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Although posthumanist scholars have given sufficient account of nonhuman 
objects and assemblages, occasionally including infrastructures and computer 
software, their investigations leave the concept of intelligence unexplored. 
Many posthumanist ideas have focused solely on agency, not on the intelli-
gence intrinsic to originating a sense of agency; we assume an object that acts 
is intelligent. Recent AI and machine-learning developments have provided 
empirical material to consider intelligence with a posthumanist reframing.

Over the past decade, AI has become pervasive in contemporary culture. 
Media coverage on AlphaGO and its predecessors, and other AI systems, led 
to further rounds of excitement and fear for the possibilities of artificially in-
telligent machines. Since mid-2022, generative AI systems like ChatGPT and 
image generators like Midjourney and Stable Diffusion have flooded social me-
dia; AI is no longer a farfetched concept from science fiction but applications in 
your browsers. This development propels one to speculate how to integrate AI 
in environmental systems, and poses a question: Will the exponential growth 
of AI applications shift the role of machines—other than as tools of optimiza-
tion and control—in how the environment is conceived and constructed?

To answer, we must understand not only the technical capacity but also 
the mode of thinking that undergirds mainstream AI research. I will ana-
lyze cases in AI research with a posthumanist lens to evoke their inherent 
presumptions in understanding machines as tools of optimization that ex-
tend imagined human agency in managing the environment. Even though the 
boundary between nature and technology dissolves in the field of heteroge-
neous assemblages (see Part I), agency’s individuation process leads to tena-
cious objects such as machines, plants, animals, and humans. To consider 
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intelligent machines in the environment risks falling into the normalized 
“adaptive management” that uses advanced technologies to automate and 
optimize natural processes; machines are regarded as a layer of control strat-
egies through which humans manage natural processes.

Instead, I argue that intelligence cuts across different assemblages and re-
veals shared abilities or tendencies of the assemblages to exploit each other’s 
surplus and produce effects. Most importantly, unlike agency that emphasizes 
individuation, intelligence involves interactions between individuals. How-
ever, this argument faces three challenges: anthropocentrism, intelligence as 
a measurement, and individualism. By deconstructing these three obstacles, I 
will restructure a posthumanist concept of co-productive intelligence.

Anthropocentrism and Universal Intelligence

The Merriam-Webster online dictionary defines intelligence as

the ability to learn or understand or to deal with new or trying situations 
[…] the ability to apply knowledge to manipulate one’s environment or to 
think abstractly as measured by objective criteria (such as tests) […] the 
act of understanding.1

Though unspecified, these definitions point to human cognitive capacity, in-
cluding learning and applying knowledge. In other words, to discuss and de-
fine intelligence, we maintain a human image in our minds and then venture 
to consider cognition in nonhuman entities, such as animals and machines. 
Anthropocentrism and human exceptionalism are intrinsic in the conceptu-
alization of intelligence. However, a posthumanist framework is interested in 
how different assemblages, human and nonhuman, living and nonliving, co-
produce each other, and this presents anthropocentrism and human excep-
tionalism with the first obstacles to overcome. In recent years, the research 
on machine intelligence has shed light on this issue and may help to map a 
posthumanist understanding of intelligence.

Machine intelligence has long been an important frontier in intelligence 
research. Can machines think? In 1950, Alan Turing proposed this question 
and the famous Turing test to argue that machines can think. The Turing test 
involves three players: a human discriminator in one room interviewing a 
human player and a machine in a separate room. The discriminator will try 
to discern between the machine and the human by asking questions without 
seeing them. The machine will try to imitate the human player to deceive the 
discriminator into believing that the machine is a human. Another concept 
Turing proposed was “child-machine,” a theoretical strategy for machines to 
learn through random mutations and natural selection.2 This strategy under-
pins many of today’s most advanced machine-learning techniques.
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The Turing test and the “child-machine” are evidence that, from its earliest 
stages, artificial or machine intelligence has been envisioned based on human 
intelligence. The Turing test essentially proposes to evaluate machine intel-
ligence based on its resemblance to human behavior. We have long compared 
machines to humans; the first thing people do to test a powerful machine is to 
match it with the best of its human competitors. Over the years, many cases 
have been reported and discussed: Deep Blue (1997) defeated Garry Kasparov, 
the best human chess player; AlphaGo and its successors like AlphaZero and 
MuZero (2015–2019) trounced many of the best GO players and mastered 
Atari video games; AlphaStar (2019) mastered StarCraft, a real-time strategy 
video game notorious for decision-making based on incomplete knowledge; 
and OpenAI Five (2016–2019), a team of five separate AI agents, worked 
together and outperformed a human team in the game of DOTA2, known for 
its real-time collaborative strategies and corporations, as well as the ability to 
understand another player’s intentions and act accordingly.

Underpinning our obsession with pitting humans against machines is, 
ironically, a sense of human exceptionalism—the unstated belief that humans 
are the most intelligent entities on Earth. If a machine outperforms, or at least 
matches, humans in one aspect, that is seen as a breakthrough. It is an am-
bivalent state of mind. The notion that another entity could replace humans 
at the top of the intelligence pyramid evokes terror, yet we secretly enjoy this 
sense of unease through the reassurance that we are the ultimate creators of 
intelligent machines. Our obsession with human-machine intelligence reveals 
another level of technological sublimity—the mixed sense of terror and joy. 
This state of mind was fruitful for popular culture products over past dec-
ades, making technological dystopia popular in video games, films, and tel-
evision. Many televised franchises imagined a version of rogue AI attempting 
to end humanity. However, accompanying our terror is a sense of sublimity 
because these are, after all, fantasies that pose no real threat. Most impor-
tantly, these shows inevitably end with humanity regaining control over the 
rogue AI, reassuring the audience with a sense of human exceptionalism.

