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Preface

Feature models (FMs) have become a fundamental means of representing variability
knowledge related to software systems, services, and also physical products such as
furniture, cars, and cyber–physical systems. They define all allowed combinations
of the features representing possible variants of a product. FMs provide a language
and a corresponding formal semantics that helps to support reasoning operations, for
example, finding correct FM configurations and analyzing FMs. The ever–increasing
amount of research on the integration of Artificial Intelligence (AI) methods into
feature modelling related processes motivated us to write this book on Feature
Models: AI-driven Design, Analysis, and Applications. Its purpose is to provide a
basic introduction to feature modelling and analysis as well as the integration of
AI methods with feature modelling. This book is intended as an introduction for
persons new to the field and also as reference material for researchers, teachers, and
practitioners. More specifically, while focusing on the AI perspective, the book covers
the topics of feature modelling, FM analysis, and interacting with FM configurators.
These topics are discussed along the AI areas of knowledge representation and
reasoning (KRR), explainable AI (XAI), and machine learning (ML). Last not least
a personal note: we decided to order the author names by the order of our first names.

Graz, Vienna, Sevilla Alexander Felfernig
April 2024 Andreas Falkner

David Benavides
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Chapter 1
Introduction

Abstract Feature models (FMs) are an established means for representing variability
and commonality properties of software product lines and beyond (e.g., financial ser-
vices and configurable products such as furniture, cars, and cyber-physical systems).
Artificial Intelligence (AI) plays an increasingly important role in supporting feature
modelling tasks, FM analysis, and FM configuration. In this chapter, we explain our
major motivation for writing this book. We provide a short overview of the history
of feature modelling specifically focusing on the relationship between feature mod-
elling related tasks and AI methods. We discuss relevant benefits of applying FMs

and refer to further topics with a relationship to feature modelling. We conclude this
chapter with an overview of the major topics of in this book.

1.1 Motivation for the Book

Feature models (FMs) are a wide-spread means for representing variability properties
of software product lines (SPL) [2, 6, 9, 10, 16, 47] as well as configurable products
and services [9, 26, 45]. Major advantages of FMs are that (1) they are easy to
understand and develop (only a few modelling concepts with a clear semantics are
provided which are sufficient in many application scenarios), (2) they can be directly
translated into a corresponding formal representation, for example, a constraint
satisfaction problem (CSP) [53] or a Boolean satisfiability (SAT) problem [15] which
allows for automated and efficient reasoning processes, and (3) there exists a plethora
of tools for FM-based variability management (see Chapter 5).

On an informal level, FMs represent configuration spaces with a graphical re-
presentation in terms of (1) features which can be included in a configuration or
excluded (i.e., are not part of the configuration) and (2) a set of constraints which
restrict the combinations of individual features in a final configuration. An FM of a
configurable smartwatch will be used as a working example throughout this book.
Example features of a smartwatch are payment and screen (screentype of a smart-
watch). A related constraint could specify that if a user is interested in a standard

1© The Author(s) 2024 

A. Felfernig et al., Feature Models, SpringerBriefs in Computer Science,  

https://doi.org/10.1007/978-3-031-61874-1_1 

 

 

    

https://doi.org/10.1007/978-3-031-61874-1_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61874-1_1&domain=pdf


2 1 Introduction

screen, no payment feature is available, i.e., the payment feature is incompatible
with the standard feature. The basic concept is that a set of similar products can
be described in terms of features and relationships among them. An FM represents
allowed combinations of features (for details, see Chapter 2).

Our major motivation for writing this book is that Artificial Intelligence (AI)
methods and techniques play an increasingly important role in variability manage-
ment processes where FMs are a central element [7, 8]. On the basis of an analysis of
existing AI approaches in software product lines and knowledge-based configuration,
we discuss these approaches in the context of the identified categories of (1) feature
modelling (Chapter 2), FM analysis (Chapter 3), interacting with FM configurators
(Chapter 4), and related tools and applications (Chapter 5).

Another motivation was to move forward towards a more integrative view on the
topics addressed in different communities (1) the SPL community, exemplified by the
Software Product Line Conference (SPLC) and the Working Conference on Variabil-
ity Modelling of Software Intensive Systems (VaMoS), and (2) the knowledge-based
configuration community, exemplified by the Workshop on Configuration (ConfWS).
With this, we expect to foster more intensive cooperation in related fields and also
indicate relevant open research issues to these communities.

1.2 A Short History of Feature Models

FMs and software product lines are software engineering key technologies for pro-
ducing highly configurable software products. The concept of FMs was invented
in the early 1990’s by Kang et al. in their 1990 seminal paper “Feature-oriented
Domain Analysis (FODA) Feasibility Study” [39]. There were previous works on
similar topics that settled the basis for modern software product line engineering
approaches. McIlroy’s paper in 1969 on “Mass Produced Software Components” is
probably the most important seminal paper [42]. The key idea was that customized
software should be industrialized as in other domains such as hardware.

Following basic FMs, different variants thereof were proposed in the late 1990’s
and 2000’s [9, 29] ranging from cardinality-based FM representations [19] to FMs

taking into account feature attributes [11, 39].
An increasing adoption of feature modelling and software product lines in industry

could be observed starting in the early 2000’s [9, 29]. From that time on, FMs became
a central element of reuse-driven development processes for highly-configurable
software systems [54]. This increasing industrial relevance was observed in industries
such as electronic components and car manufacturing [13].

Following the adoption of FMs in industry, the quality of tool support in-
creased from that time on until now (and is still continuing) resulting in various
tools/frameworks and applications (see, e.g., Meinicke et al. [43] and Beuche [14]).
Examples of related open source and commercial tools are discussed in Chapter 5.

Nowadays, FMs in the context of software product lines (SPLs) are in wide-spread
use in industry as well as in academia with applications [35] ranging from operating



1.2 A Short History of Feature Models 3

systems [54], software systems for controlling trains on various hardware platforms
and in different countries [1], automotive systems [20, 22, 64], synthetic biology [17],
to software product lines for large telescope control software [32], just to mention
a few. In the late 2010’s and 2020’s, the ever-increasing popularity of Artificial
Intelligence methods – specifically, machine learning (ML) – also had enormous
impacts on feature modelling and variability management research. Examples of
related research are the application of ML to personalized FM configuration [27, 50,
52] and configuration space learning [31, 48]. The integration of AI with FMs is the
central topic of this book and will be discussed throughout Chapters 2–5.

Similar to SPLs which help to customize software systems, product configuration
is about customizing hardware (and more). Felfernig et al. [26] relate it to the mass
customization paradigm [37] which is based on the idea of the customer-individual
production of highly variant products under near mass production pricing conditions.
Sabin and Weigel [55] define configuration as a special case of design activity where
the artifact being configured is assembled from instances of a fixed set of well-
defined component types which can be composed conforming to a set of constraints.
Configuration has been one of the most successfully applied technologies of AI for
several decades and in many application domains [26, 55, 58].

We want to emphasize that specifically in the context of highly-configurable
products, configuration solutions were already developed throughout the 1970’s and
1980’s a.o. in the context of the R1/XCON computer configurator [5]. These systems
focused on rule-based knowledge representation and reasoning resulting in serious
efforts in configuration model development and maintenance. At the same time as
initial versions of FM languages were developed [39], configuration knowledge re-
presentation and reasoning moved away from rule-based representations to so-called
model-based knowledge representations allowing a clear separation of product do-
main and reasoning knowledge (e.g., in terms of search heuristics). Related emerging
(model-based) reasoning techniques such as constraint solving [53] and SAT solving
[15] became established in both fields of research, i.e., feature modelling [6, 39] and
knowledge-based configuration [26, 45, 55, 58].

Although the research communities of feature modelling and knowledge-based
configuration were established in parallel and in many cases work on similar topics,
we can observe an increasing degree of cooperation which appears to be fruitful for
both research communities [8]. Today, SPLC and VaMoS can be regarded as major
scientific conferences for FM-related topics whereas the Configuration Workshop
(ConfWS) is the platform for research on topics of knowledge-based configuration
(and beyond). In 2022, SPLC and ConfWS were co-located the first time.1

1 https://2022.splc.net/

https://2022.splc.net/


4 1 Introduction

1.3 The Role of AI in Feature Models

Artificial Intelligence (AI) plays an increasing important role in different FM-related
tasks [27]. An overview is given in Table 1.1. We distinguish between the tasks of
(1) feature modelling, (2) FM analysis, and (3) FM configuration (i.e., interacting
with configurators). Those topics are discussed in Chapters 2–4. We now discuss the
concepts of Table 1.1 in more detail.

Artificial Intelligence (AI) Aspects FM-related Tasks

AI Areas Example AI
Techniques

Feature modelling
(Chapter 2)

FM analysis
(Chapter 3)

Interacting with
FM configurators

(Chapter 4)

knowledge
representation

(KR)

knowledge graphs,
answer set

programs (ASP)

basic, attribute-,
and cardinality-

based FMs

analysis
operations

(with/without
solver)

basic, attribute-,
and cardinality-

based FM
configuration

reasoning (R)

CSP solving,
SAT solving,
rule-based
reasoning

CSP-based,
SAT-based,
rule-based,

text-based FM
formalization

CSP-, SAT-, and
rule-based
analysis

configuration
(CSP, SAT, and

rule-based)

explainable AI
(XAI)

argumentation,
conflict detection,

model-based
diagnosis

argumentation-
and

consistency-based
explanations

FM
inconsistencies,
FM redundancies

explaining
configurations

and
inconsistencies

machine learning
(ML)

prediction (e.g.,
regression,

factorization),
classification (e.g.,
neural networks,
LLMs, decision

trees)

configuration
space learning,

knowledge
extraction from

data

predicting faulty
FM model
elements

recommending
features

and
(re)configura-

tions

Table 1.1: Artificial Intelligence (AI) aspects covered in this book and relationships
to feature modelling, analysis, and configuration (interacting with configurators).

AI Aspects. Our categorization of different AI areas relevant in the context of
FMs is based on the following scheme. First, the role of knowledge representation
& reasoning (KRR) [63] is to develop appropriate concepts and languages for rep-
resenting variability properties and support efficient problem solving (reasoning)
procedures. Examples of related AI techniques are (1) knowledge graphs [34] and
answer set programs [46], and (2) SAT solving [15], constraint solving [53], and
rule-based reasoning [30]. Second, following the idea of explainable AI (XAI) [21],
solutions as well as problems (e.g., inconsistencies) need to be explained such that
users understand why a specific configuration has been proposed or no solution could
be found. Examples of AI techniques supporting such tasks are argumentation [12],
conflict detection [38], and model-based diagnosis [51]. Finally, different types of
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machine learning (ML) [44] approaches can help to support prediction (e.g., what
will be the maximum price accepted by the user) and classification tasks (e.g., will
a specific feature be of interest for the user). Machine learning is applied to provide
a personalized user experience in feature modelling (see, e.g., [27]).

Feature Modelling. To be applicable in FM configuration, FMs have to be de-
signed (typically, this is performed on a graphical level) and then translated into a
corresponding formal representation (FM formalization) that is a basis for the follow-
up tasks of FM analysis and FM configuration (interacting with configurators). FM
formalization can be based on different AI-based approaches such as SAT solving,
constraint solving, and rule-based reasoning. For demonstration purposes, we will
focus our discussions on constraint-based representations, however, most of the dis-
cussed concepts can as well be applied with the mentioned alternatives. FM design
and FM formalization will be discussed in Chapter 2. FM design also depends on
decisions regarding the inclusion of specific constraints, for example, regarding the
combination of individual features and also on decisions regarding the inclusion or
exclusion of features. An important task in this context is product line scoping which
entails methods and techniques helping to figure out relevant features and corres-
ponding constraints describing the envisioned (software) product line. Example AI
techniques that can be used in this context are explanations (that help to understand
inclusion and exclusion decisions), conflict detection (pointing out inconsistencies
that need to be resolved), and diagnosis (in which way conflicts should be resolved
to develop consensus regarding the final shape of an FM). Some explanation-related
aspects of product line scoping will be discussed in Chapter 2. Finally, to assure
efficient solution search, AI techniques can also be used to support developers in
optimizing FM configurator search heuristics and in predicting the performance of
FM configurations (see Chapter 2).

FM Analysis. This task covers different aspects of assuring the quality of FMs

with regard to aspects such as model consistency and FM complexity (e.g., in terms
of the number of supported solutions). Some of the related analysis operations can
be performed without solver support (e.g., counting the number of features and
constraints) and other operations are in the need of solver support (e.g., checking
model satisfiability, counting or approximating the number of supported solutions
(configurations), and checking if some of the features are dead, i.e., cannot be
included in a configuration). Different types of FM analysis operations and their
relevance in modelling contexts are discussed in Chapter 3. Besides the mentioned
analysis operations, FMs can also be tested with regard to conformance with the
underlying application domain. In this context, FM development and maintenance
can be supported with different types of diagnosis and repair functions that help to
locate the sources of inconsistent FM behaviors. FM inconsistencies could be predicted
using ML approaches. Related aspects are also discussed in detail in Chapter 3.

Interacting with Configurators. FM configuration is typically supported by tools
denoted as configurators. These tools are based on a formal knowledge representa-
tion such as constraint satisfaction problems (CSP) or Boolean satisfiability problems
(SAT) supported by corresponding reasoning engines. In addition to the identifica-
tion of a solution, some scenarios require optimization functionalities, for example,
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minimizing the overall price of a configuration. Concepts supporting interactive
configuration scenarios are discussed in Chapter 4. In FM configuration, diagnosis
algorithms are needed, for example, to support the minimization of configurations
(only relevant components should be included) or the identification of repair actions
to find ways out of the no solution could be found dilemma. Also in this context, alter-
native repairs can be ranked which may require the integration of machine learning,
more specifically recommendation concepts, that help to identify the most relevant
trade-offs, i.e., trade-offs with a high probability of being accepted by the user. Fi-
nally, in situations where users are not sure about the inclusion of specific features,
recommendation techniques can help to support the user in terms of recommending
reasonable inclusions or exclusions. Related techniques and detailed examples are
provided in Chapter 4.

Finally, in Chapter 5 we discuss the practical relevance of the FM-related tasks
summarized in Table 1.1 by providing and discussing links to different FM based
tools and applications.

1.4 Topics Related to Feature Models

There are a couple of topics with a direct relation to feature modelling related
research. These topics will be touched in upon in one way or another in this book.

Software Product Line Engineering focuses on the development of a software
codebase (with an emphasis on reuse) that represents a family of related products
with variabilities and commonalities [2, 3, 18, 49, 56].

Knowledge-based Configuration has overlaps with FMs [39] regarding research
topics and research results [26, 45, 55, 58]. Knowledge representation & reasoning
[63], explainable AI [21], and machine learning [44] are AI research fields that play
an increasingly important role in configuration tasks. Our discussion focuses on the
application of these research fields in various feature modelling related tasks.

Recommender Systems [23, 28, 52, 62] support the identification of user-relevant
items from large assortments defined, for example, by product catalogs or config-
uration knowledge bases. These systems combine different AI techniques such as
machine learning [44] and explanations [21] to provide a personalized user experi-
ence when being confronted with complex item spaces.

Mass Customization is the production of highly-variant products and services
under mass production pricing conditions [24, 37]. Software product lines extend the
application of the mass customization paradigm to the area of software engineering
with similar related tasks and research issues. Intangibility, high complexity, and a
higher degree of adaptability (compared to physical products) make related man-
agement and implementation tasks even more demanding. A phenomenon related
to mass customization is mass confusion [36] referring to cognitive overloads of
customers triggered by a high number of configuration choices. Different machine
learning concepts such as recommender systems that can help to tackle the challenges
induced by mass confusion are discussed in this book.
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Human Decision Making. This aspect is highly relevant specifically in the
context of FM configuration. Knowledge about how humans decide, which basic types
of shortcuts are used in human decision making, and in which way humans prefer
to state their preferences must be taken into account when developing configurator
user interfaces [4, 60]. Importantly, decisions are often made in groups, for example,
in the context of product line scoping [41]. Group members need to decide about
which features and constraints need to be included in a feature model, i.e., decide
about very specific variability properties. In this context, group decision support is
needed to support the group in finding a good solution [25, 40, 59].

1.5 Benefits of Feature Models and Configuration

Feature models (FMs) are key enabling technologies for supporting variability man-
agement in software development (and other types of tasks such as the configuration
of physical products). The challenges of variability management and related benefits
of FMs and configuration technologies can be summarized as follows.

Efficient variability model development & configuration. FMs are in many
cases based on a graphical representation understandable for technical experts (e.g.,
configurator developers) as well as domain experts (e.g., product development)
which is of specific relevance in early stages of a software development process.
For this reason (both parties are able to “speak” the same language), the so-called
knowledge acquisition bottleneck can be reduced in terms of lower communication
overheads between developers and domain experts. For the same reason, domain
know-how can be increased resulting in a kind of corporate variability knowledge
memory [33]. Due to the systematic representation of software variabilities (using
FMs), corresponding configurations can be derived in an efficient fashion helping to
reduce software development efforts and the corresponding time to market [16, 61].

Avoiding erroneous and suboptimal FM configurations. FMs represent the vari-
ability properties of the underlying software product line (and beyond). When reusing
and integrating individual software components, it is extremely important to assure
the correctness of configurations, i.e., we want to avoid situations where incompatible
software features result in faulty or at least low-performance behavior when being
installed on the customer site. Beyond promoting correctness, FMs can also help to
reduce lead-times, since configuration processes and configuration completion can
be automated, i.e., are not a manual and time-consuming process anymore.

Understanding the configuration space (and its set of possible solutions).
Knowledge about the configuration space can be of help to figure out weaknesses
in terms of configurations leading to low system performance and to configura-
tions assuring stable runtime performance [48]. Furthermore, configuration space
understanding can help to better understand potential impacts of the supported con-
figuration space on corresponding sales and production processes – this holds for
physical products as well as reusable software components.
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Efficient testing. FMs represent the software configuration space of software
product lines and can also be used to support the systematic generation of test cases,
for example, to achieve specific test coverage criteria [57]. Since FMs can easily be
translated into a corresponding formal representation, basic FM properties can be
easily analyzed, for example, if every feature is part of at least one configuration.

Avoiding mass confusion. When configuring complex items, it cannot be guar-
anteed that users know in detail every offered feature. In some cases, for example,
when selling software services online, a cognitive overload can lead to situations
where users (customers) refrain from taking a purchase decision. In such contexts,
FM configuration (often combined with corresponding personalization services) can
support users in identifying and also explaining the most relevant configurations. For
the company itself, FMs can be regarded as a kind of corporate memory assuring the
explicit representation of the variability properties of the offered software (as well
as products and services).

Using a common language in different domains. Although there are many
different FM dialects, most of them share a common way of expressing commonalities
and variabilities. The same language can be used in different application domains
which facilitates engineering activities. There is a community effort to develop a
Universal Variability Language (UVL) [10] (see Chapter 2) to encourage knowledge
sharing while promoting open science principles.

1.6 Book Overview

The remainder of this book is organized as follows:

• Chapter 2 introduces FM modelling languages with corresponding semantics
using constraint satisfaction problems (CSPs) and Boolean satisfiability (SAT)
problems. Specifically, CSP semantics are used as a basis for the discussions in
the follow-up Chapters 3 – 5.

• Chapter 3 focuses on an in-depth discussion of FM analysis operations and con-
cepts that help to assure FM model quality thus providing support in different FM
maintenance tasks.

• Chapter 4 presents personalization approaches in FM-related processes. In par-
ticular, we analyze possibilities of integrating machine learning (specifically,
recommender systems) into FM configuration.

• Finally, Chapter 5 discusses different aspects of applying the techniques intro-
duced in Chapters 2 – 4 in tools and configurator applications.
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Chapter 2
Feature Modelling

Abstract In this chapter, we describe the basis of Feature Models (FMs) using
graphical as well as textual representations. We introduce a smartwatch FM that will
be used as a working example for this and later chapters. Based on this example,
we describe feature modelling extensions using cardinalities and attributes. In the
following, we show how FMs can be translated into a formal representation (constraint
satisfaction problems and SAT problems) and introduce corresponding definitions
of a FM configuration task and a corresponding FM configuration (also known as
configuration, product, or solution). Finally, we discuss example machine learning
(ML) approaches that can be applied in the context of feature modelling tasks.

2.1 Features, Products, and Configurations

A natural way of describing any product is in terms of features. A feature is an
increment in product functionality [9, 11, 10]. If I want a Chinese wok, I have to
decide whether I want rice or noodles; duck or prawns or both; or, if I want a very
spicy sauce. Similarly, if I want a smartwatch, I have to decide on the list of features
I want. I may want to have sport tracking support or a concrete screen type or maybe
I want that my watch allows me to pay in shops. Those are all examples of features.
Similarly, in software engineering, a product is not described in terms of technical
details about the way a product is developed (e.g., what specific object-oriented
pattern was used to develop part of a package), it is described to the general audience
in terms of features. In systems and software engineering, the size of features is
arbitrary, i.e., a feature can be of any size depending on the level of abstraction [10].
For example, a feature can be a set of classes and methods but a feature can also be
described at the level of architectural elements depending on the granularity of the
scope of the given product line. In this book, we will consider a feature at any level
of abstraction, i.e., the concepts, tools, and processes discussed in the book can be
adapted to the needed abstraction level.

13© The Author(s) 2024 

A. Felfernig et al., Feature Models, SpringerBriefs in Computer Science,  

https://doi.org/10.1007/978-3-031-61874-1_2 

 

 

    

https://doi.org/10.1007/978-3-031-61874-1_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61874-1_2&domain=pdf


14 2 Feature Modelling

There are several definitions of what a feature is [20] – from more abstract to
more technical ones (see below). For example, a very general and abstract definition
is given by Kang et al. [45] in the seminal work about feature modelling in 1990. In
contrast, Apel et al. [5] provide a definition more focusing on technical aspects.

“A prominent or distinctive user–visible aspect, quality, or characteristic
of a software system or systems” – Kang et al. [45].

“A structure that extends and modifies the structure of a given program
in order to satisfy a stakeholder’s requirement, to implement and

encapsulate a design decision, and to offer a configuration option” – Apel
et al. [5].

In this book, we consider a feature as an increment in (program/product) func-
tionality. A product could be software, hardware, or both.

A complete list of features describes a configuration of a product. There are some
features that are implicit to a product, this is, some features that cannot be decided
or selected by the user, while there are some features that can be decided by the
user. For instance, I can decide if I want a sweet sauce in a Chinese wok but I may
not be able to decide the concrete kind of rice flour in the case I select a wok with
rice noodles. Similarly, I may be able to decide if I want to have a concrete screen
size but not the specific sport tracking technology in the case I decide to have that
feature. This differentiation is often referred as internal or external variability [65].
The external variability is the one of domain artefacts or assets that are visible for
customers or stakeholders while the internal variability is the one that is handled
internally by the organization and is not visible for the external stakeholders.

Some feature combinations are allowed while some others are forbidden. The
allowed feature combinations are determined by a model representing features and
constraints among them. For instance, I can decide to have a wok with rice but then
I cannot have noodles. The ingredients constraints will be determined by the wok
menu. Similarly, I can decide to have a standard screen in my smartwatch but then
I will not be able to have the payment feature. The allowed feature combinations
(a.k.a. configurations) are defined by an FM.

The process of selecting and deselecting features when customizing (configuring)
a product is known as configuration process. The final result of a configuration pro-
cess is a configuration that can be a complete configuration (a.k.a. full configuration)
if all the decisions regarding feature inclusion or exclusion were made during the
configuration process or a partial configuration in the case some decisions were not
made and not all the features were selected or deselected. In the former example,
one can decide to get a noodles wok but not really being sure to have fish or meat
that would make a partial configuration of a wok product; or there can be a full
description of the wok with all the features selected or deselected that would make
a complete configuration of a wok product. Similarly, I can be sure that I want a
smartwatch including sports tracking but unsure about the tracking type.
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The number of allowed configurations (a.k.a. configuration space) grows with
the number of features. If a model has 𝑛 optional features with no constraints, it
could have 2𝑛 distinct configurations. Let’s stop here for a moment to understand the
complexity of the problem that we can face when configuring products with many
options. It is estimated that the observable universe has around 1080 atoms. This
is a very large number. If we take a highly complex configuration system example,
the Linux kernel, we find that the configuration options have been growing in the
past and it is easy to imagine that they will keep on increasing in the future. Kernel
versions 5.0, 4.0 and 3.0 have around 16,000, 14,000 and 11,000 configuration
options respectively [47]. If those configuration options were only Boolean (i.e., the
configuration option can be set or not but there are not more than these two options),
which is not always the case, the number of potential configuration options of the
Linux kernel would be in the order of 104816, i.e., we would need around 104,736

universes to store all the configurations of the Linux kernel if a configuration could
be stored in only one atom – these numbers are huge. In those cases, we often talk
about colossal configuration spaces [42, 62].

An FM configurator is a tool that allows configuring an FM (during application
engineering, c.f. Figure 2.2) such that a product can be produced. Such a tool
has as input the FM, and permits stakeholders to define the product they want by
selecting (including) or deselecting (excluding) features. A configurator verifies that
the feature selection is legal or not. In our wok example, the real-world counterpart
of the configurator is represented by a combination of wok menu, waiter, and the
cook who will ensure that the selected wok features are allowed before starting the
“production” process. A configurator for our smartwatch example FM (see Figure
2.3) can be a software tool that offers a web interface with options to select and
deselect features and taking into account domain and application constraints. We
will see a related example in the next sections.

Figure 2.1 provides an overview of feature modelling related activities discussed
in this chapter. First, the goal of FM design is to build an FM as a basis for follow-up
configuration activities. FM design can be supported by (1) FM (product line) scoping
which helps to identify those features which can be regarded as relevant and should be
taken into account in the product line, (2) configuration space learning which helps
to identify basic solver search heuristics for making search processes efficient, and
(3) knowledge extraction from data which helps to identify FMs or parts thereof in an
automated or semi-automated fashion (e.g., the automated identification of features
from requirements specifications). For the purpose of enabling FM configuration, FMs

have to be translated into a corresponding logic-based representation, for example,
as a constraint satisfaction problem (CSP) or SAT problem. All of these aspects will
be discussed in detail in the follow-up sections.
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feature model  and product
line scoping (sec 2.8)

knowledge extraction from
data (sec 2.8)

feature model design
(sec 2.1-2.5)

configuration space
learning (sec 2.8)

mapping feature models 

SAT Problem
(sec 2.6)

textual representation
(sec 2.7)

Constraint Satiscation
Problem (CSP) (sec 2.6)

feature
model

Fig. 2.1: Feature modelling related activities and mapping to a corresponding logical
representation (e.g., as a constraint satisfaction problem (CSP) or SAT problem) or
textual representation for knowledge exchange purposes (ids in brackets refer to the
corresponding subsection).

2.2 Feature Modelling in the Engineering Process

Feature modelling is used as a pivotal part in software product line engineering
[4, 63] and can be applied to different contexts. There are several proposals for
engineering software product lines. In this book, we follow a simplified and practical
process proposal described by Apel et al. [4]. We distinguish four main activities that
are shown in Figure 2.2. Software product line engineering activities are associated
with two different dimensions. The vertical dimension distinguishes between domain
engineering and application engineering (upper and lower part of Figure 2.2). The
horizontal dimension distinguishes between problem space and solution space (left
and right part of Figure 2.2).

Domain engineering develops reusable assets but not final products and has
two different sub-processes: domain analysis (in the problem space) and domain
implementation (in the solution space). Domain analysis identifies features in the
scope of the product line and produces an FM that represents the allowed feature
combinations. Domain implementation is the development of reusable assets to be
used in application engineering.

