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Preface 

Artificial intelligence and especially machine learning are becoming more and more com-
monplace. This is mainly due to higher data availability and more sophisticated tools. It 
becomes more difficult when these ML methods are applied to cyber-physical systems. 
Often less data is available, algorithms are less understood and issues like reliability and 
testability become crucial. These topics were discussed at the 6th ML4CPS—Machine 
Learning for Cyber-Physical Systems Conference from March 29th to 31st in Ham-
burg. Experts from industry and research discussed the state of the art and listened 
to presentations on new developments. The conference was jointly organized by the 
Helmut-Schmidt-University, Fraunhofer IOSB and ARIC. 
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Causal Structure Learning Using PCMCI+ and Path 
Constraints from Wavelet-Based Soft Interventions 

Josephine Rehak , Alexander Falkenstein and Jürgen Beyerer 

Abstract 

The discovery of causal relations via interventions has proven to be simple when only one 
observed variable is affected or unaffected. However, in a multivariate setting, it is likely 
that more than one variable is affected by an intervention and thus drawing conclusions 
about the causal relations becomes more difficult as the gained information is ambiguous. 
To deal with this, we introduce a novel definition of path constraints and to obtain them, 
we came up with a novel approach for wavelet-based interventions. We demonstrate our 
approach on a combustion engine simulation, where we injected wavelets of our choice in 
an actuated variable and tried to rediscover them in the other, observed variables to gain 
path constraints. Subsequently, we demonstrate how to use these constraints to optimize 
the results of the established PCMCI+ algorithm. 

Schlüsselwörter 

Causal structure learning • Soft interventions • Wavelets • Constraint-based structure 
learning • Pattern matching 
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1 Introduction 

The domain of causal structure learning deals with finding cause and effect relationships in 
inspected environments and aims to find the true causal structure graph. These novel machine 
learning methods can help a machine to independently understand its environment, to use 
its causal dependencies, and also to assess the consequences of actions that have already 
occurred or will occur in the future. The discovery of the causal graphs is used for causal-
motivated root cause analysis [ 5] and causal effect estimation in smart manufacturing. For 
their development, it is common to apply them on well-known environments. 

A subdomain of causal structure learning tries to uncover causal relations by performing 
experiments and gaining structure knowledge by inspecting the interventional effects. But 
established procedures as the Rubin causal model [ 9], the basic theory for randomized 
controlled trials [ 3], inspect the effect in only one affected variable. Currently, gaining 
structure knowledge from interventions that affected multiple variables is under discovered, 
since the provided information about the causal graph is highly ambiguous. Each causal 
relation between the intervened and the affected variable could be direct, or it could be 
indirect via any other affected variable. 

In this work, we investigated how to use such ambiguous information for causal structure 
learning by defining so called path constraints. In a novel low-intrusive intervention, we 
injected a minor wavelet onto the intervened variable, tried to rediscover the wavelet to 
identify the affected variables and thus derived these path constraints. A path constraint 
contains the sole information that two variables are direct or indirect connected somehow 
in a specified direction. We demonstrate their usefulness by applying them to the results 
of the state of the art PCMCI+ causal structure learning algorithm and thereby improve its 
discovered causal graphs. 

In order to exercise these methods, we have chosen a simulation of a running combustion 
engine as testing environment. The specific chosen combustion engine was validated on a 
test stand, has a manageable and well-known number of causal relationships. Its simulation 
allows the injection of wavelets that can propagate in the system naturally. 

The paper is structured as follows. In Sect. 2, we will present related work. In Sect. 3, 
we shed some light on causal graphs and existing approaches for causal structure learning. 
In Sect. 4, we introduce our fundamentals for the novel interventional technique. In Sect. 5, 
the wavelet injections are demonstrated on a combustion engine simulation step by step. In 
Sect. 5, we draw the conclusion. 

2 Related Work 

Related Work in Soft Interventions 
In the domain of soft interventions, the use of probabilistic interventions is common to gain 
structure information between two investigated variables. Eberhardt et al. [ 2] investigated
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how many soft interventions in variable pairs are required to gain knowledge over the true 
full causal graph. Kühnert et al. [ 6] exercised the Max min parents and children method 
to learn the graph skeleton, oriented some edges using conditional independence tests and 
then applied soft interventions by ‘pushing’ probability distributions in a certain direction 
to finalize the discovered graph by inspecting variable pairs. 

Related Work in Using Propagation Properties 
A related characteristic about the propagation properties of causal relations has been used 
before by Hoyer et al. [ 4]. According to their research, the affected variable may be rep-
resented as a function of the causing variable and some random and independent additive 
noise in the actual direction from cause to effect, but not in the opposed direction. By testing 
for each direction, they were able to direct the relations between the two variables with high 
confidence. 

Related Work in Multivariate Discovery 
Some methods have specialized in the discovery of multiple causal relations to uncover the 
causal graph such as such as PCMCI+ [ 10] and Multivariate Transfer Entropy [ 7]. They 
used only observed data for their discoveries and performed no interventions. 

3 Fundamentals 

3.1 Causal Graphs 

Causal graphs consist of a set of nodes representing variables .V and a set of edges  . E
representing causal relations. If a directed edge points from.A ∈ V to .B ∈ V , then variable 
. B is caused by. A. A path from. A to. B is a chain of arbitrary edges connecting. A and. B with 
a number of edges being equal or greater than one. A directed path from .A to .B is a path 
with consistently directed edges from .A to . B. A direct causal relation between variables 
indicates a path length of one, but an indirect causal relation indicates a path length greater 
than one. 

3.2 Causal Structure Learning 

The goal of causal structure learning is to gain knowledge over the true causal graph of 
the inspected environment. Such knowledge may be gained by applying observational and 
interventional methods. 

Observational Causal Structure Learning Observational causal structure learning meth-
ods try to find knowledge over the true causal graph from recorded data gained by observa-
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tions. One of the most powerful methods has become PCMCI+ [ 10]. It works in two phases. 
First, a set of potential parents is estimated in a specified time window. In the second step, a 
Mutual Conditional Indepencence (MCI) test is applied on the variables from the parent set 
and from the inspected time window. Opposed to prior algorithms, PCMCI+ does not assume 
causal edges to be oriented either in the one or the other direction. Thus, it allows finding 
bidirected and contemporaneous causal relations as they are often present in engineering 
applications. 

Interventional Causal Structure Learning Using interventions for causal structure learn-
ing is one of the oldest and most popular approaches in science. Still in some application 
scenarios their use may be costly, unethical or simply not feasible. It is assumed that a 
variable is a cause of another variable . B, if an intervention on  .A also affects the associ-
ated variable .B [ 12]. [ 2] distributed the existing approaches in two major categories called 
structural interventions and soft interventions. Structural interventions cut off all causal 
influences to the variable under intervention and fully determine its value (e.g. treatment 
drug or no drug). Soft interventions (also called parametric interventions) only undertake 
minor changes. Common is the intervention on the probability distribution of a variable [ 2, 
6]. They do not disturb the original causal structure, therefore influences of other variables 
on the intervened variable are not ruled out. 

4 Wavelet-Based Soft Interventions 

The new intervention method does not perturb the original causal relation and can therefore 
be considered according to Sect. 3 as soft intervention. The particularity of these interven-
tions lies in the fact that a wavelet is added to the intervened variable and is tried to be 
rediscovered to gain causal information. 

When injecting a wavelet into a variable. A, the injected wavelet is added to the timeseries 
of the injected variable. We assume the wavelet to spread in direction of the causal relations 
in the graph. If we find the wavelet in only one variable, we assume a direct causal relation to 
be present. In case of a discovery in several other variables, including. B, we may not. Instead, 
we gain knowledge about an existing path between the variables with.|C(A, B)| ≥ 1, since  
the wavelet must have traveled in some way from. A to. B. This specific path information are 
the so called path constraints. 

As soft interventions allow other causal influences on the intervened variable, the wavelet 
was required to be distinguishable from the other influences. Thus, we decided on the use of 
uniquely shaped wavelets to increase the chance of their successful reidentification. Note, 
that in general, we do not consider information about variables in which the injected wavelet 
could not be found, as the wavelet may be lost due to loss in amplitude, deformation or 
other reasons.
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For wavelet recovery, we normalized the measured values. Otherwise, the different scales 
of the variables would make a comparison difficult. Then we applied on each measured 
variable the fast pattern matching algorithm called Mueen’s ultra-fast Algorithm for Simi-
larity Search (MASS) [ 13]. It gradually matches a desired pattern to a subsequence of the 
inspected timeseries and calculates the z-normalized Euclidean distance. The aggregation of 
these distances results in an overall distance profile. If its minimal distance is below a chosen 
threshold, we assume the position to be our wavelet. Otherwise, we assume the wavelet to 
be absent in the observed variable and thus we gain no path constraint. 

5 Applying Wavelet Injections 

In this section, we demonstrate how we applied the wavelet injections on a combustion 
engine dataset. As experimental setup, we first applied PCMCI+ on the simulation time-
series without any wavelet injections present. Then, we added three different wavelets to a 
root variable and tried to rediscover them in the other variables to gain path constraints. Later 
on, we compared the discovered graphs found by PCMCI+ and PCMCI+ combined with 
path constraints against the actual causal graph using the Receiver Operating Curve Area 
under Curve (ROC AUC). For this purpose, the true causal graph was created in advance 
using expert knowledge. 

Simulation Setup 
As a testing environment, we used a running combustion engine simulation [ 1, 8, 11]. For 
evaluation, we constructed the true causal graph as is shown in Fig. 2. Here, we give a brief 
explanation of the causal relations: The angle of the throttle plate influences how much air 
intake in the motor cylinder is possible. The air intake over time adds up to the aircharge 
in the cylinder before combustion. After combustion, depending on the aircharge, increases 
the torque of the engine and the overall engine speed. The increase in engine speed also 
depends on the load carried by the engine. 

We injected the wavelets shown in Fig. 1 by actuating only the throttle angle and inspected 
all the other measured timeseries for traces of the injected wavelet. According to the true 
causal graph in Fig. 2, the wavelets should be found in the air intake, aircharge, torque and 
engine speed variable, as they directly and indirectly depend on the angle variable. Only the 
load variable should be free of any wavelet, as it is independent of the angle variable. 

Step 1: Performing PCMCI+ 
First, the PCMCI+ described in Sect. 3.2 was applied on the running combustion engine 
dataset. We performed six measurements by setting the alpha value to .0.05 and .0.01 for 
each maximum lag parameter of. 5,.10 and.15 data entries. One of these graphs is depicted in 
Fig. 2a as an example. In average the graphs found by PCMCI+ achieved an average ROC
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(a) Daubechie 4 wavelet (b) Mexican hat wavelet (c) Haar wavelet 

Fig. 1 The wavelets that were injected into the angle variable 

Angle 

Air intake 

Aircharge 

Engine speed 

Torque Load 

(a) PCMCI+ 

Angle 

Air intake 

Aircharge 

Engine speed 

Torque Load 

(b) PCMCI+ with injection 

Angle 

Air intake 

Aircharge 

Engine speed 

Torque Load 

(c) True causal graph 

Fig. 2 Depicted are the causal graphs a) after the application of PCMCI+; b) after the application of 
the path constraints to the PCMCI+ result; and c) the actual causal graph constructed by experts 

AUC of 73% points in respect to the true causal graph shown in Fig. 2c. As shown, the 
method was not able to direct several edges. 

Step 2: Performing Wavelet Injection and Recovery 
We decided to use three very distinct and well-defined wavelets: a Daubechie 4 wavelet, a 
Mexican Hat wavelet and a Haar wavelet. They are depicted in Fig. 1. We have chosen  these  
wavelets because they contain amplitudes in the positive and negative value range and have 
a distinct shape. 

As an implementation of the pattern matching algorithm, we used the python package 
stumpy 1. It found all wavelets in all variables depending on the influenced angle variable. 
Each wavelet was sufficient enough for injection and discovery, as each was found in the 
actual position in all variables depending on the angle variable. Figure 3 presents an excerpt 
from our results for the aircharge and the load variable for each of the three wavelets. Plotted 
are the measured variables with and without variable injection, thus any divergence between 
the plotted lines must be caused by the wavelet. The colored area is where the wavelet was

1 https://stumpy.readthedocs.io/ 

https://stumpy.readthedocs.io/
https://stumpy.readthedocs.io/
https://stumpy.readthedocs.io/
https://stumpy.readthedocs.io/
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(a) Daubechie 4 wavelet in aircharge (b) Daubechie 4 wavelet in load 

(c) Mexican hat wavelet in aircharge (d) Mexican hat wavelet in load 

(e) Haar wavelet in aircharge (f) Haar wavelet in load 

Fig. 3 The wavelets as they were discovered in the exemplary aircharge and load variable. The area 
where the lines diverge indicates the presence of a wavelet and should be highlighted green as a 
mark for successful recovery. If the lines do not diverge, no wavelet is present and nothing should be 
discovered.
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rediscovered by the pattern matching algorithm. It is colored green, then the wavelet is found 
in its actual position. This was the case for all wavelets in the aircharge variable. 
In the load variable, no wavelet was found as it should be, since the variable is not dependent 
on the angle variable. 

Step 3: Combining PCMCI+ and Path Constraints 
From the previous step, we were able to retrieve four path constraints as the wavelet injection 
in angle affected the air intake, aircharge, torque, and  engine speed variable. To improve the 
results of PCMCI+, we oriented the unoriented edges in the found causal graph according 
to the path constraints. We assumed a directed path to be present between the causing and 
the affected variable for each path constraint. If only one path was present in the PCMCI+ 
result, we directed it’s undirected edges in accordance with the directed path. We applied 
this procedure on all six PCMCI+ results. An example is shown in Fig. 2b. Due to the path 
constraints, the ROC AUC of the six graphs increased to an average ROC AUC of 83% points. 

6 Summary and Conclusion 

We investigated the idea of retrieving causal graph information from soft interventions that 
affect multiple variables and thus cannot deliver distinct structure information for causal 
graph construction. For this purpose, we created the definition of path constraints. We demon-
strated how this information helps improving the results of the well established PCMCI+ 
algorithm. The procedure was demonstrated on a running combustion engine simulation. 
The obtained path constraints made it possible to increase the average ROC AUC value of 
the PCMCI+ results from 73% points to 83% points. Thus, we deem path constraints helpful 
in improving causal structure learning results. In future work, we will investigate more com-
plex application scenarios. Additionally, we want explore the use of temporal information 
to gain additional structure information. 
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Reinforcement Learning from Human Feedback 
for Cyber-Physical Systems: On the Potential 
of Self-Supervised Pretraining 

Timo Kaufmann ,Viktor  Bengs  and Eyke Hüllermeier 

Abstract 

In this paper, we advocate for the potential of reinforcement learning from human feed-
back (RLHF) with self-supervised pretraining to increase the viability of reinforcement 
learning (RL) for real-world tasks, especially in the context of cyber-physical systems 
(CPS). We identify potential benefits of self-supervised pretraining in terms of the query 
sample complexity, safety, robustness, reward exploration and transfer. We believe that 
exploiting these benefits, combined with the generally improving sample efficiency of 
RL, will likely enable RL and RLHF to play an increasing role in CPS in the future. 

Keywords 

Reinforcement Learning from Human Feedback  Preference-Based RL  Self-Supervised 
Pretraining 

1 Introduction 

Reinforcement learning (RL) considers the setting of learning behavior from rewarded inter-
action with an environment. The reward function specifies the desired behavior while the 
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environment specifies the task dynamics. This setting is well-suited for cyber-physical sys-
tems (CPS), where the system repeatedly interacts with an environment to achieve some 
goal. RL can be used in this setting to learn a controller for a cyber-physical system, i.e., a 
policy that can choose appropriate actions based on the system’s inputs. Examples of RL for 
CPS include applications to smart grids [ 18], HVAC [ 32], energy storage [ 31], autonomous 
driving [ 3], as well as legged robots [ 39, 43] and robotic manipulation [ 36]. 

One of the main challenges of applying RL to any task is measuring the agent’s task 
performance in a way that is suitable for use as a reward function (reward design). Many of 
the largest successes of RL, such as as reaching or even exceeding human performance in 
the game of Go [ 37] and many Atari games [ 25], have been in the domain of games which 
have goals that are well-defined and easy to evaluate. 

This is not the case for most real-world tasks however. Goals are often vague, subjective 
and characterized by trade-offs. Misspecifying these objectives can lead to surprising behav-
iors as well as safety issues [ 2]. Knox et al. [ 13] studies the challenges of reward design 
for autonomous driving, where the objective is a mixture of objective factors such as time 
to destination, fuel consumption and safety as well as subjective factors such as passenger 
experience. The right balance of these components may depend on context, such as time 
of day or the passenger’s mood. More generally, Dulac-Arnold et al. [ 8] identifies reward 
design as one of the key challenges of applying RL to the real world. 

RLHF is one way to cope with the challenge of reward design. Instead of assuming that a 
reward function is part of the problem specification, RLHF treats the reward function as part 
of the problem itself and attempts to learn it from human feedback. This is commonly done 
by collecting pairwise preference feedback over alternative agent trajectories (PbRL [ 42]) 
and using it to infer a reward function, but other feedback modalities such as (imperfect) 
demonstrations [ 11], corrections [ 20], critiques [ 7] or natural language [ 41] may be used as 
well. 

Examples of RLHF include ChatGPT [ 28], an instance of a large language model fine-
tuned with RLHF to follow instructions [ 29] in a dialogue context. Other examples from the 
language domain are summarization [ 40] and question answering [ 27]. Beyond text, RLHF 
has been used to guide image generation [ 12]. RLHF has also been used in games [ 6] as well  
as simulated continuous control tasks [ 6, 17]. In the domain of CPS, existing applications 
of RLHF include robot-to-human object handover [ 14] and robotic manipulation [ 5, 38]. 

RLHF can greatly reduce the challenge of reward design by enabling us to learn tasks 
that humans can judge, even if they are difficult to express in an engineered reward function. 
This avoids the need to explicitly specify all objectives or their trade-offs—those can be 
communicated by example instead. The reward model can be trained to estimate human 
preferences directly from the system’s sensor inputs. If the sensor inputs convey sufficient 
information, the agent can even learn different trade-offs for different contexts. For example, 
an internal camera in an autonomous vehicle could be used to judge the mood of the passenger 
or detect the presence of a child and adapt the driving behavior accordingly.
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2 The Potential of Pretraining 

Learning rewards directly from sensor inputs presents us with a new challenge however, 
since these sensor inputs (especially when they are vision-based) are often high-dimensional. 
High-dimensional state- and action spaces are already a challenge for RL without human 
feedback [ 8]. In that setting the problem is often tackled by data augmentation [ 44], repre-
sentation learning [ 15, 34] or model-based RL [ 10]. 

The latter two approaches—representation learning and model-based RL—can be consid-
ered instances of self-supervised learning [ 16, 22], a form of learning that tries to learn some-
thing about the structure of the input data from unlabeled examples. This can be achieved by 
generating labels from the input data itself, such as training models to predict hidden parts 
of the input data or to determine whether two data points are related (e.g., transformations 
of each other) or not. Self-supervised learning is commonly used to learn representations or 
to initialize networks which are then later fine-tuned to specific tasks. Since self-supervised 
learning does not require any explicit human labels, it is possible to train on large amounts 
of data. This has been an important driving factor behind recent successes in the domain of 
language models [ 4]. 

In model-based RL, the self-supervised objective is to predict the environment dynamics, 
i.e., predict the next state from the current state and a chosen action. The goal of state-
representation learning is to learn a representation of the agent’s state that makes downstream 
tasks, such as reward prediction or policy learning, easier. Consider the example of an 
agent tasked with controlling an autonomous car: While the raw state of an agent may 
consist of low-level sensor inputs such as the pixels captured by a camera, the learned 
representation should capture information that is immediately relevant to the driving task 
such as the car’s position relative to other cars and pedestrians in a higher-level format. Such 
a representation can be learned from data that is already available, such as experiences of 
the environment dynamics [ 34], and can then enable more sample-efficient learning of the 
downstream task, such as reward prediction. See the overview by Lesort et al. [ 19] for a 
more detailed introduction to state representation learning. 

In this paper, we want to highlight the potential of self-supervised pretraining in the form 
of state representation learning and world model learning to effectively learn behavior from 
human feedback. We expect pretraining can improve query sample complexity as well as the 
learning system’s safety and robustness, allow for better exploration of the reward function 
and enable transfer of knowledge between tasks. 

Query sample complexity: Starting with a good state representation has the potential to 
learn more accurate reward models while requiring fewer human labels. Such a repre-
sentation can be learned in a self-supervised manner from unlabeled interactions with 
the environment [ 34] or as a side-effect of model-based RL [ 10, 26]. The learned rep-
resentation is often more compact than the original observation and may also integrate
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information over multiple time-steps. This can be particularly beneficial in environments 
with high-dimensional observations such as images captured by a camera. 
Similar sample-complexity benefits have been observed in RL without human feed-
back [ 34, 45], where learned state representations can often decrease the necessary 
amount of interaction with the environment or even enable the application of RL to 
domains in which it was previously not feasible. 
Metcalf et al. [ 24] explores this idea for RLHF and observes that by encoding environ-
ment dynamics in the state representation, i.e., choosing the representation learning task 
in such a way that the representation of the next state can be predicted from the current 
one with a simple linear layer, results in a significant increase in sample efficiency. 
In addition to explicit representation learning, sample efficiency could also be improved 
through data augmentation [ 30] as well as semi-supervised learning [ 30]. 