Other forms of intelligence are also measured against human intelligence 
and cognitive abilities. For example, when evaluating animal cognition, the 
common criteria used include teaching, short-term memory, causal reason-
ing, planning, deception, transitive inference, theory of mind, and language. 
Based on these criteria, a significant gap has been conceptualized between hu-
man and animal cognition.3 Nevertheless, these evaluative criteria are mod-
eled in favor of the human. Anecdotes often compare dogs to two-year-old 
human toddlers and dolphins to three-year-olds. Yet, this type of comparison 
essentially treats animals as diminished versions of us, reflecting deep human 
exceptionalism in framing the concept of intelligence. If there were a test of 
intelligence based on olfactory senses, many animals, such as dogs, would be 
far more intelligent than humans. Moreover, plant intelligence has emerged 
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as a topic. In one study, researchers demonstrated that plants  possess  learning 
and memory, too, through systems unique to them. For example, plasmodes-
mata, a type of intercellular organelle found only in plant and algal cells, 
are crucial for plants to transmit information.4 Yet research still attempts to 
locate human cognitive faculties in plants rather than discussing plant intel-
ligence for plants. These examples speak to an intrinsic bias in our examina-
tion of nonhuman intelligence. By comparing other entities with the human 
image, we deny the possibility of noting and embracing how nonhuman enti-
ties interact with their environments in entirely different ways.

Furthermore, speaking of human intelligence unwittingly evokes an image 
of a perfect human being. This gives rise to a series of problematic inter-
pretations similar to those that fueled scientific racism and discrimination 
narratives through the twentieth century. The concept of intelligence has 
long been intertwined with the intelligence quotient (IQ) test. French psy-
chologist Alfred Binet invented the first practical IQ test, which was later 
translated into English and revised in 1916 as the Stanford–Binet Intelligence 
Scales. Intelligence tests were then quickly adopted as tools to explain racial, 
class, and sex differences—however narrowly “intelligence” was defined by 
the tests—justifying all sorts of disturbing narratives of colonialism, slavery, 
 social  Darwinism, sexism, and racist eugenics.5

The problem of intelligence is not the concept itself, but using a white 
European male image of humanity as a reference for measurement. It ignores 
the fact that our cognitive functions result from the long-term co-evolution of 
human and other nonhuman assemblages, including other species, languages, 
tools, and other distributive systems.

Taking human-machine intelligence as an example, we will see that what 
we thought was human intelligence may instead be reframed as an outcome 
of co-production between humans, transistors, and circuit boards. The cen-
tral processing unit (CPU) in any computer is a conglomeration of transistors 
wired in specific ways to compute logical and arithmetic statements through 
the binary language of ones and zeros. However, several early electronic com-
puters were not binary computers; they were ternary, with three states, or 
even quinary, with five. Problematically, the more intermediate states, the 
harder it became to keep them separate, because disturbances such as power 
surges, low voltage, or electromagnetic interference would cause mixed 
 signals. The binary was simple to track since it gave distinct signals of “on” 
and “off.” In addition, before the twentieth century, rules and operations to 
manipulate ones and zeros were already reasoned because an entire branch 
of mathematics that dealt exclusively with true and false values, Boolean 
algebra, already existed. Thus, many saw Boolean algebra as the founda-
tion of modern computer science theory. Self-taught English mathematician 
George Boole developed Boolean algebra in The Mathematical Analysis of 
Logic (1847), in which he presented the truth as systematically and formally 
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represented through logic equations. Unlike the algebra we are familiar with, 
in Boolean algebra, instead of numbers, the values are true and false; instead 
of addition, subtraction, multiplication, and division, the Boolean operations 
are AND, NOT, and OR. For example, if A is true, and B is true, then “A 
AND B” is true.

Conveniently, transistors can be wired in ways to build different types of 
logic gates and perform these Boolean operations. The assemblage of these 
logic gates is called the arithmetic logic unit (ALU), which is central to any 
modern computer. Building computing machines has thus long been viewed 
as a way to formalize and represent human logical reasoning through mate-
rial assemblages. Although Boolean algebra laid the foundation for modern 
computers, the material reality of transistors and electronic circuits eliminates 
other possibilities regarding how human logic may be systematically and ma-
terially formalized. In this regard, quantum computing sheds new light on 
other aspects of human logic. Quantum computing has gained increased at-
tention over the past 30 years because a qubit (quantum bit) possesses three 
states; it can be in quantum states, which means a state between 1 and 0 with 
certain probabilities; but, when measured, a qubit is in the superposition of 
either 1 or 0 states. Thus, if classical computing uses Boolean logic to erase 
uncertainty by choosing between 1 and 0, then quantum computing har-
nesses the power of uncertainty and embraces the ability to be either 1 or 0. 
For this reason, a quantum computer presents different material assemblages, 
with the potential to rethink alternative aspects of human logic.

The moral here is that what we perceive as human intelligence is not a 
sole effort by human, but instead is enabled and co-produced by the material 
world around us. Using human intelligence as a measure for other types of 
intelligence is thus great hubris, which denigrates the efforts of nonhuman 
assemblages in the process of co-producing human intelligence. However, if 
humans should no longer be the measure, is there another way to frame intel-
ligence? Recent AI research may provide insights into a non-anthropocentric 
definition of intelligence.

Generally, there are two types of approaches to building an AI system. 
The first may be described as an expert system, for which human experts 
write a rule book for decision-making. For example, if we want to build a 
plant identification system, we require a group of botanists to list all plant 
identification rules. This resembles searching for a plant in an encyclopedia. 
We address multiple questions: is the plant woody or herbaceous? What is 
the shape of the leaves? What is the shape of the bud? When does it flower? 
One may create many other questions related to identifying a plant. Many 
traditional online plant identifier websites are expert systems.

The second approach may be understood as machine learning, for which 
we need only provide the machine with a large amount of data; the machine 
itself will reconstruct potential rules for decision-making. Building the same 
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plant identification system with machine learning, we first collect a large 
number of images of plants labeled with their names. Then, we build an arti-
ficial neural network (ANN) and expose this ANN to the plant dataset until 
it makes predictions with a high success rate. This process is called training. 
To evaluate how well the model performs, scientists commonly track the 
prediction error rate using a loss function, which can be optimized through 
model training. The loss function reflects the AI system’s ultimate goal. In 
a way, all machine-learning problems may be understood as optimization 
problems; an underlying loss function will always be optimized in order to 
train a usable model.

