
Ideation, Conceptualization, Realization

Sarah Leins-Zurmuehle

Discovering the Creative Scope in Software Engineering
from the Perspective of Copyright and Patent Law

Ideation, Conceptualization, Realization ─

Discovering the Creative Scope in Software Engineering from the

Perspective of Copyright and Patent Law

Dissertation at the Faculty of Law of the University of Zurich

to obtain a Doctoral degree

submitted by:

MLaw Sarah Leins-Zurmuehle
of Weggis LU

supervised by:

Prof. Dr. iur. Florent Thouvenin
and

Prof. Dr. iur. Andreas Heinemann

Ideation, Conceptualization, Realization – Discovering the Creative Scope in Software Engineering from

the Perspective of Copyright and Patent Law by Sarah Leins-Zurmuehle is licensed under a Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise

noted.

© 2021 – CC BY-NC-ND (Work), CC BY-SA (Text)

Author: Sarah Leins-Zurmuehle

Publisher: EIZ Publishing

Production, Set & Distribution: buch & netz (buchundnetz.com)

Illustrations: © Sarah Leins-Zurmuehle, Robin Leins

ISBN:

978-3-03805-409-2 (Print – Softcover)

978-3-03805-412-2 (Print – Hardcover)

978-3-03805-444-3 (PDF)

978-3-03805-445-0 (ePub)

DOI: https://doi.org/10.36862/eiz-409

Version: 1.05 – 20211008

The dissertation was submitted by Sarah Leins-Zurmuehle and adopted by the Faculty of Law of the

University of Zurich, represented by Dean Prof. Dr. Brigitte Tag, on May 27, 2020.

It was supervised by Prof. Dr. iur. Florent Thouvenin and Prof. Dr. iur. Andreas Heinemann.

The open access publication of this book has been published with the support of the Swiss National

Science Foundation (SNF).

This work is available in print and various digital formats in OpenAccess. Additional information is

available at: https://eizpublishing.com/publikationen/ideation-conceptualization-realization/.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://buchundnetz.com/
https://eizpublishing.com/publikationen/ideation-conceptualization-realization/

“In the end nobody knows how it’s done – how art is made. It can’t be explained.

(…) Understanding a tool doesn’t explain the magic of creation. Nothing can.” *

* Quote by David Hockney, an English artist, issued in an interview with Martin Gayford of the Telegraph, published

on September 22, 2001, available at <https://www.telegraph.co.uk/culture/4725696/Hockney-and-the-secrets-of-the-Old-

Masters.html> (retrieved September 6, 2021).

https://www.telegraph.co.uk/culture/4725696/Hockney-and-the-secrets-of-the-Old-Masters.html
https://www.telegraph.co.uk/culture/4725696/Hockney-and-the-secrets-of-the-Old-Masters.html

Acknowledgements

This book is the result of research for my doctoral thesis at the University of
Zurich.

In the course of my dissertation project, I benefitted from the support and ad-
vice of many researchers and practitioners:

First of all, I would like to thank my academic supervisors and Ph.D. advisors
Prof. Dr. iur. Florent Thouvenin and Prof. Dr. iur. Andreas Heinemann. Prof. Dr.
iur. Florent Thouvenin’s sharp way of thinking and cross-linked view chal-
lenged me to improve this thesis to its final extent. He generously shared his
knowledge and helped me to focus on the important questions. Prof. Dr. iur.
Andreas Heinemann has supported my research since the beginning, although
at first not in an official role. His inspiring, always constructive, helpful, calm
and professional nature allowed me to find confidence in my research ques-
tion.

Another person without whose work my thesis would not have reached its de-
sired form is Dr. phil. Claudia Vorheyer, former Senior Assistant at the Institute
of Sociology, University of Zurich. She supported me tenaciously through-
out my interdisciplinary research and showed me where to turn. Her infinite
knowledge and know-how of sociological methodology is inspiring and her en-
thusiasm contagious. Thank you, Claudia, for your patience and sincere sup-
port. I know you are going to be a wonderful professor!

I would also like to thank the Europa Institute at the University of Zurich (EIZ)

for making this publication possible and particularly Atty. Dr. iur. Tobias Baum-

gartner, LL.M., and MLaw Michael Mayer for collaborating in an exceptionally
supportive and constructive manner, enabling me to finalize and publish this
thesis.

On the way, I met so many practitioners who were very supportive. I want
to express my admiration for the lawyers, project managers and developers
working in this field in an inventive and creative manner. My grateful thanks go
out to all the (anonymized) interview candidates and companies who gave me
their time and voluntarily shared their knowledge. Further thanks go to those
who gave me initial input and helped me to connect with the right people. My
particular thanks go to PD Dr. sc. Matthias Stuermer, dipl. HTL. Ing. Frans van

der Reijden, Atty. Dr. iur. Georg Rauber, Atty. Dr. iur. Rolf auf der Maur, Atty. Dr.

VII

iur. Thomas Steiner, LL.M., and Atty. Dr. iur. Martin Eckert. I want to say a spe-
cial thank you to Atty. Dr. iur. Wolfgang Straub, LL.M., who supported me with
his extraordinary legal and technical expertise in the software field. This ex-
change and his feedback on my research were vital for the final version. Thank
you so much, Wolfgang, for your exceptional support and commitment!

Prof. Dr. iur. Urs Gasser, LL.M., enabled me to spend two inspiring and instruc-
tive months as a visiting researcher at the Berkman Klein Center for Internet &

Society of Harvard University. It was in Cambridge where my interview study
was finalized. Thank you so much, Urs and the representatives of the Berk-
man Klein Center, for enabling my stay and making it worthwhile. The Berk-
man Klein Center represents an accumulation of the most fascinating and en-
thused researchers and practitioners in the field.

A researcher cannot face the challenges of the research without the support of
their closest ones – thank you to my dear friends and family. My special thanks
go out to MSc dipl. Inf. Felix Kaiser and Prof. Dr. phil. Stefan Leins, who spent
hours helping to edit my work. I owe you my deepest gratitude. I am greatly
indebted to Atty. Dr. iur. des. Angelika Murer, my dear friend, with whom I had
untiring discussions about her, my and our common research.

Finally, the greatest thanks go to MA ETH HPK Robin Leins. His advice was pru-
dent and challenging at the same time, his wonderful sketches were a pre-
sentation to the point. Thank you for keeping me focused and smiling, even
through the cloudy days.

Zurich, September 2021.

Acknowledgements

VIII

Index

List of Abbreviations XVI

References XXI

I. Bibliography XXI

II. Electronic Sources XLII

III. Others XLVII

List of Figures LI

Abstract LIII

Chapter 1: Introduction 1

I. Introduction to the Research Subject 1

II. Definition of the Research Problem 5

III. Chapter Overview 9

Chapter 2: Methodology 12

I. Introduction to the Socio-Scientific Approach and Selection of a Research Method 12

II. Literature Review 16

III. Interview Series 18

A. Purpose of the Interview Series 19

B. Focus of the Interview 20

C. Selecting an Interview Type 21

D. The ‘Expert’ Term 23

E. Sampling 26

1. Initial and Theoretical Sampling 27

2. The Sample Group 29

F. Preparing the Interviews 32

1. Anticipating the Interview Situation 32

2. Structure and Content of the Interviews 34

IV. Transcription 37

V. Data Analysis 38

A. Selecting a Method 38

B. Analysis and Theory-Building 41

IX

Chapter 3: Technical Foundation 47

I. Definition of Relevant Terms 47

A. The Science of Software Engineering 48

B. Elements of a Computer Program 54

C. Typology of Computer Programs 59

II. The Development Process 60

A. The Standard Phase Model 61

1. Ideation 64

2. Conceptualization 65

3. Realization 66

4. Implementation 67

5. Review and Maintenance 67

B. Three Different Approaches for Developing Software 68

1. Linear Development 68

2. Spiral Development 71

3. Continuous Delivery 76

III. Software Project Management and Commercialization 79

A. Brief Overview of the Economics of Software Engineering 79

B. Software Project Management 81

C. Commercialization 84

1. Classic Software Commercialization 84

2. Open Source and Free Software in Particular 85

Chapter 4: Status Quo of Legal Software Protection 88

I. The Legal Institutions for Software Protection 88

A. Introduction to Legal Software Protection 88

B. Brief Overview of the Available Legal Protection Measures 89

1. Intellectual Property Law 90

a) Patent Law 90

b) Copyright 90

c) Industrial Design Rights 90

d) Trademark 93

e) Utility Models (Gebrauchsmuster) 95

2. Unfair Competition Law 96

a) Trade Secrets 97

b) Taking Undue Advantage of Somebody Else’s Achievement 98

3. Contract Law 100

C. Tabular Summary 101

Index

X

II. Function of Intellectual Property Law 103

III. International Context 106

A. Paris Convention for the Protection of Industrial Property 107

B. Revised Berne Convention for the Protection of Literary and Artistic Works 108

C. Universal Copyright Convention 110

D. European Patent Convention 111

E. Agreement on Trade-Related Aspects of Intellectual Property Rights 112

F. WIPO Copyright Treaty 113

IV. Patent Law 114

A. Patent as an Intellectual Property Right 115

B. Patent Scope 118

1. Subject Matter 118

a) Interpretation under the European Patent Convention 122

b) Interpretation under the Swiss Patent Code 132

c) Interpretation under the U.S. Code and Affiliated Case Law 134

d) Conclusion: Are Computer Programs Patentable? 137

2. Protection Requirements 138

a) Novelty 138

b) Non-Obviousness 139

c) Industrial Applicability 143

3. Term of Protection 145

a) Starting Point of Protection: Registration 146

b) End of Protection 148

V. Copyright 149

A. Copyright as an Intellectual Property Right 149

B. Copyright Scope 151

1. Subject Matter 152

a) Creative and Artistic Works 152

b) Exclusion of Ideas and Functional Prerequisites 154

aa) Ideas 154

bb) Functionalities 157

c) Current Interpretation of the Subject Matter of Software Copyright 159

2. Protection Requirements 165

a) Intellectual Creation 165

b) Originality (Individuality) 167

3. Term of Protection

VI. Conclusion 176

Index

XI

Chapter 5: Findings of the Interview Series 178

I. Software Development 178

A. The Relevance of Software Engineering 178

B. The Development Process 179

1. The Process 180

2. Duration 185

C. Programming in Particular 186

1. Selection of a Programming Language 186

2. Adaptability of Computer Programs 189

II. Software Commercialization 191

A. The Software Market 191

1. Offering on the International Market 191

2. Free Competition 193

B. Distribution Models 197

C. Excursus: The Significance of Open Source for Software Engineering 198

1. Chances and Benefits 200

2. Risks and Negative Effects 201

3. Closing Commentary 203

D. Product Life Cycle 204

III. Know-how in Software Engineering 206

A. The Significance of Knowledge and Know-how 206

B. Knowledge Transfer and Protection 210

IV. Creativity and Innovation in Software Engineering 212

A. Creativity 212

1. What is Creativity in Software Engineering? 212

2. The Impact of Toolboxes, Libraries and Assistance on Creativity 214

B. Innovation 215

1. What is Innovation? 216

2. Inventions in Software Engineering in Particular 218

3. Triviality as Contrary to Innovation 220

4. Discovering the Innovative Momentum 223

V. The Legal Protection of Computer Programs 224

A. The Significance of Software Protection 224

B. Experiences with the Current Legal Framework 228

1. Positive Aspects 228

2. Negative Experiences and Suggestions for Improvement 229

a) Computer Programs as Intellectual Properties 230

b) The Time Factor 230

Index

XII

c) Commissioned Work 232

d) Patentability of Computer Programs 233

aa) Machines vs. Computers 234

bb) Requirements for Patenting 235

cc) The Power to Block and Abuse 236

dd) Patenting as the Discipline of Kings 237

C. The Optimal Framework 238

1. The Function of Software Protection 239

2. Potential Objects of Protection 241

a) Valuable Components 241

b) The Suggested Objects for Software Protection 244

3. Starting Point for Legal Protection 247

4. The End of the Term of Protection 251

a) Points of Reference 251

b) Adequate Protection Period 253

5. Setting the Limits: Admissible and Inadmissible Third-Party

Interventions 255

a) Delimiting Second-Hand Works: Where Do they Offer a

Contribution? 255

b) Translations of the Source Code in Particular 258

c) Limiting Extensive Rights of Standard-Essential Patents and

Fostering Incremental Improvements 259

aa) Standard-Essential Developments 259

bb) Incremental Improvements 260

d) Second-Hand Works: How To Compare Computer Programs 261

VI. Law Enforcement: Infringements and Legal Disputes 264

A. Infringements 264

B. Legal Disputes 265

VII. Summary 268

Chapter 6: Discussion of Selected Problems 276

I. Preface: Is there a Future for Legal Software Protection? 276

II. Copyright and Patent Protection: Hybrid Model or Copyright only? 282

III. The Protection Scope in Copyright and Patent Law 288

A. Circumscribing the Potential Subject Matter 289

1. Discovering Creativitiy and Inventiveness in Software Engineering 289

a) Creativity in Software Engineering 289

b) Inventiveness in Software Engineering 292

Index

XIII

2. Protected Interests 293

a) Know-How and Resources 293

b) Know-How and Resource Protection in Copyright and Patent Law 296

B. The Protection Requirements in Copyright and Patent Law 296

C. Potential Subjects of Legal Software Protection 301

1. Whole Software Product 303

2. Code 304

3. Algorithm 306

4. (Graphical) User Interface 309

5. Look-and-Feel 312

6. Features and Functions 315

7. Development Documentation 316

8. Tabular Summary 319

D. Not Protected Elements in Particular 320

1. Distinguishing between Ideas and Expressions 320

2. Standards, Necessities and Best Practices 324

3. The Blackbox Test to Identify Unprotectable Elements 330

E. How to Integrate Newer Development Trends 335

1. Incremental Extension 337

2. Inner Change 341

F. Conclusion 343

IV. Term of Protection 344

A. Starting Point for Legal Protection 345

1. The Problem 346

2. Potential Starting Point for Linearly Developed Programs 347

3. Potential Starting Point for Non-Linear Development Approaches 350

a) Spiral Development 350

b) Inner Changes 352

B. Expiration 354

1. The Duration of the Protection Term 355

2. Connection Point 361

C. Conclusion 363

V. Excursus: Second-Hand and Dependent Creations 363

A. The Right Holder’s Right to Protect a Work from Further Processing 365

1. Edited and Derivative Works 366

2. On Translations in Particular 368

B. The Community’s Right to Profit from an Exclusive Property 371

1. Standard-Essential Developments 372

Index

XIV

a) Types of Standards 374

b) The Antitrust Approach 375

c) The Patent Law Approach 381

aa) Based on a Superior Public Interest 382

bb) To Mitigate Negative Effects of Patenting 385

cc) Notes on the Possible Licensing Procedure and Terms 385

2. Incremental Improvements 388

a) Insufficient Regulation in Art. 31 lit. l TRIPS 390

b) Technical Advance 391

c) Important Advancement 394

d) Considerable Economic Significance 395

e) Notes on the Possible Licensing Procedure and Terms 398

VI. Conclusion 400

Chapter 7: Prospect and Closing 407

I. Scientific Contribution 407

II. Key Merits 408

III. Area for Action De Lege Lata and De Lege Ferenda 409

A. De Lege Lata 409

B. De Lege Ferenda 412

IV. Limitations and Perspective 415

Index

XV

ACM

AIPPI

Art.

Austrian GMG

BAG

BB

Beck RS

BGE

BGer

BGBl

BGH

BGHZ

BPatG

BPatGer

BT-Drucks

c.

CD

GC

CHF

Cir.

CJEU

List of Abbreviations

Only abbrevations which are used in this thesis are listed below.

Assosiation for Computing Machinery

Association International pour la Protection de la Propriété
Industrielle

article

Austrian Gebrauchsmustergesetz of April 1, 1994, BGBl.
1994/211 (status as of June 14, 2018)

Bundesarbeitsgericht (German Federal Labour Court)

Betriebs-Berater (periodical journal for law and economics)

Beck Rechtsprechung (collecton of jurisprudence)

Leitentscheide des Bundesgerichts (published ruling of the
Swiss Federal Supreme Court)

Bundesgerichtsentscheid (unpublished ruling of the Swiss
Federal Supreme Court)

Bundesgesetzblatt (German federal law gazette)

Bundesgerichtshof (German Federal Court of Justice)

Entscheidungen des Bundesgerichtshofs in Zivilsachen
(collection of the decisions of the civil law court division of
the German Federal High Court of Justice)

Bundespatentgericht (German Federal Patent Court)

Bundespatentgericht (Swiss Federal Patent Court)

Drucksachen und Plenarprotokolle des Bundestages
(documents of the German Parliament)

consideration

compact disc

General Court

Swiss Franc(s)

Circuit Court in the United States

Court of Juctice of the European Union

XVI

Computer Program
Directive

Cong.

Copyright Directive

DIN

ECDR

EC Copyright Term of
Protection Directive

ECJ

E-Commerce
Directive

ed.

eds.

EPC

EPO

EPO T

EUR

EWCA

EWHC

f.

Fed. Cir.

ff.

fn.

Council Directive (91/250/EEC) of 14 May 1991 on the legal
protection of computer programs, implemented 1 January
1993, in force until 23 April 2009, substituted by the
Directive of the European Parliament and of the Council
(2009/24/EC) of 23 April 2009

U.S. Congress

Directive of the European Parliament and of the Council
(2001/29/EC) of 22 May 2001, on the harmonisation of
certain aspects of copyright and related rights in the
information society

Deutsches Institut für Normierung (German Institute for
Standardization)

European Copyright and Design Reports

Council Directive 93/98/EEC of 29 October 1993,
harmonizing the term of protection of copyright and
certain related rights

European Court of Justice

Directive of the European Parliament and of the Council
(2000/31/EC) of 8 June 2000 on certain legal aspects of
information society services, in particular electronic
commerce, in the Internal Market

editor

editors

European Patent Convention of 5 October 1973, revised 29
November 2000 (status as of June, 2016)

European Patent Office

decisions of the European Patent Office and its Board of
Appeal

Euro(s)

Court of Appeal of England and Wales

High Court of England and Wales

following page

U.S. Court of Appeals for the Federal Circuit

following pages

footnote

List of Abbreviations

XVII

French IP Code

German DesG

German GebrMG

German GeschGehG

German MarkenG

German PatG

German UrhG

German UWG

GRUR

HGer

ibid.

ICT

icw

IEC

IEEE

IP

ISO

Lanham Act

LG

lit.

mio.

MMR

N

NJW

no.

French Intellectual Property Code of 1 July 1992, no 92–597
(status as of August 1, 2019)

German Design Act of 24 February 2014, BGBl. I S. 122
(status as of July 17, 2017)

German Gebrauchsmustergesetz of 28 August 1986, BGBl. I
1455 (status as of July 17, 2017)

German Trade Secret Protection Act of 18 April 2019, BGBl. I
S. 466

German Markengesetz of 25 October 1994, BGBl. I S. 3082
(status as of December 11, 2018)

German Patent Code of 5 May 1938, revised 16 December
1980, BGBl. 1981 I 1 (status as of October 8, 2017)

German Copyright Act of 9 September 1965, BGBl. I S. 1273
(status as of November 28, 2018)

German Act against Unfair Competition of 3 July 2004,
BGBl. I S. 3714 (status as of April 18, 2019)

Gewerblicher Rechtsschutz und Urheberrecht (periodical)

Handelsgericht (Commercial Court of cantons in
Switzerland)

ibidem

information and communication technology

in conjunction with

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

intellectual property

International Organization for Standardization

Lanham Trademark Act of 5 July 1946, 60 Stat. 427, codified
at 15 U.S.C. § 1051 ff.

Landgericht (lower regional courts in Germany)

litera

million(s)

Multimedia und Recht (periodical)

marginal note

Neue Juristische Wochenschrift (periodical)

number

List of Abbreviations

XVIII

OECD

OGer

OLG

openJUR

OR

para.

Paris Convention

PCT

PMMBl

RBC

RPC

S.

sect.

Ses.

sic!

SIWR

SR

Swiss CopA

Swiss DesG

Swiss DesR

Swiss MSchG

Organisation for Economic Co-operation and Development

Obergericht (High Court of cantons in Switzerland)

Oberlandsgericht (higher regional courts in Germany)

legal database for German decisions

Swiss Code of Obligations, Federal Act on the Amendment
of the Swiss Civil Code of 30 March 1911, SR 220 (status as of
April 1, 2017)

paragraph

Revised Paris Convention for the Protection of Industrial
Property of 14 July 1967 (status as of March 20, 1983)

Patent Cooperation Treaty of 19 June 1970, revised 3
October 2001 (status as of June 28, 2019)

Patent-, Muster, und Markenblatt (publication of patent
applications and granted patents in Switzerland before 1
July 2008)

Revised Berne Convention for the Protection of Literary and
Artistic Works of 9 September 1886, revised in Paris on
July 24, 1971 (status as of June 27, 2019)

Reports of Patent, Design and Trade Mark Cases

U.S. Senate

section

Session of the U.S. Congress or U.S. Senate

Swiss Law Review for Intellectual Property, Information and
Competition Law

Schweizerisches Immaterialgüter- und Wettbewerbsrecht
(book series)

Systematische Rechtsammlung (classified compilation in
Switzerland)

Swiss Federal Act on Copyright and Related Rights of 9
October 1992, SR 231.1 (status as of 1 January, 2020)

Swiss Designs Act of 5 October 2001, SR 232.2 (status as of
January 1, 2017)

Swiss Designs Regulation of 8 March 2001, SR 232.12 (status
as of January 1, 2017)

Swiss Trade Mark Protection Act of 28 August 1992,
SR 232.11 (status as of April 1, 2019)

List of Abbreviations

XIX

Swiss PatG

Swiss UWG

TRIPS Agreement

UCC

UFITA

UK IP Act

UKSC

U.S. Code

U.S. Constitution

USD

UTSA

vol.

WCT

WIPO

WTO

Swiss Patents Act of 25 June 1954, SR 232.14 (status as of
January 1, 2012)

Swiss Act against Unfair Competition of 19 December 1986
SR 241.00 (status as of July 1, 2016)

Agreement on Trade-Related Aspects of Intellectual
Property Rights of 15 April 1994, Annex 1C to the Agreement
establishing the World Trade Organization (status as of
January 23, 2017)

Universal Copyright Convention of 24 July 1971 (status as of
April 23, 2010)

Institut für Urheber- und Medienrecht (series of
publication), previously named Archiv für Urheber-, Film-,
Funk- und Theaterrecht

United Kingdom Copyright, Designs and Patents Act of 15
November 1988 (status as of October 11, 2018)

United Kingdom Supreme Court

Code of Laws of the United States of America of 30 June
1926 (status as of 2018)

Constitution of the United States of 4 March 1789 (status as
of April 18, 1999)

U.S. Dollar(s)

Uniform Trade Secrets Act of 1979, amended 2 August 1985

volume

WIPO Copyright Treaty of 20 December 1996 (status as of
June 27, 2019)

World Intellectual Property Organization

World Trade Organization

List of Abbreviations

XX

References

Bibliography

ALLISON JOHN R./LEMLEY MARK A./SCHWARTZ DAVID L., Our divided patent system, the
University of Chicago Law Review, vol. 82 no. 3, 2015, pp. 1073 ff.

ANDREWS PHILIP WALTER SAWFORD, Manufacturing Business, London 1949.

APEL SVEN, The Role of Features and Aspects in Software Development, Dissertation at
the Otto-von-Guericke University, Magdeburg 2007.

ARMSTRONG JOHN A., Trends in Global Science and Technology and What They Mean
for Intellectual Property Systems, in: Wallerstein M./Mogee M./Schoen R. (eds.),
Global Dimensions of Intellectual Property Rights in Science and Technology,
Washington (DC) 1993, pp. 192 ff.

ARROW KENNETH J., Economic Welfare and the Allocation of Resources for Invention,
Readings in industrial economics, London 1972, pp. 219 ff.

ASSOCIAFTION INTERNATIONALE POUR LA PROTECTION DE LA PROPRIÉTÉ INDUSTRIELLE (AIPPI),
Protection of Computer-Software, yearbook III of 1975, question 57 of the 29th
Congress of San Francisco (May 3-7, 1975), Geneva 1975, found online on:
<https://www.aippi.fr/upload/Q1%20-%2089%20/rs57english.pdf> (retrieved
September 6, 2021), cited as AIPPI.

ATTESLANDER PETER, Methoden der empirischen Sozialforschung, 13th edition, Berlin
2010.

BANASEVIC NICHOLAS, The Implications of the Court of Justice’s Huawei/ZTE Judgment,
Journal of European Competition Law & Practice, vol. 6 no. 7, 2015, pp. 463 ff.

BARRELET DENIS/EGLOFF WILLI, Das neue Urheberrecht. Kommentar zum Bundesgesetz
über das Urheberrecht und verwandte Schutzrechte, 3rd edition, Berne 2008.

BARRY EVELYN J./KEMERER CHRIS F./SLAUGHTER SANDRA A., On the Uniformity of Software
Evolution Patterns, Proceedings on the 25th International Conference on Soft-
ware Engineering, Electrical and Electronics Engineers (IEEE) Computer Society
Press, New York 2003, pp. 106 ff., found online at <https://ieeexplore.ieee.org/
stamp/stamp.jsp?arnumber=1201192> (retrieved September 6, 2021).

BAUKNECHT KURT/ZEHNDER CARL AUGUST, Grundzüge der Datenverarbeitung. Methoden
und Konzepte für die Anwendungen. Leitfäden der angewandten Informatik,
Stuttgart 1989.

BECKER MARIO/HABERFELLNER REINHARD/LIEBETRAU GEORG/VOESSNER SIEGFRIED: EDV-
Wissen für Anwender. Das Informatik-Handbuch für die Praxis, 13th edition,
Zurich/Stuttgart 2004, cited as BECKER ET AL.

XXI

https://www.aippi.fr/upload/Q1%20-%2089%20/rs57english.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1201192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1201192

BEIER FRIEDRICH-KARL, Die Bedeutung des Patentsystems für den technischen,
wirtschaftlichen und sozialen Fortschritt, GRUR International, 1979, pp. 227 ff.

BELADY LASZLO A./LEHMAN MEIR M., A Model of Large Program Development, IBM Sys-
tems Journal, vol. 15 no. 3, 1976 , pp. 225 ff.

BELL ABRAHAM/PARCHOMOVSKY GIDEON, Reinventing Copyright and Patent, Michigan
Law Review, vol. 113, 2014, pp 231 ff.

BELL THOMAS E./THAYER THOMAS A., Software Requirements: Are They Really a Prob-
lem?, Proceedings of the 2nd international conference on Software engineering,
IEEE Computer Society Press, New York 1976, pp. 61 ff.

BENKARD GEORG/EHLERS JOCHEN/KINKELDEY URSULA (eds.), Europäisches Paten-
tübereinkommen, Munich 2012, cited as Commentary to the EPC (editor).

BENOIT KENNETH/WIESEHOMEIER NINA, Expert Judgments, in: Pickel S./Pickel G./Lauth
H.-J./Jahn D. (eds.), Methoden der vergleichende Politik- und Sozialwissenschaft.
Neue Entwicklungen und Anwendungen, Wiesbaden 2009, pp. 497 ff.

BERESFORD KEITH, Patenting Software under the European Patent Convention, London
2000.

BOCK RICHARD, Simultane Produktentwicklung – Konzepte und Realisierungsalterna-
tiven, in: Scheer A.-W., Handbuch Informationsmanagement, Wiesbaden 1993,
pp. 221 ff.

BODEWIG THEO, Einige Überlegungen zur Erschöpfung bei Zwangslizenzen an stan-
dardessentiellen Patenten, GRUR International, 2015, pp. 626 ff.

BOECKER LINA B., Computerprogramme zwischen Werk und Erfindung. Eine wettbe-
werbsorientierte Analyse des immaterialgüterrechtlichen Schutzes von Comput-
erprogrammen unter besonderer Berücksichtigung von Open Source-Software,
Dissertation at the University of Berlin, in: Mestmaecker E.-J./Moeschel W./Hell-
wig M., Wirtschaftsrecht und Wirtschaftspolitik, Band 229, Baden-Baden 2009.

BOEHM BARRY W., Software Engineering Economics, Englewood Cliffs River (NJ) 1981,
cited as BOEHM (1981).

BOEHM BARRY W., A Spiral Model of Software Development and Enhancement, Com-
puter, IEEE Computer Society Press, vol. 21 no. 5, 1988, pp. 61 ff., cited as
BOEHM (1988).

BOGNER ALEXANDER/MENZ WOLFGANG, Das theoriengenerierende Experteninterview –
Erkenntnisse, Wissensformen, Interaktion, in: Bogner A./Littig B./Menz W. (eds.),
Experteninterviews. Theorien, Methoden, Anwendungsfelder, 3rd edition, Wies-
baden 2009, pp. 61 ff., cited as BOGNER/MENZ (2009a).

BOGNER ALEXANDER/MENZ WOLFGANG, Experteninterview und der Wandel der Wis-
sensproduktion, in: Bogner A./Littig B./Menz W. (eds.), Experteninterviews. The-
orien, Methoden, Anwendungsfelder, 3rd edition, Wiesbaden 2009, pp. 7 ff., cited
as BOGNER/MENZ (2009b).

References

XXII

BOHNSACK RALF/GEIMER ALEXANDER/MEUSER MICHAEL, Hauptbegriffe qualitativer Sozial-
forschung, 4th edition, Opladen/Toronto 2018.

BORNHAUSER JONAS, Anwendungsbereich und Beschränkung des urheberrechtlichen
Vervielfältigungsrechts im digitalen Kontext, Dissertation at the University of
Zurich, Berne 2010.

BOWEN GLENN A., Document Analysis as a Qualitative Method, Qualitative Research
Journal, vol. 9 no. 2, 2009, pp. 27 ff.

BRANDI-DOHRN MATTHIAS, Zur Reichweite und Durchsetzung des urheberrechtlichen
Softwareschutzes, GRUR, 1985, pp. 179 ff.

BRAUMOELLER BEAR F./GOERTZ GARY, The Methodology of Necessary Conditions, Ameri-
can Journal of Political Science, vol. 44 no. 4, 2000, pp. 844 ff.

BRINER ALFRED, Patentierungsvoraussetzungen, in: David L./von Bueren R. (eds.),
SIWR IV, Basel/Geneva/Munich 2006, pp. 47 ff.

BUEHLER LUKAS, Schweizerisches und internationales Urheberrecht im Internet, Dis-
sertation of the University of Fribourg, Fribourg 1999.

BULLINGER HANS-JOERG/FAEHNRICH KLAUS-PETER/ILG ROLF, Benutzungsoberflächen und
Entwicklungswerkzeuge, in: Scheer A.-W., Handbuch Informationsmanagement,
Wiesbaden 1993, pp. 939 ff.

BURKERT HERBERT/HETTICH PETER/THOUVENIN FLORENT, Eine kritische Geschichte des
Informationsrechts – Erlebte, bevorstehende und versäumte Paradigmenwechsel
im Recht zufolge Digitalisierung, in: Gschwend L./Hettich P./Mueller-Chen
M./Schindler/Wildhaber I., Recht im digitalen Zeitalter. Festgabe Schweizerischer
Juristentag 2015 in St. Gallen, Zurich/St. Gallen 2005, pp. 49 ff.

BUXMANN PETER/HESS THOMAS/LEHMANN SONJA, Software as a Service, Wirtschaftsin-
formatik, vol. 50 no. 6, 2008, pp. 500 ff.

CALAME THIERRY, Grundlagen; Die Berechtigung an der Erfindung; Die Wirkung des
Patents; Besonderheiten von computerimplmentierten Erfindungen, in: David
L./von Bueren R. (eds.), SIWR IV, Basel/Geneva/Munich 2006, pp. 3 ff., 171 ff.,
401 ff. and 651 ff., cited as CALAME (2006).

CALAME THIERRY, Softwareschutz: Möglichkeiten und Grenzen, in: Internet-Recht und
Electronic Commerce Law, 9. Tagungsband, Berne 2007, pp. 325 ff., cited as
CALAME (2007).

CARLETON DENNIS M., A Behaviour-Based Model for Determining Software Copyright
Infringement, Berkeley Technology Law Journal, vol. 10 no. 2, 1995, 405 ff.

CHARMAZ KATHY, Constructing Grounded Theory: A Practical Guide Through Qualita-
tive Analysis, London 2013.

CHEN LIANPING, Continuous Delivery: Huge Benefits, but Challenges Too, IEEE, vol. 32
no. 2, 2015, pp. 50 ff.

References

XXIII

CHERPILLOD IVAN, L’objet du droit d’auteur. Etude critique de la distinction entre forme
et idée, Dissertation at the University of Lausanne, Lausanne 1985, cited as
CHERPILLOD (1985).

CHERPILLOD IVAn, Urheberrecht: Geltungsbereich, in: David L./von Bueren R. (eds.),
SIWR II/1, Basel/Geneva/Munich 2014, pp. 14 ff., cited as CHERPILLOD (2014).

CICOUREL AARON V., Method and Measurement in Sociology, London 1964.

COCKBURN ALISTAIR, Using Both Incremental and Iterative Development, STSC
CrossTalk, USAF Software Technology Support Center, vol 21 no. 5, Utah 2008,
pp. 27 ff.

COHEN MORRIS A./ELIASBERG JEHOSHUA/HO TECK-HUA, New Product Development: The
Performance and Time-to-Market Tradeoff, Management Science, vol. 42 no. 2,
1996, pp. 173 ff.

COHEN JULIE E./LEMLEY MARK A., Patent Scope and Innovation in the Software Industry
California Law Review, vol. 89, 2007, pp. 1 ff.

CORBIN JULIET/STRAUSS ANSELM, Basics of Qualitative Research, 4th edition, Los Angeles
2015.

COWAN ROBIN/JONARD NICOLAS, The Dynamics of Collective Invention, Journal of Eco-
nomic Behavior & Organization, vol. 52 no. 4, 2003, pp. 513 ff.

CROSS NIGEL, Design Cognition: Results from Protocol and other Empirical Studies of
Design Activity, in: Eastman C./McCracken M./Newstetter W. (eds.), Design
Knowing and Learning: Cognition in Design Education, Atlanta (GA) 2001, pp. 79 ff.

DAVID PAUL A., Intellectual Property Institutions and the Panda’s Thumb: Patent, Copy-
right, and Trade Secrets in Economic Theory and History, in: Wallerstein M./Mo-
gee M./Schoen R. (eds.), Global Dimensions of Intellectual Property Rights in Sci-
ence and Technology, Washington (DC) 1993, pp. 29 ff.

DAVIDSON DUCAN M., The Future of Software Protection: Common Law, Uncommon
Software, University of Pittsburgh Law Review, vol. 47, 1985, pp. 1037 ff.

DEEKE AXEL, Experteninterviews – ein methodologisches und forschungspraktisches
Problem. Einleitende Bemerkungen und Fragen zum Workshop, in: Brinkmann
Ch./Deeke A./Voelkel B. (eds.), Experteninterviews in der Arbeitsmarktforschung,
Nuernberg 1995, pp. 7 ff.

DENZIN NORMAN K., The Art and Politics of Interpretation, in: Denzin Norman K./Lin-
coln Yvonna S., Collecting and Interpreting Qualitative Materials, Thousand Oaks
1998, pp. 313 ff.

DESSEMONTET FRANÇOIS, Einführung: Immaterialgüterrecht und Privatrecht; Schutz-
dauer, in: David L./von Bueren R. (eds.), SIWR I/1, Basel/Geneva/Munich 1995,
pp. 1 ff. and 315 ff.

DENZIN NORMAN K./LINCOLN YVONNA S., The Sage Handbook of Qualitative Research,
5th edition, Los Angeles 2005.

References

XXIV

DIJKSTRA EDSGER W., A Discipline of Programming, Englewood Cliffs (NJ) 1976.

DORR ROBERT C./MUNCH CHRISTOPHER H., Protecting Trade Secrets, Patents, Copy-
rights, and Trademarks, New York (NY) 1995.

DREIER THOMAS, Der Urheberrechtsschutz für Computerprogramme im Ausland –
Rechtsfragen und Tendenzen in Rechtsprechung und Gesetzgebung, GRUR Int.,
1988, pp. 476 ff., cited as DREIER (1988).

DREIER THOMAS, Verletzung urheberrechtlich geschützter Software nach der Umset-
zung der EG-Richtlinie, GRUR, 1993, pp. 781 ff., cited as DREIER (1993).

DUBIN JOSEPH S., The Universal Copyright Convention, California Law Review, vol. 42
no. 1, 1954, pp. 89 ff.

DUTFIELD GRAHAM/SUTHERSANEN UMA, Global Intellectual Property Law, Cheltenham
(UK)/Northhampton (MA) 2008.

EBBINGHAUS BERNHARD, Mehr oder weniger? Quantitativer versus Qualitativer Vergle-
ich, in: Pickel S./Pickel G./Lauth H.-J./Jahn D. (eds.), Methoden der vergle-
ichende Politik- und Sozialwissenschaft. Neue Entwicklungen und Anwendungen,
Wiesbaden 2009, pp. 197 ff.

EDVARDSSON BO, Quality in New Service Development: Key Concepts and a Frame of
Reference, International Journal of Production Economics, no. 52/1-2, Oxford
1997, pp. 31 ff.

ENSTHALER JUERGEN/MOELLENKAMP HEINZ T., GRUR, 1994, pp. 151 ff.

ERLANDSON DAVID A./HARRIS EDWARD L./SKIPPER BARBARA L./ALLEN STEVE D., Doing Nat-
uralistic Inquiry: A Guide to Methods, Newbury Park/London/New Delhi 1993.

ERNST STEFAN, Die Verfügbarkeit des Source Codes – Rechtlicher Know-how-Schutz
bei Software und Webdesign, MMR, 2001, pp. 208 ff.

ERRAT JUDY A./GOWLING, STRATHY & HENDERSON, A Study on the Patent Law Standard of
Non-obviousness, Ottawa 1996.

EWUSI-MENSAH KWEKU, Critical Issues in Abandoned Information Systems Develop-
ment Projects, Communications of the ACM, vol. 40 no. 9, 1997, pp. 74 ff.

FINCH JOHN H., The Role of Grounded Theory in Developing Economic Theory, Journal
of Economic Methodology, vol. 9 no. 2, 2002, pp. 213 ff.

FISHER FRANCIS D., The Electronic Lumberyard Builders’ Rights: Technology, Copy-
rights, Patents, and Academe, Change: The Magazine of Higher Learning, vol. 21
no. 3, 1989, pp. 12 ff.

FLOYD ROBERT W., The Paradigms of Programming, Communications of the ACM, vol. 22
no. 8, 1979, pp. 455 ff.

FOEGEN MALTE/MEYSER ASTRID/GANSSER CAROLINE/CROOME DAVID/RAAK CLAUDIA/
BATTENFELD JOERG/KROELL ANNA K./FRITSCH-LEOPOLDT CHRISTOPH/PORRO SIMON,
Der ultimative Scrum Guide, Darmstadt 2014, cited as FOEGEN ET AL.

References

XXV

FORSTMOSER PETER, Vertragsprobleme im Bereich der EDV, Sysdata und Bürotechnik,
vol. 8-9, Liestal 1975, pp. VI ff.

FREI ALEXANDRA, Softwareschutz durch Patentrecht, in: Thomann F. H./Rauber G.
(eds.), Softwareschutz, Bern 1998, pp. 97 ff.

FROEHLICH-BLEULER GIANNI, Indirekte Nutzung von Computerprogrammen, sui-generis,
Zurich 2018, pp. 464 ff.

FUEGI JOHN/FRANCIS JO, Lovelace & Babbage and the Creation of the 1843 ‘Notes’, IEEE
Computer Society Press, vol. 25 no. 4, 2003, pp. 16 ff., found online at
<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253887> (re-
trieved September 6, 2021).

FUSCO STEFANIA, Is In Re Bilski a Déjà Vu?, Stanford Technology Law Review, Palo Alto
2009, pp. 143 ff.

GALAL GALAL HASSAN, From Contexts to Constructs: The Use of Grounded Theory in
Operationalising Contingent Process Models, European Journal of Information
Systems 10 no. 1, Abingdon 2001, pp. 2 ff.

GEORGE ALEXANDER L./BENNETT ANDREW, Case Studies and Theory Development in the
Social Sciences, Cambridge (MA) 2005.

GIDDENS ANTHONY, Leben in einer post-traditionalen Gesellschaft, Soziale Welt, vol. 44
no. 4, 1993, pp. 445 ff.

GIRTLER ROLAND, Methoden der Feldforschung, 4th edition, Vienna/Cologne/Weimar
2001.

GLASER BARNEY G./ TRAUSS ANSELM L., The Discovery of Grounded Theory. Strategies
for Qualitative Research, London/New York 2017.

GMEHLICH RAINER/RUST HEINRICH, Mehr als nur Programmieren. Eine Einführung in die
Informatik, Braunschweig/Wiesbaden 1993.

GOLDSTEIN KENNETH, Getting in the Door: Sampling and Completing Elite Interviews,
Political Science and Politics, vol. 35 no. 4, 2002, pp. 669 ff.

GORDON RAYMOND L., Interviewing: Strategy, Techniques and Tactics, Homewood (IL)
1969.

GOVONI CARLO, Der urheberrechtliche Schutz von Computerprogrammen, Aktuelle Ju-
ristische Praxis, 1993, pp. 569 ff.

GROSSENBACHER ROLAND, Die Entwicklung des Welturheberrechtsabkommens im Hin-
blick auf den Beitritt der Sowjetunion, Dissertation at the University of Zurich,
Zurich 1977.

GRUETZMACHER MALTE, Gebrauchtsoftware und Übertragbarkeit von Lizenzen. Zu den
Rechtsfragen auch jenseits der Erschöpfungslehre, Computer und Recht, vol. 23
no. 9, 2007, pp. 549 ff.

References

XXVI

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253887

HABERSTUMPF HELMUT, Computerprogramm und Algorithmus. Zur Vereinbarkeit des
urheberrechtlichen Schutzes für Computerprogramme mit den Erfordernissen
des wissenschaftlichen Fortschritts, UFITA, vol. 95, 1983, pp. 221 ff., cited as
HABERSTUMPF (1983).

HABERSTUMPF HELMUT, Der urheberrechtliche Schutz von Computerprogrammen, in:
Lehmann M. (ed.), Rechtsschutz und Verwertung von Computerprogrammen, 2nd
edition, Cologne 1993, pp. 69 ff., cited as HABERSTUMPF (1993).

HAGE JERALD, Techniques and Problems of Theory Construction in Sociology, New York
1972.

HARISON ELAD, Intellectual Property Rights Innovation and Software Technologies. The
Economics of Monopoly Rights and Knowledge Disclosure, Cheltenham 2008.

HART CHRIS, Doing a Literature Review: Releasing the Social Science Research Imagina-
tion, 2nd edition, London/Thousand Oaks/New Delhi/Singapore 2018.

HEINEMANN ANDREAS, Immaterialgüterschutz in der Wettbewerbsordnung: Eine grund-
lagenorientierte Untersuchung zum Kartellrecht des geistigen Eigentums, Jus Pri-
vatum, vol. 65, Tuebingen 2002, cited as HEINEMANN (2002).

HEINEMANN ANDREAS, Compulsory Licences and Product Integration in European Com-
petition Law – Assessment of the European Commission’s Microsoft Decision, In-
ternational Review of Intellectual Property and Competition Law, vol. 36, 2005,
pp. 63 ff., cited as HEINEMANN (2005).

HEINEMANN ANDREAS, Gefährdung von Rechten des geistigen Eigentums durch Kartell-
recht? Der Fall „Microsoft” und die Rechtsprechung des EuGH, GRUR, 2006,
pp. 705 ff., cited as HEINEMANN (2006).

HEINEMANN ANDREAS, Wettbewerb auf den Märkten der Informationstechnologie – Die
Perspektive des Europäischen Kartellrechts, in: Epiney A./Diezig St. (eds.),
Schweizerisches Jahrbuch für Europarecht 2012/2013, Zurich/Basel/Geneva
2013, pp. 355 – 376, cited as HEINEMANN (2013).

HEINEMANN ANDREAS, Standardessenzielle Patente in Normenorganisationen. Kartell-
rechtliche Vorgaben für die Einlösung von Lizenzierungsversprechen, GRUR, 2015,
pp. 855 ff., cited as HEINEMANN (2015).

HEINRICH PETER, DesG/HMA: Kommentar zum schweizerischen Designgesetz, den
entsprechenden Bestimmungen des Haager Musterschutzabkommens und weit-
eren Erlassen, 2nd edition, Zurich 2014, cited as Orell Fuessli Commentary to the
Swiss DesG.

HEINRICH PETER, PatG/EPÜ: Kommentar zum Schweizerischen Patentgesetz und den
entsprechenden Bestimmungen des Europäischen Patentübereinkommens synop-
tisch dargestellt, 3nd edition, Berne 2018, cited as Staempfli Commentary to the
Swiss PatG/EPC.

References

XXVII

HELFFERICH CORNELIA, Die Qualität qualitativer Daten. Manual für die Durchführung
qualitativer Interviews, 3rd edition, Wiesbaden 2011.

HEPP DIETER/MUELLER CHRISTOPH/HERRMANN TORBJOERN, Softwareschutz und Soft-
wareverträge in einzelnen Ländern: Schweiz, in: Ullrich H./ Lejeune M. (eds.), Der
internationale Softwarevertrag nach deutschem und ausländischem Recht, 2nd
edition, Frankfurt am Main 2006, pp. 1151 ff.

HESS THOMAS/WILDE THOMAS, Forschungsmethoden der Wirtschaftsinformatik. Eine
empirische Untersuchung, Wirtschaftsinformatik, vol. 49 no. 4, 2007, 280 ff.

HILTI CHRISTIAN/PEDRAZZINI MARIO M., Europäisches und Schweizerisches Patent- und
Prozessrecht, 3rd edition, Bern 2008.

HILTY RETO M., Der Schutz von Computerprogrammen – nationale und internationale
Normen auf dem Prüfstand des Internets, sic!, 1997, pp. 128 ff., cited as
HILTY (1997).

HILTY RETO M., Urheberrecht, Bern 2011, cited as HILTY (2010).

HILTY RETO M., Softwareurheberrecht statt Softwarepatente? Forderungen der
deutschen Politik unter der Lupe, in: Alexander Ch./Bornkamm J./Buchner
B./Fritzche J./Lettl T., Festschrift für Helmut Köhler zum 70. Geburtstag, Munich
2014, pp. 289 ff., cited as HILTY (2014).

HILTY RETO M., Innovationsförderung durch Schutzbegrenzungen – ein Plädoyer für
die Zwangslizenz, in: Grolimund P./Koller A./Loacker L. D./Portmann W., Fest
Festschrift für Anton K. Schnyder zum 65. Geburtstag, Zurich 2018, pp. 1179 ff.,
cited as HILTY (2018).

HILTY RETO M./GEIGER CHRISTOPHE, Patenting Software? A Judicial and Socio-Economic
Analysis, International Journal of Intellectual Property Management, Olney 2005,
pp. 615 ff., cited as HILTY/GEIGER (2005).

HILTY RETO M./GEIGER CHRISTOPHE, Towards a New Instrument of Protection for Soft-
ware in the EU? Learning the Lessons from the Harmonization Failure of Software
Patentability, in: Ghidini G./Arezzo E. (eds.), Biotechnology aAnd Software Patent
Law – A Comparative Review of New Developments, Cheltenham UK/North-
hampton (MA) 2011, pp. 153 ff., cited as HILTY/GEIGER (2011).

HILTY RETO M./KOEKLUE KAYA, Reichweite des Rechtsschutzes von Computerprogram-
men – Eine Kritik an der EuGH-Rechtsprechung, in: Buescher W./Erdmann
W./Haedicke M./Koehler H. Loschelder M. (eds.), Festschrift für Joachim
Bornkamm zum 65. Geburtstag, Munich 2014, pp. 797 ff.

HILTY RETO M./SLOWINSKI PETER R., Standardessentielle Patente – Perspektiven ausser-
halb des Kartellrechts, GRUR International, 2015, pp. 781 ff.

HOEPFL MARIE C., Choosing Qualitative Research: A Primer for Technology Education
Researchers, Journal of Technology Education, vol. 9 no. 1, 1997, pp. 47 ff.

HOEREN THOMAS, Internetrecht, 3rd edition, Cologne 2018.

References

XXVIII

HOMMEL GUENTER/JAEHNICHEN STEFAN/KOSTER CORNELIS H. A., Methodisches Program-
mieren, Berlin/New York 1983, cited as HOMMEL ET AL.

HOPF CHRISTEL, Die Pseudo-Exploration – Überlegungen zur Technik qualitativer In-
terviews in der Sozialforschung, Zeitschrift für Sozialforschung, vol. 7 no. 2, 1978,
pp. 97 ff.

HORNS AXEL, Anmerkungen zu begrifflichen Fragen des Softwareschutzes, GRUR, 2001,
pp. 1 ff.

HUMBLE JEZ/FARLEY DAVID, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, Boston 2011.

JAENICH MICHAEL, Sonderrechtsschutz für geschäftliche Methoden, GRUR, 2003,
pp. 483 ff.

JERSCH RALF, Ergänzender Leistungsschutz und Computersoftware: Rechtsschutz für
innovative Arbeitsergebnisse durch UWG und BGB, Dissertation at the Westfaelis-
chen Wilhelms-University of Muenster, Schriftenreihe Recht und Computer-
praxis, vol. 3, Munich 1993.

KOOTHS STEFAN/LANGENFURTH MARKUS/KALWAY NADINE, Open-SourceSoftware. Eine
volkswirtschaftliche Bewertung, MICE Economic Research Studies, vol. 4, 2003,
cited as KOOTHS ET AL.

KATZ MICHAEL L./SHAPIRO CARL, Systems Competition and Network Effects, Journal of
Economic Perspectives, no, 2, Nashville 1994, pp. 93 ff.

KAWULICH BARBARA B., Participant Observation as a Data Collection Method, Forum
Qualitative Social Research, vol. 6 no. 2, 2005, article 43.

KINDERMANN MANFRED, Vertrieb und Nutzung von Computersoftware aus urheber-
rechtlicher Sicht, GRUR, 1983, pp. 150 ff.

KITCH EDMUND W., The Nature and Function of the Patent System, The Journal of Law
& Economics, vol. 20 no. 2, 1977, pp. 265 ff.

KLEMPERER PAUL, How Broad Should the Scope of Patent Protection Be?, The RAND
Journal of Economics, vol. 21 no 1, 1990, pp. 113 ff.

KOEHLER REIMAR, Der urheberrechtliche Schutz der Rechenprogramme, Urheber-
rechtliche Abhandlungen, vol. 8, Munich 1968.

KOERBER TORSTEN, Abuse of a Dominant Position by Legal Actions of Owners of Stan-
dard-Essential Patents: Huawei Technologies Co. Ltd v. ZTE Corp., Common Mar-
ket Law Review, vol. 53 no. 4, 2016, pp. 1107 ff.

KOGLIN OLAF, Opensourcerecht. Die urheber- und schuldrechtlichen Beziehungen
zwischen Lizenzgeber und Lizenznehmer bei Open Source Software am Beispiel
der General Public License (GPL), in: Costede J./Spindler G., Schriften zum
Wirtschafts- und Medienrecht, Steuerrecht und Zivilprozessrecht, vol. 31, Franfurt
am Main 2007.

References

XXIX

KOREIMANN DIETER S., Grundlagen der Software-Entwicklung, 3rd edition, Munich/Vi-
enna/Oldenbourg 2000.

KRASSER RUDOLF, Erweiterung des patentrechtlichen Erfindungsbegriffs?, GRUR, 2001,
pp. 959 ff.

KRIBBER KLAUS-DIETER, Berücksichtigung gewerblicher Schutzrechte in Softwareen-
twicklungsprojekten, Fachberichte des Fachbereichs Elektrotechnik, vol. 1, 1998,
found online on <https://www.yumpu.com/de/document/read/5858593/
berucksichtigung-gewerblicher-schutzrechte-in-software-> (retrieved Septem-
ber 6, 2021).

KRUEGER CHARLES W., Software Reuse, ACM Computing Surveys, vol. 24 no. 2, 1992,
pp. 131 ff.

KRUEGER WILHELM/PFEIFFER PETER, Eine konzeptionelle und empirische Analyse der In-
formationsstrategien und der Aufgaben des Informationsmanagements,
Zeitschrift für betriebswirtschaftliche Forschung, vol. 43, 1991, pp. 21 ff.

KUMMER MAX, Das urheberrechtlich schützbare Werk, Berne 1968.

KUR ANNETTE, Auswirkungen des neuen Geschmacksmusterrecht auf die Praxis, GRUR,
2002, pp. 661 ff., cited as KUR (2002).

KUR ANNETTE, Protection of Graphical User Interfaces Under European Design Legisla-
tion, International Review of Intellectual Property and Competition Law, vol. 34
no. 1, 2003, pp. 50 ff. cited as KUR (2003).

LANDES WILLIAM M./POSNER RICHARD A., An Economic Analysis of Copyright Law, The
Journal of Legal Studies, vol. 18 no. 2, 1989, pp. 325 ff., cited as
LANDES/POSNER (1989).

LANDES WILLIAM M./POSNER RICHARD A., The Economic Structure of Intellectual Prop-
erty Law, Cambridge (MA) 2003, cited as LANDES/POSNER (2003).

LANG JOHANNES, Patent Protection for E-Commerce Methods in Europe, Computer and
Telecommunications Law Review, vol. 6 no. 5, 2000, pp. 117 ff.

LANGLEY ANN, Strategies for Theorizing From Process Data, The Academy of Manage-
ment Review, vol. 24 no. 4, 1999, pp. 691 ff.

LARMAN CRAIG/BASILI VICTOR R., Iterative and Incremental Development: A Brief His-
tory, IEEE Computer Society Press, vol. 36 no. 6, 2003, pp. 47 ff.

LAURIE RONALD S., Patentability of Computer Programs in the USA, in: Meijboom A., The
Law of Information Technology in Europe: A Comparison with the USA, Deventer
1991.

LEHMANN MICHAEL, Der Rechtsschutz von Computerprogrammen in Deutschland, NJW,
1988, pp. 2419 ff., cited as LEHMANN (1988).

LEMLEY MARK A., Convergence in the Law of Software Copyright, Berkeley Technology
Law Review, vol. 10 no. 1, 1995, pp. 1 ff., cited as LEMLEY (1995).

References

XXX

https://www.yumpu.com/de/document/read/5858593/berucksichtigung-gewerblicher-schutzrechte-in-software-
https://www.yumpu.com/de/document/read/5858593/berucksichtigung-gewerblicher-schutzrechte-in-software-

LEMLEY MARK A., Intellectual Property Rights and Standard-Setting Organizations, Cal-
ifornia Law Review, vol. 90 no. 6, pp. 1889 ff., cited as LEMLEY (2002).

LEMLEY MARK A., Software Patents and the Return of Functional Claiming, Wisconsin
Law Review, 2013, pp. 905 ff., cited as LEMLEY (2013).

LEMLEY MARK A./BURK DAN L., Designing optimal software patents, in: Hahn R. (ed.), In-
tellectual Property Rights in Frontier Industries: Software and Biotechnology,
Washington (DC) 2005, pp. 81 ff.

LEMLEY MARK A./SHAPIRO CARL, A Simple Approach to Setting Reasonable Royalties for
Standards-Essential Patents, Berkeley Technology Law Journal, vol. 28, 2013,
pp. 1135 ff.

LEMLEY MARK A./MENELL PETER S./MERGES ROBERT P./SAMUELSON PAMELA/CARVER BRIAN
W., Software & Internet Law, 4th edition, New York 2011, cited as LEMLEY ET AL.

LESSIG LAWRENCE, The Limits in Open Code: Regulatory Standards and the Future of
the Net, Berkeley Technology Law Journal, vol. 14, 1999, pp. 759 ff.

LIEBOLD RENATE/TRINCZEK RAINER, Experteninterview, in: Kuehl St./Strodtholz
P./Taffertshofer A. (eds.), Handbuch Methoden der Organisationsforschung.
Quantitative und Qualitative Methoden, Wiesbaden 2009, pp. 32 ff.

LINCOLN YVONNA S./GUBA EGON G., Naturalistic Inquiry, Thousand Oaks 1985.

LITTIG BEATE, Interviews mit Eliten – Interviews mit ExpertInnen: Gibt es Unter-
schiede?, in: Bogner A./Littig B./Menz W. (eds.), Experteninterviews. Theorien,
Methoden, Anwendungsfelder, 3rd edition, Wiesbaden 2009, pp. 61 ff.

LUECK GERT, Rechtsschutz und Vertragsgestaltung bei Computer-Software aus
Schweizer Sicht, Schriften zum Medien- und Immaterialgüterrecht, vol. 1, 1986,
pp. 17 ff.

LUTZ MARTIN JOHANNES, Der Schutz der Computerprogramme in der Schweiz, GRUR
International, 1993, pp. 653 ff.

MACHLUP FRITZ, Die wirtschaftlichen Grundlagen des Patentrechts, GRUR Ausland,
1961, pp. 373 ff.

MAMANE DAVID, Das kartellrechtliche Damoklesschwert über dem Immaterialgüter-
recht, in: Olano O. (ed.), Liber amicorum für Felix. H. Thomann zum 80. Geburt-
stag, Zurich 2016, pp. 27 ff.

MARBACH EUGEN/DUCREY PATRIK/WILD GREGOR, Immaterialgüter- und Wettbewerb-
srecht, 4th Edition, Berne 2017.

MARLY JOCHEN, Praxishandbuch Softwarerecht: Rechtsschutz und Vertragsgestaltung,
7th edition, Munich 2018.

MARSHALL CATHERINE/ROSSMANN GRETCHEN B., Designing Qualitative Research, 6th edi-
tion, Los Angeles 2016.

References

XXXI

MATHEMATICAL PROGRAMMING SOCIETY, Report of the Committee on Algorithms and the
Law, Optima, vol. 33 no. 2, 1991, pp. 1 ff.

MAUME PHILIPP, HUAWEI/ZTE, or: How the CJEU Closed the Orange Book, Queen Mary
Journal of Intellectual Property, vol. 6 no. 2, 2016, pp. 207 ff.

MAYNARD JEFF, Modular Programming, London 1972.

MAYRING PHILIPP, Einführung in die qualitative Sozialforschung, 6th edition, Weinheim
2016, as well as 3rd edition, Weinheim 1996, if specially referred to.

MCCONNELL STEVE, Rapid Development: Taming Wild Software Schedules, Washington
(DC) 1996.

MCGAHN DONALD F., Copyright Infringement of Protected Computer Software: An Ana-
lytical Method to Determine Substantial Similarity, Rutgers Computer and Tech-
nology Law Journal, vol. 21, 1995, pp. 88 ff.

MCGARRY DANIEL D., The Metalogicon of John Salisbury: A Twelfth-Century Defense of
the Verbal and Logical Arts of the Trivium, Berkeley 1956.

MELULLIS KLAUS-JUERGEN, Zur Sonderrechtsfähigkeit von Computerprogrammen, in:
Ann Ch./Anders W./Dreiss U./Jestaedt B./Stauder D. (eds.), Materielles Paten-
trecht – Festschrift für Reiman König zum 70. Geburtstag, Cologne/Berlin/Bonn/
Munich 2003, pp. 341 ff.

MERGES ROBERT, As Many as Six Impossible Patents Before Breakfast: Property Rights
for Business Concepts and Patent System Reform, Berkeley Technology Law Jour-
nal, vol. 14, 1999, pp. 577 ff.

MERGES ROBERT/NELSON RICHARD, On the Complex Economics of Patent Scope, Colum-
bia Law Review, vol. 90 no. 4, 1990, pp. 839 ff.

MERTON ROBERT/KENDALL PATRICIA, The Focused Interview, American Journal of Sociol-
ogy, vol. 51 no. 6, 1946, pp. 541 ff.

METZGER AXEL/JAEGER TILL, Open Content-Lizenzen nach deutschem Recht, MMR,
2003, 431 ff.

MEUSER MICHAEL/NAGEL ULRIKE, Expertenwissen und Experteninterview, in: Hitzler
R./Honer A./Maeder Ch. (eds.), Expertenwissen: die institutionalisierte Kompe-
tenz zur Konstruktion von Wirklichkeit, Opladen 1994, pp. 180 ff., cited as
MEUSER/NAGEL (1994).

MEUSER MICHAEL/NAGEL ULRIKE, ExpertInneninterviews – vielfach erprobt, wenig be-
dacht. Ein Beitrag zur Methodendiskussion, in: Bogner A./Littig B./Menz W.
(eds.), Das Experteninterview. Theorie, Methode, Anwendung, 2nd edition (not in-
cluded in the 3rd edition of the book), Wiesbaden 2005, pp. 71 ff., cited as
MEUSER/NAGEL (2005).

References

XXXII

MEUSER MICHAEL/NAGEL ULRIKE, Das Experteninterview – konzeptionelle Grundlagen
und methodische Anlage, in: Pickel S./Pickel G./Lauth H.-J./Jahn D. (eds.), Meth-
oden der vergleichende Politik- und Sozialwissenschaft. Neue Entwicklungen und
Anwendungen, Wiesbaden 2009, pp. 465 ff., cited as MEUSER/NAGEL (2009).

MEUSER MICHAEL/NAGEL ULRIKE, Das Experteninterview – Wissenssoziologische Vo-
raussetzungen und methodische Durchführung, in: Friebertshäuser B. (ed.), Hand-
buch Qualitative Forschungsmethoden in der Erziehungswissenschaft, 4th edi-
tion, Weinheim 2013, pp. 457 ff., cited as MEUSER/NAGEL (2013).

MIEG HARALD/BRUNNER BEAT, Experteninterviews: Reflexionen zur Methodologie und
Erhebungstechnik, Schweizerische Zeitschrift für Soziologie, vol. 30 no. 2, 2004,
pp. 199 ff.

MOEHRING PHILIPP, Die Schutzfähigkeit von Programmen für Datenverarbeitungs-
maschinen, GRUR, 1967, pp. 269 ff.

MOOERS CALVIN N., Computer Software and Copyright, ACM Computing Survey, vol. 7
no. 1, 1975, pp. 45 ff.

MORGAN CHRIS/LANFORD DAVID, Facts and Fallacies, London 1981.

MORSE, JANICE M./FIELD PEGGY A., Nursing Research: The Application of Qualitative Ap-
proaches, Cheltenham 1995.

MOTT KELSEY M., The Concept of the Small Patent in European Legal Systems and
Equivalent Protection under United States Law, Virginia Law Review, vol. 49 no. 2
1963 Charlottesville, pp. 232 ff.

MILLSON MURRAY/WILEMON DAVID, The Strategy of Managing Innovation and Technol-
ogy, Upper Saddle River (NJ) 2008.

MUELLER BARBARA K./OERTLI REINHARD, Urheberrechtsgesetz (URG), Bundesgesetz über
das Urheberrecht und verwandte Schutzrechte. Mit Ausblick auf das EU-Recht,
deutsches Recht, Staatsverträge und die internationale Rechtsentwicklung, 2nd
edition, Berne 2012, cited as Staempfli Commentary to the Swiss CopA (editor).

MURER ANGELIKA/ZURMUEHLE SARAH, Die Bedeutung digitaler Daten in der Fusionskon-
trolle anhand der Unternehmensübernahmen durch Google und Facebook, in:
Epiney A./Kern M./Hehemann L., Schweizerisches Jahrbuch für Europarecht/
Annuaire Suisse de Droit Européen 2014/2015, Zurich 2015, pp. 455 ff.

NEFF EMIL F./ARN MATTHIAS, Urheberrecht im EDV-Bereich, in: David L./von Bueren R.
(eds.), SIWR II/2, Basel/Geneva/Munich 1998.

NEWELL ALLEN, Response: The Models Are Broken, the Models Are Broken!, Pittsburgh
University Law Review, vol. 47, Pittsburgh 1986, pp. 1023 ff.

NEWMAN MAX H. A., Alan Mathison Turing: 1912-1954, in: Biographical Memoirs of Fel-
lows of the Royal Society, vol. 1, London 1955, pp. 253 ff.

NIMMER MELVILLE B./NIMMER DAVID, Nimmer on Copyright, vol. 6, New Providence (NJ)
2014, cited as NIMMER/NIMMER (2014).

References

XXXIII

NIMMER MELVILLE B./NIMMER DAVID, Nimmer on Copyright, vol. 1, New Providence (NJ)
2016, cited as NIMMER/NIMMER (2016).

NIMMER DAVID/BERNACCHI RICHARD L./FRISCHLING GARY N., A Structured Approach to
Analyzing the Substantial Similarity of Computer Software in Copyright Infringe-
ment Cases, Arizona State Law Review, vol. 20, 1988, pp. 625 ff.

NORDHAUS WILLIAM D, Theory of Innovation. An Economic Theory of Technological
Change, The American Economic Review, vol. 59 no. 2, 1969, pp. 18 ff.

NOTH MICHAEL/BUEHLER GREGOR/THOUVENIN FLORENT, Markenschutzgesetz (MSchG),
2nd edition, Berne 2017, cited as Staempfli Commentary to the Swiss MSchG (edi-
tor).

OFFUT JEFF, Quality Attributes of Web Software Applications, IEEE Computer Society
Press, vol. 19 no. 2, 2002, pp. 25 ff.

OGILVIE JOHN W., Defining Computer Program Parts Under Learned Hand’s Abstrac-
tions Test in Software Copyright Infringement Cases, Michigan Law Review, vol. 91
no. 3, 1992, pp. 526 ff.

OHLY ANSGAR, Software und Geschäftsmethoden im Patentrecht, in: Bauknecht
K./Forstmoser P./Zehnder C. A., Computer und Recht, vol. 17 no. 12, 2001,
pp. 809 ff.

OSTERRIETH CHRISTIAN, Technischer Fortschritt – eine Herausforderung für das Paten-
trecht? Zum Gebot der Verhältnismäßigkeit beim patentrechtlichen Unterlas-
sungsanspruch, GRUR, 2018, pp. 985 ff.

PATTON MICHAEL QUINN, Qualitative Evaluation and Research Methods, 3rd edition,
Thousand Oaks 2002.

PERELMAN BRUCE, Proving Copyright Infringement of Computer Software: An Analytical
Framework, Loyola of Los Angeles Law Review, vol. 18, 1985, pp. 919 ff.

PFADENHAUER MICHAELA, Das Experteninterview. Ein Gespräch zwischen Experte und
Quasi-Experte, in: Bogner A./Littig B./Menz W. (eds.), Experteninterview. Theo-
rie, Methode, Anwendungsfelder, 3rd edition, Wiesbaden 2009, pp. 99 ff.

PFEIFFER AXEL, Zur Diskussion der Softwareregelungen im Patentrecht. Zum Ausschluss
von „Programmen für Datenverarbeitungsanlagen… als solche” von der Patent-
fähigkeit, GRUR, 2003, 581 ff.

PICHT PETER GEORG, FRAND wars 2.0 – Rechtsprechung im Anschluss an die Huawei/
ZTE-Entscheidung des EuGH (Teil 1), Wirtschaft und Wettbewerb, vol. 68 no. 5,
2018, pp. 234 ff., cited as PICHT (2018a).

PICHT PETER GEORG, FRAND wars 2.0 – Rechtsprechung im Anschluss an die Huawei/
ZTE-Entscheidung des EuGH (Teil 2), Wirtschaft und Wettbewerb, vol. 68 no. 6,
2018, pp. 300 ff., cited as PICHT (2018b).

References

XXXIV

PICKEL GERT, Der Einbezug des Indificuums in die Länderanalyse – Umfrageforschung
und vergleichende Politikwissenschaft, in: Pickel S./Pickel G./Lauth H.-J./Jahn D.
(eds.), Methoden der vergleichende Politik- und Sozialwissenschaft. Neue En-
twicklungen und Anwendungen, Wiesbaden 2009, pp. 297 ff.

PICKEL GERT/PICKEL SUSANNE, Qualitative Interviews als Verfahren des Ländervergle-
ichs, in: Pickel S./Pickel G./Lauth H.-J./Jahn D. (eds.), Methoden der vergle-
ichende Politik- und Sozialwissenschaft. Neue Entwicklungen und Anwendungen,
Wiesbaden 2009, pp. 441 ff.

PICKEL SUSANNE, Die Triangulation als Methode in der Politikwissenschaft, in: Pickel
S./Pickel G./ Lauth H.-J./Jahn D. (eds.), Methoden der vergleichende Politik- und
Sozialwissenschaft. Neue Entwicklungen und Anwendungen, Wiesbaden 2009,
pp. 517 ff.

PINHEIRO JOHN/LACROIX GERARD, Protecting the Look and Feel of Computer Software,
High Technology Law Journal, vol. 1, 1986, pp. 411 ff.

RAGAVAN SRIVIDHYA/MURPHY BRENDAN/DAVÉ RAJ, FRAND v. Compulsory Licensing: The
Lesser of the Two Evils, Duke Law & Technology Review, vol. 14 no. 1, 2016,
pp. 83 ff.

RANDELL BRIAN, On Alan Turing and the Origins of Digital Computers, University of
Newcastle Upon Tyne, Computing Laboratory, Newcastle 1972.

RAUBER GEORG, Der urheberrechtliche Schutz von Computerprogrammen, in:
Bauknecht K./Forstmoser P./Zehnder C. A., Computer und Recht, vol. 17, Zurich
1988, cited as RAUBER (1988).

RAUBER GEORG, Inhalt und Schranken des urheberrechtlichen Softwareschutzes, in:
Software-Schutz. Software-Haftung, vol. 9, Schriftenreihe SAV, Zurich 1992,
pp. 33 ff., cited as RAUBER (1992).

RAUBER GEORG, Lauterkeitsrechtlicher Softwareschutz, in: Thomann F. H./Rauber G.
(eds.), Softwareschutz, Bern 1998, pp. 1 ff., cited as RAUBER (1998).

REHBINDER MANFRED/VIGANÒ ADRIANO, Urheberrecht und verwandte Schutzrechte mit
ausführenden Verordnungen, Nebengesetzen, zwischenstaatlichen Verträgen, 3rd
edition, Zurich 2008.

REICHMAN JEROME H., Legal Hybrids Between the Patent and Copyright Paradigms, Co-
lumbia Law Review, vol. 94 no. 8, 1994, pp. 2432 ff.

RIHOUX BENOÎT, Qualitative Comparative Analysis (QCA) and Related Techniques: Re-
cent Advances and Challenges, in: Pickel S./Pickel G./Lauth H.-J./Jahn D. (eds.),
Methoden der vergleichende Politik- und Sozialwissenschaft. Neue Entwicklun-
gen und Anwendungen, Wiesbaden 2009, pp. 365 ff.

ROSSNAGEL ALEXANDER, Rechtswissenschaftliche Technikfolgenforschung. Umrisse
einer Forschungsdisziplin, Baden-Baden 1993.

References

XXXV

ROYCE WINSTON W., Managing the Development of Large Software Systems: Concepts
and Techniques, Proceedings IEEE WESCON, vol. 26 no. 8, 1970, pp. 1 ff.

RUEESCH CORINNA, Die Weitergabe von Standard-Software, in: Bauknecht
K./Forstmoser P./Zehnder C. A., Computer und Recht, vol. 18, Zurich 1988.

SAMUELSON PAMELA, Does Copyright Protection Under the EU Software Directive Ex-
tend to Computer Program Behavior, Languages and Interfaces?, European Intel-
lectual Property Review, February, 2012, pp. 158 ff., cited as SAMUELSON (2012).

SAMUELSON PAMELA, Is Software Patentable?, Communications of the ACM, vol. 56
no. 11, 2013, pp. 23 ff., cited as SAMUELSON (2013).

SAMUELSON PAMELA, Reconceptualizing Copyright’s Merger Doctrine, Journal of the
Copyright Society of the U.S.A., vol. 63, 2016, pp. 417 ff., cited as SAMUELSON (2016).

SAMUELSON PAMELA, Functionality and Expression in Computer Programs: Refining the
Tests for Software Copyright Infringement, Berkeley Technology Law Review,
vol. 31 no. 3, 2017, pp. 1215 ff., cited as SAMUELSON (2017a).

SAMUELSON PAMELA, Strategies for Discerning the Boundaries of Copyright and Patent
Protections, Notre Dame Law Review, vol. 92 no. 4, 2017, pp. 1493 ff., cited as
SAMUELSON (2017b).

SAMUELSON PAMELA/DAVIS RANDALL/KAPOR MITCHELL D. REICHMAN JEROME H., A Mani-
festo Concerning the Legal Protection of Computer Programs, Columbia Law Re-
view, vol. 94, 1994, pp. 2308 ff. (SAMUELSON ET AL.)

SAMUELSON PAMELA/SCOTCHMER SUZANNE, The Law and Economics of Reverse Engi-
neering, Yale Law Journal, vol. 111 no. 7, 2002, pp. 1575 ff.

SCHERER FREDERIC M., Nordhaus’ Theory of Optimal Patent Life: A Geometric Reinter-
pretation, The American Economic Review, vol. 62 no. 3, 1972, pp. 422 ff.

SCHIFFNER THOMAS, Open Source Software, Freie Software im deutschen Urheber- und
Vertragsrecht, Munich 2003.

SCHRICKER GERHARD/LOEWENHEIM ULRICH, Urheberrecht Kommentar, 5th edition, Mu-
nich 2017, cited as Commentary to the German UrhG (editor).

SCHWABACH AARON, Internet and the Law: Technology, Society, and Compromises,
Santa Barbara 2014.

SCOTCHMER SUZANNE, Standing on the Shoulders of Giants: Cumulative Research and
the Patent Law, The Journal of Economic Perspectives, vol. 5 no. 1, 1991, pp. 29 ff.,
cited as SCOTCHMER (1991).

SCOTCHMER SUZANNE, Innovation and Incentives, Cambridge (MA) 2006, cited as
SCOTCHMER (2006).

SCHLATTER SIBYLLE, Der Rechtsschutz von Computerspielen, Benutzeroberflaächen und
Computerkunst, in: Lehmann M. (ed.), Rechtsschutz und Verwertung von Com-
puterprogrammen, 2nd edition, Cologne 1993, pp. 169 ff.

References

XXXVI

SCHMIDT DOUGLAS C., Model-Driven Engineering, IEEE Computer Society Press, vol. 39
no. 2, 2006, pp. 25 ff.

SCHOELCH GUENTHER, Patentschutz für computerimplementierte Entwurfsmethoden –
Ein Kulturbruch?, GRUR, 2006, pp. 969 ff.

SCHUETZ ALFRED, Der gut informierte Bürger, in: Brodersen A. (ed.), Alfred Schütz.
Gesammelte Aufsätze, vol. 2, The Hague 1972, pp. 85 ff.

SCHUETZ FRITZ/MEINEFELD WERNER/SPRINGER WERNER/WEYMANN ANSGAR, Grundlagen-
theoretische Voraussetzungen methodisch kontrollierten Fremdverstehens, in:
Arbeitsgruppe Bielefelder Soziologen (eds.), Alltagswissen, Interaktion und
gesellschaftliche Wirklichkeit, vol. 2, Wiesbaden 1980, pp. 433 ff., cited as SCHUETZ
ET AL.

SCHUHMACHER DIRK, Schutz von Algorithmen für Computerprogramme, Schriften zum
Informations-, Telekommunikations- und Medienrecht, vol. 27, Muenster 2004.

SCHULZE GERNOT, Urheberrechtsschutz von Computerprogrammen – geklärte Rechts-
frage oder blosse Illusion?, GRUR, 1985, pp. 997 ff.

SCHWABER KEN, Scrum Development Process, in: Sutherland J.V./Patel D./Casanave
C./Miller J./Hollowell G. (eds.), Business Object Design and Implementation, Lon-
don 1997, pp. 117 ff.

SCHWABER KEN/BEEDLE MIKE, Agile Software Development with Scrum, Aurora (IL)
2001.

SCHWARZ CLAUDIA/KRUSPIG SABINE, Computerimplementierte Erfindungen –
Patentschutz von Software?, 2nd edition, Cologne 2018.

SEALE CLIVE, The Quality of Qualitative Research, Qualitative Inquiry, vol. 5 no. 4, 1999,
pp. 465 ff.

SHAPIRO CARL, Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Stan-
dard Setting, Innovation Policy and the Economy, vol. 1, 2001, pp. 119 ff.

SINGER FRIEDEMANN, Programmieren in der Praxis, 2nd edition, Stuttgart 1984.

SLONGO DORIS, Der Softwareherstellungsvertrag, in: Bauknecht K./Forstmoser
P./Zehnder C. A., Computer und Recht, vol. 21, Zurich 1991.

SMITH PRESTON G., Accelerated Product Development: Techniques and Traps, in Kahn
K. B. (ed), The PDMA Handbook of New Product Development, 2nd edition (not in-
cluded in the 3rd edition of the book), Hoboken 2004, pp. 173 ff.

SOMMERVILLE IAN, Software-Engineering, 10th edition, Harlow 2016, as well as 4th edi-
tion published in 1992 in Wokingham where particularly referred to.

SPINDLER GERALD, Rechtsfragen der Open Source, Cologne 2004.

STAFFELBACH OLIVER, die Dekompilierung von Computerprogrammen gemäss Art. 21
URG, Dissertation at the University of Zurich, Berne 2003.

References

XXXVII

STEINKE INES, Gütekriterien qualitativer Forschung, in: Flick U./von Kardorff E./
Steinke I. (eds.): Qualitative Forschung. Ein Handbuch, 11th edition, Reinbek b.
Hamburg 2015, pp. 319 ff.

STIGLER RACHEL, Ooey GUI: The Messy Protection of Graphical User Interfaces, North-
western Journal of Technology and Intellectual Property, vol. 12 no. 3, 2014,
pp. 215 ff.

STRAUB WOLFGANG, Der Sourcecode von Computerprogrammen im schweizerischen
Recht und in der EU-Richtlinie über den Rechtsschutz von Computerprogram-
men, Archiv für Urheber- und Medienrecht, vol. III, Bern 2001, pp. 807 ff., cited as
STRAUB (2001a).

STRAUB WOLFGANG, Individualität als Schlüsselkriterium des Urheberrechts, GRUR Int,
2001, pp. 1 ff., cited as STRAUB (2001b).

STRAUB WOLFGANG, Software im System des Immaterialgüterrechts, Jusletter, publica-
tion of 16. April 2002, cited as STRAUB (2002).

STRAUB WOLFGANG, L’ingénierie inverse et la propriété intellectuelle, Zeitschrift für
Schweizerisches Recht, vol. 122 no. I, 2003, pp. 3 ff., cited as STRAUB (2003).

STRAUB WOLFGANG, Softwareschutz, Zurich/St. Gallen 2011, cited as STRAUB (2011).

STRAUB WOLFGANG, Rechtlicher Schutz von Software-Entwicklungen, in: Weinmann
C./Münch P./Herren J. (eds.), Schweizer IP-Handbuch. Intellectual Property –
Konzepte, Checklisten und Musterdokumente für die Praxis, Basel 2013,
pp. 287 ff., cited as STRAUB (2013).

STRAUB WOLFGANG, Verträge für agil geführte Projekte, Jusletter, publication of
21. Dezember 2015, cited as STRAUB (2015).

STRAUSS ANSELM, Qualitative Analysis. For Social Scientists, Cambridge (UK)/New
York/Melbourne 1987/1988.

STUTZ M. ROBERT/BEUTLER STEPHAN/KUENZI MURIEL (eds.), Designgesetz (DesG), Berne
2006, cited as Staempfli Commentary to the Swiss DesG (editor).

SWANSON GUY E., Frameworks For Comparative Research: Structural Anthropology and
the Theory of Action, in: Vallier I. (ed.), Comparative Methods in Sociology: Essays
on Trends and Applications, Berkeley 1971, pp. 141 ff.

SWANSON E. BURTON/DANS ENRIQUE, System Life Expectancy and the Maintenance Ef-
fort: Exploring their Equilibration, MIS Quarterly, vol. 24 no. 2, Minneapolis 2000,
pp. 277 ff.

SWISSQ, Trends und Benchmarks Studie Schweiz, Zurich/Berne 2019.

TAKEUCHI HIROTAKA/NONAKA IKUJIRO, The New New Product Development Game, Har-
vard Business Review, vol. 64 no. 1, Cambridge (MA) 1986, pp. 137 ff.

References

XXXVIII

TANSEY OISÍN, Process Tracing and Elite Interviewing: A case for Non-Probability Sam-
pling, in: Pickel S./Pickel G./Lauth H.-J./Jahn D. (eds.), Methoden der vergle-
ichende Politik- und Sozialwissenschaft. Neue Entwicklungen und Anwendungen,
Wiesbaden 2009, pp. 481 ff.

THOMANN FELIX H., Grundriss des Softwareschutzes, in: Bauknecht K./Forstmoser
P./Zehnder C. A., Computer und Recht, vol. 24, Zurich 1992, cited as
THOMANN (1992).

THOMANN FELIX H., Softwareschutz durch das Urheberrecht, in: Thomann F. H./Rauber
G. (eds.), Softwareschutz, Bern 1998, pp. 1 ff., cited as THOMANN (1998).

THOUVENIN FLORENT, Funktionale Systematisierung von Wettbewerbsrecht (UWG) und
Immaterialgueterrechten, Dissertation at the University of Zurich, Zurich 2005,
cited as THOUVENIN (2005).

THOUVENIN FLORENT, Offenbarung und Ausführbarkeit – Ein auseinander zu haltendes
Paar House of Lords – Synthon BV v. Smithkline Beecham plc, Opinions of the
Lords of Appeal for Judgment in the Cause, October 20, 2005, sic!, 2006,
pp. 362 ff., cited as THOUVENIN (2006).

THOUVENIN FLORENT, Patentierung von Geschäftsmethoden und Computerprogram-
men: The English Approach: Court of Appeal (Civil Division) – Aerotel Ltd. vs.
Telco Holdings Ltd., Telco Global Distribution Ltd. and Telco Global Ltd., and in
the matter of patent applicaton GB 0314464.9 in the name of Neal William
Macrossan, both on appeal from the High Court of Justice, Chancery Division
(Patents Court), October 27, 2006, sic!, 2007, pp. 664 ff., cited as THOUVENIN (2007).

THOUVENIN FLORENT, Irrtum: Je kleiner der Gesttaltungsspielraum, desto eher sind die
Schutzvoraussetzungen erfüllt, in: Berger M./Macchiacchini S. (eds), Populäre
Irrtümer im Urheberrecht, Festschrift für Reto M. Hilty, Zurich 2008, pp. 61 ff.,
cited as THOUVENIN (2008a).

THOUVENIN FLORENT, Microsoft: Offene Schnittstellen – offene Märkte? Urteil des
EuGH vom 17. September 2007. Microsoft vs. Europäische Kommission (T-201/04),
sic!, 2008, pp. 469 ff., cited as THOUVENIN (2008b).

THOUVENIN FLORENt, Computerimplementierte Erfindungen: Status quo im im Eu-
ropäischen Patentrecht – Entscheidung der Grossen Beschwerdekammer des Eu-
ropäischen Patentamtes vom 12. Mai 2010 (G 3/08), sic!, 2010, pp. 808 ff., cited as
THOUVENIN (2010).

THOUVENIN FLORENT/BERGER MATHIS, Kapitel 6.2. Patentrecht, Kapitel 6.1. Urheberrecht,
Kapitel 6.4. Wettbewerbsrecht (UWG), Kapitel 6.6. Markenrecht, in: WEKA, Infor-
matikrecht für die Praxis (Loseblatt), Zurich 2005.

TOM WILLARD K./NEWBERG JOSHUA, Antitrust and Intellectual Property: From Separate
Spheres to Unified Field, vol. 66, 1997, pp. 167 ff.

TROLLER ALOIS, Urheberrecht und Ontologie, UFITA, vol. 50, 1967, pp. 385 ff., cited as
TROLLER (1967).

References

XXXIX

TROLLER ALOIS, Immaterialgüterrecht: Patentrecht, Markenrecht, Muster- und Modell-
recht, Urheberrecht, Wettbewerbsrecht, vol. 1, 3rd edition, Basel 1983, cited as
TROLLER (1983).

TROLLER ALOIS, Immaterialgüterrecht: Patentrecht, Markenrecht, Muster- und Modell-
recht, Urheberrecht, Wettbewerbsrecht, vol. 2, 3rd edition, Basel 1985, cited as
TROLLER (1985).

ULLRICH HANNS, Technologieschutz nach TRIPS: Prinzipien und Probleme, GRUR Int.,
1995, pp. 623 ff., cited as ULLRICH (1995).

ULLRICH HANNS, Lizenzkartellrecht auf dem Weg zur Mitte, GRUR Int., 1996, pp. 555 ff.,
cited as Ullrich (1996).

Ullrich Hanns/Heinemann Andreas, Abschnitt VII. Immaterialgüterrecht, Teil B: Die
Anwendung der Wettbewerbsregeln auf die Verwertung von Schutzrechten und
sonst geschützten Kenntnissen, in: Immenga U./Mestmaecker E.-J. (Eds.), Wet-
tbewerbsrecht, vol. 1, 5th edition (no included in 6th edition), Munich 2011,
pp. 1668 ff.

ULMER EUGEN, Der Urheberrechtsschutz wissenschaftlicher Werke unter besonderer
Berücksichtigung der Programme elektronischer Rechenanlagen, in: Bayerische
Akademie der Wissenschaften. Philosophisch Historische Klasse, Sitzungs-
berichte, vol. 1., Munich 1967, pp. 3 ff.

VOGEL BERTHOLD, Wenn der Eisberg zu schmelzen beginnt… – Einige Reflexionen über
den Stellenwert und die Probleme des Experteninterviews in der Praxis der em-
pirischen Sozialforschung, in: Brinkmann Ch./Deeke A./Völkel B. (eds.), Experten-
interviews in der Arbeitsmarktforschung, Nuernberg 1995, pp. 73 ff.

VON BUEREN ROLAND/MEER MICHAEL A., Der Werkbegriff, in:
David L./von Bueren R. (eds.), SIWR II/1, Basel/Geneva/Munich 2014, pp. 58 ff.

VON LEWINSKI SILKE, Der EG-Richtlinienvorschlag zur Harmonisierung der Schutzdauer
im Urheber- und Leistungsschutzrecht, GRUR Int., 1992, pp 724 ff.

VON WEIZSAECKER CARL CHRISTIAN, Rechte und Verhältnisse in der modernen
Wirtschaftslehre, Kyklos, vol. 34 no. 3, 1981, pp. 345 ff.

WALKER VICTOR, Developments in the Concept of a Patentable Invention in USA and
Europa: Computer Programs and Methods of Doing Business, Zurich 2001.

WALLER SPENCER WEBER, Antitrust and Social Networking, North Carolina Law Review,
no. 90, 2011, pp. 1771 ff.

WALTL PETER, Geschützte und nicht geschützte Computerprogramme, Berlin 1990.

WANDTKE ARTUR-AXEL/BULLINGER WINFRIED, Praxiskommentar zum Urheberrechtsge-
setz, 4th edition, Munich 2014, cited as Wandtke/Bullinger (editor).

WEBSTER JANE/WATSON RICHARD T., Analyzing the Past to Prepare for the Future: Writ-
ing a Literature Review, Management Information System Quarterly, vol. 26 no. 2,
2002, pp. xiii ff.

References

XL

WELCH ANDREAS/MUELLER CHRISTOPH, Patente – Quo vadis? – Eine Erwiderung, sic!,
2002, 290 ff.

WEN LIAN/TUFFLEY DAVID/ROUT TERRY, Using Composition Trees to Model and Com-
pare Software Process, in: O’Connor R./Rout T./McCaffery F./Dorling A. (ed.),
Software Process Improvement and Capability Determination: 11th International
Conference, Heidelberg 2011, pp. 1 ff.

WIEBE ANDREAS, Know-how-Schutz von Computersoftware: eine rechtsvergleichende
Untersuchung der wettbewerbsrechtlichen Schutzmöglichkeiten in Deutschland
und den USA, Munich 1993.

WICKIHALDER URS, Entwicklungen im Bereich der Patentierung von comput-
ergestützten Erfindungen, sic!, 2002, pp. 579 ff.

WIDMER URSULA, Der urheberrechtliche Schutz von Computerprogrammen, Zeitschrift
für Schweizerisches Recht, 1993, vol. 1, pp. 247 ff.

WIRTH NIKLAUS, Program Development by Stepwise Refinement, Communications of
the ACM, vol. 26 no. 1, 1983 (reprint of 1971), pp. 70 ff.

WITTMER HANS RUDOLF, Der Schutz von Computersoftware – Urheberrecht oder Son-
derrecht?, in: Reh-binder M./Larese W. (eds.), Schriften zum Medienrecht, vol. 6,
Berne 1981.

WOESTEHOFF KNUT, Die First Sale Doktrin und der U.S.-amerikanische Softwaremarkt,
Studien zum Gewerblichen Rechtsschutz und zum Urheberrecht, vo. 47, Hamburg
2008.

WOLFF CHRISTIAN, Zwangslizenzen im Immaterialgüterrecht, Schriften zum deutschen
und internationalen Persönlichkeits- und Immaterialgüterrecht, vol. 10, 2005
Goettingen.

ZEHNDER CARL AUGUST, Informatik-Projektentwicklung: Projekt, Anwendung, Nutzung,
4th edition, Zurich 2003.

ZELLE KARL/SCHLECHTNER OSWALD/SCHMID FRANZ, Algorithmen – Programme, Pro-
grammpakete: Eine Programmbibliothek für Wissenschaft und Verwaltung, Vi-
enna/Munich 1975.

ZIMMERMANN PHILIP R., Cryptography for the Internet, Scientific American, vol. 279
no. 4, 1998, pp. 110 ff.

ZIRN FRANK, Softwarerechtsschutz zwischen Urheberrecht und Patentrecht: Aktuelle
Entwicklungen vor historischem Hintergrund und internationaler Zusammen-
hang, Dissertation at the Humboldt University Berlin, Stuttgart 2004.

References

XLI

Electronic Sources

ACCLAIMIP, 2015 US PATENTING STATISTICS, available at <http://www.ac-
claimip.com/2015-us-patenting-statistics/> (retrieved September 6, 2021).

The Agile Manifesto, published 2001, available at <http://agilemanifesto.org> (re-
trieved September 6, 2021).

AGRAWAL SHAVAK/SANKARAN ANUSH/LAHA ANIRBAN/CHEMMENGATH SANEEM AHMED/
SHRIVASTAVA DISHA/SANKARANARAYANAN KARTHIK, What is deemed computationally
creative?, IBM Journal of Research & Development, vol. 1 no. 63, paper 3, available
at <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8645678&tag=1>
(retrieved September 6, 2021), cited as AGRAWAL ET AL.

BAHIR DAR UNIVERSITY, INSTITUTE OF TECHNOLOGY, SCHOOL OF COMPUTING AND ELECTRICAL
ENGINEERING COMPUTER SCIENCE PROGRAM, Industrial Project I, Car Rental and On-
line Reservation System. For Budget Car Rent (BRC) Bahir-Dar Branch, published
on February 6, 2012, available at <https://www.academia.edu/3442775/
Car_Rent_and_Online_Reservation_System> (retrieved September 6, 2021),
cited as BAHIR DAR UNIVERSITY.

Bridging the Gap, “functional specification”, available at <http://www.bridging-the-
gap.com/functional-specification/> (retrieved July September 6, 2021).

BSA-THE SOFTWARE ALLIANCE, Global Software Survey 2018, available at
<https://gss.bsa.org/wp-content/uploads/2018/05/2018_BSA_GSS_Re-
port_en.pdf> (retrieved September 6, 2021), cited as BSA-THE SOFTWARE ALLIANCE,
Global Software Survey.

BSA-THE SOFTWARE ALLIANCE, Software: A €910 Billion Catalyst for the EU Economy,
2016, available at <https://softwareimpact.bsa.org/pdf/Economic_Im-
pact_of_Software_Report.pdf> (retrieved September 6, 2021), cited as BSA-THE
SOFTWARE ALLIANCE, European Union.

BSA-THE SOFTWARE ALLIANCE, The $1 Trillion Economic Impact of Software in the
United States, 2016, available at <https://softwareimpact.bsa.org/pdf/Eco-
nomic_Impact_of_Software_Report.pdf> (retrieved September 6, 2021), cited as
BSA-THE SOFTWARE ALLIANCE, United States.

The Business Dictionary:

– “design thinking”, available at <http://www.businessdictionary.com/definition/
design-thinking.html> (retrieved July 27, 2019);

– “electronic”, available at <http://www.businessdictionary.com/definition/elec-
tronic.html> (retrieved July 27, 2019);

– “system design”, available at <http://www.businessdictionary.com/definition/sys-
tem-design.html> (retrieved July 27, 2019);

References

XLII

http://www.acclaimip.com/2015-us-patenting-statistics/
http://www.acclaimip.com/2015-us-patenting-statistics/
http://agilemanifesto.org/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8645678&tag=1
https://www.academia.edu/3442775/Car_Rent_and_Online_Reservation_System
https://www.academia.edu/3442775/Car_Rent_and_Online_Reservation_System
http://www.bridging-the-gap.com/functional-specification/
http://www.bridging-the-gap.com/functional-specification/
https://gss.bsa.org/wp-content/uploads/2018/05/2018_BSA_GSS_Report_en.pdf
https://gss.bsa.org/wp-content/uploads/2018/05/2018_BSA_GSS_Report_en.pdf
https://softwareimpact.bsa.org/pdf/Economic_Impact_of_Software_Report.pdf
https://softwareimpact.bsa.org/pdf/Economic_Impact_of_Software_Report.pdf
https://softwareimpact.bsa.org/pdf/Economic_Impact_of_Software_Report.pdf
https://softwareimpact.bsa.org/pdf/Economic_Impact_of_Software_Report.pdf
http://www.businessdictionary.com/definition/design-thinking.html
http://www.businessdictionary.com/definition/design-thinking.html
http://www.businessdictionary.com/definition/electronic.html
http://www.businessdictionary.com/definition/electronic.html
http://www.businessdictionary.com/definition/system-design.html
http://www.businessdictionary.com/definition/system-design.html

– “time to market”, available at <http://www.businessdictionary.com/definition/
time-to-market.html> (retrieved July 27, 2019).

Cambridge Dictionary, “computer”, available at <http://dictionary.cambridge.org/dic-
tionary/english/computer> (retrieved July 27, 2019).

CAROLI PAULO, Agile Bridge Analogy, published on July 21, 2008, available at <http://ag-
iletips.blogspot.ch/2008/07/agile-bridge-analogy.html> (retrieved September 6,
2021).

CNET, Apple, Google lead tech takeover of top global brands, article published Octo-
ber 5, 2015, available at <http://www.cnet.com/news/apple-google-lead-tech-
takeover-of-top-global-brands/> (retrieved September 6, 2021).

Computerhope, “update”, available at <https://www.computerhope.com/jargon/u/
update.htm> (retrieved September 6, 2021).

COPELAND JACK, ALAN TURING: The Codebreaker Who Saved ‘Millions of Lives’, contribu-
tion published on June 19, 2012 on BBCNews, available at <http://www.bbc.com/
news/technology-18419691> (retrieved September 6, 2021).

Cornell University, Legal Information Institute, “contract”, available at
<https://www.law.cornell.edu/wex/contract> (retrieved September 6, 2021).

Dictionary.com, “database”, available at <https://www.dictionary.com/browse/data-
base> (retrieved September 6, 2021).

DREIER THOMAS, Technik und Recht – Herausforderungen zur Gestaltung der Informa-
tionsgesellschaft, keynote speech at the award ceremony of the honorary senator
dignity to Dr. h.c. Klaus TSCHIRA on November 30, 1999, available at
<https://www.zar.kit.edu/DATA/veroeffentlichungen/_tschira-vor-
trag_8a58e13.pdf> (retrieved September 6, 2021), cited as DREIER (1999).

Foldoc Dictionary

– “information and communication technology”, available at <http://foldoc.org/In-
formation%20and%20Communication%20Technology> (retrieved September 6,
2021);

– “systems development life cycle”, available at <https://foldoc.org/Systems%20De-
velopment%20Life%20Cycle> (retrieved September 6, 2021).

THE HISTORY OF SEO, Short History of Early Search Engines, article available at
<http://www.thehistoryofseo.com/The-Industry/Short_His-
tory_of_Early_Search_Engines.aspx> (retrieved September 6, 2021).

HUMBLE JEZ, The Case for Continuous Delivery, blog-entry published on February 13,
2014 on ThoughtWorks, available at <https://www.thoughtworks.com/insights/
blog/case-continuous-delivery> (retrieved September 6, 2021).

KILLICK JAMES/SAKELLARIOU STRATIGOULA, HUAWEI v ZTE – No More Need to Look at
the Orange Book in SEP Disputes, article published on September 18, 2015 in

References

XLIII

http://www.businessdictionary.com/definition/time-to-market.html
http://www.businessdictionary.com/definition/time-to-market.html
http://dictionary.cambridge.org/dictionary/english/computer
http://dictionary.cambridge.org/dictionary/english/computer
http://agiletips.blogspot.ch/2008/07/agile-bridge-analogy.html
http://agiletips.blogspot.ch/2008/07/agile-bridge-analogy.html
http://www.cnet.com/news/apple-google-lead-tech-takeover-of-top-global-brands/
http://www.cnet.com/news/apple-google-lead-tech-takeover-of-top-global-brands/
https://www.computerhope.com/jargon/u/update.htm
https://www.computerhope.com/jargon/u/update.htm
http://www.bbc.com/news/technology-18419691
http://www.bbc.com/news/technology-18419691
https://www.law.cornell.edu/wex/contract
https://www.dictionary.com/browse/database
https://www.dictionary.com/browse/database
https://www.zar.kit.edu/DATA/veroeffentlichungen/_tschira-vortrag_8a58e13.pdf
https://www.zar.kit.edu/DATA/veroeffentlichungen/_tschira-vortrag_8a58e13.pdf
http://foldoc.org/Information%20and%20Communication%20Technology
http://foldoc.org/Information%20and%20Communication%20Technology
https://foldoc.org/Systems%20Development%20Life%20Cycle
https://foldoc.org/Systems%20Development%20Life%20Cycle
http://www.thehistoryofseo.com/The-Industry/Short_History_of_Early_Search_Engines.aspx
http://www.thehistoryofseo.com/The-Industry/Short_History_of_Early_Search_Engines.aspx
https://www.thoughtworks.com/insights/blog/case-continuous-delivery
https://www.thoughtworks.com/insights/blog/case-continuous-delivery

Competition Policy International, available at <https://www.competitionpolicyin-
ternational.com/huawei-v-zte-no-more-need-to-look-at-the-orange-book-in-
sep-disputes/> (retrieved September 6, 2021).

KUHN D.L, Selecting and Effectively Using a Computer Aided Software Engineering
Tool, report no. WSRC-RP-89-483/conference no. CONF-891192-7, published in
1989, available at < http://www.osti.gov/scitech/biblio/5611931> (retrieved Sep-
tember 6, 2021).

LINTHICUM DAVID S., Defining the Value of Continuous Deployment for an Agile World,
report published November 20, 2014 in Gigacom, available at <https://gi-
gaom.com/report/defining-the-value-of-continuous-deployment-for-an-agile-
world/> (retrieved September 6, 2021).

Macmillan Dictionary, “add-on”, available at <https://www.macmillandictionary.com/
dictionary/british/add-on_2> (retrieved September 6, 2021).

THE MEDIUM, System Design in Software Development, blog article published on Sep-
tember 24, 2018, available at <https://medium.com/the-andela-way/system-de-
sign-in-software-development-f360ce6fcbb9> (retrieved September 6, 2021).

Merriam-Webster Dictionary

– “engineering”, available at <http://www.merriam-webster.com/dictionary/engi-
neering> (retrieved September 6, 2021);

– “reverse engineering”, available at <http://www.merriam-webster.com/dictio-
nary/reverse%20engineer> (retrieved September 6, 2021);

– “software”, available at <http://www.merriam-webster.com/dictionary/software>
(retrieved September 6, 2021);

– “software engineering”, available at <http://www.merriam-webster.com/dictio-
nary/software-engineering> (retrieved September 6, 2021).

Motive Glossary, “Look-and-Feel”, available at <http://www.motive.co.nz/glossary/-
looknfeel.php> (retrieved August 4, 2019).

OECD, 2017 Statistics on Life Expectancy, available at <https://data.oecd.org/health-
stat/life-expectancy-at-birth.htm> (retrieved September 6, 2021).

OUT-LAW.COM, Patents Directive killed by European Parliament, article published on
July 6, 2015, available at <http://www.out-law.com/page-5884> (retrieved Sep-
tember 6, 2021).

OXAGILE, Waterfall Software Development Model, blog-entry of February 5, 2014, avail-
able at <http://www.oxagile.com/company/blog/the-waterfall-model/> (re-
trieved September 6, 2021).

PETIT NICOLAS, HUAWEIi v ZTE: Judicial Conservatism at the Patent-Antitrust Intersec-
tion, CPI Antitrust Chronicle, vol. 10 no. 2, published October 2015, available at
<https://orbi.uliege.be/bitstream/2268/192440/1/Huaweï%20v.%20ZTE.pdf>
(retrieved September 6, 2021)

References

XLIV

https://www.competitionpolicyinternational.com/huawei-v-zte-no-more-need-to-look-at-the-orange-book-in-sep-disputes/
https://www.competitionpolicyinternational.com/huawei-v-zte-no-more-need-to-look-at-the-orange-book-in-sep-disputes/
https://www.competitionpolicyinternational.com/huawei-v-zte-no-more-need-to-look-at-the-orange-book-in-sep-disputes/
http://www.osti.gov/scitech/biblio/5611931
https://gigaom.com/report/defining-the-value-of-continuous-deployment-for-an-agile-world/
https://gigaom.com/report/defining-the-value-of-continuous-deployment-for-an-agile-world/
https://gigaom.com/report/defining-the-value-of-continuous-deployment-for-an-agile-world/
https://www.macmillandictionary.com/dictionary/british/add-on_2
https://www.macmillandictionary.com/dictionary/british/add-on_2
https://medium.com/the-andela-way/system-design-in-software-development-f360ce6fcbb9
https://medium.com/the-andela-way/system-design-in-software-development-f360ce6fcbb9
http://www.merriam-webster.com/dictionary/engineering
http://www.merriam-webster.com/dictionary/engineering
http://www.merriam-webster.com/dictionary/reverse%20engineer
http://www.merriam-webster.com/dictionary/reverse%20engineer
http://www.merriam-webster.com/dictionary/software
http://www.merriam-webster.com/dictionary/software-engineering
http://www.merriam-webster.com/dictionary/software-engineering
http://www.motive.co.nz/glossary/-looknfeel.php
http://www.motive.co.nz/glossary/-looknfeel.php
https://data.oecd.org/healthstat/life-expectancy-at-birth.htm
https://data.oecd.org/healthstat/life-expectancy-at-birth.htm
http://www.out-law.com/page-5884
http://www.oxagile.com/company/blog/the-waterfall-model/
https://orbi.uliege.be/bitstream/2268/192440/1/Huawe%C3%AF%20v.%20ZTE.pdf

SCHWABER KEN/SUTHERLAND JEFF, The Scrum Guide, published in 2013, 2017 edition,
available at <https://www.scrumguides.org/docs/scrumguide/v2017/
2017-Scrum-Guide-US.pdf#zoom=100> (retrieved September 6, 2021).

GARTNER, Gartner Says Global IT Spending to Grow 1.1 Percent in 2019, article pub-
lished on April 17, 2019, available at <https://www.gartner.com/en/newsroom/
press-releases/2019-04-17-gartner-says-global-it-spending-to-grow-1-1-per-
cent-i> (retrieved September 6, 2021).

The Sage Encyclopedia of Qualitative Research Methods

– “interview guide”, available at <http://methods.sagepub.com/Reference/sage-en-
cyc-qualitative-research-methods/n238.xml> (retrieved September 6, 2021);

– “quantitative research”, available at <http://methods.sagepub.com/Reference/
sage-encyc-qualitative-research-methods/n361.xml> (retrieved September 6,
2021).

STANDISH GROUP, The Chaos Report 2015, report published in 2015 (2018 edition not ac-
cessible), available at <https://www.standishgroup.com/sample_research_files/
CHAOSReport2015-Final.pdf> (retrieved September 6, 2021).

STANFORD UNIVERSITY, HUMAN RESOURCES, Interview Guidelines, available at
<http://staffing.stanford.edu/pdf/Interview-Guidelines.pdf> (retrieved July 27,
2019), cited as STANFORD UNIVERSITY.

Techopedia

– “agile development”, available at <https://www.techopedia.com/definition/13564/
agile-software-development> (retrieved September 6, 2021);

– “decompile”, available at <https://www.techopedia.com/definition/16374/-de-
compile> (retrieved September 6, 2021);

– “high-level language”, available at <https://www.techopedia.com/definition/
3925/high-level-language-hll> (retrieved September 6, 2021);

– “iterative and incremental development”, available at <https://www.techope-
dia.com/definition/25895/iterative-and-incremental-development> (retrieved
September 6, 2021);

– “PC game”, available at <https://www.techopedia.com/definition/31136/personal-
computer-game-pc-game> (retrieved September 6, 2021);

– “Structured Systems Analysis and Design Method”, available at
<https://www.techopedia.com/definition/3983/structured-systems-analysis-
and-design-method-ssadm> (retrieved September 6, 2021);

– “system design”, available at <https://www.techopedia.com/definition/29998/
system-design> (retrieved September 6, 2021).

Techtarget, “fork”, available at <https://whatis.techtarget.com/definition/fork> (re-
trieved September 6, 2021).

References

XLV

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.gartner.com/en/newsroom/press-releases/2019-04-17-gartner-says-global-it-spending-to-grow-1-1-percent-i
https://www.gartner.com/en/newsroom/press-releases/2019-04-17-gartner-says-global-it-spending-to-grow-1-1-percent-i
https://www.gartner.com/en/newsroom/press-releases/2019-04-17-gartner-says-global-it-spending-to-grow-1-1-percent-i
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n238.xml
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n238.xml
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n361.xml
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n361.xml
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
http://staffing.stanford.edu/pdf/Interview-Guidelines.pdf
https://www.techopedia.com/definition/13564/agile-software-development
https://www.techopedia.com/definition/13564/agile-software-development
https://www.techopedia.com/definition/16374/-decompile
https://www.techopedia.com/definition/16374/-decompile
https://www.techopedia.com/definition/3925/high-level-language-hll
https://www.techopedia.com/definition/3925/high-level-language-hll
https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.techopedia.com/definition/31136/personal-computer-game-pc-game
https://www.techopedia.com/definition/31136/personal-computer-game-pc-game
https://www.techopedia.com/definition/3983/structured-systems-analysis-and-design-method-ssadm
https://www.techopedia.com/definition/3983/structured-systems-analysis-and-design-method-ssadm
https://www.techopedia.com/definition/29998/system-design
https://www.techopedia.com/definition/29998/system-design
https://whatis.techtarget.com/definition/fork

Techterms, “bit”, available at <http://techterms.com/definition/bit> (retrieved Sep-
tember 6, 2021).

U.S. Centers for Disease Control and Prevention, 2017 Statistics on Life Expectancy,
available at <http://www.cdc.gov/nchs/fastats/life-expectancy.htm> (retrieved
September 6, 2021).

University of Durham Department of Computer Science/Keele University Software
Engineering Group of the School of Computer Science and Mathematics, Guide-
lines for Performing Systematic Literature Reviews in Software Engineering, ver-
sion 2.3, published on July 9, 2007, available at <https://www.else-
vier.com/__data/promis_misc/525444systematicreviewsguide.pdf> (retrieved
September 6, 2021), cited as UNIVERSITY of Durham/Keele University.

WIKIMEDIA, Traffic Analysis Report – Operating Systems, published August 5, 2015,
available at <https://stats.wikimedia.org/wikimedia/squids/SquidReportOperat-
ingSystems.htm> (retrieved September 6, 2021).

Wikipedia

– “analogue technics”, available at < https://en.wikipedia.org/wiki/Analogue_elec-
tronics> (retrieved September 6, 2021);

– “digital electronics”, available at <https://en.wikipedia.org/wiki/Digital_electron-
ics> (retrieved September 6, 2021);

– “server”, available at <https://en.wikipedia.org/wiki/Server_(comput-
ing)#cite_note-1> (retrieved September 6, 2021);

– “software engineer”, available at <https://en.wikipedia.org/wiki/Software_engi-
neer> (retrieved September 6, 2021);

– “plug-in”, available at <https://en.wikipedia.org/wiki/Plug-in_(computing)> (re-
trieved September 6, 2021).

WILTGEN BRYAN J./GOEL ASHOK K., A computational theory of evaluation in creative de-
sign, IBM Journal of Research & Development, vol. 1 no. 63, paper 4, available at
<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8618365> (re-
trieved September 6, 2021).

WIPO

– “trade secret”, available at <https://www.wipo.int/tradesecrets/en/> (retrieved
September 6, 2021);

– “utility models”, available at <https://www.wipo.int/patents/en/topics/util-
ity_models.html> (retrieved September 6, 2021).

References

XLVI

http://techterms.com/definition/bit
http://www.cdc.gov/nchs/fastats/life-expectancy.htm
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://stats.wikimedia.org/wikimedia/squids/SquidReportOperatingSystems.htm
https://stats.wikimedia.org/wikimedia/squids/SquidReportOperatingSystems.htm
https://en.wikipedia.org/wiki/Analogue_electronics
https://en.wikipedia.org/wiki/Analogue_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-1
https://en.wikipedia.org/wiki/Server_(computing)#cite_note-1
https://en.wikipedia.org/wiki/Software_engineer
https://en.wikipedia.org/wiki/Software_engineer
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8618365
https://www.wipo.int/tradesecrets/en/
https://www.wipo.int/patents/en/topics/utility_models.html
https://www.wipo.int/patents/en/topics/utility_models.html

Others

2nd Law Amendment Act to the UrhG (2. UrhÄndG) of June 9, 1993, BT-Drucks,
12/4022.

ADMINISTRATIVE COUNCIL OF THE EUROPEAN PATENT OFFICE, Protocol on the Interpretation
of Article 69 EPC of 5 October 1973 as revised by the Act revising the EPC of 29
November 2000, published in 2001, available at <https://www.epo.org/law-prac-
tice/legal-texts/html/epc/2016/e/ma2a.html> (retrieved September 6, 2021),
cited as Protocol on the Interpretation of Article 69 EPC of 5 October 1973 as re-
vised by the Act revising the EPC of 29 November, 2000.

DIN standard series (Normenreihe) 69901 on project management (Projektmanage-
ment), published in January, 2009, cited as DIN.

Dispatch to the Swiss Copyright Act (Botschaft zu einem Bundesgesetz über das Urhe-
berrecht und verwandte Schutzrechte), published June 19, 1989, BBl 1989 III 477,
cited as Dispatch to the Swiss Copyright Act, BBl. 1989 III.

EUROPEAN COMMISSION, Communication from the Commission — Guidance on the
Commission’s Enforcement Priorities in Applying Article 82 of the EC Treaty to
Abusive Exclusionary Conduct by Dominant Undertakings, 2009/C 45/02, pub-
lished February 24, 2009, available at <https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:52009XC0224(01)&from=EN> (retrieved Septem-
ber 6, 2021), cited as Guidance Paper of the European Commission on Abusive Ex-
clusionary Conduct by Dominant Undertakings.

EUROPEAN PATENT OFFICE, Guidelines for Examination in the European Patent Office,
November 2019 edition, available at <http://www.epo.org/law-practice/legal-
texts/guidelines.html> (retrieved September 6, 2021), cited as Guidelines for Ex-
amination of the European Patent Office.

EUROPEAN PATENT OFFICE/JAPAN PATENT OFFICE/U.S. PATENT AND TRADEMARK OFFICE, Tri-
lateral Projects, Report on Comparative Study Carried Out Under Trilateral Pro-
ject 24.2 Computer-Related Inventions, published in 1997, available at
<https://www.jpo.go.jp/e/news/kokusai/nichibeiou/pj242/index.html> (re-
trieved September 6, 2021), cited as Patent Offices Comparative Study (1997).

EUROPEAN PATENT OFFICE/JAPAN PATENT OFFICE/U.S. PATENT AND TRADEMARK OFFICE, Tri-
lateral Projects, Report on Comparative Study Carried Out Under Trilateral Pro-
ject B3b Business Method Related Inventions, published in June 2000, available at
<https://www.trilateral.net/sites/default/files/attachments/8f3391ec-
f272-4d1f-b78b-a50b76beec7b/main.pdf> (retrieved September 6, 2021), cited as
Patent Offices Comparative Study (2000).

EUROPEAN UNION INTELLECTUAL PROPERTY OFFICE, Guidelines for Examination of Regis-
tered Community Designs, August 2016 edition, available at < https://euipo.eu-
ropa.eu/tunnel-web/secure/webdav/guest/document_library/contentPdfs/

References

XLVII

https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ma2a.html
https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ma2a.html
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52009XC0224(01)&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52009XC0224(01)&from=EN
http://www.epo.org/law-practice/legal-texts/guidelines.html
http://www.epo.org/law-practice/legal-texts/guidelines.html
https://www.jpo.go.jp/e/news/kokusai/nichibeiou/pj242/index.html
https://www.trilateral.net/sites/default/files/attachments/8f3391ec-f272-4d1f-b78b-a50b76beec7b/main.pdf
https://www.trilateral.net/sites/default/files/attachments/8f3391ec-f272-4d1f-b78b-a50b76beec7b/main.pdf
https://euipo.europa.eu/tunnel-web/secure/webdav/guest/document_library/contentPdfs/law_and_practice/designs_practice_manual/WP_1_2017/examination_of_applications_for_registered_community_designs_en.pdf
https://euipo.europa.eu/tunnel-web/secure/webdav/guest/document_library/contentPdfs/law_and_practice/designs_practice_manual/WP_1_2017/examination_of_applications_for_registered_community_designs_en.pdf

law_and_practice/designs_practice_manual/WP_1_2017/examination_of_ap-
plications_for_registered_community_designs_en.pdf> (retrieved September 6,
2021), cited as European Guidelines for Examination of Registered Community
Designs.

ISO-, IEC- and IEEE-standard series

– IEEE 1175.2-2006 IEEE Recommended Practice for CASE Tool Interconnection –
Characterization of Interconnections, published 2006;

– IEEE 828-2012 as standard for configuration management in systems and software
engineering, published 2012;

– ISO/IEC 2382:2015 on information technology, vocabulary, published in 1976, re-
vised multiple times, last revised in 2015;

– ISO/IEC 12207:2017 on software life cycle processes, published in 1995, revised in
2008 and 2017;

– ISO/IEC 19500-2:2012 on interoperability, published in 2003, revised in 2012;

– ISO/IEC TR 19759:2016 on software engineering body of knowledge (SWEBOK);

– ISO/IEC 19770:2015 on ICT asset management, published in 2013, revised in 2015;

– ISO/IEC TS 24748-1:2016 on live cycle management, published in 2010, revised in
2016 and 2018;

– ISO/IEC 25000:2014 as guide to systems and software quality requirements and
evaluation, published in 2005, revised in 2014;

– ISO/IEC 25010:2011 on system and software quality models, published in 2011;

– ISO/IEC 25040:2011 on evaluation process, published in 2011;

– ISO/IEC 25051:2014 on requirements for quality of Ready to Use Software Product
(RUSP) and instructions for testing, published in 2006 and revised in 2014;

– ISO/IEC TR 25060:2010 on Common Industry Format (CIF) for usability, general
framework for usability-related information, published in 2010;

– ISO/IEC 26514:2008 on requirements for designers and developers of user docu-
mentation, published in 2008;

– ISO/IEC/IEEE 15288:2015 on system life cycle processes, published in 2008, re-
vised in 2015;

– ISO/IEC/IEEE 15939:2017 on measurement process, published in 2017;

– ISO/IEC/IEEE 23026:2015 on engineering and management of websites for sys-
tems, software, and services information, published 2006, revised in 2015;

– ISO/IEC/IEEE 24765:2017 on systems and software engineering, vocabulary, pub-
lished in 2010, revised in 2017;

References

XLVIII

https://euipo.europa.eu/tunnel-web/secure/webdav/guest/document_library/contentPdfs/law_and_practice/designs_practice_manual/WP_1_2017/examination_of_applications_for_registered_community_designs_en.pdf
https://euipo.europa.eu/tunnel-web/secure/webdav/guest/document_library/contentPdfs/law_and_practice/designs_practice_manual/WP_1_2017/examination_of_applications_for_registered_community_designs_en.pdf

– ISO/IEC/IEEE 26515:2011 on developing user documentation in an agile environ-
ment, published in 2011, revised in 2018;

– ISO/IEC/IEEE 42010:2011 on architecture description, published in 2007, revised
in 2011.

OECD DIRECTORATE FOR SCIENCE, TECHNOLOGY AND INDUSTRY, Perspective Statistical
Analysis of Science, Technology and Industry Working Paper, Global Overview of
Innovative Activities from the Patent Indicators, no. 3, 2006, available at
<https://www.oecd-ilibrary.org/docserver/674714465672.pdf?ex-
pires=1630953582&id=id&accname=guest&check-
sum=3D2747DBF2D7D383B3D2130D31274FFF> (retrieved September 6, 2021), cited
as Perspective STI Working Paper.

SWISS FEDERAL INSTITUTE FOR INTELLECTUAL PROPERTY, Richtlinien für die Sachprüfung
der nationalen Patentanmeldungen, July 2011 (version of January 2019), cited as
Swiss Guidelines for the Substantive Evaluation of Patent Applications.

SWISS STATE SECRETARIAT FOR EDUCATION, Research and Innovation Report, published in
2016, available at <https://www.usi.ch/sites/default/files/storage/attachments/
press-research-innovation-switzerland-sefri.pdf> (retrieved September 6, 2021).

U.S. COMMISSION ON NEW TECHNOLOGY, Final Report on New Technology Uses of Copy-
righted Works, Sections on Software Copyrights, published on July 31, 1978, avail-
able at <https://repository.jmls.edu/cgi/viewcontent.cgi?article=1573&con-
text=jitpl> (retrieved on September 6, 2021), cited as Contu.

U.S. CONGRESS, OFFICE OF TECHNOLOGY ASSESSMENT, Computer Software and Intellectual
Property, Background Paper, OTA-BP-CIT-61, published in March, 1990, available
at <https://ota.fas.org/reports/9009.pdf> (retrieved September 6, 2021), cited as
U.S. CONGRESS (1990).

U.S. CONGRESS, OFFICE OF TECHNOLOGY ASSESSMENT, Finding a Balance: Computer Soft-
ware. Intellectual Property, and the Challenge of Technological Change, report,
OTA-TCT-527, published in May, 1992, available at <https://ota.fas.org/reports/
9215.pdf> (retrieved September 6, 2021), cited as U.S. CONGRESS (1992).

U.S. DEPARTMENT FOR DEFENSE, Defense System Software Development. Military Stan-
dard, document DOD-STD-2167, published on June 4, 1985, available at
<http://www.product-lifecycle-management.com/download/DOD-
STD-2167A.pdf> (retrieved September 6, 2021).

U.S. DEPARTMENT OF JUSTICE/FEDERAL TRADE COMMMISSION, Antitrust Guidelines for Li-
censing Intellectual Property, published April 6, 1995, updated January 12, 2017,
available at <https://www.justice.gov/atr/IPguidelines/download> (retrieved
September 6, 2021).

U.S. PATENT AND TRADEMARK OFFICE, Examination Guidelines for Obviousness of the U.S.
Patent and Trademark Office, Examination Guidelines for Determining Obvious-

References

XLIX

https://www.oecd-ilibrary.org/docserver/674714465672.pdf?expires=1630953582&id=id&accname=guest&checksum=3D2747DBF2D7D383B3D2130D31274FFF
https://www.oecd-ilibrary.org/docserver/674714465672.pdf?expires=1630953582&id=id&accname=guest&checksum=3D2747DBF2D7D383B3D2130D31274FFF
https://www.oecd-ilibrary.org/docserver/674714465672.pdf?expires=1630953582&id=id&accname=guest&checksum=3D2747DBF2D7D383B3D2130D31274FFF
https://www.usi.ch/sites/default/files/storage/attachments/press-research-innovation-switzerland-sefri.pdf
https://www.usi.ch/sites/default/files/storage/attachments/press-research-innovation-switzerland-sefri.pdf
https://repository.jmls.edu/cgi/viewcontent.cgi?article=1573&context=jitpl
https://repository.jmls.edu/cgi/viewcontent.cgi?article=1573&context=jitpl
https://ota.fas.org/reports/9009.pdf
https://ota.fas.org/reports/9215.pdf
https://ota.fas.org/reports/9215.pdf
http://www.product-lifecycle-management.com/download/DOD-STD-2167A.pdf
http://www.product-lifecycle-management.com/download/DOD-STD-2167A.pdf
https://www.justice.gov/atr/IPguidelines/download

ness Under 35 U.S.C. 103, R-11.2013, available at <http://www.uspto.gov/web/of-
fices/pac/mpep/s2141.html> (retrieved September 6, 2021), cited as Examination
Guidelines for Obviousness of the U.S. Patent and Trademark Office.

U.S. PATENT AND TRADEMARK OFFICE, Manual of Patent Examining Procedure, January
2018 edition, available at https://www.uspto.gov/web/offices/pac/mpep/ (re-
trieved September 6, 2021), cited as Manual of Patent Examining Procedure of the
U.S. Patent and Trademark Office.

U.S. SENATE, Report of the 2nd Session of the 82nd Congress, report no. 1979, Washing-
ton 1952.

U.S. SENATE FOREIGN RELATIONS COMMITTEE, Report on the 39th Session of the 100th
Congress, report no. 352, Washington 1988.

U.S. SUPREME COURT, Opinions, no. 08–964, published October, 2009, available at
<http://www.supremecourt.gov/opinions/09pdf/08-964.pdf> (retrieved Sep-
tember 6, 2021), cited as Supreme Court Opinion.

WIPO, Model Provisions of the Expert Group on the Legal Protection of Computer
Software, Geneva 1978, cited as WIPO Model Provisions on the Protection of Com-
puter Software.

WIPO, website section on industrial rights, available at <http://www.wipo.int/de-
signs/en/> (retrieved September 6, 2021) cited as WIPO, industrial rights.

WIPO STANDING COMMITTEE ON THE LAW OF PATENTS, document SCP/15/3, Annex II,
Computer Programs as Excluded Patentable Subject Matter, written by Brad Sher-
man, published on February 3, 2011, available at <http://www.wipo.int/edocs/
mdocs/scp/en/scp_15/scp_15_3-annex2.pdf> (retrieved September 6, 2021),
cited as WIPO STANDING COMMITTEE ON THE LAW OF PATENTS.

References

L

http://www.uspto.gov/web/offices/pac/mpep/s2141.html
http://www.uspto.gov/web/offices/pac/mpep/s2141.html
http://www.supremecourt.gov/opinions/09pdf/08-964.pdf
http://www.wipo.int/designs/en/
http://www.wipo.int/designs/en/
http://www.wipo.int/edocs/mdocs/scp/en/scp_15/scp_15_3-annex2.pdf
http://www.wipo.int/edocs/mdocs/scp/en/scp_15/scp_15_3-annex2.pdf

List of Figures

Figure on the Title Page (Source: own illustration). III

Figure 1. The Standard Phase Model (Source: own illustration). 63

Figure 2. The Linear Development Approach (Source: own illustration). 69

Figure 3. Bridge Construction According to the Linear Development
Approach (Source: own illustration). 70

Figure 4. Iterative Development (Source: own illustration). 72

Figure 5. Incremental Development (Source: own illustration). 73

Figure 6. An Example for the Structure of a Scrum Board (Source: own illustration). 74

Figure 7. Bridge Construction According to the Spiral Development
Approach (Source: own illustration). 75

Figure 8. The Continuous Delivery Approach (Source: own illustration). 77

Figure 9. Bridge Construction According to the Continuous Delivery Approach
(Source: own illustration). 78

Figure 10. Incremental Extension (Source: own illustration). 338

Figure 11. Different Scenarios for Inner Change (Source: own illustration). 342

All illustrations used in this dissertation were designed by Sarah Leins-Zurmuehle and
drawn by Robin Leins.

