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Foreword 

Small-molecule drugs that can be orally administered, cross cell membranes, and 
interact with intracellular targets have been significant in the pharmaceutical industry 
for over 100 years. It appeared that small-molecule drugs might become obsolete 
as the industry became more interested in biotherapeutics, but in fact, 62% of new 
chemicals approved by the Food and Drug Administration (FDA) between 2017 and 
2022 are still small-molecule drugs. In addition, over the past decade, advances in 
synthesis and manufacturing techniques and methods, as well as in biopharmaceutical 
studies, have expanded the potential of small-molecule drugs. Thus, small-molecule 
drugs still have significant therapeutic potential. 

However, recently FDA-approved drugs have exhibited a trend toward larger sizes, 
so-called beyond the rule of five. Therefore, I believe that researchers with the ability 
to design and synthesize such compounds are needed. Moreover, in drug discovery, 
in addition to the synthesis of bioactive compounds that can be used as pharma-
ceuticals, it is necessary to address problems related to favorable pharmacokinetics, 
metabolism, and toxicity. These problems must be addressed based on their physical 
properties and the wide range of chemical reactions in vivo. 

Therefore, knowledge and experience regarding the physical properties of 
compounds, a wide range of chemical reactions, and related research fields gained 
through the study of natural product synthesis, which is integrated science and tech-
nology, will certainly be useful in drug discovery. The pipeline for students who have 
studied natural product synthesis to work on drug discovery in the industry has not 
changed, and it is evident that researchers studying the synthesis of complex natural 
products will continue to play an important role in drug discovery. 

Drug discovery is steadily advancing, and we currently live in an era where artifi-
cial intelligence and machine learning are being used to streamline the identification 
of new drugs. However, even in such situations, the ability to handle and synthe-
size new compounds is necessary for drug discovery. Therefore, I sincerely hope 
that several young people will become interested in the total synthesis of complex 
natural products, and that they will further develop this research field and aspire to 
drug discovery. If young people read this book and become interested in the total
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vi Foreword

synthesis of natural products because of its fascination, I would be happy to have 
supported its publication. 

In conclusion, I am grateful for the publication of this book and wish further 
development of the natural product synthesis. 

Hiroshi Tomiyama, Ph.D. 
President and CEO 

Kotobuki Pharmaceutical Co., Ltd. 
Nagano, Japan



Preface 

We are delighted to publish our book titled, Modern Natural Product Synthesis— 
Overcoming Difficulties, edited at the request of Springer’s editorial team. First, we 
would like to convey special gratitude to the authors for the time they have expended 
to participate in the publication of this book. 

The basic policy of this publication was not to re-edit previously published journal 
papers, but to include content that could not be described in the journal papers. 
Specifically, we asked the authors to describe how they overcame these difficulties 
and achieved a complete synthesis, including reactions and synthetic routes that failed 
in their natural product synthesis. If readers become familiar with natural product 
synthesis by reading this book and become interested in total synthesis studies, 
the publication of this book would have been successful. We hope that the coming 
generations will learn about the science and technology of natural product synthesis 
by reading this book and further develop it. 

With advancements in science and technology, remarkable progress has been made 
in synthetic organic chemistry, and structurally complex natural products have been 
synthesized successively. At an industrial scale, Halaven®, which has 19 asymmetric 
carbons, has been produced as a drug. The synthesis of such a complex molecule 
has made advances since it was studied at universities and has become a method of 
manufacturing pharmaceuticals. Today, even if a new natural product emerges with 
a unique and complex structure that exhibits promising bioactivity as a drug, its total 
synthesis will soon be achieved. 

This suggests that modern synthetic organic chemistry is mature. From a different 
perspective, higher goals must be set for further development of natural product 
synthesis. “Faster (Citius), Higher (Altius), Stronger (Fortius)” is the motto of the 
Olympics, but it may also be applied to natural product synthesis. Do we have some-
thing in common in terms of pushing the cutting edge? The question of what is 
required for faster (shorter time), higher (higher efficiency), and stronger (scalable) 
synthesis of natural products, combined with the social demand for green chem-
istry, will become increasingly important and is a problem to be addressed by future 
generations.
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Finally, on behalf of all the authors, we would like to express our sincere gratitude 
to Dr. Hiroshi Tomiyama, President and CEO of Kotobuki Pharmaceutical Co., Ltd., 
for his help in ensuring this book is open access such that several young people can 
read it freely. 

Tokyo, Japan 
Sapporo, Japan 
Koganei, Japan 
Nagoya, Japan 

Masahisa Nakada 
Keiji Tanino 

Kazuo Nagasawa 
Satoshi Yokoshima
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Chapter 1 
A Journey to the Total Synthesis 
of Brasilicardins 

Ryusei Itoh, Keiji Tanino, and Fumihiko Yoshimura 

Abstract C(sp3)-rich natural products with quaternary carbon stereocenters have 
recently received increasing attention as formidable synthetic targets and higher 
lead and drug compounds. Among them, brasilicardins, which are terpenoids–amino 
acids–saccharide(s) hybrids, share a unique and highly strained anti-syn-anti-fused 
6,6,6-tricyclic terpenoid skeleton containing two adjacent quaternary carbon stere-
ocenters and have attracted attention as promising immunosuppressive drug lead 
compounds. Herein, we describe our endeavor toward a unified total synthesis 
of brasilicardins A–D, focusing on overcoming various synthetic challenges. In 
addition, we discuss several key lessons learned from our journey. 

Keywords Brasilicardin · Hybrid natural products · Quaternary stereocenters ·
Nitriles · Intramolecular conjugate addition · Amino acids · Glycosylation 

1.1 Introduction 

The chemical synthesis of structurally complex natural products has been a great 
challenge in organic chemistry over several decades. Therefore, we have engaged 
in the total synthesis of C(sp3)-rich natural products that bear multiple quater-
nary carbon stereocenters (i.e., stereogenic carbon centers having four different
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carbon substituents) on the carbocyclic framework [1]. These compounds repre-
sent formidable synthetic targets [2] and often exhibit superior biological activities 
than do achiral or “flat” compounds [3]. 

Brasilicardins A–D (BraA–D, 1–4) (Fig. 1.1), isolated from the pathogenic acti-
nomycete Nocardia brasiliensis IFM 0406, is a novel C(sp3)-rich tricyclic diter-
penoid that exhibits potent immunosuppressive activity [4–7]. Among the brasili-
cardin family members, BraA (1) is a promising drug lead compound because it 
exhibits strong immunosuppressive activity (IC50 = 0.057 μg/mL), low toxicity, and 
a mode of action that differs from that of current clinical drugs, such as tacrolimus 
(FK-506) and cyclosporine A [8]. Thus, BraA (1) has been extensively studied, partic-
ularly for developing a new type of immunosuppressive drug without serious side 
effects. However, further preclinical investigation of this promising drug candidate 
has been impeded by its low availability from natural sources. Therefore, the efficient 
chemical synthesis of 1, as well as its analogs, derivatives, and probe molecules, is 
required to support further biological studies. 

As shown in Fig. 1.1, BraA–D (1–4) share a highly strained anti-syn-anti-fused 
perhydrophenanthrene terpenoid skeleton (i.e., the ABC-ring; hereafter referred to 
as anti-syn-anti-fused 6,6,6-tricyclic skeleton) containing two angular quaternary 
methyl groups with the central ring (i.e., the B-ring) in the boat conformer. Different 
amino acid and sugar units are connected to this skeleton. 

Their characteristic biological properties and novel, complex structures render this 
family attractive targets by synthetic organic chemists. Several research groups have 
conducted synthetic studies [9–12], including the first total synthesis of BraA (1) 
and BraC (3) by Anada and Hashimoto in 2017 [13]. A semi-synthetic approach for 
the large-scale production of BraA (1) was also reported in 2021 [14]. We launched
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synthetic studies on brasilicardins in 2008, aiming to develop an efficient route that 
can be accessed to all BraA–D (1–4) members from the same late-stage intermediate, 
while enabling the synthesis of various analogs and substructures for biological 
testing. We accomplished the total syntheses of 1–4 in 2018, including the first 
total syntheses of BraB (2) and BraD (4) [15, 16]. In this chapter, we describe 
our efforts toward the total synthesis of brasilicardins, focusing on how to overcome 
various synthetic challenges. In addition, several key lessons learned from our 10-year 
synthetic journey are discussed. 

1.2 Previous Synthetic Approaches 

The anti-syn-anti-fused 6,6,6-tricyclic skeleton is found in several bioactive natural 
products (Fig. 1.2a) and is an important intermediate (i.e., transient protosteryl cation 
8) in the enzymatic cyclization of squalene in steroidal biosynthesis (Fig. 1.2b) [17]. 
This unusual and synthetically challenging anti-syn-anti configuration of the tricyclic 
skeleton has attracted the attention of organic chemists over the last few decades. 
However, in contrast to the detailed and extensive synthetic investigations performed 
in the field of classic terpenoids and steroids, the synthesis of such skeletons remains 
unexplored [9, 13, 18–24], with only a few total syntheses of natural products 5–7 
having been reported [22–24]. Representative methods for constructing a skeleton are 
shown in Fig. 1.3. Because synthetic approaches to this skeleton, regarding equilib-
rium control, are expected to produce a more thermodynamically stable system (i.e., 
anti-anti-anti-fused system that does not possess the central ring boat conformer), 
kinetic control is required to access an anti-syn-anti-fused system. Thus, most 
previous syntheses have adopted the following two-phase strategy (Fig. 1.3a) [9, 13, 
18, 19, 22, 24]. In phase I, a more thermodynamically stable 6,6,6-tricyclic skeleton 
is constructed. This skeleton includes a tricycle bearing a double bond in the ring 
juncture (e.g., 10) or one possessing all chair conformers (e.g., 18; Fig.  1.4). In phase 
II, a stereogenic center at the ring juncture is constructed under kinetic control. As 
shown in Fig. 1.3a, in the total synthesis of protostenediols (7) [24], Corey and Virgil 
first constructed a stable 6,6,6-system (10) bearing a double bond at the ring juncture 
via Robinson annulation (phase I). The crucial generation of the anti-AB fusion was 
achieved using the allylic diazene rearrangement of the in situ-generated hydrodi-
azene intermediate 11 (phase II), which resulted in the anti-syn-anti-fused product 
12 as a major isomer along with the syn-AB fused isomer 13. The desired isomer 
12 was converted to 7. In addition to the above two-phase strategy, transannular 
Diels–Alder reaction-based [20] and intermolecular/transannular Michael reaction 
cascade-based approaches [21] have been reported (not shown here).

Although biomimetic approaches often enable access to complex targets in a 
concise and stereoselective manner, applying this approach to a thermodynamically 
less stable anti-syn-anti-fused 6,6,6-tricyclic skeleton is adversely affected by low 
stereoselectivity (Fig. 1.3b) [23]. For example, in the total synthesis of isoaplysin-
20 (6), Nishizawa et al. directly constructed an anti-syn-anti-fused 6,6,6-tricyclic
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system using the biomimetic Hg(OTf)2-mediated polyene cyclization of (E,E,E)-
geranyl acetate (14), affording the desired product 16 after subsequent bromination. 
However, in this biomimetic cyclization, the major product was the stereoisomer 
15 with anti-anti-anti-ring juncture, which forced the ring system to adopt a stable 
chair-chair-chair conformation. 

The first total syntheses of BraA (1) and BraC (3) by Anada and Hashimoto 
are summarized in Fig. 1.4 [13]. In their total synthesis, the anti-syn-anti-fused 
6,6,6-tricyclic skeleton was constructed using the Diels–Alder reaction/angular 
methylation sequence developed by Coltart and Danishefsky [9]. Thus, the Diels– 
Alder reaction of Wieland–Miescher ketone-derived cyanoenone 17 with siloxydiene 
proceeded smoothly to yield ketonitrile 18 as the sole isomer. The reductive angular 
methylation of 18 afforded the desired C-methylation product 19 with high chemo-
and stereoselectivities. Incorporating the amino acid moiety was conducted using an 
anti-selective aldol reaction (20 → 22) using titanium enolate generated from chiral 
iminoglycinate 21. The stereocontrolled glycosylation of alcohol 23 with disaccha-
ride 24 under Schmidt’s conditions delivered BraA (1) following the removal of the 
protecting groups. BraC (3) was synthesized using a similar reaction sequence to 
that of 23 via glycosylation with a monosaccharide. 

1.3 Synthetic Challenges and Initial Model Studies 

From a synthetic perspective, the total synthesis of structurally complex BraA–D 
(1–4) members must overcome the following challenges:
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(1) The development of a stereoselective methodology for a highly strained carbo-
cyclic skeleton with two quaternary carbon stereocenters at the ring junctures 
(ABC-ring system; Fig. 1.1) represents the most important issue in this synthesis 
program. 

(2) In relation to (1), the stereoselective construction of two neighboring quater-
nary carbon stereocenters must involve stereoselective carbon–carbon forming 
reactions that proceed in a sterically congested environment. 

(3) Stereoselective construction of the amino acid component. 
(4) Regio- and stereoselective glycosylation of the sugar unit. 
(5) Overall protecting group strategy toward an efficient total synthesis. 

With these considerations in mind, our synthetic journey to BraA–D (1–4) began  
with the development of a stereocontrolled route to the ABC-ring system using a 
model substrate without hydroxy functionalities on the A-ring. We found that nitriles 
were the important functional groups in total synthesis. Therefore, we designed a 
nitrile-based synthetic strategy for the ABC-ring system because of their following 
advantages and features [25, 26]: 

(1) Minimal steric demand of the compact cyano group arising from the linear nature 
of the CN moiety with an A-value of 0.2 kcal mol–1. In comparison, carbonyl 
and methyl groups have A-values of 0.6–2.0 and 1.74 kcal mol–1, respectively 
[27]. 

(2) Compared to carbonyl analogs, α-cyano carbanions exhibit an exceptionally 
high nucleophilicity. This occurs because minimal delocalization into the nitrile 
group localizes the charge density on the adjacent carbon atom, which results 
in the enhancement of carbon nucleophilicity. 

(3) Nitriles are useful and versatile synthetic intermediates for further functional-
ization and bond-forming reactions. 

As a model study, we first investigated the construction of a B-ring bearing 
two adjacent quaternary carbon stereocenters, which was a central challenge in 
this journey, and established a synthetic route to the ABC-ring core 32 (Fig. 1.5a) 
[28]. Thus, α,β-unsaturated lactone 27 bearing an alkanenitrile moiety on the side 
chain was synthesized from racemic α-ionone (26). Upon treatment with sodium 
bis(trimethylsilyl)amide (NaHMDS)/hexamethylphosphoric triamide (HMPA), 27 
underwent intramolecular endocyclic conjugate addition (Michael addition) to afford 
the desired product 28 as the major isomer, along with its C8 epimer 29 (28:29 = 
90:10). Notably, the cyclization proceeds smoothly even at − 78 °C despite the low 
reactivities of the α-cyano carbanions generated from non-activated simple alkaneni-
triles as Michael donors [25]. The origin of the high stereocontrol is due to the conju-
gate addition of the α-cyano carbanion derived from 27 that preferentially proceeded 
via the transition state TS-A rather than the alternative transition state TS-B to avoid 
the 1,3-repulsion of the two methyl groups in TS-B (Fig. 1.5a). Then, cyclization 
product 28 was converted to the (E)-α,β-unsaturated ester 30 having a 1,1-dibromo 
alkene group. When 30 was exposed to lithium dimethylcopper (Me2CuLi), stere-
oselective cyclization occurred, thus providing the tricyclic core 32 as a sole isomer
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(unoptimized 39% yield). This reaction appeared to proceed via the in situ genera-
tion of (Z)-vinyl copper intermediate 31 followed by the intramolecular conjugate 
addition of 31 [29]. Therefore, we developed a synthetic route to the anti-syn-anti-
fused 6,6,6-tricyclic skeleton of BraA–D (1–4) using two sequential intramolecular 
conjugate additions as the key steps. In addition, we recognized the synthetic utility 
of the α-cyano carbanion for the construction of sterically demanding quaternary 
carbon stereocenters. 

However, critical issues remain with this synthesis. Intermediate 33 showed 
extremely poor reactivity toward various transformations, because 33 exists in a 
stable lactol form with a diamond-like structure (Fig. 1.5b). Consequently, the 
cleavage of the carbon–oxygen bond between the C12 and O1 atoms was difficult. For 
example, homologation reactions, including the Corey–Fuchs reaction and hydride 
reduction, do not proceed at elevated temperatures. To overcome this difficulty, the 
alkynyl C2-unit was attached to 33 for the reductive cleavage of the C12–O1 bond 
(34 → 35). However, this C2-unit was not incorporated into the second cyclization 
precursor 30, which indicates that it is synthetically inefficient. Second, to overcome 
this issue, the conversion of the first cyclization product 28 to the second cyclization 
precursor 30 required 13 steps with a low overall yield (0.39%). These results led 
us to develop an alternative synthetic strategy, which is explained in the following 
section.
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1.4 Strategy and Retrosynthesis 

Because the intramolecular conjugate addition of alkanenitrile to α,β-unsaturated 
lactone serves as a powerful method for constructing a sterically congested quater-
nary stereocenter (Fig. 1.5, 27 → 28 + 29), we examined its substrate scope to 
evaluate its synthetic potential, in parallel with the total synthesis program. We 
found that this addition proceeded smoothly even in the unfused simple unsaturated 
lactones (e.g., 37) with certain modifications, where adding a bulky silylating reagent 
triisopropylsilyl chloride (TIPSCl) for trapping the lactone enolate was required to 
prevent the unfavored reversible retro-addition (Fig. 1.6, 37 → 38 → 39) [30]. By 
applying this methodology, we designed an intramolecular conjugate addition of an 
acyclic α,β-unsaturated ester bearing an alkanenitrile on the side chain as the key 
technology for this synthesis program (40 → 41 → 42). If this addition occurred 
with facial discrimination of the rotationally unsaturated ester, the compact cyano 
group would cause stereoselective cyclization, which would result in the forma-
tion of the contiguous quaternary and tertiary stereocenters simultaneously after 
the hydrolysis of the resulting ketene silyl acetal intermediate 41. In addition, the 
potentially different reactivities of the sterically demanding cyano group at a quater-
nary stereocenter and monosubstituted ester group in product 42 would enable their 
chemoselective transformations. We envisioned that this cyclization would fit into 
the construction of the A- and B-rings of brasilicardins. 

With this strategy in mind, our retrosynthesis of BraA–D (1–4) is illustrated in 
Fig. 1.7. Aiming at the detailed structure–activity relationships for deeper under-
standing the mechanism of action of 1–4 in the future, we utilized strategies in 
which each ring of the carbocyclic core, amino acid and saccharide units, would 
be constructed in a stepwise manner. The labile sugar moiety was installed via the 
regioselective glycosylation of the N-Fmoc-protected aglycons 43 (for BraA and 
BraC) or 44 (for BraB and BraD) at the final stage of synthesis. These aglycons 
could be obtained from ester 45 via the construction of the amino acid unit. Thus,
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Fig. 1.6 Intramolecular conjugate addition of unfused α,β-unsaturated lactone and potential 
cyclization strategy 
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Fig. 1.7 Retrosynthetic analysis of brasilicardins A–D 

we identified that tricyclic core 45 could serve as a central intermediate for unified 
synthesis. The requisite core 45 was synthesized using an intramolecular conjugate 
addition-based strategy. Particularly, 45 can be accessed from (E)-α,β-unsaturated 
ester 46 via intramolecular conjugate addition promoted by Me2CuLi, as described in 
Sect. 1.3. Dibromide  46 was synthesized from bicyclic cyano ester 47 via the carbon 
chain elongation of the substituents. The B-ring was constructed via the intramolec-
ular nitrile conjugate addition of (Z)-α,β-unsaturated ester 48, which was derived 
from cyano ester 49. Subsequently, the formation of the A-ring was conducted by a 
similar conjugate addition of (E)-α,β-unsaturated ester 50. Therefore, this compound 
can be accessed in an enantiomerically pure form from commercially available 
2,2-dimethylpropane-1,3-diol (51) via Sharpless asymmetric dihydroxylation. 

1.5 Construction of the A-Ring via Intramolecular 
Conjugate Addition 

For the asymmetric total synthesis of BraA–D (1–4), we initially focused on the 
synthesis and cyclization of chiral (E)-α,β-unsaturated ester 57 (Fig. 1.8). The 
mono-TBS protection of 2,2-dimethylpropane-1,3-diol (51) followed by the Swern 
oxidation of the remaining alcohol 52 afforded the corresponding aldehyde, which 
was subsequently converted to (E)-α,β-unsaturated ester 53 (E/Z > 99:1) through a 
one-pot Horner–Wadsworth–Emmons (HWE) olefination [31]. The Sharpless asym-
metric dihydroxylation of 53 using the monomeric ligand (DHQ)PHN [32] afforded 
optically active diol 54 with high enantiopurity (95% ee). The protection of the diol 
in 54 with methoxymethyl (MOM) groups followed by the LiAlH4 reduction of the 
ethyl ester and iodination of the resulting alcohol gave primary iodide 55. The alky-
lation of 55 with carbanion derived from propanenitrile and subsequent removal of 
the TBS group afforded alcohol 56. This compound was subjected to oxidation using
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Fig. 1.8 Synthesis and intramolecular conjugate addition of (E)-α,β-unsaturated ester 57 

tetrapropylammonium perruthenate and HWE olefination to afford 57 as a substrate 
for intramolecular conjugate addition. 

With 57 available, the construction of the A-ring was examined (Fig. 1.8). The 
nitrile intramolecular conjugate addition of 57 occurred under similar conditions to 
37 (i.e., TIPSCl/LiHMDS) to afford cyano ester 58 as a mixture of three isomers with 
acceptable diastereoselectivity (60% yield, dr = 82:11:7). Although the reduction 
of ester 58 with diisobutylaluminum hydride (DIBAL) gave the desired aldehyde 59 
(36% yield), this conversion was accompanied by the formation of the over-reduced 
alcohol 60 as the major product. To access aldehyde 59 in a chemoselective manner, 
we planned to use an α,β-unsaturated N-methoxy-O-methylamide (commonly known 
as Weinreb amides) [33] as an alternative Michael acceptor. 

The requisite (E)-α,β-unsaturated Weinreb amide 61 was prepared from 56 using a 
reaction sequence similar to that for 57 (Fig. 1.9). After screening the reaction condi-
tions, when 61 was exposed to NaHMDS at− 78 °C in THF, intramolecular conjugate 
addition proceeded smoothly with complete stereoselectivity, furnishing the desired 
product 62 in improved yield (93%). The complete stereocontrol of 62 was assumed 
to arise because of chelation control, where the nucleophilic keteniminate and elec-
trophilic α,β-unsaturated amide were both oriented in the equatorial positions with 
an antiparallel dipolar arrangement in the transition state TS-C. Despite the known 
poor reactivity of α,β-unsaturated amides as Michael acceptors [34], the higher reac-
tivity of the Weinreb amide in this Michael addition was suggested to arise from the
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Fig. 1.9 Synthesis and intramolecular conjugate addition of (E)-α,β-unsaturated Weinreb amide 
61 

supposed and stable tetrahedral intermediate 63 formed upon the addition, which 
would prevent unfavorable reversible retro-conjugate addition. Thus, the Weinreb 
amide played two important roles in this addition: (1) enhancement of the stereose-
lectivity and (2) suppression of the retro-addition. Therefore, we unexpectedly found 
the superior reactivity of α,β-unsaturated Weinreb amides as Michael acceptors. 

1.6 Construction of the B-Ring 

Having realized the power of intramolecular nitrile conjugate addition, we moved on 
to the next phase of the synthesis, which was the construction of the B-ring (Fig. 1.10). 
Similar to the case of the A-ring, we decided to use an α,β-unsaturated Weinreb amide 
as the Michael acceptor for B-ring formation. As expected, the chemoselective reduc-
tion of the Weinreb amide in the presence of the cyano group in 62 was accomplished 
with DIBAL in THF, and the subsequent one-carbon elongation of the resulting alde-
hyde using Wittig’s reagent afforded enol ether 64. Compound 64 was subsequently 
converted to alkene 66 using a four-step reaction sequence. The regioselective intro-
duction of a cyano group to 66 was achieved using Co-catalyzed hydrocyanation 
with TsCN [35] to afford secondary nitrile 68. The oxidation of alcohol 68 gave the 
corresponding aldehyde, which was olefinated under Ando’s HWE reaction condi-
tions [36, 37] to afford (Z)-α,β-unsaturated ester 69 with exclusive Z-selectivity (Z:E 
> 99:1). Ester 69 was successfully converted into O-methyl Weinreb amide 70 using 
magnesium amide [38]. Notably, the elongation of the C2-unit via stepwise Wittig 
reactions (62 → 65) was necessary, because substitution with various vinyl metal 
reagents was unsuccessful for 71 and 72.

Because the second intramolecular conjugate addition is another crucial step in the 
synthesis, we carefully investigated the reaction conditions (Fig. 1.11). Upon treat-
ment with NaHMDS in the presence of TIPSCl and HMPA in THF at− 78 °C, unsatu-
rated Weinreb amide 70 smoothly underwent the cyclization to in situ produce O-silyl
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Fig. 1.10 Synthetic route of (Z)-α,β-unsaturated Weinreb amide 70

N,O-ketene acetal 73. Upon the addition of tetrabutylammonium fluoride (TBAF) 
to the reaction mixture in one pot, the desired product 74 and its C8,9-diastereomer 
75 were quantitatively obtained as an inseparable mixture (74:75 = 45:55). While 
cyclization proceeded with the sole use of NaHMDS (89% yield, 74:75 = 50:50), the 
addition of TIPSCl improved the product yields. After exploring the solvents, addi-
tives, and reaction temperatures, using Et2O as the solvent in the absence of HMPA 
resulted in better stereoselectivity (dr = 80:20). For comparison, the intramolecular 
conjugate addition of the corresponding (E)-isomer 76 afforded 75 under the same 
conditions, indicating that the alkene geometry affected the stereoselectivity of this 
process.

The presumed transition-state model for the intramolecular conjugate addition of 
70 is shown in Fig. 1.12. The desired isomer 74 was probably obtained via transi-
tion state TS-D in which the nucleophilic keteniminate and electrophilic unsaturated 
Weinreb amide unit both occupied the axial direction. Conversely, diastereomer 75 
was obtained via transition state TS-E in which both occupied the equatorial direc-
tion. Because the energy difference between the two transition states was small, a 
considerable quantity of 75 was formed. We envisioned that if the methoxy group 
on the Weinreb amide moiety was replaced with a sterically demanding tert-butoxy 
group [39], the transition state TS-F, which leads to the desired stereoisomer, would
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Fig. 1.11 Intramolecular conjugate addition of 70

be more favorable than the alternative transition state TS-G to avoid repulsive inter-
action between the two 1,3-diaxial methyl groups, as well as between the bulky 
t-butoxy group of the Weinreb amide and methyl group next to the keteniminate.

As expected, under similar reaction conditions for the cyclization of 70 (i.e., 
NaHMDS/TIPSCl in Et2O; TBAF), the intramolecular conjugate addition of O-tert-
butyl Weinreb amide 77, which was synthesized from ester 69, resulted in the stere-
oselective formation of the desired product 79 as a 93:7 inseparable mixture with 
diastereomer 80 (Fig. 1.13). The two key nitrile conjugate additions (61 → 62 and 
77 → 79) were performed reproducibly on a gram scale, thus demonstrating the high 
synthetic utility of this cyclization.

1.7 Stereoselective Synthesis of the ABC-Ring 

Having developed a synthetic route to the AB-ring bearing two quaternary stere-
ocenters based on strategic nitrile conjugate additions, our next objective was the 
third intramolecular conjugate addition, which resulted in the ABC-ring of brasili-
cardins (Fig. 1.14). Thus, Weinreb amide 79 was converted into dibromoalkene 81 
by reduction of the Weinreb amide moiety to an aldehyde followed by Corey–Fuchs 
olefination, after which the inseparable isomer 80 was separable. After reduction 
of the cyano group in 81, HWE olefination of the resulting aldehyde furnished the 
(E)-unsaturated ester 82.

The crucial third intramolecular conjugate addition to construct the C-ring was 
performed under the optimized reaction conditions. Thus, the exposure of 82 to 
Me2CuLi in Et2O at  − 78 °C generated (Z)-vinylcopper species 83 in situ. After
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Fig. 1.14 Construction of the ABC-ring system of brasilicardins

the reaction mixture was increased to − 40 °C and stirred, the subsequent conjugate 
addition of 83 proceeded to provide the tricyclic compound 84 by controlling the 
stereochemistry at the C14 position in 83% yield. The stereochemistry of 84 was 
confirmed by X-ray crystallographic analysis. Thus, we established a novel method 
for the stereoselective formation of an anti-syn-anti-fused 6,6,6-tricyclic skeleton 
(ABC-ring) using sequential triple intramolecular conjugate addition as the key step. 

1.8 Construction of the Amino Acid Component 
of Brasilicardins A and C 

After obtaining the tricyclic compound, we focused on the construction of an appro-
priate amino acid component for the tricyclic skeleton. First, we investigated the 
installation of an anti-β-methoxy-α-amino acid moiety for BraA (1) and BraC (3). 
Two possible plans were considered (Fig. 1.15). Although glycine aldol reactions 
between aldehydes and glycine derivatives or chiral glycine equivalents are an effi-
cient and direct method for constructing such systems (plan A, 86 + 87 → 85), these 
methods were challenging to apply to the functionalized intermediates of brasili-
cardins from our investigations using model compounds and advanced substrates. We 
encountered critical issues, including harsh conditions (6 M aq. HCl, 80 °C) for the 
removal of the camphor-derived chiral auxiliary in the use of 88 [40], and the require-
ment of excess aldehyde in the organocatalyzed asymmetric aldol reaction with 89 
[41] that was not suitable for the late-stage installation using the precious aldehyde.
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Therefore, we elected to build this amino acid moiety using indirect methods via the 
substitution of azide ions with chiral trans-epoxides 91 and 92 or hydroxy ester 93 
(plan B) and first examined the route via trans-epoxy ester 91. 

The attempted construction of the amino acid moiety using chiral epoxy ester 100 
is shown in Fig. 1.16. Tricyclic aldehyde 94, derived from ABC-ring compound 84, 
was subjected to the aldol reaction using Bu2BOTf/i-Pr2NEt with Evans-type chiral 
oxazolidinone 95, affording syn-α-chloro-β-hydroxy adduct 96 as a sole isomer [42]. 
However, this reaction exhibited poor reproducibility and often afforded a consid-
erable quantity of cyclic ether 97 as a side product. Exposure of 96 to NaOMe 
enabled epoxide formation and esterification to produce trans-epoxy ester 100, 
which involved the in-situ epimerization of syn-chlorohydrin 98 followed by ring 
closure of the resulting anti-chlorohydrin 99. When treating 100 with hydrogen azide, 
regio- and stereoselective substitution of azide ions occurred at the α-position of the 
ester, affording anti-α-azido-β-hydroxy ester 101. We examined another approach 
for synthesizing 100 via the asymmetric epoxidation of an (E)-α,β-unsaturated N-
acylpyrrole [43] as well; however, the diastereomeric selectivity of this reaction 
varied between 10:1 and 1:1. Thus, owing to their irreproducibility, we abandoned 
these approaches and explored the route via the substitution of azide ions with epoxy 
alcohol 92 (plan B, Fig. 1.15).

The requisite chiral 2,3-trans-epoxy alcohol 102 was prepared from 84 in a four-
step sequence, including Katsuki–Sharpless asymmetric epoxidation (Fig. 1.17). The 
C2-azide substitution reaction of 102 was accomplished using NaN3 and B(OMe)3, 
which were developed in our laboratory [44] to produce the C2-substitution product 
104 with high regio- and stereoselectivity as an inseparable mixture with the C3-
product 105 (dr > 91:9). The reaction is suggested to proceed via the endo-mode 
epoxide opening of an intramolecular boron chelate, such as 103. The subsequent 
treatment of the crude mixture with aqueous NaIO4 affected the oxidative cleavage of 
105 to the aldehyde (not shown), furnishing 104 in its pure form following purification 
using silica gel column chromatography. After a three-step conversion of 104 to 
mono-alcohol 106, including O-methylation with Meerwein reagent (Me3OBF4), 
oxidation of the primary alcohol in 106 to carboxylic acid, followed by esterification 
with HCl in MeOH afforded methyl ester 107 accompanied by the deprotection of
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Fig. 1.16 Attempted construction of anti-β-methoxy-α-amino acid component via trans-epoxy 
ester 100

both MOM groups. Finally, the conversion of the azide in 107 to an amino group with 
SnCl2 to afford compound 108, which is the methyl ester of the BraA (1) and BraC 
(3) aglycon. 1H- and 13C-NMR spectra and optical rotations of 108 were identical 
to those derived from natural sources [4].

In this study, we also checked whether deprotection of the methyl ester in the 
functionalized substrate proceeded, because late-stage chemoselective deprotection 
would be required to achieve total synthesis. Therefore, we examined the deprotec-
tion of α-azido methyl ester 109 to carboxylic acid 110 (Fig. 1.17). However, this 
deprotection was problematic despite testing several methods. In addition, an ineffi-
cient 12-step sequence was necessary for the conversion from 84 to 108, primarily 
because of the oxidation-state adjustment of the amino acid moiety, which led us to 
investigate an alternative synthetic route via hydroxy ester 93 (cf., Fig. 1.15, plan B).  

A successful approach using a hydroxy ester by applying Rama Rao’s proce-
dure [45] is shown in Fig. 1.18. We chose tert-butyl ester as the protecting agent 
for the carboxylic acid instead of the methyl ester. The half-reduction of ester 84 
using DIBAL and subsequent HWE reaction of the resulting aldehyde furnished 
(E)-unsaturated tert-butyl ester 111. The Sharpless asymmetric dihydroxylation of 
111 using the (DHQ) PHN ligand [32] gave diol  112 as a sole diastereomer (dr > 
99:1). After the regioselective mono-nosylation of the C17 alcohol in 112 with 4-
nitrobenzenesulfonyl chloride (p-NsCl), treatment of the resulting nosylate 113 with 
NaN3 afforded β-azide 114 with an inversion of the configuration. The O-methylation 
of the hydroxy group in 114 using Me3OBF4 followed by reduction of the azide and 
protection of the resulting free amine with a 9-fluorenylmethyloxycarbonyl (Fmoc) 
group in one pot, afforded the protected aglycon of BraA and BraC (i.e., 115). Lastly,
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Fig. 1.17 Alternative approach via epoxy alcohol 102 and attempted deprotection of the methyl 
ester

the removal of both MOM groups with HCl in methanol produced diol 116. The stere-
ochemistry of the amino acid moiety was unambiguously confirmed using X-ray 
crystallography after conversion to the p-bromobenzamide derivative 117. Although 
it might require more steps than the ideal glycine aldol-based approach, this route 
was robust and provided reproducibly sufficient material (> 100 mg in one batch) to 
accomplish the total synthesis.

1.9 Construction of the Amino Acid Component 
of Brasilicardins B and D 

In contrast, the amino acid components of BraB (2) and BraD (4) were constructed 
via the Yamada’s asymmetric alkylation [46] as the key step (Fig. 1.19). Thus, ethyl 
ester 84 was transformed into iodide 118 via reduction of ester with LiAlH4 and 
iodination of the resulting alcohol. Alkylation of the chiral Schiff base 119, prepared 
from α-pinene and glycine, with 118 proceeded uneventfully when KHMDS was 
used as a base, affording imino tert-butylester 120 as a single diastereomer. Contrary 
to the literature [46], the use of KHMDS as a base yielded superior results to those 
of LDA. Notably, the asymmetric alkylation of 118 using sultam-derived glycine
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Fig. 1.18 Construction of the amino acid component of brasilicardins A and C

imine 123 [47] and organocatalytic asymmetric alkylation with 89 [48] afforded 
inferior results, including a low product yield (11%) in the former method and low 
diastereoselectivity (dr = 50:50) in the latter method. Compound 120 was converted 
into diol 122 in a sequential three-step process: (1) hydrolytic removal of the chiral 
auxiliary, (2) protection of the resulting free amine with a Fmoc group, and (3) 
removal of both MOM groups. Stereochemistry of the amino acid moiety was verified 
using a modified version of Mosher’s method [49]. The protected aglycons 116 and 
122 were used in the following glycosylation studies.

1.10 Stereoselective Glycosylation of Disaccharides 
and Completion of the Total Synthesis 
of Brasilicardins A and B 

The remaining task for completion of the total synthesis was the challenging regios-
elective glycosylation of aglycons 116 and 122. First, we explored the glycosyla-
tion of 116 with BraA (1) as the priority target for this project. Our glycosyla-
tion study commenced with the Schmidt trichloroacetimidate glycosylation protocol 
[50] because of its well-documented success in the synthesis of natural products 
(Fig. 1.20a). Because the most reliable method for controlling stereoselectivity in 
1,2-trans glycosylation is based on neighboring group participation by a 2-O-acyl
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functionality, we chose the acetyl group as the protecting and stereodirecting group 
at the C2'-alcohol of the glycosyl donor (cf., 24).

The treatment of aglycon 116 with peracetyl imidate 24 (2 equiv), which was 
prepared in nine steps from L-rhamnose [10] with BF3·OEt2 under the standard 
Schmidt procedure, afforded the desired C2-α-monoglycoside 124; however, signif-
icant quantities of the side products, such as C3-glycoside 125, C2-acetate 126, 
and C3-acetate 127, were also obtained. These side products are formed as follows 
(Fig. 1.20b). Upon activation of the glycosyl donor 24, a more stable transient acetox-
onium ion 128 was formed. Alcohol 116 attacks the anomeric carbon atom, affording 
glycosides 124 and 125 (path A). In contrast, when 116 attacks the dioxolenium 
carbon atom of 128, C2- or C3-acetates (126 or 127) are formed via the isomeriza-
tion of the resulting 1,2-orthoester intermediate 129 (path B) [51]. Thus, the acetyl 
group found in 126 and 127 was suggested to originate from the 2'-O-acetyl group in 
glycosyl donor 24. Such side reactions have also been observed in the total synthesis 
reported by Anada and Hashimoto [13], and acetylated trichloroacetimidate donors 
tend to promote orthoester formation, particularly in functionalized substrates or 
slow glycosylation reactions [52]. 

To suppress orthoester formation and achieve regio- and stereoselective glycosy-
lation of diol 116, we investigated the coupling of 116 with other glycosyl donors, 
including glycosyl (N-phenyl)trifluoroacetimidate [53], glycosyl sulfide [54], and 
glycosyl sulfoxide [55], and their activation conditions. Among the various glyco-
sylations that were examined, the less reactive glycosyl fluoride donor 130 afforded 
the best results (Fig. 1.21). The treatment of 116 and 130 (2 equiv) with Cp2HfCl2/ 
AgOTf [56] afforded the desired C2-α-glycoside 124 (ca. 50%) without the forma-
tion of C3-glycoside 125 and acetates 126 and 127. Because the longer reaction 
time led to concurrent undesired glycosylation at the C3-alcohol, this reaction was 
stopped before the full consumption of 116, with the recovery of glucosyl acceptor
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116 (43%). The removal of tert-butyl group in 124 proceeded smoothly with triflu-
oroacetic acid (TFA) without the formation of side products. Finally, subsequent 
treatment with 1,2-ethylenediamine induced simultaneous deprotection of the five 
O-acetyl and N-Fmoc groups to furnish BraA (1) (6.8% overall yield in 39 linear 
steps from 51).

Unexpectedly, confirmation of the identity of the synthetic material was problem-
atic because its 1H-NMR spectrum was strongly dependent on the pH and concentra-
tion of the solvent. However, its identification was confirmed by 1H-NMR measure-
ments of a 1:1 mixture of synthetic and natural BraA (1) after both materials were 
purified using reverse-phase HPLC. Additionally, the fact that the spectral data (13C-
NMR, IR, and HRMS) and optical rotation value of the synthesized compound fully
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synthesis of brasilicardins A and B

matched those of the isolated natural sample supported the successful synthesis of 
BraA (1). BraB (2) was synthesized from 122 using the same reaction sequence as 
that used for 1 (6.5% overall yield in 37 linear steps).
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1.11 Stereoselective Glycosylation of Monosaccharides 
and Completion of the Total Synthesis 
of Brasilicardins C and D 

Encouraged by the successful total synthesis of BraA (1) and BraB (2), we next 
pursued the total synthesis of BraC (3) and BraD (4) bearing a monosaccharide unit. 
Contrary to our expectations, this was more difficult and we encountered several 
issues (Fig. 1.22). Although glycosyl fluoride 130 derived from a disaccharide was 
effective for the regioselective glycosylation with diol 116 for BraA (1) and BraB (2) 
(cf. Figure 1.21), a similar glycosylation of peracetylated glycosyl fluoride donor 131 
derived from L-rhamnose produced the desired C2-α-glycoside 132 in a low yield. In 
this reaction, bis-glycosylated product 133 and C3-α-glycoside 134 were obtained 
as the major products. Although other types of glycosyl donors were examined 
to improve the C2-selectivity, we found that controlling the regioselectivity of the 
sterically less-hindered monosaccharide glycosyl donor was challenging. Therefore, 
we decided to temporarily protect the C3-alcohol in diol 116 as an acetate. 

The required C3-protected glycosyl acceptor 136 was synthesized from diol 116 
via regioselective silylation with TBSOTf/2,6-lutidine, acetylation of the resulting 
alcohol 135, and deprotection of the TBS group (Fig. 1.23). We found that the Au(I)-
catalyzed glycosylation [57] between glycosyl o-cyclopropylethynylbenzoate donor 
137 and acceptor 136 was the most effective protocol for the installation of L-
rhamnose in a stereoselective manner, thereby affording α-glycoside 138 in good 
yield as a single isomer. Other glycosyl donors did not react with 136, probably 
due to the steric hindrance of the protected alcohol in 136. The final task to achieve
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Fig. 1.23 Au-catalyzed glycosylation toward brasilicardin C and the protecting group problem 

the total synthesis was the deprotection of the protecting groups. We performed the 
conversion of 138 to BraC (3) using the same procedure (TFA; ethylenediamine) 
as for BraA (1). However, because the sterically demanding neopentyl C3-acetate 
remained intact under the abovementioned conditions, the resulting C3-acetate 139 
was heated with NaOMe/MeOH at 60 °C, which induced the epimerization of the 
amino acid moiety to give an epimeric mixture of BraC (i.e., 140, dr  = 55:45). 

Among the several protecting groups tested for the C3-alcohol, the easily remov-
able methoxyacetyl group [58] afforded the best results, resulting in the total synthesis 
of BraC (3) (Fig. 1.24). Thus, the requisite protected alcohol 142 was synthesized 
from 135 via a two-step reaction sequence, including the protection of the C3-
alcohol with MeOCH2COCl, followed by the removal of the C2-TBS group. The 
Au-catalyzed glycosylation of 142 with glycosyl donor 137 proceeded smoothly 
to afford α-glycoside 143 as a single isomer. Finally, glycosylation product 143 
was successfully converted to BraC (3) via the removal of tert-butyl group with 
TFA and subsequent simultaneous deprotection of the remaining three O-acetyl, 
O-methoxyacetyl, and N-Fmoc groups using an aqueous lithium hydroxide (12% 
overall yield in 42 linear steps from 51).

BraD (4) was synthesized from 122 using the same sequence as that used for BraC 
(3) (14% overall yield in 40 linear steps) (Fig. 1.25).
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1.12 Conclusions 

The chemical syntheses of C(sp3)-rich natural products with intriguing three-
dimensional structures have inspired a number of developments in novel synthetic 
strategies and organic transformations. In this chapter, we describe our 10-year 
synthetic efforts toward brasilicardins, which are unique C(sp3)-rich natural prod-
ucts with a terpenoid–amino acid–saccharide(s) hybrid structure, resulting in the 
complete synthesis of BraA–D. Notable key features of our total synthesis are: (1) 
the development of a novel nitrile cyclization, i.e., the stereoselective intramolecular 
conjugate addition of an α,β-unsaturated Weinreb amide bearing an alkanenitrile 
unit as a nucleophilic site, which enables carbocycle formation and the construc-
tion of contiguous quaternary–tertiary carbon stereocenters simultaneously; (2) a 
conjugate addition-based synthetic strategy for the stereoselective formation of the 
highly strained anti-syn-anti-fused 6,6,6-tricyclic skeleton (ABC-ring system); (3) 
the stereoselective construction of the amino acid moiety to the tricyclic core; and (4) 
regio- and stereoselective formation of the 1,2-trans-glycosidic linkage to the func-
tionalized aglycon using the appropriate glycosyl donors. In addition, we learned 
the synthetic utility of nitriles in complex natural product synthesis and the previ-
ously unknown but interesting high reactivity of α,β-unsaturated Weinreb amide as 
a Michael acceptor. We believe that the chemistry described here offers a solution to 
challenging synthetic problems. In addition, it opens a viable chemical avenue for 
brasilicardin family natural products and their synthetic derivatives to aid the devel-
opment of new immunosuppressive agents and to gain a fundamental and better 
understanding of the therapeutic potential of these compounds. 
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Chapter 2 
Total Synthesis of Amycolamicin 

Yasuhiro Meguro, Masaru Enomoto, and Shigefumi Kuwahara 

Abstract Amycolamicin (also called kibdelomycin) produced by two species of soil 
actinomycetes is a potent antibiotic against a broad range of drug-resistant bacteria 
with a novel binding mode to bacterial type II DNA topoisomerases and with no 
cross-resistance to existing antibacterial agents. The unique hybrid molecular archi-
tecture of amycolamicin attracted interest of many synthetic organic chemists and 
three total syntheses have been reported so far. In this chapter, we describe our total 
synthesis of amycolamicin in detail, which features a nucleophilic addition of a 
vinyllithiun reagent to an α-siloxy-β-alkoxy ketone to afford a tertiary alcohol as a 
single diastereomer, a highly diastereoselective intramolecular Diels–Alder reaction 
of a tetraenal with an unprotected hydroxy group to construct a trans-decalin unit 
incorporated in amycolamicin, an exclusively stereoconvergent N-acylation of an 
anomeric N-glycoside mixture bearing a cis-fused bicyclic carbonate system, and 
the exploitation of the cyclic carbonate as a vicinal diol protecting group and also 
as a masked β-hydroxy carbamate structure. Additionally, two other total syntheses 
accomplished by the Li and Baran groups as well as syntheses of partial structures 
of amycolamicin hitherto reported are also outlined in brief. 

Keywords Amycolamicin · Kibdelomycin · Intramolecular Diels–Alder 
reaction · Glycosylation · N-Glycoside 

2.1 Introduction 

Continuous emergence of drug-resistant bacteria is increasingly posing a serious 
threat to human health. According to a report by the UK government’s O’Neill 
Commission, the number of deaths attributable to antimicrobial resistance (AMR) 
is expected to rise from current 700,000 (low estimate) to 10 million by 2050 unless 
appropriate countermeasures to AMR are taken [1]. Iterative chemical modifications

Y. Meguro · M. Enomoto · S. Kuwahara (B) 
Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, 
Aoba-Ku, Sendai 980-8572, Japan 
e-mail: shigefumi.kuwahara.e1@tohoku.ac.jp 

© The Author(s) 2024 
M. Nakada et al. (eds.), Modern Natural Product Synthesis, 
https://doi.org/10.1007/978-981-97-1619-7_2 

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1619-7_2&domain=pdf
mailto:shigefumi.kuwahara.e1@tohoku.ac.jp
https://doi.org/10.1007/978-981-97-1619-7_2


32 Y. Meguro et al.

of existing antibacterial agents have been continued to temporarily restore their activ-
ities against the bacteria that have acquired resistance, but such efforts to produce 
new-generation antibacterial agents have regrettably resulted in the appearance of 
more resistant and intractable strains of bacteria. To overcome such situations, natural 
product chemists have been seeking new antibiotic scaffolds with broad-spectrum 
antibacterial activity, novel modes of action, and low or no cross-resistance to existing 
antibacterial drugs [2, 3]. Amycolamicin described in this chapter is expected to 
become a promising bridgehead to tackle the antibiotic crisis. 

Amycolamicin is an antibiotic isolated in 2009 from the culture of the soil acti-
nomycete Amycolatopsis sp. MK575-fF5 by Igarashi and coworkers at BIKAKEN 
(Japan) [4]. Just after the discovery of amycolamicin, Singh et al. at Merck (USA) 
identified an antibacterial substance produced by the soil bacterium Kibdelospo-
rangium sp. MA7385 and gave it the name of kibdelomycin [5]. Kibdelomycin had 
a surprisingly similar chemical structure and biological properties as amycolamicin, 
but from the distinct difference in their NMR spectra, the two natural products were 
considered to be different and probably diastereomeric to each other for a period of 
time. After some twists and turns in their structural determination [4–8], the struc-
ture of amycolamicin was finally assigned as 1 (Fig. 2.1) by the BIKAKEN group 
in 2012 through extensive spectroscopy combined with X-ray crystallographic anal-
ysis of its degradation product and some other synthetic and analytical methods [9] 
and that of kibdelomycin was unambiguously determined by the Merck group in 
2014 to be the same as amycolamicin (1) on the basis of the cocrystal structures of 
kibdelomycin with its target proteins [10]. However, the question of why the NMR 
spectra of amycolamicin and kibdelomycin were different remained to be solved; 
this mystery was later settled by Li and coworkers’ synthetic study as described in 
Sect. 2.2.1. 

This secondary metabolite produced by the actinomycetes exhibits potent antibac-
terial activity against an array of Gram-positive drug-resistant bacterial including 
methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant ente-
rococci (VRE) as well as against some Gram-negative bacteria such as drug-resistant 
strains of Haemophilus influenzae [9]. It is also reported that amycolamicin is a 
strong antibiotic against two important human pathogens, Acinetobacter baumannii 
and Clostridium difficile [8, 11]. Amycolamicin selectively inhibits bacterial DNA 
synthesis through binding to bacterial type II DNA topoisomerases (DNA gyrase 
GyrB subunit and topoisomerase IV ParE subunit) in a unique multipoint U-shaped

Fig. 2.1 Structure of 
amycolamicin (also known 
as kibdelomycin) 
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binding mode without affecting human topoisomerase IIα and with no apparent toxi-
city in mice [9–11]. Additionally, it does not show cross-resistance to various known 
DNA gyrase inhibitors such as novobiocin, coumermycin A1, and ciprofloxacin [11]. 

These pharmacological properties of amycolamicin (1) as a promising lead for an 
innovatively novel class of antibacterial agents and its unprecedented hybrid molec-
ular architecture composed of two novel sugars [amykitanose (A) and amycolose 
(D)], a tetramic acid (B), a trans-decalin (C), and a dichloropyrrole carboxylic acid 
(E) prompted synthetic studies on this natural product, which recently culminated 
in the first total synthesis of 1 by Li and coworkers in 2021 [12]. Shortly after the 
first synthesis, two total syntheses of 1 by us [13] and by the Baran group [14] 
were successively disclosed in 2022. In this chapter, we first outline Li’s and Baran’s 
total synthesis of 1 in brief (Sect. 2.2), and then describe our total synthesis in detail 
(Sect. 2.3). Additionally, syntheses of the A, A/B, C, and D/E units of 1 implemented 
by other groups as well as by us are also presented shortly (Sect. 2.4). 

2.2 Total Synthesis of Amycolamicin by the Li and Baran 
Groups 

2.2.1 First Total Synthesis of Amycolamicin by the Li Group 

The total synthesis of amycolamicin (1) by Li and coworkers is outlined in 
Scheme 2.1, where the carbon numbering follows that in ref 9. They first prepared 
N-acyl amycolose derivative 5 (D/E unit), trans-decalinoyl cyanide 6 (C unit), and 
N-amykitanosyl tetramic acid 7 (A/B unit) from 2, 3, and l-rhamnose 4, respec-
tively, via key reactions written in Scheme 2.1. β-Selective glycosylation of 6 with 
5 under modified Yu’s gold(I)-catalyzed N-glycosylation conditions [15] followed 
by C-acylation of 7 with the resulting glycoside afforded 1a (triethyl amine salt of 
amycolamicin), whose NMR spectra were identical to those reported by the Merck 
group for kibdelomycin except for redundant triethylamine signals, along with a 
small amount of amycolamicin. Acidic treatment of 1a gave 1, the NMR spectra of 
which matched those reported by the BIKAKEN group for amycolamicin. Based on 
these results, Li et al. revealed that kibdelomycin was a salt form of amycolamicin, 
which was the reason why they displayed distinct NMR spectra [12].

2.2.2 Total Synthesis by the Baran Group 

In the total synthesis of 1 by Baran and coworkers summarized in Scheme 2.2, 
three key intermediates 11 (D/E unit), 12 (C unit), and 13 (A unit with l-valine 
residue) were prepared from furan derivative 8, Weinreb amide 9, and l-fucose 
10, respectively. The trans-decalin system of 12 was constructed by an exclusively
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Scheme 2.1 Outline of Li’s total synthesis of 1

diastereoselective intramolecular Diels–Alder (IMDA) reaction. Glycosylation of 
12 with 11 followed by one-carbon elongation of the resulting glycoside with S, 
Sʹ-dimethyl dithiocarbonate provided a β-keto thioester. The thioester intermediate 
was condensed with the N-glycoside 13 and the resulting β-keto amide was trans-
formed into 1b (1ʺ-epi-amycolamicin) via the Dieckmann cyclization to install the 
tetramic acid ring (B unit). Treatment of 1b with aqueous formic acid gave a 4:3 
equilibrium mixture of 1b and 1, the HPLC separation of which provided 1b and 1 
in isolated yields of 46% and 32%, respectively. They revealed that 1b had nearly 
identical antibacterial activity as amycolamicin (1) and that some truncated analogs 
of 1 exhibited little to no activity [14].
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Scheme 2.2 Outline of Baran’s total synthesis of 1 

2.3 Total Synthesis of Amycolamicin by Our Group 

2.3.1 Retrosynthetic Analysis of Amycolamicin 

Our synthetic plan for amycolamicin (1) is depicted retrosynthetically in Scheme 2.3. 
Amycolamicin (1) would be obtained from methyl N-(β-ketoacyl)-N-glycosyl-l-
valinate 14 via the Dieckmann condensation to construct the tetramic acid ring (B 
unit) and regioselective ring opening of the cyclic carbonate moiety with ammonia 
(or its appropriately protected derivative) leading eventually to the 3ʺ-acetoxy-4ʺ-
carbamoyloxy portion of 1. The cyclic carbonate in 14 was expected to play not 
only as a protecting group of the 3ʺ, 4ʺ-diol system but also as a masked β-hydroxy 
carbamate structure. The N-glycosyl amide 14 was then dissected into thioester 15 
and methyl N-glycosyl-l-valinate 16 with the intention of combining them by Ley’s 
N-acylation protocol. We envisaged that 16 might possibly be converted, regardless of 
its anomeric nature, into the desired α-anomer 14 in a stereoconvergent manner based 
on the following considerations: (1) the α-anomer 14 with the nitrogen-containing 
substituent at C1ʺ on the convex side of the cis-fused bicyclic ring system would be
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more stable than its β-anomer bearing the substituent on the concave side; and (2) 
the anomers of 14 would be inherently interconvertible under acidic conditions due 
to their N, O-acetalic nature. The N-glycoside 16 would readily be obtainable from 
l-fucose 10 via stereochemical inversion at the C2ʺ-position. The thioester 15, on the  
other hand, would be prepared by β-selective glycosylation of trans-decalinol 18 with 
pyranose 17 followed by the attachment of an S-tert-butyl thioacetate unit. To create 
the tetrasubstituted C3ʹ-stereogenic center in 17, we planned the diasteroselective 
addition of β-alkoxy vinyllithium reagent 19 to α,β-bisalkoxy ketone 20, which in 
turn would be derived through oxidation of the double bond of 21, whose enantiomer 
had previously been reported in the literature. For the preparation of 18, it would 
be appropriate to utilize the IMDA reaction of tetraenal 22, which was traced back 
to 2,3-dibromopropene 23 with the use of the Heck coupling and CBS reduction in 
mind. 

Scheme 2.3 Retrosynthetic analysis of amycolamicin (1)
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2.3.2 Preparation of Cyclic Carbonate-Protected 
N-Glycosyl-L-Valine Methyl Ester 16 

Initial Approach to 16 

Methyl glycoside 25 (Scheme 2.4) was chosen as the key intermediate for the prepa-
ration of 16 since the glycoside had previously been synthesized from l-fucose 10 in 
6 steps by Igarashi et al. in their structure determination studies on amycolamicin [9]. 
According to the literature, the pyranose 10 was converted into the corresponding 
methyl glycoside, which was then protected as its acetonide to give α-glycoside 24 
in 59% yield after chromatographic purification (route A). The chemical yield of 
this two-step sequence was improved to 71% by using Amberlite IR-120(H) instead 
of HCl as the acid catalyst as well as by modifying the conditions for acetonide 
formation (route B) [16]. The stereochemical inversion at C2ʺ was performed by 
oxidation of 24 with PDC followed by reduction of the resulting ketone with LiAlH4 

to give 2ʺ-epi-24 in 44% yield over two steps (route A). Utilization of DIBAL instead 
of LiAlH4 increased the two-step yield to 68% (route B). Methyl etherification of 
2ʺ-epi-24 and subsequent acidic hydrolysis of the acetonide moiety delivered the 
known glycoside 25. Treatment of the diol 25 with 1,1ʹ-carbonyldiimidazole (CDI) 
and imidazole afforded cyclic carbonate 26 and hydrolysis of its glycosidic bond with 
TiBr4 in CH2Cl2/EtOAc [17] provided carbonate-protected bicyclic pyranose 27 as 
an anomeric mixture (α/β = 16:1). The conditions using TiBr4 for the hydrolysis 
of 26 was adopted based on our previous study on the hydrolysis of another methyl 
glycoside (see Sect. 2.4.4). Finally, N-glycosylation of methyl l-valinate with 27 
under acidic conditions provided 16 as a 1:1.1 α/β anomeric mixture. The overall 
yield of 16 from l-fucose 10 via route B was 26% in 9 steps [18].

Improved Approach to 16 

The above-described first approach to the N-glycoside 16 from l-fucose 10 required 
a considerably lengthy nine-step sequence due to the use of two different protecting 
groups (acetonide and cyclic carbonate) for the C3ʺ/C4ʺ vicinal diol moiety, 
which inevitably necessitated a roundabout deprotection/reprotection manipulation, 
causing a modest overall yield of 26%. In our second approach to 16 shown in 
Scheme 2.5, only the cyclic carbonate group was utilized for the protection of the 
diol unit and, in addition, two one-pot processes were incorporated to improve the 
efficiency of the synthetic pathway.

The new route commenced with direct β-selective glycosidation of the unprotected 
pyranose 10 with phenol in water using DMC (2-chloro-1,3-dimethylimidazolinium 
chloride) as a selective activator of the anomeric hydroxy group [19]. After consid-
erable examination of reaction conditions, in which the amounts of reagents (DMC, 
6 or 10 equiv; Et3N, 26 or 46 equiv), solvent (water or water/MeCN), and reaction 
temperature (0 or –10 °C) were varied, the best outcome was achieved when the
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Scheme 2.4 Initial approach to methyl N-glycosyl-l-valinate 16

Scheme 2.5 Improved approach to methyl N-glycosyl-l-valinate 16

reaction was conducted using 10 equiv of DMC and 46 equiv of Et3N in water at 
–10 °C, giving rise to phenyl β-glycoside 28 in 81% isolated yield (crude β/α ratio 
= 12:1). Use of 6 equiv of DMC resulted in the recovery of considerable amounts 
of 10 and the reactions in the mixed solvent (water/MeCM = 5:1 or 1:1) or at the  
higher temperature (0 °C) decreased the anomeric selectivity. Treatment of 28 with 
CDI and imidazole in CH2Cl2 gave a 11:1 mixture of desired 3ʺ,4ʺ-carbonate 29 
and its regioisomer 29 ,́ the former of which was isolated chromatographically in 
88% yield. In this cyclic carbonate formation, the use of triphosgene and Et3N (or
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pyridine) in CH2Cl2 at 0 °C drastically reduced the 29/29ʹ ratio to 2.5:1–1.5:1 and 
implementation of the reaction in MeCN (triphosgene, Et3N, 0 °C) reversed the ratio 
to 1:1.5. Stereochemical inversion at C2ʺ of 29 was performed in one pot by oxida-
tion of 29 with IBX followed by reduction of the resulting ketone intermediate with 
NaBH4, delivering 30 in 82% yield (dr > 99:1). The oxidation step in this one-pot 
operation was problematic; exposure of 29 to various conditions including those 
using AZADOL/NaClO, AZADOL/PhI(OAc)2, Dess–Martin periodinane (DMP), 
SO3·Py, DMSO/Ac2O, PDC, sodium 2-iodobenzenesulfonate/Oxone [20], and so 
on resulted in the recovery of 29 or the formation of complex mixtures. The alcohol 
30 was then O-methylated with MeI/Ag2O inMeCN to give  31, which was subjected 
to a one-pot process comprising acid hydrolysis of the glycosidic linkage and in-situ 
N-glycosylation with methyl l-valinate to furnish 16. This new route from 10 to 16 
with no use of acetonide protection brought an improved overall yield of 38% in 
only five operational steps [18]. 

2.3.3 Preparation of TBS-Protected N-Acyl Amycolose 17 

Initial Approach to 17 

The key step for the preparation of 17 is the nucleophilic addition of the vinyl-
lithium reagent generated from β-alkoxy vinyl bromide 38 to α-siloxy-β-alkoxy 
ketone 20 to provide tertiary alcohol 39 in a diastereoselective manner (Scheme 2.6, 
20 → 39). We first prepared 21 starting from PMB-protected methyl (R)-lactate 
32 by slight modification of the reaction conditions previously reported for 
obtaining ent-21 from ent-32 [21]. The lactate 32 was one-carbon homologated with 
(dimethoxyphosphoryl)methyllithium to give 33, which was then subjected to the 
Horner–Wadsworth–Emmons (HWE) reaction with acetaldehyde under Masamune– 
Roush conditions to provide alkoxy enone 34. Chelation-controlled reduction of 34 
with Zn(BH4)2 afforded the allylic alcohol 21 (77% isolated yield, crude dr = 11:1), 
the enantiomeric excess of which was determined to be > 99:1 by 1H NMR anal-
ysis of its (R)- and (S)-MTPA esters. Contrary to our expectation based on liter-
ature precedents [22, 23], the Sharpless asymmetric epoxidation of 21 using (–)-
diisopropyl tartrate (DIPT) was sluggish and delivered a mixture of desired epoxy 
alcohol 35 (erythro isomer) and its threo isomer in a modest diastereoselectivity 
of 4.8:1 probably due to an undesirable effect of the PMB-oxy substituent at the 
C5ʹ chiral center. The epoxy alcohol 35 was protected as TBS ether 36, which was 
then subjected to epoxide ring opening with sodium azide for its conversion into 
azido alcohol 37 using the following additives and solvents (at 100 °C, pressure 
bottle): (1) NH4Cl/EtOH–H2O (3:1, 18 h), (2) NH4Cl/MeO(CH2)2OH–H2O (8:1, 
17 h), (3) NH4Cl/DMSO–H2O (8:1, 17 h), (4) PPTS/MeO(CH2)2OH–H2O (3:1, 10 
d), (5) PPTS/1,4-dioxane–H2O (3:1, 10 d), and (6) LiClO4/MeCN (9 d) [24]. All 
of these conditions, however, gave mixtures of 37 and its regioisomer 37ʹ in low 
selectivities of 1.1:1–2.5:1, providing 37 in unsatisfactory yields of up to 37% after



40 Y. Meguro et al.

chromatographic purification. Use of Me3N·HCl as the additive, however, consid-
erably improved the 37/37ʹ ratio to 4.9:1, affording 37 in an acceptable isolated 
yield of 57%, although the reaction required 7 days at 100 °C to go to completion. 
The alcohol 37 was oxidized with DMP to give ketone 20, to which the lithium 
anion prepared by treatment of PMB-oxy-substituted Z-vinyl bromide 38 [25, 26] 
with t-butyllithium was added. The resulting addition product 39 was obtained as 
a single diastereomer in a good yield of 84%. This outcome dovetailed nicely with 
the results obtained in a systematic study by Evans et al., in which anti-substituted 
α-(TBS-oxy)-β-(PMB-oxy)aldehyde A was converted into B with dr ≥ 99:1 upon 
exposure to some lithium enolates [27]. The azido alcohol 39 was transformed into 
42 by the Staudinger reduction (n-Bu3P, MeOH) followed by condensation of the 
resulting amine 40 with known pyrrole carboxylic acid 41 [28] in 96% yield over 
two steps. The Z-geometry of 42 was assigned based on the NOE between the two 
olefinic protons as well as from their coupling constant (7.2 Hz) close to those for 
Z-enol ethers [29]. It is worth mentioning that the reduction step did not proceed 
to completion even after 3 days when Ph3P was used instead of n-Bu3P. The bis-
PMB ether 42 was treated with DDQ for the purpose of obtaining 17 by oxidative 
removal of the two PMB groups in a simultaneous manner, but the reaction stopped 
after only the C5ʹ-PMB group was deprotected, affording diol 42 .́ Use of CAN was 
also fruitless, providing a complex mixture. Fortunately, exposure of 42 to TFA in 
CH2Cl2 gave a successful outcome, furnishing 17 in 83% yield via 43; the cyclic 
intermediate 43 could be isolated by quenching the reaction before completion. The 
overall yield of 17 from 32 was 14% through 11 steps [26]. Additionally, 17 was 
converted into N-acyl amycolose 17ʹ (α/β = ca 1:1) by treatment with TBAF and 
also into its methyl α- and β-glycosides (44α and 44β, respectively) by exposure to 
TMSCl/MeOH [30]. All of these three compounds (17 ,́ 44α, and 44β) are known 
as cytotoxic degradation products of amycolamicin [7], and the structure of 44β was 
previously established unambiguously by X-ray crystallographic analysis [9].

Improved Approach to 17 

Our initial approach to 17 described above left problems in two processes: (1) modest 
diastereoselectivity (dr = 4.8:1) and yield (56%) in the Sharpless asymmetric epoxi-
dation (21 → 35); and (2) insufficient regioselectivity (4.9:1) and yield (57%) as well 
as the very long reaction time (7 days at 100 °C) in the epoxide ring opening with 
NaN3 (36→ 37). To circumvent these issues, we modified the first approach as shown 
in Scheme 2.7. Protection of the allylic alcohol 21 followed by the Sharpless asym-
metric dihydroxylation of the resulting TBS ether 45 using AD-mix-β provided diol 
46 (crude dr = 98.5:1) in an excellent yield of 94%. Regioselective mono-tosylation 
of 46 was first attempted by its treatment with TsCl (3 equiv) and Et3N (5 equiv) in 
CH2Cl2 at 0 °C to room temperature. The reaction was, however, very sluggish and 
required 19 h to go to completion, during which the product 46ʹ gradually cyclized 
into tetrahydrofuran derivative 47, yielding a mixture of 46ʹ and 47 in a ratio of 
ca. 1:1. Upon use of pyridine instead of Et3N, the reaction was much slower and
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Scheme 2.6 Initial approach to TBS-protected N-acyl amycolose 17

not completed even after 48 h of stirring at room temperature, delivering a mixture 
of 46, 46 ,́ and 47. Exposure of 46 to TsCl/n-Bu2SnO/Et3N in CH2Cl2 (rt, 12 h) 
[31] or to TsCl/Ag2O/KI in CH2Cl2 (4 d) [32] was also unsuccessful, resulting in 
almost exclusive formation of 47 or in the recovery of 46, respectively. Furthermore, 
silica gel column chromatographic purification also induced the cyclization of 46ʹ 
to 47. Fortunately, the troubles were overcome by conducting the mono-tosylation 
by Tanabe’s method using Me3N·HCl as the additive [33] and by performing the 
next Dess–Martin oxidation of the resulting intermediate 46ʹ as a one-pot opera-
tion. The reaction under Tanabe’s conditions was completed within 40 min at 0 °C 
(TLC monitoring) and subsequent direct addition of DMP to the reaction mixture 
furnished α-tosyloxy ketone 48 in a good yield of 81%. The tosylate 48 was found to 
be well-suited for the SN2 substitution with NaN3, providing the α-azido ketone 20 
nearly quantitatively, which was transformed into 17 by the same four-step sequence
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Scheme 2.7 Improved approach to TBS-protected N-acyl amycolose 17 

as depicted in Scheme 2.6. These modifications significantly improved the overall 
yield of 17 from 32 from 14 to 32% without changing the number of steps [13]. 

2.3.4 Preparation of Trans-Decalin Aldehyde 18 

The preparation of the trans-decalin aldehyde 18 utilizing the IMDA reaction as 
the key step is shown in Scheme 2.8. Alkylation of the dianion of dimethyl (2-
oxopropyl)phosphonate with allylic bromide 23 gave 49, which was then subjected 
to the HWE olefination with E-crotonaldehyde under Masamune–Roush conditions 
to provide 50 as a 19:1 E/Z mixture in 51% yield over two steps; the moderate yield 
(51%) is ascribable to the formation of unidentified byproducts in the alkylation 
step, which proceeded in ca. 57% yield. The Heck reaction of the vinyl bromide 
50 with acrolein diethyl acetal 51 leading to 52 needed an examination of reaction 
conditions [34, 35]. When the reaction was conducted using Pd(OAc)2 and K2CO3 

in the presence of n-Bu4NBr and (o-tolyl)3P (DMF, 80 °C, 3 h), a mixture of 52 
and undesired cyclopentenone derivative 53 (see the bottom of Scheme 2.8) was  
obtained in a ratio of ca. 1:2.2 (yield not determined), the latter of which would 
probably be formed through an intramolecular Heck reaction. Exposure of 50 and 
51 to Pd(OAc)2/K2CO3/n-Bu4NOAc in the absence of the phosphine ligand (DMF, 
rt, 24 h) suppressed the formation of 53 completely, but the yield of 52 decreased 
to 18%. After some other experimentations, we found that the reaction performed 
without using any phase transfer catalyst and phosphine ligand (DMF, 40 °C, 72 h) 
successfully furnished 52 in a much better yield of 76% with no formation of 53. 
As a matter of fact, we first attempted the Heck reaction of the phosphonate 49 with 
the protected acrolein 51 to obtain 54, which would probably be convertible into 52 
by the HWE reaction with E-crotonaldehyde. The Heck reaction between 49 and 
51, however, gave a complex mixture, which prompted us to reverse the order of the 
two processes as described above. The CBS reduction of the ketone 52 proceeded 
uneventfully to give rise to 55 [36], the absolute configuration (R) and the enan-
tiomeric excess (96%) of which were determined by the modified Mosher analysis. 
Since the ionic IMDA reaction of 55 in the presence of various Lewis acids (LiClO4,
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MgBr2, I2, InCl3, Sc(OTf)3, BF3·OEt2, Et2AlCl, etc.) to hopefully construct acetal-
protected trans-decalin 56 resulted only in partial deprotection of the acetal group or 
in the formation of complex mixtures [37, 38], we decided to conduct the cycloaddi-
tion of the corresponding aldehyde 57, which was prepared by acidic hydrolysis of 
55. To our delight, the IMDA reaction of 57 in CH2Cl2 (–20 to 0 °C) in the presence 
of Et2AlCl (2 equiv) furnished the desired cycloadduct 18 in 71% isolated yield 
over two steps with excellent diastereoselectivity [18/(18ʹ + 18ʺ + 18''') = 96.4:3.6 
(see Fig. 2.2)]. The highly preferential formation of the endo-equatorial product 18 
means that this Et2AlCl-promoted IMDA reaction proceeded nearly exclusively via 
the endo-equatorial transition state depicted in Fig. 2.2. We are considering that 
one of the two equiv of Et2AlCl used should coordinate with the carbonyl oxygen 
and the remaining one equiv would react with the unprotected hydroxy group to 
form an O–Al bond [39]. The formation of the O–Al bond [probably RO–AlClEt 
or RO(H)–AlClEt2] is presumed to have directed the reaction to go through the 
endo-equatorial transition state [13]. The importance of the state of protection of the 
hydroxy group in the stereochemical course of this cycloaddition is apparent from 
the results of the following comparative experiments: (1) exposure of the MOM-
protected congener of 57 (MOM-57) to Et2AlCl (1 equiv) gave a 1:2.8 mixture of 
MOM-18 (endo-equatorial product) and MOM-18ʹ (endo-axial product), modestly 
favoring the endo-axial product; and (2) treatment of the TBS-protected derivative 
of 57 (TBS-57) with Et2AlCl (1 equiv) delivered endo-axial product TBS-18ʹ highly 
preferentially (TBS-18/TBS-18ʹ = 1:18). These results obtained for the MOM- and 
TBS-protected substrates were consistent with those of extensive studies on dialky-
laluminum chloride-promoted IMDA reactions of protected trienals 58 by Marshall 
et al. They revealed that the IMDA reactions of the MOM- or alkyl-protected trienals 
58 gave the corresponding endo-equatorial and endo-axial cycloadducts almost non-
selectively, while those of their TBS-protected congeners afforded endo-axial prod-
ucts in a highly selective manner [40, 41]. In addition, it should be noted that this 
cycloaddition could be realized only by using Et2AlCl among Lewis acids tested; 
the utilization of other acids (EtAlCl2, LiClO4, Me3Al, or BF3·OEt2) resulted in 
the formation of complex mixtures or in the recovery of the starting material 57. 
The directing effect of a protecting group-free hydroxy group on the stereochemical 
course of a dialkylaluminum chloride-promoted IMDA reaction was also observed 
in the preparation of 12 by Baran et al. (see Scheme 2.2) [14].

2.3.5 Completion of the Total Synthesis of 1 Through 
Coupling of the Three Segments 16, 17, and 18. 

Toward the completion of the total synthesis of amycolamicin (1), we first addressed 
the preparation of the thioester 15 via the β-selective glycosylation of the trans-
decalinol 18 with the N-acyl amycolose 17 (Scheme 2.9). With the intention of
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Scheme 2.8 Preparation of trans-decalin aldehyde 18 

Fig. 2.2 Stereochemical course of the Et2AlCl-promoted IMDA reaction of tetraenal 57
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performing the glycosylation by the Schmidt protocol [42], the amycolose deriva-
tive 17 was exposed to trichloroacetonitrile and DBU in CH2Cl2 for preparing the 
corresponding acetimidate derivative. To our surprise, however, the product obtained 
in 86% yield was not the acetimidate, but instead bicyclic N,O-acetal 59 formed by 
nucleophilic attack of the amide nitrogen at C7ʹ to the activated anomeric carbon. To 
probe its possibility as a glycosyl donor, 59 and 18 were allowed to react in CH2Cl2 
in the presence of MS 4 Å and various acid catalysts (BF3·OEt2, TiCl4, Cu(OTf)2, 
TBSOTf, PPTS, TsOH, and TfOH). Although the use of TiCl4 brought about the 
formation of a complex mixture, the desired glycosylation product 60 was obtained 
in varying yields by using the other catalysts, among which TfOH (1 equiv) gave the 
best result, delivering predominantly the β-anomer 60 in 67% isolated yield along 
with a small amount of its α-anomer (60/1ʹα-60 = 4.3:1). The stereochemistry of 60 
was assigned based on the NOE between the 1ʹ-H and 5ʹ-H as well as the large J1ʹH,2ʹH 
and J4ʹH,5ʹH values. Recently, we achieved one-pot conversion of 17 into 60 in 64% 
yield via 59, which could be successfully prepared in situ by intramolecular dehy-
dration of 17 mediated by DMC [19]. The aldehyde 60 was two-carbon elongated 
by its aldol reaction with S-tert-butyl thioacetate at –78 °C to afford aldol 61. In this  
reaction, raising the reaction temperature from –78 °C to room temperature caused 
partial dehydration of the aldol adduct, giving rise to a considerable amount of an 
α,β-unsaturated thioester. The Dess–Martin oxidation of 61 gave the β-keto thioester 
15 (1.8:1 mixture of keto and enol forms), which set the stage for the pivotal step in 
our total synthesis of amycolamicin (1), i.e., the stereoconvergent N-acylation of the 
N-glycoside 16 (α-anomer/β-anomer = 1:1.1) with the thioester 15. 

Our expectation that the N-acylation of the N-glycoside 16 incorporating a cis-
fused bicyclic carbonate system might possibly take place in a stereoconvergent

Scheme 2.9 Preparation of thioester 15 
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Fig. 2.3 Partial anomerizations observed by Sawa et al. 

manner is based on the following observations made by Sawa et al. during their 
structural determination of 1 (Fig. 2.3) [9]: (1) acidic methanolysis of amycolamicin 
(1, α-anomer) selectively cleaved the glycosidic bond between the amycolose and 
trans-decalin moieties to provide N-glycoside C as a 1:1 α/β anomeric mixture in 
77% yield; and (2) acetonidation of the 3ʺ,4ʺ-vicinal diol portion of D (a degradation 
product of 1, α-anomer/β-anomer = 1.3:1) with 2,2-dimethoxypropane under acidic 
conditions gave acetonide E with the α/β ratio significantly increased to 11:1. We 
considered that the first observation by Sawa et al. indicated the presence of equilib-
rium between the two anomers of C under the acidic conditions and the second one 
would suggest that the cis-fused bicyclic nature of the sugar moiety in E might have 
driven the equilibrium toward the sterically less hindered α-anomer with the bulky 
substituent at C1ʺ on the convex side of the bicyclic ring system. 

Beyond our expectation, the N-acylation of the anomeric mixture 16 (α/β = 1:1.1) 
having a cis-fused bicyclic carbonate system with the thioester 15 under modified 
Ley’s conditions (AgTFA, 2,6-di-tert-butylpyridine, MS 5 Å, THF, 0 °C, 45 min) 
[43] proceeded in an exclusively stereoconvergent manner to provide the α-anomer 
14 (J1ʺH,2ʺH = 9.0 Hz) as a single anomer in 72% yield presumably via anomer-
ization of the β-anomer of 14 to the thermodynamically more stable α-anomer 14 
(Scheme 2.10). As to the stereoconvergency of this N-acylation reaction, however, 
there might be another possibility that the anomerization of the N-glycoside 16 
preceded the N-acylation reaction, since we observed in NMR monitoring exper-
iments that a 1:12 α/β mixture of 16 (obtained during its SiO2 chromatographic 
purification), on exposure to AgTFA in THF-d8 at 0 °C, changed quickly to a 1:1 α/β 
mixture of 16 after 20 min and reached an equilibrium (α/β = ca. 1.8:1) within 45 min 
regardless of the presence or absence of 2,6-di-tert-butylpyridine (see the bottom of 
Scheme 2.10). The α-anomer of 16 might be N-acylated quickly because its nitrogen 
substituent is situated on the convex side of the bicyclic ring system, while the β-
anomer with the substituent on the concave side would resist the N-acylation due to
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severe steric hindrance and therefore might be N-acylated after swift anomerization to 
its α-anomer, possibly providing the α-anomer 14 preferentially. Regardless of which 
pathway is more plausible, the stereoconvergent N-acylation strategy described here 
could be a suitable option for the diastereoselective synthesis of analogous N-acyl 
N-glycosides. 

The Dieckmann condensation of the β-keto amide 14 provided 62 with a 
tetramic acid ring installed, the carbonate ring of which was opened with 2,4-
dimethoxybenzylamine 63 in one pot to give desired β-hydroxy carbamate 64 in 
61% isolated yield from 14 along with 21% yield of its regioisomer possessing a

Scheme 2.10 Completion of the total synthesis of amycolamicin (1) 
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carbamate group at C3ʺ, favoring the desired isomer 64 [44]. The stereochemistry 
of 64 was established based on the ROE correlations and coupling constant shown 
in Scheme 2.10. The  N-arylmethyl group in 64 was removed by DDQ oxidation to 
afford β-hydroxy carbamate 65, which was acetylated in the presence of Li2CO3 to 
afford β-acetoxy carbamate 66 in 56% yield over two steps. The addition of Li2CO3 to 
the reaction mixture was essential for the successful outcome; without the salt, acety-
lation at the tetramic acid moiety also took place concomitantly. We also attempted 
direct ammonolysis of 62 into 65 by using ammonia instead of the amine 63, but  the  
ammonolysis followed by acetylation of the resulting product gave 66ʹ (undesired 
regioisomer) predominantly (66/66ʹ = 1:10). Finally, removal of the TBS protecting 
group in 66 with TASF successfully finished the total synthesis of amycolamicin (1), 
the overall yield of which was 4.3% via a longest linear sequence of 19 steps from 
the PMB-protected methyl (R)-lactate 32. 

2.4 Synthesis of Partial Structures of Amycolamicin 

2.4.1 Synthesis of N-Acyl Amycolose 17ʹ by the Schobert 
Group 

Schobert et al. reported the synthesis of N-acyl amycolose 17 ,́ which was employed 
as an intermediate in Li’s total synthesis of 1, in 12 steps from benzyl α-d-mannoside 
67 (Scheme 2.11) [45]. The mannoside 67 was converted into 68 by a three-step 
sequence involving the Klemer–Rodemeyer fragmentation [46] to obtain a 2ʹ-deoxy-
3ʹ-oxo intermediate. The vinyl group in 68 was utilized as a foothold to install the 
nitrogen functionality via epoxidation, and 6ʹ-deoxygenation was achieved by the 
Dang protocol [47]. 

Scheme 2.11 Synthesis of N-acyl amycolose 17ʹ by Schobert et al.
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Scheme 2.12 Synthesis of trans-decalinoyl cyanide 6 by Altmann et al. (a) and Schobert et al. (b) 

2.4.2 Synthesis of Trans-Decalinoyl Cyanide 6 
by the Altmann and Schobert Groups 

Altmann et al. synthesized Li’s trans-decalin intermediate 6 in 19 steps from 
chiral lactone 69 via the Me2AlCl-promoted IMDA reaction of 70a using Davies’ 
SuperQuat chiral auxiliary to prepare trans-decalin derivative 71a [Scheme 2.12(a)] 
[48, 49]. Schobert et al., on the other hand, performed an analogous IMDA reaction 
without using Lewis acids (70b → 71b) [Scheme 2.12(b)]. Their synthesis of 6 was 
performed in 17 steps from ethyl 4-iodobutanoate 72 [45]. 