Though the concepts of machine learning and AI have existed since the 
mid-twentieth century, machine-learning techniques did not find currency 
until the early days of the twenty-first century, due to limited computational 
power, as well as the amount of data available. With the rise of “big data,” 
as well as increased computing powers, machine learning has produced fruit-
ful results. In 2012, the AI community experienced a major breakthrough in 
the ImageNet Large Scale Visual Recognition Challenge, a benchmark for 
computer vision. Computer scientists were challenged to design machine-
learning algorithms to perform image recognition; the error rate of the rec-
ognition results became a measurement. A team led by Alex Krizhevsky from 
the University of Toronto designed a model called SuperVision, later known 
as AlexNet; based on a convolutional neural networks (CNNs) approach, it 
won the 2012 competition.6 AlexNet presented a significant drop in the error 
rate, from 25.8% in 2011 and 28.2% in 2010 to 16.4% in 2012.7 A mere 
four years later, in 2016, computer scientists lowered the error rate to only 
3%, based on CNNs, while the average error rate for humans doing such 
tasks was 5%.8

Advances in AI research also provide transformative cases for scholars 
to ask more profound questions about intelligence. Sean Legg and Marcus 
Hutter, both AI scientists, have proposed the term universal intelligence and 
formalized it through mathematics as a framework with which to compare 
different forms of intelligence. After reviewing a collection of definitions of 
intelligence from research groups and organizations, psychologists, and AI 
researchers,9 Legg and Hutter ascertained a common thread in these defi-
nitions, which involved the interaction of an agent, human or nonhuman, 
with its environment. Based on this observation and their goal of measuring 
machine intelligence, they proposed a working definition for universal intel-
ligence: intelligence measures an agent’s ability to achieve goals in a wide 
range of environments.10

Legg co-founded DeepMind Technologies, later acquired by Google, and 
was behind the development of AlphaGo and its predecessors; Hutter is a 
professor and a senior scientist at DeepMind. Their definition of intelligence 
is deeply rooted in their extensive experience in machine learning, particularly 
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in reinforcement learning (RL), which is the foundation of AI systems like 
AlphaGo. Essentially, their concept of universal intelligence mirrors an RL 
framework. In RL, an agent observes the environment’s state and takes ac-
tions. The effectiveness of these actions is measured by a reward mechanism, 
typically expressed through a loss function. For instance, in training an RL 
agent to play Tetris, the agent initially performs random actions such as arbi-
trarily moving and  placing blocks. Certain actions, clearing a line of blocks, 
for example, result in rewards (i.e., scoring). After thousands of rounds, the 
agent begins to favor actions that yield higher scores, eventually mastering 
advanced techniques such as the “Tetris Clear”—clearing four lines simulta-
neously.11 Again, any machine- learning technique can be seen as an optimi-
zation problem. In RL, the agent strives to optimize its reward function to 
maximize rewards or minimize punishments. Thus, universal intelligence is a 
measure of an agent’s ability to optimize these reward functions.

Based on this simple agent-environment framework, DeepMind has trained 
many RL-based AI systems, such as AlphaGo. Only one year after AlphaGo 
defeated its human competitors, two newer AI systems based on self-play—
AlphaGo Master and AlphaGo Zero—overwhelmed the original algorithm. 
In 2020, MuZero mastered not only one but also four games.12 The self-play 
technique implies that the AI system has been playing against itself without 
any human knowledge input related to the game of Go, except for the basic 
rules. Not only did these self-play AI systems outperform humans, but they 
also devised novel strategies that human players had never attempted. To a 
certain extent, they developed a machine understanding of the game.

In 2019, again using the self-play method, DeepMind developed an AI 
system called AlphaStar, which attained grandmaster level (the highest rank 
reachable by competing with other players) in the real-time, strategy video 
game StarCraft.13 The AI community regards this experiment as a leap for-
ward because real-time strategy games such as StarCraft are infamous for 
their infinite combinations of actions based on imperfect information. After 
watching or playing against AlphaStar, many professional players reported 
that it had devised new strategies from which the humans could learn; Al-
phaStar provided new ways to play the game itself. One commentator 
reported that observing the AI playing the game was akin to watching a 
drunken kung fu master performing martial arts: awkward, but outrageously 
effective.14 Another professional player commented,

AlphaStar is an intriguing and unorthodox player—one with the reflexes 
and speed of the best pros but strategies and a style that are entirely its 
own. The way AlphaStar was trained, with agents competing against each 
other in a league, has resulted in gameplay that’s unimaginably unusual; 
it really makes you question how much of StarCraft’s diverse possibilities 
pro players have really explored.15
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These examples could respond to the AI criticism that machines cannot apply 
knowledge creatively. As we have seen, not only do machines create novel 
strategies, but importantly, they also develop strategies with a “ machine 
 flavor.” The implications of universal intelligence extend past training 
 advanced AI systems such as AlphaGo and AlphaStar.

In a way, universal intelligence is a non-anthropocentric definition in which 
human no longer provides the measure; instead, human intelligence becomes 
an instance of universal intelligence, manifested in the human assemblage. 
However, it is not yet a posthumanist definition of intelligence because it 
faces two other challenges: intelligence as a measurement, and individualism.

Autopoiesis and Artificial Neural Networks

From IQ testing to universal intelligence, measurement has been a primary 
instrument for questions about intelligence. Thus, the problems associated 
with “intelligence,” such as racism, sexism, classism, and even speciesism, 
have been products of human exceptionalism in consort with human intel-
ligence as a measurement. For example, critics claim that IQ testing measures 
nothing but the subject’s test-taking skills at the moment of testing; the result, 
therefore, has little to do with the individual’s intelligence. The concept of 
universal intelligence is confronted with similar critiques, which tie intelli-
gence to metaphysical concepts such as conciseness, soul, and free will, all 
of which lie beyond measurement.16 However, Legg and Hutter defend their 
thesis through a tautology of measurement:

Our goal is to build powerful and flexible machines and thus these some-
what vague properties are only relevant to our goal to the extent to which 
they have some measurable effect on performance in some well-defined 
environment. If no such measurable effect exists, then they are not relevant 
to our objective.17

These critiques miss the point; they realized that the problem lies in meas-
urement, but tying intelligence to metaphysical concepts beyond measure-
ment ironically justifies Legg’s and Hutter’s approach as a pragmatic choice. 
Rather than relying on consciousness or soul as a priori for intelligence, we 
need to critique mathematism and formalism embedded in universal intel-
ligence. We must confront what this measured “intelligence” really is. Per-
haps formalizing intelligence helps to build powerful machines, but there is 
no need to rely on this formalized idea to define intelligence. Indeed, if we 
ponder the video game player’s comment above on AlphaStar, the reason the 
professional players believe this AI to be intelligent is not based on measure-
ment or evaluation. Instead, it is a general impression, a belief that AlphaStar 
possesses certain potentials that allow it to change and adapt.
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What precisely are these abilities that we recognize as intelligence? 
To  answer, we need to detach the concept of intelligence from the urge to test 
and measure. Only then can universal intelligence become a posthuman con-
cept. Universal intelligence implies agents’ abilities to achieve goals. How-
ever, human scientists define these goals, thus imposing a human standard 
as to whether a behavior counts as an intelligent move. Ultimately, what 
universal intelligence measures remains perceived effectiveness from a human 
perspective, even though the concept itself seems to remove humans from the 
scale of measurement. It is an intelligence for humans rather than intelligence 
for the agent itself.