LI

Abstract

Today, the software industry is regarded as one of the most creative and dy-
namic industries in the world. New, innovative products are constantly be-
ing launched, and known established paths for analogue solutions are being
challenged and abandoned. Sheltering software through copyright and patent
law has been a major point of contention for the past 40 years. A particular
difficulty lies in determining the scope of protection in intellectual property
law. While the legal framework is highly standardized through several multi-
national codes, its practical application differs significantly among the various
jurisdictions. Economists and lawyers have tried to make the present protec-
tion system more balanced and at the same time more efficient. Unfortunately,
these analyses often neglect the technical realities – the practicalities and
needs of software developers and right holders. The discourse is frequently
limited to one particular closed discipline.

This doctoral thesis examines the rapidly changing and complex software de-
velopment market and discusses some pressing legal issues. The aim is to
analyse how computer programs are developed and commercialized nowa-
days, and to evaluate to what extent copyright and patent law are able to re-
flect these structures. Based on these conclusions, it is then explored what an
optimal protection scope for computer programs could look like in copyright
and patent law. In 12 expert interviews, technical in-house specialists were
questioned about how software companies work today, how they proceed in
developing their programs, how they commercialize them through sales and
services, and to what extent they use legal measures to protect their software.
The results of these qualitative interviews were then evaluated systematically
and legally reintegrated.

The main achievement of this thesis is to provide the necessary basic scientific
research regarding how the software industry works today and how this might
affect copyright and patent law. From a legal perspective, it offers novel in-
sights and points of view on existing doctrines. Further, it acknowledges some
prevailing trends in the software industry which have so far been largely un-
addressed by copyright and patent law. It also discusses possible approaches
to how these problems could be tackled in the future.

LIII

Chapter 1: Introduction

I. Introduction to the Research Subject

1 At the beginning of every theory stands an idea. It rarely arrives out of the blue,
but rather is induced by a personal passion, an accidental encounter, an ob-
servation or a specific problem. I believe this statement applies to both soft-
ware development and my dissertation project.

2 The initial triggers for my doctoral thesis were of a primarily personal nature.
Several people in my close circle expressed their legal discontent with their
work in the information and communication technology (ICT) sector. They ex-
plained that they would increasingly be confronted with over-contractualiza-
tion when dealing with computer programs. Particularly when working with
large corporations, they would more and more have to issue contractual as-
surances that they had not unlawfully embedded third-party intellectual prop-
erty in their products. For them this compliance guarantee represented an is-
sue that they, as small- and medium-sized enterprises, could hardly handle.
Most of them had, at least once in their career, faced an infringement of their
own intellectual property (IP) and had found it extremely difficult to enforce
their own rights, let alone administer third-party IP. These colleagues and also
other software developers and product managers stated that they were unsat-
isfied with the current legal situation and that their expectations as well as
some core needs were not being met. Some of them went as far as claiming
that the current intellectual property regime in Switzerland would discourage
development and innovation in software altogether.

3 That statement caught my ears. If this were true, it would represent a massive
locational disadvantage for Switzerland. Software has become possibly the
most important market good worldwide. Not only has everyday life become al-
most unimaginable without ICT, but it further helps us to design our busi-
nesses effectively and increase their rates of performance. The ICT industry,
combining both produced goods and supplied services, has left its mark on the
world’s economies. According to market research by Gartner, Inc., in 2018 a
total of USD 3.747 trillion was spent on software worldwide, with a further 1.1
per cent growth expected for 2019.1 The Software Alliance BSA estimated that,
in 2016 alone, software contributed a sum of USD 1.07 trillion to the value-

GARTNER. 1

1

added GDP in the United States and EUR 910 billion in the European Union.2

These numbers indicate that the software market is vital for economies, and
that its importance is still growing. Yet software not only represents an eco-
nomic top seller and is a flourishing market of its own, it also drives innovation
and productivity in other economic core markets. One of the most important
application areas outside the classic ICT market is the pharmaceutical and
medical product industries, in particular medical technology. According to es-
timates of the Software Alliance BSA for 2016, around USD 52 billion in the
United States and EUR 12.7 billion in the European Union were invested in re-
search and development (R&D) of software.3 The Swiss State Secretariat for
Education estimates that Switzerland has spent approximately CHF 18.5 billion
on research and development activities, suggesting that Switzerland is among
the OECD’s top spenders on software R&D.4 The high investments indicate
that the trend for digitalization and software is going to continue.

4 At the same time, we seem to be experiencing a global problem of intellectual
property infringement in software. According to an international survey by the
Software Alliance BSA, the use of unlicensed software is still widespread, ac-
counting for up to 50 per cent or higher in the majority of all surveyed coun-
tries.5 This international association that advocates for the interests of the
software industry warns that in order to reduce software IP (particularly copy-
right) infringement, governments should ensure that their legal frameworks
provide effective measures to protect innovation and promote the means for
redress and collaboration among stakeholders.6 Likewise, the Swiss State Sec-
retariat for Education emphasizes that to secure a competitive advantage and
adequate opportunities, companies aiming to make their inventions a success
need to be able to protect their goods with strong intellectual property rights.7

This would call for favourable framework conditions which are in tune with
current developments.8

See 2016 statistics of BSA - the Software Alliance, a global association advocating for

the software industry before governments and in the international marketplace, for the

United States in: BSA-THE SOFTWARE ALLIANCE, United States, 1, and for the European Union

in BSA-THE SOFTWARE ALLIANCE, European Union, 1.

For the United States, see BSA-THE SOFTWARE ALLIANCE, United States; for the European

Union see BSA-THE SOFTWARE ALLIANCE, European Union.

SWISS STATE SECRETARIAT FOR EDUCATION, 38.

BSA-THE SOFTWARE ALLIANCE, Global Software Survey, 2.

BSA-THE SOFTWARE ALLIANCE, Global Software Survey, 15.

SWISS STATE SECRETARIAT FOR EDUCATION, 31.

SWISS STATE SECRETARIAT FOR EDUCATION, 7 f.

2

3

4

5

6

7

8

Chapter 1: Introduction

2

5 The crossroads between intellectual property law and software has repeatedly
given rise to major controversies. Today, computer programs are legally pro-
tected mainly with copyright and patent law. In the field of copyright, we see
difficulties because the institute for protection of authors is static and not
geared to a dynamic constantly evolving product, such as software. The latest
development methods, particularly, represent an entirely new challenge for
copyright. At the same time, we may experience heated debates about the
general eligibility of computer programs for patent law in both Europe – where
patents for computer programs are largely precluded – and the United
States – where excessive over-patenting and misuse of computer patents is
claimed. There is great unrest. Many stakeholders and lawyers have criticized
the system of computer protection in intellectual property law.9 A significant
wave of criticism appeared in 1975, when the Association International pour la
Protection de la Propriété Industrielle (AIPPI) proposed to draft a special legal
system to protect software, including a sui generis mechanism.10 In 1978 the
WIPO then analysed legal software protection and suggested a set of Model
Provisions to better capture the intellectual property of computer programs,
suggesting a specially designed statute for computer programs analogous to
copyright.11 Despite various international efforts to respond to the demands
and rectify the situation, in 1992 a report of the Office of Technology Assess-
ment of the U.S. Congress (OTA) concluded that the new information system
still challenged intellectual property law and that it would (still) entail numer-
ous difficulties for current business practices and standing legal doctrines.12

After more than four decades, international dissatisfaction has improved little
and software companies and lawyers are likewise still complaining about the
uncontrollable growth in legal software protection.

6 In the last couple of years, this problem appears to have become even more
acute. There remain numerous uncertainties about the applicability of copy-
right and patent law to (new) software development and commercialization
methods. To contain this problem in practice, software companies are increas-
ingly relying on alternative protection mechanisms, for example contractual

See comment by Bill Gates during a Microsoft Innovation Day in Europe, in: BOECKER, 35;

OHLY, 809; SCHULZE 997 ff.; HARISON, 113 f. and 193; economic analysis in MERGES, 603 ff., see

particularly 606; difficulties also addressed in U.S. CONGRESS (1990), 5 and U.S. CONGRESS

(1992), 3 ff.; SAMUELSON ET AL., 2347 ff.; BELL/PARCHOMOVSKY, 232 f. in particular; REICHMAN,

2558; HILTY/GEIGER (2015), 615 f.; SCOTCHMER (2006), 83 f.

AIPPI, 137.

No. 22 of the WIPO Model Provisions on the Protection of Computer Software.

See U.S. CONGRESS (1992), 3.

9

10

11

12

Chapter 1: Introduction

3

obligations, greater secrecy and the use of technical protection measures.
These private measures may, however, lead to unprofitable investments and
increase transaction costs. In my view, it would thus be more effective to get to
the root of the problem, namely copyright and patent law and find the solution
here. But the question remains whether the problems raised by the software
companies can be solved coherently in copyright and patent law. This leads to
the next question, and the main question of my thesis, which is whether the
principles in intellectual property law are still suitable for the protection of
digital creations, such as computer programs. Do today’s regulations cover the
needs of the industry or do we need any corrective measures?

7 In this context, Rossnagel coined the concept of jurisprudential technology de-

sign. Law has a claim on determining behaviour, and aims to act correctively
on reality, influencing developments and participating in them.13 However, for
the present thesis, I suggest a reverse approach, a technology-driven legisla-

tion. The aim is not the legal control of technology in the sense of creating op-
portunities and risks, but rather recognizing and translating factual realities in
the work of software developers into law in order to reflect the actual condi-
tions under which it has to become effective and offer practicable legal mea-
sures to protect software manufacturers. In the spirit of the quote by David
Hockney mentioned on the first page of this dissertation, the aim is to gain a
better understanding of the legal object to be protected. It will never be possi-
ble to make (IP) law specifically perfect for software engineering, but the goal
should be to bring about an approximation to the practicalities of software de-
velopment and commercialization in order to create a legal space for further
creativity.

8 But before we fall into actionism to change IP software protection for the bet-
ter, we first have to understand the subject matter so we can detect potential
problems. Instead of unilaterally assessing technology from a purely legal per-
spective, this thesis aims to explore the perspective of the software developing
and commercializing companies, because they are, firstly, the subject of this
legislation and, secondly, the drivers of innovation and creativity in the field.
Although software engineering is recognized as being of fundamental impor-
tance for our economy and for the development of future innovations, it is not
yet clear what software engineers who are developing and commercializing
software truly need from a legal perspective to effectively shelter their prod-

For the whole abstract and more information on the concept of jurisprudential technology

design, see ROSSNAGEL, 22 and 73.

13

Chapter 1: Introduction

4

ucts with IP rights. No such data is available.14 This work will collect and
analyse this missing socio-scientific qualitative data on the software compa-
nies’ needs in terms of software IP protection. It will then aim to determine to
what extent the current legal system, relying mainly on copyright and patent
law, is able to reflect these processes and where there is room for improve-
ment. The intention is to make useful suggestions for the legal protection
of software in copyright and patent law, or provide novel legal qualifications
where these are missing.

II. Definition of the Research Problem

9 This thesis will examine the question of how software companies today de-
velop and commercialize computer programs, in order to establish to what ex-
tent copyright and patent law is able to reflect these structures, and how –
based on these findings – computer programs could consequently be ade-
quately protected with legal measures.

10 This is a controversial subject that has been examined by lawyers on various
occasions. However, no contemporary scientific data is available to support
any claims. For this reason, my dissertation represents basic scientific research,
in which by means of social-scientific methods utilizable data will be collected
and evaluated in order to make verifiable statements for law. This evaluation
will serve as a kind of location analysis, to further the legal understanding of
software engineering. It will offer new points of view on existing legal doc-
trines as well as novel models to legally embed newer development and com-
mercialization approaches into the legal protection of computer programs
through copyright and patent law

11 From a socio-scientific perspective, the aim of my research is to work out how
software engineering companies work in practice nowadays and what require-
ments arise from this for the legal description of the scope of protection in
copyright and patent law. The goal is to elaborate and determine the sector-
specific conditions of the software industry. My research therefore involves
multiple steps. The first is to learn how software is developed and distributed to

clients operationally which involves collecting information on procedural facts
and then discovering the needs and wishes of the software developing compa-

nies. In this context, the needs are the basic expectations of the software com-
panies in order to function accordingly. The wishes refer to how these compa-

Same conclusion in SAMUELSON ET AL., 2310, and MELULLIS, 355 ff. 14

Chapter 1: Introduction

5

nies want to satisfy their needs in a way that is compatible with the practices
of the industry. This thesis will be documenting these needs and wishes. The
results will then be systematically reintegrated into law in a comprehensive
discussion of selected aspects in order to learn to what extent the current law
is already able to capture the processes of software engineering and meet the
industry’s needs and wishes with regard to legal software protection, and thus
find gaps that need to be closed. I also want to find out at which stage in the
development process to begin with legal protection in order to make intellec-
tual property protection as attractive and efficient as possible. Throughout the
analysis, the focus will be on the legal reflection of the procedural sequences,
the different work products and the underlying needs and wishes of software
engineering in order to map the scope of protection closer to the actual con-
ditions of the software industry.

12 As the title of the thesis implies, the research focus of this work lies particu-
larly in the creative protection scope of software under copyright and patent
law. This thesis consequently has a particular legal focus. For this analysis, the

subject matter, the requirements for protection and the terms of protection will
be examined and described in detail. There will also be comprehensive discus-
sion on how the individual software components are to be classified objectively
in patent law and copyright. On the basis of these features, I will suggest an
improved scope of protection, which neither offers too little protection nor
has an overprotective effect.

13 Although this thesis represents comprehensive basic scientific research, cer-
tain thematic delineations have to be made:

14 With regard to the present object of protection being examined – software –
and its evident legal classification in the past, the intellectual property rights
examined in this thesis will be thematically narrowed to copyright and patent

law. In the context of ongoing debates, there will also be discussion on to what
extent a sui generis right, similar to the protection of semiconductors, would
be appropriate. Trademark and design law as well as aspects of contract and
competition law (unfair competition and antitrust law) will only be marginally
touched upon. Procedural questions will only be involved as far as they are rel-
evant to assessing how practical the current substantive law is and at which
point its evaluation can be combined with the right to protect and enforce
copyright and patent law.

15 Due to its conceptual approach, this work cannot be restricted to a specific
national legal order. Copyright and patent law have been strongly unified with

Chapter 1: Introduction

6

the help of various international treaties. They are based on common interna-
tional principles, requirements and terms of use and hence exhibit a partic-
ularly universal character. However, the common criteria are interpreted in-
dependently by each jurisdiction, which in practice sometimes leads to very
divergent results. This becomes particularly apparent in the case of software
commercialization, as the industry operates more often across national bor-
ders. For this reason, a comparison of different national and regional solutions
is crucial. Due to their strong international character, the questions to be
examined would probably arise in all legal systems. However, the reference
points for this doctoral thesis are primarily the international treaties and law
of the United States,15 of the member states of the European Union16 and of
Switzerland17. For the purposes of illustration, references are also made to
other national legal systems.

16 As outlined above, this thesis concentrates on the scope of protection in
patent law and copyright, with a special focus on the potential subject matter,
protection requirements and the terms of protection. Second-hand use is

The focus is mainly on U.S. legislation and case law because the United States, together

with Japan, represents a major global player in the international software market. Many of

the international working corporations are incorporated in the United States. To integrate

common law into a study it is therefore important to obtain representative and sustainable

market information. Furthermore, European courts and authorities tend to consider U.S.

case law in their examinations, mainly because the standardized international law legis-

lation and technical problems are comparable and U.S. jurisprudence tends to offer more

long-standing and richer practice on software IP problems than European courts.

In many fields of economic law, the legislation within the European Union has been widely

unified with the help of directives and orders. The legislation and practice following from

these is easily accessible and well suited to comparison with other legislation. In addition,

Europe has developed its own very particular civil law practice. In order to avoid iteration,

I will restrict references to available legislation to just one or two exemplary state laws for

the European Union. I will particularly focus on German law, because German IP law has

incorporated the E-Commerce Directive, the Copyright Directive and the Computer Pro-

gram Directive, including their language, scope, purpose and systems. The German imple-

mentation of software protection law consequently represents a suitable example for the

pursued doctrine within the European Union.

This investigation has its origins in Switzerland. While there is no rich and uniform

case law on the subject of software IP protection, it is becoming increasingly clear that

Zurich has become an important ICT hub for the European market, which is why it is ex-

pected that this topic will also become increasingly relevant for Switzerland in the future.

Switzerland is not part of the European Union, however, due to its voluntary alignment

and membership of the European Patent Organisation, Swiss IP law shows many parallels

to the law of the European Union and its member states.

15

16

17

Chapter 1: Introduction

7

mentioned to the extent that it is relevant to the issues involved. This thesis
expressly does not cover any additional author’s rights of use or moral rights,
nor does it go into the topics of exhaustion and legal limitations. This would
go beyond the scope of this work and require a different methodological ap-
proach to take into account the interests of third parties, such as users. It also
does not cover how to legally capture data and databases or the problematic
of interfaces. The methodological approach pursued would not do justice to
these issues as, again, third-party perspectives would have to be considered
more strongly. This work concentrates on products and services in the field of
software and can only provide a specific amount of basic research in this core
area.

17 The focus of the study is clearly on the practices, needs and wishes of software

companies developing computer programs, as they are best placed to inform
lawyers on how software is developed and commercialized. Although intellec-
tual property law attempts to achieve a balance with other interests, such as
those of the public or users, this is not the emphasis of the current work. This
problem would be too comprehensive and could not be adequately addressed
in a doctoral thesis. However, software companies and developers were found
to be strongly into networking, often also being consumers of other people’s
software products and services. The multiple perspectives of software engi-
neers were also visible in the interview study, so I was able to discover and
embed further points of view and arguments other than just those of the pro-
fessional role of the software developer.

18 Due to the thematic focus, only software companies constituted under private

law were surveyed in the interview study. In order to factor out regulatory is-
sues and complex conflicts of interest, public institutions and universities had
to be excluded from the investigation.

19 At the beginning of my research, I focused on user software. As reliable trends
could be observed at a very early stage of the interview study, the sample, and
with it the focus of this thesis, was expanded to developers of other types of

software, such as individual software, sector-specific software and standard
software. However, this thesis does not cover the topics of file-sharing or soft-
ware piracy.

20 From a temporal perspective, my investigation focuses on the processes of
software development and commercialization, both being summable in one
life cycle. According to this approach, the development process involves every
creative and innovative step from a first idea to a final product that can be im-

Chapter 1: Introduction

8

plemented or offered on the market. Commercialization then implies distrib-
uting the software directly to the costumers. The registration of intellectual
property rights such as patents as well as IP enforcement may appear under
both time segments, but are not in the scope of this thesis due to their formal
legal character.

21 Finally, it should be noted that this work focuses on the proprietary distribu-

tion of software under classic IP law. Approaches of freeware, Open Source and
Free Software are partially studied in the interviews, but not legally reinte-
grated in this thesis due to the work’s focus on the needs and wishes of soft-
ware companies regarding legal software protection through proprietary IP
and not contractual law.

III. Chapter Overview

22 This dissertation examines the scope of protection of software in copyright
and patent law. This topic represents an interface of intellectual property law,
technical questions concerning the development and commercialization of
software products as well as economic considerations regarding project man-
agement. The methodology used, on the other hand, was derived from sociol-
ogy.

23 The fundamental basics in the respective subject areas of law, computer sci-
ence and project planning as well as the socio-scientific methodology are only
dealt with summarily. The aim of the respective sections is not to provide a
deeper dogmatic examination of the existing teaching. Rather, the reader will
be given the necessary means to understand the findings of the interview
study and comprehend the discussion of results. For further information on
the foundation, refer to the corresponding specialist literature. A brief
overview of the chapters of this doctoral thesis follows:

24 Introduction
This first chapter introduces the reader to the research environment of law
and software. It explains in broad outline why the research problem was cho-
sen and why an approach of basic scientific research was conducted to obtain
utilizable data. In a second section, the research question is described and the
field of research is delineated.

25 Methodology
In the second chapter the procedure and the encountered problems of the
data collection and analysis are revealed. It first provides a general description

Chapter 1: Introduction

9

of the socio-scientific methodology. It then explains how and why I decided
to conduct expert interviews in order to collect suitable data on the research
question. I detail how I prepared myself for the interview study with an ex-
tensive literature review, how I designed the interview guidelines and how I
selected the experts for the survey. I also elaborate on how the collected data
was evaluated using grounded theory, and the hypotheses validated through
member validation.

26 Technical Foundation
The aim of the third chapter is to introduce the reader to the technical char-
acteristics and project work to enable comprehension of the structures in
software engineering and evaluation of the extent to which the law can reflect
them. The technical processes and facts are essential in order to be able to
build on them later, so this chapter briefly explains the basic technical terms.
Thematically, the focus is on the technical terms and procedures in develop-
ment and commercialization to fully outline the research question, but eco-
nomic questions in the project planning and commercialization of software
projects are also briefly covered. Again, it is not the intention to offer a detailed
review of the literature, but to give the reader an overview of the technical ba-
sics.

27 Status Quo of Legal Software Protection
In the fourth chapter, the reader is provided with a short overview of the rele-
vant software property rights. Special focus is given to copyright and patent
law as well as international agreements in these fields. Associated fields of law
such as contract and competition law as well as other intellectual property
rights are briefly listed, but are not dealt with in detail due to the scope of this
thesis. The legal description focuses on the object of protection, the require-
ments for protection and the terms of protection in copyright and patent law.

28 Findings of the Interview Series
The fifth chapter presents the results of the twelve interviews conducted.
First, it describes how software is developed by companies today, how this
process is structured, what the most common development methods are and
how a software project is set up. A further section explains how software com-
panies offer their products and services on the market and how they anticipate
the software life cycle. The chapter then discusses concepts important to in-
tellectual property such as knowledge transfer, innovation and creativity. A
major focus of this chapter is the interviewees’ analysis of the current software
IP regime and its potential for improvement. This chapter ends with the topics
of IP infringement and enforcement.

Chapter 1: Introduction

10

29 Discussion of Selected Problems
The sixth chapter reflects the results of the interview study in legal terms. In
particular, it examines to what extent the existing law can reflect the struc-
tures in the development and distribution of computer programs. It discusses
whether it makes sense to continue to legally protect software with a hybrid
of copyright and patent law, or just one of the two, or to use a sui generis legal
institution instead. The existing provisions on the object of protection, the re-
quirements and terms of protection are discussed in more detail and are crit-
ically questioned. Finally, the problems of second-hand works and standard
essential creations and the potential for incremental improvements are ex-
plored within a short excursus to demarcate the scope of protection. This
chapter addresses possibilities for improvement and points of criticism, and
proposes different solutions as well as rough models which could better inte-
grate the needs and wishes of the interviewed software developing companies
and improve the current legal protection of computer programs with copy-
right and patent law.

30 Prospect and Closing
Finally, in the seventh chapter, the implications of the findings and their legal
integration are reflected. It is transparently explained to what extent the re-
sults of this thesis permit substantial conclusions and where further research
would be necessary. The chapter notes briefly where the existing copyright
and patent law exhibits the potential to better encompass the needs and
wishes of software companies with the help of a contemporary interpretation
or a change in practice. Where the structures in software development and
commercialization cannot be effectively addressed with the current copyright
and patent law, and a revision in law would be necessary, concrete proposals
for regulatory adaptations are offered.

Chapter 1: Introduction

11

Chapter 2: Methodology

31 The previous chapter described the research question this thesis will investi-
gate. This second chapter introduces the methodology used to conduct the
research. I discuss the methods considered and the reasons for those selected.
I also provide insights into how I structured the research project and the diffi-
culties encountered. First, there is a brief introduction to the socio-scientific
field and its methology. I then explain how I relied on an extensive literature
review to gain an overview of the subject and to reflect on how the literature
discusses the research question. I outline why I decided to use expert inter-
views to collect data and how these were prepared in order to achieve credible
and representative results. The collected data were processed through partial
transcription and analysed using a systematic coding method called grounded
theory. Finally, I describe how the findings of the analysis were used to con-
struct general theories that could subsequently be used to compare the cur-
rent legal structure with the practicalities of software development.

32 A particular difficulty in the research project was the fact that, with software
engineering, innovation management and intellectual property law, my thesis
involved three broadly varying thematic areas. Consequently, there were not
only legal questions but also economic, technical and sociological ones and it
became very difficult to fulfil the demands of each discipline. I tried to over-
come this problem by following advice provided by Hart for the researcher to
remain extra flexible and focus on being open-minded whenever several dis-
ciplines are involved in the same research project. Hart believes that by point-
ing out to the reader what was done and how it was achieved the implications
and potential difficulties of the research project are made transparent.18 I
therefore share some of these difficulties in the relevant sections of this chap-
ter.

I. Introduction to the Socio-Scientific Approach and
Selection of a Research Method

33 For many lawyers, socio-scientific research represents a black box they rarely
ever get in touch with. This included the author of this thesis until this disser-
tation project. The following section therefore presents a short introduction
to the socio-scientific area.

See HART, 10 f., 18 and 83. 18

12

34 The main task of researching is to collect data, analyse it and develop a theory
based on the findings. It is a process of fitting data, linking and attributing it
and uncovering what was previously unrecognized. Data in this context is a
collective term for all kinds of information that can be analysed following a
scientific method.19 The method followed is largely dependent on the research
question and the researcher conducting the study. It is his or her job to design
and apply a creative approach, ask the correct questions and generate solid
knowledge from what has been observed.20

35 The aim of this dissertation project is to learn how companies develop and
commercialize software today and how their needs and wishes can be inte-
grated into the current legal IP system. There are several approaches that
could be followed to get to know-how software is developed and commercial-
ized. This information is part of the sector-specific know-how of engineering
and project development. We need access to this knowledge in order to obtain
reasonable findings and draw credible and representative conclusions. As I am
no software developer myself, I had to look for third parties who were experts
in their field and were willing to participate in the research.

36 Giddens once said that experts are the guardians of formulaic truth.21 What he
possibly meant by this is that experts possess valuable knowledge that is not
easily accessible and cannot simply be learned. Rather, they have collected
their knowledge and cultivated it. It is a fact that a researcher may acquire
some of a research object’s knowledge in time but will not be able to have the
full experience and know-how of a real software developer. Therefore, the aim
of this project was to disclose the practical knowledge and perceptions of soft-
ware engineers that were relevant to the research question.

37 Unlocking information requires selecting an adequate methodical approach.
The core of the research question concerns a legal problem. It may therefore
be expected that one would rely on a legal methodology toolbox, such as the
Sociology of Law. Unfortunately, law does not itself provide a method for data

collection in the practical field. Therefore, we have to search for a method in
another field of science.

38 Social sciences, including sociology and social anthropology, differentiate be-
tween qualitative and quantitative research:

PICKEL/PICKEL, 443, fn. 12.

CORBIN/STRAUSS, 42 f. and 52, enhancing the context in MORSE/FIELD, 125 f.

GIDDENS, 450 f.

19

20

21

Chapter 2: Methodology

13

Qualitative research involves “an interpretative, naturalistic approach to its
subject matter”. Qualitative methods study things in their natural settings and
try to interpret the phenomena perceived from the meaning people bring to
them.22 Similarly to hermeneutics, qualitative researchers try to obtain an in-
depth understanding of the research subject. And as the subject may only be
observed in its primary natural setting, usually smaller samples are required to
develop and prove a theory.

Quantitative methods, on the other hand, refer to a systematic empirical in-
vestigation via mathematical, statistical or simply numerical data to express a
quantitative relationship between a hypothesis or proof and its subject.23 The
approach is deductive-nomological, meaning that every assumption is based
on a causal nexus with a linear development.24 Because in quantitative re-
search one tries to find a theory that is applicable for a set of situations, usu-
ally a bigger sample has to be used.

39 While quantitative research focuses on causal determination, prediction and
generalization of findings, qualitative methods try to illuminate and under-
stand a particular situation or relationship.25 Decisive for choosing either a
quantitative or qualitative approach is the area of study and the research ques-
tion being assessed. In the present case, the goal is to gain a deeper under-
standing of the software development process. The main focus is on the
knowledge and perceptions of the developer companies. This involves the
whole development and commercialization process and its legal comprehen-
sion within intellectual property law. As only very little legal evaluation of this
question exists, it would be difficult to follow a deductive approach alone. In-
stead, we are trying to understand our research subject and gain in-depth
comprehension to evaluate whether the current legal framework matches it. A
process or a perception is difficult to express in quantitative data, as it is de-
scriptive in nature.26 Further observations, descriptions and legal integration
of the research field are required. Working statistically therefore cannot pro-
vide the insights needed to understand the issue. Consequently, a qualitative
method was chosen for this research project.

DENZIN/LINCOLN, 2 (not included in the 2018 edition of the book).

The Sage Encyclopedia of Qualitative Research Methods, "quantitative research", available

at <http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-meth-

ods/n361.xml> (retrieved September 6, 2021).

See also PICKEL/PICKEL, 442.

HOEPFL, 48.

See also PICKEL, 303, and SWANSON, 142.

22

23

24

25

26

Chapter 2: Methodology

14

http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n361.xml
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n361.xml

40 Socio-scientists differentiate between three main categories of qualitative
methods:

41 Observation is the creation of a “systematic description” of events, behaviours
and objects in a particular social setting.27 The aim is to relive with your own
senses the same situation that the subject of observation experiences. In the
context of this thesis this would mean that I would need to integrate into the
daily life of software engineers and try to relive their usual courses of action,
including the creative composition and inventive development. Unfortunately,
designing and finalizing software involves many cognitive processes that can-
not simply be experienced sensually from the outside. We want the full picture
from the first thought processes to fixing them in a concept and realizing them
in a definitive form. We are therefore reliant on information only the software
engineers themselves can provide. A lay person cannot experience the same
depth of creativity and systematic knowledge as an ordinary software devel-
oper can with a well-founded technical background and personal experience.
Therefore, observation would be the wrong method for this thesis.

42 Document analysis refers to the method of evaluating documents and elec-
tronic materials in order to elicit their meaning, to gain understanding and to
develop empirical knowledge.28 This includes case studies of documents and
literature reviews. The analytic procedure includes finding, selecting and as-
sessing the relevant documents as well as synthesising data contained in those
documents.29 As described later, for the present thesis a facilitated type of lit-
erature review was used to get a first impression of the research field, but it
was not used to gather data. I focused on gaining basic technical knowledge
and getting acquainted with the relevant terms and processes. Sometimes
with theoretical descriptions in scientific papers it is quicker to integrate
newer trends of a practice and discuss them on a scientific level. The literature
therefore opened new possible paths to explore for my thesis. Analysing doc-
uments further helped with the general structure of the studied fields as well
as revealing knowledge gaps in the theoretical literature. I then used these in-
sights to arrange the results of the interview series and to cross-check the
findings, increasing the strength of the acquired evidence and showing possi-
ble weaknesses of the theory. Therefore, I combined the literature review with
another qualitative method to approach my research question.

MARSHALL/ROSSMAN, 143.

BOWEN, 27, with further references.

BOWEN, 28.

27

28

29

Chapter 2: Methodology

15

43 Finally, there are interviews. With this method researchers try to get access to
real-world settings which we can’t experience ourselves. A narrator enables
one to gain information or knowledge that it is difficult to access from the out-
side.30 As software development involves a lot of personal background and in-
visible cognitive processes, interviews provide a suitable method of accessing
this hidden knowledge that researchers cannot experience themselves. The
interviews thus provided the data I was looking for. By discovering the systems
behind the feedback, deeper knowledge and practices in software develop-
ment could be disclosed. Furthermore, interviews allow a researcher to gather
information about various different aspects or characteristics of a research
subject. This means that within the same interview, I could approach and ex-
plore several areas of interest. A systematic approach in the interviews then
helped me to generalize the discovered information in order to achieve repre-
sentative theories.31

44 I therefore decided to work with socio-scientific qualitative methods, as the
legal methodological toolbox itself did not provide the required methods to
gather data from a practical field. I utilized literature analysis to receive access
to the study field and get an initial view of the theoretical comprehension of
the topic, which helped to corroborate later findings.32 Interviews were then
used to collect data from the field. Thus, I combined the literature review and
interviews to investigate my research question, conducting a methodological

triangulation.33

II. Literature Review

45 A literature review is a particular form of document analysis. It may be defined
as the “selection of available documents (…) on the topic, which contain infor-
mation, ideas, data and evidence written from a particular standpoint, to fulfil
certain aims or express certain views on the nature of the topic and how it is
to be investigated, and the effective evaluation of these documents in relation
to the research being proposed”.34 The literature review can help to uncover

PATTON, 341; BOGNER/MENZ (2009b), 8; GORDON, 1.

See also PICKEL/PICKEL, 447 ff.

BOWEN, 28.

See for full description: PICKEL; TANSEY, 484; BOHNSACK/GEIMER/MEUSER, 235 ff.

HART, 11.

30

31

32

33

34

Chapter 2: Methodology

16

the current state of knowledge, the common methodology used by other re-
searchers in the field and elucidate which problems require further attention
and which are already saturated.35

46 Webster and Watson recommend following a clear systematic approach in or-
der to limit the literature to those few items that are potentially relevant and
representative for your particular research question.36 This approach gives the
researcher security and provides him or her with a structured procedure that
enables credible and qualitatively rich extracts. The structured process in-
volves organizing a review, specifying the potential research question, creating
a review protocol, assessing this protocol, identifying the available research,
selecting the relevant studies and documents, evaluating the quality and rep-
resentativeness of the selected literature, and extracting relevant data and
monitoring it.37

47 For this research project, the literature review represented the starting point
that helped me to become immersed in the field of study and familiar with the
topic. I chose to work with a structured approach similar to the Systematic
Literature Review model as outlined in the Guidelines for Performing System-
atic Literature Review by the Universities of Durham and Keele,38 but then
slightly adapted it, because the main purpose was to get an initial idea of the
relevant problems for the research question. The principal source of data of
this project would be the interview series. I tried to determine the prevailing
doctrine in the different fields researched. Searching online for newer contri-
butions and reviewing the leading journals in the mentioned fields, I found a
variety of potentially pertinent information. The documents were then
arranged by the relevance of the content and credibility of the authors, start-
ing with the established and representative authors. Each piece of literature
was analysed for its quality, credibility and representiveness in order to guar-
antee a qualitatively rich literary base on which to build my further research. I
then followed-up with the sources used by these authors, which allowed fur-
ther relevant contributions to be accessed for analysis. When a citation chain
ended, the same procedure was repeated from the beginning with a new piece
of literary work. After a time, I got a feel for what could be included and what
could be discarded because, with each contribution I read, the relevant ques-

WEBSTER/WATSON, xiii; see also HART, 2 f.;

See WEBSTER/WATSON, xix & xv f.

See UNIVERSITY OF DURHAM/KEELE UNIVERSITY, 6 ff.

UNIVERSITY OF DURHAM/KEELE UNIVERSITY.

35

36

37

38

Chapter 2: Methodology

17

tions became more saturated and the arguments easier to assess. At the same
time, I tried to stay open-minded for new inputs by regularly reflecting on the
collected literature.

48 I spent approximately five months reading solely about technical development,
software engineering and innovation management. Another five months were
spent reading about the existing socio-scientific methodologies available. It
took approximately six months to review the relevant literature on the legal
comprehension of the subject. I focused on literary contributions that dis-
cussed similar, related or partial questions of my research field. This analysis
provided the theoretical foundation and offered an understanding of the soft-
ware engineering industry and innovation management. By discovering the
state of the art, it was possible to narrow the scope of this doctoral project and
focus on specific key issues. In total, I read over 400 literary contributions, of
which nearly 200 were incorporated in this work. It is noteworthy that in the
field of law and social sciences, I found and worked most with monographs
and commentaries, rather than with papers or online sources. At the same
time, it became apparent that the classical monographs were often outdated
for the dynamic field of IT sciences. For this reason, I based my research for
the technical questions almost exclusively on papers and online contributions.

49 The insights from the literature review were then used to select a suitable re-
search method for the data collection and analysis. The extracted sections also
served to isolate potential interview questions for the interview series. At the
same time, the literature was incorporated into the theoretical foundation that
introduces the relevant technical and legal background. Finally, the results of
the literature review were used to discuss the findings and proposed solutions.

50 Although the literature review was a tedious process, it was vital for my re-
search project. This structured and systematic procedure for the literature re-
view helped me to feel comfortable with the study field and to select extracts
which were relevant and representative.

III. Interview Series

51 After the literature review had identified the critical questions and gaps in the
existing knowledge, qualitative interviews were used to gather further infor-
mation on the practical needs and wishes of software engineers in developing
and commercializing their computer programs. First, I looked at the focus and
purpose of the interviews in order to reflect what I wanted to accomplish with
them. I then reviewed the different forms of interviews and analysed what

Chapter 2: Methodology

18

their potential contribution and effect could be. I decided to work with so-
called expert interviews and thus had to consider which experts to use for this
project. The results of this evaluation were used to develop a potential sample.
Finally, the content of the interviews was framed with interview guidelines to
determine the structure of the process and design appropriate questions.

A. Purpose of the Interview Series

52 I first evaluated and reflected on the exact purpose of the interviews, and
through this, the objective of the research was further elaborated.

53 Bogner and Menz differentiate between three different purposes of inter-
views.39 An interview may be explorative, which means that it offers orienta-
tion in an entirely new or yet undiscovered field of research. It may serve to
accommodate a research environment and to learn more about which factors
influence a particular subject and what effects can be expected.40 Further, an
interview may have a systematizing effect by revealing knowledge that is diffi-
cult to access. By gathering information in a continuous and systematic ap-
proach, comparability of the results can be achieved.41 Finally, an interview
may be used to generate theories. Based on the subjective replies of the inter-
viewed parties, the researcher looks for rich patterns in the interviewees’ re-
sponses and decisions in order to generate generizable theoretical concepts
about the particular problem or field investigated.42

54 For this research project, a total of 12 interviews were used, to pursue all the
above purposes. Most of the information gathered about the technical and
procedural aspects of software development were already established in the
software engineering industry. Here, the interviews helped to organize and
systematize the available knowledge for non-technicians, generating a mirror
image of the current software development process. This information could
then be further processed and evaluated from a legal perspective. On the other
hand, some of the information on software development was entirely new, less
established or not yet analysed. The interview series helped to explore undis-
covered ground and identify basic structures and characteristics. This also in-
volved finding out the personal experiences of the individual software devel-

BOGNER/MENZ (2009a), 64 ff., referring to VOGEL, DEEKE and an earlier print of MEUSER/

NAGEL (2005).

BOGNER/MENZ (2009a), 64.

BOGNER/MENZ (2009a), 64 f.

BOGNER/MENZ (2009a), 66 f.

39

40

41

42

Chapter 2: Methodology

19

oping companies with the current legal framework. This question has rarely
been analysed previously on the basis of qualitative data. The interviews thus
had an explorative characteristic as they helped to discover new relations and
factors. Finally, the main goal of the interviews was to survey individual soft-
ware developing companies and obtain a generalizable pattern of how soft-
ware is produced today and the difficulties encountered in protecting their
goods. This data could then be used to develop theoretical concepts about
the needs and wants of the involved parties in an intellectual property frame-
work. The interviews therefore served the purposes of systematizing, explo-
ration and theory-generating.

B. Focus of the Interviews

55 Before selecting an appropriate interview approach and designing the inter-
view guidelines, I needed to know what kind of information I was looking for
and what type of knowledge I wanted to address and have shared.

56 Through expert interviews different kinds of knowledge can be obtained.
Bogner and Menz differentiate between three areas of knowledge: technical
knowledge, procedural knowledge and interpretive knowledge.43 Technical

knowledge implies discipline-specific expertise and is usually directly accessi-
ble in an interview. Procedural knowledge is concerned with how particular
processes work and how they can be affected. Both types of knowledge can
theoretically be obtained from an interviewee’s functional context alone. In-

terpretive knowledge, however, goes beyond this functional component. It de-
pends on the interviewee’s personal views and priority ranking.44 At this point,
the personal background becomes transparent and the experience and opin-
ions of an interviewee can be sensed.

57 The present research question touches all three types of knowledge. I wanted
to discover how software products could be protected adequately with intel-
lectual property law. For this, it is important to learn how software is actually
developed and the personal experiences of the affected group. An understand-
ing and involvement with technical knowledge are important to define what
can be considered as predetermined, due to the technical environment the
software works in, and what the technicity involves. By this we can discover
what is expected and what goes on beyond this threshold. On the other hand,

BOGNER/MENZ (2009a), 72 ff.

For the whole abstract see BOGNER/MENZ (2009a), 70 f.; also discussed in MEUSER/NAGEL

(2009), 470.

43

44

Chapter 2: Methodology

20

it is important to understand how the process of software development con-
tinues ordinarily, how it is structured and what can affect it. The procedural
know-how integrates the practical issues of the software market that affect
the development process and lie beyond technical questions, such as the de-
mands and behaviour of clients, the economic and technical life cycle of a
product, and legal modalities. This information is hidden in the personal ex-
periences and domestic know-how of the interviewee. And it is interpretive
knowledge that is reflected when an interviewee describes what they consider
to be creative, inventive or trivial or if they share with the interviewer what
they consider to be an appropriate legal system. Consequently, all three areas
of knowledge are touched upon, although not all to the same extent.

58 The information obtained can generally be grouped into either business knowl-

edge or contextual know-how. The first type refers to information about the
structures and relations of a person’s daily activities. The second term is linked
to particular processes or incidents experts are involved in but for which they
do not have direct responsibility.45 In the present research, the focus is on
business knowledge, referring to the conditions that are involved in creating
and commercializing software as well as the personal contribution a developer
or company can offer. This is the generalizable information that lies within the
sphere of influence of the interviewee. The knowledge sought is therefore
closely associated with a high degree of responsibility for the process and a
depth of knowledge of the processes and structures involved. Particular inci-
dents may serve as a source of information for individual cases but are difficult
to generalize, as they are not representative enough. Contextual know-how
therefore does not meet the demands of this project.

59 The research project therefore aims to uncover the knowledge of interviewees
who have a high level of responsibility for software development and commer-
cialization. The knowledge important for this study may be defined as business
knowledge that consists of technical, procedural and interpretative elements.

C. Selecting an Interview Type

60 Where information cannot be observed from the outside, an interview may
serve as a kind of intermediary between the technical processes in question
and the researcher. There are several types of interviews available in socio-
science, varying in terms of the medium (oral to written), quantity (one-to-one

MEUSER/NAGEL (2009), 470 ff. 45

Chapter 2: Methodology

21

or wide survey), and the investigative spectrum (general to specific).46 Each in-
terview form has a different research aim. An individually designed interview
allows the researcher to get the specific type of information they require.

61 In this research project, so-called expert interviews – sometimes also referred
to as elite interviews – were used. In this interview form, the focus is on talking
to selected people who are able to provide some kind of specialist knowledge

relevant to the research question.47 Expert interviews have three main pur-
poses: first, they can illustrate what a certain set of people think about a par-
ticular issue; second, they can be used to evaluate a larger population’s char-
acteristics, perceptions or decisions; and third, they can serve to verify what
was established from other sources. Interviews are always used to reconstruct
an event.48 Expert interviews in particular reflect existing knowledge that is
relayed through an audio-visual or literary medium.

62 This method offers several benefits. One major advantage of expert interviews
is that they are able to gather first-hand data about processes being investi-
gated, allowing the researcher to get accounts from a direct witness.49 This is
essential for a research field such as software engineering, where the informa-
tion is not readily available to the researcher. In addition, Meuser and Nagel
note that this form of interview is common for those in a professional con-
text.50 It offers a fast, effective and efficient procedure to gather information
about experience-based knowledge.51 One main advantage of interviews
therefore is that a researcher is able to gather information about a professional
environment without remaining for long in the observed setting and without
influencing or disturbing the investigated field.52 Another advantage is that ex-
pert interviews have a great political force as they are very practical for knowl-
edge discovery; findings can potentially be used to effectively modernize older
economic or political systems,53 for example by offering scientific recommen-

For example an interview that focuses on a narrator is called a narrative interview. For

more information, see PICKEL/PICKEL, 446 f.

HELFFERICH, 162; MEUSER/NAGEL (1994), 181 f.; BOHNSACK/GEIMER/MEUSER, 76 ff.

TANSEY, 484; PFADENHAUER, 99.

TANSEY, 485.

MEUSER/NAGEL (2013), 457 ff.

MIEG/BRUNNER, 199; DEEKE, 9.

The participating expert will, therefore, be more willing to participate in the study.

BOGNER/MENZ (2009b), 9 f.

46

47

48

49

50

51

52

53

Chapter 2: Methodology

22

dations for regulatory measures or jurisdiction. For this research project, the
expert interviews may hence provide support and legitimacy to the acquired
data.54

63 The expert interviews were used to unlock special knowledge about software
development and commercialization that would not otherwise have been ac-
cessible. They served to gather rich data qualitatively, directly from people
working in the software industry. This helped me to achieve a fuller picture of
the current software developing industry and of problems that might occur
from a legal perspective. Expert interviews therefore represented an optimal
approach for my research subject.

D. The ‘Expert’ Term

64 Expert interviews focus on interview candidates that possess some kind of
special knowledge. In a first step it therefore had to be determined which peo-
ple might provide credible and relevant information and might therefore be
considered as experts for this research project.

65 The term ‘expert’ implies a lot of different meanings. One main aspect of ex-
pert interviews is that the potential expert knows something about an envi-
ronment that is not accessible for everybody, particularly for the researcher.55

The expert in question should be suitable for the research model. The term
‘expert’ therefore has to be newly constructed and rethought for every new
project.56 The more accurate and specific the definition of the expert is, the
more guidance can be obtained from it.

66 The available definitions for an expert are widely similar. One of the most com-
mon definitions is provided by Meuser and Nagel, two well-known European
researchers in the field of expert interviews. They define an expert as a person
who is responsible for the design, implementation and control of a problem-
solving process.57 Although this may appear rather simplistic at first, it covers
a lot of different aspects that are important for the position of an expert. First,
through defining an expert by his or her area of operation, the expert is par-
tially reduced to his/her functionality. The definition also implies that, if a per-
son is responsible for the designing, implementation and monitoring of a
process, a minimum threshold of knowledge is provided. If a person is able to

BOGNER/MENZ (2009b), 9 f.

MEUSER/NAGEL (2013), 457 ff.

See also BOGNER/MENZ (2009a), 70 f.

MEUSER/NAGEL (2005), 73.

54

55

56

57

Chapter 2: Methodology

23

influence all these steps, there is a high probability that this person possesses
a well-founded knowledge of the associated factors. Further, the processes of
designing, implementation and control may involve several different types of
knowledge – technical, procedural and interpretative knowledge – at the same
time.58 Meuser and Nagel’s definition therefore illustrates the potential com-
plexity expert knowledge may involve. When relying on Meuser and Nagel’s
description of an expert, the functional responsibility of the interviewee be-
comes more important. But as the present research question contains techni-
cal and legal aspects as well as project management, an optimal expert should
have responsibility for all these areas, not only for functional technical areas.
In bigger companies especially, where we can observe a tendency to assign
fewer management tasks to one particular person and instead spread respon-
sibility among a larger number of employees, selecting a perfect interviewee
who meets all the requirements becomes more difficult.

67 Mayring, on the other hand, offers a voluntaristic definition. He believes that
the personal qualities of an expert are decisive, including the particular infor-
mation, skills or other qualities he or she possesses and which support them
in fulfilling their tasks.59 When looking at the field of software development,
the focus would consequently be on the personal qualifications of an individ-
ual project manager, software engineer or legal counsel. Although a candi-
date’s occupation, career and personal background can have a great effect on
the know-how available, this definition seems to concentrate too much on the
individual interviewee and their personal opinion instead of that of the com-
pany for whom they work. As the present research project seeks to portray not
only the opinion of independent software developers with a specific back-
ground but also the position of businesses, the expert term should be broader.

68 The term ‘expert’ can also be determined by focusing on the scientific work to
be accomplished. Benoit and Wiesenhomeier suggest that experts are simply
people who possess a comprehensive and authoritative knowledge of the sub-
ject in question.60 This definition focuses on the particular research project.
No requirements are set out for the functional perspective of a potential inter-
view candidate, but it implies that the expert should be determined on the ba-
sis of the particular research question. Although this definition provides the
researcher with the desired flexibility, it did not help me, as a lay person, with

For the different types of knowledge, see above N 56.

MAYRING, 3rd edition, 49; discussion in: BOGNER/MENZ (2009a), 67 f.

BENOIT/WIESENHOMEIER, 501.

58

59

60

Chapter 2: Methodology

24

any guidance on what a potential expert for this research project might look
like. Although some aspects of the scientific definition were useful for the pre-
sent research, it was not sufficient on its own.

69 Finally, the sociology of knowledge regards experts as a tank of specified know-
how.61 Contrary to the voluntaristic approach of Mayring, it is irrelevant how
an expert has achieved his/her knowledge. Instead, the main quality of an ex-
pert is that he or she is a keeper and cultivator of knowledge. The sociology of
knowledge consequently focuses on the substance that is available. By focus-
ing only on the knowledge available, the person interviewed becomes inter-
changeable. Furthermore, the interpretative knowledge manifested in the per-
sonal opinion of an interviewee seems to be largely disregarded. Overall,
however, the definition offered by the sociology of knowledge offers some fac-
tors that were of interest for my project.

70 All of the above definitions cover particular elements that are relevant for this
research project. A perfect expert should, for example, have responsibility and
be able to influence his or her field of work, and this is partially affected by his
or her personal background and qualities. At the same time, what can be con-
sidered as an expert for this project is determined to a large extent by the re-
search question. And as the main aim of this project was to learn more about
software development, participating in the knowledge that a representative of
the industry was willing to share was very important. None of the available de-
finitions, alone, were able to provide an ideal picture of an expert for this pro-
ject.

71 It was concluded that a multi-layered definition would therefore be more suit-
able. Guidance was obtained from a constructivist approach that differentiates
between a methodical-relational and a social-representational expert function.
The methodical-relational element suggests that every expert is only an expert
because of somebody else’s research interest. The expert therefore expresses
a theoretical construct where that person has a particular type of knowledge
considered relevant for the research project in question.62 He or she becomes
important because they have what the researcher is particularly looking for.
Deeke notes that through this the expert-term becomes reliant on the re-
search object in question.63 Often, the object of study and the expert are “rela-

MEUSER/NAGEL (2009), 469 f.

BOGNER/MENZ (2009a), 68, referring to MEUSER/NAGEL (2013) and DEEKE.

DEEKE, 7.

61

62

63

Chapter 2: Methodology

25

tional” because the researcher helps to define the relevant people64 On the
other hand, the social-representative element implies that the expert function
can only be attributed to people who are also accepted as an expert in their
particular social reality. This means that the expert has to be a credible and
established representative within their group of specialists.65 We are therefore
looking for candidates who are respected for their professional qualities and
have a high reputation in their particular sector. It is important for a research
project to base its assumptions on credible and representative findings. Find-
ing appropriate interview candidates is therefore vital. As it can be difficult to
determine who may be considered an expert, their professional reputation will
help to distinguish between unsuitable candidates and potentially representa-
tive ones. It is likely that a candidate will have relevant knowledge of the field
of study, if he or she is established and accepted. At the same time, being rep-
resentative implies that similar qualities can be observed in other software de-
velopers. It is thus important to look for candidates that show common qual-
ities among developers although the particular characteristics of a developer
or product may vary. Otherwise, the findings may not be reproducible and uti-
lizable, making it difficult to build a generalizable theory on them.

72 Thus, reflection on what could be assumed by the term expert represented an
important step in this research project. It helped to find a uniform line for the
whole project and ensure that only parties were involved that could really con-
tribute something. This meant a reasonable use of the available resources, and
guaranteed qualitatively richer findings.

73 The constructivist approach therefore built a supportive base for understand-
ing who could be considered as an expert for this project. It was important to
look for people who were able to provide an extensive scope of answers to the
interview questions. The perfect candidate therefore would have knowledge
about technical, procedural and legal issues while having enough experience
to be able to provide an interpretive personal analysis of the problem.

E. Sampling

74 In the above section, I outlined the type of potential expert who would be suit-
able for my particular research project. This expert description then had to be
applied to a sample group who could participate in the interviews and gener-
ate credible and representative data.

MEUSER/NAGEL (2005), 73.

BOGNER/MENZ (2009a), 68 f.; MEUSER/NAGEL (1994), 181.

64

65

Chapter 2: Methodology

26

75 It should be noted that in this research project finding appropriate and repre-
sentative interview candidates took up a lot of my time. As noted by Pickel and
Pickel, and also Goldstein, a major difficulty with interviews lies in getting ac-
cess to potential candidates.66 About fifty per cent of the preparatory work
consisted of getting in touch with people who could provide useful contacts,
and winning their confidence. Only where this confidence could be estab-
lished, were appointments scheduled and the interviewees could be properly
prepared for the interview situation. Arranging a sample, in practice, involves
a lot of obstacles and requires good resource management.

1. Initial and Theoretical Sampling

76 The people that a researcher wants to engage in his or her studies have to be
selected in a justifiable way.67 A representative sample group is picked from the
total possible candidates. This process is called sampling. Unlike quantitative
methods, the choice of a sample in qualitative research is usually not statisti-
cally based. Qualitative research instead tries to generalize findings found in a
particular situation in order to provide a better understanding of it.68 By de-
termining a pattern from individual examples, the researcher is able to obtain
a potential picture of the wider situation in question.

77 In the literature, two main sampling techniques are described for qualitative
social sciences which distinguish between initial sampling – where to start –
and theoretical sampling – where to go.69 Initial sampling seeks to find a logi-
cal starting point. It tells you which group, situation or population to investi-
gate before you actually do so.70 Theoretical sampling then carries the re-
searcher from the first series of interviews to further ones.71 The relevant
subjects that arise during analysis of the first interviews lead to new potential
interviewees. Sampling is therefore conducted at least twice: once before
starting the research and once after the analysis of the first few interviews. For
this research project an initial sampling was done that provided some experts

Goldstein described in his book that 'getting the interview' represents one of the major

challenges a researcher faces as the interviewees have other priorities than doing addi-

tional work beside their regular tasks (GOLDSTEIN, 669). See also PICKEL/PICKEL, 448. See

also DEEKE, 16 f.; VOGEL, 77 f.

PICKEL/PICKEL, 447 f.

HELFFERICH, 173; KAWULICH, para. 1.

CHARMAZ, 100 ff.

CHARMAZ, 100 f.

CHARMAZ, 99 f.

66

67

68

69

70

71

Chapter 2: Methodology

27

to interview at the beginning. After the analysis of these first interviews, I was
able to get a good impression of what the data might look like. Through the-
oretical sampling I then looked for other potential candidates who could pro-
vide particular information for specific problems. This process was repeated
until all the relevant data categories were saturated. As the data has to be
analysed at the same time as further interviews are being conducted, the re-
searcher has to work in a circular way, integrating initial findings into the
working research design.72

78 Theoretical sampling has the effect that the final number of candidates in-
volved in a study only emerges after the first interviews have been held and
the data have been analysed. Data saturation occurs when no new categories
evolve and instead the same ones reoccur, the same stories are told. At this
point no further interviews have to be held.73 Consequently, when working
with theoretical sampling and expert interviews, the researcher is often busy
holding interviews and evaluating them at the same time. The number of com-
parable study cases as well as research resources is often restricted.74 Qualita-
tive work therefore makes selection by outcome, only integrating cases that
actually fulfil the anticipated sample characteristics.75,76 In qualitative research
it is therefore common to work with a smaller number of cases, if the obtained
data are processed diligently.77 For this reason, theoretical sampling is some-
times criticized as being arbitrary and unscientific. The main criticism lies in
the fact that, in the absence of statistic development of the sample, there is a
higher risk that the sample is not representative enough and the findings thus
become unreliable. Charmaz counters that qualitative research does not serve
to observe the distribution of data nor does it aim to find universal findings
that are applicable to every possible scenario.78 Instead, the research aims to
gain a deeper understanding of a particular situation and observe common

This circular hermeneutic approach differs from the classic quantitative one, where the

researcher usually works linearly; here the researcher follows only one step at a time and

usually doesn’t return to any of the steps (PICKEL/PICKEL, 445). For further information, see

also CORBIN/STRAUSS, 135 f. and 240.

CORBIN/STRAUSS, 139 f.

EBBINGHAUS, 203 f.; RIHOUX, 366.

If analysing their features, only inevitable conditions can be identified. Any further ele-

ments influencing a situation cannot be determined (EBBINGHAUS, 206).

Braumueller and Goertz describe this state using the formula 'X is a necessary condition

for Y, if Y is always present when X occurs' (BRAUMOELLER/GOERTZ, 846).

EBBINGHAUS, 206 ff.

CHARMAZ, 101 f.

72

73

74

75

76

77

78

Chapter 2: Methodology

28

characteristics of it. In the present case, we want to learn how software is usu-
ally developed today. Special circumstances may therefore not be illustrated
appropriately but the data still suffice to draw a general picture of the inter-
viewed companies that is transferable (or generalizable) to other ones in the
same field.

79 To obtain credible and generalizable findings, the researcher should focus on
obtaining and maintaining a high quality sample.79 Further, the research design
should be regularly reassessed and updated based on what is observed during
the interview series.80 Both aspects are included in theoretical sampling. As
the initial sample remains flexible, constant reflection and reintegration of
previous findings is encouraged. In this case, I started with three interview
candidates who were selected through initial sampling. These three intervie-
wees were heads of very small companies. As these directors were responsible
for economic, legal and technical questions within software development, a
broad first impression could be gained with only a few interviews. With the
help of this initial data analysis, the first relevant categories were discovered,
leading to a small adaptation of the original research design. From then on, the
research design was reviewed after every two interviews, and through theo-
retical sampling particular candidates were selected in terms of what they
could contribute to the research project. This included the type of candidate,
for example, from a smaller or larger company, as well as the function of the
candidate within the company. After seven interviews no new categories
evolved, and the relevant categories were fully saturated after ten interviews.
I then decided to hold two further interviews in order to ascertain that my
findings were correct and that no further relevant information could be gath-
ered. In total, I conducted twelve interviews with representatives of the soft-
ware industry.

2. The Sample Group

80 According to Goldstein, more important than the number is the careful selec-
tion of your interviewees.81 In order to ensure comparability of the results,
each candidate should be assessed on whether he or she fulfils the predeter-
mined requirements.82 These requirements should reflect the common char-

HELFFERICH, 172.

ERLANDSON/HARRIS/SKIPPER/ALLEN, 153.

The aim of sampling is to find balanced and unbiased information sources, see GOLDSTEIN,

671 f.

See for more information: EBBINGHAUS, 205 f.; GLASER/STRAUSS, 47 ff.

79

80

81

82

Chapter 2: Methodology

29

acteristics of software development, so that most of people working in this
field can relate to the findings. We are therefore looking for cogent represen-
tatives.

81 The experts selected for this project were candidates with the necessary
knowledge about technical, procedural and legal aspects in software develop-
ment.83 This definition also correlated with those the U.S. Congress describes
as stakeholders in the software debate.84 The potential candidates also needed
to show a large amount of professional experience so that they could provide
an interpretive personal analysis. With the help of the literature review, the
basic definition of an expert was further elaborated with particular character-
istics in order to determine what the potential candidates should be like. The
focus was on people that had well-founded knowledge about software devel-
opment, its commercialization and the legal issues associated with it. At the
same time, the candidates had to be representative in their field and show a
certain amount of expertise and know-how, which meant that only candidates
who had been working in the ICT sector for several years were included. All
potential experts had to show that they had appropriate qualifications associ-
ated with the study field, e.g. a technical degree for the position of a software
engineer or a law degree with a specialized additional degree in innovation
management. I hence looked for candidates that could be regarded as stake-

holders of software development and management.

82 In a first set of explorative and informal talks with software developers, we
discussed the basic structure of a software developing company. I learned that
the smaller a company is, the broader the sphere of responsibility for each
person working for this company. While in a two-person company both usu-
ally share the technical, management and legal responsibilities, in larger com-
panies these remits are often assigned to particular people or departments.
Here, the management board usually defines the objectives of a project. It also
controls and organizes the employee structure and assigns the resources. The
technical employees and project managers are responsible for advancing and
realizing a project. The policy and legal department of a firm assesses what le-
gal measures should be taken to protect and commercialize the product and
how the company communicates with the public. The relevant personnel for
this research project were, on the one hand, the software engineers that de-
velop the software and have the technical and procedural knowledge, and on
the other, the managers and legal counsels responsible for the rights manage-

For more information, see above N 64 ff. and N 73 in particular.

See U.S. CONGRESS (1992), 8-11.

83

84

Chapter 2: Methodology

30

ment and commercialization of the project. They have knowledge about how
the resources are invested in a development project and where the difficulties
in rights management lie from a practical perspective. Their experience with
the current legal system and their point of view was consequently of interest
for the present study. The sample for this project was therefore narrowed to
a group of experts that represented stakeholders in the software development
process. This included people with a high degree of responsibility for either
the project management, engineering or rights management processes. The
focus was on project managers, software engineers and representatives of the
management tier or legal counsels, including policy makers.

83 Cowan and Jonard note that there are three places where inventions are de-
veloped: in institutions such as universities, in profit-seeking companies and
with individual inventors.85 The present study focused on the representatives
of profit-seeking companies. The findings are thus mainly applicable to this
field. However, in informal talks with representatives of important technical
universities very similar needs and difficulties were addressed. The findings of
this study may therefore be transferable to associated groups involved in soft-
ware development, such as universities and individual developers, especially
as most software developers to some extent follow a profit-seeking model.86

For practical reasons, however, the present research had to be limited to
profit-seeking companies.

84 It is also considered what kind of software was developed within a company.
The product range is rather large, varying from client-server software models
to specially designed solutions for a particular companies and web-based
codes of agencies for common user software. Each type has a different pur-
pose and meets a particular client group’s needs. At the beginning of my re-
search, I focused on user software. As reliable trends could be observed at a
very early stage of the interview study, the sample, and with it the focus of this
thesis, was expanded to developers of other types of software, such as individ-
ual software, sector-specific software and standard software. However, the
sample used was intentionally limited to companies that develop software au-
tonomously and also commercialize their products to third parties. Companies
that merely made use of their software in-house were therefore not part of my
research, as these companies were not faced with the difficulties of intellec-
tual property law.

COWAN/JONARD, 513.

This is particularly significant for technical institutions that often follow both models of

profit-seeking and non-profit to some extent.

85

86

Chapter 2: Methodology

31

85 The sample was further restricted to the territories of the research question.
Consequently, only software developing companies within Switzerland, the
European Union and the United States were interviewed.

86 To conclude, in this research project I worked with theoretical sampling where
the candidates could be chosen step by step rather then selecting all the in-
terviewees before starting the process. By using this approach, the research
model could be constantly adapted to the newly developing findings. Stake-
holders in software development such as software engineers, legal counsels
and management representatives were chosen as the relevant sample group
for my research question. In order to achieve a broad field of development
sectors, suppliers of different types of software as well as companies of differ-
ent sizes were included. The sample was then further narrowed by focusing
only on profit-orientated developers that produced and commercialized soft-
ware to third parties within the study area of Switzerland, the European Union
and the United States.

F. Preparing the Interviews

87 Having established the type of knowledge required, the method for collecting
the data and the appropriate sample to work with, the last step in the inter-
view preparation was determining the structure and content of the interviews.

1. Anticipating the Interview Situation

88 Before formulating the interview questions, I first had to become familiar with
the research surroundings. For this, I needed to learn more about the field of
interest and the methodology.

89 First, I studied the working environment of software developers. Schuetz de-
scribes this phase as getting into the “same relevance zone” as the research
subject.87 The aim is to become immersed in the field of study and understand
the common language as well as the determining factors influencing it.88 This
was accomplished using the literature review and some informal preparatory
talks. Through recognizing the relevant structures in the research field, it be-
came easier to find the right problems to investigate and to formulate more

SCHUETZ, 90 ff.

MAYRING, 13 f.; PICKEL/PICKEL, 445; SCHUETZ, 90 ff.; CICOUREL, 49 ff.; PFADENHAUER, 104 f.

87

88

Chapter 2: Methodology

32

accurate questions. As I got to learn the relevant technical terms and under-
stand the most important procedures, the answers from the interviews could
be better classified and evaluated.

90 Based on these insights, the actual interview procedure could then be struc-
tured. A large amount of literature is available on what an interview situation
should look like, what factors should be considered and what is important. In
the interview situation, the interviewer can, for example, present him- or her-
self as a lay person, a co-expert of the same discipline or as an expert of an-
other discipline.89 Depending on how the interviewer starts and what knowl-
edge he or she possesses of the study field, the interviewees will react and
behave differently. I decided to present myself as a lawyer with a big interest
in technology and project development during the preparatory correspon-
dence with the interviewees and during the actual interview situation. I tried
to express that I was no software development expert but that I had acquired
a basic concept of the process and technical questions involved for my disser-
tation project. The interviewees usually started by explaining everything in de-
tail. Through mirroring and integrating the obtained answers, I tried to signal
to them where further explanations were required and what was clear. Bogner
and Menz emphasize that the interviewee needs to feel comfortable and re-
spected in the interview situation, and that he or she should not believe that
they have to “defend their culture”.90 Girtler and Pickel emphasize that a situ-
ation should be favoured in which information can be exchanged on a profes-
sional and reasonable level.91 I therefore tried to create an amenable interview
situation and refrain from posing oppressive questions. Meuser and Nagel in
this context refer to what they call a “methodically controlled other-aware-
ness” (“methodisch kontrolliertes Fremdverstehen”). The interviewer tries to
consciously discern the opposite and at the same time assimilate the interview
strategy to the research interest.92 This meant that during the interview situ-
ations, I had to be fully present in mind, process the emerging answers and
adapt the interview guidelines and style continually. I tried to maintain the
conversation, guiding the interviewee through the interview. Through this, I
was able to react to unforseeable events and turn them into valuable contribu-
tions for my data collection.

See for example PICKEL/PICKEL, 454.

BOGNER/MENZ (2009a), 77 ff, particularly 81; VOGEL, 80.

For managing prejudice and other potential disruptive influences in an interview situation,

see GIRTLER, 186 ff., and PICKEL, 302.

MEUSER/NAGEL (2005), 71 f., referring to SCHUETZ ET AL.; see also PICKEL/PICKEL, 454.

89

90

91

92

Chapter 2: Methodology

33

91 At the same time, it was important for my preparation to read about the expe-
riences of other researchers and learn that interview situations could also
fail.93 I tried to anticipate such situations by expanding my personal method-
ological toolbox and trying to anticipate certain problems by knowing exactly
who I was talking to and where potential difficulties could lie. Preparing myself
for the particular interview situation and knowing what to expect therefore
became very important. Due to careful preparation, all twelve interviews
passed without any problems. I was fortunate to find twelve interviewees that
were happy and willing to participate and share their insights on the current
technical, economic and legal situation. They were all very well prepared and
could provide valuable insights for my research question.

2. Structure and Content of the Interviews

92 It is my understanding that it is the researcher’s job to formulate adequate
questions that result in qualitatively rich data. The interview should guide the
interviewee along the common theme and provide possibilities for the expert
to fill the answers with useful knowledge.

93 There are no standardized patterns for interviews, or restrictions on how the
feedback should be obtained in qualitative research. This provides the inter-
viewer with a lot of flexibility to adapt the interview to the special needs of the
project. On the other hand, it carries the risk that the interview could develop
into an unsystematic question-and-answer-game. According to Corbin and
Strauss, research is “a process of conjecture and verification, of correction and
modification, of suggestion and defense”.94 This means that the researcher has
to consistently deal with the subject and reflect on what they have observed.
Therefore, it is important to think through how the interview should be before
holding it. Well-planned and systematic interviews are encouraged where the
questions are pre-formulated. Bohnsack, Geimer and Meuser caution that
every researcher should consider how much of the interview will be standard-
ized or structured.95 Fully standardized questions may influence answers of
the interviewee and restrict the scope of possible feedback.96 Non-standard-
ized or non-structured questions may instead stimulate the expert to talk on

The expert can block questions, lack sufficient competence or may not want to help the

researcher but rather dish the dirt about internal matters or private issues etc. See for ex-

ample MEUSER/NAGEL (2005), 78 f.; VOGEL, 80.

CORBIN/STRAUSS, 239, enhancing the context of MORSE/FIELD, 125 f.

See BOHNSACK/GEIMER/MEUSER, 151 f. and 169 f.

See also CICOUREL, 100 ff.; MERTON/KENDALL, 546; DEEKE, 19 f.

93

94

95

96

Chapter 2: Methodology

34

any topic of their choice. In this case, the interviewer gives away his or her
control over the topic. Between full and no standardization lies the use of
standardized, pre-formulated questions. For this, an interview guideline is de-
signed. The most important questions are prepared before holding the inter-
views and the whole interview is shaped and structured.97

94 I therefore followed the standardized or structured approach and used inter-
view guidelines for further back-up with a method I had not yet applied. Inter-
view guidelines98 are a list of semi-structured questions that cover various
topics and areas an interviewer wants to explore in the interview.99 The advan-
tage of using interview guidelines is that it helps to limit possible “interaction
effects” which otherwise could compromise the outcome of an interview.100

Consistent guidelines further support objectivity and thus assure repro-
ducibility and trustworthiness of the data.101 The guide here works as a sys-
tematic and consistent base which can then be used to compare and evaluate
the obtained data. Another positive effect of interview guidelines is that they
can be developed closely with the research field. The researcher has full au-
tonomy on what topics to cover and can also steer how pre-formulated the
questions are and how much leeway is offered to the interviewees to give feed-
back.

95 For the structure of the guidelines, I tried to follow Helfferich’s standards.102

She developed what she calls the SSPS system. It is an established system to
structure and organize interview guidelines. It builds on selecting potential
questions (“sammeln”), reevaluating the list of collected questions under the
criterion of openness, including erasing the suboptimal questions and refor-
mulating the suggestive or too broad questions (“prüfen”), arranging the re-
maining questions into a logical order (“sortieren”), and finally grouping the
sets of questions or bundles under a key or heading question that appears the

For more information on non-standardized and fully standardized questions, see:

ATTESLANDER, 134 ff. and 144 ff.; PICKEL/PICKEL, 442 and 446 ff.

Also referred to as: interview guide, interviewing guide, interviewing guidelines or aide

memoire.

The Sage Encyclopedia of Qualitative Research, "interview guide", available at

<http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/

n238.xml> (retrieved September 6, 2021); VOGEL, 74.

MEUSER/NAGEL (2005), 77 ff.; Littig rates those interaction effects as qualitively valuable as

they could contribute in a constructive and productive manner to a positive outcome of

the research (LITTIG, 125 ff., with further references).

MERTON/KENDALL, 546 f. and 548; MEUSER/NAGEL (2005), 81.

See HELFFERICH, 178 ff.

97

98

99

100

101

102

Chapter 2: Methodology

35

http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n238.xml
http://methods.sagepub.com/Reference/sage-encyc-qualitative-research-methods/n238.xml

most simple. The following questions are then subsumed under this key ques-
tion (“subsumieren”). The base for my interview guidelines was built from my
insights from the literature review and the informal preliminary talks with
software developers. The interview questions were constructed around the
strategic concepts of the research project.103 Different cases and topics were
arranged in an order that would mirror the natural flow of conversation. For
this purpose accessible interview guidelines were observed and analysed on-
line.104 I tried to limit thematic changes to the minimum. The main goal was
to obtain a lucid and manageable questionnaire tool that offered enough nar-
rative space for the experts to answer. The final interview guidelines were
discussed with the project supervisors and also reviewed by a software en-
gineer to avoid overextending the later interviewees. During the running in-
terview phase, which took six months, the interview guidelines were reviewed
and adapted several times in response to observations made as well as newer
discoveries. The thematic questions regarding ‘Competition in Software Engi-
neering’ were particularly difficult to articulate. Formulating clear, non-con-
fusing open questions therefore represented one of the major challenges in
the project.

96 Once the outer structure and thematic blocks of the interview guidelines were
built, the individual questions had to be edited and formulated. I decided to
work solely with pre-formulated questions, consequently a lot of attention had
to be put into the wording. I followed the key concepts of Hopf and Helfferich
to build the questions, which were formulated, open, linguistically compre-
hensible and assignable to the context. No questions that were judgemental or
too personal were used. The language was designed to be as simple as possi-
ble, without using technical jargon.105 For example, when I wanted to learn
more about the procedure of software development from the first idea to the
final product, naturally there were some particular answers I anticipated due
to the literature review I had carried out previously, e.g. that the process could
be split into different phases. But in order to avoid influencing the answer, the
interviewee was simply asked how they developed software and how they pro-
ceeded when they started a new project.

97 In the first phase of the interview, I generally provided some basic information
about the project, the confidentiality terms and the interview process so that
the candidates knew what was going to happen and received an overview of

For more information, see MEUSER/NAGEL (2005), 82.

See for example: STANFORD UNIVERSITY, or UNIVERSITY OF DURHAM/KEELE UNIVERSITY.

See HOPF, 108; see also interpretation in: HELFFERICH, 107 f.

103

104

105

Chapter 2: Methodology

36

the relevant research questions. According to Liebold and Trincek, the first
few questions should motivate the expert to share his or her knowledge and
present themselves.106 I thus used some kick-off questions to involve the ex-
perts, asking them about their occupation and career. The personal informa-
tion gave them a gentle start while gathering information about them for later
data analysis and to build connections between the various research topics.107

The interview guidelines then led to the thematic blocks of ‘software devel-
opment’, ‘software commercialization and rights management’ and ‘infringe-
ments and legal disputes’ which I could then elaborate on step-by-step. And as
the interviewees always received a copy of the interview guidelines in advance,
they could prepare themselves and knew what was coming up.

98 Structuring and organizing the interview guidelines represented a time-con-
suming part of the research project. They had to follow a logical order and
favour a good flow of discussion. The questions had to be formulated in a way
that was appealing for the interviewees and encouraged them to share their
knowledge willingly with me as their interviewer. At the same time, the inter-
view guidelines offered security and ensured that the interviews, which were
conducted in English and German, followed scientific principles so the find-
ings remained comparable.

IV. Transcription

99 With the consent of the interviewees, the interviews were recorded and then
transcribed on the computer in hours of work into written form. Most of the
12 interviews were conducted with German-speaking experts and some were
held in English. I transcribed in the respective interview language.108

100 Theoretically, transcription offers a complete text version of the verbal state-
ments. In consultation with my supervisor, I instead decided to transcribe only
parts, although still the majority, of the interviews, leaving out certain sec-
tions, e.g. if an interviewee gave several examples for one argument. This is
called selective transcription.109 After transcribing about seven interviews and
analysing them, I became more comfortable with the method and started to

LIEBOLD/TRINCEK, 35.

For more information, see PICKEL/PICKEL, 446 f.; BOHNSACK/GEIMER/MEUSER, 135 f.

As described subsequently in N 109 ff., the interviews were then all analysed and coded in

English. Relevant text passages from the interviews were occasionally translated into Eng-

lish in order to be able to quote them in my thesis.

See also discussion in STRAUSS, 266 f.

106

107

108

109

Chapter 2: Methodology

37

paraphrase certain evident statements, e.g. when the interviewees mentioned
a specific point repeatedly without providing new information. The challenge
in this situation was to preserve the meaning and terminology of the expert’s
original statement.110 The core of the arguments and the majority of all state-
ments were retained, only irrelevant sections were skipped in transcription. I
therefore tried to follow Mayring’s guidelines, which say that the more relevant
the information is, the denser and more elaborated the transcription should
be.111 I therefore always processed most of each conversation.

101 The transcriptions were accompanied by a short memo with information
about the interview situation, who was interviewed, what kind of company the
interviewee worked for, and whether something particular happened during
the interview.112 Through this, all relevant information about the interview sit-
uation and candidates was maintained. Whenever the interview was inter-
rupted, I took notes that were later integrated into the transcript. These notes
served to qualify the information and to create representative relations be-
tween them. The transcriptions and associated memos built the base for the
following data analysis.

V. Data Analysis

102 Data analysis represents the final step after data collection and transcription.
The following sections describe how an adequate method for data analysis was
selected and how it was applied in order to build theories.

A. Selecting a Method

103 Data analysis comes after the transcription and forms the third part of scien-
tific research. The process usually follows three main steps: description, inter-
pretation and generalization.113 Through the description, the individual prop-
erties of a particular research subject are elaborated. The interpretation phase
consists of a circular process, involving collecting data, gaining knowledge
from their evaluation and applying this knowledge again to gather new data.

See the same problem described in Meuser and Nagel who explicitly allow paraphrasing,

as long as the original terminology and meaning are guaranteed (MEUSER/NAGEL [2005],

84).

MAYRING, 95.

See recommendations in: PICKEL/PICKEL, 448 and 555.

See MAYRING, 19; PICKEL/PICKEL, 445.

110

111

112

113

Chapter 2: Methodology

38

During the generalization phase, the researcher attempts to build an inductive
theory based on the data evaluated.114 The theory should then give further ref-
erences, for example for a possible future software IP law framework.

104 To obtain a theory, the collected data need to be systematically processed and
elaborated in context. Glaser and Strauss emphasize that “generating a theory
from data means that most hypotheses and concepts not only come from the
data, but are systematically worked out in relation to the data during the
course of research”.115 When the first batch of data have been analysed, these
findings are systematically reintegrated into the process of collecting new
data, e.g. in the interviews. The researcher can identify similarities as well as
differences in the statements obtained.116 The similarities serve to identify pat-
terns, while the differences and particularities help to delimit them. In time,
the data become more saturated through repetition of data collection and data
analysis, and the patterns become more reliable.117 The information can then
be interpreted and advanced into a theory.

105 The prerequisite for systematic data analysis is the selection of an appropriate
analysis method. This helps to diminish the potential negative effects of the
researcher’s subjective interpretation.118 The methods for data analysis gener-
ally vary from the methods used to collect the data. However, both methods
should represent a fitting match, as only a harmonious procedure can produce
rich and utilizable data.119 As with theoretical sampling, data analysis starts be-
fore the interview phase is completely finished, it is important to decide at this
stage which method of data analysis will be used.

106 The analysis method should provide the researcher with a suitable structure. I
started by comparing other researchers’ projects, especially ones that made
use of expert interviews. I observed that frequently expert interviews were
combined with a data analysis method called grounded theory.120 This is prob-

For a full description of the phases, see MAYRING, 35 f. and 36.

GLASER/STRAUSS, 1.

MEUSER/NAGEL (2005), 80; CORBIN/STRAUSS, 50.

MEUSER/NAGEL (2005), 80; FINCH, 215 f.; CHARMAZ, 113 ff.

In data analysis, the researcher has to select and determine one of multiple meanings of

an incident. As there is no universal interpretation of a situation, data analysis remains

subjective to some extent. For more information on this topic, see DENZIN, 322; CORBIN/

STRAUSS, 64 f. with further references; CICOUREL, 76 ff.

PICKEL/PICKEL, 448 f.

Despite its misleading name, grounded theory is not a theory or hypothesis, but a method

of data analysis.

114

115

116

117

118

119

120

Chapter 2: Methodology

39

ably rooted in the fact that grounded theory by definition is designed to
examine phenomena involving people that are closely involved with them.121

Grounded theory is a particular inductive method that enables systematic
and structured data analysis, a critical reflection of the obtained findings
which favours building theories and demarcating them at the same time.122

The method was elaborated by Corbin and Strauss and is described in their
famous textbook The Discovery of Grounded Theory. The book also provides
helpful recommendations for people studying the method. Grounded theory
as a method is well established not only in social sciences, but also in other
disciplines such as information management and economics.123 The book has
been revised several times and has picked up various trends in the research
field. It has been further substantiated and improved with the help of a number
of dissertations and articles.

107 In their book, Corbin and Strauss describe how their method encourages cir-
cular research with theoretical sampling. The idea of developing every finding
directly from your own data in the form of transcribed texts and associated
background information is convincing. The simple framework ensures system-
atic evaluation and fosters inter-subjectivity and comprehensible findings that
could be reproduced if necessary.124 The methodical approach of grounded
theory is not only established in the field of expert interviews, but is also
suited to the planned circular procedure.

108 There are many other methods available that could be used to analyse data.
For example, Andrews offers a method that is very similar to grounded theory.
Both approaches mainly work with semi-structured interviews based on inter-
view guides, they both gather data by theoretical sampling and both of them
offer a hypothesis through generalization.125 However, Andrews’ approach
does not differentiate between the different types of coding, while Corbin and
Strauss emphasize and explain the approaches. Furthermore, before the col-
laboration with Corbin, Strauss introduced an early version of grounded the-
ory that focused on the interpretation of expert interviews. Compared with
the later version of grounded theory with Corbin, Strauss’s solo approach pro-
vided a process that could be adapted more flexibly to the particular research

See FINCH, 214.

MAYRING, 103 ff.; FINCH, 219 f., 220 and 223; BOHNSACK/GEIMER/MEUSER, 97 ff.

For various applications of grounded theory see for example GALAL (information manage-

ment) or LANGLEY (economics) for a good overview.

PICKEL/PICKEL, 449 f.

See FINCH, 223 and 225, for an informative analysis of ANDREWS.

121

122

123

124

125

Chapter 2: Methodology

40

situation.126 Unfortunately, the analysis procedure is difficult to follow for a lay
person. The new grounded theory was instead built up neatly and comprehen-
sibly which helps the researcher to organize and prepare data analysis care-
fully. I reviewed many other analysis methods but none of them could provide
the same qualities as grounded theory. The unique features of the method,
combined with its support in the socio-scientific community convinced me to
work with the data analysis method of grounded theory.

B. Analysis and Theory-Building

109 Grounded theory provides a clear procedure that guides the researcher
through data analysis in a comprehensive and systematic way.127 The strong
structure supports the researcher in becoming aware of possible positive and
negative influences that may occur.

110 The procedure consists of four main steps:128

1. Open coding: The data are collected, analysed and put into categories.
2. Comparative Analysis/Axial Coding: Systematic relationships are formed

between the categories that have emerged from step one. The observed
relationships are described in a more detailed manner by using coding
properties to describe paradigms.

3. Selective Coding/Integration: One core category129 is chosen and all the
other categories are systematically arranged around it. This network of
categories helps to form various concepts, resulting in the formulation of
a so-called hypothesis.130

4. Conditional Matrix: The hypothesis gains a conditional dimension by
adding a simple cause/effect structure, which links the various concepts
to each other in order to build a substantive or formal theory.

STRAUSS, particularly 22 ff.

FINCH, 213 and 216; HESS/WILDE, 282.

For a full description, see CORBIN/STRAUSS and its description in: MAYRING, 103 ff, 106 f. in

particular.

A core category is a special class which has the potential for great explanatory relevance

and offers possibilities to link other categories to it. For this it should be sufficiently ab-

stract and appear frequently in the data. For further information, see CORBIN/STRAUSS,

188 f.

In the terminology of Corbin and Strauss and grounded theory, a "hypothesis" does not

represent an untested assumption a researcher formulates at the beginning of their re-

search. Instead, it relates to the concepts the researcher builds during data analysis.

126

127

128

129

130

Chapter 2: Methodology

41

111 The bass for the evaluation in this research are the transcripts and memos
from the expert interviews. The process starts by analysing the content of the
transcripts. According to Girtler and Pickel & Pickel, it is essential to classify
every response critically and refrain from integrating the answers into pat-
terns without reflection.131 In this research, one major challenge in analysing
the expert interviews was to differentiate between a candidate’s professional
expertise and his or her personal opinion. During analysis, I tried to distinguish
between expertise and opinions, individual approaches and the position of the
company they represented. For this purpose, I used George and Bennett’s ver-
ification questions to assess delicate cases and reflect on how they could be
evaluated.132

112 The actual procedure starts with the processing of the data. Similar state-
ments and paraphrases are marked and assembled under the same collective
heading.133 This process is called open coding; segments of data are grouped
and receive a common category designation that reflects their content.134 In
this research project, I used the same set of categories for all the interviews,
assigning every relevant statement of each expert to one or more categories.135

There are several ways that such categories can be built. The researcher can
either wait until the categories develop from the data, or they can make use of
so-called borrowed categories by utilizing key terms mentioned in specialist
literature.136 As I conducted a broad literature review before I started with the
interview series, I got to know certain categories other authors had used in
their socio-scientific studies in the field of software engineering. However, the
categories emerged immediately during the transcription of the first inter-
views and became even stronger when the first set of interviews were
analysed. As I processed the individual interviews several times, I got to know
which topics could be considered relevant for the analysis. Furthermore, as the
interview questions discussed specific topics of interest within the research
question, it was clear that some of these topics would reappear during the data
analysis, although sometimes in a different context. The categories could
therefore be well developed. Each category was then given a heading. For this,
I tried to use terms the experts had used in their discussions.

For more information about this topic, see GIRTLER, 188 f., and PICKEL/PICKEL, 449 f.

They were "who is speaking?", "who are they speaking to?", "for what purpose are they

speaking?" and "under what circumstances?" (GEORGE/BENNETT, 99).

MEUSER/NAGEL (2005), 85.

CHARMAZ, 43 ff, particularly 45.

This procedure was recommended in: MEUSER/NAGEL (2005), 85 f.

GLASER/STRAUSS, 37.

131

132

133

134

135

136

Chapter 2: Methodology

42

113 After open coding, sociological conceptualization takes place where the re-
searcher dissociates themself from the original wording and tries to apply his/
her own wording and systems to the available categories. A notional concen-
tration is done, where common typologies and features are connected.137 The
data hereby is made sharper, increasing the scientific quality of the analysis.138

By analysing more and more interviews, the observed categories become
richer and denser in their composition. After every new interview, the data are
compared to the findings obtained previously. This approach is called compar-

ative analysis. By comparing each statement with the previously analysed
ones, similarities and discrepancies can be observed. The similarities and dif-
ferences are integrated by adding so-called properties to categories, which
describe a particular aspect of the category. For example, if the category ‘life
cycle’ discusses how long an expected life cycle of software is, the property
‘technology’ could describe how the better a system environment corresponds
with newer technologies, the longer the life cycle is. Another property may
contain the estimated duration of a potential life cycle with different numbers.
The properties can show further dimensions of the categories. If the statement
analysed corresponds with previous categories or properties, the statement
gets the same code. If the statement differs from the previously observed cat-
egories and properties, a new code is added and it is defined as either a cate-
gory or property.139 For this project, a total of 33 categories were used, each
referring to a thematic block. The categories consisted of between 2 and 60
properties. Altogether, the 12 interviews involved 1,888 code decisions.

114 When theoretical sampling is used, the circular process from data collection
to analyis continues until saturation is reached and all the categories are fully
developed and rich in content.140 This means that the researcher has achieved
a level where further data collection would not produce new aspects for the
categories.141 At this stage, the pattern of the data becomes visible and the re-
searcher can integrate the categories by describing their relationships to each
other.142 The question of when the categories are fully saturated is really diffi-
cult to answer as it depends on one’s personal evaluation. Strauss and Corbin
stress how important it is to experience as much of the complexity as possible,

MEUSER/NAGEL (2005), 88 f.

STRAUSS, 25 f. and 35 f.

For the whole paragraph, see LANGLEY, 700 f.; CORBIN/STRAUSS, 93 ff., 239 and 240 f.;

BOHNSACK/GEIMER/MEUSER, 130 f.

HELFFERICH, 174 f.; CORBIN/STRAUSS, 134 f.

PICKEL/PICKEL, 445.

CORBIN/STRAUSS, 197 ff. and 295 ff.

137

138

139

140

141

142

Chapter 2: Methodology

43

but capturing every detail would be virtually impossible. Every study has its
own limitations.143 Charmaz suggests that research studies with a smaller
scope may achieve saturation faster than the ones that want to describe a big-
ger story.144 He believes that a smaller number of cases may suffice if the re-
search question is being investigated for the first time. A bigger number is nec-
essary if the findings contradict previous findings or want to build a formal
theory. In my research project most of the categories overcame the threshold
of saturation after the first ten interviews. At this point, no further categories
or properties evolved and all the statements could be assigned to available
codes. The last two interviews therefore did not contribute any new informa-
tion, but increased the density of the existing categories and properties. After
the twelve interviews it became easy to integrate the various information and
build different hypotheses based on it. The result was a set of basic require-
ments, needs, expectations and wishes of the software development industry.
These are outlined in Chapter 5, Findings of the Interview Series. Some of the
categories did not become saturated. This was either because these categories
were not the focus of my studies, and I consequently did no further research
on them, or the information concerned particular variations of a known phe-
nomenon or represented a special case. Where such a variation or special case
was observed, I noted this in the Findings chapter.

115 In a final step, several theories each relating to a particular problem were elab-
orated. Hage defines a theory as a “set of well-developed categories (themes,
concepts) that are systematically interrelated through statements of relation-
ship to form a theoretical framework that explains some phenomenon”.145 The
pattern that is observed during data analysis is used to build generalizable
statements. Glaser and Strauss distinguish between two particular types of
theories that can be elaborated: The substantive theory refers to a particular
area of study that was analysed with empirical socio-scientific methods such
as patient care, race relations, professional education, etc. The researcher
here works on a particular limited frame, focusing on one sociological sur-
rounding in which he or she wants to perceive further incidents and relations.
By formal theory, they mean a theory that stands for a whole conceptual area
of sociological inquiry, such as socialization, authority, deviant behaviour and
so on. The researcher looks at the research question on a bigger scale and fo-

CORBIN/STRAUSS, 139 f., 141, 188 and 190.

CHARMAZ, 114 f.

HAGE, 34.

143

144

145

Chapter 2: Methodology

44

cuses his or her analysis on a sociologically larger field of conceptual topics.146

This project focuses on a very particular field within information management
and intellectual property law. The socio-scientific scope is narrow and does
not involve further conceptual areas of sociology. Even if general knowledge
about the whole field of software engineering could be gained, it would not be
appropriate for sociological modelling of a formal theory. This project there-
fore aimed to develop substantive theories.

116 To build a substantive theory, the findings in the form of hypotheses from
stage three were further processed. Through discussion and further classifi-
cation, the issues were evaluated from a legal perspective in order to develop
potential theories, including how some problems could be solved, or to indi-
cate where further regulatory measures were required. Where necessary, I
discuss literature, cases and studies that refer to the same topic. The results
are shown in Chapter 6, Discussion of Selected Problems. One example of the-
ory building was the use of the categories ‘life cycle of software’ and one re-
garding minimal expectation from the ‘term of protection’. Each category was
used to develop a hypothesis. These two hypotheses were then discussed from
a legal perspective. The result of this evaluation was compared with the cur-
rent terms of protection in both patent law and copyright. The different hy-
potheses could thus be related to an actual problem, and served to provide
regulatory and practical suggestions.

117 After the writing of this thesis had been completed, specialists from various
disciplines examined the different hypotheses and findings by means of mem-

ber checking (Kommunikative Validierung).147 The saturated individual results
and hypotheses were shown to one software developer and one attorney spe-
cializing in ICT and software copyright, for extensive review. They were also
shown to several people for discussion in order to evaluate and validate the
quality of the data and express how well it fit their understanding of the prob-
lem under investigation. They confirmed that the findings resonated with the
experience of professionals for whom the research was intended, and that the
concepts would be feasible. The results were thus substantiated and could be
utilized.

118 This chapter has explained how and why I decided to work with Corbin and
Strauss’s grounded theory method to analyse and evaluate the data obtained

For both expressions, see GLASER/STRAUSS, 32 ff.

For more information on member validation, see for example CORBIN/STRAUSS, 198 f.;

STEINKE, 319 ff.; LINCOLN/GUBA, 357 ff.; SEALE, 468 ff.

146

147

Chapter 2: Methodology

45

from the expert interviews; the systematic and logically structured approach
provided me, as an inexperienced researcher in the field of socio-scientific
methods, with additional security and a procedure to follow. The statements
within the interview transcripts were assigned to particular categories, cor-
responding to thematic sets, or descriptive properties. After a total of 12 in-
terviews, saturation of the codes was observed. The categories could then be
interrelated through integration to form a substantive theory of how software
developers work and commercialize, and how this process could be depicted
in a legal framework.

Chapter 2: Methodology

46

Chapter 3: Technical Foundation

119 This chapter summarizes the results of an extensive literature review in the
disciplinary fields of software engineering and project management to give
more background and the technical and economic foundation for an under-
standing of the subsequent findings and the discussion of the interviews. The
chapter starts by defining the relevant technical terms and identifying the
main characteristics of computer programs. It then outlines how the develop-
ment process is commonly structured. In order to outline the particular dy-
namics of the softtware industry, I provide a short overview of the basic eco-
nomics of software projects.

I. Definition of Relevant Terms

120 This section gives a brief overview of the relevant terminology in software en-
gineering and electronic data transmissions. Only the most important and rel-
evant terms for the subsequent chapters are discussed and usually only one
definition is referred to for each term in order to keep it as simple and com-
prehensible as possible. If no further comments are added, it can be assumed
that I agree with the definition and subsequently use the term in an appropri-
ate understanding. Where necessary, further notes are added.

121 All subsequent terms revolve around the topic of information and communica-

tion technology (ICT) which is understood as every process that involves ac-
cessing, storing, manipulation or transmission of electronic data and informa-
tion in a digital form.148

Foldoc Dictionary, "information and communication technology", available at

<http://foldoc.org/Information and Communication Technology> (retrieved

September 6, 2021).

148

47

http://foldoc.org/Information%20and%20Communication%20Technology

A. The Science of Software Engineering

122 The Merriam-Webster Dictionary defines software engineering as…

“… a branch of computer science that deals with the design, implementation, and mainte-
nance of complex computer programs”.149

123 Software in this context refers to an entire set of computer programs and
processes as well as the related documentation associated with a computer
system.150 The process that is necessary to obtain a software product is re-
ferred to as engineering. It describes the skilful combination and application of
knowledge and know-how in science and mathematics to solve a particular
problem.151 It is often also referred to as coding. The term software engineer-
ing therefore refers to a systematic study in engineering where mathematics
and science are applied to form computer programs which can then solve
problems and function in a particular way.

124 I refer to computer programs or simply programs as self-contained, reasonable
and explicit syntactic sequences or units of commands that make a computer
solve a particular problem by processing the provided data in a specific way
and displaying it in a specific form.152 They can be categorized according to
their volume, the number of transactions and functionality, from a temporal
aspect, by accuracy and by evaluating how secure they are.153 The same pro-
gram can often solve more than one type of problem.154 While they are fre-
quently used to organize the communication between users, the most com-
mon field of application is the analysis, evaluation, adaption and elaboration of

Merriam-Webster Dictionary, "software engineering", available at <http://www.merriam-

webster.com/dictionary/software-engineering> (retrieved September 6, 2021); see a sim-

ilar definition in ISO/IEC/IEEE 24765:2017-3.3810, with reference to ISO/IEC TR

19759:2016.

ISO/IEC/IEEE 24765:2017-3.3783, with reference to IEEE 828-2012, 2.1; Merriam-Webster

Dictionary, "software", available at <http://www.merriam-webster.com/dictionary/soft-

ware> (retrieved September 6, 2021); BECKER ET AL., 52.

SINGER, 15 f.; ISO/IEC/IEEE 24765:2017-3.1393, with reference to ISO/IEC 2382:2015; Mer-

riam-Webster Dictionary, "engineering", available at <http://www.merriam-webster.com/

dictionary/engineering> (retrieved September 6, 2021).

See definitions in Model Provisions on the Protection of Computer Software; 17 U.S. Code

§ 101; ISO/IEC/IEEE 24765:2017-3.726, with reference to ISO/IEC 2382:2015; RAUBER (1988),

15.

KOREIMANN, 104 ff.

HOMMEL ET AL., 28.

149

150

151

152

153

154

Chapter 3: Technical Foundation

48

http://www.merriam-webster.com/dictionary/software-engineering
http://www.merriam-webster.com/dictionary/software-engineering
http://www.merriam-webster.com/dictionary/software
http://www.merriam-webster.com/dictionary/software
http://www.merriam-webster.com/dictionary/engineering
http://www.merriam-webster.com/dictionary/engineering

concepts to solve particular problems.155 To date, no common legal definition
of the term is available. The legislators of most countries have abdicated re-
sponsibility for defining the term so they can keep an open door for future
technical developments.156 In the literature and in practice, the term software
is partly used as a synonym for computer programs. Some authors, for exam-
ple Rauber, differentiate and refer to computer programs as solely the code
lines, while using the term software to refer to all the results of a working
process, including the comments and protocols.157 The market’s expectations
of what should be contained in computer programs have increased over the
last decade, as have the expectations of the job of a programmer. Nowadays, it
has become natural to add comments and elaborate a protocol or a concept for
a final product. “Simple” computer programs consequently have become much
more rare. For this reason, I decided to use the term software as a synonym
for computer program in this thesis, while aware that this is not indisputable.

125 Software is usually, at least to some degree, connected to hardware. Hardware

is a collective term for the physical parts of the computer system that are tan-
gible. It comprises input and output devices (e.g. keyboard, mouse, screen),
storage media (e.g. drive) and devices for data transmission (e.g. cables, wires
and modem).158

126 The term computer is used broadly in this thesis to refer to all electronic de-
vices that perform logic operations through processing data and following log-
ical calculations on a digital basis.159 Physical machines, on the other hand, are
built of physical components and mechanical governors, such as wires and ca-

KOREIMANN, 18 ff. and 21 ff.; Singer says that a computer program has to be effective in ful-

filling all expectations and nothing more. However, it has to work efficiently in terms of

time, money and capacity. This outlines how software is used in practice and what pur-

pose it serves (see SINGER, 10).

See, for example, comments in the 2nd Law Amendment Act to the German UrhG

(2. UrhÄndG), BT-Drucks, 12/4022, 9.

RAUBER (1988), 19.

BECKER ET AL., 31; MARLY, N 2.

From the Cambridge Dictionary, computer, available at <http://dictionary.cambridge.org/

dictionary/english/computer> (retrieved September 6, 2021); ISO/IEC/IEEE

24765:2017-3.717, with reference to ISO/IEC/IEEE 24765:2017-3.717, with reference to ISO/

IEC 2382:2015; RAUBER (1988), 9; BAUKNECHT/ZEHNDER, 232.

155

156

157

158

159

Chapter 3: Technical Foundation

49

http://dictionary.cambridge.org/dictionary/english/computer
http://dictionary.cambridge.org/dictionary/english/computer

bles, screws and gears.160 The term electronic constructions is used to refer to
devices that apply low voltage currents and use solid circuits to transmit or
process analogue data.161

127 software product operates within a particular network environment, a so-
called information system. A program or machine represents an element of a
larger functional unit that interacts.162 The context and setting of a software
product influences the composition of a system.163 As the computer program
has to run on a specific machine and is expected to conduct certain processes
on it, the program is conceived as a small ecosystem of multiple elements that
communicate with each other and follow a certain order to fulfil a particular
goal.164 The various elements in a system consequently have to be synchro-
nized and coordinated to address these dependencies, and new elements have
to be compatible with the rest of the software environment: The mathematical
rule in a command, the programming language and the software’s digital or
hardware environment have to be carefully aligned with each other.165

128 A server is a computer program or a central computer that provides informa-
tion and functionalities for other programs or devices, called clients. The term
‘server’ can be used to refer to the physical machine a server program runs on.
But it is mainly used to describe a specific network architecture, the
client–server model, in which, upon request from one or multiple clients, an
operation is distributed across and run on either a single device or within a
network on several devices simultaneously. Servers can offer various different

SAMUELSON ET AL., 2321.

The Business Dictionary, "electronic", available at <http://www.businessdictionary.com/

definition/electronic.html> (retrieved July 27, 2019); BAUKNECHT/ZEHNDER, 232.

STRAUB (2011), N 23; SOMMERVILLE, 551 ff.

ISO/IEC/IEEE 24765:2017-3.1421; ISO/IEC TS 24748-1:2016, 2.20; ISO/IEC/IEEE

15288:2015, 4.1.19; ISO/IEC/IEEE 42010:2011, 3.8; KOREIMANN, IX and 5 f.; BAUKNECHT/

ZEHNDER, 82 f. and 121 ff.

KOREIMANN, 7 f.; SOMMERVILLE, 286 ff.

Some technical decisions, such as selecting a programming language, can also be pre-

determined by the program's network environment: For example, on "Android" or "iOS"

smartphones only very few programming languages can be processed. Working with an

entirely different programming language would therefore not be feasible as the device that

has to run the software will not be compatible and will not be able to understand the com-

mands. See also discussion in N 396; HOMMEL ET AL., 40; MAYNARD, 41 f.

160

161

162

163

164

165

Chapter 3: Technical Foundation

50

http://www.businessdictionary.com/definition/electronic.html
http://www.businessdictionary.com/definition/electronic.html

functionalities, or services, from performing specific tasks (e.g. application
servers, mail servers, web servers, proxy servers) to providing certain compu-
tations and information within a network (e.g. database servers, file servers).166

129 Programming refers to the effort of solving a problem with the systematic use
of given information and a computer by formulating, modifying and testing in-
structions that a computer understands and is able to follow.167

130 The instructions in a computer program have to be written in a programming

language so that the computer comprehends what it has to do and how. There
is differentiation here between machine-orientated and high-level program-
ming languages. Machine-orientated languages are usually adapted to the
hardware to which they are connected and allow easy transmission into the
machine code form. The required instructions can be formulated precisely and
at the same time processed rapidly by the computer.168 The most common ex-
amples are Java, C, C and Basic. As the instructions have to be very detailed,
for the software engineer, coding with this type of language can be quite
tricky.169 They thus often prefer the high-level languages, which offer their
own set of rules and sequences, enabling a more consistent connection of in-
dividual commands. It makes programming simpler as it focuses on the engi-
neering problem rather than on the hardware architecture.170 However, the
transmission into machine code becomes more difficult. Common examples of
high-level languages are COBOL, Fortran and Visual Basics.

131 A user is a person who utilizes a computer program.171 The term itself does not
provide any information about whether the user is allowed to make use of an
object from a legal perspective. It also gives no further information about the
technical expertise of the person using the program.

See ISO/IEC/IEEE 24765:2017-3.3705; see also Wikipedia, "server", available at

<https://en.wikipedia.org/wiki/Server_(computing)#cite_note-1> (retrieved Septem-

ber 6, 2021), with further references; SOMMERVILLE, 499 f.

See HOMMEL ET AL., 27 f.; ISO/IEC/IEEE 24765:2017-3.3146, with reference to ISO/IEC

2382:2015.

Explained in STRAUB (2001a), 808; see also GMEHLICH/RUST, 9; ISO/IEC/IEEE

24765:2017-3.2297.

U.S. CONGRESS (1992), 18.

Techopedia, "high-level language", available at <https://www.techopedia.com/definition/

3925/high-level-language-hll> (retrieved September 6, 2021); see also STRAUB (2001a), 808;

ISO/IEC/IEEE 24765:2017-3.1809.

ISO/IEC/IEEE 24765:2017-3.4469, with reference to ISO/IEC 25010:2011, 4.3.16, ISO/IEC

TS 24748-1:2016, 2.60, and ISO/IEC/IEEE 15288:2015, 4.1.52.

166

167

168

169

170

171

Chapter 3: Technical Foundation

51

https://en.wikipedia.org/wiki/Server_(computing)#cite_note-1
https://www.techopedia.com/definition/3925/high-level-language-hll
https://www.techopedia.com/definition/3925/high-level-language-hll

132 A software engineer or developer is a person who employs the principles of
computer science to design, develop and maintain computer programs and
software environments or makes use of them in further development.172

133 A software developer may either design their own technical solutions or utilize
existing elements of standard software, models or processes, called tools and

program libraries. In the engineering process, the developer relies on compo-
nents or works that have been constructed for another project. The set of tools
works in a way like a letter case.173 General-purpose tools and older blocks can
be partially or entirely recycled and integrated into the new program. The
main effort within the process is put on programming the gateways between
the reused components and the surrounding program structure properly so
that the blocks work together reliably.174 Similarly, in computer-assisted soft-

ware engineering the developer may use generators or other devices that cre-
ate smaller program components to fulfil particular standard tasks, such as
screen masks, database designs, etc. A variety of pre-existing blocks, tools and
components are available in programming language libraries, on specialized
platforms and in online forums.175 The use of such foreign components reduces
the time and energy the engineer has to invest into reinventing common or
particular middleware services and their assessment.176 As the engineer does
not need to construct a problem-solving command manually from scratch, his
or her work is facilitated and resources are preserved.177 At the same time a
minimum standard can be maintained, encouraging standardization.178

134 The Systems Development Life Cycle of software, or for short, the software life

cycle, refers to the lifespan of a computer program from its development to the
moment when it has to be replaced with a new system. A software product’s
life cycle includes every step in the program’s development, its implementa-

See ISO/IEC/IEEE 24765:2017-3.1174, ISO/IEC 25000:2014, 4.6, ISO/IEC 25040:2011, 4.12;

Wikipedia, "software engineer", available at <https://en.wikipedia.org/wiki/Software_en-

gineer> (retrieved September 6, 2021).

Examples of computer-assisted systems are front-end tools which support the engineer

with an application-related design of a system, and so-called back-end tools, which use

data processing in order to transmit a problem-designed solution into a real software sys-

tem (for both, see KOREIMANN, 144 ff.; BULLINGER/FAEHNRICH/ILG, 954 f.; see also ISO/IEC/

IEEE 24765:2017-3.4330, with reference to IEEE 1175.2-2006, 3.16).

KOREIMANN, 168; SOMMERVILLE, 57; BAUKNECHT/ZEHNDER, 85.

KOREIMANN, 144 ff. and 169; SOMMERVILLE, 53 and 440 ff.

SCHMIDT, 26; See BOEHM (1981), 678 f.

SCHMIDT, 25.

KUHN; SCHMIDT, 36 ff.

172

173

174

175

176

177

178

Chapter 3: Technical Foundation

52

https://en.wikipedia.org/wiki/Software_engineer
https://en.wikipedia.org/wiki/Software_engineer

tion, testing, reviewing and maintenance.179 The software system represents a
dynamic object with behaviour that is flexible to changes and improvements.
Over a product’s lifespan, it undergoes several maintaining interventions and
is enhanced multiple times. It is continually changed in order to adapt it to the
new requirements of its environment.180 Over time, the system keeps growing
in complexity, density and quality. With every further change, the software’s
structure inevitably degenerates. At some point, the software system cannot
be amended or maintained in a way where it is still able to function effec-
tively and in an economic manner, which is when it has to be disposed of and
replaced with a new system.181 If the project to be developed exhibits a long
life cycle,182 it is reasonable to consider a plan for longevity during the design
and development of the computer program.183 Through smaller details, such
as carefully selecting an appropriate development approach, properly elabo-
rating the structure and formulation of the source code, and building reliable
connections between the different modules, a longer life cycle of the software
is possible.184

135 In software engineering, there is often differentiation between analogue and
digital procedures. These are the different ways a signal is transmitted and the
different channels that are used to do so. In analogue transmissions, as they
are used for terrestrial TV and tape, constantly changing electrical voltage is
continuously passed along the system. In digital transmissions, on the other

Foldoc Dictionary, "systems development life cycle", available at <https://foldoc.org/Sys-

tems Development Life Cycle> (retrieved September 6, 2021); ISO/IEC/IEEE

24765:2017-3.2217, with reference to ISO/IEC 12207:2017, 4.16, ISO/IEC TS 24748-1:2016,

2.24, and ISO/IEC/IEEE 15288:2015, 4.1.23.

See for example SWANSON/DANS, 278; BELADY/LEHMAN, 227; BARRY/KEMERER/SLAUGHTER,

206; WIRTH, 72 f.

According to the second law of program evolution dynamics, the law of increasing entropy,

the unstructured nature of a system increases with time, unless specific work is executed

to maintain or reduce it (see BELADY/LEHMAN, 228); see also SWANSON/DANS, 279 f. and 285.

For more information on the software life cycle, see N 134.

BARRY/KEMERER/SLAUGHTER, 206; referring to SWANSON/DANS.

BOEHM (1981), 29.

179

180

181

182

183

184

Chapter 3: Technical Foundation

53

https://foldoc.org/Systems%20Development%20Life%20Cycle
https://foldoc.org/Systems%20Development%20Life%20Cycle

hand, the electrical voltage is quantized and staggered. Mostly used for data
storage on compact discs or computers, the electrical voltage is expressed in
numerical values (0 and 1s), or digits.185

136 Reverse engineering is used when someone tries to gain understanding and ex-
tract knowledge about a process or good to find out how it is constructed.186

The structures, condition and behaviour of a software product are observed
and dissected in order to identify the technical components and construction
elements involved. In the context of intellectual property law, reverse engi-
neering is often associated with the fact that competitors could misuse this
approach to explore an invention.187

137 Decompiling, on the other hand, is when the machine code of a computer pro-
gram is converted into a human readable version, such as a source code.188 The
conversion usually has the same functionality as the original source code, but
not necessarily the same literary formulation.

B. Elements of a Computer Program

138 Data are words, numbers and characters that carry and mark specific infor-
mation such as facts, concepts or instructions in a form suitable for commu-
nication, interpretation or processing.189 The raw data work as an input and
have to be processed through the software.190,191

There is rarely a comprehensible or citable definition available for the terms 'digital'

and 'analogue'. For a good example, see: Wikipedia, "analogue electronics", available at

<https://en.wikipedia.org/wiki/Analogue_electronics> (retrieved September 6, 2021);

Wikipedia, "digital electronics", available at <https://en.wikipedia.org/wiki/Digital_elec-

tronics> (retrieved September 6, 2021). BORNHAUSER, N 14 ff.

Merriam-Webster Dictionary, "reverse engineering", available at <http://www.merriam-

webster.com/dictionary/reverse engineer> (retrieved September 6, 2021); ISO/IEC/IEEE

24765:2017-3.3501.

SAMUELSON ET AL., 2401 ff. Due to its scope, reverse engineering is not the subject of

this thesis. However, for more information on reverse engineering in copyright, see

SAMUELSON/SCOTCHMER and RAUBER (1992), 39 ff.

Techopedia, "decompile", available at <https://www.techopedia.com/definition/16374/-

decompile> (retrieved September 6, 2021); ISO/IEC/IEEE 24765:2017-3.1076.

See ISO/IEC/IEEE 24765:2017-3.985; STRAUB (2011), N 241 ff.; RAUBER (1988), 4, with further

references.

HARISON, 173.

It is important to distinguish between data as input and the software processing the data.

185

186

187

188

189

190

191

Chapter 3: Technical Foundation

54

https://en.wikipedia.org/wiki/Analogue_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
http://www.merriam-webster.com/dictionary/reverse%20engineer
http://www.merriam-webster.com/dictionary/reverse%20engineer
https://www.techopedia.com/definition/16374/-decompile
https://www.techopedia.com/definition/16374/-decompile

139 Several data combined, which carry information to the same issue form a
dataset.192

140 A database represents a comprehensive collection of related process data.193

Single records of data, whole sets or even files may be retrieved or grouped
according to chosen criteria or specifications.194

141 A bit (short for binary digit) refers to the smallest identifiable unit in which in-
formation can be packed. Bits are displayed with the digits 0 (zero) and 1 (one)
and when joined together carry electronic commands in the form of single
stimuli that can be processed by machines.195 Eight bits are grouped together
and function as one addressable memory unit,196 a byte. The representation of
an electronic command in bits and bytes is called binary, object or machine

code.

142 Programs usually consist of written instructions.197 These can be represented
in two different forms: source code, which is written by a computer engineer in
a specific programming language and put into a logic structure suitable to be
translated into a computer-understandable form, and machine code which is
formulated in binary code and is recognizable by a machine in order to carry
out the programs.198 Machine code and source code therefore are representa-
tions of the same command but displayed differently for the machine and the
programmer. In contrast to machine code, source code may be displayed di-
rectly on the screen of a computer and can be copied, deleted and edited on
screen by hand. It can also be printed on paper.199 A compiler or assembler then
translates the source code into machine code so that the computer can
process the changes in instructions. The compiler itself is a computer program

BAUKNECHT/ZEHNDER, 24 f.; RAUBER (1988), 4.

Dictionary.com, "database", available at <https://www.dictionary.com/browse/database>

(retrieved September 6, 2021).

RAUBER (1988), 5, with further references.

Techterms, "bit", available at <http://techterms.com/definition/bit> (retrieved Septem-

ber 6, 2021); ISO/IEC/IEEE 24765:2017-3.388, with reference to ISO/IEC 2382:2015, 3.2.

RAUBER (1988), 8 f., with reference to BAUKNECHT/ZEHNDER, 22 ff.; ISO/IEC/IEEE

24765:2017-3.450, 3.3.

HARISON, 173. Programs can also consist of purely visual commands, for example in the

form of flow charts, but this is the exception.

KOGLIN, 7 f.; BAUKNECHT/ZEHNDER, 83 f.; U.S. CONGRESS (1992), 7; ISO/IEC/IEEE

24765:2017-3.3882 and ISO/IEC/IEEE 24765:2017-3.2296.

See also BOECKER, 46 f.

192

193

194

195

196

197

198

199

Chapter 3: Technical Foundation

55

https://www.dictionary.com/browse/database
http://techterms.com/definition/bit

as well.200 It either translates the whole program at once or focuses on individ-
ual instructions for converting.201 The source code usually specifies which data
the program wants to process and how it wants to do so.202 While this sensi-
tive information is visible in the source code, the machine language form has
the advantage that it is not ‘readable’ for humans as it simply shows the figures
0 and 1. Consequently, one cannot recognize sensitive information directly.203

Software developers often prefer to release their software in machine code
form instead of providing the decipherable source code in order to protect the
know-how contained in the program.204

143 Software engineers may also add comments to the source code. Comments are
“normal” text lines that are placed in the source code and explain the
processes and variables included in the code or simply provide further infor-
mation, for example to co-authors or other engineers.205 The comments are
created for humans only and do not affect the machine interpretation of the
code.206

144 Documentation is supplied with a computer program and contains written or
pictorial information describing and specifying the software product in terms
of included requirements, procedures and results. It also includes instructions
that explain to the user how to utilize and maintain a product.207 The docu-
mentation usually consists of separate notes, a specification sheet, concepts
or sketches. In a later stage of production, a documentary manual may also be
delivered with the final software product.208 Separate from the regular docu-
mentation that is handed to the users are documents and sketches that were
produced mainly during the conceptualization phase and cover all the notes
that refer to the development process.209 In this thesis, I refer to this kind of
documentation as development documentation.

ISO/IEC/IEEE 24765:2017-3.681; HOMMEL ET AL., 30; BAUKNECHT/ZEHNDER, 83 f.

PERELMAN, 923 f.

HABERSTUMPF (1993), II N 17.

See also U.S. CONGRESS (1992), 7.

PERELMAN, 923.

KOGLIN, 7 f.; HOMMEL ET AL., 151; ISO/IEC/IEEE 24765:2017-3.641.

ISO/IEC/IEEE 24765:2017-3.641.

ISO/IEC/IEEE 24765:2017-3.1259; BECKER ET AL., 223 f.; MARLY, N 12 f.; THOMANN (1992), 2.

SINGER, 135 ff.

BAUKNECHT/ZEHNDER, 272; BECKER ET AL., 200, 209 and 225; THOMANN (1992), 2.

200

201

202

203

204

205

206

207

208

209

Chapter 3: Technical Foundation

56

145 An algorithm is a mathematical object that expresses one or a set of well-de-
fined rules to solve a particular problem in a finite number of steps.210 In the
field of computer programs, the commands consist of rules that define the se-
quence of arranged steps in order to carry out a particular function or gener-
ate a specific behaviour in a program.211 Information is processed strictly ac-
cording to the rules, resulting in a specific output, e.g. data.212 If the algorithm
is repeated with the same variables, the same result will always be obtained.213

There is a distinction between basic algorithms and complex algorithms.214 Ba-

sic algorithms consist of basic modules that are frequently used in software
engineering, suitable for all kinds of plain problems.215 Complex algorithms, on
the other hand, include a first minimal structure of a potential solution to a
particular problem, usually combining basic algorithms and less complex algo-
rithms to concretize tangible teaching.216

146 The external design or graphical user interface (GUI) is an interactive compo-
nent used as a communication medium between the program and the user. It
is the visual image of the computer program, which facilitates the use and han-
dling of it on a computer. Instead of working with a technical source or ma-
chine code, the user steers and controls the software with graphical control
elements, such as symbols, buttons and dialogue windows. The graphical input
is then translated into impulses the machine understands.217 GUIs make the
use of the program more attractive and increase its usability. The external de-
sign is conceptually separable from the program code that transcribes the in-
terface.

147 The look-and-feel refers to the way the user interface is perceived and can be
operated technically.218 The component ‘look’ refers to the visual appearance
of a user interface, especially its layout in the form of graphics, fonts and

See ISO/IEC/IEEE 24765:2017-3.124, with reference to ISO/IEC 2382:2015; SAMUELSON ET

AL., 2384; HOMMEL ET AL., 29; GMEHLICH/RUST, 9 ff.

HARISON, 173; see also CALAME (2007), 328 f.; ZIRN, 9.

HOMMEL ET AL., 29; see also HABERSTUMPF (1983), 240 ff., for further differentiation.

See RAUBER (1988), 20 f.

See detailed distinction in N 700; see suggested model in ENSTHALER/MOELLENKAMP, 152 ff.

They appear to have based their subdivision partly on SOMMERVILLE, 4th edition of 1992,

see particularly vi, 133 f., 169 ff. and 590 ff.

ENSTHALER/MOELLENKAMP, 152 f.; see also FLOYD, 459; STRAUB (2011), N 18.

ERNSTHALER/MOELLENKAMP, 153 f.; see also FLOYD, 459;

U.S. CONGRESS (1992), 18; ISO/IEC/IEEE 24765:2017-3.4475, with reference to ISO/IEC TR

25060:2010, 2.23; STRAUB (2011), N 18; BULLINGER/FAEHNRICH/ILG, 941; SCHLATTER, III N 68.

SCHWABACH, 167.

210

211

212

213

214

215

216

217

218

Chapter 3: Technical Foundation

57

colours, etc. The term ‘feel’ refers to the user’s experience of using a computer
program, the visually perceptible features of the software which are integrated
into the layout. This may, for example, include how the user navigates through
the software with buttons, menus, links and dialogue boxes.219 It is often re-
lated to a particular feeling that suits the characteristics of the software ven-
dors, the respective computer program, or both. A more elaborate or speci-
fied look-and-feel often refers to a higher usability of the program for the final
user. It thus mainly serves a business function and aims to make the computer
program more attractive for the user.220

148 Another important structural component of a computer program is the func-
tions and features. The features of a computer program are the characteristics
it offers to fulfil a specific need for a user.221 Functions, on the other hand, refer
to the technical and visual activities, performance or capabilities a program
offers and its requirements.222 They are the specific actions that the ‘software
will fulfil’, built to perform particular tasks a user requires223 To take the exam-
ple of a car, the navigation system represents a common feature of the car
whose function is to guide the driver where to go. In the case of a computer
program, a typical feature of a web page, for example, is RSA-encryption.224 Its
function is to secure data transmission. All the functions of a computer pro-
gram are usually described in the functional specification document of a soft-
ware product or predefined in a requirement sheet.

149 The interaction between different software and hardware components hap-
pens through interfaces. They work as connecting points between different
units, passing information from one to the other, ensuring data flow. For this
purpose, they have to define the characteristics of which information is al-
lowed to access and pass through to the next connecting unit, to ensure that
each unit is able to understand the data delivered and then process it cor-
rectly.225

SCHWABACH, 167.

SCHLATTER, III N 69 f.

ISO/IEC/IEEE 24765:2017-3.3814 and ISO/IEC/IEEE 24765:2017-3.1582, with reference to

ISO/IEC/IEEE 23026:2015, 4.9, and ISO/IEC/IEEE 26515:2011, 4.6.

ISO/IEC/IEEE 24765:2017-3.3814 and ISO/IEC/IEEE 24765:2017-3.1677, with reference to

ISO/IEC 26514:2008, 4.21.

See Bridging the Gap, "functional specification", available at <http://www.bridging-the-

gap.com/functional-specification/> (retrieved September 6, 2021).

Apel does not provide a definition for the term 'function' but refers to RSA encryption as

an example (see APEL, 7).

See ISO/IEC/IEEE 24765:2017-3.3.2058; see also STRAUB (2011), N 24.

219

220

221

222

223

224

225

Chapter 3: Technical Foundation

58

http://www.bridging-the-gap.com/functional-specification/
http://www.bridging-the-gap.com/functional-specification/

C. Typology of Computer Programs

150 The term software is a generic umbrella term that includes different types and
forms of computer programs. Products can be classified into system software
and application software, although mixed forms are also available on the mar-
ket.

151 System software refers to programs designed to facilitate controlling, operat-
ing and maintaining a computer system and its associated programs. It also
involves operating systems, device drivers and utilities.226

152 Application software as a collective term refers to all programs that solve a par-
ticular problem of data processing for users, for example text editing, account-
ing and so on.227 This term may be further subdivided into the categories of
standard software and individual software. Standard software refers to a par-
ticular kind of software that targets a wide community of users by offering
standardized products for off-the-shelf solutions and common industry is-
sues.228 Commonly they are elementary programs at a mid or lower price range
which do not need much support from the program issuer.229 On the other
hand, individual software is directed to the specific needs of a particular group
of users and tries to solve their problems.230 As they are customized, they are
usually more cost-intensive.

153 The term software is used extensively and includes macros, program li-
braries231 and computer games. Macros are stored and retrievable command
sequences within a program.232 Computer games are video games that are
played on a computer rather than on a console.233

U.S. CONGRESS (1990), 6; ISO/IEC/IEEE 24765:2017-3.4116; SLONGO, 4 f.; BECKER ET AL., 52;

THOMANN (1998), 11.

ISO/IEC/IEEE 24765:2017-3.192, with reference to ISO/IEC 2382:2015; KINDERMANN, 151;

BECKER ET AL., 53 f.; THOMANN (1998), 10 f.

KINDERMANN, 151; BAUKNECHT/ZEHNDER, 109.

RUEESCH, 23.

KINDERMANN, 151.

For more information on program libraries and tool-assisted software engineering, see

above N 133.

STRAUB (2011), N 25 and 51; ISO/IEC/IEEE 24765:2017-3.2301.

Techopedia, "PC game", available at <https://www.techopedia.com/definition/31136/per-

sonal-computer-game-pc-game> (retrieved September 6, 2021).

226

227

228

229

230

231

232

233

Chapter 3: Technical Foundation

59

https://www.techopedia.com/definition/31136/personal-computer-game-pc-game
https://www.techopedia.com/definition/31136/personal-computer-game-pc-game

154 One can also distinguish between computer programs that are connected to
hardware components and are therefore called hardware-related programs,
and computer implemented programs. The latter are programs that solely work
within the computer, a network or other programmed devices.234

155 Some computer programs are able to perform their functions independently,
without requesting a further connection to another component or device.
They are called stand-alone programs.235 Others rely on a pre-developed basic
program, working merely as additional programs or extensions. Examples of
dependent software are add-ons, plug-ins and updates. An add-on refers to a
computer program that can be added to a pre-existing one in order to increase
the number of functionalities it can perform.236 A plug-in, on the other hand,
refers to a whole software component that can be added into a previous appli-
cation to increase the number of features the program includes.237 Updates

consist of additional computer programs or files that are used to fix specific
problems in earlier versions of a computer program or apply changes that
make it better operable.238 All these supplements are commonly supplied by
the originating seller of a software product but sometimes are also provided
by other companies, institutions or individual engineers. They either are dis-
tributed on a physical medium, such as a CD, or are accessible online.239

II. The Development Process

156 The development process in software engineering focuses on how the solution
to a particular problem evolves from defining the problem through to formu-
lating an instruction the machine is able to understand. On a temporal axis, it
involves every creative and innovative step from a first idea to a final product
that can be implemented or offered on the market. The development process
has been described by a number of different authors, focusing on various as-
pects of development. All of them give an abstract description of a process ar-

See distinction according to the Guidelines for Examination of the European Patent Office,

Part G-II-3.6.