Safety: Instead of learning a state representation in isolation, it is also possible to learn 
a full model of the environment dynamics (world model). A world model provides the 
option of synthesizing queries, i.e., generating hypothetical behavior for feedback. This 
changes the active learning setting from (repeated) pool-based sampling to membership 
query synthesis [ 1]. Since these trajectories can be tailored to be informative about the 
human preferences, this can increase the sample efficiency of the preference learning 
process. In addition, synthesizing queries can increase the safety of the learning process 
since potentially dangerous behavior can be tested without actually performing it in 
the real world. Needless to say that this is particularly important when working with 
physical systems. Initial work has explored the potential of synthesized queries in an 
RLHF context [ 23, 33]. 
Another safety benefit of model-based RL is that it allows us to deploy separate policies 
in reality and in “imagination“. Imagination refers to training that uses only interactions 
with the learned world model, not with the real environment. While the imagination policy 
may be focused on exploration, the real world policy may be focused on conservative 
data gathering. 

Robustness: Synthesizing hypothetical behavior for feedback can not only improve the 
system’s safety, but may also contribute to the robustness and generalization of the learned 
rewards. This is because the synthesized queries can explore edge-cases that would rarely 
be encountered in the pool of experiences. It is possible to actively optimize the queries to 
fill gaps in the agent’s knowledge of the human preferences. The benefits of membership 
query synthesis over pool-based active learning are discussed by Elreedy et al. [ 9]. 

Reward exploration: Model-based RL can be used to improve the exploration behavior of 
RL agents by learning an exploration policy that leads the agent to novel states purely in 
imagination, which can then be deployed in the real environment for efficient exploration. 
This avoids the issue of retrospective novelty, where RL agents with intrinsic exploration 
bonuses optimize their policy to visit states which they previously found novel—which, 
by definition, they are not anymore once they are included in the training data.
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This approach has successfully been applied for regular state-space exploration [ 35]. 
Since reward-space exploration can be similarly important as state-space exploration for 
RLHF [ 21], one might expect additional benefits by applying this principle to reward-
space exploration as well. 

Transfer: Yet another benefit of representation- and model-learning is the possibility of 
transferring knowledge between tasks. Since a world model or state representation that 
was learned for one task remains valid for any other task with the same dynamics, this 
knowledge can be transferred and reward models for new tasks can be learned faster. A 
similar effect for model-based RL without human feedback is discussed by Moerland et 
al. [ 26]. 

3 Discussion and Conclusion 

Learning controllers for cyber-physical systems has the potential of enabling many new use 
cases with complex interactions and increased integration of multiple systems. This may be 
of use for many applications, such as robotics, smart buildings and autonomous vehicles. 

While to date applications of RL to real-world systems are sparse, the increasing sample 
efficiency of RL combined with the increased applicability to many tasks thanks to RLHF 
may cause that to change in the near future. Improving the feedback-efficiency of RLHF 
with approaches such as the ones discussed in this paper is therefore a promising area of 
future research. We believe that self-supervised pretraining has many benefits to offer and 
could play a crucial part in opening up many new use cases for cyber-physical systems. 
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Abstract 

Simulation models have proven successful in various CPPS tasks such as optimization, 
diagnosis or reconfiguration. However, creating these models is a costly process. This 
paper describes an approach which uses: 1) recorded data to automatically learn timed 
automata models of system components; and 2) manual logic based on prior knowledge 
that extends and enables the utilization of the learned models for simulation. Experiments 
in a smart meter production facility show: 1) a successful detection of a suboptimal 
configuration; 2) the identification of causes of a decrease in productivity; and 3) a 
correct assessment of possible actions after a disturbance has occurred. 

Keywords 

CPPSs • Timed Automata • Simulation • Machine Learning 

N. Hranisavljevic (B) · T. Westermann 
Institute of Automation Technology, Helmut Schmidt University, Hamburg, Germany 
e-mail: hranisan@hsu-hh.de 

T. Westermann 
e-mail: tom.westermann@hsu-hh.de 

P. Kroke · C. Waschkies 
eBZ GmbH, Bielefeld, Germany 
e-mail: carsten.waschkies@ebzgmbh.de 

© The Author(s) 2024 
O. Niggemann et al. (eds.), Machine Learning for Cyber-Physical Systems, Technologien 
für die intelligente Automation 18, 
https://doi.org/10.1007/978-3-031-47062-2_3 

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47062-2_3&domain=pdf
hranisan@hsu-hh.de
 1749 50909 a 1749 50909 a
 
mailto:hranisan@hsu-hh.de
tom.westermann@hsu-hh.de
 1749 54009 a 1749 54009 a
 
mailto:tom.westermann@hsu-hh.de
carsten.waschkies@ebzgmbh.de
 1749 58326 a 1749 58326 a
 
mailto:carsten.waschkies@ebzgmbh.de
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3
https://doi.org/10.1007/978-3-031-47062-2_3


20 N.Hranisavljevic et al.

1 Introduction and Problem Statement 

As defined by the Industry 4.0 agenda, modern production systems (often called Cyber-
Physical Production Systems or CPPSs) rely on intelligent services such as self-optimization, 
self-reconfiguration and self-diagnosis [ 6, 8, 10] which should increase the robustness, 
flexibility and productivity of the systems. 

CPPSs consist of many autonomous and cooperative subsystems and components that 
interact in a multitude of ways. This combination of individual subsystems can cause emer-
gent behavior, i.e. behavior of the full system that deviates from the expected behavior of 
the subsystems [ 9]. This often prevents both creating the holistic behavior model at design 
time and straightforward updating after changes are conducted in the system. 

One possibility to handle this problem lies in data-driven approaches, which allow the 
learning of an accurate model from the actual observed data during the plant operation. In 
these approaches, abstractions of the subsystem’s behavior are derived from the machine 
data. 

Due to the high variability of CPPSs, the creation/learning of these models is often not 
physics-based, but takes a more generic form like timed automata or Petri-nets. Nevertheless, 
these models can be very difficult to learn for complex systems, especially on a level that 
would enable the simulation of the system behavior. On the other hand, the simulation 
of different scenarios and decisions could point to suboptimal behavior in some of the 
components, while the online observations can be compared to the model and errors can be 
detected [ 10]. 

More precisely, the models can be used in three modes [ 8] (see Fig.  1): 

1. Offline Simulation—evaluating system configurations for different contexts (e.g. new 
product type, new machine module) [ 5][ 17] 

2. Proactive Simulation—recognizing deviations from the expected behavior given the 
current context [ 10][ 3] 

3. Reactive Simulation—evaluating a possible sequence of actions after a disturbance has 
occurred [ 12][ 2] 

This paper proposes an approach validated on a real-world industrial use case, in which 
ensembles of timed automata simulation models were learned from data traces generated in 
the manufacturing of smart meters. These models were then used in three scenarios spanning 
all three of the aforementioned simulation modes. 

(RQ1) What part of the simulation model can be learned (ML) and what part needs to be 
manually-programmed based on collected prior knowledge? 

(RQ1) How can the integration between the manually-programmed and the data-driven/ 
learned part be achieved?
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Fig. 1 A learned model can be used for evaluating a configuration, monitoring the CPPSs behavior, 
and evaluating decision options in case of a disturbance 

2 Use Case 

In this work, a use case of a company called eBZ GmbH 1 from Bielefeld, Germany is used 
to evaluate our simulation approach based on ML models of dynamic system behavior. The 
plant of interest is responsible for the assembly, programming, and testing of smart meters. 
Figure 2 describes the plant behavior using the formalized process description (VDI 3682, 
[ 15]). 

Order data The production is performed in an order fulfillment manner using an assemble-
to-order policy [ 14], in which only one order can be active at a time. The order data is 
available from the manufacturing execution system (MES), each order having an order ID, 
a product type and the number of products. During production, for each order we calculate 
the productivity metric as the order’s average throughput. 

Event data The event logs are generated by the MES and contain information about the 
communication between the MES and the individual CPPS components. Each row in the 
tabular data gives the timestamp of the event, the event symbol (name), the component which 
logged the event, the ID of the product piece it has affected and the ID of the order that this 
piece belongs to. 

Value-discrete data System PLCs provide access to a subset of program variables (e.g. via 
OPC-UA interface). Each row in the tabular data gives the time-stamp of the value change,

1 www.ebzgmbh.de 

www.ebzgmbh.de
www.ebzgmbh.de
www.ebzgmbh.de
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Fig.2 Formalized Process Description of the smart meter production process. Each technical resource 
can have multiple instances (E.g. 2. ×T1, 8. ×T2...) 

the name of the variable that changed its value, the new value and the component that this 
variable belongs to. 

3 Proposed Approach 

The proposed approach is based on discrete-event models of the plant components and 
relies on the well-established deterministic timed automata [ 1]. Here, “timed” refers to 
the continuous clock measuring time spent in some state until a transition occurs, while 
“deterministic” refers to the deterministic trajectory of states given a sequence of events 
applied to the automaton. 

Model It extends the standard timed automaton by a probabilistic aspect, which refers to 
the categorical probability distributions (or relative frequency) of events given each state 
(see Fig. 3). The result is a generative model which can be used to simulate system behavior 
starting from any initial state. Its single continuous clock. t is reset on every event. To generate
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Fig. 3 The proposed timed-automata learning approach 

the next event, first an event symbol . e is sampled given the current state . q, then the clock 
timing of the event is sampled according to the one-dimensional distribution .p(t |q, e). 

Learning algorithm As shown in previous works, timed automata can be learned efficiently 
from observations [ 7, 11]. In this work we use a simple learning approach applied to subsets 
of variables/events—these subsets are partitioned according to prior knowledge about related 
components/variables/events. The algorithm assumes that the system state at any moment 
is fully observed and determined by: 1) the observed values of discrete variables; and 2) 
the last logged event symbol of each considered component (see Fig. 3). After the dataset is 
iterated, the probability distributions of event clock timings can be approximated by means 
of histograms. 

Manual logic While the learned automata approximate the behavior of the system com-
ponents, additional logic is necessary to coordinate the behavior of the complete automata 
ensemble. This article proposes a Manual Logic component (see Fig. 4) able to forward the 
events that are generated by any of the automata to a group of other automata, in order to 
trigger a transition there. Additionally, it allows changing the plant configuration i.e. the 
transition parameters of the models. The Manual Logic is manually programmed based on 
the collected prior knowledge. 

Offline Simulation Here, multiple plant configurations are simulated and the performance 
that they achieve for a given order is evaluated. Therefore the approach takes a search space 
of plant configurations as well as order data as input, and simulates the automata. Therefore 
the Manual Logic and the automata are fixed, while the configuration is searched. 

Proactive Simulation In the proactive simulation, the learned automata are used to compare 
the online data to the simulation. The plant configuration and the Manual Logic are fixed. 
If the ongoing productivity is lower than the simulated productivity, this hints at faults in
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Fig. 4 Manual Logic component is the key to enabling ML-based simulation 

components or problems with the used control logic. For example, if a lower productivity is 
observed in the online data, it could be identified that a robot is working more slowly than 
what was learned in the automata. By comparing the online data to a new simulation run 
based on the corrected robot timings, we can confirm that this was the probable cause of the 
problem. 

Reactive Simulation Here, the plant configuration is fixed and the automata only execute 
the online data of the current order. Once a disturbance has been detected, the simulations 
can be started using the current automata states and clock values. Given a set of possible 
decisions that can be made after the disturbance, the Manual Logic component runs many 
simulations trying different alternatives, in order to determine a sequence of actions that 
should lead to the highest system performance. For example, in some systems, a robot 
might have two alternatives: going for a new hardware piece and putting it on a conveyor or 
assembling the casing of another half-finished product. 

4 Experiments 

Data set The data set consists of 3.25 million rows of discrete data and 0.7 million rows 
of event data during the seven days of production. A total of 207 discrete variables are 
observed, some of which are changing rapidly, while others are changing the value only a 
few times a day, The data set and the part of the used code are available on Kaggle 2.

2 www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b 

www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
www.kaggle.com/datasets/nemanjahrane/ebz-plant-2a-2b
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Learning Model learning was implemented in Python using the algorithm described in 
Sect. 3. Manually-collected prior knowledge was used to decide which events/components 
should be jointly learned. This led to seven learned automata models, two of which are 
presented in Fig. 5. 

Manual logic It is programmed manually based on the prior knowledge and the information 
given in the process description (on Fig. 2). Some further constraints were added based on 
process knowledge, e.g. that all T1 (Test1) and T2 (Test2) components are always triggered 
simultaneously. 

Offline Simulation There are various configuration parameters that can be analyzed in this 
plant. The following scenario was considered: 

The number of T2 components can be changed. Given a specific product type, what is the 
optimal number.NT 2 of T2 components to use? 

In order to answer the question, a search space was defined for the parameter . NT 2 ∈
{2, ..., 11} (due to the technical constraints). The simulation is then performed for each 
of the 10 options. The results on the right side of Fig. 6 show that the optimal .NT 2 depends 
of the product type. For one product type two .T 2 components are enough (grey), while 
for another product type productivity increases taper off after the sixth component is added 
(blue). These results were later confirmed at the real CPPS. 

Proactive Simulation Here, productivity was chosen as the performance indicator which 
is used to compare the simulated and the actual behavior of the plant. Consider the following 
scenario: 

Fig. 5 Learned automata of the Programming (Left) and  Laser (Right) components
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Fig. 6 Left: Simulated behavior as a Gantt chart. Arrows indicate product transports across compo-
nents, while colors represent different component states. Right: Offline analysis of order productivity 
sensitivity to the.NT 2 parameter for two product types (gray/blue bars) 

A faulty T2 component leads to products being wrongly marked as defective which causes a 
drop in productivity. How can we detect and identify this problem? 

The left side of Fig. 7 shows a diagram where—according to the simulation—around 70 
products should have been produced in an hour, while the real CPPS only produced 44. The 
simulation allows us to determine when this slowdown occurred, as well as to investigate 
which events possibly occurred with a delay, or too frequently. A further analysis leads to 
the explanation of the problem: too many Failed events in one of the T2 stations. 

Reactive Simulation In general, various disturbances might occur in the plant. Here, the 
following scenario was investigated: 

A number of Defect products occur in one of the three processes: Programming, T1 or T2. 
Which sequence of possible decisions results in the least loss in productivity? 

First, the disturbance is found on 9th of January at 8 am. Then, sequences of decision 
alternatives for the different robot tasks are simulated starting from the selected point in time. 
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Fig. 7 Left: Proactive-simulated productivity (orange) and actual productivity (green). The yellow 
bar marks a disturbance. Right: Sorted hourly productivity of the simulated reactive alternatives



Using ML-Based Models in Simulation of CPPSs… 27

The right side of Fig. 7 shows a significant difference in the evaluated decision sequences, 
of which the best one should be chosen. 

5 Conclusions and Future Work 

In this paper we presented an approach to the simulation of CPPS behavior based on: 1) 
timed automata that were learned from the data; and 2) manual logic programmed using the 
collected prior knowledge. The approach was successfully validated in three scenarios: 

1. Using offline simulation to optimize the number of test stations to achieve a higher 
productivity than the base configuration; 

2. Evaluating the current performance against the theoretical performance using proactive 
simulation; 

3. Adapting the decision sequence of a robot after a series of defective products using 
reactive simulation. 

However, the approach also has the drawback of being very labor intensive to set up. Large 
manual effort was needed to determine the set of events that are relevant and determine 
their meaning with regards to the automaton. While this information can be considered prior 
knowledge, it is often not readily available. 

Future research could focus on representing this information in the form of ontologies 
and knowledge graphs [ 16] to achieve a more detailed highly formalized representation of 
knowledge. The field of Informed ML offers numerous approaches to further integrate this 
knowledge in the ML process [ 13]. Additionally, incorporating possibly available continuous 
data can also be considered [ 4]. 
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Deploying Machine Learning in High 
Pressure Resin Transfer Molding and Part 
Post Processing: A Case Study 

Jasper Steffens , Robin Kühnast-Benedikt, Florian Leber, 
Philipp Rosenberg , and Frank Henning 

Abstract 

High pressure resin transfer molding (HP-RTM) is well suited to medium volume auto-
mated production of composites. The process complexities of HP-RTM however often 
make its application insular. Data is not carried forward along the production chain 
and process reliability is assessed as a unified indicator with minimal granular consid-
eration of individual contributing factors. Cause and effect relationships spanning the 
process chain remain undetected. Predator (10/2020–09/2023) is an ongoing Eurostars
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project aiming to bridge this divide by developing an intelligent data processing sys-
tem across the industrial process chain of composite production. The consortium has 
already developed an approach to acquire and transfer meaningful process related data 
from molding to post-processing of parts. The data collection merges RTM tooling, 
equipment sensors, structure-borne sound data and tool wear measurements during the 
milling process. Unique part identifiers allow traceability of production parameters 
for online quality assurance and data-based optimization across the process chain. 
The developed approach enables tool wear monitoring as well as tailored predic-
tive maintenance and enhanced remote customer support in addition to a data-driven 
understanding of the production process. 

Keywords 

HP-RTM  Milling  Digitalization  Data-acquisition  Data-analysis 

1 Introduction 

Competitiveness in the composite production market is dependent on robust processes 
to manufacture components of consistent quality in short cycle times. The required pro-
cess understanding is currently retained as operator experience and other domain expert 
knowledge. Such expertise is typically insular, focused on individual steps along the pro-
duction chain from raw material to finished part and not trivially available to inform 
data driven analysis [1, 2]. This hinders the discovery of latent variables and their com-
plex interactions along the process chain. Data-driven business models such as predictive 
maintenance, remote support services for production equipment and advanced part qual-
ity assurance approaches require a more stringent collection, storage and evaluation of 
process information [3–5]. 

1.1 Composite Manufacturing by RTM 

High pressure resin transfer molding (HP-RTM) is a method of combining fibers and 
polymers into fiber reinforced polymer composites [6]. As shown in Fig. 1, the process 
begins with cutting and assembling of a textile reinforcement into a stack. This material is 
then draped close to the final part shape. During this step, the stack is also consolidated, 
which stabilizes it for further handling. After shaping the stack, the preform is transferred 
to the RTM tool. The resin is injected under controlled pressure and temperature in this 
step, which polymerizes to the desired composite matrix material. Once this curing is 
complete, the part is removed from the tool and machined, typically milled, to meet the 
target dimensions.

The RTM process is affected by multiple factors such as effective fiber volume content, 
textile permeability, resin viscosity, tool gap, pressure, etc. In a classical approach, each
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Fig. 1 RTM process chain for composite production, consisting of (1) textile raw material from 
fibers, (2) cutting and stacking of textile reinforcement, (3) draping and consolidation, (4) net shap-
ing of the preform, (5) transfer of preform into the mold, (6) infiltration and polymerization of the 
polymer matrix and (7) post processing of the composite part

influencing variable is controlled for by fine tuning the process during tool commissioning 
and maintaining a conservative safety margin in all process parameters where possible. 

Similarly, in the final post-processing step of milling the composites, tool wear is 
a critical factor. Tool damage accumulates over time and tool life is typically assumed 
conservatively to avoid reduced milling quality. 

1.2 Knowledge Extraction in a Complex Network of Cyber-Physical 
Systems 

Bridging the steps of composite production to create a unified, digital representation of 
the part production requires knowledge extraction at each step of the process. 

The gain of non-trivial information from a complex network of digitized and connected 
assets along the value stream of a producing organization requires experts in the specific 
domain, IT, data science and management. The underlying reference process is widely 
studied in the literature [7–9] and the following steps were incorporated in the project: 

1. Business understanding 
2. Data understanding 
3. Data preparation 
4. Data modelling
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5. Evaluation 
6. Deployment 

2 Implemented Approach 

2.1 Data Management and Analysis 

To allow a meaningful discussion of process data, three required stages of activities can 
be formulated [10]: 

1. Identification of data sources, boundary conditions & use-cases 
2. Definition of data transfer, storage and analysis methods 
3. Implementation of the software and hardware modules to the manufacturing equipment 

A successful implementation of these steps allows for the derivation of data analysis 
models for a process, in this case HP-RTM and milling. 

As part of the first step, data was grouped by process step (RTM, milling) and origin 
(tool, press, RTM equipment, milling fixture, other). A list of possible faults in product 
or process with relevant equipment components and their data sources was generated in 
exchange with the respective domain experts for all process steps covered. Identifying 
these use-cases allowed for a derivation of requirements on the data collection modules. 
These cover the RTM process from infiltration to post processing (see Fig. 1, steps 3–7). 

Stage one showed disparate requirements between the process steps RTM and milling, 
leading to the implementation of two tailored data acquisition solutions. In the case of 
RTM, a centralized data merging node must communicate with the tool, press and RTM 
equipment, which in turn were enabled to share their sensor data. Additional sensors 
were included where use-cases suggested a probable benefit. In the case of milling, an 
equipment-borne sensor was combined with offline measurements of tool wear. 

To enable unique identifiability of experiments across both process steps, bar code 
identifiers were embedded into the parts. This consequently enabled merging of both the 
data sets into the project database for an integrated analysis of activities (Refer to Fig. 2 
for a high-level overview of the resulting data acquisition structure).

2.2 Process Monitoring and Predictive Maintenance for serial 
HP-RTM Production 

Process monitoring and maintenance support activities were identified as desired use-cases 
for RTM. This informed the tool design, incorporating technological features benefitting
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Fig. 2 Schematic view of the developed data acquisition structure. During part molding information 
from RTM equipment, tooling and press is captured together with quality control data. In part pro-
cessing milling and quality control data is captured and merged. All data is referenced to individual 
part identifiers and saved in a common data store

most from these solutions. This includes complex sealing concepts and tool functional-
ities. The size and setup of the experimental campaigns was chosen to approach serial 
production conditions as closely as possible within the constraints of a research project. 
For this purpose, the material handling was automated once it was defined, implemented 
and tested. 

