same applies to CoPs spanning the whole development organization. A
similar pattern can be found when comparing studies of CoPs with different
scopes ([29] vs. [30]).

5.2 Limitations

We used the assessment schema of Runeson and Höst [23] to evaluate threats to
our study’s validity. We addressed the threat of construct validity by clarifying
relevant concepts and potential ambiguities during each interview. To overcome
the threat of external validity, also influenced by our sampling strategy, we inter-
viewed 39 experts with different roles from 18 organizations in different indus-
tries to increase generalizability. For achieving reliability, two researchers were
involved in the study process, and we followed guidelines for the data collection
and analysis [16,19,25]. Whenever the interpretation of data needed clarification,
we contacted the interviewees. We tried to address threats to internal validity
by following the same outline to collect data and building on patterns identi-
fied between the organizations and communities we studied. Still, quantitative
research is needed to validate the causal implications.

6 Conclusion and Future Work

Organizations applying agile methods at scale have to cope with increased com-
plexity and challenges like redundant work, silo thinking, lacking collaboration,
and inconsistent agile practices [2,3]. Existing research provides first insights
into how CoPs can address these issues and support organizations applying agile
methods at scale [21]. However, a broad overview of why large agile organizations
establish CoPs and what these communities look like is missing. To fill this gap,
we conducted an expert interview study comprising 39 experts from 18 organi-
zations. We found that next to benefiting from the known advantages of CoPs,
organizations applying agile methods at scale establish them to foster empow-
erment, strengthen alignment, and drive their agile transformation. Moreover,
CoPs focus not only on agile but also on classical themes such as architec-
ture. Most communities are open and voluntary but not necessarily established
bottom-up. Often, management initiates CoPs, e.g., to empower their employ-
ees, giving them the authority to make decisions in their area of expertise. CoPs
are either explicitly or implicitly accepted by management, as the organizational
culture provides the freedom for such, and often steered, especially if they are

Investigating CoPs in Large-Scale Agile 17

top-down initiated. Our study provides insights into CoPs in large-scale agile
software development, which can inspire practitioners and allow future research.
We aim to publish the remaining evidence on how communities are organized and
identified barriers, challenges, and best practices. We also want to use quantita-
tive methods to validate and extend our results. Moreover, building on our find-
ings on why and what CoPs are established in scaled agile settings by enhancing
them with additional empirical insights could allow for a well-founded taxon-
omy of CoPs in this context. Furthermore, we presented why organizations have
established CoPs but did not provide insights into their success. Future research
could, for example, focus on appropriate indicators or measurement approaches
that allow organizations to evaluate the success and value of CoPs within scaled
agile settings.

Funding Information. This research has been partially funded by the German Fed-
eral Ministry of Education and Research (BMBF) through grant 01IS23069.

References

1. Detofeno, T., Reinehr, S., Andreia, M.: Technical debt guild: when experience and
engagement improve technical debt management. In: Proceedings of the Brazilian
Symposium on Software Quality 2021, pp. 1–10. ACM, New York (2021)

2. Digital.ai: 16th Annual State of Agile Report (2022). https://info.digital.ai/
rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf.
Accessed 12 Apr 2024

3. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

4. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Peternsen, K. (eds.)
International Conference on Agile Software Development 2014. LNBIP, vol. 199,
pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14358-3_1

5. Disciplined Agile: Communities of Practice (2024). https://www.pmi.org/
disciplined-agile/people/communities-of-practice. Accessed 12 Apr 2024

6. Highsmith, J.A., Highsmith J.: Agile Software Development Ecosystems. Addison-
Wesley Professional (2002)

7. Fontaine, M.A., Millen, D.R.: Understanding the Benefits and Impact of Commu-
nities of Practice. In: Knowledge Networks: Innovation Through Communities of
Practice, pp. 1–13. IGI Global, Hershey (2004)

8. Fontana, A., Frey, J.H.: The interview: from structured questions to negotiated
text. In: Handbook of Qualitative Research. 2n edn, pp. 645–672. SAGE, Thousand
Oaks (2000)

9. Jassbi, A., Jassbi, J., Akhavan, P., Chu, M.-T., Piri, M.: An empirical investigation
for alignment of communities of practice with organization using fuzzy Delphi
panel. Vine 45(3), 322–343 (2015)

10. Kähkönen, T.: Agile methods for large organizations-building communities of prac-
tice. In: Proceedings of the Agile Development Conference 2004, pp. 2–10. IEEE,
New York (2004)

https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://doi.org/10.1007/978-3-319-14358-3_1
https://www.pmi.org/disciplined-agile/people/communities-of-practice
https://www.pmi.org/disciplined-agile/people/communities-of-practice

18 F. Tobisch et al.

11. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. ACM SIGSOFT Softw. Eng. Notes 27(5), 17–20 (2002)

12. Kniberg, H., Ivarsson, A.: Scaling agile @Spotify (2012). https://blog.crisp.se/wp-
content/uploads/2012/11/SpotifyScaling.pdf. Accessed 12 Apr 2024

13. Korbel, A.: Using Communities of Practice for Alignment and Continu-
ous Improvement at DigitalGlobe. https://agilealliance.org/wp-content/uploads/
2015/12/ExperienceReport.2014.Korbel.pdf. Accessed 12 Apr 2024

14. LeSS: Communities of Practice (2024). https://less.works/less/structure/
communities. Accessed 12 Apr 2024

15. Lesser, E.L., Storck, J.: Communities of practice and organizational performance.
IBM. Syst. J. 40(4), 831–841 (2001)

16. Miles, M.B., Huberman, A.M., Saldaña, J.: Qualitative Data Analysis: A Methods
Sourcebook, 4th edn. SAGE, Thousand Oaks (2019)

17. Moe, N.B., Šmite, D., Paasivaara, M., Lassenius, C.: Finding the sweet spot for
organizational control and team autonomy in large-scale agile software develop-
ment. Empir. Softw. Eng. 26, 101 (2021)

18. Monte, I., Lins, L. Marinho, M.: Communities of practice in large-scale agile devel-
opment: a systematic literature mapping. In: Proceedings of the Latin American
Computer Conference 2022, pp.1–10. IEEE, New York (2022)

19. Myers, M.D., Newman, M.: The qualitative interview in is research: examining the
craft. Inf. Organ. 17(1), 2–26 (2007)

20. Paasivaara, M., Lassenius, C.: Deepening our understanding of communities of
practice in large-scale agile development. In: 2014 Agile Conference, pp. 37–40.
IEEE, New York (2014)

21. Paasivaara, M., Lassenius, C.: Communities of practice in a large distributed agile
software development organization - Case Ericsson. Inf. Softw. Technol. 56(12),
1556–1577 (2014)

22. Paasivaara, M., Lassenius, C.: Empower your agile organization: community-based
decision making in large-scale agile development at Ericsson. IEEE Softw. 36(2),
64–69 (2019)

23. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

24. SAFe: Communities of Practice (2023). https://scaledagileframework.com/
communities-of-practice/. Accessed 12 Apr 2024

25. Saldaña, J.: The Coding Manual for Qualitative Researchers, 4th edn. SAGE,
Thousand Oaks (2021)

26. Schwaber, K., Beedle, M.: Agile software development with scrum. Series in agile
software development. Prentice Hall (2002)

27. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Trans. Software Eng. 25(4), 557–572 (1999)

28. Silva, K., Doss. C.: The growth of an agile coach community at a fortune 200
company. In: Agile 2007 (AGILE 2007), pp. 225-228. IEEE, New York (2007)

29. Šmite, D., Moe, N.B., Levinta, G., Floryan., M.: Spotify guilds: how to succeed
with knowledge sharing in large-scale agile organizations. IEEE Softw. 36(2), 51–57
(2019)

30. Šmite, D., Moe, N.B., Wigander, J., Esser, H.: Corporate-level communities at
Ericsson: parallel organizational structure for fostering alignment for autonomy.
In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp.
173–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_11

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Korbel.pdf
https://agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Korbel.pdf
https://less.works/less/structure/communities
https://less.works/less/structure/communities
https://scaledagileframework.com/communities-of-practice/
https://scaledagileframework.com/communities-of-practice/
https://doi.org/10.1007/978-3-030-19034-7_11

Investigating CoPs in Large-Scale Agile 19

31. Sporsem, T., Tkalich, A., Moe, N.B., Mikalsen, M., Rygh, N.: Using guilds to foster
internal startups in large organizations: a case study. In: Gregory, P., Kruchten,
P. (eds.) Agile Processes in Software Engineering and Extreme Programming -
Workshops 2021. LNBIP, vol. 426, pp. 135–144. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88583-0_13

32. Uludağ, Ö., Reiter, N., Matthes, F.: Improving the collaboration between enterprise
architects and agile teams: a multiple-case study. In: Zimmermann, A., Schmidt,
R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp.
347–366. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_18

33. Uludağ, Ö., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C., Matthes, F.:
Revealing the state of the art of large-scale agile development research: a systematic
mapping study. J. Syst. Softw. 194, 111473 (2022)

34. Van Oosterhout, M., Waarts, E., van Hillegersberg, J.: Change factors requiring
agility and implications for IT. Eur. J. Inf. Syst. 15(2), 132–145 (2006)

35. Wenger, E., McDermott, R., Snyder, W.M.: Cultivating Communities of Practice:
A Guide to Managing Knowledge. Harvard Business School Press, Boston (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-88583-0_13
https://doi.org/10.1007/978-3-030-88583-0_13
https://doi.org/10.1007/978-3-030-49640-1_18
http://creativecommons.org/licenses/by/4.0/

Slack Use in Large-Scale Agile
Organizations: ESN Tools as Catalysts

for Alignment?

Viktoria Stray1,2(B) and Astri Barbala1

1 SINTEF Digital, 7034 Trondheim, Norway
2 University of Oslo, 0373 Oslo, Norway

stray@ifi.uio.no

Abstract. This paper examines the role of the enterprise social net-
working (ESN) tool Slack in the daily work of software practitioners
within NAV, a large-scale agile public sector organization. Based on 13
interviews with NAV developers, our case study explores how Slack is
employed for knowledge sharing and daily communication across the
organization. We used a newly developed framework for communication
in agile teams as a theoretical lens. Through our analysis, we found
that Slack use had become deeply integrated into the organizational
culture and fostered alignment in three main ways: Promoting com-
munication transparency through open discussions visible for develop-
ers organization-wide, enhancing communication quality with prompt
responses and constant communication, and encouraging communica-
tion discipline through structured channels and threads. This study also
unveiled some challenges, such as information overload and hindered
focus. However, our findings suggest that if common hurdles are over-
come, modern ESN tools can reshape how cross-organizational commu-
nication plays out in large-scale agile, reinforcing the agile principles of
collaboration and motivated individuals.

Keywords: Collaboration Tools · Team Communication Platforms ·
Agile Software Development · Human and Social Aspects of Software
Engineering · Online Collaborative Software · Instant Messaging

1 Introduction

The use of enterprise social networking (ESN) tools, such as Slack, has become
increasingly popular as they enable agile software teams to collaborate efficiently
[11,36]. ESN tools facilitate communication and networking within an organiza-
tion and are specifically designed to support social interactions among employ-
ees, enabling them to share information, work together on projects, and build
relationships [19]. Social interactions and networking is essential for both novice
and mature agile teams when solving complex, unfamiliar, or interdependent
tasks [34]. ESN tools are also called Online Collaborative Software [4], Team
Communication Platforms [3], and workspace collaboration tools [4,17].
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 20–35, 2024.
https://doi.org/10.1007/978-3-031-61154-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_2&domain=pdf
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0002-3087-3350
https://doi.org/10.1007/978-3-031-61154-4_2

Slack Use in Large-Scale Agile Organizations 21

Agile methods, known for their emphasis on flexibility, adaptability, and team
collaboration, have been widely adopted in software development projects, and
in recent years in large-scale settings [15,16]. However, the specific dynamics of
communication and collaboration in large-scale agile environments remain under-
explored, particularly in the context of the public sector. Public sector organiza-
tions are characterized by complex bureaucracies and diverse stakeholder needs,
and require efficient and effective communication tools to navigate their unique
challenges. Further, the rate of innovation and the speed of development are
often slower in the public sector compared to the private sector [21].

Previous research has shown that alignment and coordination between mul-
tiple teams in large-scale settings is a challenge [14,15]. Having too many depen-
dencies to others has been reported as a top barrier for autonomous agile teams
[26]. Yet, there is still a lack of studies looking into how these challenges play
out in public sector organizations. Attempting to meet this research gap, this
study highlights the challenges and benefits of using a leading ESN platform,
Slack, in a large-scale agile setting in the public sector, pointing to how it can
help organizations improve their communication and coordination strategies.

Slack was originally designed as a cloud-based platform for team communi-
cation, but has now moved beyond just a tool for sending messages. Research
on Slack has shown that for many software teams the platform has turned into
a workflow hub where they use bots, meet in ad-hoc ’huddles’ and receive alerts
from other tools [20]. Despite the growing use of Slack in agile software devel-
opment (ASD) teams, however, there is a lack of research on how to optimize
its use to improve communication and coordination, especially in a large-scale
agile organizational context. This paper delves into the use of Slack within NAV,
the Norwegian Labour and Welfare Administration, which can be classified as a
large-scale public sector organization. NAV’s IT department, counting more than
900 employees, has embraced Slack in their agile teams, not just as a tool for
daily communication, but as a central coordination tool across the organization
that supports their software development in a large-scale setting. Adopting an
organizational perspective in order to grasp how Slack facilitates for or challenges
alignment across the organization, we ask the following research question:

RQ: How can the use of Slack facilitate or challenge organizational alignment
in a public sector large-scale agile software development setting?

In addressing our research question, we conducted fieldwork in NAV, which
is an organization tasked with specific employment and welfare services. Crucial
to Norway’s welfare infrastructure, NAV administers around a third of the state
budget and facilitates unemployment benefits, pensions, and provide social and
financial security to the nation’s citizens. The organization also employs thou-
sands of caseworkers, which necessitates a comprehensive array of information
systems designed to aid not only expert users within NAV, but also citizens,
employers, healthcare providers, and family members. With its IT department
being among the country’s most extensive in software development, NAV handles
vast and intricate data sets, essential for both individual citizens and societal
stability. The organization also plays a critical role in producing vital public and
official statistics that are instrumental in shaping national policy decisions.

22 V. Stray and A. Barbala

By conducting 13 in-depth interviews with software developers in NAV, this
research seeks to shed light on the integration of Slack into the organizational
culture and its impact on the everyday life and practices of software develop-
ers. We aim to address the use of Slack and identify the challenges and benefits
associated with its use. Through this exploration, the study contributes a deeper
understanding of how digital communication tools are reshaping agile methods
in the public sector, offering insights that could guide similar organizations in
optimizing their communication strategies for better software development out-
comes.

2 Background

2.1 Large-Scale Agile Development in Public Sector Organizations

Studies of agile software development in the public sector have tended to focus
on themes such as scaling [18], project governance [23], and organizational impli-
cations of agile adoption [27]. What differentiates a public sector context from a
private sector context will depend on the country in which the study is under-
taken, for instance, the extent to which commercial enterprises are involved
with public goods and governmental services such as law enforcement, public
education, infrastructure, and public transportation. In the Norwegian context,
non-profit digitalization initiatives dominate the public sector software develop-
ment.

Still, national public sector organizations have often been at the forefront of
implementing new methods and technologies such as both agile [15] and con-
tinuous software engineering (CSE) methodologies [6]. Data-driven initiatives
have also been a focus in Norwegian public sector bodies [10], and the country
has been regarded as a “global pioneer in incorporating new ideas about organi-
zational architecture in software development” [7]. In investigating the changes
taking place during NAV’s digital transformation in the years between 2016–
2020, Bernhardt [9] discovered that the key factors influencing the organization
were the reconfiguration of its structure to facilitate team and product area cre-
ation, an overhauled sourcing strategy that favors bringing services in-house, a
move to a contemporary application platform with a flexible architecture, and a
shift from traditional to agile methodologies in product development.

In another study, Dingsøyr et al. [15] enquire into how public sector orga-
nizations often can be studied as “very large-scale agile development” contexts,
highlighting the intricate interplay of numerous teams with expansive duties.
Dingsøyr et al. observed that the organization they studied shifted from an
initial large-scale agile method that blended agile practices with project man-
agement protocols to a more evolved form that integrates contemporary ideas in
software development. This evolution led to the creation of independent teams,
each specialized in a different product area. Dingsøyr et al. report that this
change led to a dramatic boost in the frequency of product updates, escalating
from biannual to daily releases. This shift also brought about a profound change
in coordination strategies, empowering teams to develop their own methods of

Slack Use in Large-Scale Agile Organizations 23

coordination, which resulted in a streamlined process with fewer middlemen and
less inter-team reliance [15].

2.2 Communication in Agile Software Development

As Bablo et al. [5] notes, communication in agile teams is not just frequent
but also informal and direct, enabling rapid responses to change and fostering a
collaborative environment. For a long time, communication tools such as Slack
have been vital in globally distributed teams, providing an asynchronous yet
real-time communication medium supporting fast feedback [25].

Recently, there has been a shift in how agile teams work because of the pan-
demic that forced people to work from home. As a result, more and more people
are working from home for several days per week, resulting in a hybrid way
of collaboration [13]. The new collaborative working mode has affected the use
of communication tools and coordination mechanisms. This was reported in a
recent survey that found that the percentage of people who are collocated in the
same office has changed from 51.9% to 16.9%, and 80% use instant messaging
tools such as Slack and Viber [28]. Santos and Ralph [35] recently conducted a
study on hybrid software teams that revealed that the absence of regular face-
to-face communication may cause the teams to revert to ineffective communi-
cation mechanisms, and the teams should modify their communication methods
to enable more frequent interactions.

Kostin and Strode [22] emphasize that communication is not merely a facil-
itator but a cornerstone of agile practices, and our study hence seeks to con-
tribute to this literature. It is through efficient communication that agile teams
can ensure transparency, manage evolving requirements, and maintain a contin-
uous feedback loop with stakeholders. In their recent work, Kostin and Strode
[22] propose a theoretical model for alignment in distributed agile teams. The
model consists of four elements: alignment, communication transparency, com-
munication quality, and communication discipline, where the latter three lead
to alignment if successfully executed. Communication transparency refers to the
openness in sharing all essential product-related information, ensuring all team
members have access to the data they need for effective collaboration, com-
munication quality emphasizes the effectiveness, clarity, and appropriateness of
the information exchanged, ensuring it is understandable for everyone involved,
and communication discipline involves adhering to established communication
protocols and schedules, ensuring consistent and reliable information exchange
to maintain effective collaboration and alignment with project goals. Lastly,
alignment refers to the degree of which team members - and in our case; orga-
nizational peers - share a common understanding and commitment to project
goals, methods, and values. Alignment is crucial for coordinated action, both
in distributed teams, as in Kostin and Strode’s case, but also in a large-scale
agile organization where the risk of miscommunication is higher. Since the NAV
developers we interviewed are all part of agile and often hybrid teams, we found
this model to be a valuable lens for analyzing how they employed Slack in their
everyday work.

24 V. Stray and A. Barbala

2.3 ESN Tools

The role of ESN tools, such as Slack, extends beyond mere message exchange;
they are integral in supporting the dynamic, iterative, and collaborative essence
of agile methodologies. Slack was initially introduced as an alternative to tra-
ditional communication methods, such as emails and meetings, but has now
become an essential tool in development environments due to its versatile and
all-inclusive communication capabilities [20]. Slack was created by the American
software company Slack Technologies and has been under Salesforce’s ownership
since 2020. It provides both freemium and premium subscription options, featur-
ing capabilities like text messaging, sharing of files and media, voice and video
calling, and group chat functionalities to facilitate team collaboration. It can
be contended that Slack has significantly influenced how software development
teams interact and work together [4,24,29]. Especially in agile software devel-
opment, Slack can help overcome inter-team communication barriers [30], lower
the threshold to ask other team members for help [38], decrease task allocation
dependencies and increase awareness of what others are doing [37].

The use of Slack in a multidisciplinary academic team showed that its activ-
ity mirrored social interactions and project progress, correlating with impor-
tant milestones and reflecting the team’s multidisciplinary collaboration [4]. In
another study, Calefato et al. [11] investigated the role of tool support in facili-
tating collaboration during agile development. Specifically, they focused on the
implementation of a Slack workspace to enhance teamwork in agile environ-
ments. An analysis of Slack usage in engineering design teams revealed insights
into team dynamics and communication patterns, such as the central role of lead-
ers, the importance of emoticon reactions in communication, and the evolution
of communication topics over time [2].

Although ESN tools facilitate synchronous communication, they also present
several challenges. For instance, teams must figure out how to interact with one
another inside the tool and how to balance the use of these tools with other
communication forms, including meetings, emails, and phone calls [36]. It also
happens that some people dominate conversations in Slack channels [32].

3 Methods and Study Design

Due to the exploratory nature of our study, we conducted an exploratory case
study inspired by the approach of Runeson and Höst [31]. They outline five steps
for conducting this type of study within software development research: (1) study
design, (2) preparation for data collection, (3) data collection, (4) analysis of col-
lected data, and (5) reporting. Following Walsham’s [40] methodology for inter-
pretive case study research in information systems, we acknowledge that case stud-
ies are not designed for statistical generalization. This can be considered a limita-
tion of case studies and qualitative research broadly. Nonetheless, the study allows
for analytical generalization because it presents a method for investigating the use
of collaboration tools by software developers, and the challenges they face in this
regard, which is a relevant issue for software teams globally.

Slack Use in Large-Scale Agile Organizations 25

The data collection conducted in this study was performed as part of a large
research project looking into agile software development in the public sector. The
data material consists of interviews with 13 developers in NAV as well as digital
observations of a large Slack channel used by almost 200 of the developers in
NAV’s IT department. The company may be characterized as large-scale. Cur-
rently, NAV IT has around 900 employees encompassing more than 150 teams
with developers, and operates with an annual budget of more than 100 mil-
lion Euros. The employees include 30 architects, 80 designers, over 300 develop-
ers, 180 technicians (operations and infrastructure), as well as other leadership,
advisory, and support positions. Each team is tasked with specific responsibili-
ties, and the teams can select their preferred tools, technologies, and agile ways
of working, thereby granting them a considerable level of autonomy. After the
pandemic-related restrictions in mid-2021, the company gave people the flexibil-
ity to work from home, which many of the employees choose to do at least some
days per week.

3.1 Data Collection

Of the 13 interviews we conducted, four interviews were performed face-to-face
at NAV’s head office and nine interviews were held via Teams. The interviews
were conducted between November 7th and December 18th, 2023, and we gave
the informants pseudonyms based on their interview number (Person1, Person2,
etc., shortened to P1, P2 in the following). A semi-structured approach was fol-
lowed, with each interview lasting 30–60 minutes, with an average of 47min.
In the interviews, we asked developers about their relationship with work tools,
how they collaborate with colleagues and what contributes to them feeling sat-
isfied at work. Further, we asked the informants to tell us about how they use
Slack, detailing how often they use it, which channels they are part of, and what
role Slack plays in their collaboration with their team and others in the NAV
organization. Some also shared their screen and showed us their Slack interface,
so we got an even better understanding of the channels they followed and which
connections they communicated with.

In addition to interviews, we were also invited to join a NAV Slack channel in
the organization. We regularly checked posts and discussions on this channel dur-
ing the course of the data collection and analysis, and also used it as background
material for our interviews, e.g., if one informant had shared or been part of a
discussion on a specific topic. We paid attention to how posts were shared and
by whom, how people started discussions under said posts, and how members
used emoticon reactions in specific ways. The digital observation method, which
allows for continuously following and analyzing a community’s digital practices
and interactions [8], was followed here.

3.2 Data Analysis

We used abductive thematic analysis to extract qualitative information through
explicit codes, defined as patterns of meaning (themes) across all interview

26 V. Stray and A. Barbala

transcripts [39]. Abductive analysis enables researchers to apply established theo-
ries and concepts, as is typical in deductive analysis, while simultaneously uncov-
ering fresh insights and perspectives directly from the data. This meant that we
were constantly moving between relevant literature and data in our analysis
process, allowing theory about the topic and our empirical material to mutually
shape one another.

Through this process, we discovered the newly developed model for ASD
communication [22], which we found to be a suitable analytical framework for
our study to point at both the benefits and challenges of relying on Slack as
a communication and coordination platform in a large-scale agile setting. After
our initial coding process, we grouped the codes into interpretative sub-themes
and subsequently into candidate themes that lend their tags from Kostin and
Strode’s model. The content and meaning of the three categories were, however,
shaped by our data material, which regarded Slack use in a large-scale public
sector organization rather than communication in globally distributed Scrum,
as in the case of Kostin and Strode. However, we did not find this to be an
obstacle during our analysis; on the contrary, it enriched the analytical process
by making us thoroughly discuss each finding in accordance with the model.

4 Results

This section describes the findings from our investigation into the use of Slack
as an ESN tool within NAV. Our analysis draws on interviews and digital obser-
vations. The results are described following the three categories that, according
to Kostin and Strode [22], support alignment for agile teams: Communication
transparency, Communication quality, and Communication discipline.

4.1 Communication Transparency

It was clear from our analysis that the widespread use of Slack’s open channels
was vital in fostering transparent communication between employees throughout
the organization. This was especially important as many people in NAV were
working from home. P5 stated: “In our team, we mostly work from home and
have one office day per week. Therefore, we use Slack a lot.”

NAV IT employees were encouraged by their peers to publish messages in
open organization-wide Slack channels to ensure that everyone would have access
to the information they were sharing. This practice ensured that all NAV’s devel-
opers, regardless of their role or location, could be part of the conversation. Our
digital observations revealed that not only the developers were using NAV’s open
Slack channels: Although Slack is mostly used by NAV IT, people from other
departments that are members of cross-functional development teams also have
access and use it in their teamwork or to answer questions, such as leaders and
people from legal department. Thus, some section managers high up in the orga-
nization were also active members, providing answers to questions, taking part in

Slack Use in Large-Scale Agile Organizations 27

discussions, and adding emoticon reactions to other members’ posts. It was evi-
dent that there was an abundance of open channels within the NAV organization,
such as for specific IDEs, front-end/back-end developers and universal design,
which we also observed when interviewees showed us their Slack interfaces.

Several pointed to how the large-scale nature of the organization, mean-
ing teams were spread out both in terms of location and product areas, made
Slack’s options for communication especially beneficial: “I find that this orga-
nization greatly benefits from using Slack, as we have so many channels for so
many things. I use Slack quite extensively when I have questions that we can’t
automatically answer within the team, or that no one in the team can respond
to. We also use Slack within the team to some extent, and we use it to commu-
nicate with our external partners, or those we depend on, or who depend on us.
So we use it for communication both within the team, across the organization,
and externally.”, P3 said. P10 used Slack to keep updated on what other kinds
of developers in the large-scale organization discussed, and said humorously: “I
think it is very valuable to have some insight into what those weird back-end
developers are talking about”.

Other interviewees expressed that the transparency facilitated by Slack had
not only enhanced their understanding of projects and tasks but also contributed
to a more positive work environment. One developer, P8, went as far as saying
Slack was so integral to his job as a NAV developer that he would consider quit-
ting his position if the organization was to discontinue using Slack. All in all,
there was a broad consensus among the developers we interviewed that the ability
to easily share information and seek assistance had reduced barriers to communi-
cation, making it easier for individuals to contribute to discussions and decision-
making processes. The preference for Slack over other tools like Microsoft Teams
was noted by P5: “Slack is easier for joining and leaving conversations, as well
as for promoting open discussions, unlike Teams.”

However, the reliance on open channels on Slack also introduced challenges
for communication transparency amongst the developers. For instance, P1 noted
the tendency of some developers, especially new hires, to avoid public channels:
“Many find it scary to ask in open channels, so they ask me directly.” This
comment points to a need for fostering a more open communication culture in the
organization, that perhaps the architecture or affordances of Slack may not offer
to a satisfying degree for such a large-scale organization. Another interviewee,
P3, also showed concern that the less active users would not receive crucial
information if all conversations and important messages were shared mainly on
Slack. He said: “I have noticed that some people remind other users that it’s not
certain we are all in the specific channel [they post information in], so using it
as the main platform for information might not be good enough.”

4.2 Communication Quality

Slack’s features, such as being able to edit messages after they are sent, and
the ability to quickly share files or have conversations through a huddle - the
platform’s possibility for calling up people instantly in the same way as through

28 V. Stray and A. Barbala

Fig. 1. Reactions to a post in a NAV Slack channel

Zoom or Teams - supported the quality aspect by allowing for detailed discus-
sions without overwhelming the main communication channels. Our observations
of a large NAV Slack channel showed that it was frequently used for things such
as sharing new research about relevant technology, tips on how to solve common
issues, and discussing the use of new features. We saw that the use of specific
emoticons as reactions to someone’s posts, oftentimes uploaded GIFs not pro-
vided by Slack’s regular emoticons, also added to the quality aspect. It not
only provided a way to be creative and foster shared, organization-wide cultural
expressions, but also a way for NAV employees to tailor precise reactions to their
peer’s utterings, avoiding misunderstandings. See an example in Fig. 1.

Another crucial point for ensuring quality communication across a large-scale
organization consisting of many teams and dependencies, is the possibility of
communicating quickly and to-the-point. The real-time nature of communication
on Slack facilitated a degree of promptness that is difficult to get using alternative
platforms such as email, and the use of Slack for frequent communication and
support to other teams was a recurring theme in the interviews. One interviewee,
P6, also told us how his team was using Slack for an easy and accessible way
of note-taking during meetings: “We have a good routine for sharing things that
happen on Slack; we are good at writing minutes [in a team channel]. We write
simple, short documents where we try to condense what we have actually agreed
upon to develop, what the goal is, and how we want it in the team. We try to
be more conscious about this documentation.” This shows how Slack’s different
options for use could inspire NAV teams to think innovatively with regards to
how they implemented agile thinking into their everyday development process.

The rapid exchange of information also meant that the interviewees spent
a lot of time on the platform, however. When asked about the time spent on
Slack daily, P1 humorously responded, “I wouldn’t even want to know. But I
guess in the course of an hour, maybe 15min is on Slack.” Despite the benefits
of Slack for communication quality and quick responses, then, the platform’s
user friendliness also came with an expectancy of developers in the organization
“always” being available. P1 talked about how a life without Slack would have

Slack Use in Large-Scale Agile Organizations 29

been “lovely” because he then would have more time to program. But he also
reflected on how much his time spent on Slack helps others: “I would probably
have been more productive on paper. Because then I would have programmed a
lot more. But I believe a consequence would be that someone else would have been
less productive.”

P4 further elaborated on the frequent use of Slack, “Our team has a dedicated
Slack channel. I spend a lot of time on Slack even after work hours. It’s essen-
tial for staying updated, but it can be overwhelming.” This quote was echoed by
P9 who had “muted” several channels to not be disturbed when programming:
“There’s always a lot of stuff going on [in the channels], and like... It’s often
just a distraction, I think, a lot of what’s going on. It would probably be good
to be shielded from it now and then. I think I’ve gotten better to just ignore it
a bit.” This quote also points to that what may be useful to one NAV devel-
oper in one part of the organization, might be merely a disturbance to another
employee in a different team. P13 had turned off notifications from other people
but still received notifications from integrated bots: “I only have notifications
from Github, Dependabot, and pull requests. I get notified when someone opens
a pull request where one of the dependencies is out of date. I wish there were
fewer notifications, but I really appreciate knowing this immediately.”

4.3 Communication Discipline

We found that Slack’s structure with channels and threads fostered a disci-
plined approach to communication and coordination that also facilitated ad-hoc
communication. For instance, P5 said: “We create threads for what we need, in
addition to using huddle a lot for video. So, it’s a common practice that one
person starts a huddle, writes a topic, or adds a topic, and then whoever wants
can join. It’s not a meeting, it’s not like you call people in. It can be a two-second
agreement”.

However, as touched upon in Sect. 4.1, although NAV’s developers encouraged
each other to conduct their conversations in open channels, not everyone was
comfortable with this. As a consequence, some experienced developers took on
the task of being available for questions and responding quickly: “I often provide
support in open channels [especially to] new employees and summer interns”,
remarked P1. He was among those of our informants who saw themselves as
’Slack mentors’ for new hires and younger developers. Thus, for new employees,
informal Slack conversations with more experienced developers were an impor-
tant part of their onboarding process into NAV, seeing as Slack use was a given
among the IT employees. P12, who had over 10 years of experience as a devel-
oper, explained that he had the impression that the younger employees, or “the
chat generation” as he put it, seemed to appreciate that communication amongst
the team primarily took place over Slack. He said: “[Team communication] hap-
pens mainly on Slack, even if we are all present at the office. The exception is if
we program together”. This also meant that it was easier to go back and recall
earlier conversations with colleagues, and keeping track of tasks.

30 V. Stray and A. Barbala

That Slack use quickly became part of their everyday lives as NAV IT employ-
ees was also underscored by the younger interviewees. P2, who had only worked
in the organization for one month, told us that although he had not received
any informal introduction to using Slack upon starting working at NAV, he was
’learning by doing’ and had already figured out many norms in regard to Slack
use in the organization. When asked about the response time for answering peo-
ple’s messages he said: “I reply within an hour. Or less. An hour is kind of a
long time. It depends a bit on who it is, though.”

Although we were informed that guidelines for Slack use had been devel-
oped at some point and for certain channels, none of the developers we inter-
viewed mentioned these. Nevertheless, it was evident that practices for use were
ingrained in the organizational culture, and an integral part of learning the agile
way of working in the organization. P5 contrasted Slack with other communi-
cation tools, noting a preference for Slack due to its ease of use and less formal
nature, and hence making it easier to work in a disciplined manner: “It’s easier
to join and leave conversations on Slack, which promotes open discussion.” That
Slack use facilitated for disciplined working was underlined by P3, although he
also included a word of caution with regard to choosing channels wisely: “There
are lots of different channels and you need to select with care. It can be over-
whelming, so initially you might start the wrong place, but then you just get
pointed in the right direction.” This strategy reflected a broader need among
software engineers in the organization to balance accessibility and focused work.

5 Discussion

In this study, we investigated how software developers use the ESN tool Slack in a
large-scale agile organization in the public sector. Previous studies have pointed
to how several communication practices are crucial to alignment in large-scale
agile software development, including ad-hoc, oral, formal, and informal com-
munication [15,16]. The results of our study shed light on how Slack facilitated
cross-organizational communication and coordination in NAV, but also in some
ways created new challenges for the employees in the company. We now return
to our research question: How can the use of Slack facilitate or challenge orga-
nizational alignment in a public sector large-scale agile software development
setting?

While Slack offers a flexible platform for both formal and informal interac-
tions, managing the balance between constant connectivity and productive work
emerges as a key challenge. Our findings suggest that establishing clear expecta-
tions is needed in order to secure communication transparency across both the
teams and the NAV organization as a whole, supporting the findings of Calefato
et al. [11]. While it is crucial to expect employees to employ the same ESN tools
in similar ways, such as being present in common channels, we found individual
patterns of use such as a reluctance to post in open channels or respond to mes-
sages after work hours among some informants. Following Kostin and Strode,
it can be argued that creating a safe environment for communicating transpar-
ently in agile teams is crucial [22], yet simultaneously some common user rules

Slack Use in Large-Scale Agile Organizations 31

that may be tailored to individual teams would be beneficial for fostering a
cross-organizational communication culture. As many teams were hybrid, mean-
ing that team members were often working from home [33], this is especially a
central point to consider.

In order to establish the best possible communication quality while using
ESN tools, our findings point to how distinguishing between formal and informal
information can be useful, carefully considering what information can be shared
e.g., through an ad-hoc huddle, or would rather fit in writing in an open channel
that can be found by others at a later point. By doing this simple exercise, cross-
organizational communication can be enhanced, securing conciseness and clarity
of the exchanged information. As some informants pointed out, important news
and knowledge could get lost in Slack threads, and messages in some channels did
not reach the right people. This corresponds to what Azarove et al. [4] underline;
some people may not use Slack often, meaning that they might get distanced from
the team’s ’core’ members as well as lose out on crucial information. It seems
essential for employees, then, to establish clear guidelines on the appropriate
usage of Slack, including posting important and formal information in allocated
channels, at the right time, and using clear and concise language.

Lastly, to foster a common organizational communication discipline, employ-
ees should be given managerial support in ensuring optimal ESN use. As our
study shows, using Slack had become part of everyday life as a developer in
NAV. Although there existed some Slack user guidelines in the organization,
these seemed to be not communicated to all developers, and it was thus up to
each new employee to learn the Slack communication norms, perhaps with the
help of self-appointed Slack mentors who again would have their own individ-
ual approach to Slack use. As the study by Stray et al. [36] underlines, there
are clear differences in how experienced and less experienced developers utilize
Slack, which could cause misunderstandings and lack of alignment in large-scale
agile contexts. We recommend all new hires be taught and made aware of how to
use ESN platforms both within the team and among the organization as a whole
as part of the onboarding process. This highlights the critical role of managerial
support in facilitating effective cross-organizational communication, which, in
turn, would ensure a disciplined and consistent use of organizational ESN tools.

6 Conclusion and Further Work

In this study, we interviewed 13 developers working in a large-scale organiza-
tion about their use of the ESN tool, Slack. We found that Slack was beneficial
for communication transparency, as it fostered open and responsive communica-
tion among the developers. Slack facilitated transparent communication between
employees, especially when the employees used open channels. However, some
developers, especially new hires, avoided open channels in the beginning, which
points to a need for onboarding developers in the communication norms and
creating a safe environment. Overall, the interviewees were satisfied with the
quality of communication on Slack. The platform’s features, such as the use of

32 V. Stray and A. Barbala

threads, being able to edit messages after they are sent, and the ability to quickly
share files or have conversations through a huddle supported the quality aspect
by allowing for detailed discussions without overwhelming the main communi-
cation channels. The consistent and habitual use of Slack had also created clear
patterns of communication discipline among the NAV’s developers. However, the
frequent exchange of information also meant that the interviewees spent a lot
of time on the platform, both in fear of losing out on crucial information and
due to the eagerness of participating in exciting conversations. It was thus clear
from our findings that Slack was employed not only by necessity, but also due
to fostering creative expressions and providing entertainment.

In future research, it is crucial to delve deeper into the team-level dynamics of
utilizing ESN tools and examine how bots and integrations are implemented in
such tools within large-scale agile settings. Additionally, finding the right balance
between responding swiftly while avoiding constant distractions is a topic that
requires deeper understanding, as many developers saw this as a central hurdle
in their Slack use. Research suggests that developers are more adept at avoiding
interruptions and managing them effectively when they do pair programming
compared to solo programming [12]. Therefore, investigating how pair program-
ming affects Slack use could provide valuable insights. Moreover, employees have
a noticeable tendency to frequently check Slack, leading to potential distractions.
Given that self-initiated task switching, such as checking Slack for updates, is
found to be more disruptive than external interruptions, such as an impromptu
huddle [1], this aspect warrants further investigation.

Acknowledgements. We would like to thank NAV for their engagement in our
research. We are grateful to the interviewee participants for sharing their experiences
and to Viggo Wivestad for helping with data collection. This work was supported by
the Transformit project, partly funded by the Research Council of Norway under grant
321477.

References

1. Abad, Z.S.H., Karras, O., Schneider, K., Barker, K., Bauer, M.: Task interruption
in software development projects: what makes some interruptions more disruptive
than others? In: Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering 2018, pp. 122-132. EASE 2018, Associ-
ation for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.
1145/3210459.3210471

2. Adolphe, L., Van de Zande, G.D., Wallace, D., Olechowski, A.: Analysis of virtual
communication within engineering design teams and its impact on team effective-
ness. In: International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, vol. 83976, p. V008T08A038. Ameri-
can Society of Mechanical Engineers (2020)

3. Anders, A.: Team communication platforms and emergent social collaboration
practices. Int. J. Bus. Commun. 53(2), 224–261 (2016)

4. Azarova, M., Hazoglou, M., Aronoff-Spencer, E.: Just slack it: a study of multi-
disciplinary teamwork based on ethnography and data from online collaborative
software. New Media Soc. 24(6), 1435–1458 (2022)

https://doi.org/10.1145/3210459.3210471
https://doi.org/10.1145/3210459.3210471

Slack Use in Large-Scale Agile Organizations 33

5. Bablo, J., Marcinkowski, B., Przybylek, A.: Overcoming challenges of virtual scrum
teams: lessons learned through an action research study. In: Stettina, C.J., Garba-
josa, J., Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme
Programming. XP 2023. LNBIP, vol. 475, pp. 34–49. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-33976-9_3

6. Barbala, A., Sporsem, T., Stol, K.J.: A case study of continuous adoption in the
Norwegian public sector. In: Proceedings of the 57th Hawaii International Con-
ference on System Sciences (HICSS). Hawaii International Conference on System
Sciences (HICSS) (2024)

7. Barbala, A., Sporsem, T., Stray, V.: Data-driven development in public sector: how
agile product teams maneuver data privacy regulations. In: Stettina, C.J., Garba-
josa, J., Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme
Programming, vol. 475, pp. 165–180. LNBIP, Springer Nature Switzerland, Cham
(2023). https://doi.org/10.1007/978-3-031-33976-9_11

8. Barbala, A.M.: Transcending Instagram: affective Swedish hashtags taking intimate
feminist entanglements from viral to ‘IRL’. Media Cult. Soc. 45(1), 3–18 (2023).
https://doi.org/10.1177/01634437221111930

9. Bernhardt, H.B.: Digital transformation in NAV IT 2016–2020: Key factors for the
journey of change. In: Mikalef, P., Parmiggiani, E. (eds.) Digital Transformation
in Norwegian Enterprises, pp. 115–134. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-05276-7_7

10. Broomfield, H., Reutter, L.M.: Towards a Data-Driven Public Administration: An
Empirical Analysis of Nascent Phase Implementation, pp. 73–97 (2021)

11. Calefato, F., Giove, A., Lanubile, F., Losavio, M.: A case study on tool support
for collaboration in agile development. In: Proceedings of the 15th International
Conference on Global Software Engineering, pp. 11–21 (2020)

12. Chong, J., Siino, R.: Interruptions on software teams: a comparison of paired and
solo programmers. In: Proceedings of the 2006 20th Anniversary Conference on
Computer Supported Cooperative Work, pp. 29–38 (2006)

13. Conboy, K., Moe, N.B., Stray, V., Gundelsby, J.H.: The future of hybrid software
development: challenging current assumptions. IEEE Softw. 40(02), 26–33 (2023)

14. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

15. Dingsøyr, T., Bjørnson, F.O., Schrof, J., Sporsem, T.: A longitudinal explanatory
case study of coordination in a very large development programme: the impact
of transitioning from a first- to a second-generation large-scale agile development
method. Empir. Softw. Eng. 28(1), 1 (2022)

16. Edison, H., Wang, X., Conboy, K.: Comparing methods for large-scale agile soft-
ware development: a systematic literature review. IEEE Trans. Softw. Eng. 48(8),
2709–2731 (2021)

17. Ferreira, A., Antunes, P.: A technique for evaluating shared workspaces efficiency.
In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD 2006.
LNCS, vol. 4402, pp. 82–91. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72863-4_9

18. Ghimire, D., Charters, S., Gibbs, S.: Scaling agile software development approach
in government organization in New Zealand. In: Proceedings of the 3rd Inter-
national Conference on Software Engineering and Information Management, pp.
100–104. ICSIM 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3378936.3378945

https://doi.org/10.1007/978-3-031-33976-9_3
https://doi.org/10.1007/978-3-031-33976-9_11
https://doi.org/10.1177/01634437221111930
https://doi.org/10.1007/978-3-031-05276-7_7
https://doi.org/10.1007/978-3-031-05276-7_7
https://doi.org/10.1007/978-3-540-72863-4_9
https://doi.org/10.1007/978-3-540-72863-4_9
https://doi.org/10.1145/3378936.3378945

34 V. Stray and A. Barbala

19. Henry, M.S.: The Use of Enterprise Social Networks for Social Support within
Virtual Teams. Ph.D. thesis (2023)

20. Jackson, V., van der Hoek, A., Prikladnicki, R., Ebert, C.: Collaboration tools for
developers. IEEE Softw. 39(2), 7–15 (2022)

21. Janowski, T.: Digital government evolution: from transformation to contextualiza-
tion. Gov. Inf. Q. 32(3), 221–236 (2015)

22. Kostin, D., Strode, D., et al.: Effective communication in globally distributed
scrum: a model and practical guidance. Australas. J. Inf. Syst. 27, 1–42 (2023)

23. Lappi, T., Aaltonen, K.: Project governance in public sector agile software projects.
Int. J. Manag. Proj. Bus. 10(2), 263–294 (2017)

24. Lin, B., Zagalsky, A., Storey, M.A., Serebrenik, A.: Why developers are slack-
ing off: understanding how software teams use slack. In: Proceedings of the 19th
ACM Conference on Computer Supported Cooperative Work and Social Comput-
ing Companion, pp. 333–336. CSCW 2016 Companion, ACM, New York, NY, USA
(2016)

25. Moe, N.B., Stray, V., Goplen, M.R.: Studying onboarding in distributed software
teams: a case study and guidelines. In: Proceedings of the 24th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 150–159 (2020)

26. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
xp2019. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_2

27. Mohagheghi, P., Lassenius, C.: Organizational implications of agile adoption: a case
study from the public sector. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 1444–1454. ESEC/FSE 2021, Association for Computing
Machinery, New York, NY, USA (Aug 2021)

28. Nguyen-Duc, A., et al.: Work-from-home impacts on software project: a global
study on software development practices and stakeholder perceptions. Softw. Pract.
Exp. https://doi.org/10.1002/spe.3306. (in Press)

29. Parra, E., Alahmadi, M., Ellis, A., Haiduc, S.: A comparative study and analysis
of developer communications on slack and gitter. Empir. Softw. Eng. 27(2), 40
(2022)

30. Rahy, S., Bass, J.: Overcoming team boundaries in agile software development. J.
Int. Technol. Inf. Manage. 29(4), 1–31 (2021)

31. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

32. Schulten, C., Nolte, A., Spikol, D., Chounta, I.A.: How do participants collaborate
during an online hackathon? An empirical, quantitative study of communication
traces. Front. Comput. Sci. 4, 983164 (2022)

33. Smite, D., Christensen, E.L., Tell, P., Russo, D.: The future workplace: character-
izing the spectrum of hybrid work arrangements for software teams. IEEE Softw.
40(2), 34–41 (2023). https://doi.org/10.1109/MS.2022.3230289

34. Šmite, D., Moe, N.B., Šāblis, A., Wohlin, C.: Software teams and their knowledge
networks in large-scale software development. Inf. Softw. Technol. 86, 71–86 (2017)

35. de Souza Santos, R.E., Ralph, P.: Practices to improve teamwork in software devel-
opment during the covid-19 pandemic: an ethnographic study. In: Proceedings of
the 15th International Conference on Cooperative and Human Aspects of Software
Engineering, pp. 81-85. CHASE 2022, ACM, New York, NY, USA (2022)

https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1002/spe.3306
https://doi.org/10.1109/MS.2022.3230289

Slack Use in Large-Scale Agile Organizations 35

36. Stray, V., Moe, N.B.: Understanding coordination in global software engi-
neering: a mixed-methods study on the use of meetings and Slack. J. Syst.
Softw. 170, 110717 (2020). https://doi.org/10.1016/j.jss.2020.110717, https://
www.sciencedirect.com/science/article/pii/S0164121220301564

37. Stray, V., Moe, N.B., Strode, D., Mæhlum, E.: Coordination value in agile software
development: a multiple case study of coordination mechanisms managing depen-
dencies. In: Proceedings of the 15th International Conference on Cooperative and
Human Aspects of Software Engineering, pp. 11–20. CHASE 2022, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3528579.3529182

38. Stray, V., Moe, N.B., Vedal, H., Berntzen, M.: Using objectives and key results
(OKRs) and slack: a case study of coordination in large-scale distributed agile.
In: Proceedings of the 55th Hawaii International Conference on System Sciences
(HICSS), p. 10 pages. Hawaii International Conference on System Sciences (HICSS)
(2021). http://hdl.handle.net/10125/80225

39. Thompson, J.: A guide to abductive thematic analysis. Qual. Rep. 27(5), 1410–
1421 (2022). https://doi.org/10.46743/2160-3715/2022.5340, https://nsuworks.
nova.edu/tqr/vol27/iss5/17

40. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J.
Inf. Syst. 4(2), 74–81 (1995)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.jss.2020.110717
https://www.sciencedirect.com/science/article/pii/S0164121220301564
https://www.sciencedirect.com/science/article/pii/S0164121220301564
https://doi.org/10.1145/3528579.3529182
https://doi.org/10.1145/3528579.3529182
http://hdl.handle.net/10125/80225
https://doi.org/10.46743/2160-3715/2022.5340
https://nsuworks.nova.edu/tqr/vol27/iss5/17
https://nsuworks.nova.edu/tqr/vol27/iss5/17
http://creativecommons.org/licenses/by/4.0/

Coordination in Agile Product Areas: A Case
Study from a Large FinTech Organization

Marthe Berntzen1,2(B) , Silje Alette Engdal1, Maja Gellein1, and Nils Brede Moe3

1 University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
marthenb@ifi.uio.no

2 Knowit Solutions AS, Universitetsgata 1, 0164 Oslo, Norway
3 SINTEF, Strindveien 4, 7465 Trondheim, Norway

nils.b.moe@sintef.no

Abstract. Product teams organized into product areas are becoming more and
more prevalent in large-scale agile. While such arrangements are thought to
improve the development process and overall product delivery, it is still not clear
how this form of organizing alleviates the coordination challenges commonly
associated with large-scale agile. In this paper, we report on a case study from
a product area in a large FinTech organization. Through analyzing interviews,
observations, and strategic documents, we describe how organizing into a product
area with vertical and horizontal teams supported inter-team coordination. Fur-
ther, we describe seventeen coordination mechanisms used in the product area.
Our findings have three main contributions. First, we propose that the product area
represent a distinct organizational level that can support coordination in large scale
development settings. Second, we found that the team types used in the product
area represent different team typologies. Third, pull requests and pair program-
ming were used as inter-team coordination mechanisms, and our findings suggest
that pair programming to some extent could replace the PR mechanism to further
improve product area coordination.

Keywords: Product areas · Product management · Large-scale agile ·
Coordination · Team typologies

1 Introduction

While the benefits of agile are well documented, large-scale agile product development
settings are characterized by challenges with delivery speed, system complexity, and
decision-making efficiency between interdependent development teams [3, 4, 11]. Such
challenges are caused by inter-team dependencies that restrain development speed and
progress [4, 19], which requires the use of coordinationmechanisms.An inter-team coor-
dination mechanism can be defined as an organizational process, entity, or arrangement
used to manage dependencies to realize a collective performance [1].