ISO/IEC/IEEE 24765:2017-3.3948.

Macmillan Dictionary, "add-on", available at <https://www.macmillandictionary.com/dic-

tionary/british/add-on_2> (retrieved September 6, 2021).

Wikipedia, "plug-in", available at <https://en.wikipedia.org/wiki/Plug-in_(computing)>

(retrieved September 6, 2021).

See Computerhope, "update", available at <https://www.computerhope.com/jargon/u/

update.htm> (retrieved September 6, 2021).

See also discussion in HILTY (1997), 128 and 135 f.; LEMLEY ET AL., 31.

234

235

236

237

238

239

Chapter 3: Technical Foundation

60

https://www.macmillandictionary.com/dictionary/british/add-on_2
https://www.macmillandictionary.com/dictionary/british/add-on_2
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://www.computerhope.com/jargon/u/update.htm
https://www.computerhope.com/jargon/u/update.htm

chitecture, design or definition.240 They all agree that a customized method-
ological approach has to be chosen for each engineering project. The following
chapter tries to systemize the complex process of software development into
basic phases to give a rough idea of what models are available to structure a
development project.

157 Those developing a software product may vary between independent individ-
uals, small or large companies, public corporations and academic institutions.
In the development process, software engineers but also product managers
and other departments are often consulted. Sometimes, even third-party
companies are involved, especially in the case of commissioned work. All these
different people may be associated with the development process. The term
‘software developer’ is therefore used quite broadly in this thesis and may re-
fer to humans as well as entities that are involved in developing a software
product.

A. The Standard Phase Model

158 In computer science, various models have been formulated to describe the dif-
ferent stages that appear during software development. Some models capture
the process as chronologically ordered different phases and are, therefore,
called phase models. Others use a set of standards for systems analysis and ap-
plication design and focus on illustrating and clustering the relationship be-
tween the input and output of assigned tasks. This approach is called struc-
tured systems analysis and design methodology.241 For the present study, I
decided to build my research on the phase model in order to understand the
constructive course of the development process rather than just the technical
structures behind it. In the following, I will therefore take a closer look at the
possible sequences of such a phase model.

159 The literature does not offer a universal division of the development process
into specific phases, nor does it work with a consistent nomenclature.242 How-

WEN/TUFFLEY/ROUT, 3.

Common examples of structured system analysis methods are: systematic structure mod-

els, the Yourdon Structured Method, SADT diagrams, the Problem Statement Laguage and

Petri net simulations. For a detailed description see: KOREIMANN, 153-160; see also de-

scription in: Techopedia, "Structured Systems Analysis And Design Method ", available at

<https://www.techopedia.com/definition/3983/structured-systems-analysis-and-de-

sign-method-ssadm> (retrieved September 6, 2021).

Same conclusion in: RAUBER (1988), 21.

240

241

242

Chapter 3: Technical Foundation

61

https://www.techopedia.com/definition/3983/structured-systems-analysis-and-design-method-ssadm
https://www.techopedia.com/definition/3983/structured-systems-analysis-and-design-method-ssadm

ever, common features and processes can be observed that together form
what I will define as the Standard Phase Model in software development. Each
phase can be associated with particular decisions and procedures the devel-
oper has to follow to produce his or her computer program.

160 As Singer described in his book in 1984, everything starts with an idea: “The
human sits at a table, prepares a blank sheet of paper, takes a pencil and
thinks.“243 Singer explains that when an idea develops, the engineer does not
directly write down code lines. Instead, the inventor takes notes of their idea
and develops what they want to achieve with their program, and which func-
tions it should possess. These complexes can then be used to break down the
ideas into detailed drafts. A verbal formulation, e.g. in a product specification
or duty book, is produced to provide some precision for the basic idea. When
all potential questions have been answered, the coding can start.244 Although
Singer’s depiction of working with a pencil and a piece of paper today would
be considered somewhat outdated, it functions as a nostalgic illustration.
What we learn from it is that software development commonly consists of
three main stages: an idea, a drafting process in which the developer reflects
on what he or she wants to achieve and what functions the software needs to
process, and a final coding phase. Similarly, Rauber distinguishes between the
analysis phase, the drafting phase, and the final coding.245 In his description,
Koreimann distinguishes between preliminary studies and system analysis, but
also mentions a realization phase, in which coding is done. He further supple-
ments the phase model with the implementation of the software in its future
environment.246 Today, the product’s implementation is commonly combined
with testing and reviewing so it can be smoothly integrated into its new sur-
roundings and the issuer can ensure that it functions, and the model is regu-
larly complemented with maintainance as a last phase. To safeguard the pro-
gram’s functions, the issuers carry out maintenance once it is implemented
and running.247

161 For this study, I decided to work with my own phase model, which I aligned
broadly with Singer’s but with further elements to give a fuller understanding
of the process. Most of the development work, software development in its
narrower sense, happens in what I refer to as ideation, conceptualization and

SINGER, 9.

For a full illustration with further explanation see: SINGER, 9 ff.

RAUBER (1988), 21 f.

RAUBER (1988), 21 f.

BOEHM (1981), 54 f.; BAUKNECHT/ZEHNDER, 280 f.; BECKER ET AL., 74.

243

244

245

246

247

Chapter 3: Technical Foundation

62

realization. The implementation and review or maintenance just represent a
structural logical consequence of the development process itself, although
complementing the concept of software development in a broader sense. These
five phases, as illustrated in the following figure, together make up what I refer
to as the Standard Phase Model. Each phase commonly consists of a series of
structural steps, and the end of each phase is marked by a particular deliver-
able that needs to be accomplished, subdivisible into the idea, the concept or
draft and the realized software. The deliverable to be achieved usually gives
the phase its name, e.g. the “concept” that is elaborated during “conceptual-
ization”.

Figure 1. The Standard Phase Model (Source: own illustra-
tion).

162 In this theoretical model of phases, a developer can only continue to the next
phase if an intermediary deliverable at the end of the previous phase has been
achieved and he or she decides to continue to the next step. The individual
phases should therefore be clearly separable and delimitable. Boecker asserts
that the systematization of the development process into such distinctive
phases is rather used as a theoretical model to simplify the process. In prac-
tice, the phases are usually not implemented one-to-one.248 In respect of the
interview series, I would agree with Boecker that there are variations and
combinations of the Standard Phase Model in actual software development.
However, as will be shown later in this thesis, in practice, the different named
phases can indeed be observed in every development process in one form or

BOECKER, 43. 248

Chapter 3: Technical Foundation

63

another. Due to practical circumstances, certain elements of phases may par-
tially overlap, particularly in agile development, but the basic structure of the
individual phases can still be delimited and separated. The proposed model
thus realistically reflects the relevant software development processes, while
at the same time illustrating the complex technical procedure to a lay person.
The five phases of the Standard Phase Model can be set out as follow:

1. Ideation

163 The occurrence of an idea represents the starting point of all projects. It can
be triggered by any kind of incident, experience or observation. While this may
sound like a passive process that just ‘occurs’, ideation is usually actively
sought by individual developers or whole business or product teams, e.g.
through design thinking.249 It involves reflecting on how a particular problem
could be approached and what is necessary to solve it. The developer, devel-
opment team or project manager analyses potential organizational problems
and evaluates them. They design a first conceptual framework and try to an-
ticipate which monetary, informational and functional characteristics the out-
come should feature.250 This helps to assess how feasible the project is.251

164 Existing approaches of competitors on the market are examined and com-
pared to the approach to be developed. The developer also outlines what po-
tential needs and expectations a customer could have, to understand which
services should be implemented.252 The developer defines the requirements
that a potential draft should fulfil and whether, from this perspective, the pro-
ject and the product can be realized reasonably from an economic and techni-
cal standpoint.253 At the end of ideation, the project manager will have visual-
ized their idea and what it might be able to achieve. Before the next phase
starts, the project manager has to decide whether the project should be ad-
vanced or whether it should be terminated.

Design thinking refers to a specific cognitive and strategic process which aims to lead to

the design of ideas and proposals for new products and services. For more information,

see: CROSS, 79 ff.; The Business Dictionary, "design thinking", available at

<http://www.businessdictionary.com/definition/design-thinking.html> (retrieved

July 27, 2019).

KOREIMANN, 154; ZEHNDER, 29 f.

SLONGO, 9 f.

EDVARDSSON, 40.

KOREIMANN, 155 f.; Edvardsson refers here to an exhaustive market analysis, where the of-

fers of competitors and the needs of potential clients are evaluated (EDVARDSSON, 40 ff.).

249

250

251

252

253

Chapter 3: Technical Foundation

64

http://www.businessdictionary.com/definition/design-thinking.html

2. Conceptualization

165 If the development team, or their supervisors, decide to continue with the
project, the rough notes from ideation can be transformed into a formulated
concept, including a specification of requirements, first drafts, sketches and
further suggestions as to how the idea can be realized. It involves several steps,
from the preliminary concept, through extensive system analysis, to the de-
sign of the system.254 During these steps, the developer has to consider and
integrate technical factors, client needs, economic viability, applicability, legal
and other criteria in order to obtain a prudent concept. While technical as-
pects, such as compatibility and capacity, are particularly important for the
later conception of the algorithm as well as the source and machine code,255

the other factors represent relevant business considerations that software de-
velopers include in their decision-making in order to address a program’s us-
ability and define its merit.

166 Already at this early stage, the developer or engineer will try to draft a rough
conceptual formulation of a potential program. They will set the concept in the
context of their personal story; the project manager has to describe to what
extent their project offers added value over past approaches. They will use
numbers and figures to illustrate their plan and provide a reasonable basis for
future decision-making.256 With the help of system design the engineer drafts
the individual elements of a software product, including its architecture, mod-
ules, interfaces and data inputs and outputs. They then align all elements with
the surrounding environment or network.257 The engineer therefore focuses
on the software content and all the organizational decisions for the require-
ments of the software product, developing a coherent and well-run system.258

The developer decides on the optimal programming language to use and what
technical requirements have to be met to facilitate the later implementation of

BAUKNECHT/ZEHNDER, 86, 94 f. and 99.

HARISON, 176.

See KOREIMANN, 156 f.; EDVARDSSON, 39 f.

See short explanation in: THE MEDIUM; see also: The Business Dictionary, "system design",

available at <http://www.businessdictionary.com/definition/system-design.html> (re-

trieved July 27, 2019); Techopedia, "system design", available at <https://www.techope-

dia.com/definition/29998/system-design> (retrieved July 27, 2019).

Techopedia, "system design", available at <https://www.techopedia.com/definition/

29998/system-design> (retrieved September 6, 2021); The Business Dictionary, "system

design", available at <http://www.businessdictionary.com/definition/system-de-

sign.html> (retrieved July 27, 2019).

254

255

256

257

258

Chapter 3: Technical Foundation

65

http://www.businessdictionary.com/definition/system-design.html
https://www.techopedia.com/definition/29998/system-design
https://www.techopedia.com/definition/29998/system-design
https://www.techopedia.com/definition/29998/system-design
https://www.techopedia.com/definition/29998/system-design
http://www.businessdictionary.com/definition/system-design.html
http://www.businessdictionary.com/definition/system-design.html

the program into its future operating environment. The concept should fea-
ture a description of the components, including a written comparison of the
different engineering methods that could be used, as well as the minimum sys-
tem specifications.259 One could even provide the first draft of an algorithm,
if available and necessary. At the end of conceptualization, the developer has
an advanced draft with detailed information, which serves as a base to decide
whether the solution is applicable for the particular problem and whether the
project should be realized.260 It is summarized in the development documen-
tation.261

3. Realization

167 During realization the engineer develops the final program based on the de-
tailed concept of the previous phase, refining, reviewing and supplementing
it.262 In this phase, the actual engineering starts, where the engineer builds the
desired commands through coding. The developer has to show high construc-
tivist thinking and the capacity to express the verbal instructions in precise
commands that the computer can understand. The problem to be solved – the
desired behaviour of the computer, or simply how it should act – is illustrated
in a rule which determines the repetitions, sequences and selection activities
the computer program will carry out.263 The program is individualized through
its mathematical structure by integrating particular variables in parameters
and different factors into the final algorithm.264 In most cases, a single mathe-
matical rule can be represented in many different forms, including two differ-
ent organizational levels (source code versus machine code), various program-
ming languages and, within the code, in different structural places (sequences,

structure organization etc.).265 An engineer or a graphic designer implements
the user interface and the ‘look-and-feel’ of the program by transcribing it.
They may also make use of and integrate available tools or work with com-
puter-assisted methods.266 Realization is completed when the program has

SLONGO, 11.

RAUBER (1988), 20 and 22; STRAUB (2011), N 6; ZEHNDER, 64 f.

See above N 144.

ZEHNDER, 86.

HOMMEL ET AL., 41-45; BECKER ET AL., 72 and 219 f.

See also HOMMEL ET AL., 37.

MOEHRING, 273 f.; U.S. CONGRESS (1992), 17; ULMER, 17 f.; see also discussion in BOECKER, 147.

BAUKNECHT/ZEHNDER, 106 f.

259

260

261

262

263

264

265

266

Chapter 3: Technical Foundation

66

reached the quality to be delivered to the customer for implementation. Com-
prehensive documentation, including comments within the source code, is
prepared and enclosed before it is delivered to the customer.267

4. Implementation

168 Once the computer product is completed, the programmed software is trans-
lated into its final hardware or software environment by handing it over to the
buyer, customer or IT department.268 The product is integrated into its new
operating environment, installing it on or linking it to the computer that will
utilize the applications. In a modern understanding, implementing a computer
program usually involves testing, either done by the issuer in a specific simu-
lation environment or by the customer after the software has been integrated
into its final system environment, to analyse whether the computer program
is able to fulfil the intended purpose, what performance can be achieved, and
if further review, improvements or maintenance are necessary.269 At this stage,
a user-friendly interface is important, so that people who have no particular
technical knowledge in using computer programs can use the product and
benefit from it. If a linear development approach is followed,270 the develop-
ment process in a narrower sense ends here, and all connections to previous
organizational and auditing measures of the software issuer are loosened. At
the same time, the issuer may – if contractually eligible – publish further
copies of the computer program and establish them on the market through
merchandizing or commercialization.271 In spiral development, on the other
hand, testing and reviewing is used to construct the next modules, thus build-
ing the starting point for the next cycle.272

5. Review and Maintenance

169 After the computer program is delivered to the customer, the software prod-
uct is reviewed and maintained. The developing company remains responsible
for potential errors within the scope of guarantee services and warranties. In
this case, the operational software may need to be modified upon request. At

BAUKNECHT/ZEHNDER, 272 f.

ISO/IEC/IEEE 24765:2017-3.1891, with reference to ISO/IEC 19500-2:2012, 3.2.8.

See KOREIMANN, 157 f.: SLONGO, 13 ff.; BAUKNECHT/ZEHNDER, 87; BECKER ET AL., 72 f. and 220 f.

See N 172 ff. for more information on the linear development process.

See following Chapter 3 Section III. B. for more information.

COCKBURN, 27 and 28; LARMAN/BASILI, 48 f.; EWUSI-MENSAH, 76; BECKER ET AL., 75; see N 175 ff.

for more information on the spiral development process.

267

268

269

270

271

272

Chapter 3: Technical Foundation

67

this stage of the development process (in a broader sense), the primary func-
tions, as previously developed, remain largely unaltered and only single, par-
ticularly selected parts of the source code, graphical user interface, docu-
mentation or database structure are reviewed and thus corrected, adapted or
improved.273 In spiral development, particular parts of the software are re-
worked and improved after implementation of a module, while new modules
are built in circular repetition.274

B. Three Different Approaches for Developing Software

170 The software development process can be structured either from a temporal
perspective or on the basis of the specific problem that a developer has to
solve. Based on this division, there are currently two main models that are dis-
cussed in the literature: the linear approach, which is constructed along the
development phases and works through them chronologically, and the spiral
approach, which focuses on building the different program features module by
module, taking loops between ideation, conceptualization and realization for
each module to be constructed. The third approach, called continuous deliv-
ery, is a rather new phenomenon that conflicts with the classic phase models.
It refers to an approach where the software is run on an online server and re-
mains accessible and adaptable for the issuers, once implemented.

171 As the differences between the models are rather difficult to understand for a
lay person, the models are explained with the help of bridge construction, an
illustration proposed by Caroli in 2008,275 and adapted and advanced for this
doctoral thesis.

1. Linear Development

172 In 1970, Royce introduced what he called the linear development approach and
what was later partially referred to as the Waterfall Model.276 This approach is
said to be the first ever and also, today, the most common project development

BOEHM (1981), 54 f.; BAUKNECHT/ZEHNDER, 280 f.; BECKER ET AL., 74; ISO/IEC/IEEE

24765:2017-3.2318, with reference to ISO/IEC 25051:2014, 4.1.9.

See N 175 ff. for further references.

See CAROLI; architecture is a common illustration used to explain software development

projects because software construction partially follows the same business, creative and

technical ideas that conceptualizing a building does. The concept of a computer program

is therefore also referred to as 'software architecture'.

See ROYCE; for a full description, see also BOEHM (1981), 35 ff.

273

274

275

276

Chapter 3: Technical Foundation

68

approach (not necessarily in software engineering).277 In this model, computer
programs are developed phase-by-phase through the temporary stages, pos-
sibly with overlap but with little or no iteration.278 The developer consequently
follows a deterministic and straight-line procedure along the phases of
ideation, conceptualization and realization one-by-one, before implementing
the product into its final environment. Only there, afterwards, potential main-
tainance happens, whereby the general structure of the released program
stays unaltered and only smaller parts are maintained. As the following graphic
shows, the previous phase has to be completed before the developer goes on
to the next one. There is only one course of direction. For this, the developer
has to verify and validate the previous results before continuing. Like a river,
he or she never returns to a previous stage, but instead always moves forward
in the project line.279 As the characteristics of the linear development model
widely correspond to the Standard Phase Model, the above can be transferred
to it analogously.

Figure 2. The Linear Development Approach (Source: own illustration).

One reason why it is as famous as it is, is because it was adopted by the U.S. Government,

making it the standard software development process for military defence systems in 1985

(see U.S. DEPARTMENT FOR DEFENSE).

ISO/IEC/IEEE 24765:2017-3.4584.

BELL/THAYER, 62; MAYNARD, 1 f.; BOCK, 241 ff.; BOEHM (1981), 36 f.; BECKER ET AL., 72 f. and 75 f.

277

278

279

Chapter 3: Technical Foundation

69

173 As noted above, each of the development models can be illustrated with the
help of bridge construction. The abstract idea of the subsequently illustrated
thought experiment (Figure 3) is to build a bridge over a small creek that sep-
arates two shores. With the linear approach, the constructor first does some
research on which methods are available for building bridges. He or she learns
that in classic architecture a bridge is usually built from both sides simultane-
ously. The constructor takes into account all the relevant requirements, de-
pending on the surroundings of the potential bridge, its base, the material
used, the purpose it will serve, the available financial means and so on. The
goal is to build a bridge that withstands all kinds of weather and is able to be
crossed by one person, a group, a bicycle or a heavier means of transport. Hav-
ing settled all these organizational matters – knowing the requirements and
necessities – the constructor draws some sketches, based on how the problem
can be solved, and how he or she wants to build the bridge. They then con-
cretize these sketches until they have obtained a detailed draft and know quite
accurately how the plan on the paper has to be realized step-by-step. Then
the constructor implements the plan physically and starts putting one brick on
another. Only when the mortar is dry is the bridge completed and ready to be
used.280

Figure 3. Bridge Construction According to the Linear Development Approach (Source: own il-
lustration).

See CAROLI. 280

Chapter 3: Technical Foundation

70

174 The biggest benefit of the linear approach is that the program is usually more
compatible with its network environment, as each phase is advanced in close
connection with the previous findings and the planning process. The relevant
data structures can be pulled through the entire process.281 It helps the engi-
neer to maintain a clear overview of the whole project and to know exactly
which phase they are at and which steps follow next. McConell, in this context,
emphasizes that extensive conceptualization and drafting of the requirements
can reduce later costs for expensive improvements and corrective measures
to coding and maintenance.282 The linear approach also ensures detailed and
close documentation and secures know-how for later utilization.283 The water-
fall model represents a comprehensible model that provides a basic structure
understandable to laypersons.

2. Spiral Development

175 In spiral or modular development, the development process is not coordinated
linearly along the development phases, but instead focuses on the different
modules the software developer wants to build in time cycles.284 The developer
starts with one particular problem he or she wants to solve, specifies the re-
quirements, designs the concept, does the necessary coding for the particular
module and connects the elements with the existing parts.285 We can distin-
guish between incremental, iterative and agile properties in spiral develop-
ment – although they are often combined and hard to distinguish in practice:

176 The term iterative refers to the planned repetition of certain development
phases; when the developer tackles one particular problem, he or she goes
through all or at least several phases of the standard phase model – ideation,
conceptualization, realization, implementation and review (instead of classic
maintainance) – within one loop. However, instead of processing the phases
for the whole project sequentially, the developer repeats them spirally for each
module, forming loops of phases as illustrated in Figure 4. Through this repe-

See also ENSTHALER/MOELLENKAMP, 156.

MCCONELL, 15 f. and 44.

See a very good description in OXAGILE.

BOEHM (1988), 64 ff.

SOMMERVILLE, 48, 112 ff., 256 f. and 572.

281

282

283

284

285

Chapter 3: Technical Foundation

71

tition, particular parts of the software may be reworked and improved after
implementation through reviewing.286 Classic maintainance is automatically
done while other new modules are spirally developed.

Figure 4. Iterative Development (Source: own illustration).

177 Incremental development, on the other hand, refers to the circumstance
where different software parts, components, single modules or increments are
developed at different stages of the project, which can then be integrated flex-
ibly into the system of modules, once they are completed.287 The developer, as
illustrated in Figure 5, provides successive deliverables or increments, lines
them up and connects them to one another. These single modules are poten-
tially releasable. Once one feature is finished – and either directly released or
held back for later global release – the developer then works on the next mod-
ule or feature, until the whole product is completed.288

Techopedia, "iterative and incremental development", available at <https://www.techope-

dia.com/definition/25895/iterative-and-incremental-development> (retrieved Septem-

ber 6, 2021); ISO/IEC/IEEE 24765:2017-3.2141, with reference to ISO/IEC/IEEE 26515: 2011,

4.7; COCKBURN, 27 and 28; LARMAN/BASILI, 48 f.; EWUSI-MENSAH, 76; BECKER ET AL., 75.

Techopedia, "iterative and incremental development", available at <https://www.techope-

dia.com/definition/25895/iterative-and-incremental-development> (retrieved Septem-

ber 6, 2021); COCKBURN, 27 and 27 f.; LARMAN/BASILI, 47 ff.; SOMMERVILLE, 48 ff.

MAYNARD, 6 and 16 ff.; KOREIMANN, 165 f.; ISO/IEC/IEEE 24765:2017-3.1917; for more infor-

mation, see also LARMAN/BASILI.

286

287

288

Chapter 3: Technical Foundation

72

https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.techopedia.com/definition/25895/iterative-and-incremental-development

Figure 5. Incremental Development (Source: own illustration).

178 Agility, as the third property of spiral development, does not represent a de-
scriptive property in a narrow sense, but instead refers to a specific project
framework method289, originally constructed for software development, but
today used in project management worldwide. Agility represents a specific
subspecies of iterativity and incrementality, as it includes conducting frequent
reviews of the development process and its results as well as adapting the
process to new or changed needs and practical wishes. But agility also involves
a specific form of project organization that builds upon a close-mesh, cross-
functional team structure, constant communication and close collaboration
between the development teams and the business side.290 The agile develop-
ment method that is currently most discussed in the specialist literature is
called Scrum.291 In this project management framework, a Scrum team devel-
ops each module or increment within a short duration of a few weeks within a
so-called sprint.292 Schwaber describes a sprint as a “set of development activ-
ities conducted over a predefined period”.293 A sprint usually lasts for one to
four weeks, depending on how complex the particular problem is that needs

The theory and key principles of the approach are described in the Agile Manifesto re-

leased in 2001.

Techopedia, "agile development", available at <https://www.techopedia.com/definition/

13564/agile-software-development> (retrieved September 6, 2021); ISO/IEC/IEEE

24765:2017-3.119, with reference to ISO/IEC TS 24748-1:2016, 2.4, and ISO/IEC/IEEE

26515:2011, 4.1.

The methodology is attributed to Ken Schwaber and Jeff Sutherland, who designed the

Scrum method following an approach presented by Hirotaka Takeuchi and Nonaka Ikujiro

in their paper, calling it the 'Rugby approach' (TAKEUCHI/NONAKA). See the first written de-

scription of the Scrum method in SCHWABER and SOMMERVILLE, 75 ff.; see also the original

Scrum Guide in SCHWABER/SUTHERLAND.

ISO/IEC/IEEE 24765:2017-3.3637, with reference to ISO/IEC/IEEE 26515:2011, 4.9.

SCHWABER, 131; see also SCHWABER/SUTHERLAND, 9.

289

290

291

292

293

Chapter 3: Technical Foundation

73

https://www.techopedia.com/definition/13564/agile-software-development
https://www.techopedia.com/definition/13564/agile-software-development

to be solved, the risks that are related to it and how closely the increment
is developed to the surrounding technical environment.294 Within a sprint, a
module or its increment is developed, integrated as a deliverable, reviewed and
adjusted. Scrum therefore is not only iterative, but also incremental, working
gradually from one step to the next.295 The processing status of each module
or “story” is captured on the Scrum Board. Thus each story moves from left to
right as development progresses (see arrow in Figure 6).

Figure 6. An Example for the Structure of a Scrum Board
(Source: own illustration).

179 The spiral development model can also be explained with the help of bridge
construction (Figure 7). Again, the idea is to build a bridge across a small creek
and connect the two riverbanks. Imagine the constructor does not know
whether it is worth crossing the creek – what is on the other side? Does it of-
fer a better way home? The constructor is not looking for a solution to every
possible weather situation, nor do they wish to cross the creek with a means
of transportation. Instead, the constructor’s sole goal for this first attempt is
to be able to cross the creek without getting wet. No sophisticated material is
available. Only a narrow but long and stable wooden plank is at hand. The con-
structor places the wooden plank over the creek and thus is able to cross it. If
the constructor later decides that they would like to use this path on a regular
basis, they will aim to enhance and further secure the crossing path. In a first
iteration, the constructor adds another plank to the bridge. This means the
crossing is able to handle a bigger load, for example him or her riding on a bi-

See SCHWABER, 131; SOMMERVILLE, 85 and 86 f.

SCHWABER/SUTHERLAND, 4.

294

295

Chapter 3: Technical Foundation

74

cycle. In further increments, new tasks, such as enabling a greater number of
people to cross the bridge or a different type of vehicle, are tackled and solved.
With every sequence, using nails, screws, mortar, bricks and so on, the bridge
is revised, refined and secured, and thus able to tackle another problem. The
basic principle of this approach is that each new stage can build on the pre-
vious set of (refined) increments. This means that the constructor meanwhile
is able to cross and use the bridge in its respective status (or stage), and profit
from each additional module or increment that is embedded, until the bridge
has reached its final version.296

Figure 7. Bridge Construction According to the Spiral Development Approach (Source:
own illustration).

180 There are four main benefits in using the modular or spiral approach com-
pared with a linear one. First, the stages within the development process are
transparent and potential difficulties can be detected faster. The process in-
volves regular reviewing, auditing and testing processes, which increases the
quality and applicability of the modules before they are implemented.297 Fur-
ther, the method is particularly flexible for later changes or adaptations in case
the technical or organizational requirements of a project change or have to be
adapted.298 As Scrum works with increments that are developed iteratively, the
exact planning for a new module is therefore only made for the next project
phase and one goal at a time.299 As only smaller modules are used, the changes
remain on a smaller level and only seldom concern the whole structure. As the
final program consists of several individual units, maintenance is simplified. An

See CAROLI.

See for both: SCHWABER/SUTHERLAND, 4; for both benefits of agile approaches see BELADY/

LEHMAN, 232 f.; SINGER, 62 ff.

See SCHWABER, 132.

For more information, see FOEGEN, 112 f.

296

297

298

299

Chapter 3: Technical Foundation

75

engineer can simply work on a single block without affecting the remaining
ones.300 One particular benefit of the agile method, is that we obtain a first
prototype or first deliverable as soon as the first module is finished. This can
then be shown to the customers or potential investors.301 The interactive ap-
proach allows users and potential customers to be consulted quite early dur-
ing the development process, instead of presenting or releasing only the final
version. This approach further ensures that failing ideas can be detected ear-
lier without the whole computer program having to be programmed.

181 On the other hand, when the spiral approach is followed, it becomes more im-
portant to connect the individual modules in the right way. According to Kor-
eimann, the assembled product should not represent a simple chain of imple-
mentations but rather a symbiosis and a harmonious ensemble.302 The
engineer should also keep a close overview of the whole project in order to
ensure its quality.

3. Continuous Delivery

182 Continuous delivery represents a newer trend in software engineering that
has only recently been described in specialized literature and papers.303 Ac-
cording to this approach, single modules of programs such as add-ons or up-
dates are produced and released within short cycles.304 Once released, the fin-
ished software version is enhanced and altered continuously within its existing
mantle while the user is already able to use it. This trend profits from the in-

SINGER, 63.

See also SCHWABER, 122; SINGER, 33 ff.

KOREIMANN, 165 f.

This section of the chapter was added after I had completed the interview series in 2015

and detected that the software development literature I had previously read during doc-

ument analysis had not covered the continuous delivery approach. Needing to close this

knowledge gap in classic computer science literature, at the time this section was com-

piled, only three papers were found that described the development method from a sci-

entific perspective. Today, the online search engine of the Association for Computing

Machinery (ACM) provides around 30,000 search results in its library for the term "contin-

uous delivery", most published in the years 2016-2018 (see online at <https://dl.acm.org/

results.cfm?query=continuous delivery&Go.x=0&Go.y=0>, retrieved on July 29, 2019). The

ISO Standards have not yet integrated the continuous delivery approach (see ISO/IEC/

IEEE 24765:2017).

CHEN, 50.

300

301

302

303

304

Chapter 3: Technical Foundation

76

https://dl.acm.org/results.cfm?query=continuous%20delivery&Go.x=0&Go.y=0
https://dl.acm.org/results.cfm?query=continuous%20delivery&Go.x=0&Go.y=0

creasingly popular approach of releasing computer programs online on
servers – partially within the software-as-a-service model – through which
actualized versions of computer programs can be distributed directly, and thus
faster, to the end users. The main aim is to automate the distribution process
of the commercialized computer program by using the direct link to the prod-
uct.305

183 Working with continuous delivery usually involves four main steps: First, every
new code line that is developed is quickly incorporated more or less directly
with the help of compilers.306 The element is tested and analysed. Then it has
to be integrated into the previous environment, the software’s primary work-
ing base. When the program is finished and integrated, it is released for deploy-

ment, which is when the user can get access to it.307

Figure 8. The Continuous Delivery Approach (Source: own illustration).

184 Building an analogy for the continuous delivery approach with the classic
bridge construction is, admittedly, rather difficult. In theory, it would involve
that, the first time a heavy truck arrives and needs to cross the bridge, its con-
structors would increase the bridge’s load-bearing capacity with small amend-
ments or improvements with minimal interruption for other users crossing the
bridge at the same time. This would necessitate the bridge having some kind
of observation system or technical sensors that monitor every section of the
bridge and are able to react automatically. Instead of an online system, there
would be an attendant who was always present and equipped with every tool
he or she might need to react promptly (including the crane in Figure 9). With-

LINTHICUM, 8.

HUMBLE/FARLEY, 110 f.

See more explicitly in: LINTHICUM, 6.

305

306

307

Chapter 3: Technical Foundation

77

out hindering existing users, the attendant could make the appropriate
changes, such as strengthening the bridge’s beams to withstand the additional
weight load of the truck.

Figure 9. Bridge Construction According to the Continuous Delivery Approach (Source: own il-
lustration).

185 The continuous delivery approach is observable in the habits of many software
engineers all over the world. However, Humble and Farley in 2011308 and Chen
in 2015309 were among the first to describe it in a scientific paper. Chen de-
scribed in his paper that releasing new software versions every couple of
months would artificially delay the process, reducing potential earnings that
could be achieved with faster releases. The valuable simple feedback of cus-
tomers could only be incorporated after a certain amount of time, although
small changes would increase the usability of the program.310 Similarly, Belady
and Lehman emphasized in their study that software does not struggle with
physical decay like classic inventions do.311 Instead, computer programs profit
from their flexibility. They can be modified or adapted continuously to ad-
vance skills, new insights or opportunities. This enables publishers to maintain
and enhance their products.312 As the product can be constantly adapted to
new incidents, the quality of the previous version is enriched. The barriers be-
tween the software development and the product consumption by the end
user can therefore be reduced.313

HUMBLE/FARLEY.

CHEN.

CHEN, 50 and 53.

BELADY/LEHMAN, 228.

BELADY/LEHMAN, 227 f.

LINTHICUM, 6; HUMBLE/FARLEY, 108 f.

308

309

310

311

312

313

Chapter 3: Technical Foundation

78

186 According to Chen, there are six main benefits of working with the continuous
delivery approach:314 First, the time to market315 is accelerated; second, the
product can be optimized immediately; third, through automation, the pro-
ductivity and efficiency can be improved; fourth, automated testing decreases
the risks associated with regular deployment processes; fifth, through all these
measures, the product is qualitatively enriched as fewer errors occur; and fi-
nally, the customer is more satisfied because he or she receives a better prod-
uct or service.

187 The business value of the continuous delivery approach is therefore rooted in
the possibilities to immediately distribute new computer programs.316 The de-
mands of the customers can be captured and met within less time. This pro-
vides a strategic advantage, and ultimately a competitive advantage.317 The re-
lease also becomes less dependent on scheduled intervals.

III. Software Project Management and
Commercialization

188 The following section discusses an area that is important for managing a soft-
ware project economically and commercializing a product or service on the
market. It focuses on summarizing and outlining those principles that are rel-
evant for the research study and discussion of the findings. First, a brief
overview of the economics of software engineering is provided in order to il-
lustrate some of the economic principles. The next section is about project
management and what factors are important in administering software prod-
ucts. Finally, I offer a short introduction to the currently most significant ap-
proaches to commercializing software.

A. Brief Overview of the Economics of Software Engineering

189 From an economic perspective, the software engineering industry shows some
particular characteristics. The following overview gives a short and simple in-
troduction to the topic for those who are unfamiliar with the economic fea-
tures of program development, outlining the most important terms and char-
acteristics.

CHEN, 52 ff.

For a definition of the term 'time to market', see later N 198 ff.

LINTHICUM, 10.

See also HUMBLE.

314

315

316

317

Chapter 3: Technical Foundation

79

190 To start with, software is a dematerialized, non-competing and ubiquitous

good. This means that several people can use the software products at the
same time, without it having a reciprocal disruptive or restrictive effect. This
is possible because computer programs represent a special form of immaterial
intellectual information: whether they are provided on a physical carrier or
solely digitally (online), their economic quality is to a large extent irrespective
of their embodiment, as their main merit lies in the way the data is processed
(their behaviour).318 As it is not bound to a particular physical form, the soft-
ware itself can be traded and distributed simpler and faster.

191 The evolving possibilities of technology, and the Internet in particular, over the
last twenty years have enabled the facilitated distribution and reproduction of
digital goods as computer programs. With the rise of computer networks, stor-

ing and processing data has become less expensive. As a consequence, originally
analogue processes have been increasingly converted into digital ones, repre-
senting the initial impulse for what we today call digitalization.319 While it was
economically rational to restrict the digital implementation of technology ten
years ago, as storage media and data processing were much more expen-
sive, today it is prudent to invest more time and money into digitalization and
data mining.320 As the market shows rapid technological advances, the pace of

product launching has increased accordingly.321 As data storage becomes less
problematic, faster development processes and providing more and better-
performing features of high quality has become more important.

192 Software in general is quite cost-intensive to develop and produce. However,
once developed, a set of computer programs can be easily reproduced digitally
and at almost no extra cost.322 This leads to higher scale earnings, as the aver-
age cost per copy decreases with every one sold.323 Software therefore shows
high economies of scale. The ratio between development costs and revenue
from licensing indicates that the software market holds a lot of potential for
profit.324 At the same time, digital information is distributed much faster than
analogue goods. The positive aspect of this is that a computer program can be

For the complete abstract, see RAUBER (1988), 59; BORNHAUSER, N 34 f.; WOESTEHOFF, 100 f.

For more information on the technical process of digitalization and its legal implementa-

tion, see BORNHAUSER.

This issue is also addressed in one of my earlier papers: MURER/ZURMUEHLE.

Same interpretation in: U.S. CONGRESS (1992), 9.

BOECKER, 75, with further references; LEMLEY/BURK, 90; BORNHAUSER, N 37.

See BOEHM (1981), 189 f.; BOECKER, 75, with further references.

LANDES/POSNER (1989), 349; KOOTHS ET AL., 20; KATZ/SHAPIRO, 100.

318

319

320

321

322

323

324

Chapter 3: Technical Foundation

80

delivered faster to the final user and is thus spread more easily across the
world. This opens entirely new market areas. The downside of a faster and fa-
cilitated distribution via online servers is that the software companies have
to provide a cost-intensive infrastructure to serve the online users. Further-
more, it becomes almost impossible to prevent third parties from utilizing the
product. Free-riding is a big problem in software engineering, thus control-
ling and enforcing commercial rights consequently becomes much more dif-
ficult. The associated preventive measures tend to be only marginally useful,
and pricey.325

193 As mentioned, there are several characteristics of the software market that
should be kept in mind. As software is a non-competing, ubiquitous good, the
same development can be offered to several people at the same time without
interference. As the possibilities for storing and processing data have made
tremendous progress over the last few decades, the economies of scale and
possibilities to distribute software have increased. Due to the better availabil-
ity, software has become better accessible for everyone. This has made the use
and production of software more attractive but has also increased the amount
and pace of software consumption.

B. Software Project Management

194 According to the International Standardization Organization, a software pro-

ject involves defining an objective, delimiting its scope from other tasks, devel-
oping an adequate organizational structure and providing sufficient resources
in terms of financing, staff and time.326 The result of the project is a software
product that solves a technical problem through a particular behaviour.

195 This definition suggests that a software project requires a well-planned pro-
cedure and reasonable use of the available resources. We can assume that pro-
ject management has a great influence on the quality of the produced techni-
cal good. In order to maintain a positive outcome with the project, it is
preferable that one person formulates achievable goals and keeps a clear
overview. This project manager determines and assigns the organization,
means, techniques and responsibilities involved in the administrative

U.S. CONGRESS (1992), 185; FISHER, 19.

ISO/IEC/IEEE 24765:2017-3.3152, with reference to ISO/IEC/IEEE 15939:2017, 3.33; ISO/

IEC TS 24748-1:2016, 2.35; ISO/IEC/IEEE 15288:2015, 4.1.33; see also DIN 69901-5:2009.

325

326

Chapter 3: Technical Foundation

81

process.327 The project manager has to make important decisions about the
cornerstones of a software product, how it is developed and which strategy is
used to commercialize it. These decisions are partially guided by limited, as-
signed resources.328 His or her job consequently involves planning, scheduling,
budgeting and creating rational and comprehensible structures, while consid-
ering the available resources, the timeline and the complexity of a project.329

It is the manager’s responsibility to ensure that the conceptual framework and
purpose of the product meet the business idea of the company and that the
individual elements, steps and components of a network match, technically,
organizationally and strategically.330 He or she is also responsible for quality
assurance. In larger software companies, these tasks may be subdivided and
assigned to several different people or entities, such as a product manager,
software architect or marketing manager.

196 During the last two decades, information and communication technology have
become better applicable and more affordable not only for businesses but also
for private households. One of the main goals of a project manager is to satisfy
the needs and expectations of the users. Keeping up with the high-paced and
dynamic demands consequently represents a great challenge for every soft-
ware project. Millson and Wilemon emphasize in this context that the user to-
day expects the products to exhibit flawless quality, provide added value at
lower prices and to become available within a shorter time.331 “Only the best is
good enough”.332 In Offut’s study, he suggests that the main three characteris-
tics that are evaluated by users to measure the quality of software are its reli-

ability, its usability and how secure a computer program is in terms of data pro-
tection etc.333 All three of these elements have thus become significant for the
development of computer programs and managing its processes.

ISO/IEC/IEEE 24765:2017-3.3178, with reference to ISO/IEC 26514:2008, 4.39; see also

DIN 69901-5:2009; BAUKNECHT/ZEHNDER, 282 f.; BECKER ET AL., 241 f.

BOEHM (1981), 23 f. and 727 ff.; BECKER ET AL., 241.

SMITH, 180; BOEHM (1981), 30; for detailed reports on which factors influence a software

development process and its success, see: STANDISH GROUP and SWISSQ.

KRUEGER/PFEIFFER, 21 ff.; KOREIMANN, 159 f.

MILLSON/WILEMON, FOREWORD, x.

This is the slogan of the Lego Group. Lego has recently become one of the most important

technology companies worldwide, being named number 82 in the world‘s top 100 brands

for 2015 (see <https://www.lego.com/en-us/aboutus/lego-group/the_lego_history/

1930> [retrieved September 6, 2021], for ranking, see CNet).

OFFUT, 27.

327

328

329

330

331

332

333

Chapter 3: Technical Foundation

82

https://www.lego.com/en-us/aboutus/lego-group/the_lego_history/1930
https://www.lego.com/en-us/aboutus/lego-group/the_lego_history/1930

197 Consumer needs and money issues are regularly considered during the devel-
opment process. The software product should, for example, show high scala-

bility in order to handle larger work volumes simultaneously.334 Network inte-
gration and maintenance have become an intensive cost factor that is
manipulated positively during conceptualization and coding. Managing the
software, therefore, starts as soon as the development process is organized
and structured, as unnecessary reworks that cost a lot of money can be antic-
ipated and partially avoided.

198 The time-to-market is regarded as a major factor in software management and
is often used as a buzzword. It expresses the duration of time that is required
to develop a product from the idea to the final product.335 Time-to-market
refers to the fact that the software market has become faster in pace and that
competition has increased. Whoever brings additional value to customers
first, gains their share-of-wallet. To maintain a company’s competitiveness,
the software developer tries to adapt the launching pace of the software to the
demands of the market and releases the software, or only selected modules of
it, sooner and faster. The development process is thus shortened or acceler-
ated.336 Offut believes that time-to-market is currently one of the key business
drivers of the industry.337 The downsides of a faster development velocity are
higher product costs, greater expenses for development and either less per-
formance of the software product, as the product may not be refined enough,
or a smaller set of features.338 At the same time, Cohen, Eliasberg and Ho sug-
gest that optimal software engineering should “concentrate efforts on the
most productive stage”.339 The developer should try to achieve an adequate
balance between all the goals in order to mitigate the effects of potential ob-
jective conflicts.340

199 The above-mentioned factors suggest that software project management is a
very complex issue. A project manager has to audit several very different sub-

OFFUT, 28.

The Business Dictionary, "time to market", available at <http://www.businessdic-

tionary.com/definition/time-to-market.html> (retrieved July 27, 2019).

This can, for example, be achieved through faster development, minimizing schedule vari-

ation, improving agility, avoiding mistakes and reworks, improving productivity, overcom-

ing sagging revenues or market share and through sticking to schedules (for more infor-

mation, see SMITH, 176). See also BOCK, 223 f.

OFFUT, 29.

SMITH, 174 f.

COHEN/ELIASBERG/HO, 175 and 184.

COHEN/ELIASBERG/HO, 174 and 184.

334

335

336

337

338

339

340

Chapter 3: Technical Foundation

83

http://www.businessdictionary.com/definition/time-to-market.html
http://www.businessdictionary.com/definition/time-to-market.html

ject areas at the same time, including organizational, financial and time ques-
tions.341 The expectations of the user and buyer have increased dramatically.
A dynamic industry and newly emerging trends such as time-to-market and
shorter launching paces keep presenting new challenges. The profile of a soft-
ware project manager consequently has become very versatile. These features
of project management should be further evaluated and considered from the
legal aspect.

C. Commercialization

200 Commercialization is about distributing the software to the customers. De-
pending on the market being served and the financial and organizational
structure of the publishing company, different strategies for economic man-
agement and legal commercialization are followed.

1. Classic Software Commercialization

201 Intellectual property law grants particular exclusive rights to developers, in-
cluding some commercial rights for economic purposes to earn back the in-
vestments made. In practice, the issuer’s exclusive rights are often used to
make the software product available to third parties. The exact terms of the
allowable utilization are regularly defined in contracts. The granted rights
widely vary in their scope, function and exclusivity.

202 There are three commercialization models that seem to be used frequently for
distributing software: assignments, licensing and service agreements:

– If a right is sold or otherwise assigned, the right holder surrenders his/her
rights of use and passes them on to somebody else.342 This often occurs
with commissioned work and appointed product development by third-
party contractors and consultants.343

– Through licensing, the legal ownership over a good is not assigned but in-
stead the licensee obtains the temporary permission of the right holder
(licensor) to make use of the good in question in a particular, contractu-

See detailed reports on which factors influence the software development process and its

success, in: STANDISH GROUP and SWISSQ.

HILTY (2010), N 288; WOESTEHOFF, 90 ff., particularly 100 f.

NIMMER/NIMMER (2014), N 27-36 and N 27-45.

341

342

343

Chapter 3: Technical Foundation

84

ally agreed way.344 There are two main forms of licences available: exclu-
sive345 and non-exclusive rights.346,347 Difficult to distinguish from licence
contracts are leases, in which the user usually has proprietary rights sim-
ilar to ownership.348 The rights of use often go further than in traditional
licensing, which is probably also the reason why leasing plays a lesser role
in practice and is not dealt with in more detail below.

– A newer form of software commercialization is so-called software as-a-

service. Based on a client server system, the customer is usually granted
online access to a particular software product on a server.349 In return, he
or she pays service operation and maintenance fees.350

203 Licensing and software as-a-service are usually mixed in practice.

2. Open Source and Free Software in Particular

204 The Open Source Movement developed in the 1990s and became a large and
important trend in software commercialization with the rise of the Internet.351

Open Source refers to the idea that know-how of software engineering will be
exchanged, shared and passed on within a community. We still lack a generally
accepted definition of the term Open Source. However, according to the Open
Source Initiative, Open Source refers to non-discriminatory and unhindered

HILTY (2010), N 288; ISO/IEC/IEEE 24765:2017-3.2213 and ISO/IEC/IEEE

24765:2017-3.3820, with reference to ISO/IEC 19770-5:2015, 3.41; HILTY (1997), 139 f.;

WOESTEHOFF, 110 ff., particularly 117 f. and 120 ff.; NIMMER/NIMMER (2014), N 27-3 f.; LEMLEY

ET AL., 227 ff.; Commentary to the German UrhG (Loewenheim/Spindler), § 69a ff. N 59 ff.

Exclusive rights refer to the situation where only one party is allowed to make use of the

creation, instead of several.

Non-exclusive rights imply that several independent parties obtain the right to use the

creation in question in a particular way.

Mentioned in Art. 62 para. 3 Swiss CopA, § 31 para. 1 sentence 2 and para. 3 German UrhG,

17 U.S. Code § 101; see also FROEHLICH-BLEULER for indirect use in licensing.

WOESTEHOFF, 163 f.

For more information on the term server, see N 128.

BUXMANN/HESS/LEHMANN, 500; KOOTHS ET AL., 32 ff.; SOMMERVILLE, 499; see also description

in ISO/IEC/IEEE 24765:2017-3.3708.

HARISON, 78 f.; COWAN/JONARD, 515 and 529 f.

344

345

346

347

348

349

350

351

Chapter 3: Technical Foundation

85

access to the source code, free and unrestricted distribution of the program,
and an obligatory authorization to modify the program and distribute the de-
rived works.352

205 The goal of Open Source is that everybody can take advantage of comprehen-
sive use of the software, without being hindered by the proprietary demands
of a copyright holder.353 It represents a political statement. Behavioural econ-
omists qualify the Open Source community as altruistic, sharing their know-
how and investments with other partially unknown users. On the other hand,
there seems to be high-level expertise provided in the available solutions.354

206 Open Source does not represent a legal model of its own but instead builds on
the traditional framework of proprietary intellectual property rights and li-
cence agreements.355 The existence of copyrights is a prerequisite for the ex-
istence of Open Source. However, in contrast to proprietary software com-
mercialization, in Open Source the copyright is not used to earn back the
investments but to steer a free know-how transfer instead:356 What right hold-
ers make available free of charge under an Open Source licence cannot be mo-
nopolized by others.357 Instead, every user has to guarantee contractually that
he or she will share the results they achieve on the basis of the computer pro-
gram for free with the community and that other users will be allowed to work
on them and provide changes and improvements under so-called public li-
cences or copyleft.358 There are a wide range of Open Source licences available
on the market. They are partly standardized by the Open Source Initiative,
which has developed certain minimum requirements for Open Source soft-

For further information on the Open Source Initiative, see their webpage at <http://open-

source.org/osd-annotated> (retrieved September 6, 2021).

KOGLIN, 1; SPINDLER, 1; ZIRN, 156 ff.; SCHWABACH, 186.

HARISON, 78 and 81 f.

SPINDLER, 2 f. and 25 f.; KOGLIN, 25; BOECKER, 190; STRAUB (2011), N 638 ff.; HILTY (2014), 293 ff.;

SCHWABACH, 186; Commentary to the German UrhG (Loewenheim/Spindler), § 69a ff.

N 28 f.

SCHIFFNER, 104; see BOECKER, 190, for further information about the relationship between

copyright and Open Source.

STRAUB (2011), N 689.

METZGER/JAEGER, 431; HARISON, 81; LESSIG, 764 f. The legal qualification of Open Source dis-

tribution is not beyond controversy. It is unclear to what degree an author can resign his

or her statutory rights of exclusive consent (for more information, see KOGLIN, 2 ff. and

42 ff.).

352

353

354

355

356

357

358

Chapter 3: Technical Foundation

86

http://opensource.org/osd-annotated
http://opensource.org/osd-annotated

ware within the framework of the Open Source definition.359 The strictest
form of Open Source licence appears to be the Gnu General Public License,
which was created by the supporters of the Free Software Movement around
Richard Stallman.360 Like classic Open Source, the term free software usually
refers to the permission to use, copy or spread software, either in its original
form or in an adapted version. It also requires that the source code be dis-
closed.361 However, the user of the modules is usually subject to stronger du-
ties.

207 The most famous example of Open Source software was probably the opera-
tion system Linux that was established by Linus B. Torvalds and today is esti-
mated to run on over 40 million computers worldwide.362 For proprietary soft-
ware, Open Source models are often described as unattractive because every
user is allowed to analyse and reproduce the technical solutions in the source
code, and to share them. As the comprised know-how is disclosed for free, the
software can hardly be sold against payment.363 Nevertheless, proprietary
software developers have started to embed parts of the Open Source model in
their corporate commercialization strategy, to profit from the know-how and
community thoughts.364 In addition, dual-licensing solutions are increasingly
being offered on the market. Within this framework, the same software is dis-
tributed under both a proprietary licence and, simultaneously, an Open Source
licence.365 The distribution models in the Open Source are still evolving and,
as shown later, Open Source still has a significant effect on the software engi-
neering market.366

For more information, see official Open Source Initiative webpage at <https://open-

source.org/osd> (retrieved September 6, 2021).

For more information on the principles of GNU, see the official GNU webpage at

<https://www.gnu.org/copyleft/> (retrieved September 6, 2021).

BECKER ET AL., 88 and 91; SPINDLER, 2 f. and 9 ff.

There are few reliable statistics available for potential user numbers or installed appli-

cations. The most comprehensive report was published by WIKIMEDIA. The numbers vary,

but it is evident that the Open Source community has gained ground over the last two

decades.

KOGLIN, 8.

See for example Google's cooperation with the Open Source community: <https://devel-

opers.google.com/open-source/> (retrieved September 6, 2021).

SPINDLER, 16 f.

See later N 421 ff.

359

360

361

362

363

364

365

366

Chapter 3: Technical Foundation

87

https://opensource.org/osd
https://opensource.org/osd
https://www.gnu.org/copyleft/
https://developers.google.com/open-source/
https://developers.google.com/open-source/

Chapter 4: Status Quo of Legal Software
Protection

208 This chapter summarizes the legal foundation for my research and builds on a
review of the available literature, conducted over several months. It provides
an idea of how legal protection for computer programs is designed today, for
which elements in a computer program it might apply, and where potential
problem areas might lie. The following illustration is not intended as a com-
plete presentation of software protection law in these fields. Instead, the
chapter focuses on basic topics I consider crucial for an understanding of the
interview findings and constructional thoughts in the subsequent discussion.
The legal illustration therefore focuses on the essentials regarding the legal
scope of software protection in the observed jurisdictions.

209 The chapter starts with a brief overview of the available legal measures for
protecting software. As some of the legal institutions are not within the scope
of my thesis, they only serve to provide comprehensiveness. It will be ex-
plained why intellectual property law is important for software and what func-
tions it serves. In a next step, the international context of intellectual property
law is outlined in order to point out what should be considered beyond na-
tional legislation. Finally, a systematized illustration introduces the basics re-
garding the scope of protection for software in patent law and copyright in
three different observed jurisdictions: Switzerland, the European Union and
the United States. As intellectual property law has been highly standardized on
an international scale, the principles in copyright and patent law in the three
jurisdictions are very similar, leaving only little room for individual provisions
in national statutes. They are examined together, outlining their common
structures, the most important prevailing legal approaches as well as some di-
verging points of interest for the subsequent legal discussion.

I. The Legal Institutions for Software Protection

A. Introduction to Legal Software Protection

210 Within the European Union, Switzerland and the United States, the protection
of computer programs is designed as a hybrid concept. There is no one legal

88

institution that covers every aspect of software in one model. Instead, there
are various legal institutions that each cover a different aspect and are par-
tially overlapping:367

– First, computer programs can be protected under copyright and patent
law. These two institutions are the most relevant in the literature and
jurisprudence and thus are the two that are analysed most comprehen-
sively in the present study;

– second, industrial design protection and trademark law are partially ac-
cepted as protecting particular program components;

– third, some legislations provide for so-called utility models – a lighter
version of classic patents to protect subordinate inventions;

– fourth, there are the classic institutions of competition law such as unfair
competition, including in particular protection of trade secrets and mea-
sures against others taking undue advantage of your achievement;

– fifth, the hybrid of the property assigning IP and punitive unfair competi-
tion law is complemented with the classic rules of contract law.

211 All of these institutions protect particular aspects or whole components of
software development and completed software products. Consequently, to-
gether they represent the commonly followed protection model for software
within the EU, Switzerland and the United States.

B. Brief Overview of the Available Legal Protection Measures

212 What follows is a brief overview of the different legal measures that are avail-
able and acknowledged for software protection. It does not claim to be ex-
haustive, nor does it claim to provide the only possible interpretation of the
illustrated complex problems. In this context the legal software protection is a
hybrid of very different institutions and each field provides selective protec-
tion for particular software components. It will be shown that the different
legislations all greatly rely on copyright and patent law to protect components
of software products. These topics are therefore elaborated on in two separate
sections (sections IV and V of this Chapter 4). The explanations in this overview
will therefore focus on institutions for legal software protection other than
copyright and patent law.

Due to their lack of relevance for the protection of digital software products, microelectric

semiconductor products (hardware chips) and their protection in topography law will not

be addressed in this thesis.

367

Chapter 4: Status Quo of Legal Software Protection

89

1. Intellectual Property Law

a) Patent Law

213 A patent represents an intellectual property right that protects new, non-ob-
vious and industrially applicable innovations. It comprises an exclusive right of
the patentee to forbid others to use his/her invention, no matter in what way
the invention was implemented. The right is granted by a particular registra-
tion authority for a determined territory in exchange for public disclosure of
the invention. Computer-related inventions are only partially open to patent
protection, e.g. implemented and applicable algorithms, to some extent par-
ticularized business methods, and according to present opinion, also functions
and features (disputed). For more information see section IV of this chapter.

b) Copyright

214 Copyright is intended to protect original intellectual creations of art and liter-
ature. Its protective scope evolves automatically as soon as the creation has
fulfilled the basic protection criterion. It offers the copyright holder a set of
exclusive commercial and moral rights. Copyright represents the main form of
protection for computer programs in the EU, Switzerland and the United
States.368 Components that are eligible for copyright protection are particu-
larly literary works, such as the source code (including its structure and orga-
nization), the machine code as well as some visual elements such as the
graphic user interface and, according to the here presented opinion, also vi-
sual elements in the look-and-feel. It further entails one-to-one protection for
whole software products and services and for the provided documentation.
For more information see section V of this chapter.

c) Industrial Design Rights

215 Industrial designs represent aesthetic or ornamental combinations of lines,
contours, colours and surfaces that are contained in a useful product.369 These

See for example: STRAUB (2002), N 4; GOVONI, 570; LEHMANN (1988), 2420; LEHMANN (1988),

2420; HILTY (2010), 114 f.; HILTY/GEIGER (2015), 615 ff.; JERSCH, 192; WALTL, 1 f; see also discus-

sion in SCOTCHMER (2006), 83 f.; CONTU, 59; Commentary to the German UrhG (Loewen-

heim/Spindler), § 69a ff. N 8; due to its technical function, copyright for computer pro-

grams has often been criticized, see for example: HILTY (2010), 114 f.; HILTY/GEIGER (2015),

615 ff.; BOECKER, 27; SCOTCHMER (2006), 83 f.

Art. 1 Swiss DesG, § 1 para. 1 German DesG, 35 U.S.Code 171.

368

369

Chapter 4: Status Quo of Legal Software Protection

90

combinations are protectable under design rights, if they are new and exhibit
particularity.370 Design rights have to be granted formally and require registra-
tion with the responsible authority. The owner of a protected industrial design
may prevent third parties, who do not have his or her consent, from commer-
cially making, selling or importing articles bearing or embodying a design that
represents a copy of the protected design.371

216 It is still very controversial as to whether software components are protectable
through design rights. In many statutes computer programs are explicitly ex-
cluded from the subject matter.372 This is rooted in the fact that classic design
rights are intended for visual and tangible objects.373 In many jurisdictions, vi-
sual elements that merely result from a technical function of a product are not
eligible for protection, as it is the technical aspects rather than the aesthetic
characteristics that are in focus.374 The question of what may be considered as
‘serving a technical function’ in a software product is very difficult to answer.
Some legislations do not specifically regulate for this problem but instead
leave this decision to the responsible authority and courts. Consequently, dif-
ferent jurisdictions answer this problem in different ways.

217 Software is based on abstract numeric and instructive commands that have to
be expressed in a written form, such as the source code or the machine code.
This aspect of a computer program serves a functional purpose rather than an
aesthetic or literary one, from the perspective of a design right. It also lacks a
visual design concept.375 It is therefore excluded from design right protection.
Design right protection is more relevant for the visual components of a soft-
ware product, such as the graphic user interface or the look-and-feel. Al-
though these two elements are not tangible they can be graphically repre-
sented and have perceptible lines, shapes and colours, based on a design
concept. While they can be expressed in a visual form, they are also used to

Art. 2 para. 1 Swiss DesG, § 2 para. 1 German DesG, 35 U.S.Code 171.

Art. 26 TRIPS Agreement.

See particularly the understanding of the European Union in Art. 1 lit. b of the Directive

98/71/EC of the European Parliament and of the Council of 13 October 1998 on the Legal

Protection of Designs, that probably also influenced the Swiss understanding of Art. 1

Swiss DesG (Orell Fuessli Commentary to the Swiss DesG, Art. 1 N 81).

Orell Fuessli Commentary to the Swiss DesG, Art. 1 N 10; DUTFIELD/SUTHERSANEN, 171 ff.

See for example Art. 4 lit. c Swiss DesG, § 3 para. 1 sect. 1 German DesG; 35 U.S. Code § 171

speaks of 'ornamental' designs. In Richardson v. Stanley Works, Inc., 597 F.3d 1288 (Fed. Cir.

2010) it was established that a non-functional characteristic must be shown.

See Orell Fuessli Commentary to the Swiss DesG, Art. 1 N 4; Staempfli Commentary to the

Swiss DesG, Art. 1 N 32.

370

371

372

373

374

375

Chapter 4: Status Quo of Legal Software Protection

91

communicate with the users. Therefore, although a graphic designer tries to
create this medium of communication in a visually pleasing way, the visual ex-
pression always also has a functional purpose because the software product
is an economic good. The visual and functional aspects of computer programs
consequently lie close together. Whether the visual elements of software are
implied under design right protection or not is widely disputed. Some claim
that every possible visual expression is excluded from design right protec-
tion.376 Others, including the WIPO, several Swiss representatives and U.S.
courts and authorities have decided that design right is applicable.377 Kur, on
the other hand, differentiates between the user interface, implemented icons
and the look-and-feel of a computer program, stating that the first two would
be eligible while the third component should be excluded due to its merely
technical nature.378 As Stigler suggests, what is eligible for design protection
in a software product can probably not be determined in absolute terms, but
instead should be evaluated for each program separately in order to determine
whether the “design is entirely dictated by its function”.379 Likewise, where
the functionality predetermines every aspect of the visual interpretation, legal
protection under design right should not be allowed. On the other hand, where
there is merit in the visual perception, design right protection should be pos-
sible. In practice, graphical user interfaces have already been registered as in-
dustrial designs.380

See for example HARISON, 185 f.; Art. 1 lit. b of the Directive 98/71/EC of the European Par-

liament and of the Council of 13 October 1998 on the Legal Protection of Designs, which

explicitly excludes design protection for visual expressions in computer programs.

The official information on the WIPO home page suggests that "industrial designs are ap-

plied to a wide variety of products of industry and handicraft items (...) graphic symbols,

graphical user interfaces (GUI), and logos". See additional information on the website of

the WIPO on industrial designs; European Guidelines for Examination of Registered Com-

munity Designs, 17; Orell Fuessli Commentary to the Swiss DesG, Art. 1 N 82; STRAUB (2011),

N 506 ff.; STRAUB (2013), N 38.1 (noting that some design rights for user interfaces have al-

ready been registered in Switzerland); MARLY, N 641; Staempfli Commentary to the Swiss

DesG, Art. 1 N 32 f.; see for the U.S.: Apple, Inc. v. Samsung Electronics Co., Ltd., No. 14-1335

(Fed. Cir. 2017), which says that if a user interface is also non-functional and fulfils the

requirements, it may be considered as design patentable; for more information and ref-

erences on the U.S. perspective see: U.S. CONGRESS (1992), 12; STIGLER, 238 ff.; LEMLEY ET

AL., 195 ff.

KUR (2002), 663; see also KUR (2003).

STIGLER, 240; see also KUR (2002), N 32.

See for example, for the United States: ACCLAIMIP; for Switzerland: <www.swissreg.ch>; for

Germany: <https://register.dpma.de>.

376

377

378

379

380

Chapter 4: Status Quo of Legal Software Protection

92

http://www.swissreg.ch/
https://register.dpma.de/

d) Trademark

218 A trademark is a sign or a combination of several signs that are capable of dis-
tinguishing the goods or services of one company from those of other compa-
nies.381 All signs that can be recognized and noticed can serve as a trade-
mark.382,383 These signs may consist of words, letters, numerals, figurative
elements and combinations of colours as well as a mixture of any of these. Eli-
gible for registration are signs that have a distinctive character.384 There are
no further requirements for protection, only criteria that exclude certain ob-
jects from the subject matter. Generally excluded are signs that belong in the
public domain and characteristics that are predetermined in the technical
conceptualization of the product, including particular essential forms, goods
and packaging as well as signs that may be deemed deceptive.385,386 In order to
protect earlier trademarks, there are certain relative grounds for exclusion, for
example if the trademark clashes with an earlier registered one because they
are identical or similar and are intended for the same or similar goods or ser-
vices.

219 Trademarks can be registered for different jurisdictional territories, for exam-
ple for individual countries, within a regional trademark union or at the WIPO
on an international level. The owner of a trademark obtains the right to pre-
vent third parties without consent from using identical or similar signs for
goods or services that are the same or similar to the object in question.387

Art. 15 para. 1 TRIPS Agreement; Art. 1 para. 1 Swiss MSchG; § 3 para. 1 German MarkenG;

15 U.S. Code § 1052.

Staempfli Commentary to the Swiss MSchG (Noth/Thouvenin), Art. 1 N 8; THOUVENIN/

BERGER, 6/6.1., 1.

In the United States, the Lanham Act further protects so-called trade dresses, comprising

the total design of a product packaging, including its shape and colour. According to cer-

tain authors, the trade dress provisions may also entail the look-and-feel of computer pro-

grams. See discussion in LEMLEY ET AL., with further references.

Art. 15 para. 1 TRIPS Agreement; Art. 1 para. 1 Swiss MSchG; § 3 para. 1 and § 8 para. 2 sect.

2 German MarkenG;

See for example Art. 2 lit. a-c Swiss MSchG; § 3 para. 2 German MarkenG.

See discussion regarding Microsoft's 'Windows' trademark for computer programs, in

LEMLEY ET AL., 210 f. and THOUVENIN/BERGER, 6/6.2., 1 f., both with further references.

See Art. 16 para. 1 TRIPS Agreement.

381

382

383

384

385

386

387

Chapter 4: Status Quo of Legal Software Protection

93

220 Trademarks are used as a means of communication between a company and
their customers.388 Their distinctiveness is broadly associated with the quality
that the public assigns to a good or service.389 They serve to differentiate and
reference the manufacturers or providers of the marked good or service.390

Trademarks are therefore popular for marketing and in establishing a particu-
lar public image of a good or service. In the field of software, the designations
of computer programs and ICT services are often protected with trademarks,
for instance, the operating system software Linux®, and the internet browser
Mozilla Firefox®. The German group SAP, a famous developer of enterprise
software, provides a whole list of their goods and services that are currently
under trademark protection on their homepage, including their programming
language ABAP®, their company name SAP® and the computer business net-
work SAP Ganges®.391 The Swiss telecommunication provider Swisscom has
likewise registered several ICT goods and services, such as Swisscom IT Ser-
vices®, Swisscom Solutions® and Swisscom Broadcast®.392 A similar policy
may be observed for the U.S. group Oracle.393 The possibility to protect the
designation of a software product or service with trademarks is attractive for
managing a company’s corporate identity and influencing the public percep-
tion of a good or service. Consumers show trust in established and popular
brands, which is why, particularly in the computer field, they place significant
value on obtaining application programs, hardware components and further
equipment compatible with trademark-registered products and known manu-
facturers.394 The attentive observer may have noticed that all the alluded to
registered trademarks refer to the software product as a whole. The practical
use of software trademarks is currently broadly limited to product names of
standard software.395 But in theory other perceptible, e.g. visual, elements are

Staempfli Commentary to the Swiss MSchG (Noth/Thouvenin), Art. 1 N 45; THOUVENIN/

BERGER, 6/6.1., 1.

DUTFIELD/SUTHERSANEN, 139; Staempfli Commentary to the Swiss MSchG (Noth/Thou-

venin), Art. 1 N 47.

Staempfli Commentary to the Swiss MSchG (Noth/Thouvenin), Art. 1 N 34 ff. and 39 ff.

See interesting list of currently active trademarks of the company SAP at

<http://www.sap.com/corporate-en/about/legal/copyright/trademark.html> (re-

trieved September 6, 2021).

For more information, see the Swiss Trademark Registry: <www.swissreg.ch>.

For more information, see the European Union Trademark Registry <https://oami.eu-

ropa.eu/> and the U.S. Trademark Registry <www.uspto.gov>.

LEMLEY ET AL., 201.

See also STRAUB (2011), N 33 and 580; MARLY, 593 ff., with further references; Commentary

to the German UrhG (Loewenheim/Spindler), § 69a ff. N 11.

388

389

390

391

392

393

394

395

Chapter 4: Status Quo of Legal Software Protection

94

http://www.sap.com/corporate-en/about/legal/copyright/trademark.html
http://www.swissreg.ch/
https://oami.europa.eu/
https://oami.europa.eu/
http://www.uspto.gov/

also eligible for trademark protection if they are able to exhibit enough dis-
tinctiveness and characteristics, and can stand out from others or functionally
pre-conditioned signs.396 It is conceivable that in the near future graphical
user interfaces and visual elements of the look-and-feel in software will also
become eligible for trademark protection.397

e) Utility Models (Gebrauchsmuster)

221 Some countries offer so-called utility models or petty patents to protect in-
ventive devices. They are granted in many countries all over the world, includ-
ing the Czech Republic, Denmark, Finland, France, Austria, Germany, Italy and
Portugal.398 In Switzerland and the United States the utility model is not avail-
able. A utility model is a statutory monopoly, similar to a patent, but with a
smaller scope of protection.399 It is therefore also sometimes referred to as the
small patent. Just like patents, utility models require novelty, an inventive step
and the exhibition of an applicable invention.400 But different to patent law,
they exclude inventive procedures entirely, instead focusing on products and
devices.401 The referential room for the testing of the essential requirements is
usually restricted to publicly available written descriptions and established
uses of the invention within the jurisdiction in question.402 Further, the formal
registration process does in general not involve any substantive testing of the
protection requirements.403 The utility model therefore represents an
untested intellectual property right. According to the WIPO, the main purpose
of utility models is to encourage inventors of ‘minor inventions’ to share their
inventions with the public, including improvements of and adaptions to exist-

See discussion in LEMLEY ET AL., 203.

This topic came up several times as a side note in the interviews.

See list of current national providers, available at <https://wipolex.wipo.int/en/legisla-

tion/results?subjectMatters=2> (retrieved September 6, 2021).

MOTT, 233 ff.; DUTFIELD/SUTHERSANEN, 180.

See for example § 1 para. 1 German GebrMG; § 1 para. 1 Austrian GMG, Art. L611-11 and

Art. L611-14 French IP Code.

See for example § 2 para. 3 German GebrMG, § 1 para. 3 sect. 3 Austrian GMG.

See for example § 3 para. 1 German GebrMG, §3 Austrian GMG.

See § 8 para. 1 German GebrMG, § 18 Austrian GMG.

396

397

398

399

400

401

402

403

Chapter 4: Status Quo of Legal Software Protection

95

https://wipolex.wipo.int/en/legislation/results?subjectMatters=2
https://wipolex.wipo.int/en/legislation/results?subjectMatters=2

ing products.404 For this purpose, the owner is granted an exclusive right for a
limited period of time, which allows him or her to prevent others from using
the protected device commercially.

222 The application field of utility models is widely restricted by law. Various
statutes prohibit the protection of procedures and reproductions that in
essence work with (non-tangible) information.405 For this reason, the use of
utility patents is highly restricted for computer programs.406 However, as an
exception, in the Austrian Gebrauchsmustergesetz, the program logic under-
lying programs for data processing equipment may be protected as a utility
model.407 Apart from this exception, the application scope of utility models is
usually limited to cases where the software is combined with physical devices,
known as hardware-related software.

2. Unfair Competition Law

223 Unfair competition law involves any action in the competitive market that is
contrary to honest practices in the industrial and commercial sphere.408 It also
includes misleading or deceptive behaviour that may affect the relationship
between competitors or between a supplier and their customers.409 Particu-
larly important for the field of software development and commercialization is
the protection of trade secrets and the prohibition on taking undue advantage
of somebody else’s achievements.410 Further, within a limited scope, the cor-
porate identity of a company implemented in the look-and-feel can be pro-
tected under the general clause of unfair competition law, if there is a risk of
confusion.411 Beside these examples, the impact of the general clause for soft-
ware is likely to be limited. The next section focuses on the first two topics.

See the WIPO's official online description of "utility models", available at

<https://www.wipo.int/patents/en/topics/utility_models.html> (retrieved September 6,

2021).

See § 1 para. 2 sect. 4 and § 2 para. 3 German GebrMG, § 1 para. 3 Austrian GMG, Art. L611-2

para. 2 French IP Code.

KRIBBER, 18 f.

See § 1 para. 2 Austrian GMG.

Art. 10bis para. 3 Paris Convention.

See general clause in Art. 2 Swiss UWG; § 4 German UWG; 15 U.S. Code § 45 lit. a para. 1.

For a broader view of the topic, see WIEBE; MARLY, 237-252; STRAUB (2011), N 522 ff.

Due to its limited relevance particularly for software and the restricted scope of this the-

sis, I will not further elaborate on this point.

404

405

406

407

408

409

410

411

Chapter 4: Status Quo of Legal Software Protection

96

https://www.wipo.int/patents/en/topics/utility_models.html

a) Trade Secrets

224 Trade secrets refer to technical and commercial information that guides man-
ufacturing and commercializing activities in a particular way.412 Any unautho-
rized use of information which qualifies as a trade secret and is obtained by
misappropriation is internationally considered as a violation of the trade se-
cret and therefore as an unfair practice if conducted by a third party other
than the secret-keeper.413 Discovering information independently that quali-
fies as a trade secret does not fall under the protected scope. It is only if the
information is obtained by misappropriation, for example by discovering the
trade secret through unlawful means such as hacking, data theft or some form
of espionage, or where a third party discloses a trade secret by breaching a
contract, that trade secret violation is considered to have taken place. In con-
trast to patents, the protection of trade secrets does not require formal regis-
tration. The legal protection of trade secrets begins the moment that they
qualify as sensitive information.

225 In order to be qualified as a protectable secret, information has to fulfil three
requirements: First, it has to be secret. It cannot be information considered as
general knowledge or readily accessible to people within circles that com-
monly deal with the kind of information in question.414 Second, the information
must exhibit economic or commercial value, e.g. it is used to work a market.415

It must be characterized as worthy of protection because there is an interest
in secrecy protection, particularly information that is capable of providing a
competitive advantage for a company.416 Third, the rightful secret keeper must
have taken reasonable measures to keep the information secret.417 According

See definition of the WIPO for "trade secret", available at <https://www.wipo.int/tradese-

crets/en/> (retrieved September 6, 2021).

See Art. 39 TRIPS Agreement in conjunction with Art. 10bis Paris Convention that guaran-

tees trade secrecy for all member states. See for a national implementation example § 1

German GeschGehG, Art. 4 lit. c and Art. 6 Swiss UWG and 18 U.S. Code § 1839 as well as

the UTSA for the United States. If the abuse was conducted by a person who was entrusted

with a trade secret see Art. 5 lit. a Swiss UWG.

Art. 39 para. 2 lit. a TRIPS Agreement; 18 U.S. Code § 1839 para. 3.

Art. 39 para. 2 lit. b of the TRIPS Agreement; 18 U.S. Code § 1839 para. 3; § 1 para 4 sect. i

UTSA

See definition of the WIPO for "trade secret", available at <https://www.wipo.int/tradese-

crets/en/> (retrieved September 6, 2021).

Art. 39 para. 2 lit. c of the TRIPS Agreement; 18 U.S. Code § 1839 para. 3; § 1 para 4 sect. ii

UTSA.

412

413

414

415

416

417

Chapter 4: Status Quo of Legal Software Protection

97

https://www.wipo.int/tradesecrets/en/
https://www.wipo.int/tradesecrets/en/
https://www.wipo.int/tradesecrets/en/
https://www.wipo.int/tradesecrets/en/

to Swiss case law, trade secrets are protected as long as the information in
question is regarded as ‘objectively secret’ and is also treated confidentially by
its keeper.418

226 Trade secret protection plays an important role in software development and
commercialization, as both of these processes involve a lot of know-how and
high investment. The highly sensitive information that needs to be protected
may include certain tactics, programming techniques, system-relevant infor-
mation or a solution to a certain problem, including information about the
logic, structure and ideas underlying a computer program.419 The elements
that are frequently described as particularly sensitive and valuable are algo-
rithms, sensitive parts of the source code and ingenious information about the
software concept.420 As trade secret protection applies until previously secret
information becomes public, it regularly precedes registry intellectual prop-
erty rights, that require adequate disclosure during application.421 It is worth
noting that as information under trade secret protection is not publicly avail-
able, it is also not respected in examinations of ‘prior art’ for patent law.422

b) Taking Undue Advantage of Somebody Else’s Achievement

227 Apart from trade secrecy, unfair competition law in most countries also for-
bids a competitor from taking undue advantage of somebody else’s achieve-
ments. This particularly includes offering imitations of somebody else’s work
products in products or services, if either (1) no sufficient personal effort was
made to copy the original, or (2) if the knowledge to imitate the original was

See example for Switzerland: BGE 64 II 170 and BGE 80 IV 22. Taking reasonable measures

as such does not represent a separate criterion under Swiss law, but instead is considered

when evaluating the keeper's subjective will and the possibilities to keep a secret confi-

dential.

WITTMER, 72 f.; U.S. CONGRESS (1990), 9; LEHMANN (1988), 2422.

See BOECKER, 112, with further references, particularly regarding the decision of the OLG

Celle of April 11, 1989, published in CR, 1989, 1002 ff.; see also discussion in LEMLEY ET AL.,

16 f.; see also later discussion in N 526 ff.

See also discussion in LEMLEY ET AL., 13 f.

U.S. CONGRESS (1990), 9.

418

419

420

421

422

Chapter 4: Status Quo of Legal Software Protection

98

obtained in an unrighteous way.423 Similar to copyright and patent law, the
protection is not aimed at abstract ideas, but rather processed concepts in a
marketable, economically usable and independently exploitable and material-
ized form of the working result.424 Moreover, the provision particularly targets
technical reproduction processes, as the original can be copied without creat-
ing added value or investing further effort, and the product can be manufac-
tured and offered on the market at a lower cost.425 One important exception
to the general prohibition on taking undue advantage is provided in the United
States where ‘copycat acts’ are permitted if no intellectual property rights are
violated.426

228 Also computer programs are regarded as achievements under unfair competi-
tion law.427 Tied to this conclusion, digital copying and offering to stream and
download is regarded as a predatory act.428 Although the possibilities under
unfair competition statutes are numerous, its relevance for software protec-
tion in practice is usually restricted to the period between patent application
and patent granting429, cases where standard software is copied one-to-one,
or if technical reproduction measures are applied to extract know-how from

See § 3 and § 4 para. 3 in German UWG, Art. 5 lit. c Swiss UWG, Compco Corp. v. Day-Brite

Lighting, Inc., 376 U.S. 234 (1964). To the extent that work products are misappropriated

that have been entrusted to another party, e.g. during a pitching phase prior to obtain-

ing commissioned work, the unauthorized use of work results is partly sanctionable under

unfair competition law (e.g. § 4 para. 3 lit. b and c German UWG, Art. 5 lit. a and b Swiss

UWG, International News Service v. Associated Press, 248 U.S. 215 (1918)).

See THOUVENIN/BERGER, chapter 6/4.3, 2; RAUBER (1998), 68 f.

See THOUVENIN/BERGER, chapter 6/4.3, 2 f.; RAUBER (1998), 73 ff.

Compco Corp. v. Day-Brite Lighting, Inc., 376 U.S. 234 (1964).

Decision of the OGer of Zurich of June 4, 1996, S2/U/SB960 165 – Adressverwaltungspro-

gramm; decision of the Court of the Canton of Zug of August 30, 1988, Auto-CAD I, pub-

lished in SMI 1989, 58 ff.; decision of the Court of the Canton of Nidwalden of October 7,

1988, Auto-CAD II, published in SMI, 1989, 205 ff.; see also THOUVENIN (2018), 598, with fur-

ther references.

THOUVENIN (2018), 598, referring to BGE 131 III 384 – Suchspider and decision of the Court

of the Canton of Fribourg, published in sic!, 2017, 228 ff., 230 f.; See THOUVENIN/BERGER,

chapter 6/4.3, 3.

For a detailed discussion on the relevance of unfair competition law for software, see:

BOECKER, 110 f.; STRAUB (2011), N 522 ff.; CALAME (2007), 342 ff.

423

424

425

426

427

428

429

Chapter 4: Status Quo of Legal Software Protection

99

working products.430 As the international legislation commonly allows copying
and imitating if personal effort was invested, the protective scope for software
is exhausted rather quickly.

3. Contract Law

229 A contract represents an agreement that creates obligations or claims be-
tween certain identifiable persons and is enforceable by law. It is based on mu-
tual consent.431 Contracts are frequently used to mutually regulate subject
matter between several parties.

230 In a software contract “the issuer of a software obligates to produce, relin-
quish or maintain computer programs as well as all the necessary or useful
documentation for the handling of the program to a user (for considera-
tion)”.432 A software contract is not an alternative to the previous models but
rather complements or combines some of them. The basis for a software con-
tract is built on the (intellectual) property right of the right holder on the com-
puter program. The contract itself has to observe the applicable contract law.

231 A software contract usually contains provisions that determine and specify a
software’s development and commercialization. It determines the usage scope
of the program as well as the consequences of inappropriate use and governs
who controls the associated commercial rights of the program. Through trans-
parent and comprehensible rules, the collaboration and use of the software
becomes foreseeable.433 Software agreements can be subdivided into several
different contracts, including standard software agreements, licence con-
tracts, software development orders, service level agreements and so on. De-
pending on how close the customer is engaged in the development process,
the characteristics of the final software product are predefined in the con-
tract. Where standard software agreements are concluded – either through
assignment, licences or service models – the computer program is commonly
sold ‘as is’ and it is the software publisher who mainly fixes the terms of use.

See decision of the OLG Frankfurt of April 20, 1989, 6 U 213/88 – PAM-Crash, GRUR, 1989,

678 ff., 680; see also STRAUB (2011), N 29 and 30; BOECKER, 111 f.; THOUVENIN/BERGER, 6/4.3,

3 f.

See definition of the Legal Information Institute of the Cornell University Law School,

"contract", available at < https://www.law.cornell.edu/wex/contract> (retrieved Septem-

ber 6, 2021).

Definition found in SLONGO, 7, brackets added.

WITTMER, 71.

430

431

432

433

Chapter 4: Status Quo of Legal Software Protection

100

https://www.law.cornell.edu/wex/contract

The contracts usually also entail non-disclosure agreements for certain infor-
mation regarding the software that is shared between the developer and the
customer, and that the developer does not want to become public because it
qualifies as a trade secret.

232 Most contract law, including the Swiss Code of Obligations, lacks substantive
rules for software contracts; this type of contract is not legally regulated. As a
consequence, a patchwork of different sets of law is applied. Software con-
tracts are of additional importance in legislations with a weak IP software pro-
tection system; where developers cannot rely on their IP rights being enforced
effectively, more contracts are concluded to ensure bilateral protection of the
program. Market participants often use detailed contracts that settle every
possible incident for software.434,435 One disadvantage of software contracts is
that they only have an effect inter partes and hence are only applicable be-
tween the concluding parties. Third parties are not bound by the agreed terms
and consequently are not obliged to exhibit a particular behaviour towards the
contracting parties.

C. Tabular Summary

233 The following table shows a brief summary of the described hybrid in legal
software protection:

FORSTMOSER, N 1.2 and 1.4; SLONGO, 21 ff; RUEESCH, 23 ff.; THOMANN (1992), 5; NIMMER/NIMMER

(2014), N 27.

See a good legal integration of agile and iterative development methods by means of con-

tract law, in STRAUB (2015).

434

435

Chapter 4: Status Quo of Legal Software Protection

101

Legal Insti-
tution

Subject Matter

Intellectual
Property
Law

Patent Law
New, non-obvious industrially applicable technical innovations, such
as devices and procedures.E.g. implementation of algorithms and
business methods, functions and features (disputed).

Copyright
An original and intellectual creation of art or literature.

E.g. a completed software version, source code including its struc-
ture and organization, documentation, graphical user interface, look
and feel (disputed) etc.

Industrial Design Rights
New and particular aesthetic or ornamental combinations of lines,
contours, colours and surfaces contained in a useful product.

E.g. visual elements, such as graphic user interfaces (disputed).

Trademark
A trademark is a sign or a combination of signs that is capable of dis-
tinguishing the goods or services of one company from those of
other companies.

E.g. designations of computer programs or ICT services.

Utility Models
A utility model (or petty patent) protects new, applicable and inven-
tive devices from being copied or used without the consent of the
right holder. They are particularly designed for ‘minor inventions’.
Excluded from protection are devices that solely rely on processing
of information.

E.g. hardware-related software inventions.

Unfair
Competition
Law

Trade Secrets
Trade secrets are technical or commercial information that is con-
sidered as objectively secret and economically valuable for its secret-
keeper and therefore worthy of protection from public discovery by
competitors. They are protected if a third party obtains or shares
them in an unrightful manner, even though the holder of the secret
still has subjective intent to keep the information secret and after the
secret keeper has taken reasonable measures to keep the information
confidential.E.g. information about the logic, structure and ideas un-
derlying a computer program, such as sensitive algorithms or hidden
source code sections.

Taking Undue Advantage of Somebody Else’s Achievements
If somebody offers imitations of somebody else’s products or services
and, either, has not exhibited a personal effort in the imitation
process or the knowledge required to imitate was obtained in an un-
righteous manner, the rules of fair competition are violated.

E.g. one-to-one copies of a whole software product or of the source
code.

Chapter 4: Status Quo of Legal Software Protection

102

Contract
Law

Software contracts represent an agreed set of obligations between
two or more parties to develop, assign or maintain a computer pro-
gram on one side, and pay a reward for these services on the other
side.
E.g. service level agreements, licence contracts, software develop-
ment orders, terms of use, usually combined with non-disclosure
agreements for trade secrets.

II. Function of Intellectual Property Law

234 In order to understand why copyright and patent law are designed the way
they are and how far their scopes of protection reach, the following section
illustrates, in brief terms, the main functions and rationale behind intellectual
property law and IP protection of computer programs in particular.

235 Intellectual goods are non-tangible. As neither their transfer nor their posses-
sion can be tied to a physical object, intellectual goods are difficult to regulate
under classic property law. Instead, intellectual property law was established
to assign the property on goods that lack a physical form, and to determine
who obtains the associated control and commercial rights.436 IP law has the
function to steer and regulate according to a particular economic rationale.
Today, all intellectual property rights are designed as government-acquiesced
absolute exclusionary rights that are either granted to the creator of a work or
invention, or a third party that has acquired the intellectual property from
him/her by derivative means.437 The exact composition of the protection de-
pends on the respective property right. However, with partial reservation to
trademark rights, intellectual property rights in general are based on three
main common economic arguments:

236 First, intellectual property rights – and patents and copyrights in particular –
belong to the person that has created the work or invention. It works as a re-

ward for the one who was able to contribute something.438 At the same time, it
is assigned to its original owner. This is based on the principle in Natural Law

THOUVENIN (2005), 255 f.; HILTY (2010), N 3; HILTI/PEDRAZZINI, 49 f.; HEINEMANN (2002), 21 f.

For more information, see TOM/NEWBERG, 171.

BEIER, 234; MACHLUP, 377; THOUVENIN (2005), 322; KITCH, 266; DUTFIELD/SUTHERSANEN, 51 ff.;

THOUVENIN (2005), 287 f.

436

437

438

Chapter 4: Status Quo of Legal Software Protection

103

that a “human has an unconditional right on his [or her] own ideas”.439 The idea
is legally assigned to its creator. The owner is therefore naturally free to de-
cide on his or her property. This is a part of the creator’s personality.440

237 Second, intellectual property rights possess specific functions. They aim to
promote innovation and creativity and work as an incentive for a potential cre-
ator to invest in research and development by granting him or her exclusion-
ary rights and artificial lead time.441 The right holder obtains the possibility to
enter a market alone for a restricted period of time in order to profit from his/
her single dominant position, without a competitor competing in the same
market.442 Through the limited exclusionary (monopoly-like) right it is ensured
that the supplier is able to market and hereby generate an exchange value for
his/her non-physical, simultaneously usable good (that otherwise would be
sensitive to free-riding) as a return to cover his/her past investments.443 The
creator is encouraged to develop and produce cultural goods and helpful in-
ventions, which otherwise might remain undiscovered or unprotected in a free
market.444 Likewise, the U.S. Constitution states in Art. 1 sect. 8 para. 8 that the
progress of science and useful arts can be promoted by securing for limited
time to authors and inventors an exclusive right. The law therefore offers a le-
gal infrastructure and an operational framework as a start-up support.445

238 Third, and most important from a social perspective, registry intellectual
property rights, i.e. patents and designs, if granted, include a legal duty of the
right holder to reveal his or her achievement with the public. By disclosing its

MACHLUP, 377; Commentary to the German UrhG (Loewenheim), introduction, N 9 f.

DESSEMONTET, 9 f.; THOUVENIN (2005), 321 f.; TROLLER (1983), 68.

See as one of the first of his time: KITCH, 266 and 276 f.; for Europe: THOUVENIN (2005),

288 f., 323 f. and 479 ff.; MACHLUP, 378 f.; ROSSNAGEL, 69 f.; newer examples: HARISON, 47 ff.;

SAMUELSON ET AL., 2422; MARLY, N 36 and 38; Commentary to the German UrhG (Loewen-

heim), introduction, N 13 f.; HILTI/PEDRAZZINI, 51; DUTFIELD/SUTHERSANEN, 45; HEINEMANN

(2002), 14 f. and 624 f.; SCHWABACH, 147 f.; NIMMER/NIMMER (2014), N 27-2; KOEHLER, 33;

NIMMER/NIMMER (2016), N 1-106.3 f.; DORR/MUNCH, 172; see also wording of Art. 1 sect. 8 of

the U.S. Constitution which allows monopoly-like rights in order to promote the progress

of science and useful arts, by securing for limited times to authors and inventors the ex-

clusive right to their respective writing and discoveries.

ULLRICH (1996), 555 f.; HEINEMANN (2002), 23 f.; HEINEMANN (2006), 705.

FISHER, 14; SCOTCHMER (2006), 34 ff.; HEINEMANN (2002), 15 ff. and 23 f.; KOEHLER, 32 f.

REICHMAN, 2434 f.; DESSEMONTET, 11; REHBINDER/VIGANÒ, Art. 1 N 4.

For more information, see ROSSNAGEL, 29.

439

440

441

442

443

444

445

Chapter 4: Status Quo of Legal Software Protection

104

contribution, society can profit from the developed knowledge and learn.446

The knowledge exchange thereby increases public welfare, enhancing the
public state of the art. This exclusionary right should correlate with its social
value.447

239 It is the legislator’s and judiciary power’s responsibility to construct a fair bal-
ance between the far-reaching monopoly-like, absolute rights of a right
holder, free competition and the needs of society. As a consequence, intellec-
tual property law by design represents a compromise between diverging in-
terests. Economists refer to this circumstance as a trade-off448 between social
benefits and private incentives. With the help of optimally designed intellec-
tual property rights, the economic return of the right holder should “equal –
but not exceed – the incentives it takes to induce both the successful and the
unsuccessful creative efforts”.449 This means that IP rights should provide the
creator with just enough incentive to develop and share his or her creation,
without carrying it too far at society’s expense.450 As the creator does not have
to rely on secrecy to protect his/her intellectual good from competitive ac-
tions, information can flow more freely and knowledge exchange is actively
encouraged. The functionality and economic rationale behind intellectual
property rights are consequently to reward the creator to develop and share
his/her creation so that society can profit and learn from it.

240 There is still strong debate about how essential and to what extent the effects
of intellectual property rights are positive for software in particular. Among
the most common arguments against legal protection of computer programs
under IP law is that computer programs can be protected with technical mea-
sures,451 that their economic peculiarity makes protection by law unneces-
sary452 and that intellectual property law rather harms social welfare and im-

KITCH, 275 and 278; CALAME (2006), 9; U.S. CONGRESS (1992), 184 f.; BOECKER, 138; MARLY,

N 46 ff.; HILTI/PEDRAZZINI, 50 f.; CONTU, 97; DUTFIELD/SUTHERSANEN, 49 ff.; KOEHLER, 33;

Commentary to the German UrhG (Loewenheim), introduction, N 17 and 19.

SCOTCHMER (2006), 98; MARLY, N 48.

U.S. CONGRESS (1992), 20 f. and 187.

FISHER, 14.

Decision of the German BGH of October 4, 1990, I ZR 139/89 – Betriebssystem, published

in GRUR, 1991, 449 ff., 453; BOECKER, 138, with further references.

HOEREN, 245.

See discussion in BOECKER, 79 f., with further references.

446

447

448

449

450

451

452

Chapter 4: Status Quo of Legal Software Protection

105

pedes innovation.453 Those in favour of intellectual property protection of
computer programs – including the WIPO and the U.S. Congress – believe
that modern society relies on information technology. Computer programs are
therefore not only important for the ICT industry but also to other types of
businesses that run on it. As society wants inventors and creators to share
their knowledge of software, its use and development with the public, intellec-
tual property protection is offered to the creators to foster knowledge transfer
and at the same time express recognition of the merits provided.454 In partic-
ular, the developers should have the possibility to regain the high investment
in terms of time, money and labour that were required for the development
of their creation. Intellectual property rights work as a long-term incentive
for qualitative and quantitative increased discovery of technological achieve-
ments.455

241 Both camps, the ones in favour and those against intellectual property protec-
tion of computer programs, are encouraging a worldwide debate about the fu-
ture legal integration of computer programs. Particularly vivid are the discus-
sions on whether computer programs should be patentable. But apart from the
patentability of computer programs, it should also be considered whether or
not intellectual property law acts as an incentive and reward for the software
developers to develop and share their creation with society and the users in
particular. This question will be discussed in the findings.456

III. International Context

242 Intellectual property law represents one of the highest internationally stan-
dardized and unified fields of law of our time. Since the end of the nineteenth
century, the international community has recognized that intellectual proper-
ties are suitable to manage international trade-related aspects. Therefore, as
one of the first legal fields, intellectual property law was regulated on an in-

See discussion in U.S. CONGRESS (1992), 23 and 135 f.; WIPO STANDING COMMITTEE ON THE

LAW OF PATENTS, 4 ff.; MATHEMATICAL PROGRAMMING SOCIETY; ZIRN, 149 f.; MELULLIS, 346 f.;

SCHWARZ/KRUSPIG, 37 ff.; WALKER, 54 f.

See for example: U.S. CONGRESS (1990), 1.

Von Weizsaecker describes, on the basis of a theory by Eugen von Boehm-Bawerk, how

this may cause a loss of efficiency in the short-term, which however would be tolerable to

encourage more discoveries in the long-term (VON WEIZSAECKER, 345 ff.).

For the findings regarding the question of whether computer programs should be eligible

for patent law protection, see Chapter 5 Sections II.A.2. and V.B.2.d. For the findings re-

garding the function of software protection and its necessity, see Chapter 5 Section V.A.

453

454

455

456

Chapter 4: Status Quo of Legal Software Protection

106

ternational scale. This implies, on the one hand, that all the involved states
were able to agree on the basic principles and minimum standards intellectual
property rights should provide. On the other hand, the high density of inter-
national regulations causes the system of jurisdictional intellectual property
law to be predetermined by international standards, leaving only little space
for national regulations.

243 The following chapter presents an overview of the chronological development
of the established international agreements that are relevant for the interna-
tional interpretation of computer programs in copyright and patent law. With
regard to the research question of this thesis, the following summary concen-
trates on the treaties and rules therein that are important to determine the
scope of copyright and patent law or have a special focus on software. Inter-
esting for the present thesis is how and to what degree the international com-
munity has firmly established computer program protection under copyright
and patent law, and how much room for manoeuvre is still available for legisla-
tive adaptations. The international setting thus defines the legal framework in
which this thesis can offer proposals for revision.

244 The subject matter under patent law and copyright protection is formulated
abstractly in most treaties and therefore is quite flexible to newer interpreta-
tions of what may be regarded as protectable. On the other hand, certain other
aspects, including the minimum terms of protection, are clearly defined and
either have to be strictly complied with at national level, or have to be adapted
through a tedious revision process within the international community.

A. Paris Convention for the Protection of Industrial Property

245 The Paris Convention for the Protection of Industrial Property (“Paris Conven-
tion”; SR 0.232.04) was concluded in 1883 and last revised in London in 1939.
Patents, utility models, trademarks, industrial designs, trade names, geo-
graphic indications and further subjects in the context of industrial property
in a wider sense all fall under the Paris Convention.

246 One of the treaty’s main achievements is that it was the first agreement to in-
ternationally integrate patent law and thus provide rules in the field of patent-
ing for many European countries that had not regulated this field before.457

Today, the Paris Convention in its substance has been widely surrogated by the
TRIPS Agreement and newer IP treaties. However, it offers a wider application

See particularly Art. 1 of the Paris Convention. 457

Chapter 4: Status Quo of Legal Software Protection

107

field for national treatment of domestic issues.458 Due to its early conclusion,
the Paris Convention does not explicitly cover computer programs, describing
its subject matter of IP rights in abstract terms. It can be assumed that in a
modern interpretation computer programs will fall under the IP protection of
the Paris Convention.

247 Of special interest for the present thesis are the rules on compulsory licensing
in Art. 5 lit. A Paris Convention for patents. The signatory states are free to
oblige the right holders to grant licences in case the exercise of exclusionary
rights conferred by patents has an abusive effect (art. 5 lit. A para. 2 of the Paris
Convention). The standards in the Paris Convention allow non-exclusive, non-
transferable sub-licences to be available for four years after a patent has been
filed or for three years after it has been granted.459 The Paris Convention en-
sures that the patentee has the chance to justify his or her inaction, before a
state-supported compulsory licence is established.

B. Revised Berne Convention for the Protection of Literary
and Artistic Works

248 On September 9, 1886 originally ten states – including Switzerland, Great
Britain, Italy, Germany, France and Spain – signed the Berne Convention for
the Protection of Literary and Artistic Works (SR 0.231.15). Several revisions of
the convention have taken place since, the most recent one in Paris on July 24,
1971 (amended on September 28, 1979). The treaty is commonly referred to as
the Revised Berne Convention (“RBC”). As of October 2020, 179 countries had
signed the Revised Berne Convention.460 It is a multinational agreement in the
field of copyright that aims to guarantee effective and uniform protection for
the authors of literature and art.461 For this purpose, the member states of the
Convention have formed the Berne Union, providing rules for the organization
of the Union (Art. 1 and 22 ff. RBC) as well as particular rules in the field of
copyright that are mandatory for Union members (Art. 2 ff. RBC).

ULLRICH (1995), 632 and 637 f.

See regulation in Art. 5 lit. A para. 4 of the Paris Convention. The rules are also applicable

for utility models (Art. 5 lit. A para. 5 of the Paris Convention).

See official statistics with status as of October 1, 2020, available at <http://www.wipo.int/

export/sites/www/treaties/en/documents/pdf/berne.pdf> (retrieved September 6,

2021).

See the preamble to the RBC.

458

459

460

461

Chapter 4: Status Quo of Legal Software Protection

108

http://www.wipo.int/export/sites/www/treaties/en/documents/pdf/berne.pdf
http://www.wipo.int/export/sites/www/treaties/en/documents/pdf/berne.pdf

249 Although some countries have refrained from signing the Revised Berne Con-
vention and its scope widely overlaps with newer treaties, authors such as
Schwabach state that it is still the most comprehensive treaty in the area of
copyright, worldwide.462 It is accepted as self-executing in most European
countries463 and can thus be invoked whenever a member state’s law offers less
protection than the Revised Berne Convention.464 It is not regarded as self-ex-
ecuting in the United States.465

250 The Revised Berne Convention offers a set of substantive and procedural min-
imum standards. First of all, it defines in Art. 2 para. 1 that every literary and
artistic work is subject to copyright protection. The article lists examples of
accepted copyright goods as paintings, books and pictures but also plans and
drafts in architectural and scientific contexts. Apart from the set of activities
and rights that are reserved for the author of a work (Art. 8 ff. RBC), the Con-
vention further determines which limitations and exceptions restrict the au-
thor’s scope of action (Art. 10 and Art. 10bis RBC). According to Art. 7 RBC,
copyrightable works are protected for a minimum duration of 50 years after
an author’s death. Individual states are free to implement shorter terms of a
minimum of 25 years of protection for photographic works and works of ap-
plied arts after creation. Lastly, the Convention governs that copyright protec-
tion is not bound to any formalities but instead emerges automatically as soon
as the requirements for copyright are fulfilled (Art. 5 para. 2 RBC).

251 Software is not explicitly mentioned in the Revised Berne Convention. How-
ever, the definition in Art. 2 para. 1 governs that every literary and artistic work
is included. The list it provides is assumed to be only examples, as the formu-
lation “such as” implies a non-exhaustive enumeration. It is thus concluded
that because computer programs are made available either in a literary or
graphic form, software is also eligible for copyright protection under the Re-
vised Berne Convention.466

SCHWABACH, 19 f.

See for example BGE 105 II 57 f.; BGE 30 II 577 f.; decision of the ECJ of December 7, 2006,

C-306/05 – SGAE v Rafael Hoteles.

See Art. 3 para. 1 and 2 RBC and its implementation in Swiss case law in BGE 62 II 245.

See U.S. SENATE FOREIGN RELATIONS COMMITTEE.

See corresponding interpretation of the U.S. in: U.S. CONGRESS (1992), 12, 15 and 104 ff., and

SCHWABACH, 151, with further indications of dependencies between the TRIPS Agreement

and the Berne Convention; see also later indication in Art. 9 and 10 TRIPS, according to

which WTO members are obliged to respect prior regulations of the Patent Cooperation

Treaty and the Revised Berne Convention (Art. 9 para. 1 TRIPS).

462

463

464

465

466

Chapter 4: Status Quo of Legal Software Protection

109

C. Universal Copyright Convention

252 The Universal Copyright Convention (“UCC”; 0.231.01) was concluded on Sep-
tember 9, 1952 in Geneva and revised in Paris in 1971. The international com-
munity’s intention, especially with the Paris version, was to offer a universal
copyright that was acceptable for every nation and ensured the copyright pro-
tection of literary, scientific and artistic works around the world.467 By offering
contextualized international protection, the distribution of copyrighted works
could be facilitated.468 The aim was to find a common minimum regulation for
all countries, so that countries that had previously refrained from participating
in international agreements could now be integrated.469 It particularly aimed
to include the United States and several Latin American states that had not
signed the Revised Berne Convention.470

253 Because the UCC is limited to a few basic principles, such as a minimum term
of protection for copyrightable goods of 25 years471 and the possibility for the
signatory states to implement a special exemption for translations after seven
years,472its scope and significance falls behind the Revised Berne Convention,
particularly regarding its number of signatory states.473 From a Swiss perspec-
tive, the UCC does not provide any particular improvement on the previous
standards guaranteed under the Revised Berne Convention, which have al-
ready been implemented in the Swiss Copyright Act.474 The UCC also contains
several possibilities for states to restrict the comprehensive application of the
treaty, again limiting the practical applicability of it in order to encourage pru-
dent states.475 Due to the early date the contract was concluded and revised,
computer programs were not explicitly covered in the treaty. Although we can
assume that the UCC is also applicable to software, its significance for IP pro-
tection in general is considered to be rather low.

Preamble of the UCC.

Preamble of the UCC.

Preamble of the UCC.

See explicit description in: DUBIN, 98.

Art. IV para. 2 UCC.

Art. V para. 2 UCC.

See discussions in GROSSENBACHER, 67 ff. and the current number of contracting party

states of the UCC at <https://wipolex.wipo.int/en/treaties/parties/205> (retrieved Sep-

tember 6, 2021).

Same opinion in: RAUBER (1988), 56.

See for example Art. III UCC.

467

468

469

470

471

472

473

474

475

Chapter 4: Status Quo of Legal Software Protection

110

https://wipolex.wipo.int/en/treaties/parties/205

D. European Patent Convention

254 The European Patent Convention (“EPC”; SR 0.232.142.2) is a multilateral treaty
that was concluded in Munich on October 5, 1973, and revised inter alia in 2000
and 2007. It is the most important source of rules concerning international
patenting within Europe as it provides organizational and procedural rules for
the European Patent Organisation, consisting of the Patent Office and the Ad-
ministrative Council,476 as well as fundamental principles for the European
Patent.477 The European Patent Convention is not a statutory act of the Euro-
pean Union, although most signatory states are also members of the European
Union. Switzerland, which is not a member of the European Union, has also
signed the European Patent Convention. The treaty aims to provide a Europe-
wide patent union in order to strengthen international cooperation in protect-
ing inventions.478 The legal framework for granting European patents offers a
directly applicable harmonized procedure for the European Patent Office.

255 In Art. 52 para. 1 the European Patent Convention offers a legal definition of
the term patent. According to this, “European patents shall be granted for any
inventions, in all fields of technology provided that they are new, involve an
inventive step and are susceptible of industrial application”.

256 Of particular interest for this thesis are the rules in Art. 52 para. 2 EPC, ac-
cording to which mathematical methods, business methods, presentation of
information and also computer programs are not eligible for the European
patent. It is still unclear how this rule should be interpreted in practice. The
article, although intensely disputed during the revision phase in 2000, remains
unaltered.479 As Art. 52 of the European Patent Convention is of major impor-
tance for the patentability of computer programs within Europe, it will be dis-
cussed in more detail later.480

See Art. 4 f. and 5 ff. EPC.

See Art. 52 ff. EPC

See preamble of the European Patent Convention.

See preamble to the Act Revising the Convention on the Grant of European Patents (Euro-

pean Patent Convention) of November 29, 2000.

See particularly N 273 ff., 280 ff., N 655 ff. for more information.

476

477

478

479

480

Chapter 4: Status Quo of Legal Software Protection

111

E. Agreement on Trade-Related Aspects of Intellectual
Property Rights

257 The Agreement on Trade-Related Aspects of Intellectual Property Rights
(“TRIPS Agreement”; attachment 1C to the Agreement Establishing the World
Trade Company SR 0.632.20) stands alongside the Property Right Agreement
on Tariffs and Trade (“GATT”; SR 0.632.21 and attachment 1A to the Agreement
Establishing the World Trade Company SR 0.632.20) and the General Agree-
ment on Trade in Services (“GATS”; attachment 1B to the Agreement Establish-
ing the World Trade Company SR 0.632.20). The TRIPS Agreement was estab-
lished in the Uruguay Round in 1994,481 nearly 48 years after the GATT was
concluded, and came into effect on January 1, 1995. It aims to foster interna-
tional trade in the area of intellectual properties and offers, among other con-
texts, provisions on copyright and patent law. As the TRIPS Agreement is part
of the WTO’s conceptual framework, all 164 members of the WTO are bound
by the TRIPS Agreement.482 According to the WTO, the TRIPS Agreement is the
world’s most ‘comprehensive multilateral agreement on intellectual prop-
erty’.483

258 The TRIPS Agreement actively integrates the Revised Berne Convention and
the Paris Convention, meaning that WTO members are obliged to respect
these prior regulations (Art. 9 para. 1 TRIPS).484 The Paris Convention and Re-
vised Berne Convention thus both remain valid and their principles have be-
come applicable also for member states of the WTO that have not signed the
two treaties.

259 Among other rules, the TRIPS Agreement provides rules for the enforcement
of intellectual property rights, in Part III, and measures for informal and pro-
cedural dispute resolution, in Parts IV and V. Of particular interest for the pre-
sent thesis are the special standards for the scope, use and availability of copy-
right and patent law, in Part II: With regard to copyright protection, it states in
Art. 10 para. 1 that computer programs are also eligible for protection as liter-

It constitutes Annex 1C to the Agreement Establishing the WTO.

Art. 1 para. 3 TRIPS Agreement; see current list of member states of the WTO at

<https://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.htm> (retrieved Sep-

tember 6, 2021).

For more information of the WTO on the TRIPS Agreement, see <https://www.wto.org/

english/tratop_e/trips_e/trips_e.htm> (retrieved September 6, 2021).

This is true but Art. 6bis RBC on the moral rights of the author was disputed by the United

States and is missing from the TRIPS Agreement. See for further information Schwabach,

151 and 237.

481

482

483

484

Chapter 4: Status Quo of Legal Software Protection

112

https://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.htm
https://www.wto.org/english/tratop_e/trips_e/trips_e.htm
https://www.wto.org/english/tratop_e/trips_e/trips_e.htm

ary works in their source code or machine code form. It further states in Art.
9 para. 2 that the expression and not the idea of a work is protected under
the TRIPS Agreement’s copyright. Also of interest is the rule in Art. 12 TRIPS
Agreement, under which “whenever the term of protection of a work, other than

a photographic work or a work of applied art, is calculated on a basis other than

the life of a natural person, such term shall be no less than 50 years“. Similarly
to Art. 7 RBC, it is thus possible for the member states to determine a shorter
term of protection for photographs and works of the applied arts. At the same
time, the TRIPS Agreement enables the term of protection to be tied to other
points than the death of a work’s author.

260 For patents, the TRIPS Agreement governs in Art. 27 para. 1 that “patents shall
be available for any invention, whether products or processes, in all fields of
technology, provided that they are new, involve an inventive step and are ca-
pable of industrial application.” The treaty’s subject matter for patent law thus
involves all technical inventions that fulfil the protection requirements. It em-
phasizes that “patents shall be available and patent rights enjoyable without
discrimination as to the place of invention, the field of technology and whether
products are imported or locally produced”. The significance of this rule is
greatly disputed as many legislations exclude software as a whole, or particu-
lar components of computer programs from patent protection.485 According to
Art. 33 TRIPS Agreement, patents have to be protected for a minimum of 20
years in the member states’ legislation. The treaty, in Art. 31 and Art. 31bis, fur-
ther provides rules for a system of compulsory licensing in patent law. All in
all, the TRIPS Agreement determines additional standards to the Paris Con-
vention and the Revised Berne Convention regarding the provided scope of
protection and clarifies some newer trends in international legislation.

F. WIPO Copyright Treaty

261 The WIPO Copyright Treaty (“WCT”; SR 0.231.151) was concluded as a special
agreement under the Berne Convention on December 20, 1996 in Geneva. It
builds on the status quo of the Revised Berne Convention, which is mandatory
for all contracting parties.486 In its preamble it emphasizes that the parties in-
tend to maintain effective and uniform copyright protection by introducing
new rules that summarize the current international understanding. It hereby
aims to enable adequate solutions to questions raised by new economic, social,

See the protection scope of patents in N 272 ff. and N 652 ff.

See Art. 1 WCT.

485

486

Chapter 4: Status Quo of Legal Software Protection

113

cultural and technological developments and support, in particular the
progress of information and communication technologies. Switzerland, the
United States, Germany and France, along with 108 other states, have signed
the WIPO Copyright Treaty over the last two decades.487

262 The WIPO Copyright Treaty explicitly determines that computer programs
(Art. 4 WCT) and databases (Art. 5 WCT) are eligible for copyright protection.
Computer programs are, in accordance with Art. 2 para. 1 of the RBC, pro-
tected as literary works, regardless of their mode or form of expression. This
means, positively formulated, that computer programs can be equated to
other forms of literary work and, negatively, that computer programs are re-
stricted to their literary form. The term ‘databases’, on the other hand, is de-
fined neatly and is delimited from other forms of data or information material.
In Articles 6 to 11, the WIPO Copyright Treaty offers a modern designation of a
copyright holder’s commercial rights and legally integrates technological mea-
sures to protect programs, electronic rights, management tools,488 and trends
in software commercialization such as the rental of computer programs. The
WIPO Copyright Treaty’s significance for software-related protection is im-
mense. It built the basis for the European Copyright Directive, the European
E-Commerce Directive in Europe and the Digital Millennium Act in the United
States.

IV. Patent Law

263 This section covers the relevant basics concerning the protective scope for
software protection in patent law to understand the subsequent findings of
the interview series as well as for their later discussion. For a full overview, see
the extensive specialist literature on patent law and software. In a first section,
it is briefly explained what a patent is and which rights are related to it. In a
second, more extensive, section, the scope of patent law as presently inter-
preted is elaborated. There is a look at what the different jurisdictions impute
on the subject of patent protection and a discussion of the requirements to
obtain a formal patent. In a further section, information is given on the begin-
ning and end of patent protection from a time perspective by discussing the
registration process and maximum terms of protection. This thesis will not
cover the various exemptions to the patent holder’s exclusionary rights, the

See current list of signatory states at <http://www.wipo.int/treaties/en/ShowRe-

sults.jsp?lang=en&treaty_id=16> (retrieved September 6, 2021).

The circumvention of these technical protective measures is sanctioned by copyright law.

487

488

Chapter 4: Status Quo of Legal Software Protection

114

http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=16
http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=16

legal barriers or limitations, as the focus of this work remains the original pro-
tection scope of computer programs under patent law (and copyright).489 On
this matter, I therefore refer to the works of other authors.490

264 In contrast to the copyrightability of software that, on the whole, is unchal-
lenged in Europe and the United States, the patentability of computer pro-
grams is widely disputed. While the Americans Cohen and Lemley in their pa-
per called the issue of patenting software a “matter for history books”491, as it
is undoubted and firmly established in the United States, in Europe the eligi-
bility of software for patents remains unclear. Still, many companies seek
patent protection for computer programs, as it offers an interesting alterna-
tive to copyright protection. In the following, the terms software patent and
computer program patent are used as idioms.

A. Patent as an Intellectual Property Right

265 A patent represents an exclusionary right that is granted by a sovereign power,
either the state or a supranational authority, to an inventor in exchange for
publicly disclosing his or her invention.

266 It provides the right holder with an absolute right. To the extent that no ex-
emption or statutory limitation is given to the rights conferred, the patent
holder possesses a legally protected right to forbid anybody else in the patent’s
territory to use his or her invention in any commercial way, regardless of the
way in which the invention is expressed.492 How far this prohibition right goes,
depends on the nature of the patented object:

– Where a device is patented, the patent gives the patent holder the right
to prevent third parties from making, using, offering, selling or importing
the product;493

How legal barriers and exemptions may restrict the rights related to an affirmed patent is

subordinate to the present research question, because these exemptions do not have an

effect on the determination of the protection scope, but rather on the execution of the

obtained rights.

See particularly STRAUB (2011), various quotations; Calame (2006), 459 ff.; WOESTEHOFF for

the U.S. Doctrine of Exhaustion.

COHEN/LEMLEY, 4.

See Art. 28 TRIPS Agreement.

Art. 28 para. 1 lit. a TRIPS Agrement, 35 U.S. Code § 271 lit. a and c, Art. 8 Swiss PatG.

489

490

491

492

493

Chapter 4: Status Quo of Legal Software Protection

115

– where a process is patented, the patent allows the patent holder to pre-
vent third parties from using the process and (at least in the case of pro-
cedural claims) from using, offering, selling or importing products that
were directly obtained by applying this process without consent.494

267 With the patent’s associated rights, the patent holder has the possibility to es-
tablish on the market for a limited period of time without a competitor being
able to interfere or apply the same, a similar or an equivalent invention. The
patent holder receives an artificial lead time and thereby profits from a head
start.495 But the right holder can only prevent others from carrying out activi-
ties within the scope of the patent he or she was granted in the country as de-
scribed in the patent claim(s). A crucial factor is the objective meaning of a
claim, how it is to be understood by an expert in the field.496 Further, the
patent holder obtains a right of defence and the right to exclude others, but it
does not necessarily involve them using the invention commercially.497 The
patentee also has the right to assign the patent or to transfer it by succession
or to conclude licensing contracts.498

268 Once a patent is granted, patent law provides a strong degree and compara-
tively wide scope of protection. In most patent systems not only similarities to
the literal scope of a patent claim are prohibited, but also what can be sub-
sumed as equivalent under the patent scope (so-called equivalence doctrine).499

According to the practice of the Swiss Federal Patent Court, equivalence has
to be assumed if the replaced features have the same objective function (same
effect), if the replaced features and their same objective function are obvious
to a person having ordinary skills in the art on the basis of the teaching of the
patent (accessibility), and if after reading the wording of the claim in light of
the description, a person having ordinary skills in the art would consider the
replaced features as a solution of equal value (equal value).500 The equivalence
doctrine was established with the same essential principles in the United

Art. 28 para. 1 lit. b TRIPS Agrement, 35 U.S. Code § 271 lit. a and c, Art. 8 and 8a Swiss PatG.

U.S. CONGRESS (1990), 12.

BGE 122 III 81, c. 4.

See for example: Herman v. Youngstown Car Mfg. Co., 91 F. 579 (6th Cir. 1911); MARBACH/

DUCREY/WILD, N 176.

Art. 28 para. 2 TRIPS Agreement.

See the Protocol on the Interpretation of Article 69 EPC of October 5, 1973 as revised by

the Act revising the EPC of November 29, 2000, for the member states of the European

Patent Organisation.

Decision of the Swiss BPatGer of March 21, 2013, S2013_001, c. 17.2.

494

495

496

497

498

499

500

Chapter 4: Status Quo of Legal Software Protection

116

States, Germany and in June 2017 also in the United Kingdom.501 A third-party
invention is not allowed to approximate to the invention in a way such that
its substantial parts are the same, particularly similar or equivalent. As it is
not only the final implementation that is protected by patent law, but rather
the approach or idea as a whole, the effect is much greater and the scope of
protection broader than for example in copyright.502 An invention therefore
needs to have a substantial distance from the patented solution in order not
to infringe its rights.503 An infringement occurs if the exclusionary right of the
patent holder is violated. All activities that try to copy or imitate the patented
invention, including aiding and abetting, are covered therein. Examples of in-
fringing acts can be found in Art. 28 TRIPS Agreement. They particularly in-
volve the use, the offering for sale, or the selling or importing of products
and processes. The patent holder also has the right to demand information
or to mark his/her products with a sign, indicating that it is patented. The
patent statutories usually only contain non-exhaustive examples of the paten-
tee’s wide set of rights, limited by certain enumerated specific legal claims the
patent does not entail.

269 The exclusionary right of the patent holder can be restricted by a legislator
through statutory exceptions. These legal barriers and exemptions try to limit
the potentially extensive effects of intellectual property rights in order to
maintain a balance between various interests, and for example follow political
reasons or pursue efficiency or social opinion.504

Warner-Jenkinson Co., Inc. v. Hilton Davis Chemical Co., 520 U.S. 17 (1997); Festo Corp. v.

Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722 (2002); decision of the German BGH of

March 12, 2002, X ZR 43/01 – Schneidmesser II, published in GRUR, 2002, 511 ff.; Actavis UK

Limited & Ors v Eli Lilly and Company, UKSC decision of July 12, 2017 (UKSC 48).

See also CALAME (2006), 659; CALAME (2007), 339; HILTI/PEDRAZZINI, 158 f.; Staempfli Com-

mentary to the Swiss PatG/EPC, Art. 1, N 57; TROLLER (1985), 619; DUTFIELD/SUTHERSANEN,

123 f.; SAMUELSON (2017b), 1498 f.

This is part of the so-called "Doctrine of Equivalents", see SCHWABACH, 95.

In view of the focus of this thesis, this topic will not be further discussed in more detail.

Instead, I refer to the comprehensive technical literature on the topic, especially STRAUB

(2011).

501

502

503

504

Chapter 4: Status Quo of Legal Software Protection

117

B. Patent Scope

270 Patents are granted for a technical invention, provided that it represents an
eligible subject matter, is novel and its finding was not obvious when it was
made, the invention is industrially applicable or useable and the patentee is
able to disclose his/her creation in sufficient detail.505

271 In this context, the patent scope refers to the borders and legal framework
around this intellectual property right. As patents represent a government-
supported monopoly-like right, the law defines what is regarded as a
patentable subject, what requirements have to be fulfilled and what formalities
are required. At the same time, the scope tells competitive legal entities which
margins have to be overcome in order to place a rival good on the market with-
out interfering with the patented good or service of a third party.506

1. Subject Matter

272 This section covers the subject matter of patents in order to determine what
can be protected with this legal institution. As this problem is particularly
complex for inventions in the field of software engineering, the different in-
terpretations of Europe, Switzerland and the U.S. are summarized and illus-
trated.

273 The subjects of patent law protection are inventions in all fields of technol-
ogy.507 According to the Swiss Federal Institute for Intellectual Property, an in-
vention from a legal perspective represents a solution for a technical prob-

See Art. 52 para. 1 EPC, § 1 para. 1 German PatG, Art. 1 para. 1 and 2 Swiss PatG, see also 35

U.S. Code § 101 ff.

HARISON, 15; U.S. CONGRESS (1992), 87.

Art. 52 para. 1 EPC, § 1 para. 1 German PatG, Art. 1 para. 1 and 2 Swiss PatG, 35 U.S. Code

§ 101.

505

506

507

Chapter 4: Status Quo of Legal Software Protection

118

lem.508,509 The inventor sees a need, for which they seek a resolution with ap-
propriate technical means.510 Patent law therefore involves the protection of
technical and engineering solutions as well as of substantiated ideas.511

274 Possible inventions – and therefore eligible subjects – can be categorized into
procedures, products and applications:512

– Claims for procedures refer to manufacturing processes or a working
method. The patent covers any application of the patented process, in-
cluding carrying out the measures provided for in the patent claim or
imitating them. It also covers the products directly resulting from the
process.

– Product, apparatus or composition claims involve a corporeal object with
a particular composition or form, mostly used as a device in a particular
context. They enjoy absolute protection and any manufactured imitation
of the product in question is prohibited, irrespective of the production
method.

– An application claim is a process, art or method that includes a new use of
a known teaching or object for a process, machine, manufacture, compo-
sition or material that is applied in a new context. Again, the patent for-
bids applying or imitating the invention.

See information of the Swiss Federal Institute for Intellectual Property at

<https://www.ige.ch/de/uebersicht-geistiges-eigentum/die-schutzrechte-im-ue-

berblick/patentschutz> (retrieved September 6, 2021).

This is opposed to discoveries that refer to something already present in nature; see

STRAUB (2011), N 433; see also TROLLER (1983), 148.

TROLLER (1983), 157.

Decision of the EPO Board of Appeal of May 15, 1984 (EPO T 0109/82) – Hearing aid/Bosch;

Staempfli Commentary to the Swiss PatG/EPC, Art. 1 N 60; HARISON, 168 f.; BRINER, 49 f.;

TROLLER (1983), 149 f.

Art. 52 para. 1 lit. a-d Swiss PatG, § 9 German PatG, 35 U.S. Code § 100; MARBACH ET

AL. and STRAUB, are among the few to offer a good circumscription of these otherwise

merely defined terms and their protection scope: MARBACH/DUCREY/WILD, N 43 ff.; STRAUB

(2011), N 439 and 468 ff.; see also the summary in the Manual of Patent Examining Proce-

dure of the U.S. Patent and Trademark Office, sect. 2106.03; for full description, see also

BERESFORD, N 4.37 ff., N 4.40 ff. and N 4.45 ff.; LEMLEY ET AL., 147 ff. However, this classifica-

tion is increasingly being questioned. Instead, patents are being reclassified as product (in

German: "Erzeugnis") and process claims. See Guidelines for Examination of the European

Patent Office, Part F-IV-3.1, and Swiss Guidelines for the Substantive Evaluation of Patent

Applications, 50 f.

508

509

510

511

512

Chapter 4: Status Quo of Legal Software Protection

119

https://www.ige.ch/de/uebersicht-geistiges-eigentum/die-schutzrechte-im-ueberblick/patentschutz
https://www.ige.ch/de/uebersicht-geistiges-eigentum/die-schutzrechte-im-ueberblick/patentschutz

275 Most European statutes, including the European Patent Convention, deter-
mine that patents may only be assigned for inventions of “a field of technol-
ogy”. An invention must therefore exhibit a minimum degree of technicity.513

The U.S. patent law does not mention the technical character of an invention
explicitly.514 However, newer contributions suggest that the U.S. patent prac-
tice likewise requires a technical content in the patent subject matter.515

276 How the technicity criterion should be apprehended in practice, is mostly un-
settled.516 There is no statutory definition. Instead its interpretation is left to
the competent registry authorities and examining courts. The German Federal
Court of Justice has suggested that every controllable act that works with the

help of manageable natural forces to achieve a particular causal success could
be defined as a technical one.517 According to this interpretation, a technical
invention thus involves a task and a solution or teaching in the form of a repeat-

able success or a rule that applies and manages the natural forces. This defini-
tion also suits the Swiss understanding of the term.