2.3 Process Monitoring and Quality Assurance in Post-Processing 

Process monitoring and quality assurance (QA) related use-cases were identified for 
post-processing (milling). Variability in milling tool design required a large number 
of experiments to allow for a comprehensive testing plan to be developed but also 
necessitated the development of a customized milling fixture. 

Typically, milling operations in composite manufacture by RTM can be parallelized 
cost effectively—in contrast to the infusion step. The availability of a single research 
fixture thus limited the size of experimental campaigns for the project. 

3 Preliminary Results 

As of the writing of this paper, two experimental campaigns have been conducted, 
encompassing a total of 991 individually identifiable parts. Both data analysis and part 
processing activities are still ongoing. This section is, therefore, intended to showcase one 
exemplary finding, enabled by the approach developed. The first use case was prioritized
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using a criticality-centered approach that primarily focused quality and availability losses. 
Decisive for the importance of the respective losses was the impact and frequency in the 
production domain. In the first experimental campaign, the seal of the press was not main-
tained regularly. The maintenance strategy was reactive, leading to the full degradation of 
its condition. This allowed tracking of important information about the failure-behavior. 
In real-world scenarios, it is critical to collect data of negative incidents. This typically 
is at odds with the key objective of maintenance organizations to ensure reliability and 
availability. 

3.1 Comparison of Physical to Date-Centric Modelling 

The identification of rules that lead to the loss of quality or function is a crucial responsi-
bility on the shopfloor. The task is usually performed with deep domain and engineering 
knowledge. In order to show the benefits related to the presented methodology, the follow-
ing figure and table show the results of a conventional approach of incorporating physical 
modelling in comparison to a data-centric approach. The goal was to model the condition 
of the seal of the press. 

The following models were trained in the first experimental campaign and tested on 
the second experimental campaign. The RMSE was calculated on the test data. 

Linear Regression: 
Despite its static nature, univariate linear regression is widely used in the industry. The 
data understanding and preparation effort is straightforward. The modelling is easy and 
the deployment doable. The disadvantage lies in the accuracy and robustness of the model. 
The R2 was 0.845 on the training data. 

Non-Linear Regression: 
The second frequently used technique to model and predict metric variables fast is by 
building a non-linear regression model. The advantages and disadvantages are similar 
to the linear regression model, with the additional benefit that many degradation curves 
follow a non-linear trend (compare Fig. 3). The R2 was 0,96 on the training data.

Multiple Regression: 
In comparison to the first two static regressions, the multiple regression includes multiple 
variables to determine and explain the behavior of the seal condition. Variables that detect 
influencing effects were identified and used to model the behavior of the seal-condition 
as measured by in-tool sensors. The accuracy increased significantly, as factors such as 
the specific experimental setup were included. The R2 was 0.97 on the training data. 

The comparison of the three models is summarized in Table 1. The evaluation was 
performed in the second campaign. It is clearly shown that the first two models initially
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Fig. 3 The derived linear and logarithmic model show a reasonable fit in the training data

Table 1 Comparison of different regression models for the seal degradation behavior 

Linear Regression Non-linear Regression Multiple regression 

RMSE = 26.7 
Preparation Effort = Low 
Acceptance = Very low 

RMSE = 26.6 
Preparation Effort = Low 
Acceptance = Very low 

RMSE = 3.3 
Preparation Effort = High 
Acceptance: High 

show a good fit, but loose accuracy on new data. The RMSE are very low and indicate 
clear overfitting. From a user’s perspective, the acceptance is very low and the generated 
models will never reach the shopfloor. The multiple regression incorporated approximately 
15 variables that allowed a better prediction of the seal condition. The data collection, 
preparation and modelling effort were significantly higher for the multiple regression, 
as more factors were included. The cost-benefit ratio was in favor for the data-centric 
approach, as robustness and applicability are needed to generate benefits from the actual 
effort. 

4 Conclusions & Outlook 

Applying machine learning to the RTM process requires integration of disparate systems 
across the process chain. Capturing domain expert knowledge is the key to tailor data 
collection and analysis activities. This involves iterative feedback both in system layout 
and data collection. A high degree of automation is beneficial both to avoid operator 
variability as well as to formalize the process steps in preparation of data analysis. The 
high quantity of experiments required to approach industrial settings and relevant machine 
learning approaches is aided by persistent part identification by embedded bar codes.
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Overcoming these challenges allows machine learning to be successfully applied as 
shown to discover complex interaction of process parameters to enable robust data analy-
sis that is deployable in an industrial setting. More complex approaches such as multiple 
regression are enabled and show a high acceptance. 

Continuing work in this research project will focus on increasing the number of analy-
ses based on the captured data to cover more process features and derive analysis modules 
with meaningful output to end users. 

Supplementing the presented approach future work would benefit from including 
additional automated quality control methods, adding depth to the captured process data. 
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Development of a Robotic Bin Picking Approach 
Based on Reinforcement Learning 

Tobias Stuke,Thomas Rauschenbach and Thomas Bartsch 

Abstract 

Robotic bin picking systems aim to automate the feeding process of randomly stored 
objects in industrial production. Despite being a research field for decades, there is still a 
gap between research and industrial application. The presented work intends to improve 
the utilization of bin picking for the industrial manufacturing of electrotechnical compo-
nents. In this context, the development process of a system approach based on machine 
learning is stated. First, related work is presented and the research issue is derived. Sec-
ond, a comparison between major machine learning techniques with respect to bin picking 
is made and a reinforcement learning approach is chosen for this work. Therein, a neu-
ral network learns strategies for grasping objects from bulk material depending on their 
position in the bin. Based on manifold states in a simulation environment, it is the goal to 
gain a versatile character of the robot system. In this regard, preselection criteria, discrete 
action primitives and grasp constraints are defined that incorporate domain knowledge 
to shorten the training effort. 
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1 Introduction 

Manufacturing companies face increasing challenges in global competition in terms of prod-
uct variety, demographic change and rising wages [ 1]. Maintaining competitiveness is often 
achieved by production automation. Nevertheless, the automated feeding of chaotically 
stored objects is challenging. As a use case, the manufacturing process of electrotechni-
cal components at Weidmueller Interface GmbH & Co. KG is considered. In this context, 
specialized solutions for the automated feeding of standardized products in high quan-
tities already exist, such as bowl feeders. However, those solutions cannot be deployed 
economically for small batch sizes with a high product variety. Consequently, the human 
eye-hand-coordination is often still required for grasping parts from their random posi-
tions and orientations. Even though the automation of bin picking has been researched for 
decades already [ 2], the utilization for objects with various shapes in the industrial environ-
ment remains a major challenge. This work aims to improve industrial bin picking using 
a vision-guided robot, by focusing on the decision making process of grasping the objects 
from the bulk. 

2 Related Work 

There are two research paradigms of robotic bin picking: 1) rule-based approaches based on 
analytic metrics to identify suitable grasp candidates, and 2) data-driven approaches that use 
empirical data to learn the grasping process [ 3]. In the 1980s, force closure between the object 
and the gripper was analyzed in order to grasp the object without loosing it. In this context, 
the ‘wrench’ [ 4] describes the magnitude of the forces and the torques that can be applied to 
a grasped object before the transition from static to sliding friction starts. Later, this metric 
was used to select suitable postures of the gripper. Within the 2010s, data-driven approaches 
started to gain momentum. Huge datasets have been used in physical experiments, e.g. [ 5], 
to learn the ability of grasping objects. There are several reinforcement learning approaches, 
such as policy-based, value-based or actor-critic algorithms, that have been applied for bin 
picking. Chen et al. used a Deep Q-Network (DQN) for solving a bin picking task [ 6]. 
Tanaka et al. deployed a Proximal Policy Optimization (PPO) for picking and placing items 
within a logistic process [ 7]. Furthermore, Ishige et al. utilized a Soft Actor-Critic (SAC) 
algorithm for picking screws from bulk [ 8].
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2.1 Research Issue 

After having identified the current state of bin picking technologies, it is important to under-
stand the requirements for picking randomly stored objects in the industrial environment at 
Weidmueller. Hence, an expert group from the mechanical engineering department devel-
oped a list of criteria. Comparing the criteria pairwise led to the four most important require-
ments: reliability (18.3%), robustness (17.1%), versatility (14.6%) and domain knowledge 
(14.6%) [ 9]. 

The reliability is calculated as the ratio between the number of successfully picked objects 
and the number of trials. The robustness of a system characterises the capability to resist 
varying inputs without changing the initial set of stable parameters. The versatility describes 
how well the system can adapt to new settings, e.g. grasping unknown objects. The domain 
knowledge defines information that exceed the scope of the collected sensor data [ 10], such 
as the target position for placing the objects. 

Next, the four criteria are used to evaluate the related work. The evaluation shows that 
the strength of the rule-based approaches is domain knowledge, whereas the strength of 
the learning-based methods is versatility [ 9]. Thus, both paradigms have different strengths, 
while no approach meets the requirements entirely. The challenge is to minimize this gap by 
developing a hybrid approach that combines the individual strengths. Due to the benefit in 
terms of versatility, a learning-based approach is chosen as the starting point for this work. 

2.2 Selection of a Machine Learning Technique 

In general, machine learning techniques are classified into supervised, unsupervised and rein-
forcement learning [ 11]. Supervised learning (SL) requires labeled output data during train-
ing, where the model learns to map input data to the desired output. For instance, the ‘Dex-
Net 2.0’ approach is trained to predict suitable grasp poses based on labeled images [ 12]. 
Unsupervised learning (UL), on the other hand, does not require labeled data. The ‘6-DoF 
GraspNet’ approach, for example, consists of two networks training each other [ 13]. In con-
trast, reinforcement learning (RL) relies on an interaction of an agent with an environment. 
In the Markov decision process (MDP) the agent takes actions and changes the current 
state of the environment, while a reward signal controls the learning progress in a feedback 
loop [ 14]. 

When comparing the three machine learning techniques, SL and UL are based on visual 
information solely, while RL relies on the interaction with the environment. Thus, RL has the 
advantage that the robot kinematic is taken into account. This decreases the solution space, 
prevents the agent from learning unsuitable grasp poses and thereby shortens the training 
procedure. On the other hand, SL and UL both provide limited possibilities to include domain 
knowledge based on images. RL contains design parameters in terms of a reward function 
and actions, enabling the incorporation of domain knowledge. Consequently, a RL approach
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is chosen for this work due to the benefits of considering both robot kinematics and domain 
knowledge. 

3 Approach 

After the selection of a reinforcement learning approach for grasping randomly stored objects 
in industrial settings, the approach as well as the procedure and the environment for training 
the agent are described in the following. 

This work considers the subprocesses (I) object detection, (II) grasp planning, (III) path 
planning and (IV) motion execution. The (I) object detection was developed in a previous 
master thesis [ 15] and is applied herein. Based on the detected object poses within the bin, 
the chosen RL approach performs the (II) grasp planning. The (III) path planning and (IV) 
motion execution are performed by rule-based algorithms. 

3.1 Robotic Bin Picking Based on Reinforcement Learning 

The developed bin picking approach is depicted in Fig. 1 and is inspired by the  Markov  
decision process [ 14]. The input of the agent is the observed state .St provided by the object 
detection algorithm [ 15]. It acquires the six degrees of freedom in terms of the position 
and orientation of the object, also called pose, in the Euclidean space. Next, a preselection 
of grasp candidates is executed. Therefore, three criteria were developed in another master 
thesis [ 16]: a) centricity, b) height and c) rotation of the object within the bin. The first 
criteria takes into account that a collision of the robot with the bin is less likely if the object 
is located in the center of the bin. The second criteria considers the height of the object with 
respect to the bottom of the bin, since grasping an object occluded by others is difficult. 
The third criteria evaluates the object according to its rotation. Objects with a high degree 
of rotation cause difficult configurations of the six-axis robot arm when grasping it. The 
criteria are multiplied with a weighting coefficient and the product of the three is used for 
selecting the grasp candidate. Subsequently, the grasp candidate, i.e. the object pose, is fed 
to the agent. The latter is modeled by a multilayer perceptron (MLP), i.e. a neural network 
with dense layers solely. It selects an action primitive .ai that is executed in the simulation. 
Action primitives are elementary trajectories that describe the temporal course of the robots 
tool center point (TCP) in the action space. A schematic illustration of action primitives 
is provided in Fig. 2. The action primitives are defined in relation to the object pose. For 
instance, when executing a ‘top down grasp’ the approach and remove vector of the TCP is 
aligned with the object surface normal. Using a set of discrete action primitives allows the 
incorporation of domain knowledge, since the primitives are designed by the engineer. For 
performing the selected action primitive in the action space, a rule-based (III) path planning 
algorithm, such as rapidly-exploring random trees (RRT) [ 17], is used. It calculates several
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Fig. 1 Robotic Bin picking within the Markov decision process 

Fig. 2 Schematic Action Primitives for Robotic Bin picking 

trajectories that are subsequently evaluated regarding reachability, collision and motion 
effort. The optimal path is executed (IV) by using a inverse kinematic solver, e.g. [ 18], that 
calculates the joint angles of all six robot axes for each time step. The interaction between 
the robot and the environment leads to a new state .St+1 in the Markov decision process 
(Fig. 1) and the loop repeats with a new observation. Finally, the reward.Rt+1 is fed back to 
the agent for training the neural network. 

3.2 Training Procedure 

The goal for the agent is to learn how to choose suitable action primitives .ai from a set 
. A. The updates of the neural network are triggered by the reward signal .Rt . In this work,  
the manipulation task is considered successful if the object is grasped and retracted from
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the bin. In this context, the sign function [ 19] provides a traditional method for rewarding 
the agent. Whether the object was successfully picked from the bin or not, the reward is 
.R = +1 or .R = −1, respectively. Instead of the sign function, an enhanced reward system 
is developed in this work based on grasp constraints that determine force closure between 
the gripper and the object. The three constraints are: 

.vrel = 0, (1) 

.dx−axis = wObject , (2) 

.dz−axis ≤ hObject . (3) 

First, the relative velocity.vrel between the gripper and the object needs to be zero. Second, 
the distance .dx−axis between the gripper fingers has to be equal to the object width. Third, 
the distance .dz−axis between the contact point on the gripper finger and the center of the 
object contact surface needs to be less or equal to the object height. If all three constraints 
are satisfied, the grasp is considered successful and a positive reward signal .R = +1 is 
gained. If one constraint is violated, the agent obtains a negative reward signal .R = −1. 
Compared with the traditional reward function calculated at the end of the manipulation 
task, the three grasp constraints enable a time continuous feedback signal to monitor the 
force closure grasp during the whole motion execution process. During training, the goal 
of the agent is to maximize the total sum of rewards by adapting the grasping policy. The 
policy.π (s, a) describes which action primitive.ai ∈ A to select, depending on the observed 
state . s, i.e. the object pose in the bin. In the finite MDP, the sets of states . S, actions . A and 
rewards .R have a finite number of elements. .Rt and .St are random variables of the reward 
and the state, respectively, at time . t (Fig. 1), whereas . s and . r are particular values of these 
variables. Given a finite MDP, the value of a state .V (s) is calculated according to Eq. 4 as 
the maximum of the expected reward . E [ 20]. 

.V (s) = max
π

E

 
r0 +

n 
k=1

γ k rk | s1 = s'
 

; k = 1, ..., n; with k, n ∈ N (4) 

Here,.r0 denotes the initial reward and. γ refers to a discount rate. The factor. γ ∈ R ∈ (0, 1)
discounts future rewards, taking the economic principle into account that current rewards 
are more valuable than future rewards [ 20]. During training, the iterative execution of the 
bin picking task and the calculation of the argument that maximizes the value function. V (s)
leads to the optimal grasping policy .π (s, a). The parameters of the neural network are 
updated for each iteration based on the current value .V (s) and thereby the agent is trained.
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3.3 Training Environment 

Since training the agent by interacting with the industrial environment is very expensive, 
a simulation environment is chosen instead. Compared to training in the industrial envi-
ronment, there are multiple advantages. First, a collision in the simulation does not cause 
any damage to the system. Moreover, various states can be generated easily. Thus, train-
ing the agent by means of different scenarios aims to generate a behaviour that is robust 
and generalizes well to the picking task. A simulated environment furthermore enables a 
parallelization of the training procedure. In this work, the simulation tool ‘Isaac Sim’ of 
NVIDIA [ 21] is used to a) depict the physical properties of the robot, b) implement state 
of the art RL-algorithms, and c) illustrate visual features with photorealistic representations 
through its raytracing capability, thereby enabling object detection. 

4 Conclusion 

In this paper, a method for grasping randomly stored objects in the industrial manufacturing 
of medium production volumes is presented. The main contribution is a closed-loop control 
build on a reinforcement learning approach trained in the simulated environment ‘Isaac 
Sim’. Therein, a multilayer perceptron learns an optimal grasping policy.π (s, a) depending 
on a value function. The goal of the training is maximizing the value.V (s), i.e. the expected 
reward . r , by adapting the policy .π (s, a). In this work, the reward is correlated to three 
constraints that determine a force closure grasp. By that, a continuous feedback signal is 
gained that can be monitored during the whole manipulation process. In addition to the 
grasp constraints, further domain knowledge is included by the preselection criteria for 
grasp candidates and the set of discrete action primitives. The presented approach differs 
from existing RL approaches applied for bin picking, e.g. [ 6, 22], by the incorporation of 
domain knowledge to this extent. In conclusion, the presented work constitutes a hybrid 
approach that combines the strengths of a learning-based approach and a rule-based method 
in terms of versatility and domain knowledge and by that aiming to minimize the gap between 
the research and the industrial application of robotic bin picking. 

In future work, the developed approach will be trained and tested in the simulation 
environment. As a test scenario, grasping terminal blocks at Weidmueller will be used. First 
of all, the focus will be on shaping and testing suitable action primitives. Then, the reward 
function based on the three grasp constraints will be examined. In this context, the ‘wrench’ 
offers a further advancement to monitor force closure during the grasping process. Finally, 
the deployment of the approach in the industrial production of Weidmueller is planned 
by using the robot operating system (ROS) as an interface between the simulated and the 
physical environment.
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Control Reconfiguration of CPS via Online 
Identification Using Sparse Regression (SINDYc) 

Benjamin Kelm, Stephan Myschik and Oliver Niggemann 

Abstract 

Cyber-physical systems are becoming increasingly complex and prone to faults. To effec-
tively handle these faults, online identification and reconfiguration of the system are cru-
cial. This paper proposes a method for controlling reconfiguration by identifying faults 
in cyber-physical systems online. The approach utilizes sparse regression (SINDYc) to 
identify the system dynamics, including faults, and adjusts the control law accordingly 
by leveraging plant redundancies. 

To illustrate the fault handling approach, the study focuses on a well-known control 
systems example, the inverted pendulum on a cart, which is nonlinear and unstable. By 
injecting a perturbation signal, the closed-loop system dynamics are separated into input 
and system dynamics. The SINDYc algorithm is then applied to the measurement vectors 
of input and output signals, generating an up-to-date dynamic model that incorporates 
possible faults. In the event of an actuator fault, the identified model is used to reconfig-
ure the control using the Pseudo-Inverse method, optimizing the utilization of available 
redundancies. Both abrupt and incipient faults in the actuator dynamics are considered 
in this study. 
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The online identification is limited to linear models in this work, and a full-state 
feedback controller is reconfigured under the assumption of full observability of the 
system. A parameter study demonstrates the influence of perturbation signal power and 
measurement noise on the identifiability of the closed-loop system. Based on the results, 
it is concluded that the online control reconfiguration approach satisfactorily handles 
actuator faults in the studied use-case. Furthermore, it can be easily extended to nonlinear 
model identification and subsequent reconfiguration of nonlinear controllers, such as 
MPC or INDI. 

Keywords 

CPS Identification • Sparse Regression • Closed-loop Online Control Reconfiguration 

1 Introduction 

Cyber Physical Systems (CPS) are prone to various faults caused by failing actuators, 
sensors, or structural components. Modern systems are becoming increasingly larger and 
complex, making manual fault handling costly and time-consuming. To enable systems to 
adapt autonomously to faults, fault-tolerant control (FTC) is necessary. For severe faults, 
such as the loss of a complete actuator, a new control law is required. This process is called 
reconfiguration and has the goal of identifying a new valid control law that can restore 
operation [ 1]. 

Due to the immense cost reduction and miniaturization of embedded controllers and 
sensors in the last decade, data and computational resources are widely available. This 
allows for computationally expensive algorithms to be incorporated in CPS of arbitrary 
size and led to the development and implementation of advanced model-based fault-tolerant 
control architectures, such as explicit model following (EMF), Linear Virtual Actuators 
(LVA) or Fault-tolerant Model Predictive Control (MPC) approaches [ 2]. 