Imagine a product line of wok dishes, during domain analysis, the first step would
be to identify the ingredients and choices that we want to offer in the menu. Also,
the constraints among these elements have to be identified. Similarly, during domain
implementation, some pre-cooking of ingredients and preparation can be done to be
reused later during application engineering. Components, platforms, APIs, libraries,
documents, test cases, and in general any artefact that can be reused later in the
production process are outputs of the domain engineering process. Most of the
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assets are common to all the products and this is why product line engineering is
a good approach when there are commonalities among the products in a concrete
domain. A central artefact in the domain engineering process is the FM.1 There is a
mapping between features in the FM and implemented artefacts in the solution space.
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Fig. 2.2: Software product line engineering process based on [4]. This book focuses
on domain analysis (feature modelling) and requirements analysis (configuration).

Application engineering produces a product based on a set of feature inclusions
and exclusions (a.k.a. FM configuration) defined by an FM configurator. Reusable
elements developed in domain engineering are used together with specific needs
to produce a concrete product. An FM configurator is built using the FM that was
designed during domain engineering and provides a user interface for interacting
during the feature selection process. The output of this process is an FM configuration.
During application engineering, there are two sub-processes: requirement analysis
and product derivation. In this context, requirement analysis identifies the application
requirements taking into account the user needs. For that, an FM configurator helps
with the correct inclusion and exclusion of features in an step-wise process. Some
new requirements can affect the domain analysis process when new features can
be added, changed, or removed. Product derivation takes an FM configuration and
corresponding (implemented) reusable artefacts as input and assembles a product
that conforms with the application requirements and fulfills user needs.

1 Other variability modelling approaches have been also proposed in the literature such as OVM,
CVL, COVAMOF, decision modelling, and others [16, 28].
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In the wok example, application engineering would be the process of selecting
items with the help of the menu and the waiter as well as the process of preparing
the dish and deliver it to the customer.

The problem space is distinguished from the solution space (left and right side
of Figure 2.2). The problem space takes the perspective and vision of the external
stakeholders, the context restrictions and, in general, the domain knowledge. In
contrast, the solution space considers the perspective of internal stakeholders such
as managers, developers and testers. The problem space is the what, while the
solution space is the how. What features to offer and what products to build versus
how features are implemented and how products are built.

In this book, we concentrate on the left hand side of the process (i.e., the problem
space) where feature modelling plays a major role. There are different alternatives
for implementing features and producing products from existing features that range
from templates and #if...#elsif...#endif conditional compilation directives to
modules of feature-oriented programming. For details on the solution space process,
we refer to other books such as the one of Apel et al. [4] or Meinicke et al. [57]. In
the problem space, features are the key concepts to organize the domain knowledge.

In the following, the main concepts of feature modelling are defined. In Chapter
3, FM analysis is explained (mostly used in domain analysis) and in Chapter 4, the
FM configuration process will be discussed (mostly used in requirements analysis).

2.3 Feature Model Basics

The term “feature model” was coined by Kang et al. in the FODA report back in
1990 [45]. Feature modelling has been one of the main lines of research in software
product lines since then [39]. There are different FM languages [13, 76]. We review
the most well known dialects for those languages. In general, there is no FM language
that will fit all scenarios and often, some concrete adaptations have to be done [3].

An FM is a compact representation of all possible configurations of a product line.
FMs are widely used in software product line engineering but they can also be used
in other domains such as video encoding [3], security information [56], biological
information [18] or representing exam options [50] just to mention a few diverse
examples. The holy grail of the SPL community is the Linux operating system FM
which has thousands of modules and configuration options called options.

Figure 2.3 shows our running example of a smartwatch product line encoded
using a common FM notation. An FM is composed of:

• A hierarchically arranged set of features (a.k.a. feature diagram or feature tree)
that are encoded using relationships between a parent feature and its child features.

• A separate list of cross–tree constraints, typically inclusion or exclusion state-
ments in the form of: if feature X is included, then features Y and Z must also be
included (or excluded) but can include more complex constraints in the form of
arbitrary propositional formulae.
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Fig. 2.3: Example smartwatch FM used in the book.

Classical FMs. A feature diagram of a classical FM declares four relationships:

• Mandatory. A child feature has a mandatory relationship with its parent if the
child is part of all configurations in which its parent feature is included. In Figure
2.3, every smartwatch must provide a screen.

• Optional. A child feature has an optional relationship with its parent if the child
can optionally be part of a configuration in which its parent feature is included.
A smartwatch may optionally include sportstracking.

• Alternative. Child features have an alternative relationship with their parent
feature if exactly one child is part of a configuration in which its parent feature is
included. The screen of the smartwatch must be either touch or standard (but not
both) in every configuration; and

• Or. Child features have an or relationship with their parent if one or more children
are part of all the configurations that include the parent. Whenever sportstracking
is selected, at least one (possibly all or any combination) of running, skiing,
hiking are selected.

The root feature is included in all configurations. A feature can only be included
in a configuration if the parent feature is included. In addition to the tree–like
relationships between features described above, an FM can also contain cross–tree
constraints between features – basic ones are the following:

• Requires. If a feature 𝐴 requires a feature 𝐵, the selection of 𝐴 in a configuration
implies the selection of B. A smartwatch that includes sportstracking must also
include the gps feature.

• Excludes. If a feature 𝐴 excludes a feature 𝐵, both cannot be included in the same
configuration. The payment feature cannot be combined with a standard screen,
i.e., payment and standard are incompatible.
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More complex cross-tree relationships have been proposed later in the literature
allowing constraints in the form of generic propositional formulas, e.g., “A and B
implies not C” [9, 34].

Abstract and concrete features. In some cases, there is a distinction between
concrete and abstract features. Concrete features have a relationship with domain
implementation artifacts in the solution space (c.f. Figure 2.2) while abstract features
are only used for organization purposes and do not have any direct mapping to any
artifact in the solution space. It is often recommended to only define the leaves of
the tree as concrete features and let all the other intermediate features to be abstract
ones [10]. For simplicity but without loss of generality, in this book, we will not
distinguish between concrete and abstract features but will consider all as equal.

Smartwatch example. In the example of Figure 2.3, all smartwatches must
include a screen (either touch or standard), and an energy management system (either
basic or advanced–solar). Optionally, payment, gps and sports tracking features can
be included. Furthermore, any combination of at least one out of the features running,
skiing, and hiking can be included when the sports tracking feature is selected.

Table 2.1: Examples of satisfiable (𝑐𝑜𝑛 𝑓1) and non-satisfiable (𝑐𝑜𝑛 𝑓2) FM configura-
tions (in 𝑐𝑜𝑛 𝑓2, payment and standard cannot be included in the same configuration).

configuration features included in configuration 𝑐𝑜𝑛 𝑓𝑖
𝑐𝑜𝑛 𝑓1 {smartwatch=true, screen=true, standard=true,

energymanagement=true, basic=true}
𝑐𝑜𝑛 𝑓2 {smartwatch=true, screen=true, standard=true, payment=true,

energymanagement=true, basic=true}

Table 2.1 shows satisfiable and non-satisfiable configurations 𝑐𝑜𝑛 𝑓𝑖 for our ex-
ample FM (see Figure 2.3). Configuration 𝑐𝑜𝑛 𝑓1 is satisfiable because it does not
violate any of the FM constraints. In contrast, 𝑐𝑜𝑛 𝑓2 is non-satisfiable because the
payment feature is included and also the standard screen is. These features are
incompatible due to the excludes constraint. Therefore, 𝑐𝑜𝑛 𝑓2 is non-satisfiable.

From FMs, configuration tools (a.k.a. FM configurators) are constructed (see
Chapter 5). An FM configurator is a tool to select and deselect features interactively
while checking the consistency, i.e., either not allowing non-satisfiable configur-
ations or alerting about the potential inconsistency. A possible user interface for
configuring smartwatches is the one of Figure 2.4. There are groups of features that
can be configured with selection and deselection of features. The FM configurator
has to take care to only allow satisfiable configurations and advice the user in the
case any misconfiguration is produced. For that, analysis and interaction with FMs

are needed and those are the topics that will be addressed in Chapters 3 and 4.
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Fig. 2.4: Example smartwatch FM configurator.

2.4 Feature Model Extensions

There are different proposals in the literature to extend or modify feature mod-
elling with different FM constructs. The most well known families of extensions are
cardinality–based and attribute–based FMs. These extensions include a discussion
that has been in the community for a while regarding what are the semantics of
feature cardinalities, cloning or attributes. In this book, we will not address those
problems in detail and refer the reader to related work [21, 46, 58, 59, 67, 75].
In any case, all techniques presented in this book are agnostic with respect to the
way FMs are defined. These techniques can be equally used to analyse or configure
classical, cardinality–based or attribute–based FMs. In the following, we provide a
short discussion of these extensions.

2.4.1 Cardinality–based Feature Models

Cardinality–based FMs incorporate cardinalities, which resemble those found in the
Unified Modelling Language (UML) (see [23, 69]). The relationships introduced in
cardinality–based feature modelling are the following [12, 13]:

• Feature cardinality. A feature cardinality is a sequence of intervals [𝑛..𝑚] with
𝑛 as lower bound and 𝑚 as upper bound (𝑛 ≤ 𝑚). Intervals describe the number
of instances of the feature that can be part of a configuration. This relationship
may be used as a generalization of the original mandatory ([1, 1]) and optional
([0, 1]) relationships defined in FODA (Section 2.3).
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• Group cardinality. A group cardinality is an interval ⟨𝑛..𝑚⟩, with 𝑛 being the
lower and 𝑚 the upper bound (𝑛 ≤ 𝑚) limiting the number of child features that
can be included in a configuration. An alternative relationship is equivalent to a
⟨1..1⟩ group cardinality. An or–relationship is equivalent to ⟨1..𝑁⟩, being 𝑁 the
number of features in the relationship.

Figure 2.5 shows an example of the smartwatch FM using a cardinality–based
notation. This FM represents the same configuration space (i.e., it represents exactly
the same set of configurations) as the one in Figure 2.3.
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[n,m] <n,m>

Fig. 2.5: Cardinality–based FM example.

2.4.2 Attribute–based Feature Models

To determine the cost or memory usage of a particular feature in a smartwatch
configuration, feature attributes are needed. When FMs are expanded by including
feature attributes, they are referred to as extended, advanced, or attribute-based FMs.

FODA [45], the seminal report on FMs, had a forward-thinking approach in
considering the incorporation of more data into FMs. This involved introducing
connections between features and their attributes, in addition to features and their
relationships. Later, Kang et al. [44] made an explicit reference to what they call
“non–functional” features related to feature attributes. There is no consensus on a
graphical notation for attributes. However, most proposals agree that an attribute
should consist at least of a name, a domain, and a value. Figure 2.6 depicts a sample
FM including attributes using a notation inspired by Benavides et al. in [14]. As
illustrated, attributes can be used to specify the price of a feature or the size of a
concrete screen. Attribute–based FMs can also include complex constraints among
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attributes and features like: “If attribute price of feature advanced solar is lower than
a value X, then feature touch cannot be part of the configuration”. For instance, there
can be a global constraint that specifies that the price of a smartwatch is calculated
using the sum of the prices of the selected features. Similarly, there can also be
customer constraints that specify an upper bound on the price of a smartwatch.
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tracking

energy
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runningstandard

gpsscreen

touch

Name: Price
Domain: Real
Value: 30

Name: Price
Domain: Real
Value: 60

Name: Size
Domain: Enum
Value: 448x368

Name: Size
Domain: Enum
Value: 390x312

Fig. 2.6: Attribute–based FM example.

More advanced configurators can be built when using attributes, cardinalities, and
complex constraints. In this book, for the sake of simplicity, we only use classical
FMs as described in Section 2.3. However, all the described techniques can also be
applied to other FM types.

2.5 Feature Model Semantics

To provide a semantics for FMs, the main concepts of previous sections are now
defined formally. We use propositional logic in the form of a CSP (Constraint Satis-
faction Problem) [6, 72]. An FM is composed of two main elements:

• A non-empty set of features that can be combined to form FM configurations
• A constraint model which determines the combinations of features that are satis-

fiable configurations of the FM

Definition 2.1 (Feature). A feature is the basic element of an FM and it is assigned a
value in an FM configuration. Boolean features that are true (⊤) are included; false
(⊥) are excluded. Non-boolean features are possible (e.g., integers) but, for the sake
of simplicity, we do not define them here.

Definition 2.2 (Set of all features). The set of all features in an FM is 𝐹 =
{ 𝑓1, 𝑓2, ..., 𝑓𝑛}. Only the features in 𝐹 can be part of the constraints of the con-
straint model.
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Definition 2.3 (Constraint model). A constraint model 𝐶𝐹 of an FM is a set of
constraints 𝐶𝐹 = R ∪ Π, where:

• R is the finite set of decompositional relationships between features that are
mapped as a set of constraints over the set of features 𝐹, i.e., R ⊆ B(𝐹)2

• Π is a set of cross-tree constraints defined as arbitrary propositional formulas
over the set of features 𝐹, i.e., Π ⊆ B(𝐹).

Definition 2.4 (Feature Model). A feature model (FM) is a tuple (𝐹,𝐶𝐹), where 𝐹 is
the set of all features and 𝐶𝐹 a constraint model that uses only the features in 𝐹. The
semantic domain of the FM is determined by the constraints in 𝐶𝐹 and represents all
the FM configurations (the FM configuration space).

Definition 2.5 (Application requirement). An FM application requirement is a set
of constraints 𝐶𝑅 specifying specific preferences3 of a stakeholder that have to be
considered in an FM configuration, i.e., 𝐶𝑅 = {𝑐1..𝑐𝑚}.

Definition 2.6 (FM Configuration). An FM configuration is an assignment 𝐴 = { 𝑓1 =

𝑣 𝑓 1.. 𝑓𝑛 = 𝑣 𝑓 𝑛} (𝑣 𝑓 𝑖 ∈ 𝑑𝑜𝑚( 𝑓𝑖)) on the features of an FM represented as variables
𝑓𝑖 ∈ 𝐹. 𝐴 is satisfiable if it does not violate any constraint in the FM and application
requirements (i.e., it does not violate the set 𝐶𝐹 ∪ 𝐶𝑅 - the consistency property).
An FM configuration is complete (a.k.a. full configuration), if every feature has an
assignment describing an inclusion or exclusion and it is partial otherwise.

Definition 2.7 (FM configuration space). The set of all the complete and satisfiable
FM configurations of an FM represents the FM configuration space. Therefore, all the
configurations of the FM configuration space are satisfiable (i.e., they do not violate
the set 𝐶𝐹 ∪ 𝐶𝑅).

Definition 2.8 (FM Configuration Task). An FM configuration task is a tuple
(𝐹, 𝐷, 𝐹𝑀𝐶) defined by a set 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝑛} of features; corresponding do-
mains for the features 𝐷 = {𝑑𝑜𝑚( 𝑓1), 𝑑𝑜𝑚( 𝑓2), ..., 𝑑𝑜𝑚( 𝑓𝑛)} (e.g., for classical
FMs , 𝑑𝑜𝑚( 𝑓𝑖) =){true (⊤), false (⊥)}); and a set of constraints 𝐹𝑀𝐶 = 𝐶𝐹 ∪ 𝐶𝑅

restricting the set of possible solutions (𝐶𝐹) and a set of application requirements
(𝐶𝑅) as defined previously. In this context, 𝐶𝐹= {𝑐1..𝑐𝑘} and 𝐶𝑅 = {𝑐𝑘+1..𝑐𝑚}.

For an FM configuration task, a constraint solver can be activated to find a cor-
responding solution (FM configuration). More details on the inclusion of solvers are
provided in Section 2.6 and Chapters 3 and 4.

The terms used in different research fields are similar but can lead to confusion.
In this book, we defined an FM configuration in Definition 2.6 and an FM Config-
uration Task in Definition 2.8. In the literature, one can find related terms such as
product configuration, configuration, feature selection, feature combination, product

2 Let B denote the boolean domain, B = {true (⊤), false (⊥)} and B(𝐹 ) a function denoting all
possible boolean constraints on the set of features 𝐹. Classical FMs use only boolean features.
3 Also known as user, stakeholder, or customer requirements.
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description, product specification, or staged configuration just to mention a few. To
clarify these terms, we differentiate between process and process result.

FM configuration process: In this process, features are selected or deselected
with the goal to find a satisfiable FM configuration for a given FM configuration task.
This process can be initiated if the FM is stable and is performed during application
engineering in the problem space dimension (see Figure 2.2). The FM configuration
process is also referred as product configuration [57], configuration process [4, 57],
feature selection process or less common configuration setting. During this process,
the possibilities that are available to the user are often referred as configuration
options, configuration alternatives, or configuration attributes [4, 29]. If the FM
configuration process is performed in several stages, it is sometimes called staged
configuration [24].

FM configuration: This is the result of an FM configuration process and – follow-
ing Definition 2.6 – is the result of a selection and deselection of features. Alternative
terms may be used for FM configuration, such as product, feature selection, feature
combination, product description, product specification, product configuration or
simply configuration. A product is often considered a complete FM configuration
with a consistent feature selection. In this book, we will use the term FM configur-
ation but also configuration for simplification purposes. Following Figure 2.2, we
propose to use the term FM configuration because using the term product can be
confusing since a product is produced after the product derivation process from a
complete FM configuration.

There are other related terms that should not be confused. When an FM config-
uration has been created as a satisfiable set of included and excluded features (in
the application engineering process), the product has finally to be produced in the
solution space. This “production” is also denoted as product derivation, product
configuration (in some software engineering contexts), product generation or pro-
duct assembly [4]. The techniques used for product derivation are different to the
ones described in this book. Among those techniques, there is one that can cause
confusion: configuration parameters [4]. Among the most common options, config-
uration parameters are passed through command line, global variables, and values
in a properties or requirements file. In this book, we will not use this term that can
be controversial with feature attributes (see Section 2.4.2). Therefore, techniques,
tools, and studies about configuration parameters are out of the scope of this book.

2.6 Mapping Feature Models to Logic

Up to now, we have introduced formal definitions and indicated that an FM has a
constraint model. Depending on the FM constructs, different constraint models can
be built. In the following, we define the mapping from FMs to logic using constraint
programming and SAT solving.
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2.6.1 Constraint programming mapping

A Constraint Satisfaction Problem (CSP) [6] consists of a set of variables, a set of
finite domains for those variables, and a set of constraints restricting the values of
the variables. Constraint programming is the set of techniques such as algorithms
or heuristics that deal with CSPs. A CSP is solved by finding values for variables
(a.k.a. states) in which all constraints are satisfied. CSP solvers can deal not only
with binary values (true or false) but also with numerical values such as integers,
intervals, and symbolic domains (e.g., smart watch price).

A CSP solver is a software package that takes a problem modelled as a CSP and
determines whether there exists a solution for the problem. From a modelling point of
view, CSP solvers provide a richer set of modelling elements in terms of variables (e.g.
sets, finite integer domains, etc.) and constraints (not only propositional connectives)
as it is the case with SAT solvers.

The mapping of an FM into a CSP can vary depending on the concrete solver.
In general, the following steps are performed: (1) each feature of the FM maps to a
variable of the CSP with a domain of 0..1 (or false, true), depending on the kind of
variable supported by the solver, (2) each relationship of the model is mapped into a
constraint depending on the type of relationship (in this step, some auxiliary variables
can appear), (3) the resulting CSP is the one defined by the variables of steps (1) and
(2) with the corresponding domains and an additional constraint assigning true to
the variable that represents the root, i.e., 𝑟𝑜𝑜𝑡 ⇔ 𝑡𝑟𝑢𝑒 or 𝑟𝑜𝑜𝑡 == 1, depending on
the variables’ domains.

Concrete rules for translating an FM into a CSP using propositional logic are listed
in Figure 2.7 (see also the original proposal of Benavides et al. [14]). Also, the
mapping of our running example of Figure 2.3 is presented. A propositional formula
consists of a set of primitive symbols or variables and a set of logical connectives
constraining the values of the variables, e.g. ¬,∧,∨,⇒,⇔. It is important to remark
that the root feature is part of any product and that is why an extra constraint is added
to represent this property. Note that ⊕ is used to denote that only one feature of the
set can be selected. Depending on the solver, this operator may not be available and
then a formula with other basic operators has to be built [12].

2.6.2 SAT based mapping

A SAT solver is a software tool that works with a propositional formula in order to
determine if the formula is satisfiable, i.e., there is a variable assignment that makes
the formula evaluate to true. Input formulas are usually specified in Conjunctive
Normal Form (CNF) using formats such as DIMACS [17]. CNF is a standard form
to represent propositional formulas that is used by most SAT solvers where only three
connectives are allowed: ¬,∧,∨, this is, the logical negation, logical conjunction
and logical disjunction of formulas. It is well known, and was proved time ago,
that every propositional formula can be encoded into an equivalent CNF formula.
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Fig. 2.7: Mapping from an FM to a constraint satisfaction problem (CSP). In this
context, the semantics of ⊕(𝐶1, 𝐶2, ..., 𝐶𝑛) is that exactly one of the features
𝐶1, 𝐶2, ..., 𝐶𝑛 must be included. For the sake of simplicity, we use the infix no-
tation when only two features are involved.
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Similarly, SAT is a well known NP-complete problem. Nevertheless, due to extensive
research in the SAT solving area [37], there have been big advances in research and
practice of SAT solving which makes it possible to address many practical problems
with efficient computing resource usage [17].

The mapping of an FM into a propositional formula can change depending on
the used solver. In general, the mapping is performed in the following steps: (1)
each feature of the FM maps to a variable of the propositional formula, (2) each
relationship of the model is mapped into one or more small formulas depending on
the type of relationship, in this step some auxiliary variables can appear, (3) the
resulting formula is the conjunction of all the resulting formulas of step (2) plus an
additional constraint assigning true to the variable that represents the root. Rules for
translating an FM into a propositional formula are listed in Figure 2.8. Further related
work on specific – and potentially more efficient – SAT encodings can be found, for
example, in Nguyen et al. [61] and Sinz [77].

There are other tools that also work with propositional formulas. One of those
tools that is also used in FM analysis and configuration is BDD. A Binary Decision
Diagram (BDD) solver is a software package that takes a propositional formula as
input (it can be in CNF or not) and translates it into a graph representation (the BDD
itself). With this data structure, it is very easy to determine whether the formula
is satisfiable and there are efficient algorithms for counting the number of possible
solutions [17]. The size of the BDD is crucial because it can grow exponentially in
the worst case. Although it is possible to find a good variable ordering that reduces
the size of the BDD, the problem of finding the best variable ordering remains
NP-complete [42].

2.6.3 CSP example mapping

The FM example of Figure 2.3 can be represented as a CSP. Table 2.2 shows a CSP
representing an FM configuration task (see Definition 2.8): 𝐹 as a set of features,
𝐷 as the corresponding domains, 𝐹𝑀𝐶 as the union of the set of constraints 𝐶𝐹

of the FM and the constraints representing the application requirements 𝐶𝑅 of the
smartwatch FM example (in this example representing that only configurations with
𝑔𝑝𝑠 are desired, but of course other combinations could be introduced). Note that
𝑐0 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ is a root constraint which prevents the generation of empty con-
figurations, i.e., configurations where no feature is selected. Following the already
introduced formalizations, we apply the logical operators of⇒ denoting an impli-
cation,⇔ denoting equivalence, ∨ denoting a logical or, ∧ denoting a conjunction
(logical and), and ⊕ denoting a logical xor indicating that only one feature can
be selected from the given set, for example, 𝑏𝑎𝑠𝑖𝑐 ⊕ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 represents
¬𝑏𝑎𝑠𝑖𝑐 ∧ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 ∨ 𝑏𝑎𝑠𝑖𝑐 ∧ ¬𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟.

Note that throughout the book, we follow the formatting rule that (1) 𝐶𝐹, i.e.,
the set of constraints and relationships of the FM, is defined without the explicit
usage of {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, for example, we write 𝑐0 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ also meaning
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Relationship CNF Mapping
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Fig. 2.8: Mapping from FM to CNF (SAT solving context).
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𝐹 = {smartwatch, screen, touch, standard, payment, gps, sportstracking, running, skiing,
hiking, energymanagement, basic, advancedsolar}

𝐷 = {dom(smartwatch)={true, false}, dom(screen)={true, false}, dom(touch)={true,
false}, .., dom(advancedsolar)={true, false}}

𝐶𝐹 = { 𝑐0: smartwatch,
𝑐1: smartwatch⇔ screen,
𝑐2: payment⇒ smartwatch,
𝑐3: gps⇒ smartwatch,
𝑐4: sportstracking⇒ smartwatch,
𝑐5: smartwatch⇔ energymanagent,
𝑐6: sportstracking⇔ (running ∨ skiing ∨ hiking),
𝑐7: screen⇔ touch ⊕ standard,
𝑐8: energymanagement⇔ basic ⊕ advancedsolar,
𝑐9:¬(payment ∧ standard),
𝑐10:sportstracking⇒ gps }

𝐶𝑅 = { 𝑐11: gps=true }

Table 2.2: CSP mapping example.

𝑐0 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒. In contrast, for understandability reasons, the values
{𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} are explicitly included when specifying customer requirements and
FM configurations, for example, we write 𝑐11 : 𝑔𝑝𝑠 = 𝑡𝑟𝑢𝑒 also meaning 𝑐11 : 𝑔𝑝𝑠
(an example of concrete FM configurations is given in Table 2.1).

2.7 Textual Languages for Feature Models

Representing FMs as diagrams has always been possible. Indeed, the original FODA
report provided a first graphical representation of FMs that has little evolved in
general. Graphical representations of FMs are usually known as feature diagrams.
Most of the representations look similar to the ones presented in this chapter (see,
e.g., Figure 2.3). There are others with different visual representations but basically,
all express the same concepts.

In parallel, there has been a tendency to propose different textual representations
of FMs [26]. There are different motivations to propose a textual variability model
language [15]. Among those, exchanging models for allowing interoperability among
tools as well as sharing among researchers and practitioners; teaching and learning
using a common language that can be produced by programmers and displayed in
any text editor; or allowing common analysis over the models with different tools.

UVL. The goal of the MODEVAR initiative4 is to create a common language for
variability modelling. A proposal towards an Universal Variability Language (UVL5)
is being pushed forward [13, 79]. UVL is a textual variability language that can express

4 https://modevar.github.io/

5 https://github.com/Universal-Variability-Language

https://modevar.github.io/
https://github.com/Universal-Variability-Language
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basic FMs and has extension mechanisms to provide enriched versions to include, for
instance, cardinalities, attributes, and types.

UVL utilizes a tree–like structure to represent the hierarchical nature of FMs and
a tabular based identation to separate concepts. To illustrate this, Figure 2.9 shows
the UVL representation of our running example of the smartwatch product line.
UVL includes several key concepts for specifying constraints, including mandatory
and optional as well as the “or” and “alternative” relationships. Finally, cross-tree
constraints are supported, allowing any arbitrary propositional constraint involving
various features.

smartwatch

payment
sports

tracking

energy

management

hiking basic
advanced

solar

skiing

runningstandard

gpsscreen

touch

Mandatory

Optional

Alternative

Or

Requires

Excludes

namespace smartwatch

features
    smartwatch 
        mandatory
            screen
                alternative
                    touch
                    standard
            "energy management"
                alternative
                    basic
                    "advanced solar"
        optional
            payment
            gps
            "sports tracking"
                or
                    running
                    skiing
                    hiking
constraints
    !(payment & standard)
    "sports tracking" => gps

UVL

Fig. 2.9: UVL [13] FM example.