277 The differentiation between technical and non-technical inventions is speci-
fied in Art. 52 para. 2 EPC, where the convention outlines particular examples
of objects that are considered as non-technical and which hence do not fall
under the patent subject matter. These inventions are excluded because they
either do not involve teaching or do not apply natural forces. A similar practice
is followed in the United States. Common examples of such non-technical in-
ventions include: abstract ideas, laws of nature, natural phenomena, scientific
theories, mathematical methods, purely aesthetic creations and rules for men-

See Art. 52 para. 1 EPC, § 1 para. 1 German PatG; the Swiss Patents Act does not explicitly

ask for technicity in the subject matter. According to prevailing opinion, and in accorance

with the European Patent Convention, the term invention implies the requirement for

technical teaching. See also Art. 1 para. 2 Swiss PatG e contrario, BGE 97 I 423 c. 1 and

MARBACH/DUCREY/WILD, N 23.

35 U.S. Code § 101 does not request a technical invention or similar. See also DORR/MUNCH,

184 f.

A comparative study report of the European, Japanese and U.S. Patent and Trademark

Offices also states that the practice of the U.S. Patent and Trademark Office requires "a

technical aspect as a criterion for a statutory subject matter" (Patent Offices Comparative

Study, 28; the same is implied by the Manual of Patent Examining Procedure of the U.S.

Patent and Trademark Office, sect. 2106; see also WICKIHALDER, 583 f.; WALKER, 5.

BOECKER, 199; see also MARLY, N 417; HILTI/PEDRAZZINI, 83; ZIRN, 173.

Decision of the German BGH of March 27, 1969, X ZB 15/67 – Rote Taube, published in

BGHZ, vol. 52, 74 ff., BGer of July 31, 1996, 4A.12/1995 – Hochdruckkraftwerk, published in

sic!, 1997, vol. 1.

513

514

515

516

517

Chapter 4: Status Quo of Legal Software Protection

120

tal acts.518 Only if these exceptions are applied in an inventive, creative way
and if they include teaching can they come under patentability.519 Also dis-
puted for eligibility under patent law are business methods, which, like com-
puter programs in general, are currently eligible for patent protection in the
United States but widely inadmissible in Europe.520 Marly therefore refers to
this differing praxis as the “divide” between Europe and the United States.521

278 There are also certain matters that are explicitly assigned to the public domain
in Art. 53 EPC and are thereby defined as unpatentable. In Europe a common
example is goods that are considered unpatentable because they go against
the public policy or morality of a society, as outlined in Art. 53 lit. a EPC.522 In
the United States, exceptions to the subject matter can only be found in case
law.

279 Of particular interest for this thesis is the exclusion of “computer programs as

such” from the patentable subject matter in Art. 52 para. 2 lit. c EPC, due to a
lack of technicity. Even after many years of practice, it is still widely unsettled
how far this exclusion goes and exactly how it should be understood. The case
law and practice of the responsible authorities in all the jurisdictions have
shown how difficult it is to guarantee a linear and unitary interpretation of the
patent law’s subject matter, and the technicity criterion in particular. To clarify

See Art. 52 para. 2 EPC and numerous case law: Diamond v. Diehr, 450 U.S. 175 (1981); Bilski

v. Kappos 561 U.S. 593 (2010); BGer of July 31, 1996, 4A.12/1995 – Hochdruckkraftwerk, pub-

lished in sic!, 1997, vol. 1; BGE 114 II 82; BGE 120 II 312; decision of the German BGH of

March 27, 1969, X ZB 15/67 – Rote Taube, published in BGHZ, vol. 52, 74 ff.; decision of the

EPO Board of Appeal of January 27, 1988 (EPO T 0281/86) – Preprothaumatin.

See, for Europe, Art. 52 para. 3 EPC and, for the United States, Parker v. Flook, 437 U.S.

584 (1978), in which the invention was ruled to be non-eligible for patent law. However, the

considerations in the decision helped to open the door for a new interpretation.

See the different interpretations of business methods under European patent law, in

Switzerland and in the United States, in the following subdivisions: N 294 ff., N 301 f. and

N 305. As Straub outlines correctly, business methods are not themselves technical in

nature. In the past, attempts have been made to monopolize business ideas, which are

themselves not eligible for patent protection, through implementing them in computer

programs. Consequently, the patent offices are forced to throughly examine whether the

inventive step lies in the area of technical or non-technical elements (see discussion in

STRAUB [2011], N 450, with further references).

MARLY, N 414; see also SCHWABACH, 42 f.; WALKER, 27.

See Art. 53 lit. a EPC and following litterae.

518

519

520

521

522

Chapter 4: Status Quo of Legal Software Protection

121

the status quo of practice, the different interpretations of the technicity crite-
rion under the three legislations – the European Patent Convention, the Swiss
Patents Act and the U.S. Code – are illustrated:

a) Interpretation under the European Patent Convention

280 According to Art. 52 para. 2 lit. c EPC, computer programs are explicitly ex-
cluded from the invention term. However, it is widely disputed to what extent
computer programs can nonetheless be patented under the European Patent
Convention. The European Patent Office has endeavoured to create a trans-
parent and comprehensible practice, but the subject is difficult to grasp as the
characteristics of the applied computer programs vary greatly. In addition the
practice of the European Patent Office and the EPC’s interpretation by the na-
tional patent offices and courts have changed many times over the last two
decades, which impedes a linear European practice in this matter.523

281 Although the European Patent Convention explicitly forbids the patenting of
computer programs, the European practice – including that of the European
Patent Office and its Appeal Court – has allowed the patenting of software-re-
lated inventions under certain conditions. A corresponding attitude was also
expressed in the proposal for the (rejected) Computer Program Patent Direc-
tive524, which interpreted Art. 52 para. 2 lit. c EPC in a way that only computer
programs “as such” are excluded from patent protection, while software-re-
lated inventions that propose a technical contribution would have been eligi-
ble for patenting.525 The ‘exclusion of computer programs’ thus has to be un-
derstood as belonging to the enumeration of subjects that alone – without an
essential addition – cannot be regarded as patentable technical teaching.

282 What may be understood by the required ‘essential addition’ depends on the
current practice of the European Patent Office. In the last two decades, it has
followed several different approaches to determine the patentability of com-
puter programs under the European Patent Convention:

See also discussion in CALAME (2006), 651 f.; CALAME (2007), 333 f.; DUTFIELD/SUTHERSANEN,

116 f.; ZIRN, 49 f.; MELULLIS, 349 f.; THOUVENIN (2010), 808.

Proposal for a Directive of the European Parliament and Council on the Patentability of

Computer-Implemented Inventions of February 20, 2002 (C 151 E/129).

Preamble sect. 7 of the Proposal for a Directive of the European Parliament and Council on

the Patentability of Computer-Implemented Inventions of February 20, 2002 (C 151 E/129).

523

524

525

Chapter 4: Status Quo of Legal Software Protection

122

283 Under the any hardware approach in the 1980s, the courts requested a mini-
mum physical mechanical component.526 A computer program was only con-
sidered as part of an invention if it was implemented in any form of hardware.
This approach was rooted in the differentiation between touchable technology
with a physical component, and the ‘abstract world of ideas and contents of
consciousness’.527 However, in the VICOM case in 1986, the court clarified that
inventions that fulfil the common patent criteria including novelty and indus-
trial applicability should not be excluded from patentability only because they
run with the help of a computer program.528 The court concluded that the pre-
vious any-hardware-practice was too restricting.

284 As a consequence, the contribution approach was implemented. Under this,
the state of the art became critical, asking for a technical contribution to the
known art in a field that was not explicitly excluded from patenting.529 Com-
puter programs were thus considered patentable provided that an additional
contribution from a field eligible for patents was included.530 In the test, the
patent office or court first had to identify the claimed contribution of the in-
novation. Then it was evaluated on whether it fell solely within an excluded
area or also within an allowed subject matter, and whether the contribution
actually exhibited a technical nature.531 The contribution approach was abol-
ished in the decisions Auktionsverfahren/Hitachi532 and Estimating sales activ-

ity/Duns Licensing Associates533 after 2004.534

See decision of the EPO Board of Appeal of December 12, 1985 (EPO T 16/83) – Franceries/

Traffic Regulation; decision of the German BGH of arch 27, 1969, X ZB 15/67 – Rote Taube,

published in BGHZ, vol. 52, 74 ff.

Decision of the German BGH of arch 27, 1969, X ZB 15/67 – Rote Taube, published in BGHZ,

vol. 52, 74 ff. 76 f.

Decision of the EPO Board of Appeal of July 15, 1986 (EPO T 208/84) – Computer-related

Invention, c. 16.

Decision of the EPO Board of Appeal of March 16, 1989 (EPO T 52/85) – Listing of semanti-

cally related linguistic expressions/IBM

Decision of the EPO Board of Appeal of July 15, 1986 (EPO T 208/84) – Computer-related

Invention, c. 16.

Astron Clinica Ltd v Comptroller General of Patents, Designs and Trade Marks, decision of

the EWHC of January 25, 2008 (EWHC 85).

Decision of the EPO Board of Appeal of April 21, 2004 (EPO T 0258/03) – Auction Method/

HITACHI.

Decision of the EPO Board of Appeal of November 15, 2006 (EPO T 0154/04) – Estimating

sales activity/DUNS LICENSING ASSOCIATES.

See Opinion of the Enlarged EPO Board of Appeal of May 12, 2010 (G 0003/08), N 10.4 f.

526

527

528

529

530

531

532

533

534

Chapter 4: Status Quo of Legal Software Protection

123

285 Today, the European Patent Office accepts software-related inventions if a
technical effect can be observed.535 According to the explanation in Computer

program Product/IBM536, a computer program…

“… claimed by itself is not excluded from patentability if the program, when
running on a computer or loaded into a computer, brings about, or is capable
of bringing about, a technical effect which goes beyond the ‘normal’ physical

interactions between the program (software) and the computer (hardware)

on which it is run”537

286 The European Patent Office thus requires a technical effect and contribution
to a computer program that exceeds the usual processes in a machine. A com-
puter program might be patentable if it solves a problem and offers a contri-
bution to the previous art that goes beyond the conventional physical interac-
tion. The mere transmission of a stimulus within a computer program does not
alone fulfil the technical effect requirement.

287 It is also unclear whether the technical effect has to lie in the problem that is
solved, or in the problem-solving procedure. In the 1980s, the European courts
applied the core theory, where the core of an invention had to be technical and
the problem-solving procedure had to show technical characteristics.538 For a
couple of years, an alternative practice of the European authorities and courts
has been observed. The overall-consideration-theory accepts a combination of
technical and non-technical features if overall the invention involves an inven-
tive step and if an interaction between two types of components is occur-

Guidelines for Examination of the European Patent Office, Part G-II-3.6; opinion of the

Enlarged EPO Board of Appeal of May 12, 2010 (G 0003/08), N 10.2.1

Decision of the EPO Board of Appeal of July 1, 1998 (EPO T 1173/97) – Computer program

Product/IBM; Decision of the EPO Board of Appeal of February 4, 1999 (EPO T 0935/97) –

Computer program Product/IBM.

Decision of the EPO Board of Appeal of July 1, 1998 (EPO T 1173/97) – Computer program

Product/IBM, c. 13; same wording in Decision of the EPO Board of Appeal of February 4,

1999 (EPO T 0935/97) – Computer program Product/IBM, c. 9.2 and 9.4.

The core theory was first implemented in the decision of the German BGH of June 22, 1976,

X ZB 23/74 – Dienstprogramm, published in BGHZ 67, 22 ff.; see also decision of the Ger-

man BGH of January 20, 2009, X ZB 22/07, – Equipment for selecting medical examination

methods, published in openJur, 2011, 3117 ff.; decision of the EPO Board of Appeal of May 21,

1987 (EPO T 26/86) – X-Ray Apparatus/Koch & Sterzel.

535

536

537

538

Chapter 4: Status Quo of Legal Software Protection

124

ring.539 The technical effect consequently does not necessarily have to occur
in the problem-solving process. Instead, an overall consideration of all the fea-
tures in the software-related invention and their impact on the functionality
of the procedure or device is used.

288 If a computer program is connected to a machine, plant or device, and moni-
tors, controls or checks this object, patentability is mostly undisputed.540 This
applies in particular to increases in efficiency or performance achieved by
computer programs, which are accomplished in the hardware area and are
hence ‘physically’ traceable.

289 The main difficulty remains in evaluating computer-implemented inventions.
According to the Examination Guidelines of the European Patent Office,541 the
term refers to inventions that are executed solely on computers, computer
networks or other programmable devices and are partially realized by means
of computer programs.542 Simplified, computer-implemented inventions lack a
hardware component. As their technical teaching and the application of nat-
ural forces consequently only appear within their digital technical surround-
ings, they become difficult to distinguish from unpatentable inventions under
Art. 52 para. 2 lit. c EPC. A case-by-case evaluation is required to analyse
whether the merely digital inventions exceed the general level of ‘normal
physical interactions’. If a program does not clearly define its exact field and
effect of application, the invention is regarded as an unpatentable set of infor-
mation that lacks a technical teaching.543 The classic literal understanding of a
computer program as coded instructions to a machine are likewise excluded
from the patentable subject matter, as, according to the European practice,
they solely represent a mental act of formulating instructions that falls within

Decision of the German BGH of January 20, 2009, X ZB 22/07 – Equipment for selecting

medical examination methods, published in openJur, 2011, 3117 ff.; decision of the EPO

Board of Appeal of May 21, 1987 (EPO T 26/86) – X-Ray Apparatus/Koch & Sterzel; decision

of the EPO Board of Appeal of July 3, 1990 (EPO T 603/89) – Marker/Beattie.

See for example: HILTI/PEDRAZZINI, 196; Commentary to the EPC (Melullis), Art. 52 N 202.

These are internal guidelines which are binding on the applying authority but not on third

parties such as an applicant.

Guidelines for Examination of the European Patent Office, Part G-II-3.6.

Staempfli Commentary to the Swiss PatG/EPC, Art. 1 N 13.

539

540

541

542

543

Chapter 4: Status Quo of Legal Software Protection

125

the exclusions.544,545 Again, if an inventor wants to patent them, an additional
technical effect has to be exhibited, making it very difficult to patent inventive
improvements in the technical science of software engineering alone because
these advances are likely to be considered as a simple improvement of a men-
tal instruction.

290 The handling of computer-implemented innovations remains difficult. For this
reason, the EPO Guidelines for Examination provide several examples of com-
puter-implemented inventions that the EPO has confirmed exhibit a technical
effect, and thus are regarded patentable under the European Patent Conven-
tion:546

1. a computer program being a part of an invention that is used to control

and steer industrial processes or devices;
2. a computer program being a part of an invention that improves data trans-

fer, data security, data storage or improves other resources involved;
3. a computer program being a part of an invention that improves the con-

trollability of computer programs;
4. a computer program being a part of an invention that offers a new field of

application or use for a known device; and
5. an inventive mathematical method, that can be considered as a technical

contribution with a further technical effect itself, that is implemented in a
computer program.

Decision of the EPO Board of Appeal of April 16, 1993 (EPO T 204/93) – Computer program

Product/IBM; decision of the EPO Board of Appeal of May 31, 1994 (EPO T 0769/92) – Gen-

eral purpose management system; decision of the German BGH of February 4, 1992, X ZR

43/91 – Tauchcomputer, published in BGHZ 117, 144 ff.

This interpretation of a computer program has been rightly criticized by various authors.

As Boecker notes, a computer program is not just a simple instruction; it causes data to be

processed to a facility (BOECKER, 231 f.; same opinion: TROLLER [1987], 282 ff.); some authors

suppose that the formulation is rooted in the obscurity of the legislator about the nature

of computer programs back in 1970 which, until today, could not be fully resolved (PFEIFFER,

584 f.).

See examples in: Guidelines for Examination of the European Patent Office, Part G-II-3.6;

see also brief summary in MARBACH/DUCREY/WILD, N 27, and Staempfli Commentary to the

Swiss PatG/EPC, Art. 2 N 13 ff. and 42 ff.

544

545

546

Chapter 4: Status Quo of Legal Software Protection

126

291 Discovering a computer algorithm that carries out some procedure, therefore,
is not enough to obtain a patent.547 In order to fulfil the technicity require-
ment,

– the algorithm in a program has to have an effect on a hardware compo-
nent (no. 1 above);

– the application of the algorithm in a program has to suggest a new and
applicable or a greatly improved technical teaching for an old problem
(no. 2/3 above);

– a known technical teaching is applied to solve a problem in a new revolu-
tionary way (no. 4); or

– an entirely new teaching is formulated for a undiscovered problem in a
computer program (no. 5).

292 The technical effect approach consequently factually excludes the patenting
of inventions that are limited to mere digitalization of known products and
processes.548 The automation of a non-technical process does not represent a
patentable invention, if no additionally novel, non-obvious technical teaching
is entailed.549

293 The EPO’s expression ‘computer programs “as such”’ suggests an understand-
ing of computer programs as mere literary expressions of instructions. In-
stead, they should be regarded, as Frei explains it, as a cluster of technical (ma-
chine, process, technical effect) and non-technical features (e.g. an algorithm
or function).550 Patent law should not separate the two. Instead, they should be
assessed and qualified individually so that their respective contributions as
well as their role in their interaction can be evaluated for their patentability. It
is true that computers are technical in the sense that they use natural forces
such as electricity and magnetism, because otherwise they would not function
or run. They also contain controlling instructions that, depending on their
content, may or may not constitute technical teaching within the meaning of
patent law. The latter has to be assessed individually to determine an inven-
tion’s patentability.551 In order to exceed the threshold of Art. 52 para. 2 lit. c
EPC, and reach the level of a patentable computer program, it would however

Opinion of the Enlarged EPO Board of Appeal of May 12, 2010 (G 0003/08), N 13.5.

See also explicitly in European Guidelines for Examination of the European Patent Office,

Part G-II-3.5.1; see also discussion in MARBACH/DUCREY/WILD, N 28.

Staempfli Commentary to the Swiss PatG/EPC, Art. 1 N 52; MELULLIS, 351.

FREI, 102.

See FREI, 115.

547

548

549

550

551

Chapter 4: Status Quo of Legal Software Protection

127

suffice to demonstrate that the classic patenting requirements are fulfilled. As
the English Court of Appeal outlined in Aerotel Ltd v. Telco Holding Ltd, etc,552

European patents are granted for any invention which is capable of industrial
application, is new and which involves an inventive step. With the Comptrol-

ler’s structured approach, the court examined in four steps (1) how the claims of
the applied patent could be properly construed, (2) what the actual contribu-
tion of the patent was according to the claim, (3) what should be regarded non-
protectable because it falls solely within the excluded subject matter, and (4)
whether the actual or alleged contribution is actually technical in nature.553 By
thoroughly examining the general conditions for patenting it should hence be
possible to exclude methods and products that are not worthy of protection,
and consequently also to ensure adequate protection against excessive im-
pairment of economic development.554 Following this interpretation, exhibit-
ing that a computer program provides a contribution that exceeds the com-
mon interaction between a program and a machine does not represent an
additional criterion: In classic patent law, technicity means that a final instruc-

tion to act, a teaching is contained. If the invention shows no actual teaching
of its own, the mere combination of an idea with a computer does not make
an invention technical in terms of the subject matter.555 The European Patent
Convention as well as the European Patent Offices and Courts here seem to
currently base their interpretation on a contemporary social use of the tech-
nicity term rather than on a patent law one.556 I therefore advocate returning
to a legalistic interpretation of the technicity term. In particular, the descrip-
tion of the technical teaching in the patent specification needs to demonstrate

Aerotel Ltd v. Telco Holding Ltd, etc., and Neal William Macrossan's Application, decision of

the EWCA of October 27, 2006 (EWCA Civ 1371); see also commentary in THOUVENIN (2007),

particularly 676.

Aerotel Ltd v. Telco Holding Ltd, etc., and Neal William Macrossan's Application, decision of

the EWCA of October 27, 2006 (EWCA Civ 1371), particularly c. 7 and 40 ff.

See also discussion in KRASSER, 961 ff.; WICKIHALDER, 586; WIPO STANDING COMMITTEE ON

THE LAW OF PATENTS, 22 ff.; FREI, 138 ff.

See particularly the decision of the EPO Board of appeal of September 26, 2002 (EPO T

641/00) – Two identities/COMVIK; decision of the EPO Board of Appeal of March 5, 1997

(EPO T 0333/95) – Interactive animation /IBM; decision of the German BGH of August 25,

2015, X ZR 110/13 – Entsperrung von Touchscreens-Entsperrbild, published in GRUR, 2015,

1184 ff.; decision of the German BPatG of July 9, 2013, 17 W(pat) 82/09.

See similar discussions in HILTI/PEDRAZZINI, 86 f., 197 f. and 200; Staempfli Commentary to

the Swiss PatG/EPC, Art. 1 N 37 ff.; ZIRN, 168; MELULLIS, 346 f. and 349.

552

553

554

555

556

Chapter 4: Status Quo of Legal Software Protection

128

what novel, non-obvious contribution the invention offers557 and give guidance
as to how to apply the teaching in order to solve a special problem.558 While
digitalization of an analogue process does change the way a technical signal
is transferred,559 it does not itself include any further teaching that was not
already part of the state of the art, to be classed as novel. It only includes a
way similar to what has already been revealed and is hence known or to be ex-
pectd. Similarly, the European Patent Office rightly denied a procedural claim
that involved reading and storing identification data from a user card mechan-
ically, without offering any novel and non-obvious technical teaching.560 Only
if a new teaching is included, either in the process or result, will it be deemed a
patentable invention. By relying on the classic patenting criteria, we can hence
determine that no items will become patentable that do not include the rel-
evant technicity or technical teaching, such as non-technical inventions, ab-
stract ideas or simple discoveries. But we can further ensure that the invention
and contained teaching are disclosed satisfactorily. Finally, a computer pro-
gram can be just as patentable as any other findings, if the common criteria
are fulfilled and proven in the patent specification.561 The legal exclusion of
computer programs hence relies on an antiquated understanding of software
from the 1970s and urgently needs to be adapted, which is also indicated to
some extent by the fact that the European interpretation simply circumvents
it. This regulation, although obsolete in that respect, leaves many questions
unanswered.

Merges and Nelson summarize it as follows: "a specification of the invention, (...) describ-

ing the problem the inventor faced and the steps she took to solve it. It also provides a pre-

cise characterization of the 'bestmode' of solving the problem." The inventor formulates a

set of claims which exhibit what the inventor believes to be the scope of the invention and

the technological field it affects (MERGES/NELSON, 844). See also HILTY (2014), 290 f.

Decision of the German BGH of January 20, 2009, X ZB 22/07 – Equipment for selecting

medical examination methods, published in openJur, 2011, 3117 ff.; decision of the German

BGH of October 17, 2001, X ZB 16/00 – Sucher fehlerhafter Zeichenketten, published in

GRUR, 2002, 143.

See also BORNHAUSER for further information.

Decision of the EPO Board of Appeal of March 19, 1992 (EPO T 854/90) – Card Reader/IBM,

published in the official Journal of the EPO, 2013, 669 ff.

See similar reasoning in BERESFORD, N 2.24 ff. and N 3.71; Commentary to the EPC (Melullis),

Art. 52 N 200 ff.; SCHUHMACHER, 150 ff. and 189; HILTY (2014), 290 f.; LANG, 117; BOECKER,

199; DUTFIELD/SUTHERSANEN, 116 f.; ZIRN, 52 and 176 f.; WELCH/MUELLER, 295 in particular;

WALKER, 18; FREI, 138 ff. THOUVENIN/BERGER, 6/2.2., 2

557

558

559

560

561

Chapter 4: Status Quo of Legal Software Protection

129

294 Business methods refer to planned (repeatable) procedures in the business area
designed to achieve a goal in an optimal way.562 In computer programs, func-
tions and features or functional elements of the look-and-feel may for exam-
ple refer to business methods.563 Although the wording in Art. 52 para. 2 lit. c
EPC explicitly excludes business methods from the subject matter, in accor-
dance with the interpretation outlined for the patenting of computer pro-
grams, they are, in practice, likewise eligible for patent protection, to the ex-
tent that the patent claims do not represent a mere abstract idea or
description of a natural discovery but instead outline a technical teaching that
can be implemented innovatively to solve a problem.564 The teaching must add
something to human knowledge and serve a particular purpose, suggesting an
act to be completed with the method. This act must then either result in a new
product, a new outcome, a new process, or a new way of producing an old
product or a result.565 A typical case would be, for example, a working applica-
tion patent. However, as Straub outlines, for this purpose, it would not suffice
that simple technical instructions or functionalities are implemented in com-
puter programs. Rather, it must be demonstrated that the inventive step lies in
the field of technical elements. From the perspective of patent law, business
methods are, like computer programs, not technical in nature.566 Again, con-
necting them to a technical device does not turn the description of a simple
method, which itself does not offer a technical teaching, into something tech-

CALAME (2006), 653, with reference to JAENICH, 283.

See for example the decision of the EPO Board of Appeal of January 20, 1985 (EPO T 0605/

93) – Dai Nippon, and the decision of the EPO Board of Appeal of March 5, 1997 (EPO

T 0333/95) – In teractive animation/IBM, and further lists and comments in BERESFORD,

111-131 and 133-145; for critique: HILTI/PEDRAZZINI, 107 f.

See also the decision of the UK Patent Office regarding Merrill Lynch's Application (1989),

published in RPC, 1989, 561 ff.; Aerotel Ltd v. Telco Holding Ltd, etc., and Neal William

Macrossan's Application, decision of the EWCA of October 27, 2006 (EWCA Civ 1371); see

also discussion in European Guidelines for Examination of the European Patent Office,

Part G-II-3.6.2.

Reynolds v. Herbert Smith & Co., Ltd., decision of the EWHC of November 27, 1902, pub-

lished in RPC, 1903, 123 ff.; decision of the UK Patent Appeal Tribunal of February 24, 1938,

regarding Fishburn's Application, published in RPC, 1940, 245 ff.

STRAUB (2011), N 450, with further references; JAENICH, 486 and 487; WALKER, 45; Staempfli

Commentary to the Swiss PatG/EPC, Art. 1 N 29; Commentary to the EPC (Melullis), Art. 52

N 206 f.; THOUVENIN/BERGER, 6/2.3., 1; SCHWARZ/KRUSPIG, 100 f.; CALAME (2006), 667; usually

business ideas only represent abstract ideas or excluded discoveries from nature. See also

the decision of the EPO Board of Appeal of September 8, 2000 (EPO T 931/95) – Control-

ling Pension Benefits System/PBS PARTNERSHIP.

562

563

564

565

566

Chapter 4: Status Quo of Legal Software Protection

130

nical.567 As the court outlined in Aerotel Ltd v. Telco Holding Ltd, etc. for com-
puter programs,568 to evaluate business method patent applications we have
to analyse whether the disclosed contribution is technical in nature. By thor-
oughly examining the general conditions for patenting it should be possible
to exclude methods which are overly general and not worthy of protection,
and consequently ensure adequate protection against excessive impairment of
economic development.569

295 The same should be true for the patenting of mathematical formulae in the
form of an algorithm. The abstractly formulated algorithm alone would not be
able to leave the scope of Art. 52 para. 2 lit. a EPC, as it could (theoretically)
also be executed in the mind. Its combination with a technical component,
such as a computer, would not make it technical in terms of patent law.570 But
if a technical tool is applied to solve a technical problem, and this can be ex-
pressed in a teaching, the invention should be eligible for patent protection.571

296 The European interpretation of the patent law’s subject matter remains dis-
putable. As Thouvenin emphasizes, drawing a line between unpatentable com-
puter programs ‘as such’ and patentable computer-implemented innovations
remains difficult, maintaining great legal uncertainty.572 However, the Euro-
pean patent offices and courts do allow software patents – contrary to the
wording in Art. 52 para. 2 lit. c EPC – if a satisfactory description for the patent
is provided which is able to demonstrate how a teaching is applied to solve a
technical problem. Mathematical formulae, mental instructions and business
methods are consequently eligible for patent protection when implemented in

See particularly the decision of the EPO Board of Appeal of September 26, 2002 (EPO T

641/00) – Two identities/COMVIK; decision of the German BGH of August 25, 2015, X ZR

110/13 Entsperrung von Touchscreens-Entsperrbild, GRUR, 2015, 1184 ff.; decision of the

German Patent Court of July 9, 2013, 17 W(pat) 82/09; see also the explanation in European

Guidelines for Examination of the European Patent Office, Part G-II-3.5.1 and 3.6.2.

Aerotel Ltd v. Telco Holding Ltd, etc., and Neal William Macrossan's Application, decision of

the EWCA of October 27, 2006 (EWCA Civ 1371); see also commentary in THOUVENIN (2007),

particularly 676.

See also discussion in KRASSER, 961 ff.; WICKIHALDER, 586.

Commentary to the EPC (Melullis), Art. 52 N 206 f.

Decision of the EPO Board of Appeal of July 15, 1986 (EPO T 208/84) – Computer-related

Invention, c. 14; Staempfli Commentary to the Swiss PatG/EPC, Art. 1 N 22 f. and 37.

THOUVENIN (2010), 808 f.; THOUVENIN (2007), 664; same conclusion: WIPO Standing Com-

mittee on the Law of Patents, 3 f.; BERESFORD, N 11.01 ff.; CALAME (2006), 676 f.; HILTY/GEIGER

(2011), 167; WIEBE, 39 ff.; ZIRN, 99; SAMUELSON (2012), 165 f.; SCHUHMACHER, 179.

567

568

569

570

571

572

Chapter 4: Status Quo of Legal Software Protection

131

a computer program, if it can be shown how the technical considerations are
used to solve a problem in an innovative way, and if their effect goes beyond
the normal interaction between the computer program and the machine.

b) Interpretation under the Swiss Patent Code

297 The Swiss Patent Code (Swiss Patent Code, “Swiss PatG”; SR 232.14) does not
explicitly exclude computer programs from its subject matter, nor does it re-
quire a technical effect. Nevertheless, the Swiss courts and the patent exam-
ining authority, the Swiss Federal Institute for Intellectual Property, have
adapted their practice to the European Patent Convention, as Switzerland is a
member state of the European Patent Organisation. Consequently, it is to
some degree bound by the EPO’s interpretation.

298 Although not explicitly mentioned in the Swiss Patent Code, the Swiss Federal
Institute for Intellectual Property also requires an additional technical effect
in a software-related invention – apart from simply being a technical program
– in order to become patentable. The technical character can either lie in the
method of how a problem is solved, in the characteristics of a method used, in
the functionality that results from applying the method to a problem or in the
technical considerations needed to achieve an invention.573 Instructions of the
mind or spirit are excluded from patent protection, if they do not make use of
natural forces.574 Consequently, computer programs “as such” are un-
patentable to the degree that they do not involve additional technicity.575 On
the other hand, computer programs, business methods and mathematical for-
mulae may be part of a patentable invention, if the applicant is able to demon-
strate and disclose what technical teaching it followed to solve a defined prob-
lem.576

299 The Swiss Federal Institute for Intellectual Property recognized the difficulty
in distinguishing patentable software-related inventions from non-patentable

Swiss Guidelines for the Substantive Evaluation of Patent Applications, 16.

BGE 95 I 579 – "Planungsverfahren"; Swiss Guidelines for the Substantive Evaluation of

Patent Applications, 16 f.

BGE 98 Ib 396 – "Computerauswertung""; Swiss Guidelines for the Substantive Evaluation

of Patent Applications, 16.

Same conclusion in Frei, 114 ff. and 156 ff.; Staempfli Commentary to the Swiss PatG/EPC,

Art. 1 N 37 ff.; ZIRN, 168.

573

574

575

576

Chapter 4: Status Quo of Legal Software Protection

132

ones. In its landmark but non-binding guidelines, it provides indications and
gives examples of cases where a computer-implemented invention may be
considered as an eligible subject matter:577

– If a procedure possesses technical characteristics, apart from being a
technical computer program, that work together or are connected with a
computer program in order to fulfil a technical problem;

– if a computer program is implemented or connected to a device;

– if a computer program is used in a computer to solve a problem that relies
on a technical teaching, including technical considerations and their im-
plementation.578

300 Consequently, in the Swiss interpretation, a technical effect is shown if the in-
vention is able to demonstrate technicity, apart from simply being a computer
program. The expectations on the exhibited technical effect are higher, if the
transfer and processing of a signal has to be evaluated. Fewer expectations are
set on the technical effect, if manipulation of data is claimed.579 A simple list of
instructions in a programming language does not in itself fulfil the require-
ment of technicity.580 It is imperative for every patent application involving
computer programs that the applicant can demonstrate comprehensibly the
technical teaching that is applied to solve the technical problem.581 This means
that the inventions have to be demonstrated in a way that the specialists of the
field in question can understand.

301 Also computer programs that apply business methods or are merely based on
a mathematical formula are in general not considered as technical and cannot
thus be classed as inventions.582 However, if they involve technical considera-
tions, a technical teaching, or apply technical means to execute the inventive

Swiss Guidelines for the Substantive Evaluation of Patent Applications, 15 ff.

This is the case if a program is involved in technical processes for producing data, mon-

itoring machines or steering processes. It mainly covers applications and process claims

where the ICT system links the technology with specific controlling or steering actions.

See also Swiss Guidelines for the Substantive Evaluation of Patent Applications, 19, with

notes.

See practice described in: Swiss Guidelines for the Substantive Evaluation of Patent Appli-

cations, 19.

Swiss Guidelines for the Substantive Evaluation of Patent Applications, 15 f.

Swiss Guidelines for the Substantive Evaluation of Patent Applications, 19; Staempfli Com-

mentary to the PatG/EPC, Art. 1 N 13; THOUVENIN/BERGER, 6/2.3., 1 f.

Swiss Guidelines for the Substantive Evaluation of Patent Applications, 20.

577

578

579

580

581

582

Chapter 4: Status Quo of Legal Software Protection

133

teaching, they might be considered to have reached the required technicity.583

These methods therefore have to contain both technical and economic (or in-
dustrial) aspects. The overall view of the invention object is key.584

c) Interpretation under the U.S. Code and Affiliated Case Law

302 In the United States, patents are granted for technological advances that pro-
vide a practical solution to a specific problem.585 The United States is famous
for its particularly generous definition of patentable subject matter, after a re-
port of the U.S. Senate in 1979 suggested that ‘anything under the sun that is
made by man’ would be eligible for patent protection.586 Consequently, al-
though not explicitly mentioned in the U.S. Code, software is also eligible for
protection under U.S. patent law, provided that the requested requirements
are fulfilled.

303 In the early years of U.S. software case law, computer programs were widely
regarded as mathematical ideas in the form of algorithms and thus un-
patentable.587 In Diamond v. Diehr in 1980, the U.S. Supreme Court for the first
time suggested that a computer program that was able to control the execu-
tion of a physical process was patentable.588 It took ten more years until a U.S.
court accepted the combination of an inventive software mathematical for-
mula (algorithm) with a trivial physical step as patentable.589 The field was fi-
nally opened up for other software-related inventions in State Street Bank v.

Signature Financial Group in 1998. In the same decision, the court specified
that, for software inventions, the patentee further had to demonstrate what
useful, tangible and specific results the application of the technical teaching
could provide.590 Following on from this, U.S. courts have emphasized that a

See instructions in Swiss Guidelines for the Substantive Evaluation of Patent Applications,

17 and 20; see also PMMBl 1975 I 30 ff.

See instructions in Swiss Guidelines for the Substantive Evaluation of Patent Applications,

17 and 20.

HARISON, 64; DUTFIELD/SUTHERSANEN, 118 f.

See U.S. Senate; this interpretation was later confirmed and adopted by the U.S. Supreme

Court in: Diamond v. Chakrabarty, 447 U.S. 303 (1980).

See Gottschalk v. Benson, 409 U.S. 63 (1972).

Diamond v. Diehr, 450 U.S. 175 (1981).

In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994); confirmed in State Street Bank & Trust, Co. v.

Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir. 1998).

State Street Bank & Trust, Co. v. Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir.

1998), N 24 ff.; confirmed in AT&T Corp. v. Excel Communications, Inc., 172 F. 3d 1352 (Fed.

Cir. 1999).

583

584

585

586

587

588

589

590

Chapter 4: Status Quo of Legal Software Protection

134

teaching implemented in an abstract program will not be patentable if it is not
outlined how the potentially abstract invention has to be applied in an opera-
tion.591 According to a later clarification by the U.S. Congress, software-related
inventions have to involve a specific description of how and which functional
steps are carried out by the system or which functions should be demon-
strated with a particular computer program.592 Mathematical algorithms in a
computer program therefore become patentable if one is able to demonstrate
that they involve a technical teaching that can be applied in a specific real-
world context.593 It thus became key for the patentability of an invention how
specific a claim was, and its application was.

304 The U.S. courts have established various tests to examine whether a computer
program falls under the patent law’s subject matter. First, under the machine-

or-transformation test594 a process is eligible, if “it is tied to a particular ma-
chine or apparatus, or it transforms a particular article into a different state or
thing”.595 Although this approach helped to isolate patentable from un-
patentable software-related inventions, according to the Supreme Court’s
later opinion, the machine-or-transformation test was not able to sufficiently
determine all patentable subjects but instead artificially narrowed the possible
analysis results.596 With a change in court practice and the expansion of the
patent scope to every invention that was “specific” enough under the men-
tioned State Street Bank practice, a new test had to be established to evaluate
the abstractness of a software-related invention. The court would determine
whether the patent claims were formulated in too abstract a way, or were too
generic or broad. In a second step, the court evaluated whether the applicant
demonstrated comprehensibly how the invention was to be applied. Only if the
method was described in detail and it was outlined how the problem would be

Alice Corp. v. CLS Bank International, 573 U.S. 208 (2014); Edekka LLC v. 3Balls.com, Inc. et

al., docket no. 2:2015cv00541 JRG (Eastern District Court Texas, 2015).

U.S. CONGRESS (1992), 132; WALKER, 7 f.

U.S. CONGRESS (1992), 17.

Gottschalk v. Benson, 409 U.S. 63 (1972); Diamond v. Diehr, 450 U.S. 175 (1981); Parker v.

Flook, 437 U.S. 584 (1978); further specified in: Bilski v. Kappos 561 U.S. 593 (2010).

Bilski v. Kappos 561 U.S. 593 (2010), 90; see also interpretation in FUSCO and SCHWABACH, 24.

Supreme Court Opinion, 3 f.

591

592

593

594

595

596

Chapter 4: Status Quo of Legal Software Protection

135

solved, could a patent be granted.597 In contrast to the European practice, the
once permissive U.S. patent practice suddenly became stricter about allowing
indefinite and non-novel patents.598

305 A similar practice can be observed for business methods, for example methods
describing an ICT process. In contrast to the European Patent Convention,
business methods are explicitly accepted by the U.S. patent system, if the re-
quirements of novelty, applicability and technicity are fulfilled.599 In view of the
described former, rather generous, patenting practice of the U.S. Patent and
Trademark Office, they are however rarely able to stand up in court and their
claim is not sufficiently specific (indefinite claim) or the business method lacks
a concrete mode of implementation. According to CLS Bank International v.

Alice Corp, a business method has to exhibit more than a simple inventive con-
cept.600 It has to describe how it can be applied and to what degree this teach-
ing is novel.601 The description has to explain what particular machine is used
or what result can be achieved by applying the business method. As one of the
first and most famous ICT business methods, Amazon was granted a U.S.
patent in 1999 for the One-Click Solution, a particular procedure for ordering
and paying online. The patent was confirmed in 2001, when competitor Barnes
and Noble implemented a similar online system on their website, which as a
consequence got interdicted.602 The very same patent was declined by the Eu-
ropean Patent Office and its Board in 2011, stating that it would be too obvious
and that a reduction in the number of necessary steps to order online would
not constitute an inventive step.603

Loyalty Conversion Systems Corporation v. American Airlines Inc, docket no. 2:2013cv00655

(Eastern District Court of Texas, 2015); Digitech Image Techs., LLC v. Electronics for Imag-

ing, Inc., 758 F.3d 1344, 1348 (Fed. Cir. 2014); see also further discussion in Manual of Patent

Examining Procedure of the U.S. Patent and Trademark Office, sect. 2161.01.

See same conclusion in ALLISON/LEMLEY /SCHWARTZ, 1097 ff. and 1106 ff.; LEMLEY/BURK,

85 f.; SAMUELSON (2013), 23.

State Street Bank & Trust, Co. v. Signature Financial Group, Inc., 149 F.3d 1368 (Fed. Cir.

1998); see also further information on interpretation and U.S. practice in Manual of Patent

Examining Procedure of the U.S. Patent and Trademark Office, sect. 2106.04; see also com-

ment in SCHWABACH, 23 f.; LEMLEY ET AL., 153, 154 and 156 f.

Alice Corp. v. CLS Bank International, 573 U.S. 208 (2014).

Alice Corp. v. CLS Bank International, 573 U.S. 208 (2014); Content Extraction and Trans-

mission LLC v. Wells Fargo Bank, National Association, 776 F.3d 1343 (Fed. Cir. 2014); see

also discussion in WALKER, 8 f. and 32.

Amazon.com, Inc. v. Barnesandnoble.com, Inc. and Barnesandnoble.com, LLC, 239 F.3d.

1343 (Fed. Cir. 2001).

1-Click/Amazon, decision of the EPO Board of Appeal of January 27, 2011 (EPO T 1244/07).

597

598

599

600

601

602

603

Chapter 4: Status Quo of Legal Software Protection

136

306 Overall, the patentability of computer programs under U.S. patent law remains
legally undisputed.604 The focus of an examination instead lies on examining
whether a technical teaching is provided and whether the patent applicant is
able to demonstrate sufficiently how the teaching has to be applied. Computer
programs consequently fall under the patent law’s subject matter in the United
States, if an invention is able to show an applicable technical teaching.

d) Conclusion: Are Computer Programs Patentable?

307 At first glance, the European and U.S. approaches for software-related patents
could hardly be more different; the European Patent Convention in Art. 52
para. 2 lit. c still entirely excludes computer programs from its subject matter.
Meanwhile, the U.S. Senate in 1980 declared that patent protection should be
open to every invention under the sun created by man, and shortly after the
U.S. Patent and Trademark Office and competent courts accepted computer
program-related inventions as patentable inventions.

308 Nevertheless, the European Patent Office and European courts have estab-
lished a practice that enables the patentability of software-related inventions
under certain circumstances. Under the current approach, computer pro-
grams are eligible for patent protection, provided that they demonstrate a
technical effect that goes beyond the normal interaction between a program
and a computer. The U.S. practice, on the other hand, has become more strin-
gent and in particular set higher expectations for the description of claimed
inventions. The applicant has to specify how the invention will solve a particu-
lar problem and how this teaching will be applied. While the European patent
system therefore sets particular expectations on what may be considered as a
sufficiently technical subject matter, the U.S. one focuses on a certain mini-
mum level of concreteness that the description of the invention has to exhibit
in order to be considered a comprehensible technical teaching.

309 In effect, the U.S. interpretation does not differ so much from the European
one; in both regions, patenting software-related inventions is possible with
certain provisions.605

WIEBE, 79 ff.

See same conclusion in WIPO STANDING COMMITTEE ON THE LAW OF PATENTS, 2 f.

604

605

Chapter 4: Status Quo of Legal Software Protection

137

2. Protection Requirements

310 The protection requirements refer to the inventive threshold that has to be
overcome in order to be granted a patent. Due to the high internationalization
of the topic, the European Patent Convention and U.S. patent law have similar
basic requirements. In order to be granted a patent in the United States, in-
ventions have to be new and inventive as well as usefully applicable. These cri-
teria correlate with the ones in Art. 52 para. 1 EPC, which state that a patent
may be granted if a technology involves an inventive step, is new and is capa-
ble of industrial application.

a) Novelty

311 The provisions in Art. 54 EPC and § 101 and § 102 of 35 U.S. Code provide that
an invention is considered as novel when it stands out from the state of the
art. Hence, only progress of the present knowledge is patentable.

312 In order to evaluate whether an invention is novel, an examiner first has to de-
termine the current state of the art in order to then verify in a second step
whether the invention represents an improvement thereof. According to
Art. 54 para. 2 and 3 EPC the state of the art consists of everything that is avail-
able to the public before the filing date of the patent application by means of a
written or oral description, by use or in any other way.606 A similar entitling is
provided in the U.S. Code, further explicitly enumerating sold goods as part of
the relevant prior art.607 If by the time of the application, an expert of the field
had the possibility to take notice of the claimed technical teaching, so that he
or she had been able to apply the invention or conduct the inventive process,
the invention would not be considered as novel.608 The invention hence has to
represent an enhancement to the prior state of the art and may not simply re-
tain something that has been established but not yet patented. It is not re-
quired that the expert of the field has actually observed the teaching. Accord-
ing to von Bueren et al., it suffices that the possibility would have been there

See similarly Art. 7 para. 2 Swiss PatG.

See 35 U.S. Code § 102 lit. a para. 1.

Diastereomers, decision of the EPO Board of Appeal of February 9, 1982 (EPO T 12/81); de-

cision of the German BGH of January 17, 1995, X ZB 15/93 – Elektrische Steckverbindung,

published in GRUR, 1995, 330; BGer of July 24, 1991, published in SMI, 1993, 145; MARBACH/

DUCREY/WILD, N 58; BRINER, 95 f.; Commentary to the PatG/EPC, Art. 1 N 73 ff.; Commen-

tary to the EPC (Melullis), Art. 54 N 29 ff.; TROLLER (1983), 160 ff.; DUTFIELD/SUTHERSANEN,

120 f.

606

607

608

Chapter 4: Status Quo of Legal Software Protection

138

to take notice of it.609 Nevertheless, the information has to be publicly acces-
sible and not just subject to personal know-how or trade secrets that are not
disclosed anywhere.

313 In practice, other patent specifications are usually consulted to determine the
state of the art. In the specification of the application, it is not just the claims
but also the descriptions, drawings and summaries that work as the basis to
discover the state of the art.610

314 The state of the art has to be determined for every field and technical inven-
tion separately. It is a complex task to elaborate and define it. The term ‘inven-
tive activity’ is a vague legal concept that involves discretion of the examiner
and requires a judgement call.611 Both the European Patent Convention and the
U.S. Code aim to provide guidance by explaining to what degree a type of in-
vention may be considered as novel and which disclosures may be considered
as innoxious.612

315 In the case of computer programs, the novelty of a computer-related inven-
tion is particularly difficult to assess. On one hand, the market is quite dy-
namic and changes occur rapidly making it difficult to establish if anyone has
yet described a teaching in a scientific paper or other type of publication. Most
technical solutions are simply embedded in software products and services
and then concealed. At the same time, as computer-related developments are
still a relatively new field, it remains unclear what exactly may be regarded as
an improvement of the prior art. The software development industry has been
critical of the fact that too many commonly used, but not yet patented, inven-
tions are monopolized. The evaluation of ‘prior art’ thus becomes more key
with regard to software inventions. To determine prior art, the classic discov-
ery media of specialist literature and oral descriptions at expert conferences
may be extended to newer platforms, such as blogs, forums and libraries,
where many technicians exchange their knowledge and discoveries online.

b) Non-Obviousness

316 Only if, regarding the state of the art, an invention is non-obvious to a hypo-
thetical person skilled in this area can it be deemed an inventive step or

MARBACH/DUCREY/WILD, N 58.

For Switzerland, see BGE 94 II 285; Staempfli Commentary to the PatG/EPC, Art. 7 N 17;

CALAME (2006), 408 ff.; HILTI/PEDRAZZINI, 132 f.

See BOECKER, 219.

See Art. 54 and 55 EPC, 35 U.S. Code § 102.

609

610

611

612

Chapter 4: Status Quo of Legal Software Protection

139

progress.613 This restriction ensures that the only inventions protected are
those that offer an improvement from the perspective of a skilled examiner.614

The improvement not only has to be novel, it also has to be to some extent
surprising or unexpected. Indications of a non-obvious invention may for ex-
ample include a long-standing but unsatisfied need to overcome a prejudice,
an area of constant failure by others, a surprise for experts and the enrichment
of technology.615 At the same time, the teaching has to have a certain degree
of significance for the technical field, outlining some inventive strength and
exhibiting an inventive step.616 If it is self-evident, the invention does not rep-
resent an inventive contribution and is not eligible for patent protection.

317 Relevant for the examination are pre-existing information and insights and the
interpretation of the fictive or hypothetical ‘average’ or ‘ordinary’ expert.617 The
expert to be taken into account is one skilled in all technical fields covered by
the doctrine of the patent at issue who possesses average technical knowledge
or who can acquire such knowledge with the help of a member of staff.618 The
expected average knowledge level varies depending on the art in question.619

As Heinrich highlights, the skilled person does however not need to be an ex-
pert in the technical field or a specialist with outstanding knowledge. They do
not have to have an overview of the entire state of the art, but must have
‘sound’ knowledge and skills, a solid education and sufficient experience.620

318 The ‘obviousness’ restriction is further used to distinguish a patent from a triv-
ial patent, that is particularly important in newer, still evolving sciences such

See Art. 56 EPC, 35 U.S. Code § 103.

See discussion of BGer of December 18, 2002, in Ingres, vol. 4/03, 5; Graham v. John Deere

Co., 383 U.S. 1 (1966).

HILTI/PEDRAZZINI, 138 ff.; see also TROLLER (1983), 171 ff.; DORR/MUNCH, 188.

For Switzerland: BGE 85 II 131; BGer of April 1, 1969, published in SMI, 1971, 127 ff.; BGE 89

II 109.

BGE 120 II 312 c. 4b; Graham v. John Deere Co., 383 U.S. 1 (1966); Staempfli Commentary

to the PatG/EPC, Art. 7 N 4; see also discussion in: BRINER, 95 f.; HILTI/PEDRAZZINI, 135 ff.;

Commentary to the EPC (Melullis), Art. 54 N 44; TROLLER (1983), 163 and 167 f.; THOUVENIN/

BERGER, 6/2.2., 4.

BGE 120 II 73, 73 f.; Graham v. John Deere Co., 383 U.S. 1 (1966).

DORR/MUNCH, 187.

Staempfli Commentary to the PatG/EPC, Art. 1 N 80.

613

614

615

616

617

618

619

620

Chapter 4: Status Quo of Legal Software Protection

140

as the computer sciences. The criterion further helps to balance patent law
with antitrust law and make it more proportional with regard to potentially
powerful exclusionary monopoly-like patent rights.621

319 The European Patent Office applies the problem-and-solution test in order to
assess whether an invention is non-obvious and an inventive step is provided.
It involves three major steps:622

– determining the “closest prior art”;

– establishing the “objective technical problem” to be solved; and

– considering whether or not the claimed invention, starting from the clos-
est prior art and the objective technical problem, would have been obvi-
ous to a skilled person.

320 With this approach it is easier to evaluate whether a skilled person considers
the contribution of the invention as a modification. If a modification to prior
art could have been achieved by the examiner, an inventive step may be as-
sumed.623

321 The U.S. Patent and Trademark Office, on the other hand, follows the func-

tional approach originally presented in Graham v. John Deere Co.624 and con-
firmed in KSR Int’l Co. v. Teleflex Inc. in 2007625. According to this newer ap-
proach, there are seven indications that suggest the obviousness of an
invention:626

– if prior art elements are combined according to known methods to yield
predictable results;

– simple substitutions of one known element for another to obtain pre-
dictable results;

– use of known techniques to improve similar devices (methods, or prod-
ucts) in the same way;

See BOECKER, 219, with further explanation; Commentary to the EPC (Melullis), Art. 54

N 6 ff.; TROLLER (1983), 189 ff.

Guidelines for Examination of the European Patent Office, Part G-VII-5.

ERRAT/GOWLING, STRATHY & HENDERSON, chapter 4.2; HILTI/PEDRAZZINI, 130 f.; Staempfli

Commentary to the PatG/EPC, Art. 1 N 102; Commentary to the EPC (Melullis), Art. 54

N 129; TROLLER (1983), 159 f.

Graham v. John Deere Co., 383 U.S. 1 (1966).

KSR Int'l Co. v. Teleflex Inc., 550 U.S. 398 (2007).

Examination Guidelines for Obviousness of the U.S. Patent and Trademark Office, no. 2143.

621

622

623

624

625

626

Chapter 4: Status Quo of Legal Software Protection

141

– applying a known technique to a known device (method, or product)
ready for improvement to yield predictable results;

– choosing from a finite number of identified, predictable solutions with a
reasonable expectation of success (“obvious to try”)

– taking a known work in one field, making a small adaption based on de-
sign incentives or other market forces and using it in the same field or a
different one, if the variations would be predictable for someone of ordi-
nary skill in the art;

– using some teaching, suggestion, or motivation in the prior art that would
have led a person of ordinary skill to modify the prior art reference or to
combine prior art reference teachings to arrive at the claimed invention.

322 All of these indications are used as reference points in U.S. practice but are not
regarded as a complete and exhaustive list. In order to avoid the patenting of
trivial inventions, the U.S. Patent and Trademark Office also issued the Exam-

ination Guidelines for Obviousness in 2010 describing in more detail the cur-
rent case practice and actual fields of application. Recently, a stricter standard
has been applied in the United States, also scanning for similar basic concepts,
regardless of how different those programs are in implementation.627

323 The minimum inventive step a software-related invention has to exhibit is
again subject to great dispute. Of particular interest for this matter is the
1-Click-Solution by Amazon already mentioned before. The European Patent
Office had the chance to review the controversial computer-implemented in-
vention of Amazon that had been evaluated as patent-eligible under U.S.628 and
Canadian law629. The Board of Appeal – like the European Patent Office before
– dismissed the appeal regarding the rejected patent application of Amazon
due to a lack of an inventive step combined with an unpatentable subject mat-
ter (in casu: business methods). The main claim of Amazon’s 1-Click-Solution
was to reduce the number of interactions involved in selecting items and the
amount of sensitive information being sent over the Internet, which could be
intercepted.630 The European Patent Office and the Board of Appeals both ar-

LEMLEY/BURK, 85 f.

Amazon.com, Inc. v. Barnesandnoble.com, Inc. and Barnesandnoble.com, LLC, 239 F.3d. 1343

(Fed. Cir. 2001).

Canada (Attorney General) v Amazon.com, Inc, decision of the Canadian Federal Court of

Appeal, A-435-10, 2011.

1-Click/Amazon, decision of the EPO Board of Appeal of January 27, 2011 (EPO T 1244/07),

c. 2 f.

627

628

629

630

Chapter 4: Status Quo of Legal Software Protection

142

gued that the technical procedural teaching was, although not publicly known
and common, already in parts recommended as a potential method in special-
ist literature.631 The final implementation by Amazon did not involve a suffi-
cient improvement that could overcome the inventive threshold. The detailed
evaluation of both the European Patent Office and the Board of Appeals in the
1-Click-Solution-case set high standards for future evaluations. It also showed
that the European Patent Office takes the problem of granting trivial patents
very seriously, dismissing an application it considered trivial and non-inven-
tive, even though already accepted in other jurisdictions.

324 We may conclude that both approaches, the European and U.S., largely rely on
a case-by-case evaluation, depending on the exact technology and the subject
in question. In order to obtain a high quality evaluation, it helps if the expert
has an extensive overview and detailed knowledge of the subject. Although the
non-obviousness criterion may appear to be clear in theory, practice has
shown that the examiner has to argue very carefully if they decide that an in-
vention is obvious. The borderline between a legitimate ‘reasonable’ and a not
protected ‘obvious’ teaching or solution is often narrow. It seems particularly
difficult to evaluate the obviousness of a patent when an established or well-
known technical teaching is transferred to another field of technology, as in
digitalization processes. The expert, again, has to verify whether only a simple
transfer was made and no further contribution was offered, or whether the
prior teaching was expanded, enhanced or adapted. If the adaption represents
a change that is insignificant or minor, from a skilled expert’s perspective, no
inventive step is acknowledged.632 If, however, a further effort was made and
something unexpected or additional was provided, a digitalization process
could reach the threshold of ‘non-obvious’.

c) Industrial Applicability

325 According to the European legislation, an invention has to be industrially ap-
plicable in order to be covered under patent law.633 The U.S. Code utilizes a
different wording, speaking of ‘useable’ inventions (utility),634 but in practice
applies the requirement in an almost identical manner. Using the term ‘applic-

1-Click/Amazon, decision of the EPO Board of Appeal of January 27, 2011 (EPO T 1244/07),

c. 20.

1-Click/Amazon, decision of the EPO Board of Appeal of January 27, 2011 (EPO T 1244/07),

c. 23; see also MARBACH/DUCREY/WILD, N 82 ff.

Art. 52 para. 1 EPC.

35 U.S. Code § 101.

631

632

633

634

Chapter 4: Status Quo of Legal Software Protection

143

able’, the European legislator means that an invention not only needs to be
novel but also has to be able to be applied in some way in practice. It thus can-
not just be of theoretical value. The term ‘industrially applicable’ suggests that
the invention has to be subject to an industrial field.635 The European practice
however accepts application possibilities in a commercial domain,636 which
also complies with the U.S. practice. The tendency is therefore for an unde-
standing of the term as utility rather than applicability in the industry in a clas-
sical sense.637 In order to be accepted as applicable, the invention has to be the
result of a controllable activity. This means that it has to be repeatable and not
just due to an accidental occurrence.638 This ensures that the invention would
potentially be open for (controlled) industrial use.

326 Under a newer ruling of the U.S. Supreme Court, the court has now reclassi-
fied the criterion of usability, saying that computer programs, mathematical
formulae and business methods have to demonstrate whether and how they
are applicable.639 An abstract implementation does not fulfil this requirement.
As Lemley explains, software patent lawyers increasingly write patent claims
in broad or ambigious functional terms, claiming not a particular way of use,
as in a machine or a particular set of steps of a procedure, but rather the goal
itself.640 This creates too broad a scope of protection for the right holder, en-
abling the strongest possible rights for patentees.641 With the new U.S. practice
of industrial applicability or utilization, the United States has put a stop to this
broad approach particularly debated in the U.S. market.642 It also synchronizes
with the European approach, asking for sufficient disclosure which clearly and
fully sets out the patent claim:643 The instruction that the patentee includes
has to reveal a method that is clear and applicable for an expert of the field,

Art. 57 EPC; see also THOUVENIN (2006)

See BOECKER, 216, with reference to § 1a para. 4 German PatG; TROLLER (1983), 201.

DUTFIELD/SUTHERSANEN, 122 f.

Decision of the German BGH of February 12, 1987, X ZB 4/86 – Tollwutvirus, published in

BGHZ 100, 67 ff., 71 f.

Alice Corp. v. CLS Bank International, 573 U.S. 208 (2014); Edekka LLC v. 3Balls.com, Inc. et

al., docket no. 2:2015cv00541 JRG (Eastern District Court Texas, 2015); see also 35 U.S. Code

§ 112 as well as practical procedures during patent examination according to the Manual

of Patent Examining Procedure of the U.S. Patent and Trademark Office, sect. 2107.

LEMLEY (2017), 905.

LEMLEY (2017), 907.

See also statistical analysis in ALLISON/LEMLEY/SCHWARTZ, 1104 ff.;

Art. 83 EPC.

635

636

637

638

639

640

641

642

643

Chapter 4: Status Quo of Legal Software Protection

144

outlining what is used and how this represents an inventive step.644 An expert
should be able to understand what he or she has to do, following the instruc-
tions one-by-one. The more abstract an instruction is, the less chance of its
eligibility under this criterion. A patent description should therefore be spe-
cific enough, so that its application is comprehensible and capable of being
used. The extent of the disclosure approach varies according to the nature
of the invention as well as the role and complexity of the computer program
needed to implement it.645 The claim at least has to outline the functionality
on which it is based and which it wants protected. It would not be necessary,
however, to disclose the source code in which it was implemented.646

327 Compared with the previous situation, in which the industrial applicability was
less important as it was easier to fulfil in a patent evaluation, the criterion of
industrial applicability thus has seen a revival, becoming more relevant and
important whenever computer programs are evaluated under patent law.647

3. Term of Protection

328 If appropriate subject matter has been shown and the requirements have been
fulfilled, an invention is eligible for patent protection. The exact scope of pro-
tection, however, is dependent on a time component: when the protection
starts and when it ends. The following section briefly summarizes the relevant
steps in the patent registration process and explains when the term of patent
protection ends.

329 The patent term refers to the period of time between when the legal effects of
a patent begin and the moment when they expire. During this time, the dis-
closed know-how is protected and can be commercialized through licences
and other forms.

See also the decision of the UK Patent Office regarding Merrill Lynch's Application (1989),

published in RPC, 1989, 561 ff.; see also Opinions of the Lords of Appeal for Judgment

in the cause Synthon BV v. Smithkline Beecham plc of October 20, 2005, commented in

THOUVENIN (2006).

Northern Telecom, Inc. v. Datapoint Corp., 908 F.2d 931 (Fed. Cir. 1990).

Fonar v. General Electric, 107 F.3d 1543 (Fed. Cir. 1997).

See discussions in: OSTERRIETH, 992; BRINER, 60 ff.; Staempfli Commentary on the PatG/

EPC, Art. 1 N 171; Hilty (2014), 290 f.; ZIRN, 180; LEMLEY ET AL., 181 f.; see further information

in Manual of Patent Examining Procedure of the U.S. Patent and Trademark Office, sect.

2161.01.

644

645

646

647

Chapter 4: Status Quo of Legal Software Protection

145

a) Starting Point of Protection: Registration

330 The starting point for protection is when the patent application is filed for reg-
istration. But only if a patent is granted, and registered, can the exclusionary
rights associated with the patent be enforced. By submitting an application,
the private parties decide what they believe is worthy of protection by disclos-
ing their invention in a patent specification that will be examined by an ex-
pert.648 With the filing of the application, the inventor for the first time has to
define the claim and the exact subject of protection. The description has to
disclose enough information so that the state of the art can be evaluated prop-
erly, and the examiner can verify whether the invention is commercially ap-
plicable.

331 Enclosed with the patent application are several documents, such as a formal
registration request, a description of the invention, one or multiple claims, any
drawings referred to in the description or in the claims, and a summary of the
invention.649 The patent can either be filed at a national office, for example the
Swiss Federal Institute of Intellectual Property, or at a regional patent author-
ity such as the European Patent Office for a European Patent or within the
Patent Cooperation Treaty Union for an application under the PCT proce-
dure.650 The decision as to where a patent is filed depends on strategic con-
siderations. Some companies want to profit from a longer priority period that
is provided by some legislations, others prefer a shorter application procedure
in some jurisdictions, while others may want to benefit from a full evaluation
and testing of the patent requirement and the subject matter in some areas.

332 After the application is filed, the procedure usually evolves according to the
following steps:651 (1) A high-level examination upon filing; (2) a closer exami-
nation of formal requirements, including a check on whether all the necessary
documents were submitted; (3) a voluntary order for research of the state of
the art; (4) publication of the patent application; (5) if scheduled and required,

MERGES, 594 f; TROLLER (1983), 451 ff.

Art. 78 para. 1 lit. a-e EPC, Art. 49 para. 2 lit. a-e Swiss PatG, 35 U.S. Code § 111 para. 2 -

§ 115.

The Patent Cooperation Treaty (PCT; SR 0.232.141.1) is a special cooperation agreement

that was concluded in Washington on June 19, 1970 in order to support coordination and

cooperation in the field of patents within the international community. It provides a spe-

cial application procedure that facilitates and accelerates the patent filing and registration

procedure and makes it more efficient in all signatory countries.

Art. 90-98 EPC; for the United States, see 35 U.S. Code § 111-135.

648

649

650

651

Chapter 4: Status Quo of Legal Software Protection

146

a substantive examination of the claim; (6) if the patent requirements are ful-
filled, the patent is granted and the registry entry is processed. This is the end
of the patent application and examination procedure.

333 How extensively the substance of a patent application is examined (step 5) de-
pends on the country in which the patent application is filed. In Switzerland,
currently only the subject matter has to be assessed by the competent author-
ity, the Swiss Federal Institute of Intellectual Property, but not the patent re-
quirements as such.652 In the European Patent Office and in the United States
Patent and Trademark Office, a full substantive examination is made.653 If a
substantive examination of all the patent requirements is made, the voluntary
research (step 3) is skipped, as it is integrated into the examination process.
Whether or not a substantive examination of the patent takes place is widely
reliant on the policy a country or treaty pursues. The European Patent Organ-
isation and the United States prefer to offer a comprehensive, in-depth evalu-
ation of the patent to increase the quality of the granted patents and reduce
the number of trivial ones.654 The Swiss patenting procedure, on the other
hand, is much faster as no substantive examination takes place.655 The down-
side of the accelerated process is that a patentee’s property right has not been
tested by the responsible authority and thus they do not know to what degree
it is able to withstand a substantive complaint in court.656

334 Only applicants that have passed all the necessary examination steps, provided
the required documentation and paid the fixed fees will be granted a patent
and registered as ‘patent granted’ in the patent registry. Once the application

Art. 59 para. 4 Swiss PatG and Swiss Guidelines for the Substantive Evaluation of Patent

Applications, 8 f.; a very recent preliminary draft for a revised Swiss Patents Act newly pro-

vides for a full voluntary substantive evaluation of the patent requirements in Switzerland,

resulting in the striking of Art. 59 para. 4 Swiss PatG. However, the consultation process

was still ongoing at the time of printing. For more information on the revision process, see

<https://www.ige.ch/en/law-and-policy/national-ip-law/patent-law/patents-act-revi-

sion.html> (retrieved September 1, 2021).

European Guidelines for Examination of the European Patent Office, Part C-I-4; Manual of

Patent Examining Procedure of the U.S. Patent and Trademark Office, sect. 904.03.

TROLLER (1983), 498 f.

TROLLER (1983), 496 and 498.

See also interesting analysis regarding patents and validity in court, in ALLISON/LEMLEY/

SCHWARTZ, 1124 ff.;

652

653

654

655

656

Chapter 4: Status Quo of Legal Software Protection

147

https://www.ige.ch/en/law-and-policy/national-ip-law/patent-law/patents-act-revision.html
https://www.ige.ch/en/law-and-policy/national-ip-law/patent-law/patents-act-revision.html

procedure is complete, the patentee may make use of the rights that are af-
filiated with the patent. At the same time, after publication anyone can file an
opposition procedure to formally question the granting of the patent.657

335 The formal starting point of protection for the disclosed information therefore
is when the application is recorded at the patent office, and the rights associ-
ated with the patent only start when the patent is granted. The patentee’s ab-
solute commercial and interdiction rules consequently can only be exercised
when the patent is formally registered.

b) End of Protection

336 The patent protection ends when the maximum period of protection is
reached. The patentee can thus not profit from an absolute right indefinitely.
Patent law determines explicitly after what time the patented innovation falls
into the public domain and can thus be used without further authorization by
society.

337 The rights associated with a patent expire twenty years after the application
was filed (the application date) under the European Patent Convention, the
Swiss Patents Act and the U.S. Code.658 The patent protection may also end
before the maximum term of protection, in a case where:

– the annual patent fees are not paid, which is the most common cause;659

– the patentee retracts his/her patent right;660

– or the patent is declared invalid (revoked).661

The scope of the patent may also be limited without the patent protection
ending. By revoking or restricting one claim or merging several patent claims,
the patent scope is reduced and the patentee’s rights may comprise a smaller
dimension. Such later limitation of the scope of protection represents a partial
waiver and has a retroactive effect on the whole term of protection (ex tunc).662

Art. 99 ff. EPC, 35 U.S. Code § 135.

Art. 63 para. 1 EPC, 35 U.S. Code § 154 lit. a para. 2.

Art. 51 EPC, Art. 15 para. 1 lit. b Swiss PatG, § 20 German PatG, 35 U.S. Code § 41 and § 154

lit. a para. 2.

Art. 105a EPC, Art. 15 para. 1 lit. a Swiss PatG.

Art. 105 ff. and Art. 138 EPC, Art. 26 para. 1 and Art. 28 Swiss PatG, § 21 f. and § 82 ff. German

PatG.

Art. 105a EPC, § 21 para. 2 and 3 as well as 39 German PatG, Art. 24 f. and Art. 28a Swiss

PatG and further description in MARBACH/DUCREY/WILD, N 227 ff.

657

658

659

660

661

662

Chapter 4: Status Quo of Legal Software Protection

148

338 Generally, therefore, a patent can be valid for a maximum of twenty years after
the application was filed. The term of protection may, however, be shortened
for various reasons, or the patent scope reduced.

V. Copyright

339 In contrast to the big disputes regarding the patentability of computer pro-
grams, applying copyright to computer programs represents a standard use
case and is embedded in international contracts. This section provides a short
introduction to the most important points considering software protection in
copyright law, to enable an understanding of the findings of the interview se-
ries and the later discussion. For a full overview, please consult the extensive
specialist literature on copyright and software. First, it is explained what copy-
right entails and, briefly, which commercial and moral rights are associated
with it. Second, there is a closer look at what falls under the protection scope
of copyright, including the subject matter, the requirements that have to be
fulfilled to obtain copyright protection, and the start and end points of the
term of protection. Similarly to the previous section on patents, this section
will not fully discuss the rights granted in copyright law nor address the legal
barriers or limitations that are available to restrict the rights of copyright
holders. On this matter, I refer to the many works of other authors.663 The fo-
cus of this thesis remains the protection scope of computer programs under
the perspective of copyright and patent law. This introduction will therefore
only explain the basics of the copyright scope, which are independent of how
a copyright holder may or may not execute their legal rights afterwards.

A. Copyright as an Intellectual Property Right

340 Copyright is intended to cover creators and practising artists by granting pro-
tection to their creative works in art and literature.664 As Charles A. Richard
explained it back in 1976, copyright wants to “tribute the outstanding practi-
tioners (…) whose (…) innovations are based on superb skill in the practice of

See particularly STRAUB (2011); WOESTEHOFF for the U.S. First Sale Doctrine; THOMANN (1998);

MARBACH/DUCREY/WILD.

Preamble and Art. 2 para. 1 RBC, Art. 1 para. 1 lit. a Swiss CopA, 17 U.S. Code § 102 lit. a, § 1

German UrhG.

663

664

Chapter 4: Status Quo of Legal Software Protection

149

their craft, combined with an acute insight into the underlying principles.”665

Copyright hence covers the work of creative and skilled people who share
their creation with society.666

341 The author of a copyrighted work can only be the person who created the
work. Copyright originally assigns the exclusive and absolute right of a creative
work to him or her.667 These rights can be subdivided into commercial and
moral rights. The commercial rights in this context refer to the economic uti-
lization of the work. The intention is to give the author the possibility to earn
back his/her investment.668 The most common commercial rights associated
with copyright are the right to control the use of a copyrighted work;669 the
right to decide who can reproduce the work;670 the right to distribute the
work, or copies of it;671 the right to distribute a work for rental;672 and the au-
thor’s right to perform the work, to display it and to make it available for the
public.673 The various commercialization models of purchasing, licensing and
service are based on these available commercial rights and also enable an au-
thor to transfer or assign his or her rights to a derivative right holder. The
moral rights, on the other hand, are a pecularity of copyright.674 They reserve
some particular rights to the author alone, in order to protect and support the
personal contribution and connection of an author to their work. The most

Foreword by Charles Antony Richard in: DIJKSTRA, xi; see also discussion in HILTY (2010),

N 36.

BARRELET/EGLOFF, Art. 1 N 4.

Art. 6 in conjunction with Art. 9 para. 1 and Art. 10 para. 1 Swiss CopA, 17 U.S. Code § 106 f.,

§ 15 German UrhG; see also Art. 9 TRIPS Agreement in conjunction with Art. 9 para. 1 RBC.

See for example HILTY (2010), N 149.

Art. 10 para. 1 Swiss CopA, § 15 in conjunction with § 69c German UrhG, implicitly 17 U.S.

Code § 106.

In terms of software this right widely focuses on the exclusive right to make legal copies

of the protected program; Art. 9 para. 1 RBC, Art. 10 para. 2 lit a and b Swiss CopA, § 16 in

conjunction with § 69c para. 1 German UrhG, 17 U.S. Code § 106 para. 1, Art. 2 Copyright

Directive, Art. 4 para. 1 lit. a Computer Program Directive.

This includes the right to decide, in what form and where it is offered and how copies of

the software will be distributed and sold; Art. 10 para. 2 lit. b Swiss CopA, § 17 in conjunc-

tion with § 69c para. 3 German UrhG, 17 U.S. Code § 106 para. 3; Art. 4 Copyright Directive,

Art. 4 para. 1 lit. c Computer Program Directive.

Art. 10 para. 3 Swiss CopA, § 17 para. 3 in conjunction with § 69c para. 3 German UrhG, 17

U.S. Code § 106 para. 3, Art. 4 para. 2 Computer Program Directive.

Art. 10 para. 2 lit. c-f Swiss CopA, § 18 ff. in conjunction with § 69c para. 4 German UrhG,

17 U.S. Code § 106 para. 4-6, Art. 3 Copyright Directive.

See for example HILTY (2010), N 149; MARBACH/DUCREY/WILD, N 321.

665

666

667

668

669

670

671

672

673

674

Chapter 4: Status Quo of Legal Software Protection

150

relevant examples are the obligation to name the work’s author, their right to
decide when and in what form the work will be published for the first time and
the right to protect the integrity of their work.675 The existence of moral rights
in software copyright is not undisputed, as computer programs represent a
good of high economic and functional interests.676 It is therefore a matter of
untested discretion to what extent the moral rights can be executed and en-
forced in software engineering.

342 An author or right holder is partially restricted in the execution of his or her
exclusive commercial and moral rights by the above-mentioned legal barriers.
For more information on the various legal exemptions in copyright, please see
the relevant specialist literature on copyright.

B. Copyright Scope

343 The scope refers to the borders and the legal framework that is implied by a
copyright. As outlined above, copyright covers creative works or expressions
in the field of literature and art. This represents the subject matter of copy-
right. To fall under the copyright’s scope, a creative work has to be (1) original
(or individual) and (2) intellectual in order to be protected.677

344 The following sections illustrate what can be protected under copyright law
and what requirements a creation has to fulfil to be covered. Again, the focus
will lie on the jurisdictions of the United States, Switzerland and one or two
examples within the European Union. To conclude, the start and end points of
copyright protection for a work are discussed.

These principles are widely accepted. They are statutorily anchored in Art. 9 and Art. 11

para. 2 Swiss CopA, Art. 4 para. 1 lit. b Computer Programme Directive, §11 ff. and § 69c

para. 2 German UrhG, Art. 6bis and 12 RBC. In 17 U.S.Code § 106A the editing rights are

statutorily only protected in the case of visual arts. However, as they are a signatory state

of the Revised Berne Convention, they are obliged to offer this right to literary works as

well. The Revised Berne Convention and the United States do not explicitly mention an

author's right for first publication. It is however granted in Germany and in Art. 9 para. 2

Swiss CopA and § 12 para. 1 German UrhG.

See comprehensive discussion in: GRUETZMACHER, 552 ff.

See Art. 2 para. 5 RBC, Art. 2 para. 1 Swiss CopA, 17 U.S. Code § 102 lit a, § 2 para. 2 in con-

junction with § 69a para. 3 German UrhG.

675

676

677

Chapter 4: Status Quo of Legal Software Protection

151

1. Subject Matter

345 In the first section, the classical protection subject of copyright is explained,
focusing on creative and artistic works. A separate section then describes
where the demarcations can be made for simple ideas and functionalities. This
section also covers how these basic rules can be adapted to computer pro-
grams to determine which parts of software are covered under the copyright’s
subject matter.

a) Creative and Artistic Works

346 Copyright is intended to cover creative artistic and literary works.678 Creativity
or aesthetics in this context can refer to any work that is directly perceptible
by the senses, that can be perceived with the eyes and ears and that evokes an
experience or imagination in the consciousness.679 What can be regarded as an
artistic or literary work is explained in Art. 2 para. 1 RBC, including writing,
lectures, dramatic or dramatico-musical works, choreographic works, musical
compositions, cinematographic works, works of drawing, painting, architec-
ture, sculptures, photographic works, works of applied art and maps. The ex-
tent to which the literary or artistic work in the individual case is eligible for
copyright protection is not determinable by demarcating literature from art,
but by examining whether the intellectual creation has an individual charac-
ter.680 Therefore, in order to be considered a creation the actual act of value
creation, regardless of the form, is decisive.681

347 While Kummer in 1968, partly, and Troller in 1983, fully, denied the copyrighta-
bility of computer programs,682 Cherpillod in 1985 and Rauber in 1988 closely
evaluated their eligibility for copyright protection.683 Today, software is explic-

Art. 2 para. 1 RBC, Art 1 Swiss CopA, 17 U.S. Code § 102 lit. a, § 1 f. German UrhG.

TROLLER (1967), 386 f. and 407 ff., with further references.

BARRELET/EGLOFF, Art. 2 N 7, with further references: MARBACH/DUCREY/WILD, N 252

REHBINDER/VIGANÒ, Art. 1 N 7; NIMMER/NIMMER (2016), N 2-6; Commentary on the German

UrhG (Loewenheim), § 2 N 25 ff.

They considered computer programs as simple instructions to the human mind, and thus

uncopyrightable (see KUMMER, 200 ff.; TROLLER [1983], 356 ff.). Their classification must to-

day clearly be regarded as superceded.

See CHERPILLOD (1985) and RAUBER (1988); see also the remarks of Dreier in 1988, concluding

that "reliable criteria" to identify copyrightable computer components did not exist at the

time (DREIER (1988), 483).

678

679

680

681

682

683

Chapter 4: Status Quo of Legal Software Protection

152

itly covered as a copyrightable good on an international basis684 having found
its way into territorial copyright acts, including in Switzerland,685 Germany686

and the United States687.688 In Switzerland, the relevant regulations may be
found in the Swiss Copyright Act. For the members of the European Union,
there are a number of directives released by institutions of the European
Union, including the E-Commerce Directive, the Copyright Directive and the
Computer Program Directive.689 All three directives do not have directly ap-
plicable sets of rules, but have to be implemented by the member states. On
the other hand, in the United States, the U.S. Code only prescribes the most
essential basics in the statute, mostly limited to what was requested of the
United States as a member of the World Trade Organisation. Further guidance
is offered in the Digital Millennium Act and, as a common law country, in ju-
risprudence.

348 The copyright protection of computer programs is two-fold: on the one hand,
the international community has widely agreed to include computer programs
as literary expressions.690 It thereby protects constructivist thinking and the
verbal capacity to express a creative program in a literary form,691 which re-
quires creative thought and energy692. In the 1980s’ understanding, this early
comprehension mainly included verbal instructions to the computer by indi-
vidual human beings. In today’s understanding, although not explicitly men-
tioned in the copyright acts, copyright protection is also partly open to artistic

The copyright quality of computer programs was recognized internationally at the begin-

ning of the 1990s and they were integrated into the subject of copyright with Art. 10 para. 1

TRIPS Agreement and Art. 4 WCT.

Art. 2 para. 3 Swiss CopA.

§ 2 para. 1 German UrhG.

17 U.S. Code § 102 lit. a refers to a machine or device.

Software was already being traded before the 1990s and was partially integrated into the

territorial jurisdictions. In the earlier years however, no regulatory protection seemed

necessary as fewer products were available and their trade was limited to public institu-

tions such as researchers and academics, who relied on an informal exchange of helpful

tools. See an interesting account of the historical development in HARISON, 68, with further

references.

As they are incorporated into national law, they are not of such importance for this thesis.

See particularly Art. 4 WCT.

HOMMEL ET AL., 37.

PERELMAN, 922.

684

685

686

687

688

689

690

691

692

Chapter 4: Status Quo of Legal Software Protection

153

visual works, comprising illustrations, graphic works and visualizations.693 De-
pending on the form of expression or component in question, copyright pro-
tection may include literary and visual elements under its subject matter.

b) Exclusion of Ideas and Functional Prerequisites

349 Copyright law also stipulates certain elements that are excluded from the sub-
ject matter of creative works:

aa) Ideas

350 Ideas are free to use and are therefore excluded from the subject matter.694

Copyright under the so-called idea-expression dichotomy differentiates be-
tween ideas, which are not protected in copyright law, and their perceptible
manifestation in an expression. An example of an idea in computer develop-
ment is ‘to create an online network, where people can create profiles and
share content’. This basic idea can be implemented in different ways, it is called
non-expressive. Today, many social media networks are based on this same
idea but each service provider has realized it differently at a technical, visual
and conceptual level. Only the perceptible implementation of an idea, in an ex-

pression with all its characteristics, is protected as a work.695 Unlike in patent
law and trade secrecy, idea-like shapes of a creation are widely excluded from
its subject matter. This is regardless of whether the idea is entirely abstract or
‘soft’, or more detailed and specific, and thus ‘hard’.696 It is only if the author’s
idea is sufficiently materialized and becomes part of the final expression, that

Art. 2 para. 1 RBC.

Art. 9 para. 2 TRIPS Agreement.

See particularly Art. 9 para. TRIPS Agreement: "Copyright protection shall extend to ex-

pressions and not to ideas, procedures, methods of operation or mathematical concepts as

such". The idea–expression dichtotomy originates from Baker v. Selden, 101 U.S. 99 (1979);

see differentiation in Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir.

1986); Donaghue v. Allied Newspaper, Ltd., (1938) Ch 106; Nutt v. National Institute, Inc., 31

F.2d 236 (2d Cir. 1929); University of London Press v. University Tutorial Press, 1916, 2 Ch.

601; L.B. Plastics Ltd v. Swish Products Ltd., decision of the House of Lords of January 3,

1979, published in RPC, 1979, 551 ff.; Designers Guild Ltd. v. Russell Williams (Textiles), deci-

sion of the House of Lords of November 23, 2001, published in ECDR, 2001, 10 ff.

SAMUELSON (2012), 162; SAMUELSON (2016), 430 ff.

693

694

695

696

Chapter 4: Status Quo of Legal Software Protection

154

aspects of this earlier stage are covered.697 Know-how itself cannot be pro-
tected with copyright, but may be covered in an author’s way of describing
know-how in a work.698 The subject matter of copyright is therefore limited
to the particular, individual creative way of expressing an idea in a perceptible
work. If a competitor expresses the same idea in a sufficiently different way,
no infringement can be claimed.699 According to the rationale behind this
rule, granting strong rights on the basis of abstract ideas would reduce the
public domain inappropriately compared with what society could profit.700 As
explained by the European Court of Justice, this protection would “monop-
olize ideas, to the detriment of technological progress and industrial devel-
opment”.701 With the approach of only protecting expressions under the copy-
right scope, a balance between exclusionary rights and society’s interests can
be maintained.702 The measure further intends to promote competition, access
to information and freedom of expression.703 As a consequence, copyright only
covers the materialized idea in a concrete expression, which is why its scope
of protection is quite small compared with that of patent law.704

351 This approach of copyright to distinguish between ideas and their expression
presupposes that we can clearly separate one from the other. The distance be-
tween an idea and its expression, however, appears smaller when speaking of
multimedia products, such as computer games, social networks and interac-
tive visual interfaces.705 A particular difficulty arises in the copyright assess-

TROLLER (1983), 351 and 374; NIMMER/NIMMER (2016), N 2-33 f. and 2-38 ff.; DORR/MUNCH,

251 f. and 283 f.; Commentary to the German UrhG (Loewenheim), § 2 N 73; SAMUELSON

(2017b), 1498 f.

Baker v. Selden, 101 U.S. 99 (1979), 104.

See: decision of the ECJ of May 2, 2012, C-406/10, SAS Institute Inc. v World Programming

Ltd., N 41.

This is especially under the premise that copyright protection today lasts a minimum of

fifty years after a work's release; see also FISHER, 16.

Decision of the ECJ of May 2, 2012, C-406/10, SAS Institute Inc. v World Programming Ltd.,

N 40.

FISHER, 16.

SAMUELSON (2016), 457 ff.

CALAME (2006), 659; HILTI/PEDRAZZINI, 196 ff.; Staempfli Commentary on the PatG/EPC,

Art. 1, N 57; CHERPILLOD (1985), N 122 f.; NIMMER/NIMMER (2016), N 2-31; SCOTCHMER (2006),

76, with further references; CHERPILLOD (2014), N 46 ff.; WANDTKE/BULLINGER (Gruetz-

macher), § 69a, N 27 f.; SCHWARZ/KRUSPIG, 112 f.; SAMUELSON (2017b), 1498 f.

STRAUB (2002), N 2 and 3; see also discussion in SAMUELSON (2017b), particularly 1516 and

1536 f.

697

698

699

700

701

702

703

704

705

Chapter 4: Status Quo of Legal Software Protection

155

ment of algorithms implemented in codes.706 The U.S. Court of Appeals rec-
ognized the difficulty of distinguishing between an idea and its possibly copy-
rightable expression and established the so-called merger doctrine which says
that if the literary formulation or design of an expression is dictated by its
idea, the idea and its expression are ‘merged’ and therefore inseparable.707 For
a merged expression, no copyright protection is available. The courts further
explained in Apple Computer, Inc. v. Formula International, Inc.708 that the pur-
pose of a utilitarian work would represent the work’s idea, and that every-
thing that was not necessary to achieve and illustrate that purpose or function
would be part of the expression of this idea. The decisive question in evalu-
ating potentially copyrightable material is therefore whether there are several

possibilities to implement an idea.709 If there is only one or very few ways to
realize an idea, the expression and the idea are compound, they are consid-
ered unprotectable.710 As expressed in Whelan v. Jawlow,711 if, however, “there
are various means of achieving the desired purpose, then the particular means
chosen are not necessary to the purpose; hence, there is expression and not
idea”.712 We are thus looking for non-compulsory alternative methods to ex-
press a particular idea.713

352 Nichols v. Universal Pictures714 then established that with the help of a so-
called abstraction test, the examiner should verify by abstracting and filtering
whether the working product resembled a general pattern, and thus a simple
uncopyrightable implementation of an idea, or whether the implementation
was sufficiently specified to represent a concept. In Lotus v. Borland715 the
court for the first time applied the abstraction test to computer programs and

See discussion in BRANDI-DOHRN, 183

Lexmark International, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir. 2004);

Apple Computer, Inc. v. Franklin Computer, Corp., 714 F.2d 1240 (3d Cir. 1983); Whelan As-

sociates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986); Herbert Rosenthal Jewelry

Corp. v. Edward and Lucky Kalpakian, 446 F. 2d 738 (9th Cir. 1971); Morrissey v. Procter &

Gamble Co., 379 F.2d 675 (1st Cir. 1967).

Apple Computer, Inc. v. Formula International, Inc., 562 F. Supp. 775 (9th Cir. 1983).

Lexmark International, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir. 2004).

See discussion in SAMUELSON ET AL., 2358; SAMUELSON (2016), 426.

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986).

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986), c. 1.

See BOECKER, 115, referring to Lexmark International, Inc. v. Static Control Components, Inc.,

387 F.3d 522 (6th Cir. 2004).

Nichols v. Universal Pictures Corporation, 45 F. 2d 119 (2d Cir. 1930); see similarly in

HABERSTUMPF (1993), II N 60 f.

Lotus v. Borland 516 U.S. 233 (1996).

706

707

708

709

710

711

712

713

714

715

Chapter 4: Status Quo of Legal Software Protection

156

evaluated whether a particular hierarchy of a user interface’s top menu struc-
ture should be considered as copyrightable. It assessed which form of listing
represented a common pattern for an idea and where room for individual
expression was available.716 Similarly, in the United Kingdom the English and
Welsh High Court in its evaluation considered whether there would be several
different ways of producing a similar or identical result in a computer pro-
gram. Using underlying ideas and principles, without copying the actual ex-
pression, e.g. its manifestation in the source code, would not represent a copy-
right infringement, as long as the second developer came up with his or her
own design for the outcome.717,718 At its core, both the merger doctrine and
the approach of the English and Welsh High Court seem to be closely related
to Kummer’s theory of statistical uniqueness, which is used in Switzerland and
in nearby German-speaking countries to determine the originality of works.719

The bottom line in all three approaches is to look for a creative leeway to im-
plement an idea. If such a scope of creation is available, the product represents
a copyright-relevant implementation and is no longer just a bare idea.

bb) Functionalities

353 International copyright law focuses on the protection of creative works. Ex-
cluded from copyright protection are elements in a work that possess a direct
associated function and are thus solely included in a work to fulfil this partic-

For practical considerations and more contextual information on the merger doctrine, the

abstraction test and their application to computer programs, see later N 726 ff.

Navitaire Inc. v Easyjet Airline Co. and BulletProof Technologies Inc., decision of the EWHC

of July 30, 2004 (EWHC 1725).

The same would be true for computer programming languages, as Samuelson specifies. A

programming language, although specific and detailed in its concept, may be implemented

differently in the final source code. The programming language here only represents the

idea and the semantic principles are then applied, conceptualized and realized in the final

expression (SAMUELSON (2012), 162 f.).

The theory of statistical uniqueness (Theorie der statistischen Einmaligkeit) examines

whether a work is individual enough so that it seems highly unlikely that the same or sub-

stantially the same work would be created by a third party for the same idea. If both an-

swers are negative, a work is considered original (KUMMER, 30 ff., 44 ff., 47 ff., 63 ff., 80, see

particularly 67.; BGE 134 III 166, c. 2.5; BGE 130 III 168 – Bob Marley, c. 4.1 ff.; see also brief

summary in STRAUB (2011), N 73 ff., with further references; von BUEREN/MEER, N 179 ff.).

For more details, see N 363.

716

717

718

719

Chapter 4: Status Quo of Legal Software Protection

157

ular purpose.720 Functional aspects in a work are considered as necessary in-
cidents, predetermined elements that people may need in order to achieve a
certain result, and hence belong to the public domain.721 Likewise, investing
financial, labour or time resources does not alone suffice for copyright pro-
tection, as it represents a necessity related to the production of the work.722

Although these elements do not harm the copyrightability of a work,723 the
creative element is the focus of copyright law and the work needs to exhibit
an apparent creative influence or strength in order to be protected under this
legal institution. Functional elements are particularly hard to distinguish from
other types of utilitarian elements, which narrow the creative leeway of an au-
thor, but are not rooted in technical operational necessities, rather in another
compelling reason to implement, such as socially predetermined demands of
the target industry, e.g. the users.724

354 In the case of computer programs it is very difficult to determine beyond
doubt whether an expression follows a merely creative or functional aspect. As
Harison outlines in his work, with the incorporation of computer programs
under copyright protection the subject matter of copyright has been extended
to semi-functional and operational elements that are combined with creative
aspects.725 Computer programs show an immediate functionality, while also
having an artistic quality.726 They are not only perceived as classic creative
work as they also pursue a concept of use, suggesting economic and technical
features with an economic rationale. It is thus important to sort out the func-
tional elements that steer the behaviour of a computer program or implement

See particularly the ruling of the ECJ of May 2, 2012, C‑406/10, SAS Institute, Inc. v. World

Programming, Ltd.; Mazer v. Stein, 347 U.S. 201 (1954); see also discussion in NIMMER/

NIMMER (2016), N 2A-19 ff.; DORR/MUNCH, 284 f.; SAMUELSON (2017a), 1267 ff.; BUEHLER, 91 ff.

Baker v. Seldon, 101 U.S. 99 (1979), 103.

In Feist Publications v. Rural Telephone Service, the court held that "the sweat of the brow"

alone is not sufficient to bestow copyright, see Feist Publications v. Rural Telephone Ser-

vice, 499 U.S. 340 (1991), c. 44 f.

Art. 9 para. 2 TRIPS Agreement explicitly excludes subjects that are only technical and do

not involve creativity, such as technical procedures, processes, systems, methods and op-

erations; see also decision of the ECJ of May 2, 2012, C‑406/10, SAS Institute, Inc. v. World

Programming, Ltd., N 39; see also explanations in SAMUELSON ET AL., 2347 ff.; CHERPILLOD

(1985), N 281 ff.; dissenting: RAUBER (1988), 158.

For further information on otherwise predetermined elements that affect the originality

in work creation, see N 364.

HARISON, 176 f.

STRAUB (2013), 1.0 and 2.0; REICHMAN, 2477 f.

720

721

722

723

724

725

726

Chapter 4: Status Quo of Legal Software Protection

158

a utilitarian structure, and thus do not include creative leeway while being im-
plemented into an expression. Instead, they are dictated by the specific con-
text of the use of an element “to carry out a preassigned function”.727

355 With the scènes à faire doctrine, the U.S. court law has established a helpful
doctrine in the form of a thought experiment to figure out whether or not an
element is functional. It also serves to identify other types of utilitarian or pre-
determined elements. The doctrine is based on the idea that every artistic
work involves a number of elements or scenes in a presentation that are oblig-
atory to illustrate a genre, such as indispensible stereotypes in certain
movies.728 As these elements are solely embedded to fulfil a task properly, and
serve a solely technical purpose, they do not involve a creative step. In Altai,729

the scènes à faire doctrine was adopted for computer programs. The court in
particular held that certain mechanical specifications or compatibility re-
quirements of a network would be dictated by external factors (the scènes à

faire).730 Since they are predetermined, they lack creative leeway, and hence
cannot be copyrighted. What is to be considered as predetermined strongly
depends on the individual setting and application case and therefore has to be
evaluated for the particular situation. In computer programs, functional ele-
ments are often manifested through technical necessities, technical specifica-
tions or system requirements that are required to enable the program to func-
tion in its environment.731 Similarly, the program flow, the command structure,
certain expressed formulas or simply systemic constraints to continue with
previously used elements in an established network may be technically prede-
termined in computer programs.732

c) Current Interpretation of the Subject Matter of Software
Copyright

356 Copyright protection for computer programs thus involves the protection of
literary and visual expressions to the extent that they do not serve a merely
functional purpose or are dictated by an abstract idea. A case-by-case evalua-

Oracle America, Inc., v. Google Inc., 872 F. Supp. 2d 974 (Fed. Cir. 2012), c. 200 f.

Williams v. Crichton, 84 F.3d 581, 583 (2d Cir. 1996), commenting on Walker v. Time Life

Films, Inc., 784 F.2d 44, 53 (2d Cir.); see also comment in SCHWABACH, 49.

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992).

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992), c. 2.b.

See also further information on the computer's system environment, in N 127 and N 733 ff.

for practical considerations.

THOMANN (1998), 13.

727

728

729

730

731

732

Chapter 4: Status Quo of Legal Software Protection

159

tion is necessary to assess whether an element of a computer program can be
regarded as copyrightable or not. With regard to the current interpretation in
Europe and the United States, however, a brief general summary can be pro-
vided on the copyrightability of typical components in a software product:733

– The copyrightability of a compact software version, sold for download or
on a CD, as opposed to one-to-one copies is undisputed.734

– Traditionally open for copyright protection are also the classic literary
forms of expression of a computer program, such as the source code, the
object code and the associated documentation such as manuals and in-

structions.735 However, imitations of the literary expression have to be
very similar to the original to be considered a copy. It is also unclear
to what extent translating source code passages from one programming
language to another are covered under copyright protection. While this
problem is widely settled by law for classic literary works,736 it is unclear
to what degree the author’s exclusive and absolute right to control their
work’s use is transferable to computer programs, and whether the trans-
lated source code in a new programming language represents an original

The subsequent listing is not exhaustive, but rather represents a list of the most discussed

components under copyright. For an extended overview of the status quo in legal software

protection, see also STRAUB (2011).

Decision of the Court of Justice of Geneva of August 6, 1986, published in SMI, 1987, 217 ff.;

decision of the Court of the Canton of Zug of August 30, 1988, Auto-CAD I, published in

SMI 1989, 58 ff.; decision of the OGer Zurich of October 11, 1990, published in SMI, 1992,

199 ff.; decision of the German BGH of September 20, 2012, I ZR 90/09, published in GRUR,

2015, 509 ff., and its discussion in HARISON, 64 f. and 173 ff.; REICHMANN, 2487; MARLY, N 89;

KOEHLER, 85.

Art. 10 para. 1 TRIPS Agreement; see for example: BGE 125 III 263 – Software-Lizenzvertrag;

decision of the OGer of Zurich – Software, published in sic!, 2011, 230 ff.; decision of the

ECJ of December 22, 2010, C-393/09; decision of the OLG Hamburg of February 29, 2012,

5 U 10/10, published in MMR, 2012, 832 ff.; decision of the OLG Frankfurt of January 27,

2015, 11 U 94/14, published in GRUR, 2015, 784; Apple Computer, Inc. v. Franklin Computer,

Corp., 714 F.2d 1240 (3d Cir. 1983); Data Cash Systems, Inc. v. JS&A Group, Inc., 628 F.2d

1038 (7th Cir. 1980); ZIRN, 33 f.; WITTMER, 114 ff. and 130 ff.; CALAME (2007), 331; THOUVENIN/

BERGER, 6/3.2, 1; KUMMER, 203; PERELMAN, 928 ff.; LEHMANN (1988), 2420; THOMANN (1998), 12;

WALTL, 47 ff., 59 ff. and 74 f.; U.S. CONGRESS (1992), 13; STRAUB (2013), 2.2 and 2.3; KOEHLER, 87;

WANDTKE/BULLINGER (Gruetzmacher), § 69a, N 10 f.; NIMMER/NIMMER (2016), N 2A-175 f.;

LEMLEY ET AL., 35 f.; Commentary to the German UrhG (Loewenheim/Spindler), § 69a N 5;

SAMUELSON (2012), 159.

See Art. 3 para. 2 Swiss CopA, § 3 German UrhG, 17 U.S. Code § 101.

733

734

735

736

Chapter 4: Status Quo of Legal Software Protection

160

work of its own. Apart from a regulation in the European Union, there is
no prevailing opinion in either doctrine or case law in Switzerland or the
United States in this respect.737

– While in the United States the conceptual structure, sequence and orga-

nization of the source code are protected by copyright, according to case
law,738 in Europe their integration is still unsettled. Although the litera-
ture and the Swiss Dispatch confirm their protection, the European case
law has not explicitly confirmed this interpretation yet. The prevailing
doctrine, however, generally assumes that they are eligible for copyright
protection.739 Similarly unclear is the fate of programmed instructions,

specifications and included parameters. The definition of parameters and
formulated specifications in a source code are probably covered,740 but
whether the simple linguistic formulation of a functional instruction is
also copyrightable remains unclear.741

– Another question is how computer assisting generators (such as macros,
listing, platforms, tools and libraries) and their products should be treated
in copyright. While tools and generators are generally considered as cre-
ative works like every other original computer program, their output, i.e.
source code created by assisting services, is currently assumed to be el-
igible for copyright only if human influence is recognizable in the final
output. This means that the developer is able to affect the final output
by making certain noticeable decisions in the creation of the tool, which

See for a more detailed discussion N 832 ff.

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986); Lotus Develop-

ment, Corp. v. Paperback Software International, 740 F. Supp. 37 (District Court of Massa-

chusetts (1990).

Dispatch to the Swiss CopA, BBl. 1989 III, 523. Due to the missing case law in this field,

authors can only speculate on their eligibility. Supporting the copyrightability of the

structure, organization and sequence: CHERPILLOD (1985), N 283; HARISON, 175 ff.; STRAUB

(2011), N 81-83; STRAUB (2013), N 5; NEFF/ARN, 141 f.; WITTMER, 116 ff.; RAUBER (1988), 184 f.;

WANDTKE/BULLINGER (Gruetzmacher), § 69a, N 23 ff.

STRAUB (2013), N 3 and 13.2.

See supporting examples: HEINEMANN (2005), 69, deduced from European Commission,

decision of March 24, 2004 (case no. COMP/C-3/37.792) – Microsoft, c. 1003 f.; WITTMER,

117 f.; RAUBER (1988), 185; opposing examples: decision of the ECJ of May 2, 2012, C‑406/10,

SAS Institute, Inc. v. World Programming, Ltd., N 39; CHERPILLOD (1985), N 283.

737

738

739

740

741

Chapter 4: Status Quo of Legal Software Protection

161

then shape how the tool produces the outcome.742 Koehler and Kummer
further argue that, mostly, the parts of the generator are then not used
one-on-one but instead need to be adapted to the specific application
environment or mixed with personal elements.743 All these factors help
with the status of the assisting structures.

– Algorithms are generally excluded from copyright protection, as they are
regarded as ideas in the form of mathematical objects and therefore sci-
entific information that belongs in the public domain.744 This means that
scientists and researchers are able to use algorithms for experiments,
without copyright law affecting the competition for innovation.745 In the
domain of computer programs, algorithms are said to have a functional
characteristic, representing a process in the form of a rule.746 For both
reasons, they can’t be copyrighted.

– Mere technical functions and features fall under the public domain, being
considered, as their name indicates, functionally utilitarian, used to fulfil
a particular task.747 Only their original implementation in a concrete ex-
pression, i.e. within a source code, may be copyrightable.748

– Data should be distinguished and considered separately from the com-
puter programs that process them.749 Data do become copyrightable as

See discussion in STRAUB (2011), N 67; STRAUB (2013), 2.1; WITTMER, 129 f.; BUEHLER, 55 ff.;

THOMANN (1998), 16; Commentary to the German UrhG (Loewenheim/Spindler), § 69a N 15;

see no. 4.1.1 of the AIPPI Resolution in: AIPPI, 304; more critical: KOEHLER, 91 f.

See KOEHLER, 91; KUMMER, 42 ff. and 199 f.

The Swiss Dispatch for the Copyright Act in 1989 declared algorithms as generally uncopy-

rightable (Dispatch to the Swiss CopA, BBl. 1989 III, 523). See more differentiated evalu-

ation in: WITTMER, 67 ff.; BRANDI-DOHRN, 180 and 183; HABERSTUMPF (1983), 234 f.; RAUBER

(1988), 165 f.; CALAME (2007), 329; WIEBE, 64 ff.; REHBINDER/VIGANÒ, Art. 2 N 17; Staempfli

Commentary to the Swiss CopA (Cherpillod), Art. 2 N 64; NEFF/ARN, 34 ff.; WANDTKE/

BULLINGER (Gruetzmacher), § 69a, N 28; Commentary to the German UrhG (Loewenheim/

Spindler), § 69a N 12; WIDMER, 252; SAMUELSON ET AL., 2383 ff.; NEWELL, 1026 f.

MATHEMATICAL PROGRAMMING SOCIETY, 3 f.; NEWELL, 1026 f.; Commentary to the German

UrhG (Loewenheim), § 2 N 80 ff. and § 69a N 12; RAUBER (1992), 42.

See descriptions in: SAMUELSON ET AL., 2383 ff.

Decision of ECJ of May 2, 2012, C‑406/10, SAS Institute, Inc. v. World Programming, Ltd.;

Mazer v. Stein, 347 U.S. 201 (1954); see also above N 353 ff. for functionalities in copyright.

See also STRAUB (2011), N 88, with further references; DORR/MUNCH, 407 ff.; SAMUELSON

(2012), 161.; SAMUELSON (2016), 438 ff.

MARLY, N 25 ff.

742

743

744

745

746

747

748

749

Chapter 4: Status Quo of Legal Software Protection

162

part of software, if processed in the structure of a database750 or when
integrated into a copyrightable computer program.751 Databases are only
protectable if their composition or compilation exhibits originality. It is
not given if their structure is a direct consequence of the content.752

– Visual elements such as icons and graphics are copyrightable.753 The
copyrightability of user interfaces is generally accepted, provided that
they show the creative input of the creator in the design and their illus-
trative form does not only cohere to the functional aspects.754,755 As a tool,
the computer can also participate in shaping the process or outcome, as
long as the human being is the creative decision-maker.756 The user inter-
face is copyrightable in its totality of all possible screenshots,757 but also

Art. 10 para. 2 TRIPS Agreement; STRAUB (2013), N 1.2; THOMANN (1998), 19.

STRAUB (2013), N 1.2.

See for example West Publishing Co. v. Mead Data Central, Inc., 616 F. Supp. 1571 (District

Court of Minnesota 1985); STRAUB (2013), N 16.7 and 32 ff., particularly N 32.3.

U.S. CONGRESS (1992), 13; Stern Electronics, Inc. v. Kaufman, 669 F.2d 852 (2d Cir. 1982); VON

BUEREN/MEER, N 296 ff.

Apple Computer, Inc. v. Microsoft, Corp., 35 F.3d 1435 (9th Cir. 1994); Broderbund v. Unison,

648 F. Supp 1127, 1133 (Northern District of California 1986); decision of the OLG Karlsruhe

of June 13, 1994, 6 U 52/94, published in CR, 1994, 607 ff.; see for example HILTY/KOEKLUE,

803 and 807 f.; KUMMER, 203; THOMANN (1998), 18; HEPP/MUELLER/HERMANN, N 1581 ff.;

STRAUB (2013), N 5.1; NEFF/ARN, 147 ff., particularly 149, and 181 ff.; HARISON, 64; WANDTKE/

BULLINGER (Gruetzmacher), § 69a, N 14, with further references; U.S. CONGRESS (1992), 17 f.;

LEMLEY ET AL., 78 ff.; WITTMER, 108; SCHLATTER, III N 77 f. and 92 f.; opinions against the copy-

rightability of user interfaces: Lotus v. Borland 516 U.S. 233 (1996); Digital Communication

Association v. Softclone, 659 F. Supp. 449 (Northern District of Georgia 1987); the European

Court of Justice decided that user interfaces were not covered under the Computer Pro-

gram Directive, but under the E-Commerce Directive (decision of the ECJ of December 22,

2010, C-393/09); Commentary to the German UrhG (Loewenheim/Spindler), § 69 N 7.

Functional in this context means that if the formulated instructions are the only reason

why a user interface has a particular layout, and the user interface does not offer any

further creative contribution, the functionality is predominant and the user interface is

therefore an uncopyrightable work (see also SAMUELSON ET AL., 2352 f.).

Same argument in NEFF/ARN, 182 f.; SCHLATTER, III N 92 f.

STRAUB (2011), N 80; THOMANN (1998), 18; NEFF/ARN, 148; MARLY, N 92 f., with reference to

the decision of the ECJ of December 22, 2010, C-292/09, published in GRUR, 2011, 220 ff.

– BSA/Kulturministerium.

750

751

752

753

754

755

756

757

Chapter 4: Status Quo of Legal Software Protection

163

outstanding individual elements, such as excerpts or fragments, may be
protected by copyright in a concrete form of expression, provided they
are original.758

– Whether the copyright protection of visual elements also covers the look-

and-feel is widely disputed. To date, no European plaintiff has successfully
claimed the look-and-feel of his or her computer program. Only the com-
bination of structural elements and the user interface standing alone have
been protected.759 However, U.S. case law suggests that, in theory, copy-
right protection of ‘concepts and feels’ is permissible, if a creative step
is shown, i.e. if combined with a creative visual effect that exceeds mere
functionality.760 The copyrightability of a creative and innovative look-
and-feel seems to be possible, but with a high threshold.761

– Protection of the development documentation for computer programs is
also controversial. Some authors claim that they are covered by copyright
protection.762 The EU Computer Program Directive in its Art. 1 (outlined
in consideration 7) also covers preparatory design work leading to the
development of a computer program, suggesting that the development
documentation may fall under this provision. But this interpretation falls

See discussion in STRAUB (2011), N 80, with further references; BARRELET/EGLOFF, Art. 3 N 5;

NEFF/ARN, 112 f.; KUMMER, 77; Commentary to the German UrhG (Loewenheim), § 2 N 87.

See for example Broderbund v. Unison, 648 F. Supp 1127, 1133 (Northern District of Califor-

nia 1986), in which the combination of menu points and lists was granted copyright pro-

tection.

Broderbund v. Unison, 648 F. Supp 1127, 1133 (Northern District of California 1986); Apple

computer, Inc. v. Microsoft, Corp., 35 F.3d 1435 (9th Cir. 1994); Lotus v. Borland 516 U.S. 233

(1996).

See for a liberal interpretation: SAMUELSON ET AL., 2429 f.; PINHEIRO/LACROIX, 411 ff.; see also

discussion of various U.S. case law and conclusion in STIGLER, 232 f.; NEFF/ARN, 153 ff.; for

a critical view see: NIMMER/BERNACCHI/FRISCHLING, 631 ff.; WANDTKE/BULLINGER (Gruetz-

macher), § 69a, N 14; Commentary to the German UrhG (Loewenheim/Spindler), § 69a N 7;

BUEHLER, 94.

Supporting view: Decision of the OGer Zurich of June 30, 1983 – Managertyp, c. 2, pub-

lished in SMI 1985, 224 ff.; Commentary to the German UrhG (Loewenheim/Spindler),

§ 69a N 5, with reference to considerations 1 and 7 of the Computer Program Directive;

NEFF/ARN, 123 f.; WANDTKE/BULLINGER (Gruetzmacher), § 69a, N 8; STRAUB (2011), N 30, N 50

Fn 67 and N 62; STRAUB (2013), N 2.2 and 2.3; THOUVENIN/BERGER, 6/3.5, 2; HEPP/MUELLER/

HERMANN, N 1558; KOEHLER, 64 ff.; WIDMER, 251; THOMANN (1998), 12 and 14; THOUVENIN/

BERGER, Kap. 6/3.2., 1; CALAME (2007), 327; U.S. CONGRESS (1992), 13; see opposing view:

WITTMER, 34 f.; VON BUEREN/MEER, N 291.

758

759

760

761

762

Chapter 4: Status Quo of Legal Software Protection

164

short. It is, firstly, unclear what may be considered as preparatory mate-
rial. Samuelson here speaks of a program’s structure, sequence and orga-
nization of the design.763 However, those elements usually represent the
earliest definitive work result of the development process, which is why
their copyright protection tends to be accepted. Further design material
should, however, be evaluated in terms of how materialized the concepts
for later definitive products are and whether they contain abstract ideas
and unprotected functionalities. It is also unclear to what extent aban-
doned ideas, manifested in sketches as working products of trial-and-er-
ror are covered. The current wording of the international copyright acts
and their tight implementation in practice leaves a strong legal uncer-
tainty as to whether an early work product such as development docu-
mentation is tangible and original enough to represent a creative work.
Especially in the case of computer programs that commonly involve a lot
of planning and conceptualization, a clearer anchoring in law would be
desirable.

357 Overall, copyright offers protection for a number of components in a com-
puter program. While the simple literary and visual expression in the source
code, object code and the product documentation are widely accepted in Eu-
rope and the United States, the treatment of certain elements such as the user
interface, look-and-feel, the conceptual structure and organization, as well as
the development documentation are still unsettled.

2. Protection Requirements

358 If the work falls under the subject matter of copyright, one also has to assess
whether the protection requirements are fulfilled. According to these, a work
has to represent an intellectual creation and be original.764

a) Intellectual Creation

359 A work has to represent an intellectual creation. The term creation means that
a work has to be developed or created, but not just discovered.765 Further, the

SAMUELSON (2012), 159 f.

See Art. 2 para. 5 RBC, Art. 2 para. 1 Swiss CopA, 17 U.S. Code § 102 lit a, § 2 para. 2 in con-

junction with § 69a para. 3 German UrhG.

Decision of the OGer Zurich of September 8, 2005 – Girello, published in sic!, 2006, 329 ff.;

WOESTEHOFF, 17.

763

764

765

Chapter 4: Status Quo of Legal Software Protection

165

work has to have an intellectual character. This is the case if an idea originates
from human will which is then expressed in the creation.766 The human makes
use of their free and creative choices in order to consciously decide how to
create their work.767 The required degree of intellectual activity should not be
set too high,768 as the criterion mainly serves to distinguish works from prod-
ucts of chance, simply discovered findings without contribution, and creations
developed by machines or through artificial intelligence, without human influ-
ence.769

360 A computer or computer program is considered as a tool to create a literary or
visual work.770 The intellectual criterion requires that a human has had a con-

scious controlling and decision-making influence on the creation of the expres-
sion.771 As software engineering usually involves a project manager who influ-
ences the concept of the expression and an engineer programming a set of
instructions, the required level of human influence is usually reached without
great practical difficulty. The criterion becomes more problematic when as-
sessing products of artificial intelligence or software tools. But when talking
about ‘classic software products’, the expectations on the level of conscious
and deliberate control over the creative process and its specifications should
not be set excessively high.772

Art. L111-1 French IP Coe ("L'auteur d'une oeuvre de l'esprit jouit sur cette oeuvre [...]"); BGE

70 II 57 – Habla, c. 2; Dispatch to the Swiss CopA, BBl 1989 III 521; BGE 130 III 168, c. 4.5; see

also discussion in TROLLER (1967), 388; Commentary to the German UrhG (Loewenheim/

Spindler), § 69a N 15 f.

BGE 116 II 351; decision of the ECJ, December 1, 2012, C-145/10 – Eva-Maria Painer v. Stan-

dard VerlagsGmbH; Callaghan v. Myers, 128 U.S. 617 (1888); Burrow-Giles Lithographic Com-

pany v. Sarony, 111 U.S. 53 (1884); Lotus Development Corp. v. Borland International, Inc., 49

F.3d 807, 815 (1st Cir. 1995).

BARRELET/EGLOFF, Art. 2 N 6, with reference to BGE 59 II 406 – Kunz.

See particularly STRAUB (2001b), 3; von BUEREN/MEER, N 170; WANDTKE/BULLINGER (Gruet-

zmacher), § 69a, N 32; Commentary to the German UrhG (Loewenheim), § 2 N 38 f. and

§ 69a N 15 f.; WIDMER, 250, with further references.

Alfred Bell & Co. v. Catalda Fine Arts, Inc., 191 F.2d 99 (2d Cir. 1951); HILTY (2010), N 84.

Commentary to the German UrhG (Loewenheim), § 2 N 40 f. and 45 as well as § 69a N 15 f.;

STRAUB (2001b), 3; THOUVENIN/BERGER, 6/3.4, 2; BUEHLER, 54 ff.

See also STRAUB (2001b), 3; BUEHLER, 55 ff.

766

767

768

769

770

771

772

Chapter 4: Status Quo of Legal Software Protection

166

b) Originality (Individuality)

361 The intellectual creation also needs to exhibit what some statutes refer to as
originality, others as individuality.773 Both terms mean that the creation has to

differ from pre-existing works but also from what would be expected and consid-

ered ordinary for the particular category of work in question.774 A purely techni-
cal or routine performance, however skilled it may be, is not original from a
copyright perspective.775 We are thus talking about the required creative step
or threshold a creation has to exhibit in order to be protected under copyright
law.776 The author has to offer his or her own contribution, in which their per-

sonality or thought is expressed.777 This contribution may be based on the de-
sign but also on the planning, selection, screening, arrangement and structur-

There are slight terminological differences: Originality refers to the circumstance that

a particular intellectual creation contains an independent creative imprint, as the em-

bodiment of an author's intellectual thought. It requires an individual intellectual idea as

well as skill, judgement and labour (see BGE 113 II 190, c. I.2.a. and further explanations

in HILTY (2010), N 91; TROLLER (1967), 390; KUMMER, 35 f.; DREIER (1988), 478 f.; Feist Publi-

cations v. Rural Telephone Service, 499 U.S. 340 (1991), decision of the ECJ, December 1,

2012, C-145/10 – Eva-Maria Painer v. Standard VerlagsGmbH, c. 166; WOESTEHOFF, 17 f.;

DUTFIELD/SUTHERSANEN, 80). Individuality, on the other hand, refers to a work's unique-

ness or peculiarity, meaning it has to differ from similar work and from what may be ex-

pected (BGE 130 III 168 – Bob Marley, c. 4.4.; Dispatch to the Swiss CopA, BBl 1989 III,

521; decision of the German BGH of November 14, 2002, I ZR 199/00, published in NJW,

2003, 665 ff.; KUMMER, 36; KOEHLER, 44 f.; NIMMER/NIMMER (2016), N 2-7; TROLLER (1983), 361;

RAUBER (1988), 87 f.; WIDMER, 253 f.; VON BUEREN/MEER, N 178; CHERPILLOD (1985), N 95 ff. and

N 219 ff.; REHBINDER/VIGANÒ, Art. 2 N 1 lit. c.; WANDTKE/BULLINGER (Gruetzmacher), § 69a,

N 33). Because of the proximity of the definitions, the two terms in practice are widely

used as synonyms (see discussion in BGE 130 III 168 – Bob Marley, c. 4.1.) or certain charac-

teristics of both definitions are mixed or confounded (see discussion in HILTY (2010), N 91).

According to presented opinion here, both terms contain elements relevant to the same

protection requirement in copyright, which is why they are here used as synonymous. The

following description also includes elements of both definitions, for this reason.

Dispatch to the Swiss CopA, BBl 1989 III, 521; DUTFIELD/SUTHERSANEN, 79 f.; RAUBER (1988),

86 ff.; WALTL, 55 ff.; NIMMER/NIMMER (2016), N 2-7; THOMANN (1992), 30; Commentary to the

German UrhG (Loewenheim), § 2 N 53; BUEHLER, 97 ff.

Commentary to the German UrhG (Loewenheim), § 2 N 53, with reference to BGH, GRUR,

1003, 34 ff., 36, and others.

Commentary to the German UrhG (Loewenheim), § 2 N 51 f.

Decision of the ECJ, December 1, 2012, C-145/10 – Eva-Maria Painer v. Standard Verlags-

GmbH, c. 166.

773

774

775

776

777

Chapter 4: Status Quo of Legal Software Protection

167

ing of the substance.778 The greater the creative leeway to express an idea, the
bigger the potential influence creativity can have on its elaboration. On the
other hand, if the author has a limited creative margin to exploit, the level of
originality required decreases and the requirement may be met earlier.779 The
overall expression of the design of a piece of work with all its elements remains
the key factor.780

362 In general, the literal or visual expression of a computer program would like-
wise have to exhibit originality to be sheltered under copyright law. However,
according to a ruling of the European Court of Justice, it would not suffice that
the development of a computer program involved a diligent but routine type
of labour and skill. Instead, additional originality had to be exhibited.781 In sim-
ilar terms, the German Federal Court of Justice held that “the skills of an aver-
age talented creator who strings together and assembles elements merely
technically is not protected” by copyright.782 In these decisions, therefore a
qualified threshold for the originality of computer programs was required,
compared to other types of copyrightable works.783 Also in a Swiss decision of
the Court of the Canton of Zug the court asked for particular originality char-
acteristics the program had to exhibit.784 This practice to require a particularly
high threshold of originality for software works in copyright – as established
by the German and Swiss courts – was criticized in particular by Straub, Neff,
Rauber & Arn and Haberstumpf. According to the named authors, as well as in
the opinion presented here, there is no apparent reason or justification why
certain judicial bodies would expect a higher degree of originality from com-
puter-related expressions compared with other categories of works.785 In par-

BGE 113 II 306 ff., 309; decision of the OLG Frankfurt of November 6, 1984, 14 U 188/81 –

Baustatikprogramm, published in GRUR, 1985, 1049 ff.; see a more detailed distinction in

KUMMER, 42 ff.; THOUVENIN/BERGER, 6/3.4, 2 f.

BGE 130 III 168 – Bob Marley, c. 4.1; BGE 113 II 190 – Le Corbusier, c. 1.2.a; von BUEREN/MEER,

N 182.

BGH, GRUR, 1981, 520 ff, 521.

Decision of the ECJ of December 1, 2012, C-604/10 – Football Dataco Ltd etc. v. Yahoo! UK

Ltd etc.

Decision of the BGH of May 9, 1985, I ZR 52/83 – Inkassoprogramm, published in BGHZ 94,

276 ff.

See further discussions in DREIER (1993), 782 f.; RAUBER (1988), 191 ff.

Decision of the Court of the Canton of Zug of August 30, 1988, Auto-CAD I, published in

SMI, 1989, 58 ff.

STRAUB (2001a), 813; NEFF/ARN, 130 ff.; RAUBER (1992), 36 f., DREIER (1988), 478; HABERSTUMPF

(1993), II N 88; see also discussion in THOMANN (1992), 29 ff.; Commentary to the German

UrhG (Loewenheim), § 2 N 59 and § 69a N 17 f.

778

779

780

781

782

783

784

785

Chapter 4: Status Quo of Legal Software Protection

168

ticular, there is no legal basis legitimating such a differentiation. For exeample,
the European Union’s Computer Program Directive does not distinguish be-
tween computer programs and other potential copyright works in Art. 1
para. 3, nor does it ask for an additional criterion or a particularly creative
threshold for computer programs. As with any work creation, it should be sig-
nificant how much room a creator possesses in making a creative decision, and
how much independence they have in choosing the program’s construction.786

As the Swiss Federal Supreme Court emphasized for a different work category,
originality has to be sought and determined for the individual work.787 Or as
Thouvenin puts it, the task specifies how much leeway an author has in the in-
dividual case;788 the decisive factor therefore is to what extent the creator can
then make creative decisions within the task to be solved and how he or she
does it. The individual steps in the design of a computer program include nu-
merous creative decisions, which are then perceptible in the final expression.
For example, Koehler believes that simpler programming languages offer more
variety and therefore more originality in coding, because the particular com-
ponents are not so determined as when using more complex higher program-
ming languages.789 The originality may, however, also consist in an entirely new
constructivist, literary or visual result.790 Wittmer offers a whole list of pos-
sibilities to attain originality, including defining parameters, combining code
sequences and introducing particular visual interfaces.791 He particularly con-
nects elements associated with the applied expertise and know-how of an en-
gineer to measure originality; the greater an engineer’s experience, the more
forms of an expression can be elaborated and the more distinctive the formu-
lation of a code.792 It is important to note that in software engineering, an idea
can often be implemented in different ways through programming, differing
in the selection of key elements, the programming language used, the struc-
ture, program flow, and the logic of the program, etc.793 There are also various
ways that visual elements can be integrated and displayed in an external de-

KUMMER, 30; ENSTHALER/MOELLENKAMP, 158 ff.; HABERSTUMPF (1993), II N 39 and 88 f.; WIRTH,

70; ZEHNDER, 66 f.; Staempfli Commentary to the Swiss CopA (Cherpillod), Art. 2 N 18;

TROLLER (1983), 357; CALAME (2007), 331 f.; WIDMER, 254.

BGE 130 III 168 – Bob Marley.

THOUVENIN (2008a), 64 f. and 69.

KOEHLER, 87.

HARISON, 185.

WITTMER, 114 ff.

See for example WITTMER, 120 f.

See for example THOMANN (1998), 9.

786

787

788

789

790

791

792

793

Chapter 4: Status Quo of Legal Software Protection

169

sign.794 The exact scope of originality that an expression may exhibit hence de-
pends on the components in question. The High Court of the Canton of Zurich
decided that a sequence of commands contains originality if it has not been
taken from existing programs and if it does not solely represent the result of a
routine performance.795

363 In practice, a work’s originality or individuality is usually measured against pre-

existing works and what is known or established for a specific sector of art.
While several different testing approaches exist, for copyright protection in
Switzerland but also in neighbouring countries the theory of statistical unique-

ness (Theorie der statistischen Einmaligkeit) prevails. Introduced by Kum-
mer796 and supported by the Swiss Federal Supreme Court797, the approach ex-
amines whether, in comparison, a work is individual enough so that it seems
highly unlikely that the same or substantially the same work would be created
by a third party for the same task.798 If this is the case, copyright protection
should be granted. The decisive factor is not the purely statistical or quantita-
tive unique existence of an event or thing, but the statistical uniqueness in the
work’s creation, which must stand out from the usual. A creation is not unique
if it is highly probable that the same or essentially the same creation would re-
sult from the same task.799,800 The distinction between two works must also be
sufficiently perceptible, which is not the case if the creation corresponds in all

MOEHRING, 273 f.; U.S. CONGRESS (1992), 17 f.; ULMER, 17 f.