Another way to reduce complexity and mitigate the coordination challenges caused
by scale, is by establishing product areas where teams that work on similar products are

© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 36–52, 2024.
https://doi.org/10.1007/978-3-031-61154-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_3&domain=pdf
http://orcid.org/0000-0003-1455-2562
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-031-61154-4_3

Coordination in Agile Product Areas 37

grouped together [16].We understand a product area as a defined organizational structure
that focuses on a particular product, or set of products related to a customer segment or
business need [16]. It consists of product teams led by one or more product managers
who ensure that the product meets both customer and business needs. Several product
areas can operate independently within the same organization [23], which may allow for
easier collaboration between interdependent teams, and reduce inefficient interfacing
between unrelated teams [13, 16].

Studies conducted in recent years have focused on coordination within [32, 33, 36]
and between agile teams [4, 10, 15, 22, 23] in software product development. However,
despite that product management are commonly integrated with agile processes and
large-scale agile frameworks [8, 23, 28], and that lack of alignment between teams and
unclear dependencies are among the challenges with software product management [28],
to our knowledge there is little research that specifically examine coordination in product
areas. In this study we therefore investigate the following research question: “How does
coordination happen in product areas in large-scale agile?”.

2 Background

2.1 Organizing Large-Scale Agile Software Development into Product Areas

Agile development methods have been dominating software development, including
large-scale settings, for the last decades [14, 24]. The benefits of agile methods, such
as greater team autonomy, increased delivery speed and improved product quality have
been well-documented in software engineering research [24]. Nevertheless, large-scale
agile is characterized by coordination challenges and complex interdependencies that
can reduce development speed and quality [4, 14].

‘Large-scale’ agile can be defined as two to nine teams, whereas ‘very large-scale’
agile involvesmore than ten development teams [12]. Such very large-scale cases require
different coordination mechanisms, for example multiple inter-team stand-up meetings
and retrospective meetings [10]. These mechanisms are needed to manage the many
dependencies that arise from having many teams working together [1]. Establishing
product areas where teams that work on similar products are grouped together [16], is
one strategy tomitigate the coordination challenges in large-scale agile. The product area
concept falls under the product management discipline, where ‘the product’ is placed at
the center of the business goals and success [13].

Product management is an organizational discipline where the product is placed at
the center of the business goals and success [17, 28]. In recent years, the term has been
re-popularized by practitioners by writers such as Marty Cagan [7], Teresa Torres [35],
and Christina Wodtke [37]. A recent systematic literature review on software product
management [28] reports that, similar to large-scale agile [9, 14], the main challenges
with software product management include problems with communication and synchro-
nization across teams, problems with team autonomy and level of agility, and lack of
clarity with regards to product management roles, especially the product manager [28].
Product managers perform activities related to product discovery and experimentation,
strategic vision and product monitoring and adjustment, but also activities such as team
support and stakeholder management [13, 34]. Today, many agile software development

38 M. Berntzen et al.

organizations use the product manager role in combination with the product owner role,
which is typically understood as a narrower role [17, 34], but the terms are also used
somewhat interchangeably [28]. Additionally, frameworks such as Large-scale Scrum
(LeSS), has introduced specific roles such as the Area Product Owner [23].

Neither product management nor product areas are new terms within software engi-
neering research [5, 13], but in recent years, the term has resurged also in the agile devel-
opment research literature [21, 28, 34], perhaps due the focus of delivering customer
value which is shared by both traditions [17]. However, as the inter-team coordination
challenges that characterize large-scale development prevails, in this paper we explore
coordination in product areas to understand how this type of organizational structure can
support large-scale and very large-scale agile development needs.

2.2 Frameworks for Understanding Coordination in Large-Scale Agile

To understand coordination in product areas, it is necessary to understand coordina-
tion mechanisms used between teams. Recently, a taxonomy of inter-team coordination
mechanisms in large-scale agilewas developed,with the threemain categories:meetings,
roles, and tools and artefacts, and six sub-categories (see Table 1) [1]. These categories
are commonly found in large-scale agile settings [e.g., 14, 22, 27, 31, 36].

Dependency management is core to coordination in large-scale agile. In line with
the taxonomy of dependencies in agile software development, we define a dependency
as something that occur when something, or someone, is dependent on the output of
something or someone else [33], across three main categories: Knowledge dependencies
are caused by the lack of information related to requirements, expertise, task allocation,
or historical information. Process dependencies stems from the insufficient completion
of development, or business process, activities, that blocks progress. Finally, resource

Table 1. The taxonomy of inter-team coordination mechanisms [1] (Color figure online).

Inter-team coordination
mechanism: a process, entity,
or arrangement contributing
towards managing
dependencies across teams

Coordination meetings:
Time-boxed arrangements
with participants from
different teams

Scheduled. Pre-defined
meetings, with known
participants and agenda, for
example a stand-up meeting
Unscheduled. Ad hoc, based
on the needs and availability
of participants

Coordination roles: Roles
external to the defined
development teams in the
large-scale setting

Individual. Specialists and
managers external to specific
teams, such as architects
Team. Specialist teams, such
as task force teams

Coordination tools and
artefacts: Entities supporting
development-related activities,
or by-products of the
development process

Tangible. Physical, touchable
entities, such as a task board
Intangible. Abstract, often
digital, entities. For example, a
product backlog

Coordination in Agile Product Areas 39

dependencies occurs when an object, be it a physical entity or a technical object, such
as a piece of code, is needed for work to progress.

Dependencies require constant attention through coordination to avoid unnecessary
delays and blockages that slows down progress [4, 19]. The dependency taxonomy has
been adapted to the inter-team level [1–3] and used in several large-scale agile contexts
[31, 32, 36]. To our awareness, however, neither of these theoretical approaches have
been used at to study coordination in product areas.

3 Research Method

We explored our research question in a large FinTech organization [20]. We chose the
case study research design because case studies can provide detailed insights to real-life
settings where knowledge is limited [29], such as with product area coordination.

3.1 Case Description

The case consisted of 25 agile teams organized into several product areas. When we
collected the data during early 2023, his way of organizing teams was relatively new for
the organization, and they were still experimenting with the format. The product area we
studied, the first of six product areas established in the organization, focused on personal
banking, and had existed for about a year at the time. The product area consisted of nine
teams with approximately 60 employees, where each team worked with features related
to a specific product. In the FinTech organization a ‘product’ was defined as “a repeatable
solution that can be offered to a market that solves a want or need” [Strategic document].
Moreover, the teams in the product area had shared overall goals, such as goals related
to customer satisfaction and product area revenue. The product are teams were cross-
functionally organized and consisted of developers, designers, team leaders, testers, and
product managers, depending on the focus of the team. Team A-E (vertical teams in
Fig. 1) worked with products such as establishing accounts and keeping overview of
personal finances. Team F-G (horizontal teams in Fig. 1) worked with features that were
shared by some or all the vertical products, such as bank accounts, payment solutions
including credit cards, and the mobile bank app. The product area management team
consisted of product managers, team leaders and representatives from development and
technology, and design.

In terms of agile methods, the case organization did not subscribe to any specific
scaling framework with pre-defined practices and coordination mechanisms. All teams
could choose their own agile practices, which allowed for flexibility in practices like
sprints, stand-ups, and retrospectives, which were used at varying frequencies by the
different teams. In addition, the teams used the goal-setting framework Objectives and
Key Results (OKR) in combination with practices from the Radical Focus framework
such as theMondayCommitments and FridayWinsmeetings [37]. Furthermore, all code
needed to be checked by another developer to meet national standards for the financial
sector. The formal software inspection process had been replaced by a mechanism called
a pull request (PR), which was used within and across teams. In this approach, a con-
tributor creates a PR after making code changes. Next, a reviewer inspects the suggested
changes to see whether they can be merged into the base branch [18].

40 M. Berntzen et al.

Fig. 1. The organization of the product area.

3.2 Data Collection

We collected our data from four of the product area teams (see Table 2 for an overview).
Interviews. Semi-structured interviews provided us with insights into how the prod-

uct area was organized, which dependencies existed in the product area, and how they
were managed. We conducted twelve interviews, where one of them was a digital inter-
view with two participants. The other interviews took place in the organization’s facili-
ties. All interviewswere tape-recorded based on participant consent, and then transcribed
by the second and third authors. The average duration of the interviews was 50 min. We
used an interview guide with questions about ways of working and inter-team collabora-
tion such as “Can you briefly explain the purpose of the product area?” and “On which
parts of the product development do you collaborate across teams?”.

Table 2. Data sources.

Data source Details Total

Interviews Individual interviews with six developers, two designers, one
tester, one product area manager, one tech lead, and a pair
interview with two team leaders

12

Meeting observations Five team status meetings, one product area meeting 6

Documents Strategic documents and blogposts 6

Observations. We conducted field observations to gain a deeper understanding of
the practices and provide additional insight to support the interviews. The observations
were conducted by the second and third authors, who took notes during the meetings.
We observed weekly meetings in five different teams in the product area, which allowed
us to gain insight into internal team routines. Additionally, we observed an all-hands
meeting (see Sect. 4.2) which provided insight into coordination across teams.

Coordination in Agile Product Areas 41

Documents. Strategic documents such as company presentations, role descriptions,
and organizational blueprints, and organizational blogposts were used as supplemental
data. These gave us a thorough understanding of the purposewith reorganizing the teams,
as well as how the area was organized. The blogposts also contributed to enhance our
comprehension of how they performed their work in the product area.

3.3 Data Analysis

The analysis was conducted by the first author, supported by the second and third authors
who knew the data collection in detail, and the fourth author, an experienced qualitative
researcher in the large-scale agile research field and who had been following the case for
years [20]. We triangulated on the analysis by engaging in discussions about the findings
to improve the credibility and dependability of our study [29].

We used coding procedures from thematic analysis [6]. Thematic analysis can be
both used inductively and deductively [1, 6], and in this case our analysis was guided by
existing the theoretical frameworks presented in Sect. 2.2. First, we used the taxonomy
for inter-team coordination mechanisms [1] to categorize the mechanisms into meetings,
roles, and tools and artefacts. Next, we analyzed which dependencies each mechanism
managed using the dependency categories developed by Strode [33]. We also analyzed
at which organizational level the mechanisms were used (Table 3).

4 Findings

4.1 Organizing Teams in Product Areas

Traditionally, the case organization had consisted of 25 development teams that were
part of business areas that resembled a classical departmental structure. This very large-
scale settingwas characterized bymany and varied focus areas and prioritizations, which
made it difficult to deliver customer value with the desired speed and proved suboptimal
in terms of aligning to resolve shared development needs: “We realized that those who
worked with payment cards, and those who worked with online payment had nothing
in common. Although they both conceptually work with payment, they have no shared
goals, their code is dissimilar … they work with completely different products.” [I04,
Product Area (PA) Manager].

As shown in Fig. 1, the teams were organized in vertical and horizontal structures.
This way of organizing enabled the nine teams to better support each other and aligning
the teams towards shared customer goals “The way I see it, the product area is an attempt
to gather teams that are related to each other. First and foremost, by having some level
of shared goals, that are connected to our customers’ everyday finances […]But it’s also
about how we want to be structured, with managers, product managers, team leaders,
and how they collaborate” [I02, Developer].

Working towards shared goals was described as a way of enabling dependency man-
agement: “Customer value and business opportunities are often created where structures
meet, and often there are dependencies between teams. Common goals across teams can
be a way to remove blockages. It might be that one team need someone else to solve

42 M. Berntzen et al.

Table 3. Coordination mechanisms used in the product area, based on [1].

Coordination
mechanism

Org. Level* Description Dependency managed
[27]

Coordination meetings

All hands meeting P A monthly meeting where
teams share updates and
align towards PA shared
goals

Knowledge, process

Monday
commitments

T The team plans the week
and decides on which goals
to focus on

Knowledge, resource

Friday wins T The team reviews the week
with a focus on celebrating
achievements

Knowledge

Professional
forums

P Meetings among
professional disciplines,
often informal and held on a
semi-regular basis

Knowledge, resource

Product
management
meetings

P Manager-level meetings for
discussions related to e.g.,
shared goals, strategic focus,
and compliance in the
product area

Knowledge, process,
resource

Ad hoc
meetings

T, P Both unscheduled
conversations and one-off
meetings held to resolve
tasks

Knowledge, resource

Coordination roles

Product
manager

T, P Responsible for customer
and business value in the
product teams

Resource,
process, knowledge

Team leader T, P Administrative and
organizational focus,
keeping teams up to date
across the product area.
Shield teams from “noise”

Knowledge, resource

Tech-lead T, P A developer with in-depth
competence in the specific
product. Has architectural
overview, supports
developers

Resource, knowledge

(continued)

Coordination in Agile Product Areas 43

Table 3. (continued)

Coordination
mechanism

Org. Level* Description Dependency managed
[27]

Product area
management team

P A product area level team
with representatives from
product management,
development and
technology, and design

Knowledge, process,
resource

Task force team P Temporary team that works
with specific features across
teams

Resource

Coordination tools and artefacts

Communication tools T, P E.g., Slack and Microsoft
Teams. Enables
communication and
information sharing across
teams regardless of location

Knowledge, resource

Documentation /
visualization tools

T, P E.g., Miro, Figma, JIRA and
Confluence. Supports the
development process and
information sharing across
teams

Knowledge, resource,
process

OKR T, P Goal-setting framework
used to set team-level goals
and over all goals shared at
the product area level

Knowledge, process,
resource

Digital boards T, P Various digital displays of
team-level or product area
information

Knowledge

Pair programming T, P Developers working
together in pairs at the same
workstation

Resource, knowledge

Pull requests (PR) T, P A developer makes changes
in another person or team’s
code, who subsequently
asked review the change

Resource, process,
knowledge

*Organizational level: T = team level, P = Product area level

something in order to progress. Then it is the product area’s responsibility […] to make
way”. [I04, PA Manager]. Defining goals at the product area level was.

key: “We have been able to bring them together, to get their goals aligned. We had
not been able to do that with 25 teams” [I04, PA Manager].

44 M. Berntzen et al.

A key feature with the vertical and horizontal team set-up was the way roles were
shared across teams. Although each team had a cross-functional basis set-up with devel-
opers, product manager and team leader, not all teams had all roles. This meant that
sometimes teams needed to “borrow” expertise from each other within the product area:
“Sometimes the competence for testing the solutions is in a different team. So, then we
need to coordinate a bit between teams if I have something that needs testing and then
those who know how to test it will come and do it” [I10, Developer]. Another explained
that “the designers have started to work a bit outside the team, they try to see across
where they can be of help” [I06, Developer]. Additionally, there were not a one-to-one
correspondence between the team leaders, productmanagers and the development teams,
which was explained as a benefit. “We have created a flexibility in the area […] We think
more in terms of capacity than in the number of heads per team. It means that it is easier
to say that ‘okay, we need an additional team, you go in there as a product manager’”
[I04, PA Manager].

All in all, organizing the teams thatworkedwith personal banking in a distinct product
area enabled the teams to coordinate more efficiently than when they were part of the
larger 25-team structure. In the following, we describe sixteen coordination mechanisms
used in the product area. Table 3 contains the full list of coordination mechanisms, and
Sects. 4.2–4.4, illustrate how they were used.

4.2 Product Area Coordination Meetings

We identified six coordination meetings. Two of these were conducted at the team level,
and three at the product area level. One meeting occurred at both levels.

First, the monthly all-hands meeting contributed to shared overview across teams.
“We needed a shared understanding of the overarching goals we are working towards.
At the same time, we need to tell each other about what’s happening in the teams. So
the all-hands meeting is actually a combo of a show-and-tell and our goals at a higher
level” [I04, PA manager]. Knowing who was working on what contributed to managing
knowledge (task allocation) dependencies, and the focus on aligning towards shared
goals contributed to managing process (activity) dependencies.

Additionally, variousprofessional forumswere held among the specific professional
groups. For example, Android developers met every Friday. “It’s like a professional
exchange, and a bit like if anyone have any problems they are working with, this is an
arena where we can discuss it” [I10, Developer]. As such, these forums contributed
to managing knowledge dependencies related to the expertise of others, but also in
identifying technical and resource dependencies that blocked team progress.

All teams held Monday commitments “which is a check-in where everyone get
together and share our goals for what we will achieve this week” [I02, Developer]
and Friday wins “which is more like ‘what did we actually accomplish’ with cake or
snacks and good vibes” [I05, Developer]. Although these were team-level meetings, they
worked as coordinationmechanisms at the product area through the team leaders sharing
information in the product management sync meetings. Moreover, “all the Monday
commitment boards are displayed in a shared Miro-board, so that everyone can see
what we are doing all the way” [I04, PA manager].

Coordination in Agile Product Areas 45

Finally, ad hoc meetings were widely used, and were held as needed. This enabled
efficient dependency management: “If something needs to be solved, it’s basically just
to invite people to a meeting to discuss it” [I09, Developer].

4.3 Product Area Coordination Roles

We identified five roles, three individual and two team roles, specifically related to
coordination across teams.

First, the product managers were domain experts responsible for the deliveries.
They performed typical product owner tasks such as being the links between the devel-
opment teams and the internal customers, and communicating requirements to the teams,
but they were also engaged in more high-level strategic work: “They are there to make
sure we not only make something that is nice for the customer, but also creates value
for the organization” [I11, Tech lead]. They engaged in cross-team discussions about
prioritizations and technical dependencies and “often, it is the product managers that
talk with each other, it is there the collaboration starts. And often it is them who puts
together who needs to talk” [I11, Tech lead].

Second, the team leaders were “an administrative support function of sorts, who
makes sure that we are onboard with what’s happening in the other teams, in a coor-
dinating role. Also, they shield us from external noise so that we can focus on what
we’re supposed to do.” [I01, Developer]. As such, both product managers and the team
leaders contributed to managing knowledge dependencies by acting as an information
carrier across teams, as well as resource dependencies by making sure the teams had
what they needed to proceed. Third, the tech lead role was involved with product area
coordination by managing technical dependencies across teams. These roles were held
by senior developers who “have a bit more responsibility in the product area and attend
discussions with tech leads from the other teams” [I09, Developer].

The product managers, team leaders and tech leads, together with representatives
from technology and design, were part of a product area management team who were
responsible for overall themes related to shared goals, principles and vision, strategic
and economic focus, product compliance, as well as team typologies in the product area.
This team was “responsible for providing the teams with strategic context and make
sure they have what they need to reach their goals” [Company presentation document],
thereby enabling management of process and resource dependencies in the overall prod-
uct development, and knowledge dependencies by supporting an understanding of shared
goals. “It is about facilitating […] to make sure that these teams have what they need to
move quickly” [I04, PA Manager].

Finally, if larger or more complex problems with technical and processual dependen-
cies across teams needed to be resolved, the product area made use of task force teams
which are temporary teams composed by members of different teams. These were used
if “there is a change that has a date, then we kind of have no choice. We have to put
aside what else we were planning, and just do it. But that team will dissolve when the
delivery has been made” [I12, Team Leader].

46 M. Berntzen et al.

4.4 Coordination Tools and Artefacts in the Product Area.

We found six tools and artefacts that contributed to inter-team coordination.
Several communication tools were used, including Slack, Microsoft teams for

remote and hybrid meetings, e-mail for more formal communication. For example,
Slack was used to communicate and coordinate both within and across the development
teams through group channels and one-to-one messages, thereby managing dependen-
cies across the product teams by shared overview and effective communication. “A lot
of it happens on Slack. We are often members of many team channels and product area
channels, to see what is going on across the teams” [I01, Designer].

Furthermore, usage of documentationandvisualization tools, such asMiro, Figma,
JIRA, and Confluence, contributed to managing dependencies by supporting cross-team
collaboration and knowledge sharing within the team. Related to this, the digital boards
were examples of artefacts produced by these tools that contributed to managing knowl-
edge and process dependencies by providing easily accessible information about the
other teams’ goals or who was working on what: “It is one large [Miro] board only, with
canvases next to each other. It is very easy to just scroll sideways or downwards and
zoom in to see what the other teams are doing” [I01, Designer].

To express and measure progress towards the shared goals discussed in Sect. 4.1, the
product area used OKR, a goal-setting framework that focuses on reachable business
goals by formulating objectives for what to accomplish with corresponding key results
that can measure what is actually achieved [37]. OKRs convey information about prod-
uct and organizational goals, thus contributing to managing knowledge, resource, and
process dependencies related to the overall product development. All teams formulated
their specific OKRs which they revisited during weekly meetings and displayed in the
digital boards. Additionally, “we have OKRs at the organizational level, about four or
five focus areas. From those, we have selected some to focus on, while other product
areas focus on others” [I09, Developer].

Another interesting coordination tool was PR used across teams. This contributed
to managing technical resource, but also process and knowledge, dependencies in that
team members could make changes themselves rather than waiting for others to become
available. In addition to making a PR it was seen as important to engage in dialogue:
“Pull requests are really about creating things together. It’s about talking together. And
about saying ‘Hi, I have some thoughts about your product from our perspective. What
do you think about this, is this something we could do?’” [I04, PA manager].

An alternative to PRs were to engage in pair programming,where developers work
together. While pair programming was widely used within the teams, one explained “if I
work with a larger task, I will often engage in pair programming. Mostly with someone
from outside the team” [I09, Developer]. Another developer explained, “It is easier to
ask someone that works in the same area, the level of engagement is a bit different than
if you ask someone that works with their own [team’s] problem” [I05, Developer]. As
such, pair programming contributed to managing knowledge and technical and entity
resource dependencies related to the expertise of others, as well as process dependencies,
in that it removed the need to wait on others to finish reviewing a PR.

Coordination in Agile Product Areas 47

5 Discussion

In this study we investigated the research question “How does coordination happen in
product areas in large-scale agile?”. Our findings offered three main insights.

5.1 Product Areas as a Distinct Organizational Level

Fig. 2. The product area as a
distinct organizational level.

First, a product area can be understood as a distinct
organizational level (Fig. 2). Research has shown that
coordination can become problematic in very large
development settings, as the number of teams increase,
so does both systems complexity and the number of
dependencies between teams [3, 4, 10]. Therefore,
very large-scale development settings requires dif-
ferent dependency management than smaller settings
[11, 12]. Our findings illustrated that the very large-
scale setup (25-teams) was not manageable in terms of
shared goals and successful product delivery, and that
dividing into several product areas that could function
relatively independent of each other, with their own
mechanisms for inter-team coordination, was a successful approach. While inter-team
coordination challenges are well-described in the current literature [e.g., 2, 4, 10], and
studies has described mechanisms offered by large-scale frameworks, such as Area
Product Owners in LeSS [23], little research attention has been directed at specifically
examining coordination in product areas.

We found seventeen mechanisms that contributed to managing dependencies in the
product area. This number is comparable to other studies. For example, Dingsøyr et al.
[10] describe a large-scale case of ten teams that used fourteen inter-team coordination
mechanisms, Stray et al. describe nineteen mechanisms [32] and Vedal et al. [36] list 22
mechanisms from the same case with seven teams.

5.2 The Team Typology of Product Areas

Second, a key characteristicwith the product areawas the set-up of vertical and horizontal
teams (see Fig. 1). This type of set-up is similar to what is described in the Team
Typologies framework [25] which propose core team types including the stream-aligned
team the platform team, the enabling team, and the complicated subsystem team. These
types can be compared to the types of teams we observed.

First, stream-aligned teams are described as cross-functional teams who are inde-
pendently responsible for building and delivering specific products [25]. The vertical
teams are comparable to this team type as they focused on specific products, such as
creation of bank accounts or products of financial overview. This comparison is in line
with the general concept of software product teams [17, 28, 34].

Second, platform teams are typically internal teams that support and enable the
steam-aligned teams in delivering the customer-facing products [25]. This compares

48 M. Berntzen et al.

to the horizontal teams that developed internal products shared by the vertical teams.
Platform teams are often used in large-scale agile because they manage dependencies
between the vertical teams by providing resources such as shared infrastructure [1, 10].
We also found that the horizontal teams provided designers and testers, as needed.

Third, complicated subsystem teams can be compared to the temporary task force
teamsdescribed inSect. 4.3,whichwere assembled to resolve specific prioritieswith high
levels of complexity that required a greater extent of inter-team coordination. According
to Skelton and Pais [25], most organizations will not need this type of team on a perma-
nent basis. However, in line with our findings, other studies support that temporary task
force teams are useful in large-scale software development when specifically complex
task needs to be solved [1, 3, 22].

Finally, we compare the product area management team to the enabling team type.
This team type assist, coach and support teams as needed [25]. In the product area, the
management team helped setting and managing the product teams’ goals and directions,
removed barriers, andmade sure theywere providedwith training in for example, product
development practices and use of the OKR framework.

5.3 Pull Requests and Pair Programming as Coordination Mechanisms

Third, our findings shed light on how pull requests and pair programming were used as
inter-team coordination mechanisms. While both these tools are well-known and well-
described within software engineering, our study is among the first to show how they
could be specifically used to manage dependencies between teams.

Use of the PR practice enable knowledge sharing and aim to balance the skills in
the teams [18]. In our findings, the PR mechanism enabled solving dependencies within
and between teams because instead of waiting for others to add, change or delete code, a
developer could work in others’ code and then create a PR. Pull request have been used
as a tool to manage technical dependencies across teams in other large-scale settings too.
For example, Šmite et al. found that the number of cross-team and even cross-tribe pull
requests at Spotify is huge [26]. And while the PR mechanism is now standard for code
reviews, challenges have been reported, such as when team members are distributed, or
when teams in large-scale settings use different agile approaches [30].

Interestingly, we found that the use of pair programming to some extent could
replace PR as a coordinationmechanism, as developers fromdifferent teamswriting code
together eliminated the need to create, review, and approvePRacross teams.However,we
cannot say from these observations alone what constitutes an optimal balance between
the mechanisms, or to what extent this finding can mitigate the challenges reported
[30]. Future research should therefore investigate how PR are used as a coordination
mechanism, and if, and when, pair programming could be used as a replacement.

5.4 Practical Implications

In addition to the theoretical contributions, our study offers several practical take-aways.
First, we recommend managers of very large-scale product development settings to
consider organizing into smaller product areas, preferably with fewer than ten teams,
as this is considered a cut-off level of increased complexity [12]. Our findings show

Coordination in Agile Product Areas 49

assembling a product area with teams that focused on the same goals, enabled the use of
several shared coordination mechanisms, such as the Monday commitment and Friday
wins meetings, and OKR at the product area level.

A second recommendation is to consider sharing resources within the product area.
This provides greater flexibility in responding to changes, which is important to consider
as coordination needs change over time [3].Moreover, sharing roles and expertise within
a product area enables more efficient management of resource dependencies, within the
capacity limits that are set for the roles. We further recommend setting up a product
area management team that can follow up on the longer-term strategic goals and support
the product managers in facilitating goal attainment at the team level [34]. Finally, if
the development context is characterized by widespread use of PR, we recommend
using pair programming across teams as a replacement mechanism to resolve technical
dependencies, as PR is a more passive action that requires inter-team communication
which in worst case can create process dependencies and hold-ups.

5.5 Evaluation of Limitations and Research Quality

The main limitations of this study are the single-case study design, and the use of
interviews as the main data source, which makes it difficult to generalize the findings
[29]. However, we relied on several forms of triangulation using multiple perspectives
to ensure rigor and quality in the research process and to clarify the findings [29].

First, we ensured data source triangulation by supplementing the interviews with
observations and strategic documents. By interviewing participants fromdifferent teams,
we gained access to participants’ understandings of coordination in the product area. By
observingmeetings and supplementingwith documentsweobtained context and a deeper
understanding of the participants statements during the interviews. Second, researcher
triangulation was ensured by having different roles in the author team. The second and
third authors collected the data, and the first author conducted the analyses. The fourth
author contributed with additional data material and in-depth knowledge about the case
organization. Third,methodological triangulationwas used in the analytical phase,where
we used the well-established thematic analytical framework [6], supplemented by the
field-specific taxonomies [1, 33] which contributed to the relevance of the analysis in
the large-scale agile empirical setting.

6 Future Research and Concluding Remarks

In this study we conducted a single-case study to understand coordination in large-scale
product areas. This topic has received little research attention, at the same time as product
management is re-surging as an important topic in agile software development practice.
At the same time, the coordination challenges in large-scale agile prevails.

With this study, we have attempted to provide more knowledge on coordination in
product management, by describing how coordination happened in a nine-team prod-
uct area in a large-scale FinTech organization. We described seventeen coordination
mechanisms used to manage dependencies, and illustrated how the product area can be

50 M. Berntzen et al.

represented as distinct organizational level. However, there is still a need formore knowl-
edge on product area coordination, in particular in relation to what constitutes optimal
product area size and team configuration [21]. Moreover, the product area organization
form was relatively new for the case organization, and therefore, ongoing experimenta-
tion and changes were happening. With this study, we have only presented a snapshot,
based on the data collection period. More research is needed to understand if and how
changes in the product area also influence change in coordination mechanisms used in
the product area. Additionally, we have described the team typology of product areas.
Similar team types have been described in other studies, albeit not specifically within the
product management context. This is an interesting avenue for future research. Finally,
we identified pull requests and pair programming as related coordination mechanisms.
However, we do not know enough about how these mechanisms can replace each other.
Future research should aim to further advance our understanding of coordination in
large-scale agile product management in general, and product areas in particular, with
the aim of improving software product delivery and value.

Acknowledgments. The authors thank the informants for their willingness to share their experi-
ences. This research was supported by the Research Council of Norway through the Transformit
(grant no. 321477) and the 10XTeams (grant no. 309344) projects.

References

1. Berntzen, M., et al.: A taxonomy of inter-team coordination mechanisms in large-scale agile.
IEEE Trans. Softw. Eng. 49(2), 699–718 (2022). https://doi.org/10.1109/TSE.2022.3160873

2. Berntzen,M., Stray,V.,Moe,N.B.:Coordination strategies:managing inter-teamcoordination
challenges in large-scale agile. In: Gregory, P., Lassenius, C., Wang, X., Kruchten, P. (eds.)
XP 2021. LNBIP, vol. 419, pp. 140–156. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78098-2_9

3. Berntzen, M., et al.: Responding to change over time: a longitudinal case study on changes
in coordination mechanisms in large-scale agile. Empir. Softw. Eng. 28, 114 (2023). https://
doi.org/10.1007/s10664-023-10349-0

4. Bick, S., et al.: Coordination challenges in large-scale software development: a case study
of planning misalignment in hybrid settings. IEEE Trans. Software Eng. 44(10), 932–950
(2018). https://doi.org/10.1109/TSE.2017.2730870

5. Bosch, J.: Product-line architectures in industry: a case study. In: Proceedings of the 21st
International Conference on Software Engineering, pp. 544–554 (1999). https://doi.org/10.
1145/302405.302690

6. Braun,V., Clarke,V.:Using thematic analysis in psychology.Qual. Res. Psychol. 3(2), 77–101
(2006). https://doi.org/10.1191/1478088706qp063oa

7. Cagan, M.: Inspired: How to Create Tech Products Customers Love. John Wiley & Sons,
Hoboken (2017)

8. Digital.ai: 16th Annual State of Agile Report (2022). https://digital.ai/resource-center/ana
lyst-reports/state-of-agile-report/. Accessed 05 May 2024

9. Dikert, K., et al.: Challenges and success factors for large-scale agile transformations: a
systematic literature review. J. Syst. Softw. 119, 87–108 (2016). https://doi.org/10.1016/j.jss.
2016.06.013

https://doi.org/10.1109/TSE.2022.3160873
https://doi.org/10.1007/978-3-030-78098-2_9
https://doi.org/10.1007/s10664-023-10349-0
https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1145/302405.302690
https://doi.org/10.1191/1478088706qp063oa
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://doi.org/10.1016/j.jss.2016.06.013

Coordination in Agile Product Areas 51

10. Dingsøyr, T., et al.: A longitudinal explanatory case study of coordination in a very large
development programme: the impact of transitioning from a first- to a second-generation
large-scale agile development method. Empir. Softw. Eng. 28(1), 1 (2022). https://doi.org/10.
1007/s10664-022-10230-6

11. Dingsøyr, T., et al.: Agile development at scale: the next frontier. IEEE Softw. 36(2), 30–38
(2019). https://doi.org/10.1109/MS.2018.2884884

12. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is large in large-scale? a taxonomy of scale for
agile software development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273–276. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_20

13. Ebert, C.: The impacts of software product management. J. Syst. Softw. 80(6), 850–861
(2007). https://doi.org/10.1016/j.jss.2006.09.017

14. Edison,H., et al.: Comparingmethods for large-scale agile software development: a systematic
literature review. IEEE Trans. Softw. Eng. 48(8), 2709–2731 (2022). https://doi.org/10.1109/
TSE.2021.3069039

15. Gustavsson, T., et al.: Changes to team autonomy in large-scale software development: a
multiple case study of Scaled Agile Framework (SAFe) implementations. Int. J. Inf. Syst.
Proj. Manag. 10(1), 29–46 (2022). https://doi.org/10.12821/ijispm100102

16. Heck, P., et al.: A software product certification model. Softw. Qual. J. 18, 37–55 (2010).
https://doi.org/10.1007/s11219-009-9080-0

17. Kittlaus, H.-B.: Software product management and agile software development: conflicts and
solutions. In: Maedche, A., Botzenhardt, A., Neer, L. (eds.) Software for People, pp. 83–96.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31371-4_5

18. Maddila, C., et al.: Nudge: accelerating overdue pull requests toward completion. ACMTrans.
Softw. Eng. Methodol. 32(2), 1–30 (2023). https://doi.org/10.1145/3544791

19. Malone, T.W., Crowston,K.: The interdisciplinary study of coordination.ACMComput. Surv.
(CSUR). 26(1), 87–119 (1994). https://doi.org/10.1145/174666.174668

20. Moe, N.B., et al.: Attractive workplaces: what are engineers looking for? IEEE Softw. (2023).
https://doi.org/10.1109/MS.2023.3276929

21. Moe, N.B., et al.: Software product management in large-scale agile (2023)
22. Moe, N.B., et al.: To schedule or not to schedule? an investigation of meetings as an inter-

team coordination mechanism in large-scale agile software development. Int. J. Inf. Syst.
Proj. Manag. 6(3), 45–59 (2018). https://aisel.aisnet.org/ijispm/vol6/iss3/4

23. Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed organization: a
case study. In: 2016 IEEE 11th International Conference on Global Software Engineering
(ICGSE), pp. 74–83 IEEE (2016). https://doi.org/10.1109/ICGSE.2016.34

24. Palopak, Y., et al.: Knowledge diffusion trajectories of agile software development research:
a main path analysis. Inf. Softw. Technol. 156, 107131 (2023). https://doi.org/10.1016/j.inf
sof.2022.107131

25. Skelton, M., Pais, M.: Team topologies: organizing business and technology teams for fast
flow. In: Revolution (2019)

26. Šmite, D., et al.: Decentralized decision-making and scaled autonomy at Spotify. J. Syst.
Softw. 200, 111649 (2023). https://doi.org/10.1016/j.jss.2023.111649

27. Šmite, D., et al.: Spotify guilds: how to succeed with knowledge sharing in large-scale agile
organizations. IEEE Softw. 36(2), 51–57 (2019). https://doi.org/10.1109/MS.2018.2886178

28. Springer, O., Miler, J.: A comprehensive overview of software product management
challenges. Empir. Softw. Eng. 27(5), 106 (2022). https://doi.org/10.1007/s10664-022-101
34-5

29. Stake, R.E.: Qualitative case studies. In: Denzin, N., Lincoln, Y. (eds.) The Sage Handbook
of Qualitative Research. Sage Publications, Thousands Oaks (2005)

https://doi.org/10.1007/s10664-022-10230-6
https://doi.org/10.1109/MS.2018.2884884
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1016/j.jss.2006.09.017
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.12821/ijispm100102
https://doi.org/10.1007/s11219-009-9080-0
https://doi.org/10.1007/978-3-642-31371-4_5
https://doi.org/10.1145/3544791
https://doi.org/10.1145/174666.174668
https://doi.org/10.1109/MS.2023.3276929
https://aisel.aisnet.org/ijispm/vol6/iss3/4
https://doi.org/10.1109/ICGSE.2016.34
https://doi.org/10.1016/j.infsof.2022.107131
https://doi.org/10.1016/j.jss.2023.111649
https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1007/s10664-022-10134-5

52 M. Berntzen et al.

30. Stray, V., et al.: An empirical investigation of pull requests in partially distributed BizDevOps
teams. In: 2021 IEEE/ACM Joint 15th International Conference on Software and System
Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engi-
neering (ICGSE), pp. 110–119. IEEE (2021). https://doi.org/10.1109/ICSSP-ICGSE52873.
2021.00021

31. Stray, V., et al.: Coordination value in agile software development: a multiple case study of
coordination mechanisms managing dependencies. In: Proceedings of the 15th International
Conference on Cooperative and Human Aspects of Software Engineering, pp. 11–20. Asso-
ciation for Computing Machinery, New York (2022). https://doi.org/10.1145/3528579.352
9182

32. Stray, V., et al.: Dependency management in large-scale agile: a case study of DevOps teams.
In: Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS
2019), vol. 2019, pp. 7007–7016 (2019). http://hdl.handle.net/10125/60137

33. Strode, D.E.: A dependency taxonomy for agile software development projects. Inf. Syst.
Front. 18(1), 23–46 (2016). https://doi.org/10.1007/s10796-015-9574-1

34. Tkalich, A., Ulfsnes, R., Moe, N.B.: Toward an agile product management: what do product
managers do in agile companies? In: Stray, V., Stol, K.-J., Paasivaara, M., Kruchten, P. (eds.)
Agile Processes in Software Engineering and Extreme Programming: 23rd International Con-
ference onAgile SoftwareDevelopment, XP 2022, Copenhagen, Denmark, June 13–17, 2022,
Proceedings, pp. 168–184. Springer International Publishing, Cham (2022). https://doi.org/
10.1007/978-3-031-08169-9_11

35. Torres, T.: Continuous Discovery Habits: Discover Products that Create Customer Value and
Business Value. Product Talk LLC (2021)

36. Vedal, H., Stray, V., Berntzen, M., Moe, N.B.: Managing dependencies in large-scale agile.
In: Gregory, P., Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme
Programming – Workshops: XP 2021 Workshops, Virtual Event, June 14–18, 2021, Revised
Selected Papers, pp. 52–61. Springer International Publishing, Cham (2021). https://doi.org/
10.1007/978-3-030-88583-0_6

37. Wodtke, C.: Radical Focus: Achieving Your Most Important Goals with Objectives and Key
Results. Cucina Media LLC (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021
https://doi.org/10.1145/3528579.3529182
http://hdl.handle.net/10125/60137
https://doi.org/10.1007/s10796-015-9574-1
https://doi.org/10.1007/978-3-031-08169-9_11
https://doi.org/10.1007/978-3-030-88583-0_6
http://creativecommons.org/licenses/by/4.0/

Software Product Management in Large-Scale
Agile

Nils Brede Moe1(B) , Marthe Berntzen2,3 , Astri Barbala1 ,
and Viktoria Stray1,2

1 SINTEF, Strindveien 4, 7465 Trondheim, Norway
{nils.b.moe,astri.barbala,viktoria.stray}@sintef.no

2 University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
marthenb@ifi.uio.no

3 Knowit Solutions AS, Universitetsgata 1, 0164 Oslo, Norway

Abstract. Large-scale agile software development is increasingly being orga-
nized with product management. Although product management is familiar to
software engineering, we need research-based knowledge about organizing prod-
uct management in an agile development context. This study focuses on product
management challenges and configurations in a Nordic fintech organization with
10,000 employees. We conducted 19 interviews with participants involved in core
product management activities. The study identifies ten key factors that hinder
productmanagement performance in a large-scale agile product company. Further,
we present six product management configurations used in the fintech organiza-
tion. The most suitable setup depends on the product lifecycle stage, product size,
and development team setup. Our summary of the product management configura-
tions and challenges can guide software product managers working in large-scale
agile companies.

Keywords: Product Management · Team · Product Manager · Product Owner ·
Agile Software Development · Coordination

1 Introduction

Already at the large-scale workshop at XP2013 [9], how to manage complex and large
development efforts with many teams was much debated. The topic is still very trendy as
agile methods have become the de facto standard for product development in large com-
panies. Some argue that a common large-scale agile framework like SAFe [18] and LeSS
[17], is needed to define the roles, processes and artifacts. Others argue that context-based
agile tailoring is vital to capture and address each organization’s unique coordination
context [6] and changes in coordination needs over time [3, 7], therefore introducing
frameworks has a limited effect. Others again say that the most critical success factors
are cross-functional teams that take responsibility for their work and coordinate, com-
municate, and align their actions with others. Spotify serves as an example of this [25].
A recent trend is to design teams to match the software architecture and give these teams
a defined topology to reduce their cognitive load [24].

© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 53–69, 2024.
https://doi.org/10.1007/978-3-031-61154-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_4&domain=pdf
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0003-1455-2562
http://orcid.org/0000-0002-3087-3350
http://orcid.org/0000-0002-6032-2074
https://doi.org/10.1007/978-3-031-61154-4_4

54 N. B. Moe et al.

Regardless of the large-scale agile approach chosen, there needs to be a function
that is responsible for defining and prioritizing what goes into the product, and that
handles all the conflicting priorities [20] that exist in a large-scale context. If the teams
do not have an up-to-date understanding of what to deliver and why, reducing cognitive
load, increasing autonomy, or applying a framework does not help. In such cases, there
may be a need for Software Product Management (SPM). SPM can be defined as the
“organization and coordination of all activities important for a software product in order
to achieve product success“ [32]. In a recent study, Berntzen et al. [2] found the use
of seventeen coordination mechanisms in a product area with 8 teams. Therefore, we
argue that SPM plays a critical role in large-scale agile. SPM involves understanding
market needs, defining product vision, and working closely with cross-functional teams
to ensure successful development, launch, and ongoing management of the product
[27]. SPM ensures a balance between technical and business perspectives and involves
coordination between product stakeholders [11, 13]. The idea of SPM also fits well with
the agile approach because a core SPM activity is to ensure the interest of the customers
and clients of the product [27].

Product management means being responsible for a defined product [11]. In large
organizations, such as a bank, a product can be a customer onboarding experience, a
credit line, advisory services, or a banking account. When handling a small product, the
product owner can handle SPM. When the product grows, a team of product owners
can take on this job [23], often in combination with one or several product managers.
Different products require different expertise and team configurations and, therefore, a
different organizational setup, i.e., different product management configurations. How-
ever, research on how productmanagers’ roles and practices are configured in large-scale
agile settings is limited. There is a distinct lack of comprehensive understanding of the
specific organizational and team structures that support effective product management,
particularly in organizations with many thousand employees that deliver both B2B and
B2C products.

This study seeks to address this knowledge gap by investigating the challenges
and configurations of product management within a large-scale agile organization.
Specifically, we aim to answer the following research questions:

• RQ1: Which challenges do product management roles face in large-scale agile?
• RQ2: What types of product management configurations exist in large-scale agile?

To investigate these questions, we conducted a case study of DNB - a Nordic agile
fintech organizationwith 10,000 employeeswhere 130 people hold productmanagement
roles such as productmanagers and product owners. Through this inquiry, we aim to shed
light on the organizational and team setups that facilitate effective product management,
contributing to a more nuanced understanding of agile practices at scale.

2 Background

2.1 Large-Scale Agile and Product Management

In very large-scale agile companies, the complexity of the software development effort
is enormous as many stakeholders are involved, often with conflicting interests. As a
result, the need for inter-team coordination increases significantly [14]. Further, the

Software Product Management in Large-Scale Agile 55

products must adapt to constantly changing user needs, which requires an end-to-end
flow between customer demand and the fast delivery of a product or service [12], which
is challenging. Mikalsen et al. [20] found that agile product teams in a bank needed to
negotiate with other teams, business units, and key management stakeholders to ensure
that the digital offerings made sense in terms of both users’ needs and company revenue.
Therefore, SPM needs to scale outside of the software development department and link
to other functions such as marketing, sales, and operations.

Despite the importance of SPM, few empirical studies are focusing on SPM in large-
scale agile [15, 16]. The current literature, including studies by Ebert [10], Tkalich et al.
[31], and Springer et al. [27], have explored various facets of software product man-
agement, from role definitions to acquiring development resources and technical debt.
Paasivaara et al. [23], highlights several challenges related to product management con-
figurations and roles in a company during an agile transformation, such as challenges
with defining the product owner (PO) role. Scaling the PO role is a common SPM
practice. However, the PO role is often not enough, and additional SPM roles and con-
figurations are often needed. Sometimes there is a team of POs [4], or product managers
(PM) that lead the products, and that balance software development, people and politics
[11]. Ebert and Brinkkemper [11] highlight the risks of operating without a dedicated
PM, pointing to issues such as diluted leadership, suboptimal performance, increased
rework, and delays. This underscores the critical need for focused product management
to overcome the complexities of large-scale software development.

SPM has been found to have different setups in large-scale agile. It is common to
organize into product areas where teams work with a common product or sub-product.
A typical set-up within a product area can be one or more development teams, one or
several POs and a PM that all work with the same product(s). Berntzen et al. [4] studied
the development of a public transportation platform with 13 teams and 9 POs. Seven of
the POs had one team, whereas two had three teams each. The weekly PO coordination
meeting and quarterly workshops were facilitated by a PM. Amuch more complex setup
was found by Smite et al. [26]. They describe a Telecom product at Ericsson developed
by seventeen self-managing cross-functional feature teams; five teams in Sweden, ten
teams in China, as well as two Korean teams. The teams were supported by technical
experts, line managers, product owners, operative product owners, system managers,
configurationmanagers, testing framework experts, continuous integration experts, agile
coaches, and integration leaders. SPM becomes complex in such a setup. The authors
conclude that networking is the primary mechanism when solving complex tasks in
large-scale product development.

2.2 Challenges with Software Product Management

Introducing and succeeding with SPM takes time because of the many challenges that
are associated with software product development. The larger the organizations and
the longer the product life cycles, the more challenging. Ebert and Brinkkemper [11]
studied a business unit producing components used in communication networks. The
unit operated in North America, Europe and Asia, and developed platform products
that are customized for contract projects. They found that results from introducing SPM
were first available for the business unit after 12–18 months of working with a new

56 N. B. Moe et al.

SPM scheme. Therefore, to succeed with SPM it is necessary to be aware of the main
problems that affect SPM and to provide solutions for dealing with them. Springer et al.
[27] organized 15 focus groups with 47 software product managers to understand their
challenges. The 5 most common problems were:

• Determining the true value of the product that the customer needs.
• Product managers must work iteratively with teams to understand the customer needs

and scaling opportunities of the product.
• Strategy and priorities are changing frequently, which makes product managers and

their teams struggle with prioritization.
• Technical debt slows down the product development process and makes it difficult to

prioritize the product roadmap.
• Working in silos. Initiatives that run across different departments require the need to

align teams around common goals and synchronize them.
• Balancing reactive and proactive work. Mature products struggle to prioritize

innovation and new customer value against bug fixing and maintenance work.

Agile methods might mitigate many of these problems. However, Springer et al. [28]
found that a core challenge is that teams are not agile, they just follow rules and do not
use experimentation and learning, which is essential for succeeding with SPM.

3 Research Method

We chose a case study approach [29] to study SPM in DNB, which is a fintech orga-
nization in the Nordics. A case study provides in-depth and detailed knowledge, which
is fitting for this study as there is little research-based knowledge about product man-
agement in large-scale agile. For five years, the first and fourth authors collaborated
with one of the organization’s business units on team autonomy, product development
onboarding, and distributed work [21]. The results of this previous collaboration were
why DNB wanted a research-based approach to improving their SPM. In particular,
there was a need to understand challenges, various configurations, and responsibilities.
We interviewed people involved in product management from five business areas to
understand the challenges of product management in large-scale agile and to under-
stand which product management configurations exist. The three first authors conducted
the interviews, authors two and three were responsible for the analysis, and all authors
participated in meetings with the company.

3.1 Case Description

DNB has 10,000 employees mainly distributed over three cities. Out of these, over 130
people are involved in core product management activities andmost hold a product man-
ager or product owner role. DNB can thus be classified as very large-scale agile [8]. DNB
did not subscribe to any specific scaling framework with pre-defined roles. All teams
could choose their own agile practices, which allowed for flexibility in practices like
sprints, stand-ups, and retrospectives. The organizational environment is characterized
by both structural and technological changes. Over 70% of the POs and PMs had more

Software Product Management in Large-Scale Agile 57

than 5 years of experience in the company. They all had varied backgrounds; some had
a technical (e.g., engineering) background and had been working in the product domain
for several years, while others came from the business side. A few also came from other
industries. The company introduced the PO role in 2017.

3.2 Data Collection

We interviewed 19 people involved in product management activities (Table 1). Each
interview was held on Microsoft Teams and was recorded and automatically tran-
scribed based on participants’ consent. Most interviews were conducted by two of the
researchers, while two were conducted by the first author only. The interviews lasted
from 46 to 70 min (55 min on average). We used an interview guide to steer the conver-
sations and make sure we touched upon topics of interest but allowed the conversations
to develop naturally. Core questions were: “Describe the technical and business aspects
of the product”, “What works well/not well in your job?”, “How are decisions made?”
and “What competence is important in your role?”.

In addition, we organized meetings with additional managers to understand the his-
tory of product management in the company and the context that the interviews were
part of, e.g. department structure, the relationship between departments, products han-
dled by each business unit, important company milestones, technical platform, and so
on. We wrote minutes from these meetings. We also presented the results back to the
organization in several meetings to verify our findings and to clarify misunderstandings.

Table 1. Data sources.

Data source Details #

Interviews Product managers (5 female, 4 male) 19

Product owners (5 male)

Other product development role (2 female, 3 male)

Meetings Managers and people responsible for improving product management 5

Documents Strategic documents, product management survey, annual reports 3

3.3 Data Analysis

We used a thematic analytical framework [5] to analyze the data, which has been
extensively described for software engineering research [1]. Thematic analysis proceeds
through six iterative phases, where it is possible to move back and forth as the analysis
develops [1, 5]. First, we divided the interviews among the authors, and read through
each of them using open coding techniques to familiarise ourselves with the data and
generate initial codes. From this, themes started to form, such as tasks and role descrip-
tions, and challenges with product management at DNB. Next, we reviewed the theme
by discussing each interview together to reach an agreement on categories and themes

58 N. B. Moe et al.

in the data. As part of reviewing the themes, we performed a second analysis, digging
deeper into the data to better understand the challenges product managers and product
owners experienced at DNB. The challenges identified from each interview were coded
first at a lower-level category before similar codes were grouped together as themes.
During this phase, we discovered that there were different product management con-
figurations across the product areas. We therefore performed a second round of coding
where we focused on understanding the different configurations present in the data. In
the last phases of the analysis, we focused on refining themes by defining naming and
mapping the different configurations to reach a coherent set of findings presented in the
next section.