There exist other textual variability modelling languages [26]. Some of these
are based on XML and others have their own syntax such as TVL [19]. There was
even an attempt to standardize a variability modelling approach at the OMG level.
The approach was called Common Variability Language (CVL) [41] but did not
materialize as a real standard.

Recently, and still in the umbrella of the MODEVAR initiative, a repository of
UVL models was released [13, 71].6 This repository is designed using open science
principles and allows the upload, search, and download of FM datasets. It is a central
point to share FMs among practitioners and researchers using UVL.

Other textual constraint languages. In the constraint solving and configuration
communities, there have been also efforts to propose textual languages for represent-
ing constraints or configuration problems. The motivations are similar. Among the
most relevant proposals are DIMACS [38], Minizinc [86], or XCSP [8].

The DIMACS format [38] is commonly used to represent SAT instances that can
be interpreted by different SAT solvers. This format uses plain text and includes a
collection of clauses that are represented as a sequence of literals, which can be
variables or negations. The DIMACS format is widely adopted for benchmarking
SAT solvers and sharing SAT problems in research studies. DIMACS has a compact

6 https://www.uvlhub.io/

https://www.uvlhub.io/
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syntax and it is not that easy to understand for humans since it is a plain text file
comprising only numbers for Boolean variables which represent the features. Each
row forms a disjunction of possibly negated variables which represents a structural
or cross-tree constraint (see Section 2.6.2). Those simple syntactical rules make it
easy to process DIMACS files by SAT solvers.

MiniZinc [86] is a textual constraint modelling language that is used to specify
CSPs. MiniZinc is open-source and allows to describe a CSP in a textual fashion
– CSPs formulated this way can be solved by different constraint solvers. It is de-
signed to be solver–independent, enabling the user to switch between solvers easily.
MiniZinc is used in various fields such as operations research, scheduling, planning
and can be also used in product configuration. The syntax of MiniZinc is similar to
a programming language and its intention is that it can be produced and edited by
humans. An example screenshot of the MiniZinc IDE including a constraint-based
representation of our example smartwatch FM is shown in Chapter 5.

XCSP (XML Constraint Satisfaction Problems) [8] is a textual language used
for specifying instances of combinatorial problems. XCSP provides a unified repre-
sentation of various types of problems, including CSPs, combinatorial optimization
problems, and scheduling problems. The format is based on XML, making it possi-
ble to parse and process using standard software tools. XCSP supports a wide range
of constraints, including global constraints, soft constraints, and constraints over
finite domains or real numbers. The format has been adopted by some academic and
industrial tools, and it is used for benchmarking, sharing, and comparing different
constraint solvers. Being XML, the syntax is closer to a machine than a human
user. Nevertheless, it is readable by humans, too. In the remainder of this book, for
understandability reasons, we will use mostly the graphical representation of FMs –
all examples can be easily translated to UVL and processed by UVL-compatible tools.

2.8 Further Feature Modelling Aspects

Up to now, we have focused on knowledge representation and formalization aspects
in the context of feature modelling. Further related issues will be discussed in the
following subsections. First, product line scoping [55] is related to the task of
deciding which features should finally be included in the FM and – as a consequence
– presented as an option to a configurator user. In this context, we will focus on
different explanation aspects which play a major role in such decision contexts.
Second, configuration space learning [64] is directly related to the task of feature
modelling: FMs can be formalized, for example, as a CSP [14]. In order to assure
search efficiency of the constraint solver, machine learning (ML) techniques can
be used to learn solver search heuristics in a way that a configurator shows an
acceptable runtime in most of the cases. Third, also in the context of designing FMs,
machine learning techniques, for example, knowledge extraction from data, can help
to automatically determine features or even constraints from textual requirements.
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2.8.1 Product Line Scoping

Deciding which features and constraints to include in an FM can be regarded as a
basic task in the context of different product (line) scoping scenarios [43, 52, 55, 70].
In such scenarios, basic machine learning and decision support techniques can be
used to support stakeholders such as product owners, sales managers, and domain
experts in their decision regarding the inclusion and exclusion of features in new
versions of a product line. Specifically, recommendations need to be explained which
is a task related to the field of explainable AI (XAI) [25].

Table 2.3 includes a simplified example of a decision scenario regarding the inclu-
sion and exclusion of our example smartwatch features. In this example, individual
stakeholders 𝑠𝑖 ∈ {𝑠1..𝑠3} vote for or against the inclusion of a specific feature where
1 indicates inclusion and 0 indicates exclusion. Such decisions about inclusion and
exclusion of features can be interpreted as a basic optimization problem with the goal
to minimize the number of adaptations needed such that overall consensus can be
achieved regarding each individual feature [30]. Such an optimization could also take
into account aspects such as fairness and unequal weights of individual stakeholders
(e.g., experts vs. non-experts regarding a specific feature [7]).

Table 2.3: Simplified example of a recommendation support for the inclusion (=1) or
exclusion (=0) of individual features in a product line (𝑟𝑒𝑐 = recommendation with
majority voting).

stakeholder touch standard payment gps running skiing hiking basic advancedsolar
𝑠1 1 0 1 1 1 0 1 0 1
𝑠2 0 1 0 0 0 1 0 0 1
𝑠3 1 0 0 1 1 0 1 0 1
𝑟𝑒𝑐 1 0 0 1 1 0 1 0 1

In Table 2.3, the recommendation (rec) shown to the group {𝑠1, 𝑠2, 𝑠3} is based on
majority voting [31]. When analyzing the preferences of the individual stakeholders
regarding feature inclusion, we can observe that the stakeholders 𝑠1 and 𝑠3 have a
basic consensus regarding the inclusion and exclusion of individual features. There is
one exception since 𝑠3 does not seem to support the inclusion of the payment feature.
There might be different reasons for this preference ranging from not understanding
the feature to a more basic reason of not being aware of the feature importance.
In any case, the recommendation system should not just recommend to exclude the
feature but also recommend, for example, discussion between 𝑠1 and 𝑠3. Another
related observation is that stakeholder 𝑠2 has preferences which differ completely
from those of 𝑠1 and 𝑠3 with one exception. One reason behind might be that 𝑠2
has more expertise regarding the preferences of the underlying customer community
and the market potential of individual features. Anyway, discussions have to be
triggered among the individual stakeholders in order to achieve a consensus at the
end [31, 49, 82].
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2.8.2 Configuration Space Learning

An important issue specifically with large and complex variability models is to
provide a means for assuring acceptable runtime performance of the underlying con-
straint solver or SAT solver [66]. Just translating the FM into corresponding sets of
variables and constraints is not enough. We have to take care of selecting appropriate
search heuristics that help to improve solver performance [84]. Recent developments
in the fields of constraint solving and SAT solving aim to integrate machine learn-
ing for recommending search heuristics that will help to solve a problem instance
(configuration task) efficiently – for an overview see Popescu et al. [66].

Similar to other complex domains, learning search heuristics requires the avail-
ability of corresponding datasets that can be used as an input for a (supervised)
machine learning process. As such, the problem of learning search heuristics can be
seen as a specific instance of configuration space learning [64] where different data
synthesis approaches are used to generate relevant example problem instances which
can then be used for optimizing a corresponding machine learning model [84]. In
the following, we discuss a simplified example of a nearest neighbor (NN) based
approach for recommending solver search heuristics. Table 2.4 depicts an example
of a synthesized dataset. The underlying assumption is that users only specify their
preferences with regard to the inclusion of different sportstracking features. The
remaining features are directly selected by the constraint solver where 𝑙 denotes the
lowest value first search heuristic (i.e., false is selected before true) and ℎ denotes
the highest value first search heuristic (i.e., the solver selects true before false).

Table 2.4: Simplified example of machine learning based search heuristics recom-
mendation. In this context, ℎ and 𝑙 denote search heuristics: ℎ=highest value first and
𝑙=lowest value first. Furthermore, 𝑖𝑑 represents the identifier of the corresponding
dataset entry and 𝑐 represents the preferences defined by the current user. For sim-
plicity, we assume that users only specify preferences regarding the sportstracking
features – configuration completion is then performed by the constraint solver. With
𝑚𝑠 we denote the runtime in milliseconds needed for configuration completion.

id touch standard payment gps sportstracking running skiing hiking basic advancedsolar 𝑚𝑠

1 l h l l true false true false l h 12.2
2 l h l l true false true false h l 44.2
3 h l h h true true true true h l 34.5
c ? ? ? ? true ? true false ? ? ?

The dataset includes three satisfiable configurations with the identifiers {1, 2, 3}.
Furthermore, in our scenario the current customer 𝑐 specifies his/her requirements
regarding a smartwatch which are 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑠𝑘𝑖𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, ℎ𝑖𝑘𝑖𝑛𝑔 =

𝑓 𝑎𝑙𝑠𝑒. If we compare these preferences with the entries {1, 2, 3} in Table 2.4, the
entries with the most similar preferences, i.e., the nearest neighbors are {1, 2}. Since
the nearest neighbor with the id 1 has the better performance (in 𝑚𝑠), the search
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heuristics of 1 would be recommended for the efficient determination (completion)
of an FM configuration for the current user 𝑐.

Another application of machine learning is when a set of configurations are
sampled from an FM to perform measurement of a given performance function (e.g.
runtime) [62].7 From a sample, machine learning techniques can be applied to predict
the performance of a configuration without having to run all the FM configurations
which is impractical in most of the cases. Recent advances [62] show that uniform
random sampling is better finding near–optimal FM configurations than existing
machine learning proposals.

2.8.3 Knowledge Extraction from Data

FMs can become quite large – see, for example, the Linux operating system FM [2, 81].
In such a context, it can be helpful to automatically identify feature candidates and
also related constraints (see, e.g., [40, 51, 80]).

Basic Machine Learning Approaches. Feature candidates can be determined, for
example, on the basis of content-based machine learning techniques (e.g., clustering)
that allow an intelligent grouping of software requirements – see Li et al. [51]. Terms
extracted from these requirements and associated with specific clusters (requirement
groups) can be regarded as representatives of features. If features have already
been determined, machine learning methods can be applied to determine related
constraints [80]. The idea is to randomly generate configurations out of an FM
(assuming that features are already available) and then to use an oracle (e.g., a
software that tests the generated configuration) to figure out if the configuration is
satisfiable (e.g., the software is operable). Following this approach, a dataset such as
the one shown in Table 2.5 can be generated. With such a dataset, machine learning
(e.g., decision tree learning) can be used to infer potential (need to be evaluated) FM
constraints (see, e.g., Temple et al. [80]). If decision trees are used, FM constraints
can be derived by interpreting “faulty” paths as negated constraints.

Table 2.5: Abstract dataset as a basis for machine learning based constraint extrac-
tion from configuration data. The oracle feedback can be 0 (faulty/non satisfiable
configuration) and 1 (satisfiable configuration).

configuration 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 oracle feedback
𝑐𝑜𝑛 𝑓1 1 1 1 0 1 0 1 1 0
𝑐𝑜𝑛 𝑓2 1 0 1 0 1 0 0 1 1
𝑐𝑜𝑛 𝑓3 0 0 1 0 1 0 0 0 1

... ... ... ... ... ... ... ... ... ...
𝑐𝑜𝑛 𝑓𝑛 1 1 0 0 1 1 0 0 0

7 Predicting FM configuration performance can also be regarded as an analysis task (see Chapter 3).
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Use of Large Language Models (LLMs). Large language models can help to
increase the efficiency of FM development, for example, by automatically extracting
features from given requirements specifications [40]. Table 2.6 depicts an example
that shows in a simplified fashion how requirements can be generated and related
features be extracted using an LLM.8

Table 2.6: An example of LLM-generated requirements and features of a group
decision support software (“Company Name Decision Application”) using the LLM
prompts “generate 5 requirements for an application supporting group decisions
about company names” and “create an FM with 5 functional features”.

requirement feature
The application should facilitate collaborative and creative
brainstorming sessions for company names. It should allow
multiple team members to contribute ideas, comment on

suggestions, and collectively build a list of potential names

Collaborative Brainstorming
(Real-time Editing, Commenting

on Ideas)

The application must include a robust voting mechanism to
enable team members to express their preferences for

specific company names. This can involve a rating system,
likes/dislikes, or a voting poll to help identify the most

favored options within the group

Voting Mechanism (Rating
System, Voting Polls)

The application should integrate a feature to check the
availability of selected company names in relevant domains
and social media platforms. Additionally, it should provide

tools for conducting preliminary trademark searches to
ensure legal feasibility and avoid potential conflicts

Availability Check (Domain
Availability Check, Social Media

Platforms Check)

A comprehensive feedback and commenting system should
be in place to allow team members to provide constructive

feedback on proposed company names. This feature
promotes communication and helps refine name choices

based on input from various perspectives

Feedback System (Commenting
on Company Name Proposals,
Anonymous Feedback Option)

The application should maintain a version history of
proposed company names, changes, and discussions. This

ensures transparency and allows team members to trace the
evolution of naming decisions over time. Additionally, the

ability to export or document the final decisions can be
valuable for record-keeping purposes

Version History (Tracking
Changes Over Time, Rollback to

Previous Versions)

Large language models can be applied for the generation of potential constraints
regarding a set of identified features. Table 2.7 depicts two LLM-generated example
constraints that could be of relevance for the generated set of features. The first
constraint in Table 2.7 expresses the idea that rollback only makes sense if a brain-
storming history is available. The idea of the second example constraint is that voting
only makes sense of the corresponding (internet) domain is available.

8 The requirements, features, and associated constraints have been generated with ChatGPT 3.5 –
see https://openai.com/.

https://openai.com/
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Table 2.7: Excerpt of LLM-generated FM constraints (on the features of Table 2.6).

constraint ID description

1 The “Rollback to Previous Versions” feature requires the selection of the
“Collaborative Brainstorming” feature

2 The “Rating System” feature requires the selection of the “Domain Availability
Check” feature.

For sure, both, generated features and constraints have to be evaluated by domain
experts, however, following this LLM-based approach has the potential to reduce
time efforts for FM development and related quality assurance tasks [40, 54].

2.9 Discussion

In this chapter, we have presented different FM knowledge representations and cor-
responding formalizations in terms of constraint solving and SAT solving. We have
discussed extensions to basic feature modelling concepts in terms of attribute- and
cardinality-based FMs – these concepts can be regarded as sufficient for representing
variability properties in various application domains. Furthermore, we have intro-
duced definitions of an FM configuration task and a corresponding FM configuration
which will be used as a basis for the discussions in the following chapters. Finally,
we have included scenarios that show how data-driven AI techniques can help in the
context of feature modelling. In the context of the topic of feature modelling, we
regard the following as major open research issues.

Further Extensions of FM Knowledge Representations. As discussed in this
chapter, there are different research streams regarding the extension of basic FMs

(e.g., in terms of attributes and cardinalities) and also regarding the standardization
of FM representations, specifically on a textual level. Further work on FM standardiza-
tion could take into account the support of other constraint types [22]. For example,
resource constraints are a widely used concept in the context of knowledge-based
configuration [33, 29, 74, 78]. When configuring, for example, computer systems,
a resource (producer) could be the maximum acceptable price defined by the user
(customer) and the corresponding consuming resources would be the hardware com-
ponents integrated into the computer configuration. A related resource constraint
would specify the overall price of the included components must be below the price
limit specified by the user. Approaches to configuration knowledge representation in
UML/OCL and corresponding logical representations are discussed in Felfernig et
al. [29, 32] – taking into account these representations might also be a way to further
extend the expressivity of FMs when applied in product configuration. Finally, answer
set programming (ASP) is established as an expressive configuration knowledge re-
presentation focusing on an object-oriented modelling approach – an application in
the context of FM representations is worth further investigations [27, 60, 73].
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Cognitive Aspects of FM Development and Maintenance. The development of
graphical models is supported by different types of graphical user interfaces (see also
Chapter 5). In this context, model understandability is a major criterion for assuring
maintainability and consistency of complex models in the long run. Further research
is needed to figure out in more detail which types of knowledge structures are more
understandable compared to others. Such studies can be performed, for example,
on the basis of eye tracking equipment which can help to estimate the cognitive
overload of knowledge engineers in their FM development and maintenance activities.
Assuring model understandability can also be supported on the basis of basic machine
learning methods, for example, different feature and constraint grouping strategies
could result in different levels of model understandability [35].

Decision Support in Product Line Scoping. In this chapter, we have provided a
simplified example of integrating decision support systems in the process of product
line scoping. A related decision support needs to provide specific predefined decision
goals such as to maximize the revenue of the offered items but also goals such as
maximizing sustainability of the offered solutions and minimize the 𝐶𝑂2 footprint
[36]. In this context, also the feasibility of the selected features needs to be taken into
account, for example, in terms of available development resources, development risk,
and market-related risks [53]. A similar situation occurs in the context of knowledge-
based configuration scenarios where a configuration model has to be tailored (also
in a scoping process) in such a way that it supports only configurations which can
be produced by the existing production infrastructure [53].

Variability Mining. As already mentioned, the increasing size and complexity
of FMs triggers a need for the automated support of variability knowledge extrac-
tion/mining. Similar to process mining where processes are discovered from existing
logs [68, 85], we envision techniques and tools inspired by Artificial Intelligence for
variability mining. Example areas for future research are the inclusion of techniques
for a user-centered knowledge acquisition based on the ideas of human computa-
tion [48, 83] and the application of large language models (LLMs) for the (semi-)
automated generation and maintenance of FMs (and beyond) [1, 40].
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69. M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending Feature Diagrams with
UML Multiplicities. In 6th World Conference on Integrated Design & Process Technology
(IDPT2002), June 2002.

70. D. Romero-Organvidez, D. Benavides, J.-M. Horcas, and M. T. Gómez-López. Variability
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Chapter 3
Analysis of Feature Models

Abstract Developing and maintaining Feature Models (FMs) can become an error-
prone activity. In this chapter, we focus on different aspects of analyzing relevant
properties of FMs. Such an analysis helps to increase the maintainability and correct-
ness of FMs and also makes them better manageable in industrial settings. Analysis
operations are discussed in detail and also presented formally. In addition to analysis
operations, we also show how to automatically determine erroneous elements of an
FM that have to be adapted or deleted in order to restore the intended FM semantics.

3.1 Feature Model Analysis Process

As explained in Chapter 2, FMs are a central technique for engineering software
product lines. Developing and maintaining FMs can be an error-prone activity due
to missing domain knowledge, cognitive overloads of persons in charge of FM de-
velopment, and outdated knowledge parts in existing FMs [4, 26]. In order to tackle
this challenge, intelligent techniques and tools are needed which help to identify
anomalies (i.e., unintended properties of FMs which need to be removed) and help
to keep maintainability [2]. Such anomalies can exist in different forms and require
different types of analysis operations capable of identifying those anomalies.

A conceptual process for the automated analysis of FMs is depicted in Figure
3.1. Depending on the specific analysis task, a reasoning engine (a.k.a. solver) is
sometimes needed to provide the needed feedback. For example, if we want to figure
out the number of features or excludes relationships in an FM, this is just a counting
task without the need of activating a solver (e.g., a SAT or constraint solver). On
the other hand, if we are interested, for example, in the presence of dead of false
optional features in the FM (these concepts will be defined later), a solver support is
needed. For example, if one or more features are dead, a diagnosis component can
help to identify the responsible FM constraints. Furthermore, testing & debugging
services can help to systematically test an FM with regard to a test suite specifying
the intended semantics of the FM. All these aspects are discussed in this chapter.
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We want to emphasize that in the context of our discussions specifically due to
the focus of this book on domain and requirements analysis, the test object is the FM,
i.e., we want to assure that the FM represents intended domain knowledge. In related
work on analyzing software product lines, the term testing often refers to the testing
of the software underlying an FM [37].

Feature model

Other artefacts (optional)

Feature model and
artefacts logical

transformation (CNF, BDD,
constraint programming,

other..)

Analysis result Analysis result

Analysis operation

without solver with solver

Fig. 3.1: Automated analysis of FMs conceptual process.

An FM can include other artefacts that are used for analysis purposes. For instance,
a table with desired or existing configurations, user ratings of features, or implicit
feedback of users during product usage [36, 40] – just to mention a few. It is
important to clarify that the software product line engineering process of Figure 2.2
is an iterative process and some of the additional artefacts for FM analysis can be
produced in other stages of the process, for example, the implicit feedback of feature
usage or the feature ratings after deploying a product.

In the following, we differentiate analysis operations with regard to their need of
a corresponding solver or not (see also [23]). Figure 3.2 gives an overview of the
structure of the chapter.
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feature model analysis with solver support, e.g. SAT or
constraint solver (sec 3.1.3, 3.3)

feature model analysis
without solver (sec 3.1.1)

feature model
(FM)

e.g. #excludes
constraints 
(Table 3.1)

diagnosis
(sec 3.2)

testing & debugging
(sec 3.4, 3.5)

e.g. dead
features

(Table 3.2)

Fig. 3.2: Chapter overview (ids in brackets refer to the corresponding subsection).

3.1.1 Analysis Operations Without Solver Support

There are analysis operations that can be performed without the need of a solver and
can be calculated directly from the FM by ad–hoc algorithms. Table 3.1 provides an
overview of example operations applied in the context of FM analysis – for related
details, we refer to [4] and [22].

Table 3.1: Example FM analysis operations without the need of solver support. In
this context, 𝐹 (also denoted as 𝐹 (𝐹𝑀)) denotes the set of features and 𝐶𝐹 (also
denoted as 𝐶𝐹 (𝐹𝑀)) the set of constraints of an FM, 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦(𝑐) denotes a
mandatory relationship 𝑐, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 (𝑐) denotes an optional relationship 𝑐, 𝑜𝑟 (𝑐)
denotes an or relationship 𝑐, and 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑐) denotes an alternative relationship
𝑐. Furthermore, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑐) denotes a requires constraint 𝑐 and 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑐) denotes
an excludes constraint 𝑐.

Analysis Operation Formalization
#features(𝐹𝑀) | { 𝑓 : 𝑓 ∈ 𝐹 (𝐹𝑀 ) } |

#leaf-features(𝐹𝑀) | { 𝑓 ∈ 𝐹 (𝐹𝑀 ) : ℎ𝑎𝑠𝑐ℎ𝑖𝑙𝑑 ( 𝑓 ) = 𝑓 𝑎𝑙𝑠𝑒} |
#ancestors(f ∈ 𝐹(𝐹𝑀), 𝐹𝑀) | {𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ( 𝑓 , 𝐹𝑀 ) } |

#mandatory relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟 𝑦 (𝑐) } |
#optional relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧ 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 (𝑐) } |

#or relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧ 𝑜𝑟 (𝑐) } |
#alternative relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑐) } |
#requires relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 (𝑐) } |
#excludes relationships (𝐹𝑀) | {𝑐 : 𝑐 ∈ 𝐶𝐹 (𝐹𝑀 ) ∧ 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠 (𝑐) } |
#commonalities(𝐹𝑀1,𝐹𝑀2) | { 𝑓 : 𝑓 ∈ 𝐹 (𝐹𝑀1 ) ∧ 𝑓 ∈ 𝐹 (𝐹𝑀2 ) } |

The notations used in the formalizations included in Tables 3.1 and 3.2 follow
the definitions of an FM configuration task and a corresponding FM configuration
introduced in Chapter 2. In this context, 𝐹 = { 𝑓1.. 𝑓𝑛} denotes the set of features in
an FM. The set of constraints is defined as 𝐹𝑀𝐶 = 𝐶𝐹∪𝐶𝑅 where𝐶𝐹 = {𝑐1..𝑐𝑘} is
a set of constraints derived from the FM and 𝐶𝑅 = {𝑐𝑘+1..𝑐𝑚} is a set of constraints
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representing application requirements, i.e., requirements regarding the inclusion or
exclusion of specific features from the user (customer) point of view. Furthermore,
an FM configuration 𝑐𝑜𝑛 𝑓 is an assignment 𝐴 = { 𝑓1 = 𝑣𝑎𝑙 ( 𝑓1).. 𝑓𝑛 = 𝑣𝑎𝑙 ( 𝑓𝑛)}where
𝑣𝑎𝑙 ( 𝑓𝑖) ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.

Some analysis operations can be executed without the need of activating a solver
(see Table 3.1). In the following, we explain some of those.

Counting features and constraints. These analysis operations basically count
the number of features and related constraints (relationships) of an FM. Our example
FM (Figure 2.3) has 13 features (including the root feature). There are other operations
that traverse the FM tree structure [23]. Examples thereof are the determination of
the ancestors (direct and transitive) of a specific feature and the set of leaf-features
of an FM. In our example FM, there are 9 leaf-features. The number of ancestors,
for example, of the advancedsolar feature is 2 (features energymanagement and
smartwatch). Furthermore, the FM includes 2 mandatory relationships, 3 optional
relationships, 2 alternative relationships, and 1 or relationship. Finally, the model
includes 1 requires constraint and 1 excludes constraint. These descriptive numbers
help to characterize the size of an FM and can also be used a basis for FM complexity
analysis [22, 44].

Differences and commonalities between FMs. Commonalities between FMs can
be analyzed, for example, in terms of the number of features with the same names
and even further in terms of the number of same constraint types referring to the
same features. In contrast, differences between FMs can be analyzed in terms of the
number of features only existing in one of the analyzed models. The analysis of
differences and commonalities between FMs can play a major role in the context
of FM integration. For example, if a car provider decides to use the same FM for
representing product variabilities in Europe as well as in the US, the corresponding
individual FMs have to be integrated [50]. In this regard, there is another thread
of research related with semantic matching, for instance, when an FM expresses a
feature with a feature name that is syntactically different from another feature name
in another FM but the semantic meaning is the same. Imagine, for instance, that an
FM defines a gps feature and another one defines a navigation feature. Depending on
the context, the features can be equivalent. In the past, attempts were made to deal
with natural language processing and FMs [42] – such approaches gain momentum
specifically in the context of the application of large language models (LLMs) in FM
management [19].

3.1.2 Analysis Operations With Solver Support

There are some analysis operations over FMs that are performed with a solver.
Table 3.2 provides an overview of example operations frequently applied in the
context of FM analysis in the case that solver support is needed (see also [4, 5,
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18]). It is important to remark that the discipline has evolved over time and this
book intends to recapitulate and provide an updated terminology and conceptual
framework. In this sense, reading back some of the related papers shall be done with
attention to the terminology used in those papers and in this book. Anyhow, to assure
understandability, we try to explain the used terms as much as possible.

Table 3.2: Example FM analysis operations with solver support. In this context, 𝐹
(or 𝐹 (𝐹𝑀)) denotes the set of features and 𝐶𝐹 (or 𝐶𝐹 (𝐹𝑀)) the set of constraints
in FM. Furthermore, 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑋) indicates that a SAT solver or constraint solver
is able to find a solution given the constraints in 𝑋 . In the context of FMs, this
means that at least one configuration 𝑐𝑜𝑛 𝑓 (i.e., a set of constraints representing
feature value assignments) could be identified that complies with the constraints in
𝑋 . Finally, CF(𝐹𝑀𝑥)′ is the complement of the solution space defined by CF(𝐹𝑀𝑥)
formalized as disjunction of negated constraints of 𝐶𝐹 (𝐹𝑀). 𝐹𝑀𝑔 (𝐹𝑀𝑠) is the
generalized (specialized) FM. The number (#) of satisfiable configurations refers
to complete configurations. Finally, the false optional feature analysis operation
excludes root and mandatory features – this is indicated with (∗) .