I will employ the concept of autopoiesis to elucidate the meaning of “goal-
directedness” in the context of measuring intelligence. In the influential paper 
“What the Frog’s Eye Tells the Frog’s Brain,” Chilean biologist and philoso-
pher Humberto Maturana, along with his colleagues, revealed that a frog’s 
eye does not simply capture and transmit an exact image to its brain for 
analysis. Instead, the process involves four distinct groups of nerve fibers, 
each responsible for a specific type of operation on the visual data. These 
fibers first process the image and then relay this organized information to the 
brain. This finding contests the prevalent belief that the nervous system func-
tions primarily as a tool for gathering information to construct an internal 
representation of the external environment. On the contrary, the environ-
ment triggers a set of operations in the nervous system that produce reality 
inside the organism. Autopoiesis turns the environment outside-in. Based on 
this biological observation, Maturana and Francisco Varela, also a Chilean 
biologist and philosopher, argue that:

[w]e as observers have access both to the nervous system and to the 
structure of the environment. We can thus describe the behavior of an 
organism as though it arose from the operation of its nervous system 
with representations of the environment or as an expression of some 
goal- oriented process. These descriptions, however, do not reflect the op-
eration of the nervous system itself. They are good only for the purpose 
of communication among ourselves as observers. They are inadequate 
for a scientific explanation.18

The environment merely triggers the system to operate and construct a real-
ity of its own. When folding the environment and reality outside-in, concepts 
such as consciousness, soul, and free will become epiphenomena produced 
through human system operations. This could be understood as a version of 
radical constructivism. Goal-directedness becomes an epiphenomenon, too, 
for humans to describe causal relationships. To use the logic of goal-direct-
edness to describe how and why other systems operate is the privilege of the 
human observer. We explain system operations in a manner that fits within 
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the descriptive category of goal-directedness, which now becomes a tactic of 
observation. We choose to believe that goals exist, then observe phenomena 
that fit within the framework of goal-oriented behaviorism.

However, as Maturana and Varela note, evaluating and measuring goal-
directed phenomena has nothing to do with system operations themselves. 
I will analyze past examples of AI biases with autopoiesis theory to further 
illustrate what this means. One notable case involved an image-recognition 
model that erroneously identified husky dogs as wolves. This error was 
traced back to the training dataset, where images of wolves often possessed 
snowy backgrounds. The model, therefore, learned to associate snow with 
wolves, leading to confusion when presented with images of huskies against 
snowy backgrounds.19 Other systems are gender-biased. In one example, an 
image-recognition AI system tended to label human figures at the forefront of 
a kitchen background as female.20 In Midjourney, a generative AI system that 
produces images, if a user gave the prompt “a person in a garden,” Midjour-
ney would generate a white woman or a feminine figure in front of a garden 
scene (Figure 8.1).

FIGURE 8.1  Gender-biased images generated with Midjourney. Images generated 
by the author through Midjourney.
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In these examples, there existed inherent biases in the training data  because 
the images used for training were merely culled from the internet, and thus re-
flected society’s persistent gender stereotypes. If one searches “people garden-
ing,” Google’s image search will return many images featuring white women 
gardening. Moreover, these images are likely to be used to train the above AI 
systems. Further examples abound, and have been used to challenge scien-
tists to create fair and “unbiased” AI.21 Yet, in early 2024, Google’s Gemini 
created some historically inaccurate images, such as Nazi-era  German sol-
diers as people of color, possibly due to an overcorrection of AI racial bias.22 
 Training “unbiased AI” is apparently more complex than we think.

However, the analytical values of these cases were not discussed fruitfully 
by computer scientists and critics, especially within an autopoiesis frame-
work. If these AI systems are understood as autopoietic systems, then their 
environments are constructions of their own system operations, which are 
entirely different from human constructions. If a human is presented with an 
image of a figure in a kitchen setting and asked to identify the figure’s gender, 
they would ignore the background and turn their attention to the figure  itself. 
However, the machine-learning architecture for most image-recognition al-
gorithms is called convolutional neural networks (CNN). In ANN, artifi-
cial neurons are constructed in layers. In CNN, particularly, a convolutional 
layer acts as a “filter” that passes over the image, scanning several pixels at a 
time from top to bottom, and left to right, and creating a feature map. Then, 
a pooling layer checks this feature map and abstracts it into small edges that 
represent the object in the image. Finally, fully connected layers would make 
a prediction based on these small edges. The training process uses training 
data to fine-tune each neuron. A CNN is therefore a perfect example of an 
autopoietic system; after training, the CNN is hard-wired such that the en-
vironment only triggers a set of neural activations. A saying in the AI com-
munity notes, “Neurons that fire together, wire together.” A CNN does not 
absorb an image as a whole but as pieces; it is as if a person “reading” a pic-
ture used a magnifying glass to search for the small edges that define objects. 
Using this magnifying glass analogy, a person born holding a magnifying 
glass would be exposed to a completely different “environment” than the rest 
of us. Just as Matuana’s frog constructs a reality with four groups of fibers, a 
CNN constructs a reality through a combination of ANN layers.