4 Findings

4.1 Software Product Management in DNB

In DNB, a ‘product’ was defined as something that delivers value, at the intersection
of customer needs, business objectives and technology enablement. This meant that
most things that deliver value to the customers could be defined as a product, e.g., a
customer onboarding experience, a credit line, advisory services, or a banking account.
Product management meant working closely with the cross-functional agile team, being
accountable for the long-term business value of the product, and management of the
product (including strategy, design, technology, risk, pricing, compliance, etc.) through
the whole product lifecycle.

We found three key product management roles. First, the PM was described as “the
CEO of the product”. This meant being responsible for vision and strategy, roadmap and
high-level priorities, andbusiness outcomes throughout the product lifecycle. Second, the
PO focused on hands-on work with engineers and designers, transformed the high-level
vision of the PM into epics and an updated backlog and enabled agile ways of working.
The third role, often called ‘product lead’ (the role was not yet formally named) was
used when there was a need to facilitate portfolio alignment across product teams or
alignment between product areas where one PM was not enough.

When investigating how to succeed with product management across these roles,
three characteristics stood out: 1) Having a large network and knowing who knows
what, 2) working closely with the team, and 3) working as an internal diplomat in the
organization. This included focusing on setting aside time to listen, discuss, and find
solutions through informal meetings. One explained the importance of knowing the
company and stakeholders in order to succeed in the role: “My biggest, what do you call
it, badge is the fact that I know how the organization is built. I know who to go to, and
who not to go to. And DNB is complex in that regard” [I15]. Another continued: “There
are lots of experts and good people everywhere. You just have to know where to ask”
[I08].One interesting observation was that teams seemed to change often, and many did
not know exactly how big their product team was. One PM said: “I haven’t counted, but
I think we’re around maybe currently seven or eight” [I13].

Next, we present the main challenges with product management. Then we report on
the software product management configurations that we found in the interviews.

Software Product Management in Large-Scale Agile 59

4.2 Challenges with SPM in Large-Scale Agile Organizations

We found 10 challenges reported by more than five of the 19 respondents (Table 2).
Some of the challenges were related to the very large-scale nature of the organization. A
PM explained challenges caused by the size (10,000 employees) (C4): “The way we are
set up is a bit… It is not easy to get the end-to-end value chain responsibility carried out.
Because there are so many areas that play their part in the value chain. And perhaps they
must do that. Because there are such complex systems and such complex value chains
involved” [I06]. A department manager explained that the prioritization challenges (C2)
were also related to the company size: “You get different steering signals, which means
you don’t necessarily get the speed you want. Or that there are an awful lot of people
you must talk to before you can get anything done” [I08].

Further, there appeared to be a connection between some challenges and some types
of SPM configurations. For example, a PM who did not have a PO in the team reported
having too diverse work tasks, taking on PO tasks, and spending too much time in
meetings (C1): “One moment you are working with risk management, with deadlines
and set timeframes. In the next, you are working with the team as part of a creative
and problem-solving task force. Then, you need to follow up on things that should be
discussed [with stakeholders] and get a decision. It is a very wide task range” [I02]. In
a related manner, a PO who did not have a PM on their team and who was dependent on
another part of the organization for technical resources (i.e., developers) explained that
the shortage of resources limited their freedom to act (C6): “Capacity is always a thing.
It can be difficult to coordinate when you lack the resources” [I05].

Another interesting challenge (C3) was related to insufficient user data management,
that is the collection and analysis of data generated fromDNB internal and external users.
Codeswithin this challenge included a lack of focus onworkingwith data-driven insights
in SPM: “That demand has never been on our plate. I would say nobody has asked us to,
you know, take on this task” [I17], and not having the resources or opportunity to fully
utilize the value of data-driven insights: “I have access to a system, but I have never had
the time to fully understand how I can use it to get the data I actually need to make a
proper analysis” [I06].

As described above, a key point to succeeding with SPM in DNB was the ability to
network and get others to follow.Moreover, the many prioritizations to be managed (C2)
and at times challenging organizational structure (C4) as well as the need to involve top
management in many decisions (C7) made stakeholder management (C9) a challenge in
DNB. We found that those who struggled with stakeholder management often lacked a
large internal network or struggled to understand the inner workings of the organization:
“I have underestimated the importance of understanding how big our organization is,
and how important the stakeholder part is. You can come from a smaller company, […]
and know the [product management] theories very well. But that does not mean that it
works in DNB” [I14].

60 N. B. Moe et al.

Table 2. Challenges with product management in the case organization

Challenge (C) Description #

1 Too many tasks and
responsibilities

Too many diverse tasks with urgent priority,
too much time spent in meetings, too little
staffing to fill all tasks, and having to do the
tasks of other SPM roles, unclear division
of responsibilities between roles

17

2 Prioritization challenges Prioritizations come from many different
parts of the organization, and many are
unclear

15

3 Poor data management Gaining value from data, such as not enough
data being collected, having poor data
management tools, and a lack of personnel
working with data and data insights

11

4 The company structure The way the organization is currently set up
does not provide ideal conditions to work
with SPM

9

5 Lack of customer focus Goals from business rather than customer
value, not sufficiently collecting or using
customer feedback, then difficult to placing
customer wants and needs first

7

6 Lack of freedom to act Challenges with freedom to act due to
dependencies between products and
shortage of resources, both human and
technical resources and dependencies

7

7 Upper management is not
involved enough

Upper management makes prioritisations
and decisions on SPM but lacks knowledge
and insight about SPM

6

8 Unclear goals and reporting of
goals

A lack of a unified way of working with
goals across the company, such as the use of
KPIs, OKRs, or others

5

9 Stakeholder management Knowing whom to involve, when, having an
efficient internal network, and spending too
much time on stakeholder management

5

10 Lack of alignment between
organizational units

Somewhat related to challenge no. 4, the
different ways of working between the
DNB business units caused challenges with
aligning SPM-related activities

5

= The number of participants referring to the challenge

4.3 Product Management Configurations

We found a range of SPM configurations, and the set-up of product roles and teams
depended on the nature and lifecycle of the product. As there were conflicting priorities

Software Product Management in Large-Scale Agile 61

(C1, C2, C10), not all products had an ideal team set-up or SPM role configuration to
match their specific product needs. Figure 1 shows the configurations described.

Configuration A: The PM and the PO is the Same Person, Part of One Team
This configuration was found in several products with different characteristics, often
when the product was small in terms of the number of developers and stakeholders
involved, or when the product was in the early phases (before scaling). One PM who
worked on a new product relating to customer programs and covered both the PM and
PO roles for her team, at least for the time being, described: “Now that it’s so early [in
the product phase], I have both roles. But I see that the more we develop… That is, in
the initial phase, when you start things up, then it works. But the more you get into the
operational side, there will be a need to get a product owner, too” [I11].

In other cases, this configuration was described as not having a PO, and that the
PM also performed the PO tasks. For example, in a large cross-functional team that
worked with a product that allowed customers to gain an overview and insight into their
personal finances, one PM said: “I have long felt that I do not need [a product owner].
But it depends a lot on the team’s structure, maturity, and tech stack. In some cases,
it is necessary to be closer and coordinate on a lower level to get the details right.”
[I09]. However, also in this configuration, PO tasks had to be performed: “Now that the
product must be both maintained and further developed, I am feeling the need to have
a product owner […] Perhaps I have been a product owner myself the past few years
without reflecting on it” [I09].

One PMwho worked with a platform with both internal and external users explained
that working on a complex product that involved a lot of strategic work was challenging
and that therefore, there was a need for a PO to bemore involved in the operational work.
He explained: “In my team, we only have me as a senior product manager. Optimally, I
think we would have two, one senior and one that is more junior, which then we could
split – some teams do it, though, split responsibilities, right? So, one is more operational,
the other one is more strategic”.

Configuration B: One PM and One PO are Part of One Product Team
In this configuration, a PM and a PO were together responsible for one product team.
For example, in a product team developing a system that enabled customers to invest
money in companies. The PMof this team explained that he collaborated frequently with
his manager, the PO, and the team (of which all six developers were located in another
city) through daily meetings. The PM explained [I16]: “We have digital tools and we
have Teams and cameras, it is just like sitting next to each other.” Working with a small
data-driven agile team was an enabler for development speed. He explained: “Instead of
spending a lot of time on planning and doing months of interactions [with customers]
before we release a new product, we think that it is better to do the groundwork and
get the product out and then rather make adjustments based on customer feedback”.
However, the setup was not ideal: “we have two backend developers and four frontends,
so maybe the team is not balanced enough. Because we often see that things stop because
you are waiting for the backend. It’s something we’ve addressed above [to management]
as well”. The PM’s line manager played an important role. The PM explained: “He had

62 N. B. Moe et al.

Fig. 1. Six SPM configurations with teams and SPM roles.

the same role as I have now before I came in, but he has very broad and long experience.
He is a person I can go to and discuss with if there is anything I wonder about”.

Configuration C: One PM, One PO, Several Product Teams
In this configuration, one PM and one PO share responsibility for two or more teams.
There were several variants of this configuration depending on the product, as well as
the different business units. One PO explained his situation: “I work as the PO for three
teams in our product and I am primarily responsible for the [removed for anonymity]
solutions for DNB. … I don’t think it’s ideal for a PO to run three teams. That’s the
challenging part. Some days it’s very difficult to work on anything productive apart from
being a chat support person.” He continued: “I have a PM whom I’m closely working
with.…And I ammore responsible for short-term [initiatives], like the next four months.
That’s my cup of tea, I would say. When it comes to what is going to be delivered this
year, I expect a PM to plan that” [I17].

A PO who worked with loans and credit explained that he made most of the product
decisions: “I also drive it as a PM as well…. If I need to get some clarifications or maybe
push it, my escalation point for something else would be the PM. But apart from that, it’s
almost single-handedly driven” [I15]. Further, he explained that the two development
teams he was responsible for were in other business areas: “They [IT department] have
the Amazon Web Services developers, they have the UX designers, they have the mobile
developers, they have the server-side developers, these are IT terms. They don’t report
to me, but they are part of the team that I am a PO for. Because there’s no IT or tech
resources or capability in my division.”He continued: “Once I give them a priority, they
know what to pick up”.

Software Product Management in Large-Scale Agile 63

Configuration D: Several PMs, POs, and Teams, With a Product Lead
When there were several PM, PO, and teams, we found an additional SPM role, often
referred to as the product lead. One product lead explained that he started as a PM with
one team, but when they scaled from 15 to 60 people, they needed a new structure [I14]:
“I am responsible for the product managers, who in turn are responsible for product
owners.” The group of nine PMs, POs, and the product leads all had different roles
and tasks, but they had shared responsibility for the yearly roadmap. He continued:
“Whether it is a product owner who helps prepare that year, or whether it is a product
lead who prepares that year, does not matter that much. The most important thing is
that everyone has ownership of it” [I14]. Every quarter, the group updated the roadmap
and the high-level priorities, which then were presented at a meeting with all 60 people.
After thismeeting, the discussions continued in the teams:“The product owner primarily
facilitated discussions in his own team” [I14].

A similar setup was found in a product area with 13 teams in three sub-areas. One
PM reported that in his sub-area he had three POs (out of eight in the whole area), each
working in one team with a specific responsibility: “Two teams are working on moving
the existing solution up into the cloud. … so, it is only one of the three teams that I can
work with on new development” [I06]. The job of migrating products to the cloud had
a big priority in the whole organization as reported in the context description.

Configuration E: No PM, One PO, Several Teams
A similar configuration as the one described in Configuration A (except that there was no
PM) was found in a product being migrated into the cloud (AWS). The customers would
get a new customer experience, but no new functionality, which meant that there was
less need for a PM at this stage, as the work was clearly defined and there was no need
for strategy work. One PO who was responsible for three teams working on renewing a
product described how there was to date no PM working with his teams: “What I do is
that I map today’s functionality. And set the requirements for how the new functionality
should be… And then I get to check it out with the businesspeople. The other thing I do
is coordinate with UX. And the next step after that is to coordinate that we still have a
value chain that works. So, we can go all the way from the customer down to the core
system” [I12].

Configuration F: One PM, One PO, the Team is External to the Organization
In one case, we found that although DNB set directions for the product, the product
development was done off-site, by an external provider. “We have a special structure
compared to other DNB products, as we have a ‘white label’ service where we don’t
develop anything ourselves. So, I don’t have any developers” [I05]. In this set-up, there
was “a PM who handles the administrative […] like compliance and vulnerability anal-
yses and such while my main task is at the product level, the development progress and
what we are to focus on in the time to come” [I05]. Interestingly, DNB collaborated
with other financial institutions in a product council, where they instead of acting like
competitors together set directions and requirements for the development team.

Additional Configurations
We found four additional configurations. Because of page limitations, they are only

64 N. B. Moe et al.

listed: G) Several PMs, no POs, one team, H) No PM, one PO, one team, I) One PM, no
PO, several teams, and J) Several PMs, one PO, several teams.

5 Discussion

The adoption of SPM in large-scale agile companies is growing, and companies like
Google, Facebook, Amazon, and Microsoft use the practice. However, adopting SPM
is challenging [19, 27], and how the practice is adopted is different from company to
company. Therefore, there is a need for research on SPM in large-scale agile. We have
described how these practices are applied in DNB, a fintech organization with 10,000
employees. In DNB a ‘product’ was defined as something that delivers value, at the
intersection of customer needs, business objectives, and technology enablement.Wewill
now answer our two research questions: 1) Which challenges do product management
roles face in large-scale agile?And 2)What types of productmanagement configurations
exist in large-scale agile?

5.1 SPM Challenges in Large-Scale Agile Organizations

First, we identified the top ten SPM challenges in large-scale agile in DNB (Table 2). The
most common ones were challenges independent of a single product context, meaning
that they were related to organizational features like company type and size. Further, we
found that the organization was not set up to support products with long value chains
that involved many complex subsystems where many organizational units needed to be
involved (C4). Our findings are consistent with Maglyas’ [19], who found that when
product development involves several departments, flow is hindered because each unit
acts independently and focuses on its own work instead of thinking about the whole
product. Further, per Springer et al. [27], we found that there was a lack of alignment
between organizational units (C10). Companies will have challenges with delivering
products across departments when there are silos and missing alignment. These under-
lying problems are related to communication and synchronization. Springer et al. [27]
argues that while PMs cannot change the company structure, they can still minimize its
impact on the teams and product development process. One solution to these challenges
is having regular meetings between POs and PMs [27]. We found such a solution in
Configuration D, where a group of 9 PMs, POs, and a product lead, interacted regularly,
in addition, the product lead and the PMs were responsible for working on aligning
decisions across the organization.

Second, we found a lack of a unifiedway ofworkingwith goals (C8), which is similar
to the challenge reported by Maglyas et al. [19] that there should be one way of tracing
goals in SPM. Unclear goals is also a barrier to team autonomy [22]. Springer et al. [27]
supports the importance of working on goals and argues that there is a need to identify
and trace goals to be able to balance reactive (bugs, technical debt) and proactive work
(new development). In Configuration D we found a sub-area with three teams that had
clear goals: Two teams working on the cloud migration and one team working on new
ideas.

Software Product Management in Large-Scale Agile 65

Third, we found that there were many tasks with urgent priorities (C1), that pri-
oritizations came from many different parts of the organization, and that many were
unclear (C2). This finding is consistent with Springer et al. [27] who argues that when
the strategy for products is changing frequently or when dependencies between products
are unclear, PMs and their teams struggle with prioritization, seeing the long-term pic-
ture and being able to achieve outcomes, as the direction is changing often. Smite et al.
[25] found similar problems at Spotify; when product teams have too many diverse tasks
with urgent priority, individual goals becomemore important, joint goals become blurry,
and the team’s performance suffers. We have not had the opportunity to investigate why
there were somany tasks with urgent priority and why the product strategy seems to shift
frequently. However, Springer et al. [27] found that that if priorities change frequently,
it is a signal that there might not be a strategy at all or the employers are simply not
informed about the reasons behind priority changes, and how those decisions relate to
product strategy. Our findings are also related to the problem of short-term thinking by
Maglyas et al. [19]. But unlike the Maglyas et al., study from 2012, who argued that a
one-year roadmap is too short, we did not find any problems with a one-year approach.
This might be related to the fact that the market is more dynamic today than in 2012.

Fourth, we found that many product teams lacked a clear customer focus (C5), and
put the business wants and needs first. Our findings are consistent with Maglyas et al.
[19] that the decisions about new product development are often made internally in
the company and not based on customer input. Fitting customer needs takes time and
money. Springer et al. [27] argues that PMs have to run research and work iteratively to
understand the customer needs, scaling opportunities, and customer willingness to pay
for the product. The customer feedback loop is the key. In Configuration B, we describe
a team with a data-driven culture [30] that focused on getting the product out before
adjusting based on customer feedback, instead of doing customer research upfront.

5.2 SPM Configurations in Large-Scale Agile Organizations

Being able to succeed in delivering software frequently and iteratively requires work
and knowledge coordination on different levels, i.e. at the portfolio, product, and team
levels, and having access to the right resources. We found 10 different configurations of
SPM (Fig. 1), and they were influenced by the following factors:

• The maturity and size of the team. For an autonomous, small, and mature product
team, there was no need for a PO, as the team handled the PO activities themselves
by translating customer needs and prioritizing the backlog.

• Product life cycle. In the startup phase, there was less need for a PO, and when
migrating to the cloud (focus on technical issues) there was less need for a PM.

• The availability of supporting roles such as line managers and previous PMs. These
supporting roles helped POs and PMs in conducting SPM.

• Where the team is located. If the team is located in a different department or in
another organization, it might reduce interaction between PMs and the team, which
again affects the SPM work.

We found that some configurations changed over time because of e.g., scaling (Con-
figuration D), and some wanted to change as the setup was not optimal for the product

66 N. B. Moe et al.

development speed. These findings are consistent with Berntzen et al. [3], who found
that scaling requires an adjustment in the coordination mechanism and in the organi-
zational structure. Further, as resources are limited and prioritizations are sometimes
conflicting, there is a need for SPM to negotiate [20] with other teams, business units
and key stakeholders to ensure that the digital offerings make sense in terms of both
users’ needs and company revenue. Moreover, the six different configurations described
in detail underscore that there are several ways of doing SPM. Still, there are key differ-
ences between SPM roles, where PM tasks are typically outward-focused and PO tasks
are more inward-focused.

During the interviews, it became clear that the SPM roles were not performed in a
unified manner in the organization. Sometimes a PM can be a PO and the other way
around. Unclear roles and responsibilities can cause frustration and misunderstanding.
One could argue that the roles should be standardized. However, as each product context
was different, standardizations could also be a threat to efficiency. There is also no
guaranteed how-to recipe to foster alignment on roles, and the question is thus how
much standardization and autonomy should be built into the SPM setup and roles. Like
the tale of the sitar player asking Buddha how best to tune his instrument, we find the
famous answer, “Not too tight, and not too loose,” as a good general rule on the degree
of standardization of SPM roles.

5.3 Practical Implications

Based on our results, we can summarize some recommendations for those working
with SPM. First, there does not exist one ideal SPM configuration. What constitutes
an optimal configuration will vary over time, as the need for development resources
of a product is not static. Further, as a product value chain changes over time, so does
which part of the company will be involved in the product development. The larger the
value chain, the more complex the SPM work and the more SPM resources are needed.
Second, SPM should serve as a continuous link between customer needs, business needs
and software development. Our results show that this is the essence of SPM regardless
of the type and scale of the product, and the product life cycle. Third, independent
of SPM configuration, the manager’s social network, negotiation skills, and company
knowledge are prerequisites for success. The consequence is that to become successful
in SPM, there is a need to spend time establishing and maintaining the network.

Above all, managers of software products in large-scale agile organizations need to
work data-driven, meaning that they need to be in control of user data and understand
how to analyze such data from the customer interaction to improve and shorten the
feedback loops.

6 Concluding Remarks and Future Research

Despite the increasing popularity of software product management in large-scale agile
companies, little research exists on how SPM is performed in practice and what chal-
lenges and configurations exist. We have therefore conducted a case study to explore
these challenges and configurations. Given today’s increasing adoption rate of SPM in

Software Product Management in Large-Scale Agile 67

large-scale agile product companies, our findings can provide guidance for howSPMcan
work. The paper’s main contributions are an overview of ten common SPM challenges in
a large-scale agile fintech organization and a description of six SPM configurations. The
results of our study constitute a step towards a practical and theoretical understanding
of SPM. We found that the essence of the SPM roles in large-scale agile development
is to make sure that the products are continuously linked with customer and business
demand and that product development is data-driven. Setting up experiments and ana-
lyzing customer data is key for effective product development. Besides, sometimes a
PM can fill the role of a PO and the other way around, meaning that what software
product managers actually do is more important than the name of their role. Therefore,
future research should study the tasks of software product managers, find solutions to
the ten SPM challenges, and explore the relationship between the SPM configuration,
product life cycle, and supporting roles. Further, to provide better guidance on SPM in
large-scale agile, future research should investigate the advantages and disadvantages
of the identified product management configurations, and how POs and PMs delineate
their responsibilities and collaborate.

Acknowledgments. The authors thank the informants for their willingness to share their experi-
ences. This research was supported by the Research Council of Norway through the TransformIT
project (grant no. 321477).

References

1. Berntzen, M., et al.: A taxonomy of inter-team coordination mechanisms in large-scale agile.
IEEE Trans. Software Eng. 49(2), 699–718 (2022)

2. Berntzen, M., et al.: Coordination in agile product areas: a case study from a large Fin-
Tech organization. In: Agile Processes in Software Engineering and Extreme Programming
(XP2024) (2024). (In Press)

3. Berntzen, M., et al.: Responding to change over time: a longitudinal case study on changes
in coordination mechanisms in large-scale agile. Empir. Softw. Eng. 28, 114 (2023). https://
doi.org/10.1007/s10664-023-10349-0

4. Berntzen, M., et al.: The product owner in large-scale agile: an empirical study through the
lens of relational coordination theory (2019)

5. Braun,V., Clarke,V.:Using thematic analysis in psychology.Qual. Res. Psychol. 3(2), 77–101
(2006). https://doi.org/10.1191/1478088706qp063oa

6. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

7. Dingsøyr, T., et al.: Coordinating knowledge work in multiteam programs: findings from a
large-scale agile development program. Proj. Manag. J. 49(6), 64–77 (2018). https://doi.org/
10.1177/8756972818798980

8. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is large in large-scale? a taxonomy of scale for
agile software development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273–276. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_20

9. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.
SIGSOFTSoftw. Eng. Notes. 38(5), 38–39 (2013). https://doi.org/10.1145/2507288.2507322

https://doi.org/10.1007/s10664-023-10349-0
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1145/2507288.2507322

68 N. B. Moe et al.

10. Ebert, C.: The impacts of software product management. J. Syst. Softw. 80(6), 850–861
(2007). https://doi.org/10.1016/j.jss.2006.09.017

11. Ebert, C., Brinkkemper, S.: Software product management – an industry evaluation. J. Syst.
Softw. 95, 10–18 (2014). https://doi.org/10.1016/j.jss.2013.12.042

12. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

13. Fricker, S.A.: Software product management. In: Maedche, A., Botzenhardt, A., Neer, L.
(eds.) Software for People, pp. 53–81. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31371-4_4

14. Gustavsson, T., et al.: Changes to team autonomy in large-scale software development: a
multiple case study of Scaled Agile Framework (SAFe) implementations. Int. J. Inf. Syst.
Proj. Manag. 10(1), 29–46 (2022)

15. Helferich, A., et al.: Product management for software product lines: an unsolved problem?
Commun. ACM 49(12), 66–67 (2006). https://doi.org/10.1145/1183236.1183268

16. Hyrynsalmi, S., et al.: A bibliographical study of software product management research.
In: 2021 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), pp. 1–8 (2021). https://doi.org/10.1109/ICE/ITMC52061.2021.9570214

17. Larman, C., Vodde, B.: Large-Scale Scrum: More with LeSS. Pearson Education, Boston
(2016)

18. Leffingwell, D.: SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enterprises.
Addison-Wesley Professional, Boston (2018)

19. Maglyas, A., et al.: Lean solutions to software product management problems. IEEE Softw.
29(5), 40–46 (2012). https://doi.org/10.1109/MS.2012.108

20. Mikalsen, M., et al.: Agile digital transformation: a case study of interdependencies (2018)
21. Moe, N.B., et al.: Studying onboarding in distributed software teams: a case study and guide-

lines. In: Proceedings of theEvaluation andAssessment in SoftwareEngineering, pp. 150–159
ACM, Trondheim (2020). https://doi.org/10.1145/3383219.3383235

22. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autonomous agile
teams: a summary of the second international workshop at XP2019. In: Hoda, R. (ed.) XP
2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30126-2_2

23. Paasivaara, M., et al.: Large-scale agile transformation at Ericsson: a case study. Empir Softw.
Eng. 23(5), 2550–2596 (2018). https://doi.org/10.1007/s10664-017-9555-8

24. Skelton, M., Pais, M.: Team Topologies: organizing business and technology teams for fast
flow. IT Revolution (2019)

25. Smite, D., et al.: Decentralized decision-making and scaled autonomy at Spotify. J. Syst.
Softw. 200, 111649 (2023). https://doi.org/10.1016/j.jss.2023.111649

26. Šmite, D., et al.: Software teams and their knowledge networks in large-scale software
development. Inf. Softw. Technol. 86, 71–86 (2017)

27. Springer, O., et al.: Strategies for dealing with software product management challenges.
IEEE Access. 11, 55797–55813 (2023). https://doi.org/10.1109/ACCESS.2023.3282605

28. Springer, O., Miler, J.: A comprehensive overview of software product management
challenges. Empir. Softw. Eng. 27(5), 106 (2022). https://doi.org/10.1007/s10664-022-101
34-5

29. Stake, R.E.: Qualitative Research: Studying How Things Work (2010)
30. Storm, M., Borgman, H.P.: Understanding challenges and success factors in creating a data-

driven culture (2020)

https://doi.org/10.1016/j.jss.2006.09.017
https://doi.org/10.1016/j.jss.2013.12.042
https://doi.org/10.1007/978-3-642-31371-4_4
https://doi.org/10.1145/1183236.1183268
https://doi.org/10.1109/ICE/ITMC52061.2021.9570214
https://doi.org/10.1109/MS.2012.108
https://doi.org/10.1145/3383219.3383235
https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/s10664-017-9555-8
https://doi.org/10.1016/j.jss.2023.111649
https://doi.org/10.1109/ACCESS.2023.3282605
https://doi.org/10.1007/s10664-022-10134-5

Software Product Management in Large-Scale Agile 69

31. Tkalich, A., Ulfsnes, R., Moe, N.B.: Toward an agile product management: what do product
managers do in agile companies? In: Stray, V., Stol, K.-J., Paasivaara, M., Kruchten, P. (eds.)
Agile Processes in Software Engineering and Extreme Programming: 23rd International Con-
ference onAgile SoftwareDevelopment, XP 2022, Copenhagen, Denmark, June 13–17, 2022,
Proceedings, pp. 168–184. Springer International Publishing, Cham (2022). https://doi.org/
10.1007/978-3-031-08169-9_11

32. Wagenblatt, Timo: Software Product Management: Finding the Right Balance for YourProd-
uct Inc. Springer, Cham (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-031-08169-9_11
http://creativecommons.org/licenses/by/4.0/

Investigating Effort Estimation
in a Large-Scale Agile ERP
Transformation Program

Franziska Tobisch(B) , Karla Weigelt, Pascal Philipp, and Florian Matthes

TUM School of Computation, Information and Technology, Department of Computer
Science, Technical University of Munich, Munich, Germany

{franziska.tobisch,karla.weigelt,pascal.philipp,florian.matthes}@tum.de

Abstract. Adaptability is vital in today’s rapidly changing business
environment, especially within IT. Agile methodologies have emerged
to meet this demand and have thereby gained widespread adoption.
While successful in smaller, co-located teams and low-criticality projects,
applying agile methods in broader contexts poses challenges. Neverthe-
less, many organizations have started implementing agile methodolo-
gies in various areas, including large-scale Enterprise Resource Planning
(ERP) projects. In contrast to traditional development, ERP projects
involve deploying extensive integrated systems, are substantial in scale,
and entail high risks and costs. Accurate predictions, like effort estima-
tions, are crucial to meet customer satisfaction and deliver within plan
and budget. However, estimating effort in an agile environment poses its
own set of challenges. For instance, coordination efforts and dependencies
among teams must be considered. While effort estimation is well-explored
in classical software development and small-scale agile contexts, limited
research exists in large-scale agile settings, particularly in projects rolling
out and customizing standard ERP solutions. To address this gap, we
conducted a case study on effort estimation in a large agile ERP trans-
formation program, describing the estimation process, highlighting chal-
lenges, and proposing and evaluating mitigations.

Keywords: ERP systems · Large-scale agile · Effort estimation

1 Introduction

Today’s unpredictable business environment requires organizations to be flexible
and adaptable, especially in the IT sector [34]. As a result, many agile methodolo-
gies, e.g., Scrum, emerged [9]. The potential benefits of agile methods regarding
faster delivery and customer satisfaction led to their wide adoption [7]. While agile
practices proved successful in contexts characterized by small, co-located teams
[8], limited system criticality, new developments, and frequent releases [23], apply-
ing them in other contexts without or only little adaption increases the risk of fail-
ure [17]. Still, the success on a small scale inspired many organizations to apply
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 70–86, 2024.
https://doi.org/10.1007/978-3-031-61154-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_5&domain=pdf
http://orcid.org/0009-0004-7250-4635
http://orcid.org/0000-0002-6667-5452
https://doi.org/10.1007/978-3-031-61154-4_5

Investigating Effort Estimation in Large Agile ERP 71

agile methodologies outside of their initially intended context [7,8]. One example
is Enterprise Resource Planning (ERP) rollout projects [16,20,35]. ERP systems
are large-scale integrated systems covering most of a company’s business processes
[14]. In contrast to classical development projects, off-the-shelf ERP solutions by
providers are rolled out and adapted to customer needs [14]. Those projects are
often large [16] and involve high risk and costs [14,29].

One success factor in satisfying customers and delivering within plan and
budget is accurate predictions like effort estimations [4,15,20]. However, esti-
mating effort in an agile environment can be difficult [14]. Common techniques,
like expert judgment and planning poker, are based on experts’ opinions [28]
and, thus, error-prone due to, e.g., human bias [15,30]. Also, constantly chang-
ing requirements complicate estimating accurately [27]. In scaled agile settings,
estimating gets even more complex since, for example, coordination and depen-
dencies of multiple teams [3,33] and the distribution of teams (e.g., increased
communication effort) [17,32,33] become relevant. While effort estimation is
well-researched in classical software development and small-scale agile contexts,
little research has investigated this topic in large-scale agile settings [33]. In par-
ticular, how effort estimation is conducted in this context, potential challenges
that can arise, and how they could be addressed have been barely investigated.
Furthermore, settings that do not develop a new product but roll out and cus-
tomize an existing ERP solution have yet to be considered. Thus, we conducted
a case study investigating how effort is estimated within a large agile ERP trans-
formation program. We describe the estimation process, present faced challenges,
and make propositions to mitigate them. We defined the following research ques-
tions (RQs) to guide this study:

RQ1: How is effort estimation performed in a large-scale agile ERP program?
RQ2: What effort estimation challenges exist in a large-scale agile ERP program?
RQ3: How can the effort estimation challenges of such a program be addressed?

2 Background and Related Work

While ERP projects are classically organized with traditional approaches [14],
the use of agile methods increases [16,20,35]. The differences between agile and
traditional practices require new approaches to effort estimation [5]. Aligned to
the incremental development in iterations, planning and effort estimation are
done progressively and iteratively [5]. According to several studies investigat-
ing effort estimation in agile contexts [12,28], expert judgment, analogies, and
planning poker are widely used techniques. The most commonly used unit for
estimating is story points [12,27,31]. Next to studies investigating how effort esti-
mation is conducted in agile software development, authors have studied existing
challenges [13,21]. Those challenges include, for example, large project sizes and
different understandings of requirements. In addition, Mallidi and Sharma [21]
identified mitigation propositions to challenges in story point estimations, such
as support by tools and Scrum Masters. Zia et al. [37] propose a framework

72 F. Tobisch et al.

to overcome challenges, and Tanveer et al. [30], who investigated multiple agile
teams, focused on improving effort estimation, e.g., by tracking estimates.

Scaling agile practices adds complexity to effort estimation as, for instance,
coordination and dependencies of multiple teams must be considered [3,33]. Sev-
eral researchers have studied planning and effort estimation in large-scale and
global agile software development to gain more insights. Usman and Britto [32]
compared effort estimation in co-located and distributed agile software devel-
opment. In both cases, expert judgment and story points are used most fre-
quently, and effort is estimated mainly on iteration and release planning levels.
The authors identified the distribution of teams as a cost driver, e.g., due to
the required communication effort. Evbota et al. [11] investigated planning in
a large-scale agile organization and identified challenges related to doing long-
term estimates, requirement size, unclear requirements, and team commitment.
Moreover, inefficient estimation events and unclear requirements were issues.
Usman et al. [33] investigated effort estimation in a large-scale agile project.
The authors found that the estimation is carried out in a two-stage process using
expert judgment, estimating requirements more granularly in the second stage.
Furthermore, the authors identified that the distribution of development teams
and the requirement size and scope influence the estimation accuracy. Bick et
al. [3] studied coordination challenges and misaligned planning in a development
unit combining agile and traditional approaches. The effort is estimated on two
levels: rough estimates on the inter-team level and highly granular estimates on
the team level, which are adjusted if required. Core issues were a lack of depen-
dency awareness, in-transparent estimates, and misalignment between top-down
and bottom-up estimations. The authors propose, e.g., to hold cross-team plan-
ning workshops or unit-wide retrospectives. Finally, Kula et al. [15] investigated
factors affecting on-time delivery in a scaled agile setting and highlighted, e.g.,
task and technical dependencies.

As presented, effort estimation in large-scale agile contexts was the subject
of several studies. While Usman and Britto [32] focus on the impact of hav-
ing distributed teams, other authors investigated effort estimation as part of
related topics like coordination [3], planning [11] or on-time delivery [15]. Only
Usman et al. [33] place a primary focus on effort estimation in large agile envi-
ronments. Still, the authors [33] primarily investigate factors influencing the
estimation accuracy instead of considering challenges in the effort estimation
process and how practitioners can address those. Overall, empirical research
providing detailed insights into estimation in scaled agile settings is still little
[33], particularly on the potential challenges and related mitigations. Also, effort
estimation in the context of large agile ERP projects, which, in contrast to the
settings investigated so far [3,11,15,32,33], do not develop or maintain a product
but roll out and customize an existing solution, has yet to be investigated.

3 Methodology

We conducted a holistic single-case study [36] and analyzed the collected data
to answer our RQs. We chose this research methodology as case studies are a

Investigating Effort Estimation in Large Agile ERP 73

means to explore a “contemporary phenomenon within its real-life context” [36],
like effort estimation in a scaled agile ERP roll-out program. To ensure a rigorous
research design, we followed the guidelines of Runeson and Höst [25]. The case
selection was intentional and aimed to identify a case typical for a large-scale
agile ERP roll-out. The case program applies agile methods at scale as multiple
agile teams work together on customizing and developing new functionalities for
the ERP solution [10]. We conducted 16 interviews with 20 experts with various
roles from all companies collaborating in the program (see Table 1).

Table 1. Interview partners

Interview No. Alias Company Role Large-Scale Agile
Experience (years)

1 E1 SoftwareCo Agile Coach, Scrum Master 6–10

2 E2 SoftwareCo Project Manager 6–10

3 E3 SoftwareCo Solution Architect 3–5

4 E4 EnergyCo Developer 6–10

5 E5 EnergyCo Product Owner 1–2

6 E6 EnergyCo Product Owner 1–2

7 E7 SoftwareCo Product Manager 3–5

8 E8 ConsultCo Program Leadership support 6–10

9 E9 EnergyCo Product Owner 6–10

10 E10 EnergyCo Developer 3–5

11 E11 EnergyCo Scrum Master 3–5

12 E12 EnergyCo Business Contact 1–2

13 E13 SoftwareCo Solution Architect 3–5

14 E14 ConsultCo Program Leadership support 6–10

15 E15 SoftwareCo Solution Architect 6–10

15 E16 EnergyCo Product Manager, Product Owner 6–10

15 E17 EnergyCo Business Process Expert 3–5

16 E18 EnergyCo Solution Architect 6–10

16 E19 EnergyCo Product Manager 3–5

16 E20 EnergyCo Scrum Master 6–10

We conducted the case study between November and December 2022, mainly
via semi-structured interviews. At the beginning of each interview, we ensured a
shared understanding of relevant concepts (e.g., large-scale agile software devel-
opment). Two researchers participated in each interview to enhance observer
triangulation [25]. All interviews followed the same outline. First, we asked ques-
tions regarding the interviewees’ experience and role within the program. Second,
we asked questions exploring the program’s effort estimation process. Third, we
asked about the challenges experienced related to effort estimation within the
program. The questions of the last two sections were open, allowing the intervie-
wees to go into detail. We conducted all interviews using videoconferencing tools,
recorded, and transcribed them. Next to the interviews, we included documents
like presentations to facilitate the triangulation of data sources.

74 F. Tobisch et al.

The collected data was analyzed and coded following the guidelines of Miles
et al. [22] and Saldaña [26], applying a two-cycle approach and a combination
of deductive and inductive coding. We resolved conflicts through discussion and
mutual consent to increase the results’ validity. In case of uncertainties regarding
the data interpretation, we contacted the interviewees to resolve ambiguities.

4 Results

In the following, we present the results of our case study.

4.1 Context

The case study was conducted within a large transformation program at a Ger-
man energy company (EnergyCo). After a merger, this program aims to stan-
dardize the ERP systems of the affected organizations by introducing a standard
ERP cloud solution of a German software provider (SoftwareCo). Next to pro-
viding the ERP solution, SoftwareCo actively supports the program’s leadership
and implementation. In addition, a consulting company (ConsultCo) supports
the program leadership. In total, 350 people are involved. The program applies
an approach designed by SoftwareCo, supporting customers during the Prepa-
ration, Realization, Deployment, and Roll-out of the ERP solution. We focused
on the program’s Preparation and Realization Phase, in which agile practices
are applied. The program’s overall transformation time scope is five years (E8),
including roll-outs in several hundred sub-companies of EnergyCo, each planned
for 15 months. The program performs multiple roll-outs in parallel (E8, E9).

The program consists of the Program Leadership, Scrum teams grouped into
Workstreams, and Integration and Technology teams. The Program Leadership
is responsible for the program organization and coordination, progress monitor-
ing, and steering. Implementation and customization tasks are performed by 20
Scrum teams, grouped into ten different Workstreams, each responsible for a busi-
ness area (e.g., Reporting). Each Workstream has a designated Product Man-
ager, acting as the link to the Program Leadership, providing assistance, tracking
progress, and managing dependencies to other Workstreams. Each Scrum team
consists of seven to twelve members: a Product Owner (PO), defining and pri-
oritizing the Backlog and accepting work done, a Solution Architect, two to five
team members responsible for technical design and implementation, and two to
five team members responsible for documentation, functional specifications, and
testing. A Scrum Master is coaching and supporting the team. Multiple cross-
functional Integration and Technology teams support the Scrum teams in topics
like training, change, or identity management.

4.2 Effort Estimation Process

This section describes the case program’s effort estimation process (see Fig. 1)
to answer our first RQ.

Investigating Effort Estimation in Large Agile ERP 75

The Preparation Phase. This phase is performed at the end of a year to pre-
pare for the Realization Phase in the upcoming year (E6, E9, E10, E16). Next to
organizational preparations like staffing, the sub-companies, whose transforma-
tion is planned for the next year, gather Requirements, reflecting their custom
needs for the ERP system based on the standard functionalities (E2, E7, E9,
E10, E16, E18). The identified Requirements are then classified (E18), depend-
ing on whether they are part of the standard solution, require customization,
must be developed (“gaps”), or are non-functional, are approved, and prioritized.
According to E13, this classification influences the effort required as “gaps [...]
normally are related to real developments and not only to customizing or chang-
ing settings on the systems. So it’s more to do for these objects and more to test
and also to document.” An initial backlog is created (E16), and its items are
assigned to the Workstreams. This backlog forms the basis for the following year
(E6, E9, E10, E16) and the initial effort estimations in the Roadmap Planning
(E5, E9, E19).

Roadmap Planning. This event happens once for each rollout sub-company
(E1, E4, E5, E10, E11, E19). The effort for the prioritized Requirements from
the initial backlog is estimated in person days (E1, E4, E13, E20). The persons
involved in the planning event discuss the Requirements and agree on a rough
estimate (E1, E2, E4, E6–8, E13, E16) based on experience and gut feeling.
To simplify the estimation process, only a few people participate (E14), usually
including the Product Manager(s), PO(s), Solution Architect(s), and some IT
members of the responsible Workstream(s). The resulting Product Backlog, with
prioritized and estimated Requirements, is the basis for the Realization Phase.

Fig. 1. Estimation process at the case program

76 F. Tobisch et al.

The Realization Phase. This phase lasts nine months, split into three so-called
Waves (E8). A Wave consists of three regular Sprints, in which Requirements are
implemented, and a fourth one to test them and plan the next Wave (E11, E13).
The effort is estimated in the Wave Planning, Sprint Planning, and Product
Backlog Refinement by the Scrum teams (E1–20). POs are not actively estimat-
ing in these events but prioritize Backlog items, moderate the estimation, and
support from a business perspective (E5–7, E9, E11, E15, E18). Estimations are
done in normalized story points. One story point equals one person day (eight
hours), and a “full” team member implementing Requirements has a capacity of
13 story points per Sprint. All teams use expert judgment to estimate.

Wave Planning. The first Wave Planning takes place before the Realization
Phase officially begins. The second and third Wave Planning occur in the last
Sprint of the first and second Wave. The basis for the first Wave Planning is the
roughly estimated and prioritized Requirements in the Product Backlog. Each
Requirement is broken down into n Work Packages (E1–20), functional subsets a
team can implement in one Wave (E4), and estimated by the team responsible for
it. Each Requirement’s initial estimate is divided among the n Work Packages,
based on their complexity, risk, and effort, by comparing them (E2, E5, E7). The
teams adjust the Work Package estimates if the Requirement’s estimate is too
high or too low (E7, E14). Then, the Work Packages are allocated to the three
Waves and ranked based on their priority in the so-called Roadmap Plan. Each
Work Package must have a brief description, an effort estimation, and a depen-
dency overview. In the second and third Wave Planning, the Roadmap Plan is
refined. During each Wave Planning, the Work Packages of the upcoming Wave
are further broken down into Work Items, complete and working functional sub-
sets that a team can implement in one Sprint (E2, E4, E11). This breakdown
into n Work Items and their estimation is performed the same way as the break-
down of Requirements (E1, E5, E7). The Work Item estimates, adjusted if the
Work Package’s effort was under- or overestimated, are the most accurate. The
Work Items are then ranked based on priority and allocated to the three Sprints
within the Wave, the so-called Wave Plan (E1, E2, E5, E7). In the following
Sprint Plannings, the Wave Plan is refined. Depending on the Sprint allocation,
each Work Item must have an initial effort estimation, dependency overview,
and a brief or functional description. Each Wave Planning results in an updated
Product Backlog, an updated Roadmap Plan, and a Wave Plan for the upcoming
Wave. After each Wave Planning, each Scrum team’s PO presents their planned
Wave to all other POs to discuss dependencies and potential changes.

Sprint Planning. During this event, at the beginning of each Sprint, the whole
Scrum team discusses and (re-)plans the Sprint (E1–20). The Work Items defined
during the Wave Planning serve as a starting point, are discussed in detail, and
then refined (e.g., ranking, allocated Sprint, estimation, description). The result
of each Sprint Planning is an updated Sprint Backlog and Wave Plan.

Product Backlog Refinement. At least one six-hour refinement meeting is
held in each Sprint. The teams adjust the estimations, prioritization, and break-
down into Work Packages or Items. Further, the teams discuss and estimate new
Requirements (E3, E4, E7, E9, E12, E15, E19). This event ensures quick reaction

Investigating Effort Estimation in Large Agile ERP 77

to changes, that dependencies and wrong estimates are addressed, and that the
Product Backlog is up-to-date (E3, E4, E7, E9, E12, E15, E19). Some teams have
multiple, shorter refinements (E2, E11) or use their daily meetings (E20).

Tool Support. The primary tool used in the context of effort estimation within
the program is designed by SoftwareCo and used as “single source of truth”
(E2, E3, E5, E7, E9, E13, E15), e.g., for estimate and backlog documentation.
Based on this tool, ConsultCo built an Excel reporting dashboard to visualize
metrics and program progress (E1, E8, E14, E17). Excel is also used to document
Requirements, including their estimation (E5–7, E9, E11, E16, E19, E20).

4.3 Effort Estimation Challenges

To answer our second RQ, we investigated the effort estimation challenges in
the case program. We identified 14 challenges (C1–C14), which at least three
interviewees mentioned [6] (see Table 2). This limitation is intended to ensure
the criticality of the found challenges.

Table 2. Effort estimation challenges

Challenges Experts

Project setting
(C1) Project setting characterized by a fixed, large program time frame and tight budget
restricts estimations, causing inaccurate initial estimates.

E2, E4, E10,
E11, E13, E20

(C2) Time restrictions for estimating requirements contradict the time-consuming estimation
process, making estimates inaccurate.

E2, E7, E9,
E11–13, E16

(C3) Inappropriate tool support in the form of complexity, inflexibility, and a lack of supporting
features make the requirement breakdown process, planning, and documentation of estimates
difficult.

E7, E9, E13

(C4) Monitoring of estimates and actual effort is difficult due to the program’s complexity and
size, lacking transparency, and requirement size.

E1, E8, E14

Collaboration
(C5) Lacking commitment to contribute to the estimation, e.g., due to resistance towards agile,
estimations being seen as overhead, and lacking confidence in estimating, complicates estimating.

E1, E2, E6, E9,
E11

(C6) Distribution of program leads to language barriers that hinder understanding requirements
correctly and virtual meetings that complicate making estimates.

E1, E3, E5

(C7) Missing correct and common understanding of requirements, including quality criteria and
scope, between individuals, teams, and workstreams complicates estimating.

E6, E7, E9, E10,
E14

(C8) Considering dependencies to other teams, workstreams, and systems to estimate accurately
is difficult, especially if unknown.

E2–5, E9, E13,
E19

Expertise
(C9) Unavailability of experts involved in the estimation process on a team level hinders it. E3, E5, E7, E13
(C10) Lack of knowledge and experience of individuals regarding effort estimation make
accurate estimations difficult.

E2, E5, E7, E12,
E13

(C11) Neglection of relevant factors in initial estimations, e.g., dependencies, non-functional
requirements, or the limited focus on requirement complexity during budget planning, hinder
accurate estimation.

E1, E10, E13

Information deficit
(C12) Information deficit in initial estimation of requirements, especially in the beginning, due
to their size, potential dependencies, and uncertainty, makes estimating difficult.

E4, E6, E14

(C13) Unclear and incomplete specifications in functional descriptions of requirements make
estimating difficult.

E1, E3, E5, E8,
E11, E13–15,
E18, E19

(C14) Unforeseen changes e.g., implementation problems, ad-hoc requirements, timeline
changes, or personnel changes, complicate estimating.

E5, E9, E11,
E12, E15, E17

78 F. Tobisch et al.

We grouped the challenges into four categories: Program setting, Collaboration,
Expertise, and Information deficit. Most challenges are related to the Program set-
ting and Collaboration. The most frequently mentioned challenge is Unclear and
incomplete requirement specifications (C13), which do not provide sufficient infor-
mation about what has to be implemented and estimated and, thus, hinder accu-
rate estimations of Work Packages and Items. E15 illustrates the challenge with
an example: “We are just handed over some sentences, [...] as an example, we need
to have that button in blue. But we do not know where does that button now need
to be positioned? What functionality does that button have?”

4.4 Propositions to Mitigate Effort Estimation Challenges

To answer our third RQ, we reviewed academic literature and our interview data
to identify mitigation propositions addressing the presented effort estimation
challenges. In total, we found 19 propositions (M1–19), presented in Table 3.

Table 3. Mitigation propositions and addressed challenges

Mitigation Propositions C1–14

(M1) Adding a buffer in case of uncertainty can help mitigate potential
unknown efforts, upcoming changes, unclear or incomplete specifications (E14),
and avoid too strict planning, especially for initial high-level estimations (E16).

C12–14

(M2) Pre-implementation phase to check requirements in detail, including their
quality, can help enhance specifications (E3) and collect input for initial
estimations. The pre-phase can also support considering relevant factors early
on, e.g., dependencies, and establishing a shared, correct understanding of
requirements, potentially reducing the time needed to estimate. Likewise, the
literature recommends such a pre-phase with the customer [20].

C1, C2, C7,
C8, C11–13

(M3) Maintaining a list of dependencies, e.g., between teams, facilitates
considering them when estimating (E4, E19). Documenting each involved
party’s understanding of a requirement can also support a shared understanding
(E10). Literature confirms the dependencies’ relevance when estimating [3,30].

C7, C8

(M4) Deep dive sessions and workshops to clarify requirements and their
implementation can help identify dependencies early, establish a correct, shared
understanding (E5, E10, E16), collect information for requirements’ initial
estimations (E9), and enhance specifications (E5, E16). The knowledge gained
can shorten the time required for estimating. Having the customer (i.e., the
sub-companies) present in the meetings can help resolve ambiguities [31].
Tanveer et al. [30] argue that developing a shared understanding is often the
most crucial. Overall, communication can greatly influence effort estimation
[18].

C1, C2, C7,
C12, C13

(M5) Early and continuous communication between all levels helps clarify
uncertainties (E19), collect information (E4), and establish a correct, shared
understanding of requirements. Teams should proactively seek help for
estimating (e.g., experts (E5), training) or in case of language barriers (E5).
Likewise, Lenarduzzi [18] highlights communication’s impact on the effort
estimation process. The exchange about dependencies makes affected parties
aware of them (E5, E19) and supports their discovery [3]. Overall, regular and
open communication can mitigate difficulties due to time and budget
restrictions (E10).