However, all these model-based FTC strategies rely on accurate dynamic models to 
reconfigure the controller that is handling the faulty system. Generally speaking, the impact 
of various faults on the system dynamics are not known a-priori. Thus, when developing a 
comprehensive fault handling strategy, a model of the dynamics of the faulty system needs 
to be identified online. This requires the algorithm for model identification to be executed 
online and to rapidly convergence (low data requirement) to allow for a quick reconfiguration. 
Additionally, a high robustness against noise is desirable to be applicable in practice. In the 
last years, the well-established research field of system identification has received renewed 
attention with the rise of data-driven modeling, advanced machine learning algorithms and 
new findings in the area of compressed sensing [ 3]. In this paper we strive to present a model-
based fault handling strategy for a classical control system, the Inverted Pendulum on a Cart 
(IPoC) with threefold actuator redundancy. The required dynamic model of the faulty system 
is identified online through the sparse regression algorithm SINDYc [ 4]. The identified
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model of the faulty system is then used for a model-matching reconfiguration algorithm, 
the Pseudo-Inverse Method [ 5, p. 391] to reconfigure a full-state feedback (FSF) controller. 
In this work, we will limit our online identification to linear models, although SINDYc 
readily extends to nonlinear models. Further, we assume full observability of the system. 
The continuous plant model, the discrete controller and reconfiguration are implemented in 
MATLAB/Simulink. In the following we aim to address the following research questions: 

1. Are sparse regression algorithms, such as SINDYc, suited to identify models of closed-
loop CPS online? 

2. What perturbation strategy ensures continuous and adequate identification of the faulty 
system dynamics? 

The paper is structured as follows: After a section on the related work 2, we will first describe 
the IPoC system followed by a brief overview of the SINDYc algorithm. Section 5 describes 
the control reconfiguration methodology and architecture. The results will be discussed in 
Sect. 6 and followed by a discussion and conclusion. 

2 Related Work 

2.1 Model-Based Fault Tolerant Control 

To achieve fault tolerance, technical systems are typically augmented with a Fault Detection, 
Identification and Recovery (FDIR) scheme. If the fault is severe (e.g. actuator breakdown) 
and requires a redesign of the control-loop, control reconfiguration is necessary. Otherwise, 
a control accommodation approach is sufficient by means of robust or adaptive control. 
Blanke et al. [ 5] have described multiple approaches to model-based control reconfiguration 
[ 5]. Generally, the model-matching design is prevailing in the literature, where the controller 
of the faulty plant is reconfigured, so that the closed-loop characteristics of the system are 
consistent to the non-faulty behavior. Beside the Pseudo-Inverse approach presented in this 
work, the Markov Parameter approach or Linear Virtual Actuators (LVA) approach are 
alternative model-based reconfiguration methods [ 5]. In the aerospace sector, a historically 
strong field of applied FTC, many control architectures and approaches have been developed, 
as exemplified in [ 6]. Lombaerts et al., for example, applied a the model reference adaptive 
control approach to a flight control [ 7]. 

Beside the classical FTC approaches originating from control theory, another research 
field has evolved, mainly dealing with hybrid systems and employing Formal Methods to 
find a valid configuration [ 8]. For example, the AutoConf algorithm by Balzereit et al. 
transfers the reconfiguration problem into a logical formula, which then can be solved using 
Satifiability Theory (SAT) [ 9]. Despite the many different approaches to model-based control
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reconfiguration, the need of an up-to-date system model is ubiquitous, since a system subject 
to faults is inherently time-variant and faults are not known beforehand. 

2.2 Online, Closed-Loop System Identification 

Closed-loop online system identification has been of interested in many areas. Ljung renders 
a comprehensive view on system identification and specifically covers the problem of iden-
tifiability of closed-loop systems [ 10, Sect. 13.4]. Leveraging advances in sparse sensing 
and machine learning, Brunton, Proctor and Kutz have developed the Sparse Identification 
of Nonlinear Dynamics (SINDy) algorithm [ 11]. The algorithm employs the thresholded 
sequencial least-squares regression algorithm, resulting in models that are sparse and thus 
balance model complexity with descriptive ability. The algorithm then has been further 
developed to include forced nonlinear systems by extending the function base to include 
control inputs [ 4]. The resulting SINDYc formulation has been applied to numerous prob-
lems, including a Model Predictive Control (MPC) in the low-data limit by Kaiser, Kutz and 
Brunton [ 12]. However, to the best of our knowledge, data-driven sparse regression system 
identification techniques, such as SINDYc, have not yet been employed explicitly in the 
context of online closed-loop Control Reconfiguration specifically. 

3 System Description and Modeling 

Figure 1 shows the redundantly actuated IPoC system, which will constitute the use-case in 
this study. 

Fig. 1 Redundantly actuated 
Inverted Pendulum on a Cart 
(IPoC)
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Mathematically, the IPoC is described by the following differential equations [ 3]: 

.

ẋ = v

v̇ = −m2 l2 g cos(θ) sin(θ)+ m l2 (m l ω2 sin(θ)− δ v)+ m l2 (1/D) Ft
m l2 (M + m (1 − cos(θ)2))

θ̇ = ω

ω̇ = (m + M)m g l sin(θ)− m l cos(θ) (m l ω2 sin(θ)− δ v)− m l cos(θ) Ft
m l2 (M + m (1 − cos(θ)2))

(1) 

where . x is the cart position, . v is the velocity, . θ is the pendulum angle, .ω is the angular 
velocity. The parameters describe pendulum mass. m, the cart mass. M , pendulum arm length 
. l, gravitational acceleration. g, and the velocity-proportional (Stoke’s law) friction damping 
. δ on the cart. The system control input .Ft =  i=1 Fi is compound force applied to the 
cart and is a linear combination of the three redundant actuators. The actuators are modeled 
as ideal linear force actuators, not introducing any additional dynamics into the plant. The 
system is implemented as a nonlinear system in MATLAB/Simulink. 

4 Closed-Loop System Identification with SINDYc 

Sparse Identification of Nonlinear Dynamics with control (SINDYc) extends the original 
SINDy algorithm to include external inputs and feedback control [ 4]. 

4.1 Sparse Identification—SINDYc 

In this section, a brief overview of the sparse regression technique used in SINDYc is 
presented. Given a dynamical nonlinear system of the form. 

.
d

dt
x(t) = f(x(t), u(t)) (2) 

where .x(t) denotes the state of a system at time . t , and the function .f(x, u) describes the 
dynamic constraints. The time-dependency is omitted for better readability. 

Then, to identify the system from data, we first collect .m measurements of the state 
history .X ∈ R

m×n , corresponding to . n state-vector measurements .xi ∈ R
m and the input 

history .ϒ ∈ R
l×m . 

.X =
⎡

⎢
⎣ x1 x2 . . . xn

⎤

⎥
⎦ ,ϒ =

⎡

⎢
⎣u1 u2 . . . ul

⎤

⎥
⎦ , (3)
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These measurement matrices can be expanded with nonlinear candidate functions . f into a 
library matrix . (X,ϒ), 

. (X,ϒ) =
⎡

⎢
⎣ 1 X ϒ . . . f (X,ϒ) . . .

⎤

⎥
⎦ (4) 

which in turn constitutes the function basis to regress upon, so that the regression problem 
is defined as 

.Ẋ = 4 T (X) (5) 

where . denotes the sparse coefficient matrix to be determined, and . Ẋ describes derivative 
of the state history matrix with respect to time, which can be measured or computed. The 
resulting over-determined system can be solved efficiently with the thresholded sequential 
least-squares algorithm, a relaxation of the Sparse Regularized Regression Problem, as 
described by Zheng et al. [ 13]. 

4.2 Identifiability in Closed-Loop Systems 

As shown by Ljung, for a well-defined closed-loop system that exhibits integrative behavior 
(contains a delay) and is stable, the convergence theorem generally holds under the additional 
assumption that the data is informative and the model set contains the true system [ 10, p. 430]. 

Therefore it is possible to identify a system under closed-loop feedback control from 
data. However, it is more challenging to obtain informative data, since an important purpose 
of feedback is to make the closed-loop system less sensitive to disturbances. 

As indicated by Brunton et al. SINDYc can be applied to closed-loop systems, but requires 
an additional input perturbation [ 4]. The key issue is that for closed-loop systems, where 
.u = K(x), with .K being the feedback gain matrix, the regression problem becomes ill-
conditioned and the coefficients matrix.  thus rank-deficient. This is because it is impossible 
to disambiguate the influence of the feedback control and the internal dynamics. The single 
requirement for obtaining informative data from closed-loop systems is that the input must 
be be persistently exciting of a certain order, i.e. that it contains sufficiently many distinct 
frequencies [ 10, p. 415]. In the case of online system identification, the perturbation strategy 
is a tradeoff between optimal identifiability (high input power) vs. optimal reference tracking 
(smallest possible input power). 

5 Control Reconfiguration 

The control reconfiguration architecture is detailed in Fig. 2. Generally, a dynamic system 
can experience faults in three locations: actuator, plant, and sensor faults. Only actuator faults
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Fig. 2 Online Control Reconfiguration architecture for a linear full state feedback controller 

are considered in this work. To reconfigure the controller in the case of a fault, the online 
identification layer first estimates a new system model of the faulty system. ẋ = A f x+B f u
based on recent system behavior, described by the input.u(t) and states.x(t, u, f ) time series. 
To disambiguate between the full state feedback controller dynamics and the plant dynamics 
the perturbation injector excites the system directly and continuously. The new dynamic 
model is then served to the control reconfiguration layer. Depending on the severity of the 
fault, the reconfiguration algorithm reallocates resources by altering the full state feedback 
controller matrix .K f . 

For simplicity, a model-matching reconfiguration strategy is chosen, based on the Pseudo-
Inverse method detailed in [ 5, pp. 391–394]. Given a linear state-space model of a nonlinear 
dynamic system unsubject and subject (index . f ) to a fault 

.ẋ(t) = A x(t)+ B u(t), ẋ(t) = A f x(t)+ B f u(t) (6) 

a state feedback controller for the faulty plant can be readily expressed. The optimal gains 
are determined by solving the Riccati Equation for a Linear Quadratic Regulator (LQR) [ 3] 

.u(t) = −K f x(t), (7) 

where .K f denotes the control matrix for the faulty plant. To achieve similar closed-loop 
dynamics, the difference between the two system models needs to be minimized. The solution 
to the unknown control matrix .K f is then given by: 

.K f = B+
f (A f − A + B K) f (8)
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with the Pseudo-Inverse.B+
f of the input matrix. The resulting control matrix minimizes the 

differences of dynamical properties between the nominal loop and the faulty loop and gives 
the best possible controller design for the linear system subject to a fault. 

6 Results 

This section presents first results of a parameter study for the identification of the IPoC 
system with SINDYc, yet without reconfiguration. The second section then presents the 
results of the complete reconfiguration of IPoC system. 

6.1 Closed-Loop Identification Parameter Study 

There are a variety of parameters that are relevant to the identification process of closed-loop 
systems. In this section we will study effect of the perturbation signal power and the signal-
to-noise ratio (SNR) for the measured sensor signals used for identification. There exists a 
number of different signal types like White Gaussian Noise (WGN), Pseudo-Random Binary 
Sequence (PRBS) or multisine signals. 

However, we found that, for our purpose, the perturbation signal type, after being band-
pass filtered, has only marginal influence on the identification results. To reduce the param-
eter space we will therefore only consider the bandpass-filtered WGN signal. To ensure 
comparability for different frequency bands, the power of the perturbation signal . P(u p)

is normalized. Figure 3 shows the unfiltered and filtered WGN perturbation signal and a 
frequency band of . fb = 2..15Hz. 

For the parameter study the perturbation signal power was varied from . P(u p) =
0.01..0.63 W = 10..28 dBm and a signal-to-noise ratio from .SN Rid = 100 to .10 was 
studied. 

Fig. 3 Filtered White Gaussian Noise (WGN) as perturbation signal
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Fig. 4 Parameter study case for IPoC system identification 

For all experiments, a sinusoidal reference signal with frequency. fr = 0.1Hz is imposed 
on the system. 

Figure 4 shows the simulation and the resulting identification plots for a signal power 
of .P(u p) = 14.5 dBm and a SNR of .100. The states, derivatives and input plots on the 
top show the closed-loop system response to the reference signal. On the bottom left, the 
identified column sum.bi of the input matrix (pertaining to one of the three actuators each) is 
plotted for progressive identification timeframes .nid corresponding to .Nt f = 300 samples 
at a sampling frequency of . fs = 500Hz each. The identified open loop eigenvalues .λi are 
plotted in the bottom center plot, and the closed-loop eigenvalues .λi,cl on the right. 

The input matrix corresponding to the actuator effectiveness is identified correctly 
throughout the experiment and exhibits low variance. The system matrix is not identified cor-
rectly and exhibits high variance for the first few identification timeframes. This is probably 
due to settling effects, i.e. that the systems initial conditions are equal to the “pendulum-up” 
fixpoint, but the reference signal demands a constant velocity initially, resulting in large 
gradients. For later timeframes, however, the system is identified correctly. 

The semilog-plot in Fig. 5 shows the statistical evaluation of the identification results for 
varying perturbation signal power and Signal-to-Noise ratios for a perturbation frequency 
band of . fb = 2..15Hz. The different signal power levels are shown by the different colors. 
The shaded areas correspond to the variance and the solid line to the mean of all . nid = 32
identification timeframes of one parameter set. 

The left plot shows the identification results of the only the first actuator to reduce 
clutter. For low perturbation signal powers, a significant increase in variance can be seen 
for a .SN R of .30 and below. For higher signal power the identification remains at low 
variance even for very low.SN R. It is important to note, that the algorithm overestimates the 
effectiveness consistently. A similar behavior is observed for the open-loop and closed-loop 
identification of the system matrix. For low perturbation signal powers, the eigenvalues are



60 B. Kelm et al.

Fig.5 Statistical evaluation of identification quality for varying perturbation signal power and Signal-
to-Noise ratio (SNR) for a perturbation frequency band of . fb = 2..15Hz

poorly identified for a .SN R of .40 and below. For higher perturbation signal powers, the 
eigenvalues are identified with less variance. Here, a clear tendency towards overestimating 
the system dynamics is observed both for lower .SN R as well as lower perturbation signal 
powers. 

Further experiments have shown that there is an optimal frequency band of the pertur-
bation signal. Both very low and very high frequencies lead to identification results with 
significantly higher variance. 

6.2 Closed-Loop Identification and Control Reconfiguration 

In this section we will simulate the complete the identification and reconfiguration strategy 
for the closed-loop IPoC system subject to both abrupt and incipient actuator faults. 

Figure 6 shows the simulated system response of the the closed loop system. The top three 
graphs show the states, the derivatives and the forces on the cart, which are produced by the 
actuators subject to faults. At time .t = 5 s an abrupt fault is introduced to actuator . 3, and  
at time .t = 10 s an incipient fault is introduced to actuator . 2, linearly loosing effectiveness 
over . t = 10 s. 

The bottom three graphs show the online identification and reconfiguration results. The 
input matrix is identified, as expected, with low variance. Both the abrupt and incipient 
actuator faults are caputured well. The system matrix (bottom center graph) is identified with 
high variance, and the corresponding eigenvalues only settle after the faults have transpired. 
The bottom left graph shows the row sums of the reconfigured full state feedback controller 
matrix .K f . The reconfiguration of the relevant entries is clearly seen, as the controller is 
adjusted to changing plant behavior. Despite the full failure of two actuators, the closed-loop 
system remains stable and retains it’s pre-fault characteristics.
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Fig. 6 Perturbed IPoC simulation data with fault injection and reconfiguration, .P(u p) = 20 dBm, 
. SN R = 80

7 Limitations and Outlook 

The presented approach for fault-handling by control reconfiguration via online identifica-
tion with SINDYc has shown general applicability to closed-loop cyber-physical systems, 
such as the Inverted Pendulum on a Cart. In order to successfully identify a closed-loop sys-
tem, the perturbation signal needs to be chosen carefully. It has been shown that the higher 
the perturbation power and signal-to-noise ratio, the better the performance of SINDYc. 
What remains unclear why both the input matrix coefficients and the stability of the system 
(more negative eigenvalues eigenvalues) are overestimated consistently. Also, what has not 
been shown sufficiently is the dependency upon the perturbation frequency-band. Failures 
in plant dynamics (e.g. changing pendulum mass) have also not been considered. However, 
the presented fault handling strategy readily integrates these types of faults as well. 

The presented approach is limited in several ways: First of all, the requirement of full 
observability strongly limits the applicability for many real-world systems. On this end, 
a combination with a estimator-filters (e.g. Kalman filter) would relax this requirement. 
This would also allow for treatment of sensor faults. Second, the requirement of consistent 
excitation compromises tracking capabilities of the system and poses increased strain on the 
actuators. Future implementations could make use of external anomaly detection algorithms 
to trigger a system “self-test” consisting of a perturbation, identification and possible recon-
figuration. Thirdly, the limited identifiability of the system matrix. A restricts the application 
for weakly actuated systems. 

Future research could focus on the implementation of this approach on a real-world sys-
tem with real, noisy data. The influence of actuator dynamics or explicit time-delays on the 
identifiabiliy might be worthwile to study. Further, the identification of the optimal pertur-
bation frequency-band, or alternative perturbation strategies, like a pulsed and synchronized
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perturbation and identification approach, would present an interesting research opportunity. 
Finally, a combination of the presented approach with input linearization techniques, such as 
Incremental Nonlinear Dynamic Inversion (INDI), where only the input matrix is required, 
offers a very promising nonlinear fault-tolerant control strategy. 
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Using Forest Structures for Passive Automata 
Learning 
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Abstract 

We present an extension on a passive learning algorithm for deterministic finite automata 
(DFAs) and Mealy machines which is based on the regular positive and negative inference 
(RPNI) algorithm. The extension builds a structure which is inspired by random forests. 
Instead of building a single automaton, the forest builds several. The paper introduces two 
forest structures for learning DFAs, together with their respective extension for Mealy 
machines, where the choice of which to pick depends on the output to achieve, as well as 
the type of application. Following that, the empirical analysis shows which parameters 
yield better results than the basic RPNI passive learning approach. In our experiments, 
forest structures for passive learning of automata yield significant improvement over the 
standard RPNI algorithm of up to.43% in the total number of correct outputs when testing 
Mealy machines. 
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1 Introduction 

Modern Cyber-Physical Systems (CPS) often have a high complexity, because they consist 
of multiple subcomponents including, e.g., digital embedded systems, sensors, and software 
systems. Additionally, CPS contain interfaces to their physical environment making their 
functionality dependent on complex physical behavior. These characteristics make modeling 
of CPS very difficult. Still, models of CPS are needed, e.g., for test, verification, or anomaly 
detection. Machine learning helps in modeling complex CPS by automatically learning a 
model of a system from data. This does not only allow to generate knowledge of the system, 
but also speeds up analysis and design of systems where models are often derived in a 
time-consuming, manual process. One approach for model learning is automata learning 
which derives an automaton model from observations of a system. Automata learning has 
a strong theoretical base coming from the field of language inference, discussed, e.g., in 
the seminal work of [ 6]. Techniques, implementing automata learning differentiate between 
active [ 3, 12, 18] and passive [ 11, 14] automata learning. Active learning adaptively updates 
a model hypothesis by asking the system for new information. This requires to directly 
perform actions on the original system. Passive automata learning is mostly used if a direct 
interaction with the system is not possible. Instead, an automaton is learned on a pre-collected 
learning set. The quality of learned models in this scenario is limited by the amount of data 
provided for learning. There are several approaches in improving passive automata learning, 
e.g., to speed-up execution [ 1] or to handle specific learning data [ 7, 10, 13]. 

In contrast to these approaches, our strategy aims at improving the accuracy of learned 
automaton models and—as will be discussed within the paper—especially support model 
accuracy in case of limited learning data sets. The work of Gold [ 6] proves that the estab-
lished algorithms for passive automata learning yield exact, deterministic automaton models, 
on a characteristic learning set. This means that the training data represents the whole tar-
get automaton. For a learning data set collected during operation of the system, getting a 
characteristic learning set cannot be guaranteed in general. 

Our approach combines multiple learned models to improve the overall accuracy. This 
approach is known in machine learning, e.g., in random forests, combining multiple learned 
decision trees, first discussed in [ 4]. Since then, random forests have already been used 
in multiple applications, e.g., in image processing [ 5], navigation [ 2], or energy systems 
[ 17]. The performance of random forests illustrates that machine learning methods benefit 
from randomized learning algorithms when using multiple learned models. An improved 
accuracy of learned models is important, e.g., if the model is used for monitoring where 
false alarms or undetected errors should be avoided. 

We propose automata forests applying this idea to passive automata learning. The main 
contribution of our paper is a new concept of passive automata learning. This concept 
combines the internal randomization of the automata learning algorithms and the idea of 
random forests to consider multiple learned automata for modeling. We build automata 
forests on top of the Regular Positive and Negative Inference (RPNI) algorithm which
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is one of the most commonly used passive learning algorithm. We present two different 
strategies to create automata forests. Furthermore, both of these approaches are applied to 
learn Deterministic Finite Automata (DFA) and Mealy machines, respectively. Our results 
imply that this concept is especially helpful when a characteristic learning set is not available. 
In an experimental evaluation, we observe up to .43% better accuracy of the forest models 
compared to automata learned with the ordinary RPNI algorithm when applied for prediction 
on an evaluation set. Section 2 provides some notation and basic information on automata 
and automata learning. In Sect. 3 the two forest algorithms and their implementation for 
DFAs and Mealy machines are described. Section 4 gives insight into the performance of 
the forest algorithms in an experimental evaluation. Finally, Sect. 5 summarizes and discusses 
the results identifying a superior performance of automata forests compared to the common 
RPNI algorithm. 

2 Preliminaries 

Our approach learns DFAs and Mealy machines. A DFA .M represents a language .L in 
the set of regular languages. The automaton decides if a given input word belongs to the 
language of the automaton . M . A Mealy machine .A translates an input word to an output 
word. 