Based on CNN architecture, scientists combine multiple and various lay-
ers for building hierarchies in feature complexity, thus constructing deep 
convolutional neural networks (DCNN). In DCNN, the first few layers de-
tect edges, the middle layers detect portions of the object, and the final layers 
detect the object itself. Neuroscientists have found that the increasing fea-
ture complexity of DCNN resembles the increasing complexity that occurs 
in visual object recognition in humans.23 Others found that the activation of 
DCNN was similar to that of gamma-band activity within the human visual 
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cortex.24 Many have duly argued that DCNN resembles the method by which 
humans see, and some regard DCNN as a biologically inspired approach. 
These findings seem to contradict autopoiesis theory by drawing similari-
ties between machines and human system operations. On the contrary, these 
examples prove that DCNN does not resemble humans at all because they 
perform an operation that merely resembles the human cortex, which is only 
a part of the cognitive assemblage we call human.

We may explain the behavior of a CNN as a goal-directed behavior, but 
this explanation has nothing to do with system operations; AI systems will 
execute what we say rather than what we mean. After training, CNN will 
label an image, but this action does not equal image recognition. We have 
no idea what CNN maintains as goals for itself or if goal is even a concept 
within CNN’s reality as constructed by its system operation.

The AI community has struggled with the disconnect between goal and sys-
tem operation. Autopoiesis sheds new light on problems in AI safety research, 
such as the problem of reward hacking. In an amusing example, a simulated 
AI robotic arm was trained to flip a pancake; scientists set up a reward func-
tion such that the robot would receive a small reward for each second that 
the pancake did not hit the floor. This sounded logical since a human would 
continuously flip the pancake to keep it in the air as long as possible. How-
ever, the robot arm hurled the pancake into the air with as much force as pos-
sible, to maximize the reward.25 Articulating reward goals and AI behaviors 
is a constant task in AI research because AI systems may exploit the reward 
function by performing unexpected behaviors.26 Powerful AI systems, such as 
AlphaGo or MuZero, might be understood as gratifying accidents, where the 
articulated reward goal matches the system operation. This synergy between 
goals and system behaviors points us in another direction: we can frame intel-
ligence with ideas of co-production and co-evolution.

To consider synergy between scientists and AI systems, we must practice 
what Niklas Luhman calls second-order observation, or the practice of ob-
serving others observe. New insights arise when we bring the observer into 
the equation. When intelligence is tied to measurement, it becomes a product 
of observation; thus, an observer plays an essential role in conceptualizing 
intelligence—how intelligent an entity appears to the observer at the moment 
of observation. In human–robot interactions, perceived intelligence is a key 
concept. Robot engineers know the underlying rules that govern how a robot 
would behave in a given circumstance; to them, the robot’s behaviors are 
transparent and predictable, thus non-intelligent. However, for a non-expert 
without prior knowledge of the robot’s underlying rules, its behaviors may 
appear intelligent. Perceived intelligence was used to mediate the knowledge 
gap between engineers and non-expert users. To make robot behaviors ap-
pear more intelligent, engineers would intentionally program randomness 
so that the behavior patterns were less predictable. However, after many 
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interactions, users will eventually detect patterns in these limited random be-
haviors, and decide that the robot is not intelligent, after all. Thus, a popular 
approach in human–robot interaction is the so-called Wizard of Oz trick, 
in which a human hides behind the robot and conducts a conversation with 
another human to create the illusion of intelligence.27

What separates these two situations—the Wizard of Oz versus limited 
random actions? We may conclude that users find the robot unintelligent 
because its behaviors become predictable over time. However, we could draw 
a different conclusion if we absorb observers into the equation: the users be-
come more intelligent over time, discerning the robot’s deceptive behaviors. 
The robot is unintelligent because it cannot co-evolve with the users, whereas 
another human hiding behind the robot adapts to the users and advances the 
conversation.

Similarly, if we reconsider the Turing test, the seemingly innocent dis-
criminator becomes a critical player in the imitation game because the game 
eventually becomes a test for all parties. Recursive observation and learning 
between observer and participants will force them to adapt to each other 
and become more intelligent in playing the imitation game. Measurement 
overlooks the intelligence emerging from dynamic feedback loops between 
the observer and the observed. From this perspective, intelligence points to a 
direction on the line of co-production and co-evolution within an assemblage 
framework. Or, to use Donna Haraway’s term, sympoiesis—making with.28

Sympoiesis and the Emergence of Intelligence

With current AI advancement, we lack vocabularies and concepts for a non-
individualistic view of intelligence, in both theory and practice, because AI 
was originally conceived as an autonomous machine. Collaborative intel-
ligence is a concept proposed in AI research to challenge the rivalry between 
humanity and AI constructed over decades by popular culture and media. 
It posits that a synergy between people and AI is the basis for considering 
machine intelligence.29 We should extend this argument to include all types 
of human and nonhuman agents, and construct a posthumanist definition of 
intelligence as the basis for AI research.

Computer scientists regard an agent as a black box with input and output; 
similarly, researchers regard intelligence as a person’s capacity in IQ testing. 
Assemblage thinking exists at odds with the inherent individualism of how 
intelligence is conceived—a quality of a pre-existing agent. However, as I 
have explored in previous chapters, an agent is simply a product of observa-
tion to attribute perceived effectiveness distributed within and around the 
so-called agent. It is merely a carrier of intelligence that has emerged from 
dynamic co-evolution and co-production processes involving actors more 
than the agent itself.
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One way to observe the emergence of intelligence is to construct an 
 arbitrary diagram of an agent and its outside environment, and then analyze 
both inside and outside the agent. First, intelligence is an emergent property 
of the interactions between the components that give rise to the assemblage. 
For example, swarm intelligence points to the collective behavior of decen-
tralized, self-organized systems, such as a colony of ants. While exploring 
their environment, ants leave pheromones to guide each other to resources. 
The behavior of an ant appears simple, but if each ant repeats the same ac-
tions, a colony of ants appears remarkably efficient in exploring its environ-
ment. This behavior inspired a famous instance in computer science, called 
the ant colony optimization algorithm, which has proven useful in pathfind-
ing optimization problems.30 This type of intelligence, also known as “hive 
mind,” occurs where intelligence is not located within any of the individuals, 
but as a property that emerges from the interactions of each part.

In a way, all forms of intelligence—human, machine, or animal—should 
be understood as emergent phenomena. Human and animal intelligence are 
nothing but electrochemical interactions between neurons and a distributed 
nervous system. Machines are the same; as we saw in the above CNN ex-
ample, in ANNs, AI is achieved through the interactions of layers of inter-
connected artificial neurons, or functions between input and output. An AI 
system is thus a conglomeration of connected functions.