C1, C6–10,
C12, C13

(continued)

Investigating Effort Estimation in Large Agile ERP 79

Table 3. (continued)

Mitigation Propositions C1–14

(M6) Events to recap on learnings and document those, like Sprint Reviews,
can improve next iterations. Such events can motivate and improve teams’
commitment, support gaining knowledge and experience (E12) [11], reduce the
impact of unavailable experts, and help consider relevant factors in the
estimation in the future. Literature also recommends feedback sessions [1].

C5, C9–11

(M7) Guidelines and standard estimates for tasks uniform across all teams like
documentation and testing can reduce the time required for estimating, do
foster a shared understanding (E10) and do not require high knowledge and
experience (E7), nor experts. Likewise, Tanveer et al. [30] propose to define
standards.

C2, C7, C9,
C10

(M8) Considering the effort of organizational and process factors and not only
directly associated with the implementation can support estimating accurately.
Considering who must be involved and, thus, communicate (E14) can help
consider all relevant factors, like dependencies. Research [1,30,31] recommends
considering aspects that affect the estimation, like developers’ experience,
optimistic estimators, and all activities [31], e.g., testing [27].

C8, C11

(M9) Involving experts with experience in estimating effort and the ability to
react to unforeseen in the estimation process can help inexperienced teams
estimate, learn it (E12, E13), and motivate them. Experts also have the
experience to react to unforeseen changes (E12) and speed up the estimation
(E7). Moreover, involving experts can foster a correct, shared understanding of
the estimated requirements (E4, E9) and support management in initial
estimations (E12). Likewise, the literature highlights the relevance of experts
[28] and, for example, suggests actively involving Scrum Masters, fostering, e.g.,
appropriate estimation techniques [21].

C2, C5, C7,
C9–11, C14

(M10) Normalizing story points to person days can help ensure everyone has a
reference to the unit, giving the teams more confidence in estimating and
increasing their commitment (E2). Normalization can reduce the need for
respective knowledge or experts. Generally, a clear and standardized definition
of story points within the project should be ensured [13].

C5, C9, C10

(M11) Planning requirements for an appropriate time frame can increase the
limited estimation accuracy of requirements caused by the program setting
(E19). More details about requirements can be available later (E9). Research
confirms the difficulty of estimating requirements for large time frames [21,33]
but recommends sufficient lead time to identify, e.g., dependencies, early [3].

C1, C8, C11,
C12

(M12) Platforms and meetings to identify dependencies can increase the
estimation accuracy. Regular exchange between Workstreams and teams can
help avoid neglecting relevant factors, like dependencies, when estimating
(E2–4, E13). Likewise, literature proposes cross-team workshops or
retrospectives [3].

C8, C11

(M13) Support and motivation by Scrum Masters and Agile Coaches during the
estimation process can help increase understanding, motivation, and acceptance
of working and estimating in an agile way (E2) and reduce the impact of
unavailable experts. Efforts by these roles can also help improve the quality of
requirements’ functional descriptions (E8). Likewise, Mallidi and Sharma [21]
recommend support by Scrum Masters, e.g., to foster empowerment and
self-organization.

C5, C9, C10,
C13, C14

(continued)

80 F. Tobisch et al.

Table 3. (continued)

Mitigation Propositions C1–14

(M14) Automation enhances tool support (E7), reduces complexity and time
required for estimating, and increases transparency, which makes monitoring
estimations and efforts easier (E1, E8). Automation, e.g., initial estimates or
analogies, as suggested by literature [1,15,30], can reduce the dependence on
experts, knowledge, experience, and resistance. Enhanced tools could discover
dependencies automatically (E3). Automation tools should be easy to use [30].
To prevent teams from not actively discussing, initial estimates can be used as
a stimulus only [30].

C2–5, C8–10

(M15) Tool support like virtual whiteboards (E7) ease estimating, reducing the
time needed and making it attractive for teams. Such tools ease collaboration
despite local distribution, and documenting estimates supports monitoring.
Collaboration and visualizations via tools can foster a shared understanding
and help discover and record dependencies [11]. Literature agrees that features
that visualize, e.g., proposed estimates, can support the estimation [30].

C2–8, C11

(M16) Tracking of actual efforts needed to implement requirements can help
improve future estimates and understand reasons for delays (E7, E8). In
addition, such tracking is the basis for monitoring. Literature confirms that
accuracy metrics, e.g., actual effort, can improve the overall planning process
[30].

C4

(M17) Supporting estimation techniques like Planning Poker or Silent Grouping
[24] can simplify estimating (E4), reduce resistance and required time, foster
discussions, and contribute to a shared, correct, and complete understanding of
requirements (E4, E14). Increased understanding mitigates experts’
unavailability. In distributed settings, such techniques can help overcome
language barriers. The technique should be chosen based on project size and
teams’ experience [21].

C2, C5–7, C9,
C10

(M18) T-shirt sizes as an estimation unit can simplify the estimation, ensuring
everyone has a reference and understands the unit (E3). Improved
understanding and a simplified process lower the need for experts and
knowledge and reduce the time needed. T-shirt sizes also exclude controlling
teams on the story point level, potentially increasing their commitment (E3).
Also, literature [13] proposes using well-defined, objective size measurements.

C2, C5, C9,
C10

(M19) Agile metrics and keeping a record of estimates can help to track
estimates, and improving them can motivate teams. Learning from past
estimates and metrics, e.g., velocity, can reduce the need for experts and foster
learning. This proposition is also recommended by literature [21,30].

C4, C5, C9,
C10

4.5 Evaluation of the Proposed Mitigations

Our evaluation aimed to assess to which degree practitioners agree with our
propositions and collect qualitative insights into their opinions. Twelve experts
who participated in our initial interviews evaluated our proposed mitigations in
three semi-structured interviews and via a survey. We asked the participants to
which degree they agreed with each proposition using a five-point Likert scale
[19] and to provide qualitative feedback. We coded the qualitative data consistent
with the coding in our case study. Figure 2 illustrates the evaluation results.

Investigating Effort Estimation in Large Agile ERP 81

Fig. 2. Evaluation results of the mitigation propositions

The experts agreed with most propositions (M1, M3–15, M19). M13 received
the highest agreement, followed by M15. The evaluation results of M1 and M2
diverged. Despite most experts agreeing with Adding a buffer in case of uncer-
tainty (M1), some disagreed, expressing concerns, e.g., regarding their lack of
traceability. Also, the opinions regarding a Pre-implementation phase to check
requirements in detail (M2) diverged. While most experts think such a phase
is valuable, several disagree. One expert claims that “if you spend too much
time over talking about design and not going forward, then you can also lose a
lot of time.” M18, the use of T-shirt sizes as an estimation unit, received the
lowest agreement. While some respondents see T-shirt sizes as useful, e.g., point-
ing out the potential to simplify the estimation process for team members and
the potential usefulness in an early phase, i.e., for higher-level estimates, others
have a different opinion. These experts criticise, e.g., the imprecise nature and
the additional work required to relate the estimates to budget resources.

5 Discussion

Next, we answer our RQs by discussing our study’s key findings and limitations.

5.1 Key Findings

To shed light on how scaled-agile ERP programs estimate effort (RQ1), we
investigated the effort estimation process within our case program. The pro-
gram estimates effort at three levels with increasing granularity and decreasing

82 F. Tobisch et al.

time scope. A selected group performs the initial, rough estimation of high-level
requirements, building the basis for the roadmap and following estimations. The
Scrum teams are responsible for the more accurate estimations of the more gran-
ular functional sub-sets of the requirements, with medium to short-term time
scopes. Also, Usman et al. [33] and Bick et al. [3] report on estimation processes
in scaled agile settings with two phases building on each other. Large require-
ments are estimated roughly by a selected group [3], and teams estimate highly
granular requirements more accurately during Sprint Plannings [3,33]. Our case
program estimates low-level requirements iteratively and refines estimates regu-
larly. Likewise, Bick et al. [3] found that the teams adjust estimates if required.
Compared to classical ERP roll-outs [14], our case program estimates effort pri-
marily in story points, typical for agile contexts [12,21,27]. Like in other small
[27] and large agile settings [32,33], expert judgment is used to estimate. Over-
all, as described by Bick et al. [3], our case program’s effort estimation approach
combines long-term with agile aspects.

To answer RQ2, which effort estimation challenges exist in a large agile ERP
program, we investigated the challenges our case program had to deal with con-
cerning effort estimation. Our case program struggled with several challenges
(C1, C2, C5, C6, C8, C9, C11-14), which were already reported as challeng-
ing or as factors that negatively influence estimation accuracy in other agile
(e.g., [21,27,30,31]) and large-scale agile settings [3,11,15,32,33]. In line with
this finding, Sandeep et al. [27] confirm that effort estimation in agile settings
is challenging and Usman et al. [33] found that project scale complicates it fur-
ther. The main challenge in our case program is unclear or incomplete require-
ment specifications (C13), hindering accurate estimation of the required effort,
which multiple authors report [11,27,31,33]. In addition, we identified challenges,
which, to the best of our knowledge, are barely or only partly reflected in exist-
ing studies of (scaled) agile settings (C3, C4, C7, C10). For example, we found a
lack of knowledge and experience in estimating (C10) to be a challenge. Tanveer
et al. [30], e.g., only report estimation experience being considered when esti-
mating, Mallidi and Sharma [21] highlight its relevance, and Evbota et al. [11]
mention that the practitioners in their scaled agile study had lacking expertise
in estimating.

For answering our third RQ, we reviewed related literature and our inter-
viewee data to identify mitigation propositions to address the found effort esti-
mation challenges. Many of our propositions perceived as valuable align with
agile values and principles [2] as they foster communication and collaboration
(e.g., M4), transparency (e.g., M14), and continuous improvement and learning
(M6). In general, open and early communication [35] and continuous feedback
[20] are success factors for agile ERP projects. Having exchange opportunities
(e.g., M4 & M5) and sufficient tool support (M15) can increase time efficiency
(C2), help identify dependencies (C8), counteract the restrictive program set-
ting (C1), and, ultimately, increase estimation accuracy. These insights align
with other researchers’ findings that tools can positively influence estimation
accuracy [30] and that cross-level exchange is helpful regarding dependencies [3]

Investigating Effort Estimation in Large Agile ERP 83

in scaled agile settings. Our results show that, in particular, Scrum Masters and
Agile Coaches can support the estimation process by assisting and motivating
teams (M13). These findings reinforce Mallidi and Sharma [21], who highly rec-
ommend involving Scrum Masters, and Usman et al. [31], who claim that lacking
the guidance of Scrum Masters can affect estimation accuracy negatively.

5.2 Limitations

We applied the assessment scheme of Runeson and Höst [25] to address the fol-
lowing potential validity threats. To mitigate threats to construct validity, we
collected data from multiple sources (e.g., documents next to the interviews)
to achieve data triangulation, gathered insights from interviewees with diverse
roles and experiences, and clarified any ambiguity with the interviewees. Data
triangulation also helped to address possible threats to internal validity. To mit-
igate threats to reliability, three researchers designed the interview questions
to minimize reliance on any individual. Moreover, we made the data analysis
and coding transparent by conducting them aligned to guidelines [22,26] and
describing them. In regard to external validity, our findings are specific to the
case program. However, the comprehensive description of our case program and
the estimation process allows for an understanding of how, e.g., the identified
challenges, relate to this context and may also be relevant in other programs.

6 Conclusion and Future Work

Our research was motivated by a need for more empirical studies on effort esti-
mation in scaled agile contexts, highlighting existing challenges and approaches
to mitigate those. In particular, settings that do not develop a new product but
roll out and customize a standard ERP solution have yet to be considered. To
make a first step towards filling this gap, we conducted a holistic single-case
study at a large agile ERP transformation program to identify how effort is
estimated in such programs. We presented identified challenges, proposed how
to mitigate them, and evaluated those propositions. The case program com-
bines long-term with agile aspects. The effort estimation takes place on different
granularity levels, starting with high-level requirements on the roadmap level,
broken down into functional subsets on a medium-time scope and Sprint level. A
requirement’s initial estimate is the basis for the estimations on a more granular
level. Adjustments are made in case of over- or underestimations. Overall, the
estimation accuracy increases with each breakdown step. The main estimation
unit is story points but normalized to person days. While the requirements are
initially estimated by a selected group, Scrum teams do the subsequent estima-
tions. We found multiple effort estimation challenges common for agile and large-
scale agile settings. The most mentioned effort estimation challenge is unclear
and incomplete requirement specifications (C13). Overall, the evaluation partic-
ipants agreed with most of our mitigation propositions. In particular, support
from Scrum Masters and Agile Coaches (M13) was seen as valuable in counter-
acting existing challenges. Future research could validate our findings and test

84 F. Tobisch et al.

their applicability in other large agile ERP projects, scaled agile projects devel-
oping new products, or other agile organizations. Additional evaluations with
practitioners could confirm the identified challenges. The reported mitigation
propositions could be applied in practice to confirm their effectiveness.

Acknowledgments. This research is part of a bigger research project between TUM
and SAP SE under the SAP@TUM Collaboration Lab and has been supported by SAP
SE funding. The authors thank Thomas Röder for his support.

References

1. Basten, D., Sunyaev, A.: Guidelines for software development effort estimation.
Computer 44(10), 88–90 (2011)

2. Beck, K., et al.: Manifesto for Agile Software Development (2001). https://
agilemanifesto.org. Accessed 12 Apr 2024

3. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in
large-scale software development: a case study of planning misalignment in hybrid
settings. IEEE Trans. Softw. Eng. 44(10), 932–950 (2017)

4. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. Syst. Softw. 81(6), 961–971 (2008)

5. Cohn, M.: Agile Estimating and Planning. Pearson Education, London (2006)
6. Coplien, J.: Software Patterns: Management Briefs. Cambridge University Press,

Cambridge (1996)
7. Digital.ai: 16th Annual State of Agile Report (2022). https://info.digital.ai/

rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf.
Accessed 12 Apr 2024

8. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

9. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012)

10. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14358-3_1

11. Evbota, F., Knauss, E., Sandberg, A.: Scaling up the planning game: collaboration
challenges in large-scale agile product development. In: Sharp, H., Hall, T. (eds.)
XP 2016. LNBIP, vol. 251, pp. 28–38. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33515-5_3

12. Fernández-Diego, M., Méndez, E.R., González-Ladrón-De-Guevara, F., Abrahão,
S., Insfran, E.: An update on effort estimation in agile software development: a
systematic literature review. IEEE Access 8, 166768–166800 (2020)

13. Hacaloglu, T., Demirörs, O.: Challenges of using software size in agile software
development: a systematic literature review. In: Proceedings of the Joint Confer-
ence of the International Workshop on Software Measurement and the Conference
on Software Process and Product Measurement 2018, pp. 109–122 (2018)

https://agilemanifesto.org
https://agilemanifesto.org
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-33515-5_3
https://doi.org/10.1007/978-3-319-33515-5_3

Investigating Effort Estimation in Large Agile ERP 85

14. Ömüral, N.K., Demirörs, O,.: Effort estimation for ERP projects - a systematic
review. In: Proceedings of the Euromicro Conference on Software Engineering and
Advanced Applications 2017, pp. 96–103. IEEE, New York (2017)

15. Kula, E., Greuter, E., Van Deursen, A., Gousios, G.: Factors affecting on-time
delivery in large-scale agile software development. IEEE Trans. Softw. Eng. 48(9),
3573–3592 (2021)

16. Kraljić, A., Kraljić, T.: Agile software engineering practices in ERP implemen-
tation. In: Themistocleous, M., Papadaki, M. (eds.) Information Systems 2019.
LNBIP, vol. 381, pp. 279–290. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44322-1_21

17. Kruchten, P.: Contextualizing agile software development. J. Softw. Evol. Process
25(4), 351–361 (2013)

18. Lenarduzzi, V.: Could social factors influence the effort software estimation? In:
Proceedings of the International Workshop on Social Software Engineering 2015,
pp. 21–24. ACM, New York (2015)

19. Likert, R.: A technique for the measurement of attitudes. In: Archives of psychology
(1932)

20. Madanian, S., Subasinghage, M., Tachiona, S.C.: Critical Success Factors of Agile
ERP Development and Implementation Projects: A Systematic Literature Review.
In: Proceedings of the Pacific Asia Conference on Information Systems 2021, 38,
AIS (2021)

21. Mallidi, R.K., Sharma, M.: Study on agile story point estimation techniques and
challenges. Int. J. Comput. App. 174(13), 9–14 (2021)

22. Miles, M.B., Huberman, A.M., Saldaña, J.: Qualitative Data Analysis: A Methods
Sourcebook, 4th edn. SAGE, Thousand Oaks (2019)

23. Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: architecture to the rescue.
In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K.
(eds.) XP 2014. LNBIP, vol. 199, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14358-3_5

24. Power, K.: Using silent grouping to size user stories. In: Sillitti, A., Hazzan, O.,
Bache, E., Albaladejo, X. (eds.) Agile Processes in Software Engineering and
Extreme Programming 2011. LNBIP, vol. 77, pp. 60–72. Springer, Cham (2011).
https://doi.org/10.1007/978-3-642-20677-1_5

25. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

26. Saldaña, J.: The Coding Manual for Qualitative Researchers, 4th edn. SAGE,
Thousand Oaks (2021)

27. Sandeep, R.C., Sánchez-Gordón, M., Colomo-Palacios, R., Kristiansen, M.: Effort
estimation in agile software development: a exploratory study of practitioners’
perspective. In: Przybyłek, A., Jarzębowicz, A., Luković, I., Ng, Y.Y. (eds.) Lean
and Agile Software Development 2022. LNBIP, vol. 438, pp. 136–149. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-94238-0_8

28. Schweighofer, T., Kline, A., Pavlic, L., Hericko, M.: How is effort estimated in
agile software development projects? In: Proceedings of the Workshop of Software
Quality, Analysis, Monitoring, Improvement, and Applications 2016, pp. 73–80
(2016)

29. Singh, A., Wesson, J.: Evaluation criteria for assessing the usability of ERP sys-
tems. In: Proceedings of the Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists 2009, pp. 87–95.
ACM, New York (2009)

https://doi.org/10.1007/978-3-030-44322-1_21
https://doi.org/10.1007/978-3-030-44322-1_21
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/978-3-642-20677-1_5
https://doi.org/10.1007/978-3-030-94238-0_8

86 F. Tobisch et al.

30. Tanveer, B., Guzmán. L., Engel, U.M.: Understanding and improving effort esti-
mation in agile software development: an industrial case study. In: Proceedings of
the International Conference on Software and Systems Process 2016, pp. 41-50.
ACM, New York (2016)

31. Usman, M., Mendes, E., and Börstler, J.: Effort estimation in agile software devel-
opment: a survey on the state of the practice. In: Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering 2015, pp. 1–10.
ACM, New York (2015)

32. Usman, M. and Britto, R.: Effort estimation in co-located and globally distributed
agile software development: a comparative study. In: Proceedings of the Joint Con-
ference of the International Workshop on Software Measurement and the Interna-
tional Conference on Software Process and Product Measurement 2016, pp. 219–
224 (2016)

33. Usman, M., Britto, R., Damm, L.-O., Börstler, J.: Effort estimation in large-scale
software development: an industrial case study. Inf. Softw. Technol. 99, 21–40
(2018)

34. Van Oosterhout, M., Waarts, E., van Hillegersberg, J.: Change factors requiring
agility and implications for IT. Eur. J. Inf. Syst. 15, 132–145 (2006)

35. Wijaya, H.P.S.F., Kosala, R.R.: Development of an agile ERP framework for imple-
mentation: a systematic literature review. Int. J. Control Autom. 12(5), 1–12
(2019)

36. Yin, R.K.: Case Study Research - Design and Methods, 4th edn. SAGE, Thousand
Oaks (2009)

37. Zia, Z., Tipu, S., Zia, S.: An effort estimation model for agile software development.
Adv. Comput. Sci. App. 2(1), 314–324 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Value and Quality in Agile

The Current State of Operationalizing Value
by Dutch Product Owners in Agile Software

Development

Erik van Daalen1(B) and Rini van Solingen2

1 KWD Resultaatmanagement, Edisonbaan 15, 3439 MN Nieuwegein, The Netherlands
erik.van.daalen@kwdrm.nl

2 Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
d.m.vansolingen@tudelft.nl

Abstract. Agile software development (ASD) teams show their relevance through
the continuous delivery of valuable software. As part of ASD, product owners have
an important role in four activities: determiningmost valuable backlog items, refin-
ing them, and in validating andmeasuring business value. In this researchwe inves-
tigate how product owners operationalize business value delivery in these activi-
ties. We conducted 38 semi-structured in-depth interviews with product owners in
the Netherlands. Overall we found that 55% operationalize value using only two
of the four activities, and that 11% apply all four activities. We furthermore found
that only 26.5% of these product owners use a structured prioritization method,
47% prioritize based on individual preferences and gut feeling, and 26.5% do not
use any prioritization approach at all.We found five different approaches to refine-
ment. The majority (84%) of the product owners state that they validate business
value delivery, while just 24% actually measure business value. Overall we con-
clude that there are opportunities to bring product ownership to a higher level on
operationalizing business value delivery, and that there is a clear need in practice
for better structure and guidance in operationalizing business value delivery to do
so.

Keywords: Operationalizing business value delivery · prioritization product
backlog · agile software development · refining business value · validating
business value · measuring business value · product owner (PO) · agile practices

1 Introduction

Delivering business value by agile software development (ASD) teams is one of the
core concepts within the agile domain [1]. The first principle of the agile manifesto is:
‘Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software’ [2]. However: ‘Satisfying the customer through continuous delivery
of valuable software is not an easy task’ [3], says Jim Highsmith; one of the manifesto’s
authors.

© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 89–106, 2024.
https://doi.org/10.1007/978-3-031-61154-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_6&domain=pdf
http://orcid.org/0000-0003-4544-5209
http://orcid.org/0000-0002-5850-1313
https://doi.org/10.1007/978-3-031-61154-4_6

90 E. van Daalen and R. van Solingen

Scrum is one of themost commonly used agile frameworks [1, 4, 5]. The fundamental
unit of Scrum to deliver business value is a small-sized ASD teamwith a distinct division
of roles. It consists of a scrum master, a product owner, and several developers [5]. The
same is true for the agile teamsmentioned in themost used agile scaling framework, SAFe
[6]. Both frameworks prescribe that the product owner is accountable formaximizing the
value delivered by the ASD team. Ultimately, in ASD the product owner is accountable
for business value delivery to the stakeholders.

To maximize business value delivery, Scrum and SAFe contain a value delivery
process [5, 6]. This process starts with putting requested value items on the product
backlog. In most cases more details are required for the product owner to be able to
prioritize these items. The ASD team also require details to make sure they deliver
the requested value. These details are collected and added during the refinement by the
product owner, in close collaboration with the stakeholders, and the ASD team. Based on
the outcome of the refinement, the product owner can (re)prioritize the product backlog.
The ASD team will take the highest item(s) from the product backlog to be delivered.
Before, during, and after delivery, validation will take place with the stakeholders to
determine if the requested value is delivered. Scrum and SAFe define the validation as a
sprint and iteration review. A review is an informal acceptance of the solution potentially
supported by measuring the value delivery with metrics [7].

The contribution of this research is to explore how product owners operationalize
business value. Our main research question is: ‘How do product owners operationalize
business value delivery with their agile software development teams?’ Based on the
process of value delivery, four sub-questions are identified:

RQ1: How do product owners determine the most valuable backlog items?
RQ2: How do product owners refine business value?
RQ3: How do product owners validate business value delivery?
RQ4: How do product owners measure business value delivery?

This paper is structured as follows: In Sect. 2, we present related work. Section 3
elaborates on our researchmethod. The results of our research are presented in Sect. 4. In
Sect. 5 we report our validity threats. Section 6 discusses our main findings and suggests
future research opportunities. Section 7 summarizes our conclusions.

2 Related Work

In this sectionwe present related literature on the four activities carried out by the product
owner in the value delivery process [5, 6]: 1) prioritization, 2) refinement, 3) validation,
and 4) measurement.

Prioritization
Because there are usuallymore requirements than feasible, givenbudget and schedule

constraints, prioritization by the product owner is important to select the most valuable
product backlog items [8, 9]. Scrum does not prescribe a prioritization method [5],
therefore different methods are used. Hujainah et al. [9] identified 108 prioritization
techniques. Jarzębowicz et al. [10] found that among the 69 Polish IT practitioners
investigated, 4 prioritization methods are used. SAFe recommends a method called Cost

The Current State of Operationalizing Value by Dutch Product Owners 91

of Delay (WSJF) [6]. Rodríguez et al. defined 47 value propositions used in value-based
feature selection by interviewing 21 key stakeholders from 3 companies [11]. Other
research shows that prioritization is only partly understood [8, 12, 13].

Refinement
A product backlog item needs to be refined before it can be prioritized, realized,

and delivered [5, 6]. Business value is a broad concept that can be defined differently
depending on the context and perspective, making refinement an essential step in agile.
Not involving stakeholders will cause problems for the ASD team and lead to conflicts
which can in turn lead to not delivering the expected solution and distraction from the
final goal. Refinement is usedwithin value-based software engineering (VBSE) [14–16],
agile software development (ASD) [17, 18], and information system development (ISD)
[12]. Biffl et al. [14] mention that benefits from value are not only monetary, but can also
be economic, social, utilitarian, aesthetic, or ethical [14]. Salleh et al. [15] found in their
systematic mapping study of 143 VBSE studies that there is no commonly accepted
definition of value. 85% of VBSE studies refer to the value definition of Biffl et al.
[14] and Boehm [16]: ‘VBSE brings such value considerations to the foreground so that
software engineering decisions at all levels can be optimized to meet or reconcile explicit
objectives of the involved stakeholders, from marketing staff and business analysts to
developers, architects, and quality experts, and from process and measurement experts
to project managers and executives.’

Chakraborty describes three important aspects of refinement: knowledge transfer,
trust, and mental models/cognition [19]. Knowledge transfer is to overcome conflicting
interpretations. This can be achieved by a continuous dialogue between the different
stakeholders [19]. Trust can be increased by exchanging different points of view between
stakeholders. The purpose of a sharedmental model is to create a common understanding
between product owner, stakeholders that request value, and the ASD team [19]. Deemer
et al. stated that refinement contributes to preparing for the future and is part of continuous
product development [20]. Palmer mentioned that the product owner has an explicit role
in refinement [21]. Masood et al. [22] identified that refinement is done collectively with
the entire team, but sometimes only between the product owner and the team lead.

Validation
It is important to check if the team is building the right product; this is calledvalidation

[7, 14, 15]. To make sure stakeholders get the requested value, it is important to validate
before, during, and after realization. Within Scrum the sprint review is the validation
event which is done amongst the stakeholders, product owner, and the ASD team [5].
Scrum does not prescribe how a sprint review is carried out, or which methods and
techniques to use for review and validation [5].

Measurement
Research has been carried out on the formal measurement of business value delivery.

Kupiainen et al. [23], Alahyari [18], Salleh et al. [24], and Sambinelli et al. [25] conclude
that there is a lack of business valuemeasurement methods andmetrics within the area of
agile software development. Kristinsdottir et al. [26], Dingsøyr et al. [1], and Huijgens
et al. [27] conclude that measuring the actual business value delivered is difficult. Some
researchers have made proposals of how to measure business value delivery; Hannay

92 E. van Daalen and R. van Solingen

et al. define benefit points [28], and Hartmann et al. present Net Present Value (NPV),
Internal Rate of Return (IRR), and Return on Investment (ROI) [29].

3 Research Method

To answer our research questions we conducted semi-structured in-depth interviews [30,
31] with 38 product owners in the Netherlands. The product owners can be differenti-
ated in terms of their accountability for business, product, and technical decisions [32].
We used semi-structured interviews to collect data, uncover unexpected perspectives,
elaborate on used practices, and collect insights on how product owners operationalize
business value. We developed an interview protocol [31] to ensure consistency across
the interviews.

The interview protocol contains four sections: 1) introduction, 2) opening question,
3) questions related to the four research questions, and 4) wrap-up. The introduction
contains a very short explanation of the research in order to influence the participants as
little as possible. During the introduction it was explicitly mentioned that the interviews
are anonymous, and explicit approval was requested to record the interview. We kept
our content-related questions to a minimum to allow the participants to give non-biased
input as much as possible. We asked the participants the four research questions and
requested examples, where available. The interview protocol was validated during the
first interview and updated accordingly. In the wrap-up we asked the participants if they
wanted to add anything that had not been touched upon. Furthermore we explained the
follow-up steps after the interview. The interviews were conducted online (video and
audio) via MS Teams, using the recording and automated transcription features. The
interviews lasted between 33 and 81 min (average duration was 62 min). The inter-
views were conducted in Dutch. All transcriptions, coding, initial theme grouping, and
determination of results was also done in Dutch, the native language of all participants
and researchers. The translation of the results from Dutch to English was done while
writing this paper. All interviews were fully transcribed, analyzed, and coded by the first
researcher using reflective thematic analysis to determine patterns and construct themes
[33]. The analysis was cross-checked by the second researcher. To minimize the risk of
incorrect interpretations, a report was also created of each interview and sent to each
participant for confirmation.

To address our research questions, we limited the participants to Dutch native-
speaking product owners only. This was to ensure that we could exclude country-specific
differences between the product owners. Speaking in the native language of the partici-
pants ensures that all nuances and details are covered, and limitations of participants
expressing themselves in a non-native language can be excluded [34]. The validity
consequences of this decision are discussed in Sect. 5.

We used a snowball sampling approach [35] in our personal network to ask connec-
tions to introduce us to 1, 2, or 3 product owners in their organization that we could
interview. This resulted in 38 product owners from 17 organizations, across 10 different
industries [36] (Table 1). The product owner experience of the participants can be found
in Table 2.

The Current State of Operationalizing Value by Dutch Product Owners 93

Table 1. Overview of participating organizations and participants

Organization Industry Participants Number of
Employees

AEO (years)1 Agile
methodology

O01 Travel ID01; ID02;
ID07

5,001–20,000 6–10 Scrum [5];
Kanban [37];
Lean Startup
[38]

O02 Public ID03; ID17;
ID33

>20,001 6–10 Scrum [5];
Kanban [37];
Scrumban [39,
40]

O03 Insurance ID04; ID06 2,001–5,000 6–10 Scrum [5];
Kanban [37];
Own Method

O04 Public ID09; ID13;
ID19

1,001–2,000 6–10 Scrum [5];
Kanban [37]

O05 Banking ID08; ID10;
ID14

>20,001 11–15 Scrum [5];
Kanban [37];
Own Method

O06 Manufacturing ID05; ID16 5,001–20,000 3–5 Scrum [5]

O07 Manufacturing ID15 2,001–5,000 6–10 Scrum [5]

O08 Public ID18; ID20;
ID27

501–1,000 3–5 Scrum [5]

O09 Travel ID21; ID22;
ID24

2,001–5,000 6–10 Scrum [5];
Kanban [37];
Lean Startup
[38]

O10 Manufacturing ID23 <500 11–15 Scrum [5];
Scrumban [39,
40]; Extreme
programming
(XP) [41]

O11 Education ID35 2,001–5,000 1–2 Scrum [5];
Kanban [37]

O12 Public ID12; ID25;
ID26; ID32

1,001–2,000 6–10 Scrum [5];
Kanban [37];
Scrumban [39,
40]; Own
Method;
Extreme
programming
(XP) [41]

O13 Retail (Web
shop)

ID11; ID28;
ID29

2,001–5,000 6–10 Scrum [5];
Kanban [37];
Scrumban [39,
40]

O14 Computer
programming

ID31 <500 6–10 Scrum [5];
Kanban [37]

O15 Consultancy ID30; ID37 5,001–20,000 6–10 Scrum [5];
Kanban [37]

(continued)

94 E. van Daalen and R. van Solingen

Table 1. (continued)

Organization Industry Participants Number of
Employees

AEO (years)1 Agile
methodology

O16 Travel ID34 <500 3–5 Scrumban [39,
40]

O17 Agriculture ID36; ID38 5,001–20,000 1–2 Scrum [5];
Kanban [37]

1AEO = agile experience of the organization

Table 2. Number of years of product owner experience

Number of years of
experience as PO

% Participants

Less than 1 year 0 –

1–2 years 12 32% ID02; ID05; ID07; ID14; ID16; ID17; ID18;
ID25; ID28; ID30; ID35; ID38

3–5 years 21 55% ID03; ID04; ID06; ID08; ID09; ID10; ID11;
ID12; ID19; ID20; ID21; ID23; ID24; ID26;
ID27; ID29; ID31; ID32; ID33; ID34; ID37

6–10 years 5 13% ID01; ID13; ID15; ID22; ID36

4 Results

This section presents the results of how product owners (POs) operationalize business
value in practice. This section is structured according to the four research questions.

4.1 RQ1: How Do Product Owners Determine the Most Valuable Backlog Items?

In the interviewswe found that 26.5% of product owners use a kind of structuredmethod,
47% use individual prioritization, and 26.5% do not use any prioritization method at all
(Table 3).

We determined two structured methods: Weighted Shortest Job First (WSJF) [6] and
Desirability Viability Feasibility (DVF) [42].

Own structured methods are either variants of WSJF or methods that have been
developed completely from scratch within the organization. An example provided by
ID05 in the ‘Own structured method’ category was developed within the organization
and uses five criteria to score an epic or feature. An epic and feature receive points for
each criteria, see Table 4. The sum of all the five criteria determines the priority of an
epic or feature (<10 is priority 5; 10 < = and < 15 is priority 4; 15 < = and < 20 is
priority 3; 20 < = and < 30 is priority 2; > 30 is priority 1).

The Current State of Operationalizing Value by Dutch Product Owners 95

Table 3. Categorization of prioritization

Main category Number of
participants

% Prioritization
method used

Number of
participants

%

Structured
method

10 26.5% Structured
method

5 ¬13%

Own structured
method

5 ¬13%

Individual
prioritization

18 47% Individual list
with criteria

5 ¬13%

Gut feeling 13 34%

Not using
prioritization
method

10 26.5% Not using
prioritization
method

10 26.,5%

Structured method: ID02; ID06; ID13; ID21; ID24. Own structured method: ID01; ID05; ID30;
ID32; ID37. Individual list with criteria: ID23; ID31; ID33; ID34; ID38. Gut feeling: ID03; ID10;
ID12; ID15; ID16; ID17; ID18; ID19; ID22; ID25; ID27; ID28; ID29. Not using prioritization
method: ID04; ID07; ID08; ID09; ID11; ID14; ID20; ID26; ID35; ID36.

Table 4. Practice provided by ID05: prioritization score table

Scoring criteria Very low (0) Low (3) Medium (5) High (7) Top (10)

Financial value
(recurring/year)

< 0.25 me 0.25–0.5 me 0.5–1.0 me 1–2.5 me > 2.5 me

Non-financial
value

None Limited Significant Substantial Very high

Link to vision No link Limited Part
contribution

Substantial Direct link,
fully
contributing
to vision

Problem
ownership

Problem is
not
recognized as
priority at
management
level

Problem
recognized as
priority at
management
level, but
resources are
not available
for the
duration of the
realization

Problem
recognized as
priority at
management
level,
resources are
identified but
not yet
available for
the duration of
the delivery

Problem
recognized as
priority at
management
level,
resources are
identified and
available for
the duration
of the delivery

Problem
recognized as
top priority at
management
level,
resources are
identified and
available for
the duration
of the delivery

Implementation Hypothesis:
levers will be
difficult to
implement
and will
require a long
time

Hypothesis:
levers will be
difficult to
implement but
may be done
fast if business
environment
changes

Hypothesis:
levers will be
implementable
in the medium
term

Hypothesis:
levers will be
easy to
implement but
require
significant
time

Hypothesis:
levers will be
easy to
implement in
a short time

96 E. van Daalen and R. van Solingen

For the five participants that use an individual list with criteria, we are not able to
objectively determine any shared criteria.

4.2 RQ2: How Do Product Owners Refine Business Value?

Based on what the product owners mentioned, we determined five different refinement
approaches. The main differences between these approaches is which stakeholders the
product owner involves in refinement, andwhen the knowledge is transferred to thewhole
ASD team. Knowledge transfer is explaining the expected value by the stakeholders to
the ASD team to create a shared mental model. Based on this we determine five different
approaches:

1. Product owners refine with a sub-group of the ASD team.
2. Product owners refine with a sub-group of the ASD team and others.
3. Product owners refine on their own.
4. Product owners refine with a group of specialists that are not ASD team members.
5. Product owners refine directly with the whole ASD team.

We counted the number of times an approach was mentioned by the product owner,
see Table 5. We conclude that 79% refine before the whole ASD team is involved. 21%
directly involve the whole ASD team in the refinement.We also conclude that 65% of the
product owners involve the whole or a few members of the ASD team in the refinement.

ID01 uses a value model to create a shared understanding of what the stakeholder
requesting the value expects. This model consists of four components: 1) main hypoth-
esis, 2) sub hypothesis, 3) behavior (actions, thinking, feeling), and 4) metrics. Figure 1

Table 5. Used refinement approaches

Refines business
value before going to
the whole ASD team

Number of
participants

% Refinement
approaches used

Number of
participants

%

Yes 30 79% 1. Sub-group of
ASD team

11 29%

2. Sub-group of
ASD team and
others

2 5%

3. Product owner
alone

8 21%

4. Other group (no
team members)

9 24%

No 8 21% 5. Together with
whole ASD
team

8 21%

1. Sub-group from ASD team: ID06; ID12; ID18; ID21; ID22; ID23; ID25; ID27; ID29; ID31;
ID32. 2. Sub-group from ASD team and others: ID03; ID30. 3. Product owner alone: ID02;
ID08; ID09; ID14; ID16; ID24; ID26; ID28. 4. Other group (no team members): ID05; ID11;
ID15; ID17; ID34; ID35; ID36; ID37; ID38. 5. Together with whole ASD team: ID01; ID04;
ID07; ID10; ID13; ID19; ID20; ID33.

The Current State of Operationalizing Value by Dutch Product Owners 97

contains an example. It starts with the hypothesis, which explains which stakeholder
requires the business value and what is expected. The hypothesis still needs to be val-
idated. It also describes the expected behaviors from the stakeholder that will use the
delivered business value. It also defines how to measure the hypothesis.

Fig. 1. Practical example of a value model

4.3 RQ3: How Do Product Owners Validate Business Value Delivery?

We found that the interviewed product owners use a variety of 17 different valida-
tion methods: panel of stakeholders (ID06, ID09, ID13, ID26, ID31, ID36, ID38), paid
panel of stakeholders (ID25), technical validation (ID05, ID06, ID09, ID10, ID19, ID24,
ID34), wireframes (ID06, ID25), employee surveys (ID09), automatic testing (ID12),
prototyping (ID01, ID13), roadshows (ID13), user experience days (ID15), EPIC slides
(ID17), mockups (ID20), AB testing (ID22, ID24), UX laboratory (ID22, ID24), guerilla
testing (ID22, ID24), Google Analytics (ID26), integration testing (ID28), and customer
visits (ID23).

We found that 84% of the product owners validate value and 16% do not validate
value, see Table 6.

Table 6. Validate or not

Validates value Number of
participants

% Participant IDs

Yes 32 84% ID01; ID04; ID05; ID06; ID07; ID08; ID09; ID10;
ID11; ID12; ID13; ID15; ID16; ID17; ID18; ID20;
ID21; ID22; ID24; ID25; ID26; ID27; ID28; ID29;
ID30; ID32; ID33; ID34; ID35; ID36; ID37; ID38

No 6 16% ID02; ID03; ID14; ID19; ID23; ID31

98 E. van Daalen and R. van Solingen

One product owner mentioned using five different validation approaches (ID01):

1) They validate the hypothesis, determined when making the value concrete, via
interviews with internal users and customers.

2) During the design sprint they validate the prototype (also mentioned by ID15).
3) The ASD team carries out a test with a few customers or internal users.
4) During realization they make use of an ambassador group of internal users.
5) They validate with customers after putting the solution into production.

4.4 RQ4: How Do Product Owners Measure Business Value Delivery?

We found that 24% of the product owners state that they use metrics to measure business
value, whereas 76% of the product owners state that they do not use metrics to measure
value, see Table 7.

Table 7. Measuring business value

Using metrics to
measure value

Number of
participants

% Participant IDs

Yes 9 24% ID01; ID04; ID05; ID06; ID14; ID16; ID21;
ID22; ID36

No 29 76% ID02; ID03; ID07; ID08; ID09; ID10; ID11;
ID12; ID13; ID15; ID17; ID18; ID19; ID20;
ID23; ID24; ID25; ID26; ID27; ID28; ID29;
ID30; ID31; ID32; ID33; ID34; ID35; ID37;
ID38

We found that the 24% that use metrics measure these after value delivery. Some
of them made estimates upfront during refinement and validation. The product owners
that do use metrics to measure value mentioned some examples of how they measure
business value delivery. The metrics used by ID01 are mentioned in Fig. 1 above.

ID25 developed a valuemonitor, see Fig. 2. Themonitor contains five perspectives of
value: internal customer, external customer, contribution to correct maintenance, inno-
vation, and to the value the department delivers. The score is a scale from zero to five,
whereby zero is no contribution andfive is a significant contribution. Thismonitor is filled
in by the product owner and the ASD team based on feedback from their stakeholders.

The Current State of Operationalizing Value by Dutch Product Owners 99

Fig. 2. Practical example provided by ID25: value monitor

4.5 Main Question: How Do Product Owners Operationalize Business Value
Delivery with Their Agile Software Development Teams?

In Table 8 we provide an overview of the number of activities used by the interviewed
product owners. The four activities of operationalizing business value are: 1) determining
most valuable backlog items, 2) refining expected business value, 3) validating business
value, and 4) measuring delivered business value. We found that 4 of the 38 product

Table 8. Number of operationalizing business value activities used by the 38 product owners

Number of
activities

Operationalizing business value # % Participant IDs

1) Use
struc-
tured
method

2) Refi-
nes

3) Vali-
dates

4) Meas-
ures

4 ✓ ✓ ✓ ✓ 4 10.5% ID01; ID05; ID06; ID21

3 ✓ ✓ ✓ 9 24% ID13; ID24; ID30; ID32;
ID37

✓ ✓ ✓ ID04; ID16; ID22; ID36

2 ✓ ✓ 21 55% ID11

✓ ✓ ID02

✓ ✓ ID07, ID08, ID09, ID10,
ID12, ID15, ID17, ID18,
ID20, ID25, ID26, ID27,
ID28, ID29, ID33, ID34,
ID35, ID38

✓ ✓ ID14

1 ✓ 4 10.5% ID03; ID19; ID23; ID31

Percentages
(yes)

26% 100% 84% 24%

100 E. van Daalen and R. van Solingen

owners use all 4 activities to operationalize business value. The majority of the product
owners (55%) use only 2 activities to operationalize business value. We found that all
product owners refine business value. We found that 84% validate business value. We
found that just 26% use a structuredmethod to prioritize backlog items based on business
value. We also found that just 24% of the product owners use metrics to measure the
delivered business value.

We observed differences between organizations but also between different product
owners in the same organization.

5 Validity Threats

To evaluate the quality of our research, we reflect on the threats to the four validity
dimensions: construct validity, internal validity, external validity, and reliability [30, 31,
43]. We mainly followed the validity guidelines from Runeson and Höst [43].

Construct validity concerns to what extent the operational measures being studied
truly represent what the researcher has in mind and what is investigated according to
the research questions [43]. We created an interview protocol containing all questions
and explanations given to the participant. The interview protocol ensured that the same
questions were asked and a consistent explanation was given to the participants each
time. We used the answers and examples provided by the participant faithfully. When
a participant, for example, stated that they use Scrum, we did not further investigate or
question to which extent Scrum [5] is correctly implemented.

Internal validity concerns causal relations between investigated factors. Our research
explored how product owners operationalize business value and does not aim to asso-
ciate relationships [43]. All four sub-questions were analyzed separately. No causal
relationships between the sub-questions were analyzed.

External validity is concerned with the extent to which our conclusions are valid
outside the population participating in this research [43]. The external validity of our
research is limited. Firstly, an individual product owner does not represent the other
product owners in that organization. We attempt to mitigate this by selecting product
owners from different industries and agile experience of the organization. Secondly, the
included organizations are not representative of other organizations (also not within the
same industry). Thirdly, the interviews are only held with product owners in the Nether-
lands, and are therefore not representative of other countries in Europe or the world. This
is confirmed by the research differences with Polish product owners on prioritization
[10]. Finally, participants have been selected by approaching product owners through
the personal network of the researchers. This resulted in 38 product owners from 17
organizations, within 10 different areas of industry.

Reliability refers to the extent to which data and the analysis are dependent on the
specific researchers [43]. To overcome cultural differences [44] and misinterpretations
[34] of meaning of words, we decided to narrow our research to organizations from the
Netherlands and native Dutch-speaking product owners. All questions and interviews
were held in Dutch. We created an interview protocol based on the research questions.

The Current State of Operationalizing Value by Dutch Product Owners 101

All interviews were conducted online (video and audio) viaMS Teams, using the record-
ing and automated transcription features of MS Teams. The first researcher conducted
the reflective thematic analysis, which was cross-checked by the second researcher. To
minimize the risk of incorrect interpretations, a report was also created of each inter-
view and sent to each participant for confirmation. These approved interview reports
were used to determine the results. All participants have confirmed the content of their
report.

6 Discussing Research Questions and Future Research

RQ1: How Do Product Owners Determine the Most Valuable Backlog Items? We
found three main categories of prioritization: structured method (26.5%), individual
prioritization (47%), and not using any prioritization (26.5%). Kukreja et al. [45] carried
out research in 2011 and concluded that various ad hoc prioritization techniques are used
and that there is a need for structured methods. We argue that a structured prioritization
method or framework will contribute to the effectiveness of delivering business value,
confirmed by Hujainah et al. [9] and Jarzębowicz et al. [10] and Kantola et al. [46],
for product owner teams. We argue that these low figures for using a structured method
and only three methods can be explained by the fact that Scrum does not prescribe any
prioritization method, and SAFe recommends only one method: WSJF [6]. We also
conclude that methods identified by Hujainah et al. [9] do not appear to find their way
to product owners.

We suggest carrying out further empirical research into which structured methods
can support product owners to optimize business value delivery.

RQ2: How Do Product Owners Refine Business Value? We found that all 38 partic-
ipants used refinement methods. The results further confirm the work of Palmer [21],
where all product ownersmentioned that they carry out refinement. Furthermorewe have
identified five different approaches to how product owners refine value. The advantage
of approaches 1, 2, and 5 in relation to approaches 3 and 4 is that the understanding of
business value by the ASD teammembers is likely to be higher, because the whole ASD
team, or certain members thereof, are participating in building up the mental model, and
in knowledge transfer from the stakeholders that request the business value. We found
four approaches where 79% refine the business value before the whole ASD team gets
involved. And one approach (21%) that directly involves the whole ASD team. This
finding is interesting as it contradicts the agile approach, which stresses the importance
that ASD team members are in direct contact with their stakeholders (fourth principle
of the agile manifesto [2]).

Future research is required to determine what the pros and cons are of these
approaches, and if these approaches can contribute to more involvement of business
stakeholders as suggested by Alami et al. [47] and Hoda et al. [48].

102 E. van Daalen and R. van Solingen

RQ3: How Do Product Owners Validate Business Value Delivery? We found that
there is no one common way of carrying out validation, and that a variety of different
methods are used. Scrum [5] mentions the sprint review but does not prescribe how to
perform this. Salleh et al. [15] identified nine studies in the VBSE principles & practices
VB verification and validation. We argue that validation methods appear to be context-
specific and that product owners should therefore have more knowledge of when and
how to use which specific validation method.

The extent to which product owners are aware of the broad availability of such
methods, their applications, strengths and weaknesses, and how product owners are
trained to apply them appropriately, is a topic for future research.

RQ4: How Do Product Owners Measure Business Value Delivery? We see that
just 24% of the product owners explicitly measure value. Our research confirms the
conclusions of Kristinsdottir et al. [26], Dingsøyr et al. [1], and Huijgens et al. [27] that
measuring delivered business value is difficult.

We suggest investigating if a measurement system can be developed for measuring
business value delivery, taking into consideration, for example, the 47 value propositions
mentioned by Rodríguez et al. [11].

We suggest research to investigate how measuring business value can contribute to
increasing the delivery of business value, prove that the delivered value relates to the
investment, and on how to select and use the most suitable metrics.

Main Research Question: How Do Product Owners Operationalize Business Value
Delivery with Their Agile Software Development Teams? We found that only 10.5%
of the product owners are using all four activities of operationalizing business value, 24%
are using three activities, the majority (55%) are using only two activities, and 10.5%
use just one activity. There could be an explanation for these low figures because the
‘ideal product owner’ does not exist. Kadenic et al. [32] come to the conclusion that
the ideal product owner does not exist or that the responsibility of the product owner
cannot be carried out by one person. Based on these findings and research sub-questions,
we argue that operationalizing business value delivery by product owners in practice
requires improvement. Organizations should invest in further development of the skills
and capabilities of the product owner, which should contribute to increasing the level of
business value delivery. This is also supported by the research of Kantola et al. [46].

7 Conclusion

The extent to which product owners operationalize business value delivery differs con-
siderably in practice. These differences are not only observed between organizations but
even between different product owners in the same organization. In order to improve
business value delivery from the product owner perspective, there is a clear need for bet-
ter structure and guidance in operationalizing business value delivery in daily practice.

The Current State of Operationalizing Value by Dutch Product Owners 103

This is also confirmed by the lack of structured methods or frameworks used by these 38
product owners. Some local practices have been found in the interviews, yet only a few
product owners operationalized business value delivery in a repeatable and structured
way.

Furthermore we conclude that, in practice, operationalizing business value delivery
is not in place. Only four product owners are applying all four activities to operationalize
business value delivery. We found large differences in perspectives among product own-
ers between validating and measuring value. The majority (84%) of the product owners
in this research do claim to validate value, yet measuring value is done only by a few of
them (24%). A structured method to operationalize business value could as such bridge
this gap between perceived validation and collecting quantitative evidence.

In general we conclude that there are several opportunities to take product ownership
to the next level in operationalizing the delivery of business value in practice.

References

1. Dingsøyr, T., Lassenius, C.: Emerging themes in agile software development: introduction
to the special section on continuous value delivery. Inf. Softw. Technol. 77, 56–60 (2016).
https://doi.org/10.1016/j.infsof.2016.04.018

2. Beck, K., Beedle, M., Bennekum, A.V., Cockburn, A.: The agile manifesto (2001). https://
agilemanifesto.org/

3. Highsmith, J.A., Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley
Professional, Boston (2002)

4. Digital.ai AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
5. Sutherland, J., Schwaber, K.: The Scrum Guide: The Definitive Guide to Scrum: The Rules

of the Game (2020)
6. SAFe 6.0 Framework. In: Scaled Agile Framework. https://scaledagileframework.com/.