Analysis Operation Formalization
satisfiable(𝐹𝑀) ∃𝑐𝑜𝑛 𝑓 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑐𝑜𝑛 𝑓 ∪𝐶𝐹 (𝐹𝑀 ) )

satisfiable(𝑐𝑜𝑛 𝑓 ,𝐹𝑀) 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑐𝑜𝑛 𝑓 ∪𝐶𝐹 (𝐹𝑀 ) )
#satisf. configurations(𝐹𝑀) | {𝑐𝑜𝑛 𝑓 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑐𝑜𝑛 𝑓 ∪𝐶𝐹 (𝐹𝑀 ) ) } |

dead feature ( 𝑓 , 𝐹𝑀) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({ 𝑓 = 𝑡𝑟𝑢𝑒} ∪𝐶𝐹 (𝐹𝑀 ) )
false optional ( 𝑓 ,𝐹𝑀)(∗) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({ 𝑓 = 𝑓 𝑎𝑙𝑠𝑒} ∪𝐶𝐹 (𝐹𝑀 ) )

core feature ( 𝑓 ,𝐹𝑀) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({ 𝑓 = 𝑓 𝑎𝑙𝑠𝑒} ∪𝐶𝐹 (𝐹𝑀 ) )
variant feature ( 𝑓 ,𝐹𝑀) 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({ 𝑓 = 𝑓 𝑎𝑙𝑠𝑒} ∪𝐶𝐹 (𝐹𝑀 ) ) ∧

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({ 𝑓 = 𝑡𝑟𝑢𝑒} ∪𝐶𝐹 (𝐹𝑀 ) )
atomic feature set (𝑆 ⊆ 𝐹) 𝑆 = { 𝑓1.. 𝑓𝛼 } : ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({∨( 𝑓𝑖 ∈𝑆, 𝑓 𝑗 ∈𝑆) [𝑖≠ 𝑗 ] 𝑓𝑖 ≠ 𝑓 𝑗 } ∪𝐶𝐹 (𝐹𝑀 ) )
redundant (𝑐 ∈ 𝐶𝐹,𝐹𝑀) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({¬𝑐} ∪ (𝐶𝐹 (𝐹𝑀 ) − {𝑐})

generalization(𝐹𝑀𝑔 , 𝐹𝑀𝑠) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝐹 (𝐹𝑀𝑠 ) ∪𝐶𝐹 (𝐹𝑀𝑔 ) ′ )
specialization(𝐹𝑀𝑠 , 𝐹𝑀𝑔) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝐹 (𝐹𝑀𝑠 ) ∪𝐶𝐹 (𝐹𝑀𝑔 ) ′ )

refactoring(𝐹𝑀1 , 𝐹𝑀2) ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝐹 (𝐹𝑀1 ) ′ ∪𝐶𝐹 (𝐹𝑀2 )∧
¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝐹 (𝐹𝑀1 ) ∪𝐶𝐹 (𝐹𝑀2 ) ′ ) )

minimal conflict (𝐶𝑆,𝐹𝑀) {𝐶𝑆 ⊆ 𝐶𝐹 (𝐹𝑀 ) : ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝑆) ∧ �𝐶𝑆′ ⊂ 𝐶𝑆 : ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝑆′ ) }

In the following, we give an overview of example analysis operations that can
only be executed with a corresponding SAT or constraint solver support.

Satisfiable FM. An FM is satisfiable if there exists at least one configuration (conf )
which is consistent with the FM constraints (defined in 𝐶𝐹). The FM in Figure 2.3 is
satisfiable, i.e., there exists at least one configuration where all feature settings satisfy
the constraints in 𝐶𝐹. However, there are non-satisfiable (unsatisfiable) FMs – see,
for example, Figure 3.3. In this (faulty) model, two mandatory features are connected
with an excludes relationship which induces a contradiction since on the one hand
two features are required to co-occur in each configuration, on the other hand, the
same features are regarded as incompatible. This operation received different names
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in the past but basically meaning the same: void FM, invalid FM, valid FM, consistent
FM, and solvable FM [4]. In this book, we use the term FM satisfiability to express the
meaning of the corresponding analysis operation – this term is also in the line with
the concept of satisfiability checking in constraint and SAT solving [3, 18].

payment gps

smartwatch

Fig. 3.3: Example of a non-satisfiable FM: since both, payment and gps are mandatory,
these features must be part of every configuration, i.e., cannot be incompatible at the
same time.

Configuration satisfiability. A configuration is satisfiable iff it is consistent
(all constraints are satisfied) with regard to the FM constraints 𝐹𝑀𝐶 = 𝐶𝐹 ∪ 𝐶𝑅.
Table 2.1 shows one satisfiable and one non-satisfiable configuration with regard
to our example FM. This operation can be useful to determine whether a given
configuration is available in a software product line (supported by the FM). In some
cases, a configuration or set of configurations are defined and then need to be tested
for satisfiability with the FM. If non-satisfiable, the configuration(s) can be changed
or maybe the FM itself has to be changed to support the desired configurations [52].

Number of satisfiable configurations. This operation returns the number of
configurations represented by the FM. Determining the total number of satisfiable
configurations can be relevant in the context of different product line scoping scenar-
ios [35, 17, 20] as well as in the context of deciding about variability properties of
products and services, for example, when developing or adapting a company-wide
mass customization strategy [7]. FMs can change over time and it can be important
to understand the impact of changes on the structure of the configuration (solution)
space supported by different versions. The number of satisfiable configurations is
also relevant when performing uniform random sampling [21]. The total number of
possible satisfiable FM configurations with our example FM of Figure 2.3 is 54.

Dead features. A feature 𝑓 is 𝑑𝑒𝑎𝑑 if there does not exist an FM configuration that
includes 𝑓 [6, 9]. Figure 3.4 shows three examples of situations where a feature 𝑓 is
dead. In the first setting, the inclusion of payment would require the inclusion of a
basic energy management resulting in a situation where advanced solar could never
be included in a configuration. In the second setting, the incompatibility between the
features payment and standard results in a situation where standard cannot be part
of any configuration. In the third example, since payment is incompatible with gps
and payment is mandatory, gps will never be part of a configuration, i.e., it is a dead
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feature. Note that these are just examples and dead features could be induced by an
arbitrary combination of complex constraints [9].

payment
energy

management

smartwatch

basic advanced

payment screen

smartwatch

standard touch

payment gps

smartwatch

Fig. 3.4: Three basic examples of dead features (indicated with a grey background).

False optional features. A feature is false optional if it is included in all possible
configurations although not being modelled as mandatory. Figure 3.5 shows some
examples of false optional features. Having a false optional feature may be a problem
if a configurator is built from the FM because a visually optional feature cannot be
deselected by the user which can be problematic from a user perspective.

sport
tracking

energy
management

smartwatch

advanced
solar basic

payment sport
tracking

smartwatch

running skiing

payment gps

smartwatch

Fig. 3.5: Three basic examples of false optional features (grey background).

Figure 3.5 includes three examples of situations where some features become
false optional ones. In the first setting, the inclusion of payment would require the
inclusion of a running type sports tracking which makes both features – although
specified as optional – part of every configuration. Note that once running becomes
a false optional feature, then sport tracking also becomes false optional. In the
second setting, advanced solar is part of every configuration (although modeled as
alternative). In the third example, gps is part of every configuration since payment
is mandatory and requires the feature gps. Again, these are just examples – false
optional features can be induced by arbitrary constraint combinations [9].

Core and variant features. Core features are features that are part of every
configuration (see the features smartwatch, screen, and energy management in the
running example). Variant features are those features that are included in some
configurations but also excluded from some others. The set of core features of a
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non-satisfiable FM is empty. The union of core features, variant features, and dead
features, is the set of features of the FM [6].

Atomic sets. Atomic sets of features of an FM can be used as a preprocessing
technique for automated analysis and interaction [6]. Informally, an atomic set is
a group of features that can be treated as a unit because they are tightly coupled
and always appear together in any configuration of an FM. From a formal point of
view, atomic sets are nonempty subsets of features such that for every configuration
in an FM, all their features appear together in the configuration or none of them
appears at all. For a more detailed and formal discussion of atomic sets we refer the
reader to [6]. In Table 3.2, the property of an atomic set 𝑆 is defined in terms of
the non-existence of a configuration where at least one combination 𝑓𝑖 , 𝑓 𝑗 (𝑖 ≠ 𝑗) of
features in 𝑆 show different values. For example, if 𝑆 = { 𝑓1, 𝑓2, 𝑓3} is an atomic set,
then { 𝑓1 ≠ 𝑓2 ∨ 𝑓1 ≠ 𝑓3 ∨ 𝑓2 ≠ 𝑓3} ∪ 𝐶𝐹 is inconsistent.

Redundancies in FMs. An FM can include so-called redundant constraints which
– if deleted from the FM – do not change the semantics of the model, i.e., the FM
configuration space remains the same (see Figure 3.6).

sport

tracking

running skiing gps
sport

tracking

smartwatch

hiking

Fig. 3.6: Basic examples of redundancies in FMs : the excludes and requires con-
straints in the two models are redundant, i.e., when deleting these constraints, the
semantics of the corresponding models remains the same.

On the logical level, a redundant constraint 𝑐 part of an FM (and the corresponding
SAT or constraint satisfaction problem) has the following property: inconsistent(𝐶𝐹−
{𝑐} ∪ {¬𝑐}), in other words, 𝑐 logically follows from 𝐶𝐹 − {𝑐} (𝐶𝐹 − {𝑐} |= 𝑐).
In our example FM, a redundant constraint would be 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ⇒ 𝑡𝑜𝑢𝑐ℎ since
through the exclusion of combining payment and standard the inclusion of touch
remains the only allowed alternative for the screen option in the case that payment
has been selected. In Figure 3.6, the excludes constraint between running and skiing
is redundant since the excludes semantics is already expressed by the associated
alternative relationship. Furthermore, the requires constraint between sportstracking
and gps is also redundant since gps has to be part of every configuration. Automated
redundancy detection is relevant, for example, in the context of FM development
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and maintenance. In order to keep an FM understandable, the inclusion of redundant
constraints should be avoided.1

FM edits. An FM can evolve over time by adding, removing or editing new con-
straints or features. These changes to FMs are known as FM edits [46]. In FM evolution,
comparing two FMs can be of help in order to know better the edits that were per-
formed in the model.

(a) Original
model

energy

management

smartwatch

solar

gps

 (b)
rafactoring

energy

management

smartwatch

gps solar

(c)
generalization

energy

management

smartwatch

solar

gps

(d)
specialization

energy

management

smartwatch

solar

gps

(e)
arbitrary

energy

management

smartwatch

gps

high

precision

Fig. 3.7: Different types of FM edits: with refactoring, the FM configuration space
remains the same. With generalization, the configuration space is extended with
regard to the original model. Furthermore, specialization reduces the configuration
space. Finally, arbitrary edits represent all other FM edit operations.

Comparing edits in FMs is also known as FM differences [1]. Figure 3.7 shows
how an original FM (a) can be changed by a refactoring (b), generalization (c),
specialization (d), or an arbitrary edit (e). These analysis operations are classified
as refactoring if the original FM represents exactly the same set of configurations
as the changed one; generalization if the set of configurations of the original FM
is a subset of the configurations of the edited FM, specialization if the edited FM
represents a subset of the configurations of the original FM, or arbitrary edit in
any other case. These are basic comparisons of FMs but more complex comparisons
could be performed in terms of semantic feature similarity. For further discussions
on more complex comparisons of FMs we refer the reader to Acher et al. [1]. Also,
for a detailed discussion on reasoning about edits in FMs, we refer to Thüm et
al. [46]. Note that in our formalization in Table 3.2 we assume that 𝐶𝐹 (𝐹𝑀) is

1 An algorithm that can be used for the automated detection of redundant constraints in FMs is
discussed in Section 3.3 (see also Le et al. [27]).
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always satisfiable. Furthermore, if 𝐶𝐹 (𝐹𝑀) = {𝑐1, .., 𝑐𝑛} then the corresponding
𝐶𝐹 (𝐹𝑀)′ = {¬𝑐1 ∨ .. ∨ ¬𝑐𝑛}.

Dealing with inconsistencies in FMs. An FM could be non-satisfiable, i.e., no
solution can be found by a corresponding SAT or constraint solver. In such situ-
ations, it is important to figure out the sources of such inconsistencies. In other
words, we are interested in minimal sets of constraints as part of an FM that have
to be deleted or adapted in order to restore model consistency (at least one con-
figuration should be identifiable by a SAT or constraint solver). In this context,
conflict detection operations are relevant. In our example, if we include a new con-
straint 𝑐 𝑓 1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ⇔ 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (basically changing the relationship between
smartwatch and payment from optional to mandatory) and another new constraint
𝑐 𝑓 2 : ¬(𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ∧ 𝑡𝑜𝑢𝑐ℎ) (see Figure 3.8), this would induce an inconsistency,
i.e., no solution could be identified in this situation since none of the screen options
remains selectable although there is a mandatory relationship between smartwatch
and screen, i.e., at least one screen type should be selectable for a user.

f1:smartwatch

f5:payment

f4:standard

f2:screen

f3:touch

C0

C1 Cf1

C7 C9 Cf2

Fig. 3.8: Simplified example faulty (non-satisfiable) FM including the additional
constraints 𝑐 𝑓 1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ⇔ 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 and 𝑐 𝑓 2 : ¬(𝑡𝑜𝑢𝑐ℎ ∧ 𝑝𝑎𝑦𝑚𝑒𝑛𝑡).

Characterizing conflicts and background knowledge. The set of all constraints
𝐶𝐹 = {𝑐 𝑓 1, 𝑐 𝑓 2, 𝑐0, 𝑐1, 𝑐7, 𝑐9} (see Figure 3.8) makes the FM non-satisfiable. Such
a set is denoted as conflict or conflict set (𝐶𝑆) [24], i.e., an inconsistency-inducing
constraint set. In our example, it is impossible to find a configuration that supports
both, constraint 𝑐 𝑓 1 (the mandatory inclusion of a payment feature) and at the same
time the exclusion of both, standard and touch screen, since screen is regarded a
mandatory feature. Interestingly, deleting an arbitrary constraint from 𝐶𝑆 allows to
restore satisfiability. In this example, the FM has exactly one conflict set comprising
all FM constraints. Typically, there are different conflict sets and each of those has to
be resolved individually to restore FM consistency. Conflict identification can focus
on specific CF subsets, for example, a knowledge engineer might be interested to
know which new constraints of {𝑐 𝑓 1, 𝑐 𝑓 2} are responsible for a non-satisfiable FM.
In such a situation, the constraints from the original FM, i.e., {𝑐0, 𝑐1, 𝑐7, 𝑐9}, are
regarded as background knowledge 𝐵 and conflict search is focused on {𝑐 𝑓 1, 𝑐 𝑓 2}.
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Conflicts in FMs and corresponding formalizations (e.g., constraint satisfaction
problems) can occur in different situations: (1) if an FM is non-satisfiable, knowledge
engineers have to be supported in identifying the responsible conflicts in 𝐶𝐹. (2)
it could also be the case that the FM is satisfiable, i.e., at least one solution can be
identified, however, some configurations derived from the FM do not reflect existing
real domain constraints (e.g., the smart watch product line allows to have basic
screen but in fact the smart watch factory currently does not provide basic screens).
In order to be able to identify such “unintended behaviors” of FMs, test suites (with
individual test cases representing real-world properties/constraints) are defined that
can be used for quality checking in the context of FM evolution. In Section 3.2, we will
introduce basic concepts of conflict detection and conflict resolution on the basis of
model-based diagnosis [39]. In Section 3.4, we show how FMs can be analyzed/tested
with test suites that define the intended behavior of an FM. More precisely, test cases
specifying intended semantics are used to induce conflicts in FMs which are then
resolved with model-based diagnosis.

3.2 Diagnosing Inconsistent Constraint Sets

The increasing size and complexity of FMs and their widespread industrial use
trigger a demand for the automated identification of faulty FM constraints [34].
The foundation for such a support are conflict detection [24, 29, 51] and diagnosis
[39] algorithms which support the identification of faulty constraints (relationships)
that represent an explanation for the faulty behavior of an FM (a kind of why not
explanation). In this context, (1) conflict detection is used to identify minimal subsets
of constraints that are inconsistent (i.e., minimal unsatisfiable subsets – MUS [31]),
and (2) diagnosis helps to identify minimal sets of constraints that have to be adapted
or deleted from the FM such that the new version of the model is satisfiable (i.e.,
minimal correction subsets – MCS [45]).

A diagnosis [39, 52] is a hitting set which is a set of constraints that have to be
deleted from the conflict sets such that all conflicts are resolved. We now show how
to determine conflicts and corresponding diagnoses. For demonstration purposes,
we use a reduced version of the FM shown in Figure 3.8. The corresponding FM
configuration task (𝐹, 𝐷,𝐶𝐹) is the following.2 Note that, we kept the constraint
identifiers that have been introduced in Chapter 2.

• 𝐹 = {𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ, 𝑠𝑐𝑟𝑒𝑒𝑛, 𝑡𝑜𝑢𝑐ℎ, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡}
• 𝐷 = {𝑑𝑜𝑚(𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ) = 𝑑𝑜𝑚(𝑠𝑐𝑟𝑒𝑒𝑛) = 𝑑𝑜𝑚(𝑡𝑜𝑢𝑐ℎ) = 𝑑𝑜𝑚(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) =

𝑑𝑜𝑚(𝑝𝑎𝑦𝑚𝑒𝑛𝑡) = {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}}
• 𝐶𝐹 = {𝑐0 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒, 𝑐1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ ⇔ 𝑠𝑐𝑟𝑒𝑒𝑛, 𝑐7 : 𝑠𝑐𝑟𝑒𝑒𝑛 ⇔
(𝑡𝑜𝑢𝑐ℎ ⊕ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑), 𝑐9 : ¬(𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ∧ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑), 𝑐 𝑓 1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ ⇔
𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑐 𝑓 2 : ¬(𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ∧ 𝑡𝑜𝑢𝑐ℎ)}

2 For a definition of a FM configuration task see Chapter 2. Due to our focus on model analysis, we
omit application requirements, i.e., we focus on 𝐶𝐹.
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In the FM shown in Figure 3.8, we have added two faulty constraints for demonstra-
tion purposes. (1) the constraint 𝑐 𝑓 1 specifies a mandatory inclusion of the payment
feature in every possible configuration. Furthermore, constraint 𝑐 𝑓 2 specifies an in-
compatibility between the features payment and touch screen. In real-world settings,
such a combination is obligatory in the sense that payments require interactive user
interface elements and for this reason, 𝑐 𝑓 2 can be regarded as faulty.

Reasons of faulty constraints. There are various possible reasons for the exis-
tence of faulty constraints in an FM. (1) It could be the case that due to an increasing
complexity of an FM, cognitive overloads are the reason for misinterpreting spe-
cific feature relationships. (2) In some cases, the reason for the inclusion of faulty
constraints is missing domain knowledge. (3) Another reason is outdated domain
knowledge, i.e., FM elements that have been included long time ago but have not
been adapted to reflect the new variability properties.

When starting a constraint or SAT solver to calculate a solution for our example
FM configuration task, the result will be no solution could be identified. The reason
behind is that each smartwatch has to include a screen and a screen has to be either a
touch screen or a standard screen. At the same time, the payment feature is defined
as being mandatory with further constraints forbidding a combination of payment
with a standard screen or touch screen.

Before taking a more detailed look at mechanisms that support conflict detection
and resolution, we introduce the following definition of a conflict set.

Definition 3.1 (Conflict Set CS).𝐶𝑆 = {𝑐1..𝑐𝑣} is a subset of a constraint set𝐶 with
inconsistent(𝐶𝑆). CS is minimal if ¬∃𝐶𝑆′ : 𝐶𝑆′ ⊂ 𝐶𝑆 and 𝐶𝑆′ is a conflict set.

Three basic conflict detection scenarios. This definition of a conflict set can
be applied in different scenarios. (1) If the set 𝐶𝐹 of FM constraints does not allow
the determination of a solution, then we need to search for a conflict set in 𝐶𝐹,
i.e., 𝐶 = 𝐶𝐹 (see Subsection 3.2.1). (2) Assuming the consistency of 𝐶𝐹 and the
inconsistency of 𝐶𝐹 ∪𝐶𝑅, we are interested in figuring out a set of user preferences
that are inconsistent with 𝐶𝐹. In this case, a conflict set will be found in 𝐶𝑅, i.e.,
𝐶 = 𝐶𝑅 (see Subsection 3.2.2). (3) In FM quality assurance, we have to be able
to support knowledge engineers in understanding and explaining unintended FM
“behavior” (i.e., semantics) in the sense that a SAT or constraint solver proposes
FM configurations which are unintended, i.e., in contradiction with related real-
world domain constraints. For example, if a payment feature must be combined
with touch screen (real-world domain constraint) but the solver does not allow
such configurations, adaptations in the FM are needed in order to reflect real-world
domain constraints. Also in this context, we are interested in constraint sets (i.e., FM
relationships and cross-tree constraints) which are responsible for the unintended
semantics. We have to analyze the constraints in 𝐶𝐹, i.e., 𝐶 = 𝐶𝐹, where conflicts
are induced by test cases specifying intended FM semantics (see Section 3.4).

Minimality properties of conflict sets. A minimal conflict set𝐶𝑆 allows conflict
resolution by deleting only one element from CS. Minimality properties of relevance
in this context are subset minimality (see Definition 3.1) and minimal cardinality
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where the latter one is more restrictive in the sense of minimizing the number of
conflict elements. Minimal cardinality conflict sets are preferred in situations where
an increasing conflict set size would deteriorate solution quality. For example, in
group decision making, minimal cardinality conflicts can help to reduce the overall
communication overhead related to conflict resolution [8, 28, 47]. Subset minimality,
on the other hand, is specifically useful in scenarios where there are preference
relationships over different features. For example, in the context of our smartwatch
example, users might have a strong upper price limit in mind and are more flexible
with regard to the inclusion or exclusion of specific other features. In such a situation,
conflict resolution should focus on conflicts induced by “unimportant” constraints.
Specifically in realtime scenarios such as network load balancing or scheduling,
minimality criteria have to be relaxed in order to be able to take into account
corresponding response time requirements [16].

3.2.1 Identifying Conflict Sets in Non-Satisfiable Feature Models

In the following, we show how a conflict, more precisely, a minimal conflict set, can
be determined on the basis of QuickXPlain [24] which is a widely used divide-
and-conquer based approach to identification of subset-minimal conflicts. The basic
idea of QuickXPlain is the following: given an inconsistent set of constraints, for
example, 𝐶 = {𝑐1..𝑐20} and {𝑐1..𝑐10} is inconsistent, a minimal conflict set can
be identified in {𝑐1..𝑐10}, i.e., the remaining constraints {𝑐11..𝑐20} can be omitted
after one consistency check. If {𝑐1..𝑐10} is consistent, the conflict has to be searched
in {𝑐1..𝑐15} (i.e., {𝑐1..𝑐10} extended with the “first half” of {𝑐11..𝑐20}). In this
situation, the scope of conflict search has to be extended until an inconsistent state
is reached. QuickXPlain can be activated with a consideration set 𝐶, i.e., the set
of constraints with an expected conflict and a constraint set 𝐵 representing the
background knowledge which is assumed to be consistent (see Algorithm 1).

In our example, we assume the background knowledge 𝐵 = {𝑐0, 𝑐1, 𝑐7, 𝑐9}, i.e.,
the set of constraints which are assumed to be correct. Furthermore, 𝐶 is the set of
constraints inducing an inconsistency with 𝐵 and – for this reason – includes one or
more conflict sets. QuickXPlain is flexible and we are able to apply the algorithm in
scenarios where 𝐶 represents an inconsistent set of user requirements, i.e., 𝐶 = 𝐶𝑅,
but – beyond that – also in scenarios where the FM constraints are inconsistent (e.g.,
in the context of a non-satisfiable FM), i.e., 𝐶 = 𝐶𝐹. IF 𝐶 ∪ 𝐵 is consistent or 𝐶 = ∅,
QuickXPlain returns ∅. In any other case, the conflict detection process is started
by activating 𝑄𝑋 (Algorithm 2) which is a divide-and-conquer based routine for the
identification of minimal conflict sets (in 𝐶).

The search for a minimal (irreducible) conflict set 𝜆 in the consideration set 𝐶
is performed by 𝑄𝑋 (see Algorithm 2) where 𝜆 satisfies the following property:
�𝜆′ ⊂ 𝜆 : conflict set(𝜆′), i.e., no proper subset of a minimal (irreducible) conflict
set can be a conflict set. If 𝐵 is consistent and 𝐶 has more than one element, 𝐶 is
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Algorithm 1 QuickXPlain(𝐶 = {𝑐1..𝑐𝑛}, 𝐵) : 𝜆
1: if Consistent(𝐶 ∪ 𝐵) then
2: return(’no conflict’)
3: else if 𝐶 = ∅ then
4: return(∅))
5: else
6: return(𝑄𝑋 (∅, 𝐶, 𝐵)))
7: end if

divided into two separate sets, where 𝐶1 is added to 𝐵 in order to analyse further
elements of the conflict. If 𝐶 includes only one element (|𝐶 | = 1), this element can
be considered as as part of the minimal conflict set – this is due to the invariant
property inconsistent(𝐶 ∪ 𝐵), i.e., since 𝐵 is consistent, 𝐶 must be responsible for
inducing the conflict. In the context of the consistency check of 𝐵 (line 1), 𝛿 indicates
which constraints have been added to 𝐵 in the previous step.

Algorithm 2 QX(𝛿, 𝐶 = {𝑐1..𝑐𝑛}, 𝐵) : 𝜆
1: if 𝛿 ≠ ∅ ∧ 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐵) then
2: return(∅)
3: end if
4: if |𝐶 | = 1 then
5: return(𝐶)
6: else
7: 𝑘 = ⌊ 𝑛2 ⌋
8: 𝐶1 ← 𝑐1...𝑐𝑘 ; 𝐶2 ← 𝑐𝑘+1...𝑐𝑛;
9: 𝜆2 ← QX(𝐶1, 𝐶2, 𝐵 ∪𝐶1 );

10: 𝜆1 ← QX(𝜆2, 𝐶1, 𝐵 ∪ 𝜆2 );
11: return(𝜆1 ∪ 𝜆2)
12: end if

Assuming the consideration set 𝐶 = {𝑐 𝑓 1, 𝑐 𝑓 2} consisting of the two additional
constraints of our working example (i.e., we first want to focus our search for minimal
conflicts on the two new constraints) and 𝐵 = {𝑐0, 𝑐1, 𝑐7, 𝑐9}, we want to sketch the
execution of Algorithms 1 – 2. Algorithm 2 is based on depth-first search where in
every case the left branch is responsible for determining 𝜆2 whereas the right branch
is responsible for determining 𝜆1. In our example (see Figure 3.9), the determined
minimal conflict set is 𝜆 = {𝑐 𝑓 1, 𝑐 𝑓 2} which means that there are two possible
conflict resolutions: (1) to delete 𝑐 𝑓 1 and (2) to delete 𝑐 𝑓 2.

3.2.2 Identifying Conflict Sets in User Requirements

In the example introduced in Chapter 2, 𝐶𝐹 = {𝑐0..𝑐10} represents the constraints
derived from the FM (see Figure 2.3). Let us assume a set of user (customer) re-
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Fig. 3.9: Execution trace of QX on the basis of 𝐶 = {𝑐 𝑓 1, 𝑐 𝑓 2} and 𝐵 =

{𝑐0, 𝑐1, 𝑐7, 𝑐9} resulting in the minimal conflict set 𝜆 = {𝑐 𝑓 1, 𝑐 𝑓 2}.

quirements specifying preferences regarding the inclusion and exclusion of specific
features which is represented as a set of constraints 𝐶𝑅 = {𝑐11 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =

𝑡𝑟𝑢𝑒, 𝑐12 : 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒}. These
requirements specify a smartwatch with a standard screen and the payment feature.
Furthermore, a sportstracking support for running is required, however, the user does
not want to include a gps feature. In this example setting, we assume that the user
is free in including or excluding features and the configurator (based, e.g., on a SAT
solver or constraint solver) is in charge of checking the consistency of 𝐶𝐹 ∪ 𝐶𝑅.