2.4.3 Synthesis of N-amykitanosyl Tetramic Acid 7 
by Schobert Et Al. And by Us 

The Schobert group also reported a formal synthesis of Li’s N-amykitanosyl tetramic 
acid intermediate 7 in 16 steps from l-rhamnose 4 [Scheme 2.13a] [45]. The 6-
deoxypyranose 4 was converted into glycosyl o-hexynylbenzoate 73 via stereochem-
ical inversion at C4ʺ by an oxidation/reduction sequence. The benzoate 73 had been 
previously transformed into 7 by Li et al. via α-selective N-glycosylation of tetramic 
acid derivative 74 with 73 using Yu’s gold-catalyzed N-glycosylation protocol [12, 
15]. We also performed a nine-step synthesis of 7 from l-fucose 10 [Scheme 2.13(b)]. 
Benzyl N-glycosyl-l-valinate 75 (α/β = 1.1:1) prepared in line with the procedures 
depicted in Scheme 2.5 was exposed to the Bestmann’s ylide [50] to afford  α-N-
glycosyl tetramic acid derivative 76 as a single anomer. In this case also, the reaction 
took place in a stereoconvergent manner thanks probably to the cis-bicyclic nature 
of 75 (cf. Scheme 2.10, 15 + 16 → 14).
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Scheme 2.13 Synthesis of N-amykitanosyl tetramic acid 7 by Schobert et al. (a) and Kuwahara 
et al. (b) 

2.4.4 Synthesis of Amykitanose 79 by Us 

Since amykitanose 79 itself located at the rightmost end of 1 had not been synthe-
sized, we implemented its synthesis for future biological studies [16] (Scheme 2.14). 
Cyclic orthoester 77 prepared from l-fucose 10 in five steps was subjected to hydrol-
ysis with TsOH·H2O in CHCl3 to preferentially afford 78 as a thermodynamically 
more stable product along with a small amount of its regioisomer (3ʺ-hydroxy-4ʺ-
acetoxy derivative) (78/regioisomer = 11.5:1). In this hydrolysis, the use of CHCl3 
as the solvent was essential to achieve the high regioselectivity; the reactions in THF, 
MeCN, AcOH/H2O, EtOAc, and toluene instead of CHCl3 resulted in low selectivity 
of 1.6:1, 1.6:1, 1.9:1, 3.6:1, and 3.9:1, respectively. The methyl glycoside 78 was 
converted into 79 by carbamoylation with trichloroacetyl isocyanate followed by 
hydrolysis using TiBr4 [17]. The use of aqueous TsOH or TFA for the hydrolysis 
mainly brought about the removal of the acetyl group. 

Scheme 2.14 Synthesis of amykitanose 79 by Kuwahara et al.
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2.5 Conclusion 

The total synthesis of amycolamicin 1 was achieved by combining three segments: 
cyclic carbonate-protected methyl N-glycosyl-l-valinate 16, TBS-protected N-acyl 
amycolose 17, and hydroxy trans-decalin aldehyde 18. The key steps for the prepa-
ration of 16, 17, and 18 were stereochemical inversion of a l-fucose derivative 
by a one-pot oxidation/reduction sequence (29 → 30), exclusively diastereoselec-
tive addition of a vinyllithium reagent to an α-siloxy-β-alkoxy ketone (20 → 39), 
and Et2AlCl-promoted highly diastereoselective IMDA reaction of an unprotected 
hydroxy tetraenal (57 → 18), respectively. The assembly of the three segments was 
conducted as follows: (1) β-selective glycosylation of a trans-decalinol with an N,O-
acetalic glycosyl donor derived from 17 (18 + 59 → 60); (2) two-carbon elongation 
of the resulting glycoside to form a β-keto thioester (60 → 15); and (3) exclusively 
stereoconvergent N-acylation of 16 with the thioester 15 to afford an N-acyl α-N-
glycoside as a single anomer (15 + 16 → 14). The total synthesis was completed by 
four additional steps involving the Dieckmann condensation to construct a tetramic 
acid ring (14 → 62) and regioselective ring opening of a cyclic carbonate with an 
(arylmethyl)amine (62 → 64) leading eventually to the β-acetoxy carbamate moiety 
of amycolamicin. The overall yield of our total synthesis of 1 was 4.3% via a longest 
linear sequence of 19 steps from a known PMB-protected methyl (R)-lactate (32). 
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Chapter 3 
A Long Journey Toward Structure 
Revision and Total Synthesis 
of Amphidinol 3 

Tohru Oishi 

Abstract Amphidinol 3 (AM3) is a super-carbon-chain compound isolated from 
the dinoflagellate Amphidinium klebsii. Although the absolute configuration of AM3 
was determined in 1999 by instrumental analysis in combination with degradation 
of the natural product, it was a daunting task because of its limited availability from 
natural sources and presence of around 70% of chiral centers on the acyclic carbon 
chain. During the course of our synthetic studies of AM3, the originally proposed 
structure was revised, which was confirmed by the first total synthesis of AM3 in 
2020, more than 20 years since its first discovery. A highly convergent strategy via the 
fragment assembly using Suzuki–Miyaura coupling and Julia–Kocienski olefination 
led to the successful total synthesis; however, it was not an easy task to assemble large 
segments by the Suzuki–Miyaura coupling. A number of experiments optimizing the 
reaction conditions including model systems revealed that the concentration of the 
aqueous cesium carbonate is crucial for the key step Suzuki–Miyaura coupling to 
proceed effectively. 

Keywords Structure revision · Convergent synthesis · Cross-metathesis ·
Regioselective dihydroxylation · Suzuki–Miyaura coupling · Julia–Kocienski 
olefination 

3.1 Introduction 

Amphidinol 3 (AM3, 1) is a super-carbon-chain compound produced by the dinoflag-
ellate Amphidinium klebsii (Fig. 3.1) [1]. AM3 is known to induce not only antifungal 
activity but also hemolysis by increasing membrane permeability. Determination of 
the stereochemistry was carried out in 1999 [2] by extensive NMR analysis including 
the JBCA method [3], the modified Mosher method [4], and degradation of the
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Fig. 3.1 Originally proposed structure (1999) of amphidinol 3. The absolute configurations at C2, 
C32–C36, C38, and C51 were later revised 

natural product. However, it was a difficult challenge to determine the stereochem-
istry because of the scarcity from natural sources as well as around 70% of chiral 
centers located on the flexible carbon chain. HPLC on a chiral column with UV 
detection was utilized to assign the absolute configuration at C2 as S by comparison 
of the retention times for the degradation product from 10 μg of AM3 with those for 
authentic samples. It is possible that the observed peak for the degradation product 
was that for an artifact. Both the relationship between C38–C39 and C50–C51 were 
assigned to be threo by the JBCA method, however, these are also ambiguous since 
some of the observed J values were categorized in the “medium” range, and not the 
“large” or “small” range. In our synthetic studies on AM3, the stereochemistry at C2, 
C32–C36, C38, and C51 was corrected. Based on the revised structure, the first total 
synthesis of AM3 was accomplished in 2020. It took over two decades to confirm the 
correct stereochemistry after structure determination of AM3 in1999. In this chapter, 
the long 15-year journey toward the structure revision and total synthesis of AM3 is 
described along with the difficulties encountered and the solutions to those problems 
[5–13]. 

3.2 Revision of the Absolute Configuration at C2: Synthesis 
of the C1–C14 Section 

Due to the ambiguity of the stereochemistry at C2, we planned to synthesize the four 
possible diastereomers 2a-2d corresponding to the C1–C14 section and compare 
their 1H and 13C NMR data with those for AM3 (Fig. 3.2) [5]. For the efficient 
construction of the E-olefinic moieties, we envisaged extensive utilization of the 
cross-metathesis reaction. In this strategy, iodoolefin 3 [14] was utilized as the key 
intermediate in which the iodide moiety served as a masked terminal olefin in the 
first cross-metathesis with terminal olefin 4 to give 5 (Scheme 3.1). After reductive 
removal of the iodide moiety, the resulting terminal olefin 6 was subjected to the 
second cross-metathesis reaction with terminal olefin 7. Removal of the silyl groups 
afforded 2a. In an analogous manner, 2b-2d were prepared by changing the substrates
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to ent-3 and ent-7. However, the 1H NMR spectra of 2a-2d were completely identical, 
because the stereogenic centers are located 5 carbons apart. Differences in 13C NMR  
chemical shifts between AM3 and those of 2a-2d were also within the range of error, 
but those of 2b showed the smallest deviation from the natural product. 

Therefore, for confirmation of the stereochemistry at C2, AM3 (ca. 50 μg) 
was subjected to degradation by cross-metathesis with ethylene to give 8, which 
was compared with authentic samples 9 and ent-9 by GC–MS analysis using a 
chiral column, revealing that the stereochemistry at C2 should be revised to be R 
(Scheme 3.2) [5]. 

Fig. 3.2 Synthesis of four possible diastereomers at C2, C6, and C10 corresponding to the C1–C14 
section 

Scheme 3.1 Synthesis of the C1–C14 section via cross-metathesis. Reprinted with permission 
from Ref. [5]. Copyright © 2008, American Chemical Society 

Scheme 3.2 Revision of the absolute configuration at C2 via degradation of natural product by 
cross-metathesis and comparison with authentic samples
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3.3 Revision of the Absolute Configuration at C51: 
Synthesis of the C43–C67 Section 

For confirmation of the ambiguous absolute configuration at C51 by comparison 
of NMR data for AM3, we planned to synthesize the model compound 10a corre-
sponding to the C43–C67 section and its epimer at C51 (10b) via Julia–Kocienski 
olefination (Fig. 3.3) [8]. 

The B-ring 15 was synthesized from the building block 3 via chemoselective 
cross-metathesis to give 11, where the iodoolefin moiety was utilized as a protected 
terminal olefin (Scheme 3.3) [6]. Conversion of the diene 11 to 12 was achieved via 
chemo- and diastereoselective Sharpless asymmetric dihydroxylation (AD) of the 
diene 11 in which the iodoolefin moiety remained intact and was utilized for the 
next Suzuki–Miyaura cross-coupling with pinacol boronate 13. The resulting diene 
14 was converted to the B-ring 15 via Katsuki–Sharpless asymmetric epoxidation 
(AE) and acid catalyzed 6-endo cyclization. In an analogous sequence, its enantiomer 
ent-15 was synthesized from ent-3 [11]. 

Sulfone 20 was synthesized based on a linchpin strategy via Negishi coupling of 
iodoolefin 16 and zinc reagent prepared from 17, followed by Migita–Kosugi–Stille 
coupling with iodoolefin 19 (Scheme 3.4) [10].

Coupling partners, aldehydes 21a and 21b corresponding to the diastereomer at 
C51, were prepared from the common intermediate 15 [8]. The aldehyde 21a was 
prepared via Sharpless AD of the olefin, whereas 21b was prepared via Katsuki– 
Sharpless AE, Payne and Pummerer rearrangements (cf. Scheme 3.9). The target

Fig. 3.3 Synthesis of the two possible diastereomers at C51 corresponding to the C43–C67 section 
via Julia–Kocienski olefination 

Scheme 3.3 Synthesis of the B-ring. Reprinted with permission from Ref. [6]. Copyright © 2009, 
American Chemical Society 
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Scheme 3.4 Synthesis of the two possible diastereomers at C51 corresponding to the C43–C67 
section. Reprinted with permission from Ref. [8]. Copyright © 2013, American Chemical Society

compounds 10a and 10b were synthesized from the aldehydes 21a and 21b, respec-
tively, via Julia–Kocienski olefination with the sulfone 20. Comparison of 1H and 
13C NMR chemical shifts for 10a and 10b with those for the natural product revealed 
that deviations of the chemical shifts between 10a and AM3 were larger than 
those between 10b and AM3, suggesting that the stereochemistry at C51 should 
be corrected to be S. 

3.4 Synthetic Studies of AM3 Based on Structural 
Revisions in 2008 and 2013 

3.4.1 Retrosynthetic Analysis 

Based on the revised structure at C2 (2008) and C51 (2013), the total synthesis was 
envisaged as shown in the retrosynthetic analysis in Scheme 3.5. The new target, 
AM3 (22) is to be synthesized via Suzuki–Miyaura coupling of 23 and 24 and Julia– 
Kocienski olefination with 20. Intriguing molecular structure and biological activity 
attract much attention of synthetic community, and a lot of synthetic studies have been 
reported [15] by the Cossy [16–22], Roush [23–25], Rychnovsky [26–28], Paquette 
[29–31], Crimmins [32], Evans [33], and Yadav [34] groups.
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Scheme 3.5 Revised structure of AM3 at C2 (2008) and C51 (2013) and retrosynthetic analysis 

3.4.2 Synthesis of the C1–C29 Section 

Synthesis of the C1–C20 section 33 is shown in Scheme 3.6 [9]. Coupling of lithium 
acetylide prepared from alkyne 26 and bis-Weinreb amide 25 and subsequent Noyori 
asymmetric hydrogen transfer reaction of the resulting ketone afforded 27. Reduc-
tion of the alkyne with Pd/C(en) to avoid hydrogenolysis of the PMB group and 
protection of the secondary alcohol gave Weinreb amide 28, which was coupled with 
the alkenyllithium prepared from iodoolefin 29 to furnish 30. CBS reduction of the 
ketone 30 and protection as a TBS ether afforded terminal olefin 31. The olefin was 
subjected to cross-metathesis with 0.33 eq of ent-7 to minimize homocoupling to 
afford 32 in 70% yield based on ent-7 with recovery of 31 (75%). Protection of the 
secondary alcohol, removal of the PMB group, and Parikh–Doering oxidation of the 
resulting primary alcohol gave aldehyde 33 (Dess–Martin oxidation gave 34% of 33 
with unidentified byproducts).

The C21–C29 section 44 was synthesized from (R)-glycidol (34) (Scheme 3.7) [9]. 
Cross-metathesis of 35 derived from 34 and acrolein (36) with Hoveyda–Grubbs 2nd 
catalyst (that with Grubbs 2nd catalyst resulted in 19% yield) gave α,β -unsaturated 
aldehyde 37, which was subjected to intramolecular oxa-Michael reaction via hemi-
acetal formation [35] to furnish alcohol 38 after reduction of the aldehyde as a single 
diastereomer. Protecting group manipulation and oxidation of the hydroxy group at 
C24 afforded aldehyde 39, which was subjected to Brown asymmetric crotylation 
with 40 to furnish 41. Removal of the acetal in 41 in the presence of 1,3-propanediol
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Scheme 3.6 Synthesis of the C1–C20 section. Reprinted with permission from Ref. [9]. Copyright 
© 2015, American Chemical Society

[10] and subsequent protection as a TBS ether yielded 42. Hydroboration of the 
terminal olefin gave primary alcohol 43, which was converted to sulfone 44 via 
Mitsunobu reaction and oxidation with MCPBA of the resulting sulfide.

The C1–C29 section was synthesized as shown in Scheme 3.8 [9]. Julia–Kocienski 
olefination of aldehyde 33 and sulfone 44 with KHMDS in THF resulted in the forma-
tion of olefin 45 (E:Z = 20:1). One of the crucial steps, regio- and diastereoselective 
dihydroxylation, was successfully achieved by Sharpless AD to furnish 46 (dr = 
13:1). The dihydroxylation occurred at the less hindered C20–C21 olefin compared 
to the C4–C5 and C8–C9 olefins located at neighboring TBSO groups. Oxidative 
removal of the NAP (2-naphthylmethyl) group with DDQ giving the primary alcohol 
followed by dehydration using the Nishizawa–Grieco protocol afforded terminal 
olefin 23.

3.4.3 Synthesis of the C30–C52 Section 

The precursors of the C30–C52 section 24, the A- and B-rings, were prepared from 
the common intermediate 47 as shown in Scheme 3.9 [11]. Synthesis of the A-
ring commenced with Sharpless AD of 47 and subsequent protection of the hydroxy 
groups to give 48. Protecting group manipulation giving primary alcohol 49 followed 
by oxidation and Horner–Wadsworth–Emmons reaction with phosphonate 50 under
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Scheme 3.7 Synthesis of the C21–C29 section. Reprinted with permission from Ref. [9]. Copyright 
© 2015, American Chemical Society

Scheme 3.8 Synthesis of the C1–C29 section of AM3. Reprinted with permission from Ref. [9]. 
Copyright © 2015, American Chemical Society
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Masamune–Roush conditions resulted in the formation of enone 51. After hydro-
genation of the olefin, the resulting methyl ketone was converted to enol triflate 53 
by treatment with KHMDS followed by Comins reagent 52. The enol triflate 53 was 
converted to iodide 54 via Stille reaction to give a stannane followed by treatment 
with iodine. 

Synthesis of the B-ring commenced with Katsuki–Sharpless AE of the allylic 
alcohol derived from 47. Payne rearrangement of epoxy alcohol 55 gave the sulfide 
with inversion of stereochemistry at C51, and protection of the resulting secondary 
alcohol gave 56. Pummerer rearrangement by treatment with MCPBA followed by 
trifluoroacetic anhydride and base resulted in the formation of an aldehyde, which 
was reduced with NaBH4 to furnish 57. After protection of the hydroxy group as 
a PMB ether, selective removal of the Bn group in the presence of the PMB group 
was achieved by treatment with Raney nickel under hydrogen, and oxidation of the 
resulting hydroxy group afforded aldehyde 58. 

With the A- and B-rings in hand, coupling of these fragments was examined 
(Table 3.1). Tin-lithium exchange reaction of stannane 59 with n-BuLi (1 eq) in THF 
at − 78 °C and subsequent addition of aldehyde 58 in THF at − 78 °C afforded 60a 
in 33% yield accompanied by its diastereomer at C43 (60b) in 11% yield (entry 1).

Scheme 3.9 Synthesis of the A- and B-rings. Reprinted with permission from Ref. [11]. Copyright 
© 2018, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim 
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When iodoolefin 54 was treated with t-BuLi (2 eq) in Et2O at  − 78 °C to generate 
the corresponding alkenyllithium followed by addition of aldehyde 58 in Et2O at  − 
78 °C, the yields of 60a (37%) and 60b (19%) increased slightly (entry 2). Although 
total yields of the products were improved by raising the temperature of the solution 
of 58 in Et2O to  − 40 °C (entry 3), the ratio of the desired compound decreased, 
yielding 32% each of 60a and 60b. By changing the solvent of the aldehyde 58 to 
THF and lowering the temperature to − 78 °C, the desired 60a was obtained in 40% 
yield with 13% of 60b.

Attempts to improve the yield of the coupling product are shown in Scheme 3.10. 
Nozaki–Hiyama–Kishi coupling of aldehyde 58 and iodoolefin 54 or enol triflate 53 
was unsuccessful via C42–C43 bond formation with recovery of 58 and terminal 
olefin derived form 54 or 53. Alternatively, cross-coupling reactions via C41–C42 
bond formation by Suzuki–Miyaura coupling of iodoolefin 62 and alkylborane 64, 
Negishi coupling of iodoolefin 62 and alkylzinc reagent 65, or SN2 reaction of cuprate 
63 and iodide 66, were examined, but in vain with recovery of the starting materials 
or formation of complex mixtures.

Coupling product 60a was converted to trisubstituted iodoolefin 24 corresponding 
to the C30–C52 section (Scheme 3.11) [11]. Protection of the hydroxy group at 
C43, removal of the TES group with TBAF/AcOH, and oxidation of the primary 
hydroxy group gave aldehyde 67. Alkynylation with Ohira–Bestmann reagent 68 
gave a terminal alkyne, which was methylated via generation of a lithium acetylide 
with n-BuLi, followed by addition of MeI to furnish 69. Hydrozirconation of 69 
with Schwartz reagent followed by treatment with iodine afforded the trisubstituted 
iodoolefin 24 corresponding to the C30–C52 section.

3.4.4 Suzuki–Miyaura Coupling 

With the essential intermediates in hand, we investigated the key Suzuki–Miyaura 
coupling step. First, a model experiment using terminal olefin 70 and iodoolefin 72 
was examined (Scheme 3.12) [10]. Hydroboration of 70 with 9-BBN to generate 
alkylborane 71, followed by successive addition of aq Cs2CO3, iodoolefin 72, and 
palladium catalyst, afforded 73 in 75% yield. Encouraged by these results, Suzuki– 
Miyaura coupling of the C21–C29 section (23) and the C30–C52 section (24) 
was examined (Scheme 3.13). However, under identical conditions as those for the 
successful model study, Suzuki–Miyaura coupling did not proceed and no desired 
coupling product 74 was obtained. To investigate the scope and limitation of the 
Suzuki–Miyaura coupling, iodoolefin 72 corresponding to the C30–C40 section was 
utilized instead of 24 (Scheme 3.14). However, no coupling product was obtained 
under various conditions, e.g., AsPh3 added as an accelerating ligand, or TlOEt as 
a base as referenced in synthetic studies of palytoxin reported by Kishi [36]. As 
byproducts, olefin 75 or allene 76 was obtained. Alternatively, the C21–C29 section 
(77) was prepared by changing the protecting groups at C20, C21, C25, and C7 from
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Scheme 3.10 Unsuccessful coupling of the A- and B-rings

Scheme 3.11 Synthesis of the C30–C52 section

TBS groups to cyclopentylidene acetals. However, Suzuki–Miyaura coupling of 77 
did not proceed with iodoolefin 72.

Finally, the C21–C29 section 70 was utilized (Scheme 3.15). In this combina-
tion, Suzuki–Miyaura coupling of 70 and 24 proceeded to afford 78 but in moderate 
yield (51%). Since the coupling product 78 corresponding to the C21–C52 section 
was obtained, we proceeded to the synthesis of AM3. The TES group was selec-
tively removed with TBAF/AcOH. Oxidation giving aldehyde, followed by Julia– 
Kocienski olefination with sulfone 79 afforded olefin 80 (E:Z = 11:1). The next step,
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Scheme 3.12 Suzuki–Miyaura coupling of the C21–C29 and C30–C40 sections. Reprinted with 
permission from Ref. [10]. Copyright © 2017, Chemical Society of Japan 

Scheme 3.13 Unsuccessful Suzuki–Miyaura coupling of the C1–C29 and C30–C52 sections

regio- and diastereoselective dihydroxylation, was anticipated to be more difficult 
than that for 45 (Scheme 3.8) due to the presence of the additional trisubstituted and 
exo-olefins. As anticipated, Sharpless AD of 80 resulted in a low yield of diol 81 
(28%), but the byproducts could not be identified.
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Scheme 3.14 Unsuccessful Suzuki–Miyaura coupling of the C1–C29 and C30–C40 sections

3.5 Revision of the Absolute Configurations at C32–C36 
and C38 

In 2010, the similar compound to AM3, karlotoxin 2 (KmTx2, 82) was identified 
(Fig. 3.4) [37, 38]. However, the absolute configuration of the A- and B-rings was 
antipodal to that of AM3. Although the stereochemistry at C39 of AM3 was eluci-
dated by the modified Mosher method, it was difficult to determine the relation-
ship between C38 and C39 by the JBCA method. Therefore, there is a possibility 
that the relationship between C38 and C39 is not threo but erythro, namely the 
stereochemistry at C32–C36 and C38 of AM3 are antipodal (83).

The absolute configurations around the bis-THP moiety of AM3 were determined 
by the modified Mosher method through degradation of the natural product via glycol 
cleavage with sodium metaperiodate and subsequent reduction, and esterification of 
the polyol as MTPA esters [2]. Therefore, we envisaged that it is possible to eluci-
date the stereochemistry around the bis-THP moiety by comparing the degradation 
product, (S)-MTPA ester 84 derived from AM3, with those from authentic samples, 
(S)-MTPA esters 86 and 88 derived from 85 and 87, respectively (Scheme 3.16).

A precursor of 85, the C31–C52 section 60a corresponding to the revised structure 
in 2013 (22), has already been synthesized (Table 3.1) [11]. As a precursor of 87, the  
C31–C52 section 96a corresponding to the plausible structure 83 was synthesized as 
shown in Scheme 3.17 [11]. The A-ring ent-15 was prepared from ent-3 in a similar 
manner to that shown in Scheme 3.3. Protection of the 1,2-diol moiety of ent-15 as
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Scheme 3.15 Suzuki–Miyaura coupling of the C21–C29 and C30–C52 sections and synthesis of 
the C1–C52 section

a cyclopentylidene acetal followed by Sharpless AD of the olefin gave diol 89. The  
resulting 1,2-diol was also protected as a cyclopentylidene acetal, and the remaining 
secondary alcohol was converted to mesylate 90. Selective removal of the Bn group in 
the presence of the PMB group was achieved with Raney nickel under hydrogen, and 
subsequent treatment of the resulting primary alcohol with base furnished terminal 
epoxide 91 via inversion of the absolute configuration at C39. Epoxide opening of 
91 with dilithium reagent 92 followed by protection as a TBS ether gave 93. Nickel  
catalyzed hydroalumination of the terminal alkyne 93 followed by addition of iodine 
furnished iodoolefin 94. After conversion of the protecting group from PMB to TES, 
treatment of the iodoolefin 95 with t-BuLi to generate an alkenyllithium, followed 
by addition of aldehyde 58, afforded coupling product 96a and its diastereomer 96b 
at C43 in 71% yield in a 1.7:1 ratio. The epimer was removed by silica gel column 
chromatography.
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Fig. 3.4 Structure of karlotoxin 2, revised structure at C2 (2008) and C51 of AM3 (2013) and 
plausible structure of AM3

Scheme 3.16 Strategy for structure determination of the bis-THP moiety
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Scheme 3.17 Synthesis of the C31–C52 section corresponding to plausible structure. Reprinted 
with permission from Ref. [11]. Copyright © 2018, Wiley–VCH Verlag GmbH & Co. KGaA, 
Weinheim 

Having synthesized the precursors of the authentic samples, degradation of 60a 
and 96a was carried out through (1) deprotection with HF•Py, (2) glycol cleavage 
with HIO4 and subsequent reduction with NaBH4, and (3) esterification with (R)-
MTPACl to give (S)-MTPA esters 86 and 88, respectively (Scheme 3.18) [11]. The 
1H NMR data for the degradation product derived from AM3 (84) matched those 
for the authentic sample 88 (38S, 39R) but not 86 (38R, 39R). Therefore, the rela-
tive configuration between C38 and C39 is not threo but erythro, and the absolute 
configurations were revised to be 32S, 33R, 34S, 35S, 36S, and 38S.
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Scheme 3.18 Preparation of authentic samples and comparison with the degradation product of 
AM3. Reprinted with permission from Ref. [11]. Copyright © 2018, Wiley–VCH Verlag GmbH & 
Co. KGaA, Weinheim 

3.6 Total Synthesis of AM3 Based on the Revised Structure 
in 2018 

We moved on to total synthesis of AM3 (83) to verify the structure revised in 2018 
(Scheme 3.19) [13]. In an analogous retrosynthetic analysis as shown in Scheme 3.5, 
83 is to be synthesized via Suzuki–Miyaura coupling of 23 and 97, and Julia– 
Kocienski olefination with 20. However, Suzuki–Miyaura coupling of 23 and 97 
might be problematic as mentioned in Sect. 3.4.4.

Therefore, model experiments were carried out to optimize the reaction condi-
tions. In place of the polyol segment 23, a simple terminal olefin with a linear 15-
carbon chain (98) was used (Scheme 3.20). However, even in this simple substrate, 
Suzuki–Miyaura coupling with iodoolefin 72 did not gave desired product 99 under 
the standard conditions for coupling of small molecules. After considerable experi-
mentation, we found that the concentration of aq Cs2CO3 had a strong effect on this 
reaction. When the concentration of aq Cs2CO3 was changed from 3 to 1 M, 99 was 
formed in 60% yield.

We then moved on to the Suzuki–Miyaura coupling of 70 and 97 as a model study 
(Scheme 3.21) [13]. Synthesis of 97 commenced with protection of the secondary 
alcohol at C43 of 96a as a TBS ether. The TES group was selectively removed 
and the resulting hydroxy group was oxidized to an aldehyde. Alkynylation with 
Ohira–Bestmann reagent 68 furnished terminal alkyne 100. Methylation of 100 with 
LHMDS and MeI, followed by palladium catalyzed hydrostannylation and iodina-
tion, afforded trisubstituted iodoolefin 97. Suzuki–Miyaura coupling of 70 with a 
shorter polyol moiety was examined. Hydroboration of 70 with 9-BBN, and succes-
sive addition of 3 M Cs2CO3, 70 in DMF, and Pd(PPh3) at room temperature furnished
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Scheme 3.19 Revised structure of AM3 at C32–C36 and C38 and retrosynthetic analysis. 
Reprinted with permission from Ref. [13]. Copyright © 2020, American Chemical Society

Scheme 3.20 Model study of Suzuki–Miyaura coupling

coupling product 101 but in low yield (29%). When the concentration of aq Cs2CO3 

was changed from 3 to 1 M, the yield of 101 was improved to 45%, which was lower 
than that with its counterpart 24 (51%) (Scheme 3.15). The reaction was carried out 
with 3 M Cs2CO3, and after the addition of 70 and Pd(PPh3), H2O was added to 
the reaction mixture, diluting the concentration of aq Cs2CO3 from 3 to 1 M. As a 
result, Suzuki–Miyaura coupling proceeded rapidly and was completed in 10 min, 
affording 101 in high yield (80%).
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Scheme 3.21 Model study of Suzuki–Miyaura coupling. Reprinted with permission from Ref. 
[13]. Copyright © 2020, American Chemical Society 

Finally, Suzuki–Miyaura coupling of 23 and 97 was carried out (Scheme 3.22) 
[13]. Although the Suzuki–Miyaura coupling with 3 M Cs2CO3 gave the coupling 
product 102 in 42% yield, that with 1 M Cs2CO3 improved the yield to 77%. Thus, 
connection of the large segments, terminal olefin 23 (MW 1844) and iodoolefin 
97 (MW 1747) was successfully achieved by Suzuki–Miyaura coupling under the 
optimized conditions to afford the long-cherished compound 102 (MW 3396).

The results of the Suzuki–Miyaura coupling can be rationalized as shown in 
Fig. 3.5, while the reaction mechanism is still controversial. Hydroboration of 23 
or 70 with 9-BBN affords alkylborane A. Oxidative addition of Pd(0) catalyst to 
iodoolefin 97 furnished Pd(II) iodide complex C. It is reported that ligand exchange 
from I– to OH– generates highly reactive hydroxo Pd(II) complex D, which reacts 
with alkylborane A via coordination of the oxygen atom to the borane to give the 
coupling products 102 or 101 via transition state E, respectively. It is reported that 
the reaction rate for D is to be 104 times faster than that for C (k4 ≪ k2) [39]. The 
complex D would be formed at the interfacial surface of the organic (ORG) and 
aqueous (AQ) phases, or AQ. Therefore, formation of D might be retarded due to 
the low accessibility of C in AQ (conditions a). This salting out effect due to the size 
and hydrophobicity of C results in the low yield of the coupling products 102 (42%) 
and 101 (29%). Formation of D might be accelerated by diluting the aq Cs2CO3 

available to react with A giving 102 in 77% yield (conditions b). However, in the
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Scheme 3.22 Suzuki–Miyaura coupling of the C1–C29 and C30–C52 sections. Reprinted with 
permission from Ref. [13]. Copyright 2020 American Chemical Society

case of A generated from 70, formation of borate B would be accelerated under 
conditions b to inhibit the reaction with D, giving  101 in 45% yield. Dilution of aq 
Cs2CO3 (3M to 1 M) by adding water was carried out at the final step (conditions c). 
Therefore, A could react with D prior to the formation of B (k3 > k1) to afford  101 
in 80% yield. 

Fig. 3.5 Plausible reaction process for Suzuki–Miyaura coupling
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On the other hand, it is reported that B is more reactive with C than A to give 
E via elimination of I– [40]. However, the present results suggest that the reaction 
proceeds via D, which reacts with A directly. If B is more reactive than A, coupling 
with 70 could afford better yields than 23 under both conditions a and b. Because it 
is more favorable to form B from A for 70 possessing a shorter carbon chain than 
23 due to its higher accessibility in AQ. 

Having succeeded in the Suzuki–Miyaura coupling of 23 and 97 giving 102, 
we approached the endgame of the total synthesis (Scheme 3.23) [13]. The PMB 
group of 102 was removed with DDQ (75%) and the resulting primary alcohol was 
subjected to Swern oxidation to furnish 103 (quant). Coupling of aldehyde 103 and 
sulfone 20 by Julia–Kocienski olefination. KHMDS was added to a mixture of 103 
and 20 in a mixed solvent (THF: toluene = 7.5:1) at − 78 °C and warmed up to 
room temperature to afford the olefin 104 in 67% yield (E:Z = 2:1). Use of THF 
as a single solvent improved both the yield to 79% and the E:Z ratio to 4:1. The 
E:Z ratio was improved to 10:1 when the solvent was changed to THF/HMPA = 
4:1 (79% yield). Presumably, the polar solvents prevent coordination of K+ in the 
intermediate. Removal of all silyl groups and acetals was carefully carried out due 
to the labile nature of the product, which is prone to decomposition under acidic 
conditions. Thus, treatment of 104 with HF·Py in THF to remove silyl groups, and 
subsequential addition of (CH2OH)2 and MeOH to accelerate the removal of acetals 
afforded a mixture of AM3 (83) and mono-acetal 105 and/or 106. The mixture was 
subjected again to the same conditions to afford 83 in 58% (purified by HPLC). The 
1H and 13C NMR data including the specific rotation for the synthetic sample were 
in good accordance with those for AM3; therefore, the structure of AM3 revised in 
2018 was confirmed.

3.7 Synthetic Efficiency 

The first and highly convergent total synthesis of AM3 (83) has been accomplished 
through the assemblage of the polyol (23), bis-THP (97), and polyene (20) segments 
in only 5 steps. Generally, in the case of total syntheses of natural products, the 
efficiency is evaluated by the longest linear sequence (LLS). The LLS was 40 steps 
in the synthesis of 83. Although recent progress on short-step total syntheses of 
diterpenoids is remarkable, the number of steps might be highly dependent on the 
MW of the target molecules, making it difficult to evaluate the synthetic efficiency 
(SE) based simply on this parameter. Therefore, we proposed a new concept to 
evaluate the efficiency in the synthesis of medium molecular-weight molecules such 
as AM3 (Fig. 3.6) [41]. We defined an index SELLS which is calculated as MW 
divided by LLS, meaning how MW increases on average per single step. The LLS 
synthetic efficiency for AM3 is calculated to be SELLS(AM3) = 1328/40 = 33.2. 
This value is comparable to that for synthesis of a small molecule (MW 332) in10 
steps. On the other hand, another important factor for evaluating the total SE is the 
total steps (TS), because a number of total syntheses of natural products have been
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Scheme 3.23 Total synthesis of AM3. Reprinted with permission from Ref. [13]. Copyright © 
2020, American Chemical Society

executed in a convergent manner. To evaluate the total efficiency, we defined another 
index SETS, which is calculated as MW divided by TS, meaning how MW increases 
per single step on average in total. Since TS of the total synthesis is 112 steps [13], the 
TS synthetic efficiency of AM3 is calculated to be SETS(AM3) = 1328/112 = 11.9. 
These parameters, SELLS and SETS, might be useful indices to assess the synthetic 
efficiency in the total syntheses of medium molecular-weight molecules.
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Fig. 3.6 Synthetic efficiency. Reprinted with permission from Ref. [41]. Copyright © 2020, 
Chemical Society of Japan 

3.8 Conclusion 

It was a long 15-year journey to reveal the correct structure of AM3 and to achieve its 
first total synthesis, which was accomplished by the power of synthetic organic chem-
istry. Although progress on computational chemistry and data science is remarkable 
and they have been applied to structure determination, total synthesis is indisputable 
approach to determine and verify structures including absolute configurations, partic-
ularly in the case of complex and large natural products that are only available in 
small quantities from natural sources. Comparison of 1H and 13C NMR data for the 
natural product with those for the synthetic samples apparently proves the structure. 
During our synthetic studies of AM3, a new aspect in Suzuki–Miyaura coupling was 
discovered in the case of medium-sized molecules, and a new parameter to eval-
uate synthetic efficiency (SE) that is suitable for total syntheses of medium-sized 
molecules was proposed. 
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Chapter 4 
Total Synthesis of (+)-Siladenoserinol A 

Masahito Yoshida, Koya Saito, and Takayuki Doi 

Abstract The total synthesis of (+)-siladenoserinol A (1) was accomplished. The 
bicyclic acetal core, a 6,8-dioxabicyclo[3.2.1]octane skeleton, was constructed 
by Au(III)-catalyzed cycloisomerization of 6,7-dihydroxy-2-alkynoate. A serinol 
side chain was introduced by the Julia–Kocienski olefination and the other side 
chain was efficiently introduced by the Horner–Wadsworth–Emmons reaction with 
glycerophosphocholine-containing phosphonoacetate, and selective sulfamation of 
the serinol moiety yielded (+)-1. The synthetic (+)-1 exhibited potent inhibitory 
activity against p53–Hdm2 interaction comparable to that of the natural product. In 
contrast, the desulfamate derivative did not show the inhibitory activity. Notably, its 
benzoyl analog exhibited more potent activity than (+)-1. 

Keywords Au catalyst · Bicyclic acetal · Glycerophosphocholine ·
Horner–Wadsworth–Emmons reaction · Protein–protein interaction 

4.1 Introduction 

(+)-Siladenoserinol A (1) is a marine natural product extracted from a tunicate of 
the family Didemnidae sampled from North Sulawesi in Indonesia. It contains a 6,8-
dioxabicyclo[3.2.1]octane skeleton and two long side chains, one of which terminates 
in sulfamated serinol, and the other terminates in a glycerophosphocholine moiety 
[1]. Siladenoserinol A inhibits the protein–protein interaction (PPI) between p53 
and Hdm2 that downregulates p53. As the upregulation of Hdm2 in cancer cells 
induces the inhibition of cancer suppressive p53, this PPI inhibitor is expected to be 
a tumor suppressive agent [2–4]. The study of the total synthesis of siladenoserinol
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A can be applied to its derivatives. It may also contribute to the elucidation of its 
mechanism of action and structure–activity relationship (SAR) and hence may lead 
to the discovery of a new anticancer drug. This chapter describes a new method for 
synthesizing the 6,8-dioxabicyclo[3.2.1]octane skeleton using the Au(III)-catalyzed 
cycloisomerization of dihydroxyalkynoate and its application in the total synthesis 
of siladenoserinol A [5]. 

4.2 Synthetic Plan of (+)-Siladenoserinol A (1) 

The SAR of twelve siladenoserinols A–L has been previously reported. Based on 
this previous study, three substructures, namely the 6,8-dioxabicyclo[3.2.1]octane 
skeleton, sulfamated serinol, and glycerophosphocholine, are expected to play a 
major role in the biological activity of the siladenoserinols (Tables 4.1 and 4.2) [1]. 
Therefore, a convergent synthetic approach combining these three substructures was 
planned. 

The initial synthetic plan is as follows. The glycerophosphocholine-containing 
side chain of 1 can be constructed by the esterification of α,β-unsaturated carboxylic 
acid 2 with glycerophosphocholine 3. The selective formation of the sulfamate group 
in the serinol moiety can be carried out in the final step. Acid 2 can be synthesized 
via the Julia–Kocienski olefination of aldehyde 4 with 1-phenyl-1H-tetrazole sulfone 
(PT-sulfone) 5, followed by the Horner–Wadsworth–Emmons (HWE) reaction with

Table 4.1 Structures of siladenoserinols A–G and their IC50 values 

OO 
R1O 

O 
O 

P 
O 

O 
OR4 

O O 
R5 

11 
O OR3 

HN 
R2 

siladenoserinols A–G 

Compound R1 R2 R3 R4 R5 IC50 (μM)a 

Siladenoserinol A 
(1) 

Ac SO3H H Ac +NMe3 2.0 

Siladenoserinol B Ac SO3H H Ac +NH3 2.0 

Siladenoserinol C H H SO3H Ac +NH3 4.0 

Siladenoserinol D Ac SO3H H H +NMe3 7.7 

Siladenoserinol E H H SO3H Ac +NMe3 18 

Siladenoserinol F H SO3H H Ac +NMe3 29 

Siladenoserinol G Ac H SO3H Ac +NMe3 53 

aThe concentration at 50% inhibition of p53–Hdm2 interaction
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Table 4.2 Structures of siladenoserinols H–L and their IC50 values 

OO 
R1O 

O 
O 

P 
O 

O 

O O 
R4 

11 
O OR3 

HN 
R2 

OH 

siladenoserinols H–L 

Compound R1 R2 R3 R4 IC50 (μM)a 

Siladenoserinol H Ac SO3H H +NMe3 2.5 

Siladenoserinol I Ac H SO3H +NMe3 9.3 

Siladenoserinol J H H SO3H +NH3 11 

Siladenoserinol K H SO3H H +NMe3 13 

Siladenoserinol L H H SO3H +NMe3 55 

a The concentration at 50% inhibition of p53–Hdm2 interaction

phosphonoacetate 6 after the conversion of the benzyloxyalkyl group into an alde-
hyde. This strategy involves stepwise side chain elongation in the late stage of the 
synthesis and could be suitable for the synthesis of the analogs of 1. As the formation 
of the bicyclic acetal moiety in 4 is challenging, we planned the Lewis acid-catalyzed 
cyclization of 7,8-dihydroxytetradec-2-ynoate 7 (Fig. 4.1).

4.3 Model Study for the Synthesis 
of a 6,8-Dioxabicyclo[3.2.1]octane Skeleton 

To synthesize the above bicyclic acetal, the cycloisomerization of 7,8-dihydroxy-
2-alkynoate 8 was investigated (Table 4.3). Initially, 5 mol% of PdCl2(MeCN)2, 
which is often used for the hydroalkoxylation of alkynes [6], was used in MeCN to 
obtain the desired bicyclic acetal 9 in 52% yield (entry 1); however, this reaction 
required 12 h to complete. To improve the yield, a gold catalyst was used as a soft 
Lewis acid. Gold catalysts are not only capable of coordinating alkynes but also of 
catalyzing the intramolecular hydroalkoxylation of electron-deficient alkynes [7]. 
When AuClPPh3 was used as the catalyst, the reaction did not proceed, and the 
starting material was recovered (entry 2). However, when a cationic Au(I) complex 
prepared from AuClPPh3/AgOTf was used, the reaction was completed in 9 h, and 9 
was obtained in 69% yield (entry 3). Surprisingly, when Au(III) chloride was used as 
the catalyst, the reaction was completed in 5 min, and the desired compound 9 was 
obtained in the highest yield of 79% (entry 4). When the amount of the catalyst was 
reduced to 1 mol%, 9 was obtained in almost the same yield; however, the reaction



86 M. Yoshida et al.
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OH 

OH 

BnO OBn 

Fig. 4.1 Retrosynthesis of (+)-siladenoserinol (1)

required 45 min to complete (entry 5). Both Au(III) and Au(I) can activate alkynes as 
soft Lewis acids, but Au(III) is known to exhibit a higher oxygen affinity than Au(I) 
[8]. Therefore, it is conceivable that Au(III) can activate both the alkyne and the 
carbonyl group as a Lewis acid and can increase the electrophilicity of the β-position 
of the alkynoate, thereby forming the desired bicyclic acetal 9 (Fig. 4.2). In contrast, 
the reaction did not proceed when AgOTf, AlCl3, p-TsOH, and HCl/dioxane were 
used (entries 6–9, respectively).

4.4 Synthesis of Aldehyde 4 and PT-Sulfone 5 

The preparation of 7 was carried out as follows. After the lithiation of terminal alkyne 
11 prepared from D-malic acid (10) through a four-step transformation, its alkylation 
with benzyl 6-bromohexyl ether afforded 12 in 88% yield. Subsequently, 12 was 
converted into a trans-alkenediol by removing the benzylidene acetal moiety under 
acidic conditions and reduction with Red-Al® [9]. The free diol was then converted 
into benzylidene acetal again, and its regioselective cleavage using DIBAL afforded
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Table 4.3 Investigation of bicyclic acetal formation 

O 

OMe 

OH 

OH catalyst 

MeCN, 30 °C 
OO O 

OMe 

98 

Entry Catalyst (mol%) Time Yield of 9 (%) 

1 PdCl2(MeCN)2 (5) 12 h 52 

2 AuClPPh3 (5) 10 h 0 

3 AuClPPh3/AgOTf (5) 9 h 69 

4 AuCl3 (5) 5 min 79 

5 AuCl3 (1) 45 min 77 

6 AgOTf (5) 10 h 0 

7 AlCl3 (5) 10 h 0 

8 p-TsOH (7.5) 10 h 0 

9 HCl·dioxane (7.5) 10 h 0 

Fig. 4.2 Mechanism for the 
formation of bicyclic acetal 9

13 [10]. The Sharpless asymmetric dihydroxylation of trans-alkene 13 [11] was  
followed by acetonide formation, which yielded 14 as a single diastereomer. Next, 
the primary hydroxy group in 14 was tosylated, and its alkylation was performed 
using lithium acetylide-ethylenediamine; this reaction afforded 15 in 95% yield. 
Subsequently, 15 was lithiated and added to methyl chloroformate. The removal of
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O 

OH 
HO 

D-Malic acid (10) 

HO 

O 

O 

O 

OBn 

6 Ph 

1) BH3•SMe2, B(OMe)3
    THF, rt, 12 h 
2) PhCH(OMe)2
    TsOH•H2O, CH2Cl2
    rt, 4 h, 90% 

3) (COCl)2, DMSO, Et3N
    CH2Cl2, –78 °C, 1 h 
4) Ohira-Bestman reagent
    K2CO3, MeOH, rt, 88 % 

O 

O 

Ph 
BuLi; 

Br(CH2)6OBn 

THF–DMPU (1:1) 
–50 °C to 0 °C 

6 h, 88% 

11 12 

1) aqueous HCl, MeOH
    rt, 2 h, 77% 
2) Red-Al, Et2O, 0 °C, 3 h 

3) PhCH(OMe)2, TsOH•H2O
    CH2Cl2, 6 h, 97% 
4) DIBAL, toluene, 0 °C
    3 h, 93% 

OH 

BnO 

OBn 

6 

13 

OH 

OBn 

6 
BnO 

1) K2OsO2(OH)4
    (DHQD)2PHAL, MsNH2
    K2CO3, K3[Fe(CN)6]
    tBuOH-H2O, rt, 12 h 

2) 2,2-Dimethoxypropane 
p-TsOH•H2O, rt, 12 h

    99% 

14 

O 

O 

OBn 

6 
BnO O 

O 

1) TsCl, Et3N
    DMAP, CH2Cl2
    rt, 12 h, 99% 

2) 

DMSO, rt, 1 h 
95% 

15 

Li 
NH2 

NH2 

1) BuLi, THF;
    ClCO2Me
    –78 °C, 92% 

2) 90% AcOH–H2O
    reflux, 1 h, 91% 

7 

O 

OMe 

OH 

OH 

BnO OBn 

Scheme 4.1 Synthesis of cyclization precursor 7 

the acetonide under acidic conditions afforded the desired cyclization precursor 7 
(Scheme 4.1). 

Aldehyde 4 was then synthesized from 7. Cycloisomerization of 7 proceeded 
rapidly in the presence of 5 mol% of AuCl3 in MeCN at 30 °C leading to the desired 
product 16 in 83% yield. The stereochemical configuration of 16 was determined 
by the NOE correlation between the two hydrogen atoms, Ha and Hb, in the 6,8-
dioxabicyclo[3.2.1]octane skeleton. Partial reduction of ester 16 using DIBAL was 
performed at − 78 °C to provide aldehyde 4 in quantitative yield (Scheme 4.2).

After the successful synthesis of aldehyde 4, PT-sulfone 5 was prepared as 
follows: L-Serine was converted into 17 in four steps using a previously reported 
method [12]. Etherification of primary alcohol 17 with 12-bromododecyl benzyl 
ether afforded 18 in 60% yield. The benzyl group in 18 was removed by hydrogenol-
ysis, and its Mitsunobu reaction with 1-phenyl-1H-tetrazole-5-thiol (PT-SH, 19) 
was performed [13]. The ammonium molybdate-catalyzed oxidation of the resultant 
sulfide furnished PT-sulfone 5 in a good yield [14] (Scheme 4.3).
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OH 

OH 

BnO OBn 

OO 
BnO 

O 

OMe 

AuCl3 
(5 mol%) 

MeCN, 30 °C 
5 min, 83% 

16 

Hb 

O 

O 

H 

Ha 

OBn 

O 

OMe 

BnO 

NOE 

6OBn 

4 

DIBAL 

CH2Cl2, –78 °C 
5 min, 99% 

OO 
BnO 

O 

H 

OBn 

Scheme 4.2 Synthesis of aldehyde 4

Scheme 4.3 Synthesis of PT-sulfone 5 

4.5 Total Synthesis of (+)-Siladenoserinol (1) 

4.5.1 Approach to 1 via Esterification of 2 with 3 

A serinol moiety was introduced by the Julia–Kocienski olefination of aldehyde 4 
with PT-sulfone 5 [15, 16]. Removal of the two benzyl groups and concomitant 
hydrogenation of the alkene moiety produced diol 20. Selective oxidation of the 
primary hydroxy group in 20 with TEMPO/PhI(OAc)2 yielded aldehyde 21. The  
HWE reaction of 21 using phosphonoacetate 6 [17], acetylation of the free secondary 
hydroxy group, and removal of the allyl group using Pd(PPh3)4/phenylsilane [18] 
afforded carboxylic acid 2 (Scheme 4.4).

Next, the esterification of the obtained α,β-unsaturated carboxylic acid 2 with 
the pre-prepared glycerophosphocholine 3 [19] was attempted. However, the desired
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OO 
HO OH 

11 O 
BocN 

O 

204 

OO 
BnO 

O 

H 

OBn 
1) 5, LiHMDS, THF
    –78 °C, 1 h 

2) H2, Pd(OH)2/C
    THF, rt
    30 h, 90% 

TEMPO 
PhI(OAc)2 

CH2Cl2, rt 
12 h, 90% 

1) 
P 
O 

EtO 

O 

O 

NaH, THF, rt 
5 min, 82% 

2) Ac2O, Et3N, DMAP
    CH2Cl2, rt, 1 h, 92% 
3) Pd(PPh3)4, PhSiH3
    CH2Cl2, rt, 15 min, 87% 

2 

OO 
HO 

O 

11 O 
BocN 

O 

21 

OO 
AcO 

11 O 
BocN 

O 

OH 

O 

EtO 

6 

Scheme 4.4 Conversion of aldehyde 4 to carboxylic acid 2

esterification did not proceed under any of the following conditions: (a) DIC, DMAP, 
DMF; (b) PyBroP, DIEA, DMAP, DMF [20]; (c) triphosgene, DIEA, DMAP, 2,4,6-
collidine, DMF [21]. A few studies have reported on the esterification of α,β-
unsaturated carboxylic acids with glycerophosphocholine; the yields of these reac-
tions were poor, and the isomerization of the alkene moiety was observed [22, 23]. 
In addition to the low reactivity of α,β-unsaturated carboxylic acid 2 in the conden-
sation, the low solubility of glycerophosphocholine 3 made it difficult to synthesize 
22a by esterification (Scheme 4.5).

4.5.2 Next Approach to 1 

As the condensation of 2 and 3 did not proceed, we next focused on the introduction of 
a glycerophosphocholine precursor by the HWE reaction. Based on a previous study 
[24], phosphonoacetate 23 could be used as a precursor of glycerophosphocholine. 
After the HWE reaction of aldehyde 24a with 23, the bromine atom can be replaced 
with trimethylamine to afford the desired glycerophosphocholine 22a (Fig. 4.3).

Phosphonoacetate 23 was prepared as follows. Selective acetylation of the primary 
hydroxy group in 25 using dibutyltin oxide/AcCl afforded 26 in 58% yield [25]. 
Acylation of the secondary hydroxy group in 26 with diethylphosphonoacetic acid



4 Total Synthesis of (+)-Siladenoserinol A 91

2 

HO 
O 

P 
O 

OAc 

O O 
NMe3 

3 

a) DIC, DMAP, DMF 
b) PyBroP, DIEA, DMAP, DMF 
c) Triphosgene, DIEA, DMAP
    2,4,6-collidine, DMF 

OO 
AcO O 

O 

O 

11 

22a 

O 
P 

O 

OAc 

O O 
NMe3 

OO 
AcO 

11 O 
BocN 

O 

OH 

O 

BocN 
O 

+ 
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Fig. 4.3 Plan for the stepwise synthesis of 22a from aldehyde 24a

(27) using DCC/DMAP furnished phosphonoacetate 28 in quantitative yield. The 
benzyl group in 28 was then removed using hydrogenolysis. Next, the coupling of 
the resulting primary alcohol 29 with phosphoramidite 30 and subsequent oxidation 
by tert-butyl hydroperoxide afforded 23 (Scheme 4.6).

Using 23, we then examined the HWE reaction of aldehyde 24a, which was 
prepared from 21 by acetylation (Table 4.4). As 23 contains a bromoethyl moiety, it 
may decompose via β-elimination in the presence of a strong base such as sodium 
hydride. Therefore, we performed the HWE reaction using LiBr and 10 equivalents 
of Et3N in THF, as reported by Rathke et al. [26], and observed that the desired α,β-
unsaturated ester 31 was obtained in 54% yield (entry 1). Use of DIEA instead of 
NEt3 increased the yield up to 76% (entry 2) [27]. This may have occurred because 
DIEA was hindered and hence unable to attack the bromide. However, a decrease 
in yield was observed when only 5 equivalents of DIEA was used (entry 3). When
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Scheme 4.6 Synthesis of phosphonoacetate 23

the reaction was carried out in MeCN, the starting material was consumed within 
30 min; however, the yield of 31 decreased to 59% (entry 4). The use of a polar 
solvent, such as MeCN, may accelerate the HWE reaction; however, it may also lead 
to the undesired nucleophilic substitution with DIEA. Based on the above results, 
we decided to use the conditions shown in entry 2 as the optimal conditions for the 
HWE reaction.

The conversion of the glycerophosphocholine precursor 31 into glycerophospho-
choline using trimethylamine was examined (Table 4.5). Nucleophilic substitution 
of compound 31 with trimethylamine was performed in THF and the concomitant 
removal of the tert-butyl group afforded glycerophosphocholine 22a in low yield 
(30%, entry 1). As some of the starting material remained unreacted, MeCN was 
added to accelerate the reaction. As expected, the reaction time decreased and the 
yield increased (55%, entry 2). At 80 °C, the reaction was complete in 12 h to afford 
22a in 59% yield (entry 3). Thus, we succeeded in synthesizing 22a in a moderate 
yield through the HWE reaction of aldehyde 24a with phosphonoacetate 23, followed 
by its nucleophilic substitution with trimethylamine. This method could be applied 
to the synthesis of glycerophosphocholine derivatives containing an α,β-unsaturated 
ester.

Compound 1 was synthesized from 22a as follows. The Boc group and acetonide 
were removed by treating 22a with 3 M HCl in dioxane. Next, the nitrogen 
atom-selective sulfamate formation of amino alcohol 32 using SO3 pyridine in 
the presence of triethylamine in THF—water furnished 1. The  1H and 13C NMR
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Table 4.5 Investigation of the formation of glycerophosphocholine 22a 

OO 
AcO O 

O 

O 

11 

31 

O 
P 

O 

OAc 

O OtBu 
Br 

BocN 
O 

NMe3 

OO 
AcO O 

O 

O 

11 

22a 

O 
P 

O 

OAc 

O O 
NMe3 

BocN 
O 

Entry Solvent Temp (°C) Time (h) Yield of 22a (%) 

1 THF 40 72 30 

2 THF–MeCN 40 48 55 

3 THF–MeCN 80 12 59

spectra and the specific rotation of 1 were in good agreement with those of (+)-
siladenoserinol A. Hence, the total synthesis of (+)-siladenoserinol A (1) was  
accomplished (Scheme 4.7).

4.5.3 Convergent Approach to 1 via the HWE Reaction Using 
Glycerophosphocholine-Containing Phosphonoacetate 
33 

We then considered a unique and further convergent approach to 22a through the 
simultaneous construction of the α,β-unsaturated ester and the introduction of the 
glycerophosphocholine moiety through the HWE reaction of aldehyde 24a with 
phosphonoacetate 33, which contained a glycerophosphocholine moiety (Fig. 4.4).

Although the coupling of α,β-unsaturated acid 2 and alcohol 3 did not proceed 
(Scheme 4.5), the simpler phosphonoacetic acid 27 reacted with 3 using DCC/DMAP 
in refluxing CH2Cl2 to afford 33 in moderate yield (Scheme 4.8).

To investigate the optimal reaction conditions for the HWE reaction using 
glycerophosphocholine-containing phosphonoacetate 33, the reaction with benzalde-
hyde was investigated (Table 4.6). When NaH was used as a base, only a trace 
amount of the desired α,β-unsaturated ester 34 was obtained (entry 1). This probably
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Scheme 4.7 Total synthesis of (+)-siladenoserinol A (1)
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Fig. 4.4 Plan for the one-step synthesis of 22a by the HWE reaction using 33

occurred because of the decomposition of phosphonoacetate 33 under strongly basic 
conditions. In contrast, the Masamune–Roush method [27] afforded the desired α,β-
unsaturated ester 34 in moderate yield (entries 2–5). Especially, the use of LiBr/DBU 
in THF produced the best result (entry 4).

The optimal reaction conditions were applied to the coupling of 33 with alde-
hyde 24a and its benzoyl analog 24b. To our delight, the HWE reactions afforded 
22a and 22b in 64% and 51% yields, respectively. Subsequently, acetonide and
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Scheme 4.8 Synthesis of phosphonoacetate 33

the Boc group were removed, and the selective sulfamate formation described in 
Scheme 4.7 furnished (+)-siladenoserinol A (1) and its benzoyl analog 35 in moderate 
yields (Scheme 4.9). Thus, the convergent synthesis of siladenoserinol A and its 
analogs was accomplished [5]. In addition to our synthesis, the Tong group succeeded 
in the total synthesis of siladenoserinols A and H [28]. Moreover, the Liu and Du 
group achieved the total synthesis of siladenoserinols A and D [29].

4.6 Biological Evaluation 

The inhibitory activities of siladenoserinol A, synthetic compounds 1, 32, and 35 
against p53–Hdm2 interaction were evaluated by the Tsukamoto group, who had 
isolated siladenoserinols [1]. The synthetic compound 1 exhibited potent inhibitory 
activity comparable to that of the natural product (Table 4.7, entries 1 and 2). The 
desulfamate derivative 32 did not exhibit potent activity (entry 3). Therefore, either a 
sulfamate or a sulfate group in the serinol moiety is crucial for p53–Hdm2 inhibition 
(see Tables 4.1 and 4.2). Notably, the benzoyl analog 35 was found to be more potent 
than 1 (entry 4) [5].
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Table 4.7 Inhibitory activity of siladenoserinol and its derivatives against p53-Hdm2 interaction 
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siladenoserinol A and its analogs 

Entry Compound R1 R2 IC50 (μM)a 

1 Siladenoserinol A Ac SO3H 17 

2 Synthetic (+)-1 Ac SO3H 17 

3 32 Ac H > 50  

4 35 Bz SO3H 3 

aThe concentration at 50% inhibition of p53–Hdm2 interaction
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4.7 Conclusion 

The total synthesis of (+)-siladenoserinol A (1) was accomplished. The bicyclic acetal 
skeleton of siladenoserinol A was synthesized by the Au(III)-catalyzed cycloiso-
merization of 7,8-dihydroxy-2-alkynoate. The serinol moiety was introduced via the 
Julia–Kocienski reaction. Although the condensation reaction of the glycerophos-
phocholine moiety with the α,β-unsaturated acid did not proceed, an α,β-unsaturated 
ester containing the glycerophosphocholine moiety was successfully synthesized by 
the HWE reaction using an originally developed glycerophosphocholine-containing 
phosphonoacetate. Deprotection and selective sulfamate formation furnished 1. 
Using this method, a benzoyl analog 35 was also synthesized. Their inhibitory 
activities against the p53–Hdm2 interaction were evaluated. Compound 1 exhibited 
comparable activity to siladenoserinol A, but the desulfamate derivative 32 showed 
lower activity. Therefore, the presence of sulfamate or sulfate in the serinol moiety 
is essential for p53–Hdm2 inhibition. Notably, the p53–Hdm2 inhibitory activity of 
the benzoyl analog 35 was better than that of 1, which indicates that its analogs have 
high potential for this PPI inhibition. 
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Chapter 5 
The Asymmetric Total Synthesis 
of Discorhabdin B, H, K, 
and Aleutianamine 

Juri Sakata, Masashi Shimomura, and Hidetoshi Tokuyama 

Abstract This review article summarizes the general introduction of discorhabdin 
marine alkaloids and the synthetic efforts in developing congeners with a hexa-
cyclic N,  S-acetal structure, which are major constituents of discorhabdin. Our total 
synthesis of (+)-discorhabdin B is discussed in detail following the introduction of 
the biosynthetic pathway and early synthetic studies, which include the landmark first 
total synthesis of discorhabdin A. Furthermore, previous synthetic studies on more 
structurally complex congeners with C6–N15 bonds are introduced, followed by the 
first total synthesis of (–)-discorhabdin H and (+)-discorhabdin K, which are achieved 
by our research group. Finally, the isolation, structure determination, and proposed 
biosynthesis of the structurally intriguing congener aleutianamine are summarized. 
Then, the first total synthesis of aleutianamine, which involves an unprecedented 
reductive skeletal rearrangement of N-Ts-(+)-discorhabdin B to N-Ts-aleutianamine, 
is discussed. 

Keywords Discorhabdins ·Marine alkaloid · Total synthesis ·
Pyrroloiminoquinone · Aleutianamine · Oxidation ·Michael addition ·
Rearrangement 

5.1 Introduction 

Discorhabdins are structurally divergent marine alkaloids [1–15] primarily found in 
sponges, Latrunculia. These compounds have demonstrated significant biological 
activities such as antiviral [16], antitumor [16, 17], antimalarial [18], and antimi-
crobial [18] activities. Discorhabdins exhibit high structural diversity, comprising
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approximately 50 congeners of different ring systems fused on a common penta-
cyclic skeleton containing a spirocyclic hexadienone fused with the pyrroloimi-
noquinone skeleton. The ring systems of structurally divergent discorhabdin can 
be classified into four classes based on structural complexity (Fig. 5.1). Class 1 
congeners, such as discorhabdin C and E, have a common pentacyclic skeleton. 
Class 2 compounds, such as discorhabdin V and Z, have C2–N18 bonds in their E/ 
F-rings. Class 3 congeners, such as discorhabdin A and B, have strained D/G rings 
containing an N, S-acetal moiety, which constitute the majority of congeners (34 
compounds). Class 4 compounds, such as discorhabdin H and N, have a D/E/F/G 
ring system and are the most complicated congeners. In addition, a unique congener 
called aleutianamine, which was proposed to be biosynthetically derived from a Class 
3 congener through skeletal rearrangement, was isolated from a deep-sea sponge in 
2019. This compound has shown selective and potent activity against solid tumors, 
such as pancreatic cancer cell lines [19].

Discorhabdins have attracted considerable attention from synthetic chemists as 
attractive synthetic targets and drug candidates because of their promising biological 
activities and structurally intriguing complex molecular architectures [20–44]. Early-
stage synthetic studies and total synthesis have mainly focused on simple Class 1 
congeners such as discorhabdin C by Yamamura [21], Kita [22], Heathcock [23] and 
discorhabdin E by Heathcock [23]. Regarding Class 2 congeners, Heathcock’s and 
our groups have reported model studies on congeners categorized as Class 2 [23, 41]. 
More recently, the first total synthesis of the Class 2 congener (+)-discorhabdin V 
was reported by Burns and co-workers [42]. Regarding Class 3 congeners, Kita 
and co-workers disclosed the landmark total synthesis of (+)-discorhabdin A in 
2003 [24, 25]. After two decades, our group reported the first total synthesis of 
(+)-discorhabdin B, as extensively discussed in this review article [43]. Based on 
the seminal synthetic studies on Class 4 congeners using natural discorhabdin B 
by Copp and co-workers, we completed the total synthesis of Class 4 congeners, 
(–)-discorhabdin H, in 2023 [43]. Since the isolation and structural determination of 
(–)-aleutianamine, this compound has attracted considerable attention as a synthetic 
target because of its highly fused heptacyclic structure and significant biological 
activities. In 2023, our group found a biomimetic synthetic route from a derivative 
of (+)-discorhabdin B to (–)-aleutianamine [43]. Shortly after our synthesis, Stoltz’s 
group reported the second example of its total synthesis [44]. As part of our ongoing 
project on pyrroloiminoquinoline marine natural products [45, 46], we conducted 
research to establish synthetic routes for discorhabdin congeners with various frame-
work classes. As a result, we developed a divergent route to (+)-discorhabdin B, 
(–)-discorhabdin H, (+)-discorhabdin K, and (–)-aleutianamine via discorhabdin B, 
which are discussed in this review article, with the relevant background and related 
studies.
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5.2 Biosynthetic Proposal and Previous Total Synthesis 
of N, S-Acetal-Containing Discorhabdins 

The biosynthetic pathway of N,  S-acetal-containing discorhabdins remains unclear. 
Scheme 5.1 shows Munro’s proposal for the biosynthesis of discorhabdin B [47]. 
According to this proposal, makaluvamine D was first synthesized from tyramine 
and tryptamine. Then, two routes were proposed for the conversion of makaluvamine 
D to discorhabdin B. The first route involves the formation of discorhabdin C from 
makaluvamine D via oxidative spirocyclization, followed by the introduction of a 
sulfur atom to convert discorhabdin C to B. The second route involves an early-
stage introduction of sulfur atom to makaluvamine D, resulting in the formation of 
makaluvamine F, followed by oxidative spirocyclization to form discorhabdin B. 

Based on the two biosynthetic pathways proposed by Munro, Kita and co-workers 
conducted synthetic studies on N,  S-acetal-containing discorhabdins, discorhabdins 
A and B [24, 25]. Scheme 5.2 shows the synthetic route to discorhabdin B from 
makaluvamine F by Kita and co-workers [48, 49]. The synthesis started with the 
preparation of the 2-aminodihydrobenzothiophene derivative 3. The direct introduc-
tion of nitrogen functionality at the C2 position of dihydrobenzothiophene deriva-
tive 1 was achieved through a Pummerer-type C2 azidation using a combination of 
iodosobenzene and TMSN3. After reducing the azide to an amine, the total synthesis 
of makaluvamine F was accomplished by a condensation of amine 3 with pyrroloimi-
noquinone 4 through an addition–elimination reaction [48, 49]. Finally, Kita and co-
workers attempted the transformation of makaluvamine F into discorhabdin B under 
several oxidative conditions, such as PIFA or CuCl2 and H2O, as previously reported 
by Heathcook. However, the desired reactions did not provide discorhabdin B, which 
could be due to the high sensitivity of the N’S-acetal moiety toward oxidants.

Scheme 5.1 Proposed biosynthetic pathways for discorhabdin B 
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Scheme 5.2 Total synthesis of makaluvamine F by Kita and co-workers 

Scheme 5.3 depicts the total synthesis of discorhabdin A developed by Kita and 
co-workers, where the introduction of a sulfur atom was conducted at a later stage 
of the synthesis [24, 25]. The coupling reaction of amino alcohol 7, derived from L-
tyrosine methyl ester (6), and pyrroloiminoquinone 5, followed by the PIFA-mediated 
diastereoselective oxidative cyclization of 8, provided spirodienones 9 in moderate 
yield and selectivity (49%, dr = 4.8:1). After cleavage of hydroxymethyl side chain 
in two steps, the introduction of sulfur on hemiaminal 10 was conducted by treat-
ment with p-methoxybenzyl mercaptan under acidic conditions, which promoted N,  
O- to  N,  S-acetal exchange reaction to provide 11. Subsequently, the PMB group 
was removed using MeNH2 to generate free thiol 12. However, intramolecular thia-
Michel reaction of 12 provided desired compound 13 in low yield; instead, a debromi-
nated structural isomer 14 was obtained as the major product because of the low 
stereoselectivity of the N,  S-acetal forming step. Finally, the first total synthesis of 
(+)-discorhabdin A was completed by deprotection of Ts group from 13.

5.3 Synthetic Plan 

Inspired by Munro’s biosynthetic proposal, which suggested makaluvamine F as a 
precursor of discorhabdin B and Kita’s pioneering work (Scheme 5.2), we synthe-
sized makaluvamine F and N-Ts-makaluvamine. We then examined oxidative spiro-
cyclization by subjecting these compounds to various oxidation conditions. However, 
all attempted conditions failed to provide discorhabdin B or N-Ts-discorhabdin B and 
instead resulted in the formation of complex mixtures. Because of these setbacks, 
we abandoned the biomimetic synthetic route and investigated a nonbiomimetic 
synthetic strategy. Copp and co-workers reported the semi-synthesis of discorhabdin 
B from natural discorhabdin W by reductive cleavage of disulfide bond with dithio-
threitol, followed by the final N,  S-acetalization of free thiol 15 [6] (Scheme 5.4)
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Scheme 5.3 First total synthesis of discorhabdin A by Kita and co-workers

to yield discorhabdin B. They observed that free thiol 15 was unstable and sponta-
neously underwent N,  S-acetal formation at the C8 position, leading to the forma-
tion of discorhabdin B. Based on these observations, we speculated that N,  S-acetal 
formation could occur if free thiol 15 could be generated from a precursor such as 
secondary amine 16 through a chemoselective oxidation of the secondary amine to 
imine, followed by the removal of a thiol-protecting group. We planned to construct 
spirodienone structure 16 through the PIFA-mediated oxidative spirocyclization of 
pyrroloiminoquinone 17, bearing a properly protected tyramine segment. Compound 
17 can be easily prepared by condensation of pyrroloiminoquinone 5 with phenethy-
lamine 18 using an addition/elimination reaction. Phenethylamine 18, containing 
a sulfur functionality, can be accessed through the reductive ring opening of 2-
aminodihydrobenzothiophene 20, as described in Scheme 5.2, which can be readily 
prepared from the corresponding dihydrobenzothiophene.

5.4 The First Racemic Total Synthesis of Discorhabdin B 

Our synthesis of discorhabdin B started with the preparation of 2-
aminobenzothiophene 25 using an alternative method of the protocol established 
in Kita’s total synthesis of makaluvamine F (Scheme 5.2) [49]. To achieve
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Scheme 5.4 Synthetic strategy for discorhabdin B by Tokuyama and co-workers

this, 2-methoxycarbonyl benzothiophene 23 [50] was synthesized from 2-
fluorobenzaldehyde 21 and methyl 2-mercaptoacetate 22 via a SNAr reaction 
and intramolecular aldol condensation. Subsequently, it was reduced to dihydroben-
zothiophene 24 using Mg metal under acidic conditions (Scheme 5.5) [51, 52]. After 
hydrolysis of the methyl ester in 24, the generated carboxylic acid was subjected 
to the Curtius rearrangement using DPPA and t-butanol to provide Boc-protected 
2-aminodihydrobenzothiophene 25 with good yield and scalability (10 g) [53, 54]. 
Then, the chemoselective cleavage of the C1–S4 bond under the Birch reduction 
conditions yielded free thiol 26, [55–57] which was then converted to hydrochloride 
27 via protection of the free thiol and removal of the Boc group in HCl in dioxane. 
Hydrochloride 27 and 5 were condensed to produce pyrroloiminoquinone 28 in 
good yield. Finally, the PIFA-mediated oxidative spirocyclization of 28 resulted in 
the formation of spirodienone 29 in excellent yield [24, 25].

With spirodienone 29 in hand, we studied its oxidation to enamine 30 under several 
oxidation conditions using MnO2 and PdCl2 (Table 5.1). However, these conditions 
only yielded a trace amount of enamine 30 with recovery of a considerable amount 
of 29 (entries 1 and 2). Surprisingly, treatment of 29 with excess CuBr2 in MeCN 
at 80 °C did not yield the expected enamine 30; instead, it led to the formation of 
compound 31, which possessed an N,  S-acetal structure and two bromo groups at 
the C4 and C2 positions (entry 3). This result indicated that CuBr2 promoted the
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Scheme 5.5 Synthesis of pyrroloiminoquinone 29

chemoselective oxidation of secondary amine (29 to I), deacylation (I to II) [58, 
59], formation of N,  S-acetal moiety (II to 33), and sequential dibromination at the 
C4 and C2 positions (33 to 31) (Scheme 5.6). To mitigate excess bromination at the 
C4 position, we examined conditions with decreased amounts of CuBr2 (entry 4). 
However, only the C4 brominated product 32 was obtained as the major product, 
indicating that bromination at the C4 position proceeded faster than that at the C2 
position. However, when THF was used as the solvent instead of MeCN, the undesired 
C4 bromination was suppressed, leading to the formation of product 33 (entry 5). 
Notably, a comparable yield of 33 was obtained using a catalytic amount of CuBr2 
(30 mol%) in air (entry 6). 
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Although we successfully developed a CuBr2-catalyzed oxidative N,  S-acetal 
formation cascade involving the oxidation of secondary amine to enamine, deacyla-
tion, and N,  S-acetal formation, we failed to achieve regioselective bromination at the 
C2 position of compound 33. Instead, only decomposition was observed, possibly 
due to the sensitivity of the N,  S-acetal structure to brominating agents (Scheme 5.7). 
Therefore, we abandoned the synthetic route from 33 to discorhabdin B and examined 
bromination before the oxidative N,  S-acetalization cascade. 

Table 5.2 summarizes the reaction of spirorenone 29 under various bromina-
tion conditions. Reaction using a combination of AIBN and NBS, DBDMH (1,3-
Dibromo-5,5-dimethylhydantoin), NBS, and TBCO resulted in the decomposition

Table 5.1 Oxidative N’S-acetal formation 

Entry Reagents Solvent Temp. (°C) Time (h) Results (%) 

1 MnO2 DCE Rt 1 N.D 

2 PdCl2 DMSO 100 1 30: trace 

3 CuBr2 (excess) MeCN 80 3.5 31: 45  

4 CuBr2 (1 eq) MeCN 80 14 32: 15  

5 CuBr2 (1 eq) THF 80 2 33: 56  

6 CuBr2 (30 mol%) THF 80 3 33: 52  

Scheme 5.6 Proposed reaction mechanism for CuBr2-mediated cascade reaction 

Scheme 5.7 Unsuccessful bromination of 33 
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of substrate 29 (entry 1–4). However, the use of PyHBr3 in a mixed solvent system 
(CHCl3/MeCN) effectively facilitated regioselective bromination at the C2 position, 
yielding the desired compound 35 in good yield (69%). 

After successfully establishing the C2-selective bromination reaction, we exam-
ined the CuBr2-catalyzed oxidative N,  S-acetal formation cascade using brominated 
compound 35 (Scheme 5.8). However, the reaction of 35 under the established condi-
tions resulted in a complex mixture. Alternatively, when THF was used as the solvent 
instead of CHCl3, the desired N,  S-acetal 34 was obtained with a yield of 51%. Finally, 
the first racemic total synthesis of discorhabdin B was completed by removal of the 
Ts group [24, 25]. 

Table 5.2 Exploration of the C2-selective bromination condition for 29 

Entry Reagents Solvent Temp. (°C) Time (h) Results (%) 

1 AIBN, NBS DCE Reflux 0.25 Trace 

2 DBDMH MeCN Rt 1 N.D 

3 NBS DMF 60 2 N.D 

4 TBCO MeCN Rt to 40 20 trace 

5 n-Bu4NBr3 CH2Cl2/MeCN Rt 96 27 

6 Py·HBr3 CH2Cl2/MeCN 40 3 69 

Scheme 5.8 Endgame of the first total synthesis of (±)-discorhabdin B
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5.5 The First Asymmetric Total Synthesis 
of (+)-Discorhabdin B 

Achieving the asymmetric total synthesis of (+)-discorhabdin B required the stere-
oselective construction of the C6 spirocenter. To accomplish this, we devised two 
strategies, as depicted in Scheme 5.9. The first strategy involved the reagent-
controlled asymmetric oxidative spirocyclization of pyrroloiminoquinone 36 using 
a combination of chiral iodine catalyst and co-oxidants based on the protocol 
reported by Ishihara and co-workers [60, 61]. The second method relied on 
substrate-controlled PIFA-promoted diastereoselective oxidative spirocyclization of 
pyrroloiminoquinone 38 bearing chiral thioesters at the C5 position. 

Table 5.3 summarizes the results of the oxidative spirocyclization of pyrroloimino-
quinone 36 using various chiral aryliodides. The reactions were conducted according 
to the protocol developed by Ishihara and co-workers using catalytic amount of chiral 
aryliodines 37a–c and mCPBA as the cooxidant [60]. Reactions using chiral arylio-
dides 37a–c resulted in the formation of compound 29 with low-to-moderate yields 
(12–43%) and poor enantioselectivities (entries 1–3). The reaction of phenol 36b 
was tested to facilitate oxidative spirocyclization. However, the desired compound 
was not obtained (entry 4).

Scheme 5.9 Two strategies for stereoselective construction of the C6 spirocenter 
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Table 5.3 Attempts at 
reagent-controlled oxidative 
spirocyclization 

Entry R Iodobenzene derivative Results 

1 Me 37a 25%, < 7% ee 

2 Me 37b 43%, < 2% ee 

3 Me 37c 12%, < 4% ee 

4 Me 37a 0% 

Having found that the reagent-controlled asymmetric oxidative spirocycliza-
tion approach was ineffective, we investigated substrate-controlled diastereose-
lective spirocyclization using pyrroloiminoquinone 38 bearing chiral thioesters 
(Table 5.4.). Although the chemical yields were relatively improved compared 
with the reagent-controlled enantioselective oxidative spirocyclization approach 
(Table 5.3) [24, 25], the diastereoselectivity remained unsatisfactory. Among the 
optically active thioesters prepared from N-protected amino acids (38a–38f), the tert-
leucine substrate provided the corresponding spirocyclic compound with the highest 
chemical yield (92%) and diastereoselectivity (21% de). Subsequently, we examined 
a series of chiral thioesters 38 g–n derived from mandelic acid and its derivatives. 
The chemical yields and diastereoselectivity varied depending on the protective group 
on the hydroxyl group and the substituent on the benzene ring. Among the series 
of chiral thioesters derived from mandelic acid derivatives, we selected the TBS-
protected chloromandelic acid derivative 38 h as the optimal substrate for oxidative 
spirocyclization. It provided 39 h almost quantitative yield with moderate diastereos-
electivity (97%, 31% de). The MTPA (38o) derivative and the methoxynaphthalenyl 
propanoic acid derivative (38p) were not effective in the reaction. The absolute 
configuration of the spirocenter in product 39 h was not determined at this stage 
but was later determined via a few additional step transformations to discorhabdin 
B (Scheme 5.10).

Although the diastereoselectivity of the oxidative spirocyclization in Table 5.4 
could be improved, we transformed spirodienone 39 h to (+)-discorhabdin B 
(Scheme 5.10) according to the protocol established in our racemic total synthesis 
(Scheme 5.8). Thus, treatment of a diastereomeric mixture of spirodienones 39 ha 
and 39hb (65.5:34.5) with PyHBr3 yielded a mixture of 40a and 40b (67.5: 32:5) in
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Table 5.4 Results of diastereoselective oxidative spirocyclization using various chiral thioesters 

PIFA 
MK-10 

TFE 
rt, 24 h 

air 
N 
Ts 

N 

O 
N 
H 

O 

S 

39g 
quant. (18% de) 

R 

N 
Ts 

N 

O 
N 
H 

OMe 

SR 

O 
TBSO 

O 
CbzHNO 

BzHN 

Ph 

O 
MeO 

39h 
97% (31% de) 

39n 
41% (9% de) 

O 
TBSO 

O 
HO 

Cl 

Cl 

O 
TBSO 

I 

39i 
36% (19% de) 

39k 
64% (16% de) 

O 
TBSO 

Cl 

O 
TBSO 

Ph 

O 
F3C 

MeO 

39j 
69% (2% de) 

39o 
84% (2% de) 

O 
TBDPSO 

Cl 

39l 
61% (19% de) 

39f 
<27% (0% de) 

39e 
0% 

39p 
0% 

39m 
50% (12% de) 

O 
AllylO 

Cl 

39d 
87% ( 0% de) 

N 
Cbz 

O 

39a 
92% (21% de) 

O 
t-Bu 

NO O 

39c 
76% (4% de) 

O 
Ph 

NO O 

39b 
86% (16% de) 

O 

NO O 

Ph 

* * 

R =* 

6 

38 39 

Scheme 5.10 First asymmetric total synthesis of (+)-discorhabdin B
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moderate yield. After separation, the major diastereomer 40a was subjected to CuBr2-
catalyzed oxidative spirocyclization, followed by deprotection of the Ts group using 
NaOMe, thereby completing the asymmetric total synthesis of (+)-discorhabdin B 
for the first time [24, 25]. 

5.6 The First Asymmetric Total Synthesis of Discorhabdins 
H and  K  

The construction of F-ring by the formation of C2–N18 bond presents a synthetic 
challenge for Class 4 discorhabdin congeners. Before describing our first total 
synthesis of discorhabdin H, synthetic studies on Class 4 discorhabdin congeners 
focusing on F-ring construction are briefly discussed (Scheme 5.11). Heathcock and 
co-workers constructed the F-ring in 43 via partial reduction of spirodienone 41 to 
provide spiroenone 42, followed by bromination at the C2 position and intramolecular 
N-alkylation (Scheme 5.10a) [23]. Our group conducted model studies to demon-
strate the F-ring construction through a Pd-catalyzed intramolecular Heck cyclization 
of halogenated pyrroloiminoquinone 44 (Scheme 5.10b) [41]. Based on our Heck-
cyclization strategy, Burns and co-workers accomplished the first asymmetric total 
synthesis of discorhabdin V (Scheme 5.10c) [42]. The biosynthetic pathway for 
the construction of the F-ring was supported by Copp’s seminal model experiment 
(Scheme 5.10d) [10]. Copp and co-workers treated natural (+)-discorhabdin B with 
N-Ac-L-cysteine in the presence of Et3N to facilitate a thia-Michael reaction at the 
C1 position, followed by formation of a C2–N18 bond from 50 to yield 51 in low 
yield. These transformations are widely accepted as a plausible biosynthetic pathway 
for Class 4 discorhabdin congeners.