Accessed 5 Jun 2023
7. Balci, O.: Validation, verification, and testing techniques throughout the life cycle of a

simulation study. Ann. Oper. Res. 53, 121–173 (1994). https://doi.org/10.1007/BF02136828
8. Kukreja, N., Payyavula, S.S., Boehm, B., Padmanabhuni, S.: Value-based requirements pri-

oritization: usage experiences. Procedia Comput. Sci. 16, 806–813 (2013). https://doi.org/10.
1016/j.procs.2013.01.084

9. Hujainah, F., Bakar, R.B.A., Abdulgabber,M.A., Zamli, K.Z.: Software requirements prioriti-
sation: a systematic literature review on significance, stakeholders, techniques and challenges.
IEEE Access 6, 71497–71523 (2018). https://doi.org/10.1109/ACCESS.2018.2881755

10. Jarzębowicz,A., Sitko,N.:Communication anddocumentation practices in agile requirements
engineering: a survey in polish software industry. In: Wrycza, S., Maślankowski, J. (eds.)
SIGSAND/PLAIS 2019. LNBIP, vol. 359, pp. 147–158. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29608-7_12

11. Rodríguez, P., Urquhart, C., Mendes, E.: A theory of value for value-based feature selection in
software engineering. IEEE Trans. Softw. Eng. 48, 466–484 (2022). https://doi.org/10.1109/
TSE.2020.2989666

https://doi.org/10.1016/j.infsof.2016.04.018
https://agilemanifesto.org/
https://scaledagileframework.com/
https://doi.org/10.1007/BF02136828
https://doi.org/10.1016/j.procs.2013.01.084
https://doi.org/10.1109/ACCESS.2018.2881755
https://doi.org/10.1007/978-3-030-29608-7_12
https://doi.org/10.1109/TSE.2020.2989666

104 E. van Daalen and R. van Solingen

12. Racheva, Z., Daneva, M., Sikkel, K., Buglione, L.: Business value is not only dollars – results
from case study research on agile software projects. In: Ali Babar, M., Vierimaa, M., Oivo,M.
(eds.) PROFES 2010. LNCS, vol. 6156, pp. 131–145. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13792-1_12

13. Bakalova, Z., Daneva, M., Herrmann, A., Wieringa, R.: Agile requirements prioritization:
what happens in practice and what is described in literature. In: Berry, D., Franch, X. (eds.)
REFSQ 2011. LNCS, vol. 6606, pp. 181–195. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19858-8_18

14. Biffl, S.,Aurum,A.,Boehm,B., et al.:Value-based software engineering. Springer,Heidelberg
(2006). https://doi.org/10.1007/3-540-29263-2

15. Salleh, N., Mendes, E., Mendes, F., et al.: Value-based software engineering: a systematic
mapping study (2022). https://dx.doi.org/10.2139/ssrn.4148149

16. Boehm, B.: Value-based software engineering. ACM SIGSOFT Softw. Eng. Notes 28, 4
(2003). https://doi.org/10.1145/638750.638775

17. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012). https://doi.org/
10.1016/j.jss.2012.02.033

18. Alahyari, H., Svensson, R.B., Gorschek, T.: A study of value in agile software development
organizations. J. Syst. Softw. 125, 271–288 (2017). https://doi.org/10.1016/j.jss.2016.12.007

19. Chakraborty, S., Sarker, S., Sarker, S.: An exploration into the process of requirements elici-
tation: a grounded approach. J. Assoc. Inf. Syst. 11, 1 (2010). https://doi.org/10.17705/1jais.
00225

20. Deemer P, Benefield G, Larman C, Vodde B (2012) A lightweight guide to the theory and
practice of scrum. https://scrumprimer.org/scrumprimer20_small.pdf

21. Palmer, K.: Product owner agile systems engineering strategies. INCOSE Int. Symp. 23,
346–355 (2013). https://doi.org/10.1002/j.2334-5837.2013.tb03023.x

22. Masood, Z., Hoda, R., Blincoe, K.: Real world scrum a grounded theory of variations in
practice. IEEE Trans. Softw. Eng. 48, 1579–1591 (2022). https://doi.org/10.1109/TSE.2020.
3025317

23. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in agile and lean software develop-
ment–a systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143–163
(2015). https://doi.org/10.1016/j.infsof.2015.02.005

24. Salleh, N., Mendes, F., Mendes, E.: A systematic mapping study of value-based software
engineering. In: 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 404–411. IEEE (2019). https://doi.org/10.1109/SEAA.2019.00067

25. Sambinelli, F., Borges, M.A.F.: The Strategies to increase customer value in agile: a survey
of Brazilian software industry. J. Inf. Syst. Eng. Manag. 4(2), em0090 (2019). https://doi.org/
10.29333/jisem/5889

26. Kristinsdottir, S., Larusdottir, M., Cajander, Å.: Responsibilities and challenges of product
owners at spotify - an exploratory case study. In: Bogdan, C., Gulliksen, Jan, Sauer, Stefan,
Forbrig, Peter, Winckler, Marco, Johnson, Chris, Palanque, Philippe, Bernhaupt, Regina, Kis,
Filip (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 3–16. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44902-9_1

27. Huijgens, H., Van Deursen, A., Van Solingen, R.: The effects of perceived value and stake-
holder satisfaction on software project impact. Inf. Softw. Technol. 89, 19–36 (2017). https://
doi.org/10.1016/j.infsof.2017.04.008

https://doi.org/10.1007/978-3-642-13792-1_12
https://doi.org/10.1007/978-3-642-19858-8_18
https://doi.org/10.1007/3-540-29263-2
https://dx.doi.org/10.2139/ssrn.4148149
https://doi.org/10.1145/638750.638775
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.jss.2016.12.007
https://doi.org/10.17705/1jais.00225
https://scrumprimer.org/scrumprimer20_small.pdf
https://doi.org/10.1002/j.2334-5837.2013.tb03023.x
https://doi.org/10.1109/TSE.2020.3025317
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1109/SEAA.2019.00067
https://doi.org/10.29333/jisem/5889
https://doi.org/10.1007/978-3-319-44902-9_1
https://doi.org/10.1016/j.infsof.2017.04.008

The Current State of Operationalizing Value by Dutch Product Owners 105

28. Hannay, J.E., Benestad, H.C., Strand, K.: Agile uncertainty assessment for benefit points and
story points. IEEE Softw. 36, 50–62 (2018). https://doi.org/10.1109/ms.2018.2875845

29. Hartmann D, Dymond R (2006) Appropriate agile measurement: using metrics and diagnos-
tics to deliver business value. AGILE 2006 (AGILE’06). https://doi.org/10.1109/AGILE.200
6.17

30. Yin, R.K.: Case Study Research and Applications. Sage, Thousands Oaks (2018)
31. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-

Researchers. Wiley-Blackwell, Hoboken (2002)
32. Kadenic,M.D., de Jesus Pacheco,D.A.,Koumaditis,K., et al.: Investigating the role of product

owner in scrum teams: differentiation between organisational and individual impacts and
opportunities. J. Syst. Softw. 206, 111841 (2023). https://doi.org/10.1016/j.jss.2023.111841

33. Braun, V., Clarke, V.: Thematic Analysis: A Practical Guide. SAGE, Los Angeles (2022)
34. Hofstadter, D.R., Sander, E.: Surfaces andEssences:Analogy as the Fuel and Fire of Thinking.

Basic books, New York (2013)
35. Goodman, L.A.: Snowball sampling. Ann. Math. Stat. 148–170 (1961). https://doi.org/10.

1214/aoms/1177705148
36. United Nations. International Standard industrial classification of all economic activities

(ISIC), Rev. 4. United Nations, New York (2008)
37. Kniberg, H., Skarin, M.: Kanban and Scrum: making the most of both. C4Media, s. l (2010)
38. Reis, E.: The lean startup. Penguin, London (2011)
39. Ladas, C.: Scrumban: and Other Essays on Kanban Systems for Lean Software Development.

Modus Cooperandi Press, Seattle (2008)
40. Reddy, A.: The Scrumban [R]evolution: Getting the Most Out of Agile, Scrum, and Lean

Kanban. Addison-Wesley, New York (2016)
41. Beck, K.: Extreme Programming eXplained: Embrace Change. Addison-Wesley, Reading

(2000)
42. Design Thinking. In: IDEO U. https://www.ideou.com/pages/design-thinking. Accessed 7

Aug 2023
43. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software

engineering. Empir. Softw. Eng. 14, 131 (2009). https://doi.org/10.1007/s10664-008-9102-8
44. Meyer, E.: The Culture Map: Decoding How People Think, Lead, and Get Things Done

Across Cultures, International Edition, 1st edn. PublicAffairs, New York (2015)
45. Kukreja, N., Boehm, B., Payyavula, S.S., Padmanabhuni, S.: Selecting an appropriate frame-

work for value-based requirements prioritization. In: 2012 20th IEEE International Require-
ments Engineering Conference (RE), pp. 303–308 (2012). https://doi.org/10.1109/RE.2012.
6345819

46. Kantola, K., Vanhanen, J., Tolvanen, J.: Mind the product owner: an action research project
into agile release planning. Inf. Softw. Technol. 147, 106900 (2022). https://doi.org/10.1016/
j.infsof.2022.106900

47. Alami, A., Krancher, O.: How Scrum adds value to achieving software quality? Empir Softw.
Eng 27, 165 (2022). https://doi.org/10.1007/s10664-022-10208-4

48. Hoda, R.: Self-organizing agile teams: A grounded theory (2011). https://openaccess.wgtn.
ac.nz/articles/thesis/Self-Organizing_Agile_Teams_A_Grounded_Theory/16985179

https://doi.org/10.1109/ms.2018.2875845
https://doi.org/10.1109/AGILE.2006.17
https://doi.org/10.1016/j.jss.2023.111841
https://doi.org/10.1214/aoms/1177705148
https://www.ideou.com/pages/design-thinking
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/RE.2012.6345819
https://doi.org/10.1016/j.infsof.2022.106900
https://doi.org/10.1007/s10664-022-10208-4
https://openaccess.wgtn.ac.nz/articles/thesis/Self-Organizing_Agile_Teams_A_Grounded_Theory/16985179

106 E. van Daalen and R. van Solingen

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Impact of the Kanban Maturity Model
on a Team’s Agile Transformation:
Tripling Throughput and Elevating

Quality in Three Months

Jacek Trzesicki1 , Krzysztof Marek1(B) , and Adam Przybylek2

1 Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
krzysztof.marek@pw.edu.pl

2 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Abstract. Agile transformations have been a significant challenge since
the beginning of the agile movement, with numerous researchers and
practitioners suggesting various structured approaches and guidelines.
The Kanban Maturity Model (KMM) is a relatively new approach that
focuses on assessing the current maturity level of an organisation, with
an emphasis on a spectrum of Kanban practices. This paper presents
the initial results of applying the KMM as a guide for subsequent steps
in Kanban implementation and agile transformation. The exploratory
case study describes the application of the KMM in the agile transfor-
mation of a software development team within a midsize organisation.
Despite previous unsuccessful attempts to implement Scrum, the adop-
tion of KMM facilitated a rapid and successful implementation of the
Kanban Method. Within three months, the team’s throughput tripled,
and the quality of the developed software improved significantly. The
results suggest that the KMM can be successfully used as an effective
guideline for agile transformation of software development teams.

Keywords: Agile Transformation · Kanban Maturity Model ·
Kanban · Case Study

1 Introduction and Related Works

Kanban in software engineering [1] remains a relatively new approach compared
to Scrum or XP, despite its origins in Lean principles [2] and inspiration from the
Toyota Production System’s efficiency practices from the 1960 s [3]. In 2010, this
idea specifically adapted to software engineering was described in a book by J.
Anderson [4]. Despite being introduced significantly later than well-established
methodologies like Scrum, which gained prominence [5] following the Agile Man-
ifesto, Kanban’s adoption has steadily increased as surveys have shown [6].

With the growth of different agile approaches, the need for measurement of
maturity in implementing agile or other agile-oriented practises has emerged [7].
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 107–116, 2024.
https://doi.org/10.1007/978-3-031-61154-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_7&domain=pdf
http://orcid.org/0009-0000-8520-9302
http://orcid.org/0000-0003-0199-4839
http://orcid.org/0000-0002-8231-709X
https://doi.org/10.1007/978-3-031-61154-4_7

108 J. Trzesicki et al.

This need has taken the form of various Maturity Models (MM). The initial
approaches [7–9] were often based on the Capability Maturity Model [10] and
its successors. Newer and often more specialised MM have proposed their own
classification suitable for their specific domain. During the comparison study over
Agile MM by A. Schmitt et al. [8] researchers grouped the models into different
categories based on their focus. The first group was the generic Agile MM [11–
13], which did not focus on a specific Agile practice, methodology, or framework.
The second group concentrated on specific agile approaches, such as Scrum MM
[14]. The last group focused on engineering practices associated with Agile, such
as testing. The Kanban Maturity Model (KMM) [15], described by J. Anderson
and T. Bozheva in their 2018 book, can be classified as another specialised MM.
The authors specify seven Maturity Levels (ML) from ML zero, “Oblivious”, to
ML six, “Build for Survival”. A set of “Consolidation” and “Transition” practices,
culture indicators, and expected outcomes are described for each ML.

To the authors’ knowledge, no known research paper presents a methodolog-
ical case study on the application of the KMM in agile transformation. However,
recent case studies of different MMs are available. A case study described by N.
Freedrikson Arifin et al. [16] applies the Scrum MM to assess the current Scrum
ML of the investigated software development team (SDT) and proposes recom-
mendations for future improvements. Another case study applies both Scrum
MM and Agile MM to SDTs in a start-up environment in work by H. Muzakkiy
and Y. Sucahyo [17], and to teams in state-owned banks in Indonesia in a case
study presented by H. Zelfia et al. [18]. This case study explores the use of the
KMM as guidelines for the agile transformation of a SDT within a mid-sized
cybersecurity organisation. In this short paper, we aim to lay the ground for
future KMM studies and its broader applications reaching beyond single teams.
To guide our work, we have defined the following research questions:

RQ1: How can the Kanban Maturity Model be used to facilitate the agile
transformation of a software development team?

RQ2: What are the benefits of implementing Kanban practices using the
Kanban Maturity Model as guidelines?

RQ3: What are the challenges of applying Kanban Maturity Model guidelines
to the agile transformation of a software development team?

2 Method and Setting

This case study follows the guidelines from P. Runeson and M. Höst for report-
ing case study research in software engineering [19]. The time frame for the case
study was set from March 2023 to the end of June 2023. It describes the appli-
cation of the KMM in the agile transformation of a SDT within a medium-sized
company based in Poland. The investigated team consists of six experts in one
or several software domains such as front-end, back-end, cloud infrastructure,
system architecture and cyber security. The software developed by the team is
integrated with other parts of the platform, requiring continuous communication
and collaboration with other company departments such as Product Team, Cus-
tomer Success, Customer Support, Technical Operations and Cyber Security. In

Impact of the Kanban Maturity Model on a Team’s Agile Transformation 109

the previous year the team has experienced an unsuccessful agile transformation
using Scrum. Some practices, such as Daily Scrums (however irregular), work in
Sprints, but without Planning or Review meetings have remained. A few possi-
ble reasons for the failed Scrum transformation have been identified. The SDT
received tasks from multiple different departments as well as further developed
their application. Some of this work needed to be delivered outside of the stan-
dard Sprint cycle. Additionally, the multiplicity of work sources made finding a
suitable Product Owner and managing the Product Backlog very difficult. The
last identified factor was the smaller level of support for the change within the
SDT at the time. This, coupled with the inexperienced Scrum Master led to an
unsuccessful transformation. At the time of the case study, the support for the
change was much stronger. The SDT openly stated that they were overwhelmed
with work and are open to new solutions. The delivery of application releases was
significantly delayed. The quality of the products delivered was below the expec-
tations of both stakeholders within the company and the customers themselves.
As a result, a strong willingness to change was present both within the SDT,
connected departments and top management. The new transformation was ini-
tiated and supported by the team consisting of Chief Information Officer, Head
of Engineering, Product Manager and Agile Coach. After analysis of the current
situation and results of previous attempts, the Kanban Method was selected as
a way to address multiple sources of work and limit work in progress without
the need to introduce new roles to the SDT.

The data collection was based on direct data obtained from systems used
within the organisation and the team’s observation performed by the researchers
during the 3month Kanban implementation period. To allow for triangulation of
the results the data based performance analysis focused on two separate aspects:
the team’s productivity and the software quality. The team’s productivity has
been measured by its throughput using data from the Jira system used by the
team. The software quality was measured by examining the number of bugs
reported by the company’s customers through a Help Desk tool, following the
release of new software. These results were compared to the incidence of bugs
reported during the same period in the previous year. The company releases
major updates in a stable yearly cycle, allowing for this comparison.

During the first month of the study, the initial assessment of the team’s matu-
rity was performed using the KMM and the team’s performance prior to agile
transformation was measured. Additionally, the performance data of the investi-
gated team was recorded for future analysis. In the next month, the transforma-
tion started following the KMM as guidelines for introduced practices within the
team. For the first 3months after the start of the Kanban implementation, direct
data on the team’s productivity were collected every month. During the data
collection phase, the research team actively engaged with the SDT to assess the
effectiveness of the agile transformation by using KMM and adjust the actions
according to observed progress and encountered problems.

110 J. Trzesicki et al.

3 Results and Discussion

The initial team’s assessment performed with the use of the KMM indicated
that the team was applying most of the practices specified on ML 0, called
“Oblivious”, therefore it was classified as this ML. By applying the KMM as
guidelines, consecutive practices were implemented within the team in an order
defined by the KMM. As shown in Table 1 the first month of agile transformation,
April, was focused on introducing remaining ML 0 practices, transitional 0/1 ML
practices (transitional from ML 0 to ML 1), and initial ML 1 practices, “Team
Focused”. The only exception was the introduction of higher ML practices in flow
management and collaboration improvement to facilitate the transformation.
After visualising work-related information through detailed tickets and the use
of avatars to visualise individuals’ workloads, the per-person Work in Progress
(WIP) limits were established, which aimed to balance the workflow and prevent
overloading team members. Establishing basic policies and flow-related metrics,
together with introduced Feedback Loops in the form of Daily Kanban Meetings
and regular Retrospective and Replenishment Meetings allowed for identification
of sources of dissatisfaction and delay, laying the groundwork for future improve-
ment and helping to establish the order of implementation of other practices.

The second month’s goal was to fully reach Kanban ML 1 and to start fur-
ther transformation towards 2 of the KMM, “Customer-Driven”. During this
month, the main focus remained on more advanced visualisation of work, further
improvement in flow management and collaboration. The number of introduced
practises declined from 23 in April to only 12 in May. The reduction in the num-
ber of new practices introduced within the team continued to decline in June to
just 6. The focus of the last month of the case study was to build upon feedback
and data gathered during the previous two months. During the review conducted
with the team members, the newly described problems and proposed solutions
aligned with the further implementation of the KMM. After the rapid adoption
of multiple Kanban practices, the transformation slowed down and focused on
smaller improvements based on built adaptation mechanisms.

The number of observed obstacles remained relatively low despite the rapid
transformation of multiple aspects of the observed SDT, sometimes reaching
beyond the team. The primary challenge was establishing suitable Work-In-
Progress (WIP) limits. Initially, low limits caused frequent task blockages. Rais-
ing these limits to a much higher level did not resolve the issue and impacted
the efficiency of code reviews, but after weeks of experimentation, the team
identified optimal WIP limits, ensuring a smooth flow of work. Another chal-
lenge was the need for cultural change described in the KMM. The emphasis on
transparency and continuous improvement called for a shift towards a culture
of openness and constant evolution within the team. Quickly observed positive
results helped with facilitating the cultural change within the SDT. Lastly, such
a complex transformation impacted the way the SDT interacted with other prod-
uct teams and management not yet implementing Kanban. Despite this, they
were led through a series of Kanban training sessions to help them understand
how to cooperate with the transformed SDT.

Impact of the Kanban Maturity Model on a Team’s Agile Transformation 111

Table 1. The sequence of implementing Kanban practices based on the Kanban Matu-
rity Model within the SDT and their corresponding Maturity Levels (ML).

Visualize Practices ML April May June

Visualize basic work item related information on a ticket 0 x
Visualize work for several individuals by means of an aggregated individual kanban board 0/1 x
Visualize discovered initial policies 0/1 x
Use avatars to visualize an individual’s workload 0/1 x
Visualize the work carried out by a team by means of a team kanban board 1 x
Visualize basic policies 1 x
Visualize progress using a horizontal position on an emergent workflow kanban board 1/2 x
Visualize work types by means of card colors or board rows 1/2 x
Visualize blocked work items, defects, and rework 1/2 x
Visualize work item aging 1/2 x
Limit Work in Progress(WIP) Practices ML April May June
Establish personal WIP limits 0 x
Establish per-person WIP limits 0/1 x
Establish team WIP limits 1 x
Manage Flow Practices ML April May June
Categorize tasks based on the nature of the work and its urgency, importance, and impact 0 x
Define work types based on customer requests 1/2 x
Define basic services 1/2 x
Map upstream and downstream flow 1/2 x
Collect flow-related data (e.g., lead time) 1/2 x
Capture the desired delivery date 1/2 x
Manage defects and other rework types 2 x
Manage aging WIP 2 x
Manage blocking issues 2/3 x
Make Policies Explicit Practices ML April May June
Make the rules for the individual kanban explicit 0 x
Discover initial policies 0/1 x
Define basic policies 1 x
Define flow-related metrics (e.g., lead time) 1/2 x
Define basic service policies 1/2 x
Define policies for managing aging WIP 2 x
Define policies for managing defects and other rework types 2 x
Define basic policies for dependency management 2 x
Feedback Loops Practices ML April May June
Engage in personal reflection 0 x
Conduct Team Kanban Meeting 0/1 x
Conduct Team Retrospective 1 x
Conduct Team Replenishment Meeting 1 x
Conduct Workflow Replenishment Meeting 1/2 x
Conduct Workflow Kanban Meeting 2 x
Conduct Flow Review 2 x
Improve Collaboratively, Evolve Experimentally Practices ML April May June
Identify sources of dissatisfaction 1/2 x
Identify sources of delay 2 x
Revise problematic policies 2 x
Define actions to develop basic understanding of the process and improve flow 2 x

To capture team’s productivity, a single metric in the form of average daily
throughput showing the number of tasks finished by the entire team each work
day has been selected. The team’s average daily throughput, measured before

112 J. Trzesicki et al.

and during the agile transformation is presented in Fig. 1. Data for March 2023
show the average throughput of 1.1 tasks per day for the entire team during
the month before the Kanban implementation started. Data for the next three
months show a steady increase in team’s average daily throughput. In April,
it increased slightly to 1.33 tasks per work day. In May, the result came up to
2.5 tasks per workday, and in the last month of the Kanban implementation, it
reached 3.65 tasks per work day. It can be concluded that during the Kanban
method implementation, a clear upward trend was observed in the number of
tasks completed by the SDT. The results after the first month of agile transfor-
mation already indicates a gradual improvement in the team’s work productivity,
despite the introduction of multiple new practices and additional burden of train-
ing and meetings facilitating the change. The results of the next two months show
a significant increase in throughput resulting in more than a tripling of initial
productivity when compared to the month before the Kanban implementation
has started. This can indicate that the implementation of the KMM practices
during the agile transformation in the SDT had a significant impact on increasing
the number of delivered tasks.

Fig. 1. Software development team’s throughput before and during the agile transfor-
mation between April and July 2023.

To analyse the quality of the delivered software, the number of bugs reported
by the customers using investigated team’s product was assessed from April to
September 2022 and 2023. This data is presented in Fig. 2. Between April and
September 2022, customers of the investigated company reported a total of 42
bugs, whereas in the same period in 2023, only 24 bugs were reported. The
biggest difference between months can be observed after the new full release
at the beginning of July. This is the moment when the main results of work
performed during the investigated agile transformation were released to the end
users. Additionally, by September 2023, only one patch version of the applica-
tion was released, indicating an improvement in the quality of the SDT’s work,
especially in comparison with the previous version of the application, for which
as many as 11 patches were released. This data shows a significant improvement

Impact of the Kanban Maturity Model on a Team’s Agile Transformation 113

in the quality of the delivered software when compared to the same period in
2022. This can indicate additional benefits of the performed agile transformation
in the form of increased quality of delivered software. Additionally, the positive
change in the number of reported bugs disproves the concern that the increase
in productivity comes at the cost of software quality.

Fig. 2. Number of bugs reported by customers from April to September in 2022 and
2023.

4 Conclusions and Future Work

The presented case study investigates the agile transformation of a SDT in a mid-
sized organisation. The transformation used the KMM as guidelines to imple-
ment Kanban within the team. During the case study the team was observed
by researchers, and its performance was measured using productivity and devel-
oped software quality metrics. The gathered results were compared with his-
torical data for the investigated team. During the study the following research
questions were answered:

RQ1: How can the Kanban Maturity Model be used to facilitate
the agile transformation of a software development team? During the
presented successful agile transformation, the KMM was used as a source of
Kanban practices and a guideline for the sequence of their implementation. It is
worth mentioning, that the provided practices should be implemented gradually
with adjustments to the team’s needs and circumstances.

RQ2: What are the benefits of implementing Kanban practices
using the Kanban Maturity Model as guidelines? As a result of the
described Kanban implementation, the productivity of the team tripled and the
quality of the developed software improved compared to the previous month and
the previous year, respectively. Additionally, implementing the Kanban practices
level by level, provides a gradual change, which could result in a smaller nega-
tive impact on team’s productivity when the transformation starts. It also can
provide a clear roadmap for future transformations, aiding in decision-making.

RQ3: What are the challenges of applying Kanban Maturity Model
guidelines to the agile transformation of a software development team?

114 J. Trzesicki et al.

The KMM does not specify the order of implementation for specific practices.
It remains a helpful guideline, not a ready step-by-step implementation plan.
During the described agile transformation, the exact order of practice implemen-
tation was decided based on gathered feedback and observed progress. Instead
of immediate implementation of advanced practices e.g. from ML 2 the practices
were implemented gradually. Our observations suggest that this transformation
still required deep understanding of Kanban practices and adjustments during
implementation. In our opinion, the introduction of advanced flow management
practices from ML 1/2 and ML 2 in the first month helped with work balancing
within the team. A rapid transformation e.g. directly from ML 0 to ML 2 in
KMM remains a matter for future research.

Although the guidelines from P. Runeson and M Höst [19] were followed,
several threats to validity must be taken into consideration. To minimise the
possible influence of human bias in the study, the impact of the described trans-
formation was measured using the number of delivered tasks and reported bugs.
The four-eyes principle and working in pairs were applied to data gathering and
analysis. Furthermore, during the analysed period, no changes to the granularity
of work items and the complexity of bugs or the product were observed. However,
the existence of other hidden factors impacting teams throughout and software
quality can not be excluded. This case study has several limitations for further
generalisation. It focused on a single SDT with only experienced personnel, that
remained unchanged throughout the entire data-gathering period. The appli-
cations of KMM in agile transformation on a larger scale remain a matter for
future research. Together with possible utilisation of KMM in bolstering senior
management’s confidence in the proposed agile transformation. Given that the
research was done and relates to a single case within an organisation, further
research and application of the Kanban Maturity Model in different contexts,
including different team structures, different organisations, sizes of organisations,
industries, and cultures, is required.

Acknowledgements. Name of the organisation and other details not relevant to the
study have been obfuscated due to the strategic nature of the company.

References

1. Anderson, D., Concas, G., Lunesu, M.I., Marchesi, M.: Studying lean-kanban app-
roach using software process simulation. In: Sillitti, A., Hazzan, O., Bache, E.,
Albaladejo, X. (eds.) XP 2011. LNBIP, vol. 77, pp. 12–26. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20677-1_2

2. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison Wesley, Boston, Massachusetts, USA (2003)

3. Huang, P.Y., Rees, L.P., Taylor, B.W.: A simulation analysis of the Japanese just-
in-time technique (with kanbans) for a multiline, multistage production system.
Decis. Sci. 14, 326–344 (1983)

4. Anderson, D.J.: KANBAN - Successful Evolutionary Change for Your Technology
Business. Blue Hole Press, Sequim (2010)

https://doi.org/10.1007/978-3-642-20677-1_2

Impact of the Kanban Maturity Model on a Team’s Agile Transformation 115

5. Sharma, S., Hasteer, N.: A comprehensive study on state of Scrum development.
In: 2016 International Conference on Computing, Communication and Automation
(ICCCA), pp. 867–872. IEEE, Noida (2016)

6. 16th Annual State of Agile Report. https://stateofagile.com/. Accessed 1 Feb 2024
7. Fontana, R.M., Albuquerque, R., Luz, R., Moises, A.C., Malucelli, A., Reinehr,

S.: Maturity models for agile software development: what are they? In: Larrucea,
X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol.
896, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-
0_1

8. Schmitt, A., Theobald, S., Diebold, P.: Comparison of agile maturity models. In:
Franch, X., Männistö, T., Martínez-Fernández, S. (eds.) PROFES 2019. LNCS,
vol. 11915, pp. 661–671. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35333-9_52

9. Tuncel, D., Körner, C., Plösch, R.: Comparison of agile maturity models: reflecting
the real needs. In: 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), (pp. 51-58). IEEE (2020)

10. Team, C.P.: Capability maturity model R© integration (CMMI SM), version 1.1.
CMMI for systems engineering, software engineering, integrated product and pro-
cess development, and supplier sourcing (CMMI-SE/SW/IPPD/SS, V1. 1), 2
(2002)

11. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices:
the agile adoption framework. Innov. Syst. Softw. Eng. 3(3), 203–216 (2007)

12. Proulx, M.: Yet another agile maturity model (AMM)-The 5 levels of Maturity.
Haettu 20, 2011 (2010)

13. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.
Eng. 2(1), 1–26 (2009)

14. Yin, A., Figueiredo, S., Da Silva, M.M.: Scrum maturity model. In: The Sixth
International Conference on Software Engineering Advances (2011)

15. Anderson, D.J., Bozheva, T.: Kanban Maturity Model: Evolving Fit-for-purpose
Organizations. Lean Kanban University Press (2018)

16. Freedrikson Arifin, N., Purwandari, B., Setiadi, F.: Evaluation and recommenda-
tion for scrum implementation improvement with hybrid scrum maturity model: a
case study of a new telco product. In: 2020 International Conference on Informat-
ics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia,
pp. 178-183 (2020). https://doi.org/10.1109/ICIMCIS51567.2020.9354311

17. Muzakkiy, H.A., Sucahyo, Y.G.: Evaluation of scrum framework implementation
with scrum maturity model: a case study of PT XYZ, ABC Division. In: 2023
International Conference on Computer Applications Technology (CCAT), Guiyang,
China, 2023, pp. 41–46 (2023). https://doi.org/10.1109/CCAT59108.2023.00015

18. Zelfia, H., Simanungkalit, T., Raharjo, T.: Comparison of scrum maturity between
internal and external software development: a case study at one of the state-owned
banks in Indonesia. In: 2022 1st International Conference on Information System
and Information Technology (ICISIT), Yogyakarta, Indonesia, pp. 312–317 (2022).
https://doi.org/10.1109/ICISIT54091.2022.9872843

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

https://stateofagile.com/
https://doi.org/10.1007/978-3-319-97925-0_1
https://doi.org/10.1007/978-3-319-97925-0_1
https://doi.org/10.1007/978-3-030-35333-9_52
https://doi.org/10.1007/978-3-030-35333-9_52
https://doi.org/10.1109/ICIMCIS51567.2020.9354311
https://doi.org/10.1109/CCAT59108.2023.00015
https://doi.org/10.1109/ICISIT54091.2022.9872843

116 J. Trzesicki et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

LLM-Based Agents for Automating
the Enhancement of User Story Quality:

An Early Report

Zheying Zhang1(B) , Maruf Rayhan1 , Tomas Herda2 , Manuel Goisauf2 ,
and Pekka Abrahamsson1

1 Tampere University, Tampere, Finland
{zheying.zhang,maruf.rayhan,pekka.abrahamsson}@tuni.fi

2 Austrian Post, Rochusplatz 1, 1030 Vienna, Austria
{tomas.herda,manuel.goisauf}@post.at

Abstract. In agile software development, maintaining high-quality user
stories is crucial, but also challenging. This study explores the application
of large language models (LLMs) to improve the quality of user stories
within the agile teams of Austrian Post Group IT. We developed an
Autonomous LLM-based Agent System (ALAS) and evaluated its impact
on user story quality with 11 participants from six agile teams. Our
findings reveal the potential of LLMs in improving user story quality,
provide a practical example, and lay the foundation for future research
into the broad application of LLMs in a variety of industry settings.

Keywords: User Story Quality · Large language models · Agents

1 Introduction

Effective requirements management ensures software projects deliver products
that meet customer needs and fulfill business goals [1,17]. In agile software
projects, requirements, typically in the form of user stories, are elicited and saved
in the product backlog early in the project for planning and prioritization. They
are discussed and refined with the customers before and during the implemen-
tation. The quality of user stories [1,6–8,10] directly influences the development
cycle’s velocity and the fulfillment of customer expectations. However, ensuring
the completeness, consistency, unambiguity, testability, etc. of user stories, i.e.
good user stories, presents challenges.

As agile methodologies emphasize rapid iteration and adaptability, the poten-
tial of large language models (LLMs) to enhance user story analysis is becoming
increasingly significant. The advanced natural language processing capabilities
of LLMs present a promising potential for automating the improvement of user
story quality. By refining and generating user stories, LLMs can provide substan-
tive assistance to product owners, developers, test engineers, etc. in requirements
management.
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 117–126, 2024.
https://doi.org/10.1007/978-3-031-61154-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_8&domain=pdf
http://orcid.org/0000-0002-6205-4210
http://orcid.org/0009-0004-9065-0169
http://orcid.org/0009-0005-2912-380X
http://orcid.org/0009-0004-6215-3122
http://orcid.org/0000-0002-4360-2226
https://doi.org/10.1007/978-3-031-61154-4_8

118 Z. Zhang et al.

This study investigates the feasibility of leveraging LLM agents to auto-
mate the enhancement of user story quality within agile software development
settings. We implement an Autonomous LLM-based Agent System (ALAS) for
user story quality improvement and report on its initial deployment in a mobile
delivery project at Austrian Post Group IT. By assessing the impact of ALAS
on user story quality in six agile teams within the organization, our findings
contribute to the emerging discussion around AI’s role in agile software develop-
ment, demonstrating a proof of concept for LLM’s potential to address complex
industry challenges.

2 User Story Quality

User stories are short and abstract descriptions to define high-level requirements
[5]. They serve mainly as anchors for future discussion and refinement in the
software development process. A widely accepted template for user stories is:
“As a [role], I want [requirement] so that [benefit]”. This effectively includes the
core elements such as the intended user (role), the desired system functionality
(requirement), and, optionally, the underlying rationale (benefits). Additionally,
every user story should be accompanied by a set of acceptance criteria (AC) that
outline detailed conditions a user story must meet to be considered complete and
acceptable, including functional behavior, business rules, and quality aspects to
be tested. The AC makes a user story more concrete and less ambiguous [5].

Writing good user stories is essential in software projects, as they convey the
needs and perspectives of users and guide the development team in implement-
ing the expected functionalities. Beyond general guidelines for quality in require-
ments engineering, such as ISO/IEC/IEEE 29148-2011 [1] and IREB guidelines
[8], various frameworks include a set of criteria for assessing the quality of user
stories. For example, the INVEST framework [3] is widely used in agile projects
as a guideline for ensuring the quality of user stories. It includes attributes
such as independent, negotiable, valuable, estimable, small, and testable. These
attributes adhere to industry standards [1,8] that ensure user stories are con-
cise, clear, and achievable, and contribute to the success of software development
projects and positive user experiences.

Despite the widespread adoption of user stories and available criteria for
good user stories, the methods for assessing and enhancing their quality are still
relatively limited. Recent research has increasingly focused on leveraging LLMs
to assist in requirements engineering tasks [11]. For example, White et al. [16]
introduced a catalog of prompt patterns for stakeholders to interactively evaluate
the completeness and accuracy of software requirements. Ronanki et al. [14] con-
ducted a comparative analysis between ChatGPT-generated requirements and
those specified by requirements experts from both academia and industry. The
results revealed that LLM-generated requirements, while abstract, are consis-
tently understandable. This indicates the potential of LLMs, like ChatGPT, in
automating various tasks through its NLP capabilities. While interest in applying
LLMs to engineering tasks is growing, research on their industrial implementa-
tion and performance evaluation remains limited. This gap forms the goal of our

LLM-Based Agents for Automating the Enhancement of User Story Quality 119

study, which aims to connect the theoretical potential of LLMs with practical
application to gather feedback from industrial professionals.

3 Implementing an Autonomous LLM-Based Agent
System (ALAS)

An agent-based system’s strength lies in the AI agents’ ability to communicate
and execute tasks, thereby facilitating the automation of software development
tasks. Implementing such a system, is a pivotal step in harnessing LLMs to
assist with requirements management. Our Autonomous LLM-based Agent Sys-
tem (ALAS) was designed to automate AI agents’ collaboration across various
requirements management scenarios. The implementation includes two phases:
task preparation and task conduction. An example of the two phases is illus-
trated in Fig. 2 in Sect. 4.

The task preparation phase aims at formulating prompts, enabling agents to
understand their roles and expected contributions to the task. These prompts
define the actions every agent is expected to perform at each step. There are two
categories of prompts: initial prompts and follow-up prompts, as follows.

Initial Prompti = Profilei + Task + Context + Subtaski , (1 ≤ i ≤ k)
Follow -up Prompti = Subtaski + Responsei-1 , (i > k)

where Profile i: Agent i’s profile; Task : Task to complete; Context : Background informa-

tion where the task is situated; Subtask i: Subtask i; Response i-1: Response produced

after completing Subtaski−1.

The initial prompts (Prompt i, 1≤ i ≤ k) are created by concatenating strings
that describe an agent’s profile, the overall task, its context, and the agent’s
first subtask, as indicated by the ”+” in the equations. This ensures that the k
participating agents understand both their individual roles and their expected
contribution to the overall task completion. After initial prompts familiarize
agents with the task and their roles, the follow-up prompts (Prompt i, i>k)
are dynamically constructed by combining the specific subtask with the output
from the previous subtask. This helps maintain continuity and coherence in the
progression towards completing the overall task.

It is an iterative process to formulate and optimize prompts to ensure agents
communicate effectively to produce the desired output. Various prompt patterns
and techniques can be applied, such as the use of persona pattern [16] to create a
Profilei for each agent, the k-shot prompt [4] to provide instructions or examples
of the desired output, the AI planning [15] to generate a task breakdown plan
and the assign Subtask i to the responsible agent, the fact checklist pattern [16]
to verify the output, etc.

In the task conduction phase, agents dynamically collaborate, using prompts
to guide their actions and execute subtasks. This is an iterative and incremental
process, like what agile teams perform in software projects. Agents sequentially
tackle subtasks by following the structured prompt. The use of the previous

120 Z. Zhang et al.

response in the current prompt ensures that each agent’s response is relevant and
builds upon the previous work. This iterative collaboration is like the daily stand-
ups and sprint reviews in Scrum, where each team member’s work is informed
by the overall sprint progress. At the same time, the prompt structure ensures
that the task evolves dynamically with each agent’s previous response, reflecting
the adaptive and responsive nature of an agile project where plans and tasks
are continuously refined based on ongoing feedback and developments. The final
output is incrementally generated based on the agents’ responses.

4 Experiments

Following the implementation of ALAS, we evaluated its effectiveness in improv-
ing user story quality within agile teams at Austrian Post Group IT. The com-
pany has multiple teams, working synchronously across numerous systems and
applications orchestrated within Agile Release Trains [12]. User stories play an
important role in planning and prioritizing the implementation of these systems,
facilitating communication and collaboration across diverse teams. High-quality
user stories are essential for successful development projects. Recognizing this
criticality, we assess the impact of ALAS on user story quality improvements.

4.1 Setting up Experiments

The experimental setup, i.e. task preparation phase, is an iterative process of
creating and refining prompts that describe a task alongside its context, define
the agents’ profiles, and plan subtasks.

Task and Context of Task. The task aimed to enhance the quality of user sto-
ries for a mobile delivery project, ensuring they meet organizational standards
and align with business objectives. Example user stories are available on the
questionnaire1 used in the evaluation. These user stories required enhancement
in clarity, completeness, correctness, consistency, and relevance to the applica-
tion’s overall functionalities. Specifically, to provide the contextual background
about the task, we added two documents: a minimum viable product (MVP)
document that details the basic features of the mobile delivery application, serv-
ing as a blueprint to guide agents in refining user stories in a way that resonates
with core product features; and a product vision statement, structured using the
NABC (Needs, Approach, Benefit, and Competition) value proposition template
[2]. This document provides a strategic overview of the application, addressing
client’s needs, the proposed solution, client benefits, and unique value proposi-
tions. Together, these two documents equip agents with the necessary technical
and strategic context to align their efforts with the project’s goals.

Agent Profiles. To set up the experiment, Austrian Post Group IT identified
two main focus roles: the product owner (PO) and the requirements engineer
(RE). This led to the creation of two distinct agent profiles. The Agent PO
1 http://tinyurl.com/4veet5me.

http://tinyurl.com/4veet5me

LLM-Based Agents for Automating the Enhancement of User Story Quality 121

understands the vision of the project. It is responsible for managing product
backlog and prioritizing user stories based on business value and customer needs.
This agent ensures user stories align with the overall product strategy and objec-
tives. Agent RE concentrates on the quality of user stories. It ensures user story
description is unambiguous, and the acceptance criteria are measurable. This is
crucial for verifying that the story fulfills its objectives upon implementation.

The agent profiles are designed to reflect the actual functions of POs and
REs in agile teams within the company, developed through an iterative process to
ensure that agents not only understand their specific tasks but also execute them
with a high level of expertise and in a manner that is conducive to collaborative
software development. The profiles include role definition and expectation, key
responsibilities, practical tips, and tone adjustment. An example of the Agent
PO’s profile is illustrated in Fig. 1.

Fig. 1. An example excerpted from the PO profile

Subtasks. After specifying the task and identifying the participating agents, our
next step involves detailing the sequence of interactions between these agents.
To achieve this, we used an AI plan pattern [15] to generate a comprehensive
list of key steps and subtasks for task completion, as well as the identification of
the responsible agents. This plan was further reviewed and refined by a Scrum
master and a PO in agile teams, ensuring that it aligns with the company’s agile
framework, common practice for requirements management, and project objec-
tives. Figure 2 visualizes the complete structured conversation flow between the
two agents and their subtasks in the task conduction phase, i.e. the collaborative
and iterative interaction between agents in the user story improvement process.

4.2 Evaluation

When the experiment was set up, ALAS was deployed to improve the quality
of user stories for the mobile delivery application. To evaluate its effectiveness

122 Z. Zhang et al.

Fig. 2. AI plan illustrated in the task conduction phase

and identify opportunities for refining our approach, we designed a questionnaire
based on the INVEST framework [3]. Table 1 shows the statements for rating and
the corresponding characteristics of good user stories from the INVEST frame-
work. Considering the time required for participants to complete the survey,
the questionnaire2 includes only six user stories: two originals and two ALAS-
generated improvements for each. One improvement was generated using the
gpt-3.5-turbo-16k model, and another using the gpt-4-1106-preview model. Par-
ticipants rated user stories against the statements using a Likert scale from 1
to 5, where 1 indicates strong disagreement and 5 indicates strong agreement.
Additionally, the questionnaire includes two open-ended questions for each user
story to collect participants’ feedback on specific improvements, concerns, and
suggestions for further improvements. Finally, participants provide an overall
satisfaction rating and recommend the stories most suitable for the project.

Table 1. Statements and the corresponding characteristics of good user stories from
the INVEST - Independent, Negotiable, Valuable, Estimable, Small, and Testable

ID Statement and the corresponding characteristics from the INVEST

S1 The user story is simple and easy to understand. - I

S2 The user story is of the right size (not too long). - S

S3 The user story is at a suitable level of detail. - N

S4 The user story includes a sufficient description of the task and its goal. - V

S5 The user story is technically achievable. - E

S6 The AC include sufficient measurable elements for test case. - T

S7 The AC are sufficient to validate the story. - T

5 Results

Our survey collected 12 responses from six agile teams at Austrian Post Group
IT, involving two POs, four developers, a test manager, a Scrum master, a
2 http://tinyurl.com/4veet5me.

http://tinyurl.com/4veet5me

LLM-Based Agents for Automating the Enhancement of User Story Quality 123

requirements analyst, two testers, and a train coach. Notably, 10 out of 11 par-
ticipants have been working at the company for over two years, with 9 more than
five years of experience in agile projects. Their expertise provided a solid foun-
dation for evaluating the user stories in the survey. The participants dedicated
an average of 33 min to complete the questionnaire.

The survey participants reported their concerns about User Stories 1 and 2
(US1 and US2), criticizing both for ambiguity, particularly in AC which failed to
describe the conditions for evaluating whether a story is complete. In addition,
the business value in these stories remained vague. Specific scenarios of error
handling in US1 were not adequately addressed.

The improved versions, US1(v.1) and US2(v.1), generated by GPT-3.5-turbo
agents, exhibited improvements in clarity, comprehensibility, and narrative flow,
making the user stories more coherent. However, two participants highlighted
that the new titles for user stories were overly creative and the description in
AC should be more detailed. In addition, concerns remained in the AC about
scenarios such as multiple printer connections identified in US1.

Improvements generated by the GPT-4 model, i.e. US1(v.2) and US2(v.2),
were praised for their comprehensive content and clearer expression of business
value. Specifically, the AC for US1(v.2) has been improved, clearly resolving the
ambiguous printer connection issues in US1 and US1(v.1). However, the added
detail and clarity resulted in longer and more complex user stories, which can
undermine their practical applicability - six survey participants noted concerns
about user story descriptions being too long.

Table 2. Average ratings (1–5 Scale) of overall satisfaction and quality of user stories.

User story S1 S2 S3 S4 S5 S6 S7 Overall
rating

US1 – – – – – – – 3.33

US1(v.1) 4.17 4.25 4 3.83 4 3.83 3.92 4

US1(v.2) 3.92 3 3.58 4.08 3.83 3.92 3.92 4

US2 – – – – – – – 2.79

US2(v.1) 4.08 4 3.75 3.42 3.75 4.08 3.75 3.54

US2(v.2) 3.83 3.17 3.75 4 4 4.08 3.8 3.71

Table 2 summarizes average ratings for overall satisfaction and quality aspects
of the user stories. Both US1(v.1) and US1(v.2) scored an average overall satis-
faction of 4, while US2(v.2) scored 3.71, higher than US2(v.1). This preference
is confirmed by 7 participants choosing US1(v.2) and US2(v.2) for the project.
However, despite their merit on sufficient description (S4), both USs rated lower
in simplicity, brevity, and appropriate level of detail (S1, S2, and S3), partic-
ularly struggling with their size, scoring averages of 3 and 3.17 respectively.
Notebly, US2(v.2) received the most disagreements regarding its size, with 5

124 Z. Zhang et al.

participants marking “Disagree”. This disparity may potentially affect the user
story’s comprehensibility(S1). US1(v.2) also received a minor drop in technical
achievability (S5), compared to US1(v.1). These results highlight concerns over
the increased length and complexity of user stories generated by the GPT-4
model, significantly affecting the satisfaction level of these user stories, a senti-
ment corroborated by the survey results.

6 Discussion

Our experiments with ALAS have demonstrated promising results in enhancing
user story quality, particularly in terms of clarity, specificity, and business value
articulation. This is evident from the increased overall satisfaction ratings and
the textual feedback by survey participants.

Despite these enhancements, agents’ ability to learn from context, while
impressive, reveals a gap in aligning with project-specific contexts and require-
ments. Feedback from one developer highlighted that US1(v.2) included an
authentication process that, while relevant to the story, “seems to be out of scope
of the US1”. Similar feedback was observed from another developer’s feedback.
These imply that certain requirement quality aspects might be missing or inade-
quately defined in the prompts. Therefore, careful prompt crafting and rigorous
review by human experts, like the PO, are crucial. For ALAS to be effective
in specific tasks, involving the PO and domain experts in the task preparation
phase is vital to tailor prompts for optimal outcomes. Moreover, a quality ana-
lyst agent can be added to monitor the scope, level of detail, and relevance of
story description, simulating agile project practices.

In examining the parameters governing GPT models, particularly the ’Tem-
perature’ parameter that stimulates creativity, we observe a double-edged sword.
While it boosts novel and diverse content generation, it also increases the risk
of AI hallucination [13], which can lead to plausible yet inaccurate or irrelevant
outputs. In our experiments, we set the medium value 1 for Temperature. How-
ever, this still poses a challenge in maintaining factual accuracy, emphasizing
the need of incorporating techniques such as the retrieval-augmented generation
(RAG) [9] to mitigate the risk of irrelevant content generation.

7 Conclusion

In this study, we presented ALAS, which integrates GPT models as agents to
enhance requirement quality in agile software development. The initial findings
showed that ALAS improves user story clarity, comprehensibility, and alignment
with business objectives. However, the findings also highlighted the indispensable
role of human intelligence, particularly the PO in software projects, in monitor-
ing the stories’ improvements to ensure the integrity of automatically produced
outputs. This study contributes a proof-of-concept for AI-assisted user story
quality improvement. Although the evaluation is limited to two user stories, it
marked a promising step forward in bridging the gap between AI capabilities
and human expertise in software development.

LLM-Based Agents for Automating the Enhancement of User Story Quality 125

Acknowledgements. This work has been supported by Business Finland (project
6GSoft, 8548/31/2022).