Since 𝐶𝐹 ∪ 𝐶𝑅 is inconsistent in our case, conflict detection can help to resolve
the inconsistency. In this context, we assume 𝐵 = 𝐶𝐹 (the FM constraints are
assumed to be correct) and the consideration set 𝐶 = 𝐶𝑅 is the set of application
requirements that are responsible for the inconsistency 𝐶𝐹 ∪ 𝐶𝑅. In this situation,
we are interested in the conflict sets in 𝐶𝑅(𝐶) that need to be resolved in order to
restore the consistency of 𝐶𝑅∪𝐶𝐹. The steps to determine all minimal conflict sets
in 𝐶𝑅 using QuickXPlain (Algorithm 1) are shown in Figure 3.10 – 3.11.

The first minimal conflict set derived from 𝐶𝑅 = {𝑐11..𝑐14} is 𝐶𝑆1 = 𝜆 =

{𝑐11, 𝑐13}. This conflict could be shown to the user with the additional information
that at least one of the requirements has to be adapted, i.e., either switched from
inclusion to exclusion or vice-versa. Let us assume that the user decides to change
his/her preferences regarding the requirement 𝑐11, i.e., he/she accepts the exclusion
of payment, our set of user requirements changes to 𝐶𝑅 = {𝑐12 : 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 =

𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒}. Based on this changed situation,
the QuickXPlain algorithm can be reactivated with 𝐵 = {𝑐0..𝑐10} and an adapted
set of user requirements 𝐶 = {𝑐12, 𝑐13, 𝑐14} (no need to include 𝑐11 since 𝐶𝑆1 has
been resolved by deleting/adapting 𝑐11).

The second minimal conflict set (derived from 𝐶𝑅) is 𝐶𝑆2 = 𝜆 = {𝑐12, 𝑐14}.
Again, a user can decide how to resolve this conflict. For example, if a user has
a strong preference in including the sportstracking running feature, he/she has to
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Fig. 3.10: Execution trace of QX on the basis of 𝐶 = {𝑐11..𝑐14} and 𝐵 = {𝑐0..𝑐10}
resulting in the minimal conflict set 𝜆 = {𝑐11, 𝑐13}.

Fig. 3.11: Execution trace of QX on the basis of 𝐶 = {𝑐12..𝑐14} and 𝐵 = {𝑐0..𝑐10}
resulting in the minimal conflict set 𝜆 = {𝑐12, 𝑐14}.

accept the inclusion of the gps feature. Summarizing, in our example a user decided
to accept the exclusion of the payment feature and also accepted the inclusion of the
gps feature. These accepted adaptations are also denoted as hitting sets or diagnoses
[39] – corresponding algorithmic approaches will be discussed in the following.

The role of constraint orderings. In many conflict detection scenarios, there is
an exponential number of conflicts [24]. QuickXPlain is able to identify so-called
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preferred conflicts (one at a time), i.e., conflicts with a high probability of being of
relevance for the user. Using QuickXPlain, the returned minimal conflict set can
differ depending on the original ordering of the constraints in the consideration set𝐶
where it can be assumed that constraints at the beginning of the constraint list have the
lowest importance and constraint importance increases with a corresponding higher
ranking in the list. In our example, the first returned conflict set is {𝑐11, 𝑐13} with
𝑐11 having the lowest importance of all constraints in 𝐶𝑅 = {𝑐11..𝑐14} representing
user requirements 𝐶𝑅. If we would change the order of our example constraints to
𝐶𝑅{𝑐14, 𝑐13, 𝑐12, 𝑐11} (assuming an ordered set semantics), QuickXPlain would
first return the minimal conflict set 𝐶𝑆1 = {𝑐12, 𝑐14}.3

Further approaches to conflict detection. Further conflict detection approaches
are based on the idea of integrating the search for conflicts into solution search.
For example, the constraints of an FM can be reformulated as follows: if, for ex-
ample, 𝑐1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ ⇔ 𝑠𝑐𝑟𝑒𝑒𝑛 is the original constraint, the correspond-
ing reformulation could be 𝑐1 : 𝑐1 = 1 ⇒ 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ ⇔ 𝑠𝑐𝑟𝑒𝑒𝑛 where
𝑐1 is assumed to be a Boolean variable used for counting the number of acti-
vated constraints. Using such a representation, we are able to formulate the con-
flict set identification task as a minimization problem as follows: mincardinality-
set({{𝑐1..𝑐𝑘} : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑐1..𝑐𝑘})}) which means to minimize 𝑐1 + .. + 𝑐𝑘 . For
an overview of approaches that support the identification of minimal conflict sets
(minimal unsatisfiable cores) we refer to Liffiton et al. [31, 48].

Resolution of conflicts based on diagnosis. The overall goal in most settings
is to identify a minimal set of constraints that have to be deleted (adapted) in
order to be able to restore consistency in a given constraint set – such sets can be
denoted as a diagnoses (hitting sets) [15, 39]. In our example of inconsistent user
requirements, one diagnosis (the one preferred by the user) is {𝑐11, 𝑐14}, i.e., by
adapting the requirements specified with {𝑐11, 𝑐14}, the consistency of𝐶𝐹 ∪𝐶𝑅 can
be restored. In our example non-satisfiable FM, a diagnosis would be 𝑐 𝑓 1. In both
cases, a diagnosis denotes a (minimal) set of constraints that have to be adapted or
deleted to restore consistency.

Before taking a more detailed look at mechanisms that support diagnosis deter-
mination, we introduce a definition of a diagnosis (see Definition 3.2).

Definition 3.2 (Diagnosis). A diagnosis Δ = {𝑐1..𝑐𝑘} is a subset of 𝐶 with
consistent(𝐶 − Δ). Δ is minimal if ¬∃Δ′ : Δ′ ⊂ Δ and Δ′ is a diagnosis.

Three basic diagnosis scenarios. Definition 3.2 can be applied in different
scenarios. (1) If an FM is non-satisfiable, we need to search for a diagnosis in
the set 𝐶𝐹 of FM constraints. (2) assuming FM consistency and – at the same time
– inconsistency of 𝐶𝐹 ∪ 𝐶𝑅, a diagnosis can be identified in the set 𝐶𝑅. (3) if
an FM is consistent, it can still be the case that it shows an unintended semantics,
for example, it allows to determine configurations which are not allowed in the
application domain (and could lead to potentially faulty software configurations).

3 For details regarding the QuickXPlain constraint ordering, we refer to Junker [24].
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In this context, a diagnosis can again be searched in 𝐶𝐹 but conflicts are induced
by test cases specifying the intended semantics of an FM [10] (see Section 3.4).
Diagnoses are often denoted as hitting sets [39] or minimal correction subset (MCS)
[31]. Furthermore, the complement of a hitting set is denoted as maximal satisfiable
subset (MSS) [31]. In the context of a minimal diagnosis Δ, no subset of Δ fulfills
the diagnosis property. In the context of an MSS Γ, no extension of Γ is consistent,
i.e., allows the calculation of a solution.

Minimality properties of diagnoses. An important aspect of diagnosis mini-
mality is that it is guaranteed that only those constraints (requirements) are adapted
which need to be adapted in order to restore consistency. Similar to conflict sets,
minimal diagnoses can be either subset minimal or of minimal cardinality (the first
interpretation is used in Definition 3.2). Minimal cardinality diagnoses are preferred
in scenarios where there are no clear preferences regarding individual adaptations
of constraints. In contrast, subset minimal diagnoses are used in contexts where
preferred constraints should be kept as-is whereas less preferred constraints should
be the preferred diagnosis candidates.

Determining minimal cardinality diagnoses in non-satisfiable FMs . The basic
approach to diagnosis determination is to delete at least one element from each
individual conflict set (then, all conflicts are resolved). In our example non-satisfiable
FM (see Figure 3.8), there exists exactly one conflict (set) which is 𝐶𝑆 = {𝑐 𝑓 1, 𝑐 𝑓 2}.
There are two possible ways of resolving this conflict which is described by the two
diagnoses Δ1 = {𝑐 𝑓 1} and Δ2 = {𝑐 𝑓 2} meaning that either 𝑐 𝑓 1 or 𝑐 𝑓 2 has to be
adapted or deleted in order to restore the consistency in the FM. This way, we are able
to support engineers in the development of FMs by relieving the burden of manually
identifying faulty constraints.

Determining minimal diagnoses in user requirements. Similar to the deter-
mination of diagnoses in non-satisfiable FMs, diagnosis determination in the con-
text of inconsistent user requirements is based on the resolution of individual con-
flicts. Given the two conflict sets in the context of inconsistent user requirements
(𝐶𝑆1 = {𝑐11, 𝑐13} and 𝐶𝑆2 = {𝑐12, 𝑐14}), we are able to derive four correspond-
ing diagnoses (Δ1, Δ2, Δ3, Δ4) based on the construction of a hitting set directed
acyclic graph (HSDAG) [39]. After having resolved, for example, 𝐶𝑆1 by removing
the constraint 𝑐11, we still have to resolve 𝐶𝑆2 with two remaining options, namely
constraint 𝑐12 or constraint 𝑐14. In this example, each path of our example HSDAG
leads to a correponding minimal diagnosis. However, this is not always the case,
for example, some of the paths have to be closed (not taken into account) since
other completed paths already represent a minimal diagnosis (which is a subset of
a diagnosis described by the current path). Such a closing of nodes is important to
assure efficiency of HSDAG determination [39]. Furthermore, conflict sets do not
have to be calculated for every node in the HSDAG. As can be seen in our example
(Figure 3.12), the conflict set 𝐶𝑆2 = {𝑐12, 𝑐14} occurs twice, however, there is no
need for recalculation, for example, with QuickXPlain (see Algorithm 1).
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Fig. 3.12: Hitting Set Directed Acyclic Graph (HSDAG) for the conflict sets
𝐶𝑆1 = {𝑐11, 𝑐13} and 𝐶𝑆2 = {𝑐12, 𝑐14}. The resulting minimal diagnoses are
Δ1 = {𝑐11, 𝑐12}, Δ2 = {𝑐11, 𝑐14}, Δ3 = {𝑐12, 𝑐13}, and Δ4 = {𝑐13, 𝑐14}

.

Alternative diagnosis algorithms. In contrast to the hitting set based approach to
diagnosis determination [39], direct diagnosis supports the determination of hitting
sets without the need of a corresponding conflict detection. An example of such a
diagnosis algorithm is FastDiag [15] which is based on the idea of determining
subset minimal diagnoses on the basis of a divide-and-conquer based approach. The
underlying idea is the following: given an inconsistent set of constraints, for example,
𝐶 = {𝑐1..𝑐20} and {𝑐1..𝑐10} is consistent, a minimal diagnosis can be identified in
{𝑐11..𝑐20}, i.e., {𝑐1..𝑐10} can be excluded from diagnosis search. Further diagnosis
approaches follow the idea of integrating diagnosis and solution search. As discussed
in the context of conflict detection, constraints can be reformulated, for example,
𝑐1 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ⇔ 𝑠𝑐𝑟𝑒𝑒𝑛 can be reformulated as 𝑐1 : 𝑐1 = 1⇒ 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ⇔
𝑠𝑐𝑟𝑒𝑒𝑛. A diagnosis task for a constraint set {𝑐1..𝑐𝑛} can then be interpreted as a
minimization task mincardinalityset({{𝑐𝛼 ..𝑐𝜆} : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑐1..𝑐𝑛}−{𝑐𝛼 ..𝑐𝜆})})
which means to minimize 𝑐𝛼 + .. + 𝑐𝜆.

Relationship between diagnoses and conflicts. Note that there is a natural
relationship between minimal conflict sets and minimal diagnoses in terms of a
duality property [43]: for a given set of minimal conflicts (i.e., a set of sets) we are
able to determine a corresponding set of minimal diagnoses (again, a set of sets) on
the basis of a hitting set directed acyclic graph (HSDAG) [39]. Vice-versa, exactly
the same set of conflicts can be determined by constructing a HSDAG from the
given set of diagnoses. This could be useful, for example, in a situation where one
is interested in determining minimal cardinality conflict sets (in contrast to subset-
minimal conflict sets) which can be determined on the basis of hitting set based
breadth-first search [39].



64 3 Analysis of Feature Models

3.3 Redundancy Detection in Feature Models

The development and maintenance of FMs can be a time-consuming task leading
to the inclusion of unintended semantics into FMs. A somewhat orthogonal aspect
compared to the topics discussed up to now is the occurrence of redundancies
in FMs. Elements (constraints) which are redundant can increase development and
maintenance efforts of FMs (due to a decreased model understandability) and decrease
the efficiency of constraint and SAT solvers [25, 27]. In FMs, a redundancy can be
interpreted as a collection of model elements that can be removed from the FM without
changing its semantics in terms of the solution space defined by the FM [25, 26]. More
formally, if𝐶𝐹 = {𝑐1..𝑐𝑚} is a set of constraints and 𝑐𝛼 is redundant (𝑐𝛼 ⊂ 𝐶𝐹) then
𝐶𝐹−{𝑐𝛼}∪{¬𝑐𝛼} is inconsistent, i.e., the solution space of𝐶𝐹−{𝑐𝛼} corresponds
to the original one. Consequently, if 𝑐𝛼 ∈ 𝐶𝐹 is redundant, 𝑐𝛼 logically follows from
𝐶𝐹 − {𝑐𝛼}, i.e., 𝐶𝐹 − {𝑐𝛼} |= 𝑐𝛼. An algorithm for determining the complete set
of non-redundant constraints (𝐶𝐹Δ) in an FM is FMRedundancy (see Algorithm 3).
The overall idea is to iterate over all constraints defined in 𝐶𝐹, i.e., the constraints
derived from the FM, and to analyze each constraint with regard to redundancy.

Algorithm 3 FMRedundancy(𝐶𝐹 = {𝑐1..𝑐𝑛}): 𝐶𝐹Δ

1: 𝐶𝐹Δ ← 𝐶𝐹

2: for all 𝑐𝛼 ∈ 𝐶𝐹 do
3: if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝐹Δ − {𝑐𝛼 } ∪ {¬𝑐𝛼 }) then
4: 𝐶𝐹Δ ← 𝐶𝐹Δ − 𝑐𝛼
5: end if
6: end for
7: return(𝐶𝐹Δ)

In the FM of Figure 2.3, no redundant constraints can be identified. If we add the
constraint 𝑐𝑟 : 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ⇒ 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 to set of FM constraints
𝐶𝐹, a corresponding redundancy can be identified: the energymanagement feature
is mandatory, consequently a constraint requiring the context-dependent inclusion
of this feature is redundant since this feature will be included anyway. An execution
trace of Algorithm 3 can be found in Table 3.3.

Table 3.3: Identification of redundant constraints in𝐶𝐹 based on FMRendundancy.

id 𝐶𝐹Δ current constraint (𝑐𝛼) redundant(𝑐𝛼)
1 {𝑐0, .., 𝑐10, 𝑐𝑟 } 𝑐0 ×
2 {𝑐0, .., 𝑐10, 𝑐𝑟 } 𝑐1 ×
3 {𝑐0, .., 𝑐10, 𝑐𝑟 } 𝑐2 ×
.. {𝑐0, .., 𝑐10, 𝑐𝑟 } .. ×
11 {𝑐0, .., 𝑐10} 𝑐𝑟 ✓
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In our example, 𝐶𝐹Δ (the redundancy-free constraint set derived from 𝐶𝐹) is
returned by Algorithm 3. This set guarantees that the semantics of the corresponding
FM remains the same, i.e., the FM including 𝐶𝐹 has the same solution (configuration
or product) space as the FM including 𝐶𝐹Δ.

3.4 Feature Model Testing and Debugging

In the previous sections, we have discussed the concepts of conflict detection and
diagnosis on the basis of the scenarios of (1) restoring the satisfiability of an FM and
(2) restoring the consistency of user requirements (within the scope of a configuration
process). In this section, we focus on situations where an FM is satisfiable but still
does not behave as expected in the sense that FM configurations are supported (or
even generated) that are not allowed or expected in the corresponding application
domain. The reasons for such an unintended semantics are manyfold and range from
insufficient domain knowledge of engineers, outdated knowledge still included in the
FM, to cognitive overheads of engineers triggered by FMs of low understandability.

Our example FM depicted in Figure 2.3 does not include any dead features, i.e.,
every feature is activated in at least one configuration part of the complete set of
possible configurations that can be derived from the FM. If we analyze our FM with
the corresponding analysis operation (see dead feature (f) Table 3.1), the outcome
will be as expected. In situations where some features are dead, the question arises in
which way the FM has to be adapted in order to exclude dead features. More generally,
how to adapt the FM in such a way that specific properties (e.g., satisfiable FMs , no
dead features, and no false optional features) are fulfilled. A well-known concept in
software engineering scenarios are test cases and test suites which are used to assure
a specific intended behavior of a software. If some test cases fail, corresponding
adaptations are needed by developers. In the same sense, we are able to define test
cases for FMs in such a way that the unintended semantics can be discovered and at
the same time those model parts can be automatically identified that are responsible
for this unintended semantics.

A simple example of a test suite 𝑇 = {𝑡1..𝑡𝑛} is the following: 𝑇 = {𝑡1 :
𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒, 𝑡2 : 𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑡𝑟𝑢𝑒, .., 𝑡13 : 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑡𝑟𝑢𝑒}, i.e.,
each feature is represented by a corresponding test case that is used to assure that
no feature is dead. This approach to define intended FM semantics in terms of test
cases can be applied to other types of analysis operations as well as in a more general
case by specifying example-wise intended semantics. In the discussed approach,
test cases are regarded as constraints that define intended (and also unintended)
semantics of FMs.4 The underlying idea is to exploit a defined set of test cases to
induce inconsistencies in an FM and to resolve these inconsistencies on the basis of
model-based diagnosis. In order to apply conflict detection and diagnosis in such

4 In the following, we focus our discussion on the specification of intended semantics (i.e., positive
test cases).
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scenarios, we need to define the concepts of a conflict set and a corresponding diag-
nosis (see the Definitions 3.3–3.4). We use the term debugging for actions to restore
the consistency and semantic correctness of an FM, i.e., getting the FM free from
buggy constraint definitions. In the context of FM testing and debugging, a conflict
set can be defined as follows (see Definition 3.3).
Definition 3.3 (Conflict Set). A conflict set 𝐶𝑆 = {𝑐1..𝑐𝑣} is a subset of 𝐶𝐹 s.t.
∃𝑡 ∈ 𝑇 : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶𝑆 ∪ {𝑡}). CS is minimal if ¬∃𝐶𝑆′ : 𝐶𝑆′ ⊂ 𝐶𝑆 and 𝐶𝑆′ is a
conflict set.

In the context of FM testing and debugging, a diagnosis can be defined as follows
(see Definition 3.4).
Definition 3.4 (Diagnosis). A diagnosisΔ = {𝑐1..𝑐𝑘} is a subset of𝐶𝐹 with∀𝑡𝑖 ∈ 𝑇 :
consistent(𝐶𝐹 − Δ ∪ {𝑡𝑖}). Δ is minimal if ¬∃Δ′ : Δ′ ⊂ Δ and Δ′ is a diagnosis.

Determining minimal diagnoses in FM testing. Diagnosis in the context of
FM testing is based on the resolution of (minimal) conflicts induced by a set of
test cases (see Definition 3.3). Let us assume the existence of a set of test cases
𝑇 = {𝑡1 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 ∧ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑡2 : 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑓 𝑎𝑙𝑠𝑒}
requiring the existence of FM configurations that include a payment feature combined
with a standard screen as well as configurations that exclude the energymanagement
feature. In the context of our example FM (see Figure 2.3), both test cases induce a
corresponding conflict. (1) the test case 𝑡1 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 ∧ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒

induces the (singleton) conflict 𝐶𝑆1 = {𝑐9 : ¬(𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ∧ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)} and (2)
the test case 𝑡2 : 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑓 𝑎𝑙𝑠𝑒 induces the (singleton) conflict set
𝐶𝑆2 = {𝑐5 : 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑛𝑡 ⇔ 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ}.

Based on this information, we are able to construct a hitting set directed acyclic
graph which helps to resolve conflicts in a structured fashion (see Figure 3.13). Since
we have to deal with two singleton conflict sets, i.e., conflict sets containing exactly
one element, the resulting HSDAG includes exactly one diagnosis (Δ1).

Fig. 3.13: Hitting Set Directed Acyclic Graph (HSDAG) for the conflict sets 𝐶𝑆1 =

{𝑐9} and 𝐶𝑆2 = {𝑐5}. The resulting minimal diagnosis is Δ1 = {𝑐5, 𝑐9}.

Alternative algorithms for FM testing and debugging. In contrast to the dis-
cussed hitting set based approach, FM testing and debugging can also be implemented
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on the basis of direct diagnosis [15]. An approach to the related application of Fast-
Diag is discussed in detail in Felfernig et al. [26].

3.5 Machine Learning for Conflict Detection and Diagnosis

In an inconsistent constraint set, there can be numerous conflicts and corresponding
diagnoses. In this context, it is important to figure out diagnoses of relevance. In
interactive configuration settings, diagnoses (repairs) proposed to users should only
include preferences of low importance for a user. A user-individual (personalized)
diagnosis can be determined on the basis of integrating machine learning concepts
that help to infer preference importance, for example, on the basis of the preferences
of previous user sessions [14, 38]. We refer to Chapter 4 for concepts helping to
tackle such a no solution could be found dilemma.

When diagnosing an unsatisfiable FM, we are in a similar situation, i.e., we need to
identify diagnoses of potential highest relevance. Table 3.4 shows a simple example
of diagnosis ranking where Δ𝑖 represent diagnoses determined for the constraints
𝑐1..𝑐5 of an unsatisfiable FM.

Table 3.4: Example of a diagnosis ranking approach: diagnoses Δ1 and Δ4 have the
highest accumulated constraint occurrence value (represented by the score value).

constraint Δ1 Δ2 Δ3 Δ4 Δ5 occurrence
𝑐1 × × × × 4
𝑐2 × × 2
𝑐3 × 1
𝑐4 × 1
𝑐5 × × 2

score 6 5 5 6 4

A simple approach to rank the Δ𝑖 is to use the constraint occurrence in Δ1..Δ5
as an indicator, i.e., the more often a constraint is part of a diagnosis, the higher
its relevance. Following this idea, Δ1 and Δ4 (both have an accumulated constraint
occurrence value of 6) could be considered as the most relevant diagnoses. In this
case, a recommendation for the designer of an FM could be to first look at the
constraints contained in Δ1 and Δ4. For more details on different ways to rank
diagnoses in unsatisfiable constraint sets we refer to Felfernig et al. [12, 14].

3.6 Discussion

In this chapter, we have discussed different topics related to the analysis of FMs. First,
analysis operations help to figure out specific properties of an FM, for example, an
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analysis operation related to void features helps to identify all features that cannot
be part of any configuration. In this context, we have introduced a differentiation
between analysis operations in the need of a solver support (as it is the case with void
features) and analysis operations without a need of a solver support (e.g., counting
the features of an FM).

Analysis operations help to understand basic properties of FMs. In the following,
we also introduced concepts that help developers of FMs to efficiently deal with
inconsistencies in FMs. For example, when confronted with a non-satisfiable FM (no
solution could be identified), conflict detection and diagnosis algorithms can be
applied to identify the sources of an inconsistency (the conflicts) and to propose
corresponding repairs (the diagnoses). In a working example, we showed how to
determine diagnoses. Furthermore, we extended the application of diagnosis algo-
rithms to the testing and debugging of FMs. In this context, test cases (represented as
constraints) define the intended semantics of FMs. If an FM has a different semantics,
the defined test case helps to induce conflicts in the set of FM constraints (𝐶𝐹) which
can then be solved on the basis of model-based diagnosis.

As an orthogonal aspect in the context of FM analysis we introduced an algorithmic
approach to redundancy detection in FMs. A constraint can be considered redundant
if the semantics of an FM does not change even if we delete the constraint. In
this context, we have introduced an algorithm for redundancy detection in FMs and
showed its operation on the basis of a working example.

In the context of FM analysis, we regard the following aspects as major issues for
future work.

Synthesis mechanisms for algorithm performance evaluation. Designing and
developing conflict detection and diagnosis algorithms requires the structured pro-
vision of test feature (configuration) models which allow algorithm performance
evaluation in a structured fashion [49]. For example, it should be possible to pre-
define the number of diagnoses, the number of conflict sets, and the corresponding
cardinalities. On the basis of the generated FMs, more structured evaluations can be
performed. In this context, large language models (LLMs) can also be regarded as a
promising approach to support the generation of test models [19].

Parallelization of FM analysis. Existing parallelization architectures make it
feasible to parallelize constraint reasoning as well as related conflict detection and
diagnosis processes [30, 51]. A major challenge is to efficiently exploit parallelization
architectures to significantly increase the efficiency of the mentioned operations.
This is important specifically due to the increasing size and complexity of variability
models (e.g., FMs). A further open issue is how to parallelize the identification of
redundant constraints – no related algorithms exist up to now.

Cognitive issues in FM development and maintenance. Being able to identify
the sources of an inconsistency also requires knowledge from cognitive psychology.
For example, in order to identify the set of constraints responsible for the faulty
semantics of an FM, knowledge about the cognitive complexity of individual FM
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elements should be exploited. The reason behind is that constraint structures which
are less understandable have a higher probability of being the source of a faulty
behavior. A simple example in this context is the logical implication 𝐴 ⇒ 𝐵 –
the corresponding implication 𝐵 ⇐ 𝐴 with exactly the same semantics requires
additional cognitive overheads [13].

Gamification-based conflict detection and diagnosis. Specifically in the context
of teaching Artificial Intelligence (AI) topics, it is important to provide intuitive
explanations of concepts and algorithms. In this context, gamification has shown to
be an appropriate way of making complex algorithms more accessible for students.
This idea should be applied in different AI-related settings and could thus contribute
to increase the accessibility of different AI techniques and algorithms [11].

Analysis Operations focusing on FM Applications. If one wants to apply FMs

in productive use, developers need to assure specific aspects of high relevance for
successful configurator applications. For example, when introducing new features,
it must be clear that these features are covered by the current infrastructure (e.g.,
is the production infrastructure capable of producing the configurations defined
by customers) [32]. Furthermore, features offered to customers should not be too
restrictive [41], i.e., narrow down the configuration space too much and thus leading
to situations where no relevant configurations can be identified for a customer [33].

References

1. M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle. Feature model differences.
In Advanced Information Systems Engineering: 24th International Conference, CAiSE 2012,
Gdansk, Poland, June 25-29, 2012. Proceedings 24, pages 629–645. Springer, 2012.

2. E. Bagheri and D. Gasevic. Assessing the maintainability of software product line feature
models using structural metrics. Software Quality Journal, 19:579–612, 2011.

3. D. Benavides, A. Felfernig, J. A. Galindo, and F. Reinfrank. Automated analysis in feature
modelling and product configuration. In J. Favaro and M. Morisio, editors, Safe and Secure
Software Reuse, pages 160–175, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

4. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems, 35(6):615 – 636, 2010.