There exist many approaches for learning automata. For this paper, we use the RPNI 
algorithm [ 8]. The algorithm uses positive and negative samples, where positive words are 
element of. L from DFA.M and negative words do not belong to. L. For DFAs, the learner uses 
positive and negative sampled words as inputs to construct a tree spanning all given positive 
samples. Afterwards, the algorithm tries to merge states in the tree, while continuously 
checking if the merging operation is valid using the negative samples. The validation check 
is done by looking up if the tree would still reject all given negative input samples after a 
merge. 

For Mealy machines, the learner gets tuples of input and output words sampled from the 
system to be learned and builds a tree again. Merging operations are now valid if, after a 
merging step, the output words of the Mealy machine.A given the sampled input words are 
still equivalent to all corresponding sampled output words. 

3 Algorithms for Learning of Automata Forests 

3.1 Forest Structure 

The general idea behind the algorithms is that multiple automata are built forming the forest 
structure. Thus, a forest structure consists of several instances of automaton learners. Here, 
each learner implements the RPNI algorithm. Each of the instances inside the forest gets
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assigned a random fraction of the learning dataset. Afterwards, every instance of the forest 
builds an automaton. The automata corresponding to each instance are evaluated to form an 
output. The parameters to design the automata forests in this paper are: 

• .m ∈ N is the number of instances inside the forest, 
• .α ∈ (0, 1) is the percentage of the original dataset given to each instance. 

In the following, we show two different approaches when making a decision on how to 
evaluate these forest structures to form an output. 

3.2 Forest with Cross Validation (ForestCV) 

ForestCV is inspired by the cross-validation method [ 16]. Every instance of the forest stores 
the corresponding set from the original learning set, which was not used to train the automa-
ton, as its test set (with the information whether a word is accepted by the target automaton 
or not). Afterwards, each DFA inside the forest gets scored using the corresponding test set. 
The scoring gives an automaton a point for every correctly validated word (accept words 
from the positive sample and decline negative words). ForestCV outputs the DFA, which 
achieved the highest score using this cross-validation method. 

When dealing with Mealy machines, the output of an automaton changes to translating 
an input to an output word. The basic principle to form a ForestCV for Mealy machines 
is the same as for DFAs, where the evaluation is covered by the cross-validation and the 
output Mealy machine is the automaton inside the forest, which performed best given a 
chosen metric. We analyze the following metrics when translating words: (1) outputting 
the Mealy machine, which most often correctly translated output words (ForestCV. W ); (2) 
outputting the Mealy machine, which had on average the lowest Hamming distance (counting 
character substitutions when comparing words) to the sampled output words (ForestCV.ED). 
The decision which metric to take when constructing ForestCV depends on what the user 
wants to achieve, i.e., which metric is to be minimized or maximized. 

3.3 Forest with Majority Voting (ForestMV) 

ForestMV does not output a DFA, but input and output of the forest are equal to a DFA, i.e., 
the forest decides whether a word is element of . L. For an input word, all DFAs decide if 
they accept or decline the word. The answer which the majority of DFAs take, is the output 
of the forest. For Mealy machines, given an input word and the output alphabet of the target 
automaton, ForestMV triggers all Mealy machines inside and forms an output word. This 
is done by iterating characterwise over the input word. On every character a majority vote
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picks the output character most often choosen by the Mealy machines, as output character 
of the forest at the given input character position. 

4 Experimental Evaluation 

Our empirical evaluation includes two scopes: (1) learning regular expressions. Since regular 
expressions are equivalent to DFAs, we sample positive words from a regular expression 
instead of a real target automaton. Negative samples are randomly generated words that do 
not belong to the considered language. L. The 2 regular languages examined in our paper are: 
.L1 with an alphabet size of 36 and 12074 words, .L2 with an alphabet size of 26 and 7938 
words; (2) learning Mealy automata given random target Mealy machines. Many CPS can 
be abstracted to Mealy machines, identifying discrete in- and outputs. In the experiment, we 
randomly generate input words on the Mealy machine’s alphabet and feed the input words 
to the target Mealy machine, resulting in sampled output words. The 3 Mealy machines in 
our paper are: .A1 with an input alphabet of size 10, an output alphabet of size 10, and 20 
states. .A2 with an input alphabet of size 10, an output alphabet of size 10, and 5 states. . A3

with an input alphabet of size 15, an output alphabet of size 8, and 15 states. 
The words obtained from the target language (1) and Mealy machine (2) form training 

and test set, respectively to evaluate the different forests. The nominal RPNI algorithm is 
used as the reference in the evaluation. When building the forests, each instance gets the 
same amount of words for training. ForestCV and ForestMV use the fraction .α ∈ (0, 1) of 
the input data to learn their inner .m automata. RPNI uses .100% of the input data. Training 
data used in Sect. 4 are 1000 positive words for .L1, 80 for  .L2 with each 500 negative 
words and 500 pairs of input and output words for .A1,2,3. The experiments as well as the 
implementation of the algorithms are based on the LearnLib framework [ 9]. 

4.1 Hyperparameter Tuning 

Each test set contains 1000 words and gets continuously tested on the algorithms, while 
increasing. α. The y-axis shows the average number of successes of the algorithms (classify-
ing words in .L1, translating words for .A1,A2) and the x-axis depicts . α. The plots in Fig. 1 
show different results on how to choose. α. Figure 1a and  1c show that, when steadily increas-
ing . α, the curve has a global maximum at roughly .α = 60% for DFAs and .α = 80% for 
Mealy machines. However, in the case of.A1, the curve increases until .α = 100% (Fig. 1b). 
For the tests in our paper, we chose .α = 60% for DFAs and.α = 80% for Mealy machines. 

Figure 2 shows an analysis of the parameter . m. Each test set contains 1000 words and 
gets continuously tested on the algorithms while increasing. m. The y-axis shows the average 
success rate of the algorithms (classifying words in .L1, translating words for .A1) and the 
x-axis depicts . m. In our experiments the number of successes converges with increasing. m.
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(a) Increasing α on L1 
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(b) Increasing α on A1 
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(c) Increasing α on A2 

Fig. 1 Performance analysis with respect to . α
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(b) Increasing m for A1 

Fig. 2 Performance analysis with respect to . m

Figure 2a and  2b show, that after increasing .m above 100, the result is not changing much. 
Because of this, .m = 100 is chosen in our experiments. 

4.2 Analyzing DFAs 

In the following, the algorithms are executed with .L1: 5 different training sets which each 
get 5 different test sets on 100 iterations resulting in 2500 observations and.L2: 10 different 
training sets on each 10 different test sets with 100 iterations resulting in 10000 observations. 
Figure 3 shows the results of the DFA examples. The x-axis depicts the number of correctly 
classified words with a maximum of 1000 and the y-axis depicts the density distribution of 
the data using the histogram function from R [ 15], i.e., depicting the probability that a data 
point achieves a certain number of correctly classified words. In our experiments, the plots 
show that both forest algorithms outperform the RPNI. 

Table 1 analyzes the metrics of the plots from Fig. 3: average (avg), variance (var), false 
positives (false pos.), false negatives (false neg.) and the execution time in seconds (exec-
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Fig. 3 Number of correctly associated words for DFA’s on 1000 tries 

Table 1 Metrics for DFAs 

Time) of each algorithm and comparing them to RPNI. The percentage in parantheses shows 
the approximate increase or decrease of the forests in the metrics (green cell markings are 
the highest improvement; red cell markings depict the slowest execution time). In the pre-
sented results, forest structures show better results with respect to all presented metrics in 
Table 1, while their execution time is increasing by a factor of roughly .≈ 72.5 compared 
to the basic RPNI. Experiments in Sect. 4.2 are executed on an Intel c Core™i5-7300HQ 
CPU @ 2.50GHz processor with 8GB RAM. 

4.3 Analyzing Mealy Machines 

For learning Mealy machines the test cases are produced by: building .A1 at random 5 
different times with each 3 different training sets on each 3 different test sets executing 
them 100 times resulting in 4500 observations; building .A2 at random 10 times with each 
3 different training sets on each 3 different test sets and is executed 100 times at each step 
which results in 9000 observations; building .A3 at random 25 times and sampled together 
with each 2 different training sets and each 2 different test sets with 100 iterations for a total 
of 10000 observations. The x-axis depicts the number of correctly translated words with a
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Fig. 4 Number of correctly translated words for Mealy machines on 1000 tries 

Table 2 Metrics for Mealy machines 

maximum of 1000 and the y-axis depicts the density distribution of the data plotted in R 
using the histogram function. Figure 4 shows that although both ForestCV algorithms can 
at times perform worse than RPNI, ForestMV is able to consistently outperform the RPNI. 
Furthermore, Fig. 4a and  4c both follow the curve for . α from Fig. 1b, i.e., . α is not chosen 
optimal. Thus, it can be assumed, that when . α would be further increased, the results of 
the forests in Fig. 4a and  4c may be better. Table 2 analyzes the plots for Mealy machines 
in a similar way as Table 1 for DFAs. The observed metrics are: average (avg), variance 
(var) and the execution time in seconds (execTime) of each algorithm and comparing them 
to the RPNI. ForestMV has in Fig. 4c an average increase in correctly translated words of 
.43.6%, which is the highest increase of our algorithms when only considering the correct 
classification or translation of words. Contrarily to the results of the DFAs, the variance for 
the algorithms is not always lower than for RPNI. The row execTime shows, that the forest 
algorithms have an average increase in execution time of the factor.≈ 78.3. For both analysis, 
DFAs and Mealy machines, our experiments show that the execution time of ForestCV and 
ForestMV correlates to .α · m · N , where .N is the execution time of the RPNI algorithm. 

The experiments are executed on: 

• .A1: Intel®Core™i7-9700K CPU @ 3.60GHz processor with 32GB RAM; 
• .A2: Intel®Core™i5-7300HQ CPU @ 2.50GHz processor with 8GB RAM; 
• .A3: AMD Ryzen 7 3800X 8-Core CPU @ 3.90 GHz processor with 32GB RAM.
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5 Conclusion 

Classic automata learning aims at exact results which is guaranteed when a characteristic set 
of observations is available. However, this is often not the case, especially for practical and 
complex CPS. For this reason, the concepts of ForestCV and ForestMV are introduced. Both 
approaches show that passive learning of automata can be improved using forest structures 
when the characteristic set is not sampled. ForestCV does this by picking an automaton which 
performs best given a chosen metric. The output automaton is therefore dependent on a single 
automaton in the forest. By optimizing the chosen metric, ForestCV performs comparable to 
RPNI in our experiments, but with a lower variance. With ForestMV’s approach the output 
is not dependent on a single Mealy machine inside the forest and hence exploits its forest 
structure more than ForestCV. ForestMV shows improvements for passive learning in our 
experiments, because it outperforms the RPNI continuous. Using ForestMV yields up to 
.43% more accurate results, when compared to the RPNI algorithm. This is a success in the 
field of passive learning, if a more accurate result is of higher significance, than the resulting 
longer computation time to build the forests. This might be the case for the implementation 
of a monitoring tool for CPS where a pre-learned model with high accuracy is required. 
Future directions in research for automata forests include an analysis of the influence of 
noise on the training set. 
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Lameya Afroze, Silke Merkelbach, Sebastian von Enzberg 
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Abstract 

With the integration of Industry 4.0 technologies, overall maintenance costs of industrial 
machines can be reduced by applying predictive maintenance. Unique challenges that 
often occur in real-time manufacturing environments require the use of domain knowl-
edge from different experts. However, there is hardly any guidance that suggests data 
scientists how to inject knowledge from predictive maintenance use cases in machine 
learning models. This paper addresses this lack and presents a guidance for the injection 
of domain knowledge in machine learning models for predictive maintenance by ana-
lyzing 50 use cases from the literature. The guidance is based on the informed machine 
learning framework by von Rueden et al. [ 1]. Finally, the guidance gives a recommen-
dation to data scientists on how domain knowledge can be injected into different phases 
of model development and suggests promising machine learning models for specific use 
cases. The guidance is applied exemplarily to two predictive maintenance use cases. 
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1 Introduction 

With the rise of Industry 4.0, machine data became available and could be used for optimiza-
tion in multiple use cases. One of them is predictive maintenance (PdM) which can reduce 
maintenance costs by up to 60% [ 2]. PdM is focused on condition monitoring and relies 
on machine learning (ML) models to decrease system downtime. However, in an industrial 
environment, the performance of ML models mainly depends on the quantity and quality of 
the available data. Raw data often lacks integrity due to different reasons, such as missing or 
corrupted values and noisy data. To overcome these challenges, domain knowledge is fre-
quently integrated into ML models [ 3]. We will refer to this as domain knowledge injection 
since ML models are the basis and the knowledge enhances them. 

Domain Knowledge is mostly available from domain experts in several forms. It can be 
injected in multiple ways based on its purpose in different phases of model development. It 
is often not simple to decide, which form of knowledge can be injected in which phase of the 
modeling process into which ML model. To find a solution for this problem, we analyzed 
50 PdM use cases from the literature in which domain knowledge was injected into ML 
models. Von Rueden et al. [ 1] have proposed the Informed Machine Learning framework, 
that provides a taxonomy and a survey on how prior knowledge can be integrated into 
learning systems. Based on their framework, we developed a decision guidance for PdM 
use cases to assist data scientists by recommending suitable domain knowledge injection 
techniques for a given PdM use case and the related knowledge. We structured the use cases 
based on the analytics type proposed by Steenstrup et al. [ 4], which is seen often in the 
manufacturing domain. In addition, we give a recommendation for suitable ML algorithms 
that where applied successfully in the 50 analyzed use cases. These algorithms are ranked 
by the frequency they were applied. Trying the algorithms in the suggested order might lead 
to a good model faster. 

In summary, our contributions are: 

1. A variation of the framework developed by Von Rueden et al. [ 1] that structures avail-
able forms of domain knowledge, knowledge conversion options and injection phases 
especially suitable for PdM use cases. 

2. A knowledge base containing 50 PdM use cases looking at the analytics type, form 
of domain knowledge, conversion form and possible phase for the injection into a ML 
model. 

3. Resulting from these, a guidance with a recommendation for suitable injection phases 
and frequently used ML algorithms for PdM use cases.
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2 Related Work 

There are multiple works where domain knowledge was injected into ML models [ 5, 6]. 
Focusing on PdM applications, Serradilla et al. [ 2] proposed a methodology to incorporate 
knowledge but they focused on the process and did not address which form of knowledge 
should be used in which situation. Based on process discovery, Schuster et al. [ 7] proposed 
to utilize domain knowledge injection based on its provision time. They clustered the knowl-
edge by its use in the different phases process discovery, development and post-processing. 
Von Rueden et al. [ 1] proposed a framework to incorporate prior knowledge in ML models. 
Since it is generic, we decided to create a variation of it especially suitable for PdM use cases 
according to what we learned from the literature study. Most of existing works are focused 
on how formalized knowledge can be injected into the models to enhance the performance 
of the applied ML models. According to our knowledge, so far there is no previous work 
suggesting which ML algorithms might be suitable for the injection of a specific form of 
domain knowledge in different use case scenarios. This equips the necessity of developing 
a guidance that can provide advice on how to inject domain knowledge into suitable ML 
algorithms for PdM. 

3 Guidance Development 

The goal of the article is to provide a guidance to data scientists to inject domain knowledge 
into ML models. It gives suggestions for suitable knowledge injection phases and possi-
ble ML algorithms based on a given analytics type and knowledge form. The guidance is 
developed with the results of a literature study in which 50 PdM use cases were analyzed. 
The use cases are structured according to a knowledge injection framework for PdM use 
cases, which is used to categorize domain knowledge, knowledge conversions and injection 
phases. First, the framework is introduced, followed by the literature study. The final result 
is the guidance in form of a table. 

3.1 Knowledge Injection Framework 

Based on the informed machine learning framework by Von Rueden et al. [ 1] and inspired 
by the Data mining methodology for engineering applications (CRISP-DMME) by Huber et 
al. [ 8], the knowledge injection framework depicted in Fig. 1 was developed. It is structured 
horizontally into three main levels which are described in the following. It is used as a frame 
of reference when developing a PdM use case to aid the injection process.
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Form of domain knowledge related to the use case 
The top row of Fig. 1 represents the first level. It comprises the domain knowledge which is 
directly related to the use case before any conversion or formalization. Von Rueden et al. [ 1] 
clustered the knowledge into three types: scientific knowledge, world knowledge and expert 
knowledge. As already suggested by them, the knowledge in these categories usually is for-
mal, semi-formal, and informal, respectively. We chose to use the degree of formalization 
as categories in the framework to provide a more technical view. Besides, in manufacturing 
environments, domain knowledge is often available in an informal or a semi-formal form 
from domain experts rather than being found in a formalized form. 

Informal Domain Knowledge has only indirect impact on constructing the intelligent model, 
since a formalization in some way is necessary. Usually, this knowledge is acquired by 
experts through their working life such as simple heuristics or intuitions. Data scientists get 
benefits from this knowledge to make decisions by following different standard techniques. 
Examples from PdM use cases include different types of sensors that are suitable to col-
lect a specific type of data, their location or the total number of sensors. Informal domain 
knowledge is also helpful to apply various pre-processing techniques to the data, such as 
normalizing/filtering data, or applying different physics-based pre-processing techniques 
like Fast Fourier Transform, Short-time Fourier Transform, or Wavelet Transform to time 
series data, which have proven to be useful in similar use cases. This special form of informal 
domain knowledge can further be defined as domain-specific data science knowledge. 

Fig. 1 Knowledge injection framework for PdM use cases
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Semi-formal Domain Knowledge is more structured and explicitly available. But it is not 
entirely structured and needs to be formalized before injection. In the analyzed use cases, 
it was mainly injected by using logic rules to process data based on an expert opinion or 
expert-defined thresholds to filter/label input data. 

Formal Domain Knowledge refers to expert knowledge that can be injected in a standardized 
form. Examples include simulation-generated machine data which can be used for model 
training or equations defined by the domain expert to design the model architecture. 

Knowledge conversion for injection 
The knowledge conversion is carried out at the second level depicted in the middle row in 
Fig. 1. It acts as a bridge between domain experts and data scientists. In the literature, the 
knowledge was converged into a variety of formats, which include the following:

 Standard techniques which proved to have a good performance in similar use cases in 
the past, such as specific pre-processing techniques.

 Different forms of equations, such as mass balances.
 Human decisions, such as a rating if the machine sounds normal.
 Logic rules, such as the ones contained in a programmable logic controller.
 Simulation results, for example from a digital twin of a machine.
 Probabilistic relations, such as the Weibull distribution [ 9] to fit the training model. 

Injection of Knowledge into the ML Model 
The bottom row of Fig. 1 represents the third level. It shows possible phases for the injection 
of domain knowledge during model development. This level is structured into three groups: 
data preparation, intelligent model design, and decision making. In data preparation, con-
verged knowledge is used to pre-process the data and to generate relevant features through 
feature engineering. The next group aims to enhance the performance of an ML model by 
injecting knowledge into three different tasks of the intelligent model design phase, which 
are: hypothesis space definition, constraint setting, and loss function regularization. The last 
group is decision making in which a component to make automated decisions based on the 
prediction of the ML model is developed. It is mainly used to perform prescriptive tasks such 
as making appropriate maintenance decisions to mitigate the impact of unpleasant incidents. 

Due to the variety of knowledge, it is not possible to give standard paths through the 
framework. Also, not all of the levels apply in all use cases. Especially for formal knowledge, 
the conversion might not be needed since the knowledge often can be used directly. Some 
of the phases in the third level can be used in combination with all conversions, others 
were found to be applied only in specific phases. All three levels are linked, providing 
the possibility to switch the levels when further insights into the use case are gained. For 
example, a standard technique can be used to create results on which an expert decision can 
be made to apply further conversion techniques.
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3.2 Literature Study and Construction of the Knowledge Base 

We conducted a literature study, resulting in the analysis of 50 PdM use cases. Therefore, we 
searched for PdM use cases with the terms ‘condition monitoring’, ‘fault detection’, ‘fault 
diagnosis’, ‘predictive maintenance’, and ‘prescriptive maintenance’ in combination with 
the terms ‘artificial intelligence’, ‘machine learning’, ‘domain knowledge’, and ‘domain 
knowledge integration’. We searched in Google Scholar, ScienceDirect, Springer, IEEE 
Explore, ACM Digital Library, and Elsevier for works published mainly between 2017 and 
2022. 

We clustered the use cases according to their objective. Therefore, we used the following 
four analytics types [ 4]:

 Descriptive analytics provides information on what has happened
 Diagnosis explains why something has happened and the reasons behind it
 Predictive analytics gives an estimate of what will happen in the future
 Prescriptive analytics offers recommendations on how to influence the future 

Each of these four clusters was further divided by the form of domain knowledge according 
to the framework shown in Fig. 1. Table  1 depicts the overall knowledge base, showing which 
conversion of knowledge was injected in which phase for each of the 50 use cases. The table 
shows, that the main conversions for knowledge injection in the analyzed use cases were the 
application of standard techniques and human decisions, followed by equations. Logic rules, 
simulation results and probabilistic relations were applied in only a few use cases. Looking 
at the third level of the framework, the most relevant phase for injection is pre-processing, 
followed by feature engineering and hypothesis space. Constraint setting, regularization and 
decision making were not applied in many of the analyzed use cases. The analytics type 
prescriptive has far less use cases than the rest. Also, not all forms of knowledge are covered 
for all use cases. 