Second, outside the boundary of the agent, the term mediation may help 
us conceptualize that an agent’s intelligent behaviors are constantly medi-
ated by other assemblages. The mediation may be understood through Andy 
Clark’s “extended mind” theory, which reminds us that the effectiveness of 
human intelligence is achieved by off-loading human cognitive functions 
onto other objects in the environment. Human intelligence becomes a con-
tinually changing phenomenon, depending on the temporary and ephemeral 
assemblage at the moment of observation. A paper-based IQ test evaluates 
the effectiveness of finishing the questions by the temporary assemblage of 
human, pen, paper, and perhaps corrective lenses; all factors contribute to 
how well the subject performs at the test-taking moment. We must also ac-
count for the breakfast eaten that morning, as well as the diverse bacteria 
and enzymes in the test-taker’s digestive system, which help process food 
into energy for the electrochemical nerve impulses that give rise to “intel-
ligent behaviors.”

On the other hand, we may add a time scale to the mediation process and 
see its effects as co-evolution and co-production. In the story of transistors 
and Boolean algebra, the users of the humanoid robots and the discriminator 
in the Turing test are all instances where the human and the machine become 
each other’s media and co-evolve over time. We need to reframe intelligence 
as a collection of observed phenomena that is, in fact, a result of random 
interactions in co-production and co-evolution among assemblages.
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To understand intelligence based on the inside and outside of the agent is 
arbitrary. In fact, it is crucial to recognize that reality is a continuous mesh 
of heterogeneous bodies within the assemblage framework. Random interac-
tions and feedback loops exist between different agents, and if certain inter-
actions become useful for a temporary assemblage, then synergies and loose 
couplings would happen among these bodies. Such thinking is found in many 
contemporary feminist materialists’ writing. As Jane Bennett noted, “bodies 
enhance their power in or as a heterogeneous assemblage.”31 This process is 
also essential to Donna Haraway’s notion of sympoiesis (making with); noth-
ing is truly autopoietic and self-organizing, and things are always “making 
with” others.32 Sympoiesis produces intelligence.

In a posthumanist, sympoietic framework, intelligence becomes a shared 
ability among different assemblages to exchange effects through recursive ob-
servation and learning, thus forming synergies and couplings to gain power. 
Intelligence speaks to the process of attunement and symbiosis between as-
semblages, as in the moment when computer scientists’ goals accidentally 
match operations in an AI system. We can frame this phenomenon as “intel-
ligence of co-production” or “co-productive intelligence.” What we perceive 
as intelligence—whether human, machine, or animal—becomes a specific 
instance of observed local manifestation of co-productive intelligence dis-
tributed across the heterogeneous landscape of human and nonhuman, biotic 
and abiotic assemblages.

Co-Productive Intelligence

To summarize this part, I propose three types of co-productive intelligence as 
an attempt to depart from how intelligence is currently discussed: (1) intel-
ligence in adversarial relations, (2) intelligence in symbiosis (symmetrical and 
asymmetrical), and (3) intelligence in loose coupling.

Adversarial intelligence gestures to competition in long-term evolution, in 
which complex behaviors and responsive strategies emerge. In examples like 
AlphaGo and AlphaStar, humans and AI agents participated in competitive 
environments, and new strategies emerged; together, humans and machines 
expanded the possibilities of a game.

In recent years, the AI community has exploited adversarial relations and 
achieved promising results. Many machine-learning approaches involve two 
adversarial parts training together. One example is that of generative ad-
versarial networks (GANs). Before diffusion models (e.g., DALL-E.2 and 
Midjourney) took over image generation in mid-2022, GANs were the go-to 
solution for computer scientists. There, GANs might be demonstrated with 
a forgery example. Imagine two neural networks, one generator (forger) and 
one discriminator. The forger’s goal is to produce photorealistic images to 
deceive the discriminator, and the goal of the discriminator is to ascertain 
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whether it is a real image. The two networks are trained simultaneously until 
the discriminator cannot distinguish a fake image from a real image. Re-
searchers have used this technique to train AI systems to render photorealis-
tic images and stylized paintings.33 In 2018, GANs was named one of the “10 
breakthrough technologies” by the Massachusetts Institute of Technology 
(MIT); a commenter noted that GAN “gives machines something akin to a 
sense of imagination, which may help them become less reliant on humans.”34

Even though diffusion-based systems, including DALL-E.2 and Mid-
journey, quickly superseded GAN-based image generators, the concepts 
embedded in GANs are not completely obsolete. For example, Variational 
Autoencoder (VAE), a key component of the neural network model used in 
Stable Diffusion to improve the quality of AI-generated images, essentially 
assumed two neural networks (encoder and decoder) in an adversarial re-
lationship. Similarly, in RL, Deep Deterministic Policy Gradient (DDPG) is 
a technique that establishes an actor-critic architecture within the learning 
agent, in which the actor decides which action to take in an environment, and 
the critic evaluates the action and informs the actor how effective the action 
was and how it could be improved.

Moreover, computer scientists have found that competitive multi-agent 
techniques in RL not only train models faster but they also give rise to behav-
iors far more complex than those allowed by the environment alone.35 In an 
example developed by OpenAI, two agents were asked to play hide-and-seek 
in a simulated environment with walls, boxes, and boards. After training, 
both agents (seeker and hider) learned to use these tools to their advantage 
and began to develop methods to exploit the environment in which they were 
trained. One agent learned to stand on a box and apply force to the agent 
itself; it then “surfed” the boxes and jumped over walls.36