References

1. ISO/IEC/IEEE international standard - systems and software engineering – life
cycle processes –requirements engineering. ISO/IEC/IEEE 29148:2011(E), pp. 1–
94 (2011). https://doi.org/10.1109/IEEESTD.2011.6146379

2. Sri international best practice. https://web.stanford.edu/class/educ303x/wiki-
old/uploads/Main/SRI NABC.doc. Accessed 1 Oct 2024

3. Wake, B: Invest in good stories, and smart tasks. https://xp123.com/articles/
invest-in-good-stories-and-smart-tasks/. Accessed 1 Oct 2024

4. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

5. Cohn, M.: User Stories Applied: for Agile Software Development. Addison-Wesley
Professional (2004)

6. Dalpiaz, F., Van Der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.:
Detecting terminological ambiguity in user stories: tool and experimentation. Inf.
Softw. Technol. 110, 3–16 (2019)

7. Ferreira, A.M., da Silva, A.R., Paiva, A.C.: Towards the art of writing agile require-
ments with user stories, acceptance criteria, and related constructs. In: ENASE,
pp. 477–484 (2022)

8. Glinz, M., van Loenhoud, H., Staal, S., Bühne, S.: Handbook for the CPRE foun-
dation level according to the IREB standard. Int. Requirements Eng. Board (2020)

9. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

10. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Improving agile
requirements: the quality user story framework and tool. Requirements Eng. 21,
383–403 (2016)

11. Nguyen-Duc, A., et al.: Generative artificial intelligence for software engineering–a
research agenda. arXiv preprint arXiv:2310.18648 (2023)

12. Niessl, M., Gruber, C., Eder, M.: Restarting scaled agile development at Austrian
post. Experience Report, 24th International Conference on Agile Software Devel-
opment (2023)

13. Rawte, V., et al.: The troubling emergence of hallucination in large language
models–an extensive definition, quantification, and prescriptive remediations.
arXiv preprint arXiv:2310.04988 (2023)

14. Ronanki, K., Berger, C., Horkoff, J.: Investigating ChatGPT’s potential to assist in
requirements elicitation processes. In: 2023 49th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 354–361. IEEE (2023)

15. Silver, T., Hariprasad, V., Shuttleworth, R.S., Kumar, N., Lozano-Pérez, T., Kael-
bling, L.P.: PDDL planning with pretrained large language models. In: NeurIPS
2022 Foundation Models for Decision Making Workshop (2022)

16. White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D.C.: ChatGPT prompt
patterns for improving code quality, refactoring, requirements elicitation, and soft-
ware design. arXiv preprint arXiv:2303.07839 (2023)

17. Wiegers, K., Beatty, J.: Software Requirements. Pearson Education (2013)

https://doi.org/10.1109/IEEESTD.2011.6146379
https://web.stanford.edu/class/educ303x/wiki-old/uploads/Main/SRI_NABC.doc
https://web.stanford.edu/class/educ303x/wiki-old/uploads/Main/SRI_NABC.doc
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://arxiv.org/abs/2310.18648
http://arxiv.org/abs/2310.04988
http://arxiv.org/abs/2303.07839

126 Z. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

People and Teams in Agile

Comparing Stability and Sustainability in Agile
Systems

Robert Healy1(B) , Kieran Conboy2 , Tapajit Dey3 , Edwin Lewzey4,
and Brian Fitzgerald5

1 University of Limerick, Limerick, Ireland
healy.robert@ul.ie

2 School of Business & Economics, University of Galway, Galway, Ireland
3 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

4 intive, 4th Floor New Penderel House, 283-288 High Holborn, London, UK
5 Lero – The SFI Research Centre for Software, University of Limerick, Limerick, Ireland

Abstract. The World Health Organization (WHO) highlights the significant
threat that unsustainably long working hours pose to our mental and physical
well-being. Aligning with this concern, an Agile principle emphasizes that “Agile
processes promote sustainable development.” However, previous work in 2023
debunked this notion of inherent stability in Agile systems, such as the Scrum
and Kanban frameworks. In this study, we aim to analyse the relationship between
system stability and the tendency of teams to work outside reasonable office hours.
We inspect 295 historic Agile projects completed in intive, a software develop-
ment company.We assess the percentage of late-night, early-morning, or weekend
hours where a Product Backlog Item (PBI) was created or resolved and compare
this percentage of Unsustainable Hours metric to the StabilityMetric and the num-
ber of Inventory Days remaining. The analysis showed that almost no correlation
exists between the Unsustainable Hours worked and either the system stability or
outstanding inventory. These findings indicate that, while working unconventional
and potentially excessive hours is a concern, it does not appear to be linked to the
stability of Agile systems. This highlights the need for a deeper understanding of
individual and team motivations to foster long-term sustainable work practices.

Keywords: Agile · Sustainability · Overwork · Stability

1 Introduction

In 2022, the World Health Organization (WHO) reported that as many as 12 billion
working days are lost each year annually around the world due to mental health issues
of depression and anxiety, at a cost of up to $1 trillion [1]. They recognized that “decent
work” is good for mental health but also that poor working environments with excessive
workloads and long and unsocial hours could pose a risk to mental health [1]. Decent
work is also listed as goal number 8 of the UN’s sustainability goals [2]. However,
working unsustainably long hours also poses a risk to physical health. In 2021, the

© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 129–143, 2024.
https://doi.org/10.1007/978-3-031-61154-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_9&domain=pdf
http://orcid.org/0000-0002-0598-9968
http://orcid.org/0000-0001-8260-4075
http://orcid.org/0000-0002-1379-8539
http://orcid.org/0000-0001-9193-2863
https://doi.org/10.1007/978-3-031-61154-4_9

130 R. Healy et al.

WHO said that “Working 55 hours or more per week is a serious health hazard” [3]. In
2016, some 745,000 people died of heart attacks and strokes because of working long
hours, a rise of 29% from 2000 [3]. While an Agile principle states that “Agile processes
promote sustainable development. The sponsors, developers, and users should be able to
maintain a constant pace indefinitely” [4], Healy et al. found evidence that challenges the
assumed stability the scrum and kanban frameworks they call “Agile systems” [5]. They
demonstrated that in 74% of 1,203 Jira projects, the arrival rates of work into systems
were higher than the rates at which teams could complete their work. In this paper, we
extend their work by investigating the relationship between stability and the prevalence
of Agile team members creating and resolving Product Backlog Items (PBIs) outside
of normal working hours. Using this “Unsustainable Hours” measure as an indicator
of unsustainable ways of working, we further explore the relationship between Agile
system stability and sustainability.

The rest of the paper is organized as follows: In Sect. 2, we discuss and briefly
present the background and related concepts. We describe the research approach in
Sect. 3 and the results in Sect. 4. We provide further discussion about the results and
their implications in Sect. 5. Finally, we describe the limitations of our study in Sect. 6
and offer conclusions in Sect. 7.

2 Background

2.1 Measuring Stable and Sustainable Agile Work

To date, much of the Agile software development literature has focussed on how Agile
systems, such as Scrum and Kanban, can ameliorate unsustainable ways of working.
For example, Beecham et al. found that Agile should be able to improve the number
of hours worked to sustainable levels at a finance company [6] and Rusconi found that
Agile complemented sustainable ways of working at ING [7]. However, the literature
does not indicate a consensus opinion. Hoda et al. note that non-stop iterations can serve
to apply pressure on developers [8] and van Oorschot et al. [9] used a computational
model to demonstrate that shorter iterations have on quality and rework.

Healy et al. previously introduced the Stability Metric, ψ, as a dimensionless mea-
sure of an Agile team’s ability to get their work done [5]. Using a large dataset of actual
projects, they demonstrated that assumptions of system stability from a queueing per-
spective were invalid in 74% of projects analysed. Unstable systems also tended to have
backlogs 10 times larger than stable ones. They also showed that the systems analysed
tended to cluster towards marginal stability, where ψ = 1 with the single largest cluster
of projects in the range of 0.9 to 1.1. However, they did not identify if unstable systems
with their large, growing backlogs of PBIs, influenced work practices on Agile teams.
We repeated their technique with a focus on how stability relates to a tendency toward
excess work in one company, intive.

intive is a global technology professional services company headquartered in Ger-
many [10]. Since 1999 its software development teams have delivered Agile projects for
clients initially in Europe and latterly in the Americas. The type of Agile system used
varies from project to project with some projects using Scrum or a variant, others using
Kanban, and many projects using one of the scaled Agile frameworks. Most projects are

Comparing Stability and Sustainability in Agile Systems 131

focussed on the on-time delivery of new features and, as such, use typical Agile metrics
such as velocity, burn-up/burn-down rates, and committed vs delivered. Some teams
elect to use the in-house instance of Jira to manage their work either initially or for the
duration of the project. In 2023, we received permission from intive to receive limited
process data from their inactive, closed Jira projects. Working with their Chief Security
Officer, Chief Technical Officer, Legal and IT teams we received process data from 295
Agile Jira Projects (JPs). These projects contained 181,014 PBIs created between 2008 to
2023. As we will show, this data could be used to assess both stability, and sustainability
measured by the amount of excess work.

intive offers flexible working conditions to its employees based on a typical 40-
h, Monday-to-Friday working week [11]. Staff are expected to typically observe core
working hours between 10 am to 4 pm but there is significant flexibility. In Europe,
where most of the closed projects were originally performed, intive has offices crossing
three time zones. intive employees are not usually expected to frequently work between
6 pm to 6 am UTC from Monday to Friday or at any time over a weekend as this could
lead to an unsustainable work-life balance.

We define “UnsustainableHours” aswork being created or resolved during the period
of 6pm to 6am UTC from Monday to Friday or at any time over a weekend. We assume
that work performed during this time is in addition to, rather than instead of, normal
working hours.We also assume that individualswhoworked these hours needed to, rather
than chose to, so that the hours in themedium- to long-termwould become unsustainable
rather than being inconvenient. These assumptions will be discussed further later but it
is important to note that without contextual data we cannot state that any project or
individual at intive experiences overwork.

2.2 Assessing the Waste of Inventory/Partially Started Work

Poppendieck and Poppendieck [12] extended the work of Shingo to identify 7 wastes
of software development. Where Shingo identified (excess) inventory as a waste, Pop-
pendieck and Poppendieck mapped this to “partially done work” [12]. They identify any
work that has not been delivered to production as being potentially wasteful, as it con-
tains uncertainty and risks, including the risk that the design may not solve the problems
it was intended to address. Another waste identified by both Shingo and Poppendieck
and Poppendieck is “waiting” – the waste of having people or equipment capable of
performing work but not having any work to do for a prolonged period. Therefore, we
can observe that having both toomuch and too little work is wasteful. Inventory manage-
ment is a discipline of operations management that seeks to find the optimal inventory.
Krajewski et al. [13] describe several models of inventory management and introduce
the concept of “inventory position” as a measurement of current inventory levels to sat-
isfy future demand. Healy et al. describe how they measured both the current inventory
level, L, and the historic long-term demand, measured by the service rate - the rate at
which PBIs are marked as Done, μ [5]. We used the ratio of these two to calculate
the total number of days of inventory on hand should no new PBI arrive. We term this
metric “Inventory Days” as it relates to the Inventory Days on Hand/Days metric used in
inventory management. However, unlike that metric, it uses the count of PBIs rather than

132 R. Healy et al.

their accounting value and costs. Schulfer suggests that although the optimal Inventory
Days varies from business to business, common levels are between 30 and 60 days [14].

Using the intive Closed Jira Project Dataset (CJPD) we could map howAgile system
stability and inventory varied with the tendency of projects to create or resolve PBIs
during Unsustainable Hours. The next section explains how we approached this.

3 Research Approach

The primary research question we are addressing in this paper is: RQ: “Is there a
relationship between the stability of Agile systems and unsustainable hours worked?”
To answer this question, we used the metrics described above and analysed 295 Closed
Jira Projects.

3.1 Analysing the Closed Project Jira Dataset

Intive IT identified every Jira Project that had been marked as Closed with more than 30
Product Backlog Items (PBIs). They extracted a comma separated values file with the
following fields: Issue key, Issue id, Project key, Project type, Status, Issue Type, Created,
and Resolved. The lead author, working with an active directory account, reviewed each
file to ensure only required fields were included and to pseudonymize each filename
using letter codes. The cleaned down files were placed into a single directory, ready for
scripted analysis using the steps below.

Import Data Analyse
Issuetypes

Analyse
Resolu ons

Remove epics
and sub-tasks

Remove resolu ons unlikely to have been
done by a team ("won't do" etc.)

Create a meline of arrivals
/departures

Calculate Stability
Metric Calculate Inventory Days Output charts and

tables

Fig. 1. Automated processing steps for each Jira Project file in the Closed Jira Project Dataset

Figure 1 shows the analysis steps for each file. The steps were performed by a Python
script titledReporter.py. These steps are like the process steps described previously
[5]. After importing the data, the script first counted the numbers of each issue type and
resolution. Epic issue types and Subtask issue types were filtered from further analysis
to ensure the work was approximately sized to be a piece of work requiring more than

Comparing Stability and Sustainability in Agile Systems 133

one person that should take less than a few days to complete and hence reduce a source
of potential skewing of the Stability Metric between Jira projects. There were 78 issue
types in total. Table 1 shows the top 10 issue types, accounting for 88.1% of the total
number of PBIs.

Table 1. Top 10 issue types in our dataset. Filtered itemswere removed from subsequent analysis.

Resolution Total PBIs Percentage of Total PBIs Filtered?

Bug 49526 27.4% No

Sub-task 43265 23.9% Yes

Task 30230 16.7% No

Story 9205 5.1% No

Sub-bug 8303 4.6% Yes

Test 5545 3.1% No

Improvement 5445 3.0% No

New Feature 4399 2.4% No

Technical Task 3844 2.1% No

User Story 2977 1.6% No

When a team completes a PBI, it receives a resolution. PBIs with resolutions like
“Won’t Do”, “Rejected”, “Not a bug” and so on were removed to leave only PBIs that
were likely to have been completed by a team. Table 2 shows the top 5 resolutions which
accounted for 99.0% of all resolutions.

Table 2. Top6 successful resolution types. Filtered itemswere removed fromsubsequent analysis.

Resolution Total PBIs Percentage of Resolved PBIs Filtered?

Closed 79665 50.9% No

Done 50754 32.4% No

Resolved 22344 14.3% No

Rejected 1252 0.8% Yes

Released to Prod 585 0.4% No

Accepted 399 0.3% No

3.2 Calculating the Stability Metric (�)

We made some improvements to the calculation of the Stability Metric compared to the
method described by Healy et al. [5]. They used a simplified linear model to calculate

134 R. Healy et al.

both the arrival rate, λ, and the service rate, μ [5]. For example, for λ, they took the
total cumulative number of PBIs that had been created and divided this value by the
total time between the last and the first filtered PBI created. We improved on this simple
model by using linear regression of the total dataset to calculate the slope of the line
of best fit of all the data points for measuring both the arrival rate, λ, and the service
rate, μ. This allows us to test how well our data fits the assumed linearity through the
R2 value. Figure 2 shows the cumulative arrival rates, service rates, calculated system
(mostly backlog) size as well as best fit lines for the LO Jira Project, one of the projects
in our dataset.

Fig. 2. Timeline of arrivals, resolution, backlog as well as best fit lines for arrivals and services

The Stability Metric, ψ, is the ratio between the service rate and the arrival rate, as
previously described [5] and shown in Eq. 1. Each Jira Project was grouped intoUnstable
(ψ < 1), Stable (ψ > 1), and Marginally Stable (ψ = 1) from queueing theory.

ψ = μ

λ
(1)

3.3 Calculating the Inventory Days (ID)

The inventory days, ID, for each Jira Project was calculated using Eq. 2. It is the ratio
between the final product backlog size, L measured in PBIs, divided by the average
service rate measured in PBIs per day. Equation 3 shows how we calculated the product
backlog size, L, by taking the total PBIs that had arrived, A, and subtracting the total
PBIs that had been resolved, Z.

ID = L

μ
(2)

where,

L = A− Z (3)

Comparing Stability and Sustainability in Agile Systems 135

Once the Stability Metric, ψ, and Inventory Days, ID, were calculated for a system,
they can be plotted in relation to one another in a 2x2 matrix. The matrix was divided
horizontally by themarginal stability line,whereψ= 1. Below that the system is unstable
and above it is stable. The matrix was divided vertically at an ID value of 30 days. This
corresponds to approximately 1 months’ worth of inventory or a little more than 2 two-
week sprints in a Scrum framework. Below this value, a team probably needs to start
planning new work, and above it, there is enough and possibly too much work.

3.4 Calculating the Unsustainable Hours Percentages

Using a separate script, each project was reviewed to count the hours of the day and
day of the week that each PBI was created and resolved. Figure 3 shows the time of the
day PBIs were created and resolved for the LO Jira Project. This shows that most work
was performed between 8am and 5pm. However, a small spike at 9pm demonstrates that
there was work being marked as completed at that time also.

Fig. 3. Hour of all PBI arrivals and resolutions in the LO system, clock hours are on the
circumferential axis with PBI count on the radial axis.

Figure 4 shows the day of the week that each PBIwas created (in red) or was resolved
(in green) for Jira project LO. This showed that this system never had any work arrive
or be completed on a weekend day.

The script also calculated the percentage of “Unsustainable Hours” as the percentage
of hours worked outside 6am and 6pm Monday to Friday and at any time over the
weekend using Eq. 4 for PBI creation and Eq. 5 for PBI resolution.

UnsustainableHourscreated =
∑

PBIscreatedoutsideof 6amto6pm,MontoFri
∑

PBIs
% (4)

UnsustainableHoursresolved =
∑

PBIsresolvedoutsideof 6amto6pm,MontoFri
∑

PBIs
% (5)

These percentages were then compared to the Stability Metric and Inventory Days
as shown in the next section.

136 R. Healy et al.

Fig. 4. Day of all PBI arrivals and resolutions in the LO system.

4 Results

In this section, we discuss the results of the analysis outlined above. First, we present
the stability metric and inventory day distributions of all 295 relevant Jira Projects in
the Closed Jira Project Dataset. Then we present overall distributions of days and hours
worked across all projects which shows work performed out of hours. Finally, we show
the relationships betweenwork performed out of hours and stabilitymetric and inventory
days.

4.1 Stability Metric and Inventory Days

Figure 5 shows the distribution of the Stability Metric for all the systems. 74.2% of
all systems were unstable. However, as the figure shows, the systems tended to cluster
around marginal stability with 29.5% of all systems having a stability between 0.9 and
1.1. Of the unstable systems, 2.4% had an arrival rate at least ten times higher than the
service rate. 0.6% of systems had a stability of 2 or higher, meaning people on these
projects had nothing to do.

Fig. 5. Stability Metric distribution.

Comparing Stability and Sustainability in Agile Systems 137

Figure 6 shows the distribution of the Inventory Days. This shows that even though
these projects were closed, there was still lots of work still unresolved. 55.9% of all
systems had less than 30 days of inventory remaining when they were closed. However,
14.2% of projects had 181 days or more worth of PBI inventory outstanding when they
closed, with one system having 9.3 years of work still to be completed.

Fig. 6. Inventory Days distribution.

By combining the two datasets into a 2x2 matrix we can see how the systems are
distributed, as per Fig. 7. Because of the wide distribution of the Inventory Days a log
scale was used and any systems with Inventory Days of zero were mapped to a value
of 0.1 for visibility. Most projects analysed, 37.3%, were in the bottom-left quadrant.
This usually appeared to be the conscientious closing of all open PBIs when the project
was closed or transferred to a new project. This conscientious closing was completed by
some 19.8% of teams and is a limitation of this dataset. The next highest group was in
the bottom right quadrant with 37% of projects.

The results show that these Agile systems need to significantly accelerate service
rates to bring backlogs under control. 18.6% of systems were delivering well and were in
a positionwhere they had fewer than 30 days’ worth of work outstanding at the point they
closed. Just 7% of projects had a substantial backlog of work but were actively reducing
it at the point of closure. We can use this data to analyse the relationship between these
variables and hours worked.

Fig. 7. 2x2 matrix of closed Agile Jira projects based on stability metric and inventory days

138 R. Healy et al.

4.2 PBI Creation and Resolution Distributions

Figure 8 shows the cumulative days worked across all 295 Agile systems analysed and
Fig. 9 shows the cumulative hours worked. Across these systems, someone somewhere
created or resolved a PBI every hour of every day and at some time on every day of
the week. 93.6% of all systems analysed had some work performed outside the hours of
6am to 6pm Monday to Friday. The figures show that the most likely time for a PBI to
be created was on a Monday at 21.4% and between 11 am and midday, at 12.7%. PBIs
were most likely to be resolved on a Tuesday, at 26.5%, and between the hours of 11 am
and midday, at 11.4%.

Fig. 8. Cumulative PBI arrival and resolution day percentages.

Fig. 9. Cumulative PBI arrival and resolution hours percentages.

Overall, most work done to create or resolve a PBI is done in relatively reasonable
working hours. Given individual working preferences and time flexibility we chose 6am
to 6pm UTC Monday to Friday as a reasonable period for a team based in Europe to
open or close a PBI in a long-term sustainable, but flexible, way of working. The data
shows that 92.8% of PBIs were created in this period and 91.8% were resolved in this
period.

Comparing Stability and Sustainability in Agile Systems 139

Figure 10 shows the distributions of PBIs created and resolved during potentially
Unsustainable Hours. This shows that although the average Jira project had 9.3% of its
PBIs created overnight or during the weekend and 11.4% of its PBIs resolved during this
period, these averages are skewedbyhigh concentrations at either endof the distributions.
19 Jira Projects, 6.4% of the total, had no Unsustainable Hours, and 18 Jira projects,
6.1% of the total, had more than one-fifth of their PBIs created and resolved during
Unsustainable Hours. For this latter group, it is possible that the team was working for
a client based outside a European time zone, or that the client required out-of-hours
deployments. It is also possible that the team developed a meeting culture, forcing some
work late at night, or that the sheer volume of work left the team feeling the need to
work late. Of course, it is also possible that some individuals simply prefer to work
unusual hours. Since we cannot discount any factor, we have included all the data to
allow us to analyse the relationship between the Stability Metric, Inventory Days, and
these Unsustainable Hours percentages.

Fig. 10. Unsustainable Hours distributions for PBI creation and resolution.

4.3 Stability Metric, Inventory Days, and Unsustainable Hours

Figure 11 shows that there is essentially no correlation between the Stability Metric and
Unsustainable Hours worked. The Spearman rank coefficient for created PBIs is 0.02
and for resolved PBIs is 0.04. This means that the flow of work in the system does not
have any impact on the tendency for team members to work Unsustainable Hours on
these Agile systems.

Figure 12 shows that there is also essentially no correlation between the Stability
Metric and unsustainable hours worked. The Spearman rank coefficient value for created
PBIs is -0.03 and for resolved PBIs is -0.05. This means that the volume of outstanding
work does not have any impact on the tendency for teammembers to workUnsustainable
Hours on these Agile systems.

140 R. Healy et al.

Fig. 11. Stability Metric versus Unsustainable Hours

Fig. 12. Non-zero Inventory Days versus Unsustainable Hours

5 Discussion

The sustainability of work systems is of increasing importance with high economic costs
to companies and health and well-being costs to workers. We analysed the tendency of
workers to work late at night and over weekends, outside core working hours and then
we compared this to systemic factors, such as the flow of work and the potential pressure
of having a large amount of work to complete. Using data from real-world Agile teams
in one company, we demonstrated these factors do not appear to be correlated.

This is an interesting and somewhat surprising finding as it suggests that whatever
motivated the individuals in these projects to create or resolve a Jira PBI late in the night
or on a Saturday, it was not the volume of work or the speed at which work needed
to progress. There was as much tendency to work Unsustainable Hours when the team
seemed to be running out of work as when there were piles of work to be done. While it
might be understandable that a team member resolving a story or bug may not be aware
of the size of the backlog or the number of new PBIs being created every day, it is less
understandable how a Product Owner would not be somewhat aware of these things.
Future work to introduce the Stability Metric and Inventory Days to real teams may be
able to show if awareness of system metrics has an impact on behaviours.

Comparing Stability and Sustainability in Agile Systems 141

In Sect. 2.1 we described two assumptions required to define Unsustainable Hours
for these projects. While our data shows that working overnight or at the weekend did
not appear to have an impact on system size or stability, we cannot say what impact
this behaviour had on the individual, the team, or the quality of the work completed
during unsustainable hours. Some people may simply prefer to work late at night. Future
research is required to understand people’s motivations to choose when to work and, at
times, overwork unnecessarily.

Throughout this study, we treated Jira PBIs as being equal. The teams were likely to
have assigned different levels of time-criticality to individual pieces of work. Although
it is not presented above, we have measures of lead times for different issue types as
these can be calculated from the difference between the time a PBI was resolved and
the time it was created. We have ongoing work investigating patterns of lead times for
different issue types that may help diagnose time-criticality as an extrinsic motivation
for unsustainable hours. However, as Table 1 shows, the primary issue type in this dataset
was the Bugwith 49,525 PBIs. Since some bugs are likely to bemore critical than others,
and it is not impossible that a story or other PBI may become critical, other datasets or
researchwill be required to investigate this factor of working late nights. The next section
presents some of the limitations of this study in detail.

6 Limitations

Compared to previous larger datasets examined, the Closed Jira Projects Dataset had the
advantage of better contextual realism and a higher confidence that these Jira Projects
were Agile in nature. However, to protect confidentiality only historic closed projects
were shared, and only process data. Some of the projects had teams migrate to other
systems, usually client systems, and in other cases, the project came to an end for
commercial reasons. This limitation means that the results may be somewhat skewed
toward having lower inventory days than active projects. For example, 19.8% of all
closed projects had all of their then outstanding PBIs marked as closed on their final
day. Future work to measure stability and inventory days on active Agile teams would
be useful.

A second potential benefit of repeating a similar study in active Agile teams would
be to measure the motivations for working at unexpected times. Because the data came
from many projects over a 15-year period, it is likely that most common scenarios were
at some time encountered but we cannot assert that for certain. Other studies of either
many Agile teams or more detailed longitudinal studies of individual teams may be able
to discount extrinsic systematic factors for late nights or weekends and separate those
from intrinsic motivations where a person is inspired to sacrifice rest for a solution.

A limitation of this study was our use of the period between 6pm to 6am Monday
to Friday to denote “Unsustainable Hours”. Figure 9 shows that over 90% of work
performed was outside of these hours. However, it is plausible that individuals may
prefer to work inside of these times. Also, anyone who worked a weekday between
6am and 6pm would regularly be working a 60-h week which would not appear to
be sustainable. Future work with active Agile teams should ask individuals when they
would prefer to work before measuring when they do work as an improved method of
measuring true excess work.

142 R. Healy et al.

This study used Jira records as a proxy for work performed. While creating and
resolving PBIs could not be classed as a leisure activity we cannot be sure to the degree
that one team member stayed up until 3 am to correct a tricky bug compared to another
person deciding to do some minor Jira administration having woken at 3 am to let the
cat out. Both will appear in our records the same, but the first person may feel tired from
work while the second is likely well-rested. This study is limited to the accuracy of the
data coming from a large number of teams across a range of projects, but all working in
a single company.

7 Conclusion

Overwork is a dangerous activity that has increased over the last twenty years that has
negative impacts on workers’ physical and mental health. Agile is an approach to work
that has become popular over the same period. There is a need to consider backlogs and
other forms of partially completed work as a form of inventory and a potential source
of waste. This study examined if the volume or the speed of flows of work related to the
number of out-of-hours work being performed. We found no evidence to suggest that
either the speed or volume of work was related to excess hours. This finding may be
useful to other researchers seeking to examine the actual causes of excess work. There
were Jira projects that demonstrated some excess work. The variation of the projects in
time, type, and duration meant it was unlikely that the causes of what kept individuals
working late at night and over weekends were common. This means that while some of
the motivation to work late may be extrinsic, some appear to be intrinsic. This research
presents an opportunity to repeat these procedures with active Agile teams to survey
participants as to their preferred work behaviours as well as to investigate the advantages
and disadvantages of having constant access to work systems.

Acknowledgements. The authors would like to acknowledge the contribution of intive in
providing anonymised process data from historical projects.

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 to Lero—
the Irish Software Research Centre.

Disclosure of Interests. Robert Healy is a past employee of intive. Edwin Lewzey is a current
employee of intive. All other authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Mental health at work. https://www.who.int//news-room/fact-sheets/detail/mental-health-at-
work/. Accessed 29 Jan 2024

2. Goal 8: Promote sustained, inclusive and sustainable economic growth, full and productive
employment and decent work for all. https://sdgs.un.org/goals/goal8. Accessed 29 Jan 2024

https://www.who.int//news-room/fact-sheets/detail/mental-health-at-work/
https://sdgs.un.org/goals/goal8

Comparing Stability and Sustainability in Agile Systems 143

3. Long working hours increasing deaths from heart disease and stroke: WHO, ILO. https://
www.who.int/news/item/17-05-2021-long-working-hours-increasing-deaths-from-heart-dis
ease-and-stroke-who-ilo. Accessed 29 Jan 2024

4. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)
5. Healy, R., Dey, T., Conboy, K., Fitzgerald, B.: A novel technique to assess agile systems for

stability. In: Stettina, C.J., Garbajosa, J., Kruchten, P. (eds.) XP 2023, vol. 475, pp. 20–33.
Springer, Cham. (2023). https://doi.org/10.1007/978-3-031-33976-9_2

6. Beecham, S., Noll, J., Richardson, I.: Using agile practices to solve global software devel-
opment problems -- a case study. In: 2014 IEEE International Conference on Global Soft-
ware Engineering Workshops, Shanghai, China, pp. 5–10 (2014). https://doi.org/10.1109/
ICGSEW.2014.7

7. Rusconi, C.: Sustainability Aspects inside the Agile Framework. Master thesis, MSc Sus-
tainable Entrepreneurship University of Groningen, Faculty of Economics and Business
(2020)

8. Hoda, R., Noble, J., Marshall, S.: Balancing acts: walking the Agile tightrope, pp. 5–12.
Association for Computing Machinery, New York (2010)

9. van Oorschot, K E., Sengupta, K., van Wassenhove, L.N.: Under pressure: the effects of
iteration lengths on agile software development performance. Proj. Manag. J. 49, 78–102
(2018). https://doi.org/10.1177/8756972818802714

10. intive. https://intive.com/. Accessed 29 Jan 2024
11. At intive, We All Work Hybrid!. https://intive.com/careers/at-intive-we-all-work-hybrid.

Accessed 29 Jan 2024
12. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit, pp. 4–8

Addison-Wesley, Boston(2003)
13. Krajewski, L., Ritzman, L., Malholtra, M.: Operations Management: Processes and Supply

Chains, 9th edn. Pearson Education, Boston (2010)
14. Inventory Days Formula: Calculating Inventory Days. https://www.bluecart.com/blog/invent

ory-days. Accessed 29 Jan 2024

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.who.int/news/item/17-05-2021-long-working-hours-increasing-deaths-from-heart-disease-and-stroke-who-ilo
https://doi.org/10.1007/978-3-031-33976-9_2
https://doi.org/10.1109/ICGSEW.2014.7
https://doi.org/10.1177/8756972818802714
https://intive.com/
https://intive.com/careers/at-intive-we-all-work-hybrid
https://www.bluecart.com/blog/inventory-days
http://creativecommons.org/licenses/by/4.0/

Onboarding for an Agile Software
Development Company

Tomi Enberg1(B) , Sari Alander1 , and Maria Paasivaara2

1 LUT University, Lappeenranta, Finland
tomi.enberg@gmail.com

2 LUT University, Lahti, Finland

Maria.Paasivaara@lut.fi

Abstract. The global shortage of highly skilled employees has created
a need for a more efficient onboarding process in software develop-
ment companies. The experienced onboarding efficiency affects the new
employee’s willingness to stay within the company and the efficiency
of their work. Our case company transferred to a team-based organi-
zation structure, where agile teams were given high autonomy. Super-
visor responsibilities were divided among different roles, such as people
coaches and a lead team. We studied the onboarding process through a
survey that was answered by 39 persons, as well as 18 interviews to gather
details from the onboarding process. To validate the findings, workshops,
and presentations were organized in the case company. We found that
mentoring was experienced as the most important form of onboarding
in the case company. The biggest challenges were lack of transparency,
insufficient material availability, and lack of documentation. As solutions
were suggested: a shared repository of onboarding materials, checklists
for teams and mentors for onboarding new employees efficiently, and
collecting team-specific materials to a single location.

1 Introduction

In technology companies worldwide, the need for new hires is so high that it
threatens to limit the growth of many industries, one of which is the software
industry [4,11]. The shortage of employees is partly due to lacking education and
training and the ongoing technology boom due to the Covid-19 pandemic and
the need is not only for employees in general, but for especially highly skilled
and specialized workers [4,11,15,24].

To be able to acquire employees with a specialized skill set, a company must
either hire such an employee, train one from its own pool of employees, or train
a new employee using a trainee program. The limited number of employees in
the industry makes recruitment difficult, costly, and even risky. According to
a recruitment company SmartRecruiters [18], an efficient recruitment process
requires 15 steps, which does not even include the onboarding steps of the newly
hired employee. Onboarding of newcomers most commonly relies on a process,
in which the newcomer learns the ropes of his or her new assignment [1,20].
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 144–162, 2024.
https://doi.org/10.1007/978-3-031-61154-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_10&domain=pdf
http://orcid.org/0009-0002-2722-7267
http://orcid.org/0009-0004-1355-2530
http://orcid.org/0000-0001-7451-7772
https://doi.org/10.1007/978-3-031-61154-4_10

Onboarding in Agile 145

This adds the expenses of the recruitment process [6,16,21]. However, not all
companies see the importance of onboarding and consider it as a “necessary
evil”, to which not all teams or employees want to contribute [16].

As a case organization for this study, we chose a software company that
constantly recruits new software engineers, and has recently recognized the chal-
lenge of not being able to provide a consistent onboarding experience for all
new employees. Organizational changes have led to gaps in the process, where
ownership and responsibilities of onboarding newcomers are unclear. The major
changes include a change in management, the sudden shift to remote work
induced by the Covid-19 pandemic, and the focus on implementing agile prac-
tices in all functions. Only limited research exist on how the agile ways of working
could be efficiently combined with onboarding processes and practices [10]. In
this paper, we study the challenges and successes of onboarding in an agile case
organization and add to the body of knowled of agile onboarding.

2 Background

2.1 Onboarding

According to Bauer “Onboarding is the process of helping new hires adjust to
social and performance aspects of their new jobs quickly and smoothly” [1]. A lot
of research on the subject uses the term “Organizational socialization” [2,8,20].
In more recent research, organizational socialization is more commonly referred
to as onboarding [1,7,17].

Generally, onboarding has been studied extensively. Whenever a person starts
in a position, whether it is in a new company or a new position within the same
company, there is always a period of socialization [20]. A person going through
that period will be in an anxiety-producing situation and to reduce their anxiety,
the newcomers will focus on learning the requirements of their new role as quickly
as possible [19]. The more formal the process is, the more stress there is for the
newcomer [19].

Employees, regardless of the field of industry, do change jobs and that
includes challenges for both the individuals and companies [6]. Good onboard-
ing – or organizational socialization – will have a higher chance to keep the new
employees in the organization for longer than people who experience ineffective
onboarding [2].

2.2 Theoretical Background

Van Maanen and Schein’s Model: As Van Maanen and Schein stated, there
was no formal model to study or understand onboarding prior their work [20].
Van Maanen introduced seven dimensions which describe the major strategies
used to onboard people to the organization [19]. Van Maanen and Schein fur-
ther developed this theory and defined six major tactics [20]: 1) Collective vs.
individual onboarding processes, 2) Formal vs. informal onboarding processes, 3)

146 T. Enberg et al.

Sequential vs. random steps in the socialization processes, 4) Fixed vs. variable
socialization processes, 5) Serial vs. disjunctive socialization processes, and 6)
Investiture vs. divestiture socialization processes.

Jones Classification: Jones [12] presented the dimensions initially presented
by Van Maanen and Schein [20] in a table with classification. Jones emphasized
that the tactics used by organizations have an impact on the newcomer ori-
entation and need to be understood better. Jones studied the actual response
the different tactics may have on individuals, which provides an initial empiri-
cal standpoint on the different tactics used by the companies. The classification
helps to explain Van Maanen and Schein’s [20] dimensions as tactics that are
either institutionalized or individualized. The main findings from the study by
Jones, confirm their hypotheses that self-efficacy will be more influential than
whether the tactics done by employers are institutionalized or individualized
[12].

Bauer’s Onboarding Metrics : Bauer [1] presents a model of onboarding
functions and practices along with success measures. On an individual level, the
building blocks for successful onboarding are four C’s: Compliance, Clarification,
Culture and Connection. As Bauer explains, most firms can be put on a scale
of three levels, using the four C’s: Passive onboarding, high potential onboard-
ing and proactive onboarding. These can be used to define the current level of
onboarding within a company.

2.3 Previous Research on Onboarding Within Software
Development Companies

Even though onboarding in general has been studied extensively, we found only
five papers on onboarding in software companies, two of them concentrating on
agile [7,10].

Britto et al. studied the effects of having multiple software development
teams scattered in different locations and contextualised their findings in a later
study [5,6]. They found clear aspects that made the onboarding successful for
new employees [5]: providing clear expectations for the new employee, providing
extensive coaching and support on learning the project, and using tools to gather
and give feedback. In their later study they found the challenges that had a neg-
ative influence on the new employee adjustment: distance to mentors, too formal
onboarding process, too large tasks during onboarding and team instability [6].

Gregory et al. studied recently a team working in an agile setting [10] and
used the onboarding model by Bauer to expand on [1]. The model created by
Gregory et al. outlines two distinct aspects that no prior paper has considered.
The first are the workplace adjustments, which are introduced as a new category
in the model. The second is the realization of agile practices helping newcomers
adjust to the company. The workplace adjustments are done by the company to

Onboarding in Agile 147

enable better support for the newcomer [10]. These are team composition, team
communication and the communities of practice.

Team composition refers to the adjustments the team has to consider when
onboarding new employees. As agile software development focuses on the team-
based decision making and quick reactions to changes, higher team cohesion and
motivation leads to a more efficient team [23]. Introducing a new team member
means that the team must re-adjust to accommodate a newcomer [10]. Gregory
et al. explained that continuous personnel changes within the team limited the
team’s ability to form into a cohesive agile team, which in turn did not allow
time for anyone to start mentoring. When the team was able to form into a
balanced team, the newcomers could be better accommodated to become a part
of the team, with the help of a mentor.

Team Communication: Agile teams that have been working together for a longer
time, may have developed a style of communication which is difficult to under-
stand by the new employees [10]. Accommodating newcomers requires the more
experienced team members to consider newcomers’ level of understanding of the
domain and terminology.

Communities of Practice: Any agile team is also a part of an organization. The
organization can have similar teams or areas of expertise that give the team
– and most importantly the newcomer – the feeling that they can share their
knowledge and gain understanding from their organization, not only from the
team [10]. This shared expertise in the organization is known as “communities
of practice” [22].

In another study done in agile settings Buchan et al. [7] provided best prac-
tices to focus on while onboarding: socialization opportunities, access to high
quality knowledge artefacts, access to formal training, proactive feedback and
knowledge sharing and providing psychological safety to experiment and learn.

Most recently, Rodeghero et al. [16] studied the remote onboarding of soft-
ware developers during the pandemic at Microsoft. They found that social inter-
actions within the teams were lacking in depth. Most employees felt connected to
their team, but some employees felt the team activities lacking. The best prac-
tices the study discovered were team activities, such as game nights, hackathons
and recurring meetings to just chat and catch up. The challenges found included
not seeing other people’s faces, as cameras were commonly turned off, and asking
for help and connecting with the team were considered difficult [16]. The authors
provided a list of adjustments to be done by the company to help with onboard-
ing new employees more efficiently: 1) promote communication and asking for
help, 2) encourage teams to turn cameras on, 3) schedule 1 to 1 meetings, 4) pro-
vide information about the organization, 5) emphasize team building, 5) assign
an onboarding buddy, 6) assign an onboarding technical mentor, 7) support
multiple onboarding speeds, 8) assign a simple first task, 9) provide up-to-date
documentation.

148 T. Enberg et al.

2.4 How to be Efficient When Onboarding People in an Agile
Setting?

When looking at research done with agile teams, it seems that mentoring and
peer support are common and suggested techniques for onboarding new employ-
ees to agile teams [7,10] Along with mentoring, agile practices and ways-of-
working also function as onboarding practices, for example sprint retrospectives
[10]. According to Cockburn [9] agile companies tend to lean towards a lead-
ership strategy that assigns goals and communicates constraints, rather than
controls how work is done within the team. Agile teams are self-organizing and
have a lot autonomy, thus no model, process or tool can be imposed to an agile
team from higher up. In a modern, agile environment, teams take into use tools,
techniques, and methods they find useful. For effective process improvemet, agile
teams must want to use that process, method or tool.

Using the Van Maanen and Schein’s [20] dimensions, the agile practices could
be summarised requiring the following dimensions: individual, informal, sequen-
tial, fixed, serial and investiture. When comparing these to Jones’ classification,
it seems that the most efficient way to teach the job context would be using indi-
vidualised tactics [12]. This is due to the teams having the freedom to choose
their own processes within certain frames and thus also find the best ways for
them to onboard new employees [3,10].

The content of the job on the other hand should be clear for all employees
from the start. According to previous studies, there might be challenges when
it comes to handling expectations and learning [10,16]. Also, Jones stated that
random and variable tactics bring unnecessary uncertainty for the new employee
[12].

Finally, socialization seems to be important. Not having connection to the
members of your own team, makes asking help more difficult [16]. Not being
able to onboard into an organization socially may be a big factor when the new
employee is making the decision to either staying in the company or leaving [2].

3 Research Method

3.1 Research Objectives

This paper aims to find out the challenges and solutions for onboarding new
employees in an agile software product organization. The findings can help other
companies with similar challenges as our case organization was experiencing to
overcome issues and as Bauer mentioned [1], increase the employee retention,
employee well-being and effectiveness in the company. In this paper we aim to
answer the following research questions:

RQ1: What are the experienced challenges when onboarding new employees into
an agile team?

RQ2: Which practices support onboarding new employees into an agile team?
RQ3: How to improve the onboarding process for agile teams within a company?

Onboarding in Agile 149

To answer the research questions above, we collected data by a survey (39
responses), interviews (18 interviewees) and workshops (10 participants). Next,
each of these are described in detail. Before that we briefly describe the case
organization.

3.2 Case Organization and Their Research Premise

The company under study operates in the software engineering industry. It
employs over 350 people and has a revenue of over 80 million euros. The 350
people within the company work with their own assigned products, which are
managed individually. Out of these individually managed product development
teams, a product development unit of 82 people underwent an organizational
transformation towards a team-based organizational structure. In 2020 the global
pandemic moved people to work from home and many of them did not return
fully to the office after the pandemic, but continued in hybrid mode. The data col-
lection of this study took place in 2022, after the company had moved to hybrid
work mode. Agile methods, such as Scrum, are widely used within the company,
by different teams. Each team works mainly independently, specializing in its
specific area of the product. The teams are self-sustaining and self-directing,
and may choose their own practices and processes within certain frames. This
applies for onboarding as well. The company continuously hires new people to
support the growth of its products.

After the transformation new roles were introduced and responsibilities were
re-arranged to reduce person dependence. The onboarding responsibilities of
supervisors and directors were reduced, and new lower-level roles were intro-
duced. Many of the roles are considered as “hats”, which are additional respon-
sibilities on top of an assigned role. For example, a person can be both a developer
and a Scrum Master, or a Product Owner and a people coach. The new roles
central to onboarding are the following:

People Coach: A person responsible for long-term career coaching, probation-
ary period follow-up, goal setting and well-being of a predetermined number of
employees within the R&D. The employees may choose the most suitable peo-
ple coach for themselves. The objective is to provide a peer for each employee
that ensures that the employee has the conditions to succeed in his or her work
assignments. A people coach usually comes from a different team. This allows
for the employee to receive ideas from outside the own team, and to talk about
the situation in the own team more openly.

Mentor: A team colleague from the own team that is responsible for provid-
ing a basic understanding of the team processes and practices, along with the
onboarding in the team, including the specifics of the development or design
environment. Mentors have usually dedicated time to answer questions the new
employee might have.

150 T. Enberg et al.

At the time of the study, employees were onboarded to their assignments with
the use of a team mentor and a people coach, along with general company level
onboarding. The onboarding has been a challenge for many years, as tools and
technologies kept changing and no sufficient documentation was always available.
According to the statistics the company has collected, onboarding does have a
positive impact, even though it is sometimes criticized of being insufficient. This
may be due to the development teams not having a culture to share their prac-
tices and common materials. The process of onboarding has become somewhat
blurry for both the company and the new employees. Due to these challenges,
research was welcomed to advance the process around onboarding to support
the people coaches, mentors and new employees to adjust to the company better
and with better consistency.

3.3 Scope and Perspective of the Study

To limit the scope of this study, we chose to concentrate on the one product
organization with approximately 80 people, with the most changes in ways of
working. The data was collected by the first author of this paper, who at the
beginning of this study had worked as a developer in the company for two years
in the R&D of the product under study. While starting the study, the author was
transferred from the development team to concentrate on improving the onboard-
ing process and to additionally work as a people coach for summer trainees. To
avoid close involvement into the onboarding process of the summer trainees,
the summer trainees in question were excluded from this study. Even though
the close involvement of the first author can be seen as a limitation, the people
coach role provided also good insight into the onboarding process. The two other
authors participated in designing and monitoring the study steps, ensuring the
the objectivity. They provided an outside view, as well as contributed to the
writing of this paper.

3.4 Data Collection

Survey Data Collection: The initial status of the current situation of the
onboarding processes was collected with a survey. The survey questions were
formed by drawing inspiration from previous studies [1,14]. As onboarding con-
sists of multiple stages as presented by Bauer [1], the survey needed to be tailored
to gather a wide perspective on the onboarding in the case company. Questions1

asked about general onboarding experience, the support received, the knowledge
of the company, and the preferred ways to receive information while onboarding.
The survey consisted of two questions about the respondent’s backgrounds, 13
agree-disagree questions on a likert scale [13] about the onboarding, and five
open-ended questions in which the respondents were asked to describe the chal-
lenges and good practices of their onboarding experience. Respondents could also
indicate if they would be willing to participate in the interviews on the topic.

1 https://figshare.com/s/8b90fd8cc32335f0bbad.

https://figshare.com/s/8b90fd8cc32335f0bbad

Onboarding in Agile 151

The questions were reviewed by employees in the case company and all
authors of this paper and improved based on the feedback. Two employees tested
the survey and it was estimated that responding would take 10–15 min.

Link to the survey was sent to a common mailing list of the product’s R&D.
The 82 recipients consisted of developers, designers, quality assurance specialists,
Product Owners, and lead experts. We received 39 completed responses (response
rate: 47,6%).

Interview Data Collection: Semi-structured interviews were selected to col-
lect more detailed description of the employees’ onboarding experience, the same
way as in the previous onboarding studies [10,14]. The interview questions were
formed by analysing the previous literature on the topic (e.g. [14]) and modi-
fied to better reflect large-scale agile set-up in the case company. Moreover, the
preliminary findings from the surveys were used to ask more specific questions.
The interview questions can be found at.2

To get an extensive picture of all different onboarding processes, tools, or
techniques in use across different teams, we found it important to have inter-
viewees from all 13 teams. Initially, ten people indicated in the survey study of
their willingness to be interviewed. They represented six teams. The organization
chart and previous knowledge on employees’ roles was used to find people that
represented groups and roles that were not yet represented in the interviews.
The purpose was to have a selection of employees that represented a wide range
of roles and groups.

In total 18 people from 12 teams were interviewed. 14 interviews were con-
ducted using the questions aimed specifically to ask about the interviewee’s own
onboarding experience, while in four interviews the main purpose was to gather
information of the recent mentoring experiences from more experienced employ-
ees working as mentors. This separation was made to make it easier to focus on
the interviewee’s own point of view, in cases where the employee did not recall
their own onboarding experience. Interviewees, their roles, teams and time from
own onboarding are listed in Table 1.

Interviews were confidential, and it was made sure that in the results the
respondents cannot be traced back to any team or a specific employee to ensure
privacy.

Workshops: All 18 interviewees were invited to participate in an online work-
shop. Finally, a total of 10 people participated in the workshop which was divided
into two parts due to time constraints. Out of the total 10 participants, 9 partic-
ipated in the first part of the workshop, and covered a total of 7 teams. These 9
people were divided into three break-out rooms to collect ideas and create solu-
tions to the challenges identified in the interviews. When organising the second
workshop, all the initial 18 interviewees were invited, out of which 6 participated
in the second workshop, and covered a total of 5 teams. The focus was to create

2 https://figshare.com/s/8b90fd8cc32335f0bbad.

https://figshare.com/s/8b90fd8cc32335f0bbad

152 T. Enberg et al.

Table 1. Interviewees

Interviewee ID Role Group Team identifier

Interviewee 1 Developer More than 2 years 1

Interviewee 2 Developer More than 2 years 1

Interviewee 3 Developer More than 2 years 2

Interviewee 4 Other R&D Employee More than 2 years 1

Interviewee 5 Developer Less than 1 year 1

Interviewee 6 Other R&D Employee Less than 1 year 3

Interviewee 7 Other R&D Employee More than 2 years 3

Interviewee 8 Developer More than 2 years 4

Interviewee 9 Developer More than 2 years 5

Interviewee 10 Developer 1–2 years 6

Interviewee 11 Developer Less than 1 year 7

Interviewee 12 Developer More than 2 years 8

Interviewee 13 Developer Less than 1 year 9

Interviewee 14 Developer 1–2 years 10

Interviewee 15 Developer More than 2 years 8

Interviewee 16 Developer 1–2 years 11

Interviewee 17 Designer More than 2 years 12

Interviewee 18 Developer 1–2 years 1

concrete action points based on results from the survey, the previous workshop
and the interviews.

Due to having workshop participants from multiple offices, an online white-
board tool Miro was used as a working space for the workshop. Each group,
based on the division in break-out rooms, had their own working space, in which
the participants could create new sticky notes for their ideas, and use the sticky
notes to brainstorm and prioritise their ideas. This helped the analysis, as all
the workshop work was visible and written out in the online tool. The workshop
participants were told to create solutions for the challenges they chose from the
pool of challenges found previously in the study, as well as create concrete action
points on how to approach solving the problems.

Data Analysis: In this paper, we concentrate on the data collected with the
open-ended questions of the survey, interview data, and workshop results. Both
survey and interview data were analysed using an Excel sheet where individual,
good practices, challenges, development ideas, and other common thoughts were
collected. A matrix was formed from the respondents and the key factors, from
which it was easy to count the number of mentions that each key factor had.
Thus, the most commonly mentioned challenges, good practices, and ideas could

Onboarding in Agile 153

be easily identified. The end result of the workshops was ready-made solution
suggestions.

4 Results

4.1 RQ1: What Are the Experienced Challenges When Onboarding
New Employees into an Agile team?

The case organisation had been experiencing challenges regarding onboarding
and therefore saw a need for this study. The challenges recognized in this study
are listed in Table 2. The table shows how many employees brought up a certain
issue in the open-ended survey answers and during the interviews. The order in
the table is based on how many mentioned each challenge during the interviews.
As many survey respondents volunteered for the interviews, there is some overlap
between the survey and interview respondents.