Inspired by the Copp’s model studies, we prepared L-ovothiol A according to 
reported procedures [61–65] and examined the thia-Michael reaction with N-Ts 
discorhabdin B (34). Initially, we attempted the thia-Michael reaction using L-
ovothiol A under Copp’s conditions with triethylamine, but the desired reaction 
did not proceed (Scheme 5.12). After extensive studies using various combinations 
of bases and solvent systems, we eventually found that the thia-Michael reaction 
proceeded by simply mixing 34 with L-ovothiol A in DMSO/H2O (3:1) to furnish 
the desired N-Ts-discorhabdin H (52) along with N-Ts-discorhabdin K (53) in 65% 
combined yield. The generation of the major side product disulfide of L-ovothiol 
A was suppressed by Ar bubbling during the reaction. The first total syntheses of 
discorhabdin H and K were accomplished [7, 8] using high-performance liquid chro-
matography (HPLC) separation of 52 and 53, followed by deprotection of the Ts 
group [24, 25].

Scheme 5.13 outlines the proposed mechanism for the generation of 52 and 53 
through the thia-Michael reaction of L-ovothiol A to 34, followed by the formation of 
the C2–N18 bond. The initial thia-Michel addition proceeded in a highly stereoselec-
tive manner from the less hindered side, avoiding the pyrroloiminoquinone skeleton
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Scheme 5.11 Synthetic approaches for the construction of the F-ring in class 4 congeners

to generate enol 54. The protonation of enol 54 is expected to proceed without steric 
repulsion of the ovothiol segment to furnish 55. Finally, intermediate 55 underwent 
an intramolecular SN2 reaction to form the C2–N18 bond, leading to the formation 
of N-Ts-discorhabdin H (52). Alternatively, the anti-elimination of HBr can proceed 
to produce N-Ts-discorhabdin K (53).

5.7 Total Synthesis of (–)-Aleutianamine 

Aleutianamine is a new class of pyrroloiminoquinone alkaloids. This compound was 
isolated from a marine sponge, Latrunculia (Latrunculia) austini Samaai, Kelly & 
Gibbons, 2006 by Hamann and co-workers in 2019 [19]. Note that this compound
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Scheme 5.12 First asymmetric total synthesis of (–)-discorhabdin H and (+)-discorhabdin K

Scheme 5.13 Proposed reaction mechanism of the thia-Michel addition of L-ovothiol A to 34 to 
furnish 52 and 53

exhibits potent and selective cytotoxicity against a pancreatic cancer cell line (PANC-
1) at an IC50 of 25 nM (Scheme 5.14) [19]. In addition to its fascinating biological 
properties as a candidate for a new anticancer drug, aleutianamine possesses a highly 
complicated seven-membered ring system containing a tertiary sulfide moiety, which 
was elucidated through extensive spectroscopic analysis combined with computa-
tional studies [19]. Regarding the biosynthetic hypothesis of aleutianamine, Hamann 
and co-workers proposed two routes [19]. Route A involves the oxidation of the 
phenolic moiety makaluvamine F to quinone methide I, followed by the intramolec-
ular Michael addition of the enamine moiety to quinone methide to form hexacyclic 
intermediate II. Then, C3–N18 bond formation gives intermediate III and finally
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Scheme 5.14 Proposed biosynthetic pathway for aleutianamine 

reduction of N’O-acetal to provide aleutianamine. Route B involves the skeletal rear-
rangement of discorhabdin B to provide intermediate II, followed by the generation 
of N,  O-acetal III and subsequent reduction to yield aleutianamine. 

During synthetic studies on the transformation of N-Ts-discorhandin B (34) [43] to  
3-dihydrodiscorhabdin [65], we found a similar skeletal rearrangement that involved 
in Route B, which allowed us to establish the first asymmetric total synthesis of 
aleutianamine. Thus, to establish the total synthesis of 3-dihydrodiscorhabdin via 
the reduction of the C3 ketone of 34, we examined various 1,2-reductions. Among 
them, we found that Luche reduction [66] promoted the chemoselective 1,2-reduction 
of the C3 ketone to form diallyl alcohol 56 (Scheme 5.15a). However, 56 was too 
unstable to isolate and was spontaneously converted into a structurally unidentified 
product during the purification process using reverse-phase HPLC (0.1% TFA in 
MeCN/H2O). Surprisingly, extensive NMR studies revealed that the structure of 
the unidentified product was N-Ts-aleutianamine (57). Finally, the Ts group of 56 
was removed by treatment with NaOMe in THF/MeOH, completing the first total 
synthesis of (–)-aleutianamine [19, 43].

A plausible reaction mechanism for the rearrangement of 56–57 is depicted 
in Scheme 5.15b [67]. Under the acidic conditions of HPLC purification, the C3 
secondary alcohol of 56 was protonated to promote the dehydration reaction to 
generate diallyl cation species II, which then underwent skeletal rearrangement via 
an intercept of the allyl cation moiety with enamine to form fused cyclopropane 
III, followed by ring opening of the cyclopropane ring to generate a sulfur-bridged 
azepine derivative IV. Finally, a C3–N18 bond formed to furnish N-Ts-aleutianamine 
(57). 

A few months after the disclosure of our asymmetric total synthesis of (–)-
aleutianamine, Stoltz and co-workers also accomplished a racemic total synthesis 
of aleutianamine using a completely different synthetic approach involving an
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Scheme 5.15 Total syntheses of aleutianamine by the Tokuyama and Stoltz groups
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elegant intramolecular Heck-type reaction (Scheme 5.15c) [44]. They constructed 
densely fused indole scaffold 59 with a tertiary sulfide at the C5 position through 
a Pd-catalyzed dearomative intramolecular Heck-type reaction of bromopyrroloimi-
noquinone 58 with 2-aminotetrahydrobenzothiophene segment. The racemic total 
synthesis of aleutianamine was then achieved via the introduction of a Br group at the 
C2 position, oxidative pyrroloiminoquinone formation, and N,  S-acetal formation. 

5.8 Conclusion 

We have accomplished total syntheses of a series of discorhabdin alkaloids including 
(+)-discorhabdin B, (–)-H, (+)-K, and (–)-aleutianamine based on the development 
of the substrate-controlled diastereoselective spirocyclization using chiral thioester 
and CuBr2-catalyzed late-stage oxidative N,  S-acetalization as two key processes. 
Establishment of these syntheses would pave the way to divergent synthesis of all 
different classes of discorhabdins including hitherto not synthesized Class 2 and 
Class 4 congeners. Furthermore, successful syntheses should be helpful to understand 
biosynthesis of discorhabdin congeners including the unique skeletal rearranged 
congener, aleutianamine. 
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Chapter 6 
Convergent Total Synthesis 
of Hikizimycin: Development of New 
Radical-Based and Protective Group 
Strategies 

Haruka Fujino and Masayuki Inoue 

Abstract Hikizimycin (1) is an architecturally complex nucleoside antibiotic with 
potent anthelmintic and antibacterial activities. Its unique 4-amino-4-deoxyundecose 
core (hikosamine) includes a C1–C11 linear chain with ten contiguous stereocenters 
flanked with nucleobase (cytosine) and 3-amino-3-deoxyglucose (kanosamine) at 
the C1 and C6O positions, respectively. These structural features make its chemical 
construction exceptionally challenging. This chapter describes our successful efforts 
leading to convergent total synthesis of 1 from three hexose derivatives (5b, 11-β, 
and 12) and bis-TMS-cytosine 6. First, efficient one-step construction of hikosamine 
core 7-α was achieved by devising a novel radical coupling reaction between α-
alkoxy telluride 10d-α and aldehyde 8c, which were derivatized from 11-β and 12, 
respectively. At this stage, the importance of the specific protective group pattern of 
10d-α and 8c was revealed for stereoselective C5(sp3)–C6(sp3) coupling. By taking 
advantage of strategically introduced protective groups, 6 and 5b were regio- and 
stereoselectively installed on 7-α to produce protected hikizimycin 36b. Finally, the 
three amino and ten hydroxy groups of 36b were detached in a single step to furnish 
1. Consequently, the newly developed radical-based and protective group strategies 
allowed us to achieve total synthesis of 1 from 11-β in 17 steps. 
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6.1 Introduction 

Hikizimycin (1, also known as anthelmycin, Scheme 6.1), a highly oxygenated 
nucleoside natural product isolated from Streptomyces A-5 and Streptomyces longis-
simus [1, 2], displays potent anthelmintic activity against various common parasites 
and modest antibacterial properties. These biological activities originate from its 
inhibitory effects against pro- and eukaryotic ribosomal peptidyl transferase, which 
is essential for protein biosynthesis [3, 4]. Many nucleoside antibiotics are known to 
have a wide range of pharmacologically useful biological activities [5–8], suggesting 
that 1 may serve as a promising drug lead in the development of therapeutic agents 
[9–12]. 

The unique 4-amino-4-deoxyundecose sugar (hikosamine) of 1 contains one 
amino and ten hydroxy groups on its C1–C11 linear carbon chain [13]. Nucle-
obase (cytosine) and 3-amino-3-deoxyglucose (kanosamine) are appended to the 
hikosamine structure at the C1 and C6O positions, respectively, through glycosidic 
linkages [14, 15]. The densely functionalized C(sp3)-rich structure of 1 with its

Scheme 6.1 Structure of hikizimycin (1), Schreiber and Ikemoto’s total synthesis, and our synthetic 
plan 
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multiple stereocenters significantly heightens the synthetic challenge, which has 
been tackled by many research groups over the last half-century since its first isola-
tion. Specifically, two major problems arise in the synthesis of 1: (1) stereoselective 
introduction of the ten contiguous stereocenters of the hikosamine structure and 
(2) site- and stereoselective attachment of the cytosine and kanosamine moieties to 
hikosamine. The first problem was solved by Secrist and Barnes [16], Danishefsky 
and Maring [17, 18], and Fürstner and Wuchrer [19], as well as by our group [20], 
culminating in four distinct syntheses of the hikosamine structure. However, none of 
these approaches addresses the second problem to complete the total synthesis of 1, 
thereby highlighting the associated difficulties. The second problem requires differ-
entiation of the C6O group from the surrounding oxygen functionalities in order 
to attach kanosamine and activation of the C1 anomeric position in order to intro-
duce cytosine. Schreiber and Ikemoto accomplished the first total synthesis of 1 by 
designing a differentially protected hikosamine intermediate [21, 22]. Remarkably, 
the team exploited the latent C2-symmetry embedded in the hikosamine structure, 
using pairwise functionalizations via iterative C–C and C–O bond formations to 
achieve total synthesis of 1 from l-diisopropyl tartrate (3) in 27 steps. 

In 2020, we reported the convergent total synthesis of 1 from bis-TMS-cytosine 
(6) and three hexose derivatives (5, 11, and 12) [23]. We selected starting materials 
with preinstalled oxygen functional groups [24, 25] and increased the molecular 
complexity upon single coupling reaction [26–28], thereby minimizing the number 
of functional group manipulations and drastically shortening the synthetic route 
to 1 (longest linear sequence: 17 steps). To directly couple densely functionalized 
fragments derived from two hexoses 11 and 12, we devised a novel radical addition 
to an aldehyde [23, 29, 30]. We found that the specific protective group pattern 
of the synthetic intermediates facilitated key radical coupling in a stereoselective 
manner while also securing regio- and stereoselective introduction of the cytosine 
and kanosamine moieties. In this chapter, we detail the development of the radical-
based and protective group strategies that enabled the total synthesis of 1. Interested 
readers can consult our review of total syntheses of hikosamine and 1 from our and 
other groups [31]. 

6.2 Synthetic Plan for Hikizimycin 

We planned to assemble hikizimycin (1) from three components: bis-TMS-cytosine 6, 
kanosamine derivative 5, and differentially protected hikosamine 7-α (Scheme 6.1). 
The C1 acetal carbon center and C6 oxygen atom of 7-α were discriminated from 
other hetero functionalities to allow for selective appending of 6 and 5 by the two 
glycosylation reactions. In these reactions, neighboring participation from the prox-
imal C2O and C13O benzoyl groups of 7-α and 5 would control the stereochemistry 
of the C1 and C12 positions. In principle, C6 alcohol 7-α would be directly coupled 
by an anionic reaction between anion A and aldehyde 8 or by a radical reaction
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between radical B and 8 [32]. The β-elimination propensity of the C4 nitrogen func-
tional group from anion A and presence of electrophilic ester groups impeded us 
from adopting the anion-based approach [33]. Hence, we selected the radical-based 
approach [34]. 

Radical reactions serve as powerful tools for forging congested C(sp3)–C(sp3) 
bonds without affecting diverse oxygen and nitrogen functionalities. Therefore, they 
have been extensively utilized in the total synthesis of densely functionalized C(sp3)-
rich natural products [28, 35–40]. We previously developed a decarbonylative radical 
reaction of α-alkoxyacyl telluride under Et3B/O2-mediated conditions and incorpo-
rated this powerful reaction into the synthesis of diverse densely oxygenated natural 
products [41, 42]. 

To date, intermolecular radical coupling reactions with aldehydes have been 
underexplored [43–45]. We recently realized Et3B/O2-mediated coupling between 
α-alkoxyacyl telluride 13 and aldehyde 14 [23] (Scheme 6.2). The reaction mecha-
nism responsible for this unusual coupling was rationalized as follows. First, an Et 
radical was produced from Et3B and O2 [46], leading to C–Te bond cleavage, forma-
tion of acyl radical C, and decarbonylation to generate α-alkoxy radical D [47–49]. 
The polarity-matched intermolecular coupling between nucleophilic radical D and 
electrophilic aldehyde 14 was a fast but endergonic process [50, 51], generating oxyl 
radical E, which was higher in energy than D and generally underwent β-scission 
to readily reverse the process. However, the present reaction system overrode this 
energetically unfavorable step by capturing unstable E with Et3B to afford stable 
borinate F, the hydrolysis of which led to alcohol 16 in 40% yield. Consequently, 
Et3B played two important roles in this transformation: initiating and terminating 
the radical reaction. The unwanted compound 15 (47%) was also generated presum-
ably through direct hydrogen atom abstraction by D [52]. The formation of D was 
suppressed by the addition of Lewis acid BF3·OEt2 to afford 16 (46%) and 15 (23%) 
[53]. 

Scheme 6.2 Et3B/O2-mediated decarbonylative radical coupling reaction of α-alkoxyacyl telluride 
13 to aldehyde 14
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This outcome prompted us to select the Et3B/O2 reagent system and α-alkoxyacyl 
telluride 10 as a precursor of radical B (Scheme 6.1). The C5 and C6 stereochemistries 
of 7-α needed to be controlled in the coupling reaction with 8. We envisioned to install 
the requisite stereocenters through strategic placement of the protective groups (PGs) 
of both 8 and 10 [20, 42]. To enable this challenging task, we decided to specify 
the appropriate protective group patterns by screening the substrates. Compounds 
8 and 10 would be prepared from d-mannose (12) and d-galactose derivative 11, 
respectively, which together carried the six stereocenters of 1 (C2, C3, C7, C8, 
C9, and C10). Maximum use of the intrinsic chiralities of the two hexoses would 
streamline the route to 1 [24, 25]. Overall, our strategy was designed to maximize 
convergency and minimize the number of functional group transformations toward 
1. 

6.3 Protective Group Optimization of Aldehyde 8 

We set out to optimize the protective groups of the right-half aldehyde 8 using 
readily available 13 [54] as a model acyl telluride (Table 6.1). In doing so, penta-
benzoate 8a and bis-acetonide 8b were prepared and submitted to Et3B/O2-mediated 
radical reactions. The radical coupling reaction between 13 and 8a afforded the 
mixture of C6 alcohol 17a and C7 alcohol 18, which was generated via 1,2-benzoyl 
migration from 17a (entry 1). Despite the modest yield (17a: 36% and 18: 5.5%)  
and low C6 diastereoselectivity (α/β = 1:1.1 for 17a), a densely oxygenated carbon 
chain with nine consecutive stereogenic centers was notably generated by this single 
transformation. The yield and C6 stereoselectivity were improved by altering the 
substrate from 8a to 8b (entry 2). Submission of 13 and 8b to Et3B and air at −30 °C 
produced a 2.1:1 diastereomeric mixture of 17b in 66% yield. In contrast to coupling 
of the simple aldehyde 14 (Scheme 6.2), the addition of BF3·OEt2 to aldehyde 8b 
had a negative effect on the reaction efficiency and the yield of 17b was negligible 
(2.5%), presumably due to the acid-labile protective groups of 8 and 17b. Hence, 
neutral conditions omitting Lewis acids were to be applied for the total synthesis of 
1.

The model radical reactions shown in Table 6.1 simultaneously installed C5 
and C6 stereocenters. The stereochemical outcomes were attributable to the three-
dimensional (3D) shapes of the radical donor (13) and acceptors (8a/8b) with the 
protective groups (Scheme 6.3). C–C bond formation proceeded from the convex 
face of the acetonide-protected 5/5-cis-fused ring system of α-alkoxy radical D, 
thereby establishing the C5 stereocenter [54]. Meanwhile, introduction of the C6 
stereogenic center was attributed to the preferred conformations of acceptors 8a and 
8b. The Felkin–Ahn transition states 8a-α and 8a-β were energetically similar, and 
both accepted the radical to lead to comparable amounts of C6 diastereomers 17a-α 
and 17a-β. In contrast, severe steric interaction occurred with transition state 8b-β 
between D and the methyl group of the 6/6-cis-fused ring system (highlighted in
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Table 6.1 Intermolecular radical coupling of α-alkoxy carbon radicals with the right-half aldehyde 
8 

entry  1 entry  2 

17a (36%, α/β = 1:1.1) + 18 (5.5%)a 
17b (66%, α/β = 2.1:1) 
[17b (2.5%, α/β = n/d)b] 

aC6 stereochemistry of 18 was not determined 
bBF3·OEt2 (0.3 equiv) was added
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Scheme 6.3 Rationale for the stereochemical outcomes of the coupling reactions between radical 
D and aldehydes 8a/8b 

gray), resulting in higher energy than 8b-α, which led to the requisite C6α stere-
ochemistry. Therefore, the unique 3D structure of 8b forced by the two acetonide 
groups was likely to induce the desired C6α selectivity of 17b-α. 

6.4 Protective Group Optimization of Acyl Telluride 10 

Next, we systematically altered the structure of the left-half acyl telluride 10 to attain 
the requisite C5 stereochemistry upon radical reaction. Namely, four substrates, 10a-
α, 10b-α, 10b-β, and 10c-β, possessing distinct C4-substituted nitrogen functionali-
ties (trifluoroacetamide, phthalimide, and azide) and different C1 stereochemistries 
were prepared as radical precursors (Scheme 6.4). To investigate C5 stereoselectivity,
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methyl vinyl ketone (19) was employed as an acceptor [54]. When C4 trifluoroac-
etamide 10a-α with C1α stereochemistry was utilized in the presence of Et3B in air,  
only the undesired C5β stereoisomer 20a-α was produced (Scheme 6.4a). Simply 
altering the C4 substituent from the trifluoroacetamide of 10a-α to the phthalimide 
of 10b-α exclusively generated the desired C5α stereoisomer 21b-α in high yield 
(76%, Scheme 6.4b) [20]. Intriguingly, the C1 stereochemistry affected the reaction 
efficiency and stereoselectivity. The reaction of C1 epimeric C4 phthalimide 10b-β 
provided the desired adduct 21b-β (25%) along with ketone 22b-β (38%), generated 
through direct addition of the acyl radical intermediate (Scheme 6.4c). The applica-
tion of C4 azide 10c-β with the C1β stereocenter resulted in the formation of ketone 
22c-β (30%) and radical elimination of the azide group to produce 3,4-dihydro-2H-
pyran 23c-β (58%) [55, 56] (Scheme 6.4d). Accordingly, we selected 10b-α as the 
optimal radical donor for the total synthesis of 1. 

These disparate radical reaction results can be rationalized by analyzing the 3D 
shapes of the radical intermediates (Scheme 6.5). First, Et3B/O2-induced homolysis 
of the weak C–Te bonds of 10a-α/10b-α/10b-β gave rise to acyl radicals with chair 
conformations Ga-αʹ/Gb-αʹ/Gb-βʹ and equilibrating boat conformations Ga-α/Gb-
α/Gb-β. In the case of the C1α isomers, boat forms Ga-α and Gb-α had stabilizing 
secondary orbital interactions between the C5–CO σ*-orbital and the antiperiplanar

Scheme 6.4 Decarbonylative radical coupling of the left-half glucosamine-derived α-alkoxyacyl 
telluride 10 with distinct C4N protective group and C1 stereochemistry 
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oxygen lone pair and were thus more energetically preferred over Ga-αʹ and Gb-αʹ 
(Scheme 6.5a, b). The same orbital interaction between the C5–CO σ*-orbital and 
the oxygen lone pair also facilitated C5–CO scission via decarbonylation to generate 
α-alkoxy C5 radicals Ba-α and Bb-α [47–49]. The boat conformations of Ba-α and 
Bb-α were stabilized because the C5 radical interacted with the parallel oxygen lone 
pair and C4–N σ*-orbital [57, 58]. Enone 19 approached the upper face of Ba-α with 
the assistance of an intermolecular hydrogen bond between the C4 trifluoroacetamide 
of Ba-α and the carbonyl group of 19 to establish the unwanted C5β stereochemistry 
of 20a-α [59] (Scheme 6.5a). In contrast, the bulky C4 phthalimide of Bb-α shielded 
the top face of Bb-α, forcing coupling with 19 from the opposite face to establish the 
desired C5α stereocenter of 21b-α (Scheme 6.5b). Alternatively, acyl radical Gb-β 
with C1β stereochemistry was an unstable conformer due to steric repulsion between 
the C1 methoxy and C4 phthalimide substituents (Scheme 6.5c). The preferable 
chair conformer Gb-βʹ lacked the parallel relationship between the C5–CO σ*-bond 
and the oxygen lone pair. Due to slow C5–CO cleavage, decarbonylation toward C5 
radical Bb-β competed with direct interception of Gb-βʹ with 19, providing a mixture 
of 21b-β and ketone 22b-β. Thus, the C1α stereochemistry of 10b-α contributed to 
accelerate α-alkoxy C5 radical formation and stabilize the boat conformation, while 
the C4 phthalimide group controlled the desired C5α stereoselectivity.

6.5 Synthesis of Protected Hikizimycin 

Having clarified the significance of the C1α methoxy and C4 phthalimide groups 
of 10b-α and the bis-acetonide structure of 8b in stereoselective radical coupling, 
we turned our attention to the synthesis of protected hikizimycin 36. In addressing 
this task, the chemical structures of the radical donor and acceptor needed further 
modification. To enable C1 cytosine introduction in the last synthetic stage, radical 
donor 10d-α was designed to have a more activated C1α acetoxy group instead of the 
C1α methoxy group of 10b-α (Scheme 6.6). Moreover, the tert-butyldiphenylsilyl 
group of radical acceptor 8b was replaced with the benzoyl group of 8c, which would 
be removed together with other nucleophile-sensitive protective groups such as the 
C2O and C3O benzoyl and C4 phthalimide groups.

The left-hand fragment 10d-α was prepared from commercially available d-
galactose derivative 11-β in nine steps (Scheme 6.6). First, benzoylation of triol 11-β 
protected the equatorial C2 and C3 alcohols and left the axial C4 alcohol untouched 
to afford bis-benzoate 24. Triflation of alcohol 24 and subsequent C4 stereo-inversion 
using KNPhth installed the C4 phthalimide group of 25. Acidic treatment of 25 with 
Ac2O exchanged the methyl and trityl groups with acetyl groups, producing a 1:8.3 
mixture of 26-α and 26-β. The obtained C1 diastereomeric mixture was subjected to 
MeOCHCl2 and ZnCl2 [60] to introduce the β-oriented chloride of 27. Hg(OAc)2 in 
AcOH then promoted replacement of the C1β chloride of 27 with the equatorial C1α 
acetoxy group of 26-α [61]. Site-selective i-Bu2AlH reduction of the least-hindered
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Scheme 6.5 Rationale for the coupling reaction outcomes between acyl radical G and methyl vinyl 
ketone (19)

C6 acetoxy group of 26-α and subsequent AZADOL-catalyzed oxidation of the liber-
ated primary alcohol of 28 furnished carboxylic acid 29 [62]. The requisite radical 
donor 10d-α was derivatized from 29 in a one-pot procedure through activation of 
the ester, followed by addition of i-Bu2AlTePh derived in situ from (PhTe)2 and 
i-Bu2AlH [63]. 

The right-hand fragment 8c was prepared from d-mannose (12) in six steps. 
The known three-step sequence converted 12 to dithioacetal 30 [64]. The TBDPS 
group of 30 was detached using TBAF to generate the primary alcohol, which was 
benzoylated with BzCl and pyridine to form benzoate 31. The dithioacetal of 31 was 
in turn hydrolyzed by the action of mercury salts, giving rise to aldehyde 8c. 

Next, we turned our attention to the unprecedented and challenging radical 
coupling of the two densely oxygenated fragments 10d-α and 8c (Scheme 6.7), which 
involved individual optimization of many parameters, such as reagent amounts, order
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Scheme 6.6 Preparation of fragments 10d-α and 8c

of reagent addition, method of oxygen addition, concentration, and temperature. Ulti-
mately, 7-α and the minor C6 epimer 7-β were obtained in 65% combined yield (7-α/ 
7-β = 2.2:1) when air was slowly introduced into a mixture of α-alkoxyacyl telluride 
10d-α (1.0 equiv), aldehyde 8c (3.0 equiv), and Et3B (5.0 equiv) in CH2Cl2 (0.1 M) at 
−30 °C. Hence, the desired 7-α with its ten contiguous stereocenters was constructed 
by forging the hindered C(sp3)–C(sp3) bond under simple and mild conditions with 
C5 and C6 stereoselectivities. The observed C5 and C6 stereochemical outcomes 
were in accordance with those of the aforementioned preliminary investigations 
(Sects. 6.3 and 6.4).

C6 alcohol 7-α was then elaborated into protected hikizimycin 36 through step-
wise attachment of bis-TMS-cytosine 6 and kanosamine derivative 5. Prior to these 
two glycosylation reactions, the protective groups of 7-α were manipulated in the 
ensuing three steps. First, the C6 alcohol was capped as the benzyl ether by the 
action of N-phenyl-2,2,2-trifluoroacetimidate and catalytic TfOH, yielding 32 [65]. 
Second, the two acid-labile acetonide groups of 32 were detached using BF3·OEt2 
and 1,3-propane dithiol without damaging the potentially reactive C1 acetal struc-
ture [66]. Third, the resultant tetraol was peracetylated to produce pentaacetate 33. 
C1α acetate 33 and bis-TMS-cytosine 5 were subjected to TMSOTf to produce C1α 
benzoyl cytosine 34 as a single isomer after in situ N-benzoylation. Complete C1α 
stereoselectivity was attributable to neighboring participation of the β-oriented C2O 
benzoyl group to form the stabilized intermediate H.
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Scheme 6.7 Synthesis of protected hikizimycin 36

To prepare for the second glycosylation, the C6 hydroxy group of 35 was liberated 
in a site-selective manner by DDQ-induced oxidation of the C6O benzyl group of 34. 
Then, we investigated the reactivity of the differentially N-protected glycosyl donors 
5a and 5b [67]. Treatment of C14 phthalimide 5a with TMSOTf in the presence of 
35 merely led to decomposition. In contrast, TMSOTf-promoted glycosylation of 
35 with C4 azide 5b smoothly afforded protected hikizimycin 36b with the C12β 
kanosamine moiety as the major isomer (36b/12-epi-36b = 1.8:1) [68]. The requi-
site C12β stereoselectivity would be controlled by neighboring participation of the 
α-oriented C13O benzoyl group, while the different reactivities of 5a and 5b were 
explained by the boat-like 3D structures of cationic intermediates Ia and Ib, respec-
tively. Whereas the axially oriented bulky phthalimide of Ia impeded intermolecular 
attack of 35, the smaller azide group of Ib accepted hindered C6 secondary alcohol 35 
upon glycosylation. Therefore, the requisite C1α–N and C12β–O glycosidic bonds 
were stereoselectively constructed via the strategically placed protective groups.
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6.6 Total Synthesis of Hikizimycin 

The last task of the total synthesis of hikizimycin (1) from  36b was removal of 
the seven benzoyl, four acetyl, and one phthaloyl groups and hydrogenolysis of the 
C14 azide moiety. Because of the nucleophilic and electrophilic sites of the highly 
complex structure of 36b, the reaction order and conditions needed to be carefully 
tuned. Our preliminary model experiment revealed sluggish hydrogenolysis of the 
sterically cumbersome C4 azide of des-cytosine derivative 37 (Scheme 6.8). Even 
when C4 amine was generated, the nucleophilic nitrogen atom of 38 attacked the 
C=O bond of the proximal benzoyl group to induce 1,2-benzoyl migration, gener-
ating N-benzoylated products 39 and 40. The resistance of the amide bonds of 39 
and 40 to basic hydrolysis required suppression of ester–amide exchange. This 
reaction indicated that removal of all acyl protective groups must precede azide 
hydrogenolysis. 

Next, we investigated simultaneous hydrolysis of multiple acyl groups of 36b 
(Scheme 6.9a). When n-Bu4NOH was employed, the seven benzoyl and four acetyl 
groups were completely removed from 36b, but phthalimide hydrolysis only partially 
afforded phthalamic acid 41 in 96% yield after HPLC purification. To avoid unwanted 
hydrogenation of the cytosine ring, a Lindlar catalyst was utilized for the subsequent 
hydrogenolysis of azide 41, leading to amine 42. The remaining phthalamic acid of 
42 was detached using a large excess amount of ethylenediamine in refluxing t-BuOH 
(boiling point: 82 °C) [69]. These harsh conditions of the last reaction caused partial 
decomposition of the electrophilic cytosine moiety, leading to pure hikizimycin (1) 
only being obtained in low yield from 41 (21% over two steps) after the crude mixture 
was purified with HPLC.

To develop a more efficient protocol, the phthalimide needed to be converted to 
the corresponding amine during the first hydrolysis step. Ultimately, we established a 
one-pot procedure to generate 1 (Scheme 6.9b). n-BuNH2 was expected to detach the 
phthaloyl group of 36b via the formation of phthalamic acid, following facile 5-exo 
cyclization of 43, with N-butyl phthalimide expelled [70]. Indeed, the addition of 
n-BuNH2 to refluxing MeOH (boiling point: 65 °C) removed all 12 protective groups 
to form primary amine 44. In the same pot, reduction of the C14 azide substituent

Scheme 6.8 Azide hydrogenolysis of des-cytosine model compound 37 
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of 44 was realized under an H2 atmosphere in H2O in the presence of the Lindlar 
catalyst. This optimized protocol improved reaction efficiency and delivered 1 from 
36b in 50% yield after HPLC purification. Thus, the total synthesis of 1 from 11-β 
was completed in 17 steps. 

6.7 Conclusion 

In summary, we accomplished highly efficient total synthesis of hikizimycin (1) 
from 11-β (longest linear sequence: 17 steps). The exceptionally complex structure 
of 1 was constructed from three hexose derivatives and one cytosine structure (5b, 
6, 11-β, and 12), without extra carbon extension or oxygen atom introduction. The 
radical-based and protective group strategies were specifically devised to enable the 
present novel convergent route to 1. First, highly oxygenated α-alkoxyacyl telluride 
10d-α and aldehyde 8c were derivatized from hexose structures 11-β and 12, respec-
tively, and then combined under newly developed Et3B/O2-mediated conditions for 
radical addition to the aldehyde. The mild, yet robust reaction linked two hindered 
trisubstituted carbons and installed the desired C5α and C6α stereocenters, thereby 
assembling the protected hikosamine structure 7-α with ten contiguous stereocen-
ters. Notably, these stereochemical outcomes were controlled by the strategically 
placed C4 phthalimide and bis-acetonide groups. Subsequently, the cysteine moiety 
and kanosamine with the small C14 azide were attached by two TMSOTf-promoted 
reactions in a C1 and C12 stereoselective manner. Remarkably, the proximal benzoyl 
groups stereoselectively forged the C1α and C12β glycosidic bonds. Lastly, protected 
hikizimycin 36b was achieved in a one-pot by the removal of the 12 acyl protective 
groups and reduction of the one azide functionality, affording 1. 

The present data corroborate the importance of radical coupling reactions for 
convergent assembly of two densely oxygenated fragments and the significance of 
strategically placed protective groups for precise control of reactivity and stereo-
and site-selectivity. It is our hope that further application and improvement of the 
radical-based convergent synthetic approach will benefit advances in both chemical 
and pharmaceutical sciences. 
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Chapter 7 
A Chemo-enzymatic Approach 
for the Rapid Assembly 
of Tetrahydroisoquinoline Alkaloids 
and Their Analogs 

Ryo Tanifuji and Hiroki Oguri 

Abstract The utilization of enzymes that catalyze sequential reactions to construct 
highly functionalized skeletons in a single step could expedite the total synthesis 
of natural products and allow more precise control of chemo-, regio-, stereo- and 
enantio-selectivity while minimizing the use of protecting groups. In this chapter, we 
describe the development of a chemo-enzymatic hybrid synthetic process for a series 
of complex antitumor natural products, the bis-tetrahydroisoquinoline (THIQ) alka-
loids. The approach integrates the precise chemical synthesis of hypothetical biosyn-
thetic intermediates with an enzymatic one-pot conversion to assemble the intricate 
pentacyclic scaffold, enabling the efficient total synthesis of saframycin A, jorun-
namycin A, and N-protected saframycin Y3. We exploited synthetic substrate analogs 
to implement a versatile chemo-enzymatic synthetic approach to generate variants of 
THIQ alkaloids, by systematic modification of the substituents and functional groups. 
Subsequent chemical manipulation allowed the expeditious total synthesis of THIQ 
alkaloids. Section 7.2 discusses the biosynthesis of THIQ alkaloids, while Sect. 7.3 
shifts the focus to chemo-enzymatic hybrid synthesis. Section 7.3.1 examines the 
impact of long-chain fatty acid side chains on enzymatic conversions by SfmC. 
In Sect. 7.3.2, the conversion efficiencies of substrates with ester or allyl carba-
mate linkages replacing amide bonds are sequentially addressed. Sections 7.3.3 and 
7.3.4 delve into the chemo-enzymatic total synthesis of THIQ alkaloids. Finally, 
Sect. 7.3.5 discusses prospective expansion of the substrate scope for broader 
synthetic applications. 
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7.1 Introduction 

Chemical and biological synthetic approaches for producing natural products with 
complex structures and intriguing biological properties have largely progressed as 
separate fields, each aiming to efficiently access the target compounds [1–4]. Both 
approaches have distinct advantages and challenges, with limited exploration of their 
combined potential for the total synthesis of natural products and their analogues. 
Several robust enzymes, such as lipases and alcohol dehydrogenases, have tradi-
tionally been employed for optical resolution and enantioselective reduction [5– 
7]. Recent advances in gene analysis, gene synthesis, and genetic databases have 
propelled late-stage functionalization using enzymes such as P450s for site- and 
stereoselective oxidation of natural product scaffolds [8]. Concurrently, non-natural 
reactions through directed evolution techniques have progressed rapidly [9]. The 
complex skeletons of natural products are constructed by enzymes, typically non-
ribosomal peptide synthetases, polyketide synthases, and terpene cyclases. However, 
the generally large size and unfavorable physical characteristics of these enzymes 
make them challenging to manipulate, even using current heterologous expression 
techniques, resulting in their infrequent use in synthetic applications. 

Fig. 7.1 The THIQ alkaloidal family and a synthetic derivative (6)
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The bis-tetrahydroisoquinoline (THIQ) alkaloids, which include saframycins 
(1), safracins (2), jorunnamycins (3), and renieramycins (4), are important fami-
lies of antitumor antibiotics [10] (Fig. 7.1). These natural products are character-
ized by a complex, densely functionalized pentacyclic framework constructed by 
non-ribosomal peptide synthetases (NRPS) that can alkylate DNA via electrophilic 
iminium species generated from an aminonitrile or a hemiaminal group at C21 [11– 
15]. Representative THIQ alkaloid ecteinascidin 743 (5) which has a macrolactone 
and an additional THIQ system shows exceptional antitumor activity. It has been 
approved for treating ovarian neoplasms and sarcoma [16]. Additionally, in 2020, 
the U.S. FDA sanctioned the use of a semi-synthetic compound, lurbinectedin (6), 
to treat small cell lung cancer [17, 18]. This semi-synthetic analog is distinguished 
by its spiro-fused β-tetrahydrocarboline unit, which replaces the THIQ unit of the 
macrolactone of 5. These anticancer agents are prepared semi-synthetically in more 
than 20 chemical steps from fermentation-derived cyanosafracin B (2) [19, 20]. The 
significant therapeutic potential of these alkaloids, coupled with increasing demand 
for their synthetic production, highlights the importance of the THIQ scaffold as a 
key target for both chemical synthesis and engineered biosynthesis [21, 22]. 

7.2 Biosynthetic Machinery of THIQ Alkaloids 

The biosynthesis of saframycin A (1) involves the modification of l-tyrosine to 
generate 7, catalyzed by SfmD/M2/M3, followed by construction of a complex 
pentacyclic bis-THIQ scaffold originating from l-Ala, Gly, and two molecules of 
7 [11, 23, 24] (Fig. 7.2). This latter process is orchestrated by three modules of non-
ribosomal peptide synthetase (NRPS), SfmA–C, which assemble the amino acids 
and a fatty acid [12, 13]. This biosynthetic assembly line for 1 is characterized by 
three distinct phases. First, the incorporation and subsequent removal of a fatty acid 
moiety are involved in both the pre- and post-assembly stages of the pentacyclic 
scaffold. Second, the unique PS domain responsible for the Pictet–Spengler (PS) 
reaction in the N-terminal of SfmC plays an important role in forming the THIQ 
rings, replacing the typical peptide condensation reaction commonly observed in the 
NRPS machinery. Lastly, the Red domain is crucial for reducing three thioesters teth-
ered on the PCP (peptidyl carrier protein) domain to release the resultant aldehyde 
intermediates. This SfmC module is pivotal to the process, enabling the sequen-
tial assembly of two tyrosine-derived molecules with two aldehyde intermediates 
generated by reduction of their corresponding thioesters.

Even though saframycin A (1) lacks fatty acyl chains, the SfmA–C-catalyzed 
biosynthetic process begins by incorporating a long fatty acyl unit, like myristic 
acid. This step is facilitated by the enzyme SfmA, which contains an acyl ligation 
(AL) domain. Subsequent amide bond formation with l-Ala and Gly is catalyzed 
by SfmA and SfmB, respectively, to form an N-myristoyl alanyl-glycidyl thioester, 
intermediate A (Fig. 7.2). The crucial module in this pathway, SfmC, is equipped 
with a reduction (Red) domain that uniquely reduces thioester A to aldehyde 8,
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Fig. 7.2 Proposed biosynthetic machinery of saframycin A (1)
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bypassing traditional amide bond formation. The subsequent imine formation and 
Pictet–Spengler (PS) reaction of the resultant aldehyde 8 and the primary amine 
in 7, which is tethered on the PCP domain, yields a bicyclic THIQ thioester B. 
This PS reaction incorporates an sp3 chiral center at C1 and completes the first 
stage of reactions facilitated by SfmC. The second stage of the sequential assembly 
process begins with the Red domain-catalyzed thioester reduction of intermediate B 
to liberate aldehyde intermediate 9. Reloading of 7 onto the PCP domain followed 
by PS cyclization forms intermediate C with a stereocenter at C11. Intermediate C 
is characterized by two THIQ segments connected with adjacent chiral centers (C3 
and C11). The final transformation of intermediate C involves thioester reduction to 
release aldehyde 10, and subsequent spontaneous ring closure through intramolecular 
nucleophilic addition of the secondary amine. This leads to formation of the penta-
cyclic bis-tetrahydroisoquinoline core scaffold 11 containing a hemiaminal group at 
C21. 

The next steps involve N-methylation at the N12 position of the secondary amine 
11 and oxidation of two phenol rings on both wings (ring-A and E), leading to bis-
quinone 12 [25]. Biosynthetic intermediate 12 then undergoes further modification by 
SfmE, a membrane-bound peptidase, which liberates the fatty acid moiety from the 
side chain at C1 [26]. The primary amine 13 is then secreted by transmembrane efflux 
protein SfmG. The final stages include oxidative deamination catalyzed by SfmCy2, 
the FAD-binding oxidoreductase, in extracellular region that installs a carbonyl group 
at the C25 position, thus producing saframycin S (14) [26]. Saframycin A (1) is then 
obtained through the cyanation of saframycin S using KCN. 

The biosynthesis of saframycins, which uniquely involves the incorporation and 
subsequent removal of long fatty acyl chain, utilizes a mechanism also found in the 
NRPS biosynthetic machinery of other relevant THIQ alkaloids such as SF-1739/ 
quinocarcin [27], naphthyridinomycin [28, 29], safracin [30], and ecteinascidin [31, 
32]. This process, particularly the installation of fatty acid moieties, is believed 
to protect the terminal primary amine of the l-Ala component throughout the 
sequential transformations conducted by three NRPS modules SfmA–C. Further-
more, the enhanced lipophilicity is believed to play several roles. Firstly, it likely 
prevents the diffusion of aldehyde intermediates (8 and 9) away from the enzymatic 
machinery. These intermediates are released through the reduction of the corre-
sponding thioesters tethered to PCP domains of SfmB and SfmC. Secondly, the 
enhanced lipophilicity may play a key role in the substrate recognition at presum-
ably hydrophobic active sites within the SfmB–SfmC protein complexes. The fatty 
acid moiety on the C1 position also reduces the DNA alkylating capability of the 
resulting bis-THIQ scaffolds [33]. NRPS machineries responsible for the biosyn-
thesis of saframycin, safracin, and naphthyridinomycin are thus believed to facilitate 
the production of less toxic prodrugs within cells. These antibiotics are then released 
into the extracellular space after the fatty acyl chains are cleaved off.
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7.3 Integrating SfmC-Catalyzed Enzymatic Processes 
with Chemical Syntheses: Chemo-enzymatic Total 
Synthesis of THIQ Alkaloids 

7.3.1 Impact of Fatty Acyl Chain Length on SfmC-Catalyzed 
Enzymatic Conversions 

To develop a chemo-enzymatic hybrid process aimed at the total synthesis of THIQ 
alkaloidal natural products using the unique enzyme SfmC, we initially varied the 
chain length of fatty acid moiety to assess the effect of the substrate structure on 
its enzymatic conversion efficiency [12, 15, 34]. A series of peptidyl aldehydes was 
synthesized, each featuring a hydrophobic acyl chain with a different length. Specif-
ically, we synthesized three kinds of aldehyde substrates, denoted as 15, 8, and 16, 
each carrying a fatty acid moiety consisting of twelve, fourteen, and sixteen carbon 
atoms, respectively. The aldehydes were subjected to SfmC-mediated transforma-
tions with chemically synthesized tyrosine derivative 7 [35]. To prepare an active 
holo-form SfmC equipped with a phosphopantetheinyl arm, phosphopantetheinyl 
transferase Sfp was co-expressed. 

We evaluated the conversion rate of the three synthetic substrates, 15, 8, and 
16, by comparing the UV absorbance peak areas of corresponding products 17– 
19 possessing the pentacyclic scaffolds as chromophores. Substrate 8, with a C14 

lipophilic chain derived from myristic acid, demonstrated the best conversion effi-
ciency among the tested aldehydes. The relative conversion rates of 15 and 16 bearing 
C12 and C16 fatty acyl chain, having just two less or two more methylene groups than 
substrate 8, resulted in markedly lower at 27% and 17%, respectively. These results 
underscore the critical importance of attaching fatty acyl moieties like myristic acid 
(C14) in the biosynthetic construction of bis-THIQ scaffolds. Recent gene deletion 
studies in Pseudomonas fluorescens A2-2 indicated the attachment of palmitic acid 
(C16) on intermediates is indispensable in the safracin B biosynthetic pathway [30], 
despite notable differences between the Streptomyces and Pseudomonas species. 
Our findings to date also underscore the critical importance of attaching fatty acid 
moieties involving myristic (C14) and palmitic (C16) acid in the NRPS biosyn-
thetic machinery for bis-THIQ scaffolds [12]. Given the substantially hydrophobic 
character of peptidyl aldehydes, aldehyde substrate analog 8 with a C14 chain was 
selected as being optimal for maximizing conversion efficiency in subsequent in vitro 
chemo-enzymatic reactions (Fig. 7.3).
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Fig. 7.3 Conversion rates for synthetic substrates (15, 8, and  16) with tyrosine derivative 7 into 
pentacyclic compounds (17–19) via enzymatic reactions catalyzed by SfmC and following chemical 
conversions (cyanation, N-methylation). *Quantitative analysis derived from UV absorbance peak 
area of the bis-THIQ scaffold chromophores. **Error bars show calculated standard error of the 
mean (SEM) based on three replicates 

7.3.2 Chemo-enzymatic Transformation of Substrate 
Analogs with Cleavable Linkages 

In our efforts to broaden the range of substrates used and to facilitate additional chem-
ical modifications at the substituent at the C1 position, a series of peptidyl aldehydes 
(20–22) were designed and chemically synthesized. These aldehydes incorporate a 
chemically cleavable functional group, including ester or allylic carbamate, substi-
tuting the peptide linkage found in the biosynthetic intermediate 8. Although SfmE, a 
membrane-associated peptidase, selectively hydrolyzes the peptide bond connecting 
the fatty acid segment [26], it is still challenging to achieve chemoselective cleavage 
of one of the several peptide bonds in the intricate intermediate 18. We therefore 
incorporated a chemically cleavable ester or an allylic carbamate moiety, instead
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of the peptide linkage in the biosynthetic intermediate 8 [36]. Although altering 
amide bonds reduced the efficiency of the SfmC-catalyzed conversions, aldehyde 
20 having an ester group close to the aldehyde moiety, nonetheless demonstrated 
a high conversion rate [34]. This led to the formation of compound 23, with about 
55% efficiency as compared with the transformation of 8 to 18. Meanwhile, other 
synthetic substrates 21 and 22, which involve an ester or an allylic carbamate group 
substituting the peptide linkage near the fatty acid moiety, were transformed into the 
pentacyclic scaffolds 24 and 25, each with conversion rates of 14% in comparison to 
the transformation of 8 into 18. These findings suggest that the two peptide linkages 
in substrate 8 significantly influence the sequential reactions catalyzed by SfmC, 
especially the peptide linkage connecting the fatty acid moiety, which appears to be 
more critical than the peptide bond in the vicinity of the aldehyde moiety (Fig. 7.4).

7.3.3 Chemo-enzymatic Total Syntheses of Saframycin 
A and Jorunnamycin A 

The total synthesis of bis-THIQ alkaloids were carried out after establishing the 
SfmC-catalyzed chemo-enzymatic conversion of substrate analogs bearing cleavable 
linkers into pentacyclic scaffolds. We first applied the chemo-enzymatic strategy to 
saframycin A (1), demonstrating the flexibility of this approach to access to various 
bis-THIQ alkaloids [36] (Fig. 7.5). The methyl ketone moiety at the terminal of 1 
was designed to be installed through a simple basic hydrolysis of the ester linkage 
using substrate analog 21 followed by oxidation of the resulting secondary alcohol. 
Merging enzymatic sequential assembly of synthetic substrates (21, 7) and chemical 
installation of an aminonitrile and N-Me group led to the formation of pentacyclic 
24 with 13% isolated yield. Due to the instability of the intermediate 26, the extrac-
tive work up of 26 was followed immediately by its conversion into stable tertiary 
amine 24 using 2-picolineborane [37]. While the overall conversion efficiency for 
21 was less than half that for 20 in analytical scale, we nonetheless achieved a semi-
preparative scale synthesis to obtain 12.2 mg of the desired bis-THIQ core scaffold 
24 by repeating the optimal in vitro chemo-enzymatic conversions three times. The 
combined yield for the pentacyclic 24 at this semi-preparative scale exceeded that 
achieved at an analytical scale. Unlike conventional multi-step syntheses, this method 
does not require the isolation of intermediates, significantly reducing the number of 
labor-intensive steps and enabling rapid production. Basic hydrolysis of 24 removed 
the fatty acyl chain, producing 27 in 91% yield. Subsequent oxidative conversions, 
including the Salcomine-mediated conversion of the two phenols followed by Swern 
oxidation of the resultant secondary hydroxyl group on the C1 side chain, enabled 
the five-pot chemo-enzymatic total synthesis of saframycin A (1) starting from two 
simple synthetic substrates, 7 and 21. Compared to the previously reported total
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Fig. 7.4 Comparative conversion rates for synthetic substrates (8, 20–22) in SfmC-catalyzed 
conversions with tyrosine derivative 7, followed by cyanation and N-methylation, to yield the 
respective bis-THIQ scaffolds (18, 23–25). *Quantitative analysis derived from UV absorbance 
peak area of the bis-THIQ scaffold chromophores. **Error bars show calculated standard error of 
the mean (SEM) based on three replicates

synthesis of 1, this chemo-enzymatic approach could represent a distinct achieve-
ment, offering rapid access to medically important and structurally intricate THIQ 
natural products [38–43].

Next, we focused on the expeditious chemo-enzymatic total synthesis of jorun-
namycin A [36] (Fig. 7.6, 3). By treatment with SfmC, synthetic substrates 7 and 
20 were enzymatically converted to pentacyclic scaffold 29. This intermediate was 
then subjected to cyanation in a single-pot reaction to form aminonitrile 30. After  
removing the enzyme through centrifugation, further N-methylation of 30 was 
achieved using formaldehyde and 2-picolineborane, giving rise to 23 in just 30 min. 
This chemo-enzymatic process produced the pentacyclic intermediate 23 (6.5 mg) 
as a yield of 18% in a single day with the precise installation of multiple functional
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Fig. 7.5 Chemo-enzymatic total synthesis of saframycin A (1)

groups. Subsequent two-pot chemical conversions, including basic hydrolysis of the 
ester linkage in 23 followed by Salcomine-catalyzed oxidation of two phenols in 31 
to their corresponding bis-quinones, allowed the chemo-enzymatic total synthesis 
of jorunnamycin A (3) using only four reaction vessels, starting from the synthetic 
substrates 7 and 20. While Zhu, Chen, Stoltz, and Yang previously achieved elegant 
total synthesis of 3, our chemo-enzymatic method offers an alternative approach to 
accessing this naturally occurring alkaloid [44–48]. 

Fig. 7.6 Chemo-enzymatic total synthesis of jorunnamycin A (3)
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7.3.4 Chemo-enzymatic Synthesis of N-Fmoc Saframycin Y3 

We further adapted our chemo-enzymatic method to synthesize a variant of 
saframycin A (1), known as saframycin Y3, which features a free primary amine 
moiety in its l-Ala unit [36] (Fig. 7.7). To this end, we employed substrate analog 
22 possessing an allylic carbamate moiety instead of the amide linkage found in 
substrate 8. Designed substrate 22 allowed the site-selective removal of the fatty acid 
moiety under mild conditions while forming the primary amine in the saframycin 
Y3 structure. Conducting a chemo-enzymatic process in two pots using both 22 
and 7 two-times provided more than 12 mg of compound 25 through 32. Efficient 
palladium-catalyzed scission of the allylic carbamate linker in 25 was achieved using 
a catalytic amount of Pd(PPh3)4 in dichloromethane. Phenylsilane was employed as 
a reductant for the resulting π-allyl palladium intermediate [49]. We anticipated that 
Salcomine-catalyzed oxidative conversions of 33 to bis-quinones would enable rapid 
access to saframycin Y3. However, our attempts to isolate saframycin Y3, which has 
a primary amine proximal to a quinone ring, were found to be challenging due to its 
instability. Therefore, the primary amino group was protected prior to oxidation in 
order to isolate N-Fmoc saframycin Y3 (35). The two-step conversions, including the 
palladium-catalyzed cleavage of allyl carbamate to remove the acyl chain followed 
by Fmoc protection, afforded intermediate 34 in 80% yield for the two steps. Subse-
quent oxidation of phenols in A and E-rings yielded N-Fmoc saframycinY3 (35) with 
a yield of 59%. This chemo-enzymatic approach enabled the concise syntheses of 33 
and 34, which have lower A-ring oxidation states compared to naturally occurring 
THIQ alkaloids. Interestingly, synthetic variant 33, lacking the C5 oxygen functional 
group exhibited higher DNA alkylating ability toward various double stranded DNAs 
bearing 5'-GGG-3', 5'-GGC-3', 5'-CGG-3', 5'-AGC-3', and 5'-AGT-3' sequences 
in comparison to the commercially available natural product, cyanosafracin B (2), 
produced through fermentation of Pseudomonas fluorescens [33].

7.3.5 Chemo-enzymatic Assembly of bis-THIQ Scaffolds 
Incorporating Diverse Amino Acid Derivatives 

To expand the range of artificial substrates suitable for the established chemo-
enzymatic transformations, we explored eight kinds of synthetic substrates [34] 
(Fig. 7.8a, 36a–h). These synthetic substrates featured a series l- or  d-amino acids 
replacing the l-Ala in the biosynthetic intermediate 8. Analog 36a, which incor-
porates an l-Leu residue, exhibited the highest enzymatic conversion efficiency, 
reaching 91% relative to the biosynthetic intermediate 8 despite the increased steric 
bulk of the isopropyl sidechain in l-Leu than the methyl group in 8. The relative 
conversion rates for 36b and 36c, containing l-Met and l-Phe, were 33% and 25%, 
respectively, compared to 8. These experimental results suggested that SfmC can
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Fig. 7.7 Chemo-enzymatic synthesis of N-Fmoc saframycin Y3 (35)

accommodate additional (methylthio)methyl or phenyl groups on the methyl group 
in 8.

Conversely, 36d and 36e, which respectively have l-Val and l-Ile, showed dimin-
ished conversion efficiencies of 23% and 6%, indicating that branched substituents 
on the l-Ala side chain in 8 substantially impede enzymatic conversion. While 
an increase in steric hindrance generally had a detrimental effect, we unexpect-
edly discovered that SfmC tolerated the installation of l-Pro in place of l-Ala, as 
evidenced by the modest conversion (12%) of 36f to pentacyclic 37f. Furthermore, 
SfmC could accommodate the reversal of the stereogenic center: substrates 36g and 
36h bearing either a d-Ala of d-Val component, were transformed into the corre-
sponding bis-THIQ scaffolds 37g and 37h, respectively, albeit with lower efficien-
cies (2% and 13%). Our findings imply that SfmC is somewhat flexible, allowing 
for the incorporation of amino acids, such as l-Leu, l-Met, or l-Phe, with additional 
substituents on the methylene moiety adjacent to the alpha carbon of l-Ala. However, 
changing to l-Val or l-Ile components bearing branched substituents, resulted in 
a significant drop in conversion efficiency. The feasibility of incorporating l-Pro, 
d-Ala, and d-Val was also demonstrated, albeit with modest conversion efficiency. 

Notably, two-pot semi-preparative scale conversions of 7 and 36b allowed rapid 
generation of greater than 2 mg of pentacyclic 37b (2.16 mg) by utilizing a synthetic 
substrate with the replacement of l-Ala with l-Met [34] (Fig. 7.8b). This semi-
preparative hybrid synthetic method provides a rapid and convenient means to secure 
the minimum amount of sample (approximately 1–2 mg) necessary for structural 
analysis and in vitro assays of novel compounds closely relevant to natural products 
that are otherwise challenging to access. Therefore, this chemoenzymatic approach 
offers a rapid synthetic platform for accelerating the discovery of drug leads from 
natural products and their analogs.
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Fig. 7.8 a Relative conversion rates of substrate analogs (36a–36h) with tyrosine derivative 7 
compared to the biosynthetic intermediate 8 into their respective bis-THIQ scaffolds (37a–37h, 18), 
as catalyzed by SfmC enzymatic action, and subsequent cyanation and N-methylation. b Preparative-
scale synthesis of pentacyclic scaffold 37b with an l-Met unit. *Quantitative analysis derived from 
UV absorbance peak area of the bis-THIQ scaffold chromophores. **Error bars show calculated 
standard error of the mean (SEM) based on three replicates

7.4 Conclusion 

In this chapter, we paid attention to the NRPS biosynthetic assembly line for artifi-
cial biosynthesis of bis-THIQ alkaloids and their analogs. We developed a chemo-
enzymatic hybrid process that integrates enzymatic sequential one-pot conversions 
with the precise chemical synthesis of designed substrates and functional group



158 R. Tanifuji and H. Oguri

manipulation of the products of the enzymatic conversions. We confirmed the previ-
ously cryptic roles of long-chain fatty acyl groups, especially the C14-chain, in stream-
lining the cascade one-pot enzymatic transformations. Furthermore, we demonstrated 
that SfmC possesses a relatively wide substrate tolerance and can assemble the tyro-
sine derivative and various synthetic peptidyl aldehydes into the corresponding penta-
cyclic scaffolds of bis-THIQ alkaloids. Our approach enabled the expeditious total 
synthesis of saframycin A and jorunnamycin A, demonstrating the effectiveness 
and flexibility of this chemo-enzymatic hybrid synthetic platform. These relatively 
unexplored approaches, featuring integration of enzymatic and chemical synthesis, 
could facilitate further development of hybrid processes to gain rapid, robust, and 
customizable access to therapeutically valuable natural products-based molecules. 
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Chapter 8 
Fluoroarene Strategy in Total Synthesis 
of Natural Flavonoids 

Ken Ohmori and Keisuke Suzuki 

Abstract Vicenin-2, a naturally occurring bis-C-glucosyl flavonoid, was synthe-
sized by exploiting a sequential C-glycoside formation and aromatic nucleophilic 
substitution (SNAr reaction) of the fluoroarene derivative, i.e., 1,3,5-trifluorobenzene, 
converting fluorine atoms to oxygen function. 

Keywords C-glycoside · Flavonoid · Fluoroarene · Polyphenol · SNAr reaction 

8.1 Introduction 

Flavonoids are ubiquitously distributed in the plant kingdom and typically feature 
a 2-aryl 4H-chromen-4-one that could be expressed as a flavone skeleton [1]. They 
are frequently found in the form of a C-glycosylated derivative, where the anomeric 
position is directly connected to the C6 and/or C8 position(s) of a flavone skeleton 
[2]. Their unique structures and promising biological activities of these compounds 
make them attractive targets for synthetic chemists aiming to supply valuable, 
homogeneous samples for bioassays. 

Vicenin-2 (1), a bis-C-glycoside of apigenin, was isolated from an annual plant 
native to Argentina, Urtica circularis [3], and other plant species [4–8] (Fig. 8.1). It 
has been reported to exhibit a broad spectrum of bioactivities, such as, anti-cancer, 
anti-inflammatory, antioxidant, and anti-diabetic effects [9–13].

This compound shares the bis-C-glycosylated flavone skeleton, of which the 
benzene core (A-ring) is fully substituted by carbon or oxygen atoms.
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Fig. 8.1 Structures of vicenin-2 and related compounds

8.2 Strategic Analysis 

8.2.1 Previous Studies 

Among many studies focusing on the synthesis of C-glycosides, most have concen-
trated on the assembly of mono-C-glycosides. As a facile approach to a C-glycosyl 
flavonoid, the Friedel–Crafts reaction of a glycosyl donor with a phenol deriva-
tives was investigated well [14]. Nevertheless, the synthesis of vicenin-2 and 
other bis-C-glycosyl flavonoids remains have been underexplored to date. Sato 
and co-workers explored scandium triflate-promoted bis-C-glycosylation of 2,4,6-
trihydroxyacetophenone [15, 16] or naringenin [17] with unprotected monosaccha-
rides, directly yielding the corresponding bis-C-glycosides, albeit in low yields and 
requiring tedious purification procedures. Furthermore, a late-stage modification 
by Shie [18], involving tandem C-glycosylation of flavan derivatives, necessitates 
multiple manipulation steps to complete the synthesis. 

8.2.2 Fluoroarene Strategy 

In order to achieve a high-yield C-glycoside formation, we focused on a two-step 
conversion protocol originally developed by Kraus and Molina, converting from a 
glucono lactone with an aryl anion (Fig. 8.2) [19]. 

Fig. 8.2 Step-wise aryl C-glycoside formation strategy by Kraus and Molina
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The method performs the nucleophilic addition of an aryl anion to the lactone 
ring followed by the reductive deoxygenation of the resulting lactol, readily forming 
an aryl C-glycoside structure. In 1990, Tatsuta applied this method to the synthesis 
of medermycin and successfully achieved its total synthesis [20]. 

The question here was whether this method could be applied repeatedly, 
in particular, for constructing a densely functionalized and sterically hindered 
multi-substituted benzene unit. 

To realize this approach, we came up with an idea to use 1,3,5-trifluorobenzene 
(2) as a synthetic platform. An alternate latent polarity pattern on the benzene ring 
(Fig. 8.3) could be considered based on two key reactivities induced by fluorine 
atoms on a benzene ring (Fig. 8.4): (1) nucleophilic aromatic substitution (SNAr) 
by oxygen atom nucleophiles, i.e., alkoxides [21] and (2) electrophilic substitution 
via lithiation followed by alkylation, where a fluorine atom substituted at the ortho 
position of the reaction site acts as a strong directing group for ortho-metallation [22– 
25]. In particular, the pKa value of 2 is ca. 31.5 [26], which is very low compared 
to common benzene derivatives, therefore allowing for deprotonation easily. We 
envisioned that combining these methods would enable a facile and regioselective 
access to multi-functionalized benzene skeleton [27]. 

An illustrative demonstration of the viability of this synthetic approach is evident 
in the subsequent experimental findings. In this study, we investigated the stepwise 
conversion of 1,3,5-trifluorobenzene (2) into the hexa-substituted benzene derivative 
4 (Fig. 8.5) [28]. The synthesis initiated with SNAr reaction, replacing one of three 
fluorine atom. Subsequently, a regioselective ortho-lithiation/sulfur-atom incorpora-
tion protocol was executed, yielding 3. The second SNAr reaction with a nitrogen 
nucleophile, followed by the step-wise halogenation resulted in the formation of 4,

Fig. 8.3 Alternate latent 
polarity pattern of 
1,3,5-trifluorobenzene 

Fig. 8.4 Two characteristic reactivities of a fluoroarene 
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Fig. 8.5 Step-wise conversion of 1,3,5-trifluorobenzne to the hexa-substituted benzene derivative, 
bearing six different hetero-atom substituents 

Notably, this represents the first instance of synthesizing hexa-substituted benzene 
derivative with six distinct heteroatom substituents. 

8.3 Retrosynthesis 

Figure 8.6 delineates our synthetic strategy en route to vicenin-2. The C-ring pyrone 
unit in 1 could be constructed at a late stage by conducting an intramolecular oxidative 
oxa-Michael addition of the phenol in I to the enone moiety. The three oxygen 
substituents on the benzene ring (A-ring) would be incorporated by substituting 
fluorine atoms with oxygen-atom nucleophiles via SNAr reaction. Subsequently, 
two C-glucosyl units and the coumaroyl unit would be introduced electrophilically 
via the iterative reaction with aryl anions, generated via ortho-metalation, with the 
corresponding carbonyl derivatives II and III.

8.4 First C-glycosylation Stage 

According to the strategy, our synthesis started with the synthesis of bis-C-
glycosylated benzene core. Scheme 8.1 shows the synthesis of the mono-C-glycoside 
7 from 1,3,5-trifluorobenzene (2). Upon treatment of 2 with n-BuLi in Et2O (– 78 °C,  
1 h),  the  ortho-lithiation proceeded smoothly, and the nucleophilic attack of resulting 
aryl lithium species to lactone 5 [29] gave the corresponding lactol 6 quantitatively. 
Subsequent treatment of 6 with Et3SiH in the presence of BF3·OEt2 [30, 31] afforded 
mono-C-glycoside 7 in high yield with co-production of the corresponding α anomer 
(10% yield), which could be separated by silica gel column chromatography. It is 
worth mentioning that when 1,3,5-trimethoxy benzene was employed as an aryl anion 
precursor instead of 1,3,5-trifluoro benzene, no formation of the desired C-glycosidic
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Fig. 8.6 Our synthetic plan

product was observed, and a sizable amount of an unexpected α,β-unsaturated lactone 
9 was obtained by β-elimination of benzyl alcohol from 5. This result implies a steric 
repulsion between the nucleophilic species and the lactone ring in 5.

8.5 Second C-glycosylation Stage 

Next, we addressed the introduction of the second sugar unit. However, the second 
deprotonation reaction proved more challenging than the first, presumably due to 
steric hindrance around the reaction site caused by the buttressing effect of the sugar 
moiety. The ortho-lithiation of C-glycosyl trifluorobenzene 7 using n-BuLi, followed 
by the reaction with gluconolactone 5, resulted in only an 18% yield of lactol 10 
with a sizable recovery of 6 (81%). Note that the reaction proceeded with partial 
epimerization at the C2 position.

In pursuit of more suitable deprotonation conditions, we carried out the deuterium 
incorporation experiment using mono-C-glycosyl trifluoro benzene 7 (Scheme 8.3). 
Upon treatment of 7 with n-BuLi (1 equiv) at – 78 °C in Et2O (1 h), methanol-d1 
was added to incorporate a deuterium into the benzene ring. The rate of deuterium
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Scheme 8.1 Assembly of mono-C-glycoside
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Scheme 8.2 Initial attempt to bis-C-glycosylation

incorporation (D%) was assessed by 1H-NMR to be 34% with 95% yield of 7-d1. 
When N, N, N ', N '-tetramethylethylene diamine (TMEDA) was used as an additive 
(1 equiv), the value of D% was increased to 50%. Using THF instead of Et2O as a  
solvent, it showed no any noticeable effect. In the end, we found that the use of a 
more strong base, i.e., t-BuLi, led to the optimal incorporation of a deuterium (84%) 
into 7 with a high yield.
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Scheme 8.3 Optimization for the ortho-lithiation conditions 

With successfully finding the optimal conditions, we re-examined the reaction of 
7 and lactone 5 (Scheme 8.4). The reaction via the ortho-lithiation (Et2O,  – 78 °C,  1 h)  
followed by the nucleophilic attacking to lactone 5 smoothly proceeded to give 10 
in 83% yield. Subsequently, the Lewis-acid promoted reduction of lactol 10 yielded 
C2-symmetrical bis-β-C-glycoside 11 in high yield (82%). 

Scheme 8.4 Assembly of bis-C-glycoside
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8.6 Introduction of the Side Chain Unit 

Next, we investigated the introduction of the side chain, constructing the fully 
substituted (hexa-substituted) benzene ring. To evaluate the reactivity, we exam-
ined model reactions of bis-C-glycoside 11 with various electrophiles (Fig. 8.7). 
First, the deuterium incorporation experiment was conducted. Treatment of 11 with 
t-BuLi (– 78 °C, 1 h) followed by adding methanol-d1 resulted in a complete incorpo-
ration of deuterium. As a comparison experiment, we also attempted the reaction with 
ortho-dimethoxybenzene derivative 13, resulting in a poor incorporation of deuterium 
(15%). Comparing these two results proves that fluorobenzene is particularly effec-
tive in generating the corresponding aryl lithium species. We next attempted the 
reaction of the bis-C-glycosyl trifluorobenzene derivative 11 with various carbon 
electrophilic units. The use of N,N-dimethylformamide (DMF) as an electrophile 
gave the corresponding aldehyde 12 (R = CHO) in 80% yield, while the reaction with 
N,N-dimethylacetamide (DMA) led to no reaction. Using acetic anhydride (Ac2O) 
also showed poor reactivity, recovering 11. In contrast, ethyl acetate as an elec-
trophile gave the acetylated product 12 (R = Ac) in 31% albeit with 50% recovery of 
the starting material 11. These results suggested that the competitive deprotonation 
inevitably occurred at a α-position of the carbonyl group in the electrophile or the 
C-acylated product.

Based on these results, we then attempted to react with the α,β-unsaturated amide 
with the carbon units necessary for the total synthesis of 1 (Scheme 8.5). Pleasingly, 
generation of the lithiated species from 11 followed by in situ trapping with Weinreb 
amide 14 [32, 33], which has no acidic α-proton of the carbonyl group, led to the 
acylated product 15 in 80% yield along with a partial recovery of 11 (15%). This 
reaction serves as an effective approach for building chalcone skeletons that were 
once accessed primarily by Claisen–Schmidt condensation between benzaldehyde 
derivatives and acetophenones [34].

8.7 Substitution of Fluorine Atoms to Oxygen Atoms 
on the Benzene Ring 

Having prepared a key synthetic intermediate 15 possessing all the carbon chains 
necessary for the synthesis of the target natural product, we next investigated SNAr 
reactions to replace three fluorine atoms into three oxy-functions (Scheme 8.6). One 
of the possible ways to achieve this goal is to utilize a conventional SNAr reaction, 
in particular, with fluoroarenes that should have an electron-withdrawing substituent 
at the ortho-position (Eq. 1 in Scheme 8.6) [35]. However, we could demonstrate a 
similar reaction by employing 1,3–5-trifluorobenzene derivative with no any EWG 
substituents at ortho-positions.

As a feasibility study, we evaluated the reactivity of 1,3,5-trifluorobenzene (2) in  
the SNAr reaction (Scheme 8.7), and, thus treatment of 2 with sodium benzyloxide
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Fig. 8.7 Reaction of bis-C-glycoside 11 via ortho-lithiation
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Scheme 8.6 Conventional SNAr reaction of fluoroarenes with a EWG group at the ortho-position

smoothly proceeded at 0 °C to give mono-alkoxide 16. Other substituted products 
proceeded over reactions were not detected. Furthermore, the repeated SNAr reaction 
with BnONa also worked well but needed a relatively high temperature (25 °C), 
giving dialkoxide 17 in high yield. The third replacement of the one remaining 
fluorine atom was possible only if the reaction temperature was raised above 100 °C. 

With these promising results in mind, we extended our investigation to bis-C-
glycosyl trifluorobenzene 11, which has no electron-withdrawing group at an ortho-
position to fluorine atoms (Scheme 8.8). Despite the presence of excess sodium 
methoxide, no reaction occurred initially. However, upon elevating the reaction 
temperature from 0 °C to 100 °C, the reaction proceeded step-wise manner. The 
reaction was terminated before complete exchange of all three fluorine atoms, giving 
only a disubstituted product 19. Subsequent attempts to further advance the reaction 
by extending the reaction time at 100 °C did not yield any additional products.

Scheme 8.7 Step-wise SNAr reaction of 1,3,5-trifluorobenzene 
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Scheme 8.8 Initial attempt of SNAr reaction from bis-C-glycosyl trifluorobenzene 11 

8.8 Pyran-Ring Formation and the Following Replacement 
of Fluorine Atoms by SNAr Reaction 

Next, hoping to facilitate the reaction, we tried the reaction using the acylated 
substrate 15 with the aim of replacing all fluorine atoms with alkoxy or hydroxy 
groups (Scheme 8.9). Unfortunately, this approach proved unfruitful, and the desired 
trialkoxide A could not be obtained. Unexpectedly, we identified an unexpected inter-
molecular oxa-Michael addition followed by the retro-aldol condensation and/or the 
carbon–carbon bond cleavage between the C4 and C10 positions, leading to unde-
sired compounds B and C derived from mono- and di-alkoxylated intermediates, 
respectively. We reasoned that these reactions occurred due to the presence of a 
carbonyl group unable to be conjugated to the benzene ring because of steric repul-
sion between the two ortho substituents as well as the strong electron-withdrawing 
properties of the aryl fluoride unit. Consequently, the hard nucleophiles, such as –OH 
or –OR, employed in the above reactions, reacted preferentially at hard electrophilic 
reaction sites.

To circumvent these unfavorable reactions, we systematically screened potential 
oxygen nucleophiles and identified the anion of oxime as a promising candidate 
(Scheme 8.10). Consequently, achieving regioselective substitution of one of three 
fluorine atoms, we utilized the alkoxide generated from benzaldoxime and t-BuOK 
in THF at room temperature, yielding 20 in high yield [36, 37]. In contrast, the 
reaction led to the facile retro-aldol condensation of 15 when a powdered potas-
sium hydroxide without benzaldoxime was employed in THF at room temperature. 
Notably, no formation of di- and tri-hydroxylated products under these reaction 
conditions were observed. The reaction proceeded stepwise [38], initially under-
going a nucleophilic attack of the alkoxide of the oxime (Ph–CH=N–O–) to form  
the corresponding oxime ether D, which subsequently allowed the deprotonation 
and the elimination of the phenolate from D, giving mono-phenol 20, poised for the 
flavone-ring formation.
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Scheme 8.9 Attempts at the SNAr reaction with the acylated bis-C-glycosyl trifluorobenzene 15

8.9 Endgame 

Having obtained a pivotal cyclization precursor, we progressed to accomplish the 
total synthesis (Scheme 8.11). The flavone skeleton was oxidatively constructed by 
employing I2 as a catalyst in DMSO at the heating conditions (140 °C), giving flavone 
20 in 90% yield [39]. The reaction proceeded via the electrophilic activation of the 
enone moiety by iodine, thereby forming the iodinated pyran-ring E. Subsequent 
elimination of HI leads to the flavone 20. Iodine is regenerated by the dehydrative 
oxidation of a hydrogen iodide by DMSO [40].

At the final stage, we investigated the substitution of the remaining two fluo-
rine atoms with hydroxy groups (Scheme 8.12). Pleasingly, flavone 21 successfully 
reacted with two moles of benzyl alkoxide [41]. The solvent choice was crucial at 
this juncture. When treating 21 with KOH and benzyl alcohol at the heating condi-
tions in 1,4-dioxane (88 °C, 2 h), the reaction proceeded to give bis-benzoxylated 
product 22 in high yield. However, the use of dipolar aprotic solvent, such as DMSO, 
DMF, or NMP unexpectedly suffered from ether cleavage of the incorporated alkoxy
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Scheme 8.10 Direct conversion of fluoroarene15 to the phenol 20
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group(s), i.e., –OBn, at C4’, C5, and C7 positions, forming mono- and di-hydroxy 
byproducts and dibenzyl ether. At this stage, the coplanarity of the carbonyl group 
with the benzene ring facilitated the nucleophilic substitution of the fluorine atoms 
by alkoxide at C5 and C7. 

At this stage, a rigorous 1H-NMR assignment of dialkoxide 22 was very difficult 
owing to the slow or restricted rotation around the C-glycosidic bonds. The signals 
became broad even at elevated temperatures on the NMR time scale (500 MHz) 
(295–373 K) [42]. Despite these challenges, we were delighted to complete the 
total synthesis by conducting hydrogenolysis of 22 employing ASCA-2® catalyst 
[ Pd(OH)2/C] in a mixed solvent of EtOH and EtOAc (room temperature, 12 h), 
affording vicenin-2 (1) in high yield (92%). All spectroscopic data ([α]D, 1H- and 
13C-NMR, IR, and HRMS) were confirmed to be identical to those of the reported 
data [43, 44]. 

8.10 Conclusion 

In summary, we have successfully accomplished the total synthesis of vicenin-2 (1), a 
bioactive bis-C-glucosyl flavonoid. This achievement was made through the bis-β-C-
glucoside formation of 1,3,5-trifluorobenzene followed by the replacement of three 
fluorine atoms with oxygen-atom substituents. The current approach establishes a 
versatile synthetic pathway for bis-C-glycosyl natural products. Furthermore, our 
research not only propels the field forward but also unveils new possibilities for 
innovative synthetic organic applications involving fluoroarenes, especially in the 
synthesis of complex natural products.
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Chapter 9 
Collective Total Synthesis 
of Secologanin-Related Natural Products 

Jukiya Sakamoto and Hayato Ishikawa 

Abstract We have been interested in the reactivity of secologanin, which is trans-
formed into more than 3000 natural products in nature and have been working on the 
bioinspired synthesis of several natural products using secologanin derivatives. In this 
chapter, we describe the total synthesis of secologanin using an organocatalytic reac-
tion and the collective and divergent total synthesis of glycosylated monoterpenoid 
indole alkaloids and hetero-oligomeric iridoid glycosides through biogenetically 
inspired transformations from secologanin derivatives. 

Keywords Bioinspired reaction · Collective synthesis · Monoterpenoid indole 
alkaloid · Hetero-oligomeric iridoid glycosides · Organocatalytic reaction 

9.1 Introduction 

In the 2020s, natural products remain as attractive as ever as leads in drug discovery 
[1]. Novel natural products are constantly being discovered in plants, fungi, and 
marine organisms, investigated for their biological activities, and reported as candi-
date compounds for drug discovery. In recent years, analytical techniques such as 
NMR and X-ray crystallography have made great progress, making it possible to 
determine the structure of even very small amounts of natural products. As a result, 
reports of the isolation of new natural products have increased dramatically, but 
their limited supply makes detailed biological evaluation more difficult. Therefore, 
the importance of effective and scalable total synthesis of natural products that can 
only be isolated in small amounts from nature is increasing [2]. In addition, “col-
lective synthesis” and “divergent synthesis,” in which multiple natural products are 
synthesized from the same intermediate, are attracting attention to prepare libraries 
of natural products as candidates for drug discovery [3].
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Natural products are synthesized in living organisms (biosynthesis). Although 
biosynthetic pathways in nature are being elucidated daily, countless synthetic path-
ways remain to be elucidated. A fuller understanding of these pathways will better 
enable their reproduction chemically, which will enable the supply of natural products 
and their analogs. This underscores the importance of an understanding of biosyn-
thesis among organic chemists. Many biomimetic total syntheses of natural products 
have been reported [4]. However, most of them mimic the biosynthetic pathway in 
only one step, and almost no examples of syntheses mimic the entire biosynthesis. 
Thus, reproducing a biosynthesis in flasks from the same intermediate to afford 
a “collective” and “divergent” total synthesis would be compelling. The resulting 
natural product library would then be evaluated for biological activity and developed 
into the leads of drug discovery. 

This chapter details the collective total synthesis of secologanin-related natural 
products following the biosynthetic tree diagram, the numerous challenges we faced, 
and the solutions we devised [5]. 

9.2 Biosynthetic Tree Diagram from Secologanin 

In the biosynthesis of some natural products, one key molecule leads to different 
scaffolds, branching out like a tree diagram from one molecule. Secologanin (1) 
is a monoterpene biosynthesized in plants (Fig. 9.1) [6]. Despite its small size, it 
has three consecutive chiral centers in a multi-substituted dihydropyran ring and 
several reactive functional groups. This molecule is biosynthesized within a variety 
of plants, including the Apocinaceae, Caprifoliaceae, Rubiaceae, and Loganiaceae 
families, and further diverges into more complex natural products. For example, these 
include monoterpenoid indole alkaloids (MTIAs, e.g., rubenine (2), cymoside (3), 
and ophiorine A (4)), of which a total of more than 3000 have been reported [7], and 
hetero-oligomeric iridoid glycosides (HOIGs, e.g., cantleyoside (5) and dipsanoside 
A (6)) with molecular weights exceeding 700 [8]. In particular, the biosynthesis of 
MTIAs is a well-known topic and is discussed in natural product chemistry textbooks 
[7a–e]. Theoretically, if the biosynthetic pathway that begins with secologanin (1) 
could be reproduced in a flask, a vast number of natural products could be easily 
synthesized. In fact, following the synthesis of 1, which will be described later, we 
achieved the synthesis of 39 natural products including 2–6 in only 4 years. These 
natural products are also expected to be bioactive, since many plants containing these 
natural products are used as folk medicines.
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Fig. 9.1 Secologanin and its related natural products 

9.3 Concise and Scalable Total Synthesis of Secologanin 

9.3.1 Retrosynthetic Analysis of Secologanin 

For the collective total synthesis of secologanin-related natural products, a large 
supply of 1 as a starting material was required. When we began our total synthesis in 
2017, no total synthesis of this molecule had been reported, despite its prominence 
[9]. 

Our retrosynthetic analysis is shown in Scheme 9.1. We planned to construct the 
aldehyde of 1 using a hydroboration/oxidation the alkyne. The terminal double bond 
would be installed by sulfoxide elimination. We would set the two anomeric centers 
using a Schmidt glycosylation. The key intermediate, dihydropyran 8, would be
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Scheme 9.1 Retrosynthetic analysis of secologanin 

constructed using a thioester-selective reduction (Fukuyama reduction) of 10 [10], 
followed by a spontaneous cyclization reaction from bisaldehyde intermediate 9. We  
hypothesized that the chiral centers α and β to the aldehyde of 10 could be set using 
an organocatalytic asymmetric Michael reaction using ene-yne compound 11 and 
the sulfide-containing aldehyde 12. The anticipated synthetic challenges at this stage 
were (1) stereoselective construction of the bisacetal structure during installation of 
the β-glucose, (2) thioester-selective reduction in the presence of several reduction-
sensitive functional groups (alkyne, ester, aldehyde, β-acrylate residue, and acetal), 
(3) induction of stereoselectivity in an organocatalytic asymmetric Michael reaction. 

9.3.2 Stereoselectivity of Organocatalytic Michael Reaction 

The total synthesis of secologanin (1) was initiated based on this retrosynthetic 
analysis. The first key reaction was the organocatalytic asymmetric Michael reaction 
(Fig. 9.2). Initially we prepared the Michael acceptor 16 with an alkyl side chain 
derived from a malonic acid half thioester and carried out an asymmetric Michael 
reaction with butanal as a model substrate using a diphenylprolinol silyl ether catalyst 
14 (Fig. 9.2b). The reaction proceeded smoothly, and the Michael adduct 17 was 
obtained in high yield and high enantioselectivity. However, the product was not 
the desired anti-adduct. Instead, we observed the syn-adduct using many reaction 
conditions, including using various additives. Isomerization of the products was also
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investigated without success. Usually, in the transition state of asymmetric Michael 
reactions using secondary amine catalysts, the largest functional group is in an anti-
relationship with the catalyst, and the relatively less bulky functional group is in a 
gauche-relationship. Thus, in the case of substrate 16, the catalyst and alkyl side 
chain are in an anti-relationship, and the syn adduct is preferred as the product. 
The solution to the problem of diastereoselectivity was to change the alkyl side 
chain of substrate 16 to an alkyne. This is because alkynes are sp hybridized and 
are sterically less bulky than sp2 and sp3 centers (sp < sp2 < sp3). Therefore, when 
substrate 13 with an enyne motif is employed, the alkyne sidechain is sterically 
less bulky and is in a gauche-relationship with the catalyst, which favors the anti-
adduct (Fig. 9.2a). When substrate 13 (prepared in one step from commercially 
available 3-trimethylsilylpropynal by Knoevenagel condensation) and butanal were 
stirred with 3 mol% of catalyst 14, the  anti-adduct was obtained as the predominant 
diastereomer. A similar anti-selective Michael addition reaction using an alkyne as a 
substrate was reported by Hong et al. [11]. Although substrate 13 is an E/Z mixture, 
the stereochemistry was completely controlled, indicating that the methoxycarbonyl 
and ethyl thiocarbonyl groups are not distinguished in the transition state. 