3.3 Guidance Creation 

The guidance is shown in Table 2. It takes the analytics type and knowledge form as input and 
gives suggestions for a suitable injection phase and suitable ML algorithms. The injection 
phases and ML algorithms are ranked based on their number of occurrence in the analyzed 
use cases. We recommend to try the suggestions of the guidance based on the ranking of 
the entries. For example, if data scientists are searching for a suggestion for a diagnosis 
use case with informal domain knowledge, trying feature engineering in combination with 
support vector machine, is the most promising way. In case this does not provide sufficient 
results, the other ML algorithms could be tried in the given order. Afterwards, the injection 
technique might be changed to pre-processing. It is also possible to apply different forms of
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Table 2 Decision guidance suggesting suitable knowledge injection phase and ML algorithms based 
on a given analytics type and knowledge form. For each ML algorithm, one example use case is 
provided where the model was applied as an orientation. The number of occurrence of the ML 
algorithms in the analyzed use cases is given in parenthesis if it is greater than one. (PP= pre-
processing, FE= feature engineering, HS= hypothesis space, CS= constraint setting, RZ= loss function 
regularization, DM= decision making) 

Input from the user Recommendations from the guidance 

Analytics type Knowledge form Suitable knowledge 
injection phase 

Top 5 ML algorithms 
according to the 
number of occurrence 

Descriptive Informal FE, PP,  CS, HS TSAK-SVM [ 10], SAE 
[ 15], MLP [ 41], 
Kmeans [ 14], SVM 
[ 26] 

Semiformal PP, RZ SAE, PCA [ 42], SVM, 
GA [ 13] 

Diagnosis Informal FE, PP, HS, DM, CS SVM(12), 
ANN[ 25](4), RF[ 2](3), 
KNN[ 41](3), 
BPNN[ 48](3) 

Semiformal PP, FE,  HS, CS,  RZ SVM, ANN, RF, KNN, 
BPNN 

Predictive Informal PP, HS, FE, CS SVR [ 44](5), SVM(5), 
LSTM [ 46](5), 
MLP(4), RF(4) 

Semiformal PP, FE SVR, MLP, LSTM, 
SVM, RF 

Formal PP, HS SVR, SVM, MLP, 
LSTM, RF 

Prescriptive Semiformal PP, DM DPCA, Kmeans 

Formal PP, DM HMM 

knowledge in multiple modeling phases. Therefore, the guidance should be followed once 
for each type of available knowledge. 

We have used the guidance as a knowledge base for a prototype of a recommender system. 
The prototype is available at GitHub 1.

1 https://github.com/lameya116/Domain_knowledge_injection_guidance.git 

https://github.com/lameya116/Domain_knowledge_injection_guidance.git
https://github.com/lameya116/Domain_knowledge_injection_guidance.git
https://github.com/lameya116/Domain_knowledge_injection_guidance.git
https://github.com/lameya116/Domain_knowledge_injection_guidance.git
https://github.com/lameya116/Domain_knowledge_injection_guidance.git
https://github.com/lameya116/Domain_knowledge_injection_guidance.git
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4 Examples for the Application of the Guidance 

In the following we show how the guidance may be used when applied to two real-world 
use-cases. The first one is a diagnostic use case that monitors the condition inside a disk 
stack separator [ 54]. Domain knowledge was available in a semi-formal form which was 
converted into standard techniques and logic rules at the knowledge conversion level. From 
the guidance suggestions, pre-processing, feature engineering, and hypothesis space defini-
tion were applied to develop the ML model. Standard techniques and logic rules were applied 
to pre-process the data, and then a human decision was taken to detect suitable features and 
set a hypothesis space. Among the models suggested by the guidance, the highest accuracy 
was achieved by random forest (RF), which is 91.27%. 

The second use case is a predictive use case where we used the NASA IMS bearing dataset 
[ 55] to predict outer race defects of bearing 1 to estimate its remaining useful life. Here, the 
domain knowledge was available in an informal form. Pre-processing, feature engineering, 
and hypothesis space definition were used as knowledge injection phases as suggested by 
the guidance. In the knowledge conversion level, FFT was used as a standard technique to 
transform informal knowledge and perform pre-processing. Besides, human decisions were 
made to conduct feature engineering and define the hypothesis space. Among the suggested 
models, SVR performed best with a root mean square error of 0.12. 

5 Discussion 

The evaluation has shown that, by using the guidance, it is possible to quickly select suitable 
knowledge injection phases and ML algorithms for PdM use cases. It does not guarantee that 
the suggestions will be the best as the performance of any ML model also depends on the 
underlying systems and data, including their quality, quantity and type. Choosing one over 
another mainly depends on the users with regard to the selected use case. However, the users 
can get ideas and/or a starting point on how to create models for PdM use cases with the 
injection of domain knowledge. The guidance assists its users both in a direct and indirect 
way. Directly, the users get suggestions of suitable phases and probably suitable models. 
Indirectly, the users can get additional ideas from the knowledge injection framework on 
different further possibilities to inject domain knowledge. At this moment, the knowledge 
base lacks sufficient use case examples for some of the criteria. For instance, prescriptive 
analytics contains fewer use cases as the current literature contains fewer examples in this 
area. This limits the guidance’s ability to give reliable suggestions for this type of use 
case. Also, the knowledge base has not covered examples for each possible form of domain 
knowledge and has not the same number of use cases for the conversions. To overcome these 
problems and to improve the guidance suggestions, it is required to analyze more use cases.
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6 Conclusion 

This paper presents a guidance which assists its users to inject domain knowledge in ML 
models for PdM use cases. It suggests possible injection phases and suitable ML algorithms 
with the analytics type and the form of domain knowledge as input. It is based on a literature 
study, in which 50 PdM use cases were analyzed. The recommendation of the guidance has 
been applied to two PdM use cases and delivered a good result in both cases. In its current 
form, the underlying knowledge base does not contain a balanced amount of use cases in 
every category. For more reliable suggestions, more use cases should be investigated in the 
future which are related to the lesser represented categories. 

Acknowledgements Supported by the German Federal Ministry for Economic Affairs and Climate 
Action under grant 03EN4004B. 
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Manufacturing systems are dynamic and exhibit increasing complexity and uncer-
tainty. Smart manufacturing uses Data Analytics methods to optimize manufacturing
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processes, systems and products. One approach to structure use cases in production 
management in smart manufacturing is the Product-Process-Resource (PPR) model, 
where the resource executes a process on a given product. The PPR model needs to 
be extended for smart manufacturing, to meet the requirements of prescriptive analyt-
ics (but not exclusively). Our contributions are an extended PPR model for prescriptive 
analytics (P2PR) that involves environmental effects, expert knowledge and adds a pro-
cess sub-model distinguishing between manufacturing and supervisory processes. We 
develop prescriptive analytics decision-making categories based on the area of valid-
ity and the degree of interconnectivity. The combination results in a systematization 
scheme for prescriptive analytics use cases in a smart factory environment. It assists 
entities to find shared characteristics in different prescriptive smart factory use cases 
within one production ecosystem. A mapping of prescriptive algorithms (as part of a 
use case) to a category and domain is enabled for future case studies. 

Keywords 

Prescriptive Analytics • Use Case Systematization • Smart Factory • PPR Model •

P2PR Model 

1 Introduction 

Today’s customer demands, e.g. high product quality or sustainable production at low 
cost, impose high requirements on manufacturing companies. Digitalization of processes 
enables industries to increase process stability, product quality, reduce downtime, and 
increasing throughput. This leads to highly complex production systems with intercon-
nection of hard- and software. Manufacturing companies must balance supervision and 
orchestration of resources, executing processes for high quality products. 

Big Data is leveraged by Data Analytics, allowing for real-time insight, process opti-
mization, and the prediction of failures before they impact corresponding operations [1]. 
Data Analytics can be divided into descriptive, diagnostic, predictive and prescriptive 
approaches. The most advanced form of Data Analytics is prescriptive analytics, which 
offers the highest degree of decision automation by providing the best possible reac-
tion strategies. Prescriptive Analytics can develop its full potential when applied to the 
entire production management system [1]. While the combination of production system 
with data-driven analytics towards smart manufacturing seems very promising, propaga-
tion is very low. We do spectate that Data Analytics and AI is almost not used in small 
and medium-sized enterprises (SME) across the EU [2]. The successful Data Analytics 
application to solve manufacturing challenges usually gets as far as the predictive level; 
prescriptive approaches still face manifold challenges. 

Companies usually lack a mature data infrastructure to apply AI in production, even 
though this is an essential part of deployment [3]. Use cases are implemented as lighthouse 
projects, but a lack of methodology and widespread use is still prevalent [4]. This is
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due to a lack of transparency on return on investment when implementing such complex 
solutions [2]. Manufacturing companies unique value proposition revolves around their 
domain knowledge. Extensive knowledge and capacity for the implementation of complex 
AI models is often lacking [5]. 

Prescriptive Analytics needs a full understanding of all elements in the feedback loop 
of the System of Interest (SoI) [6]. Possible SoIs are resources, processes and products 
with respective use cases like Prescriptive Maintenance, Autonomous Processes, Prescrip-
tive Quality. Influences on the SoI are derived from inputs and environmental influences, 
with environmental production resources and processes leading to a complex System of 
Systems. This creates a highly complex solution space with a lot of factors of uncertainty 
[6]. Thus, we identify a need to structure use cases to improve a further understanding 
of the process of developing successful Prescriptive Analytics solutions (in all technical 
readiness levels). A structuring approach enables data scientist to further standardize and 
reuse developed artifacts, thus decreasing development time of analytics and increasing 
acceptance and propagation of use cases. 

While approaches like reinforcement learning allow completely data-driven decision 
making and prescription, it involves knowledge about a SoI in context of its environment 
and a system-of-systems-understanding. However, current development of Data Analytics 
solutions is mainly focused on a singular system of interest. A simplified approach is the 
formalizing of expert knowledge into standard reaction strategies. 

Based on the state of the art (Chap. 2), a research gap regarding the characterization 
of prescriptive analytics use cases in smart manufacturing is identified through literature 
research. Chapter 3 addresses these issues by presenting an approach to combine both ana-
lytics and smart manufacturing driven perspectives on the use case domain. The approach 
was derived through the extension and refitting of existing approaches. The proposed 
extended P2PR-model for prescriptive analytics in combination with the provided perfor-
mance levels enable a new standard in smart factories for reaction strategies and decision 
making. The summary, future work and further research gaps based on the results are 
provided in Chap. 4 (conclusion and outlook). 

The research goal of this paper is to present approaches to enable SMEs to struc-
ture prescriptive analytics use cases in smart factory environments. Our contributions 
compared with existing work are:

• We extend the existing PPR-models towards prescriptive analytics and provide a 
systematic approach to classify use cases and analytics levels.

• We interlink the degree of decision support and expert knowledge to create perfor-
mance levels for prescriptive analytics in smart manufacturing systems.

• We propose a 3-dimensional approach to structure future use cases and their algorithms 
to find similarities and extend the reusability and applicability of future prescriptive 
analytics case studies.
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2 State of the Art 

Manufacturing analytics describes the use of data-based algorithms to ensure product 
quality, reduce maintenance costs, and optimize production processes. Manufacturing ana-
lytics methods are divided into four levels, with each level further reducing the need 
for human interaction [7]. The levels descriptive, diagnostic, predictive, and prescriptive 
Analytics will be explained in the following: 

The most basic form is descriptive analytics, which provides basic insight and visual-
izations of what has happened in previous production cycles [8, 9]. Diagnostic analytics 
methods close this gap by mapping data with possible causes to identify correlations 
between variables, sources of trends, and errors. When it is known what has happened in 
the past and why it happened, it is possible to predict what is likely to occur in the future. 
Predictive analytics refers to the use of statistical modeling, data mining techniques, and 
machine learning to make predictions about future outcomes based on historical and cur-
rent data, such as predicting the next maintenance date [10, 11]. Prescriptive analytics 
builds upon the three other types of Data Analytics which describe the present and make 
predictions about the future [4, 12]. It processes and evaluates predictions as well as 
detected errors and anomalies and derives reaction strategies or recommendations for 
actions. In addition, expert knowledge can be introduced to further enhance this process. 

Prescriptive Analytics is usually structured into a fully automated support and a human 
in the loop approach according to Gartner [7]. Vater et al. propose to structure existing 
approaches by the level of human interaction and the chosen IT infrastructure [4]. 

2.1 Formalization of Data Analytics Use Cases in Smart Factories 

In the domain of Data Analytics, a smart factory specific systematization of use cases for 
prescriptive analytics has not been discovered via systematic literature research. Authors 
mainly focus on solving defined problems with narrow boundaries [13–17]. Use cases 
are either described in a process-related, result-based or artifact-based way. Workflows to 
recreate analytics solutions (crisp-dm) are process-related examples. Result-based exam-
ples are typical of experiment based and centered machine learning papers. Artifact-based 
papers develop a use case specific solution that evolved around a reusable part like a UI 
or algorithm. Kühn et al. propose to structure use cases regarding their interaction with 
algorithms, it-infrastructure, and data sources [18]. This agnostic approach does not con-
sider which the solution has. A canvas to identify analytics use cases regarding smart 
services was developed by Panzner et al. [19]. The approach focuses on generating use 
cases.
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2.2 Product, Process and Resource in Smart Factories 

A “product” is defined as the final or intermediate result of production processes. The flow 
descriptions necessary for the creation of a product or its individual parts and assemblies 
are described by the process. The process describes all interacting operations that are 
necessary for the completion of a product. Resources are the objects necessary for the 
execution of a process or generally to fulfill a task (e.g., infrastructure and employees), 
but not the work object or the product to be produced itself. For a more detailed descrip-
tion of PPR, we refer to [20, 21]. The PPR model defines the links between the three 
entities and is deeply rooted in quality management. In [22], a skill definition of PPR is 
proposed. A skill is an abstract form of a process that defines the ability of a resource to 
perform a process. A task is the application of a skill to a defined product with a desired 
outcome. A similar approach for Machines as a Service is found in [23] where the product 
and resource are decoupled from each other. A resource has skills that must match the 
requirements of the product. Only on a match, a process task is executed. 

3 Structuring Prescriptive Analytics in a Smart Factory 
Environment 

All analyzed approaches regarding smart factory use cases deal with specific problem-
solution-combinations and do not generalize their approach sufficiently. Solutions regard-
ing data governance and integration are missing. Hence, to our knowledge, no method 
with a holistic approach towards further specifying and categorizing use cases in a smart 
factory environment could be identified. The general approach for dealing with uncertainty 
in use case specifics was identified as a research gap. 

3.1 Data Analytics View on Use Cases 

One possible way to structure analytics approaches is given by the analytics levels accord-
ing to Gartner (see Chap. 2). The one-dimensional and algorithmic view does not deal 
well with the complexity and uncertainty of possible use cases in manufacturing. Further-
more, the different approaches and levels of possible prescriptive approaches are not well 
represented regarding different kinds of prescriptive analytics. Dimensions like decision 
impact, area of validity and the interconnectivity of different decision-making systems are 
not represented. We propose a further differentiation between the different possible kinds 
of prescriptive analytics. 

This is motivated from a technical point of view. Autonomy levels and other Industry 
4.0 concepts work in parallel to the proposed approach. The different levels are visualized 
in Fig. 1. They are needed to make prescriptive analytics more applicable regarding their
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Fig. 1 Vision of smart factory use cases in prescriptive analytics (based on [24]) 

impact on smart factory production systems. A structuring approach assists by further 
specifying the solution space for prescriptive analytics and the validity of the decision 
under observance. The degree of decision support and the degree of integrated expert 
knowledge in the system create the X and Y axis. The subsystem-specific strategy selec-
tion is already complex, but the first level of prescriptive analytics. Based on that, system 
specific reaction strategy selection exists. The highest form of prescriptive analytics makes 
decisions that are taken with regard to other systems’ decisions as well (outside the SoI). 
The model enables a more differentiated discussion about different solutions for prescrip-
tive analytics use cases. The goal is to later enable a mapping between the technical 
solution (algorithm), the prescriptive analytics level (Fig. 1) and use case specifics (e.g., 
the PPR model). It mainly focuses on the value proposition of the analytics level “prescrip-
tive”. It is contributing towards the technical feasibility of the automation of actionable 
decisions, by making them compatible with other concepts such as autonomy, reconfigu-
ration, online learning (update mechanisms), self-healing mechanisms, human in the loop, 
and other approaches. 

3.2 Smart Manufacturing View on Use Cases 

A second dimension is needed to connect smart factory and Data Analytics views on 
use cases. The second dimension can be built based on the existing PPR model (product, 
process and resource) as presented in Chap. 2. The model was initially developed to struc-
ture workflows in car manufacturing companies. The existing model does not focus well 
on the differentiation between different kinds of processes. Manufacturing processes are 
processes like stamping or welding. Other processes like production planning, schedul-
ing, logistical orchestration or the allocation of resources in production have completely 
different characteristics. Organizational processes and manufacturing processes share the 
same name but demand different analytical tools and algorithms to handle them (compare 
[12]). The goal is to ensure a maximum difference between different classes for analytics
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use cases (and used algorithms). Thus, we propose to differentiate the “process” into a 
supervisory and a manufacturing related one. This way, business and organizational pro-
cesses and their use cases are strictly divided and differentiated from production processes 
like welding and stamping. Based on Stanev [21] and Haasis et al. [20], we propose the 
following definitions for product, process, and resource: The definition is given to further 
standardize the usage of all terms and lays a foundation for the extended PPR (P2PR) 
model:

• Process (supervisory): The process is no physical entity. It maps purpose (task) and 
realizer (resource) to create products. Thus, it defines the order in which resources are 
invested to create a product and which state of the product is regarded as a finished 
product. The realizer and the purpose do not have to be tied directly to a product. A 
Data Analytics process use case optimizes the orchestration and behavior behind the 
allocation of resources which are embedded in the process.

• Process (Manufacturing): Manufacturing Processes describe operations like welding, 
stamping or glueing. A data analytics manufacturing process use case optimizes their 
parameters, regulation or reconfiguration.

• Resource: Resources represent the entities, that are used to generate products with 
defined characteristics. Resources are orchestrated by a process and always exist in a 
logical relation to other resources and steps in the production value chain. allocated to 
a task by a process. A Data Analytics resource use case deals with maintenance, health 
status and behavior of the resource regarding its ability to do its intended job (ensure 
ability to produce under given KPIs).

• Product: Products in a smart factory environment are physical entities with character-
istics (planed and realized). They are instantiated because a process demands it, and a 
resource fulfills the demand. A Data Analytics product use case analyzes and optimizes 
the quality, integrity and characteristics of a product instance or class. 

Additionally, an environment can be added to integrate non-manufacturing, but use case 
related objects into the model. E.g., the delivery of parts from a partner can take longer, 
thus having an influence on the existing product, process, and resource. The new proposed 
model is summarized in Fig. 2. The surrounding text boxes are there to further enhance 
the model understanding and represent examples. Different authors [22, 23] have altered 
the PPR model as well but have not focused on its application in the smart factory domain 
(see Chap. 2). The definition is meant as a reference for the design and assignment of 
future use cases into a category. The model needs to be expanded in the future for non-
smart factory (but enterprise) related advanced analytics use cases. The model explicitly 
does not include the manufacturing environment (e.g. order and purchase processes).

Our solution to combine the Data analytics domain and the smart factory environment 
is to merge both structuring views to generate a general use case structuring approach 
for smart manufacturing Data analytics related use cases. The goal is to group use cases
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Fig. 2 PPR-Model and its elements in a smart factory environment (extended and based on [20])

according to their key characteristics and reference objects (product, process, resource). 
A taxonomy can be built based on this approach. The main goal of combining both 
approaches is to bridge the gap between the domains of manufacturing and Data Ana-
lytics. The main effect is a common baseline among stakeholders, including both data 
scientists and those responsible for production (see Fig. 3). 

A combination of both models results in a two-view-based classification of smart fac-
tory use cases. The generic description of the use case categories is a first step to help 
categorize use cases into a use case matrix. The categorization can be used to group 
algorithm classes in use cases according to their potential. To further explain the given 
characterization of use cases, the following real-world examples are given:

Smart Factory 

Prescriptive Analytics Updated PPR-Model 

• Product
• Process
• Ressource (2x)

• Analytics Level 
for Prescriptive 
Analytics

• Use Case Taxonomy
• UC specific algorithm class selection 
• Mapping of Use Case and Algorithm class 

Fig. 3 Combination of Data Analytics and manufacturing domain to find a common approach for 
smart factory use cases 
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• Resource, cross-system knowledge-based reactions strategy selection: The maintenance 
algorithm of the scrap belt conveyor predicts a system failure in two weeks. It auto-
matically schedules a maintenance shift and gives a recommendation how the problem 
can be avoided or fixed (e.g. based on a reaction strategy selection from a ontology 
like database).

• Process Supervising, System specific knowledge-based reaction strategy: selection: 
Based on changes in product demands, the production schedule is changed accordingly 
based on different input target values. The schedule is automatically changed. 

The standardized approach to defining use cases builds the foundation for further speci-
fying a taxonomy for smart factory use cases. They provide the basis for finding common 
building blocks in each use case. Efforts can be reduced heavily if the degree of reusability 
of the applied solution is high. The key to its success is the integration of expert knowl-
edge and different model types. The models can be structured according to the proposed 
categories in the matrix. 