Table 2. Challenges identified from surveys and interviews

Challenges Description # mentions in surveys # mentions in interviews

C-1 Limited transparency of onboarding
practices in the company

– 11

C-2 No onboarding feedback gathered
within R&D

– 7

C-3 Materials or documentation missing 4 6

C-4 Organizational aspects unclear after
initial presentations or experience

2 5

C-5 Unclear responsibilities with
onboarding

5 5

C-6 Materials or documentation
outdated

1 5

C-7 Common R&D meetings use
terminology unknown for newcomers

– 3

C-8 Materials and documentation spread
out to multiple systems and folders

3 3

C-9 Feeling of not included in the team 1 3

C-10 Onboarding events organised too late
and using too advanced terminology

1 3

C-11 No knowledge on other team’s
responsibilities

– 3

C-12 Access restrictions to services and
materials (on team and R&D level)

1 2

C-13 Lack of experise-area specific
knowledge and support

– 2

There is a clear difference between the challenges brought up in the survey
compared to the interviews. The survey answers emphazise the low quality and
lack of onboarding materials and documentation, whereas interview brought up

154 T. Enberg et al.

topics such as lack of transparency of onboarding practices and not collecting
feedback on the onboarding experience.

A challenge with the highest number of mentions was surprisingly the lack
of transparency of the onboarding practices (C-1). In the interviews, most inter-
viewees mentioned having a dispersed process, which had some overlapping and
missing items. The interviewed mentors mentioned that they had little or no
understanding on the onboarding process as a whole and had to purely focus
on the mentoring and onboarding of the team. Lack of transparency was also a
problem when looking at the onboarding process between different teams, as the
onboarding process was quite different for different teams (C-11). This lack of
transparency was only visible in the interviews, as when people described their
process and experiences it became clear that they had no knowledge of other
teams or mutual practices.

No onboarding feedback was gathered (C-2) was the second most mentioned
challenge. In the interviews, it became clear with almost all employees that no
feedback was asked about their onboarding process. This makes the process
development difficult, as there is no way of knowing what aspects to keep the
same and what to improve. The different events organised jointly for different
products within the company did have feedback models in place, but mentoring
or team onboarding did not have any kind of feedback process. In the interviews,
three people mentioned that the onboarding survey conducted during this study
was the first time they had been asked for feedback regarding onboarding.

Missing materials or documentation (C-3) was an issue that came up both in
the survey and in the interviews. Interviewed persons emphasized that missing
materials and documentation was a huge issue and caused major delays in their
onboarding. Additionally, documents were mentioned to be outdated (C-6) and
people had to look for information from many places without having a clear
picture of what to look for (C-8). In addition, two interviewees brought up that
they found materials, but did not have access to those materials, and had to
ask for them specifically (C-12). Also, one survey respondent mentioned not
getting started for a few days, because he or she did not have access rights. A
few interviewees mentioned that they did not lack materials, but they lacked a
structure for the onboarding materials.

When it comes to the organization structure and internal language, there
were mentions about the organization structure being unclear (C-4), not know-
ing other team’s responsibilities (C-11), or not knowing the right people to ask
for help when it comes to a more specific area (C-13). Moreover, some employees
mentioned not initially understanding the domain and business-specific language
(C-7). The interviewees mentioned these as smaller issues. However, five intervie-
wees reporting of not understanding the organization structure would indicate
that general organization and company-wide aspects have not been communi-
cated well enough during the onboarding process.

One of the most worrying findings were the mentions of not feeling included in
the team (C9). This had as many reasons as there were mentions and were mostly
individual in nature. The underlying cause appeared to be the way teams to give

Onboarding in Agile 155

specific responsibilities to their new team members. Most of these responsibilities
were something no one had an ownership before, causing the new employee to
fall into a role, where no one could instruct him or her on what to do or even on
where to start (C-13). When being a part of the team, but still only completing
certain assignments that were not related to the assignments of the team, caused
that some employees were not properly included in the team’s work. This is
an indication of a wider problem, the lack ownership of responsibilities, also
apparent in responsibilities related to onboarding itself (C-5).

4.2 RQ2: Which Practices Support Onboarding New Employees
into an Agile Team?

The currently employed practices that are mentioned as successful in supporting
onboarding in the case company can be found from Table 3 which is constructed
based on the interview answers.

Table 3. Good onboarding practices identified

Practice Description # of mentions

P-1 Mentoring 11

P-2 People coaching 7

P-3 Encourage asking questions, arrange activities and facilitate
situations for new employees to participate into conversations

7

P-4 Onboarding day(s) at the office 6

P-5 The team as a whole being open to questions from the new
employee

6

P-6 Pair/mob/team programming 4

P-7 Trust in other functions and their practices without having
visibility

3

P-8 Getting to do work assignments from the first days on 3

P-9 Actively giving the new employee freedom and opportunities
to learn the practices and ways-of-working of the team and
the assignment

3

P-10 Common R&D meetings offering insight into business and
organizational aspects of the case organization

3

P-11 Ability to influence different processes even as a newcomer 3

P-12 Supervisor onboarding (showing product vision, strategy,
organization working habits, and practical aspects of the job)

3

P-13 “Open camera/mic” – policy when working remotely 2

P-14 Getting to complete challenging and varying tasks from the
start

2

P-15 Actively encouraging respectful behaviour in all contexts 2

156 T. Enberg et al.

The most mentioned practice both in the interviews and in the open questions
of the survey was mentoring (P-1). Mentoring was described as one of the most
important parts of onboarding, due to its focus on the individual and their skills.
Mentors were always working in the same agile team. In a few responses the
term “mentor” was not used, but the description was clearly the description of a
mentor. The most important in mentoring was the availability of someone always
ready to answer your questions. In addition, many people who had started prior
to the pandemic mentioned that asking questions in the office from anyone was
important and especially that the team as a whole was open to questions from
the new employee (P-5). The pandemic stripped away the possibility of being
at the office, so other ways to lower the threshold to ask questions were needed.
In the beginning, it was harder for teams to find habits to help newcomers
get help more easily, but the more recently onboarded interviewees mentioned
different ways to encourage asking questions, arrange activities and facilitate
situations for new employees to participate into conversations, which encourages
to an open and transparent working culture (P-3). These include in different
teams: 1) staying in the virtual daily meeting room after the daily activities
with cameras open until lunch, 2) hanging out in a virtual meeting room with
microphones open every day for at least a few hours (P-13), 3) having a weekly
reservation on working with cameras open, 4) having a weekly time for just
hanging out and talking about non-work-related stuff to build the team, 5) team
gatherings and re-building the team working habits with the new employee, and
6) pair/mob/team programming (P-6).

The second most mentioned practice was people coaching (P-2). Due to the
people coaching being a relatively new organizational model, only a few intervie-
wees had a people coach from the start. The similar tasks as the people coaches
were doing, were mentioned as being done by the previous supervisor more than
two years ago (P-12). The supervisor welcomed new people to the office and
showed them around. The interviewees onboarded less than two years ago on
the other hand thought of the walk-through of the contract and strategy, when
talking about supervisor onboarding.

Another good practice that was in use with many teams was onboarding day
or days at the office (P-4). This is mainly something that was taken into use after
the pandemic had started because previously people started their work at the
office quite regularly. During the pandemic, the first day included presentations
and setting up the environment for the work assignment. Unfortunately, not too
many people were introduced with multiple days at the office as the regulations
prevented working there most of the time. However, this was seen as important,
due to getting to meet other people at the office and getting to know your
teammates better. Onboarding days were also difficult for teams that had their
members spread out to multiple offices.

Another thought that was mentioned multiple times in the interviews, was
the hands-on work assignments given to new employees, especially getting to
do work assignments from the first days on (P-8). Employees stated that they
got familiar with the code by getting to complete challenging and varying tasks

Onboarding in Agile 157

from the start (P-14). Their first assignments were one by one more challenging
to solve, which was seen as motivating. Even the first assignments were actual
backlog items from the team’s backlog. A common thought here seems to be
that the planning was done in advance. Along with planning the assignments
in advance, reserving time for the newcomer to get to know the code without
rushing was also thought as important, because it reduced the anxiety of meeting
the performance expectations of a full-time employee right away (P-9).

4.3 RQ3: How to Improve the Onboarding Process for Agile Teams
Within A company?

The third research question asks for solutions for improving the onboarding pro-
cess in an agile organization. To find the best solutions, feedback, and solutions
were collected first from the interviews. Additionally, a two-phase workshop was
organized to facilitate ways for employees to solve the most important challenges
by themselves.

Ideas Collected. Unlike previous categories, new ideas were something inter-
viewees did not have much in common. We received a lot of new ideas, ranging
from team-level onboarding ideas to product-level ideas. See Table 4 presenting
the most often mentioned ideas. The idea, which many interviewees seemed to
agree on, was a clear presentation of the organization structure (I-1). It would
help all employees to better understand the different parts of the organization
and their responsibilities.

Ideas that came up as successful and were already used in some teams were:
Pair/mob programming and completing assignments as one team (I-2), which
allows for information sharing during the regular programming, arranging a team
gathering as soon as possible when a newcomer starts (I-3), planning ahead when
a newcomer is arriving for example regarding joint office days and tasks for
the newcomer (I-4), and that the team will gather their tools, access rights and
documents into a single location for the newcomer and keeps those up-to-date
(I-6). These ideas could be spread and taken into use also in other teams.

At the time of the study the onboarding responsibility was unclear and scat-
tered between different people: people coach, mentor, team and the rest of the
organization. As team is central for the onboarding success, many onboard-
ing practices depend on the team and might be team-specific due to the self-
organizing nature of an agile team, it was suggested that in the future the team
would take the main responsibility of onboarding (I-5).

Finally, as teams have many things in common, it was suggested to cre-
ate common software architectural solutions accross teams (I-7) and common
presentations explaining higher level architecture and ways of working in the
organisation (I-8). These would give more insight into the product and the orga-
nization, and make it easier for employees to understand the architecture and
business decisions behind the product.

158 T. Enberg et al.

Table 4. Ideas collected

Ideas Description # of mentions

I-1 Clear presentation of the organisation structure 4

I-2 Pair/mob programming and completing assignments as one
team

4

I-3 Team gathering as soon as possible when newcomer starts 3

I-4 Better planning ahead when a newcomer is arriving 3

I-5 Team will in the future take the main responsibility of the
onboarding

3

I-6 Team will gather their tools, access rights and documents
them to a single location for the newcomer. Team keeps
those up-to-date

3

I-7 Common software architectural solutions accross teams (as
applicable)

2

I-8 Common presentations explaining higher level architecture
and ways of working in the organisation

2

Solutions Created in the Workshops: The workshop participants selected
the following five challenges as the most important to solve in the onboarding
process and offered a number of solutions for each challenge, as shown below:

Mentor Lacks Instructions: Each team should create their own checklist for
their own onboarding process, so that the most essential technical details will
always be reviewed. The checklist could contain: UI features, project structures,
microservices, repositories and the most important data structures. The checklist
requires checking and updating every time a new employee is starting.

Materials or Documentation Outdated: To avoid this from happening in the
future, links should always be updated when documentation is updated. Having
all documentation in one platform would support this.

Materials or Documentation Missing: All materials need to be found from
a single location. Outdated material needs to be removed if found. A common
repository for technical documentation already exists, but is not utilized. A wider
adoption for this tool is needed. This would centralize the technical documenta-
tion.

Lack of Knowledge in Some Specific Domain Areas: The issue that the new
employee does not know anyone with knowledge about a specific area, causes a
lot of questions and time to find a person to answer a question. To solve this, an
introduction of the people, and their skills and responsibilities also outside the
own team would be needed.

Feeling of Not Beloning to the Team: More care should be taken to onboard
the new employee to the team as well. This includes for example some activities
with the team, preferably face-to-face. Some off-topic talks within the team can
also help with team building. Team members should focus on including the more
quiet people in discussions.

Onboarding in Agile 159

As can be seen from the list above, the solutions suggested by the workshop
participants are quite low level and should be easy to implement.

The workshop participants were asked to form action points to help the orga-
nization to take suggestions into practice. Two major action poins were created:
1) Create a group to discuss onboarding best practices and challenges from differ-
ent teams. This would allow for knowledge and experience sharing between the
teams about onboarding. This way the practices used in different teams could be
made more common and generally more would be known about the onboarding
within the organization. 2) Create a common checklist for onboarding and place
for onboarding documentation. The checklist could include also technical details
that would be essential to know for a new employee. That way the mentor would
have a clear place for all the materials, and the team could use the documenta-
tion for their own ways of working. It was also heavily suggested that this sort
of a documentation would be in the version control, next to the code made by
the teams.

5 Discussion and Conclusions

In this paper, we reported a case study on onboarding in a medium-size agile
software development company, which had undergone changes and expressed
the need to improve its onboarding practices. With a survey, interviews, and
workshops we collected data on the current onboarding challenges, successful
practices, and improvement ideas from the software development organization.

Even though there exists plenty of literature on onboarding in general, includ-
ing onboarding theories [1,12,20], onboarding in agile software development has
not received much attention yet. According to Gregory et al. [10], more research
is needed to cover different kinds of agile companies, including remotely working
and larger software companies, both of which were covered in this research. Next,
we will discuss our results, especially from the point of view of agile software
development.

Based on our results we present the following practical implications for
onboarding in agile software development organizations:

1) Mentoring is the key. In our results, mentoring was the most often men-
tioned successful onboarding practice. A peer from the same team where the
new employee would start was assigned as a mentor for him or her. When
comparing to the literature, it seems clear that mentoring is widely used as
a good onboarding strategy, even across different industries. In several soft-
ware companies, mentoring was reported to be one of the most popular or
the prime onboarding method, [5,7,10,16].

2) Give Agile teams the main onboarding responsibility and make the
responsibility clear. According to our results, the agile teams had already
a lot of responsibility in onboarding the new team members. However, that
responsibility was not clearly stated. In agile software development the teams
are self-organized, and according to agile leadership strategy teams are just

160 T. Enberg et al.

assigned goals and given constraints, rather than controlled by how the work
is done within the team [9]. Therefore, it seems quite natural that teams
have a lot of autonomy also in the onboarding process when including new
members in an agile team.

3) Give agile teams the autonomy to decide the onboarding practices
for them. Many of the successful practices found in our study, as well as
improvement ideas were team-level practices, which implies how important
the team-level practices are for successful onboarding. As agile teams have the
autonomy to decide their internal practices, teams should be given the free-
dom to decide the best onboarding practices for them. Some of the successful
and suggested practices in our study were actually typical agile practices,
such as mob/peer programming. Previous literature has also reported that
agile practices and ways of working also function as onboarding practices, for
example, sprint retrospectives [10] and code reviews [5,10].

4) Support and encourage the teams to share good practices. Our
results revealed that different agile teams had already a good selection of
successful onboarding practices at the team level. However, the teams were
not aware of the different practices used by different teams. Sharing these
practices and learning from other teams was one of the actions suggested
by the workshop participants. Previous research supports this finding, e.g.,
Gregory et al. [10] suggest communities of practice to share expertise in the
organization in the form of “communities of practice” [22].

5) Create a common place for onboarding documentation and check-
lists. Keep them up to date. The lacking, missing, and not up-to-date
materials for onboarding, such as plans and orientation materials, were
brought up as a challenge in our study, and a lot of ideas were given on
how to improve the situation. Also, previous research in software companies
has reported similar problems [5,10,14]. These studies have suggested that
better documentation would fill in many of the challenges faced by the new
employees.

We call for more research on onboarding practices used in different agile
development companies. In addition, it would be interesting to follow up on
the influences of the improvements suggested by our study participants, and
how these improvements might influence the employee engagement statistics
and turnover rate in a longer period. Additionally, information and reports from
implemented methods by each team would provide excellent insight into the
effect the solutions have on the team’s daily work.

References

1. Bauer, T.: Onboarding new employees: Maximizing Success (2010). https://
teachercentricity.com/wp-content/uploads/2014/08/SHRM-Onboarding-Report.
pdf

2. Bauer, T., Erdogan, B.: Organizational socialization: the effective onboarding of
new employees. In: APA Handbook of Industrial and Organizational Psychology,
vol. 3, pp. 51–64 (2011). https://doi.org/10.1037/12171-002

https://teachercentricity.com/wp-content/uploads/2014/08/SHRM-Onboarding-Report.pdf
https://teachercentricity.com/wp-content/uploads/2014/08/SHRM-Onboarding-Report.pdf
https://teachercentricity.com/wp-content/uploads/2014/08/SHRM-Onboarding-Report.pdf
https://doi.org/10.1037/12171-002

Onboarding in Agile 161

3. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

4. Breaux, T., Moritz, J.: The 2021 software developer shortage is coming. Commun.
ACM 64(7), 39–41 (2021). https://doi.org/10.1145/3440753

5. Britto, R., Cruzes, D.S., Smite, D., Sablis, A.: Onboarding software develop-
ers and teams in three globally distributed legacy projects: a multi-case study.
J. Softw. Evol. Process 30(4), e1921 (2018). https://doi.org/10.1002/smr.1921.
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1921

6. Britto, R., Smite, D., Damm, L.O., Börstler, J.: Evaluating and strategizing the
onboarding of software developers in large-scale globally distributed projects. J.
Syst. Softw. 169, 110699 (2020). https://doi.org/10.1016/j.jss.2020.110699

7. Buchan, J., MacDonell, S., Yang, J.: Effective team onboarding in agile soft-
ware development: techniques and goals, pp. 1–11 (2019). https://doi.org/10.1109/
ESEM.2019.8870189

8. Chao, G.T., O’Leary-Kelly, A.M., Wolf, S., Klein, H.J., Gardner, P.D.: Organiza-
tional socialization: its content and consequences. J. Appl. Psychol. 79(5), 730–743
(1994). https://doi.org/10.1037/0021-9010.79.5.730

9. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131–133 (2001). https://doi.org/10.1109/2.963450

10. Gregory, P., Strode, D.E., Sharp, H., Barroca, L.: An onboarding model for inte-
grating newcomers into agile project teams. Inf. Softw. Technol. 143, 106792
(2022). https://doi.org/10.1016/j.infsof.2021.106792. https://www.sciencedirect.
com/science/article/pii/S0950584921002329

11. Hyrynsalmi, S.M., Rantanen, M.M., Hyrynsalmi, S.: The war for talent in software
business-how are finnish software companies perceiving and coping with the labor
shortage? In: 2021 IEEE International Conference on Engineering, Technology and
Innovation (ICE/ITMC), pp. 1–10. IEEE (2021)

12. Jones, G.R.: Socialization tactics, self-efficacy, and newcomers’ adjustments to
organizations. Acad. Manag. J. 29(2), 262–279 (1986). https://doi.org/10.2307/
256188

13. Joshi, A., Kale, S., Chandel, S., Pal, D.K.: Likert scale: explored and explained.
Brit. J. Appl. Sci. Technol. 7(4), 396 (2015)

14. Pavlina, K.: Assessing best practices for the virtual onboarding of new
hires in the technology industry (2020). https://www.proquest.com/openview/
39c7b814b8bf1d73adcabe97ed085ba4/1?pq-origsite=gscholar&cbl=44156

15. Rieff, J., Peschner, J.: Employment and social developments in Europe (2020)
16. Rodeghero, P., Zimmermann, T., Houck, B., Ford, D.: Please turn your cameras on:

remote onboarding of software developers during a pandemic. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pp. 41–50. IEEE (2021)

17. Sharma, G.G., Stol, K.J.: Exploring onboarding success, organizational
fit, and turnover intention of software professionals. J. Syst. Softw.
159, 110442 (2020). https://doi.org/10.1016/j.jss.2019.110442. https://www.
sciencedirect.com/science/article/pii/S016412121930216X

18. SmartRecruiters: Hiring process steps for 2022 (2018). https://www.
smartrecruiters.com/resources/glossary/hiring-process-steps/

19. Van Maanen, J.: People processing: strategies of organizational socialization.
Organ. Dyn. 7(1), 18–36 (1978). https://doi.org/10.1016/0090-2616(78)90032-
3. https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=5142946&
site=ehost-live

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1145/3440753
https://doi.org/10.1002/smr.1921
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1921
https://doi.org/10.1016/j.jss.2020.110699
https://doi.org/10.1109/ESEM.2019.8870189
https://doi.org/10.1109/ESEM.2019.8870189
https://doi.org/10.1037/0021-9010.79.5.730
https://doi.org/10.1109/2.963450
https://doi.org/10.1016/j.infsof.2021.106792
https://www.sciencedirect.com/science/article/pii/S0950584921002329
https://www.sciencedirect.com/science/article/pii/S0950584921002329
https://doi.org/10.2307/256188
https://doi.org/10.2307/256188
https://www.proquest.com/openview/39c7b814b8bf1d73adcabe97ed085ba4/1?pq-origsite=gscholar&cbl=44156
https://www.proquest.com/openview/39c7b814b8bf1d73adcabe97ed085ba4/1?pq-origsite=gscholar&cbl=44156
https://doi.org/10.1016/j.jss.2019.110442
https://www.sciencedirect.com/science/article/pii/S016412121930216X
https://www.sciencedirect.com/science/article/pii/S016412121930216X
https://www.smartrecruiters.com/resources/glossary/hiring-process-steps/
https://www.smartrecruiters.com/resources/glossary/hiring-process-steps/
https://doi.org/10.1016/0090-2616(78)90032-3
https://doi.org/10.1016/0090-2616(78)90032-3
https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=5142946&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=5142946&site=ehost-live

162 T. Enberg et al.

20. Van Maanen, J.E., Schein, E.H.: Toward a theory of organizational socialization
(1977)

21. Vierhauser, M., Rabiser, R., Grünbacher, P.: A case study on testing, commission-
ing, and operation of very-large-scale software systems. In: Companion Proceedings
of the 36th International Conference on Software Engineering, pp. 125–134 (2014)

22. Wenger, E.: Communities of practice: a brief introduction (2011). https://
scholarsbank.uoregon.edu/xmlui/handle/1794/11736

23. Whitworth, E., Biddle, R.: Motivation and cohesion in agile teams. In: Concas, G.,
Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007, vol. 4536, pp. 62–69. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73101-6 9

24. Wright, B.: Employment, trends, and training in information technology. OCCUP.
Outlook Q. 53(1), 34–41 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://scholarsbank.uoregon.edu/xmlui/handle/1794/11736
https://scholarsbank.uoregon.edu/xmlui/handle/1794/11736
https://doi.org/10.1007/978-3-540-73101-6_9
http://creativecommons.org/licenses/by/4.0/

Exploring Human-AI Collaboration
in Agile: Customised LLM Meeting

Assistants

Beatriz Cabrero-Daniel1(B) , Tomas Herda2 , Victoria Pichler2 ,
and Martin Eder2

1 University of Gothenburg, Gothenburg, Sweden
beatriz.cabrero-daniel@gu.se
2 Austrian Post, Vienna, Austria

Abstract. This action research study focuses on the integration of “AI
assistants” in two Agile software development meetings: the Daily Scrum
and a feature refinement, a planning meeting that is part of an in-house
Scaled Agile framework. We discuss the critical drivers of success, and
establish a link between the use of AI and team collaboration dynamics.
We conclude with a list of lessons learnt during the interventions in an
industrial context, and provide a assessment checklist for companies and
teams to reflect on their readiness level. This paper is thus a road-map
to facilitate the integration of AI tools in Agile setups.

Keywords: Agile · Scrum · meetings · human-AI collaboration

1 Introduction

Team collaboration and meetings are an essential part of any software devel-
opment organisation, but they are challenging to organise and manage. Often,
meetings do not follow guidelines or run into issues that affect their efficiency
and productivity, or delay decision-making [12]. Sometimes, the guidelines them-
selves burden the development teams and need to be adapted. The Post-Rolling
Refinement Model (PRIME), an in-house designed Scaled Agile framework pro-
posed by the Austrian Post [14], aims to reduce this burden.

Microsoft sparked in 2019 the debate on how Artificial Intelligence (AI) could
further improve meetings by automating tasks and retrieving information before,
during, and after them [10]. That could, among other benefits, improve the flow,
save time, increase productivity, or reduce frustration during said meetings [10].
There is a growing body of white and grey literature that recognises the role
that AI could have in reducing the organisational burden on the participants,
ensuring that meetings are conducted in a more organised and structured man-
ner, or providing insights to improve future meetings. However, there has been

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-61154-4 11.

c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 163–178, 2024.
https://doi.org/10.1007/978-3-031-61154-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_11&domain=pdf
http://orcid.org/0000-0001-5275-8372
http://orcid.org/0009-0005-2912-380X
http://orcid.org/0009-0006-4406-127X
http://orcid.org/0009-0009-7175-4073
https://doi.org/10.1007/978-3-031-61154-4_11
https://doi.org/10.1007/978-3-031-61154-4_11

164 B. Cabrero-Daniel et al.

little academic attention paid to the role of AI interventions in software devel-
opment meetings. And, to the best of the authors’ knowledge, no research has
been conducted to investigate the support of an AI meeting assistant and its
interactions with practitioners in a systematic way.

We are adopting action research to explore the use of AI in meetings at
Austrian Post Group IT, an international postal, logistics and service provider
described in detail in Sect. 3. We focus on two of their regular meetings: standard
Daily Scrums and feature refinement and planning meetings, part of the PRIME
framework [14]. The study explores how the use of AI affects the practitioners’
meeting experience. By doing so we aim to answer three questions:

RQ1 How can AI assist in identifying potential problems and risks in Agile
meetings, and provide actionable and useful recommendations?

RQ2 To what extent do the AI meeting-assistants generate sensible recommen-
dations in the context of real meetings in real time?

RQ3 How do users perceive the AI meeting-assistants in terms of user experi-
ence, and what impact does it have on overall performance?

Section 2 provides a brief overview of the relevant academic and grey litera-
ture on AI for software development tasks. Then, the paper moves on to detail
the methodology used in this paper in Sect. 3. Section 4 analyses the interven-
tions and evaluation surveys undertaken during this study, and reasons about
the design decisions that lead to the final AI meeting-assistants. Finally, Sect. 5
points out the lessons learnt and how they could be transferred to similar con-
texts, and Sect. 6 highlights important implications for future practice.

2 Related Work

2.1 Adapting Agile Practices to Companies

Many organisations have already shifted from traditional working processes to
Agile. Nevertheless, not all agile teams follow guidelines thoroughly [7,12]. This
is because they might feel that following all Scrum rules is too time-consuming or
that some of the Scrum rules are irrelevant or even outweighing the benefits [14].

Mortada et al. discuss several wrong practices in Scrum teams. For example,
daily Scrum meeting is supposed to last only 15 min, but it often runs longer
than that [12]. Other examples include not estimating user stories, not having
the correct structure for writing the user stories in the backlog, not having a
product backlog, not defining the sprint goal at the beginning of the sprint and
not ending the sprint with demonstrating the desired deliverable [12].

Similar problems might also be present in Scaled Agile setups. Previous
research has highlighted the role of confusion about roles and responsibilities
in creating of unnecessary overhead [14]. For example, senior engineers and
architects, might want to get more time to understand technical details, which
requires separate smaller feature estimation meetings [14]. At the same time,
developers often do not receive feedback from the right stakeholders at the end
of the sprint [12].

Exploring Human-AI Collaboration in Agile 165

For these reasons, some companies have proposed modifications and ad-hoc
adaptations to the guidelines. For instance, Austrian Post proposes the Post-
Rolling Refinement Model (PRIME) [14]. PRIME aims to remove a lot of the
bureaucratic overhead, pushes decisions to the Scrum teams, and reduces the
number of meetings and the number of mandatory participants [14].

2.2 Generative AI in Software Engineering

Generative AI (GenAI) is a type of AI that can generate different types of con-
tent, such as images, text, audio, and 3D models, based on the input it receives.
Large Language Models (LLMs), such as GPT-4, are currently being used in
a wide range of fields, including medicine, economics, software development,
academia, and business. GenAI can also support software engineering [13]. Man-
agers could use GenAI tools to get recommendations for decision-making, or
to automate some interactions with the customers, e.g., using virtual assistants
integrated with customer service tools etc [15]. Organisation’s data could also
be used as input to the AI tools for the purposes of creating tables, analysing
statistics, generating models, and monitoring workflows [10].

Microsoft breaks the interventions of AI in before, during, and after team
collaboration sessions and meetings and provides insights into how organisa-
tions can use AI to retrieve or generate relevant information and resources [10].
However, there are challenges associated with integrating AI and Agile method-
ologies, such as the need for specialised technical expertise, and integrating AI
into Agile software development processes requires careful consideration of the
context [6]. Moreover, the most critical challenges are related to human factors,
e.g., ensuring that developers have the skills to work with AI and align expec-
tations effectively [4,8]. As a result, the trade-off between creativity, human
oversight, and cyber-security is a critical factor to consider.

2.3 Prompt Engineering

Prompt engineering is defined as a set of techniques to improve the inputs or
instructions that a user provides for an AI model to get desired outputs [13].
Depending on the context that the AI model is used for, designing appropriate
prompts is very important to get more accurate results, therefore it is suggested
to narrow down the prompts and avoid using too general queries [5]. Mastropaolo
et al. also studied the influence of varying natural language descriptions for
Copilot prompts and proved that paraphrasing leads to different quality levels
for the generations [9]. There are different techniques for prompt engineering
including role-prompting, user of triple quotes to separate, trying several times
with generating responses, etc [2].

It is known that it is difficult to balance relevant information retrieval (in
this case, generating recommendations) and not overloading the participants [1].
These two things can be balanced in the prompt.

166 B. Cabrero-Daniel et al.

3 Research Design

The study aims to understand how practitioners use and perceive the use of AI
in meetings, a relatively new phenomenon [10]. We adopted action research to
observe both technical and social aspects of AI usage through interventions in
Austrian Post Group IT ’s online meetings. The emphasis of this study is not
the artefacts produced (provided as Supplementary Materials), but rather the
motivations behind design choices, detailed in Sect. 4. Before that, Sect. 3.1 pro-
vides some context, Sect. 3.2 describes the expectations for both assistants, and
Sect. 3.3 explains how surveys and observations were used to draw conclusions
and improve the artefact.

3.1 Context

Austrian Post is an international postal, logistics and service provider operating
in the markets of Austria, where it plays a critical role in the country’s infras-
tructure, eight other countries in Central and Eastern Europe, and Turkey. The
development teams, which are part of Group IT use broadly accepted frame-
works, such as Scrum as well as a in-house designed Scaled Agile framework
named PRIME [14]. More than 520 employees work at Austrian Post Group
IT, out of which approximately 300 have a similar role as the participants, that
belong to 3 out of the 9 development teams at the Digital Logistics Platform.

An action team, consisting of both practitioners and researchers, was named
to be responsible for planning, executing, and evaluating the research. The
selected practitioners were involved in planning and executing actions, besides
observing and providing contextualised feedback after each of the interventions.
Moreover, they provided the evaluation of the final outcome with their deep
knowledge of the context, the Scrum and PRIME frameworks, and the practi-
tioners’ way of working.

Complementary, a reference group of practitioners, responsible to give advice
and feedback to the action team, and a management team, who is planned to
govern the institutionalisation of the proposed changes, were also key to conduct
the present study. The goals of these two groups is to evaluate the benefits of AI
meeting assistants, as reported in this study, and exploring potential directions
for further work, aligned with Austrian Post ’s strategic goals, e.g., automating
repetitive preparation tasks, supporting less experienced developers, creating
useful summaries for those that could not attend a meeting, etc.

3.2 Action

We propose two AI assistants to use before, during and after two Agile software
development meetings, as shown in Table 1. The assistants are instanced by
prompting Azure OpenAI Studio’s GPT-4 LLM. The prompts were designed
iteratively: first listing the current challenges of each meeting, then refining the
prompts and testing them without sharing the generations (silent demos), and
finally using the AI assistants with participants, under observation.

Exploring Human-AI Collaboration in Agile 167

The Agile Release Train Coach Assistant. An AI assistant was designed,
with the help of reference team, to help the Agile Release Train Coach (a servant
leader to the train and support teams in delivering value) prepare and conduct
PRIME meetings by helping refine and plan the next PRIME iteration [14].

Table 1. AI meeting assistant actions

Intervention Before meeting During meeting After meeting

PRIME meeting Creation of slides with identified risks based on current
PRIME features board

-

Daily Scrum - Real time guidance, ticket
management

Post-meeting
recommendations

The Agile Release Train Coach assistant is instantiated using a prompt and
three spreadsheet files. The files contain information about (i) the features and
related children User Stories in the PRIME feature board, (ii) the average veloc-
ity of development teams per sprint, and (iii) of the Agile Release Train [14].
These files need to be provided to the assistant given that no real-time connection
to Azure DevOps is yet available for the LLM. The files are automatically embed-
ded by the Azure AI search platform in order to be accessed by the LLM [11].
Using the embedded files, the assistant provides valuable insights to:

1. Limit the risk of teams over-committing (using team’s capacity and velocity).
2. Identify features with no effort value.
3. Identify features placed in incorrect backlog (based on iteration path).
4. Check unplanned integration testing efforts.
5. Identify features where there is a children user story for a team that is not

tagged in the feature.
6. Help plan large features (based on effort points).
7. Highlight non-estimated and incorrectly estimated features.
8. Limit the risk of the Agile release Train over-committing (based on capacity).

The information contained in the files was manually gathered from Azure
DevOps and anonymised by the reference team in two-hour-long sessions before
each of the PRIME meetings described in Sect. 2. In these sessions, the prompt
to instantiate the Agile Release Train Coach assistant was improved and the
validity of its insights, checked. It is important to note that not only was the AI
assistant faster than the reference team at analysing the data, but also made less
mistakes than humans. Moreover, as the prompt design improved, as discussed
in Sects. 4, the time to generate and check the insights went down to 30 min.

Scrum Team Assistant Tool for the Daily Scrum. Based on the insights
of the action and reference team, a second assistant was designed to get real-time
recommendations on the meeting progress, and insights on the adherence to the
official Scrum guidelines right after the Daily Scrum.

The Scrum Team Assistant Tool assistant is instantiated using a prompt
and the latest version of the official Scrum Guide, since there is a risk of the

168 B. Cabrero-Daniel et al.

Fig. 1. AI recommendations, shown using OBS, during an Daily Scrum meeting.

LLM retrieving a deprecated version. The prompt gives the general context of
the intervention and instructs the LLM on how to act depending on the user
inputs. To generate manageable, to-the-point recommendations and align with
the expectations of practitioners, the assistant is asked to generate up to 10
words that are “friendly.” The prompt concludes with general instructions for the
LLM to run the assistant. Once instantiated using the prompt in Supplementary
Materials, the AI assistant generates different recommendations when:

– An individual talks about topics not related to the team’s work.
– The work that the individual mentions is not visualised in the sprint backlog.
– An individual engaged in a detailed discussion about a specific topic.
– The impediment that an individual raised is not visualised.
– An individual was interrupted by an external circumstance.
– An individual does not have any task in “updated state” in the backlog.
– An individual needs to create a ticket to a specific team.
– Any other problem that may occur during the Daily Scrum.

The real-time generated recommendations are shared with the team using
disappearing pop-up messages, as represented in Fig. 1. Right after the meeting,
as shown in Table 1, the assistant provides a summary of the problems the team
has faced during their Daily Scrum, lists all created tickets, and shares tips how
to improve the next Daily Scrum Meeting via the meeting chat.

3.3 Data Collection and Analysis

The observations, surveys, and discussions held with practitioners helped capture
the nuances of the practitioners’ opinions and provide rich data for analysis.

Exploring Human-AI Collaboration in Agile 169

Surveys to Understand Team Composition. Previous to the interventions, we
sent a survey to the Scrum teams in the Digital Logistics Platform to capture
the practitioners’ opinions on AI. The participants’ responses (a total of 39)
helped us to select three teams willing to participate in the interventions. The
three selected teams, as shown in Fig. 2, had a similar composition in terms of
their feelings about AI meeting assistants. The readers who want to replicate
the study can use the survey questions, provided as Supplementary Materials.

Fig. 2. Team composition, based on their answers to the initial survey question “How
would you feel about using AI support in the meeting?”

Observations Before and During the Actions. The researchers in the action team
participated on the online meetings over a period of time to get accustomed
and to understand their routines and needs [16]. During the observations of the
meetings, the researchers did not intervene, even though the meeting attendants
were aware of their presence. In each of the interventions and silent demos for the
two assistants, notes were taken by the action team about the AI-practitioner
interaction. Being part of the environment also helped interpret the true meaning
of the answers obtained before and after each of the interventions [16].

How the Conclusions Were Drawn. The survey answers, together with the feed-
back by the practitioners after the interventions, and the notes from the obser-
vations were used to improve the design of the prompts, as discussed in Sect. 4.

4 Execution and Results

This section first presents the specific challenges identified during the initial
observations, previous to the interventions, and suggests how AI could assist
practitioners (RQ1). The participants views, collected after each intervention,
helped improve the AI assistants in helping reach the meeting goals and adhere
to the guidelines (RQ2). Finally, this section moves on to discuss how the practi-
tioners felt about the AI assistants and the implications on their way of working
(RQ3). Themes emerging from the participants’ responses are also highlighted
here and their transferability to other contexts is discussed in Sect. 5.

170 B. Cabrero-Daniel et al.

4.1 Preparations with the Agile Release Train Coach Assistant

At the beginning of each PRIME iteration, information about the features for the
next PRIME needs to be prepared to allow for discussions during the meeting.
Doing this is, according to one of the practitioners, a “boring process” that takes
considerable time from a number of people. As a result, and similarly to the three
groups represented in Fig. 2, most of the participants on PRIME interventions
(76%) also reported feeling excited or curious about testing AI assistants.

To help with preparations, the Agile Release Train Coach assistant provides
insights meant to help the work, as reported in Sect. 3.2. These insights are
described to the LLM in the prompt, provided as Supplementary Material, that
was iteratively designed in the three action iterations in Table 2.

Table 2. Record of all notable changes made to the Agile Release Train Coach assistant

Intervention Feedback/reasoning Changes

Initial tests - Prompts for benefits 1 to 6 based
Azure DevOps data

PRIME 1 Metrics confusing and do not
capture feature dependencies,
observation: difficult to share

Fixed benefits 7 and 8, changed
prompt to generated slides to use in
the discussion

PRIME 2 Wrong velocity and capacity
calculations (character mismatch)

Improved definitions for key terms,
fixed team name mapping

PRIME 3 Data is outdated (hours) -

In the first intervention, the pre-generated insights were tabulated and
shared with the practitioners, who required many clarifications on the values
in the tables (e.g., how were effort points used to calculate the average team
velocity), but overall agreed with the usefulness of the Agile Release Train Coach
assistant. In this first try, however, a third of the generations were mistaken due
to an outdated input data point due to a human mistake. When the errors
were spotted, a participant reminded their team that “these things were done
manually before” and called the AI “very handy” even if it makes minor mistakes.

Right after the meeting, participants were given the chance to provide feed-
back through an anonymous online survey and reported some potential misin-
terpretations of the AI generations. For instance, one participant stated that “a
team might over-estimate but the train might still be under the [effort] thresh-
old” and another requested clarifying the relationship between “teams’ capac-
ity, Train velocity, and user story point estimation.” Their feedback, together
with comments and notes taken during the intervention, lead to changes in the
prompt. First, “risks” were renamed to “benefits” to align with the goal: help-
ing practitioners by informing their discussions, rather than unilaterally sending
warnings. Moreover, the mathematical operations were rephrased and clarified,

Exploring Human-AI Collaboration in Agile 171

Table 3. Record of all notable changes made to the Scrum Team Assistant Tool

Intervention Feedback/reasoning Changes

Silent demos - Requesting positive messages, “no
problem” option added

Team 1 Aggressive, not synced, and
distracting

Shorter messages, rephrased
“warning”, asked for friendlier
generations, pop-up messages

Team 2 Happy with non-intrusive messages Break prompt down, interface
improvements

Team 3 Recommendations partially
incorrect, easily “ignorable”

-

Team 1, validation Real time messages and suggestions,
helpful; summary, appreciated

-

and two benefits were added following the recommendations from the Lead Prod-
uct Manager, responsible for the products of the train and owner of the train
backlog [14], on how to identify features that have unrealistic estimation. Finally,
the prompt was modified to generate slide templates.

During the second intervention, the slides created with the help of the
Agile Release Train Coach assistant were used to present the insights described in
Sect. 3.2. Again, some practitioners questioned the calculations and logic behind
them, e.g., whether “only features with estimated efforts are used.” Another
practitioner, after hearing the details about how potential over-commitment is
computed by the assistant, asked: “does it mean that we have to change our way
of working?” These comments led us to further refine the definitions within the
prompt in order to have clearer AI generations for the questioned benefits.

Some problems arose during the second intervention regarding the mathe-
matical computations due to an inconsistency in the anonymisation processes:
there was a character mismatch in the teams’ names between the spreadsheets
that are used alongside the prompt. As discussed in Sect. 5, the used LLM has
troubles with mathematical operations, and therefore they need to be defined in
a very precise way. Due to this, further reformulation of the benefits was done
to reach the final, unambiguous version of the prompt.

In the third and last intervention, all insights were well received and a sin-
gle negative comment arose: the data was a couple of hours old. Given the LLM’s
performance limitations and the lack of connection to Azure DevOps data, the
data needed to be prepared the morning before the intervention. Throughout all
the interventions, participants repeatedly pointed out the potential of “looking
at [the recommendations] live.” However, having the Agile Release Train Coach
assistant working with real-time data is outside of the scope of this study and
left for future work, as discussed in Sect. 5.

4.2 Real-Time Assistance by the Scrum Team Assistant Tool

We also propose, as presented in Table 1, AI assistance during and after Daily
Scrum meetings. To prepare the interventions, the action team observed the prac-

172 B. Cabrero-Daniel et al.

titioners in their online meetings prior to the action taking. These observations,
together with the insights by the reference team, helped design the recommenda-
tions listed in Sect. 3.2. With this information, the Scrum Team Assistant Tool
was designed to help participants follow the official Scrum guidelines.

In order to refine the prompt used to set up the Scrum Team Assistant
Tool, three teams help us perform four design iterations, as reflected in Table 3.
The composition of the three teams is similar to Team 1 when it comes to
pre-conceptions about AI, as can be see in Fig. 2. Even though team members
reported differences in their preferred way of working, we treat the feedback
received from each team as applicable to others.

In the first intervention, the AI recommendations were shared via the
Microsoft Team’s chat and the members of Team 1 found the amount of mes-
sages overwhelming and “rather distracting.” The first message caught the par-
ticipants’ attention, however, they did not seem to mind the subsequent warn-
ings: one participant even stated they were just “random messages,” and another
complained that they were “warnings, warnings, and more warnings!”

In the survey, sent after the meeting, participants reported that the gener-
ations were aggressive and “missing empathy,” and 2 out of the 7 participants
reported feeling annoyed by the AI. Even so, more than half of the respondents
(4 out of 7) reported liking being warned when the team engaged in too detailed
discussions and being notified when the Scrum Team Assistant Tool estimated
that the Daily Scrum would take longer than 15 min. It is important to note
that, in the survey previous to the interventions, only 24% of participants said
their team does not usually finish their Daily Scrum within the 15-minute time-
box. This contradicts the findings by Mortada et al., that reported 53% of Daily
Scrum events not finishing within 15 min [12].

Using the feedback, the prompt was changed to generate shorter messages
and not to produce “warnings” but “recommendations,” which proved to change
the tone of the generations (i.e., friendlier, tactful). After the first intervention,
we also improved the interface to make it less distracting: we introduced disap-
pearing pop-up messages, as seen in Fig. 1. The new prompt and interface for the
Scrum Team Assistant Tool were tested with Teams 2 and 3 in the subsequent
interventions, and were well received. After seeing the changes, Team 1 was also
more willing to have an AI assistant than after the first intervention.

Before the second intervention, the prompt was extended to generate a
summary of the recommendations at the end. All prompt improvements were
tested with Team 2 and the participants overall liked the experience and said
the AI recommendations were non-intrusive. No problems were observed during
the meeting or reported afterwards, however one of the practitioners reported
minimising the view with pop-up messages (so they were not readable).

The third intervention, with Team 3, was similarly successful except for
two specific issues. On the one hand, a participant stated that some of the gener-
ated recommendations about “keeping the discussion on the topic felt partially
incorrect.” This was interpreted, with the help of the reference team, as a team-
level preference; while the LLM makes recommendations to strictly follow the

Exploring Human-AI Collaboration in Agile 173

official Scrum guidelines, different teams had preferences as to what to allow in
their Daily Scrum meetings (e.g., Team 1 accepts social related talk, as long
as it stays within 15 min). On the other hand, a participant suggested that the
“Scrum Master should keep an eye on these things” and have a final say on what
AI recommendations are shared with the team.

In the last intervention, the participants agreed that the Scrum Team
Assistant Tool “provided helpful live messages, both positive and negative.”
However, similar to a participant in Team 3 that reported “feeling observed
during the meeting,” one of the participants explained that “it feels unnatural”
to have “something inhuman forcing [...] a specific pattern on us.” In general,
across interventions, the participants appreciated the summary of the recom-
mendations received at the end, and participants stated they “would like to
have this summary for all other meetings” and suggested it would be helpful
to expand it with “what was done well and if it has improved since last time.”
These comments and their implications for future work are further discussed in
Sect. 5.

5 Discussion of the Implications

Several reports have shown the potential of using AI to enhance various Software
Engineering tasks. As mentioned in Sect. 2, prior studies that have noted the
importance of appropriate interfaces and human oversight when integrating AI
in Software Engineering [3]. However, very little was found in the literature on
the question of how to design AI assistants for meetings and integrate them in
real industrial setups. The lessons learnt in this study are discussed below, and
how they could be transferred to other contexts is discussed in Sect. 5.1.

RQ1 sought to determine how to create AI assistants to help identify and
address potential problems and risks in agile meetings, and suggest improve-
ments. By observing different teams during Daily Scrums and PRIME meet-
ings [14], challenging areas where AI could assist human practitioners were iden-
tified. Then, different interventions, in Tables 2 and 3, were used to design the
Agile Release Train Coach assistant and the Scrum Team Assistant Tool.

Take-away message: AI should not warn, but inform about potential
improvements and give helpful suggestions, so they are not negatively per-
ceived.

RQ2 focused on the design process leading to sensible AI recommendations
to use before, during and after the meetings. Therefore, a number of design
iterations, described in Sect. 4, were used to determine the effect of different
prompting strategies in the performance of the LLM in doing so. Overall, both
assistants are able to generate accurate and contextualised insights, surpassing
the expectations of some of the participants.

Take-away message: AI assistants can be useful even if mistakes are made,
and practitioners are to expertly review the generations. AI should work
alongside practitioners, not replace them.

174 B. Cabrero-Daniel et al.

RQ3 focused on the social aspect of AI meeting assistants. In the first iter-
ations, as described in Sect. 4, the proposed action was not well received and
multiple iterations were needed to design balanced solutions. The results are in
agreement with recent studies that highlight the important of appropriate inter-
action strategies in promoting trust in AI tools [3,4]. It is interesting to note,
though, how the participants’ perception of AI depended on how seamlessly it
was integrated in the meetings, and its insistence and intrusiveness negatively
impacted the participants’ perception of them: from useful to imposing.

Take-away message: Each practitioner and team feels differently about AI
recommendations on adherence to Agile principles and practices. Therefore,
AI meeting assistants should be adapted to their needs and expectations.

5.1 Recommendations for Company and Teams: Readiness
Assessment

The emphasis of this study is not on the artefacts produced but rather on the
procedural aspects of utilising these tools and the transfer of the lessons learnt
to other industrial settings. This section moves on to present a set of actionable
recommendations for other companies for how to apply the results presented
here, and how to conduct similar studies in the future. These insights are gath-
ered in the Readiness Assessment of Human-AI Collaboration for Agile Meetings
form, provided as Supplementary Materials, to guide interested companies and
teams.

Customised Team-AI Interactions: The findings of this study highlight
the need to adapt the AI assistants to each team, which needs to be studied
prior to considering integration. Data about the teams’ needs, expectations, and
preferred Agile practices should be gathered to customise the AI assistants. This
technology, however, should be imposed neither on teams nor on team members.
Therefore, the practitioners’ feelings on AI must also be assessed beforehand:
if there is opposition, receiving LLM-specific training might help. Still, after
integration, feedback should keep being gathered, as presented in this study.

Teams looking to integrate AI assistants to enhance Agile team collaboration
sessions, should assess their readiness using these questions:

� Have you assessed what your team’s challenges are regarding agile meetings?
� Have you evaluated the team-specific agile practices and adoption maturity?
� Have you gathered data about practitioners’s feelings on AI-assistants?
� Does the team have the knowledge to integrate AI assistants(s) in meetings?
� Does your team see any benefits if integrating AI assistant(s) into meetings?
� Can the team to provide iterative feedback to improve the AI-assistant?

AI Assistant Design: During the design phase, a difficult question arose:
whether AI assistants should be a support for everyone in the team or for a
specific role, only. Companies (or teams) looking to integrate AI assistants need
to reflect on what their goals are and design them appropriately. The authors’

Exploring Human-AI Collaboration in Agile 175

recommendation is to not attempt to cover all possible functionalities; but rather
use different modules, or agents, that connect only when needed. Moreover, each
of the modules should provide input and pointers to the practitioners without
contradicting Agile values. Once integrated, the AI assistant’s design should be
rethought and improved based on the periodically-received feedback. Companies
(or teams) should assess their early AI assistant design using these questions:

� Does the design of the AI-assistant contradict with any agile principles?
� Is the AI-assistant designed to support the Agile team or just a specific role?
� Is the AI-assistant designed to enhance or substitute a practitioner’s role?
� Is the AI-assistant design modular and scalable?

Investments and Compliance: Before AI assistant integration, compa-
nies should consider whether the required expertise is available and whether the
investment can be made. This includes economical resources but also reflecting
on the long-term impact of using these technology (e.g., on societal and envi-
ronmental well-being [3]). Then, data protection and security concerns must be
addressed (e.g., GDPR, user permissions, etc.). For this, as discussed in Sect. 4,
we recommend ensuring that the LLM has secure access to up-to-date data (e.g.,
deprecated versions of online documents were often retrieved during our tests).
Companies should therefore assess their readiness by asking:

� Does the company have the expertise to integrate AI-assistants?
� Is the company willing to invest resources into creating AI-assistants?
� Is the integration of the AI-assistants compliant with the company’s code of

conduct, and ethics and sustainability strategies?
� Does the company have available interfaces to connect AI-assistants to other

internal systems, and guarantee the retrieval of up-to-date data?
� Can AI-assistants be configured to only use reliable external data sources?
� Is the integration of AI-assistants compliant with the company’s AI-strategy,

security standards, and privacy policies?