9.3.3 Scalable Total Synthesis of Secologanin 

With optimized conditions for the asymmetric Michael reaction in hand, we moved 
on to the total synthesis of 1 (Scheme 9.2). We used a sulfide-containing aldehyde 
12 to enable installation of a terminal double bond in the late stage. The reaction
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proceeded with very high stereoselectivity, and anti-adduct 10 was obtained. Subse-
quently, a thioester-selective reduction reaction developed by Fukuyama et al. was 
attempted. This reaction showed excellent functional group selectivity and was not 
impacted by the presence of the sulfide seven atoms from the center being reduced. 
Thus, the thioester moiety was reduced to an aldehyde selectively, resulting in the 
formation of bisaldehyde intermediate 9 in situ. The 3-oxopropanate motif in 9 
was readily converted to an enol by tautomerization and cyclized to dihydropyran 8 
spontaneously (76% over two steps). The glycosylation reaction, which had raised 
concerns about stereoselectivity, worked well with the standard Schmidt glycosyla-
tion reaction [12]. Thus, when compound 8 was treated with imidate-functionalized 
glucose tetraacetate 18 in the presence of BF3-Et2O, the stereochemistry of the newly 
generated bisacetal moiety was completely controlled, and the desired glycosylated 
compound 7 was obtained as a single isomer. The hemiacetal of 8 is in rapid equi-
librium, and the sterically preferred α-oriented hydroxyl group reacts with glycosyl 
donors selectively. In addition, the glycosyl donor reacts selectively on the β-face 
due to the neighboring effect of the acetyl group at the C2 position. This kinetic-
controlled stereoselectivity dramatically improved the efficiency of the total synthesis 
of 1. Substrate 20 for hydroboration was then prepared by removing the silyl group 
that had been attached to the terminal alkyne. When tetrabutylammonium fluoride 
(TBAF) was used in this reaction, the acetyl groups on the glucose chain were 
removed by the water contained in the reagent. Therefore, tetrabutylammonium diflu-
orotriphenylsilicate (TBAT), which can be handled under anhydrous conditions, was 
used.

What remained for the chemical transformation from compound 20 to 1 was the 
construction of the aldehyde by hydroboration/oxidation, the construction of the 
terminal alkene by elimination, and the removal of the four acetyl groups by hydrol-
ysis. The non-catalyzed hydroboration reaction of terminal alkynes did not proceed 
with boron reagents such as 9-BBN. After several experiments with derivatives, it 
was clear that the reaction was inhibited by the presence of glycosidic chains. The 
problem might have been that the boron reagent could not approach the reaction 
site due to steric hindrance. Finally, the addition of a catalytic amount of Schwartz’s 
reagent promoted this reaction efficiently (Scheme 9.3) [13].

In the subsequent oxidation reaction, under standard conditions, i.e., NaOH and 
H2O2 in water, the undesired removal of the acetyl groups from the sugar chain 
proceeded. Unexpectedly, with this substrate 20, the oxidation reaction proceeded 
without the addition of sodium hydroxide, which is usually required. In addition, 
these reaction conditions not only prevented the undesired removal of the acetyl 
groups but also allowed the oxidation of the sulfide necessary for the next elim-
ination reaction to proceed. Then, sulfoxide elimination of 21 was promoted by 
heating in the presence of trimethyl phosphate to provide the key intermediate secolo-
ganin tetraacetate (22) in our bioinspired total synthesis [14]. The total yield of 22 
was 25% on a decagram scale over seven steps from commercially available 3-
trimethylsilylpropynal. Finally, the acetyl group was removed by hydrolysis accom-
panied by temporary protection of the aldehyde to achieve the first total synthesis of 
secologanin (1) [5a].
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Scheme 9.2 Dihydropyran ring construction and stereoselective sugar chain insertion
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9.4 Collective Total Synthesis of Glycosylated 
Monoterpenoid Indole Alkaloids 

As described in the introduction, secologanin (1) is an important constituent of the 
monoterpenoid indole alkaloids (Scheme 9.4) [7]. In biosynthesis, 1 is converted to 
5-carboxystrictosidine (23) and strictosidine (24) by an enzymatic Pictet–Spengler 
cyclization with tryptophan or tryptamine. Intermediates 23 and 24 lead to more 
than 3000 alkaloids. Most of them involve the cleavage of the sugar chains of 23 and 
24, but some alkaloids have been found in which the sugar chains are maintained. 
We have thus far achieved the total syntheses of 33 MTIAs using this bioinspired 
strategy. In this chapter, we present the total synthesis of glycosylated MTIAs. 

9.4.1 Total Syntheses of 5-Carboxystrictosidine and Rubenine 

Following the biosynthesis, we first aimed for the first asymmetric total synthesis 
of 5-carboxystrictosidine (23) (Scheme 9.5). Thus, the Pictet–Spengler reaction was 
performed with synthetic 22 and tryptophan methyl ester (25) in the presence of 
trifluoroacetic acid (TFA) [15]. The reaction proceeded quantitatively, and the stere-
ochemistry at the C3 position was controlled as the S configuration with moderate 
selectivity. After hydrolysis of the four acetyl groups and the methyl ester, the total 
synthesis of 5-carboxystricrosidine (23) was achieved. The NMR of 23, which has 
an amino acid moiety, is very sensitive to pH, and careful adjustment of pH was 
necessary to match it with the NMR of the natural product.

The next synthetic target was rubenine (2), which has six contiguous rings, one 
of which is a strained seven-membered ring [16]. For the key reaction, we decided 
to use a bioinspired reaction in which rings are formed sequentially by a domino 
sequence. The aldehyde of key intermediate 22 was converted to acetal 27 using 
1,2-phenylenedimethanol (26), which can be removed by hydrogenation. Stereos-
elective epoxidation of the terminal double bond of compound 27 was extremely 
difficult. Because of its steric hindrance, the terminal double bond is unreactive. In
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Scheme 9.5 Total syntheses of 5-carboxystrictosidine and rubenine

addition, in some cases, the double bond of the β-acrylate residue was oxidized. 
After several attempts, we found that treatment with mCPBA using 1,1,1,3,3,3-
hexafluoroisopropaol (HFIP) as the solvent resulted in site-selective epoxidation and 
gave a slight preference for a product with the desired stereochemistry. mCPBA might 
be activated in situ by HFIP which is a weakly acidic solvent [17]. The subsequent 
hydrogenation reaction converted the acetal to an aldehyde to obtain compound 28. 
Next, our optimized Pictet–Spengler reaction conditions were applied to compound 
28. The reaction proceeded stereoselectively (C3S:C3R = 2.5:1). Furthermore, when 
the crude mixture of intermediate 29 was loaded on silica gel for purification, the
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cyclization reaction from the secondary amine at the N4 position proceeded. Thus, 
the N4 position of the C3S intermediate 29 attacked the C18 position, and the desired 
seven-membered ring product 30 was obtained as the major product in a 60% yield 
over two steps. On the other hand, the six-membered ring intermediate resulting from 
the attack to the C19 position was converted to the byproduct 31 via lactonization 
(8%). Finally, after the removal of the acetyl groups of 30, the crude material was 
heated in the presence of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) to construct the 
lactone ring, achieving the first total synthesis of rubenine (2) [5a]. Note that the 
reaction proceeded without any problem with 1,8-diazabicyclo[5.4.0]undec-7-ene 
(DBU) in the final step, but it was difficult to separate the highly polar product 2 
and DBU. On the other hand, DBN could be efficiently removed by heating under 
reduced pressure. 

9.4.2 Discovery of Diastereoselective Pictet–Spengler 
Cyclization and Total Syntheses of Strictosidine 
and Strictosamide 

Next, the total synthesis of strictosidine (24), another biosynthetically important 
intermediate, was commenced (Scheme 9.6). For the completion of this total 
synthesis, a Pictet–Spengler cyclization reaction controlling the C3 position was 
required. We initially considered using an asymmetric Pictet–Spengler reaction 
catalyzed by a chiral phosphoric acid or thiourea but decided not to invest in this 
line of research due to the likely challenge introduced by the presence of many 
hydrogen-bond-accepting functional groups such as the sugar ring in secologanin 
derivative 22. The moderate diastereoselectivity observed in the total synthesis of 
5-carboxystrictosidine (23) with tryptophan derivative 25 inspired us to use α-
cyanotryptamine (32) in the total synthesis of 24. Surprisingly, the simple tryptophan 
derivative 32 was not previously reported, however, it could be synthesized from tryp-
tophan in three steps (see details in Ref. [5b]). In addition, crystals of 32 were stable 
to storage in air at room temperature.

First, the Pictet–Spengler reaction was performed using secologanin derivative 22 
and (S)-32 derived from l-tryptophan. The reaction proceeded quickly (3 min) and 
the desired cyclization was obtained quantitatively. Unexpectedly, the diastereose-
lectivity was poor (3S:3R = 1.5:1). On the other hand, when (R)-32 derived from d-
tryptophan was employed, the diastereoselectivity was dramatically improved (3S:3R 
⇒10:1) while maintaining its high reactivity. The cyano group at C5 of the cyclized 
product 33 was removed by treatment with acetic acid/methanol followed by reduc-
tion of the resulting imine in situ to give strictosidine tetraacetate (34) (more  than 1 g  
of 34 was prepared). This two-step sequence is an alternative method to strictosidine 
synthase, which completely controls the C3 stereochemistry in the biosynthesis [18]. 
Finally, the removal of the acetyl groups of the sugar chain was performed to achieve
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the total synthesis of the natural product 24. The total yield of 24 was 20% over 10 
steps [5b]. 

The determination of the stereochemistry of the C3 position generated by the 
Pictet–Spengler reaction was challenging at the stage of compound 33. Finally, we 
determined the stereochemistry at the C3 position after preparing a rigid penta-
cyclic natural product, strictosamide (35), via a two-step transformation from 34. 
Comparison of CD spectra of 35, which strongly reflect the stereochemistry of the 
C3 position, proved to be an extremely useful tool (For substrates with an open C 
ring, such as compound 24, comparison of CD spectra is known to be ineffective in 
determining the stereochemistry at the C3 position) [19]. 

9.4.3 Mechanistic Insight into the Pictet–Spengler Reaction 
Diastereoselectivity 

We wanted to know why different stereoselectivity was observed with α-
cyanotryptamine and with tryptophan methyl ester. We also wanted to know which 
structure motif of secologanin was required to induce diastereoselectivity. Therefore, 
the Pictet–Spengler reaction was performed with various derivatives of secologanin 
to observe the diastereoselectivity in each product (Fig. 9.3, syntheses of secologa-
nine derivatives; see ref [5b]). The reaction was first performed with secologanin
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methyl ether. The diastereoselectivity of the product was very high, and it was clear 
that the sugar chain did not affect the selectivity (compound 36). Similarly, the 
terminal double bond at C18–19 had no effect on selectivity (compound 37). On 
the other hand, diastereoselectivity decreased to 2.7:1 when the methoxycarbonyl 
group at C22 was removed (compound 38). Clearly, the carbonyl group improved 
the diastereoselectivity. The influence of the stereochemistry at the C15, 20, and 
21 positions of secologanin on diastereoselectivity was studied. No decrease in the 
diastereoselectivity of the Pictet–Spengler reaction was observed when the isomers at 
C20 and C21 were used (compounds 39, 40, and 41). On the other hand, the diastere-
oselectivity was lost when the reaction was carried out using the stereoisomer at C15. 
In summary, it is clear that the relative configuration of C5 (cyano group) and C15 
and the presence of the carbonyl group at C22 are essential for diastereoselectivity 
of this Pictet–Spengler reaction. 

In addition to the above experiments, the transition states in each substrate were 
analyzed using DFT calculations (Fig. 9.4). When (R)-α-cyanotryptamine was used, 
a unique eight-membered ring was formed via a hydrogen bond between the proton on 
the iminium ion and the carbonyl group at C22. Then, nucleophilic attack from indole 
came from the β-face on the eight-membered ring. On the other hand, when trypto-
phan methyl ester was used as a substrate, the proton of the iminium ion hydrogen
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Fig. 9.4 Calculated transition states of diastereoselective Pictet–Spengler reactions 

bonded with the methoxycarbonyl group of the adjacent tryptophan, forming a five-
membered ring. Thus, cyanotryptamine and tryptophan form hydrogen bonds at 
different sites, and the reactions proceed through distinct transition states [5b]. 

9.4.4 Bioinspired Total Synthesis of Cymoside 

Cymoside (3), a monoterpenoid indole alkaloid found in Chimarrhis cymosa (Rubi-
aceae) in 2015, contains an interesting hexacyclic skeleton that includes a unique 
propellane-type structure (Fig. 9.1 and Scheme 9.7) [20]. Furthermore, it contains 
eight asymmetric centers, including three contiguous quaternary chiral centers, not 
including the sugar moiety. In addition, the natural product 3 is an extremely rare 
molecule with a tris-acetal structure that includes sugar chains. Its total synthesis 
appears daunting due to the crowded caged structure. However, when we considered 
the biosynthesis of 3, we realized that this molecule is an oxidized derivative of 
strictosidine (24). In 2020, the Vincent group achieved a total synthesis of 3 with 
a biogenetically inspired strategy similar to ours [21]. Scheme 9.7 shows a very 
simple conversion from a derivative of 24 to 3 following its biosynthetic pathway. 
To realize the proposed bioinspired reaction, a stereoselective insertion of a hydroxyl 
group at the C7 of the indole ring was required. Strictosidine derivative 33, bearing 
a cyano group, was chosen as a substrate. In addition, we avoided protecting the 
secondary amine at N4 to match more closely the biosynthesis. After several trials, 
the desired domino reaction proceeded using pretreatment of substrate 33 with TFA 
followed by adding mCPBA. Thus, the otherwise oxidizable amine at the N4 posi-
tion was protected by TFA by forming a salt in situ. The resulting TFA salt forms 
a hydrogen bonding network that allows mCPBA to approach from the β-face of 
the indole and insert a β-OH at C7 selectively [22]. The resulting intermediate 44 
has an α-hydroxyimine moiety and a β-acrylate moiety, and a formal [3+2] cycliza-
tion reaction proceeded. The reaction was initiated by stereoselective oxa-Michael 
addition from the 7-OH to C17 followed by a stereoselective Mannich reaction from 
C16 to C2 to form the rigid dihydrofuran ring containing four contiguous chiral
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Scheme 9.7 Total synthesis of cymoside 

centers. Subsequently, the unique tris-acetal structure was constructed. Finally, the 
total synthesis of 3 was achieved through decyanation and removal of the acetyl 
groups. This 11-step synthesis was accomplished with an overall yield of 7% [5b]. 

9.4.5 Bioinspired Total Synthesis of Ophiorines A and B 

Ophiorines A (4) and B (48) are pentacyclic alkaloids from Ophirrhiza species (Rubi-
aceae) (Fig. 9.1) [23]. Structurally, they belong to β-carboline-type MTIAs which 
are aromatized on the C-ring, and they have a bicyclo ring structure containing an 
N,O-acetal moiety. Furthermore, they are rare natural products that form a unique 
intramolecular counterionic structure consisting of a pyridine ring and a carboxylic 
acid in the same molecule. Since its isolation in 1985, there have been no examples of 
total synthesis or synthetic studies until we completed them. Initially, oxidation of the 
C-ring of strictosidine tetraacetate (34) was examined to construct the β-carboline 
motif. Various oxidants such as DDQ and KMnO4 were examined, but the sugar
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chains and β-acrylate residue did not survive under the reaction conditions. There-
fore, we decided to use the elimination reaction of a cyano group of compound 
33 (Scheme 9.8). Thus, when 33 was treated with acetic acid in methanol, the 
expected decyanation followed by spontaneous air oxidation proceeded to construct 
the desired β-carboline 46 (lyaloside tetraacetate) (60 h, 83%). Interestingly, treat-
ment of compound 33 with only acetic acid does not afford decyanation; methanol 
was essential for the decyanation reaction, although the reason is unclear. Successful 
decyanation was achieved under Brønsted acid conditions, but the reaction required 
more than 2 days. Therefore, we investigated Lewis acid conditions. Inexpensive 
silver nitrate worked well, yielding compound 46 in 94% yield in 20 h. Removal of 
the four acetyl groups of 46 provided lyaloside (47) in excellent yield. A conversion 
from the natural product 47 to ophiorines A and B using the bioinspired reaction 
was achieved in water. In addition, since natural products are ionic molecules, the 
addition of salt as a stabilizer was examined. Thus, when the highly polar compound 
47 was heated in water in the presence of ammonium acetate, a bioinspired Michael 
reaction proceeded, followed by hydrolysis of the methoxycarbonyl group, resulting 
in ophiorines A (4) and B (48) with an intramolecular counterionic structure (4:48 
= 1.7:1, 75%, 11 steps total) [5h]. 
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9.5 Collective Total Synthesis of Hetero-Oligomeric Iridoid 
Glycosides 

The dried root of Dipsacus asper (Caprifoliaceae) is a well-known folk medicine 
used for bone maladies such as fractures, osteoporosis, and rheumatoid arthritis [24]. 
In addition, these oligomers are expected to be biologically active components of 
folk medicine [8]. To synthesize many of these HOIGs, it was necessary to prepare 
large quantities of loganin or its derivatives. Loganin (49) is found in plants of the 
families Rutaceae, Caprifoliaceae, Loganiaceae, Gentianaceae, and Apocynaceae 
[25]. It is a representative of iridoid glycosides with various biological activities 
such as anti-inflammatory activity [26]. In biosynthesis, loganin (49) is the precursor 
of secologanin (1) and forms a terminal double bond and an aldehyde by enzymatic 
oxidative cleavage at C7-8 positions [27]. Having already succeeded in the gram-scale 
synthesis of 1, we planned to synthesize 49 by the reverse-biosynthetic strategy, i.e., 
the reductive ring-closing reaction of 1. If this strategy succeeded, we could supply 
both 1 and 49, to allow the efficient collective total synthesis of HOIGs (Scheme 9.9). 

9.5.1 Total Syntheses of Loganin and Cantleyoside 

We next undertook the synthesis of 49 using reductive ring closure (Scheme 9.10). 
Thus, secologanin tetraacetate (22) was treated with various one-electron reductants. 
After several trials with metal reductants, we found SmI2 was a suitable reductant 
with good diastereoselectivity to provide cyclized products in 93% yield (dr at C7 
= 3:1; loganin tetraacetate (50) was isolated in 70% yield). In this reaction, the 
stereochemistry at C8 was controlled completely (formation of the other diastereomer 
would involve a steric clash by positioning the terminal olefin methylene over the 
dihydropyran ring). 50 was successfully converted to natural product loganin (49) 
via solvolysis.

Once the total syntheses of secologanin (1) and loganin (49) were completed, 
cantleyoside (5) was chosen as the next synthetic target. Cantleyoside (5) is a
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heterodimeric iridoid glycoside with a C7 secondary alcohol of 49 and a C11 
carboxylic acid of 1 connected via an ester. To accomplish this, we synthesized 
secologanic acid derivative 51 from compound 22. First, we converted the alde-
hyde of 22 to an acetal with ethylene glycol, followed by hydrolysis of the acetyl 
and methoxycarbonyl groups and re-acetylation of the sugar chain to give 51 in 
high yield. The dehydration-condensation reaction of compounds 50 and 51 was 
accomplished by heating with EDCI and DMAP. The acetal of the resulting dimeric 
compound was subsequently cleaved to an aldehyde to afford cantleyoside octaac-
etate (52). The esterification reaction requires four of the five alcohols of loganin 
to be protected, with only C7 exposed. Although naturally occurring loganin (49) is  
commercially available, selectively distinguishing the C7 alcohol from the glucosyl 
alcohols was not a chemically viable approach. Thus, a reductive cyclization reaction 
of 1 was essential for the total synthesis of 5. 

The first total synthesis of cantleyoside (5) was achieved by removing the acetyl 
groups from compound 52 (total 11 steps via 50, total yield 12%).
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9.5.2 Bioinspired Total Synthesis of Dipsanoside A, 
Dipsaperine, and (3R,5S)-5-Carboxyvincosidic Acid 
22-Loganin Ester 

Many natural products are derived from cantleyoside (5) (Fig. 9.1 and Scheme 9.11). 
For example, dipsanoside A (6) is a dimer of  5 derived from an aldol condensation. 
We corrected the stereochemistry of 6 based on our synthesis; see details in ref 5f 
[8c]. Dipsaperine (53) and (3R,5S)-5-carboxyvincosidic acid 22-loganin ester (54) 
are derived from a Pictet–Spengler condensation with 5 and tryptophan, and they 
are diastereomers at C3. Recently, aldol condensations mediated by amino acids 
such as proline have been extensively investigated [29]. Sometimes, the structures 
of certain natural products offer clues to the biosynthesis of other natural products. 
The structures of 53 and 54 offer the tantalizing clue that 6 could be derived from 
a tryptophan-mediated aldol reaction of 5. Based on our strong interest in these 
biosynthetic pathways, we decided to test chemically whether this pathway was 
viable. Indeed, when one equivalent of l-tryptophan and 52 were stirred in DMF for 
4 days, the anticipated E-selective aldol condensation reaction proceeded, yielding 
dipsanoside A hexadecaacetate in 81% yield. After hydrolysis, the first total synthesis 
of dipsanoside A (6) was achieved (total 12 steps, total yield 8%).

On the other hand, when compound 52 and l-tryptophan methyl ester (25) were  
stirred in the presence of TFA, the Pictet–Spengler reaction proceeded to give the 
desired cyclized product in 98% yield (3S:3R = 2:1). After a similar hydrolysis, the 
first total syntheses of 53 and 54 were achieved. 

In the above syntheses, tryptophan mediates an aldol condensation under neutral 
conditions and behaves as a substrate in the Pictet–Spengler reaction under acidic 
conditions. We suspect that this is similar to the events occurring in the actual biosyn-
thesis. Inhibition of the receptor activator of nuclear factor-κB ligand (RANKL)-
induced formation of multinuclear osteoclasts was found in the synthetic 6, 53, and 
54 (IC50 value; 6 = 5.9 μM, 53 = 12.8 μM, 54 = 6.6 μM) [29]. In addition, these 
compounds were not cytotoxic. Therefore, these natural products may be responsible 
for the efficacy (bonesetting) in folk medicine [5f]. 

9.6 Conclusion 

We successfully achieved a collective total synthesis of 39 natural products, including 
glycosylated monoterpenoid indole alkaloids (MTIAs) and hetero-oligomeric iridoid 
glycosides (HOIGs) via bioinspired transformations, initiated by the first total 
synthesis of secologanin (1). The key strategy of our secologanin synthesis was 
a rapid and stereoselective construction of the secologanin scaffold through an 
anti-selective organocatalytic Michael reaction/Fukuyama reduction/spontaneous 
cyclization/Schmidt glycosylation sequence, and we obtained a key intermediate,
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secologanin tetraacetate (22), on a decagram scale in seven steps. First, Pictet– 
Spenglar cyclization with l-tryptophan methyl ester (25) or (R)-α-cyanotryptamine 
(32) using  22 proceeded via different transition states but in the same 3S stere-
oselectivity to give 5-carboxystrictosidine (23) and strictosidine (24), respectively. 
These biosynthetic intermediates of MTIAs were converted into complex alkaloids, 
including rubenine (2) and cymoside (3), via bioinspired transformation on the highly 
reactive secologanin reaction sites. Elimination of the cyano group, which had been 
installed from cyanotryptamine, and subsequent autoxidation rapidly constructed the 
β-carboline structure, and β-carboline-type glycosylated monoterpenoid indole alka-
loids including lyaloside (47) and ophiorines A (4) and B (48) were provided in the 
common synthetic route. On the other hand, loganin (49), the biosynthetic precursor 
of secologanin (1), was synthesized from 22 via a reverse-biogenetically inspired 
transformation (reductive cyclization). These iridoid monomers were condensed via 
hetero-oligomerization to HOIGs including dipsanoside A (6) and dipsaperine (53), 
and these larger natural products were found to inhibit RANKL-induced formation 
of multinuclear osteoclasts. 

Although these biogenetically inspired transformations are now one of the 
common strategies in the total synthesis of natural products, there are actually not 
many examples of derivation to different groups of natural products using a common 
intermediate. This is because of the difficulty of setting up and synthesizing key 
highly reactive intermediates. We were fortunate to encounter secologanin and were 
able to use it to efficiently construct a natural product library. It is our mission as 
synthetic organic chemists to continue to further extend the branches of the tree 
diagram. 
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Chapter 10 
Oxidative Phenolic Coupling Reaction/ 
Aza-Michael Reaction Strategy 
for the Synthesis of Complex Polycyclic 
Alkaloids 

Minami Odagi and Kazuo Nagasawa 

Abstract The synthesis of alkaloids featuring fused polycyclic frameworks has long 
attracted the interest of synthetic organic communities, owing to their great structural 
complexity and wide variety of biological activities. Indeed, a variety of strategies for 
synthesizing these alkaloids have been investigated over the years. Here, we present 
our innovative strategy for tahe construction of complex fused polycyclic frameworks 
via oxidative phenolic coupling reaction and subsequent regioselective intramolec-
ular aza-Michael reaction. We illustrate its practical application in synthetic studies 
of amaryllidaceae alkaloids, and hasubanan alkaloids. 

Keywords Dearomatization · Hypervalent iodine · Aza-Michael reaction ·
Alkaloids 

10.1 Introduction 

Fused polycyclic structures are found in many natural products, but although signif-
icant progress has been made in their synthesis, the development of efficient and 
practical strategies for constructing polycycles with adjustable substituents and func-
tional groups remains challenging [1–3]. Aromatic compounds based on benzene, 
toluene, and xylenes, derived from petroleum, are readily available as basic precur-
sors for synthesis. For example, aryl halides play a pivotal role in the synthesis of 
agrichemicals and pharmaceuticals via cross-coupling reactions [4, 5]. Neverthe-
less, although these readily available aromatic compounds are convenient starting 
materials for synthesizing biologically useful compounds with stereochemically
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rich scaffolds, their thermodynamic stability presents a challenge [6], and therefore, 
dearomatization reactions have been intensively explored [7, 8]. 

One of the most powerful dearomatization reactions is the oxidative dearom-
atization of phenols [9]. In particular, when phenols with attached nucleophiles 
are subjected to oxidants, such as hypervalent iodine reagent, dearomative oxida-
tive cyclization is proceeded. This process is a promising method for assembling 
natural products that possess polycyclic framework quickly [10–13]. The advan-
tages of this strategy include: (i) the widespread commercial availability of a variety 
of phenolic precursors, each featuring diverse substituents, (ii) the dearomatization 
reaction enables to the efficient construction of quaternary carbon centers, and (iii) 
the easy functionalization of the resulting dienones. Over the past few decades, there 
has been considerable research into the oxidative spirocyclization of phenol deriva-
tives with nucleophiles [14, 15]. Reactions involving a range of nucleophiles such as 
carboxylic acids, amines, and aromatic rings have been documented. Furthermore, 
syntheses of various natural products based on this dearomative spirocyclization 
strategy have been reported, establishing this method as a promising strategy for the 
construction of complex frameworks (Scheme 10.1) [16, 17]. 

Although oxidative phenolic coupling reactions of phenols with nucleophiles at 
the ortho-position to the para-position can efficiently construct fused ring structures, 
there are few reports describing this approach [18–21]. Moreover, phenol derivatives 
featuring the pendent nucleophiles in both ortho- and para-positions can be converted 
into complex fused polycyclic compounds by applying oxidative phenolic coupling 
reactions and subsequent intramolecular Michael reactions (Scheme 10.2). However, 
this strategy has not yet been applied to the synthesis of natural products. Therefore, 
we have studied the synthesis of alkaloids from phenols using an oxidative coupling 
reaction/aza-Michael reaction strategy. In this chapter, we summarize our recent 
progress with this strategy, focusing on its application to the synthesis of complex 
polycyclic alkaloids [22].

Scheme 10.1 
Representative examples of 
dearomative spirocyclization 
in natural product synthesis 
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Scheme 10.2 Overview of our strategy to construct complex polycyclic frameworks 

Fig. 10.1 Structure of (+)-gracilamine (1) 

10.2 Total Synthesis of (+)-Gracilamine 

10.2.1 (+)-Gracilamine 

(+)-Gracilamine (1) is an alkaloid isolated from the plant Galanthus gracilis, a  
member of the Amaryllidaceae family, by Ünver and Kaya in 2005 (Fig. 10.1) [23]. 
(+)-Gracilamine (1) possesses a highly functionalized fused polycyclic structure 
consisting of five rings, A–E. Compare to other members of the Amaryllidaceae 
alkaloids (2–4), it possesses a complex structure with seven stereogenic centers, one 
of which is a quaternary carbon at the C3a position. This unique structure of 1 is 
of great interest to synthetic chemists, and since its first total synthesis by Ma and 
co-workers in 2012 [24], nine total syntheses [25–31], including ours [32], have been 
reported [33]. 

10.2.2 Our Synthetic Plan of (+)-Gracilamine 

The synthetic challenge in the case of 1 is to efficiently construct contiguous stere-
ogenic centers while assembling a highly fused polycyclic ring system. As a starting 
point, our focus was on the stereochemistry of the C9a position. In our group, enan-
tioselective 1,2-type aza-Friedel–Crafts (aza-FC) reaction of aldimine 6 and sesamol 
(7) by using our guanidine–bisthiourea catalyst 5 has been developed to provide opti-
cally active amine 8 (Scheme 10.3) [34, 35]. We envisaged that this enantioselective 
1,2-type aza-FC reaction would provide a crucial breakthrough in addressing the
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Scheme 10.3 Enantioselective 1,2-type aza-Friedel–Crafts reaction catalyzed by guanidine– 
bisthiourea catalyst 

synthetic challenges of 1, namely to enable the stereoselective connection of the 
A-ring and E-ring, in addition to constructing the desired stereochemistry at the C9a 
position. 

We planned to synthesize (+)-gracilamine (1) by employing the aza-FC reaction, 
as depicted in Scheme 10.4. We envisioned that 1 could be obtained by constructing 
the D-ring from enone 9. The enone 9 would be obtained by constructing the C-
ring through a regioselective intramolecular aza-Michael reaction with the tricyclic 
dienone 10. We envisioned synthesizing the B-ring of 10, including the quaternary 
carbon at C3a, via a diastereoselective oxidative phenol coupling reaction of diaryl-
methylamine 11. The key issue in the oxidative phenol coupling reaction of 11 is 
whether the stereochemistry of C9a can be engaged for stereoselective construc-
tion of the C3a position. Diarylmethylamine 11, serving as the substrate for the 
oxidative phenol coupling reaction, can be obtained through the aforementioned 
enantioselective 1,2-type aza-FC reaction of aldimine 13 and sesamol (4). 

Scheme 10.4 Our synthetic plan for (+)-gracilamine (1)
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10.2.3 Preparation of Optically Active Coupling Precursor 19 
Based on Enantioselective 1,2-Type 
Aza-Friedel–Crafts Reaction 

First, the aza-FC reaction was investigated using imine 14 (Scheme 10.5). The reac-
tion of sesamol (4) with imine 3a at 20 °C in ether in the presence of catalyst 5 gave 
the aza-FC product 15 with 74% ee under the same conditions as described in our 
previous report. However, the reactivity of 14 was low due to the ortho-substituent, 
and the yield of 15 was only 33%. Therefore, we increased the reaction temperature 
to 40 °C and found that the desired aza-FC adduct 15 was obtained in 94% yield 
with 91% ee. In this organocatalytic reaction, the enantioselectivity-determining step 
is governed by entropy, and the enantioselectivity was improved by increasing the 
reaction temperature. The phenolic hydroxy group of the resulting 15 was converted 
to a trifluoromethanesulfonate group (16). The optical purity of 16 was improved 
to 99% ee by recrystallization from heated hexane. The C9a asymmetric carbon of 
(+)-1 was thus successfully constructed. Next, the phenolic coupling precursor of 19 
was synthesized. Ozonolysis of the allyl group of 16 and reduction of the resulting 
aldehyde with sodium borohydride provided alcohol 17 in 87% yield. The hydroxy 
group of 17 was mesylated with methanesulfonyl chloride in DMF followed by 
sodium azide to afford azide 18 in 80% yield. In this process, when the mesylation 
was carried out in dichloromethane, an elimination reaction took place to give the 
vinyl compound as the major product. By carrying out the mesylation in DMF, the 
elimination reaction of the mesyl group was suppressed and the subsequent azida-
tion could be achieved in a one-pot process. Then, the azide 18 was subjected to 
hydrogenolysis to remove the benzyl and triflate groups and reduce the azide group 
to an amine, and the resulting product was reacted with p-toluenesulfonyl chloride 
to give the precursor 19 for the oxidative coupling reaction.

10.2.4 Synthesis of the Tetracyclic Core Structure of 1 
by Oxidative Phenolic Coupling Reaction 
and Aza-Michael Reaction 

Oxidative phenolic coupling reactions using hypervalent iodine reagents were inves-
tigated with the coupling precursor 19 (Scheme 10.6). As a result, we found that 
dienone 20 with the desired configuration at C3a was obtained as a single isomer in 
80% yield by treatment with diacetoxyiodobenzene (PIDA) in HFIP [36]. In this reac-
tion, the orientation of the NHBoc group at the C9a position gives rise to two possible 
transition states, denoted as TS-1 and TS-2. In  TS-2, which yields diastereomer 21, 
the NHBoc group is directed in the pseudo-axial direction, leading to 1,3-diaxial 
repulsion with the side chain on the aromatic ring. Thus, it is expected that TS-1, 
which involves less steric hindrance, would be preferred, and indeed, the desired 
stereochemistry at C3a was predominantly formed.
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Scheme 10.5 Construction of the C9a stereogenic center and synthesis of the coupling precursor 
19

Scheme 10.6 Oxidative phenolic coupling reaction of 19 

Having synthesized the tricyclic dienone 20, we subsequently investigated the 
regioselective aza-Michael reaction (Scheme 10.7). We found that this reaction 
proceeded at the sterically less hindered C7a position with p-toluenesulfonic acid 
in dichloromethane, and the tetracyclic enone 22 corresponding to rings A, B, C, and 
E in  1 was obtained in 70% yield. Then, the reduction of the double bond in 22 was 
investigated. However, the yield was low and the reproducibility was poor, probably 
due to the poor solubility of enone 22. Thus, we attempted to change the protecting 
group of 22 to increase the solubility.
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Scheme 10.7 Regioselective aza-Michael reaction of 20 

Scheme 10.8 Changing the protecting group from Boc to Teoc 

After the deprotection of the Boc group of 19 by using hydrogen chloride 
in methanol, the 2-(trimethylsilyl)ethoxycarbonyl (Teoc) group was introduced at 
the resulting amine by using N-[2-(trimethylsilyl)ethoxycarbonyloxy]succinimide 
(Teoc-OSu, Scheme 10.8). We then carried out the oxidative coupling reaction of 
24, and dienone 25 with the desired configuration at C3a was obtained as a single 
isomer. Furthermore, the reaction of para-toluenesulfonic acid with 25 afforded the 
tetracyclic enone 26 in 82% yield via regioselective aza-Michael reaction at the C7a 
position. The resulting 26 was sufficiently soluble in various solvents, and subse-
quent reduction of the double bond of 26 by hydrogenation took place smoothly to 
give the ketone 27 quantitatively. 

10.2.5 Total Synthesis of (+)-Gracilamine by Constructing 
D-Ring Based on Intramolecular Mannich Reaction 

Next, the construction of the D-ring by means of the Mannich reaction was examined, 
aiming at the total synthesis of gracilamine (1) (Scheme 10.9). After investigation 
of various conditions, the intramolecular Mannich reaction of ketone 27 proceeded 
upon heating in the presence of α-keto ester 28 in a mixed solvent of cyclopentyl 
methyl ether (CPME) and trifluoroacetic acid (TFA) to afford 29 with the desired
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stereochemistry at the C8 position in 47% yield. The carbonyl group at C6 of 29 was 
reduced with sodium borohydride to give the desired 30 in 64% yield, together with 
32, formed by further lactonization of the diastereomer 31, in 4% yield. A single 
crystal of 32 was obtained, and the absolute conformation was determined by X-ray 
crystallography. For the synthesis of 1, the conversion of the tosyl group of compound 
30 to a methyl group was examined. However, removal of the tosyl group was trou-
blesome, and decomposition of the substrate occurred when sodium naphthalenide 
was employed. Careful monitoring by TLC showed that the amine 33, which was 
generated by the deprotection of the tosyl group, was unstable under reducing condi-
tions. Consequently, the slow addition of sodium naphthalenide competed with the 
deprotection of the nitrogen atom of 30 and the decomposition of 33. Therefore, 
all of the sodium naphthalenide was quickly added to the mixture, and the reaction 
was immediately quenched by adding ethanol and acetic acid, thereby suppressing 
the decomposition of 33. Then, the methyl group was introduced to the resulting 
amine in a one-pot fashion by reaction with formaldehyde in aqueous solution in 
the presence of NaBH3CN. This completed the total synthesis of (+)-gracilamine (1) 
[32]. 

Scheme 10.9 Total synthesis of (+)-gracilamine (1)
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10.3 Total Syntheses of Hasubanan Alkaloids 

10.3.1 Hasubanan Alkaloid 

Hasubanan alkaloids represent a group of alkaloids extracted mainly from plants of 
the genus Stephania [37]. These alkaloids have been known for a very long time. For 
example, Goto and Suzuki in Kitasato Institute reported the isolation of acutumine 
(43) for the first time in 1929 [38]. These alkaloids have a characteristic tetracyclic 
skeleton with a quaternary carbon at the C13 position, the so-called hasubanan scaf-
fold (hasubanan skeleton 34). Hasubanonine (35) and metaphanine (36) are represen-
tative examples. Various analogs with different oxidation states on this scaffold have 
been reported, totaling more than 40 congeners. In addition to those compounds 
with the hasubanan skeleton, a number of compounds without this scaffold, such 
as stephadiamine (37), cepharatines 38–41, sinoracutine (42), and acutumine-type 
alkaloids 43 and 44, have been isolated to date [37]. 

Hasubanane alkaloids display a spectrum of biological activities, encompassing 
antibacterial properties for cepharatines [39], anti-amnesic activity and selective 
T-cell cytotoxicity for acutumine (43) [40], as well as opioid receptor affinity for 
enantiomers of the hasubanan skeleton [41]. Consequently, these alkaloids continue 
to be of great synthetic interest. Since the first total synthesis by Ide and Kitano from 
Kyoto University in 1966 [42], more than 20 total syntheses have been achieved 
using various methodologies [43–46]. Organic chemists have also explored synthetic 
methods targeting diverse scaffolds within this family of alkaloids, stimulated by the 
pioneering work of Herzon’s and Reisman’s groups [47–50]. 

10.3.2 Our Synthetic Approach for Hasubanan Alkaloid 

We examined the synthesis of three different types of hasubanan alkaloids, metapha-
nine (36), stephadiamine (37), and cepharatines 38–41, based on a common strategy. 
The challenges in the synthesis were the stereoselective construction of the common 
quaternary carbon at C13 and the construction of the C- and D-rings in the late stage. 
Our synthetic approaches are depicted in Scheme 10.10. The characteristic five-
membered C-ring of stephadiamine 48 would be constructed by ring contraction 
from the six-membered C-ring of the hasubanan skeleton 47. This skeleton 47 would 
be synthesized by C14-selective intramolecular aza-Michael reaction of the tricyclic 
dienone 46. On the other hand, the characteristic azabicyclo [3.3.1]nonane motif 
constituting the C- and D-rings of the cepharatine skeleton 50 would be constructed 
by a C5-selective intramolecular aza-Michael reaction of the dienone 46, followed 
by a 1,2-migration of the nitrogen atom from C5 to C6 in 49. We also considered 
that the dienone 46 would be synthesized by oxidative phenol coupling reaction of 
diarylethane derivative 45. In this case, we expected that the stereochemistry of the



214 M. Odagi and K. Nagasawa

Scheme 10.10 Our comprehensive synthetic approach for hasubanan alkaloids 

newly constructed C13 quaternary carbon would be controlled by the stereochemistry 
at C10 in 45. 

10.3.3 Construction at C10 Stereogenic Center 
in Hasubanan Skeleton 

We commenced with the synthesis of ketone 58 to investigate the construction of the 
stereochemistry at the C10 position (Schemes 10.11 and 10.12). First, the commer-
cially available aromatic aldehyde 51 was subjected to bromination to give 52 in 62% 
yield. Then, TMS cyanohydrin 53, the precursor of the A-ring part, was obtained by 
reaction with trimethylsilyl cyanide in the presence of zinc iodide to give 52 quan-
titatively. The C-ring precursor of 57 was obtained from phenol 54 by protecting 
the phenolic hydroxy group with a methoxymethyl group, reduction of the alde-
hyde to an alcohol with sodium borohydride and regioselective bromination with 
N-bromosuccinimide to give 55 in 93% yield (three steps), followed by the introduc-
tion of an allyl group by means of the Stille coupling reaction with tributylallyltin in 
the presence of Pd catalyst to give 56, which was then treated with methanesulfonyl 
chloride.

With the A-ring precursor 53 and C-ring precursor 57 in hand, these were coupled 
to obtain ketone 58 (Scheme 10.12). That is, deprotonation of the A-ring cyanohydrin 
53 with lithium hexamethyldisilazide, mesylate 57 promoted the alkylation reaction, 
and then, TMS group was deprotected with tetrabutylammonium fluoride to give 
ketone 58 in 78% yield. 

With the ketone 58 in hand, we then examined the enantioselective reduction of 
the carbonyl group at C10 in 58 (Table 10.1). Initially, we examined asymmetric 
reduction with CBS catalysts [51]. In the presence of catalysts 63, 64, and 65 bearing 
methyl, ortho-methylphenyl, and n-butyl groups, however, the enantioselectivities 
of the alcohol 59 were low or moderate (16–51% ee, entries 1–5). In contrast, with
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CHO 
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OTMS
 A-ring part
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51 52 53 

Br2 

MeCN 
(62% yield) 

TMSCN 
ZnI2 

CH2Cl2 

(quant.) 

OHC OH OMOM 

Br 

OMOMHO 
HO 

1) MOMCl 
2) NaBH4 
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Sn(n-Bu)3 

Pd(PPh3)4 
(2 mol%) 

DMF, 90 °C 
(97% yield)54 55 56 
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MsO 

57 

MsCl, TEA 

CH2Cl2 

(quant.) 

Scheme 10.11 Synthesis of A- and C-ring synthons 53 and 57 

Scheme 10.12 Coupling 
reaction of A- and C-ring 
synthons

the substrate 60 lacking the bromo group on the aromatic ring, the corresponding 
alcohol 61 was obtained with 99% ee (entry 6). This result strongly suggested that 
the low enantioselectivity in this asymmetric reduction was due to steric hindrance 
around the carbonyl groups of 58.

Next, we investigated the kinetic resolution of racemic alcohol rac-59 using chiral 
isothioureas [52]. In the presence (S)-BTM (66, 10 mol%) and isovaleric anhydride 
as the acylating agent, kinetic resolution proceeded and the optically active 59 was 
obtained in 60% ee (entry 7). When we examined the more reactive chiral isothiourea 
catalyst (2S,3R)-HyperBTM (67) [53], kinetic resolution proceeded more efficiently, 
and 59 was obtained in 96% ee (entry 8). By decreasing the reaction temperature to − 
60 °C, the enantioselectivity was improved to 99% ee (entry 9). This kinetic resolution
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strategy allowed us to construct the stereochemistry at C10 of the hasubanan skeleton. 
The ester 62 obtained by kinetic resolution was converted almost quantitatively to 
ketone 58 by hydrolysis of the ester group and subsequent oxidation with Dess– 
Martin periodinane. 

10.3.4 Construction of Hasubanan Skeleton 

With the optically active 59 in hand, we next synthesized the precursor 71 for the 
oxidative coupling reaction (Scheme 10.13). The hydroxy group at C10 in 59 was 
protected with a TIPS group, and the silyl ether 68 was subjected to ozonolysis/ 
reduction to give the alcohol 69 in 75% yield. After mesylation of the resulting 
hydroxy group of 69, azide 70 was obtained by reacting with sodium azide in a one-
pot process. After reduction of the azide group of 70 under the Staudinger conditions, 
the protection of the resulting amine by a Boc group and the removal of MOM group 
by using a catalytic amount of carbon tetrabromide in 2-propanol were carried out, 
respectively, to give phenol 71 [54]. 

The oxidative coupling reaction was examined with phenol 71 as depicted in 
Scheme 10.14. After investigating various reaction conditions, we found that the 
oxidative coupling product 72 was obtained as a single diastereomer in 34% yield 
by treatment with PIDA in HFIP in the presence of MeOH at 0 °C [55]. The high 
diastereoselectivity in this reaction can be explained as follows. In this reaction, two 
transition states, TS-3 and TS-4, are possible with respect to the orientation of the 
C10 substituent. The reaction proceeds predominantly through TS-3, which has less 
steric repulsion than TS-4, yielding 72 with the desired stereochemistry at C13.

Then, the regioselective aza-Michael reaction of the dienone 72 was examined 
(Scheme 10.15). Although we explored various acidic or basic conditions, unfortu-
nately, the desired aza-Michael reaction adduct at C14 did not proceed, and only the 
C5-adduct of 74 was obtained. Therefore, we decided to reduce the less hindered

Scheme 10.13 Synthesis of the oxidative phenolic coupling precursor 71 
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Scheme 10.14 Oxidative phenolic coupling reaction of 71

olefin at C5–C6 of 72 by hydrogenation in the presence of Rh/C. The aza-Michael 
reaction of the resulting enone 75 took place at C14 upon treatment with hydrochloric 
acid. However, under these conditions, the resulting 76 proved to be unstable, under-
going elimination of the silyl ether at C10 to afford an oxonium cation 77 followed 
by intramolecular cyclization to give carbamate 78. 

Thus, we explored the intramolecular aza-Michael reaction with the dienone 79, 
which was obtained by removal of the bromo group of 72 with formic acid in the pres-
ence of a palladium catalyst, under a variety of conditions (Table 10.2). Firstly, acidic 
conditions were examined. In the case of TFA, the reaction of 79 predominantly 
provided the undesired C5-adduct 81 (80/81 = 1:4.4, entry 1). With hydrochloric

Scheme 10.15 Initial attempts at intramolecular aza-Michael reaction 
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acid, 80 and 81 were obtained in a 1:1 ratio (entry 2). We then examined basic condi-
tions. When DBU was used, the reaction did not proceed, resulting in the recovery 
of substrate 79, presumably due to the weak basicity of DBU (entry 3). Strong bases 
such as NaH and KOt-Bu afforded mixtures of 80 and 81 with little or no selectivity 
(entries 4, 5). Interestingly, in the case of potassium tert-butoxide, we observed a 
slight selectivity for the C14-adduct 80 (80/81 = 1.9:1, entry 6). Subsequent opti-
mization of the reaction conditions demonstrated the efficacy of using HMPA as a 
co-solvent, and the selectivity was significantly enhanced to give 80 predominantly 
(80/81 = 7.3:1, entry 7). The diastereomers were separable by silica gel column 
chromatography, affording the desired C14-adduct 80 in 51% isolated yield (entry 
7). The tetracyclic hasubanan skeleton was thus constructed.

10.3.5 Total Syntheses of (–)-Metaphanine 
and (+)-Stephadiamine 

With the tetracyclic hasubanan skeleton 80 in hand, our attention moved to the total 
synthesis of (–)-metaphanine (36) (Scheme 10.16). First, oxidation at the C8 position 
in 80 was examined. Oxidation reaction of 80 with the electron-deficient oxaziridine 
rac-82 proceeded smoothly to give α-hydroxyketone 83 as a single diastereomer in 
71% yield. The reason for the stereoselectivity is presumably that the TIPS group on 
C10 shields the β-face of 80, thereby influencing the preferred direction of approach 
of rac-82. The resulting hydroxy group of α-hydroxyketone 83 was oxidized with 
Dess–Martin periodinane to give a diketone, whose TIPS group was deprotected 
with HF followed by hydrogenolysis of the olefin to give hemiketal 85. Finally, 
asymmetric total synthesis of (–)-metaphanine (36) was achieved by deprotection of 
the Boc group of 85, followed by methylation of the resulting amine under reductive 
amination conditions.

We next examined the conversion of (–)-metaphanine (36) to (+)-stephadiamine 
(37) by contraction of the C-ring of the hasubanan skeleton (Scheme 10.17). In this 
transformation, it is necessary not only to contract the C-ring, but also to introduce 
the α-tertiary amine with construction of the lactone. After investigating various 
conditions, we found that the aza-benzilic acid type rearrangement of 36 occurred 
efficiently through the formation of the iminium intermediate 86. This rearrangement 
was achieved by simply treatment 36 with NH3 in MeOH at room temperature, 
resulting in a quantitative yield of compound 37. Although the biosynthetic pathway 
of (+)-stephadiamine (37) has not yet been established in detail [44, 56, 57], we 
consider that 36 is likely to be a biosynthetic precursor of 37 via a similar reaction, 
based on the structural similarity between 36 and 37.
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Scheme 10.16 Total synthesis of (–)-metaphanine (36)

Scheme 10.17 Total synthesis of (+)-stephadiamine (37) 

10.3.6 Investigation of Oxidative Phenolic Coupling 
for Cepharatines 

Cepharatines are classified into A- and C-types (38, 40) and B- and D-types (39, 41), 
depending on the substitution pattern on the A-ring (Fig. 10.2). In order to synthesize 
these cepharatines, selective cyclization reaction at the ortho-position in addition to 
the para-position is necessary. After investigation of various reaction conditions and 
substrates, we found that dienone 88 (corresponding to the A-, C-types) and 89 
(corresponding to the B-, D-types) were obtained in a 1:1 ratio in 43% yield from 87 
bearing a hydroxy group at C4 (Scheme 10.18). NMR experiments confirmed that 
the absolute stereochemistry at the C13 position of 89 was opposite to that of 88.

The diastereoselectivity of the products 88 and 89 of the oxidative coupling reac-
tion can be explained as shown in Fig. 10.3. Considering the orientation of the C10 
substituent of 87, four transition states, TS-5 to TS-8, are possible in which the 
orientation of the substituent at C10 is equatorial. In the coupling reaction at the 
ortho-position, leading to 88, there is steric repulsion between the C10 silyl ether 
and the bromo group on the A-ring in TS-6. Therefore, TS-5 is preferred, leading to 
the coupling product 88 with the anti-configuration of the C10 and C13 positions. 
On the other hand, in the coupling reaction at the para-position, steric hindrance
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Fig. 10.2 Structures of representative hasubanane alkaloids 

Scheme 10.18 Oxidative phenolic coupling reaction of 87

occurs between the ethylamino side chain on the C-ring and the bromo group in 
TS-7. Therefore, the reaction proceeds preferentially through TS-8 to give coupling 
product 89 with syn-configuration at the C10 and C13 positions. 

Fig. 10.3 Diastereoselectivity in the oxidative coupling reaction for 88 and 89
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10.3.7 Total Syntheses of (–)-Cepharatine A and C 

Total synthesis of (–)-cepharatine A (38) and (–)-cepharatine C (40) based on 
the intramolecular aza-Michael reaction with dienone 88 was also examined 
(Scheme 10.19). Initially, the bromo group of 88 was removed with HCO2Na in 
the presence of Pd(PPh3)4 to afford the dienone 90. Previous study had revealed 
that the aza-Michael reaction at the C5-position proceeds preferentially under acidic 
conditions (Table 10.2). Thus, hydrochloric acid was applied to 90, and as expected, 
the aza-Michael reaction proceeded at the C5-position to give enone 91, followed 
by elimination of the C10 hydroxy group to afford conjugated dienone 92 in 61% 
yield. The phenolic hydroxy group of 92 was protected as methoxymethyl ether, and 
the resulting 93 was subjected to oxidation reaction at the C6 position. After several 
investigations, we found that oxaziridine rac-94 was effective in this case, and the 
α-hydroxy ketone 95 was obtained in 59% yield. After removal of the MOM and Boc 
groups with trifluoroacetic acid, the methyl group was introduced into the resulting 
amine by reacting with formaldehyde and NaBH3CN to furnish 96 in 41% yield. The 
synthesis of (–)-cepharatine A (38) was explored using 96, employing a cascade reac-
tion that involved a retro aza-Michael reaction and subsequent hemiaminal forma-
tion (Scheme 10.20). Despite examining a various reaction conditions involving both 
acids and bases, the desired 38 was not produced. Instead, only the decomposition 
of compound 96 was observed. Interestingly, however, when 96 was left at room 
temperature for 48 h, the desired cascade reaction proceeded spontaneously, and 38 
was obtained in 91% yield. Finally, (–)-cepharatine C (40) was synthesized from (–)-
cepharatine A (38) by following Reisman’s protocol with sulfuric acid and trimethyl 
orthoformate [50].

10.3.8 Total Syntheses of (+)-Cepharatine B and D 

Total syntheses of (+)-cepharatine B (ent-39) and (+)-cepharatine D (ent-41) from  
enone 89 were also investigated (Scheme 10.21). Following the synthetic route shown 
in Scheme 10.19, α-hydroxyketone 99 was synthesized from dienone 89 in three 
steps. The Boc and MOM groups of 99 were then deprotected with trifluoroacetic 
acid. Interestingly, in the case of 99, a retro aza-Michael reaction/hemiaminal forma-
tion cascade reaction proceeded simultaneously with the deprotection step to give 
hemiaminal 100. Finally, methylation of the amino group of 100 gave (+)-cepharatine 
B (ent-39) in 37% yield. The phenolic hydroxy group of ent-39 was methylated by 
treatment with TMS diazomethane to afford (+)-cepharatine D (ent-41).
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Scheme 10.19 Total syntheses of (–)-cepharatine A (38) and  C (40) 

Scheme 10.20 Proposed mechanism of 1,2-migration of the nitrogen atom at C5
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10.4 Conclusion 

In this chapter, we have described our efforts to synthesize fused polycyclic alkaloids 
based on the strategy of dearomatization and intramolecular aza-Michael reactions. 
Dearomative oxidative phenolic coupling proceeds with environmentally benign 
hypervalent iodine (e.g.,.PIDA) as an oxidant, giving tricyclic dienones with quater-
nary carbon centers. In the intramolecular aza-Michael reaction of the resulting 
dienones, we found that the reaction can be driven regioselectively toward either 
of two reaction sites with similar electronic states by choosing the appropriate reac-
tion conditions. The present strategy showed that highly fused three-dimensional 
compounds can be efficiently synthesized from acyclic or aromatic compounds. This 
approach should also be applicable to the synthesis of natural products with various 
other complex frameworks. 
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Chapter 11 
Overcoming Difficulties in Total 
Synthesis of (+)-Cotylenin A 

Masahiro Uwamori, Ryunosuke Osada, Ryoji Sugiyama, Kotaro Nagatani, 
Haruka Tezuka, Yunosuke Hoshino, Atsushi Minami, and Masahisa Nakada 

Abstract The total synthesis of the natural product cotelynin A, which exhibits 
promising anti-cancer activity, is urgently required, as its source, Cladosporium 
sp. 501-7W, has lost its proliferative ability. Herein, we report the first total synthesis 
of cotelynin A. Contiguous asymmetric carbons at the C8 and C9 positions in the 
B-ring of the aglycon moiety of cotylenin A are difficult to construct after the 
formation of the B-ring via pinacol coupling. The revised synthesis of the aglycon 
moiety involved the alkenylation of a methyl ketone to construct the B-ring; for 
this convergent synthesis, one fragment was prepared using our catalytic asym-
metric intramolecular cyclopropanation, and the other fragment was obtained via 
the acyl radical cyclization of a known aldehyde, which was prepared by sharp-
less asymmetric epoxidation of geraniol and subsequent rearrangement. Radical 
generation using a copper catalyst and TBHP was effective for an acyl radical 
cyclization. The two prepared fragments were then assembled via Utimoto coupling. 
The α-hydroxyketone at the C8-C9 position was stereoselectively reduced with 
Me4NBH(O2CiPr)3, which was newly prepared in this study, and led to the successful 
construction of the C8-C9 1,2-diol. A structurally unprecedented sugar moiety was 
synthesized for the first time by terminating successive reversible acetalizations with 
an irreversible epoxide ring-opening reaction. Although the glycosylation of the 
synthesized fragments proceeded with difficulty owing to steric hindrance around 
the C9 hydroxy group of the aglycone, the desired product was successfully obtained 
under the reaction conditions reported by Wan et al. 
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11.1 Introduction 

Cotylenin A (Fig. 11.1) is a diterpene glycoside isolated from the secondary metabo-
lites of Cladosporium sp. [1]. Isolated cotylenin A regulates plant growth, induces 
functional and morphological differentiation in mouse (M1) and human leukemia 
(HL-60) cells, and causes apoptosis in many human cancer cell lines when combined 
with interferon-α [2]. The X-ray crystallographic analysis of a tripartite complex of 
cotylenin A, a 14-3-3 protein, and a phosphopeptide of H+-ATPase [3] revealed the 
unique bioactivity of cotylenin A. 

Thus far, the bioactivities of cotylenins A-J (Fig. 11.1) [4] have not been thor-
oughly investigated owing to their scarcity. As mentioned above, cotylenin A exhibits 
promising anti-cancer activity with a unique mode of action as a “molecular glue.” 
However, biological studies on cotylenin A have stalled because Cladosporium
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sp. 501-7W, which produces cotylenin A, has lost its proliferative ability [5]. 
Therefore, a new source of cotylenin A must be discovered. 

In this context, total synthesis is an effective method for supplying rare natural 
products and the derivatives or structural analogs of natural products that cannot be 
synthesized from natural products. After the structural elucidation of cotylenin A in 
1998, only Kato et al. [6] have developed the total synthesis of cotylenol, and an 
aglycon of cotylenin A and total synthesis of cotylenin A has never been reported 
[7, 8] until our total synthesis [9, 10]. The aglycone moiety of cotylenin A has a 
5–8-5 carbocyclic scaffold with a quaternary asymmetric carbon at the fused ring 
site, a chiral tertiary alcohol at the allylic position, four consecutive chiral carbons 
containing trans-1,2-diols, and a four-substituted alkene bearing an isopropyl group. 
In addition, a trioxabicyclo[2.2.1]heptane with methyl and epoxyethyl groups, fused 
to glucose and attached to the aglycon, is a structurally unusual sugar moiety. These 
structural features, especially the unprecedented structure of the sugar moiety, make 
cotylenin A unique compared to other members of the cotylenin family. 

In this chapter, we describe our attempts and approaches to developing the total 
synthesis of cotylenin A. 

11.2 Initial Synthetic Approach to Cotylenin A 

11.2.1 Retrosynthetic Analysis 

Scheme 11.1 shows the initial retrosynthetic analysis of cotylenin A. It can be synthe-
sized via the glycosylation of the sugar moiety with the aglycone moiety 1. Next,  as  
pinacol coupling can afford eight-membered carbocyclic rings, a pinacol coupling 
of dialdehyde 2 can afford 1,2-diol at the C8 and C9 positions [11]. However, the 
diastereoselectivity of the 1,2-diol could be a problem, which could be controlled 
by optimizing the reaction conditions. Compounds 3 and 4 could be obtained 
via catalytic asymmetric intramolecular cyclopropanation (CAIMCP), which was 
previously developed by our group [12].

We previously synthesized chiral β-keto phosphonate 3a via CAIMCP [13]. 
However, we did not use 3a as an A-ring fragment owing to its low reactivity. Instead, 
we used α-bromoketone 3b, which we previously subjected to Utimoto coupling in 
the first total synthesis of ophiobolin A [14]. 

The C-ring fragment 4 was also prepared via CAIMCP, based on our previous 
report on the CAIMCP of a chiral cyclopropane derivative to afford 4 [12a].
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11.2.2 Preparation of the A-ring Fragment 3b 

(E)-Diazo β-keto sulfone 7, which was required for the CAIMCP step in the prepa-
ration of α-bromoketone 3b, was prepared via the procedure shown in Scheme 11.2. 
The stereoselective Ireland-Claisen rearrangement of but-3-en-2-ol afforded 5, which 
was converted to 6 by reacting with the dianion of mesityl methyl sulfone. Compound 
6 underwent a diazo-transfer to afford 7. The  1H-NMR of 7 confirmed that it is a 
pure (E)-isomer. 

The subsequent CAIMCP of 7 under optimized conditions afforded cyclopropane 
8 in 99% yield and 91% ee (Scheme 11.3). Cyclopropane 8 was crystalline but 
unsuitable for X-ray crystallographic analysis. However, crystalline nitrile 9, which
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was prepared by the reaction of 8 with sodium cyanide, was suitable for single-
crystal X-ray crystallographic analysis. Consequently, the absolute structure 9 was 
confirmed (Scheme 11.3). 

The transformation of 9 to 3b is shown in Scheme 11.4. Nitrile 9 was reduced to 
an aldehyde using DIBAL-H, which was further reduced to a primary alcohol using 
NaBH4. The primary alcohol was selectively protected to afford 10. The treatment of 
10 with sodium amalgam to form an alkene, followed by regioselective bromohydrin 
formation and Dess-Martin oxidation, afforded the A-ring fragment 3b. 

11.2.3 Preparation of the C-ring Fragment via the CAIMCP 
of α-diazo β-keto Sulfone 

The retrosynthetic analysis of the C-ring fragment 4 is shown in Scheme 11.5. Frag-
ment 4 could be prepared by the Pummerer rearrangement of sulfide 12. Compound 
13, a precursor of 12, could be prepared by the reaction of formaldehyde with an 
enolate. The enolate could be reductively formed from sulfone 14, which could be
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synthesized from the reaction of phenylthiolate with cyclopropane 15. Compound 
15 could be obtained from the CAIMCP of 16. 

The first step in the synthesis of the C-ring fragment 4 was the preparation of 
hydroxy ketone 13 from cyclopropane 15 (>99% ee) (Scheme 11.6). Compound 15 
was subjected to CAIMCP with potassium phenylthiolate to open the cyclopropane 
ring [15]. A reaction with samarium diiodide afforded samarium enolate, which was 
treated with aqueous formalin solution to afford hydroxy ketone 13. 

Compound 13 was converted to the corresponding TIPS ether, which was reduced 
to an alcohol using iPrMgCl. Then, LaCl3·2LiCl [16] was used to realize the desired 
1,2-addition of the ketone. Dehydration of the tertiary alcohol with thionyl chloride 
and pyridine and the subsequent removal of the TIPS ether afforded 14. Successive 
Dess–Martin oxidation of 14, double-bond isomerization under basic conditions,
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reduction of the aldehyde, and TIPS ether formation afforded 12. Compound 12 was 
subjected to Pummerer rearrangement to afford 4, which resulted in an overall yield 
of 37% from 16 in 12 steps. This C-ring fragment 4 was used in the coupling reaction 
with the A-ring fragment 3b. Owing to the low yield of 4 in this synthetic route, we 
developed a shorter route. 

11.2.4 Preparation of the C-ring Fragment via the CAIMCP 
of α-diazo β-keto Ester 

We explored the CAIMCP of α-diazo-β-keto esters to afford 4, as the product of the 
CAIMCP could be converted to the same synthetic intermediate formed during the 
preparation of 4 from 15 (Scheme 11.6) via ring-opening with phenyl thiolate, enol 
triflate formation, coupling reaction, and reduction of the ester (Scheme 11.7). 

The CAIMCP of α-diazo-β-keto esters is generally not enantioselective owing to 
the low steric effect of the ester moiety [12a, 17]. Hence, we examined the CAIMCP 
of α-diazo-β-keto esters bearing a bulky alcohol moiety and obtained the α-diazo-β-
keto ester of 2,4,6-trimethylphenol with high enantioselectivity (Scheme 11.8) [8]. 
Cyclopropane 18 was crystalline, and its absolute configuration was confirmed via 
X-ray crystallographic analysis (Scheme 11.7). Cyclopropane 18 was successively 
subjected to a ring-opening reaction with sodium phenylthiolate, conversion to enol 
triflate, and coupling with iPrMgCl and (2-Th)Cu(CN)Li [18] in a one-pot reaction 
to afford 19. The DIBAL-H reduction of 19 afforded 20, which is the same synthetic
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intermediate observed in Scheme 11.6. Thus, the C-ring fragment 4 was prepared 
from cyclopropane 16 with an overall yield of 48% in five flasks. 

11.2.5 Synthesis of a C8-Epi Cotylenol Derivative 
via the Construction of 5–8-5 Carbocyclic Cotylenin 
A Scaffold by Pinacol Coupling 

After synthesizing the A- and C-ring fragments, we examined their coupling 
(Scheme 9). As mentioned in Sect. 11.2.1, HWE coupling of 3a was unsuccessful; 
therefore, we used an Utimoto coupling reaction [19], which we have previously 
used in the first total synthesis of (+)-ophiobolin A [14]. The Utimoto coupling 
was expected to yield favorable results because the boron enolate generated in situ 
reacts mildly and efficiently with bulky aldehydes. As expected, we obtained a single 
isomer in high yield from the Utimoto coupling of 3b and 4 via the formation 
of a Zimmerman–Traxler chair-like transition state. The product was subjected to 
dehydration using Burgess reagent to afford the α,β-unsaturated ketone 21.

The Wittig reaction of ketone 21 with methyltriphenylphosphonium bromide and 
t-BuOK afforded the desired exomethylene product 22 in high yield (Scheme 11.8). 
During the dihydroxylation of 22, the reaction in a mixed solvent of acetone and 
water did not afford the desired product, and the same result was obtained when 
pyridine was added to accelerate the reaction. However, the reaction in a mixture of 
THF and water afforded the desired diol 23 in 98% yield, with a diastereomeric ratio 
of 8:1. 

Next, we investigated the reaction conditions for the protection of the 1,2-diol 
in 23. Cotylenin A has a primary methyl ether and a tertiary alcohol in the A-ring 
moiety, and tertiary alcohols are easily dehydrated to form alkenes without protecting
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groups. Therefore, we selectively converted the primary hydroxy group to methyl 
ether at this stage and protected the tertiary hydroxy group with a trimethylsilyl 
group, which can be easily deprotected. 

However, the selective methylation of the primary alcohol in 23 using common 
reagents such as methyl iodide, dimethyl sulfate, and methyl triflate did not afford 
the desired compound. However, the use of Meerwein reagent and bulky 2,6-di-
tert-butyl-4-methylpyridine afforded the desired monomethyl ether 24 and dimethyl 
ether in 64% and 35% yields, respectively. To further improve the selectivity of the 
monomethylation, the reaction temperature was lowered to 0 °C, which furnished 
monomethyl 24 in 82% yield. 

Next, we examined the construction of the B-ring. First, the TIPS group was 
removed using TBAF in THF to quantitatively yield the triol. All three hydroxy
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groups were protected with TMS groups using TMSCl in pyridine as the solvent. 
When TMSOTf was used as the reagent, the dehydration of the tertiary allylic alcohol 
occurred because of the Lewis acidity of TMSOTf, and the desired product was 
not obtained. The resulting TMS ether was treated with potassium carbonate in 
methanol to remove the primary TMS groups, and the resulting diol was converted 
into dialdehyde 25 via Dess–Martin oxidation. The pinacol coupling of dialdehyde 
25 using TiCl4, Zn, and pyridine furnished an eight-membered carbocyclic ring to 
afford a diol product in 71% yield. 

However, the 1H-NMR spectra of the diol product revealed that the configurations 
of the C8 and C9 positions were different from those of cotylenol. Therefore, to 
determine the configurations, we examined the selective oxidation and reduction of 
the diol and analyzed the 1H-NMR spectra of the product. The selective oxidation of 
the C9 hydroxy group with MnO2 and subsequent reduction with NaBH4 afforded 
diol 27 as a single isomer. The 1H-NMR spectrum of 27 was consistent with the 
same compound described in the literature, so that the structures of 26 and 27 are 
determined as shown in Scheme 11.9 [6b]. 

Notably, the configurations at the C8 and C9 positions remained almost unchanged 
when the reaction conditions for the pinacol coupling were varied. In addition, 
attempts to selectively protect one of the hydroxy groups of 28 were unsuccessful. 
This result was attributed to the rigid 5-8-5 carbon skeleton of cotylenol, which 
suggests that the stereoselective construction of the two contiguous chiral centers at 
C8 and C9 would be difficult via pinacol coupling. Hence, we investigated another 
reaction to construct the B-ring. 

11.3 Revised Synthetic Approach to Cotylenin A 

11.3.1 Revised Retrosynthetic Analysis of Cotylenin A 

Eight-membered carbocyclic rings are generally difficult to construct owing to their 
transannular strain, which makes medium-membered rings special. Consequently, 
limited reactions are available for the effective construction of eight-membered 
rings. We previously realized the construction of the eight-membered ring of 29 
by ring-closing metathesis (RCM) of 28 as part of the total synthesis of ophiobolin 
A (Scheme 11.10) [14]. This RCM strategy could be applicable to the construction of 
the B-ring of cotylenin A because the substrate can be easily prepared from dialde-
hyde 25. However, molecular modeling studies predicted that the oxidation of the 
C8-C9 alkene in the product would likely occur from the less-hindered side, forming 
a 1,2-diol with the same configuration as that in 27.

Notably, the intramolecular alkenylation of methyl ketone 30 afforded 31 with an 
eight-membered ring in the total synthesis of taxol (Scheme 11.10) [20]. Hence, we 
considered the intramolecular alkenylation of a methyl ketone to construct the eight-
membered B-ring of cotylenin A, despite the necessity of an additional synthesis 
step for the substrate.
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Scheme 11.10 Construction of eight-membered carbocyclic rings by ring-closing metathesis 
(RCM) of 28 in our total synthesis of ophiobolin A and intramolecular alkenylation of 30 in 
our total synthesis of taxol

The revised retrosynthetic analysis of cotylenin A is shown in Scheme 11.11. Kato  
et al. reported that the desired diastereomer was preferentially formed even though 
the hydroxylation at the C9 position of 32 (R3 = TMS) is not highly stereoselective 
[6b]. Therefore, although the stereoselective hydroxylation at the C9 position of 
ketone 32 must be investigated, we considered ketone 32 to be a promising synthetic 
intermediate and investigated the intramolecular alkenylation of methyl ketone 33 to 
obtain 32. To synthesize methyl ketone 33, the A-ring fragment 34 was prepared from 
9 (Scheme 11.4). However, a new synthetic method was developed for the C-ring 
fragment 35.

11.3.2 Preparation of the New A-ring Fragment 34 

The enolate formed by the reaction of 9 with SmI2, lithium naphthalenide, and LiDBB 
showed low reactivity toward aldehydes, suggesting that 9 should be transformed into 
α-bromo ketone 34, which could be used in Utimoto coupling. However, the enolate 
generated from 9 by reaction with SmI2 could not directly afford 34 (Scheme 11.12). 
Therefore, we investigated the preparation and reaction of the enol ether. Enol acetate 
36 should be converted to 34 via bromohydrin formation; therefore, the enolate 
formed by the reaction of 9 with SmI2 was reacted with Ac2O [21] to afford enol 
acetate 36 in 20–30% yield. Hence, we explored the preparation of other enol ethers 
using various trapping reagents and observed that the reaction with ClP(O)(OEt)2 
quantitatively afforded enol phosphate 37. The subsequent reaction of 37 with NBS 
in THF containing H2O afforded 34.
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11.3.3 Preparation of the New C-ring Fragment 35b 

First, we developed the preparation of the iodoalkene 35a (Scheme 11.11) which 
corresponds to enol triflate 35b because iodoalkene is suitable for a Pd-catalyzed 
reaction. However, enol triflate 35b was selected because iodoalkene would react 
with the reactive species generated in the Utimoto coupling reaction via a radical 
process. Furthermore, although enol triflate is unstable under basic conditions, enol 
triflate 35b could be less reactive owing to the steric hindrance induced by the adjacent 
isopropyl group and quaternary carbon. 

The enol triflate moiety of 35b was derived from the corresponding isopropyl 
ketone, which could be prepared by acyl radical cyclization of an aldehyde bearing a
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Scheme 11.13 Preparation of the C-ring fragment 35b from 38 

trisubstituted alkene, such as 38 (Scheme 11.13). As 38 is a known compound easily 
prepared from geraniol [22], we investigated the acyl radical cyclization of 38. 

The acyl radical cyclization of 38 using tert-dodecanethiol and AIBN [23] 
afforded a mixture of the desired 39 and the decarbonylated product derived from 
38. In acyl radical cyclization, racemization may proceed via the decarbonylation 
and re-carbonylation of the generated acyl radical [24]. However, HPLC analysis of 
the derivative of 39 revealed that the optical purity of 39 was retained. Although the 
desired acyl radical cyclization of 38 using dodecanethiol and AIBN occurred, 39 
was extremely hydrophobic, making it difficult to separate it from the unidentified 
by-products via silica gel column chromatography. Therefore, the product mixture 
was directly treated with LDA and PhNTf2 to afford enol triflate 40. The yield of the 
two-step process was ~ 30–40%, indicating that the reaction conditions should be 
optimized. 

Notably, the acyl radical cyclization reactions of 38 under various conditions did 
not provide promising results. Hence, we explored the Cu-catalyzed radical acyl 
cyanation of alkenes reported by Bao et al. [25].  The reaction of  38 with CuCl, 
2,2'-bipyridyl, tert-butyl hydroperoxide (TBHP), and tert-dodecanethiol in methyl 
tert-butyl methyl ether (TBME) afforded 39, which was converted to 40 in 54% 
yield (two steps). The 1H-NMR spectrum of the product mixture obtained from 38 
indicated that the acyl radical reaction proceeded in ~ 90% yield (Scheme 11.13). 
Subsequently, the TBS group in the enol triflate 40 was removed using 3HF·Et3N. 
When TBAF was used for TBS removal, the CF3SO2 group migrated to afford a 
triflate of the primary alcohol, which further underwent intramolecular reactions 
[26]. Finally, the Dess–Martin reaction of the primary alcohol afforded the new 
C-ring fragment 35b.
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11.3.4 Preparation of Methyl Ketone for Pd-Catalyzed 
Intramolecular Alkenylation 

The as-prepared new A- (34) and C-ring (35b) fragments were then successively 
subjected to Utimoto coupling (Scheme 11.14) under the same conditions as those 
in Scheme 11.9 and a reaction with the Burgess reagent to afford 41 in 84% yield 
(two steps). 

Notably, the Wittig reaction of 41 under the conditions shown in Scheme 11.8 
afforded 42 in < 35% yield, which was improved to 42% by using CeCl3 as an additive 
[27]. However, the yield did not increase further, despite extensive efforts. Consid-
ering that ketone 41 was recovered in all reactions and a by-product was isolated 
(Fig. 11.2), ketone 41 was prone to enolize in the presence of methylene phospho-
rane, indicating the different reactivities of ketones 41 and 21, which is shown in 
Scheme 11.9. Hence, we used the Takai reaction [28] to methylate 41 to afford 42 
in 43% yield, which could not be improved using the reaction protocol reported 
by Lombardo [29]. However, the use of ZrCl4 instead of TiCl4 [30] successfully 
increased the yield to 91%. Notably, the exo-olefin of 42 was easily isomerized 
to an internal olefin when 42 was purified via silica gel column chromatography. 
Therefore, crude 42 was used for the subsequent dihydroxylation reaction.

The dihydroxylation of 42 afforded 43 in 71% yield (over two steps) with a dr 
ratio of 7:1. Efforts to increase the dr ratio by using various ligands for OsO4 were
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Fig. 11.2 Structure of a 
by-product of the Wittig 
reaction of 41
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unsuccessful. Selective methylation of the primary alcohol of 43 and protection of 
the tertiary alcohol as a TMS ether afforded 44. The direct transformation of 44 to 
methyl ketone 45 was attempted using a variety of reagents; however, the yield was 
low owing to the decomposition of 44, which was ascribed to the reaction of the enol 
triflate moiety with the organometallic reagents. Hence, although additional steps 
were required, nitrile 44 was subjected to DIBAL-H reduction to afford its aldehyde, 
followed by reaction with MeMgBr, and the Dess–Martin reaction of the resultant 
alcohol successfully afforded methyl ketone 45. 

11.3.5 Construction of the Eight-Membered B-ring 
via Pd-Catalyzed Intramolecular Alkenylation 

The cyclization of methyl ketone 45 was conducted under the same reaction condi-
tions used for the construction of the eight-membered ring in taxol [20, 31]. However, 
this resulted in the degradation of 45 (Scheme 11.15). Compound 30 (Scheme 11.10) 
obtained via Pd-catalyzed cyclization is an iodoalkene whose reactivity differs from 
that of enol triflate 45. Hence, the cyclization of enol triflate 45 could be different 
from that of 30, and the oxidative addition of enol triflate 45 and Pd may not 
proceed. Consequently, the reaction was conducted with PhOK and PdCl2(PCy3)2, 
which were ligated with more electron-rich ligands to promote oxidative addi-
tion (Scheme 11.16). The resulting product contained a mixture of 46 and its C8 
epimer, indicating that epimerization occurred competitively during the cyclization. 
However, this epimerization was suppressed by lowering the reaction temperature to 
50 °C, which afforded 46 in 95% yield.

However, the cyclization in the presence of PdCl2(PCy3)2 did not proceed when 
the color of the reaction solution was yellow and occurred only after a black precip-
itate was formed in the reaction solution. The black precipitate could be derived 
from Pd which was confirmed to not catalyze the cyclization. We checked whether 
the cyclization proceeded in the reddish-brown supernatant solution obtained after 
mixing PdCl2(PCy3)2 and PhOK for a certain time, and we found that the use of the 
reddish-brown supernatant solution including a catalytic amount of a Pd complex
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afforded 46. Thus, although two equivalents of PdCl2(PCy3)2 were used for the 
cyclization of 45, the reaction of 45 may be mediated by a catalytic amount of the 
Pd complex dissolved in the solution. However, the structure of the Pd complex has 
not yet been elucidated. 

11.3.6 Stereoselective Construction of 1,2-Diol at the C8-C9 
Position and Synthesis of Cotylenol 

The hydroxylation of 46 at the C9 position (Scheme 11.17) using MoOPH and 
LiNTMS2 (LHMDS) afforded 47 and its C9 epimer in 44% and 28% yields, respec-
tively. However, the reaction of 46 with MoOPH, LHMDS, and LiCl improved the 
yields of 47 and its C9 epimer to 52% and 19% yields, respectively, thereby improving 
the diastereoselectivity.

Subsequently, the reduction of α-hydroxy ketone 47 was examined. Reduction in 
the presence of NaBH(OAc)3 and Me4NBH(OAc)3 [32] stereoselectively produces a 
trans-1,2-diol from a cyclic α-hydroxy ketone, afforded 48 but exhibited poor repro-
ducibility in terms of yield and stereoselectivity [6]. This lack of reproducibility was 
attributed to the low solubility of the reagents in the solvents. Hence, reagents with
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more lipophilic ligands were used to improve the solubility of the reductant. Notably, 
the reduction with Me4NBH(O2CiPr)3, which was readily prepared from Me4NBH4 

and iPrCO2H, afforded trans-1,2-diol 48 in 80% yield as a single diastereomer. The 
high reproducibility and stereoselectivity of the reduction reaction can be ascribed to 
the ligand (O2CiPr), which enhances the solubility of the reagent and the steric effect 
on the transition state, which favorably affords 48. Incidentally, Me4NBH(O2CiPr)3 
was ~ 10 times more soluble in THF than Me4NBH(OAc)3. The reduction of 47 
using Me4NBH(O2CiPr)3 afforded cyclic borates. Hence, trimethylolethane, which 
is known to form chelates with boronates by ligand exchange, was used in the reduc-
tion workup of Me4NBH(O2CiPr)3 to isolate trans-1,2-diol 48. Finally, the TMS 
group in 48 was removed using TBAF to afford cotylenol. The spectroscopic data of 
the synthesized cotylenol were identical to those of the natural product [33]. 

11.4 Synthesis of the Sugar Moiety in Cotylenin A 

The sugar moiety of cotylenin A is different from that of all other cotylenins, and 
its synthesis had not been reported until our report on the first total synthesis of 
cotylenin A. This could be attributed to the highly oxidized, unprecedented structure 
of the sugar, which comprises a trioxabicyclo[2.2.1]heptane and an epoxide. This 
sugar moiety contains acid-sensitive functional groups and is therefore unstable in 
acids, making its synthesis challenging. The trioxabicyclo[2.2.1]heptane is fused to 
the THP ring, which is likely a glucose derivative because the sequence of the chiral 
carbon atoms in the THP ring is the same as that in glucose. The sugar moiety of 
cotylenin A could be synthesized by coupling glucose-derived hydroxyketone 49 
with epoxyaldehyde 50 (Scheme 11.18). Therefore, considering the glycosylation
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reaction of the aglycone moiety with the acid-sensitive sugar moiety, we initially 
assembled thioglycoside 49 and epoxyaldehyde 50 to synthesize a sugar moiety that 
could be glycosylated under mild conditions. 

Hydroxyketone 49 was synthesized as shown in Scheme 11.19. Benzyla-
tion of known compound 51 [34], followed by regioselective reduction of p-
methoxybenzylidene acetal to afford 52, methylation of the primary alcohol of 52, 
removal of the PMB group using DDQ to afford 53, Dess–Martin oxidation, and 
removal of the TBS group furnished 49. The low yield of the TBS group removal 
was due to the tendency of 49 to dimerize. 