Decision of the High Court of the Canton of Zurich of October 11, 1990, published in SMI,

1992, 199, quote from 202.

KUMMER, 30 ff., 44 ff., 47 ff., 63 ff., 80, see particularly 67.

First of many: BGE 130 III 168 – Bob Marley, c. 4.4.

BGE 134 III 166, c. 2.5; decision of the OLG Hamburg of March 12, 1998, Az 3 U 226/97

– Computerspielergänzung, published in CR, 1998, 332 ff.; decision of the OLG Munich of

May 27, 1999, 6 U 5497/98, published in CR, 1999, 688 ff.; see also a brief summary in

STRAUB (2011), N 73 ff., with reference to KUMMER, 30 ff., 47 ff., and 80; WANDTKE/BULLINGER

(Gruetzmacher), § 69a, N 34.

BGE 134 III 166, c. 2.3.1; BGE 130 III 168 – Bob Marley, c. 4.1-4.4; see also THOUVENIN (2008a),

69 ff. regarding the quantitative and qualitative individuality a work has to show in com-

parison with other works.

As Straub explains, the doctrine of statistical uniqueness is particularly useful for obvious

and clear cases of either literary infringements, where the sequence and number of digits

and letters can be analysed, or for two-dimensional visual expressions that constitute a

particular combination of pixels, which can be statistically evaluated on their likeness.

However, in other cases where we have to qualitatively evaluate the originality of two

works as well as the difference between them, there is a lack of effective, justiciable crite-

ria for making a reliable assessment (see STRAUB (2001b), 5).

794

795

796

797

798

799

800

Chapter 4: Status Quo of Legal Software Protection

170

parts to the usual.801 Under the German interpretation, the work’s individuality
is expressed by its independence, uniqueness and individual character in its
imprint by the author.802 According to the German Federal High Court of Jus-
tice, originality can only be affirmed where a work stands out from the mass

of the everyday, the usually put forward, the banal, in short from what every-

one would have produced in a similar way.803 The doctrine should therefore not
be applied mathematically, but requires evaluative prudence with the specific
case to be assessed.804 Usually routine craftmanship that could be anticipated
is not statistically unique. Comparably, in the U.S. with the sine-qua-non-orig-

inality approach, the original elements in a work are set in proportion to the
pre-existing material, whose protection scope it shall not affect in any way.805

If, on removing from the to-be-examined work what was known from previous
works, including their contribution, no further original aspects are shown, the
work is not copyrightable.806 The work thus needs to differ sufficiently from pre-

vious creations in order to be distinguishable.807 It has to represent a substan-

tial variation from the underlying work.808 In practice, all three approaches are
similar in result; the decisive factor under all three theories is whether the au-
thor had creative leeway to vary.809

BGE 134 III 166, c. 2.3.2.

TROLLER (1983), 361 f.

Decision of the BGH of May 9, 1985, I ZR 52/83 – Inkassoprogramm, published in BGHZ

94, 276 ff.; decision of the BGH of April 17, 1986, I ZR 213/83 – Anwaltsschriftsatz, published

in GRUR, 1986, 739 ff. On the basis of a decision of the German BGH, Rauber offers an

alternative, three-tiered evaluation to assess the originality of works in computer pro-

grams (RAUBER [1988], 191 ff., referring to Decision of the BGH of May 9, 1985, I ZR 52/83 –

Inkassoprogramm, published in BGHZ 94, 276 ff.): First, those elements of a program which

should be tested for originality are defined; second, the distinctiveness of the available

program is compared with pre-existing works; in the final stage, the findings are tested to

see whether they are 'expected' or 'routine', or whether they are unconventional and thus

original (for this, the results of step 1 are used). Rauber's test shows that an individual val-

uation and judgement of what may be considered as 'routine', 'ordinary' or 'conventional'

has to be made for each application.

For the latter statement, see also TROLLER (1983), 363.

U.S. Auto Parts Network, Inc. v. Parts Geek, LLC, 692 F.3d 1009, 1015 (9th Cir. 2012).

ABS Entertainment, Inc. v. CBS Corporation, et al., case no. 16-55917 (9th Cir. 2018).

Massachusetts Museum of Contemporary Art Found., Inc., v. Buchel, 593 F.3d 38, 65 (1st Cir.

2010); ABS Entertainment, Inc. v. CBS Corporation, et al., case no. 16-55917 (9th Cir. 2018);

see also comment in NIMMER/NIMMER (2016), N 3-7 f.

Woods v. Bourne Co., 60 F.3d 978, 990 (2d Cir. 1995).

Staempfli Commentary to the Swiss CopA (Cherpillod), Art. 2 N 27 ff.

801

802

803

804

805

806

807

808

809

Chapter 4: Status Quo of Legal Software Protection

171

364 A software product’s originality may further be restrained by the actual prob-

lem it wants to solve and the audience it wants to serve. Similar to the frame-
work of technical specifications or system requirements,810 the destined social
context in which the software is to be applied may limit the decision-making
scope of the developer so that the author’s room for creativity is attenuated.811

This may especially be the case for particularly common or widely established
software usability design principles. Such standardized utilitarian elements
are indispensable for the software developer,812 and in effect limit the author’s
creative margin, leaving less room for manoeuvre.813 In Altai,814 the court like-
wise held that a target industry’s demands or widely accepted programming
practices within the software industry might also represent external factors
that constrain an author’s creative leeway.815 Where the developer’s scope for
action is narrowed by predetermined or procedural inevitabilities, the origi-
nality of expression is likely to be reduced.816 In practice, the scènes à faire

doctrine817 may also in this case help to identify utilitarian elements and estab-
lish what elements in a work are obligatory for illustrative purposes to achieve
a certain setting, to properly realize a project or fulfil a particular task.

365 The originality of a work also has an effect on the evaluation of derivative or

dependent and similar works.818 Derivative works in general are expressions
that include substantial elements of a pre-existing work. The question is to
what degree derivatives or similar works represent an independent work of

See also above regarding copyright-excluded functionalities, N 353 f.

See decision of the Court of the Canton of St. Gallen of May 24, 2005, DZ.2002.3, c. III.4.c;

see also CHERPILLOD (1985), N 5 ff. and N 213 ff.; THOMANN (1998), 13; STRAUB (2001b), 5;

STRAUB (2013), N 5.2; CARLETON, 408, 427 ff. and 431; ULMER, 18 f.; WIRTH, 70 f.; ZEHNDER, 66 f.;

REHBINDER/VIGANÒ, Art. 2 N 1 lit. c.; HABERSTUMPF (1993), II N 90; SCHWABACH, 49; KOEHLER,

66 ff and 77 ff.; KUMMER, 47 ff.; Commentary to the German UrhG (Loewenheim), § 2 N 56;

SAMUELSON (2017a), 1218 f. and 1267; REICHMAN, 1134.

Williams v. Crichton, 84 F.3d 581, 583 (2d Cir. 1996), commenting on Walker v. Time Life

Films, Inc., 784 F.2d 44, 53 (2d Cir.); see also comment in SCHWABACH, 49.

Consequently, if an unusual and creative way of implementation is chosen within a small

creative scope to solve a particular task, the expected degree of originality is achieved

with few design decisions, while a longer chain is required for obvious decision results

(STRAUB (2001b), 6; THOUVENIN (2008a), 65 ff.; Commentary to the German UrhG (Loewen-

heim), § 2 N 57 f.).

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992).

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992), c. 2.b.

For practical integration and distinction of this topic, see later N 733 ff.

See above, N 355.

See similar reasoning in: NIMMER/NIMMER (2016), N 2-8; DORR/MUNCH, 273 f.

810

811

812

813

814

815

816

817

818

Chapter 4: Status Quo of Legal Software Protection

172

their own and when do they represent an infringing copy of an original. In
general, an author has the right to protect his or her work from being dis-
torted and changed, if a third party tries to do so without their consent.819 This
includes any change in the program as well as a controlling power to decide
on upgrades, maintenance and adaptions to an author’s computer program.820

There are limits to the author’s right to control changes to his or her product:
Reuse of copyrighted products is allowed if a visible distance to the original is
achieved; if the original is still recognizable in the derivative work, the author
of the derivative work needs the consent of the original work’s right holder
for any kind of editing or imitation.821 Similar or recognizable in this context
means characteristics and distinctive creative elements that are preserved in
the second work.822 This is also applicable to parts, blocks and fragments of an
original.823 If, however, the original served only as a source of inspiration for
the derivative work, and the original got further developed in terms of func-
tionality, content and design until it figuratively faded and was no longer rec-
ognizable in the derivative, the author of the derivative work is free to use it.
The central issue here is therefore the question to what extent the dependent
author offered their personal contribution in the derivative.824 The greater the
strength of originality of the first work, the fewer original elements of it may
be adopted for a later work.825 In Switzerland and Germany, the practice of
libre utilisation (Freiheit der Benutzung; free usage) has been adopted. Here-
after, the free use of a copyrighted work or work element is permitted if the
adopted elements appear to be of minor importance with regard to the indi-

Art. 11 Swiss CopA, § 3 German UrhG, Art. 6bis and 12 RBC, for visual arts see also 17 U.S.

Code § 106A. As the United States is a signatory of the Revised Berne Convention, they are

obliged to offer this right to literary works as well.

BOECKER, 151.

See art 3 para. 1 Swiss CopA, § 3 German, § 23 and § 24 para. 1 German UrhG; Nichols v.

Universal Pictures Corporation, 45 F. 2d 119 (2d Cir. 1930), 121; see also HILTY (2010), N 122 ff.;

PERELMAN, 944; KRUEGER, 131.

Decision of the LG Cologne of September 24, 2008, 28 O 530/05, N 75; decision of the

Court of the Canton Vaud of April 10, 1987, published in SMI, 1990, 81 ff.

Decision of the Court of the Canton Vaud of April 10, 1987, published in SMI, 1990, 81 ff.;

see also comment in RAUBER (1992), 38 and 44 f.

See decision of the OGer Aargau of July 31, 1990, published in: SMI, 1991, pp. 79 ff.; see also

comment in RAUBER (1992), 44; THOMANN (1998), 15 f.

STRAUB (2001b), 7.

819

820

821

822

823

824

825

Chapter 4: Status Quo of Legal Software Protection

173

viduality the new work shows, i.e. if its originality is comparatively weak.826 If
the second-hand work, however, represents an intellectual creation and shows
enough originality of its own, it is no longer considered as a derivative but
rather as an independent work, protected with its own intellectual property
right.827 In the case of computer programs, the Court of the Canton of Aar-
gau in Switzerland ruled that if a computer program differs from an original by
nine-tenths of the source code, a case of free usage would result.828 In com-
parison, the U.S. interpretation evaluates whether two works show a substan-

tial similarity if paralleled.829 This means that a substantial, vital and essential
part is equivalent in both works.830 Both principles – the visibility criterion in
Germany and Switzerland and the substantial similarity theory in the United
States – in practice have a largely equivalent result. The more originality a de-
rivative work can exhibit, the smaller the substantial similarity and the visible
likeness between the two works. The evaluation as to whether a piece of work
exhibits enough originality relies on discretion.

366 To conclude, an expression in a computer program has to exhibit originality in
order to be covered by copyright. It has to be distinctive enough from what is
known or could be expected. The creator thus has to make use of the available
creative leeway in forming his or her piece of work. Predetermined character-
istics in an expression constrain the amount or quality of creativity an author
can use in his or her work. Originality is not only important to justify a work’s
eligibility for copyright, but also to set the copyright’s boundaries in evaluating
derivatives. It is thus necessary to evaluate on a case-by-case basis how much
originality is contained in an expression and whether this suffices for indepen-
dent copyright protection.

Hawkes & Son, Ltd. v. Paramount Film Service, Ltd., decision of the EWCA, I CH 593 (1934);

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992); see also § 24 para. 1

German UrhG; see also discussion in STRAUB (2013), N 30.3, with reference to BGE 125 III

328 c. 4c and others; CHERPILLOD (1985), N 237 ff.; BARRELET/EGLOFF, Art. 3 N 5 and Art. 11

N 10; NEFF/ARN, 217 f.; LANDES/POSNER (2003), 42 f.; Commentary to the German UrhG

(Loewenheim), § 24 N 10;

See Art. 3 para. 3 Swiss CopA, § 24 German UrhG; HILTY (2010), N 123; see also discussion

in LANDES/POSNER (2003), 42 f.

Decision of the Court of the Canton of Aargau, published in SMI, 1991, 85 ff.; see also dis-

cussion in BARRELET/EGLOFF, Art. 3 N 12.

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992); see particularly

NIMMER/BERNACCHI/FRISCHLING, 625 ff.; NIMMER/NIMMER (2016), N 3-3 f. and N 3-11 f.; in my

opinion, the same may be assumed for Switzerland and the European Union.

Hawkes & Son, Ltd. v. Paramount Film Service, Ltd., decision of the EWCA, I CH 593 (1934).

826

827

828

829

830

Chapter 4: Status Quo of Legal Software Protection

174

3. Term of Protection

367 The term of protection refers to the period during which the legal effects of a
copyright last. The term starts at the moment when the work may be regarded
as a copyrightable property and continues until it has reached its expiration
date. During this period, the copyright holder can profit from his or her exclu-
sionary rights and commercialize their work. Once the expiration date is
reached, the property can theoretically still be commercialized. However,
other market players are free to use, apply and commercialize the work with-
out the author’s consent.

368 A peculiarity of copyright from the perspective of intellectual property rights
is that copyright protection is obtained automatically with the creation of a
work. A further constitutive formality, as with a registry entry in patent law, is
neither requested nor allowed for copyright.831 The advantage of copyright
therefore is that it does not involve any additional legal or administrative costs
to register such as with other intellectual property rights. Some jurisdictions,
including the United States, however, ask for a formal registry entry to under-
take a copyrighted work in court processes.832 The recognition of the work it-
self remains automatic. As no formal application is necessary, a work’s copy-
rightability can only be tested substantively in the case of a legal dispute,
where a court has to assess the copyright requirements.833 At the same time, a
court dispute usually is conducted inter partes, which is why a ruling’s effect is
limited to the parties involved in litigation.834

369 The copyright holder can execute his or her rights to the work exclusively un-
til the end of the protection term is reached. For most work categories, the
term of protection is internationally set at a minimum of fifty years after the
last author involved in a work’s creation has died.835 Many legislations, such as
Switzerland, the United States and several member states of the European
Union, go beyond the minimum prerequisites of the Revised Berne Convention
and generally grant copyright protection up to seventy years after the author

See Art. 5 para. 2 RBC.

17 U.S. Code § 411 lit. a.

See HILTY (2010), N 81; see also discussion in: THOMANN (1998), 12.

Its effect is ex nunc and inter partes.

Art. 7 para. 1 RBC. Tying the term of protection to the author and his or her death symbol-

izes the maintained connection between the author and his/her work which protects the

author's heritage.

831

832

833

834

835

Chapter 4: Status Quo of Legal Software Protection

175

has died.836 However, as a significant and symbolic exception to this, a shorter
term of protection of only fifty years after the author’s death is granted for
computer programs under Swiss copyright law,837 hence distinguishing com-
puter programs from other work categories. Only very few statutories provide
that the expiration is linked to the release of a specific work rather than the
author’s death,838 and neither Swiss, German nor U.S. copyright law fall into
this category.

VI. Conclusion

370 This chapter has provided an introduction to the most important principles in
computer program protection. Software protection today involves various le-
gal institutions, which each cover different aspects of software engineering
and management. Most relevant for this study are copyright and patent law,
whose protection criteria were discussed in greater detail in this chapter. It
was shown that for these IP rights, many obligatory rules are provided on an
international level and that the three regions – Switzerland, the United States
and the European Union – offer a legally unified and, in practice, very similar
position on many legal issues. Differences in law and practice were highlighted
for each institution. Patent law in general covers technical innovations, and
while computer programs are by word of the law excluded from protection
within the European Patent Organisation, they are practically eligible for
patent protection in all discussed jurisdictions to the extent that the software
innovation offers a novel technical teaching whose industrial application is
sufficiently disclosed in a patent claim. In the past, patent law protection, if
available at all, focused mainly on algorithms and business methods. Copy-
right, on the other hand, protects original, non-functional artistic and creative
expressions in their visual or literary form. It represents the main legal insti-
tution for international software protection. In the past, copyright protection
was judicially affirmed for one-to-one copies of software products and for
certain software components such as the source and object code, including

17 U.S. Code § 302 lit a, § 64 German UrhG and Art. 29 para. 2 lit. b Swiss CopA. See also the

EC Copyright Term of Protection Directive which states in Art. 1 para. 1 that all countries

of the European Union, i.e. Germany, have to guarantee a minimum term of protection of

70 years after the author's death. Due to consideration 15 of the Directive, this is also ap-

plicable to computer programs.

Art. 29 para. 2 lit. a Swiss CopA.

See in particular Art. 7 para. 4 RBC for photographic works and works of applied arts, set-

ting the minimum term to at least twenty-five years from the making of such a work.

836

837

838

Chapter 4: Status Quo of Legal Software Protection

176

their structural and organizational elements, and visual exhibits such as the
graphical user interface. The exact scope and application of patent law and
copyright in the field of software is still not completely settled.

Chapter 4: Status Quo of Legal Software Protection

177

Chapter 5: Findings of the Interview Series

371 For my research I conducted 12 interviews in five months. The general feed-
back to my research topic and scope was very positive – almost all companies
contacted were willing to give an interview. Depending on how detailed the
answers to the questions were, a single interview lasted between 75 and 150
minutes.

372 The result is a list of claims and statements. In the following, the findings from
the interview series are arranged by topic. In order to facilitate the reading,
the sociological notes and interview material were greatly condensed. Where
a clear tendency could be observed, a general statement was formulated. In
this case, no individual source was cited because the statement applied to the
majority of the interviewed companies and thus serves as a general assump-
tion for the present study. Where particularities or contradicting claims oc-
curred which appeared relevant or notable, statements were indicated sepa-
rately, marking their source.

373 The first four sections of the findings (I-IV) discuss the technical and practical
aspects of software development and commercialization. The fifth section (V)
focuses on the legal scope of software protection, including the interviewees’
experiences with the current system and their expectations of regulatory
changes. In the final section (VI), we discuss the candidates’ experiences with
enforcing intellectual property rights in the market.

I. Software Development

374 The first section focuses on the development of computer programs. We here
evaluate the meaning software engineering has for the industry, how the in-
volved parties approach a software project and how they structure the devel-
opment project.

A. The Relevance of Software Engineering

375 Software engineering was shown to be of high relevance for all the interviewed
companies. Many interviewees emphasized the importance of software engi-
neering for their businesses by describing it as their “core business”, a “vital
part of their work” or explaining that “without software their company would
not exist”. This observation was true for every company except one, which

178

stated that software engineering had only a minor role in their business.839 All
the other companies agreed that software engineering was one of the most
important aspects of their business activity.

376 Several interviewees observed that during the last two decades the relevance
of software has generally increased as their usability for industrial manufac-
turing, infrastructure and services has been augmented. They emphasized that
mechanical governors and electronic circuits, which had previously been used
in the industry primarily to control and steer machines or hardware products,
were being replaced by software systems and computer programs.840 This in-
crease in relevance could also be observed in the employee structure of the
companies; one interviewee noted that a quarter of all employees of his large
company were working in the IT department doing software engineering.841 He
said that without computer systems, their service would not be operable.842

Others claimed that every technical or machine process in their work was con-
trolled and organized with software.843 Although the statements were not ver-
ifiable, it suggests that companies tend to put a large share of their resources
and budgets into software engineering, be it to develop software themselves
or to edit and monitor bought third-party products. Computer programs to-
day are used similarly to mechanical components in earlier decades to realize
technical solutions and to fulfil and control particular processes.844 Computer
programs therefore have gained a significant importance for companies and
institutions.845

B. The Development Process

377 In order to develop an adequate intellectual property system for computer
programs, I believe it is important to understand what the course or develop-
ment process of software looks like, which factors influence it and how long
the process requires to be completed.

Transcript E, N 7. This feedback may be questioned as this company is one of the major

patent applicants for software methods in the world. Possibly the interviewee was focus-

ing on what part classic engineering plays in his daily work, he may have misunderstood

the question, or it was his personal opinion.

See transcript E, N 3 and transcript G, N 11.

Transcript H, N 7.

Transcript H, N 7.

See transcript F, N 7, transcript G, N 11, and transcript A, N 10.

See, for example, transcript I, N 18 and 62, and transcript G, N 11.

See transcript G, N 11.

839

840

841

842

843

844

845

Chapter 5: Findings of the Interview Series

179

1. The Process

378 As described by the interviewees, a software development project does not
differ greatly from other types of projects.846 Usually, common project meth-
ods are integrated and adapted to the needs of the individual project structure.
The interviewees distinguished several different methods to shape a software
project.847 They described how the selection of a method depended on avail-
able human resources and on the technical knowledge and domain know-how
that is available in a company.848

379 The interviewees described several distinct phases or steps in each develop-
ment project. They commonly mentioned a phase “where the idea pops up”849

and you start working on it. This is what I have previously referred to as
ideation. In a second step, the idea would be advanced and thought through
carefully by setting up small test structures from drafts – the conceptualiza-
tion phase. In this phase, the essential requirements and features are devel-
oped and elaborated in order to draft a first rough structure of the program.850

It is during this phase that most of the research and preparation takes place
and potential user needs are worked out. A considerable amount of resources
are put into conceptualization because most of the coordination, documenta-
tion and business analysis is required at this stage in order to further the pro-
ject.851 When the design framework is finally established, the requirements and

Transcript G, N 25. Newer trends show that forms of project organization which were first

developed for and tested in software development have now been adopted in other fields,

e.g. holacracy and agile frameworks such as Scrum.

Transcript I, N 43.

Transcript I, N 40.

The ideation phase also refers to project ideas which do not merely pop up but instead

emerge after market analysis or as a consequence of a business or client need. The com-

mon starting point for a software project is an idea or a formed business need from the

clients. Most companies said that they develop in close cooperation with existing clients

or the consumer community (see for example transcript C, N 15, transcript B, N 18, and

transcript D, N 20).

Some interviewees split the design phase into two separate phases where first a rough

concept is drafted with the requirement formulation and analysis and in a second phase a

more detailed design is shaped where the structure is outlined.

The interviewee explained: "What we produce is software. But (...) comparing the work-

share needed for coordination, documentation, business analysis and all the rather non-

technical issues to the workshare for engineering, more time is requested for non-techni-

cal issues" (transcript I, N 14).

846

847

848

849

850

851

Chapter 5: Findings of the Interview Series

180

features are then realized technically in the engineering phase, where they are
transferred into a computer-readable code form. After that, the software is
implemented, tested and maintained in its future environment.

380 During the interview series it became clear that all of the companies tend to
work with individually structured development models. They either follow the
classic linear approach852 or a version of the spiral853 approach, depending on
the complexity and particularities of the software project. Although both mod-
els are used regularly in all the interviewed companies, agile approaches in
particular are said to be slowly replacing the classic linear waterfall approach;
a project manager and his or her team of engineers work in shorter intervals
or cycles, so-called sprints, in which one or more software parts or modules
(e.g. a particular functionality) are developed and realized.854 The software de-
velopers described how it was much easier to test a single increment or com-
ponent instead of waiting until the whole product was completed. As the de-
veloper is able to create a first testable component sooner, the approach is
very resource-saving and the project owner (and his/her team) can react
faster to contingencies.855 This first incremental output may function as a de-
liverable prototype that can be shown to potential clients, investors and other
relevant people, which is interesting from a marketing and commercialization
standpoint. The interviewees referred to this first deliverable as the minimum

viable product: the earliest point in development when a product is apparent
and able to stand alone.856 From then on, new functions or adaptations – de-

liverables or increments – can be added piece by piece. At the same time, how-
ever this approach carries the risk that during a set of sprints a chain of unau-
dited or mismatching puzzle pieces may be created. The product owner thus

If a project is developed linearly the engineer works similar to a waterfall from one step to

another without ever returning to the previous one. For more information regarding the

linear approach, see N 172 ff.

Instead of working from one phase to another and having a final product at the end of a

cycle, engineers with this approach focus on one specific function they want to develop

first. They elaborate the requirements for this particular function and code until they have

a small computer program (or several) expressing this function. It is like one piece of the

final software. The engineer then jumps back to the stage where they select a new func-

tion they want to implement and then elaborate the requirements for this function and

code it into another puzzle piece. For more information regarding the iterative approach,

see above N 175 ff.

See explanation in transcript K, N 22.

See for example transcript D, N 83, where the interviewee describes the linear process as

something you "used to do".

It is also referred to as the minimum viable increment or the minimal marketable product.

852

853

854

855

856

Chapter 5: Findings of the Interview Series

181

has to carefully coordinate the single increments created by several teams in
parallel sprints, which may represent a disadvantage compared with the linear
approach.

381 Although working with iterative models has become very popular, most com-
panies do not dictate which approach their software developers should use.
On this question, the engineering team is mostly free to decide for themselves.
As a consequence, what we see in practice is that one software system that is
designed by several engineers or teams may contain multiple distinguishable
computer programs, where some were developed linearly while others were
built iteratively.857 An even stronger tendency can be observed for a mix or
combination of both models where certain aspects of the linear model and the
iterative model are joined.858 In the case of such hybrids, engineers tend to fol-
low a linear process from the idea to the concept where the main require-
ments and features are summoned, before they start programming iteratively
and implementing one drafted feature or function after another. This finding
therefore contradicts the previous understanding.

382 Another tendency observed is that companies are increasingly trying to think
of software as a product that is developing continuously. During the earlier
periods of software commercialization, computer programs were distributed
on floppy disks and later on compact disks (CDs). In order to get a new version
of the software, a new release had to be purchased on a new separate physical
carrier. Today, most programs run on an online server and can be updated
from the Internet. Maintenance of software products therefore is no longer
concentrated from major version to major version but instead occurs continu-
ously. Provided that a release runs as desired, the online users are not even
notified about the ongoing process or changes, but instead should be able to
use the software product without major interruptions to the system. This
change in the development and implementation of software has a remarkable
effect; new functions and features, updates and bug-fixing represent an ongo-
ing process and are no longer clearly separable and identifiable product ver-
sions.859 This newer release trend is called continuous delivery.860

383 In 2015, when the interview series was completed, only a handful of papers
were found that described the continuous delivery approach from a computer

See for example transcript I, N 36.

See for example transcript H, N 17, and transcript A, N 28.

See transcript D, N 20, and transcript A, N 14.

For more information regarding the continuous delivery method, see above N 182 ff.

857

858

859

860

Chapter 5: Findings of the Interview Series

182

scientific perspective. Today, the online search engine of the Association for
Computing Machinery (ACM) provides around 30,000 search results in its li-
brary for the term, most papers published between 2016 and 2018.861 In 2019,
as back in 2015, the continuous delivery method in software engineering prac-
tice seems to be growing in popularity and is widely used to publish software
products on servers, offering groundbreaking possibilities for the ICT indus-
try. The major benefit of this approach is that the users do not need to stop
using a computer program at some point and purchase a new version.862 As
the update can be provided automatically, the user can install the new version
without great difficulty. As no separate purchase is necessary and the software
can be installed without a contribution of the users, the developer can change,
adapt and release their products whenever they are ready to do so. The engi-
neers can react faster to regulatory changes, current trends or new needs and
provide the new version at shorter intervals instead of releasing big chunks of
software on a new physical carrier every couple of years. The pace of software
launching has thus picked up speed.863 One simple component is constantly
altered and renewed with short release breaks.864 On the negative side, the en-
gineers have to perpetuate backward compatibility and thus have to continue
with the previous release’s software system in order to integrate new modules
or offer updates.865

384 While smaller companies tend to decide for each new software project which
approach they want to follow for the development (bottom up), bigger compa-
nies rely on standardized project processes or road maps, which guide them
through their development process (top down). These include clearly defined,
separable phases and steps. Larger companies also incorporate legal counsels
in their processes, which are at the disposal of the project developers and en-
gineers.866 The legal counsels retain an overview of the whole development
process from its beginning to its end. More extensive legal monitoring is inte-

See online at

<https://dl.acm.org/results.cfm?query=continuous delivery&Go.x=0&Go.y=0> (retrieved

July 29, 2019); see also above, N 182.

Transcript M, N 13.

Two companies emphasized that they also work with short-time releases. However, they

would try to limit the releasing to a smaller number a year as every release would also

carry the risk of a system breakdown which could not guarantee the stability needed in

their business class (see transcript I, N 34, and transcript H, N 15).

Transcript A, N 14, and transcript K, N 18.

Transcript M, N 13.

Transcript G, N 25, and transcript F, N 17.

861

862

863

864

865

866

Chapter 5: Findings of the Interview Series

183

https://dl.acm.org/results.cfm?query=continuous%20delivery&Go.x=0&Go.y=0

grated at certain milestones of a project, for example to ensure that no intel-
lectual property of third parties is infringed or to draft a contract if a collabo-
ration with third parties is planned. The standardized development processes
empower the engineer to work freely within their field of duty so that they
know at which point other parties within the company should be involved.
From the perspective of the company, standardized projects also help to miti-
gate compliance risks.867

385 The interviewees described how, nowadays, collaborations with external part-

ners are formed more frequently in the industry. Companies often work with
other engineering teams or tend to outsource particular parts of a project.868

Big companies whose core business does not lie within engineering either
open a separate developing group somewhere abroad or pass on the engineer-
ing or coding step to third parties to let them finalize their projects. This
means that software development within a company often does not work like
a closed shop but instead partnerships are made for selective collaboration.
Collaboration partners in this context are, for example, suppliers, consultants
or even clients who help with realizing and commercializing a project. Another
popular method is to buy standardized software from a third party and adapt
it in-house to the company’s particular needs.869 The selection of a suitable
approach for a company is often related to a cost-benefit analysis and is de-
pendent on the knowledge and know-how available within the particular com-
pany.870

386 To conclude, an evaluation of the software development process has shown
that the previous approach of linear software engineering has been partly re-
placed with spiral methods or a combination of both methods. In spiral ap-
proaches we can still observe reoccurring phases of ideation, conceptualiza-
tion and realization, followed by the implementing and testing of the created
computer programs. The approach used for development is commonly de-
cided on a case-by-case basis by the developer in smaller firms, while bigger
companies tend to work with standardized engineering processes which de-
fine in detail which methods will be used in which situations and at which
points further internal resources and external collaborations may be re-
quested.

See transcript C, N 15-20.

See, for example, transcript F, N 17.

Transcript A, N 12.

Transcript F, N 29, and transcript E, N 23.

867

868

869

870

Chapter 5: Findings of the Interview Series

184

2. Duration

387 The interviewees were asked how long the development of a new software
product or service takes on average. According to these companies, the time
between a new project idea and its finalization can vary from a few months to
several years. The longest period specified was nine years, which was needed
for the development of a large-scale project, including a complete new system
environment.871

388 The exact time needed to develop a new software product was said to depend
on the particular circumstances and settings of a project. According to the in-
terviewees, there are several factors that influence the total duration of the
development process:

– complexity of a problem;

– conciseness of a client order;

– creativity and commitment of the involved engineer(s);

– innovation degree and novelty of the project;

– know-how and knowledge of the engineer(s);

– available resources (money, time, staff);

– pre-existing, reuseable software components;

– degree of engineering documentation needed;

– requested sustainability of the software system;

– administrative processes;

– decision-making processes of involved parties such as management or
public authorities;

– expectations on the time-to-market;

– compliance issues (especially product clearing); and

– legal requirements.

389 Although there are many factors that have an effect on the duration, those
with the greatest influence were said to be the complexity of a problem and
the administrative issues connected with a project. At the same time, the great
diversity of factors shows that the duration may strongly differ from project to
project and that it is difficult to determine a reliable figure. Therefore, al-
though we cannot make a generally valid statement for each case, we can find
an average to work with in the present study.

See transcript L, N 25. 871

Chapter 5: Findings of the Interview Series

185

390 From the small sample gathered, an average duration of the core development
process (from idea to the first release of a complete software version) of ap-
proximately 3 years can be estimated.872

391 With the iterative approach, possibly combined with a continuous delivery ap-
proach, it is often difficult to tell exactly when a first version of the software
product can be considered as “finished”. Talking about the minimum viable
product, the interviewees explained that in practice it takes an average of
2 years to complete a first presentable or releasable function of a feature,
which itself may consist of multiple individual deliverables or increments.873

Once the minimum viable product is formed, several two to four week sprints
follow, in each of which a new function or feature is implemented.874

392 Although the small sample of 12 interviews does not allow statistical final
statements to be made, it gives an idea of how long the development process
might take. According to this, a linearly developed project may require an av-
erage of 3 years from its idea until its final implementation. Where the itera-
tive approach is used, a period of 2 years, on average, may be needed to create
a minimum viable product.

C. Programming in Particular

393 In order to determine how far protection should reach, we took a closer look
at the engineering process. The interviewees were asked how and why a par-
ticular programming language was selected for a software project, to what ex-
tent they could rely on existing code and how easy it was to reproduce tech-
nical components, if required.

1. Selection of a Programming Language

394 The interviewees agreed that the developer can often solve the same technical
problem with several computer languages. This means that they are able to ful-

Where the software company worked with the continuous release approach, the first ma-

jor release was considered as a reference point to determine the duration of the core de-

velopment phase. This point then also functioned as the starting point for the next deliv-

ery project. As the first release usually represents a big launch, the subsequent deliveries

occur at shorter intervals.

See for example transcript A, N 30.

Transcript A, N 162.

872

873

874

Chapter 5: Findings of the Interview Series

186

fil identical requirements and display the same characteristics in different com-

puter languages. The engineer can therefore choose between a set of lan-
guages and decide which one he or she wants to pick to realize the project.

395 Four factors were described that affect the selection of a programming lan-
guage:

– the pre-existing technical environment or system;

– available engineering skills;

– trends and support of the community;

– the personal preference of the engineer.

396 The pre-existing technical environment appears to have the greatest influence
on the selection. Several interviewees described software as working like an
ecosystem; there are numerous programming languages that show a similar set
of components and frameworks. This means that they are based on similar
characteristics or principles and are therefore alike. As they are built on the
same principles, they can also co-operate, and become combinable and ex-
changeable. Within the ecosystem there are also coding libraries, tools and
computer-assisting programs available.875 If a new element has to be inte-
grated into an existing system or used on a specific platform, the characteris-
tics of the program have to be compatible with its future ecosystem, otherwise
the program and its future system will not be able to interact.876 Software en-
gineers refer to this as connectivity. Certain elements are dependent on oth-
ers. The smaller the set of available programming languages within the same
ecosystem, the more restricted the discretion of the software developer. One
particular field of application is the market of smartphone app programming.
Here the selection of a programming language is restricted by the two main
operating systems available (iOS from Apple and Android from Google). As both
producers provide a very limited number of programming languages each, the
developer is bound by these few languages if they want to offer an app in the
relevant store. Selecting a computer language thus can be platform-related as
the developer is dependent on the software’s future ecosystem.877 The pro-
gramming language therefore is partially predetermined by the subject you
want to code and the environment you want to integrate your program into.

Transcript E, N 34, transcript I, N 51, and transcript K, N 28.

See, for example, transcript A, N 40 and 42, and transcript E, N 36.

For this problem see transcript K, N 26.

875

876

877

Chapter 5: Findings of the Interview Series

187

397 Another aspect influencing the selection of a programming language is the
skills that are available within the software developing company. As with com-
mon linguistic languages within any other kind of business, engineers do not
“speak” all computer languages.878 Usually, they have a certain set of language
skills they offer. Dependent on the engineer’s particular language skills, a soft-
ware developing company will tend to code in one type of programming lan-
guage or another.879

398 As will be described later, there is a particular culture in the software engi-
neering industry that supports the exchange of expertise and know-how.880 As
a consequence, one major criterion affecting the selection of a programming
language is the predominant trends of the industry. Since the rise of the Open
Source community and the provision of libraries and computer-assisting tools,
engineers have been supported by their IT-community.881 For example, the lan-
guage C was very popular until the early nineties, but with the increasing im-
portance of the IT community, Java has widely replaced C in most engineering
sectors.882 Now, if a developer has to solve a complex problem they may want
to rely on pre-existing tools and build on solutions they can find in libraries or
within the Open Source community. Consequently, if they do not use a wide-
spread programming language the developer has to code everything by them-
self, which requires more resources. Engineers therefore want to work with a
language that is well-supported by the community. The available components
often show a high technical quality. This may support the longevity of the pro-
gram it is implemented in as well as its persistence.883 Similar to the analogue
life, trends and the mainstream change over time.884 The engineer therefore
has to keep up with these changes and even sometimes learn a new computer
language.

399 As with the selection of a linear or spiral approach, in many companies, engi-
neering teams can select for themselves which programming language they
want to use. If not restricted by a certain system environment or trend, the
selection becomes a question of personal taste. He or she can “choose the

Explained illustratively in transcript I, N 51.

See for example transcript H, N 29.

See N 449 ff.

See explanation in transcript K, N 26.

This example was brought up by several parties. See for example transcript I, N 52.

Transcript K, N 26.

Transcript I, N 53.

878

879

880

881

882

883

884

Chapter 5: Findings of the Interview Series

188

means which suit them best”.885 As one interviewee explained, every engineer
has certain preferences for particular languages.886 If there is a set of lan-
guages they can select from, they usually take the one that in their personal
experience has been proved to solve a particular category of problem best or
easiest.887 The preference for a particular language may also be due to a partic-
ular image the language has or the personal interest of the engineer. If they are
a supporter of the Open Source community they are more likely to work with
Linux than with Apple or Microsoft products, as Linux itself is Open Source
and built on free software, while other distributors tend to be more propri-
etary. The personal background of an engineer may thus be seen in the com-
ponent he or she produces.

400 To sum up, four main criteria were observed that can influence the selection
of a computer language in a software development project. While the particu-
lar requirements of a software system seem to be the main reason for selec-
tion, other reasons such as available skills, trends and support in the IT com-
munity as well as the preference of the engineer can lead to a particular
decision.

2. Adaptability of Computer Programs

401 As seen in the previous section, the selection of a programming language is
rooted in four main criteria. What was further discovered in the interviews
was that a programming language can be extended, combined with or substi-
tuted entirely by another programming language. Translation from one to an-
other is possible as long as two languages from the same set or ecosystem are
selected. Different programming languages offer different illustrations or ex-
pressions of the same steering algorithm. It is thus possible to exchange a pro-
gramming language and translate the programming languages from one into
another. This is supported by the fact that, like known translating services for
linguistic languages such as GoogleTranslate and Skype Translator, there are
also translators available that translate the source code from one computer
language into another.888

402 The determining factor in translating a computer program is effort; changes
are always related to effort and therefore have to be backed by a cost–benefit

Transcript H, N 27.

Transcript H, N 27.

Transcript I, N 51 and 53.

See discussion in transcript A, N 44 ff.

885

886

887

888

Chapter 5: Findings of the Interview Series

189

analysis. The engineer has to work within the same ecosystem and follow its
coding patterns and best practices. It is not just the translation that requires
effort, but also making all the smaller adaptions so that the software is not only
compliant but appears the same to the user. The more connections that exist
in a software system, the more complex it gets to translate all the links and
transform an existing code into a new language. Therefore, an engineer will
try to stick to the old language or choose one that is compatible. Some com-
panies have to change their source code from one language to another in or-
der to increase the efficiency of their system, open up to new functionalities
or because the former programming language is no longer supported by the
community. At the same time, switching to another programming language al-
ways carries risks, as mistakes in translation can happen easily and the relia-
bility of a system might suffer. Changing or altering code therefore usually re-
quires a large amount of effort. Interestingly, the interviewees felt that if the
reproduction of code took a lot of effort, this was the best technological mea-
sure to protect them against copying.889 As copying the original already takes
a lot of effort, even more is required to conceal the pilfering. However, as long
as you comply with the outlined rules, the source code can be translated from
one programming language into another. The effort needed to do so widely
depends on the individual case.

403 What is true for code translation is also true for adaptations in the structure
of a source code within the same programming language, known as refactor-

ing. Overall, rearranging parts of code within the source code is possible but,
depending on the available resources, a change in structure may represent
tremendous expenditure. Again, a company might want to do this if a
cost–benefit analysis predicts benefits, such as efficiency or readability. Or as
one of the interviewees explained: “It is like a house: if you only want to alter
the interior design, it will be cheaper. If you want to eliminate a wall, this will
cost more. If you want to reconstruct the basement as well, this will become
very expensive. And whenever you are attached to other interfaces or to a
technology, you will face more problems and costs”.890 In general, however, re-
arranging the structure of the source code is feasible.

404 New technical solutions have made it easier to copy, paste and adapt technical
solutions in computer programs. One can simply choose an element and inte-
grate it into a new environment. Although it was clear for all companies inter-
viewed that a source code can be altered and pasted, many of them empha-

Transcript I, N 22, and transcript B, N 174.

Transcript A, N 52.

889

890

Chapter 5: Findings of the Interview Series

190

sized that not every similarity or translation in a source code should be open
to legal prosecution by the author.891 If a certain amount of work has been put
into the manufacturing of new code, this work should be valued too. The effort
needed to create a new work therefore should be a determining factor for the
evaluation of derivative- works, including source code copying.

405 To conclude, project elements can often be displayed in a number of similar
programming languages. Within the same ecosystem, the developer is free to
partially or entirely translate or adapt the source code. Blocks of code can be
moved around and rearranged within the same source code. Both changes –
the translation and adaption of the original source code – are not a question
of possibilities but rather of expense.

II. Software Commercialization

406 The basic rules for trading are set in the legal system. Commercialization is an
important issue for right holders as this is the way they can earn back their
investment. What the commercializing strategy looks like varies largely from
one company to another and may also change over time. This section first
looks at the interviewees’ impressions of the software market in order to then
explore the different distribution models for software products, enlarging on
the Open Source model in particular. It closes with a look at the average prod-
uct life cycle of software.

A. The Software Market

407 There are several multi-state treaties that, at least partly, cover the protection
of computer programs on an international scale. In the interviews, the parties
were asked what significance the international market has for their work and
whether they experience competition in the IT market.

1. Offering on the International Market

408 The market in software engineering was described as two-fold. Companies
strongly differentiate between software they purchase from others to imple-
ment or integrate as demanders (consumer) and software which they offer
themselves on the market (provider). Analysis of the interviews showed a
strong tendency for software engineering companies to work internationally

See for example transcript H 114 and 118, and transcript K, N 31. 891

Chapter 5: Findings of the Interview Series

191

in both perspectives, as consumers and providers. Many companies have ob-
tained software from a supplier in another country, at least once, because ei-
ther they did not have the skills to develop this product themselves or because
the investment would not have been financially feasible. Most companies do
offer at least some of their products on the international market. Europe, the
United States and Asia were stated as the most promising markets.892 Expand-
ing to other national markets, as one interviewee explained, was easier in the
field of software engineering compared to other industries, as the core of the
product offered remained the same in every country.893 By providing manuals
and user interfaces in multiple languages, one can gain access to several mil-
lion new potential customers worldwide. In addition, it was noted that the in-
vestment needed to enter the first national market is the highest, reducing for
every new market conquered afterwards. Commercializing products interna-
tionally thus gradually reduces the economies of scale.894

409 There were some participants in the interview series who said they had not
expanded to other markets, instead focusing on their home country’s mar-
ket.895 These companies had in common that they either provided a very spe-
cialized service in a niche area or were in some way aligning their software
product with particular legal settings that were relevant for the business sec-
tor they were supplying. This might be, for example, data protection law, IT
security laws or public law regulations for a specific sector (telecommunica-
tion) or topic (tax and accounting). Supplying a business sector with a high
regulatory density may therefore result in a company working less interna-
tionally as the expense of adapting the software system to a new legal envi-
ronment would be too high.896 This corresponds to the fact that the companies
stated it would be a big disadvantage to expand into new markets as the legal
systems were so different between different jurisdictions. This would cause
great legal uncertainties. It was noted more than once in the interviews that
the U.S. market was difficult to become established in because of its non-
transparent and non-foreseeable court practice. Punitive damages in particu-
lar were said to increase the risk in offering products in the United States.897 A

See transcript G, N 75

See transcript I, N 92.

Transcript K, N 55.

Some of these companies stated that they purchased software from foreign providers and

that, to this extent, considered software engineering as an international business (see for

example transcript I, N 92).

See for example transcript L, N 57.

See for example transcript C, N 54.

892

893

894

895

896

897

Chapter 5: Findings of the Interview Series

192

rational risk assessment would therefore often dissuade expansion into the
U.S. market. As well as differences in jurisdiction, the legal systems, as ob-
served in the patenting of software, were said to require a great deal of effort
to analyse and organize commercialization strategies. Due to the extent of re-
search and preparatory work, many companies desisted from expanding.898

410 To conclude, it was observed that the software engineering market in general
tends to work internationally. Only a few companies limited their services to
one country alone. The ones that did so had in common that they either pro-
vided a very specialized service to their clients or the software they supplied
was used in a business area accompanied by high density of legal regulations.
Differences in legal systems were described as a risk factor in expanding to
further national markets and therefore a negative factor.

2. Free Competition

411 The argument of free competition is often brought up in response to an inten-
sified intellectual property system, and not solely in the field of software pro-
tection. The question therefore is, what significance does competition have for
software engineering as such and for a system including IP rights in particular.
During the interviews, the questions on this subject were rearranged and re-
formulated several times. One problem was the difficulty of capturing the is-
sue in one comprehensible question. At the same time, the question had to be
open enough to not appear leading. I therefore asked the parties in quite gen-
eral terms about the importance of free competition for software engineering.
This meant that the interviewees could choose which aspects they wanted to
focus on. The question could either go in the direction of what significance
free competition had on their occupation, or lead to a political debate on
whether competition was possible at all in a system with intellectual property
law. The formulation of the question was successful in that I received feedback
on both avenues with a wide spectrum of feedback and the latter seemed to be
hitting a weak spot.

412 In the first answer category interviewees discussed what significance free

competition had on the occupation of software engineering. I was here address-
ing the potential effects of competition on the trade and business of software
development. All agreed that competition as such was something important

Especially for smaller companies it remains difficult to evaluate the foreign market, and

essential resources for the analysis of foreign legal systems are rarely available. See tran-

script K, N 55.

898

Chapter 5: Findings of the Interview Series

193

for producing and consuming software. Several interviewees felt that the soft-
ware market did not differ very much from other industries and that com-
petition is valuable for every market.899 They described free competition as
“motivating”, “inspiring” and “empowering” for the participating companies,900

explaining that in monopoly markets the parties would become “bored”, “lazy”
and “uncreative” and that developing in such an environment would not be
constructive for a company.901 Most of the companies therefore seemed to
fully appreciate competition in their occupation, as it drove their work and
they had to stay ahead of competitors and offer high-quality services and
goods to maintain their customer demand. Competition would also help to
guarantee a standardization process in technology, as competitors are able to
learn from the practical solutions of others.902 Competition was therefore re-
garded as a very positive thing, contributing to a good final product.

413 In the second strand, answers were expected on how free a market should be
and how the engineers truly experienced the software engineering market. Com-
panies here distinguished between software they purchased and used in-
house, and software components or single programs they bought from third
parties to integrate into their own software and then sell to their customers.

414 On the consuming side, the companies confirmed that they observed compe-
tition between sellers and that they were completely free to decide which
company to buy from. They selected based on various factors and the role of
the market in terms of price, performance, offered services, and so on.903 Ulti-
mately, the clients chose software based on their preferences, making supply
and demand the key factors in their decision. The more specialized the prod-
uct or service and the more dense the market becomes, the fewer the com-
petitors available to choose from.904 But even in these limited markets, com-
petition can still unfold and the companies can decide between a smaller

See particularly transcript C, N 50.

Transcript C, N 48.

Transcript C, N 48 ff.

One interviewee in this context mentioned the term "copy with pride". He noted that keep-

ing an eye on the market and adapting certain elements would keep the market creative

and help keep it alive. At the same time, he emphasized that simple copies of a component

were not helpful, as they did not make a constructive contribution to the market. For the

full discussion, see transcript K, N 53.

See transcript L, N 55.

Transcript L, N 55.

899

900

901

902

903

904

Chapter 5: Findings of the Interview Series

194

number of specialized competitors. One may therefore conclude that free
competition is warranted where companies are looking for a complete soft-
ware solution.

415 It gets more complicated analysing free competition from the developer per-
spective where companies are looking for components and single programs
they can implement in their own products. It was expected that interviewees
would discuss the effects of exclusive intellectual property rights on the mar-
ket, and they were unanimous that it presented a challenge for companies to
develop within a market that is partially restricted by the intellectual property
rights of other companies.905 Further, they stated that too many exclusive
rights for basic inventions could have negative effects on the market. Apart
from that, however, the feedback was divided between two political camps; a
bigger proportion of the companies interviewed saw exclusive intellectual
property rights (particularly patents) as a reasonable institute in software en-
gineering that had an effect on the market, but one that could be handled.
They said that exclusive rights, even absolute rights to a certain extent would
help to stave off the competition for a limited period in order to get estab-
lished in the market. This would help companies to regain their investments
and would consequently be a positive measure. A smaller number of compa-
nies, mainly the smaller or middle-sized companies, had a strong aversion to
monopoly-like rights and emphasized that patent law in particular had a neg-
ative effect on competition, restricting the market dramatically.906 IP rights
were considered as strongly hindering, and even blocking, software develop-
ment. I was struck by the clearly negative feedback from the smaller compa-
nies and was curious about the strong emotions I sensed in the answers given,
which I could not fully classify. After the first couple of interviews I therefore
added an additional question to the interview schedule. Regardless of the in-
terviewee’s answer to the first question, I asked whether and to what degree
they had been hindered practically by an exclusionary right of a third party in
developing their software. All but one interviewee stated that they had never
themselves been prevented from developing software. Several had experi-

Many companies explained that they had implemented a control mechanism or standard-

ized processes in both buying and developing software to check that no intellectual prop-

erty rights of third parties were infringed. See for example transcript B, N 60, and tran-

script C, N 52.

Transcript H, N 126, transcript E, N 88, and part of transcript A, N 96.

905

906

Chapter 5: Findings of the Interview Series

195

enced impediments in one way or another, but all the companies involved
could either avoid implementing the particular product or could switch to a
similar service provided by a third party.907

416 What we can observe here is a clear gap in some of the statements; on the one
hand, these interviewees emphasized that exclusive intellectual property
rights, and patents in particular, would have strong negative effects on the
market as they would hinder or even block others. On the other hand, none of
them had been, de facto, hindered in developing a software product, which
would appear to be contradictory. I see two possible explanations for this;
first, as the interviewees had never personally experienced a blockage, they
may have adopted their opinion on IP rights from a third party, such as a de-
veloper friend or the media, and had generalized their statements. Another ex-
planation could be that the statements reflected fears of the interviewees that
their company could be hit by the potential negative effects of patenting in the
future. As the smaller companies noted, they had probably infringed someone
else’s IP rights by accident before. Their reaction in the interview might there-
fore represent anticipation of what they would feel if they were actually con-
fronted with an IP infringement. Either way, we know that the involved com-
panies have never been prevented from developing a software product, so
competition in these cases might have been partially impeded but never fully
eliminated in the process.

417 Another aspect discussed by some parties was the impact of licensing and the
scale of the fees in particular. This was seen as the second potential negative
side of an exclusive IP right in terms of competition. Indeed, many represen-
tatives of smaller companies described the pricing in the software industry as
inappropriate and “harsh”. The smaller companies particularly felt that licens-
ing fees were too expensive and the terms too unilateral. Only lower fees
would be able to foster competition in the market. However, a representative
of the opposite point of view commented: “Free competition – that sounds
okay to me. But free competition cannot become synonymous with ‘free-of-
charge’. Free competition for me means unobstructed competition; that no-
body tries to act unfairly and can put obstacles in somebody else’s way. Com-
petition law has to answer this problem. But free competition does not mean
that everything is cost-free. Because after all, big companies (…) have to pay
the wages of their employees and taxes and they have to make investments.

In transcript A, N 96, one interviewee talks about a specific feature the company wanted

to implement but could not because of a standing third party patent. They then had to fall

back on an Open Source product that offered a similar solution.

907

Chapter 5: Findings of the Interview Series

196

And if everything would need to be available at no cost, this would not work.
I believe these issues get mixed up (…).”908 This interviewee differentiated be-
tween the competition that has to be provided and granted in the market in
general, and the desire of certain engineers for IT services to be provided at
lower or no cost. I have noticed that personal interests and stereotypes of-
ten affect the debate of ‘intellectual property rights vs. free competition’, and
that the various layers behind the problem are difficult to properly distinguish.
The discussion became very emotional, making it hard to evaluate neutrally
whether or not IP rights have a negative effect on the market. However, as no
interviewees had been seriously hindered by a competitor, with alternatives
always available, it can be assumed that “patent wars” are not a problem of
daily business and rather become relevant in more established markets, if a
company is big enough to raise the attention of others.909

B. Distribution Models

418 By using adequate and tactical price models, commercialization can be
adapted to the practices of an industry as well as to the needs of a company
and its clients. I asked the interviewees which models they used to commer-
cialize their products.

419 Overall, they tended to work either with licensing or software as-a-service
models. Companies in the mobile app sector provide their programs partially
for free by cross-financing their products with others.910 One company cur-
rently makes use of a ‘freemium’ model where the customers do not need to
purchase the app but instead buy supplementary extensions if they want to
benefit from a particular additional service.

420 On the whole, a clear shifting trend away from licence models towards software

as-a-service was observed. Companies that continue working with licence
models frequently charge their clients per activated user or per connected
electronic device. Services, often development or maintenance services, are
usually billed by the hour911 or by registered access of a service on the server
of the right-holding company912. The drift towards software as-a-service is
partly associated with another trend, described in the section on selling elec-

See the original transcript in German: transcript G, N 70.

Transcript F, N 51.

Transcript A, N 20.

Transcript C, N 11.

Transcript L, N 12.

908

909

910

911

912

Chapter 5: Findings of the Interview Series

197

tronic hardware devices. According to the interviewees, until very recently
users generally had to purchase the hardware products, while the software
was implemented for free. Today, more companies are providing hardware
components at lower costs or even for free, but instead will charge for the
software products and services.913 Recurring price models encourage a con-
tinuous relationship with clients instead of a one-time purchase. As a conse-
quence, the software companies working with software as-a-service can make
more profit with longer-lasting customer relationships and higher economies
of scale914 – two important factors that make software as-a-service a very at-
tractive pricing model.

C. Excursus: The Significance of Open Source for Software
Engineering

421 With the rise of the Open Source community and the Free Software move-
ment, sharing working products and ideas freely online has been described as
the most important trend in software engineering. Although the sharing com-
munity does not have a direct impact on the protection scope of software, it
should nevertheless be recognized as an important factor in software devel-
opment and commercialization as well as in copyright protection of software.
Therefore, during the interviews, I took the opportunity to ask the participants
about the significance of the Open Source and Free Software communities to
their daily work and what are the major pros and cons.

422 The companies interviewed unanimously confirmed that the value of Open
Source, especially, is immense and that the significance for software engineers
is clear. Many stated that without the community it would not have been pos-
sible to realize their software or, if at all, only with the help of large third-party
finance aid. They stated that a major part, sometimes up to 50 per cent, of the
source code is based on programs and code provided by third parties such as
the Open Source community.915 Without this opportunity, the required work-
load would increase substantially. The available selection of libraries, source
code, programs, routines, loops, frameworks, even whole computer operating
systems such as Android and Linux, is large and the benefits of using Open
Source programs and Free Software are said to be outstanding. All of the com-
panies had integrated at least some parts of Open Source into their software.

See transcript G, N 15.

Transcript G, N 15; see also transcript L, N 14.

See for example transcript I, N 82, and transcript K, N 47.

913

914

915

Chapter 5: Findings of the Interview Series

198

Several stated that only a very small percentage of the software on the market
had not integrated online-available third-party components.916 Others have
claimed that without Open Source software engineering and maybe even
technology standards in general would be lagging behind for up to eight
years.917 They describe how although Open Source and Free Software are im-
portant, these models could perfectly co-exist with and complement the clas-
sic proprietary solutions.918

423 While many consume from the Open Source community, very few of the in-
terviewed companies shared their own technical solutions or made them ac-
cessible. The know-how necessary to develop software can be seen in the
source code.919 If a company provides an excerpt of their software online, and
thus offers insight into their technical solution, they could endanger their pro-
prietary distribution models. Why should any customer pay for software that
is partially available for free? The use of Open Source in this case is deliber-
ately one-sided to prevent know-how from leaving the company. Others argue
that they would be willing to share their work, but they consider their devel-
opments to be too specific, and the community would not profit in any way
from them.920 If a technical solution was designed to work only in a very spe-
cific field of application, it would not be transferable to another one. Providing
computer programs within the community, hence, requires a standardization

effort to make it useful and relevant to others. Most companies do not have the
resources or incentive to contribute and make this effort, although they would
like to.921 In order to offer a minimal contribution, companies therefore often
allow their employees to code for the community and start their own small
projects in their leisure time.922 Active participation, however, is still limited to
bigger companies with more resources and a relevant business strategy.923

See for example transcript F, N 41.

See for example transcript A, N 80.

See the same conclusion in transcript M, N 29.

For more information regarding the visibility of know-how in software components, see

N 441 ff.

See transcript K, N 51.

Transcript I, N 86.

See for example transcript B, N 54, and transcript A, N 88.

One example of a company providing code within the community is found in transcript F,

N 45 and 73.

916

917

918

919

920

921

922

923

Chapter 5: Findings of the Interview Series

199

1. Chances and Benefits

424 The emergence and acceptance of Open Source and Free Software is closely
related to the benefits it brings. The main advantages are its accessibility and
quality, its reference to a community spirit, that it is cost-free and that it sup-
ports technological standardization.

425 Accessibility – with the rise of the Internet, the exchange of know-how has in-
creased dramatically. As the Internet stores the provided information and
elaborated solutions, the engineer can select from a mass of accessible li-
braries, forums and platforms. This makes software engineering faster and
simpler, and lowers search costs, as the individual engineer does not need to
develop a solution to every problem, but instead can rely on pre-existing prod-
ucts.

426 Quality – Open Source software usually implies good quality. As many solu-
tions for similar problems are offered, usually only the strongest and best pre-
vail. The products are consistently reviewed, tested and enhanced by experi-
enced members of a huge community. Therefore, bugs, weak spots, even
security holes in a program are revealed more easily. As it is a characteristic of
the community to continuously improve a product, the discovered problems
can be fixed quickly and simply.

427 Community Spirit – as will be explained later,924 in the technical questions es-
pecially, the interviewees described how engineers have a strong wish to ex-
change their know-how. Open Source platforms provide them with the base
they need to do so. It “gives engineers the possibility to learn fast and develop
fast”.925 The community thus enables the industry – similarly to the function of
patents – to learn from each other and enhance the state of knowledge by of-
fering solutions publicly. Another feature of the community spirit is the open-
ness of the system; everyone is able to participate by consuming or providing
content. It is then up to the community which solutions are accepted and en-
hanced. This is part of the “democratization”926 within the community.

428 Cost-Free – smaller companies have very limited time and financial resources.
They are grateful that they do not have to discover every problem’s solution

See N 449 ff.

Transcript A, N 80.

Transcript H, N 63.

924

925

926

Chapter 5: Findings of the Interview Series

200

themselves but, instead, can use available components from others entirely
free. Considering the established licence models in software engineering,
Open Source therefore offers a cost-efficient alternative to licensing fees.

429 Standardization – it could be related to the described democratization within
the engineering community that certain trends are formed within the com-
munity. As the expert community decides for itself which solutions are the
best and therefore which to preserve, a standardization process automatically
occurs. As explained before,927 software engineers’ companies like to use tech-
nical solutions, for example programming languages, which are well-sup-
ported by the community. The whole community therefore is pooled and
moves together in a specific, unified direction. This causes a standardization
movement in which the whole community aligns, and adjusts their approaches
and solutions.

2. Risks and Negative Effects

430 Although the positive effects of Open Source are evident, the interview series
showed that while most companies make use of provided content, only very
few also share their content and know-how with other engineering compa-
nies. The reason for this is that there are certain negative aspects and risks in
using Open Source software.

431 There are many different Open Source and Free Software licence types avail-
able which each have very different characteristics. This makes it hard for
every developer using Open Source to oversee the terms and conditions of the
integrated components. Similar to a proprietary licence contract, there are
certain requirements a licensor has to meet in order to receive a contractual
right to embed Open Source or Free Software components. The most restrict-
ing type of licence is probably a Free Software licence called GPL (General
Public Licence), as it requires the licensor to open his or her whole source
code to the community (called back-licensing). Using code that relies on a GPL
therefore affects, or “contaminates”, the rest of a computer program, if it is
distributed.928 This makes GPL unattractive to those companies that are either
unwilling or legally restricted from licensing their software back to the com-
munity. These restrictions may, on the one hand, be due to contractual agree-
ments with clients who paid a developing firm a certain sum for an exclusive

See N 398.

For this reason, Open Source and Free Software is sometimes referred to as "contagious";

see particularly transcript G, N 58 ff, and transcript C, N 32.

927

928

Chapter 5: Findings of the Interview Series

201

development and now do not want the software to be shared with third parties
for free. But the restriction may also be rooted in the need to protect sen-
sitive (personal) data.929 Companies can be forbidden from opening up their
source code by law, for example due to IT security concerns or telecommu-
nication statutes. If companies work with some kind of sensitive information,
they hence may, de facto, be hindered in using Free Software or stricter Open
Source licences. In this case, particular content that is constrained with a
strict licence type in software developing companies usually has to be autho-
rized by the legal counsel or avoided entirely.930 Instead, the companies try to
provide their engineers with tools and libraries they can use without prob-
lems. Some interviewees also referred to a particular software their compa-
nies used to scan the source code of their products and services in order to
detect whether a Open Source component was integrated.931 Other develop-
ers are not equally concerned with the problem, as their companies do not sell
the developed products on the market but rather make use of the software in-
house. As they do not distribute their developments, they usually do not come
under the terms of the GPL licence. Also where companies sell individual soft-
ware to specific scattered customers, the risk that anybody will ever analyse
their source code and determine an actual infringement of an Open Source or
Free Software licence is quite small, even though it cannot be entirely ruled
out. There are many different ways in which companies react to the challenges
occurring with the use of Open Source software. Clear guidance for the en-
gineering departments with a comprehensive policy, was particularly noted to
minimize the potential risk of using online components.

432 Another aspect mentioned was that, similar to ‘common’ software, Open
Source and Free Software, too, may contain bugs and security holes. But as the
components are made available to a larger audience, erroneous solutions are
spread on a larger scale and have a quantitatively greater impact. It is probable
that a considerable proportion of the community is “affected by the same infec-

tion”.932 As so many engineers or developments are affected, errors in Open
Source solutions may become a question of unknown liability. As described by

See particularly transcript F, N 73.

See for example transcript H, N 65.

One supplier who was mentioned several times in the interviews is Black Duck

(<https://www.blackducksoftware.com>).

One described the effects of the so-called 'Heartbleed Bug' in 2014; an error in a security

protocol provided by the Open Source library meant it did not encrypt data the way it was

supposed to do and the personal data of users could therefore be extracted more easily.

Discussed in transcript K, N 49.

929

930

931

932

Chapter 5: Findings of the Interview Series

202

https://www.blackducksoftware.com/

some developers, often certain limits to the warranties in Open Source li-
cences are set that restrict the users from integrating Open Source software in
high-risk environments, such as steering systems of planes and atomic power
plants.933

3. Closing Commentary

433 Several interviewees stressed that working with Open Source does not mean
that companies can no longer be profitable. Larger companies try to integrate
the Open Source model into their proprietary models. This happens partly be-
cause Open Source offers some convincing benefits, mostly however it is done
because the users and younger engineers are demanding that bigger compa-
nies adapt and rethink.934 One company that was described as following this
dual-licensing model, where Open Source and classical proprietary licences
are combined, was the U.S. company Red Hat. Calling itself a leader in provid-
ing Open Source software,935 Red Hat offers a wide range of Open Source pro-
grams and component licences. Most of its offers meet the essential needs of
many engineers and are thus highly standardized. Additional specialized ser-
vices and offers with adaptations are licensed in proprietary models for a fee.
Through this, Red Hat has built its name, making it more reliable for engineers
and offering tailored solutions for companies requiring more enhanced tech-
nical solutions.936 This example shows how software engineering companies
can adapt to new properties of the market and how remedy models might
change over time.937

434 To conclude, this section has shown that Open Source and Free Software have
a major significance for software engineering. Both may still be gaining in im-
portance and continue to do so over the next couple of years. Content pro-
vided by the community is incorporated regularly into software and has be-
come a necessity for software engineering because of its useful qualities.
However, the interviewed companies, especially the legal counsels, stressed

Mentioned in transcript A, N 82.

See for example transcript M, N 29.

For more information, see <www.redhat.com>.

Red Hat was mentioned in several interviews, for example in transcript H, N 80. You can

find more information about their services at <www.redhat.com>.

According to a press release on October 18, 2018, IBM is set to acquire Red Hat by

December 2019 (see <https://www.redhat.com/de/about/press-releases/ibm-acquire-

red-hat-completely-changing-cloud-landscape-and-becoming-world’s-1-hybrid-cloud-

provider> [retrieved September 6, 2021]).

933

934

935

936

937

Chapter 5: Findings of the Interview Series

203

http://www.redhat.com/
http://www.redhat.com/
https://www.redhat.com/de/about/press-releases/ibm-acquire-red-hat-completely-changing-cloud-landscape-and-becoming-world%E2%80%99s-1-hybrid-cloud-provider
https://www.redhat.com/de/about/press-releases/ibm-acquire-red-hat-completely-changing-cloud-landscape-and-becoming-world%E2%80%99s-1-hybrid-cloud-provider
https://www.redhat.com/de/about/press-releases/ibm-acquire-red-hat-completely-changing-cloud-landscape-and-becoming-world%E2%80%99s-1-hybrid-cloud-provider

the risks and challenges of using Open Source. Still, the benefits outweigh the
risks, forcing companies to keep using them but limiting the negative effects
with strict policies.

D. Product Life Cycle

435 An important question for my research was to figure out whether the current
duration for which computer programs are protected under IP law is adequate.
The main aspect of this problem was how long average products are in use. By
estimating the approximate time a product can be distributed – the so-called
life cycle – companies can calculate the period in which they have to work off
their investment. I therefore asked the companies for an estimation of the
length of the life cycle of their software products. To try and unify the results
for the qualitative responses, we counted it from the moment when the soft-
ware was first implemented to when it was terminated or had to be replaced
with a new system or a larger “rework”. It was difficult for the interviewees to
determine these start and end points because testing and maintenance regu-
larly distort clean cuts. Another difficulty was that most of the interviewed
companies were currently offering several software products on the market,
so they could only make an educated guess about an average runtime of all of
them. In addition, most of the projects discussed were still live and running.
The interviewees could consequently only predict an expected life cycle end.
The feedback thus may be partly imprecise, but it still provided a lead on how
long software products are commercialized in practice. As these numbers
were based on the previous experience of the engineers, I considered them to
be quite accurate.

436 Further, companies that work with the continuous delivery model do not think
of software as a fixed subject that can be completed at some point. Rather,
some of them expect, or at least hope, that their software system will be able
to last almost indefinitely.938 As the developers can react to difficulties, they
are able to meet the users’ needs more flexibly and at the same time maintain
their software technically. The continuous delivery approach may thus be able
to prolong a program’s life cycle. For programs built on the continuous deliv-
ery approach, we agreed to focus on the first basic software version and thus
calculated from the program’s initial implementation up to the point when the

See for example transcript K, N 18. A practical example of long-running continuous deliv-

ery software is Google's Search Engine which has been in use since 1998 (see The History

of SEO). Today, approximately 21 years later, Google is still offering this service and we do

not expect it to be terminated in the near future.

938

Chapter 5: Findings of the Interview Series

204

system could no longer be re-engineered in further cycles or supported with
additional add-ons. Alternatively, we could have concentrated on the separate
modules, which are added individually, to calculate the life cycle. Either
method of calculation is possible. For the present study, I decided to work with
the first model for two reasons. First, the software as a complete product is
a unit that can be separated more easily. Second, the interviewees described
how today’s users look at the full package, searching for computer programs
that satisfy several needs at the same time. By implication, a single feature
or component is not as valuable to them as the whole program. Therefore I
wanted to focus on the whole program and not just one aspect. This also al-
lowed me to obtain more detailed information about the sequence of the indi-
vidual partial releases.

437 Overall, the software developers estimated the expected life cycle of a soft-
ware product to be something between 5 and 25 years. As a rough average, the
interviewees said that it takes 10 years before a system has to be fully replaced.
Regrettably, some projects had to be abandoned after a shorter period of 18 to
24 months because the projected business cases did not work.939 However,
successful software products may go through several cycles of a complete
software system if the demand is sustained:940 They are fully maintained,
newly integrated into a new system structure and afterwards released again
after a total revision of their system. Where such a re-release occurs, the de-
velopment project is assumed to require even more careful planning and far-
sighted anticipation.

438 The companies were also asked if they could explain which factors influenced
a software life cycle’s length and how they realized a new system had to be
prepared for development. They said that to a certain degree software could
be adapted, improved, enhanced and maintained within its own system. New
code may be added, new system connections may be made, but after a certain
amount of time, the effort or costs of maintaining the existing system become
too high to continue. Or else the technology as a whole changes so much that
the system has to be adapted to newer standards.941 This is when the end of
the life cycle is reached and the companies have to reinvest in new software –
the so-called point of no return.942

See for example transcript B, N 16.

Transcript B, N 12.

Transcript L, N 16.

Transcript A, N 26, transcript E, N 19, and transcript I, N 34; in transcript I, N 36 the inter-

viewee in this context spoke of the "costs to get off the technology".

939

940

941

942

Chapter 5: Findings of the Interview Series

205

439 According to the companies, the life cycle of software may be significantly ex-
tended by measures that keep the program manageable and transparent for
the engineer working on it or increase the efficiency of the system. A clear
structure and neat building of the code as well as good documentation of the
engineering process were described as the minimum standards for a software
developing company.

440 To sum up, the life cycle of a computer program was defined as the term be-
tween the software’s implementation and the point when it has to be termi-
nated or replaced with a new system. The software system has to be replaced
when it becomes too expensive to maintain it. It was explained that the aver-
age duration of a software life cycle is around 10 years, depending on the par-
ticular circumstances and the preventive measures taken. New developing ap-
proaches make it more difficult to determine exact start and end points in a
life cycle. The longest time period indicated was 25 years.

III. Know-how in Software Engineering

A. The Significance of Knowledge and Know-how

441 In order to optimize the legal protection of software, we have to find out
where the (added) value of the developing company lies.

442 According to the interviewees, one of the most valuable factors in software
development is a software developer’s knowledge. They distinguished between
three spheres of knowledge: a developer’s specialist knowledge or expertise,
his or her working experience, and the vertical domain know-how. The first
term was commonly described as the technical knowledge of a person about
the specialist’s standards and principles. The interviewees explained that this
knowledge was usually gained from an apprenticeship or higher education.
The working experience of a software developer referred to the practical
knowledge he or she gained working on the job. Experience would help a de-
veloper to evaluate what technical or procedural measures had proved to be
useful or what to go without. And, finally, the vertical domain know-how re-
ferred to the in-depth knowledge of the particular business segment in ques-
tion, the applied use, including particular knowledge about the business seg-
ment, its clients and their expectations, processes, structure and operations
as well as the possession of valuable contacts. Following an illustration of one
of the interviewees, the relation between the three types of knowledge can be

Chapter 5: Findings of the Interview Series

206

described as the following:943 If one wants to build a concrete wall, the tradi-
tional specialist knowledge is the armouring irons that hold the concrete. Your
experience tells you how to raise the wall, how to start and which instruments
to use, but it is the domain know-how that tells you how the cement should be
compounded and in which place it can be utilized most economically and ef-
ficiently. All three spheres of knowledge therefore interact. One cannot work
without the other, but it is the exact combination that has an effect on the final
product and service.

443 All the interviewees agreed that both experience and domain know-how are
key factors of their work and that both enable them to distinguish themselves
from their competitors. Although in the interviews they distinguished between
experience and vertical domain know-how, they commonly used the term
know-how if they wanted to include both at the same time. For them, the term
know-how referred to the practical hands-on knowledge of an engineer. This
know-how could either be based on long-term working experience or on par-
ticular knowledge of a business segment.944 The interviewees described how a
software developer’s know-how influenced the development and resulting
software product on several levels:

– in discovering and reacting faster to new trends;

– in how a project is developed and which highlights are made;

– in how collaborations with other partners are established and retained;

– in elaborating and specifying requirements in conceptualization;

– by knowing where the difficulties lie in a technical implementation;

– in talking effectively to clients in order to shape an order;

– by knowing what are the best practices of software engineering;

– in incorporating additional benefits;

– in drafting a user-friendly and handy design and framework;

– in choosing appropriate key interfaces;

– in structuring and documenting code;

– in developing creative solutions and programs;

The original explanation may be found in transcript G, N 46. For the illustration above, it

was slightly adapted.

The two spheres were described as hardly distinguishable, if you have to determine in an

individual case what sphere of knowledge was concerned. Hereinafter, I will therefore re-

fer to both spheres of knowledge at the same time when speaking of know-how, without

emphasizing a case in particular.

943

944

Chapter 5: Findings of the Interview Series

207

– by knowing what has been tried and tested and therefore is proven to be
effective;

– in realizing projects faster and more effectively;

– in a faster reaction to possible problems;

– in evaluating the market;

– in commercializing software;

– in using resources efficiently;

– in anticipating likely problems;

– in knowing your clients, competitors and your resources; and

– in producing a program that can be monitored and adapted easily if
needed.

444 Both experience and domain know-how have an impact on how an idea is re-
alized technically. The interviewees believed both were important assets they
had to protect. At the same time, the software companies highlighted that the
know-how involved in creating a software product is often visible in the pro-
duced software component. As the accessible source code represents the
commands the computer should execute, the developer’s know-how invested
in expressing these commands is displayed on the surface.

445 While a third party can acquire specialist expertise, the experience and do-
main know-how is something that evolves from within a company and is not
accessible to just anyone. Further, the interviewed companies described how
vertical domain know-how would be important for distinguishing a company’s
service in software development, operation and maintenance. Although there
are certain niche areas, there are many software developers on the market
who possess high-quality specialist knowledge of the technical aspects. Simi-
larly, there are many developers available with long-term experience in the
field. These experienced employees are free to change their work place and a
company cannot stop them from using their experience. Therefore, companies
try to stand out from the crowd by selling their know-how of a particular busi-
ness segment instead, where less competitors are established. This is particu-
larly effective for fields in which an in-depth understanding and know-how of
the area in question is rare and where it is important to meet a customer’s
needs in technical implementation. Domain know-how has become very valu-
able for software developers because this may be the way to distinguish your
business from other professional and experienced software developers. The
interviewees highlighted that domain know-how was the biggest focus point
when a new employee was trained on the job as it may help afterwards to com-

Chapter 5: Findings of the Interview Series

208

plete a job more effectively.945 And it is also domain know-how that a company
wants to retain legally when an employee leaves a company.946 The domain
know-how is said to represent the key asset for a software developing com-
pany.

446 Another interesting finding was that higher education in computer sciences
was described as being similarly valuable to long-standing work experience in
the field of an engineer from another technical physical science. Many of the
people interviewed were originally physicians or engineers, as thirty years ago
computer science was only just evolving. With the shift of the industry from
mechanical regulators to software, many technical workers switched to com-
puter technology. Today, the younger generations can benefit from higher ed-
ucation possibilities in computer science. They obtain the IT knowledge, the
expertise, in their studies. Previous generations with education in non-digital
subjects instead acquired their knowledge by experience.947 From a sociologi-
cal perspective, it is therefore interesting how the composition of knowledge
in software development has changed from workers who develop based on
their work experience to a combination of younger workers with higher edu-
cation in computer science with the experience of long-term practising work-
ers. As emphasized in many of the interviews, both experience and expertise
knowledge is valuable and sought after equally in the ICT industry. The work
experience of classic engineers, machine builders and similar professions may
therefore compete with the specialist knowledge of newer software engineers
obtained from higher education.

447 To conclude, the interviewed companies differentiated between three spheres
of knowledge: specialist knowledge or expertise, a person’s work experience
and a person’s particular know-how of the vertical domain in question. Al-
though all three spheres of knowledge are recognized and described as impor-
tant for software development, the know-how of a domain is critical for the
competitive strength of a company and therefore represents the key value of a
company. When computer science was still a new industry, the work experi-
ence of specialists in the physical sciences was most valued. The knowledge of
computer science graduates is now able to compete with a worker’s estab-
lished experience. Consequently, both expertise and experience are seen as
valuable and comparable in quality.

See transcript E, N 68.

See for example transcript E, N 68.

See for example transcript G, N 34.

945

946

947

Chapter 5: Findings of the Interview Series

209

B. Knowledge Transfer and Protection

448 As emphasized above, in all the interviews know-how was described as having
significant value for the ICT industry. At the same time, the topic of know-how
conservation is also gaining importance. The interviewees described how this
topic currently represents a key asset in many software-developing compa-
nies. The question of how know-how is protected and how and why it is trans-
ferred has become an important subject for legal evaluation.

449 What we face in the engineering sector is a special ‘culture’ that is very keen
to promote a voluntary exchange of know-how. At least, this is what is claimed
regarding software engineering in general. I tried to detect whether those
concerned shared this understanding of the software industry. The findings
were split and rather complex in detail. As described above,948 knowledge in
our understanding may be differentiated into three spheres: specialist knowl-
edge, experience and vertical domain know-how. What all the companies de-
scribed was that in general the engineering business does indeed make use of
platforms where an exchange of know-how is encouraged.949 On closer analy-
sis, however, it seems to be mostly the technical expertise and knowledge
gained by experience that is exchanged between the engineers, while the do-
main know-how of companies is mostly kept secret. An exchange of the latter
type of knowledge is limited to cooperation with selected partners.950 The
statement above was therefore only partially confirmed by my findings.

450 Software companies pursue knowledge exchange by visiting engineering con-
ferences and using specialized platforms online (blogs, videos, forums etc.).
Most of this exchange is made, as expected, within the Open Source commu-
nity where full code lines are also made available. The Internet therefore has
become the most important conservator and source of expertise and know-
how based on experience. Vertical domain know-how, on the other hand, is
usually not shared with third parties without a special reason. As more collab-
oration within the development and commercialization process occurs,951 it
becomes unavoidable to conduct a certain amount of exchange of domain
know-how, at some point or other, in order to achieve a company’s goals. Ver-
tical domain know-how will then be exchanged, but it is commonly combined
with a non-disclosure agreement or another form of legally binding contract.

See above N 442 f.

The most named sources were the Open Source community, forums and conferences.

See for example transcript K, N 41, where this tendency is described.

See N 385.

948

949

950

951

Chapter 5: Findings of the Interview Series

210

This is necessary because in this situation highly sensitive materials such as
blueprints, instructions, workshop documentation and certain parts of tech-
nology are issued to the business partner.952 All sensitive material that leaves
the company and is shared regularly is protected with additional technical or
legal measures. At the same time, all the companies agreed that there was no
way to protect your goods with absolute certainty; if someone wants to get in,
they will get in. In any case, software companies will try to protect their verti-
cal domain know-how.

451 However, I discovered one interesting exception where domain know-how
was exchanged more freely. It was noted that some companies do not restrict
access to a technology or business model through technical or legal measures
and instead make significant parts or even the whole software public. This
practice was observed in cases where software companies wanted to propa-
gate their development. For this purpose, a company provides more informa-
tion to the background of their development or even distributes it free to use.
The interviewee explaining this point illustrated his observation with Apple’s
way of commercializing their iPhone:953 In order to get more suppliers to offer
their products in the App Store, Apple has, so the interviewee explained, intro-
duced their own programming language called Objective C and started offer-
ing training on it. Today, Apple also shares some of their business know-how
with potential app developers and shows them how to optimize their apps. Ac-
cording to this observation, it would appear that companies such as Apple en-
courage third parties to make use of their development without requesting di-
rect remuneration. A similar approach was followed by one of the interviewed
companies. The interviewee explained that, in this way, know-how and essen-
tial information could be exchanged more easily and that the needs of involved
parties, including the customers can be better integrated.954

452 Another observation was that to enhance know-how, smaller companies have
to rely more on know-how exchange with third parties, while bigger compa-
nies can exploit more of the in-house potential because they have more engi-
neers who can communicate and share their personal technical understand-
ing. In the last scenario, some interviewees outlined that it would be a
challenge to organize the available know-how into something useful by imple-

See transcript G, N 50.

See discussion in transcript I, N 72; the same issue was brought up in interview K, but off

the record.

Transcript M, N 23.

952

953

954

Chapter 5: Findings of the Interview Series

211

menting frameworks as innovation workshops or think tanks.955 Not only pre-
serving and transferring, but also enhancing know-how therefore is important
for companies.

453 In summary, know-how protection, transfer and refining is a big issue in every
company. The industry of software engineering is said to be very open in terms
of know-how exchange. A closer analysis instead shows that they do have an
exchange-friendly culture but that it is mainly conducted in the spheres of
specialist knowledge and experience. In the sphere of vertical domain know-
how, the exchange tends to be limited to special situations and is often re-
stricted through legal measures, as the vertical domain know-how is sensitive
to attacks. An exchange of know-how is only conducted if it represents a major
benefit that outweighs the risks of potential disclosure or abuse.

IV. Creativity and Innovation in Software Engineering

A. Creativity

1. What is Creativity in Software Engineering?

454 The main function of copyright is to offer legal protection for intellectual cre-
ations. However, the terms “creativity” and “creative” can have various mean-
ings in different contexts. They may for example refer to the circumstance that
a work was made, generated or developed. Where previously there was noth-
ing, something has been constructed. At the same time it could also be sug-
gested that a development result involves an artistic characteristic, that the
product offers some original strength. The definition of creative working and
its perception in the context of software engineering is vital in order to define
what a copyrightable work should be. The software developing companies
were thus asked what they understood by the term “creativity” and where they
believed most creativity could be applied in their work.

455 The interviewees offered many definitions for the term “creativity”. Surpris-
ingly, they were all very similar. Summarizing from the interviews, the term
creativity can be paraphrased as follows: Creativity is the way a problem is

solved and the way a potential solution is implemented. As you start with noth-
ing but a computer as your tool and end up with a (set of) computer pro-
gram(s), the whole process may be understood as creative, because something

See for example transcript F, N 29, transcript H, N 55, and transcript G, N 48. 955

Chapter 5: Findings of the Interview Series

212

new has been constructed. Even though the result remains virtual and is not
physically tangible, something has been made.956 On the other hand, the de-
velopment process was also described as having an artistic nature as the au-
thor’s personal skills and preferences, in their personality, will affect the out-
come as well as its quality in various ways. Consequently, the interviewees saw
software engineering as creative in both a constructive and artistic way.

456 It was described how there is scope for creative decision-making in every de-

velopment process, and that it can be exploited in every phase of a process: in
seeing a business need, in displaying these needs in the requirements and fea-
tures, or by implementing a user-friendly graphic user interface. It can affect
the way programming languages are selected and applied for coding. It can
also influence the quality of the outcome, including its structure, readability
and adaptability. The interviewees emphasized that there are no limits as to
how creativity can be applied.957

457 However, not every software development project involves creativity in the
same way. If the engineering process is limited to mere implementation, and
does not build on creative leeway, creativity plays a very minor role in its pro-
duction. If it is produced “quick and dirty”, a program is made within a short
time and without a lot of effort.958 We should therefore see creativity if room
is provided to make productive decisions and if the approach of the originator
can have an impact. Creativity hence lies in a particular contribution. What this
contribution looks like in practice may vary, making it important to look at the
individual project: According to one interviewee, it is visible in the particular
details of a product.959 At the same time, the interviewees distinguished be-
tween using creativity from a business perspective and in implementing a
product technically. The business perspective refers to how a project is built up.
It is linked to the question of how a process can be shaped so that the business
goal of an idea or need can be realized in an optimal way, such as which ap-
proach is selected so the users’ preferences can be best met. The technical im-

plementation, on the other hand, refers to the question of how particular chal-
lenges can be overcome technically, for example, how an engineer realizes a
particular concept during coding. Here, functionality and efficiency criteria
play a major role. At the same time, these aspects are said to become decreas-
ingly important if data carriers happen to be more tolerable, store capacities

See transcript H, N 47, and transcript I, N 66.

See in particular transcript H, N 66.

See for example transcript H, N 47.

Transcript F, N 23.

956

957

958

959

Chapter 5: Findings of the Interview Series

213

increase or technical performance is optimized.960 Still, from the engineer’s
perspective, a well-structured code is said to be helpful in enhancing and
maintaining a program after its implementation. A manageable program facil-
itates its application by the user and, thus, increases his or her satisfaction.
All of these decisions are considered to be creative in software engineering,
as ingenious solutions for concrete problems have to be designed. While some
decisions can be easily categorised into either the business or technical group,
the composition of the look-and-feel for example has characteristics of both
groups: It involves technical decisions to define requirements and features,
but also refers to the original business idea by addressing particular needs and
preferences of the user that will help in commercializing a product.961 Creativ-
ity in software development therefore refers to the constructive process as
well as to an artistic product. It can be exploited whenever a developer makes
decisions that are relevant from a business or technical aspect. If the law wants
to protect a work’s creativity, this way of offering a creative contribution in
software development should be considered.

2. The Impact of Toolboxes, Libraries and Assistance on
Creativity

458 One assertion in the literature is that software engineering has lost its creativ-
ity as more and more engineers are relying on pre-existing components found
in toolboxes, libraries and within the Open Source community. In the inter-
views, I brought up this claim and asked what impact the existence of tem-
plates has on the work of a software developer.

459 All of the interviewees confirmed that they occasionally use templates and
source code snippets. Similar to online-shared know-how, these third-party
components available within the IT community are of high value for engineers.
As software engineering often involves solving similar problems in different
contexts, the work of the developer is simplified if he or she can rely on previ-
ous works, either developed by the engineer or by a third party, because they
save time by not ‘reinventing the wheel’. Available tools and templates thus
help to make the developer’s work more efficient.962 This is particularly impor-
tant as the market of software engineering is picking up speed and, after all,
‘time is money’! As discussed by one of the interviewees, ensuring data secu-

Explained several times off-tape but also mentioned in transcript G, N 44.

See for example transcript K, N 37.

See transcript A, N 54.

960

961

962

Chapter 5: Findings of the Interview Series

214

rity online with an encrypted function used to be a very complicated problem.
The engineering process was complex. On the other hand, it is an issue every
web shop provider faces and thus has to solve. Since the code functions for
security certificates have been available in libraries, they have been easily em-
beddable by adding a particular PHP function to the program.963 The accessi-
bility of tools and libraries thus supports the developers in carrying out their
work efficiently.

460 However, the other side of this is that, if a developer chooses to work with
provided tools, he or she is de facto restricted from selecting his or her own
solutions and instead has to work with the technical framework the tool offers.
It is thus helpful to work with solutions that are well established in the IT com-
munity. Further, while the tools may facilitate some parts of the coding, the
developer still has to engineer the rest of the program, embed it properly and
connect the loose ends. Some interviewees explained that using tools can
make their work more sophisticated; they have to keep up with the trends,
continually acquire new skills, and develop the know-how about which tools
to use in which situation. The developer has to acquire personal experience in
how best to adapt pre-modelled solutions to a problem and integrate the for-
eign body into its new environment.964

461 The allegation that software engineering has become more uncreative in the
last decade is partly understandable. However, the interviewees outlined how
the selection of potentially suitable pieces remains a challenge in software en-
gineering and still allows, and sometimes even requires, engineering creativity
in order to offer satisfactory final products and services, including finding new
solutions for which no model code exists. Even where some previously exist-
ing components can be used, specifications and adaptations to a particular
system architecture have to be built individually. Where there is room to com-
bine existing elements and tie them together, creative strength may be dis-
played.

B. Innovation

462 Innovation represents a competitive advantage for every company. At the
same time, society can profit from innovations if they are shared. It is there-

See for example transcript I, N 57; see also online-accessible instructions to implement

a PHP function, for example at <http://skills2earn.blogspot.com/2011/03/how-to-en-

crypt-decrypt-url-or-code-in.html> (retrieved September 6, 2021).

See for example transcript E, N 45 f.

963

964

Chapter 5: Findings of the Interview Series

215

http://skills2earn.blogspot.com/2011/03/how-to-encrypt-decrypt-url-or-code-in.html
http://skills2earn.blogspot.com/2011/03/how-to-encrypt-decrypt-url-or-code-in.html

fore in both interests if innovation is fostered. Patent law tries to do this by
granting legal protection to innovation that is shared. It is widely disputed
whether software as such is capable of being inventive. The term ‘innovation’
thus has to be used cautiously in software engineering compared with other
areas of industrial innovation. In the interview series, this difficulty was tack-
led by asking the companies how they would define “innovation”, how it is ac-
complished in software engineering and where in the development process in-
novation is located.

1. What is Innovation?

463 The interviewed parties were asked to define the term “innovation”. When I
started analysing the first few interviews, I realized that for many parties it
was easier to describe what they considered to be lack of innovation rather
than the opposite. In response to those first observations, I integrated further
questions into the interview guidelines that covered trivial discoveries and
qualitatively poor patent subjects. This step helped to guide the subsequent
interviewees better to find a more precise definition for innovation. The result
was that it also helped to delimit what could be excluded from the patent law’s
scope.

464 So what is innovation? Although most struggled with this question at first, to
my surprise the feedback showed a clear common tendency. The shaping
characteristics were the existing criteria for patents such as novelty and dis-
closure. But many also felt that, in addition to the existing criteria, innovations
should have to show further qualities in order to be recognized as something
worthy of protection. They would have to demonstrate an ‘additional use’ and
outline the approach to the solution in a comprehensible way (‘comprehensi-
bility’).

465 Taking all the answers into account, the term innovation can be summarized
as: comprehensible added value for a third party that represents a novelty or
includes progress from the initial position.

466 Apart from this progress or novelty, as mentioned, the interviewees wanted an
innovation to offer added value for third parties. The companies expected a
minimum positive effect or contribution – a benefit – that the invention has
for society, the user or the market. This particular characteristic that the in-
vention has to hold becomes more important if, in exchange, legal protection

Chapter 5: Findings of the Interview Series

216

is to be granted for the invention.965 If an invention was only useful for the in-
ventor alone and did not show a positive effect for others, it would not sat-
isfy this criterion. This finding was surprising, as patentable inventions cur-
rently do not need to provide added value per se. The added value for third
parties is shown in interest in the intellectual good, its worth to society. If the
invention was only used to block others, there would not be any positive effect
for third parties and it would not be deserving of protection. Well-established
teachings have already been discovered and exploited. Society is thus less in-
terested in granting them protection as their value is now limited for them.
On the other hand, highly specialized knowledge that can only be used in its
original context cannot be applied in another field. Again, its value for society
is limited. In order to determine a model for protecting inventions, we should
consequently focus on the type of inventive knowledge that offers a benefit for
parties other than the originating one and whose application is not too specific
or established in a particular area of practice. The interviewees also stressed
that the value does not necessarily have to be an improvement in a solution’s
efficiency.966 Instead, the benefit can be achieved by any essential improve-
ment for a third party. The criterion can thus be regarded as flexible for a par-
ticular situation.

467 In order for an examiner as well as society to determine whether an invention
offers added value for third parties, the interviewees felt that the technical so-
lution should be disclosed in detail and described comprehensibly. Its core
needs to be theoretically accessible to the market and its users. The invention
should be described in a way that enables an evaluation of its added value.

468 With patents, the law wants to protect inventions legally. This definition of an
invention exceeds the present, internationally agreed list of criteria of patent
law for an invention, offering more facets. With an additional requirement,
higher expectations of the inventive step would be set. This would make it
more difficult for some developers to protect their inventions. On the other
hand, the interviewees emphasized that asking for added value in inventions
would positively influence society’s perception of legal IP protection because
protection would only be granted for what could add value to society. This
might enrich the quality of newly developed inventions.

469 It was shown that the interviewees had a very distinct but unified understand-
ing of the term innovation and an inventive contribution. They offered several

See transcript B, N 34.

See for example transcript E, N 54.

965

966

Chapter 5: Findings of the Interview Series

217

important factors to be taken into account for delimiting the innovation term.
It was noted that the invention not only needs to have a novel component but
the novelty also has to represent comprehensible added value for others, not
just the originating party. A new definition of the term invention tried to in-
corporate all the proposed criteria to offer a better understanding of the term
in a software engineering context. With a new criterion, expectations of the
inventive step would be increased, but the proposed definition could be ap-
plied in other industrial fields.

2. Inventions in Software Engineering in Particular

470 In the prevailing literature and judicial practice for patent law, it can be ob-
served that the term of technical invention is interpreted differently in the
field of software engineering than in other industrial fields. This is particularly
true for the European interpretation.967 I therefore wanted to know what the
software developers considered as innovative in the field of software engi-
neering.

471 It was noted that computer programs were used similarly to machine tools or

analogue processes as a means to fulfil a specific task or solve a certain prob-
lem. The interviewees emphasized that many procedures and solutions cur-
rently applied to mechanical and analogue processes could be translated into
a digital environment. Computer programs would have the same technical
abilities as other technical tools. Differentiating between mechanically and
digitally implemented technical solutions and teachings, as practised in certain
jurisdictions today, does not correspond to the fact that, from a technical per-
spective, all are applied similarly. In fact, many interviewees explained that
software would offer even more technical possibilities than mechanical com-
ponents, providing inventors with new means to solve problems that could not
be conquered before.968 It therefore opens a new field of technical applications
that, due to missing technical opportunities, was closed before. Thus software
engineering can generally be used in the same way as non-digital tools to solve
a problem, sometimes even providing new opportunities to solve previously
unsolvable problems.

472 On the other hand, software engineering as an industrial science is still a
rather young discipline in which not all scientific principles or methods are yet

See above N 277 ff., for further information.

See for example transcript B, N 26, for the argument that it opens a new field of applica-

tions.

967

968

Chapter 5: Findings of the Interview Series

218

established. New developments and practices are found on a daily basis as
there is room to explore and “to invent the wheel”.969 In addition to the regular
spheres in which innovation appears in all established fields of science, in soft-
ware engineering there is additional room to find new innovative approaches
and tools for how software itself is created or made.970 These inventions con-
cern expanding the knowledge of the computer science itself and can, for in-
stance, lie in increasing a program’s capability or performance or offering new
approaches for a user interface or look-and-feel that increase a program’s us-
ability. And as many aspects are still undeveloped, inventions that illustrate
and describe technical processes or operations can occur.971 While a lot of this
knowledge development and exchange is observed online, it was noted by the
interviewees that few inventions are going to be made in just computer sci-
ence. They believe it is more probable that “true” undiscovered inventions in
products and processes will be found in close development with hardware.972

473 The interviewees provided a long list of discoveries they considered as inven-
tive:

– the fast algorithms behind Google Search;973

– push messages on cellphones, especially on iPhones;974

– a large increase in user experience or usability;975

– a new method for graphical representation, especially in the user inter-
face;976

– Google Maps for navigation and searching for near locations;977

– the use of an app to discover which star constellation or mountain range
you are looking at by pointing your cell phone in this direction;978

Transcript H, N 39.

See interesting discussion in transcript B, N 26.

Transcript G, N 36.

See, for this statement, transcript G, N 36.

Transcript D, N 22.

Transcript K, N 33.

See transcript K, N 35. Another interviewee explained that it is easier to be inventive and

try something exceptional when your software has no or very few users; the more that

wants of users and third parties have to be met, the more complex the problem becomes

and the less the engineer is able to change the existing system and start over (transcript

G, N 24).

Transcript K, N 35, and transcript D, N 22.

Transcript F, N 21.

Transcript I, N 62.

969

970

971

972

973

974

975

976

977

978

Chapter 5: Findings of the Interview Series

219

– new functions that are offered in libraries to facilitate an engineer’s
work;979

– digitalization of processes, if a new way of presenting an analogue
process digitally is discovered;980

– a special and new database environment;981

– a business model that includes a never-seen selling method;982

– discovering an entirely new, undiscovered function;983

– new technologies and methods of operating and deployment.984

474 Looking at this summary of feedback, we can recognize, again, that the inter-
viewees take into account when something is “new”, when it “represents
progress from the previous status”, when it makes a previously known ap-
proach “more efficient” or “more easily applicable” and brings “added value” to
a particular audience. What the interviewees considered as innovative in soft-
ware engineering thus widely correlated with what they considered innovative
in other fields of industrial science. The innovative scope in software engi-
neering thus corresponds with that in mechanical or analogue solutions, with
the difference that there is still a lot of room for new inventions in computer
science.

3. Triviality as Contrary to Innovation

475 One problem closely related to understanding what is inventive is to deter-
mine what we consider as ‘not inventive’. During the last decade, the reputa-
tion of the U.S. patent system has suffered through having an inaccurate
patent examination procedure. In many interviews, companies complained
that the U.S. had been granting too many trivial patents. The term “triviality”
therefore has not only become an opponent of invention but it has also had
dramatic effects on the recognition of software patenting as a whole. In my
research it has been shown that many companies, especially smaller engineer-
ing ones, are highly intolerant of granting patents for inventions that do not
truly “deserve it”. These trivial patents are, in theory, able to restrict the mar-

Transcript A, N 58.

Transcript L, N 35, transcript B, N 38, and transcript I, N 62.

Transcript C, N 26.

Transcript B, N 36.

Transcript G, N 42.

Transcript H, N 45.

979

980

981

982

983

984

Chapter 5: Findings of the Interview Series

220

ket for software developments as such, giving a monopoly-like right to a good
that does not fulfil the legal requirements. I say “in theory” because none of the
interviewed companies has ever been successfully attacked by a party hold-
ing a trivial patent. Some of the interviewees were wary of other market par-
ticipants who, in their view, hold weak patents. Even if some of these weak
patents would not stand up in court, trivial patents were described as having
a remarkable effect on companies which had to take preventive measures or
refrain entirely from expanding into the U.S. market. Triviality consequently
has an important role when examining the invention term, in order to prevent
counterproductive effects on the market.

476 Examining the triviality of an invention is already partly integrated into the Eu-
ropean and U.S. patent system when testing under the patent requirements
whether an invention is “non-obvious to an expert”. Similarly, the interviewees
suggested that discoveries should be considered as trivial if an expert would
see them as self-evident. On this point, the interpretation of non-obviousness
and the results from the interviews are coherent. However, contrary to the
present legal understanding, an expert was not considered an “ordinary skilled
person in the art to which the claimed invention belongs”,985 instead, the inter-
viewees defined an expert as an especially skilled person of the particular
technology in question. An examiner with any skills in software engineering
would therefore not suffice for testing an invention in a particular field of soft-
ware engineering, if the examiner was not skilled in that particular field, for
instance user experience design or a certain programming language. In addi-
tion, higher expectations were set regarding the quality of the examiner’s skills
in that the person examining should have above-average, and not just ordinary
skills in the art. This was rooted in the belief of the interviewees that only a
deeper understanding of the technology was capable of fully recognising
whether an invention truly involved an inventive step (and was not trivial), and
would thus be worthy of protection. According to the interviewed parties, the
reference point should therefore be an expert’s knowledge with special skills,
and not an ordinary skilled person in the art of software engineering, to deter-
mine what was trivial or self-evident.

477 According to the interviewed companies, a higher standard for examining in-
ventions (e.g. in patent law), would, in addition, address another problem
brought up by several interviewees. In patent application procedures in par-
ticular, it is often difficult to counter vaguely formulated patent descriptions
because there is insufficient documentation of this problem in the prior art. If

Art. 56 EPC; 35 U.S. Code § 103. 985

Chapter 5: Findings of the Interview Series

221

an especially skilled person in the field was examining the invention, their
particular state of knowledge and experience could, according to the inter-
viewees, replace missing written evidence of prior art.986 The examiner could
thus reject patents that, in his or her experience and state of knowledge, were
not inventive, even if no direct evidence of prior art was available to destroy
the claim of inventiveness. Cases where trivial inventions which only summa-
rized prior non-formulated know-how were patented could thereby be inter-
cepted. This would be particularly relevant for certain business methods that
would not be considered inventive by an especially skilled expert but today
would still have to be patented because of the lack of description in prior art.
Expanding the expert term would thus help in distinguishing trivial from true
inventions.

478 In addition, the interviewees would want an invention not to be examined
solely from an ex-ante position, thinking oneself back into the time before the
invention was created. They believed a more realistic evaluation could be made
if the skilled examiner tried to solve the same technical problem without look-
ing at the proposed solution. They felt that many developments would be evi-
dent if an engineer took enough time to take a closer look at the problem. Just
because somebody was the first to try and succeed in solving a particular
problem should not mean that this person is rewarded with a patent.987 In the
examination process, the expert should thus follow the approach of thinking
back to the time when the patent application was filed and try to solve the
problem in question. The perspective thus changes from a merely cognitive
approach where it is evaluated whether the invention is non-obvious, to an
approach involving addressing the problem and taking the time to think
through the problem. An invention would thus change from the formulation
“the solution is not non-obvious to the expert” to “if the examining person was
given the same task, and tried to solve it, the person would not themself think
of the way the inventor solved the problem within a reasonable time-limit”.
Coincidental discoveries that showed poor quality would be refused protec-
tion, if functional factors such as opportunities and technical feasibility were
taken into account. Through this approach, an expert could more easily rec-
ognize methods or processes that represented logical or simple continuations

Transcript G, N 78 ff.

See transcript D, N 38.

986

987

Chapter 5: Findings of the Interview Series

222

of prior art and exclude them from protection as trivial.988 As the quality of
protected inventions would increase, the danger of abusive protection-seek-
ing applicants could be lowered.

479 If both propositions were put together, the full explanation for the non-obvi-
ous test would look as follows: An invention is non-obvious, and therefore
novel, if an expert with special skills in the particular art of software engineer-
ing (in which the invention is claimed) could not themself think of a way to
solve the given problem, as the inventor has, within a reasonable time limit.

4. Discovering the Innovative Momentum

480 Currently, patenting focuses on innovations before they are implemented as
products that can be commercialized. Contrary to copyright, where outcomes
or expressions are protected, patenting aims at an earlier period. In order to
discover whether in software engineering this time perspective corresponds
with the factual circumstances, the interviewees were asked where on a time-
line most of the innovation clusters.

481 The interviewees all said that they observed inventive novelty and enhance-
ment at every step of software development, from new ideas for core features,
to the requirement design, to a new technical implementation, up to different
testing tools. They consequently were open about when inventions can occur
within software development projects. At the same time, they widely agreed
that it is in ideation where the innovation actually emerges. This would be
where “the inventive peak” occurs and where the “initial impulse” is pro-
vided.989 Everything following is just a consequence of the prior idea, where it
is “simply realized”.

482 However, the interviewees explained that enhancing and integrating the idea
in the concept phase was as important as having the initial idea itself, because
this is where it is tested and concretized into a perceptible shape – just as an
algorithm represents the technical expression of a particular idea.990 While the
innovative origin is thus situated in ideation, the “purely innovative” phase ex-
tends to conceptualization. The innovative momentum is therefore situated in
both ideation and conceptualization.

See transcript E, N 101.

Transcript D, N 24.

Transcript A, N 58.

988

989

990

Chapter 5: Findings of the Interview Series

223

V. The Legal Protection of Computer Programs

483 Legal protection of any kind of goods has to be proportionate and reasonable.
Not only does the subject of protection need to be chosen with great care but
also the various interests behind a statutory solution require consideration.
The significance and requirements of a legal system change over time. A
framework should be challenged and adapted every once in a while. The fol-
lowing section is concerned with trying to understand which factors behind a
legal framework of software protection are important for the software engi-
neers, what expectations and wishes they have in this context, what experi-
ences they have with the current legal system and how they would suggest be-
ing protected in the future. It also takes into account the time and event-
related aspects by asking the parties how long and to what extent software
protection should be offered and embedded in a legal surrounding.

A. The Significance of Software Protection

484 Whether or not software should be protected with IP law is widely disputed.
In this section, the interviewees were asked to outline what significance legal
protection of computer programs has for their occupation. Additionally, they
were asked whether they (or their employer) would continue developing soft-
ware if no particular legal protection was provided for computer programs. We
thus first establish what might happen if no protection for software was pro-
vided, and in a second step, which factors influence the relevance of legal soft-
ware protection overall.

485 Two different groups formed in the interview series: one that felt legal soft-
ware protection had significant value and supported intellectual property
rights, and one that considered legal protective measures as irrelevant for
their daily work.991 The majority of those interviewed, however, stated that le-
gal protection of software was indispensable for their work. Even without legal
measures protecting their software, the interviewed parties said they would
continue developing and commercializing software. However, they would rely

There were just two interviewees who considered the legal protection of computer pro-

grams as a negative thing, saying it represented an unnecessary additional effort they had

to make, and today's framework can cause major legal insecurities (transcript A, N 108, and

transcript H, N 80 and 92). Asking them what would happen if no legal protection of soft-

ware at all was available, both clarified that they believed a minimum legal protection for

authors and computer programs was crucial but that less would be more (see transcript A,

N 112, and transcript H, N 98).

991

Chapter 5: Findings of the Interview Series

224

more on alternative security methods, draw up stricter contracts and increas-
ingly enforce these rights, and work predominantly with secrecy in order to
protect sensitive information and know-how from outside. They also said they
would stop sharing their inventions with society, stop issuing scientific pa-
pers on their discoveries and would no longer register any development pub-
licly. They would refrain from going to conventions and would keep know-how
exchange with third parties to a necessary minimum. Companies would put
more effort into hiding technical ideas and disguising the source code in their
product, distributing their computer program only in a closed code form. It
was found that although companies could cope with this fictional scenario, all
the interviewees showed a lot of discomfort with it. They believed that with
this scenario the market would stop sharing its knowledge, technical progress
would consequently slow down and that the remaining competition would be
‘more relentless and bloodthirsty’.992 In the long term, this would not bring
positive changes. Instead, the interviewed parties believed that it would have
dramatic negative effects on the exchange of knowledge within the industry
and on the publicity of inventions. It would create an environment that was
less constructive, less creative and also less inventive.

486 According to the interviewees, the main investment in software development
is the time, resources and domain know-how a company puts into develop-
ment and they said they would like the software IP protection to reflect this in
some way. The result of the developer team’s ‘cognitive beads of sweat’ should
thus be protected from third-party exploitation.993 Some kind of protection
against third parties recreating a similar version of a program or making a sim-
ple ‘one-to-one’ copy of it, would be the minimum prerequisite offered by IP
law.994

487 Copyright in particular was said to be very important for trading with soft-
ware. In the absence of a physical element in software, the creators cannot
rely on formal ownership to assert proprietary rights to the products. Instead,
intellectual property law determines whether and to what extent computer
programs are embedded in IP law, and to what degree software is tradeable.995

Trading is how the software companies make money.996 The interviewees

See in particular transcript G, N 92.

Transcript D, N 36.

Transcript I, N 63.

See discussion in transcript G, N 86.

Transcript G, N 86.

992

993

994

995

996

Chapter 5: Findings of the Interview Series

225

stressed that IP rights do foster innovation and investment.997 Apart from pro-
tecting a company’s software creation, IP law also provides the basic rules to
manage the work and determine what one is allowed to do and what is for-
bidden. The law therefore has the function of setting rough allocations of re-
sponsibilities and duties in software development. It represents a guideline for
the companies involved.998 The interviewed parties said they try to respect the
potential IP rights of others in their business, and when developing and com-
mercializing their own software.999 Companies do their best to verify with the
available resources and tools whether any third-party IP is affected. They an-
ticipate and undergo a ‘cleansing process’ in order to prevent potential future
legal disputes. The law therefore also has a preventive, defensive character, of-
fering legal security and guaranteeing the assignability of a digital good.

488 Although some companies stated that, at the beginning of the process, legal
protection of software would not be of much relevance for them, they said that
its relevance would increase when the product was published. During the de-
velopment phase, protective measures would be of less importance, with the
focus on the technical aspects, the project concept and the product financing.
Only at a later stage would protecting the product against outside influences
and securing revenue become important.1000 A fear of software piracy from
China or Russia in particular was mentioned several times during the inter-
views and seemed to be quite a hazard for companies that develop and com-
mercialize software.1001 It is important for the right holders that the law also
provides them with simple and effective measures to enforce their rights to
intellectual properties. Apart from legal measures, companies at this stage
tend to rely on technological security measures to protect their products from
being reproduced. All interviewees confirmed that they implement particular
technical mechanisms to counter abuse, including the installation of serial
codes, concealing the source code with encryptions and working with server-
based services where clients do not get access to the actual source code. A
certain degree of protection is thus achieved with alternative methods to keep
the know-how in-house.

Transcript K, N 60.

See, for example, discussion in transcript C, N 62.

One interviewee described this by saying that his company worked "cleanly" (transcript E,

N 175).

Transcript D, N 91.

See particularly transcript K, N 61, and transcript I, N 64.

997

998

999

1000

1001

Chapter 5: Findings of the Interview Series

226

489 However, the interviewees explained that there would be certain product or
service categories that were less exposed to infringement or imitation. This,
firstly, includes products or services that are specially made for one particular
customer (individual software), sector or process.1002 The application in this
case is often very specific. If a technical solution is to be imitated on the mar-
ket, a considerable amount of domain know-how is required, which is difficult
to copy from a source code. In this field, legal protection of a program be-
comes less important. Secondly, with the rise of the service culture fewer
computer programs are actually being shared with the customer, instead re-
maining on the developer’s server. As third parties do not get full access to the
software’s “core”, the software is less exposed to infringements.1003 A similar
situation arises in the app market where access is widely controlled by the App
Store providers. Organizing and enforcing protective measures in this case is
assigned to the provider’s sphere of responsibility.1004 Further, there are many
companies that mainly develop for contractually bound customers.1005 In this
case, infringements are limited to overuse or excessive use of the software
product, not breaking but overstraining the contractual agreement. This kind
of conflict was described as happening on a regular basis. But as the developer
can react on the basis of an existing customer relationship, the problem can
usually be resolved rather quickly. In most cases, the culpable party was said
not to have known that they were overstraining the contractual terms. In a
contractual relationship, suing infringements and stopping third parties from
copying, thus, is of minor importance. All these scenarios show that the IP
rights’ function to minimize infringements is mostly limited to third party-
abuse. Contractual breaches are often resolved in another way. Apart from
that, the interviewed companies valued the IP rights’ function to define soft-
ware as a tradeable commodity and provide delimiting rules. It seems that in
the case of computer programs the main function of IP law is to create and
assign property rights instead of actually enforcing them.

490 All in all, the interviewed parties agreed that legal protection of software was
desirable and necessary to protect the developer’s or right holder’s interests.
Without this protection, the interviewed companies would make greater use
of alternative sheltering mechanisms, such as secrecy, concealing technologi-
cal measures and contractual barriers. In this case, know-how exchange would

See transcript I, N 6 & 16.

See interesting discussion in transcript A, N 114.

Transcript K, N 61.

Transcript I, N 28, and transcript G, N 65.

1002

1003

1004

1005

Chapter 5: Findings of the Interview Series

227

be strongly limited. It was discovered that IP law serves several functions
and that in particular the assigning and regulating function of IP is important
for right holders. Ensuring merchantability is more the focus than enforcing
rights and fighting infringements. The protective functions of IP law become
more important after a work is published on the market and becomes acces-
sible. The exposure of software is limited where a product or service can be
considered highly specialized or is less accessible to the public. In this case,
legal protection becomes less important.

B. Experiences with the Current Legal Framework

491 The findings of the previous sections revealed that legal software protection
of some kind continues to be wanted and supported by the software develop-
ing companies. This section seeks to determine, from the perspective of soft-
ware engineers, what is relevant in a legal framework (necessities), and what
could be improved (wishes). This was established by asking the interviewees
about their past positive and negative experiences with the current legal
framework with regard to software development and protection.

1. Positive Aspects

492 The interviewees confirmed that, by and large, they were satisfied with the
current legal situation. The results of international endeavours were perceived
in the industry.1006 Although several suggestions for improvements were of-
fered and some regrets were expressed, companies appreciated that software
was enclosed in the protective mantle of IP law. They appreciated that they
were able to develop their products in a free market and trade them without
formal barriers. The interviewed companies considered the current law to be
quite reasonable and balanced. Legal entities appreciate that they are not
greatly restricted or limited by the regulatory system and that the law in Eu-
rope and the United States generally provides them with the tools they need
to commercialize and protect their works.1007

493 The hybrid model in computer program protection, embedding both patent
law and copyright was considered to be widely acceptable. Copyright espe-
cially, with its copy guard and its reference to the author was highly appreci-
ated.1008 The applicability of copyright and its requirements to computer pro-

See particularly transcript M, N 35.

Transcript D, N 46.

See particularly transcript I, N 110, and transcript G, N 98.

1006

1007

1008

Chapter 5: Findings of the Interview Series

228

grams therefore was undisputed. More criticism was directed at the patent law
system. Although protecting inventions is right and necessary, patents could
in some situations present a high barrier. Nevertheless, patent law in general
was considered to be reasonable and understandable in principle.1009 The in-
terviewed companies said that in particular the stricter European patent sys-
tem gives the right incentives (although partly with the wrong methods), while
the U.S. system requires some fine tuning. On the whole, though, the compa-
nies believed that both the copyright and patenting of software were accepted
and established throughout the industry.

2. Negative Experiences and Suggestions for Improvement

494 Although the basic conditions were considered suitable, the interviewees
mentioned several aspects that did not meet their practical needs. The next
section highlights these points with the potential for improvement to meet the
expectations and wishes of modern software development and commercial-
ization.

495 The interviewees discussed several aspects within this problem field. For ex-
ample they noted that the existing procedural laws were unattractive to de-
fend their rights against infringement.1010 Several described how the current
disclosure requirements in patent applications were insufficient and that not
enough relevant know-how was shared with others even though the invention
was granted an exclusionary right afterwards.1011 One interviewee emphasized
that the current definition of the term “interface” in copyright was outdated
and caused uncertainty about the rights and obligations of the provider.1012

Several interviewees stated that the rights of the users should be strengthened
once a product has been purchased, because today customers are constricted
by extensive licence agreements, forbidding the users from conducting minor
changes necessary to maintain the computer program.1013 Stricter exhaustion
rights and a stronger restriction of the right holder’s power would therefore
be desirable to empower the user.

See discussion of above in N 415 f.

See for example transcript B, N 88.

See discussion in transcript A, N 126.

Transcript C, N 70.

This point was completely new but very interesting from a user perspective, found in tran-

script H, N 106.

1009

1010

1011

1012

1013

Chapter 5: Findings of the Interview Series

229

496 Among the points brought up by the interviewees, the following four aspects
were particularly of interest:

a) Computer Programs as Intellectual Properties

497 Many interviewees described how they believed that software as an intellec-
tual property has not yet been fully understood and accepted in law. The fact
that software is built up on digital operations distinguishes it from all other
intellectual property goods, which can be easily expressed in a physical,
touchable medium. Software can be run in a physical medium, too, but the
technical mechanisms and processes involved are not necessarily observable
in a physical form. Apart from the hardware-related computer programs, the
only expression one may get for software is a “blank page with scripted com-
mands”. This lack of a tangible physical representation was said to make soft-
ware as a medium particularly hard to depict and analyze in law.

b) The Time Factor

498 The fact that software is a digital product makes it particularly easy to repro-
duce and distribute it. The consequent higher economies of scales were de-
scribed as being enormously helpful to get established in the market faster and
to regain the investments within a shorter time. The market participant’s goal
is to reduce the time-to-market during development in order to reach and
settle in the market first and faster. As lead time becomes the major factor in
commercializing software, providing a legal system with better-structured
and less time-consuming administrative processes could support software de-
velopers and right holders in meeting their timelines and getting into the mar-
ket quickly. During the interview series, several parties described how the ad-
ministrative processes connected to granting exclusionary rights to computer
programs currently took too long. In the field of software, the pace of product
launching is said to have picked up substantially over the last ten years. The
time lags due to administrative processes thus have particularly negative ef-
fects, as they consume a large quantity of resources for no particular reason
or only little gain. A legal framework for software that takes the significance
and value of time into account would be desirable.

499 Time is not only a determining factor when rights are granted but also after-
wards when third parties are excluded from using and imitating the product.
All involved companies agreed that copyright’s current term of protection of
50 years after the last participating author’s death would be far too long for a

Chapter 5: Findings of the Interview Series

230

dynamic and short-lived product such as software. After 50 years, the pro-
tected original would not be instructive or useful for the public domain in
any way. The know-how exchanging function of IP would thus be forfeited. In
some of the interviews, we tried to deduce whether to date there has been a
computer program in the United States or Europe that has actually reached
its end of protection and whether a product exists that in fact would still work
properly after 50 years of utilization. Depending on the definition of a com-
puter, it could be said that the first, and probably the only ‘computer program’
that has ever reached its protection limit was Alan Turing’s machine ‘Christo-
pher’, created during the Second World War to crack codes of the Nazis. As
Alan Turing died rather young, in 1954, the program ‘Christopher’ came into
the public domain at the end of 2004, though one may dispute whether Tur-
ing’s early program really falls under the definition of a computer program.
Computer programs with higher programming languages and source codes
only emerged at the end of the 1950s. According to the interviewees, proba-
bly only a few of these programs would still be useable on a modern computer.
From a technical point of view, a term of protection of 50 years would seem too
excessive. A shorter term would be more realistic and would better meet the
society’s need to participate in a protected creation or invention. Several in-
terviewees remarked that they did not understand why a computer program’s
term of protection in most statutes was tied to the author in persona. They ar-
gued that most computer programs are developed by companies and entities.
In this scenario, the developer commonly has to assign all IP rights they may
hold on a development to their employer or principal. With some employment
law, this happens automatically.1014 Tying the term of protection to the author’s
life span rather than to the moment of creation or to the developing company
thus fails to match their needs and the actual circumstances. According to the
interviewees, this problem gets even more complicated if we consider that in
most companies a large number of developers contribute to a product. Theo-
retically, a company would need to attribute each code line to an author and
record for each software product when the last co-author died, in order to cal-
culate the term of protection for an ever-changing product such as software.
Tying the term to the author thus causes various practical difficulties.

According to Art. 17 Swiss CopA and § 69b Abs. 1 German UrhG, the employee automati-

cally cedes his or her author's rights to the employer, if he or she produces a computer

program in the context of his/her employment relationship.

1014

Chapter 5: Findings of the Interview Series

231

c) Commissioned Work

500 Whenever a company offers a contract for a project to several companies, the
developers are quoting and competing against their direct competitors. The
companies here often put a lot of work into their offers. The more detailed the
project is in its tendering, the more elaborated the concepts and drafts of the
bidding companies usually are. The mandating company can then choose be-
tween several highly elaborate offers and select whom they want to commis-
sion.

501 Several developers who regularly place bids for commissioned work have ex-
perienced that potential clients let them present their elaborate ideas and
concepts, and then afterwards utilize and imitate the presented concepts
without actually commissioning the developers.1015 Some have even experi-
enced this behaviour with governmental institutions.1016 Principals would often
choose the cheapest offer but still use the inspiration they got from other bid-
dings. Companies bidding for commissioned work seem to be exposed to the
danger that the ideas they present may get abused at the pre- or non-contrac-
tual stage. This could in theory be dealt with by signing a non-disclosure
agreement or contractually agreeing on a prohibition of use before pitching.
However, in practice, most principals do not want to sign a non-disclosure
agreement. Instead, they want to get full and (legally) unrestricted access to a
technology so they can analyse, review and test it.1017 Some principals are sub-
ject to particularly strict regulation, such as security or data protection law.
They then have to conduct tests to verify that the products meet the require-
ments. Ultimately, the principals have the power to decide who receives an or-
der and thus the turnover. For this reason alone, no developer wants to bother
them with contractual prohibitions.

502 As the bidder who does not get the mandate rarely holds any enforceable
rights on their concepts and can hardly monitor what happens with the pre-
sented drafts, the presented concept is often dissipated. The interview parties
felt that the copyright framework today does not adequately guarantee the
protection of concepts and drafts. It is in this preliminary phase that enhanced

Some software companies noted that they would watermark all documents handed out to

principals with the words "rights reserved" or "copyrighted by...". However, during the in-

terviews they could not say with sufficient certainty to what extent copyright in the con-

cepts actually existed and whether these would have been legally enforceable.

See transcript B, N 86.

Transcript D, N 48.

1015

1016

1017

Chapter 5: Findings of the Interview Series

232

concepts and drafts are exchanged without a binding and protecting contract.
Project developers consequently see themselves in a very weak legal position.
They cannot prevail against potential future clients, even if those clients do
them wrong.1018 The companies therefore wanted better protection of their
work results in intellectual property law in the preliminary phase of a contract
or final product.

d) Patentability of Computer Programs

503 The eligibility of software patents is where my research originally started. This
topic is politically disputed in Europe and the United States. No proper solu-
tion has yet been found. While Europe is discussing (officially) opening up
patents for computer-implemented programs, the United States is looking for
a way to restrict them after negative experiences with patent trolls and trivial
patents. Although both patent systems have a similar basis with related pro-
tection requirements, their practical implementation appears to be completely
different.1019

504 In the interviews, the discussion as to whether software should be patentable
was unexpectedly emotional and partly based on contradictory arguments. As
described above,1020 during the first interviews of the research series, many
small companies described patenting of computer programs as a bad and pre-
ventive matter. However, it was only after the implementation of an additional
question into my interview guideline that it was discovered that, in fact, none
of the representatives of the eleven different companies had ever experienced
or heard of their company really being hindered by patents in developing or
commercializing their computer programs. No interviewee stated that, if the
product represented a true and qualified innovation, patenting computer pro-
grams would be unreasonable or damaging or preventive for their company or
their work.1021 According to the interviewees, an invention would deserve to be
protected if it was truly new and originative. Instead, their criticism was fo-
cused on the possibility of patenting trivial innovations and on the rights and
obligations of an exclusive right holder. They closely linked the question of
software patents to the effort they had to make to ensure that they did not in-

See transcript D, N 34.

For the interpretation gap, see transcript F, N 95 in particular.

See N 415 f.

See for example the turn in transcript I, N 110.

1018

1019

1020

1021

Chapter 5: Findings of the Interview Series

233

fringe third-party rights during the development and commercialization of
their own products. These preventive measures were experienced as time-
consuming and negative.1022

505 What can be said from this observation is that the problem is not about patent-
ing software in general. This question was undisputed among the interviewees
and they agreed that software should not be excluded from the patent scope.
Instead, it appears that the range of the scope itself (innovation vs. triviality)
and the bundle of assigned rights (rights and obligations of a right holder and
a user) were considered controversial. This insight is important because cur-
rent discussions in Europe and the United States focus on a system question
instead of discussing the framework of patenting in general.

506 On the subject of software patenting, the companies highlighted four main
problems they had experienced as negative in the current legal system:

aa) Machines vs. Computers

507 One major difficulty in evaluating software patents is the inexpedient defini-
tion of the term ‘technicity’ under the European Patent Convention. Even for
lawyers it is not beyond doubt to what extent software can be patented in Eu-
rope. The current political debate mainly distinguishes between mechanical
(analogue) and computer-implemented (digital) innovations.

508 The software engineers and developing companies agreed unanimously that
computer programs, even if not connected to hardware components, fulfilled
the technicity requirement themselves: “In reality, every software product or
real world conception of software (…) goes way beyond the mere algorithms
and has a technical effect or conjunction (…).”1023 Every practice asking for im-
plementation or connection to a hardware component was described as un-
necessary and restricting.1024 Developers believe that the current difficulties of
law in defining the technicity term are partly caused by a lack of trust: “Per-
sonally, I would expect a better acceptance of the information technology in-
dustry”.1025 Software developers believe that society does not truly understand

In this respect, the parties referred in particular to searches by patent attorneys and other

experts on the basis of patent applications, registers and similar sources; see discussion in

transcript B, N 90.