Intelligence in symbiosis or structural coupling is the second type of co-
productive intelligence. The evolution from prokaryotic cells to eukaryotic 
cells has been widely discussed among posthumanism scholars.37 It is now 
believed that mitochondria were once a type of bacteria before being co-
opted as permanent organelles of cells in which they were originally para-
sites. It seems that adversarial relationships may transform into symbiotic 
relationships where two or more competing assemblages self-synchronize in 
terms of their inputs and outputs so that they can exchange effects. We may 
find the relationship of symbiosis in many plant communities. For example, 
root nodules are primarily found on the roots of legumes, or the pea family 
(Fabaceae), including peas and soybeans, as well as on trees such as the black 
locust (Robinia pseudoacacia). These root nodules are the result of legumes 
forming a symbiosis with nitrogen-fixing bacteria that helps convert dinitro-
gen (N2) from the atmosphere into ammonia (NH3), which can then be used 
by plants. In ANNs, neurons (non-linear functions) are structurally coupled 
in layers and networks. One neuron (function) cannot do much, but structur-
ally coupled neural networks become intelligent.
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Furthermore, OOO and other posthumanist ideas expand symbiosis be-
yond biology as a metaphor for how living entities form symbiotic relations 
with other assemblages, including non-material organizations, institutions, 
and historical objects.38 Symbiotic relationships involve structural coupling, 
first discussed by Maturana and Varela when introducing autopoiesis theory. 
Levi Bryant provides a more accessible explanation of structural coupling 
by describing it as “a relation in which one or two entities are dependent 
for stimuli or flows from one another in order to engage in their own opera-
tions and becoming.”39 Bryant divides structural coupling into bidirectional 
and unidirectional; this is similar to Harman’s symmetrical and asymmetrical 
symbiosis. Symmetrical symbiosis, or bidirectional coupling, occurs when 
both assemblages or systems require flows from the other to engage in a 
joint operation, such as mitochondria acting as permanent organelles in liv-
ing cells. In asymmetrical symbiosis, or unidirectional coupling, one system 
depends entirely on the other; an ecosystem type may be said to be uni-
directionally coupled with the climate in its region. Asymmetrical symbio-
sis or unidirectional coupling as a metaphor speaks to adaptive strategies 
which a system develops to take advantage of another system. In symbiosis 
or structural coupling, intelligence manifests as the ability to link one system 
to another so that its own system operation becomes assimilated into another 
system’s operation; both systems benefit from the assimilation of system op-
erations, and both gain power.

Intelligence in loose coupling is the third type of co-productive intelli-
gence. Computer scientists and system engineers use coupling to describe 
the interdependence between different programming objects or systems. In 
programming, there are two types of coupling—tight and loose—with the 
latter preferred for greater flexibility so that altering one programming ob-
ject or system is unlikely to affect another. Similarly, sociologist Niklas Luh-
mann, who used structural coupling to describe social systems, argued that 
“[l]oosely coupled systems are more stable than tightly coupled ones. ‘Tight 
coupling’ is a very improbable arrangement. It is not to be found in nature.”40 
Many scholars disagree with Luhmann’s claim regarding loosely coupled sys-
tems.41 Symmetrical symbiosis may be understood as a type of tight cou-
pling, and symmetrical symbiosis is found nearly everywhere in “nature.” 
Certainly, in symmetrical symbiosis, if one of the tightly coupled systems (for 
example, the soybean) is destroyed, then the other tightly coupled system 
(here, nitrogen-fixing bacteria) can no longer survive. Viewing loose coupling 
as beneficial is based on its resistance to external disturbance, overlooking 
the intensive exchange of flows and functions in tightly coupled systems that 
do not exist in loosely coupled systems. Instead of placing a high value on 
loose coupling, it can be understood as another type of relationship from 
which intelligence emerges.

Loose coupling is a type of relationship we commonly encounter, such 
as the relationship between computer scientists and machine-learning 
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algorithms. The synergies between these assemblages could be seen as “happy 
accidents” when scientists’ goals match the observed system operation in an 
AI algorithm, and thus effectiveness comes into being.

These three types of co-productive intelligence attempt to create a set of 
vocabularies with which one could consider the role of intelligent machines 
within a posthumanist, sympoietic framework. I will illustrate this point 
further with Sougwen Chung’s artwork “Drawing Operations,” a series of 
performances in which the artist drew alongside robots (Figure 8.2).42 In the 
first version, the artist drew alongside a robot arm called D.O.U.G_1 (Draw-
ing Operations Unit: Generation_1). D.O.U.G_1 mimicked the artist’s move-
ments by analyzing her drawing gestures through an overhead camera and 
reproducing them. The final artifact is a co-produced drawing through col-
laboration. However, the robot’s movements were not perfect reproductions 
of the artist’s gestures. Although the algorithm tracked the artist’s linework in 
the digital simulation, the movements were dramatically altered when trans-
lated to a robotic arm.

Imperfection was unavoidable in this loosely coupled system. The compu-
tationally heavy, live, computer-vision analysis created an inevitable system 

FIGURE 8.2  Top: “Drawing Operations” (2015); bottom: “Drawing Operations” 
(2017). Courtesy of Sougwen Chung.
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latency, creating a lag between the artist’s movements and the robot’s repro-
duction of them. The linework quivered as if the robotic hand was unsteady. 
In real-time, the artist was forced to adapt her movement to the robot’s. 
Her new gestures fed back to the robot, and the robot produced a new set 
of movements to which the artist was again compelled to adapt. The art-
ist and the robot formed a positive feedback loop; together, they became 
a loosely coupled system with new styles and techniques manifested in the 
co-produced artifact, gradually synchronizing and attuning to each other in 
a territory alien to both.

Later, the D.O.U.G_2 was designed around the notion of memory. Chung 
and her team deployed machine-learning techniques to teach the artist’s 
drawing style to an AI system. They fed an algorithm with decades of the 
artist’s work so that the AI would attempt to reproduce Chung’s drawing 
patterns. The machine subsequently developed its own understanding of the 
artist’s style, and expressed a machine interpretation in their later drawing 
collaborations.