Epoxy aldehyde 50a was prepared from the known compound 54 [35] 
(Scheme 11.20). Compound 54 was subjected to Payne rearrangement in the presence 
of tBuSH under basic conditions, affording a β-hydroxy sulfide [36]. The subsequent 
reaction of the sulfide with Meerwein’s reagent afforded the sulfonium salt, which on 
treatment with a base afforded epoxide 55 [36]. The benzyl group of 55 was removed 
by hydrogenolysis to afford 1,2-diol. Oxidation of the primary alcohol of the 1,2-diol 
with various reagents was attempted. However, the product, hydroxyaldehyde, was 
highly water-soluble and easily dimerized. Therefore, the 1,2-diol was converted to 
bis-TMS ether, followed by Swern oxidation to obtain 50a [37].
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Next, the coupling of 49 and 50a was examined under acidic conditions, which 
led to the dimerization of 49 to furnish 56 and 57 (Scheme 11.21). This could be 
attributed to the steric hindrance of the TMS ether of the adjacent tertiary alcohol 
on the carbonyl group of the aldehyde. Therefore, the less-hindered 50b was used, 
which formed 56 and 57 but not the desired product. 

Consequently, we explored another synthetic method for the sugar moiety. Watson 
et al. refluxed a benzene solution of hydroxyketone 58 with p-TsOH to obtain 60 
bearing a trioxabicyclo[2.2.1]heptane moiety in 97% yield (Scheme 11.22) [38]. This 
reaction likely involves transannular dehydration via the intermediate 1,4-dioxane 
derivative 59 to produce 60 bearing a trioxabicyclo[2.2.1]heptane moiety. 

As the transannular dehydration of 59 afforded 60, we hypothesized that 61 could 
be synthesized by the transannular acetal exchange of 62, which could be produced 
from 63 (Scheme 11.23). Therefore, we synthesized 66 (Scheme 11.24) via the 
intermolecular acetal exchange reaction [39] of  64 [40] with 65, which was in turn 
obtained by removing TBS from the methyl ether of 52. Compound 66 was subjected
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Scheme 11.22 Formation of the trioxabicyclo[2.2.1]heptane derivative 59 via the dimerization of 
58 
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to DIBAL-H reduction and sharpless asymmetric epoxidation to afford 67. Succes-
sive Payne rearrangement with TBAF [41] and reaction with CDI afforded cyclic 
carbonate 68. The removal of the PMB group of 68 using DDQ, followed by Parikh– 
Doering oxidation afforded 62 in 19% yield. Notably, the oxidation of one of the 
diastereomers of the starting material was slow, and 39% of the unreacted diastere-
omer was recovered. This could be attributed to the intramolecular hydrogen bonding 
of 68a or the steric hindrance derived from its shape, which may reduce the reactivity 
of the secondary alcohol. 

Next, we attempted to obtain 61 from the transannular acetal exchange reac-
tion of 62 (Scheme 11.25). However, 61 was not produced. The structure of 59 
(Scheme 11.22) was symmetric, and its reaction proceeded even if a cation was 
generated from either hemiketal. In addition, the six-membered ring containing two 
hemiketals in 59 is flexible and is likely to undergo conformational changes, which 
could be favorable for the reaction. However, in the case of 62, the structure of the 
trans-fused glucose ring was less flexible and may not form an oxa-bridged ring.

Notably, the hemithioacetal in hydroxyketone 49 decomposed during isolation, 
which makes the optimization of the reaction conditions difficult. Hence, we synthe-
sized hydroxyketones without a hemithioacetal by removing the dimethyl ketal of 69 
using p-TsOH and acetone (Scheme 11.26). However, the reaction yielded 70a as a 
mixture of isomers. The reaction of 69 with pivaldehyde in the presence of p-TsOH 
afforded hemiketal 70b as a diastereomeric mixture in 48% yield.

The reaction of an aldehyde with hydroxyketone 49 could produce a hemiketal 
which is similar to 70b in Scheme 11.26. An epoxy aldehyde could be suitable 
because it has low steric hindrance and is expected to form an oxa-bridged ring 
through an intramolecular reaction of the hemiketal generated by the reaction with 
49. As we obtained aldehyde 71 (Scheme 11.27), which would afford the desired 
configuration of the sugar moiety, we explored the reaction of 49 with 71.

However, as the products of the reaction of 49 with 71 contain acid-sensitive 
epoxides and acetals, we employed basic conditions based on the dimerization of 
hydroxyketones under basic conditions [42]. However, only the starting material was 
detected during TLC monitoring. Nevertheless, as 70 is formed from 69, we believed 
that 72 must have formed, which was confirmed via 1H-NMR. Therefore, unlike 70, 
72 was unstable and was converted into the starting material.
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Scheme 11.27 Synthesis of 74 via the reaction of 49 and 71

Subsequently, hemiacetal 72 was converted to TMS ether 73, whose structure was 
confirmed by 1H-NMR. Compound 73 was treated with TBAF, and the expected 
cyclization generated 74 bearing a trioxabicyclo[2.2.1]octane. If the benzyl ether 
next to the hydroxy group in 74 is a tosylate, it can be converted to the corresponding 
epoxide bearing the correct stereochemistry under basic conditions. This synthetic 
approach (Scheme 11.27) could be applicable to the synthesis of the sugar moiety 
of cotylenin A. 

We investigated the coupling conditions for 49 and epoxy-aldehyde-bearing tosy-
late 75 (Scheme 11.28). The reaction of 49 with 75 afforded a mixture of hemiacetals 
77a and 77b at 20–25 °C in acetonitrile with 1 equiv. of CSA. The concentration 
(2 M) of the reaction mixture was crucial for the formation of 77a and 77b. However, 
similar to 72, 77a and 77b were unstable. Both 77a and 77b were not detected during 
TLC analysis but were identified as a 1:1 mixture in 1H-NMR analysis. Notably, when 
the mixture of 77a and 77b was diluted to 0.1 M with acetonitrile, 77a and 77b disap-
peared, and the equilibrium shifted to 49 and 75. This result indicates that the 2 M 
concentration of the reaction mixture is crucial for the formation of 77a and 77b, 
suggesting that the aggregation of products may have shifted the equilibrium toward 
the product.

The epoxide ring-opening reaction by the internal attack of the hydroxy group of 
77a proceeded slowly, even with acid catalysis, and 78 was formed 24 h after  the start  
of the reaction. After 48 h, the yield of 78 did not change, which could be attributed 
to the configuration of the C1'' position and a consequent slow interconversion of 
77a and 77b. 

Compound 78 could not be sufficiently purified by silica gel column chromatog-
raphy and contained inseparable impurities; therefore, it was treated directly with 
NaH to afford epoxide 79 (23% yield from 49 and 75). The sequential conversion 
from 49 and 75 to 79 involved the formation of four carbon–oxygen bonds to furnish
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Scheme 11.28 Successful synthesis of the sugar moiety fragment 79 via the reaction of 49 with 
75

a reasonable yield of 23%. This synthetic procedure required only two flasks, which 
is advantageous, and could be scaled up to the gram scale. 

11.5 Glycosylation and Completion of the First Total 
Synthesis of Cotylenin A 

Next, the glycosylation of 79 was investigated (Scheme 11.29). The C8 hydroxy 
group of 48 was more reactive than the C9 hydroxy group, likely because of steric 
hindrance, and the reaction of 48 with Ac2O afforded 80 in 59% yield (77% brsm). 
The glycosylation of 80 and 79 using common reagents such as Tf2O and MeOTf 
resulted in the degradation of 79. The desired compound 81 was obtained under 
Crich’s conditions [43], but in low yield. Hence, glycosylation was attempted with 
various reagents. Compound 81 was obtained in moderate yield via the formation of 
a sulfonium ylide of 80 in the presence of the catalyst Rh2(oct)4 and the subsequent 
glycosylation catalyzed by Brønsted acid, which was previously reported by Wan 
et al. [44]. However, 81 could not be separated from a trace amount of impurities 
with silica gel column chromatography. Consequently, the crude product was directly 
used in the next three reactions.

The C8 acetate of 81 was difficult to remove by hydrolysis but could be removed 
by reaction with methyl lithium at low temperatures. Finally, the TMS group was 
removed using TBAF, and the benzyl group was removed by hydrogenolysis to afford 
cotylenin A.
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Scheme 11.29 Glycosylation and completion of the first total synthesis of cotylenin A

All the spectroscopic data for the synthesized cotylenin and naturally occur-
ring cotylenin A were consistent [1], thus validating the first enantioselective total 
synthesis of cotylenin A. To the best of our knowledge, we reported the specific 
rotation of cotylenin A for the first time in the literature. 

11.6 Conclusion 

Herein, we described the first successful enantioselective total synthesis of cotylenin 
A in detail. Our synthetic approach to cotylenin A was convergent and featured 
the synthesis of an aglycon moiety using two chiral fragments containing a five-
membered carbon ring. Synthetic studies on the aglycon moiety of cotylenin A 
revealed B-ring formation by intramolecular pinacol coupling between the C8 and 
C9 positions. However, arranging contiguous asymmetric carbons at the C8 and C9 
positions after introducing two hydroxy groups is difficult. Hence, we developed 
a revised synthesis of the aglycon moiety via the alkenylation of methyl ketones, 
which required two new chiral fragments. The A-ring fragment was prepared using 
catalytic asymmetric intramolecular cyclopropanation (CAIMCP), which we previ-
ously developed. The C-ring fragment was prepared by the acyl radical cyclization 
of a known aldehyde, which was obtained by the sharpless asymmetric epoxidation 
of geraniol and subsequent rearrangement. The radical generation method using a 
copper catalyst and TBHP was effective for acyl radical reactions. The A- and C-ring 
fragments were effectively assembled using the Utimoto coupling reaction. A highly 
stereoselective reduction of α-hydroxyketone in the B-ring with Me4NBH(O2CiPr)3
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afforded the desired trans-1,2-diol. Terminating successive reversible acetalizations 
via irreversible epoxide ring-opening reactions led to the first successful synthesis 
of a structurally unprecedented sugar moiety. Glycosylation was difficult because 
of the steric hindrance around the C9 hydroxy group of the aglycon; however, the 
desired product was successfully obtained under the reaction conditions reported by 
Wan et al. Even though the yield of cotylenin A could be improved by optimizing 
the low-yielding steps, our total synthesis could increase the supply of cotylenin A 
for further studies. 
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Chapter 12 
Unified Total Synthesis of Madangamine 
Alkaloids 

Takaaki Sato 

Abstract Development of a unified total synthesis of madangamine alkaloids is 
described. The synthesis consists of three parts: (1) construction of the central ABC-
ring, (2) installation of the skipped diene bearing a trisubstituted olefin, and (3) the 
synthesis of various D-rings from a tetracyclic ABCE-common intermediate. The 
ABC-tricyclic framework is successfully assembled by intramolecular allenylation. 
The most significant issue in this synthesis is the stereoselective installation of the 
skipped diene. This challenge is ultimately overcome by development of a stereodi-
vergent approach using hydroboration of allenes and Migita-Kosugi-Stille coupling. 
The hydroboration is especially useful because the reaction of 1,1-disubstituted 
allenes with either 9-BBN or (Sia)2BH gives (E)- or (Z)-allylic alcohols, respec-
tively. The key to the success of our unified total synthesis is macrocyclic alkylation 
to form a wide variety of D-rings from the tetracyclic ABCE-common interme-
diate. Our collective synthesis of madangamine alkaloids revealed structure–activity 
relationship of D-rings in their cytotoxicity against human cancer cell lines. 

Keyword Iminium ion · Macrocyclic amine · Madangamine alkaloid · Skipped 
diene · Stereodivergent synthesis 

12.1 Madangamine Alkaloids 

In 1994, Andersen isolated madangamine A (1) from the marine sponge Xestospongia 
ingens in Papua New Guinea (Fig. 12.1) [1–3]. Although madangamine A (1) 
appears to be a macrocyclic diamine alkaloid biogenetically synthesized from bis-3-
alkylpyridine found in the manzamine alkaloids [4], it possesses a unique tricyclic 
ABC-core structure. Andersen et al. [5] also isolated madangamines B-E (2–5) from 
the same sponge. These alkaloids share an ABCE-common tetracyclic core with
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Fig. 12.1 Structures of madangamine alkaloids 

various types of D-rings. The Berlinck group documented the isolation of madan-
gamine F (6), which has highly oxidized forms of the C- and E-rings, from a sponge 
Pachychalina alcaloidifera [6]. While madangamines A (1) and F (6) were found to 
show antiproliferative effects against human cancer cell lines [3, 6], the biological 
activities of other madangamines were not elucidated due to the limited availability of 
the natural samples. In 2014, the Amat group opened up a new stage by the first total 
synthesis of madangamine D (4) [7]. They revealed that madangamine D (4) exhib-
ited a different antitumor cytotoxic spectrum from madangamine A (1), indicating 
that variable D-rings might be crucial in their cytotoxicity. After Amat’s report, our 
group documented the synthesis of madangamines A-E (1–5) in 2017 and 2019 [8, 
9]. Recently, the Dixon group reported an elegant synthesis of madangamine E (5) 
based on the organocatalytic desymmetrization in 2022 [10]. 

In this chapter, we report our synthetic journey to the unified total synthesis 
of madangamine alkaloids. Structurally, these alkaloids presented synthetic chal-
lenges including: (1) construction of the diazatricyclic ABC-ring, (2) stereoselective 
synthesis of the skipped diene, and (3) construction of the various D-rings at the 
late stage (Fig. 12.1). At the beginning of our 7-year study, we expected that the 
highlight of this total synthesis would be the first challenge, i.e., construction of the 
unprecedented ABC-tricyclic ring. In fact, most synthetic reports from other groups 
focused on the development of a method to assemble the tricyclic skeleton [1, 2]. 
However, through this synthetic project, we found that the most daunting challenge 
was the stereoselective construction of the skipped diene. We ultimately developed 
a stereodivergent approach that gave all four possible stereoisomers of the skipped 
dienes from a 1,1-disubstituted allene. Another significant challenge proved to be 
the installation of the variable D-rings to a common tetracyclic intermediate. Finally, 
we found that macrocyclic alkylation through the SN2 process was highly general 
for the unified synthesis of these D-rings.
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Scheme 12.1 Synthetic plan toward unified total synthesis of madangamine alkaloids 

12.2 Synthetic Plan 

To elucidate the structure–activity relationship involving variable D-rings, a supply 
of pure madangamine alkaloids by a unified total synthesis is essential. Therefore, 
our synthetic plan centered on construction of the D-rings from the ABCE-tetracyclic 
common intermediate 13 at the late stage. The distinctive diazatricyclic ABC-ring 
(Z,Z)-12 would be synthesized from enyne unit 7. Transition metal-catalyzed cycloi-
somerization of 7 would promote construction of the B-ring, associated with the 
formation of the exo-olefin. Hydroboration of the resulting bicyclic AB-ring 8 could 
generate B-alkyl borane 9, which could undergo Suzuki–Miyaura coupling with 10 to 
provide ene carbamate 11. Addition of an acid to 11 would promote formation of the 
N-acyliminium ion and subsequent cyclization of the vinyl silane to give tricyclic 
ABC-ring (Z,Z)-12. The common intermediate 13 would be obtained from 12 by 
macrolactamization. The collective total synthesis of the madangamine alkaloids 
could be completed by installation of a variety of D-rings (Scheme 12.1). 

12.3 Construction of Diazatricyclic ABC-Framework 

12.3.1 Enantioselective Synthesis of A-Ring 

Our synthetic program began with the synthesis of A-ring moiety 24 (Scheme 12.2). 
N-Boc-glycine 14 was transformed to vinyl tosylate 15, which underwent Suzuki– 
Miyaura coupling, providing trisubstituted enoate 16 in 83% yield [11]. Addition of
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DIBAL-H and BF3·Et2O [12] to  16 promoted regioselective 1,2-reduction to give 
the primary alcohol, which was converted to acetate 17. After installation of the allyl 
group to Boc-carbamate 17, methanolysis in a one-pot process gave allylic alcohol 18, 
which was converted to chiral secondary alcohol 20 by IBX oxidation and catalytic 
enantioselective alkylation in 97% ee [13]. Subsequent Johnson-Claisen rearrange-
ment of 20 created the quaternary carbon center through chirality transfer of the 
secondary alcohol. Carbamate 23 was synthesized from 21 by three-step procedure 
including hydrolysis, amidation, and the Hofmann rearrangement with PhI(OAc)2. 
The ring-closing metathesis of 23 with 5 mol% of Grubbs second catalyst afforded 
A-ring moiety 24. The enantiomeric excess of 24 was 92% ee, indicating that the 
Claisen rearrangement did not proceed with complete chirality transfer. 

Although the developed route gave the A-ring moiety 24 in 13 steps from a 
commercially available compound, we pursued a more concise and robust route 
toward the unified total synthesis (Scheme 12.3). The new approach was based on 
the quick formation of the tetrahydropiperidine ring by Ni-catalyzed [4 + 2] cycload-
dition [14] and chirality transfer through the SN2' reaction. The second-generation 
route to the A-ring moiety 24 began with synthesis of protected propargylic amine 
28 in three steps including protection of benzyl amine with TMS-ethanol 25, N-
propargylation, and protection of the terminal alkyne. Louie reported Ni-catalyzed 
[4 + 2] cycloaddition between a 3-azetidinone and an alkyne [14]. This method was 
applicable to our case, providing 3-dihydropyridones 30 and 31 as an inseparable 
mixture. The resulting ketones underwent the CBS reduction [15] to provide a sepa-
rable mixture of secondary alcohols 32 and 33 in 78 and 7.2% yields, respectively
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Scheme 12.2 Enantioselective synthesis of A-ring through Johnson-Claisen rearrangement 
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Scheme 12.3 Enantioselective synthesis of A-ring through SN2' reaction 

(95% ee for both diastereomers). It is noteworthy that the TMS group of the terminal 
alkyne played a number of crucial roles in this synthesis. For instance, the [4 + 2] 
cycloaddition did not proceed without the TMS group. Louie reported that the TMS 
group preferred to be on the α-position in the [4 + 2] cycloaddition (32:33 = 10.8:1), 
as well as the high enantioselectivity in the following reduction. Treatment of 33 with 
t-BuOK cleaved the TMS group by the Brook rearrangement. The resulting allylic 
alcohol was transformed to picolinate 34. The quaternary stereocenter of the A-ring 
was established by Kobayashi’s anti-SN2' reaction in 97% yield [16] without loss 
of the enantiomeric excess. The N-benzyl group was removed by Birch reduction. 
Thus, the improved route afforded A-ring moiety 24 in nine steps from commercially 
available TMS-ethanol 25. 

12.3.2 Synthesis of AB-Ring by Pd-Catalyzed 
Cycloisomerization 

With A-ring 24 in hand, the next challenge was the cycloisomerization to construct 
the B-ring (Scheme 12.4). After N-propargylation of 24, palladium-catalyzed cycloi-
somerization of enyne 7 [17, 18] provided bicyclic compound 8 in 45% yield. 
We expected that subsequent hydroboration of olefin 8 could establish the third 
stereocenter of the B-ring. Unfortunately, no desired product 9 was obtained.

To increase the reactivity of the exo-olefin after the cycloisomerization, 
we installed an electron-withdrawing group onto the terminal alkyne of 7 
(Scheme 12.4b). Treatment of the lithium acetylide derived from alkyne 7 with 
methyl chloroformate led to the formation of methyl alkynoate 35. Gratifyingly, the 
additional methyl ester in 35 improved the cycloisomerization [17, 18] to provide
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Scheme 12.4 Synthesis of AB-ring by Pd-catalyzed cycloisomerization

bicyclic compound 36 in 87% yield. Furthermore, the methyl ester enhanced the elec-
trophilicity of the olefin, which enabled stereoselective 1,4-addition under Narisada’s 
conditions (NaBH4, CuCl)  [19], giving bicyclic AB-ring 37 in 94% yield with 10.8:1 
diastereoselectivity. 

12.3.3 Construction of Tricyclic ABC-Ring 
by N-Acyliminium Cyclization 

The next stage was the construction of the C-ring by N-acyliminium cyclization [20]. 
Originally, we planned to use the N-acyliminium cyclization of the vinyl silane after 
the Suzuki–Miyaura coupling as shown in Scheme 12.1. However, installation of the 
methyl ester for the successful cycloisomerization required the allyl silane instead of 
the vinyl silane as a nucleophile (Scheme 12.5). Reduction of methyl ester 37 via the 
Weinreb amide provided aldehyde 38. The Wittig reaction of 38, followed by a cross 
metathesis reaction formed allyl silane 39 (E/Z = 4:1). Treatment of a solution of 
39 in CH2Cl2 with BF3·Et2O in the presence of EtOH initiated the generation of the 
N-acyliminium ion, and subsequent intramolecular cyclization, affording 40 in 66%
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Scheme 12.5 Synthesis of ABC-ring by intramolecular allylation via N-acyliminium ion 

yield. Although tricyclic intermediate 40 was obtained, the terminal olefin could not 
be converted to the trisubstituted olefin embedded in common intermediate (Z,Z)-12. 

12.4 Stereoselective Synthesis of Skipped Diene 

12.4.1 Precedents for Synthesis of Z-Trisubstituted Olefin 
in Skipped Diene of Madangamine Alkaloids 

Before we tackled this issue, some synthetic studies to construct the trisubstituted 
olefin had already been documented (Scheme 12.6) [21]. Yamazaki and Kibayashi 
reported a model study using bicyclic ketone 41. The Still-Gennari conditions enabled 
the Z-selective synthesis of trisubstituted olefin 42. The Amat group showed that 
Wittig coupling of bicyclic ketone 43 with the unstable ylide derived from 44 stereos-
electively constructed the (Z,Z)-skipped diene [22]. However, the high (Z)-selectivity 
was not achieved from 46 in the total synthesis of madangamine D (4) [7]. After our 
reports, the Dixon group also discovered a successful method to give access to the 
(Z)-trisubstituted olefin by elimination of tertiary alcohol 48 with SOCl2 and DTBMP 
[10].

At this stage, we realized that (Z)-selective synthesis of the trisubstituted olefin in 
the skipped diene was highly challenging, and searched the literature for natural 
products including skipped dienes (Fig. 12.2) [23, 24]. This structural motif is 
widely distributed in polyunsaturated fatty acids, polyketides, and alkaloids. One 
of the structural features is the diversity of stereochemistries involving the two 
olefins including trisubstituted olefins. Ideally, the method should give all four 
possible stereoisomers from the same intermediate. In addition, considering the high
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Scheme 12.6 Precedents for synthesis of Z-trisubstituted olefin in skipped diene of madangamine 
alkaloids

complexity of these natural products, the method should be convergent though frag-
ment coupling under mild reaction conditions so as not to induce isomerization to 
the more stable 1,3-dienes. 

To develop practical methods applicable to the synthesis of a variety of 
skipped diene natural products, we envisioned a stereodivergent approach consisting 
of hydroboration of 1,1-disubstituted allenes [25–28] and Migita–Kosugi–Stille 
coupling [29] (Scheme 12.7). Allenes have been utilized as attractive intermediates
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in the total synthesis of natural products [30]. However, control of the various selec-
tivities involving the two orthogonal π-bonds is essential. Indeed, three selectivities 
must be solved in the hydroboration/oxidation of 1,1-disubstituted allenes. The first 
is the regioselectivity of the two double bonds. The second is the facial selectivity 
from either path A or path B, which could be controlled by differentiating the steric 
hindrance with RL or RS in allene 54. In general, hydroboration of allene 54 proceeds 
from the less hindered side opposite to RL (path B) to give allylic borane (Z)-55. 
Third, the most challenging selectivity involves the [1,3]-allylic rearrangement of 
55 [25–28]. Kinetically favored (Z)-55 is often transformed to thermodynamically 
favored (E)-55 through two reversible [1,3]-allylic rearrangements. If these three 
selectivities are precisely controlled, both trisubstituted allylic alcohols (E)-57 and 
(Z)-57 would be obtained through the hydroboration of allene 54 after oxidative 
quench. Associated with palladium-catalyzed coupling with vinyl stannanes (E)-
58 and (Z)-58 [29], the method would become stereodivergent to provide all four 
possible stereoisomers 59 from the same 1,1-disubstituted allene 54. 

Our stereodivergent hydroboration of 1,1-disubstituted allene 60 was realized by 
simply changing the steric hindrance of the organoborane reagents (Scheme 12.8). 
While the hydroboration with 9-BBN at room temperature provided allylic alcohol 
(E)-61 through 1,3-allylic rearrangements, the reaction with (Sia)2B at 0 °C  gave  
allylic alcohol (Z)-61 without causing 1,3-allylic rearrangements due to the larger
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Scheme 12.8 Stereodivergent synthesis of the skipped dienes 

siamyl group. Allylic alcohols (E)-61 and (Z)-61 were converted to carbamates (E)-
62 and (Z)-62, respectively. The Migita-Kosugi-Stille coupling of both carbamates 
62 with vinyl stannanes (E)-63 and (Z)-63 provided four stereoisomers of skipped 
dienes 64. As shown in Fig. 12.2, the stereocontrol of trisubstituted olefins seen in 
these natural products is still challenging in modern organic synthesis compared with 
that of disubstituted olefins. However, our method stereoselectively provided all four 
possible stereoisomers including the trisubstituted olefin. 

12.4.2 Synthesis of the Tetracyclic ABCE-Common 
Intermediate Including the Skipped Diene 

Having a practical method to gain access to skipped dienes from 1,1-disubstituted 
allenes, the stage was set for the synthesis of the skipped diene embedded in madan-
gamine alkaloids (Scheme 12.9). As shown in Scheme 12.5, we achieved construction 
of the C-ring by intramolecular allylation via the N-acyliminium ion. This success 
encouraged us to employ propargyl silane 65 because it gives ABC-tricyclic frame-
work 66, accompanied by formation of the 1,1-disubstituted allene. The resulting 
allene 66 would be converted to skipped diene (Z,Z)-12 by Z-selective hydroboration 
and palladium-catalyzed coupling.
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The synthesis of propargyl silane 65 commenced with the Ohira-Bestmann reac-
tion of aldehyde 38 [31, 32] and alkylation with ICH2TMS (Scheme 12.10). Addi-
tion of CF3CO2H to propargyl silane 65 resulted in the formation of N-acyliminium 
ion 68. For successful cyclization, a conformational change from the most stable 
conformer 68a was essential to place the equatorial propargyl silane in the axial 
position as shown in 68b. Regardless, the cyclization proceeded smoothly to give 
ABC-ring 66 in 85% yield. Use of ethanol as a co-solvent to form transient N,O-
acetal 69 was important probably because it tentatively protects the unstable N-
acyliminium ion and increases chances for the requisite conformational flip without 
decomposition. In addition, ethanol lowered the acidity of CF3CO2H. In a control 
experiment without ethanol, the cyclization was observed even at room temperature, 
but the TIPS group was significantly cleaved (66: 52%; 70: 32%). Thus, we achieved 
intramolecular allenylation to construct the ABC-ring with the 1,1-disubstituted 
allene. 

The stage was set for the construction of the crucial skipped diene (Scheme 12.11). 
Hydroboration of allene 66 with sterically small 9-BBN, followed by oxidative
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Scheme 12.10 Synthesis of the ABC-ring by intramolecular allenylation via N-acyliminium ion 
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Scheme 12.11 Synthesis of the tetracyclic ABCE-common intermediate of madangamine alka-
loids through stereoselective construction of the skipped diene 

workup, provided (E)-71 in 83% yield (E:Z = 6.1:1). In contrast, desired trisubsti-
tuted allylic alcohol (Z)-71 was produced in 93% yield (E:Z = 1:20) when using ster-
ically large (Sia)2BH. Conversion of allylic alcohol (Z)-71 to carbonate 72, followed 
by the coupling reaction with vinyl stannane (Z)-73, afforded skipped diene (Z,Z)-12 
in high yield. 

With skipped diene (Z,Z)-12 in hand, the next challenge was the macrolactamiza-
tion to form the eleven-membered E-ring (Scheme 12.11). Hydrolysis of the methyl 
ester in (Z,Z)-12 and removal of the Boc group in 74 delivered the amino acid. The 
Mukaiyama reagent (CMPI: 2-chloro-1-methylpyridinium iodide) [33] proved to be 
the best reagent for this macrolactamization to provide 75 (75%, 2 steps). Cleavage 
of the TIPS group in 75 was realized with CSA in methanol at 40 °C. Thus, ABCE-
tetracyclic framework 13 was obtained as a common intermediate toward the unified 
total synthesis of madangamine alkaloids. 

12.5 Unified Total Synthesis of Madangamines A-E 

Macrocyclic diamine structures are widely observed in manzamine alkaloids. 
However, development of general methods to synthesize this structural motif remains 
a formidable issue. The construction of the D-rings in the madangamine alkaloids
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was highly challenging because they possess various ring sizes and degrees of unsat-
uration (Fig. 12.1). Ring closing metathesis (RCM) has been recognized as one of 
the most promising reactions to form macrocycles. In fact, both the Amat and Dixon 
groups independently employed the olefin metathesis to construct the D-ring in their 
total syntheses (Scheme 12.12, 76  → 77 [7], 79 → 80 [10]). However, synthesis 
of madangamines D and E (4,5) required hydrogenation to form saturated D-rings 
after RCM (77 → 78 [7], 80 → 81 [10]). The construction of the E-ring had to be 
performed after installation of the D-ring due to the presence of the skipped diene. 
Therefore, our collective synthesis via the tetracyclic common intermediate cannot 
employ the RCM approach. As another disadvantage to the use of olefin metathesis, 
the products are often obtained as a mixture of E/Z stereoisomers, which would be 
problematic in the case of madangamines A, B, and C (1–3) with unsaturated D-rings. 
Thus, the unified total synthesis required the development of practical methods that 
did not depend on the ring size and the degree of unsaturation of the D-rings, without 
affecting the E-ring. 

Macrolactamization of an amino acid was the first choice to meet the above 
requirements in the synthesis of madangamine C (3) (Scheme 12.13). AZADO-
oxidation [34] of primary alcohol 13 and subsequent Wittig reaction with 83 intro-
duced the unsaturated side chain with complete Z-selectivity, giving 84 in 88% yield. 
Hydrolysis and removal of the Teoc group gave the amino acid, which underwent 
the macrolactamization with EDCI and HOBt [7, 22] to give pentacyclic compound 
85. Finally, LiAlH4 reduction of the amide group accomplished the total synthesis 
of madangamine C (3).
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Scheme 12.13 Total synthesis of madangamine C 

Although madangamine C (3) was obtained, we found that the macrolactamization 
was not applicable to other members of the madangamines. For example, the macro-
lactamization for the synthesis of madangamine E (5) was not successful as follows 
(Scheme 12.14a). Primary alcohol 13 was converted to bromide 86, which underwent 
Cahiez’s alkylation with Grignard reagent 87 in the presence of the copper catalyst 
[35]. Cleavage of the TIPS group with CSA in MeOH provided primary alcohol 88, 
which was subjected to TEMPO-oxidation to provide carboxylic acid 89. After trans-
formation to the amino acid, macrolactamization resulted in low yield, likely because 
the unfavorable dimer was competitively formed due to the lack of the Z-olefin, which 
supported macrolactamization by the proximity effect to form madangamine C (3).

For successful macrocyclization, we believed that reactions at elevated temper-
ature would be essential to adopt the appropriate conformation for cyclization 
(Scheme 12.14b). Thus, functional groups at both sites should possess the proper 
reactivity and stability to react at elevated temperature. To meet these requirements, 
we planned to take advantage of macrocyclic alkylation using the secondary amine 
and the tosylate through SN2 reaction. First, the primary alcohol of 88 was converted 
to tosylate 91, which was subjected to BF3·Et2O-mediated cleavage of the Teoc group. 
As we expected, the macrocyclic alkylation at 80 °C in the presence of K2CO3 took 
place without detection of the corresponding dimer, affording pentacyclic compound 
92 in 61% yield (two steps). Finally, reduction of 92 completed the total synthesis 
of madangamine E (5). 

The macrocyclic alkylation was widely applicable to install various types of D-
rings (Scheme 12.15a). Madangamine D (4), which has a fourteen-membered satu-
rated D-ring instead of the thirteen-membered D-ring in madangamine E (5), was
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successfully synthesized by the same sequence using Grignard reagent 93. Madan-
gamine A (1) was one of the most challenging targets due to the sensitive (Z,Z,Z)-
skipped triene (Scheme 12.15b). However, the macrocyclic alkylation approach was 
effective even for the total synthesis of madangamine A (1). The Wittig coupling of 
53 using phosphonium salt 96 and cleavage of the TIPS group provided 97 including 
the (Z,Z,Z)-skipped triene as a single diastereomer. As an initial experiment, oxida-
tion of the primary alcohol was attempted to give the acid for the macrolactamization. 
However, significant decomposition was observed probably due to the skipped triene. 
In contrast, the tosylate was easily prepared from the primary alcohol in 97. After  
formation of the free amino group, the fifteen-membered D-ring was successfully 
constructed by macrocyclic alkylation with iPr2NEt in MeCN at 70 °C. Pentacyclic 
intermediate 98 was produced in 59% yield over two steps. Reduction of 98 resulted 
in the total synthesis of madangamine A (1).
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The structure of madangamine B (2) is similar to that of madangamine A (1) except 
for the position of one double bond in the fifteen-membered D-ring (Scheme 12.16). 
However, the location of this double bond rendered the synthesis from the common 
intermediate more complicated. For example, aldehyde 53 was not a productive 
intermediate for the direct coupling reaction to install the side chain. In addition, 
the (E)-stereochemistry of the double bond in madangamine B (2) prevented the use 
of the reliable (Z)-selective Wittig reaction. The construction of the D-ring started 
with one-carbon dehomologation. The Ishihara group reported α-oxyacylation of 
aldehydes via a radical intermediate [36], which was applied to aldehyde 53 to give 
99. Reduction of aldehyde 99 and methanolysis formed the diol, which was cleaved 
with Pb(OAc)4 to give aldehyde 100. Installation of the side chain was achieved with 
stepwise coupling reactions using the (E)-selective CrCl2-mediated Takai-Uchimoto 
olefination [37], and the (Z)-selective Wittig reaction using phosphonium salt 103. 
After preparation of the tosylate and the secondary amine in three steps, macrocyclic 
alkylation successfully constructed the fifteen-membered D-ring. Finally, LiAlH4 

reduction of the remaining lactam carbonyl group accomplished the total synthesis of 
madangamine B (2). Thus, we achieved the unified total synthesis of madangamines 
(1–5) from the ABCE-tetracyclic common intermediate.
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12.6 Biological Activities of Madangamines A-E 

With pure synthetic samples of madangamine alkaloids A-E (1–5) in hand, their 
cytotoxicities against thirteen human cancer cell lines were evaluated (Table 12.1) 
[9]. Their IC50 values revealed that the antiproliferative effects depended on the 
degree of unsaturation in the D-rings. Thus, madangamines A (1) and B (2) proved 
to be the most potent alkaloids. In the growth inhibition by madangamine A (1), 
the levels of autophagy-related proteins (LC3-II and p62) increased, associated with 
lysosome enlargement and increase in lysosomal pH [38]. These results suggested 
that madangamine A (1) is a novel lysosome inhibitor and exercised its cytotoxicity 
by the inhibition of lysosome function.
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12.7 Conclusion 

In this chapter, we discussed our synthetic journey to the madangamine alkaloids. 
In the beginning, we focused on the construction of the ABC-tricyclic framework. 
During the synthetic study, stereoselective installation of the skipped diene proved 
to be the most challenging. To solve this problem, we developed a stereodivergent 
method consisting of hydroboration with either 9-BBN or (Sia)2BH to give (E)- or 
(Z)-stereoisomers, and Migita-Kosugi-Stille coupling. This method delivered all four 
possible stereoisomers of the skipped dienes from the same allene. The developed 
method enabled the synthesis of the skipped diene embedded in the madangamine 
alkaloids after intramolecular allenylation. The collective synthesis of madangamines 
A-E was achieved via the ABCE-tetracyclic common intermediate. Macrocyclic 
alkylation proved to be highly effective to install various types of the D-rings. Our 
synthesis of madangamine alkaloids provided a series of pure samples for evaluating 
the antiproliferative effects against human cancer cell lines, indicating that a high 
degree of unsaturation in D-rings was crucial. In addition, madangamine A exhibited 
its cytotoxicity by the inhibition of lysosome function. We believe that our unified 
total synthesis of the madangamine alkaloids will contribute to the development of 
both synthesis and biology involving skipped dienes and macrocyclic diamine natural 
products. 
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Chapter 13 
Total Syntheses of (+)-Aquatolide 
and Related Humulanolides 

Akihiro Ogura and Ken-ichi Takao 

Abstract Herein, the total syntheses of (+)-aquatolide, a humulane-derived 
sesquiterpenoid lactone, and five other related humulanolides are described. The 
key reactions in these syntheses are a cascade metathesis reaction of cyclobutenecar-
boxylate to construct a γ-butenolide with an unsaturated aldehyde side chain, an 
intramolecular Nozaki–Hiyama–Takai–Kishi reaction to form an all-trans-humulene 
lactone skeleton, and a biosynthesis-inspired [2 + 2] photocycloaddition to provide 
a bridged 5/5/4/8-ring system. A cycloaddition giving a 5/4/4/7-ring system was also 
found. In addition, biological studies were conducted using the synthesized samples. 

Keywords Cascade metathesis · 11-membered ring formation · [2 + 2] 
photocycloaddition · Sesquiterpenoids 

13.1 Introduction 

In 2012, the structure of (+)-aquatolide, a humulane-derived sesquiterpenoid lactone, 
was revised from 1a to 1b (Fig. 13.1) by Shaw et al. [1]. This terpenoid was 
originally isolated by San Feliciano et al. from Asteriscus aquaticus [2]. Previ-
ously, structurally related sesquiterpenoids asteriscunolides A–D (2–5), called humu-
lanolides, were isolated from the same source [3–5]. The proposed structure of 
aquatolide 1a consisted of a tetracyclic 5/4/4/7-ring system with a characteristic 
bicyclo[2.2.0]hexane motif. However, the Shaw and Tantillo group found that the 
calculated NMR data for structure 1a were inconsistent with those reported by San 
Feliciano et al. Revised structure 1b was assigned by computational chemistry and 
confirmed by X-ray crystallography. We were interested in structure 1b, which has 
an unusual, intricate bridged 5/5/4/8-ring system.

The biosynthesis of aquatolide has been proposed to involve a transannular [2 
+ 2] cycloaddition of (–)-asteriscunolide C (4) (Fig. 13.2). Parallel addition forms
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Fig. 13.1 Structures of (+)-aquatolide and (–)-asteriscunolides A–D

Fig. 13.2 Proposed biosynthesis of aquatolide

the C2–C10 and C3–C9 bonds in proposed structure 1a, whereas crossed addition 
forms the alternate bonds (C2–C9 and C3–C10) to afford real structure 1b. Although 
the racemic synthesis of 1b has been completed by two groups [6, 7], the total 
synthesis via a biomimetic [2 + 2] cycloaddition has not been reported. We decided 
to attempt the biomimetic approach, and then complete the total synthesis of the 
natural enantiomer (+)-aquatolide (1b). After much effort, we have achieved the 
total synthesis of 1b [8]. In this chapter, we described our endeavors toward the 
synthesis of 1b, including some unsuccessful approaches. 
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13.2 Unsuccessful Route: ROM/RCM/RCM Approach 

Our retrosynthetic analysis of (+)-aquatolide (1b) is shown in Scheme 13.1. 
The advanced intermediate was a putative biosynthetic precursor of 1b, (–)-
asteriscunolide C (4), which has a disubstituted γ-butenolide skeleton. For concise 
access to γ-butenolides, we have reported the ring-opening/ring-closing metathesis 
(ROM/RCM) reaction of cyclobutenecarboxylates in the total synthesis of (+)-
clavilactone A (9) [9–11]. In the present work, we expected to construct the aster-
iscunolide skeleton through a combination of the ROM/RCM approach and a 
ring-closing metathesis (RCM) reaction. Namely, compound 4 could be obtained 
by RCM expelling ethylene from γ-butenolide 6, which would be derived from 
cyclobutenecarboxylate 7 by the ROM/RCM reaction. Sequential metathesis reac-
tions can be performed as one-pot reactions. Substrate 7 would be synthesized by 
our acylation method from alcohol 8. 

Preliminary experiments were performed as racemates (Scheme 13.2). Known 
racemic secondary alcohol 10 [12] was treated with DDQ under anhydrous condi-
tions to provide acetal 11, which was reduced with DIBAL-H to primary alcohol 12. 
Parikh–Doering oxidation of 12 afforded aldehyde 13. The lithium enolate gener-
ated from ketone 14 reacted with aldehyde 13 to give aldol adduct 15 as a diastere-
omeric mixture (d.r. = 2:1). β-Elimination of 15, followed by removal of the MPM 
group in resultant dienone 16, provided alcohol rac-8. According to our previous

Scheme 13.1 First-generation retrosynthetic analysis of (+)-aquatolide (1b) 
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procedure [9–11], the acylation of rac-8 was achieved by using acid anhydride 
17. Cyclobutenecarboxylate rac-7 was obtained, and a substrate for the planned 
sequential metathesis was synthesized. 

With substrate rac-7 in hand, we attempted the ROM/RCM/RCM reaction 
(Scheme 13.3). Cyclobutenecarboxylate rac-7 was treated with the Grubbs cata-
lyst in hot toluene. Unfortunately, desired (±)-asteriscunolide C (rac-4) was not 
obtained, and only dimerized product 18 was obtained in approximately 30% yield. 
The ROM/RCM reaction proceeded to form a γ-butenolide skeleton-like compound 
6 (Scheme 13.1), but the final RCM reaction failed. In anticipation of different 
reactivity, several additional substrates (19–21) were synthesized. However, the 
asteriscunolide skeleton could not be constructed by any of the metathesis reactions.

The conformational inflexibility of the substrates was thought to be responsible 
for the failure of the RCM. It was presumed that the E-olefin in rac-7 and 19 or 
the oxygen substituents in 20 and 21 could have an adverse effect, preventing the 
alkene partners from getting close enough for metathesis. Therefore, we next turned 
our attention to preparing more flexible substrates for the sequential metathesis reac-
tion (Scheme 13.4). Chemoselective addition of a vinyl group to known cyanoalde-
hyde 22 [13] afforded alcohol 23. After silylation of 23, resulting nitrile 24 was 
reduced to aldehyde 25 by DIBAL-H reduction followed by hydrolytic work-up. 
The isopropenyl Grignard reagent reacted with aldehyde 25 to provide adduct 26 
as a mixture of diastereomers (d.r. = 1:1). Via a simple sequence of reactions, TBS

Scheme 13.2 Synthesis of cyclobutenecarboxylate rac-7 
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Scheme 13.3 Attempted ROM/RCM/RCM reactions

ether 26 was converted to MPM ether 27, which was acylated by the same method 
as in the synthesis of rac-7 to give cyclobutenecarboxylate 28. As further substrates 
for metathesis, alcohol 29 and ketone 30 were synthesized from 28 by removal of 
the MPM group and Dess–Martin oxidation.

Using new substrates 28–30, the ROM/RCM/RCM reaction was attempted again 
(Scheme 13.5). When the second-generation Hoveyda–Grubbs catalyst was applied 
to substrates 28 and 29, the reaction proceeded and moderate yields of the 11-
membered products were obtained (15% and 27%, respectively). However, NOE 
experiments on the products showed that the geometry of the ring-closing site olefin 
was the undesired E-configuration, and compounds 32 and 34 were produced by the 
RCM. Furthermore, no cyclized product was obtained from the reaction of ketone 
30. At this stage, we decided to abandon this approach because the metathesis yields 
were lower than expected and we believed that the Z-configuration was required 
for preparing the precursor of (+)-aquatolide (1b). Later, we realized that the E-
configuration would work. This allowed us to develop a concise, high-yielding 
synthetic route for 1b. Independently, Li et al. have reported the total synthesis 
of (–)-asteriscunolide D (5) by the ROM/RCM/RCM approach [14, 15].
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Scheme 13.4 Synthesis of cyclobutenecarboxylates 28, 29, and  30

Scheme 13.5 ROM/RCM/RCM reaction of cyclobutenecarboxylates 28 and 29 

13.3 Successful Synthetic Strategy Toward (+)-Aquatolide 

Next, we combined cross-metathesis (CM) with the ROM/RCM approach instead 
of RCM. This approach required a reaction to construct the 11-membered ring. We 
planned to rely on an intramolecular Nozaki–Hiyama–Takai–Kishi (NHTK) reaction
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Scheme 13.6 Second-generation retrosynthetic analysis of (+)-aquatolide (1b) 

[16–20], which we have used extensively [21–24]. A second-generation retrosyn-
thetic analysis of (+)-aquatolide (1b) was conducted (Scheme 13.6). In this analysis, 
all-trans-humulene lactone 36 was set as a key intermediate. By tuning the structure 
of 36, we expected to find asteriscunolide-type compound 35 that could undergo 
the transannular [2 + 2] cycloaddition. Key intermediate 36 could be cleaved to 
iodoalkene–aldehyde 37 by the intramolecular NHTK reaction, and then 37 would 
be synthesized by the ROM/RCM/CM reaction of cyclobutenecarboxylate 38 with 
methacrolein (39). 

13.4 Construction of the Asteriscunolide Skeleton 

The second-generation synthesis was performed asymmetrically. Readily available 
D-(–)-pantolactone (40) was chosen as the starting material (Scheme 13.7). After 
protection of 40, DIBAL-H reduction of MPM ether 41 followed by Wittig reaction 
of resulting lactol 42 provided known alcohol S-12 [25] in 98% ee, confirmed by 
chiral HPLC analysis. Dess–Martin oxidation of S-12 afforded aldehyde S-13, and 
a large-scale Takai–Utimoto olefination [26] was investigated, for which economic 
conditions were found. Chromium(II) chloride (CrCl2) reduced from less expensive 
CrCl3 with LiAlH4 [27] was also effective in this reaction, yielding E-iodoalkene 
43. Cyclobutenecarboxylate 38 was obtained by deprotection of 43 and acylation of 
alcohol 44 with acid anhydride 17, and the stage was set to develop the ROM/RCM/ 
CM reaction.

First, we examined the ROM/RCM and CM reactions in a stepwise manner 
(Scheme 13.8). In our previous work [9–11], we used the first-generation Grubbs
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Scheme 13.7 Synthesis of cyclobutenecarboxylate 38

catalyst for the ROM/RCM, but the same conditions were not suitable for the reaction 
of 38. Fortunately, the second-generation Grubbs catalyst showed good activity and 
corresponding γ-butenolide 45 and its dimerized product were obtained. Both prod-
ucts were reacted with methacrolein (39) in the presence of the second-generation 
Grubbs catalyst to afford α,β-unsaturated aldehyde 37 as a single E-isomer in 30% 
overall yield. Next, a cascade method was examined. A mixture of 38, the catalyst, 
and methacrolein (39) in toluene was heated, and desired product 37 was produced 
directly in an improved yield (60%). As expected, the iodoalkene moiety was not 
involved in the metathesis. The cascade ROM/RCM/CM reaction was established 
and became a central part of this work.

The next task was forming the 11-membered ring (Scheme 13.9). The intramolec-
ular NHTK reaction of 37 formed the asteriscunolide skeleton to provide 36 in 
a remarkable yield (96%). Once again, the NHTK reaction exhibited tremendous 
power. Cyclized product 36 was obtained as a single diastereomer with a pseu-
doequatorial hydroxy group. This is a common trend in NHTK reactions [20–24]. 
Alcohol 36 was oxidized to (–)-asteriscunolide D (5). Thus, the total synthesis of 5 
was achieved in 10 steps from 40 with an overall yield of 32%, which was approx-
imately four or seven times higher than the yields of previously reported syntheses 
[14, 15, 28].



13 Total Syntheses of (+)-Aquatolide and Related Humulanolides 289

Scheme 13.8 ROM/RCM/CM reaction of cyclobutenecarboxylate 38

Scheme 13.9 Total synthesis of (–)-asteriscunolide D (5) 

13.5 Synthesis of the Proposed Structure of Aquatolide (1a) 

Because asteriscunolide and asteriscunolide-type compounds were obtained, the 
[2 + 2] cycloaddition was investigated (Scheme 13.10). First, we irradiated (–)-
asteriscunolide D (5) with a high-pressure Hg lamp (100 W). However, only olefin 
isomerization was observed and (–)-asteriscunolide A (2) was obtained as the major 
product. Although a small amount of (–)-asteriscunolide C (4) was produced, [2 + 
2] cycloadducts were not detected. The Li group reported that irradiation of 5 with a 
UV lamp (10 W, 254 nm) gave similar results [14, 15]. We concluded that compound 
5 was an unsuitable substrate for the direct synthesis of (+)-aquatolide (1b) via  a  
photochemical reaction.

Next, we irradiated dienol 36 instead of dienone 5 (Scheme 13.11). In this reaction, 
chemoselective isomerization of the trisubstituted olefin gave compound 46, but  the  
desired [2 + 2] cycloaddition did not occur. We thought that the more reactive trisub-
stituted olefin needed to be masked. Therefore, 46 was epoxidized with m-CPBA.
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Scheme 13.10 Irradiation 
of (–)-asteriscunolide D (5)

The reagent approached from the outside of the 11-membered ring, yielding only 
isomer 47. As expected, the photoreaction of epoxide 47 gave a [2 + 2] cycloadduct. 
In fact, the cycloaddition proceeded in parallel mode and ladder-like adduct 48 was 
formed, although at this stage, we did not notice the undesired result. Oxidation of 
48 afforded keto-epoxide 49, which was reduced to the final compound. Unfortu-
nately, the compound was not (+)-aquatolide (1b). The 1H and 13C NMR data for the 
synthetic sample did not match those for 1b, but were consistent with those calcu-
lated by Shaw and Tantillo’s group for the proposed structure of aquatolide (1a) [1]. 
Consequently, we realized that it was non-natural product 1a.

13.6 Completion of the Total Synthesis of (+)-Aquatolide 
(1b) 

We used an oxy-Michael reaction as an alternative way to mask the olefin and 
expected the corresponding adduct to give different results from epoxide 47. There-
fore, we investigated the conditions for regioselective 1,4-addition of methanol to 
(–)-asteriscunolide D (5) (Scheme 13.12). Under basic conditions (NaOMe/MeOH), 
low regioselectivity was observed, giving a complex mixture of 1,4-adducts to di-
and/or tri-substituted olefins. Fortunately, the reaction with acids such as BF3·OEt2 in 
methanol provided 1,4-adduct 50 with high regio and stereoselectivity. The crossed 
[2 + 2] cycloaddition of 50 proceeded to provide desired product 51 with the 
bicyclo[2.1.1]hexane core. Thus, we achieved the first biomimetic transannular [2 
+ 2] cycloaddition for the synthesis of aquatolide. Treatment of 51 with BF3·OEt2 
afforded the eliminated product and completed the total synthesis of (+)-aquatolide 
(1b). Compared with previous racemic syntheses [6, 7], our route was shorter (13 
steps from 40) and resulted in a high yield (5.7% overall yield).
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Scheme 13.11 Synthesis of the proposed structure of aquatolide (1a)

Scheme 13.12 Total synthesis of (+)-aquatolide (1b)
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Fig. 13.3 Regioselectivity of [2 + 2] photocycloadditions of 47 and 50 

Although the transannular [2 + 2] photocycloaddition of compound 47 provided 
parallel product 48 (Scheme 13.11), the reaction of compound 50 gave crossed 
adduct 51 (Scheme 13.12). We analyzed the extremely high regioselectivity in these 
reactions by conformational searches of the substrates (Fig. 13.3). H-2 and H-10 
were cis to each other in the most stable conformer of epoxide 47. In contrast, these 
hydrogens were trans in 50. Therefore, the parallel cycloaddition of 50 would not 
proceed because a trans-fused 4/4-ring system is impossible. These results suggested 
that the parallel or crossed modes of cycloaddition are controlled by the conformation 
of the substrates. 

13.7 Total Syntheses of Related Humulanolides 

In addition, we investigated the syntheses of other related humulanolides 
(Scheme 13.13). In the photoreaction of (–)-asteriscunolide D (5), the total synthesis 
of (–)-asteriscunolide A (2) was achieved (11 steps from 40 with an overall yield of 
14%) (Scheme 13.10), but pure (–)-asteriscunolide C (4) was not isolated. In contrast, 
the oxidation of alcohol 46 (Scheme 13.11) afforded pure 4 (11 steps from 40 with 
an overall yield of 13%). Chemo and stereoselective epoxidation of alcohol 36 with 
m-CPBA achieved the first total synthesis of (–)-asteriscunolide I (52) [29], a recently 
isolated humulanolide (10 steps from 40 with an overall yield of 26%). Our next goal 
was to construct the asteriscanolide skeleton, a tricyclic 5/5/8-ring system. A clue to 
its construction was found by chance in a study of the 1,4-addition of methanol to 
5 (Scheme 13.12). When 5 was treated with n-Bu3P in methanol, an intramolecular
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Scheme 13.13 Total 
syntheses of related 
humulanolides 

Rauhut–Currier (vinylogous Morita–Baylis–Hillman) reaction [30, 31] occurred to 
afford (+)-tetradehydroasteriscanolide (53) [32]. After optimization, the yield was 
improved and the efficient total synthesis of 53 was also completed (11 steps from 
40 with an overall yield of 32%). 

13.8 Biological Activity of Natural Humulanolides 
and Analogs 

Although several humulanolides show anti-tumor activity [33, 34], their target 
molecule has not been identified. We conducted a structure–activity relationship 
study using synthetic samples of natural humulanolides and their analogs, expecting 
to elucidate the mode of action. First, two additional compounds, 54 and 55, were  
prepared by oxidation of the corresponding alcohols (Scheme 13.14) [35].

Twelve compounds were selected, and anti-proliferative activity was examined 
against eight human cancer cell lines. Whereas most compounds, including aqua-
tolide, were inactive (1a, 1b, 36, 47, 49, 52, 53, and 55), asteriscunolide A (2), aster-
iscunolide C (4), and asteriscunolide D (5) showed some activity. 54 was the most 
potent compound, exhibiting anti-proliferative activity against all tested cell lines 
(e.g., the IC50 values against human gingival carcinoma cell line Ca9-22: 9.9 μM for  
2, 7.5  μM for  4, 4.8  μM for  5, and 2.9 μM for  54). The results suggested that the
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Scheme 13.14 Synthesis of 
humulanolide analogs

unsaturated carbonyl moiety on the 11-membered ring is essential for the anti-cancer 
activity and that the stereochemistry around the epoxide moiety is also important. 

A further biological study was conducted using 54. 54 caused morphological 
changes in cells similar to those observed during geldanamycin treatment. Thus, heat-
shock protein 90 (HSP90), which is a chaperone that helps proper protein folding, was 
probably the target protein. Actually, we confirmed that 54 increased the expression 
of HSP70 and decreased that of HSP90 client proteins, such as AKT and CDK4. 

13.9 Conclusion 

We were inspired by the biosynthesis of (+)-aquatolide (1b) to achieve the efficient 
total synthesis of 1b. In the early stage of the synthesis, the cascade ROM/RCM/CM 
reaction of cyclobutenecarboxylate was developed to construct the γ-butenolide with 
an unsaturated aldehyde side chain. The intramolecular NHTK reaction efficiently 
formed an all-trans-humulene lactone skeleton. Finally, the transannular [2 + 2] 
photocycloaddition of an asteriscunolide-like compound was realized in a crossed 
mode. In addition, the [2 + 2] cycloaddition proceeding in a parallel mode was also 
found. Thus, we established a concise, high-yielding synthetic route to 1b. Related 
humulanolides (2, 4, 5, 52, and 53) were also synthesized with our strategy and a 
structure–activity relationship study was performed using the synthesized samples. 
We hope that our findings will contribute to the development of natural product 
synthesis. 
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Chapter 14 
Complex Oligosaccharides 
Synthesis—Challenges and Tactics 

Daisuke Takahashi and Kazunobu Toshima 

Abstract 1,2-cis glycoside structures exist as constituents of biologically active 
natural products, pharmaceuticals, and functional materials. Therefore, there is 
a pressing need for the development of novel and efficient 1,2-cis-glycosylation 
methods to understand their specific roles and to create new lead compounds for 
pharmaceutical and functional materials by derivatization of these glycosides. In 
this context, we have developed a conceptually new glycosylation method called 
boron-mediated aglycon delivery (BMAD), which utilizes organoboron catalysis 
for simultaneously controlling the 1,2-cis stereoselectivity of the glycosidic bond 
formed and regioselectivity of the reaction site in the glycosyl acceptor. The method 
has been applied to synthesize useful glycosides including complex oligosaccha-
rides found in pathogenic bacteria. We recently extended the BMAD method to 
the reaction of partially protected and unprotected glycosides for the late-stage 
modification of natural glycosides with interesting biological activities, and synthe-
sized complex oligosaccharides using minimal protecting groups. Furthermore, we 
developed a diastereoselective desymmetric BMAD reaction of meso-diols as a new 
synthetic tactic for complex glycosides. Herein, we discuss the abovementioned 
BMAD methods and their use in the synthesis of useful glycosides. 
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14.1 Introduction 

Carbohydrates, along with nucleic acids and proteins, are major biopolymers and are 
abundant in many living organisms. They perform crucial functions in a variety of 
biological processes, including cell adhesion, proliferation, and pathogenic infection 
because of their structural diversity. Therefore, elucidation of the biological func-
tions of these carbohydrates is essential. Carbohydrates are also found in numerous 
biologically useful natural compounds, pharmaceuticals, and materials with high 
functionalities [1–4]. Hence, the development of lead compounds for new phar-
maceuticals and materials is highly desired, especially in the era of Sustainable 
Development Goals (SDGs). To this end, many stereoselective and efficient chemical 
glycosylation methods have been developed [5, 6], and studies on the synthesis and 
functional evaluation of useful carbohydrates with complex structures are becoming 
more prevalent. In particular, the stereoselective synthesis of 1,2-trans-glycosidic 
bonds, represented by β-glucoside and α-mannoside, is easily achieved by utilizing 
the participation from the neighboring acyl protecting group in the C2 position of 
the glycosyl donor, enabling the synthesis of complex polysaccharides. However, 
the stereoselective synthesis of 1,2-cis-glycosidic bonds, represented by α-glucoside 
and β-mannoside, remains a challenging endeavor owing to the absence of participa-
tion from neighboring functional groups (Fig. 14.1). Therefore, the development of 
comprehensive 1,2-cis-stereoselective glycosylation reactions with high generality 
is in great demand.

Conventional chemical synthetic tactics for glycosides have so far relied 
heavily on protecting group strategies with the main objective of controlling α/β-
stereoselectivity. This decreases the overall synthetic efficiency, since the introduc-
tion and removal of protecting groups are complicated and require multiple steps. 
Therefore, to create a new synthetic tactic, a novel method for controlling both the 
1,2-cis-stereoselectivity and regioselectivity in the glycosylation of unprotected or 
partially protected glycosyl acceptors, by chemical means, has been eagerly antici-
pated. In this context, we have proposed and developed a conceptually new regios-
elective and 1,2-cis-stereospecific glycosylation using an organoboron catalyst and 
a 1,2-anhydro sugar, namely boron-mediated aglycon delivery (BMAD) [7–22]. As 
shown in Fig. 14.2, in this reaction, boronic ester 3 with moderate Lewis acidity, 
which is prepared from 1,3- and/or cis-1,2-diol glycosyl acceptor 1 and boronic acid 
2 under mild conditions in the absence of other reagents, activates the 1,2-anhydro 
sugar 4. Next, the generated anionic boronate ester 5 enhances the nucleophilicity of 
the oxygen atom bound to boron. Intramolecular glycosylation then occurs from the 
favorable transition state via a SNi-type reaction mechanism, providing the 1,2-cis 
glycoside 7 via boronic ester 6 with high regioselectivity and full stereoselectivity. 
A major feature of this reaction is that the diol exchange between boronic ester 6 and 
acceptor 1 occurs quickly and the reaction proceeds catalytically. An example of the 
BMAD reaction is shown in Scheme 14.1 [7]. Initially, boronic ester 10 was prepared 
from 4,6-diol sugar acceptor 8 and boronic acid 9 under toluene reflux conditions. 
1,2-anhydroglucose 11 [23] was subsequently introduced to the reaction mixture to
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Fig. 14.1 Chemical structures of various carbohydrates containing a 1,2-cis glycoside

examine the BMAD reaction. It was found that excellent α-stereoselectivity devel-
oped and α(1,4)-glucoside 12 was obtained as a single isomeric compound in 82% 
yield. In this chapter, we introduce the extension of the substrate generality of the 
developed BMAD reaction for glycosyl donors and glycosyl acceptors, as well as 
some examples of applying this method to synthesize useful glycosides with complex 
structures.

14.2 Development of Regioselective 
and 1,2-cis-β-Stereospecific BMAD Reaction and Its 
Use in the Synthesis of Oligosaccharides Found 
in Pathogenic Bacteria 

We investigated the regioselective and stereospecific 1,2-cis-β-glycosylation, which 
is a more challenging linkage to construct, using an organoboron catalyst and a 1,2-
anhydro donor. The β-mannoside and β-rhamnoside structures, which are typical 
examples for 1,2-cis-β-glycosides, are contained in the antigenic oligosaccharides



302 D. Takahashi and K. Toshima

Fig. 14.2 Boron-mediated aglycon delivery (BMAD) using boronic acid catalysts 

Scheme 14.1 BMAD reaction of 8 and 11

of various pathogens, including Escherichia coli (E. coli) and Streptococcus pneu-
moniae (S. pneumoniae). Thus, the development of efficient synthetic methods for 
1,2-cis-β-glycosides is required for the development of highly safe glycoconjugate 
vaccines. 

14.2.1 Development of Regioselective and β-Stereospecific 
Mannosylation and Its Use in the Synthesis 
of Oligosaccharides Found in E. coli O75 [8] 

Initially, the BMAD reaction of 4,6-diol 8 and 1,2-anhydromannose 15 [24] was  
investigated using various boronic acid catalysts. When boronic ester 14, prepared 
from 8 and catalyst 13 having an electron-withdrawing nitro group, was employed, 
the reaction went smoothly and β(1,6)-mannoside 16 was afforded in good yield 
as a single-isomeric compound. On the other hand, when boronic acid 9 having an 
electron-donating methoxy group was employed, the chemical yield of 16 reduced, 
and little β-stereoselectivity was observed. These results suggested that the reactivity 
of catalyst 13 is higher than that of 9 and the SN2 reaction from α-face of 1,2-anhydro 
donor 15 proceeds when the donor activation is weakened by a decrease in the Lewis 
acidity of the corresponding boronic ester. Subsequent optimization of the reaction 
solvent and temperature achieved a 90% yield of 16 (Scheme 14.2a). Interestingly,
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omitting the toluene reflux and subsequent concentration and simply mixing the 
three substrates afforded 16 in almost the same 85% yield (Scheme 14.2b). These 
results indicate that the formation of the boronic ester proceeds effectively in organic 
solvents and that the formation of a small amount of water in the reaction system does 
not significantly affect the chemical yield or regio and stereoselectivities. This finding 
was an important hint for the development of the late-stage glycosylation method for 
unprotected glycosides, which will be introduced later. The glycosylation reaction of 
the galactose-type 4,6-diol 17 with 15 took place with complete reversal of regios-
electivity and β(1,4)-mannoside 18 was afforded as a single-isomeric compound in 
86% yield (Scheme 14.2c). The reasons for the reversal of regioselectivity can be 
explained using the predictive model of regioselectivity based on the transition state 
(TS) models shown in Fig. 14.3. Specifically, the glycosylation of Glc-type 4,6-diol 8 
with 1,2-anhydromannose donor 15 is expected to proceed at the 6-position because 
TS-β(1,6), where the donor moiety does not overlap with the acceptor moiety, is ener-
getically advantageous over TS-β(1,4). On the other hand, in the case of Gal-type 
4,6-diol 17, TS-β(1,4) is energetically favored over TS-β(1,6) due to the opposite C4 
stereochemistry. 

Since the β-mannoside bond was efficiently constructed at the 4-position of galac-
tose, this reaction was applied to the synthesis of glycan 19 derived from pathogenic 
E. coli O75 [25, 26]. In recent years, the appearance of multidrug-resistant E. coli

Scheme 14.2 BMAD reaction of 8 and 15 a with and b without preformation of 14. c BMAD 
reaction of 17 and 15 without preformation of the boronic ester
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Fig. 14.3 Predictive model for regioselectivity in the BMAD reaction of Glc-type 4,6-diol 8 (a, 
b) and Gal-type 4,6-diol 17 (c, d) with 1,2-anhydromannose donor 15

O75, the cause of urinary tract infections [27], has become a problem [28, 29]. 
Scheme 14.3 shows the retrosynthetic analysis of 19. The main feature of this 
synthesis is the sequential introduction of disaccharide unit 21 and monosaccha-
ride unit 15 into 3,4,6-triol acceptor 22 in a regio and stereoselective manner. The 
target tetrasaccharide 19 could be synthesized by regioselective and β-stereospecific 
BMAD reaction of 4,6-diol 20 with 15, followed by conversion and deprotection of 
the protecting groups. The trisaccharide 20 could be synthesized through the regios-
elective glycosylation of triol 22 with thioglycoside 21 with stoichiometric amounts 
of boronic acid 9 as a temporary protecting group for the 4,6-diol [30]. 

Scheme 14.4 shows the synthetic scheme of 19. 4,6-diol-protected boronic acid 
ester 23 was obtained by acetone reflux of triol 22 and boronic acid 9, followed by

Scheme 14.3 Retrosynthetic analysis of a tetrasaccharide repeating unit of LPS derived from E. 
coli O75 
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Scheme 14.4 Synthesis of tetrasaccharide 19 

concentration. The glycosylation reaction of 23 with thioglycoside 21 using NIS/ 
TfOH as an activator in DCE/toluene at − 30 °C provided trisaccharide 24 in high 
yield with excellent regio and 1,2-trans-stereoselectivities. The BMAD reaction of 
the trisaccharide acceptor 24 with 1,2-anhydromannose 15 using boronic acid 13 was 
investigated in MeCN at 0 °C. As expected, the reaction proceeded β(1,4) selectively 
and the desired tetrasaccharide 25 was obtained as a single isomeric compound in 
91% yield. Efficient synthesis of 19 was completed by conversion and deprotection 
of the protecting groups. 

14.2.2 Development of Regioselective and β-Stereospecific 
Rhamnosylation and Its Use in the Synthesis 
of Oligosaccharides Found in E. coli O1 [10, 14] 

We next developed regioselective and stereospecific β-rhamnosylation. Specifically, 
we examined the BMAD reaction of 4,6-diols with 1,2-anhydrorhamnose donor 26 
[31] using catalytic amounts of boronic acid 13 at 0 °C in MeCN. The reaction went 
efficiently to afford β(1,4)-rhamnoside 27 with high regio and complete stereoselec-
tivities in 87% yield, indicating that the regioselectivity of the β-rhamnosylation of 
4,6-diols is the same as that of the α-glucosylation. In addition, the glycosylations
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Fig. 14.4 BMAD reaction of several 4,6-diols with 26 

with 26 were examined using three different 4,6-diol acceptors, glucal, N-acetyl-
glucosaminide, and mannoside, under the same reaction conditions. In all cases, the 
reaction gave the corresponding β(1,4)-rhamnosides 28–30 in high yields and with 
high regio and stereoselectivities, indicating the high substrate generality of this 
reaction (Fig. 14.4). 

To demonstrate the utility of this reaction, we focused on avian pathogenic E. coli 
(APEC), which is a bacterial pathogen that infects chickens and causes economic 
damage to poultry farmers [32, 33]. The APEC O1 strain is especially problematic 
due to its high genomic similarity to the human pathogenic E. coli O1 strain and its 
potential for zoonotic transmission [34–36]. The detailed structure of the O-antigen 
of the APEC O1 strain is still unknown, hampering the development of effective and 
safe vaccines against APEC O1. Thus, we focused on the O1A antigen which is the 
pentasaccharide repeat unit of the LPS from pathogenic E. coli O1 [37]. In this study, 
we first synthesized O1A pentasaccharide 31 as a glycotope candidate of APEC O1 
for vaccine development (Fig. 14.5).

Scheme 14.5 shows the synthetic scheme of 31. The BMAD reaction of 4,6-diol 32 
and 1,2-anhydrorhamnose 33 was investigated using catalytic amounts of boronic 
acid 13 at room temperature in THF. The reaction cleanly provided the desired 
β(1,4)-rhamnoside 34 as a single isomeric compound in 92% yield. Protecting the 
two hydroxyl groups in 34 with Bz groups, followed by removing the PMB group 
under acidic conditions, afforded 35. α-stereoselective rhamnosylation of 35 and 
known donor 36 gave the trisaccharide as a single isomeric compound in high yield. 
The removal of the PMB group provided the trisaccharide acceptor 37. Next, the 
[2 + 3] glycosylation with 38 [14] using TfOH as an activator in toluene at − 
40 °C gave protected pentasaccharide 39 in 80% yield. Transformation of the azido 
and N-Troc groups to acetamide groups, followed by global deprotection, furnished
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Fig. 14.5 Chemical structures of O1A antigen as a repeating unit of LPS derived from E. coli O1 
and pentasaccharide 31

31. Subsequently, we synthesized a glycoconjugate of 31 with a carrier protein and 
evaluated its immunogenicity by ELISA assay, which showed that the glycoconjugate 
is a lead compound for vaccine development against APEC O1 [16].

14.3 Development of Regioselective 
and 1,2-cis-Stereospecific BMAD Reaction 
of Unprotected Glycosides and Its Use in the Synthesis 
of the Oligosaccharide Found in P. boydii [9] 

The development of chemical methods capable of regio and stereoselective glycosy-
lation to specific hydroxyl groups in the presence of many free hydroxyl groups would 
significantly reduce protection and deprotection steps. Furthermore, this method 
could be employed for late-stage glycosylations of unprotected natural products 
and pharmaceutical compounds to facilitate the creation of prodrugs and conduct 
structure–activity relationship studies. We therefore investigated the development of 
regioselective and 1,2-cis-stereospecific BMAD reactions for unprotected glycosides 
with several free hydroxyl groups. 

Initially, we selected 1,2-anhydroglucose 11 as a glycosyl donor and d-glucal (40) 
as an unprotected sugar acceptor and examined the glycosylation using boronic acid 
catalyst 13. Specifically, the reaction was initiated by adding donor 11 after prepara-
tion of boronic ester 41 by toluene refluxing of 13 and 40 followed by concentration. 
The desired α(1,4)-glycoside 42 was obtained in 49% yield, in addition to the trisac-
charides 44 and 45, which are considered products of over-reaction, in 8% and 15% 
yields, respectively (Table 14.1, entry 1). It was considered that the 9-membered 
boronic ester intermediate 46 was generated after the first BMAD reaction activated 
donor 11, which caused the second BMAD reaction to produce 44 and 45 (Fig. 14.6). 
Here, as mentioned above, this reaction proceeded effectively even in the presence of 
a small amount of water, and we hypothesized that the addition of an excess amount 
of water to the reaction mixture might inhibit the progress of the over-reaction and
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Scheme 14.5 Synthesis of pentasaccharide 31

improve the yield of the target disaccharide 42. In other words, we considered that 
the addition of water to the reaction mixture would quickly allow the hydrolysis of 
the unstable 9-membered ring boronic ester 46 and inhibit the activation of 11 by 46. 
Thus, we found for the first time that when 5.0 equiv. of water was added, the desired 
42 was afforded with high regio and complete stereoselectivities in a high yield of 
92%, without producing trisaccharides 44 and 45 (Table 14.1, entry 2). Furthermore, 
to improve the efficiency, the reaction was carried out without preformation of 41 
and only with the addition of catalyst 13. The desired 42 was obtained in similar 
yields (Table 14.1, entry 3).

Next, several unprotected sugars were used to examine the substrate generality 
with respect to the glycosyl acceptors (Fig. 14.7). The BMAD reaction using 1,2-
anhydroglucose 11 and catalytic amounts of boronic acid 13 proceeded highly regios-
electively with complete 1,2-cis-stereoselectivity even for a glucoside with four free 
hydroxyl groups, yielding α(1,4)-glycoside 47 in a high yield of 88%. The corre-
sponding α(1,4)-glycosides 48–50 were similarly afforded in high yields when using
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Table 14.1 BMAD reaction of 11 and 40 

Fig. 14.6 Proposed mechanism for the generation of trisaccharides 44 and 45

a glucoside with different substituents at the anomeric position, a thioglucoside with 
a leaving group at the anomeric position, and a glucosaminide, respectively.

The BMAD reaction of unprotected natural glycosides was investigated to clarify 
the usefulness of this reaction as a late-stage glycosylation method. Specifically, 
daidzin (51), which has five free hydroxyl groups, including a phenolic hydroxyl 
group, was selected as a natural glycoside. Its glycosylation reaction with 52 using 
catalyst 13 afforded the desired α(1,4)-glycoside 53 with good regio and complete 
stereoselectivities in 70% yield. The synthesis of isoflavone glycoside 54 was 
easily achieved by removing the protecting groups of the resulting glycoside 53 
(Scheme 14.6a). Paeoniflorin (55), which has five free hydroxyl groups and hemiketal 
and acetal moieties considered acid labile, was glycosylated with 11 to afford the 
desired α(1,4) glucoside 56 in 73% yield, followed by the removal of the protecting 
groups to afford the corresponding glycoside 57 in only two steps (Scheme 14.6b).
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Fig. 14.7 BMAD reactions of several unprotected sugars with 11

Thus, the BMAD method is a practical technique for the chemical modification of 
natural glycosides and pharmaceuticals with complex structures. 

To demonstrate additional applications of this method, we synthesized the 
branched α-glucan oligosaccharide found in P. boydii. Scheme 14.7 shows the 
synthetic scheme of 64. The BMAD reaction of the unprotected sugar 58 with

Scheme 14.6 BMAD reactions of unprotected natural glycosides 
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52 using boronic acid catalyst 13 gave the desired α(1,4) glucoside 59 as a single 
isomeric compound in 72% yield. The BMAD reaction of 59 and 11 using borinic 
acid catalyst 60 was then conducted. This reaction is a glycosylation reaction in 
which borinic acid and the alcohol in the sugar acceptor form a borinic ester, which 
then activates a 1,2-anhydro donor and proceeds by a SNi-type reaction mechanism, 
similar to the boronic acid-catalyzed BMAD reaction [38, 39]. The desired trisac-
charide 61 was glycosylated only at the 6-position, a primary hydroxyl group, in a 
regio and stereoselective manner. PMB group selective deprotection of 61 gave 62 
with seven free hydroxyl groups. The BMAD reaction of trisaccharide 62 and 11 
with boronic acid catalyst 13 also proceeded in a regio and stereoselective manner 
to provide the desired α(1,4)-glycoside 63 in good yield. Finally, by the removal of 
the Bn groups in 63, efficient synthesis of the branched α-glucan tetrasaccharide 64 
with minimal protecting groups was achieved, demonstrating the usefulness of this 
method. 

Scheme 14.7 Synthesis of branched α-glucan tetrasaccharide 64
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14.4 Development of Diastereoselective Desymmetric 
BMAD Reaction of meso-Diols and Its Use 
in the Synthesis of the Common Structure 
of the LLBM-782 Series [11] 

In natural and pharmaceutical products, there are many glycosides glycosylated to 
meso-diols with a symmetrical face, such as 2-deoxystreptamin and myo-inositol. 
However, to synthesize these glycosides, it is necessary to introduce a sugar unit into 
the desired hydroxyl group of two equivalent hydroxyl groups of the meso-diol, and 
multiple steps are required to control the glycosylation site. Reducing the number of 
synthetic steps is a major challenge. The conventionally used synthetic tactic of myo-
inositol glycosides is illustrated with an example (Fig. 14.8). First, the meso-diol 65 
prepared from myo-inositol is desymmetrized utilizing a chiral auxiliary group 66, 
resulting in a mixture of diastereomers 67 and 68 [40, 41]. Next, one of the desired 
diastereomers 68 is separated and purified as a glycosyl acceptor, and then the desired 
myo-inositol glycoside 71 can be synthesized by stereoselective glycosylation with 
glycosyl donor 69, followed by removal of the chiral auxiliary in the resulting 70. 
However, this conventional synthetic tactic is inefficient due to the low yield and 
regioselectivity of the desymmetrization reaction with the chiral auxiliary group and 
the multiple steps required. We hypothesized that the BMAD reaction of a meso-diol 
with 1,2-anhydro donor 72 and boronic acid catalyst 73 would proceed regio and 
stereoselectively with desymmetrization to yield the targeted myo-inositol glycoside 
71 in a single step. 

To investigate our hypothesis, the desymmetric BMAD reaction of 1,2-
anhydroglucose 11 and meso-myo-inositol 74 using boronic acid catalyst 13 was 
examined in THF at − 20 °C (Scheme 14.8). For the first time, the glycosylation was

Fig. 14.8 Diastereoselective desymmetric glycosylation tactic 
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found to proceed effectively to give α(1,6)-glucoside 75 with complete regio and 
stereoselectivities in 96% yield. When 1,2-anhydromannose 15 was employed under 
the same conditions, the regioselectivity was reversed completely and the BMAD 
reaction of 74 gave β(1,4)-mannoside 76 as a single isomeric compound in 99% yield. 
These results indicated that the regioselectivity of this reaction is dependent on the 
configuration of the C2 position of the donor used. Indeed, it was confirmed that 
when 1,2-anhydrorhamnose 26 having the same R configuration at the C2 position 
as 11 and 1,2-anhydrofucose 77 having the same S configuration at the C2 position as 
15 were employed in the BMAD reactions of 74, corresponding β(1,6)-rhamnoside 
78 and α(1,6)-fucoside 79 were obtained, respectively, in high yields with complete 
diastereoselectivity. These results clearly indicated that chirality transfer from the 
1,2-anhydro donor to the meso-diol acceptor occurred. 

To demonstrate the utility of this desymmetric BMAD reaction, we applied it to the 
synthesis of mannoside 80 which is the common structure of the antibiotic LLBM-
782 series and is a base hydrolysis product of LLBM-782α (Fig. 14.9) [42–44]. The 
anomeric configuration of 80 was assigned as β by the value of its 1JCH coupling 
constant of 164 Hz. However, α-anomers and β-anomers are usually observed at 
1JCH values of about 170 Hz and 160 Hz, respectively, thus the assignment of the β 
configuration is ambiguous [45, 46].

Scheme 14.9 shows the synthetic scheme of 80. Initially, diastereoselective 
desymmetric BMAD reaction of meso-diol 74 with 1,2-anhydro donor 81 possessing

Scheme 14.8 Desymmetric BMAD reactions of meso-diol 74 
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Fig. 14.9 Chemical structures of the LLBM-782 series and common structure 80 obtained by base 
hydrolysis of LLBM-782α1

a PMB group at the C3 position took place at − 20 °C in THF affording β(1,4)-
mannoside 82 as a single isomeric compound in 85% yield. The 1JCH for 82 was 
159 Hz and the nOe correlation between H1 and H5 in the mannose moiety was 
observed, showing that the anomeric configuration of 82 was β. Treatment of 82 with 
hydrogen chloride to remove TBS and orthoformate groups, followed by protection 
of the resulting hexanol with Bn groups, gave 83. Removal of the PMB group in 83 
under acidic conditions gave 84. Treatment of 84 with DMP, followed by oximation, 
afforded 85. Treatment of 85 with Ac2O, followed by reduction of the oxime group 
and carbamoylation of the resulting amine, gave 86. Finally, removal of Bn groups 
furnished the target mannoside 80 in high yield. The 13C NMR data obtained for 
80 were in good agreement with the reported data. These results indicated that the 
stereochemistry of the anomeric position of LLBM-782 series is indeed in the β 
configuration.
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Scheme 14.9 Synthesis of common structure of the LLBM-782 series 

14.5 Conclusion 

In summary, we have developed regioselective and 1,2-cis-β-stereospecific BMAD 
reactions. This study found that the preformation of the boronic ester under toluene 
reflux conditions was not always necessary, which is an important point for future 
development. Subsequently, we applied this method to synthesize oligosaccharides 
found in pathogenic bacteria, E. coli O75 and O1. In addition, we developed regiose-
lective and 1,2-cis-stereospecific BMAD reactions of unprotected glycosides. Adding 
water to the reaction mixture inhibited the over-reaction. We applied this method 
to the late-stage BMAD reaction of biologically active natural glycosides and the 
synthesis of an oligosaccharide found in P. boydii. We also developed a diastere-
oselective desymmetric BMAD reaction of meso-diols and applied this method to 
synthesize the common structure of the LLBM-782 series, revealing that the anomeric 
configuration of the LLBM-782 series was β. Therefore, the BMAD reaction will 
aid in the creation of lead compounds for new pharmaceuticals and functional mate-
rials. These methods will contribute to biology, pharmacy, and medicine through the 
utilization of the developed glycosides.
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Chapter 15 
Pursuing Step Economy in Total 
Synthesis of Complex Marine Macrolide 
Natural Products 

Haruhiko Fuwa 

Abstract Here I describe our first-, second-, and third-generation synthesis of (+)-
neopeltolide, which is a Jamaican marine macrolide that shows potent antiprolifer-
ative and antifungal activities. The third-generation synthesis enabled an expedient 
access to (+)-neopeltolide in 11 linear and 23 total steps, which is so far the shortest 
synthesis of this natural product. Convergent synthesis planning by taking advantage 
of chemoselective transformations, cross-coupling reactions, and tandem reactions 
was the key for increasing step economy. 

Keywords Chemoselectivity · Convergent synthesis · Tandem reaction · Olefin 
metathesis · Palladium-catalyzed cross-coupling 

15.1 Introduction 

As exemplified by halichondrins and bryostatins, marine macrolide natural products 
are an important source of chemotherapeutic lead compounds for human diseases [1– 
5]. However, most of, if not all, this class of natural products are only scarcely isolable 
from natural sources. The structural complexity of marine macrolides, commonly 
characterized by a macrolactone skeleton with multiple stereogenic centers, also 
hampers selective derivatizations for analogue synthesis. Accordingly, total synthesis 
is currently the most practical way to access marine macrolides for detailed investi-
gations into their chemical reactivity and biological activity [6–9]. It should also be 
emphasized that total synthesis plays an indispensable role in the structure determi-
nation of marine macrolides, wherein NMR spectroscopic analysis sometimes results 
in incorrect configurational assignment of stereogenic centers [10]. 