Future work needs to focus on how well both the descriptive and prescriptive 
approaches to a smart factory use case work together. Based on Lepenioti et al. [12] 
(SLR to prescriptive Analytics Approaches) and the further implementation of use cases, 
one could add the dimension “algorithm” to further map which technical solution works 
best for which customer need (prescriptive level) based on which subdomain of the smart 
factory (ppr-model). A multi-dimensional space to describe use cases in (prescriptive) 
analytics for smart manufacturing results (see Fig. 4). The goal is to use the structuring 
approach to find common solution elements that can be reused or resampled. The approach 
generates a baseline to further reduce the need for expert knowledge during production. 
It frontloads the effort by implementing expert knowledge into the system. The overall 
goal of the approach is to reduce the investment of expert knowledge and time into the 
overall lifecycle of production system. The proposed approach is complementary to the 
approaches of Kühn et al. and Panzner et al. and can be used in a later stage of the use 
case development and specification.

4 Conclusion 

The presented systematization scheme for (prescriptive) analytics use cases in a smart fac-
tory environment enables companies and researchers to find common attributes between 
different prescriptive smart factory use cases within one production ecosystem. A 
data-centric and a manufacturing-based view (PPR) were presented, reconfigured, and 
combined. The combination is derived from the Gartner analytics levels and the PPR 
model according to Haasis et al. [20]. The combination (P2PR and 2-dimensional char-
acterization of prescriptive analytics) ensures a holistic view of prescriptive analytics use
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Fig. 4 Vision of use cases in all 4 domains, based on the two differentiation schemes

cases in manufacturing. Their combination creates a complete view from both analyt-
ics need and manufacturing prerequisites site. The resulting schema creates a first step 
towards a standardized taxonomy for prescriptive analytics use cases. 

Further research questions arise in the context of how to combine the different prescrip-
tive analytics approaches. Effective prescriptive analytics demands an efficient integration 
of expert knowledge and a high degree of reusability between use cases. The imple-
mentation of future prescriptive use cases will create a baseline to contribute to finding 
links between the P2PR characterization and different ML models or ML classifications 
of models. This approach can be embedded in the presented characterization scheme. 
Additionally, one needs to create a framework (technical and logical) to integrate the IT 
infrastructure int a shared approach to create synergies in smart manufacturing companies. 
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Development of a Standardized Data 
Acquisition Prototype for Heterogeneous 
Sensor Environments as a Basis for ML 
Applications in Pultrusion 

Timo Helfrich , Michael Wilhelm , Oliver Kuppler , 
Philipp Rosenberg , and Frank Henning 

Abstract 

Pultrusion of continuous fiber reinforced profiles has been state of the art for several 
decades. However, pultrusion in the production environment so far has no or only few 
sensor data in a heterogeneous sensor environment, has shortcomings in data quality 
(time synchronization, different formats, different sampling rates, sporadic disconnec-
tions and resulting data losses), and insufficient data processing methods are used for 
process control and optimization. Significant efficiency improvements would there-
fore still be possible in this respect. The question therefore arises as to how a data 
acquisition system can be designed that provides heterogeneous data in a standardized 
and reliable manner for data-based process development and optimization. The aim 
is therefore to develop a digitized and standardized data acquisition prototype for the 
continuous production of sustainable profile structures so flexible that the various com-
ponents of the production line can be adaptively combined in a central data acquisition 
system. We have therefore screened and selected possible standardized transmission
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formats in combination with suitable low-cost data acquisition systems for a highly 
reliable and secure application area. The paper shows a profound concept for a data 
acquisition prototype based on different low-cost control systems for the applicability 
and testability of the developed requirements regarding data acquisition, processing, 
and future storage. 

Keywords 

Pultrusion • Data acquisition • Standardized data basis 

1 Introduction 

With the aim of increasing the sustainability, circular economy and resource efficiency of 
fiber-reinforced plastics, a new process variant of the pultrusion process is being devel-
oped as part of the CaproPULL project. The so-called “in-situ pultrusion process” to 
produce thermoplastic profiles based on nylon 6 offers decisive advantages over the pro-
cessing of non-recyclable and non-functionalizable thermoset profiles that is common in 
the state of the art. 

To produce the thermoplastic profiles, dry fibers stored in large racks are continuously 
pulled through a preheating and drying unit before entering a steel die where they are 
impregnated with the matrix. The highly reactive two-component matrix, which is stored 
in a metering and mixing unit, immediately begins to polymerize in the die at defined 
temperatures in several heating zones. When the fully cured profile leaves the die, it 
cools until it reaches the puller and the saw, where it is cut to the desired length. 

Due to the high number of process and material parameters of the very sensitive mate-
rial, a data-based process development and optimization would significantly increase the 
development time and product quality and thus shorten the time to market and enable a 
wide use and substitution of the current non-sustainable products. 

Since the pultrusion process is very simple in its principles, digitization including 
machine and sensor data acquisition and processing is not common today [1]. Taking into 
account the Industry 4.0 maturity index in Fig. 1 and the classification of [2], pultrusion 
may currently be assigned to the “Industry 3.0 stage” (step 1–2: computerization - con-
nectivity), as there are predominantly no or only a few connections between the main 
systems pultrusion line, injection unit, preheating unit and various sensor systems.

When working with limited process data without a central unit, the synchronization of 
different files with different and sometimes missing timestamps, different sampling rates 
and multiple data sets with the same information leads to unstructured datasets and makes 
an accurate and time-dependent interpretation of process-induced effects time-consuming 
and complex, so that many effects and findings are not determined. Consequently, there is 
an urgent need to work out the basics and steps to prospectively implement ML methods 
to improve the quality of the process and profiles.
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Fig. 1 Industry 4.0 maturity index and objective in Capro-PULL project. Fig. adapted from [2]

The question therefore arises as to how a data acquisition system can be designed that 
provides heterogeneous data in a standardized and reliable manner for data-based process 
development and optimization. The aim is therefore to develop a digitized and stan-
dardized data acquisition prototype for the continuous production of sustainable profile 
structures so flexible that the various components of the production line can be adaptively 
combined in a central data acquisition system. 

The paper discusses the state of the art in industrial communications, highlighting 
standardized communication protocols that will be considered in the subsequent concept 
development of the standardized data acquisition prototype. This includes defined require-
ments for data acquisition, processing, and future storage of the given systems. Necessary 
modifications, extensions, and the use of retrofits of the given systems are presented based 
on a standard protocol, followed by a final concept evaluation. 

2 Industrial Communication – State of the Art 

Choice of sensors as well as transmission options and protocols heavily determine 
the capabilities of the data acquisition process. While the sensor technology is mostly 
determined by the specific experimental conditions, transmission protocols are often deter-
mined by the manufacturers of the sensor technology or the data acquisition systems. This 
is mainly due to the historical development of industrial communication. 

Starting with parallel cabling of sensors, actuators and controllers, industrial commu-
nication has been developed since the 1980s. Initially, serial interfaces such as MODBUS 
RTU or PROFIBUS enabled to set up networks for exchanging information in production 
while maintaining real-time capability. However, the limits were the number of network 
participants and the communication in the IT systems [3].



104 T. Helfrich et al.

The development of Industrial Ethernet intended to overcome these limits and 
enable communication across multiple company levels. In this context, new industrial 
transmission protocols and fieldbus successors such as PROFINET or EtherCAT emerged. 

One of the biggest challenges of the fieldbus is the lack of protocol compatibility 
among each other. High investment cost for machinery requires long usage times leading 
to heterogenous protocol environments being the norm. Gateways or similar individual 
solutions are therefore necessary for the integration of devices in cross-company appli-
cations [4]. With rising awareness for the necessity of standardization of data exchange 
in industrial control systems standards like OPC UA emerged, as well as extensions to 
network protocols like MQTT. There are many common industrial protocols, but due to 
the advanced standardization, this paper will focus on OPC UA and MQTT. 

Message Queuing Telemetry Transport (MQTT) 
MQTT is a communication protocol for machine-to-machine communication. It is con-
sidered to be particularly lightweight and easy to implement. MQTT is based on the 
publish-subscribe model, in which messages can be distributed from one instance (publisher) 
to many interested parties (subscribers), usually via middleware (the broker). Messages are 
written to so-called topics, which can be organized in a tree structure. Clients can either sub-
scribe to these topics, i.e. receive messages in case of updates, or publish them, i.e. publish 
messages themselves. The protocol offers various security mechanisms such as encryption 
and authentication [5]. Simplified data modeling and standardization of this is introduced 
with the Sparkplug B specification, which defines topic namespaces, making it suitable for 
industrial data exchange in IIoT scenarios [6]. 

Open Platform Communications Unified Architecture (OPC UA) 
OPC UA is a communication standard that defines a comprehensive data model and map-
pings to various communication protocols. Data transport and data modeling are largely 
independent of each other. Both client–server and publish-subscribe models can be used 
for communication, with the former currently being used more frequently. A mapping to 
MQTT also exists. OPC UA stands out especially due to its data modeling. While fieldbuses 
only transmit values, these can be extended in OPC UA with the corresponding seman-
tics. Thus, a value can be supplemented with information about the measured variable and 
the unit in which it is represented [7]. Key benefits of OPC UA compared to data models 
developed on top of existing protocols like MQTT are the fully developed and standardized 
information models for specific machine and equipment types, enabling vendor independent 
development of applications.
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3 Concept Development for Machine Data Acquisition 

In order to develop a concept for the collection of data, first requirements are documented, 
then standards are selected and consequently applied in the concept design. 

3.1 Requirements for a Standardized Data Acquisition 

To develop a feasible data acquisition concept for pultrusion, key requirements for such a 
system must be defined. Requirements result from interviews at research level, literature 
research and were supported by an industry questionnaire for pultruding companies to 
fulfill estimated future needs and demands. Requirements regarding the raw data can be 
deducted from the list of parameters that drive the pultrusion process. Technical require-
ments regarding the data acquisition, processing and storage must be carefully tailored 
to the peculiarities of the pultrusion process to enable analysis in the future. Resulting 
requirements are listed in Table 1. 

3.2 Selection of Preferred Standards 

Aspects like time synchronization, adequate resolution, accuracy, acquisition rate and 
completeness of acquired data are heavily dependent on the chosen data model and pro-
tocol, hence their selection is essential. When weighing up the various communication 
standards, OPC UA and MQTT stand out above all because of their built-in security 
mechanisms and data modelling possibilities and their high reliability. 

With the so-called sessions, OPC UA enables to resend information sent in the mean-
time after a connection has been lost and successfully re-established. MQTT offers 
Quality of Service, which can be configured in three levels. The highest level ensures 
that the receiver has received the information exactly once. Therefore, one of these two 
protocols will be used at the interface between data acquisition and processing.

Table 1 Requirements for data acquisition, processing, and storage 

No Title Requirement 

1 Sampling rates Acquisition of 80 process parameters with more than 1 Hz 

2 Transmission reliability Disconnections occur without data loss 

3 Data storage Export possibility of data given 

4 Transmission security Data transmission security against common cyber attacks 

5 Time synchronization Time synchronization of all recorded values 
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OPC UA as well as MQTT provide built-in data modelling possibilities. While OPC 
UA standardizes a comprehensive and at the same time extensible information model, the 
latest MQTT Sparkplug specification B allows a simplified data model to be built using a 
topic structure (like a folder path). Likewise, the OPC UA specifications offer a mapping 
of its data model to PubSub protocols like MQTT in OPC 10,000–14. 

For the data model, the information model of OPC UA is used due to the extensive 
modeling possibilities, the already profound standardizations, and the possibility of trans-
mission via MQTT. The novel combination of these two standards (OPC UA over MQTT) 
enables a new comparison of the two standards. The project will examine which trans-
mission path (MQTT vs. OPC UA) is the more reliable and suitable approach. Thus, the 
goal for data acquisition is defined based on the interface for data processing. In the next 
step, the existing systems and components are analyzed, and integration steps are defined. 

3.3 Retrofitting a Standardized Data Acquisition System 

The pultrusion plant at Fraunhofer ICT exemplarily reflects a common production as it can 
be found in manufacturing companies as the three main components of the system show 
different interfaces and degrees of digitalization. The overall system is shown in Fig. 2 
and consists of a pultrusion system including mold, a mixing and metering system, and a 
heating chamber for pre-drying, where the former is most digitized and interconnectable 
whereas the latter has no digital interface at all.

We define those three sub-systems as distinct scenarios as they impose different 
requirements on our system that is supposed to eventually integrate data from the 
heterogenous sources in a uniform way. 

Scenario 1, The pultrusion plant and the mixing and metering plant use PROFINET 
for communication. At the same time, the systems are capable of implementing standards 
such as OPC UA or MQTT due to their state-of-the-art control technology. 

Scenario 2, in a data acquisition box, sensor signals for temperatures and pressures in 
the mold are currently processed with an amplifier and a transmitter. Latter has a serial 
interface which can be processed on a standard computer using Labview. 

Scenario 3, the heating chamber for pre-drying the fibers currently has no data inter-
face. An expansion of the sensor technology is desired since the drying process influences 
process stability and product quality. 

Digitization of Production Line Components 
According to the degrees of digitization, the production line components must be inte-
grated into a data acquisition system via several steps. In the first step, the transmission 
protocols and the information transmitted in the process are standardized to be able to 
supply constant, homogeneous data quality for each device in the future.
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Fig. 2 Schematic overview of machine data acquisition and transmissions within the in-situ pultru-
sion line

Scenario 1, the pultrusion line as well as the mixing and metering unit can be upgraded 
to common communication standards via their PLCs. Nevertheless, it is planned to use a 
PROFINET-capable industrial PC as a gateway to separate the production network from 
the data acquisition network. Due to security considerations, they are separated with dis-
tinct hardware. The industrial PC publishes the process parameters of the two machines 
via OPC UA to obtain standardized access to the variables. 

Scenario 2, the current Labview program can be extended with Labview’s OPC UA 
toolkit, which allows the measurement data to be provided in an OPC UA server to the 
middleware. The OPC UA interface replaces the Windows solution and secures it with 
common security mechanisms. 

Scenario 3, in a retrofit an additional data acquisition box will be installed at the 
heating chamber, for implementation of additional sensors (humidity and temperature). 
The acquisition system also consists of a transmitter and amplifiers for the individual 
sensors. Depending on the transmitter there are various scenarios for data recording. A 
transmitter with serial MODBUS interface is selected to minimize costs. This requires pre-
processing of a signal to transform to common interfaces (such as OPC UA or MQTT). 
This is realized via programmable logic controllers (PLCs). In this project, the aim is to 
compare common, powerful PLCs with compact Arduino-based PLCs.
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Standardized Middleware 
After these adjustments the production line components can supply process data to other 
systems. In this state, the data is only partially standardized and synchronized in time. In 
order to meet the requirements and to provide data in a standardized format, a middleware 
is implemented as the center of data acquisition. It abstracts from the proprietary or 
semi-standardized protocols and represents a generic approach to data provision. It is 
implemented on the edge to pick up data from the components, synchronize it in time 
via NTP and provide it in an aggregated data model according to common OPC UA 
standards. So the task is to combine data and prepare it in a standardized way. It is still 
to be tested if data will be transmitted through OPC UA or MQTT using the OPC UA 
data model. This provides standardized and easy access not only for the following data 
processing but also to other services developed in future. 

Data Processing and Data Persistence 
Signal data or variables of the protocols are stream processed. They trigger a data stream, 
which can be modified and further processed. The standardized information models of 
the OPC UA and MQTT interfaces simplify the integration of data acquisition into data 
processing and allow the reuse of processing mechanisms. The challenge is to find out at 
which level such data processing can take place - directly on a PLC, on an edge device 
within production or in a cloud environment. 

After processing, the data shall be stored permanently for documentation. For this pur-
pose, two approaches are compared: The standardized formats of OPC UA allow the use 
of NoSQL databases that enable fast storage of the data. At the same time, the data model 
based on OPC UA also offers a basis to model a schema for a relational database that stores 
the data for later analysis. Parallel use is therefore possible, and the two approaches are to 
be evaluated in direct comparison. 

3.4 Concept Evaluation 

Table 2 takes up the requirements defined in Sect. 3.1 and considers their fulfillment by 
the developed concept.

4 Summary and Outlook 

A concept for data acquisition, processing, and storage for the in-situ pultrusion process 
was developed as part of the CaproPULL project. Data acquisition is based on and at the 
same time uses novel combinations of state-of-the-art communication standards. In future 
trial campaigns, the developed concept will be validated in the existing production envi-
ronment. For this purpose, hardware and software adaptations are currently being carried
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Table 2 Evaluation of the concept against the given requirements 

No Title Evaluation 

1 Sampling rates MQTT and OPC UA allow sufficiently high sampling rates 

2 Transmission 
reliability 

Both OPC UA sessions and MQTT QoS provide protection against 
disconnections and data loss 

3 Data storage Persistent data storage in NoSQL and in relational SQL database 

4 Transmission 
security 

OPC UA and MQTT offer built-in security mechanisms, Network 
segmentation prevents attacks 

5 Time 
synchronization 

Time synchronization by local NTP server

out. This includes the digitization of the various components, the setup of the database as 
well as its database modeling based on common OPC UA standards. Within the scope of 
the work, recommendations for actions to control the process will be derived. In addition, 
the development of a uniform data model provides the basis for the development of future 
ML and AI applications. 

This work not only serves to optimize the in-situ pultrusion process, but also offers the 
potential to optimize already established process variants with other material combinations 
(e.g., thermoset matrices) in terms of economic efficiency and process robustness. This 
is possible as the high number of parameters and their known, but also partly unknown 
interactions can be structured and efficiently processed by statistical methods. 

Funding The project is funded by the Ministry of Economics, Labor and Tourism in Baden-
Württemberg (“CaproPULL” - grant number BW1_0025/01). 
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A Digital Twin Design for Conveyor Belts Predictive 
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Abstract 

Artificial intelligence has been widely used to enable predictive maintenance. However, 
AI systems need a large amount of data to generate accurate results that can be used 
reliably in terms of data quality. One of the ways to obtain data from the system is 
through the development of a digital twin. Therefore, a digital twin design might be 
of key value for the predictive maintenance of systems enabling the simulation of the 
system’s performance, anticipating potential malfunctions, and consequently reducing the 
cost of unforeseen failures of the physical system. In this paper, we present a framework 
of a digital twin system for a conveyor belt along with different sensors that collect 
various types of data to be analyzed by a digital system. This way, the digital twin can 
generate more data focusing on reducing the time to obtain enough data to train the 
AI algorithm properly. Furthermore, the digital twin model is designed to develop the 
simulation environment and integrate it with the physical system. 
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1 Introduction 

Artificial intelligence (AI) has gained much space in the industrial environment by providing 
increasingly accurate analysis of a large amount of data. Furthermore, with the evolution of 
Industry 4.0, in which it is possible to implement, collect information and analyze various 
sensors more quickly, artificial intelligence is favorably viewed as it enables the application 
of methods that generate more knowledge about the production system. 

One of these applications has been in the maintenance of equipment and systems through 
predictive maintenance. Predictive maintenance (PM) is conceptualized as “estimations that 
identify potential machine breakdown, allowing for the setback source to be eliminated or 
maintained” [ 13]. With this, we can identify the use of AI as an enabler for developing 
and applying predictive maintenance in the industry. Pagano [ 11] applied Long Short-Term 
Memory Neural Networks and Bayesian inference in the heavy industry. Ayvaz and Alpay 
[ 2] applied predictive maintenance in a baby diapers assembly line, and for that purpose 
tested the Random Forest, XGBoost, Gradient Boosting, AdaBoost, Multilayer Perceptron 
(MLP) Regressor, Neural Network and Support Vector Regression (SVR). 

However, to obtain accurate results that support predictive maintenance analyses and 
decisions, artificial intelligence needs a large amount of data to train the algorithms and 
thus obtain reliable predictions [ 8]. Thus, the accuracy and reliability of AI results are 
compromised when it comes to companies that do not have this large amount of data. 
Another point that some companies are currently facing regarding data accuracy is that in 
addition to a large amount of data, these must have a good sampling of real data. Thus, to 
remedy the lack of good sampling and the absence of a large amount of data, the development 
of a digital Twin can enable the understanding of the entire system by collecting data from 
the physical system and simulating various scenarios in the virtual system. 

A digital twin (DT), as defined by NASA [ 1] is: “an integrated multi-physics, multi-scale, 
probabilistic simulation of a vehicle or system that uses the best available physical models, 
sensor updates, fleet history, etc., to mirror the life of its flying twin” [ 15]. 

As the term got adopted more widely in different industries beyond the aerospace sec-
tor, different viewpoints emerged. The understanding of the term started to shift depending 
on the industry and its specific application. However, the idea of having a bi-directional 
connection between a physical asset and its virtual counterpart is a common vision for the 
implementation of a digital twin [ 14]. As a promising key tool for the success of digital 
transformation, DT is being used in industries to improve the manufacturing process’s oper-
ation and maintenance [ 6]. However, companies and the literature are still discussing how 
to structure and implement the digital twin for predictive maintenance [ 4]. Haghshenas et
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al. [ 7] applied DT to offshore wind farms, but the simulation developed in Unity was used 
to simulate the as-is scenarios and not to generate what-if scenarios to provide more data 
for the AI. With that, the AI used only historical data to perform the forecast, in addition, 
they applied the forecast to the sensors individually, not looking at the system as a whole. 

This paper aims to propose a framework for how the development of a digital twin for 
predictive maintenance in an industrial conveyor system can be structured. The framework 
is part of a bigger project that involves the development of an AI-driven software framework 
that merges and utilizes heterogeneous technologies to identify a better trade-off between 
performance and energy consumption. In this way, we present and discuss how the frame-
work was developed and the beginning of the implementation of this digital twin framework 
for a conveyor belt predictive maintenance system since this work is still in progress. 