Chung’s art installations raise questions about perceived errors and 
glitches in systems, reframing the notion of failure as an important factor 
in art production and design. As the artist noted, “The robot mimics the 
artist like a partner in an improvisational performance. It is an AI that em-
braces every glitch, bug, and error.”43 From a posthumanist perspective, 
these so-called glitches, bugs, and errors are fundamental facets of opera-
tion defined by an algorithm and the physical armature of a robotic arm. 
To human eyes, they may appear to be errors, but they are the ways in 
which the robotic systems operate within the environment. In theory, we 
might minimize system latency by using a faster processing unit and by ac-
counting for the robotic arm’s physical limitations. However, if one repairs 
all the glitches, bugs, and errors so that the robot perfectly replicates every 
detail of the artist’s gestures, the art does not exist. The results become an-
ticipated and predictive, while Chung’s art lies in the unexpected outcomes 
of human–robot collaboration. When D.O.U.G_2 learned the artist’s style 
through her works, there were no right or wrong answers for interpreta-
tion because they were merely machine interpretations. If the machine repli-
cates the artist’s drawing style perfectly through learning, then the machine 
hardly differs from a photocopier. Thus, adaptation between the artist and 
the robot entails exploiting each other’s limitations and errors. Or, to use 
Chung’s words, her artwork is about “embracing the imperfections and rec-
ognizing the fallibility of both human and machine in order to expand the 
potential of both.”44 As discussed earlier, the foundation for the emergence 
of intelligence is co-production between assemblages. In Chung’s work, in-
telligence manifests in the loose coupling and attunement between humans 
and machines. In this attuning process, the potentials and possibilities of the 
human-machine assemblage expand.
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In the cybernetic environment, our relationship with machines must not 
be limited to the co-dependent relationship between users and tools. Instead, 
artistic explorations suggest that potential may be found in interdependent 
relationships, where new questions arise, new understandings form, and 
new strategies emerge. With the conviction that machines are not tools for 
automation but actors that have been involved in the co-production of the 
environment, we may build an alternative way to understand failures and er-
rors when collaborating with intelligent machines. When machines produce 
unexpected strategies, those are not necessarily errors. They are, instead, op-
portunities for us to form different understandings of the questions posed, 
just as AlphaGo and AlphaStar have expanded players’ understanding of 
their games.

A Posthumanist Perspective on AI Safety and Bias

I will end this chapter by providing notes on AI safety and bias from a post-
humanist perspective because I have not read such analyses in my research. 
Viewing machine intelligence as a threat to humanity is a popular sentiment, 
especially after the twentieth century’s two world wars, when society wit-
nessed the potential destructive power of technology. Popular culture also 
aided the growth of this sentiment, since AI often assumes a supervillain 
role in dystopian novels and movies. Imagining rogue AI is a form of the 
technological sublime, in which we entertain a potential threat from a safe 
position. We comprehend the threat with human reasoning and rationality, 
which, according to Kant, is the basic structure of sublimity. However, this 
view is deeply rooted in an anthropocentric understanding of human intel-
ligence and agency. Recognizing the sublime quality of machines extends the 
anthropocentric understanding of human agency. In turn, it adds to a sense 
of human hubris, since entertaining the potential threat of machines ironi-
cally reflects a sense of human control and mastery over machines.

What we understand as human agency has always been distributed in a 
heterogeneous landscape of human and nonhuman components. These com-
ponents are biological and technological, including tools, machines, tech-
nological systems, models, algorithms, and ANNs. We have always been 
cyborgs, and we have always explored the environment in company with 
other actors. Machines have helped us expand our understanding of the envi-
ronment, and the rejection of their perspectives of the environment is rebuff-
ing what it means to be human. Thus, embracing machine perspectives is to 
accept the cyborg condition of being human.

I argue that adopting a posthumanist understanding of intelligence could 
greatly expand the discourse of research on AI safety and bias. Over the 
years, algorithms trained by AI research clusters, such as Google and Meta, 
have resulted in “biased” AI systems that uncannily resemble humanity’s 
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biases. In 2015, a Google image-recognition algorithm placed the label 
“ gorilla” on Black people. In 2016, searching female names, such as “Steph-
anie Williams,” on LinkedIn triggered search suggestions asking if the user 
sought similar male names, such as “Stephen Williams.” That same year, 
Tay, a Microsoft chatbot, spent a day learning from Twitter, after which it 
began to tweet racist and sexually-charged messages. Other examples include 
gender-biased image-recognition and - generation algorithms, as we have seen 
earlier in this chapter. As we now recognize, AI biases are reflected from eve-
ryday gender and racial stereotypes.

According to their own accounts, Google and Facebook quickly “fixed” 
these “biased” algorithms after the public launched scathing criticisms. 
 Researchers wanted to create “unbiased” AI algorithms. However, a deeper 
irony lurks behind these stories. From a posthumanist perspective, these AI 
algorithms are not biased at all, because they hold true to the datasets on 
which they were trained by cruelly reflecting an ugly aspect of humanity 
which many of us dare not recognize. In a way, to teach an algorithm to be 
“racial-neutral” equates to teaching someone to see no skin color. Yet “see-
ing no color” is a problem in itself, one of society’s ignorance of the reality 
of systemic racism.

At the center of this irony is that we seek to treat AI algorithms as automa-
tion machines, instead of as yet more voices on issues we thought to address 
solely as humans. If we focus on the bigger picture, these blunt and “biased” 
AI systems played an important role in recognizing our biases in online spaces 
such as Twitter and LinkedIn. There is a saying in the machine-learning com-
munity: “Garbage in, garbage out.” Yet, a garbage AI reveals how the inter-
net has become a hoarding place for humanity’s mental garbage.

A similar argument can be made concerning image generators that have 
disrupted creative professions. The work “Théâtre D’opéra Spatial” dropped 
a bomb onto the art professions that brokered a war between artists and 
AI image generators. Created using Midjourney, Jason Allen submitted this 
work to the Colorado State Fair’s annual art competition using the name 
“Jason M. Allen via Midjourney.” He won the blue ribbon for emerging 
digital artists. While Allen unapologetically boasted of his achievement, the 
news set off a backlash that eventually led to a mass protest of artists against 
AI-generated artwork. Because AI researchers scraped the internet for train-
ing data, including images by these protesting artists, the trained AI system 
would generate similar visual styles. Although rules and regulations concern-
ing training data in AI research must be encouraged, a posthumanist twist 
is needed to bypass the inherent human-machine rivalry narratives. To some 
degree, the boycotting human artists must have felt insecure when many 
non-artists exclaimed that AI image  generators would one day replace them. 
Such a comparison is based on an anthropocentric view, in which human art-
ists become the measure of creativity and imagination. From a posthumanist 
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perspective, the goal of building powerful machines should never be about 
replacing or replicating human capacity, but about providing alternative, 
non-anthropocentric perspectives to expand our all-too-human pathways of 
thinking and making.
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 40 Luhmann, Introduction to Systems Theory, 123.
 41 Probert, “Book Review: Introduction to Systems Theory.”
 42 Drawing Operations, 2015; Drawing Operations, 2017
 43 Chung, Drawing Operations, 2015.
 44 Watch her full TED Talk here: https://www.youtube.com/watch?v=q‑GXV4F‑

d1oA. Last accessed: April 29, 2024.
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