5. D. Benavides, C. Sundermann, S. Vill, K. Feichtinger, , J. A. Galindo, R. Rabiser, and T. Thüm.
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44. C. Sundermann, T. Thüm, and I. Schaefer. Evaluating #SAT Solvers on Industrial Feature
Models. In 14th International Working Conference on Variability Modelling of Software-
Intensive Systems, VAMOS ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

45. O. Tazl, C. Tafeit, F. Wotawa, and A. Felfernig. DDMin versus QuickXplain - An Experimental
Comparison of two Algorithms for Minimizing Collections. In SEKE 2022, pages 481–486,
2022.
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Chapter 4
Interacting with Feature Model Configurators

Abstract In this chapter, we discuss different AI techniques that can be applied to
support interactive FM configuration scenarios. We have in mind situations where the
user of a FM configurator is in the need of support, for example, in terms of requiring
recommendations and related explanations for feature inclusions or exclusions or
recommendations of how to get out of an inconsistent situation. We show how to
support feature selection on the basis of recommendation technologies and also show
how to apply the concepts of conflict detection and model-based diagnosis to support
users in inconsistent situations as well as in the context of reconfiguration.

4.1 Feature Model Configuration

Feature model (FM) configuration is often an interactive process where a user speci-
fies her/his preferences regarding the given features [3, 4, 17, 18]. FM configurators
support a.o. (1) checking the consistency of the articulated preferences (𝐶𝑅 ∪ 𝐶𝐹

must be consistent), (2) recommending features, (3) explaining configurations, (4)
finding ways to get out of situations where no solution can be identified by the config-
urator, and (5) reconfiguration, i.e., helping to adapt an already existing configuration
in such a way that new user requirements are fulfilled (see Figure 4.1).

FM configuration, e.g
constraint solving

(sec 4.1)

Interacting with configurators

feature
recomendation

 (sec 4.2)

explanation of
configurations

(sec 4.3)

recommending
conflict resolutions

(sec 4.4)

reconfiguration
(sec 4.5)

Fig. 4.1: Interacting with FM configurators: basic AI techniques (ids in brackets refer
to the corresponding subsection).
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The task of consistency checking and configuration completion is taken over
by SAT solvers or constraint solvers. Especially in interactive settings, efficient
response times are needed. In this context, solvers apply different types of search
heuristics that can help to perform solution search in an efficient fashion. More
advanced configuration approaches apply machine learning for determining a set of
search heuristics that help to further improve the performance of the solver [33].
Furthermore, knowledge compilation approaches such as binary decision diagrams
(BDDs) [1] help to further improve the performance of solution search. Beyond
consistency checking and constraint reasoning, FM configuration also has to be able
to deal with inconsistent situations where, for example, user preferences become
inconsistent with the FM constraints. In such situations, conflict detection [22, 41]
and diagnosis [34, 43] can support users in identifying the sources of an inconsistency
and counteract correspondingly.1

Importantly, solution search, i.e., FM configuration, as well as inconsistency han-
dling have to be personalized in the sense that depending on the preferences of the
current user, different completions of the current configuration should be proposed
and also different alternatives to resolve an inconsistency have to be provided. Such
personalization services are crucial to support users in finding their preferred con-
figuration and help to make the overall FM configuration process more efficient. In
order to provide the mentioned personalization capabilities, different types of recom-
mendation services have to be integrated with constraint solving (or other reasoning
approaches such as SAT solving). In this chapter, we show different ways how such
an integration can take place. In this context, we primarily focus on recommendation
approaches that are based on supervised machine learning, i.e., a set of already com-
pleted configuration sessions2 will be used to infer user-specific recommendations
(see Table 4.1).

Following the definitions of an FM configuration and an FM configuration task
(see the Definitions 2.6 and 2.8), we introduce a set of configurations that have
already been completed in previous configuration sessions (see Table 4.1). In the
line of Definition 2.6, each session entry in Table 4.1 is a consistent and complete
FM configuration represented as an assignment set 𝐴. In the following, we discuss
various ways in which the entries in Table 4.1 can be applied to personalize the
interaction with an FM configurator.

4.2 Recommending Features

There are different reasons why users are not able to specify, i.e., include or exclude
a specific feature within the scope of an FM configuration process. (1) users might
not have the domain knowledge needed to decide about the inclusion of a specific
feature – this might be the case with technical features or new features the user was

1 For details see Chapter 3.
2 Collection of valid configurations typically created by configurator users.
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Table 4.1: Example: already completed configuration sessions. In the following, we
will use these example session data to show the integration of different recommenda-
tion approaches into interactive configuration sessions (1 = inclusion, 0 = exclusion
of a feature, ? = not specified yet).

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑠𝑠𝑖𝑜𝑛1 𝑆𝑒𝑠𝑠𝑖𝑜𝑛2 𝑆𝑒𝑠𝑠𝑖𝑜𝑛3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

smartwatch 1 1 1 1
screen 1 1 1 1
touch 1 1 1 0

standard 0 0 0 1
payment 0 1 0 ?

gps 0 1 0 ?
sportstracking 0 1 0 1

running 0 1 1 ?
skiing 0 0 1 ?
hiking 0 1 1 ?

energymanagement 1 1 1 ?
basic 0 0 0 ?

advancedsolar 0 0 1 ?

not confronted with up to now. (2) another explanation can be limited time resources,
i.e., users do not have the time to specify every feature and for some features prefer to
just rely on the recommendations provided by the FM configurator. (3) although users
know the feature, they tend to accept recommendations provided by the configurator
– this can happen due to the fact that users are risk-aware and want to avoid situations
where they run into the risk of suboptimal configurations [2, 29]. An example of
such an envisioned suboptimal configuration can be found in operating systems
where specific system parameters could lead to suboptimal response times. In the
following, we will discuss scenarios in which recommender systems [5, 10, 40] can
be applied to support users in the completion of a configuration process.

A recommender system can be defined as any system that guides a user in a
personalized way to interesting or useful objects in a large space of possible options
or that produces such objects as output [9, 15]. For the purposes of our discussions,
we distinguish between three types of recommender systems which are widely ap-
plied in different industrial contexts. (1) collaborative filtering is based on the idea of
word-of-mouth promotion where the opinions of family members and friends are the
major input for a recommendation. In the context of recommender systems, the role
of family members and friends is taken over by so-called nearest neighbors (NNs)
which are users with preferences similar to those of the current user. In the context
of online sales platforms, collaborative filtering is primarily applied to predict the
rating of a user for an item she/he has not consumed/seen up to now [19, 36]. (2)
content-based filtering exploits previous item consumptions stored in the profile of
the current user and tries to identify items that are similar to those that have been
consumed in the past. (3) group recommender systems [8] determine recommen-
dations for groups of users. In a first step, item ratings or items are specified by
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individual group members. Thereafter, the item preferences of group members are
aggregated on the basis of an aggregation function. For example, majority voting
recommends those items which are preferred by the majority of group members.
In the following, we show how the mentioned recommendation approaches can be
applied in configuration scenarios.

Collaborative filtering for recommending features. A basic approach to deter-
mine feature recommendations for individual users is to apply collaborative filtering
[6, 7, 31, 39]. Formula 4.1 can be used to determine the similarity between two FM
configuration sessions 𝑠𝑎 and 𝑠𝑏 where 𝐹 (𝑠𝑥) denotes the set of features already
specified in session 𝑠𝑥. In the example sessions of Table 4.1, Sessions 1–3 represent
already completed configuration sessions, i.e., each feature is explicitly included
or excluded, whereas the current session shows a subset of the features specified.
Formula 4.1 is specified in such a way that similarities are only determined for those
features specified in both sessions, i.e., 𝑠𝑎 and 𝑠𝑏. Such a recommendation approach
based on similarities between consumed items is also denoted as memory-based
collaborative filtering [23].

𝑠𝑖𝑚(𝑠𝑎, 𝑠𝑏) = |{ 𝑓 ∈ 𝐹 (𝑠𝑎) ∩ 𝐹 (𝑠𝑏) : 𝑠𝑎. 𝑓 = 𝑠𝑏. 𝑓 }|
| 𝑓 ∈ 𝐹 (𝑠𝑎) ∩ 𝐹 (𝑠𝑏) | (4.1)

In our working example (see Table 4.1), 𝑠𝑖𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛1) = 2
5 = 0.4,

𝑠𝑖𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛2) = 3
5 = 0.6, and 𝑠𝑖𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛3) = 2

5 = 0.4. Con-
sequently, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛2 is the nearest neighbor of the current session and the feature
settings of this session could be used for recommending feature settings to the user
of the current session. For example, for gps we could recommend feature inclu-
sion since the user in 𝑆𝑒𝑠𝑠𝑖𝑜𝑛2 also decided to include feature gps. Continuing this
idea, we could recommend the inclusion of the payment feature and further features.
However, recommending the payment feature triggers an issue since the user in the
current session has already selected the standard screen which incompatible with
the payment feature. As a consequence, recommendations directly determined on the
basis of collaborative filtering have to be checked for consistency with the constraints
in the FM [10].

Integrating feature recommendations with variable domain orderings. In
order to avoid the mentioned (potentially repeated) checking of the consistency
of feature recommendations with the constraints in the FM, we can apply feature
recommendations for determining a kind of variable domain ordering (heuristics)
which can then be used by a constraint or SAT solver [32]. For example, if the
inclusion of payment is recommended this would result in the definition of a variable
domain ordering [1,0] instructing the solver to try to include the feature payment into
the configuration (if possible). In the case of an inconsistency, backtracking would
be triggered by the solver resulting in an exclusion of this feature. Following this
strategy also helps to avoid inconsistencies.

Content-based filtering for recommending features. Content-based filtering
[30] can be used in scenarios where the preferences of a user in terms of feature
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Table 4.2: Example recommendation for the user in the current session (see Table
4.1). Instead of directly recommending feature settings, these settings can be included
in corresponding variable domain orderings exploited by a constraint or SAT solver.
In real-world contexts, the domain of the root feature (e.g., smartwatch) is assumed
to be always true (1=true, 0=false).

feature recommendation domain ordering
smartwatch 1 [1,0]

screen 1 [1,0]
touch 0 [0,1]

standard 1 [1,0]
payment 1 [1,0]

gps 1 [1,0]
sportstracking 1 [1,0]

running 1 [1,0]
skiing 0 [0,1]
hiking 1 [1,0]

energymanagement 1 [1,0]
basic 0 [0,1]

advancedsolar 1 [1,0]

inclusions and exclusions from the past can be directly applied in future recommen-
dation scenarios. The major difference between content-based filtering and collabo-
rative filtering is that the former determines recommendations based on similarities
between new items and items a user liked in the past whereas the latter focuses on
determining recommendations based on similarities between the current user and
related nearest neighbors. Content-based recommendation builds user profiles that
collect in a compressed form information about a user’s item consumptions in the
past. In the context of FM recommendation, such a profile could simply include
those features of configurations previously selected by the user. A simple similarity
function determining the similarity between the profile (𝑝) of the current user and a
new configuration (𝑐𝑜𝑛 𝑓 ) is shown in Formula 4.2.

𝑠𝑖𝑚(𝑝, 𝑐𝑜𝑛 𝑓 ) = |{ 𝑓 ∈ 𝐹 (𝑝) ∩ 𝐹 (𝑐𝑜𝑛 𝑓 ) : 𝑝. 𝑓 = 𝑐𝑜𝑛 𝑓 . 𝑓 }|
| 𝑓 ∈ 𝐹 (𝑝) ∩ 𝐹 (𝑐𝑜𝑛 𝑓 ) | (4.2)

When using content-based filtering in the context of FM configuration, the set of
features from the user profile can be regarded as user requirements to be fulfilled by
a new FM configuration. If an inconsistency occurs in this context, conflict detection
and diagnosis can help to identify minimal sets of features to be adaptated such
that a solution can be identified. In the context of our working example (smartwatch
feature recommendation), basic properties of a smartwatch purchased in the past can
be used to recommend similar smartwatches in upcoming smartwatch configuration
scenarios. For example, the current smartwatch of a user gets damaged and the user
is in the need of a new smartwatch or a new model of a smartwatch is released and
should be primarily recommended to those users interested in similar smartwatches in
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the past. In our working example, we know that the user associated with configuration
𝑆𝑒𝑠𝑠𝑖𝑜𝑛3 prefers an advancedsolar management and a new smartwatch with a new
generation of solar management features could be recommended. Analogously to
the inclusion of collaborative filtering results into solver variable domain orderings,
this approach can also be used in the context of content-based filtering: if a specific
feature has been selected (deselected) in the past, the same feature should be selected
(deselected) per default when building a new configuration.

Other example domains where content-based recommendation can be applied in
the context of FM configuration are the configuration of round trips in the travel
domain (e.g., based on the preferences of a person from previous travel packages,
the destinations and services for the new travel package (configuration) can be
recommended). On the basis of information of previous software packages installed
for a user, new (similar) software packages and corresponding parametrizations can
be recommended to the user when setting up a new operating system.

Enforcing configuration minimality. An important issue in the context of rec-
ommending feature inclusion (or exclusion) is to assure that only features are in-
cluded that are really needed, i.e., to answer the question what is the minimum
set of additional features to be included in a configuration 𝐴 such that all user
requirements and FM constraints are taken into account? For example, if we as-
sume the existence of a partial configuration 𝐴 = {𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑟𝑒𝑒𝑛 =

𝑡𝑟𝑢𝑒, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒}, it could be relevant
to find a consistent and complete configuration 𝐴′ with a minimum set of additional
features included. Achieving such a goal can be relevant since solvers do not care
about solution minimality and it can be relevant to support users in terms of in-
dicating decision alternatives regarding a minimal and complete configuration. In
the following, we show how such decision alternatives can be represented in terms
of minimal conflict sets, and the corresponding conflict resolutions are represented
as diagnoses, i.e., minimal sets of needed extensions to an existing configuration 𝐴

such that the resulting configuration 𝐴′ is consistent with 𝐶𝑅 ∪ 𝐶𝐹 and complete,
i.e., each feature has an assigned setting indicating inclusion or exclusion.

We now introduce a set 𝐴 = {𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =

𝑓 𝑎𝑙𝑠𝑒, 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑘𝑖𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, ℎ𝑖𝑘𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑏𝑎𝑠𝑖𝑐 =

𝑓 𝑎𝑙𝑠𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑓 𝑎𝑙𝑠𝑒} with all those features 𝑓𝑖 not specified in 𝐴

assumed to be excluded, i.e., 𝑓𝑖 = 𝑓 𝑎𝑙𝑠𝑒. For the features in 𝐴, we are able
to determine all minimal conflict sets (see Chapter 3) with regard to the fea-
ture settings in 𝐴. The minimal conflict sets that can be identified in 𝐴′ are
the following: 𝐶𝑆1 = {𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒}, 𝐶𝑆2 = {𝑏𝑎𝑠𝑖𝑐 =

𝑓 𝑎𝑙𝑠𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑓 𝑎𝑙𝑠𝑒}. The diagnoses that can be derived from the identi-
fied minimal conflict sets areΔ1 = {𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒, 𝑏𝑎𝑠𝑖𝑐 = 𝑓 𝑎𝑙𝑠𝑒},Δ2 = {𝑡𝑜𝑢𝑐ℎ =

𝑓 𝑎𝑙𝑠𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑓 𝑎𝑙𝑠𝑒}, Δ3 = {𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒, 𝑏𝑎𝑠𝑖𝑐 = 𝑓 𝑎𝑙𝑠𝑒}, and
Δ4 = {𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑓 𝑎𝑙𝑠𝑒}. These diagnoses indicate pos-
sible minimal extensions of the current partial configuration 𝐴 to come up with a con-
sistent and complete configuration 𝐴′ [42]. If we choose, for example,Δ1 as a possible
minimal extension for 𝐴, this would result in a configuration 𝐴′ = {𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ =
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𝑡𝑟𝑢𝑒, 𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑡𝑟𝑢𝑒, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒} ∪
{𝑡𝑜𝑢𝑐ℎ = 𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐 = 𝑡𝑟𝑢𝑒} ∪ {𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑓 𝑎𝑙𝑠𝑒, 𝑔𝑝𝑠 =

𝑓 𝑎𝑙𝑠𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑘𝑖𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, ℎ𝑖𝑘𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 =

𝑓 𝑎𝑙𝑠𝑒} including (1) all feature settings of 𝐴, (2) the feature settings of Δ1 in
negated form, i.e., {touch=true,basic=true}, and (3) all features of 𝐴 − Δ1.

4.3 Explaining Configurations

There exist different ways of explaining a configuration to a user [20, 25]. Without
any claim to completeness, in the following, we discuss basic explanation scenarios
of potential interest for FM configuration.

“Why” explanations. A user might be interested in an explanation as to why
specific features have been additionally included in a configuration [25] – this can be
explained as follows: (1) Enumerating the user-specified preferences and indicating
the relationship to the corresponding configuration (e.g., since you have selected
sportstracking, the gps feature has been included since it is required for the support
of sportstracking). In this context, we exploit a requires cross-tree constraint for
explaining the inclusion of a specific feature. Kramer et al. [25] show how such
explanations can be generated in a systematic fashion by proposing so-called ex-
planatory knowledge fragments which specify explanation patterns for individual
FM elements. For example, an explanation regarding a mandatory feature can always
be concluded with the statement in all configurations. (2) The inclusion of features
can also be explained on the basis of the used recommendation algorithm, for ex-
ample, when applying a collaborative filtering algorithm, an explanation could refer
to the preferences of the nearest neighbors (e.g., the advanced solar energy manage-
ment feature has been selected by users with similar preferences). When applying
content-based filtering, an explanation can refer to past preferences of the current
user (e.g., the advanced solar energy management feature has been included since
you included such a feature also in your previous purchases).

“How” explanations. A user might be interested in an explanation how a specific
configuration has been determined – this can be explained as follows: (1) Explaining
the sequence of constraints that were active when determining the current configur-
ation (e.g., the energy management feature has been included since it is mandatory.
Thereafter, a standard screen has been included since you did not want to include
the payment feature, ...). (2) If different candidate configurations exist and those are
ranked, for example, on the basis of a utility function [10], the approach to determine
the corresponding interest dimensions could be explained to the user (e.g., config-
uration 1 has been ranked highest, since it has the highest utility with regard to the
interest dimension sustainability which you have specified as the most important
interest dimension). In group decision scenarios [26], such an explanation could
refer to the applied aggregation strategy (e.g., average of the user ratings) used for
ranking the configurations [35]. Consequently, such explanations are generated by
using knowledge about the way solutions are determined [16].
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“Why not” explanations. In FM configuration scenarios (and beyond), users
can also end up in situations where no solution could be identified for the defined
set of user preferences [13, 20, 28]. In such a setting, users could be interested
in those requirement specifications that are responsible for the non-existence of a
solution. A conflict (set) (see Section 4.4) indicates individual sets of requirements
that induce an inconsistency – using this concept, users have to take a decision how
to resolve each individual conflict. A diagnosis (also Section 4.4) indicates a way
of how to change his/her requirements in one single step. Important to mention,
specifically in constraint-solving and configuration-related AI research, conflicts as
well as diagnoses are regarded as specific types of explanation [13, 20] (see also
Chapter 3). In the following section, these concepts will be discussed in the context
of identifying relevant conflict resolutions for inconsistent user requirements.

4.4 Predicting Relevant Conflict Resolutions

In Chapter 3, we have introduced different approaches that help to deal with inconsis-
tencies between user requirements (𝐶𝑅) and the underlying FM constraints (𝐶𝐹). In
this context, a conflict set𝐶𝑆 is defined as𝐶𝑆 ⊆ 𝐶𝑅 such that inconsistent(𝐶𝑆∪𝐶𝐹).
In our working example (see Figure 2.3), 𝐶𝐹 = {𝑐0..𝑐10} can be derived from the
FM in Figure 2.3. For the following example, we assume 𝐶𝑅 = {𝑐11 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =

𝑡𝑟𝑢𝑒, 𝑐12 : 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒}.

In this example, the user requirements are inconsistent with the FM constraints,
i.e.,𝐶𝑅∪𝐶𝐹 is inconsistent, which means that we have to activate conflict detection
for figuring out the corresponding conflict sets [11, 12]. As discussed in Chapter 3,
the first minimal conflict set derived is 𝐶𝑆1 = {𝑐11, 𝑐13}, i.e., the user is interested in
including the payment feature but has already included the standard screen feature
which is in contradiction to the constraints defined in the FM (represented by the
constraints in𝐶𝐹). An overview of the complete set of minimal conflict sets that can
be derived from 𝐶𝑅 is shown in Table 4.3.

Table 4.3: Minimal conflict sets derived by QuickXPlain for 𝐶𝑅 = {𝑐11 :
𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒, 𝑐12 : 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 :
𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒} and the FM constraints 𝐶𝐹 = {𝑐0..𝑐10}.

ID min. conflict set (𝐶𝑆)
𝐶𝑆1 {𝑐11, 𝑐13}
𝐶𝑆2 {𝑐12, 𝑐14}

Conflicts as those shown in Table 4.3 can be resolved (1) interactively, i.e., a
customer explicitly specifies accepted changes in his/her current requirements or
(2) on the basis of additional knowledge about the importance weights of the given
requirements. In interactive settings, users could be explicitly asked for selecting
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those preferences out of a conflict set, which they would accept to be adapted. For
example, on the basis of the conflict sets contained in Table 4.3, a user could be asked
to select which requirement (preference) to delete/change from 𝐶𝑆1 and thereafter
the same information will be requested for conflict set 𝐶𝑆2. After having selected
at least one requirement per conflict set, all conflicts are resolved (given conflict
minimality – see also Chapter 3). Alternatively, we can assume the existence of a
dataset of user-specific preferences from the past (see Table 4.4).

Table 4.4: Example set of completed configuration sessions where for each session
CR represents an initially inconsistent set of requirements and A the finally consistent
configuration as result of the configuration process. Furthermore, REC represents
a recommendation for the change of the currently inconsistent set of user require-
ments. In this example, the features smartwatch, screen, and energymanagement are
assumed to be mandatory.

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑠𝑠𝑖𝑜𝑛1 (NN) 𝑆𝑒𝑠𝑠𝑖𝑜𝑛2 𝑆𝑒𝑠𝑠𝑖𝑜𝑛3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CR A CR A CR A CR REC
touch ? 1 1 1 1 0 ? ?

standard 1 0 ? 0 ? 0 1 0
payment 1 1 0 0 0 0 1 1

gps 0 0 0 1 0 1 0 0
sportstracking 1 0 1 1 1 1 1 0

running ? 0 ? 1 1 1 ? ?
skiing ? 0 ? 1 0 0 ? ?
hiking ? 0 ? 1 0 0 ? ?
basic ? 0 ? 1 ? 1 ? ?

advancedsolar ? 1 ? 0 ? 0 ? ?

In the dataset shown in Table 4.4, each session contains the set CR of origin-
ally defined user requirements (which are inconsistent) and the set A specifying
the final consistent (and complete) configuration confirmed by the user. Given the
requirements 𝐶𝑅 = {𝑐11 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒, 𝑐12 : 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐13 :
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒} of the user in the current session, two min-
imal conflict sets are induced with regard to 𝐶𝐹 = {𝑐1..𝑐10}: 𝐶𝑆1 = {𝑐11, 𝑐13}
and 𝐶𝑆2 = {𝑐12, 𝑐14}. The most similar session (on a scale [0=not similar ..
1=very similar]) determined by Formula 4.1 compared to the current session is
𝑠𝑒𝑠𝑠𝑖𝑜𝑛1: sim(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛1)= 4

4 = 1.0, sim(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛2)= 2
3 = 0.66, and

sim(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛3)= 2
3 = 0.66.

Our goal now is to identify a minimal set of changes in𝐶𝑅 such that consistency is
restored with regard to the FM constraints 𝐶𝐹. Following our discussions in Section
3.2, we are able to construct a hitting set directed acyclic graph (HSDAG) [34] that
helps to identify minimal conflict resolutions (see Figure 4.2). In each step of the
HSDAG construction, we can compare alternative conflict resolutionsΔ𝜅 with regard
to their conformance (con) with the configuration chosen by the nearest neighbor
(NN) (see Formula 4.3).
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𝑐𝑜𝑛(Δ𝜅 , 𝐴) = |{ 𝑓 ∈ 𝐹 (Δ𝜅 ) ∩ 𝐹 (𝐴) : (¬Δ𝜅 . 𝑓 = 𝐴. 𝑓 )}| (4.3)

The conformance of a conflict resolution is specified by the number of changes
proposed by Δ𝜅 which are in line with the feature settings in the nearest neighbor
configuration 𝐴 (the more changes conform with 𝐴, the better). Figure 4.2 shows how
to determine a preferred diagnosis Δ𝑝𝑟𝑒 𝑓 (more precisely, Δ3(𝑝𝑟𝑒 𝑓 ) ) by analyzing to
which extent a set of conflict resolutions is in the line with the configuration 𝐴 of
the nearest neighbor (in our case, 𝑆𝑒𝑠𝑠𝑖𝑜𝑛1).3

Fig. 4.2: Hitting Set Directed Acyclic Graph (HSDAG) for the conflict sets
𝐶𝑆1 = {𝑐11 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒} and 𝐶𝑆2 = {𝑐12 :
𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒}. The search for a user-preferred diag-
nosis is guided by the conformance (con) measure (see Formula 4.3). The resulting
preferred minimal diagnosis is Δ𝑝𝑟𝑒 𝑓 = {𝑐12, 𝑐13}.

In the first step of the HSDAG construction (after having identified the first
conflict set 𝐶𝑆1), we have to calculate the conformance of (1) 𝑐11 and (2) 𝑐13 with
the feature selections in the configuration 𝐴 of the nearest neighbor. This results
in 𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒({𝑐11}, 𝐴)=0.0 and 𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒({𝑐13}, 𝐴)=1.0, i.e., only the
conflict resolution regarding 𝑐13 is in line with 𝐴. After having resolved 𝐶𝑆1, the
conflict set𝐶𝑆2 is the only remaining conflict set. In terms conformance (see Formula
4.3), the diagnosis Δ𝑝𝑟𝑒 𝑓 = {𝑐12, 𝑐13} has the highest conformance value (2.0) and
thus is the candidate for being presented as repair alternative to the user.

For the FM configurator user this means that it is recommended (by Δ𝑝𝑟𝑒 𝑓 )
to change the requirements regarding sportstracking and standard, i.e., to exclude
these two features. The recommendation REC in Table 4.4 is the result of applying
diagnosis Δ𝑝𝑟𝑒 𝑓 to the original user requirements 𝐶𝑅 in the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 session.

Direct diagnosis for personalized conflict resolution. Up to now, we have dis-
cussed different approaches that support the identification and resolution of conflict
sets on the basis of the concepts of hitting set directed acyclic graphs [34]. Following

3 In this example, there is exactly one preferred diagnosis, but it could be more.
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such an approach means to (1) identify the relevant minimal conflicts and (2) to re-
solve those conflicts by deleting or adapting at least one element of each conflict set.
A major drawback of this approach is that the determination of conflict sets is com-
putationally expensive [22] which can trigger performance (response time) issues
specifically in interactive settings. An alternative to the computation and resolution
of minimal conflict sets is to apply the concepts of direct diagnosis which follows the
idea of determining minimal diagnoses directly and omitting the step of identifying
minimal conflict sets. A direct diagnosis algorithm for the determination of preferred
minimal diagnoses is FastDiag [13, 28] which follows a divide-and-conquer based
approach for the determination of minimal diagnoses.