Transcript M, N 39.

Companies described the "trick of connecting the program to a computer program" as ak-

ward but helpful in order to "bypass the law"; see for example transcript C, N 82.

Transcript G, N 104.

1022

1023

1024

1025

Chapter 5: Findings of the Interview Series

234

the subject and thus is mistrustful. From the perspective of the interviewees,
software was currently the most innovative field, not just for computer prob-
lems but rather for all technical problems. They emphasized that it would be
important for all technical industries for software to be integrated into a mod-
ern patent system, globally and in a uniform manner:1026 “To close our eyes to
this development would not be expedient”.

509 About half of the companies stated that computer programs should be granted
full protection under the European Patent Convention. Even the others who
were critical about patenting in general confirmed that there was no technical
reason to distinguish between analogue and digital inventions. Several parties,
including specialized attorneys and patent attorneys, were uncertain whether
and to what extent computer programs were currently patentable in Europe.
The European statute seemed to cause great uncertainty and was said to in-
terpret technical requirements in a way that was not comprehensible for ex-
perts in the field.

bb) Requirements for Patenting

510 Overall, the interviewees comprehended and supported the statutory require-
ments for patenting.1027,1028 They recognized the difficulties a legislator faces in
defining what should be considered as patentable in software engineering.
Some observed that it is difficult for patent authorities and lawyers to evaluate
the inventive step of a computer program because the novelty and non-obvi-
ousness are hard to verify and test.1029 Consequently, the statutory require-
ments for patenting, although uncontested in theory, are difficult to apply in
practice. Some interviewees, especially the representatives of smaller or
medium-sized companies, expressed difficulties in understanding the neces-
sary terms. They described the requirements to be “difficult to measure”1030

and “too vague”1031. Clarification in the form of clear definitions and a catalogue
with examples would be helpful in this respect.

See for example transcript I, N 102.

For more information regarding the legal requirements for patenting, see above, N 310 ff.

The only exception to this finding is in transcript H, N 110 ff., but I assume the candidate

misunderstood the question.

See for example transcript G, N 108 ff.

Transcript K, N 67.

See transcript E, N 137, transcript A, N 130, transcript F, N 67, transcript L, N 80, and tran-

script B, N 97.

1026

1027

1028

1029

1030

1031

Chapter 5: Findings of the Interview Series

235

511 The interviewees said they did not fully understand why the present patent
requirements were not tested substantively in each patent application of every
country. To increase legal certainty for both the right holders and third par-
ties, the interviewed parties suggested that an in-depth substantive examina-
tion and testing of the patent requirements should be conducted as soon as a
patent enters the application procedure. The main reason for this is that the
innovative patent holders, too, believe that patenting trivial innovations should
be avoided.1032 By testing each patent requirement separately – prior art and
non-obviousness in particular – patenting trivial innovations would at least be
minimized.1033 Although closer testing of the patenting criteria may require
more time for the application process, the companies believed that the addi-
tional legal security would be worth it. If IP law thus continues with the exist-
ing patent requirements, the interviewees believed these requirements should
at least be verified substantively before the right holder obtains an extensive
patent right.

cc) The Power to Block and Abuse

512 Many of the interviewees emphasized that software patents might have a

greater effect on the engineering market than other types of patents. This is
rooted in the fact that good software solutions prevail quickly, and as every-
body wants to build their program with the newest technical solutions, a
patent blocking this method or technology could prevent others from keeping
up. The most efficient solution to a technical problem would consequently be
obstructed. Likewise, trivial developments based on best practice but not truly
inventive might have a similar effect as third parties are blocked from using
the same approach, although they are technically required to use it. In both
cases, the right holder obtains a powerful exclusionary right while others are
prevented from using the innovation. It is the duty of a legal framework to ad-
dress these problems.

513 In the media, we often hear about so-called patent trolls that ‘abuse’ their ex-
clusive rights in court to demand high compensation from third parties. Sev-
eral interviewees explained that companies had contacted them claiming that
their patent had been infringed. All those companies that had not been con-
fronted with such assertions were afraid that the same could happen to them
some day. Although some suggested that these claims probably would not

See above N 475 ff.

See the same idea in transcript D, N 99 ff.

1032

1033

Chapter 5: Findings of the Interview Series

236

stand up in court, they believed that defending their company against such ac-
cusations would require a lot of financial effort and time resources.1034 Smaller
companies especially are unable to provide these resources, even though they
may be in the right. Patent trolling, not only in the field of software, but in
the whole patent system was identified as a huge problem and a challenge of
our time. While the problem of patent trolling was described as having esca-
lated in the United States, Europe and its restrictive patent system was said
to have it better under control. One of the interviewed companies said that
patent trolling was encouraged by certain civil procedure codes; deficiencies
in the litigation system were said to foster the enforcement of weak or illegit-
imate patents even against admissible activities.1035 They said that this prob-
lem could partly be solved if the plaintiffs were required to contribute to the
lawyer’s and process costs in case of defeat.1036 In this way, the system could at
least partially get a grip on the effects of unnecessary litigation.

514 The industry takes its own measures to react to the issue. It implements pre-
ventive measures in the development process, which guarantee a clean pro-
duction line in which no infringements should occur. It also raises the level of
documentation in order to be prepared in case of a legal dispute. But they state
that all these preventive measures would still not protect them from being
confronted with unjustified and resource-consuming claims. They clearly ex-
pressed a wish for further effective legal defence.

dd) Patenting as the Discipline of Kings

515 During one of the first interviews, one representative of a smaller company
complained that today’s IP protection of computer programs was tailored for
big companies who can afford to mandate an attorney.1037 The interviewed
companies said that, nowadays, only bigger companies were able to supply the
necessary means to protect and enforce their goods with and against patents.
Patenting has, thus, become a “discipline of kings”,1038 locking out smaller busi-
nesses. According to the interviewees, the U.S. market is particularly risky and
unattractive for smaller developers. On the whole, patenting was described as
being of very little value for smaller companies, as the protective effects of a

See for example transcript D, N 30.

Transcript M, N 35.

See the description of the upcoming Innovation Act in the United States in transcript M,

N 78.

Transcript H, N 122.

Transcript F, N 51; transcript B, N 145.

1034

1035

1036

1037

1038

Chapter 5: Findings of the Interview Series

237

patent was small compared with the expense required to get one.1039 The re-
sources of smaller companies are limited in terms of labour, time and money.
Each case of illegitimate use has to be evaluated carefully. The first priority
of a start-up is to get customers and start commercialization.1040 Rights man-
agement and enforcement is not their main priority. If a new project was
launched, smaller companies explained that they would be able to do very little
research, ask few questions of legal counsels and only spend a little money on
preventive measures. Instead of mandating a patent attorney, smaller legal en-
tities usually do their own searches with very limited possibilities. Their re-
sults would often not be representative, and would thus cause legal insecurity
for these companies.1041 Smaller companies are often not able to take preven-
tive measures during the development of a computer program. This fact makes
these companies more exposed in case of litigation.

C. The Optimal Framework

516 Knowing more about which things work well in the current legal system and
which are improvable, we can try to deduce a new optimal framework for com-
puter program protection.

517 The interviewees were instructed to try and forget everything they knew
about computer program protection in the current legal framework. Ignoring
what is implemented in today’s copyright and patent law and where the diffi-
culties of both systems lie, they were asked to picture an optimal and balanced
IP system for software.

518 In a first step, the candidates tried to determine the function of a legal frame-
work in protecting computer programs and to isolate which characteristics
had to be served. Also knowing which components of software were most
valuable for software companies, the next step was to determine which parts
of software they believed should be legally protected. Finally, they identified
the starting point for the legal protection of these elements and, from a time
and scope perspective, where protection should end.

Transcript B, N 40; transcript K, N 100.

For more information, see transcript B, N 40.

See, regarding this problem, transcript K, N 100 and transcript I, N 130.

1039

1040

1041

Chapter 5: Findings of the Interview Series

238

1. The Function of Software Protection

519 Law should intervene in the market only with good cause. For example, a pro-
tected subject or object should only be legally protected by protective mea-
sures if there is a need for it. The following section explores which functions a
legal framework for software protection should serve from the perspective of
the software companies. For this purpose, the interviewees were asked why
legal protection of software was important to them as software developers or
companies commercializing computer programs. They emphasized the follow-
ing key functions of software protection.

520 One major criterion for the interviewed software companies was that invest-

ments that were spent on research and development should be protected in
some way. Whenever a company has to allocate money, it needs to ensure that
it can protect the final result and retrieve the sum spent and a bit more for
future investment. Legal investment protection consequently implies an ex
post perspective, focusing on the time when a company tries to commercialize
its product or service. But it also has a perspective on future events, as poten-
tial gains are used to keep the company running. The interviewees emphasized
that the economic interests behind financing IT developments would differ
from ones in other industries, where IP law was better established. All the
more important would be the protection of investments. Human and financial
resources are very significant in engineering. Companies look for the possibil-
ity to protect their developments from the start, so they find investors that
can offer the money required and the developers can take a chance in the mar-
ket. The risks are enormous, not knowing whether the market will accept their
products and whether they are going to be successful. The companies said
they would like a legal mechanism that protects them during the time before
the consumer market has decided whether or not a product is interesting
enough to buy, use and/or copy. The method of protection should ensure that
the right holder can make money with a successful product that compensates
for the possible previous or following unsuccessful attempts. Offering legal
protection for investments in creative and inventive developments was de-
scribed as being of major importance for all the companies.

521 Legal protection can also work as an incentive. It can “empower companies to
continue being innovative”.1042 The creating companies get a reason to invent
and stay creative, as their results can be protected by legal measures, and

Transcript C, N 62. 1042

Chapter 5: Findings of the Interview Series

239

hence do not have to be disguised in order to protect them.1043 Software
developers receive an incentive to elaborate and share their contributions.
Third parties profiting abusively from their work, so-called free-riders, are
stopped.1044 Legal protection also helps to diminish potential risks and fears
that may discourage a company from investing in their development.1045 The
interest in continuing to develop is thus perpetuated. At the same time, the
creations and inventions are shared with society and industry. Third parties
can observe, learn and use prior knowledge.1046 By offering the creators an op-
tion to obtain a return and a way to be protected, they are encouraged to share
what they have discovered, and have no reason to hide their findings from oth-
ers.1047

522 Law should somehow display the work’s connection to its author or inventor
because it carries the signature of its creator.1048 According to most of the in-
terviewees, this perspective is reflected in today’s moral rights in copyright
and inventors’ rights.

523 The final aspect of computer protection is to find an adequate balance be-
tween the different interests. An optimal framework should reduce the trans-
action costs of the involved parties. It should create rights for the originator
and make it possible to enforce those rights with an appropriate measure
through litigation.1049 The creator wants to have a minimum level of power and
control over his or her work. They want to make important decisions such as
when and where a work will be published for the first time. But the intervie-
wees also acknowledge and understand that there have to be limits to the ab-
solute rights of a right holder. The users want an adequate benefit for the
money they have paid which is usually to obtain a protected right to use. The
question is, where can the boundary be set between ‘sufficient’ and ‘excessive’
rights of a right holder and which rights are really necessary for a customer.
Interviewees described how they were forced to warrant future orders, how
they had to accept unsatisfactory products because they were forbidden from

Transcript C, N 62; transcript M, N 27.

See discussion in transcript F, N 81.

See discussion in transcript I, N 115.

See transcript H, N 104.

Transcript F, N 77. If this would no longer be guaranteed, companies might discover other

revenue models as described with services. However, these models do not include sharing

knowledge with society (found in transcript F, N 79); see also discussion above in N 485.

Discussed in transcript A, N 112, and transcript H, N 116.

Transcript M, N 41.

1043

1044

1045

1046

1047

1048

1049

Chapter 5: Findings of the Interview Series

240

making modifications and that they even had to accept when the licensor re-
duced functions and services that were previously provided.1050 The challenge
of the law would be to find an adequate balance.

524 The interviewees described how the functions to protect a good by law should
be dynamic. They should be subject to political, economic and social change
and should be reviewed and adapted on a regular basis. It has to be verified
whether the law still provides the necessary means to meet these changes.1051

The software market was described as exhibiting a particularly high pace. Dy-
namic mechanisms to apply or improve the law would thus be desirable. The
product software is no longer a fixed good. In contrast to books in copyright
or drugs in patent law, computer programs do not remain unchanged once
they are published. They were described as representing moving ground.1052

Talking about served functions in software should thus also involve determin-
ing at which point these functions should be served and whether or not the
protected good has to have a fixed form at this moment or not. Which func-
tions law serves consequently is a very complex problem.

2. Potential Objects of Protection

525 One of the main goals of my research was to discover what in software devel-
opment should be protected with intellectual property law. As I wanted to
open the field to all possible outcomes, I did not start with the elements known
from copyright or patent law but instead tried to discover any potential object
that could be sheltered. To find possible solutions, I asked the interviewees
what they considered as particularly valuable in a computer program. I then
tried to determine which elements in a computer program should be pro-
tected legally according to the interviewed companies.

a) Valuable Components

526 I started by asking the companies what they considered to be the ‘crown jew-
els’ of the software they develop and commercialize, what has to be protected
safely from third parties, and what would cause most harm if destroyed or
stolen by others. I asked the interviewees to focus on the elements that would

See for example transcript H, N 96, 106, 118 and 132, and transcript E, N 142.

See for example transcript A, N 112.

Transcript K, N 77.

1050

1051

1052

Chapter 5: Findings of the Interview Series

241

hurt the most if attacked, irrespective of whether this was a financial, personal
or very different type of hurt. Either way, the aim was to find out what compa-
nies regarded as valuable in software development and commercialization.

527 Their feedback varied and included business plans, source and object code,
database designs, user interfaces, the final product, algorithms, the number of
functions and features integrated, innovative twists, personal data, product
specifications, the look-and-feel, and the final implementation of vertical do-
main know-how in a software product. They described how the value of an el-
ement or component would largely depend on “the business and particular
piece of software”.1053 They explained that the valuable components in software
could not be generalized for every type and piece of software. Instead, an eval-
uation of every good would be necessary. Only with this approach a solution
that takes into account the particularities of a creation or invention would be
achieved. They further stated that it was complex problems that were sensi-
tive to infringements.1054

528 Based on the feedback I received, I was able to group certain software compo-
nents that appeared to be particularly valuable. The elements that were named
most were the source code, the algorithm, the integrated functions of fea-
tures, the look-and-feel and, finally, the integrated vertical domain know-how.
They explained this as follows:

529 The source code is what makes a program run on a computer. It represents the
description of a command that the machine has to execute. It therefore is the
technical backbone, which displays a process digitally. Everything is contained
in the source code: a program’s functionality, the algorithms, the processes,
etc. The organization of the code itself in a structure requires a lot of re-
sources and brainwork to build. When a computer program is published, a
large part of the technical and practical knowledge is made public and, thus,
becomes accessible if it displays the source code openly. In this case, it cannot
only be read but also copied. This makes the source code vulnerable to abuse.

530 The algorithm was described as representing another key part in software as
it mathematically portrays the problem that the machine has to fulfil, its be-
haviour. It tells a machine how, and on the basis of which parameters, a
process should be steered. As it has to be a general mathematical rule for many

See transcript M, N 25.

Transcript I, N 80.

1053

1054

Chapter 5: Findings of the Interview Series

242

possible situations, it is usually highly elaborated and optimized, requiring a
lot of time resources to construct or adjust it. A qualitatively high algorithm
requires and contains a lot of vertical domain know-how.

531 The look-and-feel is the way the software is perceived by the user. It contains
all the conceptualized small twists that a user may not explicitly detect but
which help to guide users and increase the user experience. We therefore talk
of a combination of particular aspects of an animated and interacting user in-
terface and certain functions and features that a user experiences. The look-
and-feel includes a lot of creativity as it is influenced by the designer’s taste,
experience and know-how. It is very important from a user perspective and
has a big influence on their purchasing behaviour.

532 The number and combination of various functions and features determine what
purpose a product serves and how well it meets the requirements and needs
of the users. It therefore has an important role in shaping the final product.
The functions and features are usually sketched in conceptualization, marking
the cornerstone of the software, such as velocity, reliability, the front end, data
security, the number of integrated business processes etc. These are some of
the main characteristics that are compared with the products of a competitor
and therefore influence whether a customer buys the product or not. If im-
portant functions stop working, the whole software fails, similar to a gear-
wheel.1055 At the same time, the originator will have difficulties in commercial-
izing their software if the software’s functions and features are imitated in a
competitor’s product.

533 However, the most named aspect was the vertical domain know-how that is
integrated in software. Every company has its own special know-how, how to
realize projects best, which factors interact, how to detect user needs and
wishes, how to offer a one-in-all solution, how to use the system environment
effectively, and so on. This particular type of knowledge is used in the devel-
opment process and has a major effect on the final product.

534 The five most named valuable components in software engineering were
therefore the source code, the algorithm, the look-and-feel that is revealed to
the users, the combination of particular functions and features, and, finally,
the vertical domain know-how that is integrated in a finished program. All five
software components represent the company’s creative or inventive contribu-
tion and are, thus, highly valuable for the developing companies. According to
the software companies, these goods represent the particular know-how or

Transcript F, N 37. 1055

Chapter 5: Findings of the Interview Series

243

knowledge of the company which is apparent in the final program. This makes
these components vulnerable to infringement, if no further preventive mea-
sures are taken. Some components are not based on knowledge alone, but uti-
lize a trial-and-error approach. Vital for discovering the best solution possible
is therefore the time spent on programming, having ideas, realizing and testing
them, failing, trying again, and succeeding.1056 What makes these components
valuable, therefore, is the amount of resources put into them. All the attempts
needed to get to this point wouldn’t be recognizable in the final version. How-
ever, competitors could copy the successful version and be spared all the ef-
fort the originator put in to develop an optimal solution. The particular know-
how and spent resources are therefore both important factors in estimating
the value of a software component. It was noted how sensitive both aspects
are to infringement and that they have to be kept safe somehow.

b) The Suggested Objects for Software Protection

535 The section above dealt with the question of what the valuable components
are in software engineering. The next step is to discover which components
would be suitable for legal protection. I therefore asked the interviewees
which components in a computer program were worth being legally protected.

536 The replies corresponded with the above results in that invested resources
and know-how were not only valuable but also should be protected with legal
measures. The collected data suggested that the source code, the algorithm
and the look-and-feel contained a particular amount of valuable and sensitive
data.

537 All the interviewed parties agreed that the one-to-one or slavish copying of the
whole software product via data transfer or replicating a carrier medium rep-
resented economic and ethical damage and should be forbidden. Slavish copy-
ing would have the same effect as plagiarism in literature.1057 According to the
interviewees this is particularly aggressive and bold behaviour, not adding any
creativity to the final outcome.

538 The companies described the source code as containing a lot of technical
knowledge, expertise and domain know-how. Further, as the source code con-
tains the technical instructions to the machine, a great amount of time, intel-
lectual and financial resources must be invested in its development to achieve

See discussion in transcript D, N 36.

Transcript C, N 38.

1056

1057

Chapter 5: Findings of the Interview Series

244

a practicable final version that is able to fulfil the desired tasks. The source
code is the product of a long process where both knowledge and resources
have been invested. In an open code version, all of it is visible on the surface,
making it particularly vulnerable. By copying the source code somebody else
has elaborated, the program’s know-how and utilized time resources are
abused, diminishing the value of the original.

539 Algorithms were described as containing the most and purest amount of
know-how. They are the embodiment of the domain know-how in a process
that is represented in the form of an algorithmic function. They are built on
the developer’s experience in successful formulation. This high-concentrated
know-how should be protected.

540 The look-and-feel was described as the embodiment of the user experience it-
self. It includes the final version of the software’s functions and features that
make it distinctive and characteristic to use for the customers. But it also rep-
resents the visual appearance of a software company, its conceptualized
structural perception, its desired feeling. The look-and-feel is therefore
closely connected to a company’s corporate identity.1058 Companies want to
prevent third parties from using their look-and-feel for two reasons; first, the
implemented know-how, which is visible on the surface’s look and behavioural
feel needs to be protected. But the companies also want to prevent others
from abusing their corporate identity and creating a connection to third par-
ties that does not exist. The interviewees in this context talked about user traf-
fic or attention that is skimmed by competitors, deceiving potential clients.1059

This puts users at risk as they do not receive the service, including the security
guarantees, the original company would provide. As software copyright pro-
tection today does not explicitly cover this problem field, companies instead
rely on branding, design rights and unfair competition law to protect the look-
and-feel of their programs.

541 Software components usually come with additional records and development

documentation such as instructions, commentaries, descriptions and so on.
According to the interviewees, these records contain a lot of creative thoughts
and know-how. In day-to-day business this type of information is only shared

Transcript F, N 69.

See for example transcript A, N 70, and transcript K, N 71.

1058

1059

Chapter 5: Findings of the Interview Series

245

if protected under the shield of a contractual agreement. But in order to pro-
tect them from attack by an unrelated third party these documents would re-
quire additional IP protection.1060

542 The companies stressed that the model of protection should be related to the
achievements of the particular software piece as well as to the work and re-
sources that were engaged to develop it.1061 The achievement relates to the
added value or inventive contribution a component has to offer. Software en-
gineering involves a lot of human effort, time and financial resources. As a lot
of the involved know-how is visible in the final products, advanced protection
is particularly important.1062 Otherwise, the copier would not only profit from
the displayed know-how but also from the effort and resources that the origi-
nal developers had to invest. Therefore, the legal cover should not only protect
the visible know-how but also the investment involved in the development of
the software. The know-how and other sensitive information can be grouped
into technology protection, and the financial and time resources spent, includ-
ing how creative they were, into another group of effort or outcome protec-

tion.1063 Depending on the purpose a legal system intends to serve, either or
both groups could be tackled.

543 One of the interviewees further suggested that an explicit minimal effort in
developing has to be outlined so that the good is granted legal protection. The
effort could either be monetary or time taken to develop the product. But ex-
ploring this suggestion further, it was concluded that this would not take into
account various borderline cases and would, thus, not be so helpful for defin-
ing the scope of protection.1064

544 To conclude, it was suggested that it should be evaluated for each case which
elements were valuable and sensitive enough to be protected. Several compo-
nents, including the source code, the algorithm, and the look-and-feel (includ-
ing both the user interface and certain functions and features) were consid-
ered to be worthy of legal protection. All components exhibited a high
concentration of know-how and demanded a lot of (human, financial and time)

See for example transcript C, N 40.

They spoke of the relationship between the subject and its protection and the reasonable-

ness of it. See for example transcript B, N 74 and 78.

For more information regarding the visibility of know-how in software components, see

above N 444.

Elaborated partially with the help of transcript L, N 94, and transcript G, N 133.

See transcript B, N 74 ff. This criterion was touched on in several interviews, but was not

supported in any as a final criterion.

1060

1061

1062

1063

1064

Chapter 5: Findings of the Interview Series

246

resources for development. These components were identified as the most
valuable ones for companies. For this reason, the law should provide adequate
protection and efficient measures against their abuse. Depending on the pur-
pose of the legal protection, a particular model for protecting the involved
technology or a model to protect the invested effort could be implemented.
Additional elements, such as development documentation, drafts and instruc-
tions, could be integrated in a future system. Thus the law would recognize
software as a product with many different elements and would therefore con-
sider all its different parts,1065 which would help to provide a coherent and
functioning software protection system.

3. Starting Point for Legal Protection

545 The starting point for legal protection is the moment when an intellectual
good becomes recognizable from a legal perspective: People can derive rights
from it, build obligations on it and trade with it. In the current legal system,
both copyright and patent law focus on protecting the final product, such as
the source code in copyright or the elaborated algorithm in patent law, when
the development process has mostly been completed, and the components are
fixed in their definitive shape and implemented in a final product. During the
interview series, the question was asked at what point legal protection should
start and what the minimum requirements for legal protection might be.

546 During his interview, one person stated that if he was able to make a change in
the law he would want a clearer starting point in legal protection of his soft-
ware products and services. He stated that he did not know for certain at
which phase of the project process legal protection began: “You keep on de-
veloping, and at some point protection is simply granted.”1066 When discussing
this assertion with other interviewees, many of them knew from their work
that the ‘expression’ currently represents the relevant starting point for legal
protection in copyright. However, the interviewees could not agree on the
term’s significance. They tried to deduce where in the development timeline
one could set the point that a work became an expression, but kept switching
back and forth between a few sketches during conceptualization, to more de-
tailed drafts or the final source code. It gave the impression that they were
trying to refer to a term they had heard before, without truly knowing what it
implied.

Discussed in transcript K, N 106.

Transcript C, N 72 ff.

1065

1066

Chapter 5: Findings of the Interview Series

247

547 When the company representatives were asked what they, broadly, considered
as an optimal and adequate starting point for legal protection, most of them
indicated that, in theory, it would be the idea that included the most creative
or inventive activities. At the same time, they expressed some discomfort with
granting legal protection to ideas, as visions were very abstract things.1067 The
interviewees thus believed that a development project should exhibit a mini-
mum level of maturity and meaning, and that the good should have reached a
minimal stage of consistence to be granted legal protection.1068 The inter-
viewed parties thought that the idea should be specific and comprehensible
enough to outline how it should be technically applied or integrated in a spe-
cific surrounding, so that society can also learn something from it.1069 In
ideation alone, the creation does not provide enough information to society to
actually profit from its disclosure. Instead, the interviewees stated that the
earliest point for protection should be when the idea is ‘minimally fixed’ into a
specific draft of possible use, because with a draft the idea becomes more spe-
cific and, thus, loses most of its abstract character. The longer the wait along
the time axis, the more the software becomes elaborate and takes a particular
shape, making it seizable.

548 The question is how far down the development to set the starting point for le-
gal protection. If it is set too early, it can open the door to abstract ideas rather
than realizable solutions. If it is set too late, creative and inventive concepts
that are shared with the public remain legally unprotected, or are not dis-
closed at all.1070

549 The software companies felt that software protection should be granted either
from the conceptualization or realization stage, with the majority in favour of
the conceptualization stage. More than half of the interviewees believed that
in this phase most creativity was materialized. Many important decisions that
are essential for the final software project are said to happen during this pe-
riod:1071 The company produces first sketches and builds prototypes. Through
this, an idea is sharpened, receives its decisive shape and gets thoroughly
tested.1072 At the same time, the interviewees said that it is during conceptual-
ization that most brain and planning effort as well as most of the human, time

Transcript K, N 91; transcript B, N 141.

Transcript C, N 108.

Transcript G, N 135.

See, for example, discussion in Chapter 5 Section V.B.2.c.

Transcript D, N 81; transcript K, N 91.

Transcript K, N 91.

1067

1068

1069

1070

1071

1072

Chapter 5: Findings of the Interview Series

248

and financial resources are put into a project. As these investments are key
for the developers, they believe that they should be legally recognized. Ac-
cording to this group, protection should start here, where all these invest-
ments are actually made.1073 They argued for example that a program’s pro-
totype would represent the first moment in development at which a (partial)
result could be shared with and exposed to third parties. Only a convincing
concept with a significant sales potential is able to generate high economic
value in the future.1074 Consequently, investors and principals try to detect and
select a potentially profitable project as early as possible, and participate in it
before anybody else does.1075 Elaborated concepts and prototypes were, con-
sequently, seen as particularly interesting from an economic standpoint for
potential business partners. But as soon as the program becomes noticeable
for these, it also becomes accessible for competitors and, thus, is at risk of in-
fringement. The interviewees felt that it would be reasonable and fair to set
the starting point for legal protection at this stage, where the good reaches
its highest economic potential and for the first time is also exposed to com-
petitors. Another important point they stressed was that there are particular
inventive developments that can be implemented in different ways.1076 But it
would not matter how the invention was realized because the specific idea be-
hind the concept is what matters. If the software’s main achievement lies in the
vertical domain know-how that is visualized in a business procedure, the tech-
nical implementation is negligible.1077 If only the final product was legally pro-
tected, the software in its earlier stages would be left unprotected, although
society could make use of the computer program in its earlier testable ver-
sions, or the descriptions and technical documentation. Protecting software in
its later stages would be too conservative. According to more than half of the
interviewees, legal IP protection should start at conceptualization.

550 The rest of the interviewees argued for the final product to represent the
starting point for legal protection. At this stage, the product becomes fully
useable and fulfils its purpose.1078 But the interviewees also felt that only when
the software was finished could the full economic potential of a computer pro-
gram be discovered. The product can be commercialized and put on the mar-

See argument in transcript L, N 112.

See transcript D, N 50 for examples.

Transcript B, N 86; transcript D, N 34.

Transcript A, N 160.

See transcript L, N 112.

Transcript I, N 159; transcript H, N 114 and 134; transcript F, N 125.

1073

1074

1075

1076

1077

1078

Chapter 5: Findings of the Interview Series

249

ket to generate revenue.1079 At this point, the completed software product
reaches its biggest economic value and can be exploited in the most damaging
way. For certain types of creations, the key value lies in carefully thinking
through the solving process in order to determine the optimal final shape of
the good. For a sophisticated computer program that is able to analyse dy-
namic data, the concept’s realization may be where the essential definitions
are made and where the main contribution is provided, for example through
efficiency. In this case, the good’s final arrangement is therefore highly impor-
tant for the final offer of the product.1080 Thus there seems to be a group of
software developments whose key contribution is found in a particularly cre-
ative or inventive technical realization. Where this is true, it is the technical
implementation that increases the software’s economic potential, makes it at-
tractive for exploitation, and thus triggers the need for protection of the final
product.

551 The interviewees agreed with the conclusion that it is not simple to determine
a clear starting point that would do justice to all possible applications, but in-
stead, a case-by-case evaluation is needed. This analysis would, according to
the interviewees, have to take into consideration when along the development

axis the creative or inventive contribution actually happens, be it a particular,
elaborated conceptual thought or its technical implementation. However, no
protection should be offered until the creative idea has been sufficiently speci-

fied and fixed to overcome the critical step.

552 Another problem not yet considered is that we often assume that the software
development process works linearly although, in practice, more often compa-
nies work iteratively or with an incremental approach. Although linear and spi-
ral development models show similar substages – ideation, conceptualization
and realization – in non-linear approaches, the intervals between the different
stages are shorter.1081 The engineer returns to the concept phase several times,
switching back and forth between conceptualization and realization. It is
therefore particularly difficult to isolate a starting point in the iterative devel-
opment approach. One interviewee suggested finding a separate approach to
determine the starting point for legal protection for these development meth-
ods, for example working with semi-manufactured or intermediate deliverables

built in separate sprints. Here, where each modular part of the program has

See transcript I, N 159.

Although only one interviewee discussed this chain of thought, I believe that it summa-

rizes what many others tried to say with their examples (see transcript L, N 112).

See for example discusson in transcript A, N 160 and 162, and transcript D, N 83.

1079

1080

1081

Chapter 5: Findings of the Interview Series

250

gone through conceptualization and is minimally programmed, the section is
preliminarily fixed.1082 Before the end of the sprint, the individual section is
still dynamic and adapted to newer findings. The basic idea of the iterative and
incremental method approaches is precisely that the individual component,
once completed, is no longer changed in its basic features. As many intervie-
wees explained, after a section’s sprint, the program module has become vi-

able and able to stand alone. Only minor conceptual adaptations or technical
subtleties are reserved so that the component at the end fits into the overall
composition. At the same time, the intervals in iterative approaches are short
enough so that third-party copying becomes highly unlikely; there is simply
not enough time within a sprint to rebuild a single component. After a finished
sprint, however, with the module’s release, the individual component becomes
exploitable by third parties and requires protection.

4. The End of the Term of Protection

553 The following section looks at which factors are important in deciding how
long a computer program should be legally protected and the software com-
panies were asked how long the term of protection should be for computer
programs.

a) Points of Reference

554 Different terms of protection serve different functions of IP protection. In or-
der to answer the question of how long computer programs should be pro-
tected, we first have to find factors that influence optimal duration of protec-
tion. I thus asked the interviewees what they considered as relevant in
determining the term of protection.

555 In the interview series, three reference points were discussed:

556 To start with, a few of the interviewed parties believed that the maximum term
of protection should be determined by the will of the company or author of the
computer program. Commercializing and developing software is closely con-
nected to the company, its brand and its customers.1083 The product thus has
a close relationship to the company that made it. On the other hand, every
software developer takes high risks and makes big investments. According to

Transcript D, N 83.

Transcript L, N 108.

1082

1083

Chapter 5: Findings of the Interview Series

251

the interviewees, the companies that create the product, give it its shape and
take the risk should also have the right to decide how long their product
should be granted legal protection.1084

557 Some other interviewees suggested that the utilization of a computer program
should function as a point of reference. They felt that a computer program
should be protected as long as it was still purchased and used by customers.1085

As soon as the number of users runs dry, the economic interest of competitors
and, thus, the risk of infringement stops and the computer program no longer
requires IP protection. This approach would be particularly useful for the eval-
uation of products with nostalgic values and/or evergreens. In this context,
one of the interviewees referred to Microsoft and its Office package. These
products have not lost their value although used for years in their original ver-
sion.1086 A similar reference was made to widely used Google products, such as
their search engine, Youtube or the Android operating system. As long as these
software products still work and the users keep on utilizing them, it was ar-
gued, the law should not hinder commercialization of a product that generates
demand. The dynamic and continuous growth of computer programs based on
old code should therefore influence the maximum term of protection.1087

558 The third and final suggestion, made by most interviewees, refers to the tech-
nical usability of computer programs, how long they can be applied technically.
After some years, a technology becomes outdated and more difficult and less
comfortable to apply. The developers as well as the users need to invest more
and more effort in keeping the technology behind the product up and running.
The software’s value for the users decreases. At some point, the users might
stop using the product entirely and replace it with a newer product.1088 Com-
petitors also become less interested in reproducing the product because they,
too, would have to invest some effort to keep the outdated program interest-
ing. When the product is no longer utilizable in an efficient way, the end of the
product’s life cycle is reached. According to most of the interviewees, the end
of a product’s usability should constitute the most important point of refer-
ence in determining the maximum term of protection.

See argument in transcript C, N 114.

See for example transcript I, N 110, transcript K, 89, transcript L, N 106, and transcript D,

N 75.

Transcript L, N 106.

See transcript D, N 75.

Transcript B, N 164, and transcript E, N 147.

1084

1085

1086

1087

1088

Chapter 5: Findings of the Interview Series

252

559 The interviewees named three points of references to determine a computer
program’s maximum term of protection, including the ongoing utilization of
the software by its users, the will of a program’s author or owner, and the es-
timated term during which a software product stays technically useable. Most
of them agreed that the last point, referred to here as the usability of the prod-
uct, should be used to determine the maximum term of protection.

b) Adequate Protection Period

560 Having discovered which reference points can be used to determine the time
length, the interviewees were asked what they believed was a reasonable and
adequate maximum term of protection for computer programs.

561 Most interviewees believed that the computer program’s usability should be
considered in determining the maximum term of protection. The software
market exhibits a particularly fast pace of product launching, but it is also
quite short-lived. Life cycles of computer programs are said to be shorter than
for other types of classical art works. The interviewees thus agreed that a
modern IP framework should consider that the market periods of software are
shorter than of other IP-protected goods. The current standard term of pro-
tection in copyright for computer programs of a minimum of 50 years after the
last author’s death was unanimously described as too long, as technology be-
comes outdated and loses its purpose long before the end of the term. Such a
long term of protection would therefore only “foster the gains of possible in-
heritors” and facilitate “evergreening”. However, today most software is devel-
oped and managed by legal entities, not individual natural persons. The heri-
tability of copyright, including the long term of protection, thus loses its
purpose.1089 In addition, the interviewees believed that, following the original
legitimation of IP rights in general, the term of protection should be short
enough so that society is still able to make use of the product when it falls into
the public domain. The artificial market advantage the right holders obtain
should be just long enough so that the right holder can get established in the
market: “Either the creator is able to regain his [or her] investments during the
first couple of years, or he [or she] will never be able to do so”.1090

562 The replies to the question of how long computer programs should be pro-
tected by law all lay somewhere between 10 and 20 years. Most were in favour
of a time limit around 10 years as an adequate length of protection. They be-

Transcript I, N 157; transcript F, 117.

Transcript G, N 131.

1089

1090

Chapter 5: Findings of the Interview Series

253

lieved that after this time the program’s usability suffered greatly and that,
consequently, the enjoyment for the customers diminished. If the users’ needs
and the technical requirements in the field of application were particularly
stable, the interviewees believed that a longer term of protection of up to
20 years could be justifiable. Stable user needs and technical requirements
favoured longer usability. In the absence of these, the shorter term of protec-
tion would suffice to satisfy the developers’ needs and practical desires.

563 The interviewees suggested a different approach to determine the term of
protection for IP rights that included amplified exclusivity and particular mar-
ket advantage, such as patents. The companies agreed that the main question
in this problem should be how long a company should be allowed to “till the
field” before competitors are allowed to enter the market.1091 According to sev-
eral interviewees, a couple of years is long enough to get established in the
market and achieve a market advantage.1092 If a product is not amortized after
the first 10 years, “something must have gone wrong”.1093 The product would
no longer be worthy of a legal market advantage. Upholding the long term of
protection of patents no matter the merit would cause excessive negative ef-
fects on the market. Consequently, for more exclusive intellectual property
rights, such as patents, a shorter term of protection between 3 and 10 years
would be sufficient.

564 Some of the interviewees further highlighted that a legal protection system for
software should take into account the fact that, due to modern development
approaches, software is a continuously changing product.1094 Successful prod-
ucts are rearranged and renovated again and again.1095 One of the interviewees
referred to Google Search as an example, which was established approxi-
mately 20 years ago. He said it was probable that parts of the original code
lines were still in use in the current version.1096 Most of the interviewed com-
panies emphasized that the mere fact that some parts of source code are re-
tained for more than 20 years would not automatically mean that it should be

Transcript F, N 117.

See transcript E, N 165 and 167.

Transcript G, N 131.

One interviewee described it by referring to a river: "Is it still the same water if I wait for

fifteen minutes? With software, everything looks similar from the outside, but inside it

keeps on changing. The question is, when does the time inside start to count again?" (tran-

script B, N 154).

Transcript B, N 152.

Transcript D, N 75.

1091

1092

1093

1094

1095

1096

Chapter 5: Findings of the Interview Series

254

granted prolonged protection. Still, the interviewed developers believed that
the law should carefully consider today’s technical possibilities and make a
conscious decision whether or not this point should have an effect on the term
of protection.

565 To conclude, the interviewed parties first discussed which reference points
could be used to determine the protection period of computer programs. Most
suggested that the expected period during which a computer program would
still be technically applicable should be the main point of reference to deter-
mine the maximum term of protection. The interviewees further concluded
that a maximum protection time of 10 to 20 years would be sufficient to pro-
vide the engineering companies with the protection they needed to earn back
their investments. An even shorter time period of only 3 to 10 years was sug-
gested for more exclusive IP rights on software, such as patents. A new time-
limit framework would also have to consider that software development and
its release has changed in the last two decades and that newer development
models, such as the continuous delivery approach, should be reflected in the
term of protection.

5. Setting the Limits: Admissible and Inadmissible
Third-Party Interventions

566 Having determined what the protection scope of computer programs could
look like, the next step is to establish where this scope is to be limited and to
what extent third parties are allowed to use legally protected goods. This sec-
tion does not discuss the effect of classic legal barriers but instead focuses on
discovering some important limits to the scope of protection. It starts by dis-
cussing the borders between original and second-hand works, as well as the
specific problems of source code translation. It then discusses how the so-
called quality ladder affects software engineering, and where limits to the pro-
tective scope lie in the case of standards and enhancing inventions. Finally, the
interviewees suggested how computer programs could be compared from a
legal perspective.

a) Delimiting Second-Hand Works: Where Do they Offer a
Contribution?

567 The interviewees explained that many parts in a software product would build
on previous discoveries, either self-developed or from external sources. Simi-
lar to a quality ladder, existing parts are recycled to create something new and

Chapter 5: Findings of the Interview Series

255

better. Software engineers refer to it as “to fork”.1097 They confirmed that it was
widely used in software development around the world and was also encour-
aged by the Open Source and Free Software movements.

568 With regard to the legal analysis of IP rights, several interviewees stated that
they had great difficulties determining in their practical work when and to
what extent they can use third-party programs as a spur, and when they are
actually crossing the line to a third party’s IP infringement. At the same time,
they said it would be equally difficult for them, to conclude with certainty that
the associated IP rights had been infringed for their creations. While they
agreed that apparent imitations should be legally forbidden, the interviewees
also highlighted how difficult it was to set the limits in blurry cases. Similari-

ties between two products lie in the nature of things and are common: “Would
you like it if a green coloured chair and a yellow coloured version of the same
chair each were allowed to have an independent copyright?”1098 Another inter-
viewee emphasized: “A chair is a chair!”1099 They said that the legal boundaries
to determine when software “A” becomes too close to software “B” remain un-
clear.

569 Still, the interviewees were able to give some perspective. They had stated that
a development should offer a creative contribution or added value to be
granted legal protection,1100 and repeated this for delimiting second-hand
works. The person using the original work, that is, imitating the source code,
has to provide a personal contribution to the outcome to be rewarded with
their own legally protected intellectual property. For this purpose, the second-
hand good needs to exceed a creative step with its additional contribution,
otherwise, the secondary work would continue to legally depend on the origi-
nal. The potential creative contribution of a second-hand good should there-
fore be considered when evaluating a derivative.

570 But, according to the interviewees, verifying whether a work represents a de-
rivative from another does not end with comparing the two final products.
Several of them emphasized that there might be some technical problems that
could not be solved or implemented differently from the original. In this case
a competitor cannot offer a new implementation but instead has to use similar

See also definition of the term: Techtarget, "fork", available at <https://whatis.techtar-

get.com/definition/fork> (retrieved September 6, 2021).

Transcript F, N 115.

See transcript E, N 155.

See above, N 454 ff. and N 462 ff. for more information.

1097

1098

1099

1100

Chapter 5: Findings of the Interview Series

256

https://whatis.techtarget.com/definition/fork
https://whatis.techtarget.com/definition/fork

concepts and solutions.1101 Referring to the example above: After all, a chair
is a chair!, the interviewees emphasized that the duplication of the one-and-
only possible solution should not be qualified as a derivative work. They rec-
ommended that the law should take the developer’s creative leeway into ac-
count and verify whether and to what extent two companies have utilized the
same programming language, followed identical requirements, are dependent
on third-party instructions, and to what degree the outcome of the two re-
sults is exchangeable. They believed that, if there was creative leeway, two en-
tirely different outcomes would probably result because there would be dif-
ferent ways and more possibilities to realize the same idea and requirements,
with different parameters or frameworks.1102 However, the more detailed the
requirements are, the narrower the creative leeway of the developer and the
fewer possibilities he or she has to create something novel and original.

571 At the same time, the interviewees noted that, beyond the requirements, there
would be some degree of best practice or standards within each area of soft-
ware development. The developers have to follow these best practices, other-
wise they risk the usability of their software decreasing. This problem can be
illustrated by comparing car rental web pages. The online services usually pro-
vide similar methods to search for cars, to arrange the search results, etc.
There are only a few additional functions which are not offered by competi-
tors. The creative leeway of car rental web pages thus seems to be limited. The
user is accustomed to a common look-and-feel and appearance. The inter-
viewed parties believed that these best practices or standards should be taken
into account when evaluating computer programs. They suggested that, in-
stead, we should positively value distinctive characteristics, for example of a
look-and-feel, that differ from the usual best practices. The expectations of
originality or novelty, using the terms of copyright and patent law, therefore
have to be adapted to the subject in order to avoid artificially narrowing the
scope of application.1103 Evaluating potential derivative works should thus in-
clude the possibility of predetermined developing factors and best practices.

572 To conclude, in evaluating second-hand works the creative and inventive con-
tribution of a development should be considered. The examiner should ob-
serve the positive inputs of the secondary work and evaluate whether these
are worthy of their own legal protection. In this evaluation, the examiner
should also assess to what extent the developer had creative leeway in creat-

See for example transcript C, N 44; transcript H, N 114 and 118.

See transcript H, N 114; transcript K, N 31.

See for example transcript F, N 115.

1101

1102

1103

Chapter 5: Findings of the Interview Series

257

ing this second-hand work. They should also examine whether and to what ex-
tent a work is based on predetermined characteristics due to the use of a spe-
cific technology, and where the author of the derivative has overcome these
specifications and basic requirements to offer a contribution of his or her own.

b) Translations of the Source Code in Particular

573 In most interviews, it was stressed repeatedly that the software system’s envi-
ronment was quite open to interventions from the outside.1104 While many ex-
ternal interventions in software are already legally qualified as illicit editing of
a work, it is highly debatable whether and to what extent translating the
source code from one programming language into another represents a viola-
tion of authors’ rights in the studied jurisdictions, and whether it can be factu-
ally detected. The interviewees expressed their concern about the current un-
certain situation. They were strongly against lawyers differentiating between
translations within linguistic languages and programming languages, as this
distinction would represent discrimination of the digital literary expression.

574 They emphasized that the source code is dynamic and therefore highly adapt-
able.1105 It can, if requested, be translated into any other programming lan-
guage within the same group of languages. At the same time, technically de-
veloping the source code frequently represents the main creative contribution
in a specific product. If the source code is copied and translated with a trans-
lator into another programming language, the program, although different in
the literary expression, would still follow the same elaborated commands. The
person copying the source code and entering it into a translator does not
themself offer any personal contribution to the outcome, and thus does not
pass the creative step for it to become a legally protected good of its own.1106

The question to what extent translations of the source code are legally covered
remains widely unsettled. For this reason, the software companies would want
the limits of source code translations to be regulated explicitly, so that all legal
uncertainties are eradicated.

See above, N 401 ff.

See previously N 401 ff.

See transcript C, N 106

1104

1105

1106

Chapter 5: Findings of the Interview Series

258

c) Limiting Extensive Rights of Standard Essential Patents and
Fostering Incremental Improvements

575 One function of IP law is to foster innovation. At the same time, absolute and
far-reaching exclusive rights are designed to exclude others from developing
a similar invention or one building on it. For this reason, some people assert
that intellectual property law tends to prevent innovation in technology rather
than fostering it.1107 In a field such as software, where a lot of development and
novelty is still happening, exclusionary rights can have a considerable effect
on the competitors as they can block others from researching and elaborating
important basic developments.

576 According to the interviewed companies, it is important that law provides a
specifically tailored and balanced solution for new technologies, such as soft-
ware. It should provide an environment that is invention-friendly but not at
the same time blocking others. Law tries to meet these needs and practical
desires by allowing design around and, to some extent, decompilation in
statutes. This has increased interoperability in software. However, many soft-
ware companies believe that these measures do not go far enough.

aa) Standard Essential Developments

577 A lot of computer programs build on previous discoveries. For this reason, it
was important for software engineers that standard essential patents and
other protected knowledge of industrial standards were accessible and could
be used through a facilitating mechanism.

578 One interviewee justified this need with an example from the mobile phone
industry: “The first [mobile phones] had a poor screen, other ones a poor user
interface, then the keyboard was bad. Each component was sheltered sepa-
rately with patents, and nobody was allowed to make changes to them. And
we, as the consumers, had to choose between all of those poor products.”1108

This example shows that many important developments are covered by ab-
solute or exclusive rights. As described, they can have a blocking effect on

In my research, a little more than half of the interviewees believed that patents were able

to foster innovation in technology as this provides an incentive to invest in R&D. The oth-

ers were more critical and emphasized that powerful patent holders prevent others from

being innovative.

Transcript A, N 142; see also the example described by the same company in transcript A,

N 96.

1107

1108

Chapter 5: Findings of the Interview Series

259

people who have to develop software. Although the engineers can partially
avoid implementing these technologies, the effort to do so comes with great
expense and compromise. Other technologies cannot be circumvented be-
cause the end products have to comply with certain standards.

579 According to the interviewees, it is important that a reasonable scale is used in
granting exclusive rights, especially for standard essential software compo-
nents. One suggested solution for this problem was that right holders could be
forced to grant access to standard essential developments. Some observed
that this could involve a compelled grant to use against payment whenever a
development was necessary to fulfil the usual work of an engineer. For this
purpose, a specialized authority or other body would have to declare it essen-
tial to have a particular legally protected development as standard. The person
entitled to the development would then have to partake in compelled licensing
to the third party but would receive remuneration in return. In any case, bet-
ter access to standard essential development should be enabled in order to
maintain the innovation mechanism.

bb) Incremental Improvements

580 Another question is how law should deal with cases in which no standard es-
sential technology is used, but, instead, a developer discovers an incremental

improvement to an existing product or method. According to the interviewed
parties, this incremental improvement could constitute a better, more effi-
cient, more effective or more flexible solution to a known technical problem.
They emphasized that, particularly in software engineering where a lot of in-
ventions are still possible, the broad protection scope of patents would have a
wide-ranging effect, making patenting as a whole subject to attack. Many im-
provements to pre-existing technical innovations, which could be of great use
to society and the market, are blocked through the broad protection scope in
patent law.1109 It was questioned whether patents in these situations still serve
their original purpose.

581 The interviewees argued that incremental improvements should clearly be
legally protected, if the improvement, the positive gain for the existing inno-
vation, would overcome an inventive step and would thus itself fulfil the legal
protection requirements and obtain an absolute right. But if an improvement
represented an incremental inventive gain for the previous state of the art, but

This issue was raised in several informal preliminary talks and discussions with software

engineers and professors teaching in this field.

1109

Chapter 5: Findings of the Interview Series

260

itself was not able to meet the legal requirements for its own absolute right
because it was too dependent on the original innovation, they suggested it
should be legally allowed, if the improvement was a distinctive one. If an ab-
solute right impedes such improvements simply because the legal require-
ments are not met, the intellectual property right protecting the original de-
velopment would be encroaching it. For this reason, the interviewees wanted a
tailored solution to legalize incremental improvements in software engineer-
ing, for example with the help of compulsory licences or injunctions.

582 To conclude, the interviews showed that the engineers wish to gain admission
to standard essential technologies, but the use of important basic develop-
ments is legally forbidden. In the disputed field of incremental improvements
to previous innovations, in the absence of access the companies are denied
(equal) opportunities. It was suggested that legal measures, similar to compul-
sory licences or injunctions, are implemented so that developers can make use
of standard essential patents, and would be legally allowed to share their in-
cremental findings with existing developments.

d) Second-Hand Works: How To Compare Computer Programs

583 In the legal foundation, above, it is described how law has found ways to cope
with second-hand works and delimit them from originals.1110 While case law
has introduced comparison standards for most areas of creative works, the in-
terviewees felt that legal practitioners and courts had shown great difficulty in
applying the standard institutions to computer technology. Practising lawyers
have called to my attention the problem that there are no guidelines on how
to compare two software products, in order to evaluate a possible infringe-
ment. It is difficult for lay people to identify the similarities and differences in
multilayered software products, and even more difficult to say when these
similarities have become legally relevant. I therefore asked the interviewees to
what extent and how they would differentiate between and compare similar
software programs.

584 The interviewees acknowledged this problem. They agreed that, in the end, no
tool or expert can guarantee discovering a copy or an inspiration theft. If
somebody wants to hide that he or she imitated or copied, it remains difficult
to prove.1111 Although they believed that a technical expert would most proba-
bly be able to evaluate whether one work was (partially) developed on the basis

See above, N 365 f.

Transcript D, N 56.

1110

1111

Chapter 5: Findings of the Interview Series

261

of another,1112 setting the limits between admissible inspiration and inadmis-
sible imitation or copying would, in their opinion, be very difficult. No matter
what good or service we are looking at, it serves a certain purpose and is used
in a specific context. Instead of looking at the object of evaluation at a distance,
the interviewees suggested looking at the different layers of software to tackle
the problem: “When I look at the surface, both programs do the same. You may
compare this to Microsoft Dynamics and SAP, two accounting software pro-
grams. At the end, you pay balances and invoices. So, from this perspective,
you have identical situations. You may say that one software product com-
pletes its task in a particularly effective way, more steadily. I could focus on a
level further down and note that the database design varies and that two dif-
ferent types of technologies are used (…)”.1113 Consequently, we can find differ-
ent types of technologies, involved process designs and approaches to guide
the user and compare different computer programs. By focusing on different
sections or subdivisions of the observed object, it becomes easier to see the
similarities and differences in a computer program.

585 The interviewees stated that we could focus on certain specialities and char-
acteristics in order to compare two computer programs:

– customer processes: the way business processes are constructed and
managed;1114

– particular features or the total extent of functions and features:1115 one
can observe how a computer program behaves and on which require-
ments it is based;1116 the programming languages and technologies may
vary but the key functions remain the same, if copied;1117

– the source code: similarly to literature, one can compare the written
text and evaluate to what percentage two different source codes corre-

Transcript D, N 54.

Transcript L, N 96.

Transcript L, N 98.

Transcript E, N 157, transcript K, N 73, transcript B, N 110, and transcript C, N 88.

Transcript K, N 73.

See transcript B, N 109.

1112

1113

1114

1115

1116

1117

Chapter 5: Findings of the Interview Series

262

spond;1118 specifics to compare include procedure identifiers and parame-
ters,1119 source code comments,1120 the front-end, the architecture of the
code,1121 and the structure and building of the code;1122

– the user interface: visual perception is sufficient to determine strong
similarity;1123

– the look-and-feel: how did the engineers implement the features and
functions and how does the user experience a computer program;1124

– the database design;1125

– implemented technologies, such as computer language families and used
algorithms;1126 and

– provided documentation, notes and instructions.1127

586 All these characteristics and elements may be taken into account when com-
paring software products. For the source code alone, one can also use partic-
ular technical tools that complete the comparison, like the software used to
compare computer programs with Open Source programs. But there are also
tools that help to visualize the structure of the source code, which would also
help to identify similarities between programs.1128

587 In this context, the interviewees emphasized that there were certain best
practices or standard solutions in software development. For a lay person,
these might be red-flagged as an undue similarity not offering any creative
contribution. But these solutions would represent standards that were in-
evitable in practice, and thus frequently used and observable. To be able to
technically compare two programs, it would be important to recognize and
acknowledge the existence of these best practices.

588 To conclude, this section looked at which aspects an examiner could focus on
to compare two software products. Whenever strong similarities in two pro-

Transcript G, N 114, transcript I, N 123, transcript C, N 86, and transcript H, N 105.

Transcript B, N 107.

Transcript B, N 117.

Transcript D, N 54.

Transcript B, N 107.

Transcript C, 84 and 86.

Transcript K, N 73, transcript L, N 98, and transcript B, N 117.

Transcript L, N 96.

Transcript C, N 84, transcript L, N 96 and 100, and transcript I, N 114.

Transcript B, N 117.

See discussion in transcript D, N 56.

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

Chapter 5: Findings of the Interview Series

263

grams are observed, the examiner should take into account the existence
of standards and best practices in developing a program. The examiner can
thereby ensure that he or she does not red-flag predetermined characteristics
in a product, and instead focuses on the relevant incidents.

VI. Law Enforcement: Infringements and Legal Disputes

589 Another function of intellectual property law is to regulate how unauthorized
interventions in a right holder’s scope of protection should be handled and the
consequences for an infringer. Hereby, the legal entities get to know what
rights and obligations they have. Having looked at how software is developed
and commercialized, and which factors are important in building an IP law sys-
tem that is consistent with software technology, we now explore how infringe-
ments affect software developing companies, and how and to what extent they
can enforce their IP rights in case of an infringement.

A. Infringements

590 The software developers were first asked to what extent they had experienced
an unlawful breach of their IP rights on computer programs.

591 Every party stated that they had observed some kind of incident concerning
their IP rights. They described how it is difficult to evaluate whether such an
incident can be considered an actual infringement of their rights or whether it
was just a critical event.1129 The scope and impact of the violations varied, but
both contractual breaches and third-party infringements were described, al-
though contractual infringements were said to happen more often.

592 According to the interviewees, in most cases clients had registered too many
users to a licence-limited server, conducting so-called overuse of an estab-
lished licence agreement.1130 As the right holders of the software do not want
to compromise the existing relationship with their customers, they usually just
pointed out the excessive utilization to the infringing party, abstaining from
further measures. The interviewees said that many of their customers would
not notice if they infringed contractual terms with their actions. Customers
generally did not do it on purpose, and thus were surprised to learn that they

See for example the struggle of one interviewee in trying to explain what he considered as

an infringement, in transcript H, N 142.

This usually falls under contract law, see for example transcript I, N 6, transcript E, N 175,

and transcript C, N 118.

1129

1130

Chapter 5: Findings of the Interview Series

264

had committed unlawful use of the software. If pointed out by the software
licensor the customers would usually agree to pay the additional licence fees
without any trouble. The right holders would try to react moderately and in-
dividually in these cases, as they would not want to damage the existing rela-
tionship with their customer. An informal note would usually suffice.1131

593 If an unrelated third-party conducts an infringement, stricter and more formal
measures would be imposed.1132 Because there is no existing relationship, and
thus no trust bond, there is usually no reason to show restraint. In this situa-
tion, legal measures are brought much quicker. The differentiation between
current clients and unknown third parties therefore determines a company’s
reaction to an infringement.

594 Infringements were consequently described as a relevant topic for right hold-
ers, into which they had to put quite a lot of care. It appeared that each had
developed their own particular way of dealing with violations. Economic inter-
ests, for example behind a customer relationship, were shown to have a great
effect on shaping their infringement policy.

B. Legal Disputes

595 The interviewees were then asked to describe their company’s experience
with legal disputes in the field of software.

596 They emphasized that legal certainty would be a very important factor for
every researching, developing and commercializing company. Their property
would have to be secured. A functioning system of law would be measured to
some extent by whether it offers transparent, comprehensible and propor-
tionate tools to enforce a right holder’s rights. It would thus be important to
provide a satisfactory litigation system for software problems.

597 Prior to preparing the interview guidelines, I had the impression that only very
few software IP cases were brought to court in Switzerland. However, several
interviewees described how they currently were or had been previously in-
volved as a party in a legal dispute on one side or another. Very few companies
stated that they had no experience at all with litigation.1133 The companies
mentioned that, in the past, they had been able to resolve most disputes di-
rectly with the opponent, and had not been forced to take legal measures. Al-

Transcript L, N 114.

Transcript C, N 118.

See transcript H, N 144; transcript I, N 134.

1131

1132

1133

Chapter 5: Findings of the Interview Series

265

though most of the litigious procedures had happened with third parties, most
infringements were said to have occurred with an existing customer or licence
relationship.

598 Being involved as a disputing party in litigation was described as tedious; it
would hardly be a good experience because the litigants had already invested
a lot of time and money to get to this step. In general, the companies said they
preferred an out-of-court solution. The risks associated with a dispute could
be tremendous.1134 Litigation was described as a matter of ultima ratio. They
explained that a direct talk usually had a positive effect. Only if an infringer
acted with malicious intent or was unwilling to cooperate was going to court
considered. Before a formal complaint is filed, all options, chances and risks
are taken into account.1135 Nobody wants to pick a quarrel if not absolutely nec-
essary.

599 Several interviewees said that although they had been victims of an infringe-
ment, they had decided not to pursue it and institute legal proceedings. This
was partly because the infringements were not severe.1136 One stated that his
company would accept infringements as long as they remained marginal. To
some extent, they would consider them flattering.1137 However, others ex-
plained that they considered legal software protection and the associated
measures as a “toothless tiger”,1138 and they saw themselves in a rather de-
fenceless position. Litigation in the field of computer programs was very com-
plex and required a lot of resources.

600 Legal insecurities were said to deter small and middle-sized enterprises with
less experience in legal confrontations from standing up for their interests and
rights. They said that they had tried to learn rough guidelines, in particular for

One of the interviewees stated that he would check the case ten times before even think-

ing of litigating (transcript B, N 185).

For example, companies have taken into account the following circumstances: How com-

plex is a case? Is the company well documented on the infringement and prepared for ju-

dicial measures and disputes? Do any ethical, moral or reputational matters interfere with

litigating? What are potential retaliations? What are possible benefits and potential costs?

What are the actual chances of winning and losing? How much time and other resources

are required? Or is it necessary to take legal proceedings just to make a mark or achieve

precedent? Do contracts with the opponent party contain jurisdiction agreements or ar-

bitration clauses?

See for example transcript K, N 96, and transcript L, N 122 and 126.

Transcript K, N 93, and partially also transcript H, N 138.

See particularly transcript B, N 170, and transcript L, N 140.

1134

1135

1136

1137

1138

Chapter 5: Findings of the Interview Series

266

the U.S. Common Law jurisdiction, however it was difficult to comprehend
the diverse and partially inconsistent case law.1139 This lack of knowledge also
meant that not enough preventive and defensive measures in case of potential
disputes were taken. Some private institutions and associations offered help
for companies with smaller budgets and start-ups, and intermediaries such as
Apple and Google would jump in by assisting with legal contacts and dispute
resolution mechanisms if the software was offered within their systems. The
private parties, however, could not fulfil the needs of all smaller parties.1140 A
certain degree of independence from other market participants should be en-
sured. Affordable public services are therefore urgently needed.

601 The lack of resources and smaller budgets for litigation reduced the possibili-
ties for the smaller and middle-sized enterprises to defend themselves prop-
erly, if sued. The costs of legally defending a rightful position were described
as substantial. The issue of cost consequently could have a huge influence on
defending rights. The subject of the high costs of legal disputes was addressed
in almost every interview. The decisive factor would be who could hold out the
longest. As software disputes are said to be particularly difficult and complex,
the costs for experts, consultants and lawyers are tremendous.1141 The problem
of costly defence was said to be partially used in the market to drive out
smaller businesses. If a small business becomes interesting enough and has
reached a certain threshold to be noticed by larger competitors, but the small
firm does not want to collaborate with the large company, litigation would be
a means of getting rid of the small ones. As the small companies cannot afford
the defence costs in the long run, the larger companies will drain the small
business’ financial resources.1142 They will try to simply drive them out of busi-
ness or acquire the patents at low cost in the event of the small business’ bank-
ruptcy. This lack of resources and preventive measures was considered to re-
duce the chances of a smaller company succeeding in a legal dispute, even if
the smaller company was in the right. Enforcing their rights and defending
themselves against patents would thus be a particular challenge for smaller
companies. Even if successful, the effort needed to confront even a single in-

See particularly transcript M, N 50.

Transcript K, N 73.

The interviewee in transcript G, N 167 ff. stated that they usually calculated EUR 1-2 mio.

(estimated value) for procedures in Great Britain and the United States.

See explanations in transcript E, N 121.

1139

1140

1141

1142

Chapter 5: Findings of the Interview Series

267

fringer was described as being too high compared with the possible final earn-
ings.1143 Litigation, even if on the passive side, would thus be an unattractive
option.

602 The right holders consequently tried to avoid legal disputes as the effort and
resources required were not worthwhile in relation to the potential profit. Lit-
igation in the field of software engineering therefore is considered a measure
of ultimo ratio, preventing many right holders from standing up for their
rights.

VII. Summary

603 The interview series showed that several aspects have changed in software en-
gineering over the last two decades. There were 34 key findings from my in-
terview study, which I summarize here:

604 1. The relevance of software engineering has increased in the last few decades,
as it has largely replaced mechanical governors and electronic circuits in tech-
nical processes. Software engineering has become more important for indus-
trial manufacturing and in the provision of infrastructure and services. Nowa-
days, most companies rely on computer programs. As a process and a service,
software engineering is thus valuable and important for many industries.
[N 375-376]

605 2. Several phases can be observed in a software development process. During
ideation, the inspiration, need or idea is first conceived. In conceptualization,
the engineer concretizes the simple idea by creating first sketches and drafts.
A more detailed concept may also consist of elaborate functions and features.
Most of the resources are put into this phase. In the next step, realization, the
individual functions, features and drafts are assembled. All the necessary pro-
gramming is conducted. When the software product is finished, it is imple-
mented in its software environment, and either installed on the customer’s
computer or provisioned on a server. Further maintenance or assistance may
be necessary. [N 379]

606 3. The process of how software is developed has changed over the last decade.
While in the early years software was developed linearly – from the idea, to the
concept, to the fully coded software product – today most engineers work at
least partly iteratively. This means that they circle regularly between the con-

See transcript K, N 93. 1143

Chapter 5: Findings of the Interview Series

268

ceptualization and coding process, drafting and realizing module by module
instead of coding everything at once. With the help of this approach, a pro-
totype can be achieved much faster. The prototype, as a minimal viable soft-
ware product, can then be presented to customers and potential investors.
In practice, a mixture of both development approaches is usually followed.
[N 380-381]

607 4. Another trend currently observed is for software to be continuously deliv-
ered to the customers. Instead of selling separate new major versions of a
product every couple of years, the computer programs are managed on acces-
sible servers, where the software can be constantly altered and newly released
in shorter cycles. Entire new versions, add-ons and updates can be released
on a regular basis, sometimes even monthly. This encourages the implementa-
tion of improvements and spreading them much faster. [N 382-383]

608 5. How software is developed will vary from company to company and usually
depends on a cost–benefit analysis. While smaller companies tend to select a
development approach based on the project they want to work on, larger com-
panies usually work with standardized and predetermined project processes
to achieve their goals. Companies also tend to collaborate more with external
partners to purchase third-party know-how and expertise instead of working
as closed shops. [N 378, 380, 384-385]

609 6. The development process – from the first idea to its final implementation –
takes on average around three years to be completed. A prototype of itera-
tively developed software will take around two years to finish. The duration of
a development process can vary considerably and depends on several factors,
including the complexity of the technical problem and the required adminis-
trative measures. [N 387-392]

610 7. A programming language is mostly chosen for a specific project. The pre-
dominating factors in its selection are the pre-existing system environment,
the skills of the responsible engineers, the support of the software community
and ruling trends, and the personal preference of the engineer. [N 394-400]

611 8. Computer programs and their components are very adaptable to alterations
and changes. Depending on the system surrounding the software, the available
resources and the effort an engineer can spare, making modifications may ei-
ther improve the system or bring it to its limits. A source code can easily be
translated into another programming language of the same language group.
[N 401-405]

Chapter 5: Findings of the Interview Series

269

612 9. More companies tend to collaborate and commercialize internationally to-
day, making use of economies of scale and conquering new regional markets.
Regulations and jurisdictions have a great effect on an enterprise’s risk evalu-
ation and may hinder it from expanding into specific areas. A uniform and con-
sistent legal software protection framework would be considered helpful and
desirable. [N 408-410]

613 10. Competition is experienced as an inspiring and empowering factor for mar-
ket participants. Although many interviewed companies said that software
patents in particular may have blocking effects on the software engineering
market, none of them had ever been prevented by competitors from realizing
and commercializing their software products. Alternative solutions for legal
and financial obstacles could always be found. [N 411-417]

614 11. Licensing and providing programs as-a-service are the two most common
price models currently used in software engineering. While licensing has been
the predominant model for the last two decades, the newer online approach
to offer software as-a-service is catching up rapidly and has even started to
replace other price models. [N 418-420]

615 12. The influence of the Open Source and Free Software communities is no-
ticeable in software engineering. Developing without these communities and
the products they supply is hardly ever economical. The advantages of Open
Source and Free Software include access to technical solutions, the regularly
outstanding quality of the products for little or no money, the standardization
they foster and the big community spirit that is shared among the supporters.
However, a frequently mentioned risk of using Open Source and Free Software
is the potential contaminating character of some of the software licences. It is
a big challenge for every developing company to elaborate a clean and effec-
tive Open Source policy. [N 421-434]

616 13. The software life cycle – the time after a product has been implemented
until it has to be replaced with a new software product – is around 10 years on
average. It can vary between 5 and 20 years. Less successful computer pro-
grams may be taken off the market after only 2 years. The duration of a soft-
ware life cycle depends on the particular circumstances. The longer a technol-
ogy persists, the more expense and effort is needed to maintain and adjust the
system to newer requirements. [N 435-440]

617 14. Knowledge in software engineering can be grouped into expertise, experi-
ence and vertical domain know-how. All three types of knowledge influence
software engineering at various levels, including how the customer’s needs are

Chapter 5: Findings of the Interview Series

270

addressed and difficulties in the technical implementation. The vertical do-
main know-how for the software market and involved processes is particularly
valuable for software developers because it represents a key quality that is dif-
ficult to acquire through studying or work experience. Know-how exchange
through collaboration, round tables and discussions is very important for
all developing companies. On technical aspects, companies freely exchange
experiences at conferences, on specialized platforms and within the Open
Source and Free Software communities. For vertical domain know-how, how-
ever, companies instead rely on secrecy and contractually protected collabo-
rations with third parties. [N 441-453]

618 15. Creativity is an important factor in software engineering. The term includes
the way a problem is solved and a potential solution implemented. Being visi-
ble on both a business and a technical level, it affects every software develop-
ment phase. Although the use of assisting services such as toolboxes and li-
braries is common nowadays, integrating these components into the
remaining system environment remains a creative activity. [N 454-461]

619 16. The term innovation involves comprehensible added value for a third party
and represents either novelty or progress from the initial position. Innovation
in software engineering can be achieved in different ways. First, existing older
inventions that were developed with mechanical governors or electronic cir-
cuits can be reintroduced digitally; second, entirely new inventions can be re-
alized with the help of computer programs; and third, there is still large po-
tential for inventions in the field of software engineering itself, including how
software is created and maintained, as software engineering is still a rather
young discipline. Inventions are imaginable for each phase in the development
process, including new process management approaches and entirely new
technical solutions. At the same time, most innovation occurs in the develop-
ment phase of the project ideation, as it is the inspiration that contains most
originative strength. [N 462-474; N 480-482]

620 17. In order to prevent trivial innovations from being legally protected, the ex-
pert evaluating the legal requirements should not be a person of ordinary
skills, but instead show special skills in the particular science in question. If an
expert with special skills in the particular area of software engineering (in
which the invention is claimed) could not themself think of the inventor’s way
to solve the given problem within a reasonable time limit, an invention should
be considered as non-obvious and therefore novel. [N 475-479]

621 18. All the interviewees agreed that some kind of legal protection for computer
programs should be granted in the future. Without such legal protection, the

Chapter 5: Findings of the Interview Series

271

companies said they would continue producing software but would rely more
on secrecy and would stop sharing their knowledge and innovations with the
market and society. They would also make more use of technological security
measures. [N 484-490]

622 19. Overall, there was high satisfaction with the current hybrid software pro-
tection system. The industry particularly acknowledged the possibility to
copyright computer programs. Patenting is regarded as justified if the covered
invention is truly new and original. Still, it was felt that some modifications and
amendments to the current intellectual property protection system in the field
of software would be desirable. [N 492-493]

623 20. Software developers believe that software has not yet been fully under-
stood and accepted in intellectual property law. [N 497]

624 21. As the software industry shows a fast launching pace, the time factor is
crucial in software engineering. The longer that administrative processes
linger, the less a company can profit from early entry into a market. The com-
panies hence would like shorter administrative processes for legal software
protection. [N 498-499]

625 22. In the field of commissioned work, shared drafts and concepts were fre-
quently copied without the principal having subjected him-/herself to any for-
mal contractual obligation. There appears to be a lot of insecurity in the time
leading up to a contract. Conceptual documents exchanged before the closing
of an agreement should be better integrated into the legal protection system
of copyright. [N 500-502]

626 23. Patenting trivial inventions has a damaging and preventive effect on the
market. At the same time, qualified software inventions deserve to be legally
protected, if they are truly new and original. Real software inventions go be-
yond a mere algorithm and include a technical effect or conjunction, a practi-
cal application area. For this reason, computers, too, fulfil the technicity re-
quirement, as defined by the European Patent Convention for other types of
inventions. For the interviewed software companies, the European Patent
Convention’s requirement that the program has to be implemented or con-
nected to a hardware component is unnecessarily restricting. They trace back
the current European patent practice for software to the legislator’s lack of
acceptance and trust in computer programs. [N 503-509]

627 24. It was the wish of most of the interviewed software companies that com-
puter programs could be patented. However, the patent requirements should

Chapter 5: Findings of the Interview Series

272

be tested substantively in the application process in order to increase legal
certainty of the right holders and competitors and to avoid patenting trivial
developments. [N 504; N 510-511]

628 25. Often, only larger companies with more resources are able to supply the
necessary means to protect and enforce their software with patents and copy-
right. The current diverse legislation represents a challenge for smaller com-
panies and complicates rights clearing before a product is launched. Managing
IP rights efficiently is difficult for smaller companies, which is why enforcing
IP rights is of less importance for smaller businesses. At the same time, all soft-
ware companies are afraid of patent trolls. The interviewed software compa-
nies said they would welcome preventive measures taken against potential ex-
cessive effects of software patents. [N 512-515]

629 26. A component is valuable to a software developing company if it represents
a qualified creative or inventive contribution in the program it works in. Also
the amount of knowledge and know-how, and the resources that were in-
vested into its development affect the product’s value. Typically, the source
code, the algorithms, the combination of particular functions and features, the
look-and-feel and the vertical domain know-how in a computer program rep-
resent the economically most valuable components in a computer program.
The valuable parts of software, which exhibit the highest concentration of
sensitive know-how, demand most of the resources for their development and
also offer the greatest creative or inventive contribution should be granted le-
gal protection. [N 526-544]

630 27. A development should be granted legal protection as soon as it has reached
a minimum level of substance and maturity. For this purpose, the project idea
should be specific and comprehensible enough so that a reader knows how to
technically apply it. The moment when a program is fixed sufficiently to meet
these requirements cannot be predetermined abstractly but has to be identi-
fied case-by-case. While developments that include a lot of know-how often
manifest their particular contribution in conceptualization, developments that
require more technical finesse in implementation are usually distinguished at
a later stage of realization. In the case of the iterative development approach,
a first prototype at the end of the first sprint may serve as the earliest point of
legal protection. The concept needs to show a minimal degree of composition
and an adequate force to be granted legal protection. [N 545-552]

631 28. The current protection period of 50 years after the last involved author has
died was unanimously described as too long. Further, linking the term of pro-
tection to a programmer’s death was considered as nonsensical. Software was

Chapter 5: Findings of the Interview Series

273

said to represent a merely economic good, which is why, instead, the pro-
tection period should be tied to the right holding company and, according to
most software companies, the software’s release date. Regarding a program’s
expected usability, a maximum protection time of 10 to 20 years after its re-
lease would suffice, according to the interviewed companies. An even shorter
time period of only 3 to 10 years could be implemented for more exclusive and
absolute IP rights, such as patents. New technical possibilities, including the
possibility to continuously update and alter software on servers, makes it dif-
ficult to determine a term of protection. [N 553-565]

632 29. In practice it is often difficult to determine whether a third-party com-
puter program has infringed one’s rights. If a later development is able to ex-
ceed the creative step and offer an additional creative contribution, it should
be rewarded with legal protection. In this evaluation, the creative leeway
should also be taken into account, for example whether some predetermining
technical or practical factors constrained the engineer’s creativity. At the same
time, if the later work does not provide this required contribution on its own,
it should remain legally dependent on the earlier, original work. [N 567-572]

633 30. The source code can easily be translated into other programming lan-
guages within the same language group. Similar to translations in linguistic
languages, translating a source code from one programming language into an-
other should be explicitly legally forbidden, unless the output offers its own
qualified contribution. Otherwise, the translation would simply rely on the
same principles and creative implementation as outlined in the original. [N
573-574]

634 31. As software engineering is still a relatively new discipline, it is important for
law to elaborate a tailored and balanced solution, which considers that, in this
field, exclusive rights can have a particularly large blocking effect. For this pur-
pose, standard essential technologies should be made available for everybody
in exchange for fair remuneration. At the same time, incremental improve-
ments to an existing product or method should be legally allowed if they offer
a distinctive positive gain to the previous situation. [N 575-582]

635 32. For technical lay people it is difficult to compare software products, espe-
cially in terms of infringements. It was recommended that the technology, the
involved process design and the way in which the user is guided should be
compared to find similarities and differences. On the other hand, an examiner
should take into account certain predetermining factors and best practices in
the respective fields. [N 583-588]

Chapter 5: Findings of the Interview Series

274

636 33. All the interviewed companies had experienced some kind of infringement
of their IP rights. Most infringements had occurred within existing contractual
relationships, where clients had conducted overuse of the licence agreement.
Infringements conducted by third parties were more seldom. These were usu-
ally countered with sharper measures than infringements of regular cus-
tomers. [N 590-594]

637 34. Most of the interviewed software companies were or had been involved in
a legal dispute over software IP. As legal disputes require a lot of resources,
software companies try to build on alternative preventive measures in order
to minimize legal disputes from the start. Consequently, legal disputes remain
a matter of ultima ratio. Smaller businesses can hardly afford to be a party in
legal disputes, and thus have difficulty in enforcing their IP rights and defend-
ing themselves in case of legal charges. [N 595-602]

Chapter 5: Findings of the Interview Series

275

Chapter 6: Discussion of Selected Problems

638 This chapter picks up what I consider as the most important findings within
this thesis from the previous chapter, and connects them to the knowledge
gained in the technical and legal foundation. It discusses to what degree the
results correlate with the current legal understanding, and how we could use
the findings to draft new approaches in law that better suit the current needs
and practical wishes of the software development industry. Due to the limited
frame of this thesis, the goal of this chapter is not to cover every possible an-
gle or develop complete models. Instead, it aims to offer a legal classification
of the findings by highlighting difficulties in the current legal system and
pointing out areas of room for improvement.

I. Preface: Is there a Future for Legal Software
Protection?

639 Software engineering as a scientific discipline has developed greatly during
the last two decades. Through its achievements, it has obtained a significant
meaning not only for engineering companies, but for all industrial sectors. One
observation from the interview series is that most businesses today rely on
computer technology in one form or another.1144 This trend is still gaining
weight as more industries replace mechanical governors and electronic cir-
cuits with digital information technologies to fulfil technical solutions in their
inventions and works.1145 Many mechanical processes that were carried out
manually back in the 1980s today are partially or fully automated. Perelman
described in 1985 that source code statements were initially written on paper,
but then eventually typed into a computer later. This is unimaginable today.1146

Nowadays, software has become the easiest and most effective way to develop,
manage and work industrial processes. As a consequence, software today has
a clearly established and unbreakable position in the manufacturing and ser-
vice sectors.

See N 375 f.

See N 376; the particular economics of software engineering and the inexhaustable re-

peatability of a digital process are just some benefits that support the transformation of

the industry; see N 189 ff. and further description FISHER, 16.

PERELMAN, 922.

1144

1145

1146

276

640 While the importance of computer programs has increased, their value is sim-
ilarly growing. Boehm suggests that in IT hardware products it would generally
be the integrated software that determines the value of the product and not
vice versa.1147 In the interviews, a significant and large hardware developer
confirmed this statement.1148 If this is true, it would mean a considerable
change of paradigms in the industry, using analogue technology to make prof-
its from digital ones, a shift that is worthy of recognition and should be re-
flected in our legal system.

641 The international community has tried to integrate such changes in practice
by offering copyright for visual and literary expressions in computer pro-
grams, and, in some regions, full patent protection for inventions such as al-
gorithms and digitally implemented procedures. The condemning verdict of
the interview series makes it clear that engineering companies believe that the
product “software” is still not fully captured or understood by society – and
this was particularly true for the legislators and judicial powers that make the
rules for software. The interviewed companies feel misunderstood and are
frustrated.1149 An assessment of the U.S. Congress’s Office of Technology of
1990 shows a similar interpretation, stating that software protection, already
back in 1990, was not able to plausibly integrate software into intellectual
property law. According to the Congress’s report, the difficulty of capturing
computer technology in law is caused by three main factors:1150 First, the na-

ture of software technology is not really tangible for lay people. Second, there
are major difficulties that emerge when harmonizing social and economic dif-

ferences in regulation between the legal and technical communities. Third, it is
hard for law-makers and for those applying it to comply with a fast-moving

and dynamic software market which is characterized by the fast pace of prod-
uct launches. These three arguments identified by the U.S. Congress are still
applicable today. But there are further practical problems involved. According
to the findings in the survey, software rarely has any lead time to second-com-
ers in distribution, as functionally similar products can be offered rapidly once
the original is on the market, even if the successors do not directly profit from
an original source code. It suffices that a product and its technical solutions
become examinable.1151 Consequently, the time factor is of great importance for

See BOEHM (1981), 17 f.

See transcript G, N 15.

See N 497.

See the official summary in U.S. CONGRESS (1992), 3 f.; referring to U.S. CONGRESS (1990).

See particularly N 498; also described for example in SAMUELSON ET AL., 2364;

LEMLEY (2002), 1890 f.

1147

1148

1149

1150

1151

Chapter 6: Discussion of Selected Problems

277

everything associated with software engineering, be it the time-to-market1152

or the administrative formal procedures1153 that are necessary to be granted
a protective patent right. The law should reflect this circumstance and do it
better justice. Otherwise it has little chance of keeping pace with new techno-
logical developments and loses its power to steer.1154

642 Another important issue is that the way software is developed and managed
has changed in the last two decades. Today, a software product is usually pro-

duced and distributed across national frontiers. Various contract parties are in-
volved on an international scale and a higher number of inter-party collabora-

tions is noticeable.1155 At the same time, the common software licence system
has been partially replaced by service models.1156 This allows companies to re-
tain the valuable source code, and to provide the software on servers rather
than sharing its hard copy with a customer. Companies also embed strong
technological security mechanisms in their software that help to prevent abuse
by third parties.1157 These changes can be described as private security mea-
sures. While the use of such private preventive measures increases, in theory,
legal mechanisms become partially – although not fully – dispensable.1158 In
this argument, the main function of intellectual property law is to assign rights
rather than to enforce them in case of infringements. As the rate of services
and server-distributed computer programs increases, users receive less ac-
cess to the source code of software and, consequently, the number of infringe-
ments should decrease.

643 Like the chicken and the egg problem, the question remains: what came first?
More technological measures that make a legal framework less important for
preventing infringements, or a weak legal framework that presses private en-
tities to work with other security measures than law to protect their software?
According to observations made for this study, developers make use of private
protection mechanisms to complement a legal system that does not fully pro-

See N 198 f., N 498, N 641 and N 760.

See N 498 f.; also discussed in U.S. CONGRESs (1990), 9.

See also discussion in DREIER (1999), 6 ff.

See N 384 f. and N 408; see also discussion in SCOTCHMER (2006), 227 ff.

See N 418 ff.

See N 488 and N 674; there is a similar observation in: LESSIG, 765, with further references;

THOMANN (1992), 5.

Although copyright helps to enforce these technological security measures through sanc-

tioning their circumvention of copyright; see Art. 11 WCT.

1152

1153

1154

1155

1156

1157

1158

Chapter 6: Discussion of Selected Problems

278

tect their assets or offers less effective measures to enforce their rights.1159

Software developers have adapted to the current legal system and are, to a
certain extent, capable of helping themselves. Still, the legal system does not
seem perfectly balanced and efficient, if private entities have to carry the com-
pensation for its malfunctioning on their own shoulders.

644 This study has shown where the potential problems in legal software protec-
tion lie. The question now is how to continue. First we have to recognize and
acknowledge that all the interviewed software companies favoured the legal
sheltering of computer programs. They appreciate the benefits it brings and
made it clear that without legal protection, no socially acceptable solution
could be achieved.1160 On the contrary, without legal protection for software,
they would in future develop their products without any public access, focus
more on secrecy and embed even stronger technological security measures.
Innovation would be fully privatized, not shared with society. Based on their
arguments, we have to conclude that it has been right in the past and also
would be reasonable in the future to protect computer programs under some
type of intellectual property law.

645 At the same time, it became evident that the doctrinal differences in Europe
and the United States cause a lot of confusion among software companies. The
interviewees described how the legal uncertainties resulted in increased
search and allocation costs, and discouraged software developers from taking
the risk of expanding in the international market.1161 Consequently, there is a
call for international legal harmonization. Jurisdictional differences in han-
dling software protection should be further reduced and possibly avoided al-
together. Taking the lead from modern software law, it would thus be desirable
to eradicate dogmatic differences in law and to find an international solution
and application of the common institutions that reflects the strong interna-
tional characteristics of software development and commercialization. The
answer to the initial question is therefore: Yes, there is a future for legal soft-
ware protection, and the path has to be to legally protect computer programs
in a unified international way.

See particularly transcript C, N 66, saying that the missing patent protection complicates

the situation; see similarly transcript A, N 113 ff.; transcript F, 69 & 81; see also discussion

in DREIER (1999), 6.

See N 484 ff. and N 492 f.

See particularly N 408 f. and 507 ff.

1159

1160

1161

Chapter 6: Discussion of Selected Problems

279

646 But what should this legal framework of software protection look like? In the
past, legislation has often reacted to a problem by applying the established
structures to the new development. In protecting software under the existing
IP law framework, the structures of two traditional models were simply ex-
panded with very few customizations. Scholars have devalued this handling as
‘mal-suiting’, ‘a half-baked cake’ or just “wrong”.1162 The need for a sui generis

framework for IP protection of computer programs has been expressed from
different corners. The main point of criticism is that knowledge-based indus-
tries, such as the software market, show different practicalities and therefore
also different needs and practical requests from artistic ones, and that these
are only loosely met by the modular and generic legal IP frameworks. A tailor-
made framework for software IP rights would have different possibilities to in-
tegrate the current standards in software development, instead of following a
‘one-size-fits-all’ principle to define the scope, the term of protection and the
remedy model a legal system provides.1163 A tailored framework for software
protection would enable finding perfectly adapted and more competitive so-
lutions for a dynamic industry with its own particular needs and wishes. While
I personally agree with this opinion, we should not forget that IP law is highly
legally harmonized on an international level with an established framework of
contractually agreed standards and treaties that also apply to computer pro-
grams.1164 This makes a paradigm change politically difficult to implement. Fur-
ther, special treatments in law should always be well founded and clearly in-

See HARISON, 33, 75 and 113; ARMSTRONG, 196 f.; DAVID, 50 and 52; SAMUELSON ET AL., 2348 ff.;

SAMUELSON (2017a), 1218 f.; REICHMAN, 2481; FISHER, 14; SCOTCHMER (2006), 83 f.; LUTZ, 653;

HILTY/GEIGER (2011), 187; HILTY/GEIGER (2015), 616 f. describe the assigning of computer

programs to copyright as arbitrary; the difficulties are further recognized in U.S. CONGRESS

(1990), 1; SCHUHMACHER, 200 ff.

BURKERT/HETTICH/THOUVENIN, 49 f. and 57 f.; SAMUELSON ET AL., 2365; LEMLEY/BURK, 96

ff; ALLISON/LEMLEY/SCHWARTZ, 1074f.; HILTY/GEIGER (2011), 188 ff.; BELL/PARCHOMOVSKY, in

particular 232; HARISON, 193; REICHMAN, 2481 ff.; SCOTCHMER (2006), 117 f.; ZIRN, 206 ff;

Samuelson et al. went so far as to say that the status quo has become so comfortable that

nobody want to change it. But this would risk the stability of the legal system (SAMUELSON

ET AL., 2365 f.).

For more information, see 'International Context' in Chapter 4 Section III.; see also

BOECKER, 33; referring to: the decision of OLG Frankfurt of July 21, 1983, 6 U 16/83 – Donkey

Kong Junior I, published in GRUR, 1983, 757 ff.; decision of the OLG Koblenz of August 13,

1981, 6 U 294/80 – Nutzungsrecht des Arbeitnehmers an Computerprogrammes des Arbeit-

gebers, BB 1983, 992 ff.; decision of the German Federal Labour Court of September 13,

1983, 3 AZR 371/83 – Statikprogramme, published in GRUR, 1984, 429 ff.; decision of the

OLG Frankfurt of August 4, 1983, 6 U 19/83 – Donkey Kong Junior II, GRUR 1984, 509 ff.

1162

1163

1164

Chapter 6: Discussion of Selected Problems

280

duced or necessary. Creating a sui generis framework for software protection
is only one viable path. The other possibility would be to continue working
with the IP system that we have today, and to make some minor adjustments
and amendments to it in the governing regulation. This approach would rec-
ognize the globally established legal structures that we know and have, while
better meeting the needs and desires of the software industry. Further, al-
though the basis for IP law is provided and sustained in the international
treaties, smaller adaptations to the current system could partly be imple-
mented at a national level by national legislators, allowing some flexibility and
individual locational advantages of proactive legal systems.1165

647 At the beginning of this study, I assumed that the benefits of a sui generis ap-
proach would outweigh the second possibility of making only smaller adjust-
ments because a system change would be reasonable and more efficient. How-
ever, the interview series has clearly revealed that applying the present IP law
system to computer programs would be generally acceptable for software de-
veloping companies and that the current approach is able to meet their most
important basic needs.1166 Although I understand the opinion of Samuelson et
al. and others that a sui generis framework might be the best way to meet all
the potential needs and wishes of the software developers and managers,1167

the findings of the interviews do not sustain the conclusion that a tailored so-
lution has to be packed into a legal framework of its own. A complete system
change to a sui generis model is, at least within the scope of the present lim-
ited research, not necessary, as the current hybrid structures of intellectual
property law suffice to serve as the basic structures for software protection.

648 Still, the software companies are calling for some modifications and amend-
ments. These are necessary to meet some of the needs and desires as well as
to reflect the practicalities that predominate in the software market. As the
interview series showed, the software engineering reality and its interpreta-
tion in law are not compatible. The WIPO recognized this problem back in 1978,
suggesting a set of model provisions on computer protection.1168 However,
most of the suggestions never found their way into the international IP
treaties. So the need for change persists. Adaptations in the current legal
framework could either target current smaller problems specifically for com-
puter programs, or use the insights obtained from this study for a greater sys-

BOECKER, 36; FISHER, 14.

See N 492 f.

SAMUELSON ET AL., 2365 f.

WIPO Model Provisions on the Protection of Computer Software.

1165

1166

1167

1168

Chapter 6: Discussion of Selected Problems

281

tematic change to address creative works and inventions on the whole. The
German professor Rossnagel in 1992 offered the term ‘jurisprudential technol-
ogy assessment’, believing that law has to exercise its duty and take the chance
to actively shape attractive socially, legally and environmentally compatible
technical solutions, and not just react to problems by fire-fighting.1169 Burkert,
Hettich & Thouvenin further stated that the constant changes in the manifes-
tations of information technology require ever new discussions on technol-
ogy-related law.1170 In my opinion, if law wants to be proactive, it has to pro-
vide a clear direction and not only acknowledge but embrace the needs and
practices as well as the practical wishes of the software industry. This can in
part be achieved through a contemporary reinterpretation of the available IP
law. A more progressive way to modify software protection would be to in-
stall further steering mechanisms that demonstrate what actions the legislator
considers desirable, and which activities are frowned upon. This is particularly
relevant where we want to close certain loopholes and in cases where we want
to set limits on the exclusive rights of the right holders, especially regarding IP
law trolling.

649 The following discussion gives further clarification on what modifications in
the current IP law system, constituted particularly of copyright and patent law
for computer programs, could look like in detail; how continuing with the cur-
rent system could suffice; to what extent we should improve it; and where ex-
plicit new solutions are required.

II. Copyright and Patent Protection: Hybrid Model or
Copyright only?

650 Although the interviewed software companies on the whole confirmed prefer-
ring the current IP model for software protection over a sui generis approach,
it represents an entirely different question whether we should continue with
the present hybrid protection model – a composition of copyright, patent law,
design law and mechanisms from legal institutions outside the range of IP – or
switch to a one-approach model. Again, the subsequent discussion focuses on
the two main IP rights in software protection: copyright and patent law.

651 The findings of the interview study showed that software companies particu-
larly value copyright as a legal mechanism to protect their goods. It gives them

ROSSNAGEL, 36 ff.

BURKERT/HETTICH/THOUVENIN, 49.

1169

1170

Chapter 6: Discussion of Selected Problems

282

the basis they require to assign and trade their products and services. They
particularly appreciate the copyright’s copy guard and its reference to the au-
thor.1171 Applying copyright to computer programs therefore remains undis-
puted. The institute of copyright should hence remain the primary mechanism
for protecting computer programs.

652 While copyrighting is frequently and well appreciated among software devel-
oping and commercializing companies, patenting finds itself in a more difficult
position. The protection of software under patent law is probably one of the
most disputed legal issues of our time. While in the U.S., the legislators suggest
tightening the eligibility of software patents because of their potential for
abuse, in European patent law merely digital programs without a physical em-
bodiment are, at least according to the wording of the law, largely excluded
from patent protection.1172 These differences in the regulatory premises are re-
flected in the number of registered patents; the U.S. share of computer patents
in the international patent class GO6F considerably exceeds the European
ones.1173 At the same time, the number of registered European inventions in
this patent class suggests that, despite the exclusion in the European Patent
Convention, some patents for computer programs are granted in practice, al-
though not in the same quantity as in the United States. Different European
patent offices and high courts have accepted computer-implemented devel-
opments as patentable, if they fulfil specific additional requirements. The
patent authorities and courts hence use their room for discretion to protect
certain software inventions. The exclusion of computer patents in the Euro-
pean Patent Convention is thus partially circumvented. But if even the differ-
ent European Patent Offices apply the patent requirements in a manner that
contradicts the apparently clear wording of the European Patent Convention,
why has the law not been adapted? While every political attempt in legislation
to change the system is suffocated, the patent offices and courts instead cre-
ate and use loopholes or ‘work arounds’.

653 The patentability of software has been and will remain a matter of great dis-
pute. The main reproach in the literature and politics against software patents
is that major commercial developers of software have been using their patent
portfolio too extensively and that patents are in general considered “bad” or
counter-productive for free competition. Both are claimed to be particularly

See N 522.

See Art. 52 para. 2 lit. c EPC.

See Perspective STI Working Paper, 32.

1171

1172

1173

Chapter 6: Discussion of Selected Problems

283

dangerous for the field of software engineering.1174 Similar statements were
also made in the interview series.1175 A large number of the interviewed soft-
ware developers claimed to have been hindered in using particular supplies
under exclusionary rights, in one way or another.1176 However, all the intervie-
wees gave the same fundamental statement that they had never been actually
prevented from developing their software products in practice. If a particular
component they wanted to embed was unavailable (or blocked), it could be re-
placed with a third-party offer or a created ‘work around’ without any greater
effort. The market was therefore able to play freely, although some impeding
effects were experienced. The negative effects of patents in the software in-
dustry were consequently seen to be limited and manageable. On the other
hand, it was emphasized that in the Age of the Internet it would be difficult to
survive and provide ideas on the market without obtaining exclusionary rights,
patents in particular.1177 Although patents do not guarantee full protection of
the developed products and services, they shelter the broader scope of the
software’s implementation, offering the required lead time as well as a defence
mechanism for the right holders.1178

654 Also in the interview series, patenting software was strongly debated. The two
sides in the revision processes in Europe and the United States were also rep-
resented among the interviewed companies. However, to my surprise, the
companies indicated that patenting in the field of software should be eligible, if

the claimed invention was truly inventive.1179 It seemed that patenting software
was not a question of whether it should be allowed, but rather about the tol-
erated scope and assigned rights. It was frequently mentioned that granting
trivial patents would endanger free competition and hinder the development
and distribution of genuinely inventive creations, because the right holders
got the chance to block third parties with a monopoly-like right they did not

See discussion in U.S. CONGRESS (1992), 23 and 135 f.; WIPO STANDING COMMITTEE ON THE

LAW OF PATENTS, 4 ff.; MATHEMATICAL PROGRAMMING SOCIETY; ZIRN, 149 f.; MELULLIS, 346 f.;

SCHWARZ/KRUSPIG, 37 ff.; WALKER, 54 f. See also a comprehensive study in THOUVENIN

(2005), 478 ff.

See N 503 ff. and N 512 ff.

For example because the supplier did not want to share his or her invention or because it

was offered at too high a price.

See N 411 f.; see also MERGES, 579.

See N 411 f.; see also discussion in STRAUB (2002), N 12; SCOTCHMER (2006), 85; CALAME

(2006), 656 ff.; CALAME (2006), 404 f.; MELULLIS, 346 f.

See N 509 f.

1174

1175

1176

1177

1178

1179

Chapter 6: Discussion of Selected Problems

284

deserve.1180 To this extent, the claims of relevant authors in the ICT law field
would therefore be approved.1181 At the same time, good software solutions
prevail quickly, and as everybody wants to build his or her development on the
basis of the newest technical solutions, a patent blocking them may also hold
back other creative inventions that might follow. The next, more efficient, so-
lution to a problem could consequently be obstructed. It could be said that
this difficulty applies for every type of invention, not just software inventions.
However, as computer technology and programs are increasingly replacing
regular steering systems as well as analogue electronic engineering, this issue
may indeed find new dimensions in the field of software engineering.1182 I con-
sequently agree with the conclusion that particularly in the field of software
inventions a rather strict scope of protection would be favourable. Although
the full extent to which patents affect the software industry today remains un-
clear, based on the findings of the interview series we can, however, confirm
that excluding computer programs statutorily from the patent scope does not
represent an appropriate solution to the problem for the software companies.

655 In international patent law, we can see a political patchwork of individual rules.
Already the regulatory bases contradict each other: The TRIPS Agreement
states in Art. 27 para. 1 that member states have to grant patent protection for
every type of technical invention, if an invention fulfils the classic patent cri-
teria (novelty, inventive action and industrial applicability). The way computer-
implemented innovations are invented (not developed!) today does in essence
does not differ significantly from the invention process of the “seed drill”.1183

Excluding software from patent protection due to the type of technology it
applies is therefore discriminatory and unreasonable. Following the clear
wording of the TRIPS Agreement, software components should likewise be el-
igible for patent protection if they exhibit an inventive step. As Jaenich high-
lights, it is questionable whether Art. 52 para. 2 lit. c EPC conforms at all with
the member states’ obligations under the TRIPS Agreement.1184 The European
legislator has recognized the positive contribution of software inventions as
well as the statutory difficulties associated with them, and has tried to achieve
a regulatory change. However, all movements to resolve this issue have

See N 475 ff., N 508 and N 512 ff.

See: COHEN/LEMLEY, 39 and 50 ff.; HILTY (2018), 1186 f.; ARROW, 226 f.

For example, for lawyers of the digital generation, Zirn holds that the classification of

computer and software technology as non-technical is incomprehensible (ZIRN, 174 f.).

MERGES, 586; see also discussion in WALKER, 37 ff.

JAENICH, 488.

1180

1181

1182

1183

1184

Chapter 6: Discussion of Selected Problems

285

failed.1185 As a result, we have an unpredictable and insecure situation for soft-
ware developers, companies commercializing computer programs, and also
the authorities that have to evaluate the patentability of computer programs.

656 Overlooking the fact, that computer programs are generally excluded from the
patent scope in Europe, the European practice focuses mainly on the technic-
ity criterion to evaluate software-related inventions. Software is regarded as
patentable if a further technical effect can be observed.1186 The software com-
panies stated that this practice is confusing because almost every software
product goes beyond a simple mathematical algorithm and can therefore re-
sult in a technical effect or conjunction.1187 The crucial question is whether the
incorporated teaching is also novel and non-obvious. Arguing technicity for
patenting computer programs thus represents circular reasoning.1188 As iden-
tified by the U.S. Congress, one of the main difficulties with software is that
people show great difficulties in fully capturing it.1189 This makes it all the more
difficult to apply time-honoured and established institutes such as copyright
and patent law to it. Merges in his work described the same problem for the
former U.S. patent system, back when it was very restrictive about patenting
non-mechanical inventions: “For Thomas Jefferson (…), if you put technology
in a bag and shook it, it would make some noise.”1190 This illustration perfectly
explains what problem we have with software today; we cannot observe the
(digital) movements, nor touch and physically experience its final product. We
cannot put ‘a piece of software’ in a bag, and if we shook it, it would never
make a noise. Asking for this would mean we would be asking for an additional
criterion, e.g. a sound. The same is true for the current practice in Europe. Ac-
cording to the software companies, asking for an additional technical effect in
computer programs suggests that the people evaluating software for patent
offices and courts do not truly understand software as a technology, or focus

The Commission proposal COM(2002) 92 was declined by the European Parliament on

July 6, 2005, with 648 against 14 votes (see OUT-LAW.COM, with further comment).

See above N 280 ff., N 289 ff. in particular.

Transcript M, N 39; above N 654 ff.

Companies in this study that were familiar with patent applications in Europe argued that

with the current legal interpretation, patenting software would not be a question of inven-

tive creations but rather of the better argument for a technical effect (transcript F, N 90 f.);

see also discussion in: MELULLIS, 341 f. and 350; CALAME (2006), 661 ff.; ZIRN, 174 f.; SCHWARZ/

KRUSPIG, 34 f.; JAENICH, 488 f.; WALKER, 57 ff.

U.S. CONGRESS (1992), 4 f., partially referring to U.S. CONGRESS (1990).

MERGES, 585.

1185

1186

1187

1188

1189

1190

Chapter 6: Discussion of Selected Problems

286

on the wrong factors:1191 They seem to wait for the ‘clashing’, and thus overlook
the technical concept or conjunction the computer-implemented invention
has to offer. Similarly, the UK Court of Appeal established in its 2008 ruling
that the general technicity criterion is fulfilled if an invention tries to solve a
technical problem with natural forces.1192 Whether this happens with a com-
puter program or any other type of engineering should not matter.1193 It is
absurd for the European patent authorities to search for further technicity
beyond the ‘normal interactions’1194 between a computer program and a com-
puter. This was said to be frustrating for the companies concerned and caused
emotional reactions that were also visible in the interview series. When law is
not comprehensible, it becomes unforeseeable and starts to lose acceptance.
This is problematic for the software industry.1195 Bill Gates has summarized the
software companies’ perspective by saying that the European patent system
is a rag rug that is very risky for innovators and software developers.1196 The
risk he refers to, from the perspective of an internationally operating group,
may partly be due to the fact that the subject matter, and in particular the
technicity criterion, is assessed differently in patent law throughout the world,
with a particularly strict system in Europe. This was outlined by a compara-
tive study of the European, U.S. and Japanese patent authorities.1197 The global
association BSA, the software alliance, advocates accounting for new inno-
vations, emphasizing that governments should provide modernized laws that
protect innovation regardless of the format or means of delivery.1198 Tying the
patentability of software to a technical effect therefore seems to be an unsuit-
able way of defining the subject matter of patents for software. In line with
the findings of the interview study, the computer patent exclusion in Art. 52
para. 2 lit. c EPC should be struck out of the law.

See N 508.

Symbian Ltd. v. Comptroller General of Patents, decision of the EWCA of October 8, 2008

(EWCA 1066).

Supported by: Staempfli Commentary to the Swiss PatG/EPC, Art. 52 N 55; REICHMAN,

2480 f.; SAMUELSON ET AL., 2331 f.; SCHOELCH, 271; HARISON, 167 and 176 f.

Decision of the EPO Board of Appeal of July 1, 1998 (EPO T 1173/97) – Computer program

Product/IBM; decision of the EPO Board of Appeal of February 4, 1999 (EPO T 0935/97) –

Computer program Product/IBM.

See for example THOUVENIN (2007), 664; MERGES; CALAME (2006), 450 f.; WICKIHALDER, 585 f.

Comment by Bill Gates during a Microsoft Innovation Day in Europe, in: BOECKER, 35.

Patent Offices Comparative Study (1997), no 3.2. and 4.

BSA-THE SOFTWARE ALLIANCE, Global Software Survey, 15.

1191

1192

1193

1194

1195

1196

1197

1198

Chapter 6: Discussion of Selected Problems

287

657 As previously outlined, the problem of extensive patenting and the dangers
connected with it, including the blocking of evolving innovations, can to a cer-
tain degree be resolved by determining a reliable strict scope for software in
patent law,1199 starting with the definition of the subject matter. But how
should the subject matter of patent law be circumscribed so that software can
be integrated accordingly? Following the approach advocated in this thesis we
do not need any additional or new definitions specifically for software patents,
but instead can rely on the classic patent criteria. According to the classic de-
finition, a technical invention involves a task and a solution or teaching in the
form of a repeatable success or a rule that applies and manages the natural
forces.1200 Of course the invention has to involve a problem and either offer a
solution or a teaching for it. The software method or product has to offer
‘something in addition’, just as it would not suffice to simply present a mechan-
ical governor that did not complete a technical task or offer a technical teach-
ing. Without the task and its solution, neither a software good nor any me-
chanical one would meet the technicity requirement of using natural forces to
solve a problem and could thus not fall under the patent’s subject matter.
Hence, asking for a technical effect is either redundant, or, again, the policy
makers implemented an additional criterion in the patent evaluation that is
not contained in the international statutes. The problem of software patenting
can be partly resolved by consistently applying the existing patenting criteria
and examining the content individually and substantively, independent of the
question of whether the object under review is a computer-implemented in-
vention or not. Patenting of software should thus be enabled.

658 Based on these findings, continuing with a hybrid model of copyright and
patent law therefore seems reasonable and, as such, appropriate to reflect the
software companies’ legal needs.

III. The Protection Scope in Copyright and Patent Law

659 If we continued with a hybrid model made of copyright and patent law, the
question remains how we could harmonize the two institutions to better inte-
grate computer programs as well as the processes involved to create and com-
mercialize it; how could we define the scope so that the boundaries between
the two become clearer? In the following section, the potential subject matter

See above N 654.

See above N 273 ff.

1199

1200

Chapter 6: Discussion of Selected Problems

288

and scope of patent law and copyright are further evaluated and circum-
scribed, in order to then discuss which parts of a software product may in
practice be subsumed under which institute.

A. Circumscribing the Potential Subject Matter

660 Patent law and copyright aim to protect inventive and creative contributions.
Based on this understanding, the following section focuses on what should be
sheltered under software copyright and patent law, and why such protection
is necessary to protect inventive and creative works.

1. Discovering Creativitiy and Inventiveness in Software
Engineering

a) Creativity in Software Engineering

661 Only creative works are protected under copyright law. The degree of creativ-
ity a work contains further determines its originality under the law. Creativity
is thus of great importance both for a work’s existence and for its differentia-
tion from other works. According to the findings, creativity determines, in
software engineering, how a problem is solved and how a solution is imple-
mented. It involves artistic questions, but also smart solutions for business or
technical problems.1201 As Rossnagel explains for technology in general, but is
also true for software, it is a product that is created and designed by hu-
mans.1202 Software development consequently is closely connected to the
practical circumstances under which it is formed and to the people that work
on it. Creativity therefore is the result of human play.1203 There is room or lee-
way for creativity where the scope for productive decision-making is out of
the ordinary and the personality of the author can have a stylistic effect.1204

The smaller the set of available solutions within a certain technical environ-
ment or ecosystem, the more restricted the discretion of the software devel-
oper.1205 Creativity has to be searched for in every work individually. Analysis
of the individual case hence remains necessary. There are, however certain in-
dicators that help in determining whether something is creative or not from

See N 454 ff. and N 458 ff.; see also CROSS, 88 ff.

ROSSNAGEL, 63.

ROSSNAGEL, 68 f.

See N 454 ff. and N 458 ff.

See also discussion above, N 396.

1201

1202

1203

1204

1205

Chapter 6: Discussion of Selected Problems

289

the perspective of software engineering. As Agrawal et al. suggest, factors such
as the degree of novelty, performance or attractiveness of a particular artifact
as seen by the target (value), surprising or uncommon elements and combina-
tions, future influence or relevance, coherence, semantic and logical appropri-
ateness of a particular artifact (correctness), and comprehensibility may im-
prove the scope or may entail creativity.1206

662 Creativity is visible in different ways, and can be offered in various types of
contributions within a software product. As explained, it starts with finding a
creative solution to a problem and continues with how an engineer plans to
realize this idea, as well as how he or she wants to implement this solution
technically. To decide on how an idea should be presented involves many dif-
ferent decisions, based on careful consideration and planning. It is important
to recognize that there are most often several ways to implement and express
an idea; there is rarely only one possible solution. The developer is the one
who makes the important decisions. These are often influenced by personal
taste. A part of the developer’s character is reflected in his or her work. Simi-
larly to how the brushwork and style of painters varies, the preferences and
the way of designing and realizing a project in software development does too.
Skills are not decisive in themselves, but experience and know-how influence
the development style followed.1207

663 At the same time, creativity is reflected in different stages of software devel-
opment and affected by several aspects along the way. As represented in the
present thesis, there are three main phases in software development: ideation,
conceptualization and realization.1208 Creativity influences each development
phase in a different way. It starts during planning, where the careful decisions
determine how a product will be structured and organized, and how it can be
presented neatly. Next, a suitable programming language has to be selected
that is able to fulfil the technical requirements and gives the software engineer
room to realize a project according to his or her plan and style. Choosing a
programming language is predetermined by particular factors. It has to be ap-

AGRAWAL ET AL., 2 ff.

See N 441 ff.; see also AGRAWAL ET AL., 2.

See N 158 ff. and N 378 ff.

1206

1207

1208

Chapter 6: Discussion of Selected Problems

290

plicable in the pre-existing technical environment1209 and the engineer has to
possess the skills to work with this language. In order to realize the product
within a reasonable schedule, it is also wise to use a programming language
that is well supported in the community so that the engineer can make use of
existing elements. But, most of all, it is a matter of personal taste and prefer-
ences.1210 How the instructions look is also a creative process. After all, it is the
human’s creative mind that writes the linguistic commands. These commands
consist of parameters that are personally defined by the engineer and literary
structures that are individual for each developer. The same is true for the vi-
sual elements in a software product.

664 Software solutions and systems have grown in complexity. According to
Schmidt, more and more engineers have to elaborate their own particular so-
lutions, as existing language mask functions are not evolving fast enough to
meet all “next-generation” problems.1211 Also if an engineer works with existing
solutions, these masks have to be manually adapted to the individual develop-
ment environment. This involves elaborating it with additional effort and time
engagement. Where this adaptation process goes beyond technical function-
alities, and there is room for decision-making on how to implement it, space
for creativity is provided.1212 Also the output of engineering-assisting tools may

See N 396; this commonly involves identifying the essential conditions under which the

program will operate and making a clear decision on which tasks the software has to per-

form (SAMUELSON ET AL., 2328; AGRAWAL ET AL., 2). The technical environment in the form

of technical and organizational components therefore is taken into account before a new

project is started (KOREIMANN, 10 ff., 13 in particular; WITTMER, 106 f.). If an existing com-

puter program is further expanded, refined or advanced, the engineer has to consider that

the network environment has already been determined and consequently follows partic-

ular characteristics and uses existing conjunctions. If the whole previously existing soft-

ware is built on a particular family of programming languages and all the parameters have

already been defined it is pointless to embed a component that follows entirely different

rules. Otherwise, the links to all the other elements and components won't work properly

(see also further information in KOREIMANN, 10 ff., 12 in particular; WITTMER, 106 f.).

See N 394 ff. and N 399 in particular.

SCHMIDT, 26.

See N 454 ff.; see also: KOREIMANN, 231 ff. with regard to structured design and scope for

decision-making; RAUBER (1988), 23 f.; CONTU, 55 f., 67 and 82.

1209

1210

1211

1212

Chapter 6: Discussion of Selected Problems

291

leave room for creative work if the developer can make certain noticeable de-
cisions in the creation of the tool, which then shape how the tool produces the
outcome.1213

b) Inventiveness in Software Engineering

665 Only (novel) inventions are patentable. Still, the term invention constitutes a
legal concept open to interpretation. But what does the term invention entail?
According to the software companies, if from the perspective of an initial prior
position, the presented process or good represents progress or incremental
novelty, an invention is present. As patent law gives exclusive rights to the
right holders, the enhancement should also bring added value for a third party
such as society or the market, in order to ‘earn’ exclusive protection.1214

666 For the purposes of this thesis, the invention term should further be placed in
the context of software. In 1899, the U.S. Post Office Commissioner, Charles
Duell stated self-assuredly that “everything that can be invented has been in-
vented”.1215 Although this statement turned out to be wrong in hindsight, it has
been adopted for software time and again, claiming that everything that could
be solved with software in an inventive way has been done and that further
inventions in software engineering are impossible. It seems as if this debate is
too focused on the term software and too little on the concept of innovation.
Based on the findings of the interview study, inventiveness is visible differently
in software development:

667 First, software can be used to develop completely new inventions, as in other
technological fields.1216

668 Second, older inventions that were developed with mechanical governors or
electronic circuits can be reintroduced digitally.1217 This field of utilization will
presumably particularly concern application and process claims. But transfer-
ring an analogue or mechanical innovation into a digital sphere – so-called
digitalization or automation – won’t suffice on its own to reach the level of an
invention, if no inventive theory is introduced in addition to its transferral. The

See above N 360; see also STRAUB (2011), N 67; Cherpillod emphasizes that working with ex-

isting parts may also lead to a creation (Staempfli Commentary to the Swiss CopA (Cher-

pillod), Art. 2 N 9); NEFF/ARN, 158 f.

See N 463 ff.; see also discussion in: BELL/PARCHOMOVSKY, 234 and 277.

Quote from MORGAN/LANFORD.

See N 471.

See N 471.

1213

1214

1215

1216

1217

Chapter 6: Discussion of Selected Problems

292

digitalization may, however, show inventive characteristics, for example by
making a process more efficient, increasing its performance through reducing
the number of inquiries or secure data transmission, or by making it in some
other way more attractive. The solved problem further needs to be techni-
cal.1218 These types of creations may be referred to as software-related inven-
tions.

669 Third, as software development is still a rather new scientific technical field,
the way in which software is developed and data is processed opens another
potential field of application,1219 expected to be particularly important for the
field of process patents.1220

670 As Schwarz & Kruspig explain, computer science is a basic science. In contrast
to other fields of invention, inventions can be implemented in both software
and hardware. It offers applications in everyday items as well as utilizations in
specialized areas, mostly in its computer-implemented form, in combination
with other disciplines such as biology, physics and chemistry.1221 Focusing on
the concept of innovation, software engineering has opened a completely new
field of science and is still significantly developing. Software consequently en-
tails immense inventive potential. As software offers completely new
processes and models, the treasure is limitless. Further, inventiveness can also
be used during different phases of software development. Although usually the
inventive peak occurs when the initial impulse for a new idea is given, working
on the original idea during later stages helps to concretize it and put it into a
particular expression.1222

2. Protected Interests

a) Know-How and Resources

671 Knowing what should be understood by the terms creativity or creative con-
tribution, and inventiveness and inventive contribution, and to what degree

This interpretation corresponds with the practice of the European patent office. See for

example: decision of the EPO Board of Appeal of September 29, 2006 (EPO T 959/03) –

International Translatinos/Ed Pool; see similar thoughts in BERESFORD, N 2.29 f.

See N 472.

DIJKSTRA, 209; MERGES, 586; FLOYD, 456.

SCHWARZ/KRUSPIG, 34 f.; see also ALLISON/LEMLEY/SCHWARTZ, 1084 f.

See N 480 ff.

1218

1219

1220

1221

1222

Chapter 6: Discussion of Selected Problems

293

both characteristics are found in software development, we need to figure
out what would justify results that exhibit creativity and inventiveness being
legally protected

672 Intellectual property laws were built to protect investment and provide an ad-
equate incentive for creators to develop creative and inventive contributions,
and share them with society.1223 Pursuant to the findings of this study, creative
and inventive processes in software engineering require a lot of human, time

and financial resources. There are, on the one hand, the financial investments
a company puts into the development of computer programs, and the time,
labour and skill efforts spent on the other.1224 The developers require technical
expertise, experience and domain know-how to find plausible solutions to var-
ious problems and to develop a product the user wants to acquire.1225 Accord-
ing to the software developers, domain know-how is the most valuable asset
they possess.1226 It incorporates the capabilities and particularities as to how a
technical problem is solved with engineering, how to address the customer’s
needs and to recognize difficulties in implementing the solution.1227 As the par-
ticularity of a development is a company’s contribution, it is very important to
keep and defend its know-how.

673 The difficulty with software lies in the fact that this know-how and the invested

resources are then easily accessible from the outside once the software is pub-
lished. The aim of the source code is to present the software in a literary form
that is understandable and editable for developers. It is, by design, easy to
manage and maintain as it represents the software’s most accessible level. For
the developers to alter it, it has to contain all the commands and instructions
that control the behaviour of the software. It integrates all the data to conduct
specific processes or offer particular functionalities, but also to visually illus-
trate the software in the form of the user interface. If not actively disguised, all
the solutions, rules and approaches are also accessible from the outside for
third parties. In this context, it should be remembered that developing soft-
ware is not straightforward; the developing, testing, failing and succeeding
comes from many hours of trial-and-error to find the optimal solution to a
specific problem and implement it into a creation.1228 The domain know-how

See N 234 ff. and N 519 ff.

See N 486 f., N 520 and N 535 ff.

See N 441 ff.

See N 443.

See N 442.

See N 142, N 423, N 444, N 529 and N 541; see the same conclusion in WILTGEN/GOEL, 1.

1223

1224

1225

1226

1227

1228

Chapter 6: Discussion of Selected Problems

294

and resources that were invested to find this optimal, creative solution are
then reflected in the source code and its visual implementation in the user in-
terface. Suddenly the end product of time-consuming and cost-intensive de-
velopment phases becomes accessible and traceable through observation of
behaviour and reading the source code. This opens the risk of infringement,
and publishing the software with a readable ‘open’ source code also makes it
easier for third parties to imitate the product within a shorter time and at a
much lower cost without direct copying, with the final problem-solving ap-
proach visible.1229 As Harison et al. note, even if the imitation is not exactly the
same, the functionality and features may be reproduced without extensive ef-
fort.1230

674 If the know-how of a software product is copied or imitated, the investments
made and the future of the company are at risk. The software companies
therefore try to secure their know-how as well as possible. If they have to pub-
lish their achievements or share them, they only do so on a contractual basis
and with selected partners.1231 As the technical means to copy and paste soft-
ware have become better, software has become even more vulnerable. The de-
velopers have recognized this difficulty and try to hide and additionally secure
their know-how with technological measures. These measures are used com-

plementary to whatever is provided legally in order to protect their products.
However, real security can rarely be achieved. Rueesch believes that the soft-
ware industry has not yet been able to implement a lasting technological se-
curity barrier.1232 Regarding the fact that all the interviewed software develop-
ers’ IP rights had been infringed,1233 it is legitimate to say that Rueesch’s
observation is true.1234 Software companies thus have good reason to request
that the sensitive and disclosed know-how worthy of protection, and also the
time, money and human labour resources invested into developing the soft-
ware, should not be exposed without adequate protection in IP law.

See N 142, N 423, N 444, N 529 and N 541.

HARISON, 174; SCHWABACH, xv; SAMUELSON ET AL., 2337 ff., 2366, 2409 and 2418; LUECK, 35;

KOEHLER, 32 f.; MELULLIS, 343; THOMANN (1992), 4; SCHWARZ/KRUSPIG, 34 f.; LEMLEY/BURK, 91

and 92; LEMLEY (2002), 1892.

See N 448 ff.

See for example RUEESCH, 23 ff.

See N 590 ff.

See also N 584.

1229

1230

1231

1232

1233

1234

Chapter 6: Discussion of Selected Problems

295

b) Know-How and Resource Protection in Copyright and Patent
Law

675 The question is whether we can protect these interests appropriately with
copyright and patent law.

676 Based on the two aspects we want to shelter – know-how and resources – we
should continue with a two-fold protection model. The hybrid model of copy-
right and patent law protection makes practical sense as, due to their different
objectives, the two protection institutions largely complement each other in
the area of software: Patent law is conceptualized particularly for the protec-
tion of specialized domain know-how that is reflected in the inventive techni-
cal ideas and technical implementation. It protects the technical teaching or
solution that is disclosed with an invention’s registration, including the appli-
cant’s applied know-how. Copyright on the other hand protects the resources
and work expenditure that was made and can be easily imitated, now that it is
clear what a successful and working version of the component could look like.
While patenting protects the software’s disclosed know-how in the form of an
applicable functionality, copyright aims for the manifestation of creative and
labor-intensive work in an expression.

677 The two models together as a hybrid are able to cover the complexity of soft-
ware, as a work that exhibits a lot of know-how on the surface and requires a
lot of financial, time and human resources, that can be easily imitated at a
lower cost and within a shorter time than when it was first developed. The
combination of the two would also represent an adequate incentive to take the
business risk and share their discoveries. The subject software including its
component products can be well protected with the hybrid of copyright and
patent law.

B. The Protection Requirements in Copyright and Patent
Law

678 In order to be protected under copyright or patent law, we first need a subject
that falls under the eligible subject matter and, second, the subject has to fulfil
certain protection requirements. The protection requirements of patent law
and copyright have been fixed through international codification in various
multinational treaties, and are therefore in principle non-dynamic, they can-
not be changed without a greater international renovation effort. In patent law
an invention has to be novel, non-obvious and industrially applicable to fall

Chapter 6: Discussion of Selected Problems

296

under the patent scope.1235 On the other side, copyright law requires that the
creative work represents an intellectual creation that shows originality or in-
dividuality.1236 These protection requirements circumscribe the scope of pro-
tection in copyright and patent law irrespective of the object of protection. In
practice, these fixed criteria have increasingly raised the question of the ex-
tent to which they can be adequately applied to “software” as a potential object
of protection.1237

679 The software companies in this study said that they understood the outlined
copyright requirements and would generally be satisfied with their practical
interpretation.1238 Similarly, the patent requirements were said to be consis-
tent. Although they are not easy to interpret for lay people, the requirements
would make reasonable connections and ask for the right prerequisites.1239

There would hence be no need to change the copyright and patenting require-

ments as such. Nevertheless, it was shown in the interview study that the prac-
tical interpretation of the patent requirements could be adapted in order to
meet the current challenges of the software industry better.

680 First, it was found that the software companies had a stricter interpretation of
the potential expert term relevant for the non-obviousness criterion in patent
law. The expert figure has been hypothetically based on an ‘average’ skilled
person with the capability to think logically.1240 Intuition or ingenuity is not
expected of the expert, nor does the expert need to know and review all the
prior art in the field.1241 In the interview study, it was suggested that the expert
should not only be a person of ‘ordinary skills’, but should also show special
skills in the particular science in question.1242 As Thomann explains, “the as-
sessment of a creation presupposes mastery of the appropriate lan-

See N 310 ff.

See N 359 f. and 361 ff.

See discussions in: BOECKER, 35; OHLY, 809; SCHULZE 997 ff.; HARISON, 113 f. and 193; eco-

nomic analysis in MERGES, 603 ff., see particularly 606; difficulties also addressed in

U.S. CONGRESS (1990), 5; difficulties also addressed in U.S. CONGRESS (1992), 3; SAMUELSON

ET AL., 2347 ff.; BELL/PARCHOMOVSKY, 232 f. in particular; HILTY/GEIGER (2015), 616 f.;

STRAUB (2001b), particularly 2; LEMLEY (2017), 909 and 943 ff.

See N 493.

See N 493; see similar discussion in LEMLEY/BURK, 95 f., concluding that the current patent

criteria did suffice but would require active interpretation and reinterpretation.

See N 316 ff.

BGE 123 III 485, c. 2b; BGer of May 18, 2005, 4C.52/2005, published in sic!, 2005, 825; see

also Staempfli Commentary to the Swiss PatG/EPC, Art. 1 N 80.

See N 476 ff.; also discussed in MERGES, 598.

1235

1236

1237

1238

1239

1240

1241

1242

Chapter 6: Discussion of Selected Problems

297

guage (source code, characters, notation)”.1243 Without this specific prior
knowledge, an expert’s evaluation is neither reliable nor assessable in terms of
the available and used discretion. The expert should thus be a person that of-
fers in-depth expertise of the particular field and also has practical experience
with the standards and prerequesites of the industry. By raising the skills ex-
pected from an expert, the quality of the examination automatically increases.
Only if the examination is conducted professionally is the examiner able to dis-
tinguish truly inventive from trivial patents. The quality of the issued patents
consequently improves.