5.2 Threats to Validity

We must remind the reader that the claims are based on the actions conducted
with the help of willing participants. The selection of the subjects, based on their
willingness to explore AI as an assistant in meetings, might have introduced
a bias. Moreover, evaluation apprehension may have caused these subjects to
behave differently when observed, and feel more inclined to positively evaluate
the AI assistants and pay more attention to the adherence to the Scrum frame-
work under observation. Moreover, the meetings were conducted in English to
accommodate for the action team. However, the practitioners often showed more
fluency when discussing issues in their native language. This might caused delays
or affected the normal conduction of the meetings.

The generalisability of this work might also be affected by the diverse data
protection policies and available resources at each industrial setup. For instance,

176 B. Cabrero-Daniel et al.

this study focuses on Azure OpenAI Services: alternatives have not been explored
because of privacy concerns and case company constraints. Moreover, the pro-
vided prompts might not directly generalise to other setups for different reasons.
However, the emphasis of this study is not on the prompts themselves, but rather
the motivations behind design choices, and the process to gather feedback after
each iteration. It is also worth noting that some events (e.g., popularisation of
Microsoft Copilot) during the time that this study was conducted might have
affected both the practitioners’ and the management team’s perception of the
proposed AI-meeting assistants. Similar and unforeseeable events, might con-
tinue to shape their opinion on these promising tools.

6 Conclusion

The main goal of this study was to determine whether AI can assist practi-
tioners in Agile meetings by identifying potential problems and risks. Moreover,
the usefulness of the generated insights, and how they were perceived by the
participants in our action research interventions, was also studied.

While the results of the paper, discussed in Sect. 4, demonstrate the useful-
ness of AI assistants in generating useful recommendations in real meetings, they
also highlight the need to pay close attention to the user experience of practi-
tioners that directly interact with AI. Although the current study is based on a
relatively limited sample of participants, all from Austrian Post, this work offers
valuable insights into the expectations of participants on AI assistance and on
the strategies to integrate AI assistants before, during, and after meetings.

This study provides the first comprehensive assessment of how AI meeting
assistants can be integrated in a real Agile setting, taking into account the per-
ceptions of the practitioners in the design process. The findings, the authors
hope, will be useful to guide the integration of AI into different team collabora-
tion sessions and meetings in different setups.

6.1 Future Work

Further research might explore the adaptation of the AI assistants to specific
needs of the teams they will assist. For instance, teams might have preferences
when it comes to adherence to official Scrum guidelines or be at different stages
of Agile adoption, in which case AI could help Scrum Masters specifically. AI
could also suggest ad-hoc best practices or solutions for specific issues within
a team. Moreover, the multi-modal capabilities of newer models in order to
visualise information and inform practitioners more efficiently could be explored
in the future, as practitioners seem to prefer graphical representations.

Similarly, further studies can be carried out to understand how AI can be
integrated into other meetings, standard or ad-hoc, in other industrial setups.
For instance, the reference team believes that practitioners would benefit from
AI assistants in longer, resource intensive meetings, planning meetings, or review
meetings, where the official guidelines might not suit some teams well. Moreover,

Exploring Human-AI Collaboration in Agile 177

AI could provide overviews across meetings and teams to help practitioners have
an overview of the team, train, and whole development progress.

Future work could also focus, as suggested by multiple participants in this
study, on generating meeting summaries for different purposes, such as informing
missing participants about what transpired in a meeting. However, in order to
provide relevant summaries and recommendations, the LLMs would need context
such as automatic meeting transcripts and access to Azure DevOps. This data
would make the recommendations more relevant and not outdated; however,
further development, outside the scope of this paper, is required.

Finally, we believe a thorough assessment checklist should be crafted for
companies and teams to understand their readiness to integrate AI-assistants in
their Agile meetings. Then, and only then, should human-AI collaboration start.

Acknowledgements. Thanks to Prof. Staron for his time and his book. Thanks to
Prof. Berger for his valuable guidance. Thanks to those that told us their honest opinion
about AI.

References

1. Asthana, S., Sajnani, H., Voyloshnikova, E., Acharya, B., Herzig, K.: A case study
of developer bots: motivations, perceptions, and challenges. In: Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE 2023, pp. 1268–1280. Association
for Computing Machinery, New York (2023)

2. Chen, B., Zhang, Z., Langrené, N., Zhu, S.: Unleashing the potential of prompt
engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735 (2023)

3. Commission, E., Directorate-General for Communications Networks, C., Technol-
ogy: The Assessment List for Trustworthy Artificial Intelligence (ALTAI) for self
assessment. Publications Office (2020)

4. European Commission, Directorate-General for Communications Networks, Con-
tent and Technology: EUR-Lex - 52021PC0206 - EN - EUR-Lex. CNECT (2021)

5. Hörnemalm, A.: Chatgpt as a software development tool: The future of develop-
ment (2023)

6. Karac, I., Turhan, B.: What do we (really) know about test-driven development?
IEEE Softw. 35(4), 81–85 (2018)

7. Kuhrmann, M., et al.: What makes agile software development agile? IEEE Trans.
Softw. Eng. 48(9), 3523–3539 (2022)

8. Larios-Vargas, E., et al.: DASP: a framework for driving the adoption of software
security practices (2022)

9. Mastropaolo, A., et al.: On the robustness of code generation techniques: an empir-
ical study on github copilot (2023)

10. Microsoft: The future of meetings: Using ai to improve team collaboration (2019)
Accessed on November 30, 2023

11. Microsoft: Vector search in Azure AI Search (2023). Accessed 20 Dec 2023
12. Mortada, M., Ayas, H.M., Hebig, R.: Why do software teams deviate from scrum?

reasons and implications. In: Proceedings of the International Conference on
Software and System Processes, ICSSP 2020, 71–80. Association for Computing
Machinery, New York (2020)

http://arxiv.org/abs/2310.14735

178 B. Cabrero-Daniel et al.

13. Nguyen-Duc, A., et al.: Generative artificial intelligence for software engineering–a
research agenda. arXiv preprint arXiv:2310.18648 (2023)

14. Niessl, M., Gruber, C., Eder, M.: Restating scaled agile development at austrian
post. XP (2023)

15. Sarker, I.H.: Ai-based modeling: techniques, applications and research issues
towards automation, intelligent and smart systems. SN Comput. Sci. 3(2), 158
(2022)

16. Staron, M.: In: Action Research as Research Methodology in Software Engineering,
pp. 15–36, January 2020

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2310.18648
http://creativecommons.org/licenses/by/4.0/

The Role of Team Composition in Agile
Software Development Education: A

Gendered Perspective

Gyda Elisa Sæter , Viktoria Stray(B) , Steffen Alm̊as ,
and Yngve Lindsjørn

University of Oslo, 0373 Oslo, Norway
{gydaes,stray,steffa,ynglin}@ifi.uio.no

Abstract. Team composition is a critical factor influencing collabo-
ration within agile software development. This study investigates the
impact of gender distribution on teamwork quality in software engineer-
ing capstone courses. We examined the experiences of 240 students orga-
nized into 40 teams during an agile project course. We analyzed two
surveys, one conducted before team composition and one at the end
of the project work. As much as 91% of the students chose to use the
practice of conducting stand-up meetings in their project work and the
majority were satisfied with the practice. Further, our analysis reveals
that while women tend to engage more in design and men in program-
ming, an increase in the proportion of women within a team correlates
with a higher involvement of women in programming tasks. Our find-
ings highlight gender differences in perceptions and experiences related
to project involvement in agile software engineering courses.

Keywords: Collaboration · Teamwork quality · Knowledge sharing ·
Human and social aspects of agile software development · Gender
diversity · Team assembly strategies · Empirical study on gender
effects · Teaching experiences · Empirical studies with students

1 Introduction

Software development is extremely collaborative, especially in agile development
[3,10]. One of the important objectives of software engineering education is,
therefore, to make students learn essential collaboration skills [20]. Teamwork in
software engineering projects among higher education students is harder than
anticipated [2]. Common challenges are a lack of dedication and involvement of
one or more team members [17] coupled with communication challenges among
the team members [11].

Designing courses that effectively teach agile software development and equip
students with the skills to tackle real-world challenges remains a formidable task
[8]. Team composition in large capstone courses presents instructors with a com-
plex and time-consuming challenge, as they must balance a range of potentially
c© The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, pp. 179–195, 2024.
https://doi.org/10.1007/978-3-031-61154-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61154-4_12&domain=pdf
http://orcid.org/0009-0001-4809-8372
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0009-0009-0912-7650
http://orcid.org/0000-0003-1202-0052
https://doi.org/10.1007/978-3-031-61154-4_12

180 G. E. Sæter et al.

conflicting factors, including the distribution of skills and availability among
students, and the varying degrees of enthusiasm and ambition for the project.
However, creating well-functioning agile development teams is crucial for foster-
ing learning, encouraging student engagement, and achieving a successful project
outcome [21]. It is essential to consider team composition, including gender diver-
sity, in capstone software development projects to enhance learning and project
outcomes. Different kinds of diversity can make teams underperform because the
team members may not understand or talk to each other well, which can cause
disagreement or dissatisfaction [14]. Recent research has found that when team
members feel safe, they are more inclined to help each other and exchange their
knowledge [15]. Lack of trust is one of the main barriers for autonomous agile
teams [31].

Research on team composition in agile software engineering capstone courses
has highlighted the challenges faced by instructors in creating well-balanced and
effective teams [11,27]. To address this, algorithmically supported systems like
TEASE have been developed to assist instructors in team composition, resulting
in better mean project priority and reduced time for team formation [11]. The
importance of motivation, interpersonal relationships, and communication in
team satisfaction has also been emphasized [11]. Furthermore, the use of Scrum
in capstone courses has been found to positively impact students’ estimation
and planning skills [28]. Finally, the effectiveness of the proposed team building
criteria in enhancing team cohesion has been demonstrated [36].

In this paper, we describe our methodology for assembling development teams,
which is based on a predetermined set of criteria derived from our extensive
experience in conducting the course since 2019. Many developers have their first
encounter with agile software development through courses conducting teamwork
during their education, where this teamwork experience sets the tone for develop-
ers’ view of agile collaboration. Due to the low percentage of women in the sector,
female developers frequently find themselves in the minority within their teams.
In teamwork, social research found that minority team members encounter gender
stereotypes, affecting their task assignment and performance [1,18,40]. Agile soft-
ware development teams where women are the majority are currently understud-
ied, leaving a knowledge gap regarding how different gender compositions affect
teamwork. Amidst the extensive body of literature on gender, agile student team-
work, and team composition separately, there’s a lack of research exploring the
affection of gender composition in student teams in software engineering courses.
Motivated by this gap, this study aims to explore gender influence on the quality
of teamwork by answering the following research question:

RQ1: “How can diverse student teams be composed in an agile software
engineering capstone course, considering students’ preferences?”

RQ2: “What gender differences do we find in an agile software engineering
capstone course?”

RQ3: “How does gender composition affect the student’s teamwork in agile
student teams?”

The Role of Team Composition in Agile Software Development Education 181

Our case study was designed to explore gender dynamics in an agile software
development capstone course. The course involved 40 teams, and data was col-
lected through two surveys. Our study is based on Kanter’s theory [19] of gender
diversity and the concept of teamwork quality (TWQ) as defined by Hoegl and
Gemuenden [16], focusing on the quality of interactions within the team. Our
measure of teamwork quality does not encompass the assessment of task process,
task strategy, or the individual team members’ performance quality in carrying
out task activities. Additionally, management-related activities like task plan-
ning, resource allocation, and management by objectives are not within the scope
of this teamwork quality construct.

In the following sections, we will present the theoretical background used
in this paper in Sect. 2 and the context and methodology of the case study in
Sect. 3. Section 4 presents our results, structured by the research questions, and
Sect. 5 discusses the results before concluding in Sect. 6.

2 Background

2.1 Diversity in Software Development Teams

Early social research stated that women prefer working in either gender-balanced
or male-dominated environments over women-dominated environments [41].
However, recent studies in software engineering propose that male-dominated
environments, and lack of female support, drive women away from the field
[13,29]. A recent estimate of the percentage of women among the world’s soft-
ware developers is approximately 10% [7]. The underrepresentation of women in
certain academic disciplines is accompanied by the risk of female students disen-
gaging or dropping out, posing a significant challenge to educational institutions
[13,29].

Teamwork is one of the most critical soft skills in software engineering, often
taught through project work in capstone courses where students collaborate in
teams [4]. Curseu et al. [9] recommend forming diverse teams based on gender
and nationality to enhance learning performance, as diverse groups tend to per-
form better. However, a study by Aeby et al. [1] involving third-year Bachelor
and first-year Master students found significant gender differences in role prefer-
ences: females were more likely to engage in report writing, while males showed
a stronger inclination towards technical tasks.

Løvold et al. [27] found that student-formed teams performed slightly better
than instructor-formed, advantaging from already knowing each other and how
they work together. However, mixing the two approaches, allowing students to
submit their team preferences for the instructor to base team formation on, could
give the students ownership and include social benefits from the self-assigned
approach, while at the same time ensuring balanced teams regarding the project
needs [33].

182 G. E. Sæter et al.

2.2 Teamwork Quality

As described in the Introduction, our use of the term Teamwork Quality (TWQ)
is based on Hoegl and Gemuenden [16], and focuses solely on the quality of
interactions within the team. The six subconstructs of communication, coor-
dination, balance of member contribution, mutual support, effort, and cohe-
sion cover performance-relevant measures of internal interaction in teams. Hoegl
and Gemuenden used the TWQ instrument in studies of traditional software
teams. In recent years, TWQ has been used in studies of agile teams [25,26]. See
Appendix B for the items used in the TWQ construct.

2.3 Kanter’s Tokenism Theory

In 1977, Kanter introduced the theory of Group proportions, also known as the
Tokenism theory [19]. This theory argues that the dynamics of teamwork will
be affected by the numerical proportion between the minority and the majority.
Meaning that women in a minority position will be more exposed to stereotypes
proportionate to the number of men in the team. The theory describes four
types of gender compositions: uniform, balanced, tilted, and skewed. Specifically,
Uniform are 100% homogenous gendered groups, Balanced groups have a ratio
between 60:40 and 50:50, tilted groups of 65:35, and skewed groups have an 85:15
ratio. Within skewed groups, the minority is defined as “tokens” and the majority
“dominants”. They are called tokens as they are often made representative of
their genders, following expectations and stereotypes from their gender into the
person.

The increased visibility can result in tokens experiencing performance pres-
sure and constraints in social behavior [23]. This might lead to token women
assimilating the men dominants [22]. In tilted groups, women can form alliances
and therefore influence the group’s culture, while balanced groups are more prone
to group dynamics depending on the individuality of the group members.

3 Methodology

3.1 Context

We aimed to investigate team dynamics with a gender perspective through a
single-case holistic study [35,42]. The data was collected from January to June
2023 through two surveys distributed in an agile capstone course. The course
is a compulsory fourth-semester course that provides 20 ECTs (equivalent to
one-third of a full-time academic year’s workload). The course is mandatory for
three study programs at the Department of Informatics at the University of
Oslo. Regardless of study program, all students are expected to participate in
all aspects of agile software development.

The students are divided into teams tasked with developing applications
based on the Norwegian Meteorological Institute’s weather programming inter-
face over a twelve-week period. Figure 1 illustrates the course’s timeline for 2023.
In that year, there were 247 students enrolled in the course, and 34% of students
were female. These students were organized into 40 teams.

The Role of Team Composition in Agile Software Development Education 183

Fig. 1. Timeline Showing Course Structure and Data Collection

3.2 Data Collection and Analysis

Pre-survey: The team assembly was based on a pre-survey (Appendix A),
requiring students to sign up for the teamwork, either alone or with a pre-
assembled team of up to 3 students. The survey was only filled out by one
student per pre-assembled team, requiring prior agreement among team members
regarding project ambition. The survey was handed out in February with a 10-
day submission deadline. As gender was not collected in the survey, members’
gender was assigned by manually checking their registered gender in the student
system.

Post-survey: In June 2023, a quantitative subjective survey was conducted to
measure 1) the team members’ self-assed teamwork quality, success, and per-
formance, and 2) students’ self-assessed perception of gender biases and gen-
der compositions’ influence on teamwork. The survey consisted of 82 questions,
where 61 of the questions measured teamwork quality. Seven Likert scale ques-
tions asked about their self-assessed experience with gender bias within their
teams during the project work, and 1 open-ended qualitative question inviting
students to reflect on their teams’ gender compositions, their effect on their
project, and experiences with gender dynamics in teamwork in general. The full
survey is available in Appendix B. The survey was answered by 201 respondents
(response rate was 84%).

The survey was handed out to the students in between team project presen-
tations, providing them with an environment exclusively related to their work
regarding location, time, and headspace. The students were obligated to present
at a given time, and dedicated time was allocated for conducting the survey,
hopefully motivating them to answer it more thoroughly.

184 G. E. Sæter et al.

Fig. 2. Our implementation of Kanter’s Tokenism Theory

Students are asked to select their gender provided with the following options:
Woman, Man, Other, or Do not wish to declare. We are interested in the student’s
self-defined gender and have therefore employed the terms Man and Woman
throughout the research as we believe them to be more inclusive than female and
male, inviting students to identify regardless of biology [24]. Only one student
chose Do not wish to declare, and was removed from the analysis due to data-
relevance. Figure 2 displays this case study’s implementation of Kanter’s theory.

When analyzing the survey, the data was prepared for three main analy-
ses: a) Teamwork quality aggregated by teams, b) Individuals’ experience with
teamwork and c) qualitative teamwork experiences. Sets a) and b) represented
quantitative data, analyzed with statistics in SPSS and Python. Set c) was ana-
lyzed using reflective thematic analyses [6]. Thematic analysis is a systematic
process for identifying, organizing, and gaining insights into recurrent themes
within a dataset. By pinpointing common discussions or written content, shared
themes and patterns are fabricated through this method.

4 Results

Of the initial 247 students who signed up for the course, 240 students qualified
for the project work after passing all individual compulsory assignments, making
40 teams each with 6 members. Team assembly took the first author over 60
working hours, manually assembling by following variables in order of priority:
1) requested peer students, 2) level of ambition, 4) abnormalities in working
hours 3) multidisciplinary, and 4) gender. This section presents the result of the
team composition regarding these variables.

The Role of Team Composition in Agile Software Development Education 185

The pre-survey received 134 responses, where 34 pre-assembled teams with
three members and 35 teams with 2 members. One team was permitted to pre-
assemble with 6 members, due to challenges in working hours. Team assembly
began with prioritizing a balanced composition regarding the number of members
in the pre-assembled teams. Meaning, ideally, a team would either compose two
pre-assembled teams of three peers, four of two peers, or six single students.

Pre-assembled teams usually compose friends, and we were concerned this
would lead to imbalanced team dynamics, especially when three strangers join
three close friends. Despite these concerns, we managed to form 23 symmetric
teams where the composition mirrored our balanced ideal and 17 asymmetric
teams where such balance could not be achieved.

4.1 Team Compositions and Ambition Levels Based on Pre-survey

In our survey, we inquired about the students’ desired time commitment to the
course, referred to as their ambition level (detailed in Appendix A). None of
the surveyed students reported having ambition level 1 (“Wish to work much
less than expected (<15 h/week)”). When comparing the reported ambition level
among genders, we found that women reported a higher average ambition level,
with a mean score of 3.91 (SD = 0.757). Men, on the other hand, demonstrated a
slightly lower mean ambition level of 3.68 (SD = 0.778). The standard deviation
among women’s scores indicates slightly more variation in comparison to men’s
scores. These results suggest that, within this survey’s population, women have
expressed a marginally higher ambition level than men.

We strived to compose teams with team members having approximately the
same ambition level. Teams were distributed as follows: two teams at level two,
12 at level three, 20 at level four, and six at the maximum ambition level; level
5 (“Wish to work much more than expected (>35 h/week)”). Table 1 illustrates
the distribution of teams based on their ambition levels and gender composition,
with each column representing the gender compositions (W=women, M=men).

Table 1. Distribution of teams by ambition level and gender composition.

Ambition 0W/6M 1W/5M 2W/4M 3W/3M 4W/2M 5W/1M

2 1 1 0 0 0 0

3 2 3 3 1 3 0

4 4 7 1 5 2 1

5 0 1 1 1 2 1

Total 7 12 5 7 7 2

Gender distribution was the last consideration in the team assembly, only
adjusted if feasible after accounting for ambition levels, work hours, and study

186 G. E. Sæter et al.

program. Consequently, only two teams comprise token men and no team com-
prises women uniformly. Given the overrepresentation of men in the course, form-
ing all-women teams solely for the research would disproportionately increase the
number of uniform men teams. Table 1 gives an overview of the number of teams
in each gender composition.

4.2 Agile Ways of Working and Gender

In the post-survey, as much as 91% reported that they used the practice of
conducting stand-up meetings. With regard to satisfaction with stand-up meet-
ings (rated on a scale from 1, very dissatisfied, to 5, very satisfied), only 4%
said they were “very dissatisfied,” and 5% said they were “slightly dissatisfied.”
11.9% were neither happy nor unhappy. In other words, the majority appeared to
appreciate the stand-up meetings; 35.3% said they were “slightly satisfied,” and
34.8% said they were “very satisfied” with the practice, while 9% did not utilize
stand-up meetings. Women reported higher satisfaction with stand-up meetings
than men, see Table 2. As can also be seen in the table, women reported spending
more hours on the project work. The students also rated the degree to whether
they had been a Scrum Master/Team leader (on a scale from 1 - Has not been
to 5 - To a large extent), and women reported to have been Scrum Masters to a
greater extent. However, these differences are not statistically significant.

Regarding the use of collaboration and communication tools, 46% used Dis-
cord, 52 % used Facebook Messenger, 40% used Microsoft Teams, and 40% used
Slack. Almost 70 % used Trello, which might be explained by the high usage of
ScrumBan/Kanban. Among the other responses, the most commonly mentioned
collaboration tools were GitHub, Figma, Google Drive, Confluence, Snapchat,
ClickUp, Signal, Jira, Overleaf, and Notion.

Table 2. Stand-up meetings and Scrum Master analyzed by gender

Women Men

Metric Mean SD Mean SD

Hours Spent on Project 20.48 7.87 19.69 9.26

Satisfaction with Stand-up Meetings 4.13 1,13 3.95 1.05

Degree of being Scrum Master/Team Leader 2.95 1.22 2.67 1.02

4.3 Gender Differences in Primary Work Functions of Team
Members

In the post-survey, students were asked what their primary work function in
the team was, selecting either programming, testing, designing, documentation,
architecture, or others. The survey received 201 responses, where 98 students
reported programming as their main function, 45 reported designing, 30 reported
documentation, 9 testing, 11 architecture, and 8 chose others. When we split

The Role of Team Composition in Agile Software Development Education 187

Fig. 3. Primary work function in teamwork, distributed by gender

these results by gender, women design and document more, while men program
more. As illustrated in Fig. 3, 34% of women report designing as their primary
work function, in comparison to only 16% of all men. This is despite equal
amounts of women and men attending the design study program that year.
Furthermore, while 36% of all women report programming as their main work
function, 56% of all men report programming. Lastly, 19% of women report
documentation, while 12% of men primarily document. In total, 89% of the
women and 85% of the men either programmed, designed, or documented, the
rest distributed between testing, architecture, and others.

4.4 Impact of Gender Composition on Team Dynamics

Changes in Primary Work Functions: Women report on designing to a
greater extent than men in all gender compositions, except for in teams with 5
women and 1 man. Teams with 2 women and 4 men represent the team compo-
sition where women design the most. 50% of women in those teams report on
having design as their primary work function, while only 11% of men in those
teams report on primarily designing. We found that women, when in the minority
on tilted teams (Fig. 2), often experienced not being able to engage in program-
ming as much as they would have liked. To the open-ended question,“Describe
how you experienced the gender distribution in your team, and how you believe
it affected the teamwork and the project”, one woman in such a tilted team
responded:

“There was a tendency for gatekeeping at a technical level by the boys towards
the girls. Initially, tasks related to documentation and design were predominantly
delegated to the girls, an issue that was addressed and managed somewhat late
in the development process.” Furthermore, we found that women were expected
to design to a greater extent than men. As exemplified by a man as the majority
in a tilted team sharing his thoughts about his team’s gender composition:

“There were two women; I thought they would show significant effort
regarding design and delegation, but I ended up doing their job.”

188 G. E. Sæter et al.

Regarding programming, teams with four or five women have the highest
percentage (44%) of women reporting programming as their primary function.
Conversely, 22% of the token women in teams with five men reported program-
ming, 25% of the minority women in teams with four men, and 28% of the women
in balanced teams. Additionally, the teams of 4 or 5 women exhibit the smallest
difference in percentage between women and men primarily involved in program-
ming. One token man in a team with 5 women, suggested that women-dominated
teams benefit from a safe exploratory environment:

“I believe it had the most positive impact on teamwork because I collab-
orate well with girls and learned a lot about programming since working
with ”typical” IT guys has been quite unfamiliar to me. I could ask silly
questions while pair programming and maintain a friendly and chatty tone
while programming.”

In uniform men teams, 60% of the men program, while only 6% design in
these teams. Being the team composition with the largest proportion of members
primarily programming and least primarily designing, suggests that men focus
less on designing and more on programming.

Teamwork Quality: Table 3 shows each gender composition’s average team-
work quality scores. Teams with two women and four men have the lowest mean
TWQ scores (3.60), followed by balanced teams (3,76). Teams with five women
and one man score the highest (4.37), and teams with four women and two men
score the second highest (4.27). It is worth noticing the low standard deviation
among all compositions, indicating a high level of agreement among the respon-
dents. However, the two lowest-scoring teams also have the highest standard
deviation, suggesting a higher level of disagreement regarding their teamwork
quality.

Gender Bias Experiences: Intrigued by the difference in TWQ scores, we
performed a correlation analysis to examine the relationship between the num-
ber of women in a team and the outcomes of gender-bias post-survey questions.
Responses from women and men within the same team were aggregated sepa-
rately to capture each gender’s collective team perspective.

For men, the only significant correlation was with the item, “I am dissatisfied
with the gender balance”, which yielded a significant negative correlation (r =
−0.553, p < 0.01). This suggests that their dissatisfaction with gender balance
decreases as the number of women in the team increases:

[Man in a team with one woman and five men]:“I believe a more balanced
gender distribution would have been beneficial for group dynamics.”
[Man in a team with five women and one man]: “I experienced it as positive
and found it to be enlightening to be in a group with only girls.”

The Role of Team Composition in Agile Software Development Education 189

Table 3. TWQ outcomes by gender composition (TWQ factors: communication, coor-
dination, mutual support, effort, cohesion, and balance of member contribution)

Team
composition

Comm. Coord. Mut.
Sup.

Effort Cohes. Bal.
Contrib.

TWQ
Mean

TWQ
SD

0W/6M 4.12 4.18 4.42 3.72 4.19 4.15 4.13 0.38

1W/5M 4.18 4.15 4.43 4.05 4.30 4.42 4.25 0.26

2W/4M 3.62 3.41 3.84 3.25 3.67 3.85 3.60 0.52

3W/3M 3.80 3.74 3.90 3.46 3.80 3.85 3.76 0.58

4W/2M 4.25 4.20 4.46 4.09 4.36 4.28 4.27 0.33

5W/1M 4.58 4.08 4.70 3.94 4.44 4.46 4.37 0.48

In contrast, women demonstrated a broader range of significant correla-
tions. Aligning with the men, their dissatisfaction toward the teams’ gender
balance significantly negatively correlated to the number of women in the team
(r = −0.545, p < 0.01). Additionally, their feeling of being undervalued by team
members was significantly negatively correlated (r = −0.393, p < 0.01), while
the perceived taboo of discussing gender discrimination also showed a significant
negative correlation (r = −0.401, p < 0.01). This suggests that as the number
of women in a team increases, women tend to be more satisfied with the team’s
gender balance, feel more valued, and are less likely to see gender discrimination
topics as taboo. A woman in a team composed of two women and four men
shared her experiences, highlighting potential bias in team interactions:

“Some in the group were very inclined to direct the coding questions exclu-
sively to the male programmer, assuming he had the answers and seeking
code reviews from him on GitHub. This could be a combination of me not
speaking up loudly enough, possibly not appearing confident, and might be
a subjective perception.”

Furthermore, their concern about not contributing enough was inversely related
to the number of women in the team (r = −0.241, p < 0.05), and the TWQ
mean score showed a positive correlation (r = 0.272, p < 0.05). This indicates
that women are less concerned about how their contributions are perceived, and
the quality of teamwork improves with a higher representation of women in the
team.

These findings indicate a skewed relationship between men’s and women’s
self-reported affection to gender composition. The significant correlations for
women across multiple aspects suggest that gender balance within teams could
play a critical role in women’s team experience, whereas for men’s, it appears to
be a less critical determinant.

190 G. E. Sæter et al.

5 Discussion

We have described our strategy for composing agile software engineering student
teams, and have examined gender differences in agile teamwork, and the impact
of gender composition on student teamwork by forming teams with varied gender
compositions.

According to a recent study [5], men are typically more inclined to lead than
women, and women are more willing to lead teams with a female majority. Our
findings indicate that women on average, participate in the role of Scrum Master
to a greater extent than the men. This is in line with Paasivaaras [32] recent
study on the Scrum Master role in student teams, who found the Scrum Master
role fit female students extremely well and suggests that marketing this role
towards girls currently outside the computer science field could be a good idea.

We found that women design and document more than men in the project,
while men program more than women. This is consistent with former research,
suggesting differences in women’s and men’s primary work functions to be due to
gender stereotypes [1]. However, in light of gender composition within the teams,
as the proportion of women in the team increases, we observed a corresponding
rise in women engaged in programming.

In general, we observed a positive impact on teamwork quality with an
increasing number of women. Women-skewed (4 women/2 men) and female-
dominated (5 women/1 man) teams exhibit the highest two TWQ scores, while
male-skewed (2 women/4 men) and balanced teams (3 women/3 men) scored
the lowest. Where according to Kanter’s theory we would expect the teams with
token women to have the lowest teamwork quality [19], our results showed these
teams to score higher than male-skewed teams, equal teams, and uniform male
teams. However, former laboratory experiments, testing the group’s gender pro-
portions affection on performance, found a deficiency in women’s performance
proportionate to the increase of male team members, while men performed unaf-
fected by gender composition [18,40]. Our survey sample lacks significant rep-
resentation of token women (response rate: 41%), leading to the men’s percep-
tion of the teamwork dominating these results. Furthermore, supporting the low
teamwork quality scores in balanced teams, the recent study by Graßl et al. [12]
found that student teams with greater gender diversity encounter challenges in
motivation, productivity, respect, and collaboration.

As the number of women on the team increases, we found a decrease in
women’s reported sense of being undervalued, a reduced taboo surrounding dis-
cussions of gender discrimination, and less fear of being perceived as inadequate
contributors to team efforts. This gender difference aligns with earlier research,
where in relationship to their team members, women felt less respected and
appreciated compared to men [12].

The majority of the students implemented daily stand-up meetings and found
it to be a valuable practice. Stand-up meetings are often seen as positive, as
long as the frequency is adapted, and the meeting is not mainly about reporting
progress [30,39]. Recent research [15] has found that implementing social agile
practices positively affects psychological safety in the teams. Also, most teams

The Role of Team Composition in Agile Software Development Education 191

used two communication platforms (the most popular were Discord, Facebook
Messenger, Microsoft Teams, and Slack). Slack has been identified as a significant
tool that offers various advantages such as facilitating improved communication
by reducing the barrier to seeking assistance and encouraging greater partici-
pation through the visibility of queries and topics under discussion [34,38]. In
student teams, Ross [34] found that Slack seems to improve the quality of group
communications and perceived learning outcomes from group work.

5.1 Limitations

Constrained by the limited participation of women at 34%, only two teams
were composed of a token man and five women. The small sample size of these
teams, challenges drawing definitive conclusions regarding gender composition
in women-dominated teams. However, we believe our results provide insight into
an infrequently observed team composition within the context of agile software
engineering student teams. Furthermore, our data sample of teamwork quality
is based on students’ independent survey self-assessment, which may not always
accurately reflect their team’s actual performance.

6 Conclusion

In this study, we investigated gender dynamics within agile software develop-
ment teams in an educational setting. Our findings reveal that gender compo-
sition significantly impacts team collaboration and individual roles within these
teams. We conducted two surveys. First, we investigated the ambition level of
240 students (82 women and 158 men) before starting agile project work. When
comparing the reported ambition level among genders, we found that women
reported a higher average ambition level than men. Next, after the project work,
we analyzed a post-survey with 201 respondents. We asked the students to assess
teamwork quality, success, performance, self-assessed perception of gender biases,
and gender compositions’ influence on teamwork. We found that women were
more satisfied with stand-up meetings than men. When analyzing team averages
with team composition, we found that teams with two women and four men have
the lowest score on teamwork quality.

For future research, it would be interesting to observe an all-female team
in this context and compare their teamwork experiences to an all-men team.
Finally, the course is currently in session, with an increased percentage of women
participation at 39%. This facilitates further and deeper research on gender com-
position in agile student teams. We found, consistent with earlier research [32],
that women show a preference for the role of Scrum Master. Given the ris-
ing utilization of agile coaches in the industry, and that leadership and project
management skills are important traits to have in this role [37], it would be
interesting to implement and investigate the role of agile coaches in software
engineering capstone courses. Further research could explore whether the skills

192 G. E. Sæter et al.

and inclinations that draw women to the Scrum Master role could similarly influ-
ence their participation as agile coaches, potentially enhancing team effectiveness
and project outcomes in the IT sector.

Appendix A: Registration of Teams for Spring 2023

The pre-survey with the questions for ambition level is available online:
https://doi.org/10.5281/zenodo.10671681.

Appendix B: Teamwork Quality and Gender Balance

The post-teamwork survey is accessible online at:
https://doi.org/10.5281/zenodo.10671697.

References

1. Aeby, P., Fong, R., Vukmirovic, M., Isaac, S., Tormey, R.: The impact of gender on
engineering students’ group work experiences. Int. J. Eng. Educ. 35(3), 756–765
(2019)

2. Bastarrica, M.C., Perovich, D., Samary, M.M.: What can students get from a soft-
ware engineering capstone course? In: 2017 IEEE/ACM 39th International Confer-
ence on software engineering: software engineering Education and Training Track
(ICSE-SEET), pp. 137–145. IEEE (2017)

3. Berntzen, M., Stray, V., Moe, N.B.: Coordination strategies: Managing inter-team
coordination challenges in large-scale agile. In: Gregory, P., Lassenius, C., Wang,
X., Kruchten, P. (eds.) XP 2021. LNCS, vol. 419, pp. 140–156. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-540-73101-6 9

4. Borges, G.G., de Souza, R.C.G.: Skills development for software engineers: system-
atic literature review. Inf. Softw. Technol. 168, 107395 (2024)

5. Born, A., Ranehill, E., Sandberg, A.: Gender and willingness to lead: does the
gender composition of teams matter? Rev. Econ. Stat. 104(2), 259–275 (2022)

6. Braun, V., Clarke, V.: Thematic analysis. American Psychological Association
(2012)

7. Canedo, E.D., Tives, H.A., Marioti, M.B., Fagundes, F., de Cerqueira, J.A.S.:
Barriers faced by women in software development projects. Information 10(10),
309 (2019)

8. Cico, O., Jaccheri, L., Nguyen-Duc, A., Zhang, H.: Exploring the intersection
between software industry and software engineering education-a systematic map-
ping of software engineering trends. J. Syst. Softw. 172, 110736 (2021)

9. Curşeu, P.L., Pluut, H.: Student groups as learning entities: the effect of group
diversity and teamwork quality on groups’ cognitive complexity. Stud. High. Educ.
38(1), 87–103 (2013)

10. Dorner, M., et al.: Taxing collaborative software engineering. IEEE Softw. (2023)
11. Dzvonyar, D., Alperowitz, L., Henze, D., Bruegge, B.: Team composition in soft-

ware engineering project courses. In: Proceedings of the 2nd International Work-
shop on Software Engineering Education for Millennials, pp. 16–23 (2018)

https://doi.org/10.5281/zenodo.10671681
https://doi.org/10.5281/zenodo.10671697
https://doi.org/10.1007/978-3-540-73101-6_9

The Role of Team Composition in Agile Software Development Education 193

12. Graßl, I., Krusche, S., Fraser, G.: Diversity and teamwork in student software
teams. In: Proceedings of the 5th European Conference on Software Engineering
Education, ECSEE 2023, pp. 110-119. Association for Computing Machinery, New
York (2023). https://doi.org/10.1145/3593663.3593687

13. Happe, L., Buhnova, B.: Frustrations steering women away from software engi-
neering. IEEE Softw. 39(4), 63–69 (2021)

14. Hashmi, S.I., Markkula, J.: Team composition in software engineering education.
In: Proceedings of the 27th International Conference on Evaluation and Assessment
in Software Engineering, EASE 2023, pp. 263–264. Association for Computing
Machinery, New York (2023). https://doi.org/10.1145/3593434.3593464

15. Hennel, P., Rosenkranz, C.: Investigating the “socio” in socio-technical develop-
ment: the case for psychological safety in agile information systems development.
Proj. Manag. J. 52(1), 11–30 (2021)

16. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

17. Iacob, C., Faily, S.: Exploring the gap between the student expectations and the
reality of teamwork in undergraduate software engineering group projects. J. Syst.
Softw. 157, 110393 (2019)

18. Inzlicht, M., Ben-Zeev, T.: A threatening intellectual environment: why females
are susceptible to experiencing problem-solving deficits in the presence of males.
Psychol. Sci. 11(5), 365–371 (2000)

19. Kanter, R.M.: Some effects of proportions on group life: skewed sex ratios and
responses to token women. Am. J. Sociol. 82(5), 965–990 (1977)

20. Kropp, M., Meier, A.: Collaboration and human factors in software development:
teaching agile methodologies based on industrial insight. In: 2016 IEEE Global
Engineering Education Conference (EDUCON), pp. 1003–1011. IEEE (2016)

21. Kropp, M., Meier, A., Mateescu, M., Zahn, C.: Teaching and learning agile collab-
oration. In: 2014 IEEE 27th Conference on Software Engineering Education and
Training (CSEE&T), pp. 139–148. IEEE (2014)

22. Lewis, P.: The quest for invisibility: female entrepreneurs and the masculine norm
of entrepreneurship. Gender Work Organ. 13(5), 453–469 (2006)

23. Lewis, P., Simpson, R.: Kanter revisited: gender, power and (in) visibility. Int. J.
Manag. Rev. 14(2), 141–158 (2012)

24. Lindqvist, A., Sendén, M.G., Renström, E.A.: What is gender, anyway: a review
of the options for operationalising gender. Psychol. Sexual. 12(4), 332–344 (2021)

25. Lindsjørn, Y., Bergersen, G.R., Dingsøyr, T., Sjøberg, D.: Teamwork quality and
team performance: exploring differences between small and large agile projects. In:
Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNCS, vol. 314, pp. 267–274.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-91602-6 19

26. Lindsjørn, Y., Sjøberg, D.I., Dingsøyr, T., Bergersen, G.R., Dyb̊a, T.: Teamwork
quality and project success in software development: a survey of agile development
teams. J. Syst. Softw. 122, 274–286 (2016)

27. Løvold, H.H., Lindsjørn, Y., Stray, V.: Forming and assessing student teams in
software engineering courses. In: Paasivaara, M., Kruchten, P. (eds.) XP 2020.
LNCS, vol. 396, pp. 298–306. Springer, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-58858-8 31

28. Mahnic, V.: A capstone course on agile software development using scrum. IEEE
Trans. Educ. 55(1), 99–106 (2011)

https://doi.org/10.1145/3593663.3593687
https://doi.org/10.1145/3593434.3593464
https://doi.org/10.1007/978-3-319-91602-6_19
https://doi.org/10.1007/978-3-030-58858-8_31
https://doi.org/10.1007/978-3-030-58858-8_31

194 G. E. Sæter et al.

29. Main, J.B., Schimpf, C.: The underrepresentation of women in computing fields:
a synthesis of literature using a life course perspective. IEEE Trans. Educ. 60(4),
296–304 (2017)

30. Masood, Z., Hoda, R., Blincoe, K.: Adapting agile practices in university contexts.
J. Syst. Softw. 144, 501–510 (2018)

31. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
xp2019. In: Hoda, R. (ed.) XP 2019. LNCS, vol. 364, pp. 13–19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2 2

32. Paasivaara, M.: Teaching the scrum master role using professional agile coaches
and communities of practice. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and Training (ICSE-
SEET), pp. 30–39. IEEE (2021)

33. Parker, R., Sangelkar, S., Swenson, M., Ford, J.D.: Launching for success: a review
of team formation for capstone design. Int. J. Eng. Educ. 35(6), 1926–1936 (2019)

34. Ross, S.M.: Slack it to me: complementing LMS with student-centric communi-
cations for the millennial/post-millennial student. J. Mark. Educ. 41(2), 91–108
(2019)

35. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

36. da Silva, F.Q., et al.: Team building criteria in software projects: a mix-method
replicated study. Inf. Softw. Technol. 55(7), 1316–1340 (2013)

37. Stray, V., Memon, B., Paruch, L.: A systematic literature review on agile coaching
and the role of the agile coach. In: Morisio, M., Torchiano, M., Jedlitschka, A. (eds.)
PROFES 2020. LNCS, vol. 12562, pp. 3–19. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64148-1 1

38. Stray, V., Moe, N.B., Vedal, H., Berntzen, M.: Using Objectives and Key Results
(OKRs) and slack: a case study of coordination in large-scale distributed agile.
In: Proceedings of the 55th Hawaii International Conference on System Sciences,
HICSS, p. 10 (2021). http://hdl.handle.net/10125/80225

39. Stray, V.G., Moe, N.B., Dyb̊a, T.: Escalation of commitment: a longitudinal case
study of daily meetings. In: Wohlin, C. (ed.) XP 2012. LNCS, vol. 111, pp. 153–167.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30350-0 11

40. Viallon, M.L., Martinot, D.: The effects of solo status on women’s and men’s
success: the moderating role of the performance context. Eur. J. Psychol. Educ.
24, 191–205 (2009)

41. Wharton, A.S., Baron, J.N.: So happy together? the impact of gender segregation
on men at work. Am. Sociol. Rev. 574–587 (1987)

42. Yin, R.K.: Case Study Research: Design and Methods, vol. 5. Sage, Thousand Oaks
(2009)

https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/978-3-030-64148-1_1
https://doi.org/10.1007/978-3-030-64148-1_1
http://hdl.handle.net/10125/80225
https://doi.org/10.1007/978-3-642-30350-0_11

The Role of Team Composition in Agile Software Development Education 195

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abrahamsson, Pekka 117
Alander, Sari 144
Almås, Steffen 179

B
Barbala, Astri 20, 53
Berntzen, Marthe 36, 53

C
Cabrero-Daniel, Beatriz 163
Conboy, Kieran 129

D
Dey, Tapajit 129

E
Eder, Martin 163
Enberg, Tomi 144
Engdal, Silje Alette 36

F
Fitzgerald, Brian 129

G
Gellein, Maja 36
Goisauf, Manuel 117

H
Healy, Robert 129
Herda, Tomas 117, 163

L
Lewzey, Edwin 129
Lindsjørn, Yngve 179

M
Marek, Krzysztof 107
Matthes, Florian 3, 70
Moe, Nils Brede 36, 53

P
Paasivaara, Maria 144
Philipp, Pascal 70
Pichler, Victoria 163
Przybylek, Adam 107

R
Rayhan, Maruf 117

S
Sæter, Gyda Elisa 179
Schmidt, Johannes 3
Stray, Viktoria 20, 53, 179

T
Tobisch, Franziska 3, 70
Trzesicki, Jacek 107

V
van Daalen, Erik 89
van Solingen, Rini 89

W
Weigelt, Karla 70

Z
Zhang, Zheying 117

© The Editor(s) (if applicable) and The Author(s) 2024
D. Šmite et al. (Eds.): XP 2024, LNBIP 512, p. 197, 2024.
https://doi.org/10.1007/978-3-031-61154-4

https://doi.org/10.1007/978-3-031-61154-4

	 Preface
	 Organization
	 Contents
	Agile at Scale
	Investigating Communities of Practice in Large-Scale Agile Software Development: An Interview Study
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Results
	4.1 Context
	4.2 Reasons for Establishing CoPs
	4.3 Characteristics of the Established CoPs

	5 Discussion
	5.1 Key Findings
	5.2 Limitations

	6 Conclusion and Future Work
	References

	Slack Use in Large-Scale Agile Organizations: ESN Tools as Catalysts for Alignment?
	1 Introduction
	2 Background
	2.1 Large-Scale Agile Development in Public Sector Organizations
	2.2 Communication in Agile Software Development
	2.3 ESN Tools

	3 Methods and Study Design
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Communication Transparency
	4.2 Communication Quality
	4.3 Communication Discipline

	5 Discussion
	6 Conclusion and Further Work
	References

	Coordination in Agile Product Areas: A Case Study from a Large FinTech Organization
	1 Introduction
	2 Background
	2.1 Organizing Large-Scale Agile Software Development into Product Areas
	2.2 Frameworks for Understanding Coordination in Large-Scale Agile

	3 Research Method
	3.1 Case Description
	3.2 Data Collection
	3.3 Data Analysis

	4 Findings
	4.1 Organizing Teams in Product Areas
	4.2 Product Area Coordination Meetings
	4.3 Product Area Coordination Roles
	4.4 Coordination Tools and Artefacts in the Product Area.

	5 Discussion
	5.1 Product Areas as a Distinct Organizational Level
	5.2 The Team Typology of Product Areas
	5.3 Pull Requests and Pair Programming as Coordination Mechanisms
	5.4 Practical Implications
	5.5 Evaluation of Limitations and Research Quality

	6 Future Research and Concluding Remarks
	References

	Software Product Management in Large-Scale Agile
	1 Introduction
	2 Background
	2.1 Large-Scale Agile and Product Management
	2.2 Challenges with Software Product Management

	3 Research Method
	3.1 Case Description
	3.2 Data Collection
	3.3 Data Analysis

	4 Findings
	4.1 Software Product Management in DNB
	4.2 Challenges with SPM in Large-Scale Agile Organizations
	4.3 Product Management Configurations

	5 Discussion
	5.1 SPM Challenges in Large-Scale Agile Organizations
	5.2 SPM Configurations in Large-Scale Agile Organizations
	5.3 Practical Implications

	6 Concluding Remarks and Future Research
	References

	Investigating Effort Estimation in a Large-Scale Agile ERP Transformation Program
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Results
	4.1 Context
	4.2 Effort Estimation Process
	4.3 Effort Estimation Challenges
	4.4 Propositions to Mitigate Effort Estimation Challenges
	4.5 Evaluation of the Proposed Mitigations

	5 Discussion
	5.1 Key Findings
	5.2 Limitations

	6 Conclusion and Future Work
	References

	Value and Quality in Agile
	The Current State of Operationalizing Value by Dutch Product Owners in Agile Software Development
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	4.1 RQ1: How Do Product Owners Determine the Most Valuable Backlog Items?
	4.2 RQ2: How Do Product Owners Refine Business Value?
	4.3 RQ3: How Do Product Owners Validate Business Value Delivery?
	4.4 RQ4: How Do Product Owners Measure Business Value Delivery?
	4.5 Main Question: How Do Product Owners Operationalize Business Value Delivery with Their Agile Software Development Teams?

	5 Validity Threats
	6 Discussing Research Questions and Future Research
	7 Conclusion
	References

	Impact of the Kanban Maturity Model on a Team's Agile Transformation: Tripling Throughput and Elevating Quality in Three Months
	1 Introduction and Related Works
	2 Method and Setting
	3 Results and Discussion
	4 Conclusions and Future Work
	References

	LLM-Based Agents for Automating the Enhancement of User Story Quality: An Early Report
	1 Introduction
	2 User Story Quality
	3 Implementing an Autonomous LLM-Based Agent System (ALAS)
	4 Experiments
	4.1 Setting up Experiments
	4.2 Evaluation

	5 Results
	6 Discussion
	7 Conclusion
	References

	People and Teams in Agile
	Comparing Stability and Sustainability in Agile Systems
	1 Introduction
	2 Background
	2.1 Measuring Stable and Sustainable Agile Work
	2.2 Assessing the Waste of Inventory/Partially Started Work

	3 Research Approach
	3.1 Analysing the Closed Project Jira Dataset
	3.2 Calculating the Stability Metric (Ψ)
	3.3 Calculating the Inventory Days (ID)
	3.4 Calculating the Unsustainable Hours Percentages

	4 Results
	4.1 Stability Metric and Inventory Days
	4.2 PBI Creation and Resolution Distributions
	4.3 Stability Metric, Inventory Days, and Unsustainable Hours

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	Onboarding for an Agile Software Development Company
	1 Introduction
	2 Background
	2.1 Onboarding
	2.2 Theoretical Background
	2.3 Previous Research on Onboarding Within Software Development Companies
	2.4 How to be Efficient When Onboarding People in an Agile Setting?

	3 Research Method
	3.1 Research Objectives
	3.2 Case Organization and Their Research Premise
	3.3 Scope and Perspective of the Study
	3.4 Data Collection

	4 Results
	4.1 RQ1: What Are the Experienced Challenges When Onboarding New Employees into an Agile team?
	4.2 RQ2: Which Practices Support Onboarding New Employees into an Agile Team?
	4.3 RQ3: How to Improve the Onboarding Process for Agile Teams Within A company?

	5 Discussion and Conclusions
	References

	Exploring Human-AI Collaboration in Agile: Customised LLM Meeting Assistants
	1 Introduction
	2 Related Work
	2.1 Adapting Agile Practices to Companies
	2.2 Generative AI in Software Engineering
	2.3 Prompt Engineering

	3 Research Design
	3.1 Context
	3.2 Action
	3.3 Data Collection and Analysis

	4 Execution and Results
	4.1 Preparations with the Agile Release Train Coach Assistant
	4.2 Real-Time Assistance by the Scrum Team Assistant Tool

	5 Discussion of the Implications
	5.1 Recommendations for Company and Teams: Readiness Assessment
	5.2 Threats to Validity

	6 Conclusion
	6.1 Future Work

	References

	The Role of Team Composition in Agile Software Development Education: A Gendered Perspective
	1 Introduction
	2 Background
	2.1 Diversity in Software Development Teams
	2.2 Teamwork Quality
	2.3 Kanter's Tokenism Theory

	3 Methodology
	3.1 Context
	3.2 Data Collection and Analysis

	4 Results
	4.1 Team Compositions and Ambition Levels Based on Pre-survey
	4.2 Agile Ways of Working and Gender
	4.3 Gender Differences in Primary Work Functions of Team Members
	4.4 Impact of Gender Composition on Team Dynamics

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References

	Author Index