The basic divide-and-conquer based approach of FastDiag has already been
motivated in Chapter 3, i.e., diagnosis search in a constraint set 𝐶 = 𝐶1 ∪ 𝐶2
(assuming that both subsets include a nearly equal number of constraints) can be
reduced by half if the constraints in one half, for example,𝐶1 appear to be consistent.
Our motivation for providing more details on FastDiag in this chapter is that the
algorithm allows the determination of preferred diagnoses, i.e., diagnoses that can
be regarded as potentially relevant for a user. FastDiag can be activated with a
consideration set 𝐶, i.e., the set of constraints in which a diagnosis needs to be
identified and a constraint set 𝐵 (the background knowledge which is assumed to not
contain any diagnosis elements).

FastDiag is flexible since it allows to support scenarios where 𝐶 is a set of
customer requirements inconsistent with the FM constraints 𝐵 but also scenarios
where the FM configuration knowledge base is inconsistent. In this case,𝐶 represents
the FM constraints and 𝐵 = ∅. If 𝐶 ∪ 𝐵 is inconsistent, FastMSS is activated and
returns a maximum satisfiable subset Ω of 𝐶. In FastDiag, Ω is used to derive the
corresponding diagnosis Δ by building the complement = 𝐶 −Ω, i.e., Δ = 𝐶 −Ω. If
𝐶 ∪ 𝐵 is consistent, no diagnosis process needs to be activated and ∅ is returned by
FastDiag (see Algorithm 4).4

Algorithm 4 FastDiag(𝐶 = {𝑐1..𝑐𝑛}, 𝐵) : Δ
1: if Inconsistent(𝐶 ∪ 𝐵) then
2: return(𝐶-FastMSS(∅, 𝐶, 𝐵))
3: else
4: return(∅)
5: end if

The search for a maximum satisfiable subset (MSS) Ω in 𝐶 is performed by
FastMSS (see Algorithm 5) where Ω satisfies the following property: �Ω′ ⊃ Ω :
𝑀𝑆𝑆(Ω′), i.e., no superset of a maximum satisfiable subset can be a maximum
satisfiable subset (𝑀𝑆𝑆). If 𝐶 ∪𝐵 is consistent, the whole set 𝐶 is consistent and can
be regarded as part of the maximum satisfiable subset. In this context, the parameter
𝛿 is used to avoid redundant consistency checks of 𝐶 ∪ 𝐵. If |𝐶 | = 1, it can be

4 Algorithm 4 is a variant of FastDiag introduced in [13].
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assumed to be part of a diagnosis since otherwise it would have been returned as a
consistent constraint earlier. In every other case (|𝐶 | > 1), diagnosis search has to be
continued in a divide-and-conquer fashion, i.e., 𝐶 is divided into the two subsets 𝐶1
and 𝐶2 resulting in two further activations of FastMSS – the first one for checking
𝐶1 for further Ω elements and the second one for checking for Ω elements in 𝐶2
(Ω2 includes MMS identified in 𝐶1). All MSS elements, i.e., Ω1 ∪ Ω2, that could
be identified on a specific recursive level of FastMSS are returned to the previous
activation level.

Algorithm 5 FastMSS(𝛿, 𝐶 = {𝑐1..𝑐𝑛}, 𝐵) : Ω
1: if 𝛿 ≠ ∅ ∧ IsConsistent(𝐶 ∪ 𝐵) then
2: return(𝐶)
3: end if
4: if |𝐶 | = 1 then
5: return(∅)
6: end if
7: 𝑘 = ⌊ 𝑛2 ⌋
8: 𝐶1 ← 𝑐1...𝑐𝑘 ; 𝐶2 ← 𝑐𝑘+1...𝑐𝑛;
9: Ω2 ← FastMSS(𝐶1, 𝐶1, 𝐵);

10: Ω1 ← FastMSS(𝐶1 − Ω2, 𝐶2, 𝐵 ∪Ω2 );
11: return(Ω1 ∪Ω2)

Assuming the customer requirements 𝐶𝑅 = {𝑐11 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒, 𝑐12 :
𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑐13 : 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑐14 : 𝑔𝑝𝑠 = 𝑓 𝑎𝑙𝑠𝑒}, we now
want to sketch the execution of Algorithms 4–5 on the basis of our working example
(see Figure 4.3). In order to be applicable for FastDiag, we have to define the con-
tents of 𝐶 and 𝐵. In our working example, we can assume the consistency of the
FM and the corresponding FM constraints, i.e., we can focus diagnosis search on 𝐶𝑅

where we assume 𝑐0 : 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ ∧ 𝑠𝑐𝑟𝑒𝑒𝑛 ∧ 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡.

FastMSS is based on depth-first search where in every case the left branch is
responsible for determining Ω2 whereas the right branch of the search tree is respon-
sible for determining Ω1. In our example (see Figure 4.3), the determined maximum
satisfiable subset (MSS) is Ω = {𝑐11, 𝑐12} indicating that Ω ∪ 𝐵 is consistent and
�Ω′ ⊃ Ω : 𝑀𝑆𝑆(Ω′). The complement (the diagnosis) Δ of Ω = {𝑐11, 𝑐12} is 𝐶 −Ω
which results in Δ = {𝑐13, 𝑐14}. As mentioned, FastDiag allows for the determina-
tion of preferred diagnoses. More precisely, diagnoses can differ depending on the
original ordering of the constraints in the consideration set 𝐶 [13].

In our working example, we assumed the constraint ordering [𝑐11, 𝑐12, 𝑐13, 𝑐14]
assuming that constraints at the beginning have the highest importance and constraint
importance decreases with a corresponding lower ranking in the list, i.e., in the given
example, constraint 𝑐14 has the lowest importance. In this context, we assume that
constraints with a lower importance have a higher probability of being accepted
by the user as a diagnosis element. If we would change the order of our example
constraints in 𝐶 to [𝑐14, 𝑐13, 𝑐12, 𝑐11], the diagnosis returned by FastDiag would
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Fig. 4.3: Execution trace of FastMSS on the basis of 𝐶 = {𝑐11..𝑐14} and 𝐵 =

{𝑐0..𝑐10} resulting in the maximum satisfiable subset (MSS) Ω = {𝑐11, 𝑐12}. The
corresponding preferred diagnosis returned by FastDiag is Δ = {𝑐13, 𝑐14}.

be Δ = {𝑐11, 𝑐12}. The diagnoses returned by FastDiag are subset-minimal (see
Chapter 3) but not necessarily of minimal cardinality. In diagnosis scenarios where
minimal cardinality is required, we recommend the standard approach of determining
minimal conflict sets [22, 27] and a corresponding conflict resolution based on hitting
set directed acyclic graphs (HSDAGs) [34].

4.5 Reconfiguration

In situations where an FM configuration has already been completed, after-
configuration tasks can become relevant. Such tasks can be summarized as recon-
figuration tasks [14] with the goal to adapt an existing configuration in such a way
that new requirements are fulfilled. In the following, we discuss two basic scenarios
which are (1) the estimation which new feature should be recommended with regard
to a specific configuration and (2) a situation where a FM configuration has to be
adapted in order to take into account a new set of user requirements. We show how
to apply the concepts of matrix factorization [24] to perform such prediction tasks.

Matrix factorization for new feature recommendations. Table 4.5 sketches
a basic reconfiguration setting where the major task is to predict for a new feature
musicplay whether this feature should be recommended to users 𝑢𝑖 who have already
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completed an FM configuration.5 In the following, we will show how this task can be
completed on the basis of matrix factorization which is a widely used model-based
collaborative filtering approach [24] (in contrast to memory-based collaborative
filtering which has been used in Section 4.2). In this example, we assume that users
𝑢1 and 𝑢2 have already integrated the musicplay feature in their smartwatch (e.g., on
the basis of a software upgrade), and user 𝑢4 was not interested in this upgrade.

Table 4.5: The task of predicting the relevance of a new feature (mu)sicplay for
different users 𝑢𝑖 who have already completed a configuration. The symbol ? in
the matrix (𝑇) indicates the task to predict whether the new feature should be
recommended to the user 𝑢𝑖 (customer).

𝑠𝑚 𝑠𝑐 𝑡𝑜 𝑠𝑡 𝑝𝑎 𝑔𝑝 𝑠𝑝 𝑟𝑢 𝑠𝑘 ℎ𝑖 𝑒𝑛 𝑏𝑎 𝑎𝑑 𝑚𝑢

𝑢1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
𝑢2 1 1 1 0 0 1 1 1 0 0 1 0 1 1
𝑢3 1 1 0 1 0 1 0 0 0 0 1 1 0 ?
𝑢4 1 1 1 0 1 0 0 0 0 0 1 1 0 0
𝑢5 1 1 0 1 0 0 0 0 0 0 1 1 0 ?
𝑢6 1 1 0 1 0 0 0 0 0 0 1 1 0 ?
𝑢7 1 1 0 1 0 0 0 0 0 0 1 1 0 ?
𝑢8 1 1 0 1 0 1 1 1 0 1 1 0 1 ?

The entries in Table 4.5 can help to predict the relevance of individual new features
for users. In our example, an additional feature musicplay has been integrated which
is a software update that allows the activation of music sharing via smartwatch. In a
marketing context, it is important to know which users (of a potentially large group
of users) could be interested in this additional feature. A similar scenario is one
where users who already purchased a smartwatch 𝑥 could be interested in a new
version of 𝑥 due to the mentioned upgrade.

The prediction of the relevance of a new feature can be supported, for example, on
the basis of memory-based collaborative filtering [23] where relevance estimation is
implemented by simply analyzing the preferences of similar users with regard to new
features. In contrast to the previously discussed scenarios, the recommendation of
new features and – more generally – reconfiguration scenarios can often be handled
in an offline fashion which makes these scenarios more accessible to model-based
collaborative filtering approaches such as matrix factorization (MF) [24]. The overall
idea of matrix factorization is to optimize a set of so-called interest dimensions (in
machine learning contexts often denoted as hidden features) in such a way that
user-individual preferences can be estimated with a high prediction quality.

Using matrix factorization, the entries in Table 4.5 (the matrix 𝑇) can be re-
constructed on the basis of dimensionality reduction which follows the approach

5 For better readability, in this example, we apply the following abbreviations for feature names:
{(sm)artwatch, (sc)reen, (to)uch, (st)andard, (pa)yment, (gp)s, (sp)ortstracking, (ru)nning, (sk)iing,
(hi)king, (en)ergymanagement, (ba)sic, (ad)vancedsolar, (mu)sicplay}.
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of learning two low-dimensional matrices (𝑈𝐴 and 𝐴𝐹 representing the machine
learning model) that can be used to derive a matrix 𝑇 ′ ≈ 𝑇 , i.e., 𝑇 ′ can be regarded
as an approximation of 𝑇 . Following this approach, we are able to generalize from
determining recommendations based on individual user preferences to a machine
learning model based on dimensionality reduction which means that abstract inter-
est dimensions (in machine learning terms denoted as features) are learned and used
to predict item preferences of individual users.

For demonstration purposes, we construct the matrices 𝑈𝐴 (Table 4.6) and 𝐴𝐹

(Table 4.7) including the hidden features (interest dimensions) 𝑑𝑖𝑚1 and 𝑑𝑖𝑚2. These
dimensions are denoted as hidden, since the underlying machine learning (matrix
factorization) algorithm is not aware of the semantics of these features. We chose to
include two dimensions, however, in real-world application contexts the number of
such hidden features could be much higher. The role of such hidden features can be
best explained by example interest dimensions with a corresponding semantic, i.e.,
𝑑𝑖𝑚1 could (as said, we do not know) represent the interest dimension flexibility (i.e.,
the more features are included the better) and 𝑑𝑖𝑚2 could represent the dimension
simplicity (i.e., the less features included, the better).

If we use matrix factorization for learning the user × feature (interest dimension)
relationship and the interest dimension × feature (of the FM ) relationship, the
corresponding table entries are learned, i.e., do not have to be filled out manually.
In this context, the learning goal is to optimize (maximize) the similarity between 𝑇

and 𝑇 ′ where 𝑇 ′ is the result of applying a matrix multiplication of UA • AF – Table
4.8 is the result of a corresponding matrix multiplication applied to our example
Tables 4.6 and 4.7. In this context, the feature musicplay (mu) has a high estimate
for the users 𝑢1, 𝑢2, and 𝑢8 and a low estimate for all other users. The entry in Table
4.8 also confirms (predicts) a low interest of user 𝑢4 in the new 𝑚𝑢 feature.

Table 4.6: Matrix 𝑈𝐴 representing relationships between between the users 𝑢1..𝑢8
and interest dimensions (hidden features 𝑑𝑖𝑚1 and 𝑑𝑖𝑚2).

user 𝑑𝑖𝑚1 𝑑𝑖𝑚2

𝑢1 1.00 0.00
𝑢2 0.92 0.01
𝑢3 0.10 0.98
𝑢4 0.18 0.74
𝑢5 0.00 1.00
𝑢6 0.00 1.00
𝑢7 0.00 1.00
𝑢8 0.83 0.25

Again, we have to emphasize that when applying matrix factorization [24], i.e.,
learning the interest dimension/user relationships, the corresponding machine learn-
ing features are hidden, i.e., do not have a meaning. In other words, we do not know
exactly in which way the hidden features used by matrix factorization have a direct
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Table 4.7: Matrix 𝐴𝐹 representing relationships between interest dimensions (hidden
features) and selected features of our example FM .

dimension 𝑠𝑚 𝑠𝑐 𝑡𝑜 𝑠𝑡 𝑝𝑎 𝑔𝑝 𝑠𝑝 𝑟𝑢 𝑠𝑘 ℎ𝑖 𝑒𝑛 𝑏𝑎 𝑎𝑑 𝑚𝑢

𝑑𝑖𝑚1 1.00 1.00 0.80 0.20 0.44 1.00 1.00 1.00 0.39 0.71 1.00 0.00 1.00 1.00
𝑑𝑖𝑚2 0.99 0.99 0.09 0.91 0.12 0.17 0.00 0.00 0.00 0.00 0.99 1.00 0.00 0.00

Table 4.8: Matrix 𝑇 ′ as a result of a matrix multiplication UA • AF. The feature
musicplay (𝑚𝑢) appears to be potentially relevant for users 𝑢1, 𝑢2, and 𝑢8.

𝑠𝑚 𝑠𝑐 𝑡𝑜 𝑠𝑡 𝑝𝑎 𝑔𝑝 𝑠𝑝 𝑟𝑢 𝑠𝑘 ℎ𝑖 𝑒𝑛 𝑏𝑎 𝑎𝑑 𝑚𝑢

𝑢1 1.00 1.00 0.80 0.20 0.44 1.00 1.00 1.00 0.3892 0.7114 1.00009 0.0002 0.9999 0.9999
𝑢2 0.93 0.93 0.74 0.20 0.40 0.92 0.92 0.92 0.3575 0.65365 0.9312 0.01270 0.9187 0.9187
𝑢3 1.07 1.07 0.16 0.91 0.16 0.27 0.10 0.10 0.0372 0.06800 1.0677 0.97834 0.0955 0.0955
𝑢4 0.91 0.91 0.21 0.71 0.17 0.30 0.18 0.18 0.0682 0.12477 0.9114 0.74079 0.1753 0.1753
𝑢5 0.99 0.99 0.09 0.91 0.12 0.17 0.00 0.00 0.0001 0.00017 0.99396 0.99999 0.0002 0.0002
𝑢6 0.99 0.99 0.09 0.91 0.12 0.17 0.00 0.00 0.0001 0.00017 0.99395 0.99999 0.0002 0.0002
𝑢7 0.99 0.99 0.09 0.91 0.12 0.17 0.00 0.00 0.0001 0.00017 0.9939 1.0000 0.0002 0.0002
𝑢8 1.07 1.07 0.68 0.39 0.39 0.87 0.83 0.83 0.3221 0.5888 1.07320 0.2471 0.8276 0.8276

relationship to the (explicitly defined) features used in our working example. Con-
sequently, machine learning approaches such as matrix factorization provide help
in terms of automatically learning user × item preferences but come along with the
disadvantage of a low degree of explainability due to a lack of semantic knowledge
about user × item relationships.

FM reconfiguration. In the previous section, we already took a look at a simple
reconfiguration scenario focusing on analyzing a potential need of extending the
current FM configuration with the inclusion of a new feature. Beyond that, there
also exist scenarios where feature settings of an existing configuration 𝐴 have to
be adapted in order to be able to take into account a new set of user requirements
(𝐶𝑅). On the software level of a smartwatch, the inclusion of specific additional
features could trigger a need of reconfiguration [14, 21]. In our smartwatch example,
the inclusion of additional features, for example, additional software components
supporting sportstracking could trigger a need of changing also other settings in the
existing FM configuration 𝐴.

Let us assume the existence of a configuration 𝐴 = {𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ =

𝑡𝑟𝑢𝑒, 𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑡𝑟𝑢𝑒, 𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑓 𝑎𝑙𝑠𝑒, 𝑔𝑝𝑠 =

𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑘𝑖𝑖𝑛𝑔 = 𝑓 𝑎𝑙𝑠𝑒, ℎ𝑖𝑘𝑖𝑛𝑔 =

𝑓 𝑎𝑙𝑠𝑒, 𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐 = 𝑡𝑟𝑢𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑠𝑜𝑙𝑎𝑟 = 𝑓 𝑎𝑙𝑠𝑒}. The
user now changes his/her mind and wants to include the payment feature. Since
payment excludes a standard screen, the (singleton) requirement 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒

induces an inconsistency in the feature settings of 𝐴. In our example, two conflict
sets are induced which are 𝐶𝑆1 = {𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒} and 𝐶𝑆2 = {𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒}.
For 𝐶𝑆1 and 𝐶𝑆2, there exists one related diagnosis which is Δ = {𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
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𝑡𝑟𝑢𝑒, 𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒} indicating that 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑡𝑟𝑢𝑒 has to be replaced with
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑓 𝑎𝑙𝑠𝑒 and 𝑡𝑜𝑢𝑐ℎ = 𝑓 𝑎𝑙𝑠𝑒 has to be replaced with 𝑡𝑜𝑢𝑐ℎ = 𝑡𝑟𝑢𝑒 in 𝐴′

resulting in a corresponding reconfiguration 𝐴′.

Due to the binary domain of individual features, a reconfiguration can be directly
derived from a diagnosis Δ. A reconfiguration 𝐴′ is an adaptation of the original
configuration 𝐴 in such a way that the new requirements 𝐶𝑅 are consistent with the
feature settings in 𝐴′. In this context, the setting of those features remains the same
which are included in 𝐴 but are not part of Δ. Vice-versa, feature elements of Δ have
to be deleted from 𝐴 and included in negated form into the new configuration 𝐴′

which itself represents the reconfiguration. Equation 4.4 represents a construction
rule for each setting of a feature 𝑓 in the new configuration (reconfiguration) 𝐴′

where 𝑓 (𝐴′) denotes the feature setting of feature 𝑓 in 𝐴′ (e.g., 𝑡𝑜𝑢𝑐ℎ(𝐴′) = 𝑡𝑟𝑢𝑒),
𝑓 (𝐴) denotes the feature setting of feature 𝑓 in the original configuration 𝐴 (e.g.,
𝑡𝑜𝑢𝑐ℎ(𝐴) = 𝑓 𝑎𝑙𝑠𝑒), and 𝑓 (Δ) denotes the new feature setting of feature 𝑓 in 𝐴 (e.g.,
𝑡𝑜𝑢𝑐ℎ(Δ) represents the new feature setting 𝑡𝑜𝑢𝑐ℎ = 𝑡𝑟𝑢𝑒).

𝑓 (𝐴′) =
{
𝑓 (𝐴), if 𝑓 = 𝑋 ∉ Δ

𝑓 (Δ), otherwise
(4.4)

Recommending reconfigurations. Recommendations for reconfigurations can
be determined in a fashion similar to the recommendation of conflict resolutions
(see Section 4.4). As discussed, a set of new requirements (within the scope of a
reconfiguration scenario) can induce a conflict in the current configuration 𝐴. The
identified conflicts can be resolved on the basis of the concepts of model-based
diagnosis [34]. Given a dataset which includes the original configuration 𝐴 as well
as the corresponding reconfiguration 𝐴′, a collaborative filtering approach could be
applied by (1) identifying (in the dataset) a configuration 𝐴 which is similar to the
configuration of the current user and (2) to guide conflict resolution in such a way
that the chosen resolutions lead to a reconfiguration 𝐴′ which is as similar as possible
to the feature settings in the reconfiguration of the nearest neighbor.

4.6 Discussion

In this chapter, we have discussed different topics in the context of supporting FM
configuration in interactive scenarios, i.e., a user is interacting with a configurator
with the goal to build a complete and consistent FM configuration. FM configuration
can become a tedious task since users might not always have detailed domain know-
ledge resulting in situations where some of the features could not be specified or
get specified in a suboptimal fashion. Furthermore, a complete specification of all
features might simply not be possible due to size of the configuration model.

In order to provide a better support for users in interactive FM configuration
scenarios, we have shown how different approaches from machine learning and rec-
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ommender systems can be applied to predict the relevance of inclusion or exclusion
of specific features. In this context, we discussed (1) approaches to recommend fea-
ture inclusion or exclusion, (2) approaches to the recommendation of adaptations of
feature preferences in inconsistent situations, and (3) approaches to support reconfig-
uration scenarios, for example, in terms of determining minimal sets of adaptations
needed for already existing configurations such that a new set of user requirements
can be taken into account.

In the context of the topic of interacting with FM configurators, we regard the
following aspects as major issues for future work.

Search heuristics beyond variable domain orderings. We discussed different
approaches to support the recommendation of feature inclusion or exclusion. In this
context, we have sketched ways to integrate such a recommendation task directly into
the variable value ordering of a solver. The inclusion of variable domain orderings
into solver search heuristics can be regarded as a first step towards accuracy-aware
FM configuration, however, further approaches, for example, variable ordering and
the generation of dynamic search heuristics, i.e., search heuristics defined during
solver runtime, have to be analyzed in detail.

Integration of machine learning with constraint reasoning. In the line of
the topic of integrating search heuristics with recommendation, a more general
issue is the integration of machine learning with constraint reasoning [33]. For
example, it is important to further improve the predictive quality of recommendation
services. This can be achieved by analyzing different possibilities to integrate domain
knowledge into the machine learning process, for example, by explicitly encoding
domain constraints in a neural network.

Cognitive issues in interactive configuration. There are issues located far be-
yond technical issues of interactive FM configuration. In many cases, configuration
is a highly interactive process (with the exception of batch configuration scenarios)
where users are interacting with a configurator with the goal to build a consistent
configuration entailing user-relevant features. In this context, it is important to take
into account theories of human decision making to be able to better understand how
to best support configurator users [38].

Group-based configuration. In contrast to single-user scenarios, there are also
many scenarios where a configuration task has to be completed by a group of users
[26]. In this context, a group of users has to achieve consensus with regard to the
inclusion or exclusion of a specified set of features [37]. Furthermore, conflicts (in
the case of inconsistent requirements among different group members) have to be
resolved in a way somehow acceptable for all group members. New user interfaces
supporting group decision making in the context of FM configuration as well as
new recommendation and diagnosis algorithms have to be developed to provide an
efficient user support in such contexts.
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Chapter 5
Tools and Applications

Abstract Feature Models (FMs) are not only an active scientific topic but they are
supported by many tools from industry and academia. In this chapter, we provide
an overview of example feature modelling tools and corresponding FM configurator
applications. In our discussion, we first focus on different tools supporting the design
of FMs. Thereafter, we provide an overview of tools that also support FM analysis.
Finally, we discuss different existing FM configurator applications.

5.1 Tool and Application Landscape

We will now show how the concepts discussed in Chapters 2–4 are integrated
into real-world systems (ranging from industrial applications to research-driven
prototypes). Importantly, all of the discussed systems cover some subsets of the
concepts discussed in the previous chapters.

Without claiming to be complete, we provide an overview of example tools and
applications. In Section 5.2, we provide an overview of example feature modelling
tools which are of great importance for different kinds of variability management
processes [11, 25, 99]. In this context, we discuss the functionalities provided by
those tools and provide insights into the corresponding graphical user interfaces.
In Section 5.3, we focus on the way different types of FM analysis operations are
included in feature modelling tools. Finally, in Section 5.4, we discuss examples of
FM configurator applications.

Table 5.1 provides an overview of example descriptions/presentations of tools
supporting (1) the design of Feature Models (FMs), (2) their analysis, and (3) FM
configuration. Following the major objectives of this book, we will specifically focus
on discussing AI techniques related to the topics of knowledge representation and
reasoning (KRR), explainable AI (XAI), and machine learning (ML). In this context,
we provide example screenshots of tools if corresponding test versions were publicly
accessible without the need of purchasing a license. For an in-depth analysis of the
existing tool support in software product lines, we refer to Horcas et al. [57].
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Tools Applications

AI Areas Feature modelling FM analysis Interacting with FM
configurators

knowledge
representation

(KR)

basic FM
[7, 18, 65, 60, 70, 78,

106]
attribute-based FM

[2, 7, 18, 106]
cardinality-based FM

[7, 18, 106]

operations with/without
solver support

[7, 14, 18, 56, 65, 70, 78,
81, 100, 106]

basic FM configuration
[9, 46, 51, 94]
attribute-based
[2, 9, 12, 48, 92]
cardinality-based

[9, 23]

reasoning (R)

CSP-based
[2, 7, 82, 92, 118]

SAT-based
[18, 46, 48, 106]

rule-based
[65, 70]

CSP-based analysis
[7, 14, 16]

SAT-based analysis
[14, 18, 106]

rule-based analysis
[65, 70]

CSP-based
[12, 82, 91, 105]

SAT-based
[79]

rule-based
[20, 38, 75]

explainable AI
(XAI)

argumentation-based
explanations

[35, 109]
consistency-based

explanations
[31, 92, 107]

FM inconsistencies
[14, 17, 74, 67]

FM redundancies
analysis
[14, 69]

explaining
configurations and

inconsistencies
[19, 91, 92, 111, 116]

machine
learning (ML)

configuration space
learning [85]

knowledge extraction
from data

[80, 72, 104, 112]

predicting faulty
FM elements

[40]

recommending
features

[4, 6, 37, 88, 94]
recommending

reconfigurations
[4, 37, 44, 46]

Table 5.1: Tool and application landscape: example tools and applications (feature
modelling, FM analysis, and FM configuration).

5.2 Feature Modelling Tools

Clafer [7] is a knowledge representation language and environment for feature
modelling and configuration, class and object modelling, and metamodelling. The
system is available as a desktop application and as a set of publicly available web-
based tools.1 It supports variability modelling including also non-Boolean features
(attributes) and constraints about their values, arbitrary multiplicity in group features
(e.g., x..y, where x can be distinct from 1 and y distinct from *), feature clones and
abstract classes, and multi-objective optimization. Using Clafer, complete and
consistent configurations can already be generated in the modelling phase which
helps to more easily understand the semantics of the FM. An example of applying
Clafer to represent our smartwatch FM is shown in Figure 5.1.

1 https://www.clafer.org/

https://www.clafer.org/
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Fig. 5.1: Feature modelling and generation of configurations with Clafer. The FM is
shown on the left-hand-side, a corresponding configuration on the right-hand-side.

FeatureIDE [106]2 is an open-source Eclipse framework for feature-oriented
software development (FOSD) with a plug-in-based extension mechanism to inte-
grate and test existing tools and SPL approaches. As FeatureIDE supports abstract
features. In FeatureIDE, the FM and the corresponding configuration interface are
closely connected [86], for example, the configuration interface is based on the
same hierarchical structure as defined in the FM (see Figure 5.2). In FeatureIDE,
solver-based propagation also enforces consistency between selected features and
the constraints defined in the FM. For example, the deselection of some features
could also enforce the deselection of related features. FeatureIDE also supports the
concept of focused views with the idea that only those features are visible to the user
which are in the current focus, for example, if a user selects a specific feature, he/she
might be interested also in related subfeatures but there is no need to display the
complete feature tree.

pure::variants [18]3 is an Eclipse-based solution supporting different variability
modelling concepts such as features with attributes, feature clones, variant instances,
hierarchical variant composition, and OCL-type constraints. Based on specifications
in its family model, it supports the generation and validation of the final configur-
ation, i.e., the code of various programming and scripting languages. An example
screenshot of the pure::variants environment is provided in Figure 5.3.