681 In addition, the software companies suggested for the non-obviousness test

that the expert should also closely review other approaches in the technical
field in question, apart from the solution offered. According to the software
companies, only technical solutions to problems that set themselves apart
from what the specialized expert themself would know and do in practice
should be eligible for patent protection.1244 For this purpose, extended involve-
ment and engagement of the expert with the technical problem is required. An

invention should only be non-obvious if an expert with special skills in the par-

ticular art of software engineering when given the same task could not him- or

herself think of the way in which the inventor solved the problem within a rea-

sonable time limit.1245 Similar to the European problem-and-solution test and
the U.S. functional approach, the expert would begin their review by establish-
ing the objective technical problem they want to solve. But instead of simply
establishing the closest previous art for the problem, the expert should dive
into the technical field and try to evaluate the problem for themself. The start-
ing point would be the inventor’s patent application which contains a descrip-
tion of the problem he or she wants to solve and the revelation of his/her ap-
proach. The expert should just look at the problem the patent application
wants to solve and try to establish what potential solutions he or she would
have thought of within a reasonable time limit, if he/she had to solve the prob-
lem. The expert would not actually have to solve the problem; it would suffice
if they examined the problem and sketched out some potential procedures.
The expert would thereby automatically establish and evaluate which stan-
dards, prerequisites and known approaches in the prior art were relevant for
the potential solutions they were thinking about. In a final step, the expert
would look at the solution suggested by the applicant to compare their own

THOMANN (1998), 9 f., discussing evaluating an author's original contribution in copyright.

See N 463 ff.

See N 475 ff.

1243

1244

1245

Chapter 6: Discussion of Selected Problems

298

solution ideas with that of the applicant. The expert would then assess
whether he or she could have thought of the suggested solution to the prob-
lem within a reasonable time limit, and to what degree the applicant’s solution
was determined by external factors or already included in prior art. The expert
should thus not only look at the final solution and evaluate whether the so-
lution was obvious from the perspective of prior art, but also apply his or her
own expertise. Only solutions that were distinctively different from the ex-
pert’s suggestions to solve the problem within a reasonable time limit would be
declared novel and non-obvious. Thus, the expectations of the inventive step
would be increased, taking technical feasibility and practical problems into ac-
count.

682 The software companies also outlined that it was currently difficult to find
prior art that could thwart trivial patents.1246 A comparative study of the Euro-
pean, U.S. and Japanese patent authorities confirmed this concern.1247 The sug-
gested different interpretation of the non-obviousness term would enable the
determination of approaches that may not necessarily be exhibited in prior art,
but were themselves evident or a logical consequence of prior developments.
The problem with finding such prior art would thus be reduced and the quality
of the inventions granted protection would be increased. One criticism of this
proposed approach might be that it would provide too much discretion for ex-
aminers, which entails certain risks. However, as in legal court practice, the
existence of discretion in an assessment does not itself represent a problem.
The state-recognized and authorized expert examiners are in a better position
to recognize and reject a trivial creation, due to their high credibility. Only de-
cisions that were obviously incompatible with the discretionary scope would
be questioned, and would thus also be legally contestable. It therefore repre-
sents a manageable risk. Secondly, one could argue that with this approach
there would be an increased risk of hindsight bias because the expert might be
tempted to say that he or she would have found the same idea, looking at the
solution proposed in the application. But because the expert is instructed to
first think through the process, find a solution of their own and only then look
at the suggested solution, hindsight bias could be prevented. On the other
hand, the risk of hindsight bias and subjectivity always applies if another per-
son examines a third party’s invention, but the risk may be lower if a higher-

See N 476; see same conclusion in LEMLEY ET AL., 168.

Patent Offices Comparative Study (1997), no. 3.1., particularly regarding computer-imple-

mented inventions; Patent Offices Comparative Study (2000), 28, particularly regarding

business methods; see also discussion in HORNS, 13; SCOTCHMER (2006), 74 f.; HILTY/GEIGER

(2011), 183 f.; ZIRN, 185 ff.

1246

1247

Chapter 6: Discussion of Selected Problems

299

skilled expert evaluates the inventive character instead of an ordinary skilled
one. This is because a trained person with special skills and experience in a
subject would potentially know better what they were looking for. In order to
limit the possibility of hindsight bias, I recommend that the expert term be
altered as suggested. Putting both propositions together, the full explanation
for the non-obvious test might therefore be: An invention is non-obvious, and

therefore novel, if an expert with special skills in the particular art of software

engineering (in which the invention is claimed) could not themself think of the

way to solve the given problem, as the inventor has, within a reasonable time

limit. If necessary, the process could be a double-track examination carried
out by two experts. One expert could examine the application according to the
current classic problem-and-solution or functional approach and evaluate the
patent application while a second expert would try to solve the same problem
on their own within an agreed time limit. This second evaluation could then
serve as the basis to establish prior art. This suggested change to the proce-
dure could easily be integrated into the current law without requiring any re-
visionary act.

683 Finally, the software companies suggested that an innovation not only needs
to involve an applicable teaching but this teaching should also be useful to the
market or society.1248 The software companies thus wanted added value to be in-

cluded in the invention. The question is how or where this usefulness criterion
could be implemented in the current patent scope. One possibility would be to
create an additional separate criterion. However, this approach would be la-
borious and require special support from the international community. A bet-
ter way would be to embed it either as a tested aspect under the subject mat-
ter or in one of the existing patent requirements. The required invention could,
for example, be integrated into the evaluation of the subject matter. A teaching
would consequently only be considered as a teaching if it offered an inventive
and useful theory. The teaching term would thus be interpreted differently.
Only teachings that showed a potential benefit would be eligible under the
subject matter. But the usefulness aspect could also be examined under the
applicability criterion, specifying that a teaching was only applicable if it could
be applied in a way that generated more value for society or the market, and
not only the patentee alone. Both approaches could be implemented under the
current patent regime without formal changes. I would personally favour its
implementation under the subject matter of an inventive teaching, as this
should be the main reference point and if the added value was not visible in

See N 465 ff. 1248

Chapter 6: Discussion of Selected Problems

300

the teaching the requirements would not have to be evaluated at all. This
approach would also indicate the importance of the minimum quality a
patentable object should exhibit, and would therefore be a suitable measure to
tighten the patent scope.

684 All the other criteria could be interpreted as before. Each of the three sug-
gested changes to the current interpretation would help to narrow the patent
scope. This would increase the quality of the patent evaluation’s outcome and
enable trivial patents to be recognized more easily. These measures would also
help to strengthen the credibility of software patents overall. But these mea-
sures can only have an effect if the inventions are fully tested before they are
granted. The interviewed companies believed that an inventor or right holder
should only be rewarded with a patent if he or she could substantiate the qual-
ity of their invention. For this reason, the substance of the subject matter and
patent requirements would have to be fully assessed. In order to ensure that
only truly inventive creations were protected, the software companies said
they would even be willing to accept a longer application process.1249 Today,
how extensively the substance of a patent application is examined varies con-
siderably between the different jurisdictions. In Switzerland, only the subject
matter is evaluated, not the patent requirements. In the European Patent Of-
fice and in the United States Patent and Trademark Office, a full substantive
examination is made.1250 It would be desirable to standardize the evaluation
procedures of the different patent offices in order to increase the legal cer-
tainty of both the right holders and the third parties.

C. Potential Subjects of Legal Software Protection

685 Part of the reason for this study was to figure out what was most valuable in
software development and commercialization from the perspective of the
software companies – their ‘crown jewels’ – and to what extent these assets
were covered by IP protection. The following section discusses how different
elements can already be protected under copyright and patent law and where
additional protection is needed. Although this thesis wants to offer guidelines
for future assessments, it is important not to generalize about which objects
are covered under copyright and which under patent law. I therefore follow
Wittmer’s advice that every component of the software product should be

See N 511.

See N 333.

1249

1250

Chapter 6: Discussion of Selected Problems

301

analysed in its individual combination and entity to evaluate whether it is
worth sheltering and to what extent it falls under legal protection.1251 The fol-
lowing evaluation thus functions as an illustrative example for the argument.

686 In general, each inventive component in a computer program can be granted
patent protection and every creative expression within a component can be
protected with copyright, if it fulfils the corresponding protection require-
ments of copyright and patent law. The decisive factor for its eligibility for le-
gal protection, therefore, is not what kind of component it is but rather what
it has to offer, what inventive or creative contribution it entails. For this rea-
son, the potential objects should be tested individually. Usually, it is only some
elements or components of a complete software product that are worthy of
protection. The fact that some elements in a software product do not offer an
inventive or creative step, and are thus not protectable under copyright or
patent law, does not prevent the software from being protected under some
type of intellectual property right. However, in this case, only the element that
is able to fulfil the protection requirements of the respective legal frame is
legally protected. On the other hand, if a component or a part of it offers less
originality, copyright may still shelter it from being copied one-to-one, as the
component in its particular expression, that is, the combination of letters or
signs, may be statistically unique.1252

687 It should also be taken into account that it is not the type of software that is
important, but the individual product. In principle, macros, program libraries,
database management systems and computer games are also eligible for soft-
ware protection.

688 According to the software developers and companies commercializing com-
puter programs, the software components that contain the most sensitive
know-how and require the most resources to develop are the source code, the
algorithm, the look-and-feel, the visual user interface and the functions and
features a product offers.1253 Together with the vertical domain know-how,
which may be applied in any work, these elements also represent the most

WITTMER, 136.

The theory of statistical uniqueness (Theorie der statistischen Einmaligkeit) examines

whether a work is individual enough so that it seems highly unlikely that the same or sub-

stantially the same work would be created by a third party for the same work. Only if both

questions are negative, is the work considered original (KUMMER, 30 ff., 44 ff., 47 ff., 63 ff.,

80, see particularly 67; BGE 134 III 166, c. 2.5; BGE 130 III 168, c. 4.1-4.4.; see also brief sum-

mary in STRAUB (2011), N 73 ff., with further references). See in detail N 363.

See N 526 ff.

1251

1252

1253

Chapter 6: Discussion of Selected Problems

302

valuable parts in a developed good.1254 The following analysis therefore starts
with the testing of these named components for their copyright and patent
law eligibility. The current copyright law also protects the whole software
product against one-to-one copying, which is why this matter is also dis-
cussed. Finally, the copyrightability of the development documentation is a
topic that is currently highly disputed among scholars, and this will be ad-
dressed in a final section.

1. Whole Software Product

689 According to past interpretation, the entire software product distributed on a
medium or made available for download is protected under copyright law.1255

The software companies described how software piracy, such as hacker at-
tacks and unauthorized reproduction of sold products, represents an ongoing
threat to the industry, considering the existing technical possibilities and the
insufficient measures to enforce IP rights in some countries of the world to-
day.1256

690 The final product is the combination of all achievements. It is the product that
is offered to the client and that is purchased for its potential use. It is also what
the user in the end wants to apply. Single components may have their worth,
but only if everything developed is combined, can it reach its full potential. The
software product therefore represents the culmination of everything created
and invested in the software development. If the product can be used without
paying for it, it loses its full value. At the same time, the person who has a copy
of the software can analyse its details, and thus access the know-how and cre-
ative solutions applied to build it, without participating in the redemption for
the invested resources. As the compilation of components and mini-programs
itself cannot be qualified as an inventive technical achievement but rather rep-
resents a creative decision, and because the interests at stake are mainly the
invested resources and creative skills, it would appear reasonable to continue
protecting the product under copyright. The whole product may also be pro-
tected against having undue advantage taken of somebody else’s achievement
under unfair competition law.

See N 527 f.

See N 356 bullet point 1.

See for example N 537.

1254

1255

1256

Chapter 6: Discussion of Selected Problems

303

2. Code

691 The source code represents one of the two forms of a literary instruction that,
once translated by a compiler, tells the machine what it has to do. As it is de-
signed in a human-readable form, it works like a text with digits and letters so
that engineers who are experienced in working with and ‘reading’ program-
ming languages can understand it. The source code follows the logic that the
engineer made it follow. Apart from quite functional aspects, it therefore also
contains creative inputs of the engineer and a rationale based on his or her
personal know-how and experience. In its final shape, the source code, as
Perelman says, represents the engineer’s “unique expression of a computer so-
lution to a particular problem”.1257 Its construction usually requires time re-
sources as an effective source code line has to be written and rewritten sev-
eral times until the desired command is formulated.1258 This is true for the
whole source code, as well as for smaller sections of just a few combinations
or a very distinctive code line within the source code. Due to its high creative
quality and the amount of resources that its development requires, the source
code is worthy of legal protection if it represents an original contribution. It
should be noted that, as the code has to be preserved in a readable form, all its
achievements, including the know-how used to build it, are ‘served on a
plate’.1259 This was also recognized by the international community, which de-
cided to protect the literary form of computer programs, and especially the
source code, with copyright.1260 As the source code does not itself constitute
an invention, but rather represents one particular creative form of expressing
it, it should fall under subject matter of copyright.1261

692 Not just the instruction itself but also the way the source code is organized, its
so-called architecture, deserves our attention. The distinctive parameters and
the compilation of instructions are structured into sequences, which, as a cre-
ative contribution, often earn copyright protection. All these parts within the
source code represent creative merit that is dependent on the expertise and
style of an engineer, and thus it goes beyond a mere technical formulating of

PERELMAN, 923; see also ERNST, 209;

See N 142, N 423, N 444, N 529 and N 541 and N 673.

See particularly N 529.

See N 259 for the TRIPS Agreement, N 262 for the WCT, see N 356 bullet point 2 for current

interpretation.

See also HARISON, 175 f.; MELULLIS, 342; SAMUELSON (2012), 159.

1257

1258

1259

1260

1261

Chapter 6: Discussion of Selected Problems

304

instructions. The code is the result of how these instructions were put to-
gether within the predefined frame. A particularly distinctive organization and
sequence of the source code can therefore also be copyrightable.1262

693 The machine code contains the program’s instruction in a form that the com-
puter understands and is able to process. It is therefore the reflection of the
source code in another literary form. Although it cannot be directly read or
analysed by humans, it can be decompiled in order to obtain a program’s func-
tionality,1263 and thus a relevant part of the creative solution to a problem.1264

The decompiled version of the machine code represents an object that can be
easily harvested. In order to offer a technically appropriate framework of pro-
tection, it would be reasonable to integrate this with the know-how and cre-
ative solutions, placing the machine code also under copyright protection.
This interpretation corresponds with that of the international community,
which also shelters the machine code as a literary expression of a copyrighted
computer program.1265

694 In all three forms of literary expression, the question remains to what extent
the copyright protection applies. Again, in a case-by-case analysis, we have to
determine which components or overall compositions of the source or object
code exhibit originality. In practice, courts and private entities frequently
make use of quantitative analyses to verify copyright infringements whenever
they are suspected. However, as Straub explains, these analyses do not permit
direct statements on originality and can therefore only make a statement as to
whether, in the case of a high degree of accordance, there is a higher proba-
bility of infringement. At the same time, a high degree of accordance may also
indicate that tools and components provided in the software community had
been integrated into the software.1266 This does not mean that no creative lee-
way was used to embed these elements. A quantitative analysis may therefore
only work if it is combined with a subsequent assessment of a work’s original-
ity on a case-by-case basis.

See N 356 bullet point 3 for current interpretation.

See N 137, N 141 ff. and N 356; see the same reasoning in Commentary to the German

UrhG (Loewenheim/Spindler), § 69a N 5.

See N 142, N 423, N 444, N 529 and N 541 and N 673; for legal perception, see also

STRAUB (2003); STAFFELBACH; SAMUELSON (2012), 159.

See N 259 for the TRIPS Agreement, N 262 for the WCT, see N 356 bullet point 2 for current

interpretation.

See for whole abstract: STRAUB (2011), N 86 f.

1262

1263

1264

1265

1266

Chapter 6: Discussion of Selected Problems

305

695 Finally, the source code and the machine code, but not the architecture of a
source code, may also be protected against having undue advantage taken of
somebody else’s achievement under unfair competition law.

3. Algorithm

696 The algorithm tells the computer in a functional rule how to behave and what
to do. As the software’s behaviour determines the service it offers, the algo-
rithm that defines this behaviour represents a very valuable part of a software
product.1267 In order to obtain an algorithm that displays a general rule, a de-
veloper has to apply his or her know-how, expertise, constructivist thinking
and verbal capacities.1268 As the algorithm itself represents a technical idea,
and is not understood as an expression, it is commonly excluded from copy-
right protection and instead put under patent protection, with some restric-
tions.1269 The patentability of algorithms, however, comes with a conflict of ob-
jectives. On the one hand, the algorithm contains most of the know-how in a
software product and should, thus, generally fall under the set of legally pro-
tected components. On the other hand, as Boecker explains, the behaviour of
a computer program often reflects a general idea, whose use by the public
should not be prevented unnecessarily by patents.1270 Protecting basic algo-
rithms endangers the freedom of ideas and entails negative effects, such as
blocking other developers from integrating them and from entering the mar-
ket.1271 It is therefore important to distinguish when speaking of algorithms,1272

and to find a way to filter inventive algorithms from basic ones, and exclude
the latter type from patenting. For this purpose, I have compiled a simple test-
ing procedure to demarcate basic algorithms from more refined ones on the

See N 145, N 527 and N 539; see also the statements in: HARISON, 183; SAMUELSON ET AL., 2318;

BOECKER, 130, concluding from HABERSTUMPF (1983), 222.

See N 145, N 473, N 527 and N 539; HOMMEL ET AL., 37.

See N 356 bullet point 5.

BOECKER, 140 f.

See discussion in N 411 ff., N 503 ff. and N 653 f.

As Straub emphasizes, the term algorithm as such is not in itself suitable for assessing

the patentability of computer-related inventions. A distinction must be made between ab-

stract mathematical principles that need to be legally accessible and concrete technical

solutions (STRAUB [2011], N 445).

1267

1268

1269

1270

1271

1272

Chapter 6: Discussion of Selected Problems

306

basis of the patent requirements and the results obtained from the interview
series.1273 The procedure complies with the criteria as stipulated in the ruling
of Aerotel Ltd v. Telco Holding Ltd, etc.1274

697 First, with regard to the patent law’s technicity requirement,1275 we try to find
a solution to a technical problem. To achieve this goal, we only integrate those
algorithms in our examination that are actually applicable on a computer,
hence defining a general rule for a behaviour that can be executed on and fol-
lowed by a computer.

698 Second, we only examine qualified algorithms that provide a teaching to solve
the named technical problem. We are looking for “man made” rules that rep-
resent solutions to complex technical problems.1276 This teaching, by defini-
tion, has to exceed the scope of a scientific truth – such as a mathematical
formula – that solely expresses or describes the relationships between mass,
force or other natural phenomena that are observable in nature.1277,1278 It would,
for example, not suffice if a formula was presented that, although calculable by
a computer, could also be completed by a human without technical assis-
tance.1279 Similarly, if a formula is the only existing way to express an observed
behaviour, it might rather be a description of a natural phenomenon, a discov-
ery, and not an inventive teaching.1280 This aspect however needs careful eval-
uation and substantial amount of technical expertise.

699 Further, the teaching that is based on the inventive algorithm needs to be spe-
cific and tangible. It cannot be an abstract idea, where no insight into the po-
tential mode of application is provided. Instead, the informed and specialized

The following procedure may be used as a simple guideline for the evaluation of an algo-

rithm's patent qualities, but it is by no means exhausitve. As Boecker notes, in practice it

remains very difficult to distinguish between common and more sophisticated algorithms

(BOECKER, 140).

Aerotel Ltd v. Telco Holding Ltd, etc., and Neal William Macrossan's Application, decision of

the EWCA of October 27, 2006 (EWCA Civ 1371), particularly c. 7 and 40 ff.

See N 291 ff., particularly N 295, N 301, N 303 and N 507 ff.

U.S. CONGRESS (1992), 151; see also discussion in: LAURIE, 257.

An example of a scientific truth would be 'F=ma' or 'a2 2ab b2=(a b)2'. These scientific truths

are not patentable.

Gottschalk v. Benson, 409 U.S. 63 (1972); interpreted in U.S. CONGRESS (1992), 47 ff. and 150 f.;

see also N 295, N 301 and N 303 ff.

Gottschalk v. Benson, 409 U.S. 63 (1972).

Concluded from DIJKSTRA, xvii.

1273

1274

1275

1276

1277

1278

1279

1280

Chapter 6: Discussion of Selected Problems

307

reader should be able to obtain the understandable, uncoded instructions on
how to execute the teaching.1281 The examiner should also be able to evaluate
the added value the algorithm entails.

700 Finally, the algorithm has to fulfil the requirements of novelty and applicability
to be protected under patent law. While the industrial applicability of an algo-
rithm is rarely a problem – if an instructive teaching is provided – novelty and
non-obviousness are more difficult to evaluate. An algorithm should not be
legally protected if it solely represents the most intuitive way of expressing a
particular behaviour in a rule. Software engineers in this case talk of ‘the nat-
ural one’, referring to the most intuitive and natural definition or formulation
of what can be observed.1282 This algorithm is obvious in the eyes of an expert.
In order to distinguish specialized from elementary algorithms, Ensthaler and
Moellenkamp offer a differentiation by stages into basic algorithms and com-
plex algorithms.1283 They refer to basic algorithms when talking about basic
modules that are frequently used in software engineering, such as search or
string processing algorithms and mathematical rules.1284 This type of algorithm
is, as its name implies, fundamental and applied in daily engineering work, and
should therefore be assigned to the public domain. Algorithms that solely offer
an abbreviated or shorter version of a known algorithm should also be ex-
cluded from patent protection if they do not offer any additional inventive
contribution.1285 Complex algorithms, on the other hand, are algorithms of a
second degree, which show a first minimum structure of a potential solution
to the technical problem. This means that the functional solution to a problem
is already concretized or enhanced to a degree that a tangible teaching is rec-
ognizable. This type of algorithm usually combines basic algorithms and “less
complex” algorithms as iterations and sequences.1286 The more refined and en-
hanced the functional solution to the technical problem is, the more the algo-
rithm should be qualified as complex. Although there are various ways to
transform a basic algorithm into a complex one, it is most difficult in this case
to overstep the sphere of the mere common. It is only if the engineer leaves

This approach corresponds with the current practice for the evaluation of abstract ideas.

For more information, see N 325 ff. and N 326 in particular.

See description in: DIJKSTRA, xvii.

ENSTHALER/MOELLENKAMP, 152 ff. They seem to have based their subdivision partly on

SOMMERVILLE, 4th edition of 1992, see particularly vi, 133 f., 169 ff. and 590 ff.

ENSTHALER/MOELLENKAMP, 152 f.; see also FLOYD, 459; STRAUB (2011), N 18.

According to the opinion presented in this thesis, abbreviations of an algorithm constitute

a literary rather than inventive achievement, if no further inventive contribution is offered.

ERNSTHALER/MOELLENKAMP, 153 f.

1281

1282

1283

1284

1285

1286

Chapter 6: Discussion of Selected Problems

308

the reliable, established path and finds his or her own particular and successful
inventive solution, and expresses it in a formula, that the algorithm is eligible
for patent protection.

701 According to the software companies, inventive algorithms could, for example,
be found in the following functionalities:1287

– providing a faster, accelerated process;

– offering a more efficient procedure;

– achieving an entirely new technical result, such as a process;

– offering a digital solution to a problem that previously could only be
solved with an analogue one, and offering further benefits with it;

– achieving a better performance of the device used;

– increasing a process’s performance or offering more flexibility;

– increasing the usability;

– offering a new teaching, for example how to steer a particular process.

702 All these potential applications could represent an innovative use of an algo-
rithm. The decisive factor is the particular development and what it has to of-
fer. If the algorithm passes the test described above, it should be eligible for
patent protection.

703 If the algorithm is considered as an idea or rule worthy of patent protection, it
is protected independently of its expression or form.1288 Therefore, it is not
only the algorithm’s formula that is sheltered but also the behaviour it creates
or its expression in a diagram. Also, the source code may qualify as an illustra-
tion of the algorithm. The engineer is free as to how he or she wants to illus-
trate the algorithm, as long as the reproduction still has the exact same func-
tion and is still able to fulfil the same process or task.

4. (Graphical) User Interface

704 The user interface is the outermost layer of the computer program and is used
to communicate between the software process and the user who wants to
steer it. Its overall importance and value in a computer program has increased
as the users’ expectations of the visual representation of a computer program,
and its usability, have increased. As it represents the visual expression of the
computer program, the user interface is generally covered under copyright.

See results in N 470 ff., N 473 in particular.

See N 266.

1287

1288

Chapter 6: Discussion of Selected Problems

309

705 The user interface reflects the developer’s aspiration. As the U.S. Congress has
recognized, the developer selects which functions his or her program will per-
form for the user and what the interaction between the program and the user
will look like.1289 To a large extent, this involves creating an attractive and ap-
pealing working environment for the user who buys the program. The visual
interface, its individual elements and their composition are selected and posi-
tioned consciously. Where the characteristics of a user interface are shaped
by the creative and personal decisions of a software developer rather than by
the mere functionality of predetermined techniques, copyright protection
should be granted. This creativity can for example be integrated into the de-
sign of frames and patterns, such as the length and form of the lines, how they
are connected or how points are applied. The developer can also play with the
position or substitution of objects. Hence, creativity can be integrated into the
user interface in very different ways.

706 To evaluate the scope of copyright, it is important to assess to what degree the
user interface is a separable expression of a computer program, and to what
degree it is predetermined by the functional instructions in the source
code:1290 As Wittmer explains, there are certain visual elements in a layout that
mainly constitute a different representation of the same input data processed
in the program.1291 These are therefore functionally conditioned by the in-
structions in the source code, and are thus path-dependent. Again, as Wittmer
puts it, they emerge as illustrative by-products, i.e. based solely on the soft-
ware engineering task, which is why they cannot be protected.1292 But the user
interface also contains room for creative design decisions. Layout character-
istics are used and design decisions are made several times during the devel-
opment process, starting in the first sketch, to the concept, to the visualized
coded and designed layout, up to the final product the client receives. Con-
trary to Wittmer’s view, creative decisions for the user interface do not simply
appear at the end, so that only the form-determining elements are worthy of
protection, but are made alongside the development process, long before any
kind of data is actually processed. The visual elements are added without hav-
ing a technical function. Instead, they aim to address the user in an appealing,

U.S. CONGRESS (1992), 129.

For more information on functionality, see N 353 and N 364.

WITTMER, 27 ff. and 100; see also U.S. CONGRESS (1992), 126; Commentary to the German

UrhG (Loewenheim/Spindler), § 69a N 7.

WITTMER, 112 f.

1289

1290

1291

1292

Chapter 6: Discussion of Selected Problems

310

maybe even artistic manner. But I agree with Wittmer to the extent that visual
interfaces should not be protected if they are only a “by-product” of software
engineering and do not offer any creative illustrative component.1293

707 At the same time, I do agree that there are parts of the interface design that
are merely functional without being by-products of data.1294 This is particularly
true if the design has to be adjusted to certain established user application de-
sign standards or best practices that every software product has to offer in or-
der to function as an easily applicable intermediary between the user and the
program.1295 The same applies for certain parts within the usual interface that
have to be included in order to trigger the technical processes behind the in-
terface, such as steering buttons. But beyond these predetermined necessities
there is a creative potential in the nature of external design that allows the de-
veloper to exercise his or her artistic qualities. At the same time, we have to
distinguish between ideas for visual interpretations and their actual expres-
sion in a visual interface. As the pictorial form of displaying information be-
comes more prominent with the rise of new technologies,1296 it is even more
important to also guarantee the free use of visual ideas and to ensure that only
visual expressions of a certain originality and expressiveness are legally pro-
tected.

708 Under certain requirements, user interfaces are also eligible for industrial de-
sign rights or trademark protection.1297 To fall under the design right’s scope,
these visual elements would have to display a systematic design concept of or-
namental and asthetic aspects.1298 As design rights, due to their exclusionary
qualities, might have similar blocking effects to patent law, the governmental
institutions responsible for granting design rights should carefully evaluate
and test the requirements for their substantive quality. User interfaces are also
eligible for trademark protection if they are characteristic of a particular com-
pany or service and exhibit enough distinctiveness from other products, for
example through implementing a specific corporate identity in a user inter-
face. Applying trademark protection to computer programs is reasonable if the
user could potentially be deceived regarding the software’s origin by its visual

WITTMER, 112 f.

See N 353, N 364 and N 663, regarding predetermined elements.

See discussion in BULLINGER/FAEHNRICH/ILG, 942 f. and 946 ff.

FISHER, 17.

See above N 215 ff. and N 218 ff.

See Orell Fuessli Commentary to the Swiss DesG, Art. 1 N 32; Staempfli Commentary to

the DesG, Art. 1 N 18.

1293

1294

1295

1296

1297

1298

Chapter 6: Discussion of Selected Problems

311

appearance or name. Apart from that particular situation, there are however
more accurate options for protecting a technical or creative component than
trademarks. The user interface may also be subject to protection against tak-
ing undue advantage of somebody else’s achievement under unfair competi-
tion law. However, in practice, a simple copy of the look-and-feel will rarely be
possible technically.

709 The user interface is the visual expression of a computer program that tries to
address the users’ needs and wishes in using the program. The visual elements
in software should be fully eligible for copyright protection if its overall im-
pression is not predetermined by the program’s functionality or standardized
design criteria.

5. Look-and-Feel

710 The look-and-feel represents a combination of the visual interface and certain
functionalities in a computer program. Like the user interface, it is used to
communicate with the user. Apart from making the interface neat, it also con-
tains technical aspects that can be separated into predetermined functionali-
ties, and features that are added voluntarily to increase the usability and aes-
thetics of the look-and-feel.1299

711 The look-and-feel can be divided into the navigational features, the layout, the
imagery and colours, the interface cue, and the architecture of presented in-
formation.1300 These aspects can be designed to influence the usability, the se-
curity, the performance and availability of a system.1301 It is the developer’s task
to define what functionalities the program has to meet, and how best to visu-
alize them for the users. As Samuelson et al. and Zelle et al. note, the look-and-
feel is rich in creative surface design.1302 There are a lot of details that have to
be considered, such as how the program best obtains the required information
from its user, how the user can apply a certain function or feature and how the
program behaves in a case of error.1303 It is in these small details where a lot of
the developer’s creative leeway can be implemented.1304 On the other hand, the

See N 147, N 531, N 540 and N 571; see also FISHER, 16.

See Motive Glossary, "Look-and-Feel", available at <http://www.motive.co.nz/glossary/-

looknfeel.php> (retrieved August 4, 2019).

BAHIR DAR UNIVERSITY, 13.

SAMUELSON ET AL., 2334; ZELLE/SCHLECHTNER/SCHMID, 9.

CARLETON, 418.

See N 454 ff.

1299

1300

1301

1302

1303

1304

Chapter 6: Discussion of Selected Problems

312

http://www.motive.co.nz/glossary/-looknfeel.php
http://www.motive.co.nz/glossary/-looknfeel.php

look-and-feel tries to address the needs and preferences of the users as well as
possible in order to increase applicability. It consequently requires a lot of ver-
tical domain know-how, in order to best address the user’s needs or achieve
a specific steering mechanism.1305 After all, the look-and-feel of a software
product is one of its main assets, making the look-and-feel as valuable as the
algorithm behind it.1306

712 As the look-and-feel is part of the surface design, it is directly accessible to
third parties. While the users are usually able to perceive the visual interface,
some of the hidden features are not easy to recognize even though they in-
crease the usability of the program. Still, the trained eye is able to identify
these characteristics, making the look-and-feel vulnerable to imitation, which
is why legal protection is important.1307 The look-and-feel can contain both
technical innovations and creative aspects, and should consequently be open
to both, patent law and copyright protection:

713 According to the view presented here, the look-and-feel is partly open to
patent protection, if a particular idea that is enclosed contains a repeatable
teaching that solves a technical problem.1308 This may, for example, lie in the
combination of certain features that solve a particular technical problem, or
an overall concept of features that address the users’ needs in an enhanced
form and assist the user in performing a technical task.1309 A simple business
method cannot be considered as a patentable part of a look-and-feel, if no
continued, repeatable and guided interaction is foreseen and no particular
possibility of application is explained.1310 It is further important to keep in mind
that the final layout is often influenced by the concrete design it shows and
the functionality the look-and-feel has to achieve. The technical achievements
that meet the inventive step can generally be patentable. There are, however,
many features that are obligatory in a look-and-feel or have become standard,

See N 442 and N 531.

See N 531.

See N 534 and N 540.

For more information on the patentability of functional elements, see N 293 f. and N 298.

See N 303, N 478 and N 531 f. With regard to the decision of the EPO Board of Appeal

of January 20, 1985 (EPO T 0605/93) – Dai Nippon, and the decision of the EPO Board

of Appeal of March 5, 1997 (EPO T 0333/95) – Interactiveanimation/IBM, we can assume

that visual elements with functionality are open to patent protection; see the same inter-

pretation in European Guidelines for Examination of the European Patent Office, Part G-

II-3.6.2; see also recent decision in BGer of July 16, 2020, 4A_609/2019.

In this case, the combination of functions and features represents an abstract idea that is

excluded from patentability.

1305

1306

1307

1308

1309

1310

Chapter 6: Discussion of Selected Problems

313

such as classic pull-down menus, frames and windows.1311 These ‘standard’ as-
pects should not be patentable, as they need to be kept free to use for the
public. This issue can be illustrated with the help of a car rental look-and-
feel, analysed by a report of the Bahir Dar University.1312 Commonly the on-
line service has to fulfil a large list of functional requirements, such as offer-
ing a list of available cars that is always up-to-date, enabling the customer to
look at the available cars on the web page and find out what characteristics
the cars have, allowing the customer to make an online reservation, and so on.
The implementation of these standard functionalities often looks quite similar
on the surface. These elements are thus determined by the software product
the developer wants to offer, they are common and not novel from a patent
perspective, and should thus be excluded from patent protection. Apart from
these predetermined aspects, the look-and-feel could be subject to patent
protection if the concept, how the users’ needs are addressed or their behavior
guided by certain features, offers a teaching that solves a technical problem.

714 The look-and-feel also usually contains creative decisions beyond the desired
functions. To the extent that there are several ways to implement an idea and
it is not predetermined by certain obligatory functional requirements and does
not simply represent an expression of codal instructions,1313 the result repre-
sents a creative expression, and thus a copyrightable work. The look-and-feel
could thus also be subject to copyright protection. This applies in particular to
creative interactive forms of presentation, audiovisual creations and strikingly
unique structural elements. To assess the copyright quality of a look-and-feel
it is important to distinguish the idea and technical implementation of a spe-
cific feature from the artistic, facultative manner in which a specific feature is
displayed. Due to the high functionality of the look-and-feel, in practice only a
few will to reach the expected quality, expressiveness and originality to be
protected under copyright. At the same time, the scope of protection of these
look-and-feel are likely to be narrow and, in many cases, limited to very simi-
lar or identical designs of work. To the extent that the look-and-feel repre-
sents a creative expression, it should nevertheless be copyrightable.

715 Finally, a look-and-feel may also be subject to protection against taking undue
advantage of somebody else’s achievement under unfair competition law.
However, in practice, a simple copy of the look-and-feel will rarely be possible
technically. In theory, it might also be open to industrial design right protec-

See N 571.

BAHIR DAR UNIVERSITY, see 11 in particular.

See above N 571; see also discussion in CARLETON, 408, 427 ff. and 431; STRAUB (2001b), 5.

1311

1312

1313

Chapter 6: Discussion of Selected Problems

314

tion. As the look-and-feel is usually based on a systematic design concept,
the organization of the implemented features combined with the visual inter-
face may exhibit novelty. However, in practice, only few look-and-feel will pro-
vide organizational aesthetics that go beyond mere technical functionalities,
that are explicitly excluded from industrial design right. In the case of visual
distinctiveness, a look-and-feel may also be eligible for trademark protection,
particularly where it is aligned with a software company’s corporate identity.

6. Features and Functions

716 Functionalities determine how software behaves and what it achieves.1314 Soft-
ware engineering is still a rather new field of science. For this reason, huge
potential lies in the software field to invent new teachings and technical solu-
tions.1315 According to the findings in the interview study, new inventions in the
ICT field often involve new functions or features. Examples of such inventive
components are push messages, guiding mechanisms such as Google maps,
and new database environments or business models that introduce new selling
mechanisms. But the digitalization of established analogue processes can also
represent a new key feature, if an inventive teaching is included. All these
achievements tend to involve an increase in the usability of a software prod-
uct, optimizing its performance or improving the security of a system.

717 It was mentioned in the interview series that functions and features require a
lot of domain know-how and experience to make them. It is only if they are
developed logically and are structurally thought out that they can fulfil their
purpose. Their development also requires a lot of resources, as a lot of testing,
simulation and brainwork is needed to achieve a satisfactory solution. They
hence represent a very valuable part of the computer program.1316 At the same
time, the functions and features of a program are commonly exhibited on the
surface of a computer program. As the trained eye can recognize them eas-
ily,1317 they therefore require legal protection to secure them. As the functions
and features merely show a technical idea or character rather than a creative
expression, they are generally excluded from copyright protection.

718 The functions and features may be subject to patent law protection if they of-
fer a unique technical solution that involves a specific way of application. This

SAMUELSON ET AL., 2316, and above N 148.

See N 470 ff.

See N 532.

See N 540.

1314

1315

1316

1317

Chapter 6: Discussion of Selected Problems

315

is also true for functions or features that technically represent a business
method. To test their eligibility for patent protection, functions and features
have to fulfil the same requirements as an algorithm would have to.1318 First,
for obvious reasons, only functions and features that can be implemented and
applied in a computer program are included in the evaluation. Second, only
qualified functions and features that offer a “man made” teaching to solve a
technical problem, and exceed the scope of a scientific discovery, are allowed.
Functions and features that merely describe events that are predetermined or
naturally caused by the setting are excluded from the patent scope. Third, the
presented teaching, including its added value needs to be specific and tangi-
ble, and not represent an abstract idea. Otherwise, it would be excluded from
patent law protection because it represents unprotectable business methods.
If an informed and specialized expert would understand how he or she had to
apply the teaching, the functions and features can be protected with patent
law. Finally, the function or feature has to fulfil the requirements of novelty and
applicability to be protected under patent law. Neither a function nor a feature
can be legally sheltered if it just provides the most intuitive way of express-
ing a particular behaviour in a descriptive rule. The non-obviousness criterion
is particularly important to assess functionalities that are based on business
methods. Only objects with a minimum inventive threshold fall into this scope.
Otherwise, the public’s interest in the unrestricted use of common functions
should be prioritized.1319 If a unique set of functions or features fulfils these
criteria it is eligible for patent protection.

7. Development Documentation

719 The development documentation commonly contains a lot of the creative
thinking that is important for the final implementation of a software product.
This creative thinking is expressed with the help of sketches, graphs, keywords
and sometimes also early-formulated codes or algorithms. It retains the tem-
porary working products in different stages alongside the development
process.1320

720 It was outlined above that the copyrightability of the development documen-
tation, such as sketches and feature concepts or first versions of algorithms, is

See above N 696 ff.; see also description and explanation in European Guidelines for Ex-

amination of the European Patent Office, Part G-II-3.5.1.

For this, the same can be repeated as outlined for certain algorithms that need to be kept

free: See N 696 ff.

See N 144 and N 166.

1318

1319

1320

Chapter 6: Discussion of Selected Problems

316

still unsettled.1321 One of the most sophisticated critics is Wittmer. He stresses
that this form of documentary material is not necessary for the development
of a computer program but only helps to maintain it. The documentation
would only be used for a limited short time and then would be replaced with
the final product. He concludes that these temporary concepts are not valu-
able and therefore should not be protected by copyright. Only conceptual
documents that are then passed on to clients, such as input–output models or
detailed design plans – and are hereby shared with third parties – should be
legally protected.1322 I believe that the described scenario no longer applies for
the practices in software development. Kummer, back in 1968, stated (in a dif-
ferenct context) that copyright law would not ask whether a piece of work was
in a mere preliminary stage, represented only a first idea, or parts of a planned
or begun work, but instead would only consider the individual distinctive frag-
ment and evaluate whether an original work existed.1323 It was outlined in the
interview series that the development documentation represents a creative
expression of visual or literary information.1324 If this information falls into the
hands of third parties, all the technical and design solutions that were elabo-
rated at the expense of the developer’s time resources are freely exposed. The
personal domain know-how as well as the developer’s creative application of
personal expertise and experience is directly accessible. It also emerged in the
interview series that it is the development documentation that is particularly
exposed prior to the closing of a contract in commissioned work, where the
concepts and sophisticated drafts are presented to potential customers with-
out contractual protection.1325 The companies made it clear that if sensitive
products, such as the development documentation, were not covered by IP
protection, they would be forced to keep them for themselves instead of open-
ing them up for clients or the general public. This consequence would not only
limit free know-how transfer but would also prevent the right holders from
trading their goods effectively. At the same time, in cases where they were
obliged to grant insight into their preliminary products, the risk of infringe-
ment would increase significantly. Companies who pitch for contract work are
thus exposed to an extended, avoidable risk.

721 The development documentation can contain the required creative quality in
the form of a contribution to fulfil the copyright criteria and fall under its

See N 356 bullet point 10.

WITTMER, 34 f.

KUMMER, 77.

See N 541, N 544 and N 549.

See N 500 ff.; see also discussion of (prototype) contests in SCOTCHMER (2006), 47 ff.

1321

1322

1323

1324

1325

Chapter 6: Discussion of Selected Problems

317

scope of protection. At the same time, it also earns legal protection with
regard to the resources required, and the knowledge exposed in the doc-
umentation. However, the quality of development documentation can vary
considerably, which is reflected in its protectability through copyright. The
international copyright community expressed in the wording of Art. 2 para. 1
RBC that drafts, in general, are eligible for copyright protection, if the require-
ments are met. Still, to my knowledge, there has not yet been a case where IP
rights on the development documentation could be enforced. The main rea-
son for this may lie in the fact that it is often difficult to delimit simple notions
from elaborated visual and literary concepts in development documentation.
In order to fall under the copyright scope, the presented material should sur-
pass the level of an abstract idea, and provide a recognizable and original pos-
sibility for implementation in an expression.1326 It must be presented in a way
that allows analysis of whether it fulfils the copyright requirements.1327 To do
so, the functional elements must be sorted out. Both require a legal assess-
ment as to when the result of the work appears sufficiently concrete. If this
creative step is accomplished, the development documentation should be eli-
gible for copyright protection.

722 As well as copyright protection, the development documentation may also fall
under the scope of work product protection and secrecy under unfair compe-
tition law if the information disclosed builds on relevant business or technical
information that guides the manufacturing or commercialization process.1328

In practice, however, the protection of secrets usually fails due to the strict le-
gal requirements and a rather complex court procedure. For this reason, the
focus instead lies on contractual non-disclosure agreements.1329 According to
the interviewed companies, in the software industry parties tend to refrain
from signing confidentiality agreements prior to a formal commission contract
because potential principals often do not want to commit at this early stage of
contract negotiations and unnecessarily restrict their room for decision-mak-
ing and in selecting a supplier.1330 An automatic and expressly statutory legal
protection mechanism that does not require any formalities, such as copy-
right, would thus be better able to meet the basic needs and practicalities of

See above for the legal background to the exclusion of ideas in copyright in N 350 f., the

interviewees‘ suggestions in N 548, and below regarding delimiting abstract ideas from

concepts in N 725 ff.

See also THOUVENIN/BERGER, 6/3.5., 2.

See above N 223 ff.

See N 229 ff.

See N 500 ff.

1326

1327

1328

1329

1330

Chapter 6: Discussion of Selected Problems

318

the software companies.1331 As the development sketches are usually further
refined before they reach their final version in the software product, they of-
ten do not fulfil the requirements for protection against taking undue advan-
tage of somebody else’s achievement under unfair competition law.

8. Tabular Summary

723 To summarize the above, the following table gives a short overview of the
legally relevant software elements and the possibilities for protecting them

Software com-
ponent

Legal Institute

Whole Soft-
ware Product

Copyright protection.
Excursus: protection against taking undue advantage of somebody
else’s achievement under unfair competition law.

Code Copyright protection of the literary formulation of the source
code as well as its organization in structures and sequences;
Copyright protection of the machine code.
Excursus: protection against taking undue advantage of somebody
else’s achievement under unfair competition law.

Algorithm Patent protection.

(Graphical)
User Interface

Copyright protection;
Excursus: industrial design right protection for certain visual ele-
ments or trademark protection for the overall distinctive visual
apperance. Within a limited scope of one-to-one copying also
protection against taking undue advantage of somebody else’s
achievement under unfair competition law.

Look-and-Feel Patent protection for the combination of certain features to meet
a particular functional problem, or an overall concept of features
that addresses the users’ needs in an enhanced form;
Copyright protection for audio-visual elements in a look-and-feel
that are not predetermined by functional elements;
Excursus: industrial design right protection for certain visual ele-
ments or trademark protection for the overall distinctive visual
apperance. Within a limited scope of one-to-one copying also
protection against taking undue advantage of somebody else’s
achievement under unfair competition law.

Features and
Functions

Patent protection.

For larger, more cost-intensive projects, a deposit with an escrow agent is often used in

this case. However, this is less common when pitching with small and medium-sized com-

panies.

1331

Chapter 6: Discussion of Selected Problems

319

Development
Documentation

Copyright protection;
Excursus: work product protection and secrecy under unfair com-
petition law.

D. Not Protected Elements in Particular

724 Having established which elements may be covered under the copyright and
patent subject matter and scope, we now turn to elements which are not cov-
ered. The next section discusses two particular types of elements that occur
in developments and may generally be considered as not legally protectable.
First, copyright does not protect ideas. For this reason, the raw idea has to be
delimited from its creative expression in a computer program. As this question
only applies to copyright, this first section focuses on this field alone. Second,
there are certain elements in developments that may be considered as either
common in the specific context or determined by the particular setting of a
development. With regard to standards, necessities and best practice, this
second section discusses to what extent these elements occur and how they
affect the legal protection of a good. The aim here is to discuss how to apply
these legal exceptions to computer developments and what particularities to
keep in mind while doing so. The conclusions of the first two sections are then
used to build a possible testing approach in a third section, the so-called black
box test.

1. Distinguishing between Ideas and Expressions

725 Copyright law builds on the principle that ideas are free to use.1332 While patent
law protects every potential realization of a specified invention, independent
of its implementation, in copyright only the expression of an idea fixed in a
particular creative work is eligible for protection. For this reason, the author
in copyright has to prove, if contested, that his or her work has overcome the
step from an idea to a concrete realization and that it is affixed in a specific

Art. 9 para. 2 TRIPS Agreement; see N 350 f. 1332

Chapter 6: Discussion of Selected Problems

320

expression. How the individual elements were realized in a final expression is
essential in copyright.1333 This section discusses, from the perspective of copy-
right, how ideas can be demarcated from expressions for computer programs.

726 In order to distinguish between ideas and expressions, U.S. copyright law cur-
rently applies the so-called merger doctrine. It says that, if there is only one
way to express an idea in a piece of work, its embodiment does not represent
a copyrightable expression of the idea but rather an uncopyrightable form of
the idea itself. However, if an idea can be implemented in a work in several dif-
ferent ways, it may be considered as a potentially copyrightable expression.1334

The courts emphasized in Apple Computer, Inc. v. Formula International, Inc1335

that the purpose or function of a utilitarian work represented the work’s idea,
and everything that was not necessary to achieve and illustrate that purpose
or function would be part of the expression of this idea. In Whelan v. Jaslow,1336

the court supplemented: “Where there are various means of achieving the de-
sired purpose, then the particular means chosen is not necessary to the pur-
pose; hence, there is expression, not idea.”

727 Despite how valuable the merger doctrine may sound, it remains a merely the-
oretical model that is difficult to implement in practice. It becomes better ap-
plicable when combined with the abstraction test.1337 In Nichols v. Universal

Pictures1338 the court provided the following guidance with regard to the ap-
plied step-wise abstraction: “Upon any work, and especially upon a play, a
great number of patterns of increasing generality will fit equally well, as more
and more of the incident is left out. The last may perhaps be no more than the
most general statement of what the play is about, and at times might consist

An applicant in patent law has to define his or her idea and show how it is used and imple-

mented in practice so the idea is considered specific enough. The applicant does not need

to name or circumscribe one or all potential applications of the invention, if the idea was

described in a detailed manner so that the instruction could be applied to solve the par-

ticular problem. How abstract ideas can be distinguished from inventions in patent law is

discussed in the legal foundation in N 350 f. Due to the rich U.S. case law, such as Digitech

Image Techs., LLC v. Electronics. for Imaging, Inc., 758 F.3d 1344 (Fed. Cir. 2014), there are

clear criteria as to how this demarcation has to be done. The following section will there-

fore not cover this question.

For more information, see above N 351 f.

Apple Computer, Inc. v. Formula International, Inc., 562 F. Supp. 775 (9th Cir. 1983).

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986).

See also above N 351 f.

Nichols v. Universal Pictures Corporation, 45 F. 2d 119 (2d Cir. 1930); see similarly in

HABERSTUMPF (1993), II N 60 f.

1333

1334

1335

1336

1337

1338

Chapter 6: Discussion of Selected Problems

321

only of its title; (…) there is a point in this series of abstractions where they
are no longer protected, since otherwise the playwright could prevent the use
of his ideas, to which, apart from their expression, his property is never ex-
tended.”1339

728 At first, this explanation sounds very conceptional. But its statement is deci-
sive in understanding what may be considered as an expression and what is
not. What it means is that the more general and generic an implementation of
an idea is, the more we should come to the conclusion that the implementa-
tion is not a real expression but rather only the basic concept or abstract idea
itself.

729 This can be illustrated with a simple example we all know from our childhood:
the story of a woman being saved by a noble knight. This basic story concept
is widespread in literature and has found its way into many different story-
lines. The more elements are added to the basic concept, the more colourful
the story becomes and the more the original idea fades compared with the ex-
pressed version. In this way, the original idea of a knight saving his woman can
result in, for example, the Greek mythology Eurydike, Grimm’s fairytale Snow

White or Walt Disney’s Frozen. The abstract idea included in all three examples
is embellished with its own individualized peculiarities.

730 The abstraction test can also be applied to computer programs. In Lotus v. Bor-

land1340 the court had to evaluate whether a particular hierarchy of a user in-
terface’s top menu structure should be considered as copyrightable. Top
menus build on the idea that all the important information and directions are
visible on the start screen at one glance. The court ruled that a simple 1-2-3
menu hierarchy generally does not represent a creative expression if the im-
plementation of this basic idea of a menu’s structure is limited to stringing to-
gether a number of icons on one screen in a numerically structural way. It de-
clared that in the present case the abstract idea and its expression were
considered as merged and, thus, the result was not copyrightable. In order to
be copyrightable, the menu structure would have needed to add further ele-
ments so that the idea became more ornamented and original. It has to outline
additional creativity. Although the court tried to circumscribe the idea term
and determine a way that ideas could be distinguished from expressions with
the abstraction test, the court failed to define the problem of a program’s

Nichols v. Universal Pictures Corporation, 45 F. 2d 119 (2d Cir. 1930), 121.

Lotus v. Borland 516 U.S. 233 (1996).

1339

1340

Chapter 6: Discussion of Selected Problems

322

menu hierarchy where it lay: that the utilitarian idea of the program’s menu
and its implementation with a 1-2-3 menu hierarchy were too close and con-
ceptual and, therefore, merged.

731 Although the merger doctrine was made better applicable in court with the
U.S. abstraction test, it remains a highly sophisticated model. As Ogilvie ex-
plains, applying the test in practice requires highly specialized knowledge of
the involved technology, processes and concepts.1341 Also Nimmer et al. remark
critically that the test is not able to provide a straight answer of “where the
dividing line exists for a given work, but rather [it] provides a method of ana-
lyzing a work to determine where the line should be drawn”.1342 Or as Lemley
noted, getting to the heart of it: “There remains a good deal of misunderstand-
ing about what exactly it means to ‘abstract’ and ‘filter’ (…)”.1343 Although I com-
pletely agree with the critical conclusions of these authors, I also believe that
the U.S. abstraction-and-filter method remains the best theoretical model
currently available in law to distinguish ideas from expressions. It may also
serve in European and especially Swiss copyright.

732 The question remains where the border may be set between an abstract idea
and its practical implementation and where the necessary originality thresh-
old, the so-called “Schöpfungshöhe” or creative step is overcome. In the inter-
view study, the software companies described that the final outcome needs to
exhibit a “minimum level of maturity” or a “minimum level of substance”. They
explained that an idea has to be elaborated to the extent that it leaves the
sphere of being abstract.1344 In order to achieve this level, the idea has to be
fixed in a particular context and, thus, become seizable. In intellectual prop-
erty law – and copyright and patent law in particular – we generally look for
creative room where the creator makes certain decisions and thereby offers
his or her personal contribution to the idea. The difference between the raw
idea and its expression therefore can be found in the rich amount of substan-
tial detail that helps to implement the basic idea in a practical way. But it also
lies in the outcome of a creator carefully thinking through the creative process
and determining the goods’ exact final shape.1345 The creator thus offers his or
her personal contribution through his/her own considerations and personal
notes. The decisive factor should therefore be whether the expression adds

OGILVIE, 529.

NIMMER/BERNACCHI/FRISCHLING, 636, with further references.

LEMLEY (1995), 3.

See N 547 ff.

See also above N 454 ff.

1341

1342

1343

1344

1345

Chapter 6: Discussion of Selected Problems

323

considerable and substantial details to the raw idea. If the result exhibits ad-
ditional creative elements that are not solely used to fulfil the purpose of the
idea but, instead, make the basic idea become ornamented and original, the
expression can be filtered from its notion in the abstract idea. What is the ex-
act plot of the knight’s rescue story? How exactly does the knight rescue the
noblewoman? And analogously, how is the screen structure of a computer user
interface built in detail? Does a particular colour pattern, animation, position-
ing of the buttons, sounds or 2D-organization make the expression special so
that it is not a simple implementation of an abstract menu but rather a cre-
ative expression? The key question is how the creator implements the indi-
vidual idea and creatively organizes it within a concrete framework, including
his or her personal substantial particularities. Additional elements and unex-

pected twists may be added to give an idea its particular drift. What if the no-
blewoman suddenly rescues the knight, or rather than a knight, it is a normal
‘commoner’ who rescues the noblewoman? A menu structure could, for exam-
ple, offer an additional feature that supports the user in a particular way, such
as with light effects or animations. If an idea is not implemented one-to-one in
an expression but rather contains details or additional particularities, the con-
cept may be raised from an abstract idea into a noticeable original expression
of the latter.

2. Standards, Necessities and Best Practices

733 Copyrightable elements are those that represent an original creative expres-
sion that do not follow a purely utilitarian or functional purpose.1346 In order to
be considered original, expressions have to exceed what is predetermined, ex-
pected or ordinary for the particular category of work in question. Similarly, in
patent law, elements that are common and established in prior art are not con-
sidered novel.1347 Developments that include established elements do not offer
an improvement on prior art, and thus cannot be protected. In practice, com-
puter developments often build on elements that are either common and util-
itarian in the specific context or predetermined by the particular technical
setting of a development. The first group involves elements that are frequently
used to solve a technical problem or realize a creative idea. The second group
includes all elements that do not result from creative or inventive thinking of
the creator but instead are dictated by the exact context so that the develop-
ment can fulfil a particular functionality. The following section discusses how

See N 361 ff.

See N 311 ff.

1346

1347

Chapter 6: Discussion of Selected Problems

324

such common or predetermined elements are used in a software product and
what this means for the legal protection of a component or software product
overall.

734 Copyright explicitly excludes functional elements from its protection scope;
these elements are considered uncreative.1348 Contrary to copyright, patent
law does not exclude functional elements as such. However, certain technical
elements may be qualified as ‘given by nature’ where an inventor does not ‘in-
vent’ these solutions to a technical problem but instead discovers a logical ef-
fect in the nature of a specific context. As the inventor does not offer his or
her own teaching, such ‘discovered’ elements are considered non-technical
and thus unpatentable.1349 On the other hand, there are certain solutions that
are obvious or unoriginal in the specific setting; they represent the most nat-
ural solution to a problem or simply the most elementary way of expressing
it.1350 A person skilled in the particular art or science would expect their oc-
currence. If functional elements fall under the given descriptions, these ele-
ments are also excluded from patent protection.1351 In computer programs
functional elements are manifested through technical necessities. These ele-
ments are required so that the program is able to technically function in its
system environment. The particular way a developer has to select and realize
their idea may predetermine certain functional or technical elements. These
elements need to be integrated for the development to fulfil its goal.1352 A com-
mon example is when an engineer has to work with the programming lan-
guages that Apple and Google offer in order to sell his or her product on the
main two mobile operating systems iOS and Android. As the functionality dic-
tates these mandatory parts, these elements – here the selection of the pro-
gramming language and the incorporation of certain code elements – do not
originate from the author’s creativity or ingenuity but rather from technical
necessities. They are therefore considered uncreative and uninventive.

735 At the same time, the interview series revealed that there are other predeter-

mined factors, or necessities, in a computer program that may be regarded as
requisite from a project development point of view. Although these elements
are usually not “functional” in the sense that they serve a compelling purpose,
they are at least common in developments, they are utilitarian. As Davidson

See N 353 ff.

See N 293.

See N 571; see also step no. 4 in the test to verify algorithms in N 696 ff.

See N 316 ff. and N 681 ff.

See N 571; see also discussion in LEMLEY ET AL., 47 f.

1348

1349

1350

1351

1352

Chapter 6: Discussion of Selected Problems

325

notes, these elements are “central” to every software product.1353 If they were
protected under an IP monopoly-like, exclusionary right, others would be pre-
vented from using them and could either not meet the technical prerequisites
or not fulfil the users’ expectations of a customary software product. Accord-
ing to the interview studies, there are certain engineering standards and ex-
pected best practices, for example with regard to user designs that have to be
integrated into a program, otherwise today’s expected usability of a product
could not be served.1354 Such expected elements particularly include the fol-
lowing:

736 Engineering standards1355 refer to technical processes and product solutions
that are not predetermined by the technical environment but are common in
computer programs as they are either effective, simple or for some other rea-
son well supported by the software community.1356 Standardization processes
build on the notion that the whole industry tries to agree on one common pro-
cedure. In practice, standards are often set by a standard-setting organization
in a formal process of an organizational body, such as the European Commitee
for Standardization’s “Principles and Guidance for Licensing Standard Essen-
tial Patents in 5G and the Internet of Things (IoT), including the Industrial In-
ternet” or the European Telecommunications Standards Institute’s “Long Term
Evolution Standards”. But standards may also evolve for practical reasons and
are thus called de facto standards. As Nimmer et al. explain it, “some methods
of wording or searching are significantly more efficient than others in handling
particular types of data, even though any of numerous methods will work. (…)
Where the efficiency trade-offs between methods are substantial, as is often
the case, common sense would dictate that a programmer chooses the most
efficient method. (…) The availability [of other methods] is theoretical”.1357 The
software developer has (almost) no other choice but to make use of a particu-
lar element. Replacing or reformulating it would be unreasonable. In this case,
a product or process prevails because market participants consider it as the
best or do not see an alternative possibility to solve a problem.1358 A classic ex-
ample of this is security certificates in the form of certain encryption tech-
nologies.

DAVIDSON, 1080 f.

See N 571; same result in: decision of the ECJ of May 2, 2012, C 406/10, SAS Institute, Inc. v.

World Programming, Ltd., c. 40.

For more information on standards, see also N 845.

See N 398 and N 571; see also SOMMERVILLE, 706 ff.

NIMMER/BERNACCHI/FRISCHLING, 641 f.

HILTY/SLOWINSKI, 781; LEMLEY ET AL., 44 f. and 47 f.

1353

1354

1355

1356

1357

1358

Chapter 6: Discussion of Selected Problems

326

737 Best practices, on the other hand, represent elements that are integrated in
software products because the users or customers expect them, because they
are common in a computer program.1359 Lemley et al. refer to these elements
as “elements dictated by external factors”.1360 An example of such an element is
the shopping cart in online stores or the printer icon in a document-editing
program. If these elements were missing from the user interface or look-and-
feel, the customers’ user experience of the software product would most prob-
ably decrease, affecting their desire to use or purchase the software. In con-
trast to functional elements and engineering standards, best practices are not
predetermined by technical settings, or a matter of efficiency or compliance.
Instead, a software developer has to integrate them in his or her computer
program because they are socially established and expected.

738 In both cases – engineering standards and best practices – the author or in-
ventor is usually limited in his or her creative process. They have to integrate
these elements because they are expected and common in a software product.
If this is the case, the creator most often cannot offer any personal contribu-
tion to what was before. Instead, they make use of what was already estab-
lished. As these elements cannot be classed as original or novel, from a legal
perspective, they do not represent a creative or inventive step and are thus
excluded from IP protection. Only if additional originality is exhibited, and the
developer finds a way to express creative leeway and is able to distinguish his
or her expression from the predetermined structural elements, can it be
deemed a copyrightable work.

739 How can we determine what is technically or socially predetermined in a com-
puter development or what is considered a functional necessity? The U.S.
scènes à faire doctrine seeks to determine and exclude elements that are oblig-
atory or necessary to fulfil a certain creative expression.1361 The doctrine was
established for movie settings in Williams v. Crichton1362 and was then adopted
to evaluate computer programs in Altai1363. It says that whenever the possible

way to express an idea is restricted by external factors, the outcoming element is

most probably uncopyrightable. This U.S. doctrine may be equally applied to

See N 398 and N 571.

LEMLEY ET AL., 47 f.

For more information, see above N 355.

Williams v. Crichton, 84 F.3d 581, 583 (2d Cir. 1996), commenting on Walker v. Time Life

Films, Inc., 784 F.2d 44, 52 (2d Cir.).

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992).

1359

1360

1361

1362

1363

Chapter 6: Discussion of Selected Problems

327

European and Swiss copyright law. In the Altai case, the court identified a
number of elements that they classified as typically non-copyrightable, such
as:1364

1. mechanical specifications of a computer on which the programs run;
2. compatibility requirements of other programs the program has to work

with;
3. computer manufacturer’s design standards;
4. the target industry’s demands; and
5. widely accepted programming practices within the computer industry.

740 The first two elements may be classed under what was previously referred to as
technical necessities; program specifications, interoperability requirements or
otherwise demanded functionalities represent a group of elements an engi-
neer has to embed in their program as otherwise the program would not be
able to collaborate with or function within the technical environment it is con-
nected to and surrounded by.1365 These elements are regarded as functional
and are thus excluded from copyright protection. However, from a patent law
perspective, these elements may also be regarded as technically predeter-
mined; if a developer solves a technical problem with their help, a technically
skilled person might consider them to be obvious, in that they are a logical
consequence of the specific technical setting. The third point represents a
sub-group of technical necessities, such as Android and its programming lan-
guage APK, which have to be implemented in order to publish compatible apps
on the platform.1366 The fourth point the court indicated is a very vague one and
requires further explanation to understand its range. It may refer to what the
users expect from a computer program in terms of best practices, such as a
neat structure, a logic order or common processes. These elements, again, are
widespread in software programs and may thus be considered as established
and common.1367 However, the target industry’s demands alone do not pre-
clude IP protection. Realizing a market need in a creative or inventive way is
one of the main goals of intellectual property protection in computer pro-
gramming. If the realization exhibits originality, it may qualify as a copy-
rightable expression. It is thus not fully clear what the court was referring to
in this point. Its formulation is unfortunate. The final point the court outlined

Computer Associates Int., Inc. v. Altai Inc., 982 F.2d 693 (2d Cir. 1992), c. 2b.

See N 734.

See N 734.

See N 737.

1364

1365

1366

1367

Chapter 6: Discussion of Selected Problems

328

refers to the classic engineering standards which are used regularly in soft-
ware engineering.1368 These are widely established and represent significant
basic elements in software engineering, such as lockout codes. The influence
of the Open Source community and established libraries may have a similar
effect. As these engineering practices are widely used in computer engineer-
ing, they usually are not able to fulfil the originality criterion in copyright, or
novelty in patent law, and therefore do not represent a creative or inventive
step. The elements the court classed as not eligible for copyright correspond
with the findings of the interview series. They can all be put into the categories
outlined in this thesis of technical necessities, engineering standards and best
practices.

741 While some elements in a computer program can be quite easily identified as
predetermined factors, others require more fundamental technical knowledge
to evaluate them correctly. In Lexmark Int., Inc. v. Static Control Components,

Inc.,1369 the court assessed whether a printer toner driver to a specific printer
was copyrightable. They focused on the question of whether the technical ac-
cess to the toner through authentication was possible by expressing the ac-
cess function in another source code. In their understanding, if there were dif-
ferent ways to express the same function, the source code was not functional
but instead open to copyright protection, which is what they concluded. What
the court overlooked, however, is that although there might be a different pro-
gramming language or another phrase to express the same function, manufac-
turers are usually able to create a particular system environment where the
machine is only open to certain programming languages, carefully selected to
exclude third-party providers offering interoperable substitute devices. The
court failed to look into possible engineering standards that preclude certain
technical approaches. It may be argued therefore that the court did not take
into account that certain elements in a computer program are determined by
the program purpose itself. This perspective might have changed the result in
Lexmark. In order to create adequate IP protection it is therefore important to
take into account that there are certain elements necessary for a program to
work properly. These elements are predetermined and have to be integrated,
regardless of whether or not in theory there would be an alternative way to
realize this development idea.

See N 736.

Lexmark International, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir. 2004).

1368

1369

Chapter 6: Discussion of Selected Problems

329

3. The Blackbox Test to Identify Unprotectable Elements

742 The previous two sections have discussed which elements in a computer pro-
gram are generally excluded from copyright and patent protection due to their
properties, and how they may be legally approached with the merger doctrine,
the abstraction test and the scènes-à-faire doctrine. The difficulty with these
legal models is that whether or not a creative good is eligible for IP protection
can often only be determined retrospectively. During the development of the
software, developers, project managers and legal consultants do not have a
method available to evaluate whether or not the development is eligible for
copyright and patent protection. The following approach – constructed as a
blackbox test – can support the developers and legal consultants in identifying
non-protectable elements in computer programs. It represents a short rule of
thumb based on the existing doctrines and supplemented with what was
learned from the interview series. However, the approach presented here can
only provide a rough description, without making any claim to be exhaustive.

743 A blackbox in general is a theoretical model, describing something whose con-
tent is hidden, unknown or not entirely perceivable from the outside.1370

Davidson adopted the concept of a blackbox for computer programs, aspiring
to deduce with a legally legitimate method what a program visible or percep-
tible from the outside may contain in its hidden spheres and content. He
thereby tried to delimit eligible from non-permitted third-party activities on
copyrighted goods, integrating typical cases such as reverse engineering and
potential derivatives.1371 In his paper, Davidson explains the theoretical back-
ground to his model and gives some examples of what his test may achieve.
Unfortunately, the paper does not provide any instructions that guide the ex-
aminer in applying his test. And although Davidson is successful in concretiz-
ing the abstraction test in a different application (putting everything in a box
and seeing what is visible from the outside), his test is not much easier to apply
than the abstraction test itself.

744 Therefore, I have adapted Davidson’s idea of a blackbox test for software to
differentiate between elements in computer programs that can be protected,
and those that cannot be protected with copyright and patent law. Instead of
using the test to discover which components are incorporated in software
(within the box) and how they could be applied, I want to use the blackbox test
to determine what we can expect from a particular computer program and

ISO/IEC/IEEE 24765:2017-3.390.

See DAVIDSON, 1080 ff.

1370

1371

Chapter 6: Discussion of Selected Problems

330

which elements it has to provide to fulfil the technical and social expectations.
I am looking to delimit functional and predetermined factors from creative,
inventive, original and non-obvious ones that constitute the developer’s con-
siderable and substantial personal contribution in a creative step. The present
blackbox test also aims to determine to what extent the final product is distin-
guishable from its abstract development idea and whether a protectable ex-
pression is involved. I recommend that it is only conducted by an experienced
examiner who has fundamental knowledge of the substance in question and
who is trained in conducting such examinations. If several experts were to
carry out the test, an even more meaningful result could be achieved with in-
creased objectivity.

745 The goal is to find those elements in the software product that may be ex-
pected because they have to be integrated in the software for it to fulfil its
purpose. The idea of the model is that the examiner writes down his or her
personal inherent logic. In theory, the examiner puts the whole software pro-
ject into an imaginary black box. Within the box all the ‘mysterious magic’ hap-
pens that helps to create the software product. It is a creative process that is
open to every possible result. From outside the box, we can later only view the
elements that can be characterized as typical or necessary in a software prod-
uct. Throughout the process, these elements become accessible and visible,
and are thus no longer hidden within the box. Unlike Davidson’s blackbox test,
in this test the predictable elements outside the box are not eligible for copy-
right and patent law protection, while those inside the box involve everything
that is more than ordinary, and contains a creative step. The content inside the
box therefore is potentially copyrightable or patentable. To get there, the ex-
aminer has to decide what is predictable and expected from a certain program
that has to fulfil a specific task. It is important that they only list what they are
convinced should be included in the program from a technical or utilitarian
perspective – the predetermined elements. The examiner should not include
elements that he or she thinks it would be good to have. They may solely in-
clude aspects they know about or have read about in specialized literature, but
not aspects that are guesswork or interpretation. In an ideal scenario, the ex-
aminer would organize their notes by separating them for each component,
distinguishing between things that are obvious in the technical implementa-
tion due to the abstract purpose followed, and elements that represent an
original creative expression of the purpose. The process could proceed as fol-
lows:

Chapter 6: Discussion of Selected Problems

331

746 It starts with forgetting everything the examiner knows about the software
product, as it is theoretically in the box. The only thing known is what purpose
the software should fulfil.

747 Similar to the problem-and-solution test1372 that the European Patent Office
applies to verify a computer program’s eligibility for patent protection, we first
want to establish the closest prior art for the specific technical problem. For
this purpose, the experienced examiner writes down methods that could be
used to make the software serve its specific purpose, outlining the software
requirements. They will include some established functions they know and
other established engineering practices within the industry. They may also do
some limited short research as to what the software community recommends
for such situations and which programming standards are easily accessible.
The examiner does not have to draw up a perfect draft, but just think through
the concept and get an idea of the matter in question.

748 It should also be taken into account what the users would expect from a prod-
uct to make them buy or apply it. This will include features and functions that
are widely established on the market. The examiners may review which prod-
ucts they use at home or at work that fulfil a similar purpose to get an idea of
what the user experience and surroundings should look and feel like to make
the product infinitely substitutable and competitive with similar ones on the
market. The examiner only notes the essential elements.

749 Next, the examiner tries to establish which functional elements are required
for the software to work within its implementation environment. This includes
everything the program requires in order to work properly in its technical sur-
roundings, including the pre-existing system environment and technical spec-
ifications.1373

750 Once the predetermined functional elements are established, it is possible to
work out which programming language should be used. In every programming
language, there are some commands that are commonly utilized, either be-
cause they are standard or because they are reasonable. The examiner notes
all the standard commands they can think of and checks in the appropriate li-
braries and online forums which ones should be used.1374

For further information, see N 319.

See N 735.

See N 736 and N 737.

1372

1373

1374

Chapter 6: Discussion of Selected Problems

332

751 In a final step, the examiner considers what would be necessary to display the
program superficially so that the user can apply it.

752 Having thought through the project, the examiner puts their notes to one side,
“opens” the imaginary blackbox and has a look at the actual product, going
through the different components one by one. What kind of functions and fea-
tures does the product build on? Which commands does it express in which
programming languages? How is the source code structured? How is the look-
and-feel and the graphic user interface constructed or designed? The exam-
iner will then note what catches their eye in the product. He or she goes
through the individual elements, not thinking about their personal list of ex-
pectations. This might take a while, but is important to fully capture the soft-
ware.

753 The examiner makes a first selection of which elements they see in the soft-
ware that are obviously used solely to fulfil the purpose of the software, such
as structuring the user interface, and to what extent there are additional ele-
ments that substantially ornament the concept of these abstract goals. The ex-
aminer goes through each component of the software product and crosses off
their list using the notes from the actual software product all the elements that
they believe follow the abstract concept of an element without adding some-
thing creative to it. The idea and its expression have merged in these elements
and they are not copyrightable.

754 Once finished, the examiner takes both sets of notes – the one with their ex-
pectations and the one with their observations and goes through each compo-
nent comparing what they have written down. The examiner crosses off which
elements they noted on both of them. If they had been able to anticipate these
elements in their list of expectations, those elements have to be rated as either
functional or unoriginal.

755 In a second closer analysis, the examiner verifies to what extent their expec-
tations corresponded in the observed software product in order to identify
less evident predetermined elements. To this end, the insights of the U.S.
Patent and Trademark Office’s functional approach, are used to evaluate the
novelty criterion in patenting.1375 The examiner first decides if the observed el-
ement represents a direct substitute of the one they had expected. From a
copyright perspective, this implies that the specific element was expressed
differently in the observed expression from what was expected, but it still has

The functional approach was first established in Graham v. John Deere Co., 383 U.S. 1 (1966).

For further information, see N 321.

1375

Chapter 6: Discussion of Selected Problems

333

to be considered as equivalent because it does not stand out from the ex-
pected element, if, for example, the user interface follows the same logical
structure, but is organized using alphabetical characters instead of numbers.
From a patent law perspective, the direct substitution includes the same be-
haviour that was described with a different rule, obtaining the same result. A
simple example is the first binomial formula, where (a b)2 is the same as a2 2ab
b2. If the observed element does not represent a direct substitute of the ex-
pected element, the examiner has to look for equivalent solutions that are ob-

vious to try. The U.S. functional approach names several concepts that may be
considered as ‘obvious to try’. For the goal of the blackbox test – to determine
the predetermined elements in a software product – I want to limit the vari-
ations of equivalent solutions to two applications: First, variations where the
observed creation combines the anticipated element with another known ele-
ment. For example, when the user interface follows the same logical structure
as anticipated, but instead is organized with the help of bullets rather than
numbers. Second, variations where the anticipated element is combined with
an unknown element to arrive at the observed creation, but using a method,
suggestion or teaching that is established in the prior art. For example, if the
creation uses the expectation of a user interface of being logically structured,
but instead of arranging the information by numbers, the information is or-
ganized alphabetically or separated with commas instead of divided into sec-
tions. All elements that represent such a straightforward substitute or com-
bination of expected elements also have to be regarded as predetermined.
Everything that goes beyond the scope of the examiner’s expectations has to
be considered as independently contributed, and thus potentially creative or
inventive.

756 What then remains is a shorter list of elements that are neither obvious ac-
cording to the purpose the software seeks to pursue, nor clearly necessary
from a technical point of view, nor predetermined by standards or best prac-
tices. The remaining points on the list can now be individually analysed as to
what degree they offer a substantial creative or inventive contribution. They
can be tested to see whether they fulfil the copyright requirements of origi-
nality and intellectual creation, and the patent requirements of novelty and in-
dustrial applicability.

757 The roughly circumscribed blackbox test can structure the previous evalua-
tion and help to identify non-protectable elements in the software product. At
the same time, it can help to narrow down the potentially copyrightable prod-
ucts to a lower number of possible outcomes, which can then be evaluated one
by one.

Chapter 6: Discussion of Selected Problems

334

E. How to Integrate Newer Development Trends

758 One of the main findings of the interviews was that software development –
although established among scientists and engineers for almost twenty years
– is still a very dynamic discipline where new discoveries and practices are
continually being made. Although a lot of knowledge and know-how has been
consolidated, there is still plenty of room to develop new technical trends and
project management methods. At the same time, we face an internationally
harmonized copyright and patent law that was created in the late 19th century
and since then had only been revised in parts until 2000.1376 Copyright in par-
ticular emanates from the idea that once a creation is fixed in a medium – such
as a book or painting – it is not going to be altered any more. While patent law
does not consider how an invention is implemented, copyright is rather static
and resistant to change. If the author or right holder wants to make a change
to the product, they reprint the literary work in a new edition or issue a new
version. Similarly, until around 2012, in software development a linear devel-
opment procedure was followed, starting with an idea, constructing the nec-
essary requirements, shaping its characteristics, coding and designing its
composition, testing it in-house and then implementing it on the customer’s
computer. For this, the developers and software companies worked with major
release versions they distributed to the users on CDs.1377 Minor updates were
provided to the user through free online releases or separate physical medi-
ums. When the software at some point reached a complexity that the system
could no longer handle, and the software got to the end of its life cycle, a new
major version of the product had to be released.1378

759 As explained, copyright is used to work with stable and fixed goods.1379 It was
therefore natural for lawyers to apply copyright to software developments,
then still developed linearly, because, similarly to books, for over three
decades software was released on a fixed medium and only slightly adapted
afterwards. However, thanks to the new server-based software commercial-
ization,1380 software programs today can be adapted, expanded or partially
downsized with a few clicks. Consequently, there is no final and stable version

For more information on the international statutory developments, see Chapter 4 Section

III.

See N 382.

See N 134 and N 435 ff.

See BURKERT/HETTICH/THOUVENIN, 56 ff.; NIMMER/NIMMER (2016), N 2-33 f., with reference

to 17 U.S. Code § 101.

See N 182, N 202 bullet point 3 and N 419 f.

1376

1377

1378

1379

1380

Chapter 6: Discussion of Selected Problems

335

of a computer program with which copyright would be consistently used. The
question discussed here, therefore, is how these newer development trends
can be integrated into classic copyright law, focusing solely on this legal insti-
tute, as patent law does not have the same problem.

760 There are two examples that may help to illustrate the discussed issue. It has
already been mentioned that alongside linear development1381 there are also
spiral development methods.1382 Around the turn of the millennium, Ken
Schwaber and his colleagues revived and significantly enhanced a revolution-
ary method called Scrum.1383 The method is not only iterative, but also incre-
mental and flexible. The software product can be developed piece by piece or
successively but is often also delivered to the customer in modules, starting
with a viable product as soon as it is ready instead of waiting until the whole
software product is finished, assembled and tested. The Scrum method, today,
is one of the most discussed and applied approaches in software development.
Most of the interviewed companies followed this method.1384 Also, according
to a 2019 report from SwissQ, currently over 68% of all Swiss companies use
an agile approach to develop their programs.1385 Meanwhile, the results of the
Standish Group’s Chaos Report suggest that agile projects have up to four
times the success rate of waterfall projects for all sizes of projects.1386 Today,
as time-to-market1387 becomes increasingly important for market players, pro-
viding a functioning first version to the customers sooner and including the
users’ feedback in the further development process is crucial, and can deter-
mine the success of a product.

761 As software solutions have become the backbone for most industrial and ser-
vice processes, the operating environment has to be functioning and running
24/7. While many technical possibilities have been discovered, the complexity
and expectations of technical solutions and their capacity have increased ac-
cordingly. If a program malfunctions or a modification needs to be made, the
software has to be adaptable at any point of the day from wherever the user is.

See above N 172 ff.

See N 175 ff.

Schwaber introduced the Scrum approach at a conference in Oopsala (see SCHWABER) and

then discussed the method with Mike Beedle in their book, Agile Software Development

with Scrum, in 2001. See also N 175 ff.

See above N 380 ff.

SWISSQ, 18 and 32.

STANDISH GROUP, 7.

For more information on the 'time to market', see N 198, N 388 and N 498.

1381

1382

1383

1384

1385

1386

1387

Chapter 6: Discussion of Selected Problems

336

Software companies implement new functions and features, updates and bug
fixing on a continuous basis from miles away. This approach is called continu-

ous delivery.1388

762 In both approaches – incremental development and continuous delivery – the
final expression is altered after its first release. With incremental develop-
ment, new components are added fragmentally (incremental extension) to the
first released version, while in continuous delivery, inner enhancements are
conducted through modifications. The fact that the individual software ver-
sions are repeatedly changed in substance and thus remain dynamic, consti-
tutes the essential difference between these approaches and a linear method
from a copyright point of view. Even though both newer approaches are widely
established in software engineering, their integration into intellectual prop-
erty law has, so far, largely fallen short. Lawyers in practice try to overcome
this problem of a missing solution in copyright by addressing the issue in con-
tracts.1389 But due to its abstract and dynamic features, software is a good that
is difficult to capture in the static boundaries of a contract. Contract law
therefore does not fully meet the needs of the practitioners. It may help to as-
sign certain risks within a contractual relationship but it cannot settle the in-
tellectual ownership of the software product. Further, this does not solve the
problem for non-contractually regulated situations. It would therefore be de-
sirable to find a solution to the problem within intellectual property law.

763 On an international basis, copyright remains the most important institution in
the field of software development and commercialization. At the same time,
the interview series has shown that copyright law needs to be partly revised or
re-interpreted in a modern way in order to remain applicable to newer soft-
ware trends.1390 It is, however, unrealistic to expect that the international
copyright framework can be regulatorily adapted in the near future. The fol-
lowing two sections will therefore try to outline a solution to the problems
within the existing setting of copyright.

1. Incremental Extension

764 Incremental extension or fragmental addition refers to the circumstance that
in incremental development the components or new features such as add-ons

For more information, see above N 182 ff. and N 380 ff.

See good legal integration of agile and iterative development methods by means of con-

tract law, in STRAUB (2015).

See N 492 and N 651.

1388

1389

1390

Chapter 6: Discussion of Selected Problems

337

or new functionalities are provided to the users one by one instead of in one
complete major version. This is subsequently symbolised with Figure 10, in
which “Additions” are added to the “original”.

Figure 10. Incremental Extension (Source: own illustra-
tion).

765 This conflicts with the traditional approach in copyright where the complete
and final work is published on a medium and distributed on the market. There
seem to be four possible ways to resolve this issue.

766 First, one could say that even in this scenario only the final version of a soft-
ware product is protectable. This would mean that, regardless of the time se-
quence or the form in which the developer delivered their product, it would
only be when the product was assembled and declared as complete that it
would be protected under copyright. The difficulty with this approach is that,
as most software companies add new fragments to their software systems or
provide new functionalities or fragments every once in a while, the right
holder would be left unprotected until the product was completed and com-
bined in its final stable version. This could weaken the original right holder’s
position in case of contract negotiations or infringements and the ownership
structure of the software would be complicated unnecessarily. Therefore, this
would not seem to represent a reasonable solution to the problem.

Chapter 6: Discussion of Selected Problems

338

767 Second, we could adapt the original understanding of copyright according to
which the first created work follows some kind of stable structure and can,
thus, not be modified. The copyrightable version would therefore be caught in
the first software creation. Every later delivery of a component in this scenario
would not affect the copyright scope of the protected work and would there-
fore be insignificant for copyrighting. They would be free to use. Under certain
circumstances, they would be covered under the author’s right to edit the
original, but newer components could never become copyrightable them-
selves. Although this approach would comply with the classic understanding
of copyright, this solution would bring more disadvantages than benefits. The
original function of copyright to work as an incentive for creators would be
limited to the creation of the first version. This would disadvantage dynamic
models such as incremental development and continuous delivery. I thus
would not recommend this approach.

768 A third approach would be to grant copyright protection for each component
created. We would start with the first version created and later released to the
market. If this part fulfilled the requirements for copyright protection, it would
be copyrightable (work1). The second part of a component would then be
tested on its copyrightability again. If it fulfilled the requirements, it might be
considered as a stand-alone work with individual components (work2). This
process would then be repeated for every new part of the software that was
created. In the end we would have a set of works (work1, work2, (…), workn,
which are combined into one big software composition that the end user uti-
lizes.

work1 + work2 + work3 + work4 + work5 + workn

From a legal perspective, however, the single deliveries would be distinguish-
able separate works, treating every creation as its own copyrightable work.

769 In the fourth and final approach, the first version is already considered as a
copyrightable work as long as it fulfils the requirements (work1). When a fur-
ther extension is available, the provided parts are examined for their copy-
rightability. If the extension does not fulfil the copyright requirements, it can-
not affect the copyright features of the first software version created,
positively or negatively. However, if it is able to meet the requirements, the
originality scope of the original work is extended with the new characteristics
of the new elements (original strength of release2). The originality of the work
contained in the new extension is therefore added to the first one’s protection
scope. Together they form one new copyrighted work (work1 release2). If a fur-

Chapter 6: Discussion of Selected Problems

339

ther element is available, it is tested on its copyrightability again. If protection
is granted, its contribution is simply assigned to the originality of the software
product that was available prior to the new version (workn releasen 1).

work1 + original strength of release2 + original strength of release3 …
+ original strength of releasen 1

= workn + original strength of releasen 1

Simplified, this means that the copyright scope of a software product can be
expanded with every new original component that is provided. The individual
parts are not treated separately but are considered as one work that is sim-
ply gaining new characteristics. The original strength of later releases is as-
signed to the original work release. In this way, software can be extended and
the product remains fully protected.

770 The third and fourth approaches both enable copyright protection to be avail-
able for every new element as long as it fulfils the requirements for copyright
protection. They overcome the disadvantages of the first two models, whereby
it is either only the first or only the final version of a software product that is
protected. The third approach focuses on the individual parts and extensions
and disregards the fact that every element belongs to one software project.
The fourth approach, on the other hand, ignores the fact that the different
fragments were not created at the same time but separately. One major con-
tribution of the final approach is that it reflects the technical reality that ulti-
mately all the components are part of one software work which all collaborate
within the same software system environment. The third approach has the ad-
vantage that the contributions of each new feature may be captured separately
in economic terms and that their importance for the whole software solution
can widely vary. While it may give the right holder more flexibility in managing
his or her copyright over each piece of work, it also becomes more compli-
cated. The third model may therefore become too theoretical and hard to han-
dle in practice, as the software components only work within their implemen-
tation environment and usually cannot be separated and commercialized out
of their usual context.

Chapter 6: Discussion of Selected Problems

340

771 Incremental extension or fragmental addition can therefore be implemented
in copyright in four different ways. I would recommend applying the last ap-
proach and accepting the first version as a copyrightable work – if the require-
ments are fulfilled – whose protection scope is expanded with every new ex-
tension. Whenever a new component is delivered, the work receives new
characteristics and elements. The copyrighted object thus becomes a dynamic
composition that is open for new features.

2. Inner Change

772 The term inner change refers to the circumstance that, nowadays, a published
single piece of software, such as a component, is kept under continuous con-
struction.1391 Given the fact that copyright usually works with creations that,
once published, remain identical, works that are altered in substance within
their original boundaries are non-systematic for copyright; it is tricky to de-
termine the protection scope and content of a work that keeps changing its
shape. Unlike incremental delivery, in continuous inner change the outer pro-
tection scope generally remains the same as the changes appear within the
existing mantle, where a part of the substance is modified or replaced. In prac-
tice we can also observe changes in or on a software product that combine the
scenarios of adding a new piece to the original and changing some of its inner
content at the same time. For practical reasons, I have excluded that aspect
from this section.

773 Where software can be changed continuously the question arises to what ex-
tent the changes affect the substance of the work’s copyright protection. In
order to evaluate this problem, we have to determine the work’s previous com-
position. One can look at the specific section to be altered within the original
and determine how important it was for the expression of the original, the
creative contribution it offered and to what degree it showed originality of its
own. Then, we would observe the new composition after the alteration and
evaluate how it affected the work as a whole and particularly the part we
wanted to change. Thus, the individual versions of a software product are im-
portant, as each must be examined for their originality. There are three possi-
ble scenarios (Figure 11):

1. the alteration represents an enhancement of the previous composi-
tion;

See, for example, the case of continuous delivery in N 182 ff. and N 380 ff. 1391

Chapter 6: Discussion of Selected Problems

341

2. the alteration offers little or no enhancement of the previous compo-
sition;

3. the alteration has reduced the particular part’s contribution or orig-
inal strength and may, ultimately, reduce the copyrightability of the
entire work.

Figure 11. Different Scenarios for Inner Change (Source: own illustration).

774 According to the first scenario, where a change represents a real enhancement
to the previous composition of the altered section or even to the whole work,
the outer mantle of the protection scope remains the same as before because
no additional component was added. However, the originality of the respective
section and thus of the whole work intensifies. Consequently, the work char-
acter is improved. The improvement of originality is so remarkable that, from
a legal perspective, the substance of the previous copyrighted work may be
regarded as replaced. The work’s individuality or creativity has been strength-
ened.

775 The second and probably more frequent scenario is if an enhancement to one
part of the work only has a minor positive effect on the work’s copyrightability,
even though it might represent a technical enhancement or improve its us-
ability. In this case, the improvement is not able to meet the required creative
step to increase the work’s originality. Hence, the work’s substance has
changed but the extent of protection has not. This may happen if either the
altered section is not significant for the work overall or if the particular alter-

Chapter 6: Discussion of Selected Problems

342

ation has only little or no effect on the section’s originality. Again, the copy-
righted scope is not expanded because no additional components have been
added to the work itself. The whole change appears within the original mantle
of the work.

776 The final possibility occurs if a change in some way causes deterioration of the
work’s substance. Although it may represent an enhancement from the pro-
ject’s point of view, the work undergoes a negative change in terms of copy-
rightability. This may happen if the previously provided degree of originality
cannot be maintained when altering the respective section. At worst, the orig-
inality not only of the section but of the whole work is affected in a way such
that the work loses its overall creative expression. In this case, the copyright
protection of the entire work would be destroyed. This could, for example, be
the case if an engineer replaced their own original solution to a problem with
a better available ready-to-use component, without using any creativity in im-
plementing it.

777 Consequently, if a work’s outer boundary remains the same but changes are
conducted inside the given structure, it should be kept in mind that the copy-
rightability of the work might be affected. Depending on whether the work’s
originality increases, decreases or is left unaffected, the copyrightability of the
work may be supported, remain similar or deteriorate. Working with server-
based commercialization models and continuous delivery may thus have a
positive or negative effect on the software’s copyrightability throughout its
development and commercialization.

F. Conclusion

778 This chapter picked up certain aspects of the legal and technical foundation
and discussed the findings of the interview study regarding software’s protec-
tion scope in copyright and patent law, such as the subject matter and the rel-
evant protection requirements. I then suggested several small improvements
to the definitions of the established protection criteria that would better cap-
ture software as a creation in IP law, but could also be adapted for copyright
and patent law in general.

779 A set of different software components was discussed to evaluate these ele-
ments’ eligibility for copyright and patent law protection. To date, computer
programs have mainly been understood as an intellectual good or process that

Chapter 6: Discussion of Selected Problems

343

is expressed in a linguistic command form.1392 The visual appearance of soft-
ware, for example in the user interface or the look-and-feel, has tended to be
neglected. Ideas for solving certain problems are largely limited to the field of
algorithms in patent law, if permitted at all. This suggests that it is still difficult
to truly define computer programs. It is suggested that, in future, functional
elements of the look-and-feel as well as functions and features should also be
integrated into patent law alongside algorithms. Further, the previously nar-
row scope of copyright law should be applied to visual elements in a user in-
terface and the look-and-feel and further expanded to the development doc-
umentation. Structural and organizational elements in the source code should
be accorded greater consideration in evaluating the copyrightability of pro-
gram components.

780 With the help of the interview findings, it was also discussed to what degree
technical necessities, engineering standards and business best practices are
covered under IP protection, and how copyrightable expressions can be dis-
tinguished from non-copyrightable ideas in software development. Based on
the established merger doctrine, abstraction test and the current scènes-à-
faire practice, a rule-of-thumb method called the blackbox test was proposed
to assess software’s eligibility for IP protection.

781 In the final section, the current trends in software development – incremental
development methods and continuous delivery – were analysed from a copy-
right perspective. It was discussed how, due to their dynamic characteristics,
these two development methods contradict the classic comprehension in
copyright of a work with static and fixed features. It was suggested that incre-
mental extensions or fragmental additions to and changes within previously
released works could be integrated doctrinally into copyright, without having
to request any regulatory revisions.

IV. Term of Protection

782 In copyright and patent law the term of protection refers to the period be-
tween when a subject starts being covered under the protection umbrella and
protection ceases.

783 Today, at least with registry IP rights, the term of protection in IP law usually
starts when the property and its merits are first disclosed. In the case of de-

Similar conclusion in: BOECKER, 56; HILTY/GEIGEr (2011), 154 f.; HILTY/GEIGER (2015), 616 f.

and 619 f.; JERSCH, 192.

1392

Chapter 6: Discussion of Selected Problems

344

sign rights, patent law and trademarks this commonly happens when the reg-
istry receives the application and gives the applied subject a personal applica-
tion date. For copyright, the term of protection starts with the work’s creation.
No formalities are requested. During the running period, the IP is protected
from external interventions as the right holder obtains lead time to get es-
tablished on the market. After a certain period of time, the protection ex-
pires. This point in time may either be fixed, for example with regard to a spe-
cific maximum term of protection after the good’s disclosure or release, e.g. in
patent law, or be indefinite in advance because it is tied to a certain later event,
such as the author’s death in most copyright systems. As soon as the term of
protection has expired, competitors and society are free to use the intellectual
property.1393

784 This chapter is split into two parts. The first part discusses where the starting
point for copyright protection is set in the current legislation, exploring the
difficulties this entails for computer programs and how these problems could
be addressed without further legislatory changes. The second part focuses on
the end of the protection term, called expiration, and compares it with the life
cycle of an average software development. It is outlined where problems in the
current statutory approach lie and what the legislators’ possibilities are to ad-
just it.

A. Starting Point for Legal Protection

785 As mentioned, the starting point for legal protection is when a software com-
ponent is first granted shelter under the mantle of IP law. In patent law, the
protection starts when the registry receives the application. There is thus a
fixed, identifiable point in time when the protection arises. In copyright law on
the other hand, protection starts automatically, without any formal act such as
an application process, with the work’s creation. However, the circumstances
when a sufficiently qualified work can automatically obtain protection as a
“creation” must be determined separately for each object. The difficulty of de-
termining a starting point for protection therefore only arises in copyright law,
which is why the following section will focus solely on this legal institute. First,
I will discuss the particular difficulty with the classic start for protection in
copyright concerning software. I will then introduce a different approach for
tackling these difficulties in a separate section.

The legal foundation to this was introduced above; for patent law see N 330 ff. and

N 336 ff., and for copyright N 367 ff.

1393

Chapter 6: Discussion of Selected Problems

345

1. The Problem

786 Looking at the time sequence of intellectual property protection, it appears
that in setting a starting point for legal protection the legislator was orientated
along the linear development phases model. The lawgivers seemed to have an
idea of a process in which, during development, somebody had a creative idea,
an impulse for a new project, that was then specified into a concept, after-
wards became the final product through coding and designing, before being
implemented definitively into its future system. Any additional technical inter-
ventions from this moment on were only necessary for minimal maintenance
purposes.1394

787 Further, if one compares this chronological sequence with the protection sub-
jects in copyright, it can be seen that the institute is orientated towards the
end product of a development project: In software, it mainly shelters the visual
expressions in a user interface or look-and-feel and the source code, all rep-
resenting extensively developed components of the final product.1395 This
gives the advantage that the legislator and society have something tangible to
observe and look out for, some kind of visible barrier between when a good is
not sheltered by IP law and when it is finished in its definitive form and pro-
tection is granted. We can wait for the work’s realized creation to grant pro-
tection. As this represents a clear point on the time axis, many lawyers support
sheltering the end product of a development.1396,1397

788 But the subject’s increased visibility is also a negative aspect of the current ap-
proach. Every time a part of the software is made available to a third party, the
accessible know-how used to develop it is disclosed.1398 And as the density of
know-how included in a component grows linearly with the development
process, the final version of a source code, which is legally protected, only rep-
resents the last step in a long chain of relevant and valuable decisions in the
development process. As the software companies outlined, most of their
know-how and resources are invested into the development of a detailed con-

See N 172 ff.

ERNST, 209; see also discussion in LEMLEY (1995), 6 f. regarding concepts and the idea–ex-

pression dichotomy.

See for example RAUBER (1988), 281; HORNS, 5.

The extent to which pure drafts in the form of development documentation are protected

by copyright today remains controversial. For more information, see N 356.

See N 526 ff. and N 535 ff.

1394

1395

1396

1397

1398

Chapter 6: Discussion of Selected Problems

346

cept, which is why it often shows the highest creative or inventive strength.1399

At the same time the interview series also showed that nowadays companies
often present and share their prototypes with potential customers, principals,
purchasers and investors.1400 When intellectual property law only protects the
final result in the form of an algorithm or source code, all the know-how that
has been invested and shown at an earlier stage of development is accessible
without being granted any legal protection. Between the point when sensi-
tive know-how is disclosed to these outside parties and the moment at which
a source code can be definitively realized represents a time lag during which
a creation or invention is not protected but exposed. This means that all the
technical finesse, the little tricks and conceptual drafts are unsheltered, cre-
ating a protection gap. For the product software the classic starting point in-
volves unresolved risks for the developing companies and right holders.

2. Potential Starting Point for Linearly Developed Programs

789 Intellectual property law wants to shelter the creator’s creative contribution.
It would therefore be consistent to set the starting point of legal protection
where the creative step occurs.

790 In the interview series, the software companies explained that in the develop-
ment process most of the creativity is invested during ideation.1401 At the same
time, they agreed that protecting abstract ideas might lead to monopolized
hatching, which they considered would be bad for creativity. Instead, the soft-
ware companies suggested potentially starting legal protection when the ab-
stract idea was minimally fixed in a creative concept.1402 This means we would
have to find the point along the time axis where the creative step occurs and
is sufficiently materialized to assess its original strength. There appears to be
a time spectrum between where most creativity can be observed in the devel-
opment process (ideation and conceptualization) and when the final product
is released. Somewhere along this spectrum lies a point where the idea be-
comes tangible and sufficiently elaborated for the project to be presented to
third parties, such as investors and customers. The interviewees explained
that this moment arrives at a different point for every project.1403 Still, the
boundary between abstract ideas and an applicable invention or creative ex-

See N 549 ff.

See above N 500 ff.

See N 547 ff.

See N 547 ff.

See N 551.

1399

1400

1401

1402

1403

Chapter 6: Discussion of Selected Problems

347

pression is very vague and even for experts it is difficult to determine whether
an idea is developed far enough to be considered a protectable creation.1404

This thesis can therefore not identify “the all-time valid starting point” but, in-
stead, will try to define the theoretical starting point and narrow down some
potential cases of applications. For the individual case, the delimitation still has
to be conducted separately.

791 It may help to recall that computer programs represent command sequences
that aim to solve a particular problem.1405 As Singer explains, these commands
can be used to express our thoughts (to the computer).1406 We use computer
programs to communicate with the machine. And, similar to human language
in a book, the question is how developed the expression to communicate with
the recipient – the final wording or the drawings – has to be before we cover
it under a protective umbrella. Nimmer et al. analysed the same problem in
their paper and had the idea of adapting the abstraction test1407, which is used
in U.S. courts to evaluate whether an idea and its expression are merged, to
determine whether a development has gone past its abstract stage. In their
paper, they suggest that the content of the creation can be observed alongside
its temporal development axis. They describe how, at the beginning of a pro-
ject, the programmers only have a very general notion of what they want to
achieve with their program or what it will do. These general ideas represent
abstract thoughts that fall under the realm of unprotectable ideas. But by the
end, the programmer will have produced code that “is likely to constitute a
protectable expression”. They concluded that “at some point between these
extremes, the level of specification is sufficient to cross the line between an
idea and expression”.1408 As in the abstraction test, a layer-by-layer approach is
adopted for analysis. Although I like the idea of adopting the abstraction test
to determine the starting point for IP protection, unfortunately Nimmer et al.
provide no information on how it could be implemented in practice. They do
not offer any instructions as to how an examiner should proceed, nor do they
suggest which incidents to look for to determine the creation’s abstractness or
specifiction.

792 Nevertheless, observing the constructive process along the development axis,
as Nimmer et al. suggest, in cases where software is developed linearly repre-

See N 551; same opinion represented in: FISHER, 16 f.; NEFF/ARN, 140.

See definition earlier in N 124.

SINGER, 112 f.

For more information on the abstraction test, see N 727 ff.

NIMMER/BECCHINI/FRISCHLING, 638.

1404

1405

1406

1407

1408

Chapter 6: Discussion of Selected Problems

348

sents a reasonable way to proceed. As Wittmer suggests, we could evaluate
the development’s technical advances in the development documentation,
which illustrates and provides information on the development process and
its achievements.1409 Again, the abstract idea is not protected under copyright.
But after that a component should be open to copyright protection if it is spe-
cific enough to exceed the level where ideas are too general and still convert-
ible, and can thus be tested for its statutory eligibility. The form or arrange-
ment of the creation might suggest the potential to be protected, but it should
not determine the starting point of the expression. It is thus necessary to
search for a moment in time, rather than shape, when the creation’s basic
structures and elaboration have become more than perceptible, predictable to
a certain degree, yet not fully determinable or embodied in a physical form.
The conceptual characteristics of the creation or invention have to be visible

enough so they can be analysed as to whether the traditional requirements for

copyright are fulfilled.

793 This point comes at a different stage for each creation or invention. In a cre-
ative work, the expression is evident when considerable and substantial details
or additional particularities are exhibited, through which the author offers
their personal contribution to the realization of the idea in a practical way.1410

If an expert cannot evaluate whether the requirements for legal protection are
provided in the creation, the subject is still too abstract. On the other hand, if a
creation is further elaborated but it does not additionally strengthen the origi-

nality of that creation, this means the creation has already gone past the cre-
ative step to become a shelterable intellectual good. Likewise, in the course of
development, the associated development documentation for a software pro-
ject may already include some elaborated concepts for software components
which are tangible and hence eligible for copyright protection, if it offers
enough substantial details and original strength.1411

794 The interview series further showed that there are certain development con-
cepts that can be implemented in many different ways, and that for these the
exact mode of realization does not matter because the overall creative concept
is decisive.1412 For example, we can cite Singer’s example of an original
pseudocode, for which it is not important how the code is technically imple-

See WITTMER, 34.

See also above N 454 ff.

See also discussion above in N 719 ff.

See N 463 ff.

1409

1410

1411

1412

Chapter 6: Discussion of Selected Problems

349

mented in a specific programming language in the source code.1413 The imple-
mentation rather is routine work. The contribution lies in the creative con-
cept for the pseudocode, including the detailed description of its behaviour
and practical functionality in a concept or draft. These goods thus reach the
creative step at an earlier point in their development. On the other hand, if the
main idea is to improve a technical process or offer a better performance, the
actual coding of a slim and efficient implementation commonly represents the
IP’s main contribution.1414 In this case, the creative step – and thus the start-
ing point for legal protection – shifts towards a later development stage where
most of the labour and effort occur and the original creative contribution of
the author becomes visible and more tangible, for example in the case of an
enriched source code. The starting point may thus vary depending on the sub-
ject. It is consequently important to identify the particular creative step for
each good individually.1415

3. Potential Starting Point for Non-Linear Development
Approaches

795 Finding an appropriate starting point for copyright protection within the lin-
ear software development process is very difficult. It becomes even more
complicated if a creation has been developed with a non-linear method, such
as:

– the spiral method where a project is realized in a circular form and con-
ceptualization and realization are repeated for every new project module
tackled; or

– inner change in which the outer mantle of the creation remains the same
but changes are made within the mantle.

796 The question in these complex projects is where the earliest starting point of
protection lies and how new work components are integrated into the running
protection term.

a) Spiral Development

797 In spiral or iterative development, the project does not follow a straight linear
development where in the end we obtain a complete software product but in-

SINGER, 112 f.

See N 480 ff.

See similar argument in NEFF/ARN, 140 ff.

1413

1414

1415

Chapter 6: Discussion of Selected Problems

350

stead the project evolves in a circular way and each phase is repeated for each
module or functionality that is developed before the product’s final release.
The problem in determining the starting point for spirally developed software
lies in the circumstance that it usually takes several years until the work, as
a combination of several modules, obtains its final shape and is published as
a complete product, while conceptualization and realization occur over and
again in the course of the project. If we assumed that we could only evaluate
the copyrightability of software in its full and definitive arrangement, the soft-
ware would be left unprotected when it was first presented to third parties in
a first (but mostly completed) set of modules.1416

798 In addition, the actual start and finish of an iterative project are difficult to de-
termine. Usually a longer time frame is required to develop a set of first mod-
ules because the software company commonly starts with a few more impor-
tant functions and then develops other modules that complement the
previously developed ones, such as in incremental methods. Depending on the
complexity of the module worked on, its system environment and the exact
method followed, the interviewed companies said that one module (including
at least one whole spiral cycle) could in theory be realized – developed, inte-
grated, reviewed and adjusted – within a sprint of one to four weeks.1417 Al-
though an individual module would function autonomously, there is a certain
threshold that has to be overcome, a set of first modules has to be formed, so
that the basic characteristics of the desired software product are recognizable
and the good becomes able to function properly and achieve its predeter-
mined goal. Before that moment, even after conceptualization of a first few
models the further course of the software project is (still) unresolved and rel-
atively open. The same applies to the other software elements to be added in
further repetitions. But when the threshold of sufficient concretization is
reached, the development becomes minimally fixed and autonomous, a mini-
mum viable product.1418 In practice, this first relevant set of modules regularly
represents the prototype that a project manager could then present to third
parties, such as investors and customers. According to the rough indications
of the interviewees, a first prototype of their products and services could be
developed within an average of two years.1419

For more information on commissioned work and project pitching, see above N 500 ff.

For more theoretical background on the spiral method, see N 175 ff.

For more information on how the spiral development method is applied in practice, see

above N 380 ff.

See N 391.

1416

1417

1418

1419

Chapter 6: Discussion of Selected Problems

351

799 That third parties are able to make business decisions on the basis of the pro-
totype implies that the prototype usually includes the main functionalities that
enable the final software product to become perceptible and forseeable for
their observers. Already at this early stage of the development, the main char-
acteristics of the creative expression are preliminarily fixed. The prototype

functions as a materialized, solidified outline for the further project, which can

also be tested as to whether it is able to fulfil the copyright requirements. It
therefore seems reasonable to determine as the starting point for legal pro-
tection of a spirally developed good the stage when the first prototype is ready.
To start the legal sheltering at an earlier stage, for example with the concept
of a first developed module, which may be changed several times in an itera-
tive approach, does not appear expedient. It gives no direction for the further
modules that still have to be built. An important exception to this is if an over-
all concept for a software project is sufficiently detailed to reveal the shaping
characteristics not only for the first project modules (resulting in the proto-
type), but also for all other later modules too. If this concept exhibits original-
ity, and thus fulfils the copyright criterion, it should already be protected from
this point in time, for example in the form of development documentation.
However, this is unlikely to ever apply to a spiral development (outside the lin-
ear waterfall model). In general, waiting for a later stage in spiral development
than the prototype also does not seem useful as usually the first few modules
are the ones that are economically significant for the product, which is why
they should be put under a protective umbrella as soon as possible in order to
close the protection gap. The later added modules usually only complement
the overall product and may influence a work’s degree of originality, but most
often do not have any effect on a work’s term of protection. Consequently, the
tradeable prototype should in standard cases be regarded as a starting point
for legal protection in spiral development.

b) Inner Changes

800 Inner changes refer to alterations within a product’s existing mantle after it
has been released. Under this term we also include updates and structural or
visual changes, particularly where sections or elements within an existing
work are altered.1420 While the contours of the work remain the same, its sub-
stance is manipulated. The question is how such changes within the work af-
fect the original’s protection term and to what degree they trigger a starting
point for a new term of protection.

See for example in the case of continuous delivery, N 182 and N 382. 1420

Chapter 6: Discussion of Selected Problems

352

801 Previously, we discussed how and to what extent changes within a software
product can affect its copyrightability, the protected scope of the software.
We distinguished three different types of changes: first, an alteration that rep-
resents an enhancement of the previous composition; second, an alteration
that offers no or only little enhancement to the previous composition, and
third, if an alteration reduces the particular part’s contribution and may, ulti-
mately, negatively affect the copyrightability of the entire work.1421 The same
scenarios will be used for the present discussion. As these offer three very dif-
ferent applications, the term of protection again has to be determined for a
particular work and change in question.

802 In most cases, changes within the work will not affect its term of protection,
as the outer mantle of the work remains the same. Copyright protection will
instead start with the original release and keep on running. This is what was
referred to with the second scenario, where a change within the work offers
little or no enhancement to the previous work quality. Even though the sub-
stance may be altered, the overall creative appearance usually does not change
to the extent that the work is perceptibly different as a whole. Therefore, al-
though the appearance or structure of the work is manipulated, the protection
term remains unaffected.

803 Only in very rare cases with significant improvements in substance, is the al-
tered part able to form a different work by adapting inner parts without adding
anything from the outside. This is referred to in the first scenario. It is almost
as if the new work represented a shelterable secondary work of the original,
an independent version of the product. The original and the new work are sim-
ilar to some extent but the new work is able to distinguish itself by exhibiting
originality of its own. If a change in a work reaches this standard, linking the
altered section’s protection term entirely to the original work would be illogi-
cal. As the new composition distinguishes itself substantially from the original,
its term of protection should at least to some extent be valued autonomously
by giving it its own starting point for the protection term. However, this spe-
cial situation where a section can obtain a full new term of protection through
an enhancement is exceptional and should therefore only be granted in par-
ticular cases where the manipulation effectively represents an entirely new
work within the existing mantle.

804 We also introduced a third rare scenario in which a planned alteration within
the inner structure of a work was not able to replace or maintain the previous

See above N 772 ff. 1421

Chapter 6: Discussion of Selected Problems

353

substance but, rather, had a negative effect on the work’s copyrightability. Ac-
cording to this understanding, such a negative change in substance would not
be able to influence the starting point of legal protection of the work be-
cause the protection started automatically with the first creation and the lat-
ter changes do not affect the work’s outer mantle. Deteriorations may however
have an effect on the copyrightability of the work itself, and as such on its pro-
tection, because if a product is no longer able to fulfil the legal requirements
for copyright protection, by losing its originality, it could forfeit its IP protec-
tion before actually reaching its expiration date.

805 Consequently, if a work’s outer boundary remains the same, but changes are
conducted within the inside of the given structure, we can generally assume
that the term of protection is not affected by the change. Only if the change
qualifies as a real enhancement that exhibits its own originality, or, on the con-
trary, if the alteration represents a relevant degradation that affects the copy-
rightability of the work overall, will a change within a work become relevant.

B. Expiration

806 Expiration refers to the point at which the particular exclusionary right is lost
due to lapse of the term of protection. In patent law expiration is set at
20 years after the patent’s official application date. In copyright, computer
programs are protected for a minimum of 50 years after the death of the last
author involved in the work’s creation. These terms cannot be extended and
are thus referred to as maximum periods.1422

807 The legal problem of the expiration period is two-fold; on the one hand, it is
difficult to find and set an appropriate term of protection. On the other, a spe-

cific event has to be selected to which that term of protection can be tied – a
connecting factor that triggers the maximum period. These two problem areas
are discussed below.

808 The outlined questions would fill a doctoral thesis of its own, which is why the
present thesis can only offer scientific data to show the potential for discus-
sion and encourage further reflection. This section will therefore discuss what
was found in the interview series and circumscribe potential approaches
based on these findings.

The theoretical background to this section has already been introduced under the respec-

tive type of intellectual property: for patent law N 336 ff., for copyright N 369.

1422

Chapter 6: Discussion of Selected Problems

354

1. The Duration of the Protection Term

809 Today, the protection period is set so long that, in fact, there will hardly ever
be an interest in using the protected software beyond these time periods.1423

In view of the dynamic and short-lived software industry, the question arises
as to whether the difficulties associated with absolute property rights in soft-
ware protection could be alleviated by adjusting the term of protection. Troller
likewise discusses whether, if the general public is to share in the benefits of a
creation in exchange for granting a monopoly-like right, its term of protection
should be set such that it ends before the inventive creation is completely
overtaken by technical developments.1424

810 A patented part in a computer program is protected for 20 years after the
patent was applied for. Where copyright protection is applicable, a work of
software is protected for up to 50 years after the death of the last author, irre-
spective of the date of its creation during an author’s lifetime or release. Con-
sidering that the average life expectancy in the United States and Europe is
around 80 years,1425 and assuming, for example, that the developer had intro-
duced their product at the age of 25, copyrightable computer programs could
be protected for a period of over 105 years. As mentioned, probably only one
computer program has ever reached the end of the protection term, namely
Alan Turing’s machine Christopher.1426 This was possible because Alan Turing
ended his own life in 1954 at the age of 41.1427 The computer program he cre-
ated during World War II was left to the public domain in 2004. Only partially

See N 558; see a similar statement in: EDVARDSSON, 32; STRAUB (2002), N 10; STRAUB (2011),

N 148; DESSEMONTET, N 967; MARLY, N 363; NEFF/ARN, 314; see also discussion in TROLLER

(1983), 119 ff.

TROLLER (1983), 119.

For the United States the average life expectancy is 78.6 years, within the EU the average

life expectancy is 80.9 years, and in Switzerland it is around 83.6 years (see OECD 2017

statistics on life expectancy).

For the previous discussion, see above N 499.

Under the British Foreign Office, Alan Turing developed an algorithm that was able to de-

code secret messages of the Nazis. By implementing this algorithm into a machine, the

Allies were able to decode daily messages faster and more reliably. As the first in history,

Alan Turing's machine was capable of being altered to not only solve one specific task but

rather a set of problems, as long as the problem could be expressed in the form of an algo-

rithm. The program was thus applicable in a very dynamic way. His inventions motivated

scientists to advance his studies to the next level, forming the basis for today's comput-

ers as we know them (for more information about Alan Turing see: COPELAND; RANDELL;

NEWMAN).

1423

1424

1425

1426

1427

Chapter 6: Discussion of Selected Problems

355

comparable to this development is the commentary by Ada Lovelace from
1843, which contained an extensive concept for the programming of a machine
by Charles Babbage. From a historical perspective, Lovelace was partly (and
controversially) described as the first programmer in the world. From today’s
point of view, however, the detailed document should probably be regarded as
a rough concept for a computer program rather than a copyrightable version
of a computer program itself. The idea for Babbage and Lovelace’s first com-
puter could only be put into practice in 1960 with the computing capacity an-
ticipated by Babbage, almost 110 years after Lovelace’s death.1428

811 Independently of how it is captured by law, every good shows some kind of life
cycle.1429 As Lemley and Burk emphasize, the life cycles in software engineer-
ing are shorter compared with those of other technologies.1430 According to
the interviewed representatives of software companies, currently a computer
program’s life cycle is estimated to be between 5 and 25 years, with an average
term of 10 years before a system has to be disposed of entirely.1431

812 Comparing the granted 20-year protection after filing, in patent law, and the
50 years of protection after the last author’s death, in copyright, with the esti-
mated program life cycles of 10 years on average, it raises some questions. The
legal term of protection may potentially be up to ten times the product life cy-
cle of a software product, for example in terms of copyright.

813 From an IP lawyer’s perspective, this difference seems significantly imbal-
anced. But how did we get here? The original idea of a long protection term in
copyright was to perpetuate the creator’s relationship to their creation even
after their death, to preserve a legacy.1432 However, computer programs do not
represent classic figures of art but rather technical goods which nevertheless
involve creativity and inventiveness. It is therefore questionable whether a
technical creation deserves to benefit from the long protection term granted
in copyright law for artistic works.

814 On the other hand, copyright and patent law are designed to ensure that the
creator has the possibility to earn back his or her investments and make some

For more information, see FUEGI/FRANCIS, 25.

For the technical background to life cycle development models see N 134, and for the prac-

tical value of software life cycles, see N 435 ff.

LEMLEY/BURK, 90.

For more information see above N 435 ff. and N 437 in particular.

DESSEMONTET, N 968 and 70; see also discussion in Commentary to the German UrhG

(Katzenberger/Metzger), § 64 N 1 ff.

1428

1429

1430

1431

1432

Chapter 6: Discussion of Selected Problems

356

profit during the 20 or 50 years or more of the protection term. The author
has an interest to decide on and market the creation. Samuelson et al. note
that in a perfect world where the legal system is market-orientated, a com-
puter program would be protected against commercial interference “just long
enough to enable its developer to enjoy the same lead time as other innovators
who contributed equal value to the market”.1433 It emerged in the interview se-
ries that a computer program is marketable within approximately 3 years and
that it has to be replaced with a new system after a maximum of 25 years, and
10 years on average.1434 The right holders consequently have approximately 7
years to earn back their investments. Furthermore, in the software manufac-
turing and distribution market most products are not published on a physical
medium but instead are duplicated digitally and distributed online. Through
these simple improvements, the economies of scale in the software market
have increased substantially.1435 The time frames required for a developer to
earn back his or her investment have therefore shortened with the rise of digi-
tal distribution models during the last decade. The software companies stated
that a software manufacturer should be able to get established on the market
and earn back their investments within the first few years of lead time, other-
wise the chances of succeeding later in the market are quite low.1436 This state-
ment is all the more relevant at a time when the time-to-market is becoming
more important and working in a right holder’s favour to more easily commer-
cialize their products.1437

815 Even if an extensive term of protection of more than 50 years after the death
of the last developer does not hurt anyone, it nevertheless represents unequal
treatment of the interests involved and causes a form of overprotection. It does
not take into account the expected lifespan of a computer program; every year
of protection that is granted in addition to a program’s lifespan represents an
artificial monopoly for the right holder in the form of additional lead time.1438

Or as Harison puts it: The current term of protection encourages the right

SAMUELSON ET AL., 2413; see also discussion in DUTFIELD/SUTHERSANEN, 109 ff.

See the findings in N 437.

See N 189 ff.

See N 561.

See also N 498.

See a similar discussion in: decision of the Court of Justice of Geneva of August 6, 1986,

published in SMI, 1987, 217 ff.; VON LEWINSKI SILKE, 724; REICHMAN, 2547 f. and RAUBER

(1988), 280; see also economic analysis in SCOTCHMER (2006), 107 ff. and 117; DUTFIELD/

SUTHERSANEN, 109 ff., in particular 110; Commentary to the German UrhG (Katzenberger/

Metzger), § 64 N 1 ff.; LANDES/POSNER (2003), 213 f.

1433

1434

1435

1436

1437

1438

Chapter 6: Discussion of Selected Problems

357

holders to use their invention as a “cash cow” without investing into further
development to build on it.1439 At the point where the development finally falls
into the public domain, the technology is usually outdated and not applica-
ble for a modern computer.1440 The duration of software protection appears
to be arbitrary and inefficient.1441 The interviewed companies further stressed
that the know-how exchanging function of IP would thereby be widely forfeited.
For this reason, the terms of protection in both copyright and patent law were
found to be way too long, relative to the life cycle that software products ac-
tually exhibited.1442 It would thus be reasonable to set a (new) particular pro-
tection term in patent law and copyright for software products only.

816 In the interview series, the companies were also asked which factors they con-
sidered important in determining for how long a computer program should be
legally protected. They named three main points of reference: the author or
company’s will, the time during which the product is still purchased and
bought by the users, and the estimated term during which a software product
stays technically useable.1443 Although all the suggestions have their pro and
cons, there are certain arguments that clearly speak against or in favour of
each.

817 The first suggestion was that companies could decide for themselves how long
they wanted to shelter their product with IP. The main reasoning was that it is
the author or right holder that puts their investment into the development or
purchase of the product so it is he or she who should be the one to make the
judgement call. In this way, investors would be more willing to spend money
on development because they receive a bigger incentive. Although this is a le-
gitimate request, this change in legislation would grant the software compa-
nies an extraordinary amount of power and would not sustainably reduce the
already very long protection period of software that currently exists. They
would be able to make their decisions solely based on their own business. In

HARISON, 14.

See N 558; see a similar statement in: EDVARDSSON, 32; STRAUB (2002), N 10; STRAUB (2011),

N 148; DESSEMONTET, N 967; MARLY, N 363; NEFF/ARN, 314; see also discussion in TROLLER

(1983), 119 ff.

See also mathematical approximation and conclusion in: SCHERER, particularly 427, with

reference to NORDHAUS. Both authors offer interesting ideas on how the term of protection

should be set in relation to other factors, such as the investments and social gains, with-

out, however, giving more precise information as to the duration.

See N 437 and N 561.

See above N 554 ff.

1439

1440

1441

1442

1443

Chapter 6: Discussion of Selected Problems

358

the worst case, they would not have to surrender their invention or creation
into the public domain at all. This could endanger the balance of interests in
intellectual property law disproportionally. It would also significantly contra-
dict the main principles in Art. 5 para. 2 and Art. 7 para. 1 RBC, according to
which the term of protection persists independently of the right holder’s influ-
ence. Instead, the right holders should be satisfied with a clearly determined
and forseeable lead time during which they can profit from an exclusionary
right and earn back their investments.

818 The second suggestion was that a product should be granted legal protection
as long as there is still user demand. The supporters of this argue that as long
as users are willing to spend money and time on using a software product, the
program should be legally protected. They referred to certain computer pro-
grams, games in particular, that profit from nostalgia or have been hyped for
several decades, similar to best-selling literature or hit records. According to
some of the software companies, software manufacturers who manage to cre-
ate a computer program that is so successful should be allowed to continue to
profit from their creation. What these companies did not consider, however, is
that the end of a program’s protection term does not automatically mean that
the product cannot be offered and sold on the market anymore; it is just the
right holder’s exclusionary right that expires. Similar to the first suggestion,
the lasting utilization of a computer program does not take into account that
in exchange for the legal monopoly-like right society wants to obtain an in-
sight and, at some point, also full access to the good. With this suggestion, a
prevailing product would rarely fall into the public domain at all, even if only
very few users continued to buy the product in the end. Again, the balance of
interests would be affected. In addition, this factor would be very difficult to
measure and control in practice. For this reason, I would not recommend the
continued utilization of the software as the decisive factor to determine the
term of protection.

819 Most of the interviewees were in favour of an option which I personally also
support. They instead recommended linking the maximum term of protection
to the usability of the computer programs. The software companies argued
that after some years a technology would become outdated and more difficult
to apply. At the same time, for most users the software is less easy to use. From
the company’s perspective, at this point in the product’s life cycle more money
has to be spent on keeping the product up and running. For the same reasons,
competitors start to lose interest in copying or imitating the software. The
software’s usability – its average life cycle – would represent a comprehensible
and reasonable point of reference to set the maximum term of protection for

Chapter 6: Discussion of Selected Problems

359

software products. If being set at, for example, 10 years after it was made avail-
able to third parties this would give the right holders a good lead time to get
established on the market and regain their investments, and their economic
interests would be covered. The lead time would also offer them a consid-
erable incentive to keep on maintaining and improving their product so that
users keep on spending money on the product or service. The good would fall
into the public domain while it was still technically applicable and of use. For
all these reasons, I would recommend taking the average usability of a com-
puter program to determine the term of protection. Thus, all the important in-
terest groups – the right holders, the users, other market participants as well
as investors – would have an adequate and reasonable incentive to participate
in the IP model.

820 According to the findings of the interview series, most of the companies
favoured a lead time of around 10 years. If the users’ needs and the technical
requirements in the field of application were particularly stable, supporting
longer usability of the software product, the interviewees believed that a
longer term of protection of around 20 years could also be justified.1444 On the
other hand, they argued that IP rights which included more severe exclusivity
as well as more market advantages should only be granted a lead time of a few
years, for example 3 to 10 years.1445 According to this argument, copyright pro-
tection, being the less exclusionary IP right and protecting wants to protect
finished and constant forms of expression, could be provided for around 20
years after its creation or having been shared with third parties. Meanwhile,
patent law, which by its nature is a stronger IP right that grants the right
holder a monopoly-like exclusionary right for their dynamic and easily ed-
itable invention, could be permitted for a shorter period of up to 10 years after
the application has been filed.

821 The suggested duration of 20 years for program protection in copyright and 10
years in patent law contradict the current international regulations in Art. IV
para. 2 UCC, Art. 7 para. 1 RBC and Art. 33 TRIPS as well as the EC Copyright
Term of Protection Directive.1446 Due to the high density of international oblig-
ations, only the international community could adjust the term of protection

See N 562.

See N 563; see similar reasoning in SAMUELSON (2017b), 1514.