2 Related Work 

Despite the few publications regarding the use of DT for conveyor belt predictive mainte-
nance, some papers can be highlighted. Răileanu et al. [ 12] developed an architecture of 
an embedded DT for a shop-floor material integrated with the manufacturing, planning, 
scheduling, and control architecture where the DT monitors and forecasts the conveyor’s 
operating parameters like pallet traveling time. The focus was on predicting failures based 
on operational data collected from the conveyor system such as transportation time, current 
pallet, batch identification number, and timestamp, and not by sensors measuring the per-
formance of each conveyor component such as conveyor speed, engine, conveyor tension, 
among others. 

Bondon et al. [ 3] also presented an application of the learning and identifying phases of a 
LIVE Digital Twin for a roller conveyor system consisting of a motor, frame, belt, rollers, and 
two sensors. However, as presented by the authors, data analytics and the maintenance plan 
were still missing. Despite having presented a methodology to design a model-based Digital 
Twin for prognostic and diagnostic based on four stages of analysis, this methodology 
did not address the issue of how information flow was implemented, what software and 
hardware requirements, and especially regarding the connection of equipment and sensors 
in the Digital Twin system. 

Mahmoodian et al. [ 10] present a novel DT architecture design for an intelligent civil 
infrastructure maintenance system to monitor an offshore jetty conveyor of a port terminal. 
The authors also highlight the need to monitor an offshore jetty conveyor of a port terminal 
and include simulating maintenance measures focusing on time and cost savings in asset 
management. In this architecture, the virtual twin is used to simulate, based on historical 
performance data, the current and future structural infra-structural condition, and the what-if 
scenarios are used after analyzing the calibration model just to evaluate the maintenance 
measures alternatives. Virtual Twin in this case was not used to generate data, through
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what-if scenarios, to improve the artificial intelligence models’ accuracy but was used as a 
tool to choose the best scenario for decision-making. 

In this way, studies are being developed to use the Digital Twin to improve predictive 
maintenance, but there is still room for improvements and applications, as it is possible to 
identify a gap in the literature regarding the proposition of developing a DT framework for 
conveyor belts predictive maintenance in which it addresses the software, hardware, and 
communication requirements that evaluate the conveyor system components, as well as a 
way to connect both the Physical Twin and the Virtual Twin to a complete Digital Twin 
system. In addition, there is a lack of studies that use DT as a tool for generating new data 
about the system. 

3 Framework  

To identify how the DT for predictive maintenance of a conveyor system can be structured, 
this paper was based on the 5C architecture proposed by Lee et al. [ 9] and adopted by van 
Dinter, Tekinerdogan, and Catal [ 5], in which it presents the development of a DT-based 
to predictive maintenance based on 5 features, namely Connection, Conversion, Cyber, 
Cognition, and Configuration. 

Connection is related to the Physical twin development, the Conversion deal with the sys-
tem security, the Cyber consists of the digital twin development, the Cognition layer consists 
of the visualization feature and the Configuration is concerned with machine optimization. 
Thus, to develop the framework was structured into three topics, namely Data Connectivity 
and collection, PLC, and Sensors, and Virtual Twin, to ensure the feasibility of development 
and future implementation of this system. Subsequently, they were combined into this single 
framework presented in Fig. 1. Then, each topic is addressed in the following subsections. 

3.1 Data Flow 

Fig. 1 is divided into two parts, with the bottom rectangle representing the physical system 
and the top part standing for the cloud. The physical twin consists of the conveyor and the 
IO-Link sensors, as well as the AC motor and a linear actuator that can be controlled over 
Profinet and Serial communication respectively. Data will be collected from the IO-Link 
sensors and the frequency converter used for the AC motor. The HMI will serve as the user 
interface for the operator to interact with the equipment. 

The gathered data is combined in a CSV (Comma-separated values) file and sent to the 
Cloud from the PLC using node-red. Here it is stored in a cloud-computing platform like 
Microsoft Azure and used to run the digital twin simulation. The saved data from the physical 
twin, as well as the newly generated data from the digital twin, is now made available to
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Fig. 1 Conveyor belts predictive maintenance framework 

Fig. 2 Physical Twin (left picture) and Virtual Twin model (right picture) 

the AI, increasing the overall amount of available data for the training process Subsequent 
paragraphs, however, are indented. 

3.2 PLC and Sensors—Physical Twin 

In the below written, we refer to the physical twin as [ 5]; being the physical system and the 
components herein. The predictive machine setup consists of a conveyor in a 1:2 gearing
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configuration driven by a 750-W 3-phase electrical AC motor, as depicted in Fig. 1 and Fig. 2. 
To this configuration, several sensors were added based on the parameters that influence the 
systems. These include:

• A humidity and temperature sensor for the motor, bearings, and environment
• An encoder for measuring the RPMs
• A distance sensor for measuring the position of the items on the belt
• A microphone to detect abnormal noises from the belt and motor
• A vibration sensor to detect abnormal vibrations
• A linear actuator to measure and apply force onto the belt
• A variable frequency drive to log speed, voltage, current, frequency
• A camera to perform image processing (object detection) and object placement 

These sensor modules are connected to a Siemens ET200SP PLC, except for the camera, 
which is connected to a Xilinx board to preprocess the data before sending it into the cloud. 
The Siemens ET200SP was chosen as it consists of four-core CPUs in which one is dedicated 
to the machine operations while the three other CPUs operate the Windows operating system. 
This configuration makes it possible to create a PLC server that can be connected to, e.g., a 
client PC. The communication to and from the PLC happens through ethernet by the protocol 
Profinet or TCP/IP. This allows communicating quickly and safely with both Siemens and 
third-party equipment. 

3.3 Data Connectivity and Collection—Cyber-Physical System 

This section presents the connectivity and data transfer system consisting of LANs and 
wireless communication through TCP messages to send all sensor data to the cloud. The 
PLC is connected through LAN to the wireless hub, where the communication protocol is 
developed to transfer the data. 

Continuous transfer of the data to the cloud is important to keep system memory usage 
lower and the performance efficiency better of the PLC. The TCP protocol is used because 
there are fewer chances of losing any part of data as our data. There is a possibility to also 
have redundant data while generating the data from sensors. To avoid sending redundant 
data, the preprocessing method is used to read the encoded data obtained from sensors and 
decode it to save the clean data in a CSV file for each day having 288 records (interval 
of 5 min) and then send it to the cloud server for further processing. Saving the data to 
CSV format help to deal with any network disturbance. In the preprocessing step, the data 
collected from all other sensors is directly read in PLC instead of the camera sensor. For 
running the object detection algorithm on the camera sensor, we used Xilinx board, which 
runs the real-time deep learning object detection model with 20 FPS (Frames per second).



A Digital Twin Design for Conveyor Belts Predictive Maintenance 117

The transferred data is then used in digital twin to further assess each sensor’s performance 
and use it for machine learning models on the cloud-based servers. 

3.4 Virtual Twin 

Following the 5C framework, this section deals with the development of the digital twin. 
The virtual counterpart of the physical conveyor belt is executed as a digital shadow, with 
data flow only from the physical to the digital model [ 1], and the ex-tend model to a fully 
integrated bi-directional digital will be implemented with the AI output. The virtual twin is 
used to mirror the physical conveyor as well as generate new data using a simulation approach 
as presented in Fig. 2. Therefore, the model helps acquire large amounts of data for predictive 
maintenance purposes by reducing the necessary time for the physical model data collection. 
As the accuracy of the predictive maintenance algorithm is highly dependent on the simulated 
data from the digital twin, the accuracy of the virtual model plays a fundamental part in the 
success of the predictions. Therefore, it is necessary to simulate the entire conveyor system 
to explore the correlations between its components. 

Based on the model parameters and the incoming sensor data from the physical twin, the 
digital twin simulates failures/ non-failures in the system. The simulation outputs an array 
of sensor data, along with the label of “failure/ non-failure” within the system, indicating 
whether the current parameters lead to a fault in the conveyor. This data can then be processed 
further for predictive maintenance purposes. 

The digital twin will be implemented as an actual multi-domain model that is described by 
mathematical equations. The conveyor will be modeled using OpenModelica as a modeling 
language and using predefined components to describe the system and the relationships 
between its individual parts. After modeling the entire system, the input variables can be 
configured as needed using the data gathered from the physical twin. Based on this data the 
digital twin can then extrapolate new data by solving the equations describing the model. 
This approach will let the digital twin be able to answer questions like What will happen to 
the conveyor belt temperature if the belt is running at a high speed with low tension? 

4 Discussion and Future Work 

This paper presents a framework for developing a digital twin for generating data based on 
a simulation model using the collected data from a physical conveyor system. The newly 
generated data will then be used as input for a predictive maintenance Machine Learning 
algorithm to improve the model’s accuracy. 

For future work, we suggest using the model predictions to automatically adjust the 
physical system parameters, therefore closing the loop for a bi-directional digital twin model.
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Augmenting Explainable Data-Driven Models 
in Energy Systems: A Python Framework 
for Feature Engineering 

Sandra Wilfling 

Abstract 

Data-driven modeling is an approach in energy systems modeling that has been gaining 
popularity. In data-driven modeling, machine learning methods such as linear regression, 
neural networks or decision-tree based methods are applied. While these methods do not 
require domain knowledge, they are sensitive to data quality. Therefore, improving data 
quality in a dataset is beneficial for creating machine learning-based models. The impro-
vement of data quality can be implemented through preprocessing methods. A selected 
type of preprocessing is feature engineering, which focuses on evaluating and improving 
the quality of certain features inside the dataset. Feature engineering includes methods 
such as feature creation, feature expansion, or feature selection. In this work, a Python 
framework containing different feature engineering methods is presented. This frame-
work contains different methods for feature creation, expansion and selection; in addition, 
methods for transforming or filtering data are implemented. The implementation of the 
framework is based on the Python library scikit-learn. The framework is demonstrated 
on a use case from energy demand prediction. A data-driven model is created including 
selected feature engineering methods. The results show an improvement in prediction 
accuracy through the engineered features. 
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1 Introduction 

Modeling and simulation is an crucial step in the design and optimization of energy systems. 
While traditional modeling methods rely on system parameters, a recent approach focuses on 
creating data-driven models based on measurement data taken from a system. Mainly, data-
driven models are based on machine learning (ML) methods. ML methods can be classified 
into white-box and black-box ML methods based on their explainability [ 15]. For instance, 
Molnar et al. [ 15] classify methods such as linear or logistic regression and decision trees as 
white-box ML methods, and methods such as neural networks or decision tree ensembles 
as black-box ML methods. 

A white-box ML model provides information about the underlying system for instance 
through its input-output relations (interpretability) or through a humanly comprehensible 
structure (explainability) [ 14]. To keep the structure of the model comprehensible, explaina-
ble models focus on a reduced complexity. As a result, their capability of modeling complex 
dependencies is often limited, creating a trade-off between accuracy and explainability [ 2]. 

To capture more complex dependencies using white-box ML models, methods of feature 
engineering are applied. The main purpose of feature engineering is to augment the existing 
dataset through adding new information, or expanding or reducing the feature set. In addition, 
the quality of a single feature can be improved, for instance through transformation or 
filtering [ 9]. 

The area of feature engineering covers a wide number of methods, such as feature crea-
tion, feature expansion [ 5] or feature selection [ 3]. Feature creation includes encodings of 
time-based features, such as cyclic features [ 19], or categorical encoding [ 11]. Similarly, 
feature expansion is the method of creating new features based on existing features. Feature 
expansion covers classical methods such as polynomial expansion [ 5] or spline interpolation 
[ 6]. In contrast to feature creation and expansion, feature selection aims to reduce the size 
of the feature set. While large feature sets may contain more information, high-dimensional 
feature sets may be subject to sparsity or multicollinearity. To address this, methods such 
as Principal Component Analysis (PCA) [ 10] reduce the feature set through transformation, 
while feature selection methods discard features. Feature selection can be implemented for 
instance through sequential methods, such as forward or backward selection or through 
correlation criteria [ 3]. including measures based on the Pearson Correlation Coefficient, 
as well as entropy-based criteria [ 1]. For correlation criteria, feature selection is mainly 
implemented through a threshold-based selection. 

Mainly, the methods of feature engineering are applied during the first steps of creating 
a data-driven model, creating an engineered dataset to use for training [ 4]. However, feature 
engineering methods can also be used in combination with model selection procedures, such 
as grid search [ 1]. Feature engineering methods are widely used in applications from the 
energy domain, such as in prediction for building energy demand [ 20] or photovoltaic power 
prediction [ 4].
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1.1 Main Contribution 

To apply different feature engineering methods to the creation of data-driven models, a 
Python framework implementing differernt feature engineering methods was developed. 
The feature engineering framework is implemented in Python based on the scikit-learn fra-
mework and can be imported as a Python package. Compared with existing frameworks, the 
implemented framework focuses on providing a standardized function interface to allow the 
creation of different combined workflows with low effort. The functionality of the frame-
work is demonstrated on a case study of an energy demand prediction use case. For this use 
case, a multi-step workflow consisting of a combination of feature engineering methods is 
created. The results of the case study show an improvement in prediction accuracy through 
the applied feature engineering workflow. 

2 Method 

The presented framework implements various feature engineering methods in Python based 
on the framework scikit-learn. The framework implements methods for feature creation and 
expansion, feature selection, as well as transformation and filtering operations. The source 
code of the framework is openly available on https://github.com/tug-cps/featureengineering. 

Feature Creation and Expansion In the framework, different methods for feature creation 
and expansion are implemented. These methods create new features from time values or from 
expansion of existing features. To create new features, the implemented framework supports 
categorical encoding and cyclic encoding of time-based values. 

– Cyclic Features: Cyclic features can be used to model time values through periodic func-
tions [ 19]. In the implementation, sinusoidal signals .xsin, xcos with a selected frequency 
. f can be created based on a sample series . n: 

.xsin[n] = sin(2π f n) (1) 

.xcos[n] = cos(2π f n) (2) 

The implementation offers the creation of features with a zero-order hold function for a 
certain time period, for instance.TS = 1day for a signal with a time period of.T = 1week. 

– Categorical Features: Categorical encoding creates a representation of discrete numeri-
cal values through a number of features with boolean values [ 11]. In this implementation, 
for a number of categorical features .x0,....,N for a feature . x with discrete possible values 
.v0,....,N , a single feature .xi is defined as:

https://github.com/tug-cps/featureengineering
https://github.com/tug-cps/featureengineering
https://github.com/tug-cps/featureengineering
https://github.com/tug-cps/featureengineering
https://github.com/tug-cps/featureengineering
https://github.com/tug-cps/featureengineering
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.xi =
 
1 x = vi

0 else
(3) 

The framework offers categorical encoding for time-based values as well as a division 
factor to create an encoding of a downsampled version of the time values. 

– Time-based Features: The framework implements a method of dynamic timeseries 
unrolling to create features.xn−1,.xn−2, ....xn−N from an existing feature x. The method of 
dynamic timeseries unrolling is based on the research in [ 7]. In this implementation, dyna-
mic timeseries unrolling is implemented through filter operations from the scipy.signal 
library. The dynamic features are created through the convolution of the signal . x with a 
Kronecker delta for .i = 1...N : 

.xdyn,i [n] = x[n] ∗ δ[n − i] (4) 

This operation creates delayed signals .xdyn,1, ..., xdyn,N . In this implementation, zero 
padding is used for the samples in the delayed signals, for which no values are available. 

Feature Selection The framework offers several threshold-based feature selection methods, 
which analyze the input and target features based on a certain criterion, and then discard 
features with a low value of the criterion. A widely used criterion is the Pearson Corre-
lation Coefficient, which is used to detect linear correlations between features [ 4]. The 
Pearson Correlation Coefficient calculates the correlation between two features for samples 
.x0,....,N , y0,...,N with mean values . x̄ and . ȳ: 

.rx,y =
 N

i=0(xi − x̄)(yi − ȳ)  N
i=0(xi − x̄)2

 N
i=0(yi − ȳ)2

(5) 

In addition to the Pearson Correlation Coefficient, the framework provides thresholds based 
on non-linear dependency detection coefficients such as Maximum Information Coefficient 
(MIC) [ 17]. 

Transformation and Filtering Operations To transform features, the framework imple-
ments the Box-cox transformation as well as the square root and inverse transformation. 
In addition, the framework provides filtering operations, which were applied in timeseries 
prediction for instance in [ 9]. Discrete-time based filters can be implemented in Python 
through the functions implemented in scipy.signal. The  scipy.signal library offers functions 
for calculating the coefficients for different types of digital filters. A digital filter of order. N
can be defined through the transfer function .H(z) in a direct form: 

.H(z) =
 N

i=0 bi z
i N

i=0 ai z
i

(6)
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The filter coefficients.ai and.bi define the behavior of the filter. The framework implements 
topologies such as the Butterworth [ 9] or Chebyshev filter. In addition, an envelope detec-
tion filter was implemented for demodulation of modulated signals. The direct form filter 
classes of the framework offer a simple option for extension. Different architectures can be 
implemented by re-defining the implemented method for coefficient calculation. This allows 
to create filters with different Finite Impulse Response (FIR) or Infinite Impulse Response 
(IIR) structures. 

3 Case  Study  

The framework was demonstrated on a use case from prediction for energy systems mode-
ling. For this purpose, a mixed office-campus building was selected. A white-box prediction 
model should be trained based on existing measurement data provided by [ 18]. In the predic-
tion of energy demand, different factors must be considered. Such factors include thermal 
characteristics and Heating, Ventilation, Air Conditioning and Cooling (HVAC) system 
behavior [ 13]. Additionally, building energy demand may be dependent on occupancy [ 8] or  
subject to seasonal trends [ 19]. Many of these factors show non-linear or dynamic behavior, 
which makes it difficult to address them through a purely linear model. Through feature 
engineering methods, these factors should be incorporated into the data-driven model. 

Data-driven Model For the selected application, a data-driven model of the building energy 
demand should be created. To demonstrate the effect of feature engineering, two models were 
trained based on the existing measurement data: a basic regression model and a regression 
model with engineered features. The energy demand was measured during a period from 
05/2019 to 03/2020, with a sampling time of.1h [ 18]. The feature set consisted of temperature 
data as well as data of the registrations for lectures inside the building. In addition, time-
based data such as day-night changes and public or university holidays were included. 
For the energy demand prediction, a linear regression architecture was selected due to its 
simplicity and explainability as a white-box ML model. Dynamic system behavior as well 
as seasonality of the underlying system should be incorporated through feature engineering. 
Finally, the implemented models were compared to a baseline neural network model. 

The implemented workflow consisted of a combination of cyclic [ 19] and categorical 
features [ 16], which were used to model seasonal trends, as well as of data smoothing [ 9] and  
dynamic timeseries unrolling [ 12]. Finally, feature selection using the Pearson Correlation 
Coefficient was applied, similar to the method applied by Chen et al. [ 4]. An overview of 
the implemented workflow is depicted in Fig. 1. 

The model training was performed with a train-test split of 0.8 and 5-fold cross-validation. 
For the model with engineered features, the parameters for the steps timeseries unrolling and 
feature selection were determined through a grid search based on the metrics Coefficient
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Basic Feature 
Set 

Extended 
Feature Set 

Engineered 
Feature Set 

Feature Selection – 
Pearson Correlation 

Fig. 1 Implemented workflow 

of Determination (R2), mean squared error (MSE) and Mean Absolute Percentage Error 
(MAPE). 

Experimental Results The two models were trained on the measurement data and compa-
red in terms of performance metrics R2, Coefficient of Variation of the Root Mean Square 
Error (CV-RMSE) and MAPE. Table 1 gives an overview of the performance metrics for 
the different models. 

The performance metrics showed a significant improvement in prediction accuracy for 
the linear regression model through the engineered features. This observation could also be 
made from the timeseries analysis depicted in Fig. 2. 

The timeseries analysis showed improvements in the linear regression model especi-
ally in the seasonal trends, such as day-night or weekly behavior of the energy demand. 
This improvement was attributed to the introduced features. While the categorical features 
provided information about daily or weekly trends, the day-night behavior was modeled 
through the cyclic features. The introduction of the delayed input features through dynamic 
timeseries unrolling provided information about short-time changes in the energy demand. 

The introduction of the additional features modeling the seasonality and dynamics of 
the energy demand showed a significant accuracy improvement for the linear regression 

Table 1 Performance metrics 

Model R2 CV-RMSE MAPE 

Linear Regression 0.316 0.328 29.176% 

Neural Network 0.431 0.299 27.829% 

Linear Regression – 
Engineered Features 

0.694 0.220 17.754%
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Fig. 2 Timeseries analysis for linear regression model period of 25 d from test set 

model. The results suggest that this approach shows promise for improving the accuracy of 
explainable linear models and could furthermore be applied to non-linear methods such as 
neural networks or decision trees. 

4 Conclusion 

This work presents a Python framework for feature engineering that provides different 
methods through a standardized interface. The framework is based on the scikit-learn Python 
package and offers classic feature engineering methods such as feature expansion, feature 
creation, feature selection or transformation and filter operations. The framework is imple-
mented as a Python package. Through the defined interfaces of the framework, additional 
methods can be added with low effort. Finally, the framework is demonstrated on a case study 
of energy demand prediction, using a workflow created from a subset of the implemented 
methods for data-driven model creation. 

Future Work The current version of the framework gives many options for extensions. For 
instance, additional feature engineering methods can be added using the provided interfaces 
of the framework. In addition, combinations of the implemented feature engineering methods 
such as the implemented workflow can be used for prediction in different use cases. 
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