The synthetic challenges in total synthesis of marine macrolide natural products 
basically include the construction of the stereochemically complex carbon chain and
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the closure of the macrocyclic backbone [6–9]. Owing to significant advances in 
synthetic organic chemistry over the past half century, nowadays a body of versatile 
methods for the synthesis of chiral building blocks is available, and a repertoire of 
powerful macrocyclization reactions is now in our hand. However, efficiency in total 
synthesis of marine macrolides still remains unsatisfactory; it is not uncommon to 
find cases where 25 steps or more are required to complete a total synthesis [11]. 
Thus, it seems necessary to formulate a new way of thinking in total synthesis of 
marine macrolides. 

Motivated by the structural complexity and medicinal importance, our group has 
initiated synthetic campaigns toward anticancer marine macrolides more than 15 
years ago (Fig. 15.1) [12–23]. Our first target was (+)-neopeltolide, which was orig-
inally isolated by Wright et al. from a Jamaican sponge of the family Neopeltidae 
[24]. 

On the basis of detailed 2D-NMR experiments, the planar structure and rela-
tive stereochemistry of (+)-neopeltolide were initially determined to be that shown

Fig. 15.1 Structures of marine macrolide natural products 
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by structure 10 (Fig. 15.2). However, the structure of (+)-neopeltolide reported 
by Wright et al. was unfortunately misassigned and later corrected to be struc-
ture 1 by Panek [25] and Scheidt [26] through total synthesis. Notably, the struc-
ture of (+)-neopeltolide is closely similar to that of (+)-leucascandrolide A (11), 
a marine macrolide that was previously identified by Pietra et al. from the sponge 
Leucascandra caveolata collected in New Caledonia [27]. 

(+)-Neopeltolide exhibited single-digit nanomolar in vitro antiproliferative 
activity in cancer cells. In addition, (+)-neopeltolide showed potent growth inhi-
bition against fungal pathogen Candida albicans (MIC = 0.625 μg/mL in liquid 
culture). These biological activities of (+)-neopeltolide were quite similar to those 
of (+)-leucascandrolide A reported by Pietra [27]. Later, the Kozmin group revealed 
that neopeltolide and leucascandrolide A inhibited the complex III of the elec-
tron transport chain of the mitochondria to exert their potent biological activities 
[28]. We reported that 8,9-dehydroneopeltolide showed potent cytotoxic activity 
in cancer cells under energy stressed conditions [29, 30]. We also described the 
synthesis of fluorescent derivatives of 8,9-dehydroneopeltolide to demonstrate its 
rapid accumulation in the mitochondria and the endoplasmic reticulum in live cells 
[31]. 

Because of the unique structural and biological aspects, (+)-neopeltolide repre-
sents an intriguing target for synthetic organic chemists [32–35]. Since the first

Fig. 15.2 Structures of (+)-neopeltolide and (+)-leucascandrolide A 
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total synthesis of 1 [25], a number of research groups have demonstrated the total 
and formal synthesis of (+)-neopeltolide. Furthermore, synthesis-driven structure– 
activity relationship investigations of this natural product have been described by 
several groups. 

This chapter will describe the first-, second-, and third-generation total synthesis 
of (+)-neopeltolide, achieved by our group. The step economy [36] of each synthesis 
will be analyzed to illuminate how we strived for achieving synthetic efficiency. 

15.2 The First-Generation Synthesis of (+)-Neopeltolide: 
The Suzuki–Miyaura Coupling Approach (2008) 

In 2007, we initiated our synthetic studies toward the proposed structure 10 of (+)-
neopeltolide. Inspired by our past experience in the total synthesis of polycyclic 
ethers by capitalizing on Suzuki–Miyaura cross-coupling [37] of enol phosphates 
[38], it was envisioned that the tetrahydropyran ring of 10 could be accessible by 
means of a cross-coupling of alkylborate 13 and enol phosphate 14 followed by a  
ring-closing metathesis [39] (Fig. 15.3). The 14-membered macrocyclic framework 
of 10 was to be forged via a Yamaguchi macrolactonization [40] of seco acid 12. 

We synthesized alkyl iodide 15 as the immediate precursor of alkylborate 13, 
as summarized in Fig. 15.4. Aldehyde 16, available in five steps from (R)-Roche 
ester, was allylborated with (−)-Ipc2Ballyl [41] to yield homoallylic alcohol 17 
(94%). After O-methylation (MeOTf, 2,6-DTBP, 90%), ozonolysis of the double 
bond delivered aldehyde 18 quantitatively. Allylboration of 18 with (+)-Ipc2Ballyl 
afforded homoallylic alcohol 19 in 90% yield. Hydrogenation, PMB protection, and 
desilylation gave alcohol 20 (66%, three steps), which was iodinated to provide alkyl 
iodide 15 (quantitative).

Fig. 15.3 First-generation synthetic blueprint toward the proposed structure 10 of (+)-neopeltolide 
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Fig. 15.4 Synthesis of alkyl iodide 15 

The synthesis of enol phosphate 14, shown in Fig. 15.5, started with Keck asym-
metric allylation (Ti(Oi-Pr)4, (R)-BINOL, allylSnBu3, 4 Å MS)  [42] of aldehyde 21 
to give homoallylic alcohol 22 (93%, > 95% e.e.). PMB protection of 22 (77%) and 
subsequent cross-metathesis (G-II, methyl acrylate) led to α,β-unsaturated ester 23 
(89%, E/Z > 20:1), which was reduced with DIBALH to provide allylic alcohol 24 
quantitatively. Asymmetric epoxidation under Sharpless conditions using (−)-DET 
[43] gave epoxy alcohol 25 (95%, >20:1 d.r.). Iodination of 25 followed by zinc reduc-
tion afforded allylic alcohol 26 (87%, two steps). Protection of 26 using BOMCl/ 
i-Pr2NEt, cleavage of the PMB group with DDQ, and acetylation gave acetate 27 
(98%, three steps). Finally, treatment of 27 with KHMDS and (PhO)2P(O)Cl [44] 
gave rise to enol phosphate 14. Because this compound was unstable, it was used 
directly in the subsequent Suzuki–Miyaura coupling without purification by silica 
gel chromatography.

With the advanced intermediates 14 and 15 in hand, we proceeded to assemble the 
key tetrahydropyran ring and complete the total synthesis, as illustrated in Fig. 15.6. 
According to the procedure described by Marshall [45], alkyl iodide 15 (1 equiv.) was 
lithiated and immediately trapped with B-MeO-9-BBN, and the resultant alkylborate 
13 was cross-coupled with acetate-derived enol phosphate 14 using aq. Cs2CO3 as a 
base and Pd(PPh3)4 complex as a catalyst to deliver enol ether 28. This was immedi-
ately subjected to ring-closing metathesis using G-II (10 mol%), leading uneventfully 
to dihydropyran 29 in 67% yield from 15. Hydrogenation of 29 proceeded from the 
β-face of the molecule to evade unfavorable steric contact with the benzyloxymethyl 
group and afforded tetrahydropyran 30 in 81% yield with >20:1 d.r. Desilylation of 
30 (97%), a two-step oxidation of the derived alcohol, and subsequent treatment of 
the so obtained carboxylic acid with TMSCHN2 afforded methyl ester 31 in 91% 
over the three steps. Removal of the PMB group and TMSOK-mediated hydrolysis 
of the ester gave seco acid 12 (85%, two steps). Macrolactonization of 12 success-
fully closed the 14-membered macrocyclic skeleton to provide macrolactone 32 in 
97% yield. Hydrogenolytic deprotection of the BOM group gave rise to alcohol 33
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Fig. 15.5 Synthesis of enol phosphate 14

(quantitative). Mitsunobu esterification [46] of  33 with carboxylic acid 34 [47, 48] 
(DIAD, Ph3P) resulted in the proposed structure 10 of (+)-neopeltolide (86%).

During the course of the above investigation, the stereochemical reassignment 
of (+)-neopeltolide was disclosed by the Panek group [25], which prompted us to 
synthesize the correct structure 1 in a similar manner as that shown for 10 (Fig. 15.7).

Alkyl iodide 38 with correct configurations at C11 and C13 was easily synthesized 
from aldehyde 16 by using suitable Brown’s chiral allylboration reagents. Suzuki– 
Miyaura coupling of alkylborate 39, prepared from 38, with enol phosphate 14 under 
the optimized conditions, followed by ring-closing metathesis using G-II complex, 
afforded dihydropyran 41 in 78% yield for the two steps. Subsequent hydrogena-
tion of 41 delivered 2,6-cis-configured tetrahydropyran 42 (81%, >20:1 d.r.). The 
remainder of the synthesis proceeded in much the same way as that described for 10. 

Our first-generation synthesis of (+)-neopeltolide was thus achieved in 25 linear 
steps from (R)-Roche ester (or 1,3-propanediol) and in 49 total steps [49, 50]. Anal-
ysis of the convergency of the present synthesis is shown in Fig. 15.8. The  two  
advanced intermediates, alkyl iodide 38 and enol phosphate 14, were synthesized 
in 13 steps each. After the point of convergence [51] at the 14th step, completion 
of the total synthesis required 11 additional steps, seven of which were concession 
steps [52]. These step counts illuminate the following points: (1) the first-generation 
synthesis is only moderately convergent because the point of convergence was placed 
at the mid of the macrolactone synthesis; (2) many concession steps were required in 
between the tetrahydropyran construction and the macrocyclization. We considered 
that these inefficiencies should, at least in part, be ascribable to the anion chemistry for
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Fig. 15.6 Total synthesis of the proposed structure 10 of (+)-neopeltolide
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Fig. 15.7 Total synthesis of (+)-neopeltolide (1)

preparing alkylborate 39 and enol phosphate 14, where all the hydroxy groups (C1, 
C3, C5, C11, and C13) must be differentially protected. Extensive usage of protecting 
groups inevitably increases the number of concession steps. With this point in mind, 
we strived to develop a second-generation synthesis of (+)-neopeltolide as described 
in the following section.
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Fig. 15.8 Summary of the first-generation synthesis of 1 

15.3 The Second-Generation Synthesis of (+)-Neopeltolide: 
The Ring-Closing Metathesis Approach (2010) 

To maximize the convergency of the second-generation synthesis, we envisioned a 
synthetic blueprint in which the point of convergence was placed at late stage as 
possible (Fig. 15.9). Thus, the macrolactone skeleton of 1 would be accessed from 
diene 44 via a macrocyclic ring-closing metathesis, and the latter should be available 
from carboxylic acid 45 and alcohol 46 through a Yamaguchi esterification.
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Fig. 15.9 Second-generation synthetic blueprint toward (+)-neopeltolide (1) 

First, we synthesized carboxylic acid 45 as shown in Fig. 15.10. Asymmetric 
aldol reaction [53] of  trans-cinnamaldehyde (47) with thiazolidinethione 48 under 
Nagao conditions gave alcohol 49 (87%, 11:1 d.r.). The undesired minor diastereomer 
could be readily separable by silica gel flash column chromatography. After removal 
of the thiazolidinethione moiety (94%), the resultant amide 50 was reacted with 
allylMgCl to deliver β,γ-unsaturated ketone 51 (90%). Evans–Tishchenko reduction 
[54] of  51 (SmI2, EtCHO) afforded alcohol 52 quantitatively with > 20:1 d.r. Cross-
metathesis of 52 with methyl acrylate catalyzed by G-II complex proceeded cleanly 
to afford α,β-unsaturated ester 54 without producing the corresponding ring-closing 
metathesis product. The remarkable chemoselectivity observed for the present cross-
metathesis reaction would be ascribable to conformational locking of ruthenium 
alkylidene intermediate 53 by an intramolecular H-bonding [55–57], making the 
styryl group away from the reactive site. Note that exposure of relevant substrate 
55 to G-II complex mainly gave ring-closing metathesis product 56 in 71% yield, 
along with cross-metathesis product 57 in 25% yield. Protection of the hydroxy 
group of 54 using BOMCl/i-Pr2NEt provided BOM ether 58 (68%, two steps from 
52). Upon exposure of 58 to K2CO3 in methanol, removal of the propionyl group 
and concomitant intramolecular oxa-Michael addition [58–60] occurred to give 2,6-
cis-configured tetrahydropyran 59 albeit with only moderate diastereoselectivity 
(cis/trans ca. 2:1). Accordingly, the diastereomer mixture was treated with DBU 
(toluene, 100 °C) to achieve a thermodynamic equilibration of a retro-oxa-Michael/ 
oxa-Michael sequence, giving 2,6-cis-configured tetrahydropyran 59 (53%, > 20:1 
d.r.). Hydrolysis of 59 provided carboxylic acid 45 quantitatively.

Next, we synthesized alcohol 46 from (R)-epichlorohydrin (60) as depicted in 
Fig. 15.11. Nucleophilic attack of 2-lithio-1,3-dithiane to 60 gave epoxide 61 (90%). 
Addition of an organocuprate derived from EtMgBr/CuI to 61 afforded alcohol 62 
(92%). PMB protection of 62 (92%) and hydrolytic removal of the dithiane (91%) led 
to aldehyde 63. Chelate-controlled addition of methallyltrimethylsilane to 63 under
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Fig. 15.10 Synthesis of carboxylic acid 45

the influence of MgBr2•OEt2 delivered homoallylic alcohol 64 in 73% yield with 
15:1 d.r. Methylation of 64 and PMB deprotection then afforded alcohol 46 (91%, 
two steps).

Now the stage was set for assembly of the advanced intermediates (Fig. 15.12). 
Carboxylic acid 45 and alcohol 46 were esterified according to Yamaguchi condi-
tions to deliver ester 44 (94%). Macrocyclic ring-closing metathesis of 44 required 
extensive optimization efforts owing to the moderate reactivity of the styryl group 
and the methallyl (2-methyl-2-propenyl) group; eventually it was found that a syringe 
pump addition of a solution of G-II complex in toluene over 6 h to a mixture of 44 
and 1,4-benzoquinone [61] in toluene (3 mM, 100 °C) provided macrocycle 65 in 
85% yield. The ring-closing metathesis of 44 could be carried out at higher concen-
tration without significant decline of the product yield (82% at 10 mM and 75% at
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Fig. 15.11 Synthesis of alcohol 46

40 mM). Stereoselective hydrogenation of the olefin and in situ deprotection of the 
BOM group by hydrogenolysis led to neopeltolide macrolactone (43) (93%, > 20:1 
d.r.). Mitsunobu coupling of 43 with carboxylic acid 34 furnished (+)-neopeltolide 
(1) in 85% yield.

Our second-generation total synthesis of (+)-neopeltolide was achieved in 13 
linear steps from trans-cinnamaldehyde (47) and in 31 total steps [62, 63]. The outline 
of the second-generation synthesis is summarized in Fig. 15.13. The advanced inter-
mediates, carboxylic acid 45 and alcohol 46, were prepared in nine and seven steps, 
respectively. The point of convergence appeared at the tenth step. After assembly 
of 45 and 46, the synthesis was finished in just three steps. Thus, it is clear that 
the convergency of the second-generation synthesis is much higher than that of the 
first-generation synthesis. Another key feature of the second-generation synthesis is 
the minimization of concession steps throughout the synthesis. The styryl group of 
trans-cinnamaldehyde (47) was carried through most of the synthesis and used in the 
macrocyclization step. The α,β-unsaturated ester group of 58, served as a Michael 
acceptor to forge the tetrahydropyran ring, was used for subsequent esterification 
without oxidation state adjustments, thereby enabling expedient access to carboxylic 
acid 45. The two-fold use of nucleophilic epoxide-opening reactions facilitated short 
synthesis of alcohol 46.

Notably, our second-generation synthesis of 1 was applied to the construction 
of a 16-member (−)-8,9-dehydroneopeltolide stereoisomer library to investigate the 
structure–activity relationship in detail [63] and also to the synthesis of fluorescent-
labeled analogues to examine the cellular target of 1 [31].
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Fig. 15.12 Second-generation synthesis of 1

15.4 The Third-Generation Synthesis of (+)-Neopeltolide: 
The Tandem Macrocyclization/Transannular Pyran 
Cyclization Approach (2022) 

In 2015, Hoveyda and co-workers disclosed a synthesis of (+)-neopeltolide (1), in 
which catalyst-controlled stereoselective olefin metathesis reactions were utilized 
extensively [64]. The Hoveyda synthesis of 1 proceeded in 11 linear steps (28 total 
steps). Motivated by this elegant work, we embarked on a third-generation synthesis 
of 1, which was based on the macrocyclization/transannular pyran cyclization 
strategy developed within our group [22, 65]. 

The third-generation synthesis blueprint toward 1, summarized in Fig. 15.14, 
featured not only an expedient access to neopeltolide macrolactone (43) on the basis 
of the macrocyclization/transannular pyran cyclization strategy but also a conver-
gent synthesis of side chain carboxylic acid 34 through a two-fold application of 
palladium-catalyzed cross-coupling reactions. Thus, 43 would be available from
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Fig. 15.13 Summary of the second-generation synthesis of 1

propargylic alcohol 66, and the latter was traced back to carboxylic acid 67 and 
alcohol 68. Meanwhile, 34 was planned to be synthesized from iodooxazole 69 and 
alkyne 70.

The synthesis of carboxylic acid 67 is depicted in Fig. 15.15. Alcohol 71 was 
prepared from (R)-epichlorohydrin through a one-pot, sequential exposure to 2-lithio-
1,3-dithiane and vinylMgBr/CuBr•SMe2 [66]. Benzylation of 71 (93%) followed 
by hydrolytic deprotection of the dithioacetal of 72 afforded aldehyde 73 (91%). 
Asymmetric Kiyooka aldol reaction of 73 and enol silane 74 (N-Ts-L-Val, BH3•THF) 
[67] provided alcohol 75 in 90% yield with 93:7 d.r. After protection of 75 (99%), 
saponification of the ester moiety of 76 delivered carboxylic acid 67 (88%).

Alcohol 68 was synthesized from (S)-epichlorohydrin (77) as shown in Fig. 15.16. 
Regioselective epoxide-opening of 77 with alkyne 78 (n-BuLi, BF3•OEt2) [68] 
gave chlorohydrin 79 (98%). After treatment of 79 with NaH, in situ regioselective 
ring-opening of the resultant epoxide with (vinyl)2Cu(CN)Li2 delivered homoallylic 
alcohol 80 (82%). Methylation of 80 (quantitative) and subsequent epoxidation of 81 
with m-CBPA gave the corresponding epoxide in 94% yield with 54:45 d.r. Hydrolytic



15 Pursuing Step Economy in Total Synthesis of Complex Marine … 333

Fig. 15.14 Third-generation synthetic blueprint toward (+)-neopeltolide (1)

Fig. 15.15 Synthesis of carboxylic acid 67

kinetic resolution using (R,R)-CoII-salen complex [69] afforded epoxide 83 as a single 
diastereomer (52%, > 95:5 d.r.), along with 1,2-diol 82 (40%, 82:18 d.r.), after sepa-
ration by silica gel flash column chromatography. Regioselective ring-opening of 83 
with EtMgBr/CuCN furnished alcohol 68 (89%).

Carboxylic acid 34 was synthesized as illustrated in Fig. 15.17. Iodooxazole 69 
was prepared from ethyl oxazole-4-carboxylate (LHMDS, 1,2-diiodoethane) in one
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Fig. 15.16 Synthesis of alcohol 68

step [70]. Oshima–Yorimitsu cross-coupling [71] of  69 with alkyne 70 proceeded 
cleanly by treatment of 70 with InCl3/DIBALH in the presence of Et3B/air, followed 
by cross-coupling of the generated alkenylindium with 69 under the catalysis of 
Pd(PPh3)4, giving alkenyloxazole 84 in 80% yield. Half reduction of the ester of 84 
provided aldehyde 85 (74%, rsm 24%), whose methylenation under Takai conditions 
[72] delivered vinyl oxazole 86 (90%). Site-selective hydroboration of the vinyl 
group of 86, followed by cross-coupling [37] with ethyl cis-β-iodoacrylate (87) under 
Suzuki–Miyaura conditions, led to (Z)-α,β-unsaturated ester 88 (57%). Hydrolysis 
of 88 furnished carboxylic acid 34 (73%).

The third-generation total synthesis of 1 was achieved as shown in Fig. 15.18. 
Yamaguchi esterification of carboxylic acid 67 and alcohol 68, followed by in situ  
treatment with acidic ethanol to remove the THP groups, gave propargylic alcohol 
66 (89%). Meyer–Schuster rearrangement of 66 under Au/Mo combo catalysis 
(IPrAuCl, AgOTf, MoO2(acac)2, toluene) [73] generated intermediary vinyl ketone 
89, whose macrocyclic ring-closing metathesis under the catalysis of Zhan-1B 
complex [DCE (20 mM), 40 °C] proceeded with spontaneous transannular oxa-
Michael addition of the intermediary α,β-unsaturated ketone 90, giving rise to 2,6-cis-
substituted tetrahydropyran 91 (70%, single stereoisomer), after separation of unde-
sired minor diastereomers by silica gel flash column chromatography. The diastere-
oselectivity of the transannular reaction was determined to be approximately 91:9 
through careful inspection of the reaction mixture. A separate experiment on macro-
cyclic ring-closing metathesis of chromatographically purified 89 under Zhan-1B 
catalysis (DCE, 80 °C) resulted in macrocyclic α,β-unsaturated ketone 90 (87%, sole 
product). While in our previous work tandem olefin cross-metathesis/intramolecular 
oxa-Michael addition of olefinic alcohol derivatives was catalyzed by Ru species 
[74, 75], it appears that the cationic Au species derived from IPrAuCl/AgOTf was 
responsible for the transannular oxa-Michael addition of 90 to give tetrahydropyran
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Fig. 15.17 Synthesis of carboxylic acid 34

91 in the present tandem reaction. Takai methylenation of 91 gave exo-olefin 92 
(84%). Hydrogenation of the exo-olefin and hydrogenolytic removal of the benzyl 
group gave rise to neopeltolide macrolactone (43) (93%, 79:21 d.r.). Assembly of 43 
with carboxylic acid 34 (DIAD, Ph3P) furnished (+)-neopeltolide (1) in 94% yield. 
The minor C9 diastereomer, i.e., 9-epi-neopeltolide (9-epi-1) [76], was separated by 
preparative reverse-phase HPLC. Notably, a single batch experiment provided 40 mg 
of spectroscopically pure 1 after HPLC purification.

The third-generation synthesis of (+)-neopeltolide (1) proceeded in 11 linear and 
23 total steps from inexpensive commercially available materials [77, 78]. The outline 
of our third-generation synthesis is summarized in Fig. 15.19. The advanced inter-
mediates, carboxylic acid 67 and alcohol 68, were synthesized from (R)- and (S)-
epichlorohydrin, respectively, in six steps each. After coupling of these intermedi-
ates, propargylic alcohol 66 was advanced to neopeltolide macrolactone (43) in three 
steps. Meanwhile, alkenyloxazole 84 was available from ethyl 4-oxazolecarboxylate 
in two steps, and the former was transformed into carboxylic acid 34 in four steps.

The present synthesis represents the shortest access to 1 in terms of the longest 
linear sequence and the total number of steps. The third-generation synthesis has three 
significant features. First, the synthesis of key intermediates 67 and 68 was shortened 
as much as possible by exploiting regioselective epoxide ring-opening chemistry. 
Second, neopeltolide macrolactone (43) was constructed from propargylic alcohol 
66 in an expedient manner by capitalizing on the macrocyclization/transannular 
pyran cyclization strategy. Third, the synthesis of side chain carboxylic acid 34
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Fig. 15.18 Third-generation synthesis of (+)-neopeltolide (1)

was achieved in just six steps from ethyl 4-oxazolecarboxylate by exploiting two 
Pd-catalyzed cross-coupling reactions. Note that, in our first- and second-generation 
synthesis of 1, the synthesis of 34 was built on previous works by Leighton [47] and 
Kozmin [48] and required 11 steps from a commercially available material.
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Fig. 15.19 Summary of the third-generation synthesis of 1

15.5 Summary 

This chapter delineated our first-, second-, and third-generation total synthesis of 
(+)-neopeltolide (1). The synthetic efficiency in terms of step count was improved 
significantly during the course of these synthetic campaigns (Table 15.1). 

Table 15.1 Synthetic 
efficiency of our total 
syntheses of (+)-neopeltolide 
(1) 

Number of steps 1st Gen 2nd Gen 3rd Gen 

Longest linear steps 25 13 11 

Total steps 49 31 23
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In the first-generation synthesis, it was evident that multiple concession steps 
throughout the synthesis and lengthy transformations after the point of convergence 
made the synthesis inefficient. Such superfluous steps were avoided as much as 
possible upon planning the second- and third-generation synthesis. Nucleophilic 
epoxide-opening was the basis of short syntheses of key fragments. Macrocyclic 
ring-closing metathesis served as a powerful means to forge the macrocycle with 
high chemoselectivity, thereby minimizing extra functional group interconversions. 
Palladium-catalyzed cross-coupling reactions enabled an expedient access to side 
chain carboxylic acid fragment. 

As implemented in the third-generation synthesis, tandem reactions were effec-
tive for increasing step economy. In particular, our macrocyclization/transannular 
pyran cyclization strategy enabled an expedient construction of the 14-membered 
macrocyclic skeleton and the engrafted 2,6-cis-configured tetrahydropyran ring in 
just one step, thereby minimizing extra transformations after the point of conver-
gence. Recently, we have also disclosed a 13-step synthesis of (−)-exiguolide (2) 
by taking advantage of the macrocyclization/transannular pyran cyclization strategy 
[22], further underscoring the validity of our synthetic planning. Because the benefits 
of tandem reactions, for example, reduction of labor, time, and wastes by omitting 
isolation and/or purification of intermediates, are widely accepted, such reactions 
should be appropriately reflected to metrics of synthetic efficiency, including step 
count. Moreover, the development of tandem reactions provides rich opportunities 
for the discovery of new reactivities and methods [79]. 

As a beneficial consequence of improving the efficiency in total synthesis of (+)-
neopeltolide, we were able to synthesize not only the natural product itself but also 
various structural analogues that were useful for investigating the structure–activity 
relationship [63] and biological functions [29–31]. Pursuing step economy in total 
synthesis of marine macrolides will contribute to future advances in the chemical 
biology and medicinal chemistry of this promising class of natural products. 
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Chapter 16 
Enantioselective Total Syntheses 
of (−)-Cochlearol B and (+)-Ganocin A 

Tomoya Mashiko, Yuta Shingai, Jun Sakai, Shinya Adachi, 
Akinobu Matsuzawa, Shogo Kamo, and Kazuyuki Sugita 

Abstract Herein, we describe the first total synthesis of (±)-cochlearol B and 
the enantioselective total syntheses of (−)-cochlearol and (+)-ganocin A. The 
key steps include Corey-Bakshi-Shibata reduction, oxidative phenolic cyclization, 
intramolecular [2+2] photocycloaddition, and intramolecular radical cyclization-
benzylic oxidative cyclization, enabling efficient access to 4/5/6/6/6 and 5/5/6/6/ 
6-fused pentacyclic frameworks of these natural products. 

Keywords Total synthesis · Phenolic oxidative cyclization · Intramolecular [2+2] 
photocycloaddition · Intramolecular radical cyclization · Benzylic oxidative 
cyclization · Corey-Bakshi-Shibata reduction · Nozaki-Hiyama-Kishi reaction ·
Cochlearol B · Ganocin A 

16.1 Introduction 

Lingzhi, a fungus of the genus Ganoderma, which is widely distributed over trop-
ical and subtropical latitudes in Asia, has been widely used as a traditional Chinese 
medicine for the treatment of cancer, hypertension, and asthma, particularly in China, 
Korea, and Japan [1]. In 2014, Cheng and co-workers reported the isolation of 
cochlearol B (1) in its racemic form from Ganoderma cochlear [2] (Fig. 16.1). In 
the same year, Qiu and co-workers isolated ganocin A (2) in its racemic form from 
the same fungus [3]. These two natural products are meroterpenoids, which have 
closely related fused pentacyclic structures. Natural product 1 possesses a substi-
tuted cyclobutane ring instead of the substituted tetrahydrofuran ring of 2 in its 
framework. With regard to biological activities, the (−)-enantiomer of 1, which was 
obtained after chiral HPLC separation, exhibited potent inhibitory activity against 
p-Smads, while the (+)-enantiomer was inactive [2]. Thus, (−)-1 is a potential lead 
for renoprotective agent. On the other hand, only anti-acetylcholinesterase activity
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Fig. 16.1 Structures of cochlearol B (1) and ganocin A (2) 

study was examined for 2. However, no activity was observed [3]. We assumed that 
the enantiomer of 2 having the same configuration as (−)-1 would inhibit p-Smads. 
Accordingly, efficient synthetic methods are required to access these structurally 
intriguing natural products in order to evaluate their biological activities accurately. 

To date, four groups have reported the total synthesis of these two natural products. 
In 2020, Zhao and co-workers reported the first total synthesis of racemic 2 [4], and 
in 2021, our group reported the first total synthesis of racemic 1 [5]. Subsequently, 
Schindler and co-workers reported the total synthesis of the (+)-1 by optical resolution 
in 2022 [6]. Further, in 2022, Hao and co-workers reported the total syntheses of 
racemic 1 and 2 [7]. In 2023, we reported the enantioselective total syntheses of 
(−)-1 and (+)-2, which are expected to show p-Smads inhibitory activity [8]. Here, 
we describe the enantioselective total syntheses of (−)-1 and (+)-2, together with the 
racemic total synthesis of (±)-1. 

16.2 Retrosynthetic Analysis of Cochlearol B (1) 

In order to develop a synthetic route that can be applied to the total synthesis of the 
optically active forms of 1 and 2, we first performed the retrosynthetic analysis of 
the racemic form of 1. The retrosynthetic analysis of 1 is shown in Scheme 16.1. 
The α,β-unsaturated aldehyde moiety, which seems to be the most labile in 1, should 
be incorporated in 3 at the final stage. One of the key steps in this synthesis is the 
intramolecular [2+2] photocycloaddition of 4. We envisioned that the pentacyclic 
framework of 3 could be formed by photo irradiation of 4. The tricyclic structure 
of 4 was expected to be accessed by the phenolic oxidative cyclization of phenol 5. 
Incorporation of the alkenyl chain could be realized by the Nozaki-Hiyama-Kishi
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(NHK) reaction of iodide 6, which could be prepared from commercially available 
7 in four steps, including a copper-catalyzed coupling reaction. 

16.3 Synthesis of Diketone 15 

Initially, we conducted a coupling reaction between the commercially available 
iodide 7 and cyclohexan-1,3-dione 8 using a catalytic amount of CuI and proline 
to obtain enol 9 in 93% yield (Scheme 16.2) [9]. Following this, the Appel-type 
reaction of enol 9 proceeded smoothly to give iodide 6 in 89% yield [10]. To prepare 
the metal reagent in the next step, the carbonyl group in 6 was protected as 1,3-
dioxolane to produce dioxolane 10 in 90% yield. The resulting dioxolane 10 was 
treated with tBuLi or Mg to convert into a lithium or a Grignard reagents, but the 
addition reaction with ketone 11 did not proceed. This was probably because of the 
bulky structures around the reaction sites. To solve this problem, we employed the 
NHK reaction [11]. The coupling between iodide 6 and aldehyde 13 by the NHK 
reaction afforded alcohol 14 in 78% yield. Subsequently, the IBX oxidation of 14 
produced diketone 15 in 90% yield [12].

16.4 Synthesis of Phenol 5 

Next, we focused on the incorporation of the methyl group. Diketone 15 was reacted 
with a methyl magnesium bromide, resulting in the selective methylation of the 
carbonyl group in the six-membered ring, to give the undesired 17 in 59% yield
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(Scheme 16.3). Based on this result, the reactivity of the carbonyl group in the six-
membered ring toward nucleophiles was anticipated to be higher than that of the 
carbonyl group in the side chain. Accordingly, to obtain enone 5, we planned the 
synthesis such that the methyl group is incorporated into the carbonyl group in the 
side chain after reducing the more reactive carbonyl group in the six-membered 
ring, followed by oxidation. Consequently, the treatment of diketone 15 with sodium 
borohydride produced alcohol 18 regioselectively in 78% yield. Next, the methylation 
of 18 afforded diol 19 in 98% yield. For the phenolic oxidative cyclization, the benzyl 
group of 19 was cleaved by the lithium-naphthalene system, producing phenol 20 in 
85% yield [13]. Subsequent Swern oxidation of 20 proceeded to afford phenol 5 in 
89% yield [14].

The regioselectivity of the reduction of diketone 15 was next investigated. The 
conformational analysis of 15 was performed using DFT calculations (Scheme 16.4). 
In the conformation shown in Scheme 16.4, nucleophilic attack to the carbonyl group 
in the side chain was probably blocked by the benzene ring and the hydrogens in the 
cyclohexanone ring. Thus, it is likely that the carbonyl group in the six-membered 
ring, which is less hindered, reacted selectively to produce 18.
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16.5 Phenolic Oxidative Cyclization and Intramolecular 
[2+2] Photocycloaddition 

With 5 in hand, we investigated the phenolic oxidative cyclization—the key reaction 
of this synthesis, to construct the tricyclic framework (Table 16.1) [15]. Initially, we 
expected to obtain hydroquinone derivative 4 as the main product. However, quinone 
hemiacetals 21 and 22 were obtained as a diastereomeric mixture, and 4 was not 
obtained under any conditions. First, the treatment of phenol 5 with iodobenzene 
diacetate (PIDA) in hexafluoro-2-propanol (HFIP) afforded a complex mixture of 
unknown compounds (Table 16.1, entry 1). In contrast, the oxidative cyclization did 
not proceed in dichloromethane (DCM) (entries 2 and 3). The reaction in the presence 
of bis(trifluoroacetoxy)iodobenzene (PIFA) in DCM or iodosobenzene (PhIO) in 
HFIP afforded a complex mixture of unknown compounds (entries 4 and 5). However, 
when 5 was treated with PIDA (1.2 eq) in HFIP/DCM (1/50), the desired tricyclic 
compounds were produced (entry 6). Eventually, the phenolic oxidative cyclization 
of 5 by the treatment with PIDA (5.0 eq) in HFIP/DCM (1/50) at − 78 to − 40 °C 
successfully afforded tricyclic compounds 21 (62% yield) and 22 (14% yield) (entry 
7) [15]. 

We then focused on the next key reaction—the intramolecular [2+2] photocy-
cloaddition (Scheme 16.5). First, we investigated the conversion of the quinone 
hemiacetal 21 obtained as the main product to 4. As expected, the conversion of 
the quinone hemiacetal moiety to phenol was difficult. Consequently, Luche reduc-
tion at − 78 °C afforded 4 in a low yield of 37% [16]. Subsequently, 4 was subjected 
to intramolecular [2+2] photocycloaddition upon irradiation with a mercury lamp 
[17]. Contrary to our expectations, the desired cyclized compound 3, as shown in the

Table 16.1 Investigation of phenolic oxidative cyclization 

Entry Reagent (eq.) Solvents Temp. (°C) Time (h) Results 

1 PIDA (1.2) HFIP 0 0.5 Complex mixture 

2 PIDA (1.2) DCM − 78 2 No reaction 

3 PIDA (1.2) DCM rt 2 Almost 5 

4 PIFA (1.2) DCM − 78 4 Complex mixture 

5 PhIO (1.2) HFIP 0 2 Complex mixture 

6 PIDA (1.2) HFIP/DCM = 1/50 − 78 2 5, 21, 22 

7 PIDA (5.0) HFIP/DCM = 1/50 − 78 to − 40 1.6 21 (62%), 22 (14%) 
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retrosynthetic analysis, was not produced; instead, a mixture of unknown compounds 
was obtained. On the other hand, in 21—the major product of the phenolic oxida-
tive cyclization, the double bond of the cyclohexenone ring, which was the reac-
tion center for the intramolecular [2+2] photocycloaddition, was conjugated with 
the electron-withdrawing quinone hemiacetal ring. Therefore, the reactivity for the 
intramolecular [2+2] photocycloaddition was thought to be much higher than that 
of the double bond of the cyclohexenone ring of 4. As expected, the intramolec-
ular [2+2] photocycloaddition of 21 proceeded smoothly to form four- and five-
membered rings simultaneously, affording pentacyclic 23 in 74% yield. On the other 
hand, pentacyclic 24 was not formed from diastereomer 22. We assumed that the 
steric repulsion between the hydroxy group of the quinone hemiacetal and alkenyl 
chain inhibited the intramolecular [2+2] photocycloaddition. Moreover, it was found 
that 21 and 22 existed in equilibrium in DCM at room temperature, resulting in a 
mixture with a ratio of 3:1 to 4:1. 
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16.6 Completion of the Total Synthesis of (±)-Cochlearol B 
(1) 

The completion of the total synthesis of cochlearol B (1) is depicted in Scheme 16.6. 
Luche reduction of pentacyclic 23 proceeded smoothly to afford phenol 3. We spent 
a lot of time for the introduction of the α,β-unsaturated aldehyde moiety. After 
extensive experimentation, the following route was found to give the best result. 
Pivaloyl protection of phenol 3 followed by treatment with Bredereck’s reagent 26 
afforded enaminone 27 in 89% yield from 3 [18]. After the conversion of enaminone 
27 to triflate 28 using triflic anhydride [19] and the subsequent reduction of 28 
by triethylsilane in the presence of tetrakis(triphenylphosphine)palladium (0), α,β-
unsaturated aldehyde 29 was obtained in 64% yield from 27 [20]. Finally, cleavage 
of the pivaloyl group furnished (±)-cochlearol B (1) in 94% yield. This first total 
synthesis of 1 was achieved via the longest linear sequence of 16 steps in 9% overall 
yield. 
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16.7 Enantioselective Total Synthesis of (−)-Cochlearol B 
(1) 

Having succeeded in the total synthesis of (±)-1, we attempted to synthesize an 
optically active form of 1. According to reports, only the (−)-enantiomer of 1 exhibits 
inhibitory activity against p-Smads. In order to accurately evaluate the biological 
activities of any synthesized compounds, it is necessary to synthesize the compound 
in optically active forms. We planned the total synthesis of 1 in its optically active 
form, which could be utilized for the synthesis of 2 in its optically active form. To 
develop efficient enantioselective synthetic routes for 1 and 2 in their optically active 
forms, the introduction of a chiral center by the enantioselective reduction of 15 was 
thought to be effective. 

16.8 Enantioselective Synthesis of Diol (+)-19 

Enantioselective reduction, one of the key reactions of this enantioselective synthesis, 
was carried out on the common intermediate diketone 15 in racemic total synthesis 
of 1 (Scheme 16.7). The Corey-Bakshi-Shibata (CBS) reduction was selected for 
the enantioselective reduction of the common intermediate 15 to incorporate the 
chiral center, which would control all the subsequent stereogenic centers. Treatment 
of 15 with borane dimethylsulfide complex in the presence of (S)-CBS catalyst 
proceeded smoothly to furnish chiral alcohol (+)-18 in 73% yield with 93% ee [21]. 
The absolute configuration of (+)-18 was determined by comparing the calculated 
and experimental circular dichroism (CD) spectra (Fig. 16.2). High regioselectivity 
was achieved in this reduction, similar to that observed in the synthesis of (±)-
1 using NaBH4. Subsequent incorporation of a methyl group in (+)-18 produced 
diastereoselectively diols (+)-19a (74% yield) and 19b (24% yield). The proposed 
mechanism of this diastereoselective synthesis is depicted in Scheme 16.8.

To determine the absolute configuration, (+)-18 was converted to benzoyl ester 
18-OBz. The calculated spectrum of (R)-18-OBz was obtained using TD-DFT calcu-
lations at the TDDFT-CAM-B3LYP/6-311G + (d,p) level with the solvent model 
density for MeCN, implemented in the Gaussian 16 program package [22]. The calcu-
lated spectrum of (R)-18-OBz (blue) agreed well with the experimental spectrum 
(red). 

Our proposed mechanism of the diastereoselective methylation is shown in 
Scheme 16.8. One equivalent of methyl magnesium bromide deprotonated the 
hydroxy group of (+)-18, forming a salt bridge of Mg2+ through chelation. The 
methyl anion then attacked from the less-hindered side of the carbonyl group to 
afford (+)-19a with the desired stereochemistry.
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16.9 Synthesis of Quinone Hemiacetal (−)-21 

The optically active (+)-19a was treated with lithium-naphthalene system to remove 
benzyl protection, affording diol (+)-20a in 94% yield (Scheme 16.9). Next, Swern 
oxidation of (+)-20a furnished enone (−)-5 in 89% yield. Phenolic oxidative cycliza-
tion of (−)-5 using PIDA produced tricyclic quinone hemiacetals (−)-21 in 62% yield 
and (−)-22 in 14% yield. 

16.10 Completion of Enantioselective Total Synthesis 
of (−)-Cochlearol B (1) 

Optically active tricyclic (−)-21 was subjected to intramolecular [2+2] photocycload-
dition to afford pentacyclic (−)-23 bearing a four-membered ring in its framework 
in 74% yield (Scheme 16.10). Then, Luche reduction of quinone hemiacetal (−)-23 
produced hydroquinone (+)-3 in 84% yield. Pivaloyl protection of (+)-3, followed by 
dimethylaminomethylenation with Bredereck’s regent afforded (−)-27 in 88% yield 
over two steps. Treatment of (−)-27 with trifluoromethanesulfonic anhydride and 
subsequently with triethylsilane in the presence of a Pd (0) catalyst produced α,β-
unsaturated aldehyde (−)-29 in 84% yield from (−)-27. Finally, treatment of (−)-29 
with potassium carbonate in methanol furnished (−)-cochlearol B (1) in 94% yield.
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16.11 Retrosynthetic Analysis of (+)-Ganocin A (2) 

Having accomplished the total synthesis of (−)-cochlearol B (1), we aimed for the 
enantioselective total synthesis of ganocin A (2). Retrosynthetic analysis of the opti-
cally active form of 2, which is based on the synthetic strategy of (−)-1, is shown  in  
Scheme 16.11. To introduce the α,β-unsaturated aldehyde unit, the same sequence as 
that in the synthesis of 1 was adopted. Compounds 1 and 2 are structurally different 
in that 1 bears a cyclobutane ring, while 2 bears a tetrahydrofuran ring. To construct 
the pentacyclic framework of 30, we envisioned the acid-mediated cascade cycliza-
tion of 21, which efficiently afforded the cyclopentane ring and tetrahydrofuran ring 
in a single step (route 1). Additionally, we expected that after the bromohydration of 
21, sequential radical cyclization, -reduction, and -benzylic oxidation would furnish 
pentacyclic skeleton (route 2). Compound 21 is an optically active common synthetic 
intermediate in the synthesis of (−)-1.
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16.12 Attempted Acid-Mediated Cascade Cyclization 

We commenced the synthesis of (+)-2 from (−)-21 which is also an optically active 
intermediate in the synthesis of (−)-1. First, we proceeded to construct the penta-
cyclic skeleton. The acid-mediated cascade cyclization depicted in Scheme 16.11 
was investigated as route 1 (Table 16.2). If this cascade cyclization could be real-
ized, cyclopentane ring, tetrahydrofuran ring, and four stereogenic centers would 
be formed simultaneously. Treatment of (−)-21 with Fe2(SO4)3 as the Lewis acid 
produced unknown compounds (entry 1) [23]. Thus, lanthanoid triflates that could 
be used in water were examined [24]. Contrary to expectations, spiro-compound 
33, which was generated by the Michael addition of the hydroxy group formed by 
the ring opening of the cyclic hemiacetal of (−)-21, was afforded (entries 2 and 3). 
Moreover, when (−)-21 was treated with 6 M HCl aq., 33 was produced in 90% 
yield (entry 4). Based on the above results, we concluded that route 1 was difficult 
to complete.
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Table 16.2 Attempted acid-mediated cascade cyclization 

Entry Reagents Solvents Temp Time Results 

1 Fe2(SO4)3 Dioxane/H2O = 1/1 rt to 70 °C 3 h Unknown compounds 

2 Yb(OTf)3 Dioxane/H2O = 1/1 rt to 70 °C 5 h 33 (65%) 

3 Sc(OTf)3 Dioxane/H2O = 1/1 rt to 70 °C 5 h 33 (52%) 

4 6 M HCl  aq THF 0 °C 30 min 33 (90%) 

16.13 Intramolecular Radical Cyclization and Benzylic 
Oxidative Cyclization 

The key steps in route 2 are the intramolecular radical cyclization and benzylic 
oxidative cyclization. To obtain the precursor for the key steps, tricyclic (−)-21 
was subjected to bromohydration using N-bromosuccinimide to produce bromohy-
drin (−)-32 in 93% yield [25] (Scheme 16.12). To our delight, the next intramolec-
ular radical cyclization using tributyltinhydride and AIBN proceeded smoothly to 
produce pentacyclic compound (−)-34 in 63% yield [26], in a one pot manner via the 
formation of a cyclopentane ring, reduction of quinone hemiacetal, and subsequent 
cyclic hemiacetal formation. Compound (−)-35 was obtained in 95% yield upon 
pivaloyl protection of (−)-34, and intramolecular benzylic oxidative cyclization of 
(−)-35 upon treatment with ceric ammonium nitrate (CAN) successfully furnished 
pentacyclic compound (+)-36 in 92% yield [27].

16.14 Completion of the Enantioselective Total Synthesis 
of (+)-Ganocin A (2) 

With pentacyclic (+)-36 in hand, we finally aimed to incorporate the α,β-unsaturated 
aldehyde moiety (Scheme 16.13). Following the synthesis of 1, (+)-36 was treated 
with Bredereck’s reagent, affording enaminone (+)-37 in 93% yield. (+)-37 was 
converted to triflate (+)-38 in 95% yield, with the formation of the α,β-unsaturated 
aldehyde moiety using triflic anhydride. Subsequent reduction of triflate (+)-38 using 
triethylsilane in the presence of a Pd (0) catalyst furnished (−)-39 in 98% yield. 
Finally, methanolysis of (−)-39 furnished (+)-ganocin A (2) in 99% yield. Here, 
the enantioselective total synthesis of (+)-2 was accomplished via the longest linear 
sequence of 17 steps in 9% overall yield.
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16.15 Determination of the Absolute Configuration 
of (+)-Ganocin A (2) 

The absolute configuration of synthetic (+)-ganocin A (2) was determined by 
comparing the calculated and experimental circular dichroism (CD) spectra 
(Fig. 16.3). The calculated spectrum of (4aS,5S,7aR,12bR)-2 was obtained using 
TD-DFT calculations at the TDDFT-B3LYP/6-31G(d,p) level with the solvent model 
density for MeCN, implemented in the Gaussian 16 program package [22]. The calcu-
lated spectrum of (4aS,5S,7aR,12bR)-2 (blue) agreed well with the experimental 
spectrum (red).
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Fig. 16.3 Comparison of calculated CD spectrum of (4aS,5S,7aR,12bR)-2 (blue) to experimental 
spectrum of synthetic (+)-ganocin A (2) (red) 

16.16 Conclusion 

The first total synthesis of (±)-cochlearol B (1) and the catalytic enantioselective 
total syntheses of (−)-cochlearol B (1) and (+)-ganocin A (2) were achieved. This 
is the first study to report the synthesis of the (−)-enantiomer of 1 which has been 
reported to show potent inhibitory activity against p-Smads. This is also the first 
study to report the enantioselective total synthesis of (+)-2. 

These syntheses were accomplished through the NHK reaction, phenolic oxidative 
cyclization, enantioselective CBS reduction, intramolecular [2+2] photocycloaddi-
tion, intramolecular radical cyclization, oxidative benzylic cyclization, and Luche 
reduction. These total syntheses are expected to lead to new developments in the 
field of medicinal chemistry. 
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Chapter 17 
Construction of Quinoline N-Oxides 
and Synthesis of Aurachins A and B: 
Discovery, Application, and Mechanistic 
Insight 

Satoshi Yokoshima 

Abstract A method to synthesize 3-hydroxyquinoline N-oxides from ketones 
having a 2-nitrophenyl group at the α-position relative to the carbonyl group was 
developed. The substrates were easily prepared via a SNAr reaction or a Sonogashira 
coupling, and treatment with sodium tert-butoxide in dimethyl sulfoxide produced 
the corresponding quinoline N-oxides. The method was successfully applied to 
the total synthesis of aurachins A and B. On the basis of the quinoline N-oxide 
synthesis, related reactions of α-(2-nitrophenyl)ketones, including nitrone forma-
tion and photoinduced rearrangement, were also investigated. These investigations 
provided clues about the reaction mechanism, and the following mechanism for 
the quinoline N-oxide synthesis is proposed: Deprotonation of the α-position of α-
(2-nitrophenyl)ketone with tert-butoxide generates an enolate, which reacts with a 
nitro group via single-electron transfer to form an α-hydroxyketone having a nitroso 
group. An intramolecular alkoxide-mediated hydride shift reduces the nitroso group, 
and condensation of the resultant hydroxylamine and diketone moieties produces a 
3-hydroxyquinoline N-oxide. 

Keywords Enolate · Ketone · Nitro group · Nitroso group · Photoirradiation 

17.1 Discovery of the Quinoline N-Oxide Synthesis 

We investigated a reaction of a compound that had ketone and 2-
nitrobenzenesulfonamide (nosyl amide) moieties (Scheme 17.1). Upon treatment 
of compound 1 with potassium carbonate in dimethyl sulfoxide (DMSO) at 90 °C, 
Smiles rearrangement occurred. Thus, formation of enolate 2 under basic conditions,
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Scheme 17.1 Investigation on tryptamine synthesis 

followed by the enolate attacking the electron-deficient benzene ring of the sulfon-
amide, led to Meisenheimer complex 3, which collapsed into ketone 4, which had a 
nitrophenyl group. Under these conditions, the sulfonamide was converted into an 
amine, which was reacted with the ketone, and the resultant enamine 5 was obtained 
as a product. Reduction of the nitro group of 5 with zinc in aqueous acetic acid 
produced tryptamine 6, an indole having a 2-aminoethyl group at the 3-position of 
the indole moiety. This two-step process produces tryptamines from ketones having 
a nosyl amide moiety, and we speculated that this process might be useful for the 
synthesis of indole alkaloids. 

The shortcoming of the process, at that time, was the low yield of the first step. 
To improve the yield, we investigated various basic conditions. When sodium tert-
butoxide in dimethyl sulfoxide (DMSO) was used at room temperature, the starting 
material was smoothly consumed but the desired enamine 5 was not obtained. Instead, 
another compound (compound A) was obtained; analysis of this compound by elec-
trospray ionization mass spectrometry (ESI–MS) showed that its molecular weight 
was the same as that of enamine 5 (m/z 337). Thus, under the conditions using sodium 
tert-butoxide, the Smiles rearrangement occurred to form aminoketone 4, which 
underwent a dehydrative transformation. IR spectroscopic analysis of compound A 
confirmed the presence of functional groups. The resultant IR spectrum unexpectedly 
showed the absence of peaks for both carbonyl and nitro groups. 

We considered likely reactions after the Smiles rearrangement under these condi-
tions to elucidate the structure of compound A. Deprotonation of the ketone by 
tert-butoxide would form enolate 7 (Scheme 17.2). Because the nitro group had to 
disappear, the enolate likely reacted with the nitro group as in an aldol condensa-
tion, during which water is eliminated, to form a C–N double bond. Enolization 
of the resultant ketone 8 would generate an aromatic compound. The structure that 
would be obtained is a 3-hydroxyquinoline N-oxide, which can explain the results 
of the MS and IR analyses showing m/z 337 and a lack of nitro and carbonyl groups, 
respectively. The structure, however, was so unfamiliar to us that we did not trust
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Scheme 17.2 Discovery of the quinoline N-oxide synthesis 

our assumptions. To determine whether related molecules were known, we searched 
a database (SciFinder). As a result, we found a natural product: aurachin B [1]. 

The 1H-NMR data reported for aurachin B in the literature are similar to those of 
our compound [2]. The chemical shift of the proton at the 8-position of the quinoline 
core in aurachin B was reported to be 8.75 ppm, whereas the corresponding peak in 
the 1H-NMR spectrum of our compound was observed at 8.76 ppm. We speculate 
that these peaks were substantially shifted downfield because of the influence of the 
N-oxide. After obtaining additional spectroscopic data, including 2D-NMR spectra, 
we concluded that compound A was a quinoline N-oxide. 

Although intramolecular reactions of a nitro group with a carbanion have been 
reported to form quinoline N-oxides [3–9], reports on reactions of ketones that have a 
2-nitrophenyl group are limited. Zaki and Iskander disclosed a reaction of ketoester 9 
with sodium ethoxide to produce substituted naphthalene 10 in 1943 (Scheme 17.3) 
[10]. Loudon and Tennant pointed out in 1964 that the structure of the product should 
be a quinoline N-oxide [11]. 

Scheme 17.3 A related reaction in the literature
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Scheme 17.4 Preparation of substrates for quinoline N-oxide synthesis 

17.2 Application of the Quinoline N-Oxide Synthesis 
and Total Synthesis of Aurachins a and B 

Ketones having a 2-nitrophenyl group were easily prepared (Scheme 17.4). A SNAr 
reaction of 2-fluoronitrobenzene (11) with β-ketoesters and subsequent dealkoxy-
carbonylation produced ketones 12a [12, 13]. Alternatively, 2-alkynylnitrobenzenes 
14, which were synthesized via Sonogashira coupling, could be converted into the 
requisite ketones 12b via addition of pyrrolidine onto the alkyne moiety, followed 
by acidic hydrolysis of the resultant enamines 15 [14]. Alkylation of ketones 12 with 
alkyl halides under basic conditions occurred selectively at the benzylic position 
(Scheme 17.5). Treatment of the resultant compounds 16 with sodium tert-butoxide 
in DMSO produced quinoline N-oxides 17 in moderate to good yields. Primary or 
secondary alkyl groups were introduced onto the 2- or 4-position of the quinoline 
N-oxides. A methoxy or nitro group on the benzene ring was tolerated in this trans-
formation. Alkylation with farnesyl bromide, followed by treatment with sodium 
tert-butoxide in DMSO, afforded aurachin B in good yield (Scheme 17.6) [15]. 
When the alkylation was performed using epoxy iodide 18 in the presence of sodium 
hydride in N,N-dimethylformamide (DMF), the alkylation, the cyclization to form 
the quinoline N-oxide core, and cleavage of the epoxide proceeded sequentially to 
afford aurachin A in 38% yield.

17.3 Mechanistic Insight into the Quinoline N-Oxide 
Synthesis 

Starting from unexpected observations, we developed a quinoline N-oxide synthesis 
and successfully applied it to the synthesis of aurachins A and B. We were next 
interested in the mechanism of the reaction. One attractive idea involved an elec-
trocyclic reaction (Scheme 17.7a). Under basic conditions, enolate 19 and/or 19’
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Scheme 17.5 Substrate scope of quinoline N-oxide synthesis 

Scheme 17.6 Total syntheses of aurachins A and B

would be formed via deprotonation; further deprotonation would generate dianion 
20, which would undergo an electrocyclic reaction. Our observations, however, ruled 
out this possibility. Even when the reaction was performed with 0.5 equivalents of 
sodium tert-butoxide, the quinoline N-oxide formation occurred to afford the product 
in 49% yield, indicating that formation of the dianion was unlikely. In addition, the 
2-nitrophenyl group could apparently not facilitate the second deprotonation because 
the appropriate conformations are disrupted by the steric repulsion of the nitro group 
with the substituent.

These considerations led us to speculate that the reaction might proceed via the 
formation of enolate 19’, which would react with the nitro group to form a C–N bond
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Scheme 17.7 Discussion on reaction mechanism of quinoline N-oxide synthesis

(Scheme 17.7b). However, this idea has a serious problem. The benzylic position 
of the alkylated ketone (compound 16) is apparently highly acidic because of the 
carbonyl and 2-nitrophenyl groups. Indeed, the alkylation of ketone 12a occurred 
selectively at the benzylic position. 

To confirm the acidity, we conducted deuteration experiments. Upon treatment of 
ketone 12a, which has no alkyl group at the benzylic position, with diisopropylamine 
in methanol-d4, deuteration selectively occurred at the benzylic position and was 
completed within 15 min. By contrast, deuteration of ketone 16a, which has an alkyl 
group at the benzylic position, under the same conditions proceeded much more 
slowly; only partial deuteration was observed even after 120 min. More notably, 
both α-positions of the ketone were almost equally deuterated, clearly showing that 
the acidity of the benzylic position changes upon the introduction of an alkyl group 
at the benzylic position. This behavior can be rationalized as follows (Scheme 17.8). 
In the absence of an alkyl group at the benzylic position, the ketone can adopt a 
conformation in which both the carbonyl and 2-nitrophenyl groups can activate the 
benzylic position. After the alkyl group is introduced at the benzylic position, the 2-
nitrophenyl cannot adopt a conformation in which the 2-nitrophenyl group activates 
the benzylic position because of the steric repulsion between the alkyl and nitro
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Scheme 17.8 Conformational analysis 

groups. In the favorable conformation, the benzene ring and the C–H bond at the 
benzylic position are coplanar [16–18]. 

These results lead to the conclusion that deprotonation of the ketone occurs equally 
at both α-positions of the ketone. Deprotonation at the benzylic position might be a 
non-productive pathway, and deprotonation at the other α-position is followed by a 
reaction with the nitro group to form a C–N bond. 

17.4 Nitrone Formation 

The conclusion in Sect. 17.3 leads to a question: Does the reaction between the enolate 
and the nitro group occur without the proton at the benzylic position? The product of 
such a reaction was assumed to be a nitrone. We speculated that the reaction might 
support the mechanism of the quinoline N-oxide synthesis and therefore attempted 
it [19]. 

The requisite substrate was prepared as shown in Scheme 17.9. Sequential alky-
lations of 2-nitrophenylacetate 22 gave product 23, which had a quaternary carbon. 
A reduction–oxidation sequence afforded aldehyde 24, and an aldol reaction with 
tert-butyl propionate, followed by oxidation with Dess–Martin periodinane, gave 
ketoester 26. Cleavage of the tert-butyl group with trifluoroacetic acid (TFA) and 
subsequent decarboxylation by heating in toluene produced the requisite ketone 27. 

Scheme 17.9 Preparation of substrate for nitrone formation
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Scheme 17.10 Formation of 
a nitrone and an 
N-hydroxyindolinone 

Me 

Unfortunately, treatment of ketone 27 with sodium tert-butoxide in DMSO did not 
produce the desired nitrone; however, a reaction with sodium hydroxide in diluted 
methanol (1.25 mM) produced nitrone 28 in 71% yield, accompanied by the forma-
tion of N-hydroxyindolinone 29 in 17% yield (Scheme 17.10). Interestingly, when the 
reaction was run at a higher concentration (12.5 mM), nitrone 28 was only obtained 
in 8% yield and N-hydroxyindolinone 29 was obtained in 65% yield instead. 

17.5 Closer Consideration of the Reaction Mechanism 

The results presented in Sect. 17.4 indicate that the enolate is capable of reacting with 
a nitro group. How does this reaction between the enolate and nitro group occur? 
There are two possible positions for the reaction of a nitro group with a nucleophile: 
N-attack or O-attack (Scheme 17.11). Although not fully conclusive, according to 
the reported results, O-attack, which occurs via single-electron transfer followed by 
coupling of the resultant radical and radical anion, is likely [20–22]. In our cases, 
the O-attack produces seven-membered intermediate 32, which is converted into 
α-hydroxyketone X with a nitroso group. For the further transformation of X, the  
nitroso aldol reaction, involving nucleophilic attack of the nitroso group by enolate 
33 derived from the α-hydroxyketone under basic conditions, is a possible pathway. 
Subsequent elimination of a hydroxy group leads to the nitrone. However, deuteration 
experiments, in which α-hydroxyketone 34 was reacted under the same conditions 
for nitrone formation in methanol-d4, showed that formation of the enolate occurred 
only partially. This result indicates that the aforementioned nitroso aldol reaction is 
not a major pathway for forming the nitrone. Another plausible mechanism involves a 
hydride shift from the alkoxide to the nitroso group, forming 1,2-diketone 35 having 
a hydroxylamine moiety, whose condensation with the carbonyl group produces the 
nitrone.

Although the α-hydroxyketone could not be isolated or detected as an interme-
diate, isolation of N-hydroxyindolinone 29 under the same conditions supported 
formation of the α-hydroxyketone. A plausible mechanism for the formation of N-
hydroxyindolinone 29 via the α-hydroxyketone is shown in Scheme 17.12. Nucle-
ophilic attack on the carbonyl group by the nitrogen atom in the nitroso group, accom-
panied by C–C bond cleavage promoted by electron donation from the alkoxide anion, 
produces N-hydroxyindolinone 29. According to this mechanism, an aldehyde should 
be formed in the reaction mixture. When a 2-pyridylmethyl ketone (R’ = 2-pyridyl)
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Scheme 17.11 Discussion on reaction mechanism of nitrone formation

was used as a substrate, formation of the corresponding aldehyde 36 was detected. 
Using density functional theory (DFT) calculations, we successfully obtained the 
transition states for the N-hydroxyindolinone formation with appropriate activation 
barriers (+10.7 kcal/mol) [19].
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Scheme 17.12 Formation of N-hydroxyindolinone 

17.6 Consideration of an Alternative Mechanism 

We mentioned in Sect. 17.3 that deprotonation of the substrate at the benzylic posi-
tion might be a nonproductive pathway. After investigating the nitrone formation, we 
realized that a mechanism starting from the deprotonation at the benzylic position 
could be drawn as shown in Scheme 17.13. Under this alternative mechanism, the 
reaction of enolate 19 with a nitro group gives α-hydroxyketone 38 having a nitroso 
group, which is attacked intramolecularly by an enolate to form a C–N bond. Subse-
quent elimination of a hydroxide ion and aromatization produce quinoline N-oxide 
17. 

To evaluate the feasibility of the alternative mechanism, we attempted a reac-
tion of tert-butyl ketone 16b, which has only one α-proton at the benzylic position 
(Scheme 17.14) [23]. Photoirradiation of the tert-butyl ketone in methanol at − 
78 °C gave cyclic hydroxamate 44 in 83% yield. In general, photoirradiation of 
an o-alkylnitrobenzene induces oxygen transfer via hydrogen abstraction by the 
excited nitro group to produce a nitroso compound having a hydroxy group at the 
benzylic position [24, 24–26]. When tert-butyl ketone 16b was used as a substrate,

Scheme 17.13 Alternative reaction mechanism 
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α-hydroxyketone 38b having a nitroso group would be generated as an interme-
diate. Reaction of the α-hydroxyketone moiety with the nitroso group, like that of 
compound X, gave cyclic hydroxamate 44 via acyl transfer and hemiacetal forma-
tion. Upon treatment with sodium hydroxide in methanol, cyclic hydroxamate 44 
was converted into benzoisoxazole 45. 

Treatment of tert-butyl ketone 16b with sodium hydroxide in methanol afforded 
benzisoxazole 45 in 47% yield. The reaction of o-pentylnitrobenzene (46) did not 
give benzisoxazole 45 at all, ruling out deacylation of tert-butyl ketone 16b to form 
o-pentylnitrobenzene (46) as a reaction mechanism [27]. The reaction of enolate 19b 
with a nitro group in an O-attack manner would form α-hydroxyketone 38b. A subse-
quent sequence involving the acyl transfer, hemiacetal formation, and hydrolysis 
might produce benzisoxazole 45. 

Photoirradiation of ethyl ketone 16a also produced, via α-hydroxyketone 38a, 
cyclic hydroxamate 44a in a comparable yield (Scheme 17.15). The formation of 
cyclic hydroxamates occurred even at −78 °C under neutral conditions. When the

Scheme 17.14 Attempted reactions of an α-(2-nitrophenyl)ketone 
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Scheme 17.15 Photoinduced rearrangement of an ethyl ketone 

enolate is reacted with a nitro group in an O-attack manner at the benzylic position 
under the conditions for the quinoline N-oxides synthesis, the hydroxamate 44a 
or benzoisoxazole 45 might form. However, in the quinoline N-oxide synthesis, 
these products were not detected. These considerations and observations ruled out 
the reaction pathway involving O-attack at the benzylic position in the quinoline 
N-oxide synthesis. 

17.7 Conclusion 

A method to synthesize 3-hydroxyquinoline N-oxides from ketones having a 2-
nitrophenyl group at the α-position of the carbonyl group was developed. The reac-
tion was unexpectedly discovered and was successfully applied to the synthesis 
of various quinoline N-oxides, including aurachins A and B. On the basis of the 
quinoline N-oxide synthesis, related reactions of α-(2-nitrophenyl)ketones, including 
nitrone formation and photoinduced rearrangement to afford cyclic hydroxamates, 
were also investigated. These investigations provided clues about the reaction mech-
anism, leading us to propose the following mechanism (Scheme 17.16). Deprotona-
tion of the α-position of α-(2-nitrophenyl)ketone with tert-butoxide forms an enolate. 
Single-electron transfer from the enolate to the nitro group generates a radical and 
a radical anion, which are coupled to form a C–O bond. Subsequent cleavage of 
a N–O bond produces an α-hydroxyketone having a nitroso group. An alkoxide-
mediated hydride shift reduces the nitroso group, and condensation of the resul-
tant hydroxylamine and diketone moieties, followed by tautomerization, produces a 
3-hydroxyquinoline N-oxide.
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Scheme 17.16 Quinoline N-oxide synthesis 
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Chapter 18 
Total Synthesis of Avenaol 

Chihiro Tsukano, Motohiro Yasui, and Yoshiji Takemoto 

Abstract Avenaol is a terpene with a unique all-cis cyclopropane in which all 
bulky substituents are oriented in the same direction. It is categorized into a 
non-canonical strigolactone. We have synthesized alkylidenecyclopropanes by Rh-
catalyzed intramolecular cyclopropanation of allenes, followed by iridium-catalyzed 
diastereoselective double bond isomerization to construct all-cis cyclopropanes. 
Subsequently, distinction of the two hydroxymethyl groups of 1,3-diol by an 
intramolecular SN1-type reaction, followed by cleavage of the tetrahydropyranyl 
ring by regioselective C–H oxidation, led to the desired stereochemistry at the C-
ring lactone. Using these key steps, the first racemic total synthesis of avenaol was 
achieved, and the proposed relative configuration of avenaol was proved synthetically. 
Furthermore, we developed a stereoselective introduction of D-ring butenolide via 
chiral thiourea-quaternary ammonium salt-catalyzed dynamic kinetic optical reso-
lution. Then, by applying this method to synthetic intermediates, (+)-avenaol was 
successfully synthesized. This chapter details the total synthesis of avenaol, including 
failed attempts. 

Keywords Strigolactone · Cyclopropane · Isomerization · C–H oxidation ·
Thiourea · Quaternary ammonium

C. Tsukano (B) · M. Yasui · Y. Takemoto 
Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, 
Kyoto 606-8501, Japan 
e-mail: tsukano.chihiro.2w@kyoto-u.ac.jp 

M. Yasui 
e-mail: myasui@kit.ac.jp 

Y. Takemoto 
e-mail: takemoto@pharm.kyoto-u.ac.jp 

C. Tsukano 
Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, 
Kyoto 606-8502, Japan 

M. Yasui 
Graduate School of Science and Technology, Kyoto Institute of Technology, Masugasaki, 
Sakyo-ku, Kyoto 606-8585, Japan 

© The Author(s) 2024 
M. Nakada et al. (eds.), Modern Natural Product Synthesis, 
https://doi.org/10.1007/978-981-97-1619-7_18 

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1619-7_18&domain=pdf
mailto:tsukano.chihiro.2w@kyoto-u.ac.jp
mailto:myasui@kit.ac.jp
mailto:takemoto@pharm.kyoto-u.ac.jp
https://doi.org/10.1007/978-981-97-1619-7_18


382 C. Tsukano et al.

18.1 Introduction 

18.1.1 Structure and Properties of Avenaol 

Strigolactones (SLs) are plant-produced terpenes that act as rhizosphere-signaling 
substances to induce mycelial branching in arbuscular mycorrhizal fungi and are 
responsible for the symbiotic relationship between plants and arbuscular mycorrhizal 
fungi [1]. They also inhibit branching and are recognized as plant hormones. The 
basic skeleton of a SL is composed of a tricyclic lactone (ABC ring moiety) and 
a butenolide (D ring) with an acetal, which are connected via an enol ether, as 
represented by strigol and orobanchol (Fig. 18.1a). In 2014, avenaol (1), a SL with a 
novel structure that differs from the basic skeleton, was isolated from root secretions 
of Avena strigosa by Yoneyama et al. (Fig. 18.1b) [2]. The structural features of 
avenaol include (1) the AB-fused ring system is a bicyclo[4.1.0]heptanone skeleton 
in which 3- and 6-membered rings are fused, (2) the B ring is a cyclopropane with 
all bulkier substituents oriented in the same direction (this structure is hereinafter 
labeled as all-cis cyclopropane), (3) the number of carbons is one more than other SLs 
with a typical parent skeleton, and (4) the enol ether structure connecting the C and 
D rings is common to other SLs. The relative stereochemistry has been determined 
by 2D NMR, including COSY and NOESY, and the absolute stereochemistry has 
been inferred from homology with related SLs. Avenaol shows seed germination-
stimulating activity. Although seeds of Orobanche minor and Striga hermonthica 
did not germinate in a 10 nM solution, 49% germination was observed for seeds 
of Pinguicula ramose. We have conducted synthetic studies of avenaol to confirm 
its unique structure and its relative and absolute stereochemistry, to elucidate the 
structure–activity relationship using synthetic analogs, and to develop a new method 
for the construction of the all-cis cyclopropane ring.

18.1.2 Preliminary Investigations 

The ABC ring skeleton of avenaol is completely different from that in other 
natural products, while the enol ether structure is common to other SLs. There-
fore, the challenges for the synthesis of avenaol are (1) the construction of a 
bicyclo[4.1.0]heptanone skeleton containing an all-cis cyclopropane (i.e., the AB 
ring skeleton) and (2) the control of stereochemistry at C8 of the C-ring moiety and C3 
of the A-ring moiety [3–14]. Initially, cyclopropanation by the Corey–Chaykovsky 
reaction was attempted for construction of the AB ring skeleton [3]. Cyclohexenone 
2 and sulfonium salt 3 were treated with various bases in several solvents, but the 
desired product with a bicyclic skeleton was not obtained (Scheme 18.1a) [15]. For 
the synthesis of the bicyclo[4.1.0]heptanone skeleton, intramolecular cyclopropa-
nation of diazo compounds had been reported to give a product with a cage-like 
structure. Thus, we attempted intramolecular cyclopropanation of diazo compounds
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Fig. 18.1 Structures of SLs and avenaol

with trisubstituted alkenes. The reaction of cyclic alkene 5 with Rh2(cap)4 yielded 
only a complex mixture and no bicyclic product (Scheme 18.1b), and the reaction 
with Cu(tbs)2 did not yield the desired product and only dimerized product 8 was 
observed (Scheme 18.1b). Other non-cyclic alkenes 9 were also examined, but the 
cyclopropanation did not proceed (Scheme 18.1c). Comparing these results with 
previous reports by Corey et al., the positions of the substituents on the olefins 
are different [4]. Thus, it was assumed that cyclopropanation of 5 and 9 did not 
proceed because of steric repulsion between the substituent methyl group and the 
metal carbenoid in the transition state, which would make the cyclopropanation 
pathway unfavorable.

These initial investigations suggested that the construction of the 
bicyclo[4.1.0]heptanone skeleton by cyclopropanation of these alkenes was 
not suitable for avenaol synthesis. 

18.2 Racemic Total Synthesis of Avenaol 

18.2.1 Construction of Alkylidenecyclopropane 

Because of the difficulties encountered with cyclopropanation of trisubstituted 
alkenes, other approaches were required to synthesize the bicyclo[4.1.0]heptanone 
skeleton with an all-cis structure. It was important to set appropriate synthetic inter-
mediates taking into consideration the risk for cleavage of the cyclopropanes by 
introducing electron-withdrawing groups and the suppression of the formation of 
cage-like structures [12, 16]. Therefore, we focused on an alkylidenecyclopropane as
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Scheme 18.1 Preliminary investigation of cyclopropanation of trisubstituted cyclopropanes

a key intermediate to synthesize all-cis cyclopropanes. In a previous report, Sarpong 
et al. successfully constructed the bicyclo[3.1.0]hexanone skeleton by intramolec-
ular cyclopropanation of an allene [17]. Charette et al. showed that the reactivities of 
metal carbenes in intermolecular cyclopropanation depend on the substituent on the 
carbene carbon [18]. According to these reports, we expected to synthesize alkyli-
denecyclopropanes by an intramolecular cyclopropanation of diazo compounds with 
allenes, following a diastereoselective conversion to all-cis cyclopropanes. 

The retrosynthetic analysis is shown in Scheme 18.2. Avenaol (1) would be 
constructed by coupling bromobutenolide 11a, which is the D-ring moiety, with enol 
12, as in other SL syntheses [19–35]. Enol 12 would be synthesized from lactone 13 
via the stereoselective introduction of a hydroxy group on C3. Lactone 13 would be 
accessed by constructing the C ring and introducing two carbon units into 14. The  
all-cis cyclopropane of 14 would be constructed from alkylidenecyclopropane 15. 
Although various approaches might be possible to convert alkylidenecyclopropanes 
to the all-cis structure, we initially planned to use hydrogenation because it is the 
simplest method. As described above, alkylidenecyclopropanes 15 would be synthe-
sized by intramolecular cyclopropanation of diazoketone 16 with dimethyl groups 
and oxygen functionality. Diazoketone 16 would be accessed from a known aldehyde 
17, which could be prepared in one step from inexpensive starting materials.
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To investigate intramolecular cyclopropanation, diazoketone derivatives 16a– 
e with a methyl group, a nitrile, and an ester as a substituent were synthesized 
(Scheme 18.3). The known aldehyde 17 was treated with tetrahydropyranyl (THP)-
protected propargylic alcohol and benzyltrimethylammonium hydroxide to afford the 
secondary alcohol 18a [36, 37]. This transformation could be replaced with asym-
metric nucleophilic addition. Following Carreira’s procedure, treatment of 17 with 
p-methoxybenzyl (PMB)-protected propargylic alcohol in the presence of Zn(OTf)2 
and (−)-methylephedrine as a ligand successfully gave alcohol 18b [38]. Racemic 
18a was used for further investigation because of ease and cost of the synthesis. 
The secondary hydroxy group of the resulting 18a was converted to the propargylic 
alcohol 19 by methylation and acidic treatment to remove the THP group. Hydroalu-
mination of 19 followed by treatment with iodine gave allene 20 [39]. After the forma-
tion of a benzyl ether from 20, selective hydroboration of a terminal olefin, followed 
by oxidation to carboxylic acid 21a by reaction with either 9-azanoradamantane 
N-oxyl (nor-AZADO) or sulfur trioxide pyridine complex followed by NaClO2 

[40]. Similarly, methoxymethyl (MOM) ether 21b and triisopropylsilyl (TIPS) ether 
21c were synthesized. Diazo ketone 16a was obtained in low yield via conversion 
of 21a to acid chloride with Ghosez reagent, followed by treatment with freshly 
prepared diazoethane and 4-dimethylaminopyridine (DMAP). Carboxylic acid 21a 
was converted to a β-ketoester using Masamune’s procedure and then to β-keto-α-
diazo ester 16b by diazotransfer with 4-acetamidobenzenesulfonyl azide (ABSA) 
[41, 42]. After esterification of 21a–c via acid anhydrides and conversion to β-
ketonitriles, β-keto-α-diazonitriles 16c–e were synthesized by diazotransfer using 
(imid)SO2N3 [43].

Next, the rhodium- and copper-catalyzed intramolecular cyclopropanation of 
allenes 16a–e was investigated to synthesize alkylidenecyclopropanes 15a–e 
(Table 18.1). Initially, methyl diazoketone 16a was used because 15a would not 
require subsequent functional group transformation, which would reduce the number 
of synthetic steps. However, treatment of 16a with a catalytic amount of Rh2(OAc)4 
in dichloromethane gave no desired product and carboxylic acid 21a in 26% yield
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Scheme 18.3 Synthesis of diazo compounds bearing an allenyl group

(entry 1). This result could be attributed to the instability of rhodium carbenes arising 
from 16a. Thus, β-keto-α-diazo ester 16b was used because a carbenoid derived from 
16b was expected to be a more stable but still reactive. The reaction of 16b with 
Rh2(OAc)4 was unsuccessful (entry 2). In the case of Cu(CH3CN)4PF6, the reac-
tion gave a complex mixture (entry 3). On the other hand, when the substrate was 
changed to β-keto-α-diazonitrile 16c, the reaction smoothly proceeded to give the 
desired alkylidenecyclopropane 15c in 85% yield as a single diastereomer with a 
double bond in the E configuration (entry 4). The relative stereochemistry of 15c 
was determined by NOE correlation. Like Charette et al., we speculated that the high 
electrophilicity of the cyanorhodium carbene contributed to the acceleration of this 
reaction [18]. The cyclopropanation of 16d bearing MOM ether gave 15d in 96% 
yield, and the cyclopropanation of 16e bearing TIPS ether gave 15e in 99% yield 
(entries 5 and 6).

Only (E)-olefins were obtained presumably because steric repulsion between the 
benzyl (or methoxymethyl or silyl) ether of the allene substituent and the ligand 
coordinating to the rhodium carbene favored the transition state TS-A over TS-B. 
Consequently, cyclopropanation would proceed from the opposite side of the benzyl 
ether (Scheme 18.4).
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Table 18.1 Intramolecular cyclopropanation of allenes 

Entry R1 R2 Catalyst Yield 

1 Me Bn Rh2(OAc)4 ND (21a 26%) 

2 CO2Et Bn Rh2(OAc)4 ND (21a 35%) 

3 CO2Et Bn Cu(CH3CN)4PF6 Complex mixture 

4 CN Bn Rh2(OAc)4 15c (85%) 

5 CN MOM Rh2(OAc)4 15d (96%) 

6 CN TIPS Rh2(OAc)4 15e (99%)

•
H OR 

O CN 

[Rh] 

O 
CN 

OR

•
HRO 

ONC 

[Rh] 

O 
NC 

RO 

(Z) 

(E)
•

H OR 

O CN 

N2 

TS-A 

TS-B 

16c (R = Bn) 
16d (R = MOM) 
16e (R = TIPS) 

15c-e 

Scheme 18.4 Explanation for the diastereoselectivity 

The cyano group of the resulting alkylidenecyclopropane 15d was converted to 
a methyl group. A ketone of 15d was diastereoselectively reduced to a secondary 
alcohol by treatment with sodium borohydride in the presence of cerium chloride, 
and then the alcohol was converted to PMB ether 22a (Scheme 18.5). The reason 
for the high diastereoselectivity in the first step is that the reductant approached 
from the opposite side of the face of the alkylidenecyclopropane. The cyano group 
of 22a was converted to an aldehyde by diisobutylaluminium hydride (DIBAL-H) 
reduction followed by treatment with sodium borohydride to give primary alcohol 
23a. The Appel reaction of 23a gave an alkyl iodide which was treated with sodium 
borohydride at 80 °C in dimethyl sulfoxide (DMSO) to give a reduced product 24a
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Scheme 18.5 Reduction of the cyano group to a methyl group 

[44]. Compound 24b was also synthesized from alkylidenecyclopropane 15e bearing 
a TIPS group by a similar route. 

18.2.2 Initial Attempt to Construct an All-Cis Cyclopropane 
Using Hydrogenation and Radical Cyclization 

Next, we investigated the construction of an all-cis cyclopropane from 24. Shibatomi 
and Iwasa et al. reported that a hydrogen source approached from the convex 
side of the oxabicyclo[3.1.0]hexanone skeleton in hydrogenation of alkylidenecy-
clopropanes [8]. Thus, we used these conditions to investigate whether hydro-
genation of 24 would proceed in the same manner for the structurally similar 
bicyclo[4.1.0]heptanone skeleton (Scheme 18.6). 

Unfortunately, hydrogenation of 24b in methanol yielded all-cis cyclopropane 14a 
and trans-cyclopropane 7-epi-14a as a 1:2 diastereomeric mixture (Scheme 18.7). 
After tetrapropylammonium perruthenate (TPAP) oxidation of this mixture, NOE 
correlations and coupling constants of the resulting ketone revealed that 7-epi-25 
was the major product. The substrate used by Shibatomi and Iwasa et al. for the
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Scheme 18.6 Working hypothesis for hydrogenation 
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Scheme 18.7 Hydrogenation of alkylidenecyclopropane 

hydrogenation had no substituent in the angular position [8]. Thus, it was assumed 
that the methyl group in the angular position in 24b may have caused steric hindrance, 
which avoided the approach from the convex side. 

We also attempted radical reactions for the construction of all-cis cyclopropanes. 
When bromoacetal 27, which was derived from 24, is treated with a radical initiator 
and reductant, a 5-exo-trig radical cyclization reaction might occur [45]. If both the 
cyclization and reduction proceed from the convex side of the fused ring system, the 
stereochemistry on the C ring and the cyclopropane could be controlled in one step 
(Scheme 18.8). 

After removal of the TIPS group of 24b, the resulting primary alcohol 24c was 
treated with ethyl vinyl ether and N-bromosuccinimide (NBS) to give bromoacetal 
27 (Scheme 18.9). The obtained 27 was reacted with triethylborane as a radical 
initiator and tributyltin hydride as a reductant at− 78 °C under an oxygen atmosphere 
in toluene. This gave the cyclized product 26 in 63% yield as a diastereomeric 
mixture. The diastereomeric ratio was determined after derivatization to lactones 
28 and 7-epi-28 via removal of the PMB group, hydrolysis of acetal, and TPAP

Me 

R1O 
H 

O 
O 

Me 

OR2 

R1O 

Me 

R1O 

O 

Br 
OEt 

6 

7 

Me 

R1O 
8H 

O 
EtO 

Me 

R1O 

O OEt 

H M  

HM 

radical 
cyclization 

13 

24 

26 

27 

C C 

Scheme 18.8 Retrosynthesis for the radical cyclization 
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Scheme 18.9 Attempt to construct all-cis cyclopropane by radical cyclization 

oxidation. Unfortunately, the undesired trans-cyclopropanes 7-epi-28 were obtained 
as major products in diastereomeric mixtures on C8, along with small amount of 
all-cis cyclopropanes 28 (28:7-epi-28 = 1:11). The relative stereochemistry of the 
C7 of 7-epi-28 was determined from the coupling constant between C6 and C7. The 
coupling constant for a trans-cyclopropane was less than 6 Hz and different from the 
coupling constant (9.0 Hz) for avenaol (1) bearing all-cis cyclopropane. 