S.P.L.O.T. (Software Product Lines Online Tools) [78]4 is a web-based
environment for the design, analysis, and configuration of FMs. It supports logic-
based reasoning tasks on the basis of reasoning approaches such as SAT solving
and binary decision diagrams (BDDs). Furthermore, S.P.L.O.T. provides a large

2 http://www.featureide.com/

3 https://www.pure-systems.com/

4 http://www.splot-research.org/

http://www.featureide.com/
https://www.pure-systems.com/
http://www.splot-research.org/
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Fig. 5.2: FM configuration with FeatureIDE. The configuration user interface fol-
lows the hierarchical structure defined in the FM .

repository of FMs5 which is a kind of configuration benchmark suite used in various
evaluation contexts supporting a structured comparison of different configuration
problem solving approaches. The system provides a flexible web-based user interface
which supports the design of FMs as well as corresponding FM configuration tasks –
see the Figures 5.4 and 5.5.

The FM diagram is represented in the form of a tree view. FM-related cross-tree
constraints are shown in a separate view where individual constraints can be defined
in terms of logical disjunctions. In a further user view, FM statistics are displayed
giving an overview of the different FM properties, for example, #features and #xor
groups (i.e., alternative relationships). Finally, the environment also supports FM
analysis operations including FM satisfiability, dead features, and core features. With
S.P.L.O.T. as web-based application, no related installation procedures are needed.
The simple graphical user interface makes it specifically applicable in the context
of university courses, e.g., to give students a short but representative overview of
feature modelling concepts, their semantics, and related FM configuration processes.
Based on a set of input parameters, for example, number of features, minimum and
maximum feature branching factor, and consistency of generated models, S.P.L.O.T.

5 Also available via UVLHub [96, 103] – see https://www.uvlhub.io/.

https://www.uvlhub.io/
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Fig. 5.3: Example screenshots of the pure::variants user interface with the smart-
watch FM on the left-hand-side and related configurations on the right-hand-side.

also supports the generation (synthesis) of FMs which is of high relevance specifically
when evaluating problem solving algorithms.

FM2EXCONF [70]6 is an environment supporting the definition of configuration
tasks on the basis of FMs with the basic modelling concepts of feature, or, alterna-
tive, mandatory, optional, and the cross tree constraints requires and excludes. FMs

can be imported on the basis of the exchange formats SXFM (used in S.P.L.O.T.),
FeatureIDE XML format, and Glencoe JSON. As depicted in Figure 5.6, these
models can also be analyzed on the basis of analysis operations such as dead and
false optional features – see Benavides et al. [13]. Out of a given FM, the system
supports the direct generation of a corresponding Microsoft Excel based config-
urator application. Such a configurator depicts those features derived from the FM –

6 https://github.com/AIG-ist-tugraz/FM2ExConf

https://github.com/AIG-ist-tugraz/FM2ExConf
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Fig. 5.4: Smartwatch FM developed in S.P.L.O.T. (Software Product Lines Online
Tools).

on the basis of specifying 0 (feature exclusion) and 1 (feature inclusion), users can
articulate their requirements with regard to a final configuration (see Figure 5.7).

For the purpose of increasing user interface understandability, the constraints
derived from the FM are explicitly shown to the user. In the case of a constraint
violation, a corresponding message is displayed to help the user to find a way out
from the no solution could be found dilemma. In contrast to feature modelling envi-
ronments such as FeatureIDE, FM2EXCONF does not provide a solver integration,
i.e., functionalities such as automated FM diagnosis (see Chapter 3) and configuration
completion (see Chapter 4) are not supported. However, due to the simple definition
and corresponding configurator generation, this environment can easily be used in
knowledge representation related courses.

EventHelpR [35]7 is a publicly available general-purpose group decision support
tool. In the context of product (line) scoping, EventHelpR can support stakeholders

7 https://www.eventhelpr.com

https://www.eventhelpr.com


5.2 Feature Modelling Tools 101

Fig. 5.5: Smartwatch FM configuration in S.P.L.O.T..

Fig. 5.6: Example screenshot of the FM2EXCONF modelling environment [70].
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Fig. 5.7: Example screenshot of FM2EXCONF [70].

in finding solid arguments regarding the inclusion and exclusion of features. An
example screenshot of EventHelpR is shown in Figure 5.8.

Fig. 5.8: Example screenshot of EventHelprR.

The underlying idea of EventHelpR [35] is to allow users (stakeholders) to
provide arguments for or against the inclusion of specific features. These arguments
are then aggregated feature-wise indicating a “global” tendency of feature inclusion
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or exclusion. Such type of preference elicitation user interfaces can help group
members to focus on the exchange of decision-relevant information, i.e., arguments,
and thus to significantly improve the overall decision quality (in terms of the selected
features). With this, EventHelpR provides a kind of explanation-based user interface
which helps to make the reasons for feature inclusion and exclusion transparent. The
aggregation of the preferences of individual users is supported in terms of a group
aggregation function [33, 108, 109] which determines the share of positive and
negative arguments on a graphical level (see Figure 5.8). In the line of EventHelpr,
the open source requirements engineering environment OpenReq8 supports group
decision making in the context of prioritizing software features [31, 43, 107].

MiniZinc IDE [82]9 is a tool that allows for the specification and solving of
constraint satisfaction problems (CSPs) in a graphical environment. The specification
of our example FM in MiniZinc IDE is depicted in Figure 5.9.

Fig. 5.9: Example screenshot of MiniZinc Ide.

8 https://openreq.eu/

9 https://www.minizinc.org/ide/

https://openreq.eu/
https://www.minizinc.org/ide/
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On the one hand, a major disadvantage with regard to feature modelling is
that IDEs such as the MiniZinc environment support the specification of vari-
ables and constraints, however, no related graphical knowledge representation of
features, relationships, and cross-tree constraints is provided. On the other hand,
models (represented as CSPs) can easily be extended with attributes, for example,
for each relevant feature, we could introduce a corresponding price attribute in-
dicating the price of a feature (e.g., for the feature 𝑔𝑝𝑠, we can introduce the
attribute 𝑝𝑟𝑖𝑐𝑒𝑔𝑝𝑠). Furthermore, an attribute 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 would represent the
overall price of a configuration using an additional resource constraint of type
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 = 𝑝𝑟𝑖𝑐𝑒 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1 + .. + 𝑝𝑟𝑖𝑐𝑒 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑛. This way, MiniZinc IDE could
be used within the scope of different courses related to knowledge representation
and reasoning. Specifically, in the context of constraint solving (and beyond), search
optimization plays a major role. With highly complex FMs, a corresponding solver
search optimization on the basis of the concepts of machine learning becomes in-
creasingly relevant [90, 113]. Related topics are (1) configuration space learning
[85] which includes intelligent synthesis methods for the generation of relevant test
configurations and (2) knowledge extraction from data [80, 72, 104, 112] which can
help to increase the efficiency of modelling processes, for example, by the automated
extraction of features from natural language text.

Finally, Gears [65]10 is a product line engineering tool and lifecycle framework
which supports all phases of the SPL process. Product line engineering is interpreted
as a highly automated task similar to the manufacturing of physical products in a
factory. Gears provides a quasi-standard unified variant management approach that
is vendor-independent but integrates with other third party and proprietary tools,
assets, and processes across each stage of the lifecycle — and across engineering
and operations disciplines. This helps to reduce complexity, time, effort, and errors
on the one hand and breaks down organizational and operational silos enabling better
communication and alignment and greater collaboration on the other hand.

Product Configuration Environments. Specifically, in the context of
knowledge-based product configuration scenarios [36, 98, 102], there exists a
plethora of commercial environments supporting the development of configura-
tor applications. Without any claim to completeness, related example systems are
camos11, ConfigIt12, Tacton13, encoway14, and Variantum15. Note that these
systems are not primarily based on FMs but in many cases on a more object- or
component-oriented knowledge representation (see, e.g., [30, 34]). The correspond-
ing reasoning (solver) support can range from constraint-based and SAT-based to
rule-based reasoning [36, 98, 102].

10 https://biglever.com/solution/gears/

11 https://www.camos.de

12 https://configit.com

13 https://www.tacton.com/

14 https://www.encoway.de

15 https://variantum.com/

https://biglever.com/solution/gears/
https://www.camos.de
https://configit.com
https://www.tacton.com/
https://www.encoway.de
https://variantum.com/
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Based on the given overview of feature modelling tools (and beyond), we now
discuss examples of tools that support the analysis of FMs.

5.3 Feature Model Analysis: Tool Support

Due to changing requirements and dependencies between features, the development
and maintenance of large and complex product lines can become a difficult task [63].
In the following, we discuss different tools that assist developers in the design and
maintenance of FMs.
flama [50]16 is a tool suite for variability model analysis in general and FM

analysis in particular. It is developed as Python framework with a plugin–based
architecture where different plugins for FM languages can be developed as well
as reasoning capabilities. flama supports UVL models (see Section 2.7) and SAT,
BDD, and SMT reasoning capabilities [76]. It also supports analysis operations that
do not need a solver support (see Section 3.1.1). The project is maintained and
promoted by 4 different universities and its spirit is to serve a common base for the
development of FM analysis and configuration capabilities. Many applications use
flama as background for analysis capabilities [15, 49, 58, 59, 71, 77, 95, 96, 103].

FaMa [14]17 is a wide-spread application for FM analysis written in Java. It
is a framework for the automated analysis of FMs integrating several of the most
commonly used logic-based representations and solvers proposed in the literature
(BDD, SAT, CSP solvers). After having imported a FM from nearly any other FM tool, it
provides support for validity checking and finding inconsistencies. By that, it covers
the domain analysis phase really well, for example, features with attributes, numeric
values, and constraints. For requirements analysis, too, FaMa stands out with its
automatic reasoning capabilities based on symbolic AI methods, such as model
validation (e.g., non-satisfiable model), anomaly detection (e.g., dead features, false-
optional features), model counting (e.g., number of configurations), and redundancy
detection [69]. Currently, the project lacks support since its main contributors are
now developing flama.

FactLabel [56]18 is a web-based tool that supports (in a configurable fashion)
the interactive visualization of FM characteristics (as a result of executing various
FM analysis operations) which can then also be exported to other tools in diverse
exchange formats (e.g., the Universal Variability Language). The result of applying
FactLabel to our example FM is depicted in Figure 5.10.

FeatureIDE [106] provides a set of analysis operations (a.o. dead features, false
optionals, and redundant constraints) which are defined on a logical basis used
to determine anomaly for developers [63]. Such a reasoning about different FM
properties can help to generate explanations that provide reasons as to why specific

16 https://flamapy.github.io

17 http://www.fama-ts.us.es/

18 https://fmfactlabel.adabyron.uma.es/

https://flamapy.github.io
http://www.fama-ts.us.es/
https://fmfactlabel.adabyron.uma.es/
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Fig. 5.10: FactLabel user interface: output for the smartwatch FM.

expected FM properties do not hold. For example, an explanation can indicate minimal
sets of FM relationships and cross-tree constraints that are responsible for a specific
unintended FM semantics [32, 63, 74].

FMTesting [21]19 is a FeatureIDE plugin focusing on the application of model-
based diagnosis [32, 93] for explaining anomalies in FMs. The determined diagnoses
represent minimal sets of FM relationships and constraints responsible for an unin-
tended behavior of a FM (e.g., which are the relationships and constraints that make a
specific feature a void feature). Given a specific FM, the developer can select analysis
operations to be activated (e.g., void features) and the plugin determines the set
of void features with the corresponding explanations (diagnoses). A screenshot of
FMTesting with a corresponding diagnosis output is shown in Figure 5.11.

Similar to FMTesting, Hentze et al. [74] present a FeatureIDE service that
supports the determination of diagnoses (denoted as hyper-explanations) for dead
features. Furthermore, Bendı́k and I. Černá [17] present a tool that supports the
determination of minimal unsatisfiable subsets (conflict sets) which are a basis
for diagnosis determination [40, 93] (see Chapter 3). Finally, Le et al. introduce
DirectDebug [67, 68] which is a Java library for the automated diagnosis of FMs.

19 https://github.com/AIG-ist-tugraz/FMTesting

https://github.com/AIG-ist-tugraz/FMTesting
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Fig. 5.11: FMTesting: a diagnosis plugin for FeatureIDE.

UVLHub [96]20 is a data set repository supporting feature models in UVL format
using open science principles. Open science principles promote transparency, acces-
sibility, and collaboration in scientific research. UVLHub provides a front-end that
facilitates the search, upload, storage, and management of feature model datasets,
improving the capabilities of discontinued proposals such as S.P.L.O.T.. It commu-
nicates with Zenodo providing a permanent location for datasets and it is maintained
by three active universities in variability modelling. Figure 5.12 shows UVLHub in
action where the data set of the feature model shown in the book is displayed.

In addition to the previously discussed examples, the following tools support FM
analysis operations [57]. pure::variants [18] supports a set of analysis operations
comparable to those of FeatureIDE. In pure::variants, it is possible to determine
the number of configurations for individual subtrees of the FM [57]. S.P.L.O.T. [78]
also provides a basic set of analysis operations including dead features and FM
consistency (see Figure 5.5). Analysis operations supported in FM2EXCONF (see
Figure 5.7) [38, 70] resemble those provided by the FMTesting environment (see
Figure 5.11). Finally, a formalization in terms of mixed integer linear programs for
the analysis of Clafer models is provided in Weckesser et al. [115] – compared to
most of other existing analysis approaches, Clafer [7] FM analysis has to deal with a
higher complexity due to a higher expressivity of the underlying FM language [115].

20 https://www.uvlhub.io/

https://www.uvlhub.io/
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Fig. 5.12: UVLHub: a data set repository of feature models in UVL format [96].

5.4 Feature Model Configurator Applications

On the basis of the previous presentations of feature modelling tools and correspond-
ing FM analysis approaches, we now discuss different FM configurator applications. In
our discussion, we specifically focus on those applications with available associated
descriptions of the used AI methods.

Software Product Line Configuration. FMs help to represent the configuration
space of a large number of different systems which can be assembled out of a set of
pre-defined (implemented) software artifacts. Thus, the concept of software artifacts
in SPL configuration resembles the concept of components when configuring phys-
ical systems [36]. FMs of industrial software product lines [8, 89, 84] can become
large and complex – see, for example, the Linux operating system FM [97, 105].
Asikainen et al. [9] introduce the configuration environment WeCoTin and show
how their configuration environment can be used to model and implement a text ed-
itor configurator application. The system includes a modelling environment which
can be used to create (attribute- and cardinality-based) FMs and thereof (in an auto-
mated fashion) a corresponding configurator user interface. In the line of this work,
various software systems and tools support the task of software product line con-
figuration. Related SPLs exist, for example, in operating systems [97], automotive
systems [27, 28, 117], synthetic biology [24], and software product lines for large
telescope control software [55].

Configuring Control Systems. Beek et al. [12] define a single FM covering the
complexity (high variability) of the European Train Control System (ETCS), an
automatic train protection (ATP) system which continuously supervises all trains on
a railway line, ensuring that the safety speed and distance are not exceeded. This
model shows the different components to be installed at the different levels estab-
lished by the ETCS standards and helps engineers to understand and solve specific
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issues, such as aligning the interfaces between different systems (e.g. onboard and
wayside equipment), development of sustainable solutions by involved manufactur-
ers, interoperability among systems at different ETCS levels, backward compatibility
of involved subsystems, and evolution towards new requirements. The FM can also
act as facilitator in cost and performance analysis for planning purposes because it is
implemented in Clafer which supports the generation of the complete set of instan-
ces (products) from the model. Furthermore, attributes associated to features and
quality constraints allow assignment of costs and their corresponding optimization.

Runtime Configuration. Capilla et al. [5, 23] introduce concepts supporting
the specific scenario of runtime configuration in the context of dynamic software
product lines. Such a type of configuration enables the addition and removal of
variants on-the-fly, runtime dependencies and constraints checking, dynamic and
optimized reconfiguration, and multiple binding and re-binding. Applications range
from service-oriented and cloud systems over mobile software and ecosystems for
autonomous and self-adaptive systems to cyber-physical systems [66] which have
to reuse, reorganize, and reconfigure their components during runtime. Benefits are
that variants are bound at the latest time possible which ensures high flexibility, for
example, (de)activation of system features or adaptation to changing conditions of the
environment. Related ideas on anytime diagnosis supporting efficient reconfiguration
tasks are discussed in Felfernig et al. [44].

Release Plan Configuration and Reconfiguration. In requirements engineering,
dependencies are key concerns to be taken into account in the context of prioritization
processes. Raatikainen et al. [92] relate individual requirements to individual features
in a FM and thus represent the task of requirements prioritization as a FM configuration
task. Their feature modelling environment supports the inclusion of attributes, for
example, a release can be regarded as an attribute of a feature. Having completed an
FM, it can be translated into the representation of a constraint satisfaction problem
(CSP). A specific aspect of this environment is the inclusion of explanations that help
stakeholders to figure out the sources of an inconsistency. For example, the maximum
allowed amount of efforts assigned to a release plan cannot be taken into account
due to the fact that too many features are required to be included, explanations help
to figure out minimal sets of feature sets that – if excluded from the current release
plan – allow the identification of a solution (release plan). In a similar fashion, the
same explanation concepts can be applied to reconfigure an existing release plan to
take into account a set of new requirements [44]. Such explanations are determined
on the basis of the concepts of direct diagnosis [42] (see also Chapters 3 and 4).

Configuration in Augmented Reality. Motivated by the trend of mobile shop-
ping, Gottschalk et al. [51] present a FM configurator application that supports
model-based configuration of furniture, for example, the configuration of kitchens.
A product modeler application supports the use of basic feature modelling concepts,
i.e., feature, mandatory, optional, alternative, or, requires, and excludes. The corres-
ponding product configurator (derived from the feature model) supports the creation
of individual furniture configurations (3𝐷 object compositions) where a collection
of assets (3𝐷 objects and textures) is used for generating a 3𝐷 visualization of the
solution (configuration) generated by the configurator.
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Configuring Operating Systems. The Linux operating system kernel can be
regarded as a kind of holy grail of the SPL community [105]. Sincero and Schröder-
Preikschat [101] introduce the original variability management of the Linux kernel
configurator. The underlying FM supports basic FM variability modelling concepts.
A more up-to-date summary of the existing Linux kernel configuration support is
provided in Franz et al. [46] where XConfig is mentioned as corresponding graph-
ical configurator. The underyling variability definitions follow basic FM variability
concepts [62]. An extension of XConfig is ConfigFix which is a tool that supports
conflict resolution in the case of detected inconsistencies in the current configura-
tion. Conflict detection and resolution in ConfigFix is based on SAT solving [46].
As an additional supportive service in the context of Linux kernel configuration,
Acher et al. [4] propose a machine learning approach to predict the kernel size of a
Linux kernel configuration – such a service can be applied to recommend features
and to rank configuration candidates. Furthermore, in the context of optimizing a
kernel configuration, predictions can be chosen to select specific reconfiguration
options. Herzog et al. [54] introduce a machine learning based approach that helps
to optimize operating system parameters on the basis of linear models and neural
networks. A configuration front-end for Kconfig-based software product lines is also
presented in Friesel et al. [47].

Configuration in Automotive. For decades, automotive industry has been among
the most extreme applications of SPLs with highly complex products with a liter-
ally astronomical number of variants [117, 118]. Modern automobiles can comprise
hundreds of separate engineering systems, such as engines, brakes, air bags, lights,
windshield wipers, climate control, infotainment, etc. Some of them are extraordin-
arily complex, such as high beam headlights that react to oncoming traffic at night.
For a discussion of related details on automotive product line engineering, we refer
to Wozniak and Clements [117]. From the end-user (customer) point of view, nearly
every car provider also offers configuration services to their customer communities.
An example thereof is the Renault configurator as discussed in Xu et al. [118]. This
configurator is based on constraint satisfaction (CSP) knowledge representations [10]
and corresponding knowledge compilation (compression) approaches which can lead
to significant reductions in terms of time needed for identifying a configuration.

Configuring Videos. Acher et al. [2] present ViViD which is a variability-based
tool for configuring video sequences. In ViViD, variability modelling is based on
attribute-based FMs which can be translated into a corresponding representation of
a constraint satisfaction problem (CSP). As a constraint solver, the systems uses
Choco, an open source Java library for constraint programming.21 In the line of [2],
Lubos et al. [73] introduce a FM configuration approach with a similar objective in
the sense that videos should be configured in such a way that different criteria such
as maximum duration and topic coverage are fulfilled. In this context, basic FMs are
used for variability modelling.

Personalized Configuration. The idea of personalized configuration is to sup-
port configurator users in finding a configuration that satisfies their preferences, for

21 https://choco-solver.org/

https://choco-solver.org/


5.5 Discussion 111

example, in terms of providing user-individual recommendations of components
and features of potential relevance [29, 87]. Following the idea of personalizing
the interactions with configurators, Pereira et al. [88] introduce a FM configuration
environment enhanced with different recommendation approaches [22, 114]. The
used recommendation algorithms determine features of potential relevance for the
user which are shown within the scope of a corresponding configuration process.
Also following the idea of personalized configuration, Rodas-Silva et al. [94] pre-
sent a recommender system that suggests implementation components based on a set
of selected features (related to potential WordPress website configurations). The
underlying idea is that in product lines often a selected feature can be implemented
by different components – finding the optimal components to implement a given
configuration is the task to be supported. In this context, basic feature modelling
concepts are supported to represent variability properties in the FM.

Further Configuration Services. Jézéquel et al. [60] introduce an authentica-
tion library which offers a huge variety of options (features) where only a subset
is needed for each concrete installation of an application on a server, for example,
authentication by password or fingerprint but not retinal scan. Not all features are
either selected or excluded – some stay open so that an administrator can change
settings at runtime. Such runtime features are called feature toggles. In order to avoid
unnecessary code, which might make hacker attacks easier, they propose automated
source code creation, removal, and injection based on the selected, excluded, and
open design time features. Fritsch et al. [48] present YAP (Yet Another Product Con-
figurator) which is based on FeatureIDE combined with an underlying SAT solver.
The configurator has been developed for customers of a German bank with the goal
of assisting non-technical-affine users in their product design [48]. The underlying
attribute-based FM consisting of around 940 features and 1,200 cross tree constraints
also supports a kind of standardization in terms of ensuring consistent offers and cor-
responding customer information documents. Niederer et al. [83] present a product
configurator with the goal to provide configurator user interfaces with more flexi-
bility regarding the specification of user preferences. In product configuration, users
can be overwhelmed by the complexity of a product variability (in terms of features
and constraints). Furthermore, many configuration user interfaces do not differen-
tiate between novice users and experts with regard to the product assortment. The
context-aware chatbot introduced in Niederer et al. [83] provides more flexibility in
terms of available conversation paths and the way user preferences can be specified,
which leads to a lower perceived complexity when interacting with the configurator.
Similar observations regarding improvements in the quality of user interaction have
also been reported in the context of constraint-based recommender systems [52].

5.5 Discussion

In this chapter, we have provided an overview of existing FM tools and applications
ranging from feature modelling, FM analysis, to different FM configuration applica-
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tions. We selected applications specifically from SPLC22 and VAMOS23. Despite
the successful application of AI technologies for software and systems product lines,
we also see open challenges and important topics for future research.

Bridging design and runtime variability. The flexible continuum of design and
runtime variability needs to be bridged and managed [60]. A formal semantics of
the underlying models can help to ensure result correctness or completeness, for
example, in the context of risk models [26]. For many industrial domains, it would
be very helpful to build an extensible ontology which can serve as a backbone for
joint research. Higher automation of software verification (e.g., model checking),
of change impact analysis on test cases, and of test case creation and repair would
help to reduce development efforts [1]. Often, it is difficult to find a good trade-off
between complexity and benefit [55]. Strategies for that should be examined.

Inclusion of Large Language Models (LLMs). By the end of 2022, LLMs for
understanding natural language and corresponding systems for human-like interac-
tion such as ChatGPT24 have gained much attention. It is worth evaluating how
those systems could be used to improve feature modelling and feature configuration
[3, 49], for example, as “intelligent” natural language assistants for recommending
or explaining configuration decisions. Important aspects thereby are to avoid the no-
torious “hallucination” (i.e. the tendency of such systems to introduce “false facts” to
satisfy user requirements or if they lack true information) and the protection of data
(i.e. ensure non-disclosure and non-derivability of private and confidential data).

Integration of Standard Algorithms. Although applied and integrated in dif-
ferent research prototypes, FM diagnosis (for supporting explanations) is often not
supported or only supported on the basis of some proprietary, often incomplete
algorithmic solutions. Tool providers need to emphasize the integration of stand-
ard algorithms, such as QuickXPlain [61] for conflict detection and model-based
diagnosis for identifying minimal hitting sets (diagnoses) [42, 93].

Cognitive Issues in FM Development. The understandability and maintainability
of FMs depend on the used knowledge representation. For example, the way in which
constraints are ordered in a knowledge base or the way specific logical properties
(e.g., an implication) are specified, can have an enormous impact on the overall
understandability of a knowledge base [39]. Research is needed to better under-
stand which knowledge structures help to optimize the overall understandability of
a knowledge base (and the corresponding feature model) [41].

Integration of FM Configuration with Machine Learning. Although related
solutions already exist in terms of research prototypes, an integration of FM con-
figuration with corresponding machine learning approaches is rather the exception
of the rule. Such technologies help to better assist configurator users to select the

22 https://splc.net/

23 https://dblp.org/db/conf/vamos/index.html

24 https://openai.com/blog/chatgpt

https://splc.net/
https://dblp.org/db/conf/vamos/index.html
https://openai.com/blog/chatgpt
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relevant features and also help companies to better decide on which features should
be recommended to which users [37, 90].

Configuration Space Learning. Although highly relevant in different application
contexts (e.g., optimizing solver search heuristics or determining stable operating
systems parameter settings), configuration space learning is still more a research
topic than on the way of being integrated into existing FM configuration environments
[85]. The integration of such techniques into feature modelling and configuration
environments can help to significantly improve configurator runtime performance as
well as the performance of the generated products.

Explaining Configurations and Beyond. In (feature model) configuration and
CSP/SAT solving, there exist various research contributions regarding the provision
of explanations [53, 64]. However, there exist open issues specifically with regard to
taking into account the aspect of explanation goals which have a significant impact
on the way explanations are formulated and presented to the user [110]. An example
of such an explanation goal could be persuasiveness, i.e., to sensitize a user with
regard to a specific aspect, for example, configuration sustainability [45].
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101. J. Sincero and W. Schröder-Preikschat. The Linux Kernel Configurator as a Feature Modeling
Tool. In 21st Workshop on Analyses of Software Product Lines (ASPL’08), pages pages 257–
260, 2008.

102. M. Stumptner. An Overview of Knowledge-Based Configuration. AICom, 10(2):111–125,
1997.



References 119
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104. P. Temple, J. Galindo, M. Acher, and J. Jézéquel. Using Machine Learning to Infer Constraints
for Product Lines. In 20th International Systems and Software Product Line Conference, pages
209–218, New York, NY, USA, 2016. Association for Computing Machinery.
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