See N 253 for UCC, N 250 for RBC and N 259 f. for TRIPS Agreement. It is noteworthy that

Art. IV para. 2 UCC already allows a reducing of the term of protection to 25 years. Due

to conflicting provisions in other treaties, however, it is of practically no significance. Re-

garding the EC Copyright Term of Protection Directive, see also VON LEWINSKI SILKE.

1444

1445

1446

Chapter 6: Discussion of Selected Problems

360

for computer programs. The individual jurisdictions are bound by these inter-
national treaties, and could thus not abandon the current regulation of the
protection term in their legislation. In light of the short and still shortening
software life cycles, it would nevertheless be reasonable to find a more ade-
quate statutory solution than the 20 years of protection after application in
patent law and 50 years after the author’s death in copyright. I hence recom-
mend a regulatory change of the current protection terms for computer pro-
grams in copyright and patent law.

2. Connection Point

822 The international treaties govern that a work’s term of protection in general
ends 50 years after an author’s death in copyright and 20 years after the appli-
cation date in patent law.1447 Art. IV para. 2 UCC and Art. 12 TRIPS Agreement
further allow the legislators to tie the maximum term of protection in copy-
right to a connecting factor other than the life of a natural person. However, in
all jurisdictions examined for this thesis – Switzerland, the United States and
the observed member states of the European Union, a work’s term of protec-
tion in copyright is currently tied to the death of the last living author.1448 It is
person-centred. While the point of reference in patent law is closely con-
nected to the invention and its first full disclosure, in copyright the point of
reference does not consider in any way the work’s date of creation or release.

823 The interviewees stated that tying the expiration date of an intellectual prop-
erty right to the developer or engineer ad personam would not be reasonable
where created goods showed more economic or technical relevance than
artistic. Most of the software companies therefore believed that the end of the
protection term of a computer product should be tied to the computer pro-
gram itself.1449

824 This argument is supported by the fact that nowadays most computer pro-
grams are developed in corporate structures, mostly by a team of representa-
tives of different departments.1450 Individual and independent software engi-
neers publishing software are still common but seem to be the minority case.

Art. IV para. 2 UCC, Art. 7 para. 1 RBC and Art. 12 and 33 TRIPS Agreement; see also N 253

for UCC, N 250 for RBC and N 259 f. for the TRIPS Agreement; for patent law in particular

see N 336 ff., for copyright in particular see N 369.

See N 259 f. for TRIPS Agreement and above N 369.

See N 499.

See same conclusion in THOMANN (1998), 20.

1447

1448

1449

1450

Chapter 6: Discussion of Selected Problems

361

This same understanding has been incorporated into the software copyright
law of most countries, usually assigning the rights to computer programs di-
rectly to the employer of a software developer instead of the author.1451 The
product and its development remain the key element in focus. However, in
today’s practice software is constantly being added, altered or deleted, and
the subject matter of protection is hence continuously being changed. Con-
sequently, to reconcile the term of protection against the specific object of
protection, connecting the term of protection to the author would entail that
 a company would need to record for each (part of a) software project those
participated in its development and when the last co-author died in order to
determine the term of protection for the specific subject matter still in place
at the time. If the individual contributions could be separated, even the indi-
vidual work parts (e.g. components) would have to be attributed. According to
the feedback of the software companies, this is nearly impossible.1452 Tying the
term of protection to the author’s life expectancy thus contradicts the practi-
calities in software engineering and does not meet the needs of the software
companies.

825 It would therefore be reasonable to tie a computer program’s term of protec-
tion more closely to the creation in question. This could, for example, be con-
ducted by tying the term of protection to an objectified connecting point, such
as the work’s creation1453 or when it was made available to third parties, e.g.
through its release. Although this would require a legislatory revision of many
copyright laws, it would not represent an entirely new modification that is
alien to the copyright system. Already today, individual copyright laws, such as
the Swiss Copyright Act in Art. 31 sect. 1, provide that in the case of unknown
authorship a work’s expiration shall be linked to the publication of the work.
The RBC also provides in Art. 7 for various scenarios in which a linking of the

See Art. 17 Swiss CopA and § 69b Abs. 1 German UrhG. See also discussion in N 499.

See N 499; see also decision of the Court of Justice of Geneva of August 6, 1986, published

in SMI, 1987, 217 ff.; DESSEMONTET, N 984, with reference to Art. 30 para. 1 Swiss CopA.

Following the model suggested in N 785 ff. above, the term of protection should hence in

linear development start shortly after the product reaches its creative threshold. In case

of spiral development, this would generally be when a sophisticated prototype of the soft-

ware was achieved. Further thought would have to be given to incremental developments,

as in continuous delivery, since in this case further modules are later added to the orig-

inally released group of modules. It is unclear when the term of protection for the later

parts should start to run in this scenario. Inner changes on the other hand would in gen-

eral not have an effect on the copyright's expiration.

1451

1452

1453

Chapter 6: Discussion of Selected Problems

362

expiration period to another event is legally foreseen. Even if the presented
change involved a certain revision effort, it would in principle be systemically
possible and useful in the result.

C. Conclusion

826 This chapter outlined how the term of protection is determined in the current
legal models in copyright and patent law. The interview series brought up
some difficulties of this approach for practitioners. It was therefore discussed
where the starting point for the term of protection could be set appropriately
relative to the particular development model in question. The work in question
would need to be examined individually in order to determine the creative
threshold. It was further suggested that the starting point for IP protection
should be set earlier in the development process so that the project would be
better protected from third-party interventions.

827 Considering the end point of the protection term, it was explained that the
current model shows two major difficulties. First, the granted protection is too
long compared with the estimated product life cycles of software products. It
was therefore suggested to shorten the duration of patent and copyright pro-
tection to 10 and 20 years respectively. Second, tying the term of protection to
the author’s death in copyright seems inappropriate for a good that shows
mainly economic and technical relevance rather than artistic. It was recom-
mended to link the term of protection to the work’s creation or its release in-
stead of to the developers as work authors.

V. Excursus: Second-Hand and Dependent Creations

828 The following section is, according to the definition of the research object, not
in the focus of this thesis. However, I would still like to include it, for two rea-
sons: The first is that the question of dealing with dependent works is closely
linked to the protection scope of creations in copyright and patent law as it
can affect a work’s or invention’s eligibility for patent law and copyright pro-
tection. A strict separation of these topics would therefore not be appropriate.
Second, the interviews provided relevant insights to these questions, which
are worth sharing. For this reason, the following is designed as an excursus on
second-hand works and dependent creations.

829 In the interview series, new technical approaches were described as providing
new possibilities to effectively copy and paste single pieces or even whole

Chapter 6: Discussion of Selected Problems

363

components of existing software products.1454 At the same time, the increased
availability of online communities and data bases has made it easier to access
know-how in the form of technical solutions for reuse and integration into
software products.1455 Scotchmer describes how computer science works as
“dwarfs standing on the shoulders of giants“.1456 She hereby refers to a famous
depiction first explained by Bernhard of Chartres. It implies that in science
new findings of a particular generation are often rooted in findings made by
earlier generations.1457 The knowledge of how to develop creations thus often
builds on previous insights. In software development, adopting the design and
structure elements of somebody else’s work represents a widely established
practice.1458 In the ICT communities, sharing technical solutions was described
as prestigious,1459 and stealing as recognition of an original work.1460 However,
this does not mean that every new invention in computer science represents a
copyright or patent law infringement. Rather, it tries to explain that new ideas
often rely on established knowledge – the earlier findings of ‘giants’.

830 In practice, the software components of third parties are not usually inte-
grated into a software product one-to-one, but instead are adapted to the set-
ting of the desired technical environment.1461 From an ICT economic perspec-
tive, recycling old solutions is often more efficient because the software
engineers do not have to reinvent the wheel for every new project but instead
are able to build on the expertise of other engineers and prior works.1462 But
from a legal perspective, if developers use a third-party piece of work to real-
ize their own product, either the consent of the right holder or a statutory ex-
ception is required. The essential question is how and to what degree can law
include the circumstance that in a particular field of science building on pre-

See N 401 ff., N 404 in particular.

See N 398 f., N 421 ff., N 448 ff., N 489 f. and N 526; see also FISHER, 18 f.

SCOTCHMER (1991); see also later perception in SCOTCHMER (2006), 127 ff.

First cited in a letter from John Salisbury in 1159, printed in MCGARRY, 167; cited later by Sir

Isaac Newton: “If I can see further than anyone else, it is only because I am standing on

the shoulders of giants“; mentioned in transcript A, N 55 f.

See N 398 f., N 448 ff., N 458 ff. and N 567 ff.; also discussed in: SAMUELSON ET AL., 2329 f.;

FISHER, 18; U.S. CONGRESS (1990), 12 and 15; KRUEGER, 131; see also general discussion in

LANDES/POSNER (2003), 4; SCOTCHMER (2006), 129 f.

See N 204 ff. and N 448 ff.

See N 448 ff. and transcript K, N 53.

See N 448 ff. and N 458 ff.

See N 459; also described in KRUEGER, 133; see also Fisher who outlines a scenario in which

the combination of various ideas may be economically more valuable than "the sum of its

parts" (FISHER, 18).

1454

1455

1456

1457

1458

1459

1460

1461

1462

Chapter 6: Discussion of Selected Problems

364

vious findings and integrating them into new solutions constitutes part of the
working culture and is also crucial for technological advances. This issue is
closely connected to the question to what degree secondary works are allowed
to build on existing ones. In the interview series, two people discussed the is-
sue of derivative works with the help of the “chair dilemma”: “Would you like
it if a green chair and a yellow version of the same chair were each allowed
to have an independent copyright?”1463 After all, “a chair is a chair!”1464 In my
understanding, this dilemma involves two main problems: First, we might ask
what law would require in order for the yellow chair to become independent
so it does not fall into the green chair’s copyright scope? Second, to what ex-
tent should the author of the yellow chair be allowed to build on the disclosed
know-how of the green chair’s builder on how to construct a chair, in case the
outlined approach was considered ground-breaking and would, in future, be
the only true way of chair construction?

831 Based on these problem spheres, the following discussion is split into two
parts, both addressing the question of where the borders of the scope of pro-
tection lie with regard to derivative creations. The first one covers the ques-
tion to what extent the right holder should be allowed to forbid subsequent
works. As this question is particularly disputed in copyright, the following sec-
tion focuses on this perception. The second part looks at the extent to which
dependent creations have positive effects in the software industry and how
they could be encouraged with legal measures. As the bar for an IP-admissible
derivative is higher in patent law, this section focuses on the patent perspec-
tive of this problem.

A. The Right Holder’s Right to Protect a Work from Further
Processing

832 With the rise of newer development trends and the public offering of ready-
made components on specialist platforms, in libraries and within the Open
Source Community, it is important to assess to what extent computer pro-
grams are protected from being edited by other parties and in what sense right
holders can forbid others from processing their software products.

Transcript F, N 115.

Transcript E, N 155.

1463

1464

Chapter 6: Discussion of Selected Problems

365

1. Edited and Derivative Works

833 While patent law has a very broad protection scope and prohibits processing
and imitating the patented subject, independently of the exact method of re-
alization,1465 copyright focuses on the particular expression of creative inspi-
ration.1466 In copyright, the scope is thus much narrower. It is difficult to de-
termine whether an amendment can still be prohibited by the right holder or
whether an independent new work outside his/her right of exclusion exists.
The interviews revealed that it is extremely hard for software companies to
evaluate whether or not a third-party use represents an infringement.1467 This
is particularly true for copyright, because the delimitations of permitted and
inadmissible third-party uses are more a matter for discretion.

834 The interviewed software developers emphasized that being inspired by other
software solutions and partially taking from other engineers should not be
completely prohibited, as it was, firstly, widely established in the culture of the
software industry, and secondly, necessary to realize a creative process effi-
ciently. They outlined that there would always be certain similarities between
two software products. The decisive question should be how much similarity
two products are allowed to exhibit and what the author of the later work has
contributed to create the the latter. We are therefore talking about the quanti-

tative similarity of two works as well as the quality and strength of the original

and its successor.1468 At the same time, the software companies were insistent
that a derivative work should exhibit a creative individual contribution in or-
der to be legally recognized.1469 Slavish copying was described as inherently
uncreative and not worthy of copyright protection. It was summed up by the
term ‘copy with pride’, meaning that the copier or imitator also has to invest
effort.1470

835 It is undisputed that the right holder of an intellectual property has the right
to decide over their good and to protect it from being distorted and changed,
if a third party tries to do so without their consent. According to the interna-
tionally codified understanding of copyright law, the one-to-one copying of
computer programs is explicitly prohibited. The author has a broad set of

See above N 268.

See above N 348.

See N 590 ff., N 591 in particular; see also the legal perspective in STRAUB (2001a), 810.

See discussions in N 448 ff., N 458 ff., and 567 ff.

See N 454 ff., and N 568 ff.

See N 537.

1465

1466

1467

1468

1469

1470

Chapter 6: Discussion of Selected Problems

366

rights to decide how their work will be utilized and distributed. However, the
author’s rights are legally constrained through certain statutory limitations
and exemptions.1471 A derivative work is regarded as an independent work in
copyright if it exhibits enough originality of its own.1472 In Whelan v. Jaslow1473,
the court determined that making small changes to somebody else’s computer
program would, however, not legitimate the use of somebody else’s work with-
out their authorization. Instead, the secondary work has to be distant enough
from the original work to not fall within the protected scope of the original.
Also according to the Swiss interpretation, the work would otherwise not be
statistically unique and thus would not be original. It was mentioned before
that although the European and U.S. practices have created their own judi-
cial approaches to assess second-hand works, all the methods are similar in
result:1474 The more original and (statistically) unique the original work is, the
greater its creative strength and protection and the less visibly dependent or
similar a secondary work is allowed to be. The required distance of the sec-
ondary work from the original can only be achieved if the derivative exhibits
its own originality and exhibits few substantial similarities. Therefore, careful
consideration must be made as to whether the elements adopted by the sec-
ond-hand work are of subordinate importance in view of its originality.

836 I believe that the rules the European and U.S. practice have developed over the
years for classic copyright can be analogously applied to software. It meets the
demands of the software companies that not every use of a copyrighted work
should be forbidden. Instead, it is a matter of discretion whether or not a sec-
ond-hand work still falls within the protective scope of an original, if the sec-
ondary work is too similar, and whether it offers enough quality to be deemed
a copyrightable work itself by offering its own personal contribution.1475 A right
holder can only forbid the use of their work to the extent that the third-party
work is remarkably close in the vital parts of their work, and if the new work
does not offer enough personal creative involvement to be regarded as an
original work. However, this discretionary decision as to whether a secondary
work is dependent or original is very difficult to make in practice, and compa-

See N 234 ff. for the function of intellectual property law, and N 342 and N 365 f. for limi-

tations and legal boundaries in copyright.

See N 365 f.

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986); see also Bridge-

man Art Library, Ltd. v. Corel Corporation, 36 F. Supp. 2d 191 (Southern District of New York

1999).

See N 365 f.

See N 454 ff. and N 568 ff.

1471

1472

1473

1474

1475

Chapter 6: Discussion of Selected Problems

367

nies can only partially anticipate infringements. Even though the U.S. jurispru-
dence has developed several different approaches to implement a substantial
similarity doctrine, a general and universally applicable interpretation of a rule
to compare two creations is still difficult to find. Unfortunately, this thesis is
also unable to offer a definitive rule for this problem as this question does not
fall directly into the scope of the thesis.1476 It remains necessary to decide for
each case separately whether a work shows a relevant similarity or originality
of its own. Based on the results of the interview study, we can at least say that
the existing court practice in principle incorporates the right elements.1477

2. On Translations in Particular

837 Another problem associated with derivative works and adaptations in com-
puter programs are translations of a program’s source code from one pro-
gramming language into another. Particularly delicate is the question to what
extent these translations are covered under an author’s right to forbid editing
of his or her works. While the EU Computer Program Directive in Art. 4 explic-
itly names the translation of computer programs as a copyright infringement,
the U.S. and Swiss law do not address the issue of translation for computer
programs separately. On the other hand, the interview study has shown how
easily software products can be adapted, reformulated and applied to a differ-
ent technical environment. The software companies emphasized that the eas-
iest way to imitate a software product is to translate the source code from one
programming language into another one of the same language family.1478

838 For classic literary works, several international treaties and national statutes
explicitly categorize the translation of these as a special statutory form of edit-
ing that is subject to the author’s approval.1479 Again, this is true up to the point
when the derivative work is able to show enough originality so that it repre-
sents an independent work of its own. The problem is that this protection was
originally designed for translations of texts from one linguistic human lan-
guage into another one. It is not beyond doubt that translations of a source code

See interesting discussion in MCGAHN, although slightly out of date now.

On the basis of the interview results, one could develop a model to compare software

components in order to evaluate infringements from a copyright and patent law point of

view. However, this would have to be done outside of this doctoral thesis, as a separate

project.

See N 401 ff. and N 568 ff.

See for example Art. 2 para. 3 and Art. 8 RBC, Art. V UCC, Art. 3 para. 2 Swiss CopA, § 3

German UrhG and 17 U.S. Code § 101.

1476

1477

1478

1479

Chapter 6: Discussion of Selected Problems

368

are similarly interpreted and protected against translation. This problem, al-
though partially discussed in the literature, has not yet been resolved with
clear court practice. In the United States, the Court of Appeals for the 3rd Cir-
cuit in Whelan v. Jaslow1480 assessed a responsible first-instance trial court’s
decision as “not clearly erroneous”, and preserved the court’s decision to sub-
sume source code translations as potential infringements of a work. However,
the very reticent final remarks of the court left it unclear as to whether their
decision in 1986 was supposed to represent a precedent case, or whether the
grounds for appeal did not suffice to overturn the first-instance court’s ruling.
In Europe, to my knowledge, there is no precedent of a higher court on this
question. In Swiss doctrine, reformatting, for example, is not considered as
a prohibited interference or unauthorized modification in the sense of copy-
right law.1481 In the additional literature it is intensively debated to what ex-
tent translations of the source code are copyright relevant. Some authors ar-
gue that if a translation tool was used, the final result, although expressed in
a different form of mechanical realization, would include the original’s cre-
ative achievement. All differences from the original would only result from
the translation algorithm, which did not entail a creative contribution of its
own.1482 Others are critical and instead appear to classify computer transla-
tions as classical adaptations. Accordingly, they focus on the elements involved
in the derivative and state that transformations into other forms of expression
are not covered under the author’s rights.1483

839 As Wittmer describes, the potential variety lies in the formulation of a pro-
gram, its structure and its definition.1484 One could therefore assume that, pro-
vided the decisive parameters and structures are still contained in the trans-
lated work, the processing would be forbidden because the derivative falls into
the original’s scope of protection. But according to the software companies, in
software engineering there are more ways to express the same idea or func-

Whelan Associates v. Jaslow Dental Laboratory, 797 F.2d 1222 (3d Cir. 1986); see also Bridge-

man Art Library, Ltd. v. Corel Corporation, 36 F. Supp. 2d 191 (Southern District of New York

1999).

See discussion in Staempfli Commentary to the Swiss CopA (Pfortmueller), Art. 11, N 4,

with reference to BARRELET/EGLOFF, Art. 9 N 6a.

See above N 574; see also discussion in STRAUB (2001a), 831 fn. 112; KUMMER, 203 f.; MARLY,

N 174 and 177; MOOERS, 60; HARISON, 183; NEFF/ARN, 158; ZIRN, 39 f. ; KOEHLER, 88 f.;

SAMUELSON (2012), 159; RAUBER (1992), 43.

See discussion in Staempfli Commentary to the Swiss CopA (Pfortmueller), Art. 11 N 4, with

reference to BARRELET/EGLOFF, Art. 9 N 6a.

See WITTMER, 106 f.; SAMUELSON ET AL., 2317.

1480

1481

1482

1483

1484

Chapter 6: Discussion of Selected Problems

369

tionality than in other natural sciences. The difference and creative distance
from the original software depends on the effort and the resources somebody
wants to invest.1485 At the same time, the translation often visually differs sig-
nificantly from the original, because another programming language was uti-
lized.1486 Elements in the original are therefore no longer recognizable in the
translation, although it still follows the same elaborated commands. Under the
existing practice to assess secondary works, program translations would not
be legally qualified as an undue modification, even though the person copying
the source code and entering it into a translator would not offer any personal
contribution to the outcome.1487 The assumption that computer translations
are regular edits, as suggested by a part of the doctrine, could therefore en-

danger the value of software – its content and the included know-how. Treat-
ing computer languages differently from human languages could lead to un-

founded discrimination of digital literary expressions.1488

840 I agree with the software companies that there are no grounds to differentiate
between a linguistic translation and an imitation of a literary command in the
source code. According to the precedent Signo Trading International v. Gor-

don1489, in order to legally evaluate translations, the individual personal contri-

bution the translator offers in his or her work is decisive for its copyrightabil-
ity. In the case of human languages, one-to-one translations of single words
and short phrases do not represent a creative contribution that is worthy of
legal protection. Instead, an achievement beyond the “fairly mechanical
process” is required. If no such contribution is exhibited, the result is achieved
solely through purely technical or functional control elements of a translation
software, which, on its own, does not involve any human influence and conse-
quently would not result in an intellectual creation of the human mind from the
perspective of copyright. There would be no valid second-hand work to legally
assess. Further, in order to evaluate derivatives in copyright, we have to deter-
mine whether they exhibit adequate originality of their own. The fairly me-
chanical process of translation – the mere craft of translating a code line from
one programming language into another – does not suffice for this matter, as
only the rules of translation are applied, with no further achievement offered
by the translator. A different interpretation of source code translations would

See N 454 ff. and N 549 ff.; see the same opinion in: HARISON, 188 ff.

See the same reasoning in PERELMAN, 944 f.

See above, N 574, with further remarks.

See N 573 ff.

Signo Trading International, Ltd. v. Gordon, 535 F. Supp. 362 (Northern District of Califor-

nia 1981).

1485

1486

1487

1488

1489

Chapter 6: Discussion of Selected Problems

370

also be indefensible from the perspective that in classic literature the charac-
ters and plot of a work are also partially protected against imitation and copy-
ing in different work categories.1490 In the case of computer programs, as long
as a language of the same programming language family is used, the main com-
position remains, likewise, substantially unchanged.1491 If the translator does
not offer any additional personal contribution apart from the “craft of literary
translation”, the translation is too similar to the original and thus should re-
quire the consent of the original’s author.

841 In that regard, the general rules the U.S. court developed in Signo Trading In-

ternational v. Gordon1492 can be directly applied to translations of other types
of literary expression, such as translations between programming languages.
But I would further propose that the protection of translations is extended and
explicitly incorporated to computer programs and programming languages in
the national statutories and international copyright agreements. From the de-
scribed legal perspective, incorporating the legal protection of source code
translations would be stringent.

B. The Community’s Right to Profit from an Exclusive
Property

842 In the last section, the right holder’s right to control the utilization and distri-
bution of his or her creation was discussed. In exchange for this exclusionary
right, society and the market are entitled to insight and access to the pro-
tected findings.1493 Where the balance between the interests of the right hold-
ers and society is lost, and the exclusivity granted to patent holders goes be-
yond the necessary level, “it has a disturbing effect on competition.”1494 The
interviews showed how important competition is for the software industry.1495

The law tries to account for this and sets certain rules within the framework
of antitrust law and with the help of limitations in IP law. At the same time, the
software market exhibits a particularly strong exchange culture, which may
conflict with the author’s right to control utilization and distribution of his or

See the arguments in: decision of the BGH of July 17, 2013, I ZR 52/12 – Pippi Langstrumpf,

published in GRUR, 2014, 258 ff.

See N 401 ff., N 568 ff. and N 571 in particular.

Signo Trading International, Ltd. v. Gordon, 535 F. Supp. 362 (Northern District of Califor-

nia 1981).

See N 234 ff.

HILTY (2018), 1186; see also ARROW, 226 f.; COHEN/LEMLEY, 39 and 50 ff.

See N 411 ff.; see the same reasoning in LEMLEY/BURK, 90.

1490

1491

1492

1493

1494

1495

Chapter 6: Discussion of Selected Problems

371

her work. Krueger describes how the reuse of software components can be
inspiring for software engineering.1496 It helps to spread knowledge. Likewise,
the interviewed software companies emphasized that learning from other de-
velopers and exchanging know-how is important for the software industry.1497

They explained that many software components are built on previous discov-
eries.1498 Like software developers “sitting on the shoulders of giants”,1499 tech-
nical evolution as well as the quality of developments was said to be based on
a quality ladder;1500 which is path dependent. In this context, Cohen and Lem-
ley stress how important it is to grant people other than the inventor access to
developments so that these third parties can improve the existing inventions
and state of the art.1501 They propose that knowledge obtained and disclosed
within the scope of intellectual property law should be made available for de-
pendent inventors to develop improvements and introduce the new findings
to the market.1502 Similarly, Samuelson et al. state that the law should not com-
pletely forbid the derivative use of software components, and the creation of
dependent works, but instead should try to regulate how fast and under what
conditions dependent works can be introduced.1503 The suggested system is
therefore not a question of legal limitations and exemptions, but rather of de-
termining the outer borders of the scope in patent law.

843 The following section deals in more detail with the significance of path depen-
dency in software development for two specific scenarios. It discusses the ex-
tent to which patent law itself could provide rules to address the issue of de-
pendent inventions in the form of compulsory licences for standard essential
patents and incremental improvements. The legal limitations in patent law will
not be further addressed.

1. Standard-Essential Developments

844 The software companies explained that there were certain inventions covered
by absolute and exclusive rights that represented essential software compo-
nents for the software industry, such as technical necessities or engineering

KRUEGER, 131 ff.

See N 448 ff.

See N 458 ff. and N 567 ff.

See SCOTCHMER (1991), 29 ff.; SCOTCHMER (2006), 127 ff.

SCOTCHMER (2006), 133.

COHEN/LEMLEY, 23 ff.

COHEN/LEMLEY, 37 f.

SAMUELSON ET AL., 2380 f.

1496

1497

1498

1499

1500

1501

1502

1503

Chapter 6: Discussion of Selected Problems

372

standards. The technical solution contained in these components represents
the most efficient and reasonable way of tackling a problem, or it may even
represent the one available technical option. Although the developers ex-
plained that they can partially bypass a proprietory technical solution and find
an alternative, they emphasized that there were certain technologies that they
could simply not forgo.1504 This problem is compounded by the fact that stan-
dardized processes and tools are very common in software engineering, and
sometimes they underlie a patent. If standards are monopolized with an ex-
clusive property right, other market participants are severely restricted, pos-
sibly even completely impeded during software development and commer-
cialization. According to the interviewed companies, in the area of software
engineering, the problem of patented basic inventions currently presents itself
particularly in designing web shops and in the development of smartphones
with suitable operating systems. Lemley explains the issue in simple terms:
“Telephones talk to each other, the Internet works, and hairdryers plug into
electrical sockets because private groups have set ‘interface’ standards, allow-
ing compatability between products made by different manufacurers.”1505 The
rules governing IP would therefore have a significant impact on standardiza-
tion.1506 The interview study showed that it would be important for software
developers that standard-essential patents and other protected knowledge of
industrial standards became better accessible on downstream markets, and
could be used through a facilitated mechanism. Further, the interviewed com-
panies highlighted that, as the computer science is still rather young, advanc-
ing it is still significant for science itself as well as for the society that should
profit from it. Hence, some of the software companies suggested that right
holders of a standard essential patent should be forced to grant access to their
invention, for example through compulsory licensing. It will be discussed be-
low how antitrust law has already made efforts to address this problem around
standard essential inventions, either by indirect restraint to license or by order
to act. In the following, it is discussed to what extent it would be appropri-
ate to provide specific mechanisms in patent law to limit the claims of patent
holders which are likewise rooted in patent law.

See N 402 f., N 512 ff., N 570 f. and N 577 ff.; see also discussion in KLEMPERER, 115 and 127;

HEINEMANN (2002), 171 f. and 519 ff.; SCHWARZ/KRUSPIG, 43 f.; LEMLEY (2002), 1891 and 1895.

LEMLEY (2002), 1893.

LEMLEY (2002), 1895.

1504

1505

1506

Chapter 6: Discussion of Selected Problems

373

a) Types of Standards

845 Before engaging in a legal debate, I would first like to take a closer look at the
concept of standards. As Bodewig explains, practices often rely on industry

standards, that is, technical processes or systems that are uniformly applied in
certain product or service markets. They are specifically designed to eliminate
or reduce incompatibilities between different systems and vendors in order to
ensure similar principles or simply to make the best technology available to
the market.1507 Standardization processes build on the idea that the whole in-
dustry should agree on one common procedure.1508 Standards can be set for-
mally by a certain body, usually an association or standard-setting organiza-
tion for a specific national, regional or international territory, known as
organizational standards.1509 Standards can also develop on the basis of actual
circumstances prevailing in a certain market.1510 “If a product or process is
considered by market participants to be the best or even without alternative
and is (almost) exclusively used over time, a de facto standard is established”.1511

Both organizational and de facto standards are present and well-established in
software science. Where these standards, cumulative innovation, and (multi-
ple) blocking patents meet, the patents may start impeding innovation. Shapiro
in this context speaks of a patent thicket, “a dense web of overlapping intellec-
tual property rights that a company must hack its way through in order to ac-
tually commercialize new technology.”1512 This thicket can quickly lead to a
predicament. As Shapiro explains, in a situation where manufacturers are
likely to stand on a land mine, they either have to “lose their corporate legs”
being forced to pay disproportionate royalties on patents they could have in-
vented around, or avoid the minefield altogether, meaning they will refrain

BODEWIG, 626 f.; KATZ/SHAPIRO, 109 f.; SOMMERVILLE, 706 ff.; BAUKNECHT/ZEHNDER, 273;

WIEBE, 23 and 439 ff.; HEINEMANN (2002), 520 f. SCHWARZ/KRUSPIG, 43 f.; ULLRICH/

HEINEMANN, N 37a.

See also above, N 736.

HILTY/SLOWINSKI, 782; LEMLEY (2002), 1899.

See the European Committee for Standardization's "Principles and Guidance for Licensing

Standard Essential Patents in 5G and the Internet of Things (IoT), including the Industrial

Internet" or the European Telecommunications Standards Institute's "Long Term Evolu-

tion Standards".

HILTY/SLOWINSKI, 782; see also LEMLEY (2002), 1899.

SHAPIRO, 120; see similar discussion in LEMLEY (2017), 908 f. and 928 f.; WIEBE, 439 ff.

1507

1508

1509

1510

1511

1512

Chapter 6: Discussion of Selected Problems

374

from introducing products in this industrial field due to a fear of holdup.1513 The
limited or lacking access to patented standard essential innovations may thus
result in market failure.

b) The Antitrust Approach

846 Fortunately, the problem of possible market failure has not gone undetected.
Jurisprudence as well as certain national and regional trade organizations have
recognized this issue. The European Commission in the cases of European

Commission v. Samsung1514 and European Commission v. Motorola1515 intro-
duced the so-called essential facilities doctrine to software patent law which
aims to enable the use of a protected fundamental development, if society can
otherwise not obtain access.1516 Legally, the European Commission based their
intervention against the patent holder on a preliminary view, a statement of
opinion before a formal ruling is issued, that both Motorola and Samsung seek-
ing and enforcing an injunction against Apple in Germany on the basis of mo-

SHAPIRO, 125 f.; see also LEMLEY/SHAPIRO, 1940, with further references; SCHWARZ/KRUSPIG,

44 f.; see also discussion in HEINEMANN (2002), 520 f., with a different terminology but dis-

cussing the same problem.

European Commission, decision of April 29, 2014 (case no. 39939) – Samsung, involving or-

ganizational standards.

European Commission, decision of April 29, 2014 (case no. 39985) – Motorola, involving or-

ganizational standards.

The essential facilities doctrine had previously already been established for several other

monopoly fields, such as de facto obstruction of access to certain facilities. See for exam-

ples of privileged access to essential inputs or natural resources, such as important tech-

nologies (e.g. decision of the Judgment of the Court of First Instance of December 12, 1991

[T-30/89] – Hilti v. Commission), an established distribution and sales network (e.g. deci-

sion of the ECJ of February 13, 1979 [C-85/76] – Hoffmann-La Roche v Commission), costs

and other impediments, for instance resulting from network effects faced by customers

switching to a new supplier (decision of the ECJ of February 14, 1978 [C-27/76] – United

Brands v. Commission). It was further extended to intellectual property law where there

was no actual or potential substitute on which competitors in the downstream market

could rely so as to counter the negative consequences of the refusal on the dominant un-

dertaking, for example copyright law (e.g. decision of the ECJ of April 6, 1995, [joined cases

C-241/91 P and C-242/91] – Radio Telefis Eireann [RTE] and Independent Television Publi-

cations LTD [ITP] v. Commission [Magill]. See also discussion regarding essential facilities

and antitrust law in HEINEMANN (2002), 502 ff., particularly 510 ff. and 521 f.; WOLFF, 157 ff.

See also the Guidance Paper of the European Commission on Abusive Exclusionary Con-

duct by Dominant Undertakings regarding further information on their take on the refusal

to deal and the essential facility doctrine.

1513

1514

1515

1516

Chapter 6: Discussion of Selected Problems

375

bile phone standard essential patents amounted to an abuse of a market dom-

inant position prohibited by EU antitrust rules. The European Commission
noted in its press release on the Motorola case1517 that while recourse to in-
junctions would be a possible remedy for patent infringements (as advocated
by Samsung and Motorola), such conduct may be abusive where standard es-
sential patents were concerned and the potential licensee would be willing
to enter into a licence on Fair, Reasonable and Non-Discriminatory terms (so-
called FRAND terms). The Commission considered that in such scenarios dom-
inant patentees of standard essential innovations should not have recourse to
injunctions involving prohibition to sell the product infringing the patent in
order to distort licensing negotiations and impose unjustified licensing terms
on patent licensees. Therefore, if Motorola did not grant licences to the other
market participants, the competition authorities might judge this as a sanc-
tionable act under competition law.1518 The Commission hereby transferred its
practice in settling the Rambus-case1519 in the field of patented computer chips
to software, and at the same time adopted the practice of the German Federal
Court of Justice in 20091520 as well as the long-standing practice in the United
States1521, in which the monopoly-like position of patent holders in the field of
software is countered by means of antitrust law. As, in the cases under review,
Motorola and Samsung decided to cooperate after the release of the European
Commission’s preliminary assessment, and, thus, granted its competitors ac-
cess to the inventions, no formal ruling was made.

For the full press release of May 6, 2013, on the Motorola case, see <http://europa.eu/

rapid/press-release_IP-13-406_en.htm> (retrieved September 6, 2021).

European Commission, decision of April 29, 2014 (case no. 39985) – Motorola; see also ap-

plication of antitrust law for the disclosure of interfaces and interoperability information

in: decision of the ECJ of December 17, 2007 (T-201/04) – Microsoft Corp. v Commission

of the European Communities, as well as the previous case in front of the European Com-

mission: European Commission, decision of March 24, 2004 (case no. COMP/C-3/37.792)

– Microsoft, comment in THOUVENIN (2008b) and HEINEMANN (2005); see also general dis-

cussion regarding antitrust law and interfaces in HEINEMANN (2002), 514 ff.; United States v.

Microsoft Corp., 253 F.3d 34 (Columbia District Court Cir. 2001).

European Commission, decision of December 9, 2009 (case no. COMP/38.636) – Rambus.

Decision of the BGH of May 6, 2009, KZR 39/06 – Orange-Book-Standards, published in:

GRUR, 2009, 694 ff., which involved a de facto standard.

See for example Associated Press v. United States, 326 U.S. 1 (1945); Lorain Journal Co. v.

United States, 342 U.S. 143 (1951); Otter Tail Power Co. v. United States, 410 U.S. 366 (1973);

RSA Data Security, Inc. v. Cylink Corp., Civ. no. 96-20094 SW., 1996 WL 107272 (Northern

District Court of California 1996); see also WALLER regarding new markets such as software

and social media.

1517

1518

1519

1520

1521

Chapter 6: Discussion of Selected Problems

376

https://ec.europa.eu/commission/presscorner/detail/en/IP_13_406
https://ec.europa.eu/commission/presscorner/detail/en/IP_13_406

847 In Huawei Technology Co. Ltd. v. ZTE Corp., ZTE Deutschland GmbH,1522 the Eu-
ropean Court of Justice confirmed the Commission’s argument that the abuse
of patent rights, in particular the refusal of licensing, may in particular cases
constitute misconduct under antitrust law. The dispute between Huawei, the
Chinese mobile network technology company, and the Chinese company ZTE
was about ZTE’s marketing of mobile network products in Germany which in-
volved a software patented link to the 4G Long Term Evolution standard. In
2009, Huawei made a commitment to the European Telecommunications
Standards Institute, a standard-setting organization at European level, to li-
cense a standard-essential declared European patent it held to the Long Term
Evolution standard to other parties on FRAND terms. In accordance with this
engagement, the parties entered into negotations to conclude a licensing
agreement for Huawei’s patent, but did not succeed. Thereupon, Huawei filed
an injunction at the Dusseldorf Regional Court against ZTE for the rendering
of accounts, the recall of products, and an award of damages based on an al-
leged patent infringement. For clarification purposes, the Court referred a set
of questions to the European Court of Justice, who ultimately held that the re-
fusal to license under FRAND conditions may constitute a violation of antitrust
law in two ways: Firstly, with the existence of a standard-essential patent the
patentee could prevent competitors from manufacturing downstream prod-
ucts. On the other hand, the FRAND commitment created legitimate expecta-
tions on the part of third parties that the owner of the standard-essential
patent would in fact grant licences on such terms. Even if the owner of a stan-
dard-essential patent, like every right holder, must have the possibility to take
legal action against infringers, they are obliged to account for special circum-
stances, if they have given an irrevocable FRAND commitment. With regard to
the latter point, the European Court of Justice identified a number of specific
steps necessary to legitimate a right holder’s application for an injunction so

Decision of the ECJ of July 16, 2015 (C-170/13) – Huawei Technology Co. Ltd. v. ZTE Corp.,

ZTE Deutschland GmbH.

1522

Chapter 6: Discussion of Selected Problems

377

they would not fall under the provision against abuse of dominance.1523 The
Court further held that patented inventions that were included in the collec-
tion of a standard-setting organization should be considered as standard-es-
sential patents, because they rendered its use indispensable to all competitors
who envisaged manufacturing products that complied with the standard to
which it was linked.1524 In passing, the Court also addressed the circumstance
that the German Orange-Book-case, on the other hand, contained a de facto
standard that was not based on a FRAND declaration but on an established
licensing program of the patent owner.1525 Accordingly, both, the standards
imposed by organisations as well as the de facto standards were determined
as possible subjects of standard-essential patents to the extent that either a
FRAND declaration or an established licensing program with additional com-
mitments towards the seeking licensee were provided.

848 To complete the short tour through antitrust law, it is worth taking a glance at
the United States. Here we can observe a two-part practice in dealing with
standard-essential technologies. On the one hand, the U.S. Federal Trade
Commission, like the European practice, regards the enforcement of a patent
in an injunction action against a FRAND declaration towards a standard-set-

Firstly, prior to bringing that action, the proprietor has to alert the alleged infringer of

the infringement complained about by designating that patent and specifying the way in

which it has been infringed. Secondly, the infringer must express their willingness to con-

clude a licensing agreement on FRAND terms. Thirdly, the proprietor has to present to

that infringer a written offer for licensing, in which they specify the terms, in particular

the royalty and the way in which it was calculated. Fourthly, the infringer has to respond

diligently to that offer and in accordance with recognized commercial practices in the

field as well as in good faith, which must be established on the basis of objective factors

and which implies, in particular, that there are no delaying tactics. Further, if the infringer

is using the teachings of the patent in dispute before a licensing agreement has been con-

cluded, the implementer must provide appropriate security in respect of its past and fu-

ture use. Finally, where the parties have not reached an agreement on FRAND terms fol-

lowing the infringer's counter-offer, they may request that an independent third party

determines the scale of the royalty fees. As the further details of the ruling are not rele-

vant for this thesis, I refer to the specialist literature for further information on the sub-

ject: HEINEMANN (2015); MAMANE; PICHT (2018a and b); HILTY/SLOWINSKI; BANASEVIC; KOERBER;

MAUME; KILLICK/SAKELLARIOU; PETIT.

Decision of the ECJ of July 16, 2015 (C-170/13) – Huawei Technology Co. Ltd. v. ZTE Corp.,

ZTE Deutschland GmbH, c. 47.

Decision of the BGH of May 6, 2009 (KZR 39/06) – Orange-Book-Standards, published in:

GRUR, 2009, 694 ff.

1523

1524

1525

Chapter 6: Discussion of Selected Problems

378

ting organization as anti-competitive behaviour.1526 In a more recent case of
2019, the Northern District Court of California was able to review the FTC’s
practice in the Qualcomm case,1527 in which no formal FRAND declaration was
made but instead Qualcomm had stopped licensing its de facto standard tech-
nology to competitors. The court came to the conclusion that Qualcomm’s re-
fusal to license its standard-essential invention to its competitors impeded the
competitors’ ability to sell modem chips externally or at all, promoted their
market exit, and delayed their entry. Qualcomm’s refusal to license rivals had
further limited original equipment manufacturers’ chip supply options, which
had enabled Qualcomm’s anti-competitive conduct to require unreasonably
high royalty rates from the original equipment manufacturers. The court held,
inter alia, that Qualcomm should make exhaustive standard-essential patent
licences available to modem-chip suppliers on FRAND terms and had to sub-
mit to arbitral or judicial dispute resolution to determine such terms. Sec-
ondly, and contrary to the aforementioned European practice, the U.S. prac-
tice further provides any person who is dependent on a standard-essential
patent with an actionable civil claim to enforce the standard-essential paten-
tee’s declaration to a standard-setting organization and guarantee that the
patentee offers their invention on FRAND terms to third parties.1528 Dogmat-
ically, this is constructed on the basis of an (implied) third-party contract;
the patent owner’s refusal to license a third party may cause this potential li-
censee to sue the patentee as a third-party beneficiary, while the standard-
setting organization’s claim against the owner remains separate. The third
party’s position relative to the standard-setting organization allows them to
seek FRAND terms in the capacity of the intended beneficiary of the patent

See for example: Decision of the Federal Trade Commission in the matters of MOTOROLA

MOBILITY LLC and GOOGLE INC. of July 23, 2013, docket no. C-4410, available at

<https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130724googlemo-

torolado.pdf> (retrieved June 16, 2019); decision of the Federal Trade Commission in

the matters of Robert Bosch GmbH of April 23 2013, docket No. C-4377, available at

<www.ftc.gov/sites/default/files/documents/cases/2013/04/130424robert-

boschdo.pdf> (retrieved September 6, 2021). This practice is partly based on the 1995 and

2017 revised Antitrust Guidelines for Licensing Intellectual Property (see U.S. DEPARTMENT

OF JUSTICE/FEDERAL TRADE COMMMISSION).

Federal Trade Commission v. Qualcomm Incorporated, case No. 17-CV-00220 (Northern

District Court of California 2019).

Microsoft Corp. v. Motorola, Inc., 696 F.3d 872 (9th Cir. 2012); TCL Communication Tech-

nology Holdings, Ltd. v. Telefonaktiebolaget LM Ericsson, case no. 14-341, 2017 WL 6611635,

Central District Court of California 2017).

1526

1527

1528

Chapter 6: Discussion of Selected Problems

379

https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130724googlemotorolado.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130724googlemotorolado.pdf
http://www.ftc.gov/sites/default/files/documents/cases/2013/04/130424robertboschdo.pdf
http://www.ftc.gov/sites/default/files/documents/cases/2013/04/130424robertboschdo.pdf

owner and the agreement with the standard-setting organization.1529 The third
party can hereby force the patentee to ‘voluntarily’ submit to the licensing
terms promised to a standard-setting organization, and, thus, to proffer li-
cences consistent with the commitment made.1530 FRAND licensing hereby be-
comes a legally enforceable civil obligation on which third parties can rely. In
view of this U.S. case law, the solution to a civil claim which is enforceable by
way of a lawsuit only recently found its way into English common law jurisdic-
tion.1531 In both cases, the courts held that by means of a fictitious contract in
favour of third parties, the holders of standard-essential patents had made a
binding contract with their FRAND commitment to the European Telecommu-
nications Standards Institute, that third parties could equally invoke to achieve
a licence agreement. American jurisprudence regarding actionable claims has
therefore already spilled over into common law in Europe. The double-track
approach described in common law, using antitrust law to educate patent
holders and offering a civil claim based on contract law to third parties to ob-
tain a licence on FRAND terms, as Hilty and Slowinski rightly point out, merges
logically.1532 The common law courts have hereby constructively expanded the
portfolio of possible measures in cases of standard-essential patents.

849 As a preliminary conclusion, the European and U.S. competition authorities
and competent courts have recognized the importance of securing access to
standard-essential patents. In dealing with this problem, most of the argu-
ments so far have been based on an antitrust licensing obligation, due to abuse
of market power, in connection with FRAND declarations for organizational
standards and, sporadically, also to an established licensing program in cases
of de facto standards.1533 Following the approach advocated in this thesis, the
standing practice concerning standard-essential patents may be analogously
applied to software components such as algorithms, source code elements and
specific functions, some of these already having been established as organiza-
tional standards or presented as de facto standards. In its result, the antitrust
course seems reasonable. However, the exclusionary effect of a standard-es-
sential patent is not limited to a possible abuse of market power. As Heine-
mann emphasizes in a different context, an IP right would not necessarily

See RAGAVAN/MURPHY/DAVÉ, 93 and 94; LEMLEY/SHAPIRO, 1136 ff.

Microsoft Corp. v. Motorola Inc., 696 F.3d 872 (9th Cir. 2012), 12109.

Unwired Planet International Ltd v Huawei Technologies Co Ltd, decision of the EWCA of

October 23, 2018 (EWCA Civ. 2344), published in RPC, 2018, 757 ff.; Apple Retail UK Ltd. v.

Qualcomm (UK) Ltd., decision of the EWHC of May 22, 2018 (EWCA Pat. 1188).

HILTY/SLOWINSKI, 786.

HEINEMANN (2015), 857; WALLER, 1772 f.

1529

1530

1531

1532

1533

Chapter 6: Discussion of Selected Problems

380

cause a dominant market position. Rather, this case would be quite rare, which
is why intellectual property law is not subject to systematic control on the ba-
sis of the prohibition of abuse under antitrust law.1534 To resolve the problem of
standard-essential patents, the abuse of a dominant position might hence not
represent a sound anchor point. Rather, it is inherent that intellectual prop-
erty rights, especially patents, as legally created exclusionary rights, can af-
fect other market participants – neighbouring markets or the same one – and
that these impacts may have an even more severe effect in the case of stan-
dard-essential inventions.1535 Since the unique market position represents the
intended outcome of monopolizing patent rights, in my opinion – and contrary
to the competition commissions and courts – the negative effects patent reg-
ulation may entail should likewise be solved by patent law, and not with a de-
tour around antitrust law.1536 The great advantage of this approach from a legal
point of view would be that one would not have to carry out complicated mar-
ket delineations and prove that new and similar technical developments were
prevented by an abusive act.1537 instead, a systemic path would be followed.

c) The Patent Law Approach

850 Similar to what the interviewed software companies proposed,1538 I would like
to suggest a model of compulsory licences for standard essential develop-
ments in patent law. The mechanism of compulsory licences was introduced
to achieve a balance between the patentee’s right and the societal need for a
product or process. If a patent holder is unwilling to license their invention,
compulsory licences substitute a licensing agreement between them and a po-

HEINEMANN (2006), 706; see also a statement of the European Commission, saying that legal

monopoly-like rights do not necessarily have to result in predatory conduct (Guidance Pa-

per of the European Commission on Abusive Exclusionary Conduct by Dominant Under-

takings, fn. 2).

Similarly, Hilty and Slowinski conclude that "the disadvantage of recourse to standards

outside patent law and in particular to antitrust regulations lies primarily in the fact that

these cannot adequately address the specific problem of [standard essential patents] in

their general form“ (HILTY/SLOWINSKI, 786).

See similar thoughts in HILTY (2018), 1190 f.; SAMUELSON ET AL., 2411; MERGES/NELSON, 840,

with further references; HARISON, 44 f. and 116; HILTY/SLOWINSKI, 786; see also discussion

in ULLRICH (1996), 565 ff.

Heinemann criticized this aspect in the praxis of the European Commission (see

HEINEMANN [2005], 74 f.; ULLRICH/HEINEMANN, N 58 ff. and 61).

See N 577 ff.

1534

1535

1536

1537

1538

Chapter 6: Discussion of Selected Problems

381

tential licensee in the form of an authoritative decision.1539 The idea of applying
compulsory licences to patent law is not far-fetched. Already today, the heavily
codified international patent law provides certain rules according to which
patent holders can be obliged to grant third parties rights to use.1540

aa) Based on a Superior Public Interest

851 Such interference in the patent holder’s exclusive rights is in general only jus-
tified if there is a superior public interest in it. The term ‘superior public inter-
est’ represents an indeterminate legal term and must be specified for each in-
dividual case.1541 We can, however, only speak of a public interest if the need
for use has a positive effect on the general public or the market and does not
solely serve the individual dependent inventor who wants to use a patented
invention.1542 Again, we may adopt some learnings from the practice in an-
titrust law, where the European Commission argued in IMS Health v. NDC

Health that in order to install a balance between the interests of an IP owner
and free competition, the “latter should be given precedence over the inter-
ests of the IP owner where refusal to grant a licence prevents the development
of the secondary market to the detriment of consumers”.1543 The interests of ‘a
secondary market’ may hence amount to relevant public interests. In general,
the public interest may encompass technical, economic and socio-political as
well as medical aspects.1544 However, in practice, its application has been
largely equated with public health or measures against risks threatening the
latter. For this reason, compulsory licensing in a public interest, if applied at

RAGAVAN/MURPHY/DAVÉ, 108, with further references; WOLFF, 20 f.; BORNHAUSER, N 259 f.

See Art. 8 in conjunction with Art. 31 and revised Art. 31bis TRIPS Agreement. See also

national provisions in Art. 32, 36 and 40 ff. Swiss PatG, § 24 and 85 f. German PatG, Art.

L613-12 ff., Art. L613-15, Art. L613-17 ff. and Art. L613-19 f., Art. L623-17 French IP Code.

In contrast to other patent statutes, the U.S. patent code itself does not include a gen-

eral compulsory licensing provision, but instead restricts their use to particular domestic

statutes on individual thematic areas, such as plant variety protection and atomic energy.

Decision of the Swiss BPatGer of June 7, 2012, case no. O2012_021, c. 15; decision of the

BGH of June 3, 1970, X ZB 10/70 – Cafilon, published in GRUR, 1972, 471 ff.; see also WOLFF,

26.

TROLLER (1985), 856; WOLFF, 27.

Decision of the ECJ of April 29, 2004, C-418/01 – IMS Health/NDC Health, c. 48.

Decision of the BGH of July 13, 2004, KZR 40/02 – Standard-Spundfass, published in GRUR,

2004, 966 ff., c. III.1; decision of the German Patent Court of September 6, 2018, 3 LIiQ 1/

18 (EP); see also WOLFF, 29.

1539

1540

1541

1542

1543

1544

Chapter 6: Discussion of Selected Problems

382

all, has been practically limited to ensuring worldwide availability of life-sup-
porting drugs, such as AIDS therapies, and addressing hazards to public safety
with the help of environmental protection legislation.1545

852 The applied scope of interpretation of the term superior public interest has
thus been rather narrow in the jurisdictions examined.1546 In this context, with
regard to the latest developments and today’s innovation market, I expect that
in the near future a further significant increase in the number of software in-
novations in the healthcare and public safety sectors is going to occur. The
Swiss State Secretariat for Education likewise emphasizes that Switzerland
currently specializes above-average in health-related technologies, such as
pharmaceuticals and medical technology.1547 The significance of Switzerland in
the future medical and biotechnology market is likely, considering that
Switzerland is among the OECD’s top R&D spenders in software.1548 With more
software inventions to come in this field, the governments and patent author-
ities will get another opportunity to assess the chances of compulsory licences
in health-related patent law, as the societal interest in gaining access to dis-
closed know-how becomes ever more vital. With increased research activity
and market development, the concerns of the market and society for uniform
criteria and guidelines increases the need for consolidation in the form of
standardization, which will become particularly important for the highly reg-
ulated field of public health and security. It should thus lie in the superior pub-
lic interest for public health to foster standardization and to ensure this stan-
dardization with compulsory licences.

853 But public health and security should not represent the sole relevant factors
in determining the public interest. In principle, we could also subsume macro-

economic considerations and consider the classic functionalities of IP rights.1549

It would, for instance, be economically reasonable to facilitate access to an in-

See for examples: for Switzerland Art. 40b Swiss PatG for biotechnological research tools,

Art. 40c Swiss PatG regarding diagnostic tools for humans, and Art. 40d Swiss PatG for

pharmaceutical export; for the European Union: Regulation (EC) No. 816/2006 of the Eu-

ropean Parliament and of the Council of 17 May 2006 on compulsory licensing of patents

relating to the manufacture of pharmaceutical products for export to countries with pub-

lic health problems, Art. 13-17 of the Treaty establishing the European Atomic Energy

Community; for the United States: the Clean Air Act, governmental march-in rights in the

Bayh-Dole Act, the Food & Drug Act, the Public Health Price Protection Act.

See the same perception in WOLFF, 24.

SWISS STATE SECRETARIAT FOR EDUCATION, 90.

SWISS STATE SECRETARIAT FOR EDUCATION, 38.

See also discussion in BGE 139 III 110, c. 2.3.3.

1545

1546

1547

1548

1549

Chapter 6: Discussion of Selected Problems

383

novation, if the exclusionary position of a patent holder influenced an indus-
trial sector in such a way that market participants could no longer perform
their work in a timely and demand-oriented manner. The goal of an interven-
ing measure would thus be to allow market participants to provide their ser-
vices efficiently by granting them access to basic technologies, and through
this to reduce transaction costs. Particularly in the young software market, we
can observe the need of users and downstream markets to use standard es-
sential inventions at affordable and fair prices, as software developers either
have to circumvent excessive hurdles or pay proportionally overpriced licence
fees. Moreover, as already established by the English and Welsh Court of Ap-
peal, the objectives of intellectual property rights involve society’s public in-
terest in profiting from an invention or work covered under exclusionary
rights. “As a society we want the best, most up to date technology to be incorpo-

rated into the latest standards and that will involve incorporating patented in-

ventions. While the inventor must be entitled to a fair return for the use of their

invention, in order for the standard to permit interoperability the inventor must

not be able to prevent others from using the patented invention incorporated in

the standard as long as implementers take an appropriate licence and pay a fair

royalty. In this way a balance is struck, in the public interest, between the in-

ventor and the implementers.” 1550 From an intellectual property point of view,
with this contemporary notion, compulsory licences would be permissible in
the public interest if standardization significantly increased or ensured effi-
ciency and meant that users (and dependent secondary markets) could pro-
portionately participate in the provided advantages of an IP system. At the
same time, the patent holder would be able to receive appropriate remuner-
ation. This would represent a macroeconomic and also, from the perspective
of IP law, balanced solution for all involved interests. It would therefore be ap-
propriate to extend the interpretation of the concept of superior public inter-
ests as explained. A useful aspect of this extended definition would be that it
could easily be integrated into the existing, heavily codified, patent law pur-
suant to Art. 8 in conjunction with Art. 31 and 31bis TRIPS Agreement, making
a revision of national or regional legislation redundant. In addition, the exist-
ing regulations already provide for individual provisions on how compulsory
licences should be implemented in detail.

Unwired Planet International Ltd v Huawei Technologies Co Ltd, decision of the EWCA of

October 23, 2018 (EWCA Civ. 2344), published in RPC, 2018, c. 83; see also ARROW, 226 f.;

HEINEMANN (2006), 705 f.

1550

Chapter 6: Discussion of Selected Problems

384

bb) To Mitigate Negative Effects of Patenting

854 But even if the current narrow scope of public interests were to be maintained,
there is another, almost forgotten, legal basis in international law that allows
compulsory licensing. Art. 5 lit. A Paris Convention states that the contracting
states are free to implement a model that enables them to give users licences,
if the negative effects of patenting could hereby be mitigated. In other words,
countries are free to implement a system of compulsory licences in patent law
if the monopoly-like patent rights show negative impacts of some kind. The
potentially severe negative outflows of patents in the form of market obstacles
to standard essential inventions in software engineering, as outlined and con-
firmed by the standing practice in antitrust law, involve relevant market im-
pacts and may qualify as such ‘negative effects of patenting’ under the provi-
sion.1551 Compulsory licences would hence represent a potential solution
compliant with the international patent regulation under Art. 5 lit. A Paris
Convention. The provision offers the national legislators a feasible regulatory
mechanism that does not require a lot of effort for implementation.

cc) Notes on the Possible Licensing Procedure and Terms

855 I would like to propose a system in which software developers could apply for
a right to use standard essential innovations at the locally competent patent
authority or with which they obtain an actionable civil claim to achieve a li-
cence to use a standard essential innovation. The subject matter, that we
might consider as a standard-essential patent, could likewise be derived from
the practice in antitrust law. In this context, it is important, as explained above,
that on the one hand there are organizational standards set in a formal process
by standardization organizations and accepted by market providers through a

However, they would not necessarily have to be combined with a dominant market posi-

tion, as is currently the case under antitrust practice.

1551

Chapter 6: Discussion of Selected Problems

385

declaration of accountability,1552 while, on the other hand, there are also de
facto standards which develop from practical circumstances and either con-
stitute the only available or the most expedient option.1553 Both types of stan-
dards should be integrated into a potential system of compulsory licences.
However, in the case of de facto standards, it should be further evaluated
whether, as in the case of the FRAND practice, a firmly established licensing
program of a patent holder or some other kind of contractual commitment
should be required. Otherwise we would have to delimit when a patent holder
who distributes their own patented innovations him-/herself could be obliged
to grant a compulsory licence even without an externally affecting conduct.

856 If a statutory basis for compulsory licensing is set, the requirements and li-
cence conditions should be regulated at the same time. Unfortunately, the
Paris Convention does not provide any further information on the conditions
for obtaining a compulsory licence or the conditions of use. There are, how-
ever, detailed provisions on the terms of compulsory licensing in the TRIPS
Agreement and the the latter adopting national regulations that could be ap-
plied by analogy: Regarding the procedure to obtain a compulsory licence,
Art. 31 lit. i and j TRIPS Agreement governs that both the granting of a right to
use and the compensation to pay for it, are actionable. However, receiving a
statutory compulsory licence from a court or authority is subsidiary to an in-
dependently reached contractual solution with the patent holder. Only if the
patent holder within a reasonable period of time denies their authorization
with market conditions, or cannot be found, can one apply for a governmental

See N 845; organizational standards were accepted by the competition authorities in: Eu-

ropean Commission, decision of April 29, 2014 (case no. 39939) – Samsung; European Com-

mission, decision of April 29, 2014 (case no. 39985) – Motorola; decision of the ECJ of

July 16, 2015 (C-170/13) – Huawei Technology Co. Ltd. v. ZTE Corp., ZTE Deutschland GmbH

and decision of the Federal Trade Commission in the matters of Motorola Mobility LLC and

Google Inc. of July 23, 2013, docket no. C-4410, available at <https://www.ftc.gov/sites/de-

fault/files/documents/cases/2013/07/130724googlemotorolado.pdf> (retrieved June 16,

2019); decision of the Federal Trade Commission in the matters of Robert Bosch GmbH

of April 23, 2013, docket No. C-4377, available at <www.ftc.gov/sites/default/files/doc-

uments/cases/2013/04/130424robertboschdo.pdf> (retrieved September 6, 2021); Un-

wired Planet International Ltd v Huawei Technologies Co Ltd, decision of the EWCA of Oc-

tober 23, 2018 (EWCA Civ. 2344), published in RPC, 2018; Apple Retail UK Ltd. v. Qualcomm

(UK) Ltd., decision of the EWHC of May 22, 2018 (EWCA Pat. 1188).

See N 845; de facto standards were accepted by the competition authorities in: Decision of

the BGH of May 6, 2009, KZR 39/06 – Orange-Book-Standards, published in GRUR, 2009,

694 ff.; Federal Trade Commission v. Qualcomm Incorporated, case no. 17-CV-00220-LHK

(Northern District Court of California 2019);

1552

1553

Chapter 6: Discussion of Selected Problems

386

https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130724googlemotorolado.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130724googlemotorolado.pdf
http://www.ftc.gov/sites/default/files/documents/cases/2013/04/130424robertboschdo.pdf
http://www.ftc.gov/sites/default/files/documents/cases/2013/04/130424robertboschdo.pdf

right to use.1554 In cases of urgency, this step may be omitted. It certainly
makes sense to prioritize individual agreements over government interven-
tion. However, in return, a quick and efficient application or judicial process
should be established for cases in which the patent holder refuses to nego-
tiate, be it before a court of law or before a specialized authority. The ordi-
nary judicial procedure in front of state courts in patent law is likely to take
too long and not lead to the desired results in a timely and cost-effective man-
ner. In the actual procedure, the competent office would probably first have
to either establish the standard essential quality of a patent after a declaration
by a standardization organization, or declare a patent to be a de facto stan-
dard. This decision again may either have an inter partes or an erga omnes ef-
fect for future rulings. The deciding authority would further have to determine
for which territorium the compulsory licence was granted. According to Art. 31
lit. f TRIPS Agreement, authorities can predominantly authorize rights to use
for the supply of a member state’s domestic market, but only within their ju-
risdiction. In the past, courts have already considered extending the scope of
statutory licences from national to regional ones, particularly with regard to
the European Patent Organisation.1555 We should also consider the scope, dura-

tion and remuneration of the licence. According to Art. 31 lit. a, c, d and e TRIPS
Agreement, the exact scope of a compulsory licence should be determined on
a case-by-case basis. The principle of proportionality plays a major role in this
evaluation. In general, the licence shall be non-exclusive and non-assignable
to third parties. At the discretion of the deciding body, a patent could, how-
ever, be assigned entirely to a third party or expropriated in the public in-
terest, if particular welfare for society demanded it. The governing author-
ity hence has a lot of discretion, especially when dealing with potential cases
in the public interest. A right to use should be proportionate to the circum-
stances. As the European Commission clarified in its case against Microsoft,
making available certain information regarding the specifications of a program
does not amount to compulsory licensing of a source code.1556 It seems the
Commission with this statement wanted to circumscribe that where only a
fragment or a specific part of a component is necessary to meet the needs of a

See also discussion in HEINEMANN (2005), 495. If the patentee were to impose judicial pro-

hibitions on the potential licensee after the latter had tried to obtain a licence, this would

constitute an action relevant to antitrust law in accordance with previous practice on

standard-essential patents.

Decision of the German BPatG of June 7, 1991, 3 Li 1/90 – Zwangslizenz, 101 f.

European Commission, decision of March 24, 2004 (case no. COMP/C-3/37.792) – Mi-

crosoft, c. 714.

1554

1555

1556

Chapter 6: Discussion of Selected Problems

387

licence-seeking party, the whole component or whole software should not be
made available. Such an evaluation of proportionality requires not only legal
but also technical judgement. As Heinemann specified, it depends on what is
indispensable for carrying on a particular business.1557 But with regard to the
indisputable confidentiality interests of the right holder in the source code, a
clear limitation of the compulsory licence to the absolutely necessary should
be carried out on an individual case analysis and, where necessary, should be
protected with additional measures such as trade secret protection for the
compulsory licensee. Next, similarly to the practice in antitrust law,1558 the
TRIPS Agreement provides in Art. 31 lit. h that the right holder should be paid
adequate remuneration, depending on the circumstances of each case, taking
into account the economic value of the authorization. Like the FRAND terms
under antitrust law, the compulsory licence would therefore be subject to a
royalty fee. The use of the licensed subject matter is compensated, so the
patent holder is not deprived of the financial value of their patent. They can
thus further decrease their investment costs. At this point, it should be reit-
erated that in the last few years antitrust law has issued extensive case law
on FRAND-compliant conditions.1559 This could generously be transferred to
compulsory licences under patent law.

2. Incremental Improvements

857 According to the interviewed software companies, there was another scenario
where the quality ladder and path dependency was visible in software engi-
neering. The software companies believe there is a social and market potential
for ingenuity hidden in patent protected inventions, because some inventions
could be further enhanced to achieve an even greater development.1560 Al-
though these enhancements could be of great use to society and the market,
they would currently be partially impeded through patents. The companies
therefore advocated a statutory provision according to which incremental im-
provements to an innovation should be legally enabled.

858 Patents, among other things, are intended to promote the progress of science
and useful arts.1561 However, contrary to copyright, today in patent law depen-

HEINEMANN (2005), 76.

See also remark in Art. 31 lit. k TRIPS Agreement.

See above N 846, with further references to legal publications that discuss contemporary

case law.

See N 580 ff.

See Art. I sect. 8 clause 8 of the U.S. Constitution.

1557

1558

1559

1560

1561

Chapter 6: Discussion of Selected Problems

388

dent inventions with novelty character and and their own inventive strength
in general fall within the scope of the preceding patent and can thus be for-
bidden by the first patent holder.1562 According to the prevailing jurisprudence,
only if “the total of the technological changes” are beyond what the inventors
disclosed, a significant advancement is available which is able to overcome the
protection scope of a preceding patent.1563 Even if an inventor “may have fur-
ther developed the patent doctrine and the [inventor’s] further development
may even be patentable, (…) this does not lead out of the scope of the ear-
lier patent”.1564 The protective scope of a patent thus is very broad compared
with other exclusionary IP rights such as copyright. It should be pointed out
that the right of the patent holder to exploit their invention is firmly estab-
lished in law and was in principle not disputed in the interview study. How-
ever, some of the interviewed companies expressed their concern that patent
holders could abuse core technologies and artificially prevent spillovers if an
extensively wide scope of protection was assumed and enhancements were
impeded.1565 If third parties are prevented from developing their own inven-
tions by an excessively broad protection scope of somebody else’s patent, eco-
nomic progress slows down.1566 Compulsory licensing favouring incremental
improvements to existing inventions could help to maintain the balance be-
tween fostering inventions and compensating society for the patent holder’s
exclusionary rights, while also meeting the difficulties of blocking effects in
patent law. At the same time, the know-how contained in patented inventions
could be made better useable by promoting further enhancements that are of
value for society and the market.1567 Subsequently, I would therefore like to dis-
cuss a statutory possibility for dependent inventors of incremental improve-
ments to obtain a compulsory licence to use.

See above N 268.

Texas Instruments, Inc. v. United States Int'l Trade Comm'n, 805 F.2d 1558 (Fed. Cir. 1986), at

1571; similar explanation in BGE 142 III 772 c. 6.4.

See the decision of the Swiss BPatGer of December 18, 2018, O2016_009, c. 48.

See N 512 ff., N 580 ff. and N 653 f.

Same conclusion in decision of the German BPatG of June 7, 1991, 3 Li 1/90 – Zwangslizenz,

published in GRUR, 1994, 98 ff., 101 f.; see also LEMLEY/BURK, 92; HILTY (2018), 1186 ff.;

OSTERRIETH, particularly 988 f.; see also dicussion in MARBACH/DUCREY/WILD, N 215; WOLFF,

40

See similar thoughts in SCOTCHMER (2006), 132 ff. and 146 ff. regarding social value and im-

provement of ideas.

1562

1563

1564

1565

1566

1567

Chapter 6: Discussion of Selected Problems

389

a) Insufficient Regulation in Art. 31 lit. l TRIPS

859 According to Art. 31 lit. l para. i TRIPS Agreement, inventions claimed in a sec-
ond patent may obtain governmental authorization to use elements of a pre-
ceding patent if the second patent involves an important technical advance of
considerable economic significance in relation to the invention claimed in the
first patent.1568 The provision also regulates under which conditions a “depen-
dent patent” may be granted. At first glance, it may seem as if this provision
was particularly designed to solve the aforementioned problem. But on a
closer look, a number of difficulties arise:

860 According to the wording of the law, not every inventor of a dependent inven-
tion has the right to authorized use, but only a dependent patentee. In other
words, the second invention must already have received a patent of its own in
order to be able to benefit from the limitation in Art. 31 lit. l para. i TRIPS
Agreement. The application of a purely dependent invention, however, will not
have much chance if the relation to a predecessor patent is strong and obvious
– which is often the case if the invention contains an incremental improve-
ment to an existing invention and is mainly confined to it. A patent application
is unlikely to be successful, or at least would not be recommended by a (patent)
attorney to his or her client. The TRIPS-provision, or rather its implementa-
tion in the national statutes, thus does not serve as a promising aid to substan-
tiate a new patent, but rather – if a patent actually has been granted – as means
of defence against a former patent owner in civil proceedings of infringement.

861 Furthermore, according to Art. 31 lit. b TRIPS Agreement, the holder of the
later patent must first attempt to obtain a licence from the first patent holder
before seeking a state granted compulsory licence for use. This entails that the
dependent inventor inevitably is going to appear on the first patentee’s radar,
and it may be expected that the latter would seek to prohibit the dependent

See for example Art. 36 Swiss PatG, § 24 and § 85 f. German PatG, Art. L613-15 French IP

Code; in contrast to other patent statutes, the U.S. patent code itself does not include a

general compulsory licensing provision, but instead restricts their use to particular do-

mestic statutes on individual thematic areas, such as plant variety protection and atomic

energy. The European Patent Convention, as well, does not provide a provision for com-

pulsory licences. However, a dependent patentee may rely on the provisions of national

law (see decision of the German BPatG of June 7, 1991, 3 Li 1/90 – Zwangslizenz, at 101 f.

1568

Chapter 6: Discussion of Selected Problems

390

inventor from continuing its work via injunctions.1569 While this problem in
the area of standard-essential patents was partly countered in the European
Union by means of antitrust law measures, there is no established jurispru-
dence on how to deal with injunctive reliefs in the case of incremental im-
provements and dependent patents.

862 The design of Art. 31 TRIPS thus may lead to a de facto exclusion of dependent
inventors of an incremental improvement from obtaining a right to use. It can
however serve as a basis for discussion in the following to circumscribe what
an optimized regulation should entail.

b) Technical Advance

863 According to Art. 31 lit. 1 para. 1 TRIPS Agreement, the invention claimed in the
second patent shall involve an important technical advancement in relation to
the invention claimed in the first patent. The formulation “important technical
advancement” represents an indefinite legal term.

864 Fortunately, the German and Swiss provisions implementing Art. 31 TRIPS are
very similar to the international provision,1570 so we can include their jurispru-
dence to further clarify what may be subsumed under the term:

865 A decision by the Commercial Court of the Canton of Berne in 20051571 held
that the necessary important augmentation for technology would not presup-
pose an actual technological leap of progress. Instead, it could, for example,
include that the new doctrine of technology provided better means which
helped simplify or speed up a process or which was just less susceptible to in-

This impression is reinforced by the fact that, with a view to Swiss practice, the existing

provision in Art. 36 Swiss PatG has so far been used exclusively as a means of defence in

pending patent infringement proceedings: See BGE 29 II 564; BGE 42 II 269 – Transformer;

BGer of Januar 18, 1990 – Doxycyclin III, published in SMI, 1991, 198 ff.; decision of the HGer

of the Canton of Berne of July 6, 2005, HG BE 6.7.2005 – Anschlaghalter III, published in

sic!, 2006, 348 ff.

Art. 36 Swiss PatG, § 24 German PatG.

Decision of the HGer of the Canton of Berne of July 6, 2005, HG BE 6.7.2005 – Anschlaghal-

ter III, published in sic!, 2006, 348 ff., with further references; apart from this decision,

Swiss courts have only rarely been given the opportunity to apply Art. 36 PatG. This is de-

spite the fact that the regulation for compulsory licences of dependent innovations had

already been referenced in judgments of 1903: See BGE 29 II 564; BGE 42 II 269 – Trans-

former; BGer of Januar 18, 1990 – Doxycyclin III, published in SMI, 1991, 198 ff.; decision of

the HGer of the Canton of Berne of July 6, 2005, HG BE 6.7.2005 – Anschlaghalter III, pub-

lished in sic!, 2006, 348 ff.

1569

1570

1571

Chapter 6: Discussion of Selected Problems

391

terference. The advancement would lie in saving time or necessary steps, and
hence in conserving resources. The court further held that progress could only
constitute an enhancement if there was a need for a substitute in an earlier

patent. It seems as if the court with the latter argument tried to factor in that
some inventions exhibit a tangible potential for further development, while a
voluntary, ‘nice to have’ progression was not worthy of protection. However,
due to the consideration’s unfortunate wording, the court’s paraphrase could
also limit the field of application for potential enhancements to strict replace-
ments, not considering alternatives or an increase in efficiency on a voluntary
research basis simply because the older invention did not show a “need for
substitute”. I am not convinced that, from today’s perspective, the need for a
substitute as a prerequisite does justice to the present market situation and
to software as a potential field for digitalized inventions in particular. Still the
court’s consideration of a market need for progress, in casu the desire for a re-
placement, appears to have been reasonable in the specific case.

866 The Commercial Court of the Canton of Berne deliberately aligned its decision
to an older case of the German Federal Court of Justice of 1970.1572 The German
Federal Court of Justice held that in order to invoke the German provision in
§ 24 German PatG the invention had to exhibit an additional quality other than
being novel; it had to enrich the technology in order to be considered a relevant
technical progress.1573 In its decision it stated that the objects of investigation
first had to be similar in order to conduct a comparison. The new improve-
ment had to be set in an analogous technical context. Second, the new inven-
tion had to exhibit a valuable property. The new means had to be better than the

known ones – the product or method in the new teaching had to exhibit ad-
vantages over the relevant teachings previously known in the state of the art
of the according technology. Or the value of the invention could lie in the cir-
cumstance that the new doctrine did not provide the technology with better
means, but with further means, e.g. where certain means or methods have al-
ready been established on the market, but another new one emerged. Accord-
ing to the court, this case would particularly apply to medicinal products. Even
if a remedy only served as a “reserve product” that was available alongside oth-

Decision of the German BGH of February 24, 1970, X ZB 3/69 – Anthradipyrazol, published

in GRUR, 1970, 408 ff., c. 13, 14 and 18 ff.

The decision dealt with pharmaceutical patents. As a side note, the argument of substi-

tutability, to which also the Bernese court referred, seems to make more sense in this

context of pharmaceutical patents because the pharmaceutical market is much older and

more established than the software market where new alternatives and increases in effi-

ciency still evolve.

1572

1573

Chapter 6: Discussion of Selected Problems

392

ers, it could “help mankind out, if, for example, the others should fail or find
obstacles which impair their use”. It may also offer an opportunity to choose

between several technical possibilities based on criteria such as expediency
or different factual or local circumstances and needs. In the specific case of
the German Federal Court of Justice, on therapeutic drugs, the court consid-
ered that the requested valuable property could be found in a better technical

effect or in a non-analogue technical constitution.1574 With this consideration,
it opened up the application possibilities under the term “technical advance-
ment” from sought substitutes to objectively justified alternative options and
performance modifications.1575 But the German ruling contained even more: it
noted in the context of an obiter dictum that with the spread of technology in
all areas of human life even today inventions could be made for which there
was nothing “comparable” in the state of the art. The German court elaborated
with foresight that in the light of more recent developments on the technology
market, the concept of progress and its assessment by the authorities should
be deliberately kept broad and open. With the strong tendency for digitaliza-
tion,1576 the court’s statement may become particularly relevant for the field of
apparatus patents, where, in the absence of distinctly similar points of com-
parison, the concept of technical progress and the relevant criteria must be
analysed and defined anew.1577 This makes it all the more important that Art. 31
TRIPS Agreement and its implementation in national statutes not only allows
already patented inventions but also unregistered ones with incremental im-
provements. A deliberately open definition may support this.

Decision of the German BGH of February 24, 1970, X ZB 3/69 – Anthradipyrazol, published

in GRUR, 1970, 408 ff., c. 13, 14 and 18 ff.

These holdings were confirmed in further decisions in Germany: decision of the BGH of

March 14, 1972, X ZB 2/71, published in NJW, 1972, 1277 ff.; decision of the German BPatG

of May 24, 1973, 16 W 72/72 – Farbstoffbildungskomponenten II, published in GRUR, 1974,

151 ff.; decision of the German BGH of March 13, 1984, X ZR 24/82 – Chlortoluron, pub-

lished in GRUR, 1984, 580 ff.; decision of the German BPatG of August 2, 1982, W 49/80

– Technischer Fortschritt, published in GRUR, 1983, 240 ff; decision of the German BPatG

of July 12, 2002, 14 W 51/01; decision of the German BPatG of February 7, 2017, 3 Ni 20/

15. Particularly on the criterion of social usefulness, see: decision of the German BPatG of

October 20, 1994, 23 W 6/93 – Aussenspiegel-Anordnung, published in GRUR, 1995, 397.

See N 668 for further information.

For difficulties in applying for application and process claims, see BERESFORD, N 4.45 ff.;

CALAME (2006), 664; Swiss Guidelines for the Substantive Evaluation of Patent Applications,

19, with notes.

1574

1575

1576

1577

Chapter 6: Discussion of Selected Problems

393

867 In essence, the described meaning corresponds to that of incremental im-
provement as it was developed in the interviews. The software companies ex-
plained that the concept of incremental improvements should contain a qual-

itative gain and exhibit an applicable added value to existing technical

knowledge, such as better, more efficient, more effective or more flexible solu-

tions to known technical problems.1578 The improvement may also constitute a
necessity for replacement or for additional alternatives if other technological
options are outdated and no longer technically feasible, if not sufficiently
available or obtainable, or if a process is not always suitable. But further en-

hancements can also offer procedural or resource-oriented advantages, for ex-
ample an increase in efficiency.1579

868 With regard to the fact that computer science and the software market are still
evolving and are less researched than for example the pharmaceutical studies,
the interpretation of the term technical advancement by the German Federal
Court of Justice − allowing for new substantiated alternatives, performance
enhancements and novelties beyond comparable markets − seems to be better
transferable to software developments as understood in the interview series
than in the decision of the Commercial Court of the Canton of Berne. It would
be desirable if the concept of technical advancement were interpreted more
broadly in Switzerland, similar to the German case law, in order to ensure
technology neutrality and also enable new, but dependent, innovations in the
emerging software sector. With this constraint, the definition and interpreta-
tion of the term ‘technical advancement’ could be adopted for compulsory li-
censing of incremental improvements.

c) Important Advancement

869 Not all advancements would justify a compulsory licence just “important” ones.
However, this legal term is open to interpretation.

870 There is not much case law on how to interpret this criterion. According to the
Commercial Court of the Canton of Berne,1580 the term describes significant
progress, which would not just be ‘nice to have’. The technology must be ad-

See N 465 ff. and N 470 ff.

For example, if an invention would allow a process to be conducted with less effort. See for

example decision of the OLG Duesseldorf of April 17, 1980, 2 U 106/79 – Absatzhaltehebel,

published in GRUR, 1981, 45 ff., 49 f.

Decision of the HGer of the Canton of Berne of July 6, 2005, HG BE 6.7.2005 – Anschlaghal-

ter III, c. 2b, published in sic!, 2006, 348 ff., with further references.

1578

1579

1580

Chapter 6: Discussion of Selected Problems

394

vanced a great deal through the enhancement. Nevertheless, the court held,
this would not necessarily presuppose a technological leap forward; a consid-

erable, remarkable development would suffice. It appears that the court had dif-
ficulties in circumscribing what the term “important” actually involved. What
we can take from this ruling is that advancement requires a certain strength

and significance, a strength which cannot be expressed in abstract terms, but

must be outlined in each individual case in light of the state of the art and the
technical problem to be solved. It is thus context-specific.

871 Also according to the software companies, the concept of incremental im-
provement should involve some kind of “substance” and “material enhance-
ment”. The qualitative reference in the term “important” advancement here
seemed to correspond to the concept of “incremental”, i.e. augmenting im-
provement. The software companies specified that if a new idea brought an
old invention to the “next level”, such as better, more efficient, more effective
or more flexible solutions to known technical problems a potential case of in-
cremental improvement would be present.1581 The improvement must be of such

importance that the contained value and benefit for the addressed users and

market participants is evident and tangible. The dependent invention has to
stand out from the state of the art. The criterion of “important” advancement
is, although somewhat vague, able in principle to be adapted to the proposed
solution of compulsory licensing for incremental improvements and can con-
sequently be transferred to it.

d) Considerable Economic Significance

872 The third criterion, that the advancement must be of “economic significance”,
represents an indefinite legal term which is difficult to grasp. In particular, it
is disputed what economic term applies and whether business or macroeco-
nomic criteria for the benefit of the market or society should be taken into ac-
count.

873 An older jurisprudence of the Swiss Federal Supreme Court1582 held that public
interests would not be the focus when evaluating the term of technical
progress. Instead, only the concrete, individual circumstances should be con-
sidered.1583 The social aspects would already be addressed by generally allow-

See same argumentation in: SAMUELSON ET AL., 2346.

BGE 29 II 564.

BGE 29 II 564, at 577 f.; Heinemann instead seems to support the admissibility of depen-

dent inventions on the basis of the public interest (see HEINEMANN (2002), 183 fn. 282).

1581

1582

1583

Chapter 6: Discussion of Selected Problems

395

ing incremental improvements to inventions. The court instead examined with
the help of expert opinion whether the invention in question, a chair for
schoolchildren, represented real industrial significance (“réelle importance in-
dustrielle”) in comparison with other furniture of the same kind. It thus set the
dependent invention in relation to other similar products (relative comparison
method). It further specified that if the invention was particularly designed to
be used by customers or consumers – in casu schoolchildren – a judicial eval-
uation should further include considerations on the intended users’ needs.1584

On this basis, the court came to the conclusion that in the case of the chairs
for pupils, the dependent invention would indeed exhibit a relevant enhance-
ment of economic significance. The Swiss Federal Supreme Court hence in-
cluded macroeconomic aspects in its decision, while it shut out other social
considerations.

874 In contrast, the Commercial Court of the Canton of Berne1585 based its decision
exclusively on business management aspects. In particular, it took into account
whether there was a demand for the invention based on the catalogue prices
and whether the products could be used as door openers to sell other prod-
ucts from the same supplier with less effort. The court concluded in this case
that not only was there no technical need for a replacement but that this re-
placement did not constitute an economic significance that would justify a
compulsory license. Business economic aspects were therefore considered to
assess the later invention’s market potential, including its potential for effec-
tive market penetration.

875 According to Swiss case law, the economic significance could thus lie in either,
macroeconomic or business economic aspects. The inventor has to show that
his/her invention involves added value either in terms of supply or demand
markets or a positive effect on other market participants or users.

876 In comparison, the criterion of economic significance is interpreted rather
broadly in German practice, allowing both business and macroeconomic argu-

BGE 29 II 564; see also discussion in MAMANE, 31 f.

Decision of the HGer of the Canton of Berne of July 6, 2005, HG BE 6.7.2005 – Anschlaghal-

ter III, c. 2f, published in sic!, 2006, 348 ff., with further references.

1584

1585

Chapter 6: Discussion of Selected Problems

396

ments;1586 yet the criterion is also somewhat neglected in that it is seen as a
minor factor relating to the evaluation of the technical advancement. When
assessing the “success” of the invention, non-technical aspects such as eco-
nomic value, market penetration or the satisfaction of a need are taken into
account as evidence in favour or to the detriment of the required advance-
ment.1587 The criterion of economic significance, meanwhile, does not appear
to be assessed separately, independent of the latter. This neglect of the cri-
terion in German practice is not consistent with the legal wording of Art. 31
para. l TRIPS or § 24 German Patent Act that define the economic significance
as a requirement of its own. In this respect, Swiss case law is more accurate,
although still not fully clear on the interpretation of the term.

877 According to the software companies, the incremental improvement must ex-
hibit an “added value” either for the market or for society. Although this argu-
mentation favours the macroeconomic perspective, it is neither clearly pre-
scribed by law nor absolutely necessary to limit the economic concept to
either macroeconomic or business economic aspects. Both can substantiate
significance as long as they do not solely serve the dependent inventor’s inter-
ests alone, and hereby disproportionately and unduly distort the patent
holder’s exclusionary rights. A minimal external impact on the economy, other
market participants or society should be required. The criterion of economic
importance should therefore be retained.

878 With regard to demonstrability and numerical reference of the economic sig-
nificance, another holding in the ruling of the German Federal Court of Jus-
tice1588 should be taken into account. Hereafter, assessing the extent to which
a new (inventive) drug and its freedom from side effects entails positive merits
could only be achieved on the basis of several years of clinical testing. Such an

See decision of the BGH of March 14, 1972, X ZB 2/71, published in NJW, 1972, 1277 ff.; deci-

sion of the German BPatG of May 24, 1973, 16 W 72/72 – Farbstoffbildungskomponenten II,

published in GRUR, 1974, 151 ff.; decision of the German BGH of March 13, 1984, X ZR 24/

82 – Chlortoluron, published in GRUR, 1984, 580 ff.; decision of the German BPatG of Au-

gust 2, 1982, W 49/80 – Technischer Fortschritt, published in GRUR, 1983, 240 ff; decision

of the German BPatG of July 12, 2002, 14 W 51/01; decision of the German BPatG of Feb-

ruary 7, 2017, 3 Ni 20/15. Particularly on the criterion of social usefulness, see: decision of

the German BPatG of October 20, 1994, 23 W 6/93 – Aussenspiegel-Anordnung, published

in GRUR, 1995, 397.

Decision of the German BGH of February 24, 1970, X ZB 3/69 – Anthradipyrazol, published

in GRUR, 1970, 408 ff., c. 2.).

Decision of the German BGH of February 24, 1970, X ZB 3/69 – Anthradipyrazol, published

in GRUR, 1970, 408 ff., c. 13, 14 and 18 ff.

1586

1587

1588

Chapter 6: Discussion of Selected Problems

397

intensive evaluation should, according to the court, not be conducted by the
patent granting authority. With this statement the court presumably wanted
to express that, under the provision of § 24 German Patent Act, the authorities
could only make an approximate ex ante evaluation of the possible advantages
and consequences of an invention. Accordingly, an assessment for the individ-
ual case could only be made on the basis of an abstract judgement in the origi-
nal situation, without taking into account long-term observations and studies.
In the present understanding, economic significance should therefore be shown

in abstract terms for a particular context. The dependent invention’s consid-
erable economic significance must be demonstrated by the dependent inven-
tor in the individual case. This argumentation does not require empirical long-
term data, as this would be too cumbersome and the threshold for proof would
hereby be set too high. Rather the inventor of the dependent invention should
show for the specific case with substantiated economic proof and expertise
where the economic value of his or her approach lies in comparison to the
known original invention and to what extent business or macroeconomic ben-
efits may therewith be achieved.

e) Notes on the Possible Licensing Procedure and Terms

879 Having gone into more detail as to what could be understood by the concept
of incremental improvements, or important technical advancements with eco-
nomic significance, it should further be addressed under what terms these
should be allowed. In this regard, in the main we could refer to the stipulations
of Art. 31 TRIPS Agreement and its implementation in the various national leg-
islations.1589

880 Art. 31 TRIPS Agreement enables dependent patent holders to obtain a right to

use. They may apply for a specific legal licence that substitutes any arrange-
ment with the original patentee. We are consequently, again, talking about
compulsory licencing. That said, I am, however, unsure how far the compul-
sory licence should go, whether it should only include a right for use or to
what extent this secondary invention should also be allowed to be commer-
cialized and exploited independently. The interviewed software companies did
not discuss this question.

881 From a macro-economic perspective, we may take into consideration the de-

gree of dependency of the later invention on the first invention as well as the
exhibited strength of progress and its economic value. The legal criteria can

See for example Art. 36 regarding Art. 40e Swiss PatG, § 24 German PatG. 1589

Chapter 6: Discussion of Selected Problems

398

therefore be applied not only to the question of granting the compulsory li-
cence as such, but also to determine the scope of the licence and put it into
proportion to the inventions’ achievement in the individual case. The compul-
sory licence should be proportionate in the specific situation and not be more
extensive than necessary to unfold the involved inventive potential. Another
solution would be to follow the idea of joint use where the secondary inven-
tor would have to back-license their invention to the original inventor, and in
return receive compensation for their improving contribution.1590 Compulsory
back-licensing models would guarantee that incremental contributions were
also legally recognized and incorporated. Hereby, ingenuity in research and
development could be better supported without endangering the economic
source of a patent holder. By imposing the duty on the secondary, recognized,
inventor to inform and work with the primary inventor, he/she may use the
invention but not exploit it on his/her own.

882 How exactly this process could look in practice should be further evaluated.
To some extent, we can make use of the experience gained in the field of stan-
dard-essential patents, e.g. with regard to the compensation and its judicial
evaluation. On the other hand, we should actively address the question of
whether the dependent inventor may seek a compulsory licence for his/her
incremental improvement without obtaining a patent of his/her own first, and
whether he/she should be allowed to apply for a compulsory licence prior to
finding a solution with the patentee. The prior consultation of the patent
holder could lead to hasty protective measures on his/her part. As mentioned
before, there is no precedent on how to deal with injunctive reliefs in the area
of incremental improvements. While one can imagine various solutions to this
problem, such as mechanisms under antitrust law or via the principles of
abuse of rights and acting in good faith, it would also be a practicable way to
establish a mechanism de lege feranda within which an inventor of an incre-
mental improvement could directly apply for a compulsory licence from a
competent authority. This approach is compatible with Art. 5 lit. A Paris Con-
vention, but would only comply with Art. 31 TRIPS Agreement if there was a
case of urgency or increased public interest. Otherwise, prior consent of the
patentee would be required.

SCOTCHMER (2006), 152 ff.; see also discussion in TROLLER (1985), 852 ff. 1590

Chapter 6: Discussion of Selected Problems

399

VI. Conclusion

883 Based on the findings of the interview study, this chapter has established to
what extent the existing law is able to reflect the structures in the develop-
ment and distribution of computer programs in the protective scope of copy-
right and patent law. It has appreciated what is working well and addressed
where room for improvement is visible. It proposed solutions to selected prob-
lems and suggested rough models that could better integrate the needs and
requests of the interviewed software companies in order to improve the cur-
rent legal protection of computer programs with copyright and patent law.
The following section will briefly summarize this chapter’s main conclusions.

884 As a first important conclusion, we can state that in general some kind of legal
software protection is required, but that there is no necessity for a sui generis

framework to protect software adequately with law.1591 The work processes and
the software companies’ needs and wishes could be incorporated into the cur-
rent copyright and patent law regime. I was quite surprised to discover how
well established the hybrid software protection regime in intellectual property
law is, and that the software companies, in fact, appreciate both copyright and
patent law. It was found that the two different institutions largely complement
each other in the field of software due to their different subject matters, and
that this combination satisfies different basic needs of the developers. Patent
law is designed to capture specialized domain know-how that is reflected in
inventive technical ideas and implementations as it particularly addresses the
technical teaching or solution that is disclosed with the publication of a patent
application. Copyright, on the other hand, is able to protect the resources and
labour that were invested to elaborate a creative outcome, including its con-
ceptualization and realization. It perfectly shelters expenditures made, whose
result can easily be imitated when it is clear what a successful and working
version of the component could look like. Accordingly, computer programs
should also in future be protected with copyright and patent law. While copy-
righting is, markedly, well accepted among software companies, and only
turned out to require a little fine-tuning in order to respond to today’s evolu-
tion, patenting is in a more difficult position. In the United States software
manufacturers, market participants and consumers talk about ‘over-patenting’,
and the negative effects this may entail. The excess of (trivial) patents and the
potential blocking effect this causes has an immense impact on the interna-
tional debate of patenting software. Although hardly any of the software com-

For more information, see Chapter 6 Section I and II. 1591

Chapter 6: Discussion of Selected Problems

400

panies reported having negative experiences in this area, the opinions pre-
sented were strongly influenced by it. In Europe, on the other hand, the Eu-
ropean Patent Convention in particular fails to fully recognize software as a
patentable invention. The interviewed software companies expressed that it
would be absurd of the European patent authorities to require ‘a further tech-
nicity’ for computer programs. Every to-be-patented invention has to involve a
technical problem and provide a technical teaching. Without ‘something in ad-
dition’ to the basics, neither a software good nor a mechanical one would meet
the technicity requirement, and would thus not fall under the subject matter
of patent law as defined in the international treaties and national statutories.
Software companies have thus strongly advocated that computer programs
should not be treated differently from other inventions. Computer programs
should, consequently, also be eligible for patenting if they fulfil the classic
patent requirement and fall under the subject matter. We should therefore re-
vert to the basics of copyright and patent law and not create additional hurdles
or initiate a new legislative solution. With the existing fundamentals in copy-

right and patent law, software can be dealt with sufficiently.

885 Second, the existing fundamentals regarding the subject matter should be re-
viewed with a fresh eye in order to technically interpret software in a modern
and dynamic way.1592 The goal of copyright and patent law is to shelter creative
or innovative developments. It was outlined that creativity in software engi-
neering determines how a problem is solved and how a solution is imple-
mented. It involves artistic questions, but also smart solutions for business or
technical problems. Creativity therefore represents the result of a human play.
There is room for creativity where the scope for productive decision-making
out of the ordinary is available and the personality of the author can have a
stylistic effect. On the other hand, inventiveness is entailed, if from the per-
spective of an initial prior position, the presented process or good represents
progress or incremental novelty. In the field of software development, inven-
tiveness may firstly, as in every technological field, be found where software
can be used to develop an entirely new invention. Further, in the context of
digitalization, older inventions that were developed with mechanical gover-
nors or electronic circuits can be reintroduced with an inventive teaching or
solution. Finally, as software development is still a rather new technical field,
the way that software is developed and data are processed opens another po-
tential field for inventiveness. Based on these insights into what creativity and
inventiveness mean in software engineering, it was established what should be

For more information, see Chapter 6 Sections III.A. and III.C. 1592

Chapter 6: Discussion of Selected Problems

401

protected with copyright and patent law. There are several software compo-
nents that are typically included in a software product. From the perspective
of intellecual property law, today, computer programs are mainly understood
as an intellectual good or process that is expressed in a linguistic command
form. The visual appearance of software, for example in the user interface or
the look-and-feel, has been widely neglected in copyright. While the World
Copyright Treaty statutorily limited copyright protection to the literary form
of computer programs,1593 we can assume that today’s interpretation of the
general copyright criteria also includes visual components in a computer pro-
gram. The previously narrow scope of copyright law should thus be inter-
preted more broadly to further parts of software so we can better protect
these visual elements. Furthermore, structural and organizational elements in
the source code should be accorded greater consideration. Finally, it was de-
batable as to whether the development documentation was eligible for copy-
right. Following the approach advocated in this thesis, it should likewise be
protected with copyright if it fulfils the protection requirements and is suf-
ficiently concrete. On the other hand, patentable teachings solving a certain
problem are largely limited to the field of algorithms, if permitted at all. Ac-
cording to the presented opinion, in future, functional elements of the look-
and-feel as well as functions and features with a clearly defined scope for im-
plementation should be integrated into patent law in addition to algorithms.

886 Third, I came to the conclusion that the existing protection requirements in
patent law are suitable, if tested substantially, for the technical specificity of
software, and, at the same time, offer a sensible barrier to potential misuse.1594

The internationally established criteria in copyright and patent law are dy-
namic enough to encompass computer programs and should hence be main-
tained. Nevertheless, I suggested several small improvements to the definitions

of the established protection criteria in patent law that would help to better
capture software as a creation in IP law. They could also be adapted for patent
law in general and do not necessarily have to be restricted to the invention
subject of ‘software’. Firstly, the expert figure concept under the non-obvious-
ness criterion has so far been interpreted in a way so it is hypothetically based
on an ‘average’ skilled person with the capability to think logically. The findings
of the interview study suggested that the expert should not just possess ‘ordi-
nary skills’ but should rather show special skills in the particular science in
question. The expert figure could be upgraded to help reduce the occurrence

See N 262.

For more information, see Chapter 6 Section III.B.

1593

1594

Chapter 6: Discussion of Selected Problems

402

of trivial patents. In general, I believe the criterion of non-obviousness will be-
come more significant for the evaluation of software patents in future in or-
der to rule out trivial inventions. It has been observed that when examining
the substance in patent applications, the necessary prior art to exclude trivial
inventions is often missing. Accordingly, it was proposed to adapt the under-
standing of the expert term in such a way that an invention should be regarded
as non-obvious if an expert with special skills in the particular art of software
engineering when given the same task could not come up with the way in
which the inventor had solved the problem within a reasonable time limit. This
would increase the quality of the patent evaluation and trivial patents could
be recognized more easily. Finally, the software companies suggested that an
innovation should not just need to involve an applicable teaching but should
also be useful to the market or society. The software companies thus asked
for added value in the invention. It was discussed that instead of introducing
a new criterion to implement this improvement, the added value of an inven-
tion could, for example, be examined in the evaluation of the subject matter
or under the applicability criterion. I personally would prefer its implementa-
tion to be under the subject matter of an inventive teaching, because it could
be approached earlier in a substantive check of criteria and this approach
would also indicate the importance of the minimum quality a patentable object
should exhibit. It would therefore represent a suitable measure to tighten the
patent scope.

887 Fourth, new development trends in the software market, such as spiral and in-
cremental development in agile approaches and continuous delivery, can and

should be integrated in copyright law.1595 However, this would require a more
flexible and revised interpretation of the statutory provisions. So far, nobody
has established whether and how these modern development methods are to
be interpreted in terms of copyright and how they may affect the protection
scope. One difficulty lies in the fact that due to their dynamic characteristics,
these development methods contradict the classic understanding in copyright
of seeing a work as a good with static and fixed features. Lawyers have tried to
address this problem by (over)regulating the issue in contracts. It was sug-
gested that spiral development, incremental extensions to and changes within
previously released works could be integrated doctrinally in copyright, with-
out requesting any regulatory revisions.

888 The rise of new technological possibilities and prevailing trends in software
development further make it necessary to reinterpret certain elements which

For more information, see Chapter 6 Section III.E. 1595

Chapter 6: Discussion of Selected Problems

403

are by legal definition excluded from copyright protection.1596 This is particularly
true for copyright-hostile ideas and functional elements and creative works

that lack originality. Their legal understanding should be modified in accor-
dance with current circumstances and tailored to their current field of ap-
plication, i.e. software. According to this understanding, technical necessities,
engineering standards and business best practices are often functionally pre-
determined or utilitarian, which is why they are often not eligible for copyright
protection. Further it was explained how copyrightable expressions can be
distinguished from non-copyrightable ideas in software development, and
how particular details and additional particularities included in a development
could enrich an original contribution. Based on the established merger doc-
trine, the abstraction test and the current scènes-à-faire practice, I proposed
a rule of thumb called the blackbox test to assess software’s eligibility for IP
protection.

889 Fifth, for computer programs we face major difficulties in determining the
starting point for legal protection in copyright.1597 In the past, it was usually pos-
sible to tie it to the releasable major or minor version of the software creation.
Where new development and commercialization approaches are applied, this
clearly fixed and easily determinable starting point for protection has blurred.
In practice, only the implementable components were protected as ready-to-
use results, creating a protection gap for all expressions that have reached
their creative threshold earlier and thus would have fulfilled the copyright re-
quirements before. It was highlighted that, instead, protection should start on
the development timeline when a mature concept is available and the expres-
sion was sufficiently specified. Through this, the people responsible for soft-
ware projects could be better protected from interventions of third parties,
particularly in the case of commissioned work where developments are fre-
quently shared without sufficient legal protection. The protection gap could
thereby be closed. For this purpose, I outlined how we can assess when a com-
puter program is specified enough so that it can be granted protection at the
earliest possible opportunity. It was further elaborated where the starting
point for protection could be set appropriately dependent on the particular
development model in question.

890 As a sixth conclusion, and closely related to the last one, it was found that the
term of protection in both copyright and patent law of 50 years after the last
author’s death and 20 years after a patent application was filed, respectively,

For more information, see Chapter 6 Section III.D.

For more information, see Chapter 6 Section IV.A.

1596

1597

Chapter 6: Discussion of Selected Problems

404

may entail an excessive defence effect with regard to new technical possibil-
ities, evolved practical circumstances and market trends.1598 The interviewed
software companies emphasized that the provided term of protection would
currently be too long compared to the estimated software product life cycles.
Thus, contrary to the purpose of IP law, copyright protection would expire and
the work would only be made available to third parties when the software was
significantly outdated and barely usable. This would artificially and unneces-
sarily reinforce the monopoly-like, exclusionary right in IP. It was therefore
suggested to shorten the protected durations of copyright and patent law to
20 and 10 years. However, the data basis for this question was somewhat thin,
so this aspect should be challenged and verified with more data. Even without
a binding statement on the exact possible term of protection, this conclusion
can be regarded as a clear rejection of the existing long terms of protection.
Furthermore, tying the term of protection to the author’s death in copyright
for a good that is of more economic and technical relevance than artistic was
deemed inappropriate. For this reason, I recommended altering the connect-
ing factor in copyright and linking the term of protection, as with patent law,
to the creation or the release of the particular work (module) in question. Both
these proposals would help to better reflect the object of protection software.

891 Seventh, and as a small excursus, the availability of new technological possi-
bilities has made it easier and more efficient to copy and imitate third-party
software components, which is why it is important to continue monitoring the
legal treatment of second-hand works, particularly in copyright.1599 I explained
that the current jurisprudence to evaluate third-party derivatives in classic
copyright law would be sufficient to manage similar cases with software
works. At the same time, the interview study showed a high degree of uncer-
tainty about whether translations from one programming language to another
constituted a copyright infringement. In the case of human languages, trans-
lations fall under the exclusion right in the copyright scope of the primary au-
thor or right holder. Translating code between programming languages with-
out consent should likewise represent a copyright infringement if the
derivative lacked sufficient originality. It would be desirable to introduce an
explicit legal regulation in copyright law regarding translations of literary
works in computer programs in order to eliminate existing ambiguities and
doubts.

For more information, see Chapter 6 Section IV.B.

For more information, see Chapter 6 Section V.A.

1598

1599

Chapter 6: Discussion of Selected Problems

405

892 As the eighth and final conclusion, also as an excursus, it was found that soft-
ware development particularly relies on a quality ladder and exhibits a path
dependency, which is why it has become necessary to try and improve the way
patent law deals with successor developments and second-hand inven-
tions.1600 The software market shows a great tendency and need for standard-
ization. Where a standard essential invention is present whose further use by
third parties is blocked by an exclusionary right, such as a patent, other mar-
ket participants are obstructed. Over the last decade, authorities and courts
have tackled this problem with antitrust law. However, since the problem of a
potentially blocking effect of a monopoly-like exclusionary right has its origins
in patent law, I am proposing a solution under patent law with the introduction
of compulsory licences for standard essential patents on the basis of existing
international regulations. It was further found that impulses in market-estab-
lished inventions could be used to drive research and achieve an even greater,
incremental improvement. Although this would be of great use to society and
the market, it might be impeded through patents. It was explained that al-
though there is a legal possibility for compulsory licensing of derivative inven-
tions, it has hardly been used in the past, moreover, it could only be applied to
second inventions that were already patented. Accordingly, I proposed intro-
ducing compulsory licences for innovations that contained an incremental im-
provement to patented inventions.

For more information, see Chapter 6 Section V.B. 1600

Chapter 6: Discussion of Selected Problems

406

Chapter 7: Prospect and Closing

893 This final chapter reflects the possible implications of the thesis. It elaborates
on the question to what extent the results of this work permit substantial con-
clusions and contribute new concepts to the current status. It also discusses
possibilities for further research. The chapter notes where de lege lata copy-
right and patent law exhibit the potential to better address and incorporate
the needs and wishes of software companies through a contemporary inter-
pretation or a change in practice. In a separate section it points out where a
revision in law has become advisable and which topics could be addressed and
in what way.

I. Scientific Contribution

894 This doctoral thesis aimed to shed light on the phenomenon of software de-
velopment and commercialization from a legal perspective, but also wanted to
leave the safe haven of jurisprudence. The complex and peculiar processes
surrounding the creation of software were not to be characterized purely uni-
laterally from a legal perspective, but were to be fundamentally researched
with the help of socio-scientific methods and in close cooperation with repre-
sentatives of the software industry. On the basis of these results, the scope of
legal software protection in copyright and patent law was then reviewed and
assessed.

895 With this work I would like to contribute to the field by researching an unfa-
miliar study environment for lawyers. The main achievement of this thesis is
to provide the necessary basic scientific research and data on the question of
how the software industry works today and how this affects the protective
scope in copyright and patent law. Using socio-scientific methods, it estab-
lishes a theoretical understanding of classic practices as well as market-spe-
cific peculiarities of software development and commercialization. From a le-
gal perspective, it provides a different understanding and new points of view
on existing doctrines. It further recognizes and resolves some prevailing
trends in the software industry, which have so far been largely unaddressed in
copyright and patent law. It aims to suggest practical approaches as to how
certain problems in software engineering could be better addressed and in-
corporated in law. It also makes a scientific contribution to the international
debate on the eligibility of computer-implemented inventions for patenting.
The results of this dissertation may help practising lawyers, authorities and

Chapter 7: Prospect and Closing

407

courts to better understand existing practices in software development and
commercialization, to express them in legal terms and interpret them with
a contemporary understanding suitable for the practical circumstances and
market trends. At the same time, this work identifies a need for action and
the potential for improvement for legislative bodies. The observations could
be applied to any modern copyright and patent law system, although gathered
specifically for the software market.

II. Key Merits

896 This work tries to describe favourable framework conditions with regard to
the copyright and patent law scope that are consistent with the practicalities
and most important basic needs of the software industry. The first merit it of-
fers is new and scientifically based insights into the development and commer-

cialization processes of the software industry and the guiding technical ideas
behind them. In addition to the classical linear development process from
ideation to realization to implementation, the work takes up various modern
development concepts such as incremental or agile techniques and elaborates
legally relevant particularities in incorporating them. Also new approaches
such as continuous delivery, which have not yet been addressed in law, are dis-
cussed in detail. I explored to what extent and when creativity and inventive-
ness may play a role in software engineering. The work also deals with recog-
nized but also newly significant software components, such as the look-and-
feel. Furthermore, time-relevant factors such as the time-to-market and the
duration of the software lifecycle are considered. It also deals with contempo-
rary commercialization approaches such as software as-a-service. A second
merit of this work is that it provides important information on how to evaluate

the scope of legal protection in copyright and patent law for software by inte-
grating the findings of the socio-scientific analysis into law, in particular with
regard to the requirements of protection and the term of protection. The most
important finding of this thesis was that today’s hybrid system with copyright
and patent law adequately serves software as an object of legal protection and
provides the necessary basic conditions and can serve as the basis for future
legal software protection. Thus, this thesis elaborated several new ideas and
models based on the current legal regulation, interpreting within the bound-
aries as well as testing them. At the same time, it was pointed out where soft-
ware, as a dynamic and digital good, requires special protection and where
further regulatory action is needed. This thesis elaborated possible solutions
for an optimized substantive examination of software to address some con-

Chapter 7: Prospect and Closing

408

cerns about the negative effects of patents on the market and its impact on in-
ventiveness. It was found that rigidly protecting solely the final working prod-
ucts of software engineering, such as developed algorithms and implemented
source codes could not do justice to the modern, dynamic software develop-
ment and commercialization approaches. This work critically questions known
processes and their legal regulation under copyright law. Through an exami-
nation of the technical factors and project organizational considerations, it of-
fers different concepts to integrate new development methods into copyright,
to address traditional interpretations of the copyright scope.

III. Area for Action De Lege Lata and De Lege Ferenda

897 Based on the finding that there is no need for a sui generis law and that the
current copyright and patent law largely provide the necessary foundations,
my proposed solutions to unresolved legal questions whenever possible re-
mained within the existing legal structures. Where feasible, copyright and
patent law have therefore been reinterpreted de lege lata. Where the law would
have been strained, I made proposals for revisions in law de lege ferenda.

A. De Lege Lata

898 Every legal system must remain dynamic and flexible in order to respond to
social change. In the case of software development and commercialization, it
was found that copyright and patent law can provide the necessary legal
framework for the market and reflect the predominant circumstances.
Through a modern legal interpretation, the current structures and actions can
be represented adequately. There is no need for sector-specific exceptional
rules, but it is important to newly interpret the complex economic and tech-
nical interrelationships for law in the perspective of current trends. I recom-
mend that the following points are tackled in a reinterpretation de lege lata:

899 First,1601 it was found that, in the past, the field of application in copyright and
patent law has been limited to specific software components. In copyright law,
for example, the scope of protection has been limited to one-to-one pirate
copies and literary elements such as the source code. It was suggested to ex-
pand copyright protection to organizational elements in the software, such as
structural code elements, visual elements in the graphic user interface and the
look-and-feel. In addition, other forms of expression that illustrate creative

For more information, see Chapter 6 Section III.A. and III.C. 1601

Chapter 7: Prospect and Closing

409

ideas in a sufficiently concrete manner should also be eligible for copyright
protection, if they fulfil the protection requirements. This is particularly true
for the development documentation, as it may contain crucial creative ideas
in a first intermediate working result. Similarly, in patent law, elements other
than just the algorithm should be patentable, such as functions and features
and functional elements of the look-and-feel.

900 Second,1602 it has been shown that although the protection requirements in
patent law are adequate, significant terms should be defined differently to bet-
ter integrate software into law. The suggested adaptations can also be ex-
tended to other subjects of protection. Specifically, it was pointed out that the
‘expert figure’ required to assess the concept of non-obviousness in patent law
has been based on a person with average skills. The interview findings sug-
gested that the expert should possess special skills in the particular science in
question. Consequently, an invention would be non-obvious if an expert with
special skills in software engineering when given the same task could not
come up with the way in which the inventor solved the problem within a rea-
sonable time limit. The interviewed software companies also argued that soft-
ware should only have patent protection if it offered added value for a third
party, for example the customer or other market participants. The criterion of
added value does not yet exist in law, but could be integrated under the term
of inventive teaching.

901 Third, new and dynamic forms of development in software engineering, such
as spiral and incremental development and continuous delivery, challenge the
rigid, one-cycle-oriented copyright. The fact that a work may undergo further
changes after its first publication and may both alter internally and grow ex-
ternally is something completely foreign to copyright.1603 However, both types
of change can influence the work consistency and thus the scope of protec-
tion. Following the approach advocated in this thesis, incremental extensions
and inner changes within a previously released work can be incorporated into
the current copyright doctrine, but require some careful thought. It should be
considered how the scope of protection of the work as a whole is affected by
the increasing or reduced originality of individual elements. However, ele-
ments that are legally excluded from protection, such as copyright-hostile
ideas and functional elements as well as creative works that lack originality,
should also be interpreted in a contemporary way in order to do justice to the

For more information, see Chapter 6 Section III.B.

For more information, see Chapter 6 Section III.E.

1602

1603

Chapter 7: Prospect and Closing

410

content of the restriction.1604 It was noted that technical necessities, engineer-
ing standards and business best practices are often functionally or socially
predetermined by the idea to be realized, which is why they are often not el-
igible for copyright protection. Further, it was explained how copyrightable
expressions can be distinguished from non-copyrightable ideas in software
development, and that particular details and additional particularities could
enhance an original contribution.

902 Fourth,1605 it was emphasized that software, relative to other work categories,
exhibits a creative threshold with a lot of conceptual details at a comparatively
early stage in the development process, e.g. in a draft. Moreover, due to its
economic rather than artistic features and the strong tendency for coopera-
tions in software development, working concepts are usually shared at an ear-
lier stage with potential collaborators. Software, as an accessible and copyable
good, makes it vulnerable to infringements. With a contemporary interpreta-
tion of the existing rules, it would certainly be possible to turn away from the
traditional protection of results in copyright and set the starting point of pro-
tection at an earlier stage in the development process, possibly as soon as the
work has reached appropriate maturity.

903 Fifth,1606 the availability of new technological possibilities has made it easier to
copy and imitate third-party software components. One new phenomenon
linked to this development is the rise of unapproved source code translations
from one programming language into another. While the author’s right in gen-
eral covers translations, it is highly debatable whether this applies only to hu-
man language or could also cover programming languages. In this case a mod-
ern interpretation of the existing legal regulation could close some gaps.

904 Finally,1607 the exclusive character resulting from patent law can have a large
negative effect on the market, particularly when it comes to standard essential
patents. I proposed introducing compulsory legal licences to resolve this issue.
It seems entirely feasible to solve this problem on the basis of existing inter-
national regulations by reinterpreting the concept of public interest in Art. 8
in conjunction with Art. 31 and 31bis TRIPS Agreement in a contemporary man-
ner.

For more information, see Chapter 6 Section III.D.

For more information, see Chapter 6 Section IV.A.

For more information, see Chapter 6 Section V.A.

For more information, see Chapter 6 Section V.B.1.

1604

1605

1606

1607

Chapter 7: Prospect and Closing

411

905 All these reinterpretations of the existing regulations would make a significant
contribution to improving the integration of software into copyright and
patent law. In the absence of new regulatory efforts, they can be easily imple-
mented and could also be adopted in the new practices of authorities or
courts. It would therefore be an easy way to address the existing needs and
wishes of the software companies in a prompt and cost-effective manner.

B. De Lege Ferenda

906 Where the law neither provides the necessary foundations nor, due to a rigid
framework, permits reinterpretations, regulatory intervention is required. I am
aware that a revision of the law in the highly internationalized field of intellec-
tual property law would be tedious and that political constraints further com-
plicate the matter. This work has therefore attempted to limit proposals for
regulatory revision to where they appear unavoidable or urgent, and to ensure
that they are target-oriented and practicable. The following topics should be
addressed by amending the law de lege ferenda.

907 First,1608 the most urgent and probably greatest need for legislative action lies
in lifting the exclusion of computer program patents in the European Patent
Convention. The software companies clearly favoured the patenting of soft-
ware despite its possible disadvantages. The European practice to date has
been inconsistent and largely unpredictable for potential patentees. Additional
hurdles were created for the legal assessment of computer programs that,
firstly, contradict the wording of the law in the European Patent Convention
and, secondly, are senselessly redundant, because the possible negative effects
and potential hazards of software patenting could be adequately countered
with a substantive assessment of the patent requirements. Thirdly, it artifi-
cially treats software as a potential object of protection unequally for no ap-
parent reason. The European practice is no longer appropriate and appears
antiquated. It goes against the fundamental need and right of software devel-
opers to be able to protect their inventions with patent law, provided that they
meet the patent requirements. It is thus time to finally cut out this outdated
provision as there is no reason to continue with it. Even if this effort to abolish
the software patent exclusion is considerable, it is urgently necessary to revise
Art. 52 para. 2 of the European Patent Convention.

For more information, see Chapter 6 Section II. 1608

Chapter 7: Prospect and Closing

412

908 Second,1609 for clarification purposes, copyright law should explicitly include
the development documentation as a copyrightable expression. Although it
represents an early working product in the software development process, it
was found to be subject to third-party infringements and should thus be legally
sheltered, if it is tangible and sufficiently developed to test its copyrightability.
Also, the author’s right of determination in the field of translations should be
expressly extended to computer program languages. I therefore recommend
integrating both of these small regulatory changes into the international
treaties. However, as it is compatible with existing international legislation, it
can also be introduced directly at a national level.

909 Third,1610 it has been shown that there is a distinct time discrepancy between
the expected life cycle of a computer program and its protection under copy-
right and patent law. In the case of software, creations are only made available
to third parties when they are completely out-dated and hardly usable. The
function of intellectual property rights, where a creation is subject to exclu-
sionary rights, is that the creation should be made available to society and
other market participants after a certain period of time during which the cre-
ator is able to recoup their investments but it is still usable for society. The
long terms of protection – 50 years after the death of the last author in copy-
right, or 20 years after the filing of a patent – are disproportionate and consti-
tute an excessive measure of protection. In view of the data provided by the
interviewed software companies, it was proposed to shorten the term of pro-
tection for stronger intellectual property rights such as patents to 10 years af-
ter disclosure, and the term of protection for weaker IP rights such as copy-
right to 20 years after publication. Due to the small sample, however, it is
difficult to make quantitive statements regarding protection duration. Never-
theless, a clear need to adapt the term of protection to the life cycles emerged.
Changing the term of protection for copyright and patent law would require
the adaptation of a number of international agreements governing the maxi-
mum durations in copyright and patent law, including Art. IV para. 2 UCC,
Art. 7 para. 1 RBC and Art. 12 and 33 TRIPS Agreement. However, this revision
would be important in order to achieve a proportionate scope of protection. It
was shown that software has more economic and technical relevance than
artistic. Consequently, tying the term of protection to the author’s death in
copyright establishes a personal reference to each developer involved in a
software project which, considering its characteristics and the long duration

For more information, see Chapter 6 Section III.C.7.

For more information, see Chapter 6 Section IV.B.

1609

1610

Chapter 7: Prospect and Closing

413

of protection, is neither reasonable nor practicable. It would mean that each
element of a component would have to be allocated to the employees involved
and their life paths would have to be actively monitored by the company. As
this procedure is not able to meet the needs and desires of the software indus-
try, I would recommend altering the connecting factor in copyright and link-
ing the term of protection, similar to patent law, to the creation or release of
the particular work (module) in question. But as most national statutories cur-
rently do not relate to a specific creation to determine the term of protection,
the legal provisions would have to be nationally revised.

910 Fourth, and finally,1611 it has been shown that the exchange of know-how and
cooperation in the software industry are comparatively high. This leads to a
strong path dependency in the development of computer programs. This be-
comes particularly apparent in the problem of dealing with standard essential
patents, most of which have so far been addressed by means of antitrust law.
There is an urgent need for the handling of standard essential inventions to be
legally improved in the software industry. I propose solving this problem
through compulsory licensing in order to achieve a patent solution for a patent
problem. In my view, the suggested approach is compatible with the existing
legislation in Art. 8 in conjunction with Art. 31 and 31bis TRIPS Agreement, but
it would require a contemporary interpretation of the concept of public inter-
est. If, however, against expectations it did not correspond, legal revision
would be possible at national level pursuant to Art. 5 lit. A Paris Convention. It
was found that the access to and use of patents already granted should be im-
proved, provided that inventions building on them showed incremental im-
provement. Here, again, a legal regulation at international level already exists.
However, it only applies to second inventions that have already been patented.
Applying for a dependent successor patent without holding the licence of the
primary patent is, from a legal perspective, very tricky and not to be recom-
mended, as well as hardly practicable. It is very probable that the succession
invention would not be accepted by the patent issuing authorities, if it was ex-
amined, or would bethrown out of court. Accordingly, I proposed, in line with
the existing provision for dependent patents, the introduction of compulsory
licences for innovations that contain an incremental improvement on patented
inventions. For this purpose, Art. 31 TRIPS Agreement and the national statu-
tories building on it would have to be revised.

911 The suggested revisionary projects would help to resolve certain legislative is-
sues that go against the practicalities and the needs and requests arising in

For more information, see Chapter 6 Section V.B.1. and V.B.2. 1611

Chapter 7: Prospect and Closing

414

software engineering, such as the exclusion on software patents. Lifting the
ban on computer-implemented patents under the European Patent Conven-
tion as well as introducing compulsory licences for standard essential patents
and allowing incremental improvements would address the urgent needs of
the software industry. Other issues, such as explicitly incorporating the devel-
opment documentation and translations into the copyright code have more of
a signalling effect. Likewise, reducing the term of protection is not essential,
but should be addressed in order to guarantee a proportionate scope of pro-
tection and restore balance between the different interests behind intellectual
property law. Irrespective of the urgency, all the points mentioned in this sec-
tion should be addressed by the legislators in the near future.

IV. Limitations and Perspective

912 The present doctoral thesis and its research serves as a basis for discussion.
Various hypotheses could be drawn up regarding the practicability of software
development and commercialization as well as the legal requirements in deal-
ing with them. Many of the results represent distinct tendencies, which have
also been confirmed with member validation and are therefore well founded. I
have pointed out in this thesis where contradictory statements or weak sam-
ples were found. In these situations, I tried, where possible, to give further in-
sights, but at the same time disclosed weaknesses. This was the case, for ex-
ample, when the interviewed companies were asked to give more details about
the life cycle of their software products and services. Although they were able
to provide information about their own products and services, as the software
was often still running, only approximate values could be given. In addition,
the sample of 12 interviews was too small to allow reliable quantitative data
analysis. Nevertheless, the information provided clear trends that could be
used to make statements. It would be useful to continue the research with a
quantitative analysis, and to statistically verify the data found.

913 The comparison of socio-scientific findings with the current legal situation re-
vealed where the framework conditions correspond to the needs and requests
of the software companies, where certain gaps can be closed by means of de

lege lata interpretation, and where there is room for regulatory action. The re-
sults of this analysis were then compared with the literature review, verifying
them in comparison with alternative theories. In certain areas, for example the
idea of introducing compulsory licences, a large amount of literature and ju-
risprudence exists which was used to review and critically question the results
of this thesis. Where sufficient material was available, it was necessary to

Chapter 7: Prospect and Closing

415

choose which contributions were discussed. In other areas, there was a lack of
literary or jurisprudential discussion, for example on the impact of new devel-
opment methods on the scope of protection in copyright law, or the assess-
ment of continuous delivery approaches under copyright law. Hence, I often
had to look for potential solutions by studying the legal texts or exploring be-
yond existing frameworks. Numerous proposals and models were developed
independently, which could not subsequently be validated because there was
nothing to compare them with. It would be useful to be able to check these
theories and models for consistency.

914 Intellectual property law aims to account for a balance of different interests,
but this work, due to its scope, mainly dealt with the perspective of software
companies. It would therefore be useful to also study the interests of other
market participants, such as those of the successor market or the consumers.
Special interests such as those of small- and medium-sized software develop-
ers could also be more closely examined in separate studies. These interests
are particularly significant for the design of legal limitations and exhaustion
which is why the discussion of this was not extensive in this work. Other im-
portant topics such as the role of procedural measures in the design of a fair
patent system could only be touched upon. It would be interesting to explore
these topics as a follow-up to this study.

Chapter 7: Prospect and Closing

416

Curriculum Vitae

Sarah Leins-Zurmuehle studied law and graduated from the University of
Zurich in October 2013. Sarah worked in various positions at different IP-spe-
cialized law firms, district courts as well as at the University of St. Gallen. In
the course of writing her doctoral thesis at the University of Zurich, she spent
two months at the Berkman Klein Center for Internet & Society at Harvard
University as a visiting researcher, before submitting her thesis in late 2019,
which was accepted in May 2020. Sarah is accepted to the Zurich Bar and now
works as an accredited (business) mediator and attorney.

The software industry is regarded as one of the most creative and dynamic

industries in the world. At the same time, sheltering software through co-

pyright and patent law has been a major point of contention for the past 40

years. This doctoral thesis aims to provide new insights to this discussion.

Through the use of sociological methodology, it supplies the necessary basic

scientific reasearch regarding how software is developed and commercia-

lized nowadays. Based on these findings, it then legally evaluates to what
extent copyright and patent law are able to reflect these structures and de-

termines how an optimal protection scope for computer programs could

look like today. This doctoral thesis on one hand offers novel insights and
points of view on existing legal doctrines. It further acknowledges as well

as legally qualifies some prevailing trends in the software industry, such as
Scrum and continuous delivery, that have so far been largely unaddressed

by copyright and patent law.

	Ideation, Conceptualization, Realization ─
	Discovering the Creative Scope in Software Engineering from the Perspective of Copyright and Patent Law
	Dedication
	Acknowledgements
	Index
	List of Abbreviations
	References
	List of Figures
	Abstract
	Chapter 1: Introduction
	Chapter 2: Methodology
	Chapter 3: Technical Foundation
	Chapter 4: Status Quo of Legal Software Protection
	Chapter 5: Findings of the Interview Series
	Chapter 6: Discussion of Selected Problems
	Chapter 7: Prospect and Closing
	Curriculum Vitae