The diastereoselectivity of this reaction could be rationalized as follows. The 
intramolecular addition of the alkyl radical to the olefin could proceed via confor-
mation A or B (Scheme 18.10). Because the p-methoxybenzyloxy (PMBO) group 
on the cyclohexane ring of A and B was in an equatorial position, there was no steric 
hindrance around the double bond. Consequently, the addition proceeded through 
either A or B, and the selectivity on C8 was not expressed (diastereomeric ratio (dr) 
of 1.4:1 for C8). After formation of the five-membered ring, the reaction with the 
hydrogen source (M-H) would proceed via conformations C and D. Because these 
radicals in intermediates C and D have sp3 properties compared with olefins in A 
and B, steric repulsion would occur with the PMBO group in the equatorial position. 
Therefore, the reaction via D would be more favorable than the reaction via C.

18.2.3 First-Generation Approach to All-Cis Cyclopropane 
Using Palladium-Catalyzed Reduction of Allyl 
Carbonates 

Although hydrogenation and radical cyclization preferentially yielded undesired 
products with a trans-substituted cyclopropane, these results suggested that steric 
repulsion with substituents on the cyclohexane ring affected the selectivity. There-
fore, we focused on the palladium-catalyzed reduction of allyl carbonates for
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Scheme 18.10 Explanation for the diastereoselectivity of radical cyclization

constructing all-cis cyclopropane as follows [46, 47]. Lactone 13 would be synthe-
sized by the diastereoselective 1,4-reduction of butenolide 29, which would be 
prepared from all-cis vinylcyclopropane 31 via dihydroxylation, esterification, and 
the intramolecular Horner–Wadsworth–Emmons reaction of phosphonate ester 30 
(Scheme 18.11). It was envisioned that the all-cis cyclopropane structure of 31 would 
be constructed by diastereoselective reduction of allyl carbonate ester 24d because 
the bulky palladium center of a π-allyl palladium complex generated from 24d would 
be positioned at the outside of the molecule as shown in Scheme 18.11.

After conversion of allyl alcohol 24c to allyl carbonate 24d, construction of all-
cis cyclopropanes was examined (Scheme 18.12). As expected, treatment of 24d 
with Pd(dba)2, PBu3, formic acid, and triethylamine in tetrahydrofuran (THF) under 
reflux gave all-cis cyclopropane 31 in 95% yield in a diastereoselective manner 
(9.5:1). Having obtained the all-cis cyclopropane with high diastereoselectivity, 
we then attempted to construct the C-ring moiety. Dihydroxylation of alkene 31 
with OsO4 was followed by condensation of the resulting diol 32 with diethyl 
carboxymethylphosphonate in a primary alcohol-selective manner. The secondary 
hydroxy group of the resulting phosphonate ester was converted to ketone 30 by
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Scheme 18.11 Retrosynthesis for the Pd-catalyzed reduction of allyl carbonates

TPAP oxidation, followed by treatment with potassium tert-butoxide in THF to 
afford butenolide 29a in 67% yield [74% based on recovered starting material (brsm)] 
via an intramolecular Horner–Wadsworth–Emmons reaction. The PMB group was 
removed by treatment with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) to give 
the secondary alcohol 29b. 

The 1,4-reduction of butenolides 29a and 29b was then examined. When 29b was 
treated with Crabtree’s catalyst in dichloromethane under a hydrogen atmosphere 
(6 atm), the reaction did not proceed (Table 18.2, entry 1). When magnesium metal 
was used as a single-electron reductant, a complex mixture was obtained (entry 2). 
On the other hand, when SmI2 was used, trans-cyclopropane 7-epi-29b was obtained 
(entry 3) [48]. The hydride reductant was then investigated and the reaction with
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Stryker’s reagent did not proceed at all when the reaction was heated to reflux in 
benzene (entry 4) [49]. These results suggested that one-electron reductants and 
Cu–H are not effective for this transformation. On the other hand, the reaction with 
NaBH4 in the presence of CoCl2 gave the desired lactone 13b as a diastereomeric 
mixture, which was difficult to separate (entry 5) [50]. In the case of 29a with 
a PMB group, the reaction using Cu–H generated in situ did not proceed (entry 
6). Next, conditions established by Lipshutz et al. were examined and expected to 
result a higher diastereoselectivity using the asymmetric ligand, but no selectivity 
was observed (entry 7) [51]. The reaction with NaBH4 in the presence of CoCl2, 
which generated Co–H, gave the desired product in 83% yield, but no selectivity was 
observed (entry 8) [50]. 

Unfortunately, we could not identify conditions for diastereoselective 1,4-
reduction of the butenolide. Additionally, it was difficult to separate the diastere-
omeric mixture of the reduced products 13a and 13b. Therefore, we reconsidered 
the synthetic route to establish a more efficient route.

Table 18.2 1,4-Reduction of butenolides 29a and 29b 

Entry R Conditions Yield (dr for C8) 

1 H [Ir(cod)pyr(Cy3P)]PF6 (39 mol%) 
H2 (6 atm), CH2Cl2, rt  

N.R. 

2 H Mg (excess), MeOH, rt Complex mixture 

3 H SmI2 (1.5 equiv), MeOH (1 drop) 
THF-DMA (8:1), rt 

7-epi-29b 33% 

4 H [(PPh3)CuH]6, benzene, reflux N.R. 

5 H NaBH4, CoCl2, MeOH, − 40 °C to 
− 20 °C 

13b 79%, dr 1:1.2 

6 PMB NaBH4, CuCl, MeOH, − 40 °C to 
− 20 °C 

N.R. 

7 PMB (R)-DTBM-SEGPHOS (20 mol%) 
[(Ph3P)CuH]6 (20 mol%), PMHS 
tBuOH,  THF,  0 °C to 40 °C  

13a 10%, dr 1:1.2 
(88% recovered) 

8 PMB NaBH4, CoCl2, MeOH, − 40 °C to 
− 20 °C 

13a 83%, dr 1:1 
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18.2.4 Second-Generation Approach to All-Cis Cyclopropane 
Using Iridium-Catalyzed Double Bond Isomerization 

Although it was problematic to convert butenolides 29a and 29b synthesized from 
all-cis cyclopropane 31, the all-cis structure was selectively constructed by the 
palladium-catalyzed reduction of allyl carbonate esters 24d. These results suggested 
that the all-cis structure could be selectively constructed via a formation of the metal 
complex intermediate by approaching the bulky metal catalyst from the convex face 
of the bicyclic ring system. Thus, we focused on the iridium-catalyzed double bond 
isomerization in which the oxygen-functional group works as a directing group [52, 
53]. In other words, the all-cis cyclopropane 35 could be constructed by the iridium-
catalyzed double bond isomerization of alkylidenecyclopropane 24c through an inter-
mediate in which a bulky iridium hydride approaches from the convex face of the 
molecule to form the complex. To avoid going through the butenolide structure (i.e., 
29a and 29b) enroute to lactone 13, 1,3-diol 34 was set as an intermediate. This 
intermediate could be converted to nitrile 33 by distinguishing the reactivities of 
the two hydroxy groups (Scheme 18.13). Then, 1,3-diol 34 could be synthesized by 
introduction of a hydroxymethyl group at the α-position of aldehyde in 35. 

The iridium-catalyzed double bond isomerization using a directing group was 
investigated using 22a, 23a, 23b, 24b, and 24c. The isomerization did not proceed 
when nitrile 22a was treated under a hydrogen atmosphere in the presence of Crab-
tree’s catalyst ([Ir(cod)(pyr)(PCy3)]PF6) (Scheme 18.14a). These results suggested 
that the cyano group contributed to inactivation rather than working as a directing 
group. On the other hand, when alcohol 23a was treated under the same conditions, 
the isomerization proceeded smoothly to give enol ether 37a as a single diastere-
omer. Similarly, the reaction of 23b having a TIPS group gave the all-cis cyclo-
propane 37b in 92% yield as a single diastereomer. However, further derivatiza-
tion of 37a and 37b was difficult because side reactions, including ring-opening
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of the cyclopropane, occurred rather than deoxygenation.1 Therefore, we exam-
ined the double bond isomerization of a deoxygenated substrate 24b. The reac-
tion under a hydrogen atmosphere in the presence of Crabtree’s catalyst gave 38d 
in low yield (Scheme 18.14b). To improve the reactivity of the iridium catalyst, 
[Ir(cod)(pyr)(PCy3)]BArF having a non-coordinating counter anion (tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate [BArF]) was used. Although the starting material 
was completely consumed, only the undesired trans-substituted cyclopropanes 38d'
and 38d'' were obtained. On the other hand, the reaction of allyl alcohol 24c with 
Crabtree’s catalyst gave the desired all-cis cyclopropane as a major product, albeit 
with low selectivity (2.7:1). The diastereoselectivity improved to 10:1 when using 
[Ir(cod)(pyr)(PCy3)]BArF (Scheme 18.14c).

The selectivity of the double bond isomerization can be rationalized as follows. 
When alcohols 23a and 23b are used as substrates, the hydroxymethyl group coor-
dinated to the iridium center (i.e., intermediate E) and the C–H bond formed from 
only one side, which gave the all-cis cyclopropane (Scheme 18.15a). In the case 
of 24b, which had a methyl group substituent instead of a hydroxymethyl group, 
we speculated that double bond isomerization using [Ir(cod)(pyr)(PCy3)]PF6 (Crab-
tree’s catalyst) proceeded without coordination to iridium center. This was primarily 
because of the lower coordinating abilities of the oxygen-functional groups, such as 
TIPS and PMB ether, compared with the hydroxy group. This resulted in produc-
tion of the isomerized product 38d in low yield with moderate diastereoselec-
tivity. On the other hand, the trans-cyclopropane 38d' could be obtained when 
[Ir(cod)(pyr)(PCy3)]BArF, which was susceptible to coordination, was used. The 
PMB ether, which was less sterically hindered than the TIPS ether, served as a coor-
dinating group to give the trans isomer through intermediate F (Scheme 18.15b). The 
high ratio of the reduced product 38d'' was attributed to the ease of hydrogenating the 
resulting disubstituted olefin of trans-substituted cyclopropane because of its lower 
steric hindrance. When allyl alcohol 24c was used as a substrate, the metal center 
of [Ir(cod)(pyr)(PCy3)]BArF formed a strong coordination bond with the hydroxy 
group instead of the PMB ether, and then steric repulsion with the ligand resulted 
in formation of all-cis cyclopropane 35 through intermediate I (Scheme 18.15c).

1 Deoxygenation of all-cis cyclopropane 37b with an enol ether moiety was attempted (see below). 
Ozonolysis was followed by the Wittig reaction to give α,β-unsaturated ester N1. Iodination of N1 
resulted in the cleavage of cyclopropane instead of the formation of an alkyl iodide. This result 
indicated that a leaving group at the α-position in the cyclopropane would cause ring-opening of 
cyclopropane. Various attempts to derivatize N1 were also unsuccessful. Therefore, we decided to 
derivatize deoxygenated all-cis cyclopropanes 35. 
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Scheme 18.14 Investigation of iridium-catalyzed double bond isomerization

We also speculated that when Crabtree’s catalyst, which had weaker coordina-
tion ability than [Ir(cod)(pyr)(PCy3)]BArF, was used, the isomerization proceeded 
without coordination and led to low cis-selectivity.

Next, aldehyde 35 was converted to 1,3-diol 34 through aldol reaction with 
formaldehyde, 1,2-reduction of the resulting α,β-unsaturated aldehyde, and hydrob-
oration–oxidation of an exo-methylene (Scheme 18.16). Diol 34 was then treated 
with DDQ to try to differentiate one hydroxy group from the other to obtain p-
methoxybenzylidene acetal 39. Unfortunately, 39 was not obtained at all. Instead, 
tetrahydropyran 40a was obtained, albeit in low yield.

Despite the unexpected formation of the ether ring, we were able to distinguish 
one hydroxymethyl group of 1,3-diol 34 selectively albeit low yield. Thus, we inves-
tigated an optimization of this reaction (Table 18.3). Initially, considering the possi-
bility that DDQ acted as an oxidant in the reaction, several copper catalysts were 
examined. The reaction did not proceed at all in the case of Cu(OAc)2, while the 
reaction with Cu(OTf)2 yielded a trace amount of the cyclized product 40b (entries 1 
and 2). In sharp contrast, use of Cu(ClO4)2, which has a high Lewis acidity, dramat-
ically improved the yields of 40a and 40b (entry 3). Next, we examined the Lewis 
acids Zn(OTf)2, Sc(OTf)3, and BF3·OEt2. The cyclized products 40a and 40b were 
obtained in approximately 80% combined yield when BF3·OEt2 was used (entries 
4–6). We also obtained 40a and 40b quantitatively using pTsOH as a Brønsted acid
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(entries 7). Considering these results, we speculated that pTsOH or BF3·OEt2 effec-
tively eliminated the PMBO group. Finally, the reaction with pTsOH was conducted 
in the presence of an excess amount of PhSH to capture the oxonium cation derived 
from the PMB group. This gave alcohol 40a in 88% yield in a chemoselective manner 
(entry 8).
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Table 18.3 Differentiation of diol 34 

Entry Catalyst Yield 

40a 40b 

1 Cu(OAc)2 No reaction 

2 Cu(OTf)2 – Trace 

3 Cu(ClO4)2 41% 21% 

4 Zn(OTf)2 14% – 

5 Sc(OTf)3 27% 36% 

6 BF3·OEt2 64% 17% 

7 pTsOH 35% 65% 

8 pTsOH, PhSHa 88% – 

a10 equivalent of PhSH was used 

In this reaction, p-methoxybenzyl alcohol 41 and bis(p-methoxybenzyl) ether 42 
were obtained as by-products (Scheme 18.17). From these results, we hypothesized 
that the PMB ether 40b was formed through the following steps. First, elimination 
of the p-methoxybenzyl ether of 34 by acid-activation, which gave oxonium cation 
J and triol K, was followed by the formation of carbocation L-1 by elimination of a 
hydroxy group. Alternatively, the p-methoxybenzyloxy group of 34 could be directly 
eliminated to produce L-1. This secondary cation L-1 would be stabilized by the σ-
donation of the cyclopropyl group [54]. The cation of L-1 was then reacted with the 
intramolecular hydroxy group to give tetrahydropyran 40a. Finally, the reaction of 
40a with oxonium cation J led to the formation of PMB ether 40b.

The reaction proceeded in a stereoselective manner at C8. The newly formed stere-
ochemical configuration was determined by NOESY experiments of 40c, which was 
obtained via silylation of 40a. The stereoselectivity could be rationalized as follows. 
Although two conformations, L-1 and L-2, are possible for this cyclization, the 
methylene moiety of one of the hydroxymethyl groups of L-2 would experience steric 
repulsion with the hydrogen on C4 and the methyl group of C5 on the six-membered 
ring. Consequently, conformation L-1 was favored, leading to the formation of 40a. 
Although this reaction might be reversible, 40a would be thermodynamically more 
stable than 8-epi-40a because of similar steric repulsion. 

The C–H oxidation was then examined for the ring-opening of the THP ring 
after formation of benzoyl ester from 40a. Oxidation using stoichiometric amounts 
of CrO3 or a combination of RuCl3 catalyst and NaIO4 gave undesired lactone 45
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Scheme 18.17 Plausible reaction mechanism

and carboxylic acids 46 because of oxidation of a methylene instead of a methine 
(Table 18.4, entries 1 and 2) [55, 56]. In the case of (S,S)-Fe(pdp), reported by 
Chen and White, the reaction gave the desired keto alcohol 44 regioselectively in 
65% yield, but required stoichiometric amounts of iron complexes (entry 3) [57]. 
When oxidation with dimethyldioxirane (DMDO) was attempted, the reaction did 
not complete even after 24 h although 44 was obtained in 22% yield. On the other 
hand, treatment with trifluoromethyl(methyl)dioxirane (TFDO) at 0 °C resulted in 
low regioselectivity because of the high reactivity of TFDO (entries 4, 5) [58]. Finally, 
when using TFDO at − 78 °C, regioselective C–H oxidation proceeded to give 44 
in 96% yield (entry 6).

Next our attention turned to constructing the C-ring moiety to complete the total 
synthesis of avenaol (1).2 The keto alcohol 44 was elongated through mesylation 
and SN2 substitution with cyanide (Scheme 18.18). After DIBAL-H reduction of the

2 We also explored the introduction of a hydroxy group at C3 from a 1:1 diastereomeric mixture 
of lactone 13b and 8-epi-13b, which had been prepared via palladium-catalyzed reduction of allyl 
carbonate and 1,4-reduction of butenolide (as detailed in Table 18.2). Oxidation of a diastereomeric 
mixture of 13b and 8-epi-13b with TPAP produced ketones 28 and 8-epi-28. Treatment of the 
diastereomeric mixture 28 with TBSOTf and triethylamine gave silyl enol ethers N4 and 8-epi-N4 
along with an intramolecular aldol adduct N3, which could not be separated by silica gel column 
chromatography. Thus, this mixture N3, N4 and 8-epi-N4 was treated with OsO4, which yielded 
α-hydroxyketones N5 and 8-epi-N5 in 68% yield (with a N5:8-epi-N5 ratio of 1:3.4) and recovered 
N3. The configuration of the newly formed C3 was established by NOE correlation between hydro-
gens on C3 and C8 of acetylated N6. Our findings revealed that while 8-epi-13b with undesired 
stereochemistry at C8 could be converted to hydroxyketone 8-epi-N5 through the formation of a 
silyl enol ether and subsequent dihydroxylation, 13b with the desired stereochemistry could not be
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resulting nitrile 33, hydrolysis under basic conditions was followed by treatment with 
an acid to yield a mixture of lactone 13b and alkene 47. This mixture was directly 
treated with pTsOH, resulting in the conversion of 13b to 47. Dihydroxylation of 
47 gave a diol in a diastereoselective manner because OsO4 was approached from 
the convex face. After regioselective silylation, the resulting triethylsilyl (TES) ether 
48 was treated with methyl formate in the presence of potassium tert-butoxide to 
afford the formylated product [19]. Coupling of the product with bromobutenolide 
11a afforded enol ether 49, which is a core structure of avenaol, as a diastereomeric 
mixture with the 2'-epimer. Dess–Martin oxidation of 49 gave protected avenaol 
50 and 2'-epi-50, which were separated by silica gel column chromatography. The 
alcohol was oxidized after the formylation and introduction of the butenolide because 
cyclization via intramolecular aldol reaction during formylation and butenolide intro-
duction would occur if it was oxidized first. Finally, treatment of 50 with HF·pyridine 
completed the total synthesis of avenaol (1). The spectral data, including 1H, 13C 
NMR, FTIR, and ESI-MS spectra, of the synthetic avenaol were identical to those

transformed into the desired silyl enol ether N4 without a side reaction (i.e., intramolecular aldol 
reaction).
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Scheme 18.18 End game for the total synthesis of avenaol 

of the natural product reported by Yoneyama et al. [2]. The epimer of avenaol, 2'-
epi-1, was also synthesized by removing the TES group from 2'-epi-50 by treatment 
with HF·pyridine. The relative configuration of 2'-epi-1 was determined by X-ray 
crystallography. These results indicate that the structure of avenaol and its relative 
configuration are correct, albeit indirectly. 

18.3 Synthesis of (+)-Avenaol from a Racemic Synthetic 
Intermediate 

After achieving the total synthesis of racemic avenaol, we focused on its asym-
metric synthesis. If the synthetic intermediate 18b, obtained by the asymmetric 
nucleophilic addition as shown in Scheme 18.3, was derivatized without epimer-
ization through the established synthetic route, the optically active avenaol could 
be accessed. However, the asymmetric nucleophilic addition required a stoichio-
metric amount of a chiral ligand whose use is restricted by law. This method might 
be inefficient for the synthesis of enantiomers of the ABC ring moiety because the
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optically active ent-18b needed to be prepared in an early stage of the synthesis. 
Additionally, the introduction of the D-ring moiety did not occur stereoselectively. 
It has been reported that SL with an R configuration on C2' of the D ring, which is 
the same as in the natural product, exhibits more germination-stimulating activity 
than that having a S configuration [59]. Therefore, we envisioned that the enan-
tioselective introduction of the D-ring moiety using racemic synthetic intermediates 
would both enable efficient synthesis of optically active avenaol and provide a highly 
general method for the asymmetric synthesis of SLs. After various investigations, 
we found that a SL structural analog with a 1-indanone skeleton, enol 51a, reacted 
with racemic chlorobutenolide 11b in the presence of cesium carbonate and chiral 
thiourea-ammonium salt catalyst PTC-1 in chlorobenzene–water (20:1) to give 52a 
in 72% yield with an enantiomeric ratio (er) of 94:6 (Table 18.5, entry 1) [60]. This 
reaction could apply to enol 51b with two methyl groups at C5 and C6 and enol 
51c fused at C6 and C7, which is a bulkier substrate (entries 2 and 3). Furthermore, 
diastereoselective introduction of the D-ring moiety into enantiomerically pure 51d 
was possible to form the artificial SL GR24 (52d, entry 4).

The optimized reaction conditions could be applied to the diastereomeric acetal-
ization of several racemic enols that are the SL precursors. Racemic enol 51d was 
converted to (+)-(3aR,8bS,2'R)-52d (GR24, 54% yield, 82:18 er) and its diastereomer 
(−)-(3aS,8bR,2'R)-52d (40% yield, 88:12 er) (Scheme 18.19). Similarly, the bicyclic 
SLs (+)-(3aR,6aS,2'R)-52e (GR7, 41% yield, 81:19 er) and (−)-(3aS,6aR,2'R)-52e 
(34% yield, 85:15 er) were obtained from enol (±)-51e.

Finally, this diastereoselective acetalization was applied to the asymmetric 
synthesis of avenaol. A key synthetic intermediate (±)-53 was reacted under the 
optimum conditions and yielded a mixture of enol ether 49 (45%) and ent-2'-epi-49 
(30%) on introduction of the D-ring moiety (Scheme 18.20). Dess–Martin oxidation 
of the mixture was followed by separation by silica gel column chromatography to 
give (+)-50 and (−)-ent-2'-epi-50. The protected avenaol (+)-50 was treated with 
HF·pyridine to obtain avenaol (+)-1 in an 81:19 er. The circular dichroism spec-
trum of (+)-1 was consistent with the reported Cotton effect, which confirmed this 
compound had the same absolute configuration as the natural product [2]. Because 
the 2'-(R) epimer would be obtained in the case of PTC-1, it was strongly suggested 
that the absolute configuration of the natural product was 2'-(R) as in the proposed 
structure. Similarly, the enantioselectivity of (−)-ent-2'-epi-1 obtained by removing 
the TES group of (−)-ent-2'-epi-50 was 96:4.

18.4 Conclusions 

We achieved the first total synthesis of avenaol (1) using the following key reac-
tions: (1) rhodium-catalyzed intramolecular cyclopropanation of allenes to synthe-
size alkylidenecyclopropanes, (2) iridium-catalyzed diastereoselective double bond 
isomerization to construct all-cis cyclopropane, (3) distinction of two hydroxymethyl 
groups on the 1,3-diol via intramolecular SN1-type reactions, and (4) cleavage of the
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Table 18.5 Enantioselective acetalization for introduction of the D-ring butenolide 

Entry Substrate Product Yield ratio 

1 72% 
94:6 er 

2 79% 
95:5 er 

3 Quant 
94:6 er 

4 72% 
92:8 dr

THP ring by regioselective C–H oxidation (Scheme 18.21). This is the first synthetic 
proof of the proposed relative stereo configuration of avenaol. After this study, we 
succeeded in the total synthesis of shagene A and B by extending the synthetic 
strategy of all-cis cyclopropanes developed in this study [61]. It is expected that 
these synthetic strategies, including other attempts such as hydrogenation, radical 
cyclization, and palladium-catalyzed reduction of alkylidenecyclopropane deriva-
tives, described in this manuscript will be widely used in the future. Furthermore, 
we have developed a stereoselective D ring introduction method for SL by acetal 
formation with γ-chlorobutenolide via chiral thiourea-quaternary ammonium salt-
catalyzed dynamic kinetic resolution. By applying the developed reaction conditions
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Scheme 18.19 Synthesis of SLs by PTC-catalyzed stereoselective acetalization

to racemic substrates, optically active SLs could be readily synthesized. Finally, we 
succeeded in synthesizing optically active avenaol and confirming its absolute config-
uration. This method is expected to be used for various substrates as a stereoselective 
introduction of the strigolactone D-ring moiety.
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Scheme 18.21 Overview of strategies for access to all-cis cyclopropanes and total synthesis of 
avenaol 
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Chapter 19 
Nonbiomimetic Total Synthesis 
of Polycyclic Alkaloids 

Hiroaki Ohno, Norihito Arichi, and Shinsuke Inuki 

Abstract In nonbiomimetic natural product synthesis, there are no restrictions on 
the design of synthetic routes; however, the feasibility of the planned routes is often 
completely unknown. To discover more efficient and creative syntheses of natural 
products, and to identify bioactive natural product derivatives that have never been 
synthesized in nature, our group is engaged in the nonbiomimetic total synthesis 
of indole alkaloids. In this chapter, we describe our nonbiomimetic total syntheses 
of quinocarcin, dictyodendrins A–F, and zephycarinatines C and D, by employing 
alkyne-based approaches and reductive radical spirocyclization. We also describe 
our efforts in the identification of bioactive alkaloid derivatives. 

Keywords Cascade reactions · Nonbiomimetic synthesis · Indole alkaloids 

19.1 Introduction 

‘Biomimetic’ and ‘nonbiomimetic’ are important classifications in natural product 
synthesis. Biomimetic synthesis [1], which takes inspiration from biosynthetic path-
ways, is a rational and efficient approach to natural product synthesis; this is because 
(1) the common synthetic intermediates of nature can be used, leading to the diversity-
oriented synthesis of a series of natural products, and (2) cheap and easily accessible 
starting materials can be used. Furthermore, the structures of the natural products are 
restricted to those accessible by biosynthesis [2–5]. It is also important to note that the 
routes of biomimetic syntheses have already been realized in nature, albeit in reac-
tion environments that employ enzymes. Although the structures of natural products 
have been optimized and refined in nature through evolutionary selection, which can 
be considered a compound screening in nature [6–8], biomimetic total synthesis can 
also efficiently synthesize structurally novel natural product derivatives by utilizing 
synthons that are not available in nature.
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In contrast, nonbiomimetic total synthesis does not mimic the bond formation 
patterns or key intermediates of biosynthetic pathways; rather, it seeks more efficient 
and creative synthetic routes to natural products [9, 10]. There are no restrictions in 
the design of these synthetic routes, although the feasibility of the routes is completely 
unknown. Another important point is that nonbiomimetic synthesis can often produce 
natural product derivatives that have never been synthesized in nature [11, 12]. 

Our group is engaged in the nonbiomimetic total synthesis of indole alkaloids with 
a focus on alkyne-based strategies [13–15] and photoredox catalysis [16]. Alkynes are 
extremely important tools in the design of nonbiomimetic syntheses. Although nature 
can synthesize alkyne-containing natural products, such as acetylenic fatty acids, 
acetylenic amino acids, enediynes, and bacterial polyynes [9], reactions of alkynes 
are rarely used in nature; this is illustrated by bio-orthogonal reactions that often 
rely on alkyne chemistry. Radical-based reductive cyclization onto aromatic rings is 
another important method in the design of nonbiomimetic synthetic routes because 
biosynthesis extensively uses oxidative radical reactions, but not their reductive 
counterparts. 

In this chapter, we describe our recent achievements in the nonbiomimetic total 
synthesis of quinocarcin (1) [17, 18], dictyodendrins A–F (2a–f) [19, 20], and zephy-
carinatines C and D (3a, 3b) [21] (Fig. 19.1), using alkyne-based approaches or 
reductive radical spirocyclization. Our efforts in the identification of alkaloid deriva-
tives for drug discovery, which are not accessible by biomimetic approaches, are also 
described. 

Fig. 19.1 Structures of quinocarcin, dictyodendrins, and zephycarinatines
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19.2 Total Synthesis of Quinocarcin 

The tetrahydroisoquinoline (THIQ) antibiotics constitute a large class of alkaloids 
(over 60 members) that possess a wide range of structural diversity and biolog-
ical activities (Fig. 19.2) [22, 23]. In 1983, quinocarcin (1) was isolated from a 
culture of Streptomyces melanovinaceus by Takahashi and Tomita [24, 25] and 
was demonstrated to show antiproliferative activity against lymphocytic leukemia. 
Quinocarcinamide is the oxidized surrogate of quinocarcin, and has a tetracyclic 
lactam core with a primary alcohol moiety. Tetrazomine and lemonomycin are also 
members of the quinocarcin family, sharing a 3,8-diazabicyclo[3.2.1]octane core 
structure. Saframycin A and ecteinascidin 743 are well-known THIQ alkaloids with 
potent antitumor activity that share the alternative 3,9-diazabicyclo[3.3.1]nonane 
core structure. 

A biosynthetic pathway to quinocarcin, based on a nonribosomal peptide 
synthetase (NRPS) composed of five modules (Qcn12, 13, 15, 17, and 19), was 
proposed by Oikawa and co-workers in 2013 [26] (Scheme 19.1). Glyoxal derivative 
5 is biosynthesized by the Qcn13/12-catalyzed condensation of a long-chain fatty 
acid with L-alanine, followed by glyceryl unit transfer and reductive cleavage of 
the resulting thioester. The Pictet-Spengler (PS) reaction of m-tyrosine (4) (derived 
from phenylalanine) with aldehyde 5, catalyzed by the Qcn17 PS domain, produces 
thioester 6 with a tetrahydroisoquinoline scaffold, which is reductively converted 
to bicyclic aldehyde 7. A Mannich reaction of aldehyde 7 with tethered 4,5-
dehydroarginine affords pyrrolidine-substituted tetrahydroisoquinoline 9, which can 
be converted to tetracyclic product 10 via reductive release and N-cyclization. It 
should be noted that the final transformation of 10 to quinocarcin (1), which may 
include aminal formation, N- and O-methylation, and oxidation, was not proposed.
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Scheme 19.1 Proposed biosynthetic pathway to quinocarcin (1) 

Our retrosynthetic disconnections for quinocarcin (1) are depicted in Scheme 19.2. 
According to the published procedure by Zhu and Stoltz [27, 28], quinocarcin can be 
synthesized from the quinocarcinamide derivative 11. This amide would be acces-
sible from 12 via hydrogenation and lactam formation, and compound 12 would 
be obtained by gold-catalyzed hydroamination [29] of benzylamine derivative 13 
bearing an alkynyl pyrrolidine moiety (the first key reaction of this synthesis). The 
benzylamine derivative 13 could be easily prepared by Sonogashira coupling between 
phenylglycinol derivative 14 and 2,5-cis-2-alkynylpyrrolidine 15. The pyrrolidine 
would be stereoselectively synthesized by the base-promoted cyclization of bromoal-
lene 16 (the second key reaction in our synthesis); the 2,5-cis-isomer can be selec-
tively produced from both diastereomers of the bromoallene [30]. Comparing the 
green bonds in the biosynthetic route (Scheme 19.1) to the red bonds in our synthetic 
route (Scheme 19.2), it can clearly be seen that our synthetic method does not mimic 
biosynthesis.

Our synthesis began with TBDPS-protected γ-butyrolactone 17 (Scheme 19.3). 
Stereoselective α-propargylation, reductive ring-opening of the resulting 3,5-trans-
18 with LiBH4, and acetylation gave protected triol 19 in good overall yield. Intro-
duction of the nitrogen functional group under Mitsunobu conditions and propar-
gylic oxidation with SeO2 afforded 20 as a diastereomeric mixture, which was 
then converted to bromoallene 16a (dr = 55:45) via mesylation, CuBr·SMe2/LiBr-
mediated bromination [31], and removal of the Boc group. As expected, NaH-
promoted cyclization of 16a in DMF produced 2,5-cis-pyrrolidine 21 in a highly 
stereoselective manner (2,5-cis:trans = 96:4; 95% yield) [30]. Finally, 2,5-cis-21 was 
converted to the pyrrolidine unit (2,5-cis-15), ready for the Sonogashira coupling, 
via deprotection, oxidation, esterification, and N-methylation.
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Next, we proceeded with the asymmetric synthesis of phenylglycinol synthon (R)-
14 (Scheme 19.4). We were forced to synthesize the furan derivative 14a to solve 
the regioselectivity issue in the key hydroamination reaction (vide infra). Regiose-
lective lithiation of 23 with LDA, formylation with DMF, and Wittig reaction of the 
resulting dihalobenzaldehyde gave styrene derivative 24. Enantioenriched diol 25 
(81% ee) was obtained by Sharpless asymmetric dihydroxylation of 24, which was 
recrystallized from CHCl3 to afford the optically pure diol 25 (> 99% ee). An azido 
group was introduced into 25 with DPPA under Mitsunobu conditions, and t-BuOK-
promoted SNAr reaction of 26 gave dihydrofuran derivative 27. Finally, reduction of 
the azide and Boc protection gave the phenylglycinol unit (R)-14a in good yield.

With the two building blocks required for the coupling reaction in hand, we 
proceeded with the total synthesis of quinocarcin (Scheme 19.5). Sonogashira
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coupling between equimolar amounts of (R)-14a and 2,5-cis-15 provided 13a in 
92% yield. After removal of the Boc group, gold-catalyzed hydroamination of 13b 
in dichloroethane (DCE) successfully produced the desired product through 6-endo-
dig cyclization. The resulting unstable enamine was directly converted to tetrahy-
droisoquinoline derivative 28 (90%, 2 steps) via reduction with NaBH3(CN) in a 
stereoselective manner. Lactamization of the piperidine with one of the ester groups 
in 28 was efficiently promoted by heating in acetic acid, forming the quinocarcin 
core structure. The challenging ring cleavage reaction of dihydrobenzofuran in 11a 
was achieved via Lewis acid-mediated ring-opening chlorination using BF3·Et2O 
and SiCl4 in DCE, followed by treatment with CsCl (10 equiv.) in MeCN, to produce 
phenol derivative 30 in 92% yield [32]. This reaction would proceed through chlorina-
tion of the oxazolidinium intermediate 29, formed by treatment of 11a with BF3·Et2O 
and SiCl4 [33]. Finally, methylation of the phenol with dimethyl sulfate, hydrolysis 
of the chloromethyl group using AgNO3 in a mixed solvent of acetone/H2O, and 
hydrolysis and reduction of known intermediate 31 using Stoltz’s procedure [28] 
successfully produced quinocarcin (1). The spectroscopic data of (–)-quinocarcin 
we synthesized were consistent with those reported previously.

Next, we would like to describe some of the challenges we experienced in this 
synthesis and how we serendipitously overcame them. In our model experiments 
of the hydroamination reaction using simplified substrates 32a, Au(I), as well as a 
range of other transition-metals such as Cu(I), Pt(II), In(III), and Rh(I), turned out 
to be ineffective for the desired 6-endo-dig cyclization (Scheme 19.6). Instead, 5-
exo-dig cyclization produced 34a as the major product in all cases we examined. 
One important factor that determines the regioselectivity of this reaction would be 
the electronic nature of the alkyne; transition-metal complexes increase the cationic 
character of the alkyne carbon that bears the aryl substituent, thus promoting the 5-
exo-cyclization. We then focused on the modification of the substrate by introducing 
a ring fusion; we expected that the fixing of the nitrogen functional group may 
change the angle of nucleophilic attack. As expected, the use of the seven-membered 
acetonide-type substrates 32b and 32c enhanced the 6-endo-dig cyclization, affording 
33b in 61% yield and 33c in 31–37%, respectively. Next, to further improve the
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Scheme 19.5 Total synthesis of (–)-quinocarcin

regioselectivity to withstand the total synthesis, we examined seven-membered ring 
substrates with a carbonate moiety.

To prepare the seven-membered carbonate 36, we treated diol 35 with triphos-
gene under basic conditions (Scheme 19.7). Contrary to expectation, we obtained 
dihydrobenzofuran derivative 36', presumably through five-membered ring forma-
tion from the chlorocarbonate intermediate. Considering that the five-membered 
ring fusion would strongly promote the desired 6-endo-dig cyclization due to the 
ring strain of the 6/5/5 ring system in 34d, we proceeded to prepare the hydroamina-
tion precursor 32d; this was achieved via the reduction of the azide, Boc protection, 
and Sonogashira coupling. Fortunately, the gold-catalyzed reaction of 32d using 
cat. A (5 mol %) in DCE gave the desired six-membered ring 33d in 73% yield as 
the sole regioisomer. Although we were concerned about how to convert the dihy-
drobenzofuran to the methyl ether in quinocarcin, we decided to proceed with the 
total synthesis using a benzofuran-type substrate, taking advantage of the perfect 
regioselectivity.

Next, we prepared benzofuran-type substrate 13a and submitted it to the hydroam-
ination reaction. Our initial attempt using the N-Boc derivative was unsuccessful,
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tive hydroamination

resulting in either the recovery of 13a or a low catalyst turnover (Scheme 19.8). We 
speculated that the steric repulsion between one of the methoxycarbonyl groups and 
the Boc group might inhibit the hydroamination reaction. Thus, we investigated the 
reaction using free-amine substrate 13b and obtained the desired product 28b (90%) 
after NaBH3CN reduction, as described; although, increased catalyst loading was 
necessary.

As we anticipated, the ring-opening of the dihydrobenzofuran ring was trouble-
some. In 2004, Zewge reported an efficient C–O bond cleavage of dihydrobenzo-
furan ring using LiI with SiCl4 and BF3·AcOH (Scheme 19.9) [33]. With these 
reaction conditions in mind, we expected that the carbonyl oxygen of the adjacent
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Scheme 19.8 Hydroamination of 13 as a key step of the total synthesis of quinocarcin. a yields 
after reduction with NaBH3CN

lactam would facilitate the ring-opening of benzofuran under the Lewis acidic condi-
tions to generate oxazolidinium intermediate 29, which could lead to the phenyl-
glycinol derivative. Thus, we treated the dihydrobenzofuran derivative 11a with 
SiCl4 and BF3·AcOH and observed the formation of a suspension, from which we 
expected the in-situ generation of oxazolidinium intermediate 29. Unfortunately, our 
initial attempt at hydrolysis provided only recovered starting material, which can be 
ascribed to the undesired hydrolytic cleavage of the silyl ether which occurred before 
the required ring-opening of the oxazolidinium moiety. Reductive treatment of the 
suspension with Et3SiH, for the preparation of 40, only produced the amino alcohol 
derivative as the over-reduction product. On the contrary, treatment with t-BuNH2 

gave amidine 41 in 52% yield in 2 steps, which strongly suggested the formation of the 
ring-opening intermediate 29. However, all our efforts to convert 41 to quinocarcin 
were unsuccessful. After considerable experimentation, we finally found that work-
up with excess CsCl gave the chloromethyl derivative 30 in 92% yield [32], which 
led to the successful total synthesis (Scheme 19.5), as well as the formal synthesis of 
(–)-quinocarcinamide. This total synthesis was only possible because of the remark-
able efforts of Dr. Hiroaki Chiba, whose ‘prepared mind’ allowed him to translate 
good fortune into success.

19.3 Total Synthesis of Dictyodendrins 

Dictyodendrins (Fig. 19.1) were isolated from the Japanese marine sponge by the 
Fusetani group (in 2003) [34] and the Australian marine sponge by the Capon 
group (in 2012) [35]. They possess broad biological activities, including inhibitory 
activities toward telomerase and β-site amyloid-cleaving enzyme 1 (BACE1), and 
are thus potential drug leads for addressing cancer and Alzheimer’s disease. Their 
pyrrolo[2,3-c]carbazole core decorated with various substituents has gathered signifi-
cant attention from synthetic chemists, and several total syntheses have been reported 
[36]. However, a diversity-oriented synthetic strategy of dictyodendrins based on 
the early-stage assembly of the core scaffold, followed by the installation of the 
substituents, was not reported when we began our study.
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Scheme 19.9 Cleavage of the dihydrobenzofuran ring

In 2017, Ready proposed a biosynthetic pathway to dictyodendrins 
(Scheme 19.10) [36]. Oxidative coupling of tryptophan (42) and tyrosine (43) affords 
diketone 44, which is transferred to pyrrole 45 by a Paal-Knorr type condensation 
with a second molecule of tyrosine. Oxidative decarboxylation of 45 to 46 and the 
subsequent oxidative aldol-type condensation with a third molecule of tyrosine gives 
47. There are two pathways from compound 47 to dictyodendrin A (2a): in the first 
pathway, oxidative cyclization of 47 to dictyodendrin F (2f) is followed by conden-
sation with another tyrosine molecule to produce dictyodendrin A (2a). In the second 
pathway, the prior coupling of 47 with tyrosine gives 48, which is transformed into 
dictyodendrin A (2a) via benzene ring construction. Dictyodendrins A (2a) and F 
(2f) can be considered key intermediates in the biosynthesis of other dictyodendrins.

We envisaged developing an efficient method for the assembly of the dictyoden-
drin core scaffold followed by the installation of the substituents in a regioselective 
manner, leading to diversity-oriented synthesis and applications in medicinal chem-
istry of dictyodendrin derivatives. In 2015, we reported a gold-catalyzed [4 + 2] 
indole synthesis using conjugated diynes and pyrroles (Scheme 19.11) [37], which 
proceeds via a double-hydroarylation cascade. We envisaged that this reaction, which 
efficiently produces 4,7-diarylindoles, could be used to construct the dictyodendrin 
core structure in combination with nitrene chemistry.

Our initial approach to the pyrrolo[2,3-c]carbazole is shown in Scheme 19.12. The  
gold-catalyzed cyclization of diyne 49 with pyrroles would give 4,7-diarylindole 50 
bearing an azido group, and subsequent thermal or transition-metal-catalyzed nitrene 
insertion would produce pyrrolo[2,3-c]carbazole derivative 52. We anticipated that
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the control of regioselectivity in the gold-catalyzed [4 + 2] annulation to obtain the 
desired isomer 50 over 51 would be key to the success of this strategy.

Thus, Ms. Yuka Matsuda, who developed the gold-catalyzed [4 + 2] indole 
synthesis [37], investigated the gold-catalyzed reaction between diyne 49 and 
pyrrole. She unexpectedly found that the reaction directly produced the pyrrolo[2,3-
c]carbazoles 52 and 53 as an isomeric mixture. We rationalized this result by the 
generation of α-iminogold carbene intermediate A, subsequent arylation with pyrrole 
and intramolecular hydroarylation of the resulting pyrrolylindoles B and C [38]. 
Although the formation of α-iminogold from simple alkynylanilines and the subse-
quent reaction with nucleophiles, such as alcohol and anisole, was already reported 
by Gagosz [39] and Zhang [40], the reaction of diynes with pyrrole as the coupling 
partner, and the cascade cyclization were not reported. Encouraged by this result, 
we revised our plan for the total synthesis of dictyodendrins via a gold-catalyzed 
annulation for the direct formation of pyrrolo[2,3-c]carbazole derivatives.
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Scheme 19.12 Our initial strategy for the construction of dictyodendrin core and unexpected direct 
formation of pyrrolo[2,3-c]carbazole 52

Our retrosynthetic analysis for the diversity-oriented synthesis of dictyodendrins 
is shown in Scheme 19.13. Dictyodendrins A–F would be obtained by functional 
group modification of appropriately substituted pyrrolo[2,3-c]carbazoles 54, 55, and 
56. The precursor 54 for dictyodendrin A [41] would be obtained from 55 by the 
installation of the C2 substituent via acylation with (COCl)2 and Grignard reaction. 
The intermediate 55 (precursor of dictyodendrins C, D, and F [41]) and 56 (precursor 
of dictyodendrin E [41]) would be obtained from 57 via bromination and Ullmann 
coupling with methanol, and addition to p-anisaldehyde where necessary. Sequential 
functionalization of gold-catalyzed annulation product 52a would afford interme-
diate 57 through Suzuki–Miyaura coupling and N-alkylation. The conjugated diyne 
49a would be prepared by the Cadiot–Chodkiewicz coupling [42] of alkynes 58 and 
59. Our synthetic strategy is completely different from the proposed biosynthetic 
pathway, as can be clearly seen by comparing the green bonds in the biosynthesis 
(Scheme 19.10) and red bonds in our synthesis (Scheme 19.13).

First, we developed a regioselective synthesis of pyrrolo[2,3-c]carbazole 52a that 
could withstand the total synthesis (Scheme 19.14). Sonogashira coupling of iodoani-
line derivative 60 bearing a tert-butoxy group with trimethylsilylacetylene gave 
alkyne 61. Desilylation and Cadiot–Chodkiewicz coupling [42] with bromoalkyne 
59 gave the conjugated diyne 62, which was transformed into the cyclization 
precursor 49a via removal of the Boc group and azide formation. After optimizing 
the gold-catalyzed cyclization, we found that exposure of 49a to N-Boc pyrrole to 
BrettPhosAu(MeCN)SbF6 (5 mol%) in DCE at 80 °C gave the desired pyrrolo[2,3-
c]carbazoles 52a with good regioselectivity (52a:53a = 84:16) [38]. A gram-scale 
reaction using 49a (2.76 g) and BrettPhosAu(MeCN)SbF6 (162 mg, 2 mol%) also 
worked well, resulting in the isolation of 52a (2.27 g) in 58% yield.
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With pyrrolocarbazole derivative 52a in hand, we investigated the total and formal 
synthesis of dictyodendrins C, D, and F, all of which do not possess C2 substituents 
(Scheme 19.15). Deprotection of the Boc group gave 64 in 92% yield; this compound 
is the common intermediate for the synthesis of the series of dictyodenrins. Dr. 
Junpei Matsuoka struggled with the low reactivity of the pyrrolocarbazole derivative, 
which behaved like a stone, as well as the instability of brominated pyrrolocarbazole 
derivatives. After many unsuccessful attempts, he found that bromination with N-
bromosuccinimide (NBS), alkylation with bromide 65a under aqueous conditions, 
and Suzuki-coupling with boronic acid 66 worked well for the introduction of the 
C1 and N3 substituents, producing 57a in 42% yield over 3 steps. Although the
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installation of the hydroxy group at the C5 position of 57a was also troublesome, we 
succeeded in dibrominating the compound with NBS, followed by mono-selective 
debromination using NaBH4 and PdCl2(dppf), to obtain the C5-brominated product 
68 in 55% yield. Introduction of the methoxy group via Ullmann coupling between 
68 and NaOMe afforded the methoxy derivative 55a, the known precursor of dictyo-
dendrin C, which was converted to dictyodendrin F (2f) by deprotection with BBr3, 
according to the literature protocol reported by Tokuyama [41]. The total synthesis 
of dictyodendrin D (2d) was also achieved from 64 using benzyl-protected bromide 
65b.

Next, we moved on to the total synthesis of dictyodendrin A (2a), which has a 
(4-hydroxyphenyl)acetate moiety as the C2 substituent (Scheme 19.16). Acylation 
of the methoxy derivative 55a with oxalyl chloride, followed by treatment with 
methanol, gave keto-ester 69 (87%). The anisyl group was introduced into 69 by 
Grignard reaction of the carboxylic acid derived from 69; the resulting ester 54 was 
obtained in 33% yield (4 steps) after esterification and removal of the hydroxy group. 
It should be noted that the addition of the Grignard reagent to the keto-ester 69 gave 
a complex mixture, producing only low yield of the ester 54 (9% after reduction). 
According to a reported procedure [41], the total synthesis of dictyodendrin A (2a) 
was accomplished through the removal of the protecting groups.

The total synthesis of dictyodendrin B is shown in Scheme 19.17. To intro-
duce the acyl group at the C2 position, the lithiation-acylation protocol reported 
by Fürstner was employed [43]. Thus, mono-selective installation of a bromine atom 
on 57a using 1.05 equiv. of NBS, lithiation with MeLi/n-BuLi, and nucleophilic 
addition to anisaldehyde gave alcohol 71. C5-selective bromination with NBS, Ley– 
Griffith oxidation, and Ullmann coupling of 73 with NaOMe gave ketone 56, a  
known precursor of dictyodendrin E (2e) [41]. Finally, BCl3-mediated cleavage of
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the tert-butyl group and functional group modifications [41] gave dictyodendrin B 
(2b).

We then performed the biological evaluation of the synthesized dictyodendrins 
and derivatives thereof, which are not accessible by biomimetic synthesis. Because a 
previous report showed that dictyodendrin F exhibited cytotoxicity to human colon 
cancer HCT116 cells (IC50 = 27.0 μM) [44], the cytotoxicity of several dictyoden-
drin analogs toward HCT116 cells was tested. Representative cytotoxicities at 30 μM 
are shown in Fig. 19.3. Interestingly, the cytotoxicities of the simplified analogs 52a 
and 64 without C1- and C2-substituents (44–64% cell viability) are comparable to
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Scheme 19.17 Total and formal syntheses of dictyodendrins B and E

that of dictyodendrin F (55%). However, no cytotoxicity was observed for pyrrolo-
carbazoles 55a, 56, 57a, and 70–72. Furthermore, some of the simplified analogs of 
the dictyodendrins displayed CDK2/CycA2 and GSK3β inhibitory activity (data not 
shown). 

Thus, we have successfully completed the total and formal syntheses of dicty-
odendrins A–F by using a gold-catalyzed annulation on diynes to construct the 
pyrrolocarbazole core. The late-stage modification of the core structure allowed for 
the diversity-oriented synthesis of a series of dictyodendrins. The simplified dictyo-
dendrin analogs showed promising biological activities, exemplifying the utility of 
nonbiomimetic synthesis in natural product-based drug discovery.
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19.4 Total Synthesis of Zephycarinatines 

Zephycarinatines (3) were isolated from Zephyranthes carinata Herbert in 2017 by 
Yao et al. (Scheme 19.18) [45, 46]. These compounds belong to the plicamine-type 
alkaloids, which are characterized by a unique 6,6-spirocyclic core; the structural 
analogs zephygranditines (74) and plicamine (75) also belong to this class of alkaloids 
(75) (Scheme 19.18). The plicamine-type alkaloids and derivatives thereof exhibit a 
variety of biological activities. For example, zephygranditines (74) display cytotox-
icity to cancer cell lines and anti-inflammatory effects by inhibiting NO production 
in lipopolysaccharide (LPS)-activated macrophages [47]. In contrast, information 
regarding the bioactivities of zephycarinatines is limited. 

A proposed biosynthetic pathway to the plicamine-type alkaloids is shown in 
Scheme 19.19 [48]. The biosynthesis begins with phenylalanine (76) and tyrosine 
(43), which undergo several enzymatic processes to yield 4'-O-methylnorbelladine 
(77). Intramolecular phenol–phenol coupling of 4'-O-methylnorbelladine (77) and 
1,4-addition of the amine to the α,β-unsaturated ketone in 78 affords noroxomariti-
dine (79). Following reduction, oxidation, and methylation, haemanthadine (80) is  
formed; subsequent ring cleavage of 80 and N-methylation leads to the aldehyde 81, 
which is then condensed with various amines to provide plicamine-type alkaloids.

Due to their biological relevance and intriguing structural characteristics, 
plicamine-type alkaloids have been the focus of numerous synthetic investigations 
[46]. While there is no report of the total synthesis of zephycarinatines (3), the total 
synthesis of plicamine (75) has been accomplished [49–51]. Plicamine (75) bears a 
(p-hydroxyphenyl)ethyl group attached to the B-ring nitrogen atom and a methoxy 
group on the C-ring. Interestingly, its configuration is opposite to that of the zephy-
carinatines (3). A pivotal step in the synthesis of plicamine-type alkaloids is the 
construction of the quaternary carbon in the core structure. Previous total synthesis 
of plicamine (75) employed an intramolecular oxidative coupling of electron-rich
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Scheme 19.19 Proposed biosynthetic pathway to plicamine-type alkaloids

aromatics to forge the quaternary carbon center (Scheme 19.18, route a) [49–51], 
mimicking the biosynthetic pathway [48]. In contrast, we conceived a nonbiomimetic 
strategy for the synthesis of zephycarinatines C (3a) and D (3b). Our approach aims to 
create the quaternary carbon in a distinct manner from the biosynthetic pathway (route 
b; nonbiomimetic route) [12], potentially broadening the analog diversity of these 
compounds. To realize this objective, we devised a reductive radical ipso-cyclization 
onto the aromatic ring in the presence of a photoredox catalyst, providing straightfor-
ward access to the 6,6-spirocyclic core skeleton characteristic of the zephycarinatines 
(3). 

Radical ipso-cyclizations can be categorized as either oxidative or reductive, and 
both types have attracted attention as powerful tools for the preparation of spirocyclic 
compounds (Scheme 19.20) [52]. In particular, numerous effective approaches have 
been developed for oxidative cyclization [52], for instance, the pioneering work 
by Curran on the ipso-cyclization of aryl radicals onto p-O-aryl-substituted benza-
mide [53]. In contrast, reductive ipso-cyclization is relatively scarce in the literature. 
Our group reported a reductive ipso-cyclization mediated by samarium(II), which 
involves an intramolecular addition of ketyl radicals onto aromatic rings [54, 55]. 
Yoshimi et al. developed an intramolecular ipso-cyclization that proceeds via the 
photoinduced decarboxylation of an amino acid analog with an N-(2-phenyl)benzoyl 
group [56]. More recently, Jui reported a photocatalytic dearomative hydroarylation 
initiated by the reduction of an aryl halide [57]. However, the application of these 
methods to total synthesis is still limited, probably due to the difficulty in achieving 
stereoselective ipso-cyclization of highly functionalized substrates.
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Scheme 19.20 Oxidative and reductive radical ipso-cyclizations 

To achieve stereoselective ipso-cyclization, we selected the visible-light-mediated 
decarboxylation reaction of amino acid derivatives. This reaction, which generates 
carbon radicals under mild conditions using LED irradiation [58, 59], facilitated 
the total synthesis of plicamine-type alkaloids and their derivatives with various 
functional groups. 

The retrosynthetic analysis of zephycarinatines (3) is depicted in Scheme 19.21. 
We envisaged incorporating the R1 group in the last stage of the synthesis, thereby 
enabling the preparation of a diverse range of analogs with different N-substituents. 
The methoxy group would originate from ketone moiety of 82. Oxidation of the 1,4-
diene of 83, followed by 1,4-addition, would allow for the formation of the D ring. 
The amide 83 was expected to result from the functionalization of the hemiaminal 
84. We anticipated that the radical ipso-cyclization of carboxylic acid 85, mediated 
by visible light, would provide the hemiaminal 84. This process is the pivotal step 
in the synthesis, necessitating the ipso-cyclization of the α-amino carbon radical 
intermediate A, derived from the carboxyl radical, in a stereoselective manner. To 
address this challenge, the oxazolidine substrate 85 was designed with the intension 
of controlling the chiral center at the α-position, inspired by the self-regeneration of 
stereocenters (SRS) principle reported by Seebach et al. [60]. The carboxylic acid 
85 would derive from carboxylic acid 86 and L-serine 87. 

Initially, the condensation between the known biphenyl-2-carboxylic acid deriva-
tive 86 [61] and oxazolidine 88 [62], derived from L-serine (87), was carried out
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(Scheme 19.22). The addition of mesyl chloride to a mixture of 86, 88, and Et3N 
provided the amide 89 in 66% yield as a single stereoisomer [63]. The predominant 
formation of cis-89 could result from the selective acylation of cis-88, arising from the 
steric difference between the equilibrated cis- and trans-88 via a ring-opening reac-
tion [64]. Subsequently, hydrolysis of the ester 89 was performed with LiOH·H2O 
to give carboxylic acid 85. 

Next, we investigated the ipso-cyclization of a radical derived from carboxylic 
acid 85. After optimizing the reaction conditions, we found that treatment of 85 with 
K2CO3 and photocatalyst [Ir{dF(CF3)ppy}2(dtbpy)]PF6 in MeCN under visible-
light irradiation gave the desired product 84 in 58% yield. We then adapted the 
photochemistry to a continuous flow system to improve the irradiation efficiency of 
the reaction over the batch process [65]. The optimized condition of the batch process 
was unsuitable for the flow reaction because K2CO3 exhibits limited solubility in 
MeCN. Therefore, we investigated reaction conditions that result in a homogeneous
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mixture. When using a soluble base, such as 1,1,3,3-tetramethylguanidine (TMG), 
instead of K2CO3, the flow reaction afforded the desired product 84 in 48% yield. 

With the requisite spirocyclic core in hand, we went on to investigate the forma-
tion of the zephycarinatine D-ring. Hemiaminal 84 underwent transformation into N-
methyl amide 83 by the removal of the N,O-acetal group, oxidation of the alcohol with 
2-hydroxy-2-azaadamantane (AZADOL) [66], and condensation of the resulting 
carboxylic acid with methylamine. We then explored the oxidation of 1,4-diene and 
found that the use of tetrapropylammonium perruthenate (TPAP) and NMO [67] facil-
itated the oxidation of cyclic 1,4-hexadiene followed by simultaneous 1,4-addition 
of the N-methyl amide, affording keto derivative 82 in 70% yield. 

Next, we turned our attention to the total syntheses of zephycarinatines C and D, 
which required the conversion of the carbonyl group to the methoxy group. While our 
initial attempts using NaBH4/CeCl3 and DIBAL-H proved unsuccessful, treatment of 
82 with LiAlH4 successfully reduced the carbonyl group, stereoselectively yielding 
alcohol 90 as the sole diastereomer in 74% yield. We then sought stereoinvertive 
installation of the C3-methoxy group. In the total synthesis of the plicamine analog 
obliquine, Ley et al. introduced the methoxy group via the nucleophilic substitution 
with MeOH at the mesylate derived from the corresponding alcohol and MsCl [68]. 
Thus, we attempted the mesylation of the alcohol 90 using MsCl and Et3N. However, 
the desired mesylate was not isolated; instead, an undesired chloride likely formed 
due to the displacement with chloride originating from MsCl. As an alternative 
approach, we accomplished the mesylation of 90 with Ms2O, and followed this with 
MeOH treatment to install the methoxy group with inversion of the stereochem-
istry, which did not require purification. The following N-alkylation using isopentyl 
bromide and NaH allowed for completion of the total synthesis of zephycarinatine 
C (3a) in 23% over 3 steps from 90. When we used MeI as the electrophile, the total 
synthesis of zephycarinatine D (3b) was achieved in 52% over 3 steps. All spectro-
scopic data of the synthetic zephycarinatines C and D were in accordance with those 
documented in the literature [45]. 

Finally, we assessed the inhibitory effects of zephycarinatine derivatives on NO 
production using LPS-stimulated RAW264.7 cells [47]. While the natural zephycar-
inatines C (3a) and D (3b) did not exhibit significant inhibitory activities, synthetic 
intermediate 82, a keto derivative, demonstrated inhibition of NO production in a 
dose-dependent manner (IC50 = 65.3 μM). 

In summary, we achieved the first total synthesis of zephycarinatines C (2.1% 
overall yield) and D (4.7% overall yield) from the known acid 86 in 11 steps. The 
synthesis underscores a nonbiomimetic approach for the stereoselective formation of 
the B-ring via photocatalytic reductive radical ipso-cyclization. It is worth noting that 
ketone 82 exhibited a moderate inhibitory effect on LPS-induced NO production. 
This approach has the potential to broaden the chemical space of plicamine-type 
alkaloids that are typically not accessible with biomimetic approaches. This total 
synthesis was accomplished through Ms. Haruka Takeuchi’s unwavering dedication.
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19.5 Conclusion 

We have achieved nonbiomimetic total syntheses of quinocarcin, a series of dicty-
odendrins, and zephycarinatines C and D, by employing gold-catalyzed cycliza-
tion and reductive radical spirocyclization. These synthetic routes, which are very 
different from the proposed biosynthetic pathways, not only facilitate diversity-
oriented synthesis but also exemplify the contribution of synthetic chemistry to drug 
discovery. Our efforts in nonbiomimetic synthesis will potentially lead to natural 
product-derived drugs that have never been synthesized in nature. 
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Chapter 20 
Sequential Site-Selective 
Functionalization: A Strategy for Total 
Synthesis of Natural Glycosides 

Yoshihiro Ueda and Takeo Kawabata 

Abstract Total synthesis of several ellagitannins, strictinin (1), pterocarinin C (2), 
cercidinin A (3), and tellimagrandin II (19), is described. The key issues for the 
synthetic strategy rely on the catalyst-controlled site-selective acylation and stere-
oselective glycosylation with unprotected glucose. Total synthesis of punicafolin 
(5) with a glucose core in 1C4 (chair) conformation and macaranganin (30) with a 
glucose core in 5S1 (skew boat) conformation was also accomplished based on a 
similar unconventional retrosynthetic route. For success in the synthesis of 5 and 
30, the flipping behavior of the pyranose ring from the stable 4C1 conformer to 
the unstable axial-rich 1C4 conformer is the key. Because no protective groups for 
glucose were employed throughout the synthesis of these natural glycosides, the total 
synthesis was achieved in extremely short overall steps. 

Keywords Total synthesis · Natural glycosides · Site selectivity ·
Organocatalysis · Acylation · Glycosylation 

20.1 Introduction 

Sugars are involved in a wide range of biochemical pathways [1]. Precise synthesis 
of the related natural products is essential to elucidate the biological phenomena and 
to develop pharmaceuticals based on natural products. Because sugars have multiple 
hydroxy groups and their structures are diversified by the position and the number 
of substitutions of the hydroxy groups, “distinction of hydroxy groups” is inevitably
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the key to their synthesis. Conventionally, protection/deprotection sequence in accor-
dance with the original reactivity of the multiple hydroxy groups has been required for 
the distinction of them. Although protection/deprotection strategy has already been 
established as a reliable strategy for the synthesis, it generally leads to complicated 
synthetic routes and low efficiency for the total synthesis. 

Ellagitannin is one of the hydrolyzable tannins containing the general structure 
of glucose esterified by gallic acid derivatives (Fig. 20.1) [2]. There are more than 
one thousand natural products contingent on the position and number of modifi-
cations by gallic acid derivatives and the mode of oligomerization. Since it has 
been reported that ellagitannins show various attractive biological activities, such 
as antiviral and immunostimulatory activity, synthetic studies on ellagitannins have 
been actively performed [2–4]. The conventional synthesis has been developed based 
on the protection/deprotection strategy as described above, which led to almost half of 
the synthetic processes being devoted to protection and deprotection steps (Fig. 20.1, 
route A). 

In contrast to the protection/deprotection strategy, we have planned an uncon-
ventional strategy for the synthesis of ellagitannins. An efficient and short-step total 
synthesis of ellagitannins would be enabled by direct and sequential site-selective 
functionalization of d-glucose (Fig. 20.1, route B) [5]. The motivation was derived

Fig. 20.1 Structures of selected examples of ellagitannins and their synthetic strategy 
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from the catalytic site-selective acylation reaction that we had reported in 2007 
(Scheme 20.1) [6–8]. With organocatalyst 6, acylation takes place highly selectively 
at the C(4) of β-d-glucopyranoside. The important point is that the reaction proceeds 
selectively at an intrinsically less reactive secondary hydroxy group in a catalyst-
controlled manner, even in the presence of the primary hydroxy group. Molec-
ular recognition process between the substrate and the catalyst through multiple 
H-bonding interactions seems to be critically involved in achieving the catalyst-
controlled selectivity (Fig. 20.2). We envisioned that the method for the selective 
functionalization of the desired hydroxy group of the sugar moiety streamlines the 
synthetic scheme by excluding protection and deprotection steps. Herein we describe 
our efforts for developing the protocol for the direct functionalization of a particular 
hydroxy group of glucose. The practical utility of the proposed synthetic strategy 
was demonstrated by the total syntheses of some ellagitannins. 

20.2 Total Synthesis of Strictinin 

Strictinin (1) was isolated by Okuda et al. in 1982 from the leaves of Casuarina 
Stricta (Casuarinaceae) [9, 10] (Scheme 20.2). Here, 1 possesses a galloyl group at 
C(1)-OH and hexahydroxydiphenoyl (HHDP) group with S axial configuration at 
C(4)- and C(6)-OH of d-glucose. Extensive studies on the biological activities of
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1 indicated the potential utility of 1 for therapeutic applications, including antial-
lergic and immunostimulating agents [11–18]. Khanbabaee [19] and Yamada [20] 
reported pioneering studies on the total synthesis of 1, focusing on the introduc-
tion or construction of HHDP moiety stereoselectively. Our retrosynthetic analysis 
of 1 based on the sequential site-selective functionalization strategy is described in 
Scheme 20.2. We expected that oxidative phenol coupling between the galloyl groups 
at the C(4) and C(6) of 9 would construct the HHDP moiety of 1 with high diastereos-
electivity, according to Yamada’s precedent [20]. Coupling precursor 9 was planned 
to be synthesized by the introduction of two galloyl groups with adequate protec-
tive groups at C(4)- and C(6)-OHs into β-glucopyranoside 10 in a catalyst-controlled 
and substrate-controlled manner, respectively. Stereoselective glycosylation of gallic 
acid derivative using unprotected glucose would allow us to commence the scheme 
for the streamlined total synthesis of strictinin (1) without the protection of glucose 
hydroxy groups. 

Investigation for the first step, stereoselective glycosylation of unprotected 
glucose, was summarized in Table 20.1. In 1979, Grynkiewicz reported that the 
Mitsunobu reaction of glucose with phenol successfully provided the phenol glyco-
side (α/β = 1/8) [21]. Referring to the procedure, treatment of glucose and gallic 
acid derivative with diisopropyl azodicarboxylate (DIAD) and triphenylphosphine 
in N,N-dimethylformamide (DMF) provided the desired glycoside in 60% yield 
(entry 1). However, the α:β ratio was not satisfactory (α/β = 50/50). To improve the 
stereoselectivity, the effects of solvent were investigated. The reaction using tetrahy-
drofuran (THF) as a solvent dramatically increased the β-selectivity, while the yield 
of the glycoside significantly decreased (entry 2, 17% yield, α/β = 1/99). Product 
analysis indicated that the major side product was 1,6-diacylated product, which was 
derived from further Mitsunobu reaction at C(6)-OH of the β-glycoside. 1,4-dioxane 
was found to be the best solvent for our purpose to give the β-glycoside 10 in 64% 
yield, although glucose was scarcely soluble in 1,4-dioxane (entry 3). Finally, the use 
of excess amounts of glucose and Mitsunobu reagents improved the reaction yield 
to provide the glycoside 10 in 78% yield (entry 5).
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To elucidate the origin of the high stereoselectivity, a mechanistic analysis was 
performed. To begin with, we did not pay attention to the configuration of the 
anomeric carbon of commercial glucose. In the course of the mechanistic study, 
we recognized that commercial d-glucose is supplied as an almost pure α-form in 
most cases (Fig. 20.3). Selective crystallization of α-anomer of glucose is supposed 
to take place during the manufacturing of commercial d-glucose [22], although there 
was no description of the anomeric ratio on the label of the commercial reagent which 
we had employed at the initial study. To verify the possibility of the inversion of the 
anomeric stereogenic center, the reactions were performed using partially anomer-
ized glucose (Fig. 20.4). Benzoylation of α-glucose under Mitsunobu condition in 
1,4-dioxane gave the β-glycoside with high stereoselectivity. An increase in the β-
anomer content in the starting d-glucose led to an increase in the α-anomer ratio of 
the product. In addition to these results, the 13C kinetic isotope effect experiments 
[23, 24] convinced us that Mitsunobu glycosylation in dioxane proceeds via a direct 
SN2 mechanism to give the inversion product, while the reaction in DMF gave almost 
1:1 mixture of the α- and β-glycoside via an SN1 mechanism [25]. 

OHO 
HO 

HO 

OH 

OH 

H 

DMSOHOD/H2O 

J = 3.6 Hz 

commercial D-glucose 

(400 MHz, 298 K, DMSO-d6+D2O) 

Fig. 20.3 1H NMR spectrum of commercial d-glucose 

OHO 
HO 

O OH 

OH 

H 

glucose (3.0 eq.) 

BzOH (1.0 eq.) 
DIAD/PPh3 (2.0 eq.) 

solvent 
r.t., 30 min 

OHO 
HO 

O OBz 

OH 

H 

glycoside 13 

α/β ratio of D-glucose solvent yield of 13 (%) α/β ratio of 13 

100 /  0
  78 / 22
  51 / 49 

1,4-dioxane 
1,4-dioxane 
1,4-dioxane 

66 
79 
76

  2 / 98 
18 / 82 
38 / 62 

100 /  0 DMF 54 48 / 52 

SN2 

SN1 

Fig. 20.4 Analysis of stereochemical course depending on solvents, Bz = benzoyl
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We then investigated the second step, the organocatalytic C(4)-OH selective acyla-
tion of the β-glycoside 10 (Table 20.2). Acylation of 10 catalyzed by 6 with anhydride 
14 under the previously optimized conditions [7, 8] was sluggish to give the desired 
4-O-gallate in low yield (entry 1, 18% yield). The use of 2,4,6-collidine as a part of 
the solvent (CHCl3/2,4,6-dollidine = 9/1) afforded 15 in a much better yield (entry 
2, 83% yield). This is probably because a large amount of collidine contributes to 
avoiding protonative deactivation of the catalyst by the in situ generated carboxylic 
acid from anhydride 14, even though the basicity of collidine is significantly lower 
than that of the catalyst (Fig. 20.5). Finally, the yield of the desired 1,4-digallate 15 
was improved to be 91% in a reaction with a substrate concentration of 0.04 M (entry 
3).

In the third step, the selective galloylation of the C(6)-OH of 15 was examined 
(Scheme 20.3). Initially, the third step was not assumed to be difficult because of 
the intrinsically high reactivity of the primary hydroxy group. However, a consider-
able amount of examination was required to achieve a satisfactory selectivity. The 
introduction of a galloyl group to the C(6)-OH was accomplished by treatment with 
gallic acid derivative 16 and 2-chloro-1,3-dimethylimidazolium chloride (DMC) to 
give 1,4,6-trigallate 17 in 72% yield. The second and third steps, the introduction 
of galloyl groups at the C(4)-OH and C(6)-OH, were successfully accomplished in 
a one-pot procedure through the activation of gallic acid 16, in situ generated from 
anhydride 15, by the addition of DMC to the reaction medium after the estimated 
completion of the C(4)-OH acylation (Scheme 20.4). The one-pot transformation 
was applicable to gram-scale synthesis of the 1,4,6-gallate 17.

Synthetic scheme toward strictinin (1) was summarized in Scheme 5. Based on 
our original protocol for the sequential site-selective functionalization of glucose, the 
key intermediate, 1,4,6-trigallate 17, was obtained by only 2 steps from d-glucose. 
The precursor 18 for the stereoselective oxidative phenol coupling was obtained by 
hydrogenolytic removal of the Bn groups of 17. On the treatment of 18 with CuCl2 
and butylamine, the oxidative coupling proceeded smoothly to construct the HHDP 
group with the desired S axial configuration, as expected from Yamada’s report 
[20]. Finally, global deprotection of MOM groups under acidic conditions provided 
strictinin (1). By virtue of the sequentially selective modification of glucose –OHs, 
total synthesis of 1 was achieved in 5 overall steps from d-glucose [26]. The extremely 
short-step total synthesis stems from avoiding protective groups for glucose.

20.3 Total Synthesis of Tellimagrandin II 
and Pterocarinin C 

The sequential site-selective functionalization strategy established for the total 
synthesis of strictinin (1) was then applied to the synthesis of tellimagrandin II 
(19) and pterocarinin C (2) (Fig. 20.6). Tellimagrandin II (19) [27], isolated from 
Tellima grandiflora in 1976 by Wilkins and Bohm, is a 4,6-HHDP-type ellagitannin,
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showing potent antiviral activity [28, 29]. Pterocarinin C (2) is a regioisomeric natural 
product of tellimagrandin II, possessing an HHDP group at the C(2)- and C(3)-OHs of 
glucose. Pterocarinin C (2) was first isolated from the leaves of Tibouchina semide-
candra by Okuda et al. [30] and reported to show neuroprotective activity [31]. 
The total syntheses of 19 and 2 were achieved by Feldman [32] and Khambabaee 
[33], respectively. In both cases, protected d-glucose derivatives (20, 21), in which 
C(4)- and C(6)-OHs are differentiated from C(2)- and C(3)-OHs by proper protective 
groups, were employed for the total syntheses. In contrast, we envisioned that the 
application of our strategy for the sequential functionalization of C(1)-OH, C(4)-OH, 
and C(6)-OH allowed us to accomplish the total syntheses of 19 and 2 by almost the 
same synthetic scheme without protection of glucose –OHs. 

The synthetic schemes of 19 and 2 were described in Scheme 20.6. The  β-
glycoside 10 was prepared by direct glycosylation of unprotected d-glucose. The 
differently protected galloyl groups (G2) were introduced at C(4)- and C(6)-OHs 
in a similar manner for the synthesis of strictinin (1). Introduction of all-MOM-
protected galloyl groups (G1) at C(2)- and C(3)-OHs followed by deprotection of 
the benzyl groups of G2 provided coupling precursor 22. Oxidative HHDP construc-
tion and global deprotection of MOM groups gave tellimagrandin II (19) in 6 overall 
steps. Similarly, the site-selective introduction of G1 and G2 groups into glycoside 
10 provided the precursor 23 for the oxidative construction of the 2,3-HHDP group. 
As we had expected, total synthesis of pterocarinin C (2) was also achieved by the 
oxidative coupling of 23 and the acidic deprotection of the MOM groups [34].

Fig. 20.6 Structures and retrosynthesis of tellimagrandin II and pterocarinin C 
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Scheme 20.6 Total synthesis of tellimagrandin II (19) and pterocarinin C (2) EDCI  = 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide hydrochloride 

In nature, 19 is proposed to be produced without protective groups by sequential 
enzymatic reactions (Scheme 20.7a) [35]. β-Glucogallin, derived from enzymatic 
glycosylation of uridine 5'-diphosphate (UDP)-glucose, is sequentially converted 
to β-pentagalloyl glucose by several acyltransferases. Surprisingly, site-selective 
construction of the 4,6-HHDP group from 25 was accomplished by a particular 
oxidase to furnish tellimagrandin II (19). Unexpectedly, our synthetic scheme became 
similar to the biosynthetic pathway (Scheme 7b). Direct stereoselective glycosylation 
of glucose provided the first intermediate, β-glycoside, and the second intermediate, 
a pentagalloyl glucose derivative, generated by sequential site-selective galloylation 
of the β-glycoside. The similarity in both synthetic schemes seems to be closely 
related to the high efficiency of the synthesis.

20.4 Total Synthesis of Cercidinin A 

Cercidinin A (3) (Fig. 20.7) was isolated from the fresh bark of Cercidiphyllum 
japonicum by Nishioka in 1989 [36]. After a revision of the first proposed struc-
ture [37], the revised structure 3 with the 3,4-HHDP group was confirmed to be 
correct through the total synthesis by Yamada’s group [38]. For the synthesis of 3, 
the differentiation of C(3)- and C(4)-OHs from C(2)- and C(6)-OHs is essential. 
However, differentiation of the two secondary hydroxy groups at C(2) from at C(3) 
has never been accomplished so far by our strategy for the sequential site-selective 
functionalization described above (Scheme 20.8). To synthesize cercidinin A (3), it 
was necessary to further develop the site-selective acylation strategy.

In the synthesis of strictinin (1), tellimagrandin II (19), and pterocarinin C (2), 
selective acylation of the primary hydroxy group was accomplished based on its
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Scheme 20.7 Comparison between a biosynthetic pathway and b our synthetic route for tellima-
grandin II (19)

Fig. 20.7 Structures of cercidinin A and the issue in synthesis 

Scheme 20.8 Outline of synthesis of cercidinin A based on sequential site-selective functionaliza-
tion
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Scheme 20.9 C(3)-OH preferential acylation of 1,4-digallate 
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Fig. 20.8 Proposed rational explanations for relatively high reactivity of C(3)- and C(2)-OHs 

intrinsic high reactivity among the three free hydroxy groups of the 1,4-digallate 
(Scheme 20.3) [26, 34]. Actually, acylation took place selectively on the C(6)-OH 
simply by using condensation agent DMC. On the other hand, by treatment with acid 
anhydride 14, 15 underwent preferential acylation at C(3)-OH (Scheme 20.9). 

Unexpectedly, under these conditions, the primary C(6)-OH was totally unreac-
tive. The dramatic reactivity change of the three hydroxy groups of the 1,4-digallates 
may be attributed to the effects of the counteranion of the reactive catalytic interme-
diate [39–41]. The counteranion of acylpyridinium salts (ArCOO–) could possibly 
form dual H-bonds with C(2)- and C(3)-OHs, resulting in the selective acylation of 
these hydroxy groups in the presence of the primary C(6)-OH (Fig. 20.8). 

Having been able to distinguish the C(2)-OH from C(3)-OH of the 1,4-digallate 15, 
we worked on the total synthesis of cercidinin A (3) (Scheme 20.10). The oxidative 
coupling reaction of phenol 28, prepared via galloylation of the free hydroxy groups 
at C(2) and C(6) of 26 followed by deprotection of the benzyl groups, successfully 
took place to give coupling product 29 with the desired R configuration as a single 
diastereomer. However, a serious problem arose during the final deprotection step. 
Under usual acidic conditions (HCl in i-PrOH/THF), 3 was not obtained because of 
the degradation of 29 and uncompleted partial deprotection. Under these circum-
stances, we noticed Sajiki’s report that deprotection of the acid-sensitive protective 
groups was feasible under the conditions of hydrogenation with Pd/C in MeOH or
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Scheme 20.10 Total synthesis of cercidinin A 

EtOH [42]. According to the report, 29 was subjected to the hydrogenation condi-
tions in CHCl3/MeOH (1/1) to afford cercidinin A (3) in 63% yield via removal of 
the MOM groups with minimal degradation of 29. Thus, total synthesis of cercidinin 
A (3) was also completed without protection of the hydroxy groups of the glucose 
moiety [43]. 

20.5 Total Synthesis of Punicafolin and Macaranganin 

The final targeted natural products in this chapter are punicafolin (5) and 
macaranganin (30) (Fig. 20.9). Nishioka and co-workers reported the isolation of 
5 from the leaves of Punica granatum in 1985 [44] and 30 from Macaranga tanarius 
in 1990 [45], respectively. Because of their characteristic 3,6-HHDP bridged struc-
ture, the pyranose ring is proposed to be in axial-rich conformation such as 1C4 

conformation. The difference between the two natural products is the configuration 
of the axial chirality in the HHDP moiety. The R-isomer 5 shows the inhibitory 
activity of invasion of HT1080 fibrosarcoma cells [46], while S-isomer 30 exhibits 
the inhibitory effect of prolyl endopeptidase [47]. Due to their unique structural 
features, two challenging issues were identified for the synthesis: differentiation of 
the hydroxy groups and stereoselective formation of a 3,6-HHDP group with a less 
stable axial-rich conformer of glucose. Several examples emphasized the difficulties 
in the construction of the 3,6-HHDP bridge via the flipping process of the pyranose 
ring [48, 49].

Yamada et al. reported an excellent strategy for the total synthesis of a 3,6-HHDP-
type ellagitannin, (–)-corilagin (33) in 2008 (Scheme 20.11) [50]. They overcame the 
conformational problem by using the ring-opened intermediate 31. After the coupling
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Scheme 20.11 Yamada’s total synthesis of a 3,6-HHDP ellagitannin, (–)-corilagin 

reaction of 31, reconstruction of the pyranose ring led to the first total synthesis of 
33. Under these backgrounds, we planned to construct the HHDP group directly from 
a pentagalloylglucose derivative without opening the pyranose ring. 

Our retrosynthetic analysis of punicafolin (5) is outlined in Fig. 20.10. We  
expected that the oxidative phenol coupling reaction of pentagalloylglucose deriva-
tive 34 could proceed via an unstable 1C4 conformation. The possibility was already 
suggested by Yamada in 2017 in the direct oxidative coupling reactions of the related 
pentagalloylglucose [51]. Inspired by the precedents, conformational analysis with 
molecular mechanics and density functional theory (DFT) calculation of β-glucose 
and pentabenzoylglucose was performed. The difference in the potential energy 
between the 4C1 and 1C4 conformers of β-glucose was found to be significant. On the 
other hand, to our surprise, the energy difference between those of pentabenzoylglu-
cose was found to be only 1.0 kcal/mol. Natural bond orbital (NBO) analysis of both 
stable conformers suggested that the stronger anomeric effects in pentabenzoylglu-
cose contribute to the relatively high stability of the axial-rich 1C4 conformer. The 
stronger anomeric effects [52–55] may result from the lowering of the energy level 
of the non-bonding σ* orbital of the C(1)-OBz bond by the electron-withdrawing 
group. Then, we decided to challenge the direct oxidative phenol coupling of the 
properly protected pentagalloylglucose derivative via the 4C1 to 1C4 ring flipping 
process of the pyranose ring.

Site-selective acylation of 1,4-digallate 35 with gallic acid anhydride 36 was inves-
tigated (Table 20.3). Digallate 35 was prepared by our established protocol including
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compound of the key intermediate

stereoselective Mitsunobu glycosylation and organocatalytic C(4)-OH acylation. 
DMAP-catalyzed acylation of 35 took place at the secondary hydroxy groups at 
the C(2)- and C(3)-OHs, with a slight preference for the C(2)-OH acylation (entry 
1). With the expectation that H-bonding interactions between the substrate and cata-
lyst affect the site selectivity [5, 56], the effects of catalyst 6 on the site selectivity of 
acylation were examined. However, the site selectivity was not improved (entry 2, 
57% site selectivity). Then, its diastereomeric catalysts 39, ent-6, and ent-39 were 
examined to find that acylation catalyzed by 39 exhibited the highest site selectivity 
(entry 3, 70% site selectivity). To investigate the effects of the side chain of the 
catalyst, further screening of catalysts 40–42 with the same configuration as that of 
catalyst 39 was performed (entries 6–8). The highest improvement of the site selec-
tivity was observed in the case of catalyst 42 (entry 8, 75% site selectivity). Finally, 
treatment of 35 with excess amounts of 36 (2.2 eq.) slightly improved the yield of 
2-O-acylate 37 and site selectivity (entry 9, 51% yield of 37, 78% site selectivity).

With pentagalloyl glucose derivative 43 obtained by 2 steps sequence from 37, 
the challenging oxidative phenol coupling was investigated (Scheme 20.12). When 
43 was treated with CuCl2 and butylamine, a standard protocol for the oxidative 
phenol coupling for the total synthesis of strictinin (1), only decomposition of 43 
was observed. We then investigated the effects of the chiral ligands. In 2017, Quideau 
and Deffieux reported that sparteine acts as an efficient ligand for copper-mediated 
oxidative phenol coupling [57]. Fortunately, the CuCl2/sparteine system was found to 
be also effective for our purpose. The 3,6-HHDP bridge was successfully constructed 
by treatment of 43 with CuCl2 and (+)-sparteine. It is noteworthy that the axial config-
uration was completely controlled to be R under these conditions. In contrast, the use
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of (−)-sparteine instead of (+)-sparteine resulted in the formation of (S)-congener 45 
as a single diastereomer. Thus, we developed a method for ligand-controlled stereos-
elective construction of the 3,6-HHDP bridge via the flipping process of the pyranose 
ring [58]. 

Finally, deprotection of the MOM groups under hydrogenation conditions, as in 
the case of synthesis of cercidinin A (3), provided punicafolin (5) and macaranganin 
(30) (Scheme 20.13). Development of the catalytic C(2)-OH selective acylation and 
ligand-controlled stereoselective HHDP construction enabled us to achieve stereodi-
vergent total synthesis of 5 and 30 from the common intermediate 43. Thus, the first 
total synthesis of complicated natural glycosides punicafolin (5) and macaranganin 
(30) has been achieved in only 7 steps from d-glucose [59]. 

Scheme 20.12 Stereodivergent construction of 3,6-HHDP bridge 
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Scheme 20.13 Endgame of total synthesis of punicafolin and macaranganin
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20.6 Conclusion 

We described our synthetic studies of ellagitannins based on a sequential site-
selective functionalization strategy. The catalyst-controlled site-selective acylation 
led to the proposal of the non-conventional unique strategy. In the course of the 
studies on the total syntheses, we developed a method for stereoselective glycosy-
lation using unprotected glucose and catalyst-controlled site-selective acylation of 
the desired position of 1,4-digallate. Although the protection/deprotection process 
has been considered inevitable for the synthesis of sugar-related compounds, the 
sequential site-selective functionalization strategy enabled to avoid protective groups 
for glucose throughout the total synthesis. The proposal of the novel retrosynthetic 
analysis and its realization in the actual total synthesis of natural products should 
contribute to the advancement of synthetic organic chemistry toward the dreams of 
truly protecting-group-free total synthesis. 
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Chapter 21 
Synthetic Study of Bio-functional 
Glycans 

Koichi Fukase, Atsushi Shimoyama, and Yoshiyuki Manabe 

Abstract The molecular structures responsible for the immune functions of complex 
glycans were unraveled by synthetic studies. We focused on developing efficient 
methods for synthesizing glycans and conducting diverse chemical syntheses of 
these compounds, to identify the molecular structures responsible for activating or 
modulating innate immunity. Many natural glycans contain multiple active struc-
tures, potentially leading to emergent higher-order functions through their synergistic 
interactions. Therefore, by employing a conjugation-based approach, we successfully 
created immune-regulating complex glycoconjugates. 

Keywords Glycan · Glycosylation · Glycoconjugate · Conjugation · Immunity 

21.1 Introduction 

Glycans play pivotal roles in various biological events, such as intercellular inter-
actions, protein quality control, and activation or modulation of immune responses. 
They are also closely associated with the onset of many diseases. Natural glycans 
exhibit structural diversity and heterogeneity, often harboring several recognition 
sites for various enzymes and lectins. By synthesizing homogeneous oligosaccha-
rides chemically and subjecting them to bioactivity assays, we have contributed to 
identifying glycan structures responsible for recognition (active units). 

In this paper, we describe our synthetic studies on bacterial-derived glycoconju-
gates that activate or modulate innate immunity, focusing on the immunomodulatory 
functions in parasite and symbiont-derived lipid A. 

We also describe a diacetyl strategy developed for synthesizing NHAc-containing 
glycans and its application in synthesis of asparagine-linked glycoprotein glycans 
(N-glycans).
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Many natural glycans have multiple units responsible for recognition, facili-
tating the manifestation of higher-order functions through various unit actions, 
including multivalent interactions. Consequently, combining these active units 
enables the creation of higher-order functional molecules. Successful generation of 
new immunomodulatory compounds was achieved by conjugating synthetic glycans 
and glycan dendrimers. 

21.2 Development of Innate Immune Regulatory Molecules 
Based on Host-Bacteria Interactions and Their 
Application as Novel Adjuvants 

We have been investigating the synthesis of immunostimulatory glycoconjugates 
derived from bacteria, such as bacterial cell wall peptidoglycans and lipopolysac-
charides (LPS) from gram negative bacteria, to elucidate the mechanism of action in 
innate immunity [1, 2]. 

In canonical Escherichia coli LPS, the lipid A portion 1 (Fig. 21.1) binds to 
the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, 
activating multiple downstream pathways, including two primary pathways alongside 
the caspase pathway, thereby activating the acquired immune system [3]. However, 
this activation also leads to toxic effects, such as lethal inflammation, due to its potent 
inflammatory activity. Extensive structure–activity relationship studies, including 
those conducted by our group, led to the discovery that mono-phosphoryl lipid As 
(MPL) including 2 and 3 exhibit mild immune-potentiating effects with low toxicity 
[4–6]. The 3D-MPL 3 developed by GlaxoSmithKline has proven effective as an 
adjuvant (a substance that enhances the efficacy of vaccines) for viral vaccines [6] 
and has been utilized in several vaccines in practical applications [7, 8]. Meanwhile, 
the development of mucosal vaccines capable of efficiently inducing immunity at 
the mucosal entry points of pathogens has been underway. However, MPL does not 
activate mucosal immunity, leaving the exploration of safe adjuvants for mucosal 
vaccines unexplored.

Therefore, we focused on bacteria that inhabit or parasitize mucosal tissues such 
as the oral cavity, stomach, and intestines. We hypothesized that these bacteria 
express molecules possessing immunomodulatory effects due to co-evolution with 
the host. By synthesizing lipid A and LPS partial structures from symbiotic 
and parasitic bacteria, we demonstrated that these structures exhibit characteristic 
immune-enhancing or immunomodulatory effects with low toxicity. 

Parasitic bacteria such as Helicobacter pylori, associated with gastric ulcers, and 
the periodontal pathogen Porphyromonas gingivalis possess characteristic lipid A 
structures, which differ from the canonical E. coli lipid A 1 (Fig. 21.1). They contain 
longer chain fatty acids but in smaller numbers compared to E. coli lipid A, and 
mono-phosphoryl lipid A structures, some of which are ethanolamine modified. We 
developed a diversity-oriented synthetic strategy (Fig. 21.2), in which fatty acids
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Fig. 21.1 Structures of lipid A

are introduced sequentially to the common synthetic precursor, to synthesize ten 
structural variations of lipid A and Kdo-lipid A 4–10 [9, 10].

For the α-selective glycosylation reaction of Kdo, we devised Kdo donor 13 
wherein the 6-membered ring was constrained into a boat-like conformation to 
promote the glycosyl acceptor’s attack from the α-orientation (Fig. 21.2) [9, 11]. 
However, the β-elimination reaction considerably occurred, leading to formation of 
glycal 17 due to the distortion of the 6-membered ring in the boat-like conformation. 
Efficient mixing using a microflow reactor promoted intermolecular glycosylation 
reactions and suppressed glycal formation to afford trisaccharide 16 in good yields 
(Fig. 21.3).

These compounds did not exhibited potent inflammatory effects; Kdo-lipid A 6a 
and 6b were found to act as an antagonist of TLR4-MD2, whereas ethanol amine 
modified lipid A 4b and 5b showed weak agonistic activity. These results revealed 
that Kdo-lipid A 6a and 6b plays an essential role in H. pylori LPS, contrary to the
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Fig. 21.3 Microflow glycosylation with Kdo donor

conventional understanding that lipid A is the active component of LPS. These results 
suggest that LPS derived from parasitic bacteria contributes to evading the bacte-
ricidal effects caused by acute inflammation. Conversely, all compounds induced 
the production of IL-18, associated with chronic inflammation. This highlights the 
importance of parasitic bacterial LPS as a molecule regulating host immune responses 
and suggests its involvement in chronic inflammation while circumventing acute 
inflammation. 

Alcaligenes faecalis, known as an opportunistic Gram negative bacterium, was 
found to inhabit the gut-associated lymphoid tissue (GALT) known as Peyer’s 
patches, playing a crucial role in maintaining homeostasis. In collaboration with 
Kiyono and Kunisawa, we extracted LPS fractions from dried A. faecalis and found 
that A. faecalis LPS fraction exhibited no harmful effects but significantly promoted 
the production of IgA antibodies comparable to the toxic E. coli LPS [12]. Given 
that these effects were TLR4-dependent, A. faecalis lipid A was anticipated as a
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promising and safe adjuvant candidate. We then determined the structure of the A. 
faecalis LPS in collaboration with Molinaro and Di Lorenzo. We also found that the 
lipid A from A. faecalis is a mixture comprising compounds 18 ~ 20 with 4–6 fatty 
acid chains [13] (Fig. 21.4). 

We designed the key disaccharide intermediate 14 with orthogonal protecting 
group patterns applicable to various lipid A syntheses with different acyl patterns 
and established a diversity-oriented strategy for lipid A synthesis (Fig. 21.5). Each 
protecting group of disaccharide intermediate 14, 1-O-allyl, 2-N-allyloxycarbonyl 
(Alloc), 2'-N-2,2,2-trichloroethoxycarbonyl (Troc), 3'-O-p-methoxybenzyl (MPM), 
and 4',6'-benzylidene, could be selectively removed to sequentially introduce acyl 
and phosphate groups at appropriate positions. Figure 21.5 illustrates a detailed 
synthetic scheme of A. faecalis lipid A 20 starting from intermediate 14. Fatty acid 21 
was introduced at the 3-position of 14 in the presence of MNBA to obtain 22. Subse-
quently, removal of the 2'-N-Troc group of 22 using Zn-Cu couple, followed by acyla-
tion of the free amino group with fatty acid 23 using MNBA, was performed. Next, 
removal of the 2-N-Alloc group of 24 using Pd(PPh3)4 and TMSDMA, followed 
by the introduction of fatty acid 25 to the free 2-amino group using HATU, yielded 
26. After cleaving the 3-position MPM group via oxidation with 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone (DDQ), fatty acid 27 was introduced using MNBA to 
obtain 28. Subsequently, removal of the 4',6'-O-benzylidene group of 28 using triflu-
oroacetic acid (TFA) followed by the selective introduction of a trityl (Tr) group at 
the 6'-position was conducted. Then, removal of the 1-O-allyl group of 29 led to 
the formation of 1,4'-dihydroxy 30. Simultaneous phosphitylation of the 1- and 4'-
positions using phosphoramidite followed by DMDO oxidation yielded the desired 
1,4'-O-diphosphate 31. Finally, all benzyl-type protecting groups were removed by 
catalytic hydrogenolysis to give A. faecalis lipid A 20 [13].

Among the synthesized compounds, only the hexa-acylated A. faecalis lipid A 
20 exhibited immune-activating activity. Confirming its similarity to the extracted 
A. faecalis LPS, it was verified that A. faecalis lipid A 20 opposed the activity of A. 
faecalis LPS. Further in vivo experiments using mice demonstrated that A. faecalis
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Fig. 21.5 Synthesis of hexa-acylated Alcaligenes faecalis lipid A

lipid A 20 exhibited useful adjuvant effects without toxicity, enhancing antigen-
specific IgA and IgG production and reinforcing defensive immunity via Th17 [13– 
17]. Particularly, enhanced antigen-specific IgA and IgG production was observed 
in mice administered with antigen and A. faecalis lipid A 20 adjuvant via intranasal 
administration. The effectiveness of 20 as a safe intranasal vaccine adjuvant was 
demonstrated in a pneumococcal infection model [15]. Lipid A 20 is anticipated 
to be a safe and promising adjuvant capable of activating mucosal and systemic 
immunity. 

21.3 Synthetic Studies of Sialylated N-glycans by Diacetyl 
Strategy 

Asparagine-linked (N-linked) glycans in glycoproteins (N-glycans) are oligosaccha-
rides present in both eukaryotes and some prokaryotes with a wide range of struc-
tural variations. These glycans fall into three primary categories: high-mannose type, 
complex type, and hybrid type. Even within specific glycosylation sites, N-glycans 
typically display considerable heterogeneity. Complex N-glycans hold pivotal roles 
in diverse biological mechanisms and diseases, influencing glycoprotein dynamics, 
cell development, immune responses, and the progression of cancer invasion. 

We developed a diacetyl strategy by temporarily converting NHAc to diacetyl 
imide (NAc2) for the synthesis of acetamide (NHAc) containing glycans [18], since 
protected glycans containing NHAc tend to form intermolecular hydrogen bonds
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Fig. 21.6 Synthesis of disialylated tetrasaccharide 

in organic solvents, greatly reducing the reactivity of glycosylation. The diacetyl 
strategy presents two advantages for oligosaccharide synthesis. The NAc2 protec-
tion of NHAc substantially enhances glycosylation reactions, resulting in increased 
yields. Moreover, NAc2 can be readily converted to NHAc by removing one acetyl 
group under mild basic conditions. 

The disialylated tetrasaccharide (Neu5Ac(α2,3)Gal(β1,3)[Neu5Ac(α2,6)]GlcNAc), 
a structural motif present in the N-glycans of human Factor X and fetuin, was success-
fully synthesized using the diacetyl strategy [19]. The impact of NAc2 was immense 
(Fig. 21.6). Glycosylation reactions between two sialyl disaccharides 32 and 33 with 
NHAc at the C5 position of sialic acid residues did not progress at all. However, 
the reactivity of NAc2-protected sialyl fragments 35 and 36 significantly improved, 
resulting in the quantitative formation of the desired tetrasaccharide 37. 

We then describe the synthesis of a core fucose-containing disialylated N-glycan, 
and two asymmetrically deuterated sialyl N-glycans, wherein one of the terminal 
sialic acids has been deuterium-labeled by replacing its NHAc. 

We utilized the diacetyl strategy in synthesizing the non-reducing-end tetrasac-
charide within the core-fucosylated N-glycan [20] (Fig. 21.7). Glycosylation of the 
NAc2-protected sialylated disaccharide donor 39 with the disaccharide acceptor 40 
proceeded rapidly at 0 °C, yielding the desired tetrasaccharide 42 at 96% yield. In 
contrast, glycosylation between the NHAc-containing sialyl disaccharide donor 38 
and the disaccharide acceptor 40 only afforded the desired tetrasaccharide 41 at 52% 
yield, even after increasing the temperature to room temperature.

Another pivotal aspect in synthesizing the core fucose-containing glycan was the 
solvent selection for the glycosylation process between the reducing-end tetrasac-
charide 42 and the non-reducing-end tetrasaccharide 43. Using ether-based solvents, 
particularly cyclopentyl methyl ether (CPME), yielded the targeted octasaccharide 
44 at a 91% yield. The employment of ether solvents likely prolonged the stability 
of the intermediate oxocarbenium ion through coordination, albeit with a moderate 
stereoselectivity in glycosylation (α/β = 3/1). After removing the benzylidene group 
from the obtained octasaccharide, the α-isomer 45 was separated. Subsequent glyco-
sylation at the 6th position of the branched mannose in 45 displayed a high yield of 
the desired product 46 when CPME was used as the solvent. However, α/β selectivity 
remained poor, resulting in a 1/1 mixture for compound 46. The global deprotection
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of 46 was then investigated. The allyl ester in 46 was cleaved using a Pd catalyst. The 
resulting carboxylic acid was then treated with aqueous LiOH to remove Troc, acyl 
groups, and methyl esters, and subsequent N-acetylation and separation of the α and 
β anomers by HPLC afforded 47. All benzyl-type protecting groups were removed 
by catalytic hydrogenolysis, resulting in the core fucose-containing N-glycan 48. 

Next, we applied the diacetyl strategy to the synthesis of two asymmetrically 
deuterated sialyl N-glycans, 58 and 59 (Fig. 21.8) [21]. Using the deuterium-labeled 
N-glycan 58, we demonstrated the preferential cleavage of sialic acid on the α1,3 
branch over the α1,6 branch by neuraminidase derived from the H1N1 influenza 
virus [22]. 

In the synthesis of deuterated N-glycans 58 and 59, glycosylation was initially 
performed at the 3-position of the branching mannose in trisaccharide 51 using sialyl
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tetrasaccharides 49 or 50. Subsequently, glycosylation occurred at the 6-position of 
the branching mannose. We applied the remote participation method, previously 
described by Kim et al., for α-mannosylation. This technique involves acyl protec-
tion of the mannosyl donors at the O-3 and O-6 positions to enhance α-selectivity 
(Fig. 21.9). 

Ether solvent effect was also used in the glycosylation between 49 and 51. Using  
a stoichiometric amount of TMSOTf in Et2O, the desired heptasaccharide 52 was 
obtained in 71% yield with perfect α-selectivity. After removal of benzylidene in 
52, the glycosylation of the resulting 54 with the azide sialyl tetrasaccharide 50 was 
then investigated. Due to the poor solubility of 54 in Et2O, the [7 + 4] glycosylation 
between 54 and 50 was conducted in a mixed solvent system of Et2O/CH2Cl2 = 
1/1. The desired undecasaccharide 56 was thus obtained in 85% yield with perfect 
α-selectivity. 

Glycosylation of the azide-containing sialyl tetrasaccharide 50 with 51 was also 
carried out in Et2O. The subsequent deprotection of benzylidene in 53 afforded 55 
in good yield. Glycosylation between 55 and 49 under similar conditions afforded 
57 in 54% yield (BRSM: 63%). 

The desired deuterated N-glycans, 58 and 59, were synthesized from 56 and 
57 through the incorporation of a deuterated acetyl group, followed by a global 
deprotection process. During the alkaline treatment to eliminate acyl and Troc groups, 
a deuterium-hydrogen exchange occurred to cause a reduction in the deuterium ratio 
of 58–42% and that of 59–63%, respectively. 

Within naturally occurring N-glycans, the tetrasialylated N-glycan holds signif-
icance in assessing the effects of multivalency. The fully sialylated tetraantennary 
N-glycan 64 was synthesized by a similar approach to that of 58 and 59 (Fig. 21.10) 
[21]. The glycosylation between trisaccharide 51 and the heptasaccharide donor 60, 
in a mixed solvent of Et2O/CH2Cl2 = 1/1, gave the desired decasaccharide with 
complete α-selectivity. Subsequent cleavage of the benzylidene group led to a 33% 
yield of 61 (BRSM: 49%) in two steps. The choice of Lewis acid, solvent, and temper-
ature played a pivotal role in the subsequent glycosidation between decasaccharide 
61 and heptasaccharide donor 62. Glycosylation of 61 and 62 was accomplished 
using TBDPSOTf at 0 °C in a high-ether ratio mixed solvent (Et2O/CH2Cl2 = 5/1), 
resulting in a 36% yield of compound 63. Upon the deprotection of 63 and Fmoc 
introduction, the fully sialylated tetraantennary N-glycan 64 was obtained.
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Fig. 21.10 Synthesis of tetraantennary sialyl N-glycan 

As described above, the utilization of the diacetyl strategy led to the successful 
synthesis of various sialyl N-glycans, marking the world’s first chemical synthesis 
of a tetraantennary sialyl N-glycan. 

21.4 Synthesis of Glycan Dendrimers and Their 
Applications to Biofunctional Studies 

The interaction between glycans and glycan-binding proteins is typically weak, 
except for certain innate immune receptors. Polysaccharides and numerous glycans 
found on cell surfaces possess multiple binding sites, playing a role in multiva-
lent interactions between glycans and glycan-binding molecules like lectins. This 
represents a pivotal aspect of glycan function, where high avidity and significant 
selectivity are achieved through multivalent interactions. Consequently, there have 
been a growing interest in developing multivalent glycan complexes containing 
multiple glycans, capable of reconstructing multivalent interactions and demon-
strating strong avidity towards receptors. Various platforms, including polymers,
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nanoparticles, liposomes, self-assembled materials, oligovalent scaffolds (such as 
calixarenes, cyclodextrins, and cyclopeptides), and dendrimers, have been employed 
to achieve multivalency. 

Dendrimers, especially, offer uniform assemblies of glycans. We found that histi-
dine facilitates Cu(I)-mediated Huisgen 1,3-dipolar cycloaddition [22, 23]. By incor-
porating the Nim-benzylhistidine residue into the peptide substrate, we achieved 
an efficient ‘self-activating’ click reaction between azide and alkyne-containing 
peptides, yielding an almost quantitative reaction. Using this ‘self-activating’ click 
reaction [22] (Fig. 21.11), we synthesized diverse glycodendrimers [24–29]. 

We successfully synthesized glycodendrimers comprising biantennary type N-
glycans, encompassing 16 molecules on a polylysine core [24]. The self-activating 
click reaction proceeded almost quantitatively, and subsequent labeling via 6π 
azaelectrocyclization afforded PET probes 70a, 71a, 72a and fluorescent probes 
70b, 71b, 72b. Employing positron emission tomography (PET) and fluorescence 
imaging of sialylated and asialylated N-glycan dendrimers, we visualized the sialic 
acid-dependent circulation and retention in vivo (Fig. 21.12).

Multivalency plays a crucial role in pathogen recognition of host cells, facilitating 
strong adhesion of pathogens to these cells. In the pursuit of developing inhibitors 
to prevent pathogenic infections, there have been reports of synthesizing numerous 
glycan clusters exhibiting multivalent effects. Using the self-activating click chem-
istry method developed by our group, we synthesized antipathogenic glycoden-
drimers [28]. The remarkable reactivity of this method enabled the efficient prepa-
ration of dendrimers containing anti-influenza sialyl trisaccharide 75 (Fig. 21.13) or  
Gb3 trisaccharide 79 (Fig. 21.14). These dendrimers exhibited strong avidity toward 
hemagglutinin on the influenza virus and the Shiga toxin B subunit, respectively. 
These glycodendrimers are anticipated to be effective antipathogenic compounds.

We synthesized 16-mer B-antigen-displaying dendrimers 88, 89, and 90 of various 
sizes and assessed their interaction with IgM antibodies to explore the critical factors 
influencing effective multivalency [29]. Surprisingly, even the smallest dendrimer 88, 
unable to fully occupy IgM’s multiple binding sites, demonstrated distinct multivalent 
behavior with affinity levels comparable to or surpassing those of larger dendrimers 
89 and 90. These findings highlight the significance of the statistical rebinding model, 
suggesting that the rapid exchange of clustered glycans significantly contributes to 
glycodendrimers’ multivalent interactions. This indicates that high-density glycan

Fig. 21.11 Self-activating 
click reaction 
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Fig. 21.13 Synthesis of anti-influenza sialyl trisaccharide dendrimers

presentation for enhanced statistical rebinding is crucial for multivalent interaction. 
This contrasts with the prevailing emphasis on the chelation model. Consequently, 
our study offers novel insights and essential guidelines for crafting glycodendrimers 
at a molecular level (Fig. 21.15).
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Fig. 21.14 Synthesis of Gb3 trisaccharide dendrimers

Fig. 21.15 Synthesis of B-antigen-displaying dendrimers 

The majority of animals possess α-gal, an antigenic glycan that is absent in old 
world monkeys, apes, and humans. Instead, these primates possess a substantial 
amount of natural anti-Gal antibodies against α-gal. Consequently, α-gal can trigger 
intense immune reactions in these primates. We engineered a conjugation of α-
gal 91 with anti-tumor antibody anti-CD20 or its half-antibody (hAb) [27]. These 
conjugated antibodies recognized cancer cells, recruiting anti-Gal antibodies to these 
cells, thereby initiating an additional immune response from the anti-Gal antibodies. 
α-Gal 91 and dendrimerized α-gal 92 and 93 were conjugated with the hAb to obtain 
α-gal-hAb conjugates 94, 95, and 96. While the hAb exhibited almost no complement-
dependent cytotoxicity (CDC), the α-gal-hAb conjugates exhibited stronger CDC,
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Fig. 21.16 Synthesis of conjugates of α-gal dendrimers with half-antibody and their complement-
dependent cytotoxicity 

dependent on the amount of introduced glycans (Fig. 21.16). This approach shows 
promise in reducing antibody dosages and revitalizing antibodies with insufficient 
activity. 

21.5 Conclusion 

The chemical synthesis of A. faecalis lipid A has unveiled its capacity to modulate 
immune signals; it efficiently activates the immune system without triggering exces-
sive inflammation, and effectively induce IgA for mucosal immunity and IgG for 
systemic immunity, making it an exceptional vaccine adjuvant. 

Sialic acid-containing N-glycans were synthesized successfully using the diacetyl 
strategy. Our study, employing asymmetrically deuterium-labeled biantennary N-
glycans, revealed the H1N1 neuraminidase’s preference for cleaving the sialic acid 
residue in the α1,3 branch of the biantennary N-glycan. We have been advancing the 
mechanistic analysis of immune regulation by N-glycans [30–33]. 

We successfully synthesized glycan dendrimers using self-activating click reac-
tions. The complexes formed between the natural antibody ligand, α-gal dendrimers, 
and the anti-tumor antibody CD20 exhibited significant complement-dependent 
cytotoxicity (CDC) activity.
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In conclusion, our endeavors in chemical synthesis have resulted in the creation 
of molecules capable of modulating the immune system. 
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Chapter 22 
Total Synthesis of a Marine 
Bromotriterpenoid Isodehydrothyrsiferol 

Keisuke Nishikawa and Yoshiki Morimoto 

Abstract The thyrsiferol family natural products are marine triterpene polyethers 
biogenetically derived from squalene and structurally characterized by a bromine 
atom and some six- and five-membered ethereal rings. Their stereostructures cannot 
easily be determined by modern spectroscopic analysis, because there are acyclic 
tetrasubstituted chiral centers and the remote stereoclusters. In these cases, asym-
metric total synthesis demonstrates its power. Herein, to determine the entire stere-
ostructure of the thyrsiferol family member isodehydrothyrsiferol, isolated from the 
red alga Laurencia viridis, the asymmetric total synthesis has been performed. The 
key steps are the convergent and effective synthetic strategy using a Suzuki–Miyaura 
cross-coupling, a one-pot construction of the tetrahydropyranyl C ring via a stoichio-
metric Katsuki-Sharpless asymmetric epoxidation and 6-exo oxacyclization in situ 
promoted by Ti chelation, and 6-endo bromoetherification for the A ring forma-
tion. Through the enantioselective total synthesis, we have accomplished complete 
assignment of the entire stereostructure for isodehydrothyrsiferol and found the abso-
lute configuration of the ABC ring system is opposite to that common to the other 
congeners from the same red algae. In addition, such enantiodivergency also occurred 
between dehydrothyrsiferol and isodehydrothyrsiferol originating from the identical 
red alga Laurencia viridis. There are no these findings without asymmetric total 
synthesis. 

Keyword Bromotriterpenoid · Stereostructure elucidation · Suzuki–Miyaura 
cross-coupling · 6-exo oxacyclization · 6-endo bromoetherification · Phenomenon 
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22.1 Introduction 

Marine red algae of the genus Laurencia have produced the thyrsiferol family natural 
products, triterpene polyethers biogenetically derived from squalene, and the family 
possess a variety of biological activities [1]. In 1978, Munro group isolated the 
first member thyrsiferol (1) from  Laurencia thyrsifera [2], and afterward, dehy-
drothyrsiferol (2) [3], thyrsiferyl 23-acetate (3) [4], venustatriol (4) [5], (Fig. 22.1) 
and total about 30 congeners have been reported so far [6]. These compounds show 
eminent growth inhibitory activities on P388 murine leukemia cell lines (IC50 = 0.47– 
17 nM) [1]. The structures 1–4 have been determined based on NMR spectroscopy, 
X-ray crystallography, and chemical conversion, and have a bromine-bearing tetrahy-
dropyran (THP) ring attached to C7 of a dioxabicyclo[4.4.0]decane framework (ABC 
ring system), common to the thyrsiferol family, and various alkyl substituents at C14. 
In the THP C ring, a twist-boat form was observed due to undesirable steric repulsion 
by C10- and C14-substituents in the chair conformation. The absolute configuration 
of 4 could successfully be elucidated by X-ray analysis; however, the relative and 
absolute configurations of the thyrsiferol family cannot easily be determined even 
by modern spectroscopic analysis, because there are acyclic tetrasubstituted chiral 
centers (red arrows) and the remote relationship between the stereoclusters ABC 
and D ring moieties. These examples show the limitations in modern NMR tech-
nology for the structure determination of complex natural products. In these cases, 
asymmetric total synthesis demonstrates its power [7, 8]. 

Fig. 22.1 Structures of the representative thyrsiferol family 1–4 and isodehydrothyrsiferol
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These unique structures and prominent biological properties, combined with the 
entire stereostructure elucidation, have promoted studies on total synthesis of the 
thyrsiferol family by the synthetic community. The first total syntheses of thyrsiferol 
and venustatriol were achieved by Shirahama and co-workers in 1988 [9–11], and 
subsequently Corey and Ha reported the total synthesis of venustatriol [12]. The 
absolute configuration of thyrsiferol (1) was determined by the asymmetric total 
synthesis of 1 by Shirahama et al., resulting in determination of the absolute config-
uration of dehydrothyrsiferol (2) which had chemically been converted into 1 [3]. 
Shirahama et al. have also reported the chemical synthesis and the absolute stereo-
chemistry of thyrsiferyl 23-acetate (3) (IC50 = 0.47 nM on P388 cells), an inhibitor 
of serine/threonine protein phosphatase 2A [13], in 1988 [11, 14]. In 2000, the total 
syntheses of 1 and 3 have been reported by González and Forsyth [15, 16]. 

In 1996, Norte and co-workers reported a minor metabolite isodehydrothyrsiferol 
isolated from acetone extracts of Laurencia viridis, together with a major constituent 
dehydrothyrsiferol (2) [17, 18]. The compound exhibits cytotoxic activity with IC50 

= 17 nM on P388 cells. The NMR analysis revealed the stereostructure of the ABC 
skeleton common to the thyrsiferol family and the relative configuration around 
the D ring moiety, but the relative configuration between the remote stereoclusters 
ABC and D moieties and the absolute stereochemistry of the compound remained 
undetermined. The structure of 5a represents one of possible stereostructures for 
isodehydrothyrsiferol. Although the absolute stereostructure of the ABC skeleton of 
isodehydrothyrsiferol was deduced to be of course the same as that of 2, there was 
no experimental evidence. Thus, we planned to determine the entire stereostructure 
of isodehydrothyrsiferol through the asymmetric total synthesis. 

22.2 First Generation Retrosynthetic Analysis 

The retrosynthetic analysis of isodehydrothyrsiferol is shown in Scheme 22.1. The  
disconnection at the C15–C16 bond predicted a convergent and effective strategy, 
wherein the ABC skeleton 6 and a borane unit 7 or its enantiomer ent-7 are linked 
using a cross-coupling reaction developed by Suzuki and Miyaura [19], due to the 
undetermined relative configuration between both segments. The A ring of 6 could 
be formed by challenging 6-endo bromoetherification of bishomoallylic alcohol 8. 
The fused BC ring skeleton of 8 would be constructed from triene 9 via two 6-exo 
oxacyclizations of trishomoallylic epoxy alcohols. The triene 9 was disconnected 
to geranyl phenyl sulfide (11) and terminal epoxide 10, which would be prepared 
from commercially available methyl tiglate (13) via epoxy alcohol 12. The coupling 
partner D ring 7 could be derived from commercially available geranyl acetate (15) 
through 6-endo oxacyclization of epoxy alcohol 14.
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22.3 Toward Construction of the ABC Skeleton 

First, the synthesis of the ABC skeleton 6was begun according to the aforementioned 
retrosynthetic analysis. The known diester 17 [20] was prepared by homocoupling of 
silyl ketene acetal 16, which was obtained from commercially available methyl tiglate 
(13) by dienolate formation and the trapping with TMSCl, with TiCl4 (Scheme 22.2). 
TBS protection of the known diol 18 [21] transformed by reduction of diester 17 
afforded the desired monosilyl ether 19a [22, 23] along with recovered 18 and disilyl 
ether 19b, which was returned to diol 18. A catalytic Sharpless asymmetric epoxida-
tion [24] of  19a provided the known epoxy alcohol 12 [22, 23] in 90% yield (98% 
ee). A Ti(Oi-Pr)4-mediated epoxide-opening reaction [25] of 2,3-epoxy alcohol 12 
regio- and stereoselectively gave pivalate 20, which was converted into epoxide 10. 
The lithiation of geranyl phenyl sulfide (11) [22], which was prepared from commer-
cially available geraniol [26], and addition of epoxide 10 to the anion yielded sulfide 
21 as a diastereomeric mixture at C8. The resulting sulfide 21 was reduced to 22 
with metallic sodium [11], and the diol 22 was treated with triethylsilyl chloride to 
selectively afford TES-protected 9.

The Sharpless oxidation of hydroxy alkene 9 found by Shirahama et al. provided 
epoxy alcohol 23 in a diastereoselective manner [27] via more stable transition state 
B rather than more unstable transition state A suffering from an allylic 1,3-strain 
[28]. MOM protection of 23 and subsequent deprotection of all silyl ethers gave 
hydroxy epoxide 24, which was subjected to basic conditions to furnish the desirable 
tetrahydropyranyl B ring 25 n 83% yield and a 6-exo selective manner. After depro-
tection of the MOM group, the allylic alcohol 26 was treated with a stoichiometric 
Katsuki-Sharpless conditions [29] at a low temperature and then the temperature 
was stepwise raised to room temperature and reflux, successfully constructing the 
THP C ring, that adopts a twist-boat conformation, through titanium-assisted 6-exo 
oxacyclization such as C [11, 25]. When this reaction was catalytically performed, 
the starting material 26 was not completely consumed to furnish a low yield of 27 
together with recovered 26 and an epoxy alcohol intermediate corresponding to C. 
Oxidative cleavage of the vicinal diol 27 afforded ketone 8, and after constructing 
the A ring, we attempted to confirm the stereostructure of the expected product 28, 
an authentic sample reported by Shirahama et al. [11]. 

Upon subjection of bishomoallylic alcohol 8 to the optimal conditions (NBS in 
HFIP) [30], the desired 6-endo bromoetherification proceeded, but epimerization 
at C14 also occurred under the conditions, giving 14-epi-28 as the product. Our 
synthetic compound 14-epi-28 with C14-H at 4.07 ppm (dd, J = 12.1, 3.0 Hz) was 
not identical to the reported data of 28 with C14-H at 3.99 ppm (dd, J = 6.6, 2.2 Hz). 
The unfavorable 1,3-diaxial interaction in 28 would lead to the epimerization at 
C14 under our conditions, employing a polar and protic solvent HFIP (pKa = 9.3) 
[31]. This process occurs through an enol intermediate 29, resulting in the formation 
of 14-epi-28, where such interaction is absent (Fig. 22.2). Thus, it was found that 
the ketone α-C14-H of the THP C ring tends to easily epimerize in the 6-endo 
bromoetherification and the bromination yield is low; therefore, we decided to carry 
out the A ring formation at a final stage of the total synthesis.
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Scheme 22.2 Attempt to synthesize ABC ring system 28. LDA  = lithium diisopropylamide, THF 
= tetrahydrofuran, TMS = trimethylsilyl, rsm = recovered starting material, TBHP = t-butyl 
hydroperoxide, DET = diethyl tartrate, MS = molecular sieves, ee = enantiomeric excess, Ms 
= methanesulfonyl, TMEDA = N,N,N',N’-tetramethylethylenediamine, acac = acetylacetonate, 
TBAF= tetrabutylammonium fluoride, DMSO= dimethyl sulfoxide, NBS= N-bromosuccinimide, 
HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol

Fig. 22.2 Possible mechanism for epimerization at C14
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22.4 Second Generation Retrosynthetic Analysis 
and Synthesis of BC Ring System 

The second generation retrosynthetic analysis of isodehydrothyrsiferol is depicted 
in Scheme 22.3. The bromoetherification of hydroxy alkene 30 would finally form 
the bromine-containing tetrahydropyranyl ring. The bond formation between C15 
and C16 would convergently produce the penultimate 30 via a cross-coupling 
reaction by Suzuki and Miyaura using enol phosphate 31a or enol triflate 31b 
and borane 7 or ent-7. Practically, enol phosphate 31a and enol triflate 31b were 
derived from ketone 8 via kinetic enolate formation followed by phosphorylation 
and trifluoromethanesulfonylation [32], respectively, after MOM protection of 8.

22.5 Synthesis of D Ring 

The synthesis of alkene 39 required as a precursor of borane 7, a cross-coupling 
partner for 31, began with Sharpless asymmetric dihydroxylation [33, 34] of commer-
cially available geranyl acetate (15) with AD-mix-β to afford the known diol 33 
[35] in 93% yield and 98% ee (Scheme 22.4). Selective TES protection of the 
secondary hydroxy group and subsequent MOM protection provided acetate 34, 
and after deacetylation of 34 the resulting allylic alcohol was treated with catalytic 
Sharpless oxidation conditions to yield epoxy alcohol 35. Parikh-Doering oxidation 
[36] of alcohol 35, Wittig olefination of aldehyde 36, and removal of the TES ether 
gave bishomoallylic epoxide 14, which was utilized in the next reaction without 
purification because of the instability. According to the reaction conditions of the 
6-endo selective cyclization in a vinylic epoxide substrate similar to 14 reported by 
Hioki and co-workers [37], the crude vinylic epoxide 14 was treated with CSA in 
CH2Cl2 at – 78 °C to furnish the desired 6-endo THP 38a in 61% yield over 2 steps 
in addition to byproduct 38b. After chromatographic separation of products 38a and 
38b, MOM ether 38a was deprotected and the diol was reprotected as a TES ether 
to afford the desirable alkene 39.

22.6 Examination of the Suzuki–Miyaura Cross-Coupling 

First, we tried to investigate the conditions for Suzuki–Miyaura cross-coupling using 
manageable and stable enol phosphate 31a [38]. The results are given in Table 22.1. 
The coupling reaction between phosphate 31a and borane 7, which was in situ gener-
ated form alkene 39 with a large excess of 9-BBN [39], was carried out using 
Pd(PPh3)4 catalyst to only afford a complex mixture including the starting mate-
rial 31a (entry 1). The addition of Ph3As gave the same result (entry 2). Since it 
seemed that the starting material 31a remained in the complex mixture, we felt the
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oxidative addition to enol phosphate 31a did not occur. Although we used Pt-Bu3 
and Bu3P as more electron donating ligands and increased an amount of Pd catalysts, 
the same results were obtained (entries 3–6). Further the reaction temperature was 
elevated, but there was no effect (entries 7–9). Therefore, we decided to perform the 
coupling reaction using intractable but more reactive enol triflate 31b.

The results using enol triflate 31b are indicated in Table 22.2. Although three 
kinds of Pd catalysts were tested in the presence of Cs2CO3 at room temperature, 
a complex mixture was only obtained (entries 1–3). Considering the instability of 
enol triflate 31b, crude 31b without purification was used but the results were not 
improved (entries 4 and 5). Referring to Jamison’s conditions [40] in the similar 
cross-coupling, we conducted the reaction with 30 mol% of Pd(dppf)Cl2 at 50 °C 
once again and were very much delighted to be able to obtain the desired coupling 
product 40 despite a low yield (entry 6). To increase the stability of the palladium 
catalyst in the reaction system [19], lithium bromide was added to the reaction and 
consequently the increase of the yield was observed (entry 7). The addition of lithium 
chloride further increased the yield (entry 8). For the purpose of inhibiting reductive 
detriflation of 31b, in addition to lithium chloride triphenylarsine [41] was also 
added to provide the coupling product 40 in 66% yield (entry 9). Thus, we could find 
the optimized conditions for the Suzuki–Miyaura cross-coupling of triflate 31b and 
borane 7. 

22.7 Examination of 6-endo Bromoetherification 
and Synthesis of the Target Structure 5a 

For final construction of the bromine-containing tetrahydropyranyl ring, MOM and 
two TES groups of the coupling product 40 were deprotected with a Brønsted acid to 
yield triol 30 (Scheme 22.5). In previous total syntheses of the thyrsiferol family, all 
the construction of the A ring has been carried out by bromoetherification (TBCO in 
MeNO2) of bishomoallylic alcohols such as 30 [11, 12, 16]. In those reactions, major 
products were undesirable 5-exo-cyclized THFs and the desired 6-endo THPs were 
minor products. Therefore, we investigated the bromoetherification reaction using 
synthetic intermediate 27 before the final step.

The results are indicated in Table 22.3. The same conditions as those used for 
8 afforded 13% yield of the desired 6-endo THP 41a along with a mixture of 5-
exo THFs 41b and 41c in 18% yield (entry 1). The conditions (reagent A) reported 
by Gulder et al. [42] slightly improved the yield of 41a (26%), but many THFs 
were produced (entry 2). Next, the conditions using NBS and a catalytic amount 
of thiourea 42 (reagent B) by Sakakura et al. [43] were tested. The reactions in 
CH2Cl2 resulted in at most 19% yield of 41a together with 5-exo 41b and 41c as 
major products (entries 3–5). The reactions in different solvents gave similar results 
(entries 6 and 7). Next, we examined the reaction utilizing bromodiethylsulfonium 
bromopentachloroantimonate (BDSB) as a brominating reagent developed by Snyder



22 Total Synthesis of a Marine Bromotriterpenoid Isodehydrothyrsiferol 489

Ta
bl

e 
22

.1
 
E
xa
m
in
at
io
n 
of
 S
uz
uk
i–
M
iy
au
ra
 c
ro
ss
-c
ou
pl
in
g 
us
in
g 
en
ol
 p
ho
sp
ha
te
 3

1a
a 

E
nt
ry

C
at
 (
m
ol
%
)

B
as
e

A
dd

iti
ve
 (
m
ol
%
)

Te
m
p.

Y
ie
ld
 (
%
) 

1
Pd

(P
Ph

3
) 4
 (
10
)

C
s 2
C
O
3

–
R
T

M
ix
tu
re

b 

2
Pd

(P
Ph

3
) 4
 (
10
)

N
aH

C
O
3

Ph
3
A
s 
(4
0)

R
T

M
ix
tu
re

b 

3
Pd

(P
t-
B
u 3
) 2
 (
2)

C
s 2
C
O
3

–
R
T

M
ix
tu
re

b 

4
Pd

(P
t-
B
u 3
) 2
 (
5)

K
3
PO

4
–

R
T

M
ix
tu
re

b 

5
Pd

(P
t-
B
u 3
) 2
 (
50
)

C
s 2
C
O
3

–
R
T

M
ix
tu
re

b 

6
Pd

(P
Ph

3
) 4
 (
10
0)

N
aH

C
O
3

B
u 3
P 
(4
00
)

R
T

M
ix
tu
re

b 

7
Pd

(P
Ph

3
) 4
 (
10
0)

K
3
PO

4
–

60
 °
C

M
ix
tu
re

b 

8
Pd

(P
Ph

3
) 4
 (
10
)

N
aH

C
O
3

B
u 3
P 
(4
0)

10
0 
°C

M
ix
tu
re

b 

9
Pd

(O
A
c)

2 
(1
00
)

N
aH

C
O
3

B
u 3
P 
(4
00
)

10
0 
°C

M
ix
tu
re

b 

a 
B
B
N
 =

 b
or
ab
ic
yc
lo
[3
.3
.1
]n
on
an
e,
 D
M
F 

= 
N
,N
-d
im

et
hy
lf
or
m
am

id
e 

b 
A
 c
om

pl
ex
 m

ix
tu
re
 in

cl
ud
in
g 
en
ol
 p
ho
sp
ha
te
 3

1a



490 K. Nishikawa and Y. Morimoto

Sc
he

m
e 

22
.5

 
Sy

nt
he
si
s 
of
 b
is
ho

m
oa
lly

lic
 a
lc
oh

ol
 3

0 
an
d 
pr
ev
io
us
 s
el
ec
tiv

iti
es
 o
f 
br
om

oe
th
er
ifi
ca
tio

n 
fo
r 
su
bs
tr
at
es
 s
uc
h 
as
 3

0



22 Total Synthesis of a Marine Bromotriterpenoid Isodehydrothyrsiferol 491

and co-workers [44, 45]. The original conditions (reagent C) in MeNO2 provided 41a 
in 30% yield in addition to 41b and 41c in 30% and 9% yields, respectively (entry 8), 
with the best 6-endo:5-exo ratio ever achieved. Other solvents were also examined, 
but the circumstances were not improved (entries 9–11). Although unsatisfied, we 
tried the bromoetherification by BDSB for bishomoallylic alcohol 30.

The bromoetherification of 30 by BDSB in MeNO2 predominantly afforded the 
desired 6-endo-cyclized compound 5a in 36% yield, in addition to 5-exo-cyclized 
byproduct 43 (20%) (Scheme 22.6). This is the first example in that the 6-endo 
cyclization predominated over the 5-exo one on the occasion of the A ring formation 
in the total syntheses of the thyrsiferol family. The stereochemistries of synthetic 
compounds 5a and 43 including synthetic intermediates 27 and 38a have unambigu-
ously been determined by their NOESY spectra. The regio- and diastereoselectivity 
in the bulky BDSB-mediated bromoetherification of bishomoallylic alcohol 30 could 
be explained as follows. The attack of BDSB to the double bond between C2 and C3 
of 30 from the Re-face could reversibly generate bromonium ion intermediates. In 
that time products, 5a and 43 would be formed through 6-endo chair-like TS D and 
5-exo TS E with similar stability, respectively. On the other hand, the Si-face attack 
could reversibly generate bromonium ion intermediates as well. In that time, 6-endo 
chair-like TS F with repulsive 1,3-diaxial interaction or the strained boat-like TS G 
leading to 3-epi-5a and 5-exo TS H with steric repulsion between the blue hydrogen 
and methyl leading to 3-epi-43 would be less stable than D and E without such strain 
and blue steric repulsion. Therefore, bromonium ion intermediates generated by the 
Si-face attack would return to the starting material 30. The polar nitromethane solvent 
would be useful to stabilize the ionic reagent and bromonium ion intermediates.

Unfortunately, the NMR spectra (1H and 13C) of compound 5a did not coincide 
with those of authentic isodehydrothyrsiferol [17], but this was predictable enough 
because 5a only represented one of possible stereostructures for isodehydrothyrsif-
erol. Thus, these circumstances prompted us to synthesize another diastereomeric 
compound 5b, wherein the absolute configuration of D ring is opposite to that of 5a. 

22.8 Total Synthesis and Complete Assignment 
of the Stereostructure of Isodehydrothyrsiferol 

The D ring borane ent-7 required for the synthesis of another diastereomer 5b 
was brought from the starting material 15 through the same sequence of reactions 
as those of 7, except for AD-mix-α for the known diol ent-33 [35] and a chiral 
ligand d-(–)-DET for epoxy alcohol ent-35 (Scheme 22.7). The Suzuki–Miyaura 
cross-coupling reaction of borane ent-7 and triflate 31b afforded a coupling product 
45 in 65% yield. Removal of protective groups in 45 under acidic conditions and 
subsequent bromoetherification provided the desired 6-endo diastereomer 5b and 
5-exo byproduct 47 in each 36% yield. Expectedly, the NMR spectra (1H and 13C) 
of compound 5b were identical to those of authentic isodehydrothyrsiferol [17];
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Scheme 22.6 Synthesis of target structure 5a and regio- and diastereoselectivity in the BDSB-
mediated bromoetherification. TS = transition state

however, surprisingly, the signs in optical rotations of compound 5b, [α]27 D – 7.6 (c 
0.25, CHCl3), and the authentic isodehydrothyrsiferol, [α]25 D + 6.5 (c 0.23, CHCl3) 
[17], were the reverse to each other.

This fact claims the correct absolute stereostructure of the natural product has to 
be ent-5b enantiomeric to 5b. To confirm these findings, the stereostructure ent-5b 
was synthesized in the same way as that of 5b from borane 7 and triflate ent-31b, 
which was prepared from allylic alcohol 19a via Sharpless asymmetric epoxidation 
using d-(–)-DET for the known epoxy alcohol ent-12 [46] and triol ent-27. The  
NMR spectra (1H and 13C) and the optical rotation, [α]24 D + 5.9 (c 0.24, CHCl3), 
of compound ent-5b were consistent with those of authentic isodehydrothyrsiferol. 
Thus, we have accomplished the asymmetric chemical synthesis and total assignment 
of the relative and absolute configurations of isodehydrothyrsiferol, a new member 
of the thyrsiferol family [47]. 

It has been found that the absolute configuration of the ABC ring system of 
isodehydrothyrsiferol (ent-5b) is opposite to that common to the other congeners 
1–4 through its asymmetric total synthesis. This phenomenon we call a phenomenon 
of enantiodivergence [48] in the structure common to congeners is very rare in 
natural products [49] and greatly surprised us, because the identical Laurencia viridis
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Scheme 22.7 Total synthesis of isodehydrothyrsiferol (ent-5b) and its enantiomer 5b and the 
absolute configuration of ent-5b

produced isodehydrothyrsiferol (ent-5b) and dehydrothyrsiferol (2) [18]. We thought 
about these facts as follows. 

Okino group has proposed one of the key enzymes responsible for the produc-
tion of brominated compounds from marine red algae of the genus Laurencia is 
vanadium-dependent bromoperoxidases (VBPOs) [50, 51], which bring about the 
generation of a bromocationic species from hydrogen peroxide and bromide [52]. 
Therefore, VBPO enzymes seem to be related to the biogenesis of the thyrsiferol 
congeners produced by the genus Laurencia. On the basis of their biogenetic consid-
erations mentioned by Shirahama [11] and Fernández [1], the biogenetic pathway of 
ent-5b and 2 is proposed through the epoxide-opening cascade reaction from pentae-
poxide 49 triggered by the VBPO-generated bromocation, although the timing of 
each cyclization is unclear (Scheme 22.8). The bromonium intermediate I would be 
generated in a major path via the Re-face attack of the bromocation to the 2,3-alkene 
in pentaepoxide 49, which is enantioselectively derived from squalene via squalene 
tetraepoxide 48 proposed as a plausible precursor for many triterpenoids [1, 11, 53, 
54]. Dehydrothyrsiferol (2), a major metabolite from Laurencia viridis, would be 
biosynthesized through the mode of cyclization and addition of water at C15 and
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C23, as shown in the intermediate I, and subsequent dehydration at the C15 position 
of the resulting thyrsiferol (1). In a minor path, bromohydrin 50 would be gener-
ated via the Si-face attack of the bromocation in 49 [55] and subsequent addition 
of water at C2 in the bromonium intermediate J. Isodehydrothyrsiferol (ent-5b), a 
minor metabolite from Laurencia viridis, would be biosynthesized through the mode 
of cyclization and addition of water at C23, as shown in the bromohydrin 50, and 
subsequent dehydration at the C15 position of the resultant compound 51.

22.9 Conclusion 

In this contribution, the enantioselective chemical synthesis of a marine bromotriter-
penoid isodehydrothyrsiferol, a member of the thyrsiferol family, has been achieved, 
featuring two 6-exo oxacyclizations of trishomoallylic epoxy alcohols (BC rings), 6-
endo oxacyclization for the D ring formation, and 6-endo bromoetherification for the 
A ring construction. The total synthesis enabled complete assignment of the relative 
and absolute configurations depicted in ent-5b for the undetermined stereostructure 
of isodehydrothyrsiferol and revealed that the absolute configuration of the ABC 
ring system is opposite to that common to the other congeners 1–4 from the same 
red algae. In addition, such enantiodivergency also occurred between dehydrothyr-
siferol (2) and isodehydrothyrsiferol (ent-5b) originating from the identical red alga 
Laurencia viridis. It is generally described in textbooks that enzymes precisely recog-
nize substrates and enantio- or diastereoselectively catalyze each reaction; however, 
these facts prove an enantiodivergent phenomenon can occur in spite of natural 
products originating from a single species. There would be no these findings without 
asymmetric chemical synthesis. 
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Chapter 23 
Utilizing the pKa Concept to Address 
Unfavorable Equilibrium Reactions 
in the Total Synthesis of Palau’amine 

Eisaku Ohashi, Kohei Takeuchi, Keiji Tanino, and Kosuke Namba 

Abstract Herein, we introduce the pKa concept as a strategy for proceeding with 
unfavorable reactions in the total synthesis of palau’amine. The cascade reaction 
aimed at constructing palau’amine’s ABDE tetracyclic ring core initially encoun-
tered poor reproducibility due to an unfavorable equilibrium reaction. However, the 
addition of 1.0 equivalent of AcOH enabled the progression of the unfavorable equi-
librium reaction. In the second-generation synthesis, the improved cascade reaction 
to construct CDE ring core also initially did not proceed due to an unfavorable equi-
librium reaction, but using Ph2NLi as a base was later found to enable the reaction 
to proceed smoothly. The conjugate acid of Ph2NLi proved to be a suitable acid 
in the unfavorable equilibrium mixture. These investigations of the cascade reac-
tions revealed that the coexistence of an appropriate acid played an important role 
in allowing the unfavorable equilibrium reaction to proceed. The authors propose a 
general equation for proceeding with an unfavorable equilibrium reaction. 

Keywords Cascade reaction · Unfavorable equilibrium reaction · Conjugate 
acid · Nitrogen anion 

23.1 Introduction 

Palau’amine (1) belongs to the class of pyrrole-imidazole alkaloids, originally 
isolated by Scheuer in 1993 [1, 2], with revisions of its stereochemistry reported in 
2007 [3–5]. Since its initial disclosure, 1 has received a great deal of attention as an 
attractive synthetic target due to its complex structure and potent biological activities,
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including antifungal, antitumor, and immunosuppressive properties. In particular, the 
potent immunosuppressive activity of 1 has piqued the interest of researchers, leading 
to investigations into its mode of action [6, 7]. The distinctive structural attributes of 
1 include the following: two guanidine moieties; a complex polycyclic system char-
acterized by spiro and fused rings; eight consecutive stereogenic centers, including 
one nitrogen-containing tetrasubstituted carbon center; a fully substituted cyclopen-
tane ring; and the highly strained trans-azabicyclo[3.3.0]octane skeleton located at 
the D/E ring junction [8–13]. However, 1 is well known as one of the most difficult 
natural products to synthesize; despite many attempts, only two examples of its total 
synthesis have been reported. The first total synthesis of palau’amine was achieved 
by Baran’s group in 2010 [14], and an asymmetric version was developed in 2011 
[15]. In 2015 we successfully achieved the total synthesis [16], and in 2021 we devel-
oped an efficient method for constructing the hexacyclic ring system of palau’amine 
as part of our second-generation synthesis [17]. Not surprisingly, we encountered 
several difficulties during these synthetic studies. This chapter focuses on how we 
addressed the challenge of allowing an unfavorable equilibrium reaction to proceed. 

23.2 The Key Reaction and Its Unfavorable Equilibrium 
in the Total Synthesis of Palau’amine 

Our total synthesis of palau’amine (1) is summarized as follows. The synthesis 
began with commercially available cyclopentenone 2, and the precursor 3 for the 
key cascade reaction was obtained from 2 in 25 steps. The treatment of 3 with a 
strong base, followed by the addition of acetic acid, yielded the ABDE tetracyclic 
ring core of palau’amine in a single step. The C ring was constructed in the next 5 
steps, resulting in the formation of 5. The F ring was also formed, yielding 6 within 8 
additional steps from 5. Finally, the primary alcohol and the methylthio group on the C 
ring were each converted to an amino group, and subsequent hydrogenation afforded 
1, which achieved the total synthesis of palau’amine (Scheme 23.1). Throughout the 
total synthesis, 1 was obtained with an overall yield of 0.039% in 45 steps starting 
from 2. The conversion of 3 to 4 was the key reaction in this total synthesis. The 
details are discussed below.

Our total synthesis first targeted the construction of a nitrogen-containing tetra-
substituted carbon center at the C16 position of palau’amine. To achieve this, we 
employed an Hg(OTf)2-catalyzed olefin cyclization reaction that was originally 
developed within our research group. After various examinations, we achieved the 
catalytic construction of the tetrasubstituted carbon center at the C16 position by 
employing hydrazine as a nitrogen nucleophile. Subsequent ring contraction led to 
the formation of the pylazolidine ring 7, which was further oxidatively modified at 
the C10 position. After considering the structure of the intermediate 7, the author 
came up with the following cascade reaction. Intermediate 7 was transformed into 8 
through the introduction of a pyrrole amide and a strong electron-withdrawing group
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LiHMDS 

Scheme 23.1 Overview of total synthesis of palau’amine (1) by our group

into the primary amine side chain and the nitrogen on the pyrazolidine ring, respec-
tively. The subsequent treatment of 8 with more than 3.0 equivalents of a strong base 
resulted in the deprotonation of active NH protons in both the pyrrole and amide 
groups, with the first two equivalents of the base involved in this process. If the 
third base can abstract the hydrogen at the α-position of the methyl ester at the C10 
position, it could result in the simultaneous cleavage of the N–N bond along with 
the oxidation to form the imine at the C10 position due to E1cB elimination of the 
nitrogen carrying a strong electron-withdrawing group. This would lead to the forma-
tion of 8B. An amide anion of 8B promptly attacked the highly reactive acylimine 
moiety to generate the D ring, resulting in the formation of 8C. The cascade reaction 
did not end at this stage because the pyrrole anion still remained. The pyrrole anion 
also continuously attacked the methyl ester, resulting in the construction of the B 
ring and yielding 8D, which, upon acid quenching, afforded 9. Thus, treatment of 8 
with more than 3.0 equivalents of the strong base would induce the cascade reaction 
described above, resulting in the formation of the ABDE tetracyclic ring core of 
palau’amine in a single step (Scheme 23.2).

After converting the Fmoc group of 7 to the pyrrole amide group, we attempted 
to introduce a highly electron-withdrawing group to the pyrazolidine ring nitrogen, 
but only the trifluoroacetyl group was introduced. With the precursor 3 in hand, we 
examined the cascade reaction. Surprisingly, in the first experiment of the cascade 
reaction, where 3 was treated with 3.0 equivalents of LiHMDS, the desired product 
4 was obtained, albeit with a yield of only 30%. Clearly remembering that we had 
obtained the desired 4 in the first experiment, we were very excited by this result 
and immediately attempted to scale up this cascade reaction to achieve the total
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Scheme 23.2 Plan for the cascade reaction to construct ABDE tetracyclic ring core of 1

synthesis of palau’amine. However, we encountered a problem at this point: subse-
quent attempts to repeat the reaction did not yield reproducible results. In some 
cases, the yield of 4 was around 50%, but in many cases it was less than 30%, and in 
some cases was hardly obtained (Scheme 23.3). As long as the yield reproducibility is 
consistent, it may be possible to address this by increasing the scale of synthesis even 
if the yield is not high. However, in cases of poor reproducibility, it was deemed too 
risky to use even a slightly larger quantity of the painstakingly synthesized precursor 
3, given that it required 25 steps to obtain.

We carefully reconsidered the cause of the poor reproducibility based on the reac-
tion mechanism. It became apparent to us that, in a sense, reproducibility could not be 
ensured. Upon treatment with a base, the D ring was formed via 3B, giving  3C. Up to  
this stage, the reaction had proceeded without any problems. Indeed, the conversion 
from 3 to 3C could be monitored by TLC. However, subsequent conversion from 
3C to 3D was extremely slow. When we considered this carefully, we realized this 
was a matter of course. That was because a methoxide, which is less stable than the 
pyrrole anion of 3C, was formed during the nucleophilic addition reaction of the 
pyrrole anion to the methyl ester. Thus, even as the reaction proceeded, the gener-
ated methoxide attacked the amide site of 3D, bringing it back to 3C. In other words, 
this reaction was in an equilibrium between 3C and 3D, and 3C was much favored 
in this equilibrium. As we observed the equilibrium reaction with TLC and waited 
for 3C to disappear, 3C gradually decomposed, causing the loss of reproducibility 
(Scheme 23.3). Consequently, it was hypothesized that selectively quenching the 
minute amount of methoxide generated in this equilibrium would permit the reaction 
from 3C to 3D to advance, thus overcoming the unfavorable equilibrium reaction.
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With this premise, we attempted to eliminate only the methoxide while preserving 
the pyrrole anion. 

As a method to selectively remove methoxide, we added exactly 1.0 equivalent 
of acid when the cascade reaction had reached the 3C stage (Scheme 23.4). Treat-
ment with 3.0 equivalents of LiHMDS at − 78 °C and warming to 0 °C resulted in 
the progress of the cascade reaction to form the D ring, leading to 3C. After TLC 
confirmed the formation of 3C, exactly one equivalent of AcOH was added to the 
reaction mixture at − 78 °C. As the most basic of the three nitrogen anions of 3C 
was the Boc amide anion, it was protonated by acetic acid to afford 3E. The pyrrole 
anion of 3E still remained, and then the addition reaction of pyrrole anion to methyl 
ester continued. As the addition reaction proceeded to form 3F, methoxide was also 
produced as before. In this case, however, 3F had an active NH proton, and the 
methoxide showed a preference for abstracting the active proton as a base rather 
than adding to the amide site as a nucleophile. This quenched only the generating 
methoxide while retaining the pyrrole anion. This acid addition inserted new inter-
mediates 3E and 3F between the previous equilibrium of 3C and 3D. This adjustment 
effectively shifted the equilibrium from favoring 3C to favoring 3D. Among various 
acids, acetic acid was found to be the best protonating reagent. In addition, precise 
amounts of LHMDS and acetic acid are very important for this “protonation-state 
switching by pKa game” reaction. In this way, the yield of ABDE tetracyclic ring 
core 4 was increased to 74% with good reproducibility achieved on scales acceptable
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for total synthesis (Scheme 23.4). By this method, it became possible to supply 4 
in quantity to support the subsequent 19 steps and to achieve the total synthesis of 
palau’amine. 

23.3 The Unfavorable Equilibrium Reaction in the Key 
Reaction of Second-Generation Total Synthesis 
of Palau’amine 

We achieved the total synthesis of palau’amine based on the key reaction described 
above, but our total synthesis required a large number of steps (45 steps), as shown in 
Scheme 23.1. To advance both mechanistic studies of the potent immunosuppressive 
activity of palau’amine and structure–activity relationship (SAR) studies, a more 
efficient method of constructing the hexacyclic ring system of 1 was needed. There-
fore, we tried to develop a more efficient synthetic method as a second-generation 
synthesis. In the first-generation total synthesis, there were several issues that length-
ened the number of steps, including 25 steps that were required to obtain the cascade 
reaction precursor 3, while the construction of additional C and F rings also required 
many steps (5 and 8, respectively) after the construction of the ABDE tetracyclic 
ring core 4. Therefore, as a new synthetic strategy based on the key reaction in the 
first-generation total synthesis, we devised a plan to pre-introduce the sources for the
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C and F rings into the precursor of the cascade reaction. Specifically, the Boc group 
in 3 was converted into an isothiourea group to serve as the source of the guanidino 
group of the C ring. Additionally, the vinyl group was transformed into a nitrile group, 
which served as a foothold for the construction of the F ring. Furthermore, with the 
prospect of future expansion into SAR studies and probe development, we designed 
10, lacking both the aminomethyl side chain and the chloro group, as a precursor for 
the cascade reaction. This enabled us to investigate whether these functional groups 
affect immunosuppressive activity. As was the case in the first-generation synthesis, 
treatment of 10 with 3.0 equivalents of a strong base was expected to initiate a 
cascade reaction for constructing the CD ring in a single step. This cascade encom-
passed the abstraction of hydrogens from NH groups and the C10 position, cleavage 
of the N–N bond accompanied by oxidation at the C10 position, addition of the amide 
anion to the imine moiety, and subsequent addition of thioisourea to the ethyl ester 
(Scheme 23.6). If this cascade reaction proceeded, the construction of the C ring, 
which required 5 steps in the first-generation synthesis, could be accomplished in a 
single step simultaneously with the construction of the D ring. 

In the first-generation synthesis, we employed an Hg(OTf)2-catalyzed olefin 
cyclization reaction to construct the nitrogen-containing tetrasubstituted carbon 
center at the C16 position. In the second-generation synthesis, the tetrasubstituted 
carbon center was constructed by an unprecedented Strecker reaction to pyrazo-
lines; this reaction shortened the synthesis of the cascade reaction precursor 10 from

Scheme 23.5 Plan for the efficient construction of the CDE ring core of 1 
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commercially available cyclopentenone to just 9 steps. Since this synthetic route 
could supply a sufficient amount of 10, we tried the cascade reaction. 

First, treatment of 10 with 3.0 equivalents of LiHMDS resulted in the formation of 
a trace amount (< 5%) of the CDE ring core 11. Despite this, the intended reaction did 
progress to some extent, albeit with significant decomposition of the starting material 
(Scheme 23.6). We repeated the reaction under various conditions by changing the 
base equivalent, temperature, solvent, and so on, but we were unable to obtain more 
than a trace amount of 11 and often obtained none at all. Although most of the 
starting material decomposed, isothiourea 12 was obtained as the major byproduct. 
From the formation of byproduct 12, we considered that the reaction did not proceed 
and decomposed for the following reason. As in the first-generation synthesis, the 
third base abstracted the hydrogen at the C10 position to give 10B, and the amide 
anion subsequently added to the reactive imine moiety to form the D ring, leading to 
10C. We considered the cascade reaction to have proceeded smoothly until this stage, 
similar to the first-generation synthesis. Although the subsequent introduction of the 
carbamate anion from the isothiourea to the ethyl ester could potentially yield the 
desired CDE ring core 11, this transformation was regarded as difficult to achieve.

Among the three anions present in the second-generation substrate 10C, the carba-
mate anion derived from isothiourea exhibited the highest stability. Consequently, 
the conversion to 10D, which produced the least stable ethoxide, was highly unfavor-
able. Therefore, the equilibrium between 10C and 10D strongly favored the former, 
and by subjecting this equilibrium to an acidic quench, 10D, which was minimal 
quantity in the equilibrium, was transformed into 11 and isolated. The abundant 10C 
was protonated to give 10E, and the highly strained D ring was immediately cleaved 
due to the electron-donating effect originating from the isothiourea group, resulting 
in the formation of 10F. The isothiourea moiety was removed from 10F by hydrol-
ysis, leading to 12 as a major byproduct, along with the decomposition of the DE 
ring moiety (Scheme 23.6). From this result, we found that while 10D can be isolated 
as 11 after quenching with acid, 10C cannot be isolated as an intermediate because 
it decomposes during quenching. This, in turn, suggested that the reaction would 
give only decomposed products unless the favorable intermediate in this equilibrium 
reaction was reversed from 10C to 10D. 

Also, the stereochemistry at the C10 position of 11, a trace amount of which 
was obtained, was the opposite of that of the cyclization product 4 obtained in 
the first-generation synthesis (Scheme 23.6). The cascade reaction in the second-
generation synthesis unveiled that the CDE ring core was formed with a C10-position 
stereochemistry that was opposite that of palau’amine. The stereochemical differ-
ences between the first- and second-generation syntheses arose from the difference 
in the Boc and isothiourea groups. In the first-generation synthesis, DFT calculations 
revealed that the configuration at the C10 position was determined by the coordi-
nation of the carbonyl oxygen of the Boc group to lithium salt (see Ref. [16] for  
details). Although the stereochemistry at the C10 position of 11 was undesired, we 
planned to increase the yield of 11 first and then attempt its stereoinversion because 
the intermediate 10C could not be isolated. Therefore, to improve the yield of 11, 
we had to determine how to drive the reaction to 10D. We had already faced and
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Scheme 23.6 Unfavorable equilibrium between 10C and 10D in the cascade reaction forming the 
CDE tetracyclic ring core in the second-generation synthesis of palau’amine

solved a similar problem in the first-generation total synthesis. We considered that 
the unfavorable equilibrium between 10C and 10D could be resolved by applying the 
same pKa concept that selectively quenches the ethoxide generated as the reaction 
proceeds from 10C to 10D. 

The pKa concept in the case of 10 was as follows. At the stage where inter-
mediate 10C was formed by treating 10 with 3.0 equivalents of LiHMDS, three 
nitrogen anions were generated: the pyrrole anion (pKa of conjugate acid: ~ 23), 
the carbamate anion of isothiourea (~ 15), and the trifluoroacetoamide anion (~ 17). 
Given the basicity of these anions, adding 1.0 equivalent of AcOH at this point 
would protonate the pyrrole anion, resulting in the formation of 10E .́ The remaining 
carbamate anion of isothiourea then attacked the ethyl ester to afford 10H, and the 
simultaneously generated ethoxide abstracted the proton from the NH of pyrrole.
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This prevented the ethoxide ion from attacking the imide moiety of 10H, effec-
tively avoiding the reverse reaction leading to 10Eʹ and facilitating the progression 
of the reaction toward the dianion 10D (Scheme 23.7). However, the addition of 
1.0 equivalent of AcOH after the conversion to 10C induced quick decomposition 
and gave only a similar byproduct, isothiourea 12 (Scheme 23.7). This outcome 
was likely a result of the protonation of the pyrrole anion to form 10E ,́ which 
diminished the electron-donating effect from the pyrrole anion. Consequently, the 
electron-withdrawing nature of the amide carbonyl group was heightened, leading 
to the cleavage of the highly strained D ring through the electron donation from the 
isothiourea carbamate anion, rather than facilitating the nucleophilic addition to the 
ethyl ester. This result indicated that the findings from the previous studies (the first-
generation synthesis) were not applicable to the second-generation cascade reaction 
with the isothiourea. Thus a new solution, other than the addition of acetic acid, had 
to be discovered. 

To find a solution, we revisited the reaction mechanism in detail and thereby real-
ized that there was another intermediate within the equilibrium between 10C and 
10D: the alkoxide intermediate 10I (Scheme 23.8). Although this alkoxide inter-
mediate is often omitted when considering nucleophilic addition reactions to ester 
carbonyls, we realized that it was the key to allowing an unfavorable equilibrium 
reaction proceed. The pKa of the conjugate acid of the alkoxide of 10I is estimated 
to be less than 32 (based on the pKa of tBuOH in DMSO). Notably, the alkoxide

Scheme 23.7 Application of acid addition method in the first-generation synthesis to the cascade 
reaction in the second-generation synthesis 
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of 10I stands out as the most unstable among the anions found in 10C and 10I. 
Additionally, its basicity significantly exceeds that of both the pyrrole anion and the 
amide anion. Instead of reverting to 10C by releasing the more basic ethoxide (pKa 

of conjugate acid: 28.9) from this unstable intermediate, the primary focus was on 
preserving the most stable (less basic) isothiourea carbamate anion (pKa of conjugate 
acid: ~ 15). Therefore, it was considered that an equilibrium mainly existed between 
10C and 10I in this reaction system, with 10D barely involved in the equilibrium. The 
equilibrium between 10C and 10I significantly favored 10C, and the trace amount of 
11 obtained by acid quenching was believed to originate from the scarcely present 
10I through the formation of protonated 10I. Thus, we expected that if only 10I 
could be selectively protonated and converted to 10J, the equilibrium mixture would 
eventually converge to 10J, and subsequent removal of ethanol would afford 11 in 
good yield. There were six anions in the equilibrium mixture of 10C and 10I, with 
alkoxide and pyrrole being the most basic and second most basic anions, respec-
tively. When acid was used to quench this equilibrium mixture, it protonated 10C, 
which was present in large excess within the equilibrium. Consequently, the reaction 
yielded only a mixture of decomposition products. However, if only the alkoxide of 
10I could be selectively protonated and converted to 10J without protonating the 
pyrrole anions, 10I could be removed from the equilibrium mixture, and the mixture 
should eventually converge to 10J (Scheme 23.8). 

H 
H 

N 

NMeS 

Cbz 
EtO 

N 

ON 

N 

NC 
CF3 

O 

O 

D 

E 

N 

H 
HN 

N 

NC 

CbzN 

O 

N 

CF3 

O 

MeS 

EtO O 

H 
H 

N 

NMeS 

Cbz 
EtO 

N 

ON 

N 

NC 
CF3 

O 

OH 

Major Trace 

C 

H 
H 

N 

NMeS 

Cbz 
O 

N 

ON 

N 

NC 
CF3 

O 

10C 10I 

10J 

10D 

C 

H 
H 

N 

NMeS 

Cbz 
O 

N 

OHN 

HN 

NCO 

D 

E 

11 
CF3 

10AcOH 

[~17] 

[~15] 

[~23] [~23] 

[~17] 

[~32] 

H+ (23 < XH < 32) 

(3.2 equiv) 

EtOH 

EtO -

EtO -

-

-

- - -

-

[28.9] 

unfavorable equilibrium

-

-

-

Take 10I out of equilibrium

-

quench 
(AcOH)[pKa of conjugate acid in DMSO] 

Scheme 23.8 Plan to proceed with unfavorable equilibrium reaction



514 E. Ohashi et al.

To facilitate the coexistence of such acids, we came up with the idea of using 
Ph2NLi as the base. Although there have been few examples of the use of Ph2NH 
as a base, treatment of 10 with 3.2 equivalents of Ph2NH allowed the reaction to 
proceed smoothly, and the generation of 10J was suggested by 1H and 19F NMR. The  
subsequent addition of 3.2 equivalents of AcOH in one pot induced the elimination of 
ethanol, successfully affording the desired 11 in a good yield of 72%. This reaction 
was considered to proceed through the following mechanism. First, 3.0 equivalents 
of Ph2NLi abstracted three protons of 10, leading to 10C. Then, as in the case 
of LiHMDS, 10C formed the equilibrium mixture of 10C and 10I, with a strong 
preference for the former. In this case, 3.0 equivalents of Ph2NH were generated as 
a conjugate acid in the reaction system after hydrogens were abstracted by Ph2NLi. 
Since the pKa of Ph2NH was 25, it could protonate a slightly generated alkoxide of 
10I. On the other hand, Ph2NH was unable to protonate the pyrrole anion, as the 
pKa of the conjugate acid was estimated to be less than 23. In other words, Ph2NH 
functioned as a suitable acid that could selectively protonate the alkoxide formed in 
small quantities without interacting with the pyrrole anions, which were present in 
large excess in the reaction system (Scheme 23.9). The above results revealed that 
Ph2NH is an interesting base that transitions into an acid after initially functioning 
as a base.

Next, to validate whether the effectiveness of Ph2NH in the cascade reaction 
stemmed from the generation of a conjugate acid with the suitable pKa range (23– 
32) as we previously proposed, we conducted comparable experiments employing 
different bases (Scheme 23.9). The use of Et2NLi and iPr2NLi as bases did not afford 
the desired cyclization product, and only decomposition occurred. The respective 
pKas of the conjugate acids of Et2NLi and iPh2NH were 40 and 36, significantly 
higher than the pKa (< 32) of the conjugate acid of alkoxide of 10I. Hence, the 
alkoxide of 10I remained unprotonated, and a substantial quantity of 10C persisted 
as the dominant intermediate in the equilibrium. Following quenching, it decom-
posed, as depicted in Scheme 23.6. The conjugate acid of LiHMDS has a pKa of 
30, which is close to the acidity of the conjugate acid of the alkoxide of 10I (< 32). 
Thus, even if the alkoxide could be protonated by HMDS (TMS2NH) and converted 
into 10J, the resultant LiHMDS (TMS2NLi) had the capacity to extract the alcohol 
hydrogen from 10J and revert it back to 10I. This reverse reaction also generated 
the equilibrium between 10I and 10J, and the three intermediates 10C, 10I, and 10J 
were in equilibrium. Due to the large abundance of favorable 10C in the equilibrium, 
quenching this equilibrium reaction afforded only a trace amount of 11. To increase 
the abundance of 10J in the equilibrium, the addition of 10 equivalents of HMDS 
improved the yield of 11 to 36%. This result reinforced the idea that the pKas of the  
conjugate acids of LiHMDS and alkoxide were similar, leading to an equilibrium 
between 10C and 10J. 

Next, the use of (p-Br-C6H4)2NLi, which was anticipated to have a lower pKa of 
the conjugate acid compared to pyrrole, resulted in the formation of only a decom-
posed mixture. It was considered that the pyrrole anion of 10C, which presented in 
large excess, became protonated by the generated conjugate acid, (p-Br-C6H4)2NH. 
As a consequence, 10C decomposed through the same route as shown in Scheme 23.6.
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Scheme 23.9 Overcoming unfavorable equilibrium between 10C and 10I

Only the use of a base with a conjugate acid pKa range of 23–32 afforded the 
CDE ring core 11. Conversely, when other bases possessed conjugate acid pKas 
either higher or lower than this range, only decomposed products were obtained 
(Scheme 23.9). This observation supports our hypothesis that the coexistence of 
suitable acids is essential for advancing an unfavorable equilibrium reaction. 

In these synthetic studies of plau’amine, we have demonstrated that the presence 
of an appropriate acid can promote the successful progression of an unfavorable 
equilibrium reaction involving anions. Since this method is applicable to various
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other equilibrium reactions, we propose this concept of a coexisting acid in the 
following general equation (Fig. 23.1). When compound AH is subjected to a base, it 
produces an equilibrium mixture consisting of B− and C− anions. The anion whose 
conjugate acid has a lower pKa is the more stable one, leading to an equilibrium 
mixture in which this particular anion is predominantly present. In other words, in 
a case where the highest pKas of the conjugate acids of B− and C− are a1 and a2, 
respectively, and the values are a1 < a2, the equilibrium favors B−. The greater the 
difference between a1 and a2, the greater the difference in the abundance of B− 
and C−. In this equilibrium mixture, if CH, which is protonated unfavorable C−, is  
the desired product, a simple acidic quench also protonates the B− anion, which is 
present in large excess. This results in the formation of almost no CH. To obtain 
CH, a protonated form of the unfavorable anion, as the major product, the presence 
of an appropriate acid that can protonate C− but cannot protonate B− is necessary. 
In other words, the coexistence of an acid with a pKa higher than that of a1 and 
lower than that of a2 is required. Therefore, it is necessary to have coexisting acids 
that selectively protonate the unfavorable anion C− in the equilibrium, satisfying the 
following relationship: a1 < a3 < a2, where a3 represents the pKa of the coexisting 
acids (Fig. 23.1).

Here, we attempt to apply this general equation to the aforementioned cascade 
reactions. In the first-generation cascade reaction (Scheme 23.4), when the precursor 
3 was treated with 3.0 equivalents of LiHMDS, it produced an equilibrium mixture of 
3C and 3D. Obtaining 3D as the major product was challenging due to the predom-
inance of 3C in the equilibrium. On the other hand, if this reaction is considered as 
an equilibrium reaction between anions as shown in the general equation, it should 
also be viewed as an equilibrium reaction between 3C and the methoxide. The addi-
tion of 1.0 equivalent of acetic acid to this equilibrium mixture mainly protonated 
the Boc amide anion of 3C to convert to NHBoc 3E due to the much greater abun-
dance of 3C compared to the methoxide. The equilibrium is then between the pyrrole 
anion of 3E and the methoxide, and the pKa of the generated NHBoc is less than 
24 (a3), which is higher than that of the pyrrole anion of 3E (pKa: < 23) (a1) and 
lower than that of the methoxide (pKa: 28) (a2). Therefore, the pKa of generated 
NHBoc satisfied the inequality “a1 < a3 < a2” as the coexisting acid, so the reaction 
proceeded by quenching only methoxide as an unfavorable anion. In addition, in 
the second-generation cascade reaction, the pKa 25 (a3) of Ph2NH generated from 
Ph2NLi is higher than 23 (highest pKa of conjugate acid: a1) of the pyrrole anion of 
10C and lower than 32 (a3) of the alkoxide of 10I, and the general inequality “a1 < 
a3 < a2” is satisfied. Hence, to selectively protonate only the unfavorable anion in 
the equilibrium of anions, it is effective to have an appropriate acid coexist, which 
adheres to the suggested general inequality “a1 < a3 < a2” (Fig. 23.1). 

Of course, while the pKa concept is well known among synthetic chemists, it 
has often been applied based on individual chemists’ knowledge and experience 
rather than as a formalized general equation. Therefore, we proposed this general 
equation based on the results of the key cascade reactions in the synthetic studies of 
palau’amine. We plan to investigate the scope of this general equation in the future.
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Ph2NLi 
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 –78 to 0 ºC 
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Fig. 23.1 General equation for proceeding with an unfavorable equilibrium reaction

As described above, we overcame the unfavorable equilibrium reaction to achieve 
the total synthesis of palau’amine. In addition, by establishing a concept for 
proceeding with an unfavorable equilibrium reaction, we successfully developed 
a second-generation synthesis that can more efficiently construct the hexacyclic ring 
core of palau’amine. Although the first-generation total synthesis required 45 steps, 
the second-generation synthesis required only 20 steps to synthesize 13, which has 
all the ring structures of palau’amine (Scheme 23.10). By evaluating the activity 
of 13, we found that the immunosuppressive activity of palau’amine is retained 
even without the aminomethyl side chain and the chloro group, although the activity 
somewhat decreased. This suggested that these functional groups can be utilized to 
design probes. With the aim of supplying palau’amine for probe development, we 
are currently applying this concept to substrates with side chains.
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steps 

Scheme 23.10 Comparison of the first-generation synthesis and second-generation synthesis 

23.4 Conclusion 

In this chapter, we introduced the problems we encountered in the cascade cyclization 
reactions as the key steps of the total synthesis of palau’amine, and we developed 
solutions to them. In both the first- and second-generation syntheses, it took a long 
time for the cascade cyclization reactions to proceed with good yields and good 
reproducibility. In both cases, it was essential to conduct numerous experiments and 
engage in thorough deliberations before recognizing the presence of an unfavorable 
equilibrium reaction in the reaction system. Even after this realization, we performed 
many failed experiments before arriving at the idea of adding a coexisting acid. 
For example, to prevent the generation of highly basic methoxide and ethoxide, we 
first attempted the use of esters with acidic alcohols such as phenol and fluorinated 
alcohols, but the formation of active esters induced unexpected side reactions. In the 
end, the addition of an appropriate coexisting acid was the only solution that enabled 
the cascade cyclization reaction to proceed. Once we understood this, we realized 
it was a very simple solution. Although this research phenomenon may be common 
in any field, this study makes us realize once again that it can be difficult to notice 
the obvious. There is no doubt that repeated deep consideration and hard work are 
sometimes important to realize the obvious.
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