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Collaborative Workshop for Women in 
Mathematical Biology: Mathematical 
Modeling for Women’s Health 

Ashlee N. Ford Versypt, Rebecca A. Segal, and Suzanne S. Sindi 

1 Aim and Scope 

Despite advances in health care, women continue to have disparate outcomes. 
Women experience higher morbidity and mortality, especially with regard to 
cancer, cardiovascular disease, and recently COVID-19 [1]. Reproductive health and 
maternity are also a continued source of health risk. 

Mathematical modeling can be used to identify some of the underlying causes 
for the different outcomes experienced by women and begin to suggest possible 
solutions and pathways forward. The goal of the work is to use data and biological 
insight from experimental publications and collaborations and develop mathemati-
cal frameworks to explore questions of disparity. 

This volume contains the scientific work from the Collaborative Workshop for 
Women in Mathematical Biology. The workshop brought together 44 researchers 
(Fig. 1) to collaborate on six problems that used mathematics to understand complex 
biological systems with implications for women’s health. The workshop was held 
at the UnitedHealth Group campus in Minnetonka, Minneapolis during June 20–24, 
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Fig. 1 Group photograph of the 2022 Collaborative Workshop for Women in Mathematical 
Biology participants at UnitedHealth Group Optum of Minnetonka, MN 

2022 and was organized by Ashlee N. Ford Versypt, Rebecca Segal, Blerta Shtylla, 
and Suzanne S. Sindi. The articles contained in this volume were initiated during 
the intensive 1-week workshop and continued through follow-up collaborations 
afterward. Ashlee N. Ford Versypt served as the primary editor of this volume with 
generous support from 13 anonymous peer reviewers. 

2 History and Context 

Historically, women have been underrepresented in the mathematical sciences. 
Although progress has been made, the numbers remain unbalanced. In the most 
recent American Mathematical Society survey from 2018, only 17% of tenure-track 
mathematics faculty in doctoral departments are female [2]. Research reports from
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the American Association of University Women provide evidence on challenges 
that many early and midcareer women face that are likely contributors to leaving 
science, technology, engineering, and mathematics (STEM) professions [3, 4]. Two 
aspects explicitly recommended to enhance persistence of women in STEM are 
(1) cultivating a sense of belonging in the workplace and the profession and (2) 
making the work socially relevant. These aspects give an even more compelling 
picture of why research workshops such as this one can be so valuable for the 
mathematics community. As the COVID-19 pandemic impacted the workshop par-
ticipant recruitment, timing, and other logistics, the challenges faced by untenured 
and/or teaching-focused female professors as well as research trainees [5, 6] were  
motivation for our emphasis on supporting these vulnerable groups of women in 
mathematics. Research mentoring and support from senior mentors is one key to 
success, and a workshop environment provides a significant amount of interaction 
in a concentrated amount of time. Interactions with women across various career 
stages from graduate and postdoctoral training to all ranks of faculty careers provide 
a rich support network of other technical women, particularly those who have faced 
similar recent challenges. The emphasis in our particular workshop was women’s 
health, which also has clear social impacts toward addressing health disparities. 

The primary aim of the Women in Mathematical Biology (WIMB) workshops is 
to foster research collaboration among women in mathematical biology. Participants 
spend a week making progress on a research project and encouraging innovation 
in the application of mathematical, statistical, and computational methods in the 
resolution of significant problems in the biosciences. The workshops have a special 
format designed to maximize the opportunities to collaborate. The groups are 
structured to facilitate tiered mentoring. Each group has a senior researcher who 
presents a problem. This person is matched with a co-leader, typically a researcher 
in their field but with whom they have not previously collaborated. The groups are 
rounded out with researchers at various career stages. By matching senior research 
mentors with junior mathematicians, we expand and support the community of 
scholars in the mathematical biosciences. At the 2022 workshop, a panel session 
on career paths in industry was also included to connect participants with women 
in mathematics and statistics careers, primarily from the local Minneapolis area in 
addition to co-organizer Blerta Shtylla who works at Pfizer in California. To date, 
WIMB workshops have occurred at the Institute for Mathematics and its Appli-
cations (IMA, https://www.ima.umn.edu/), the National Institute for Mathematical 
and Biological Synthesis (NIMBioS, http://www.nimbios.org/), the Mathematical 
Biosciences Institute (MBI, https://mbi.osu.edu/), and the Institute of Pure and 
Applied Mathematics (IPAM, https://www.ipam.ucla.edu/). These workshops were 
sponsored by an ADVANCE grant from the National Science Foundation to the 
Association for Women in Mathematics. This award helped establish research 
networks in 26 different areas of mathematics research including Control, Commu-
tative Algebra, Geometry, Data Science, Materials, Operator Algebras, Analysis, 
Number Theory, Shape, Topology, Numerical Analysis, and Representation Theory. 

For the WIMB workshops, each group continues its project together to obtain 
results that are submitted to the peer-reviewed volume in the book series for
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the workshop. The benefit of such a structured program with leaders, projects, 
and working groups planned in advance is based on the successful Women In 
Numbers conferences and works in both directions: senior women meet, mentor, 
and collaborate with the brightest young women in their field on a part of their 
research agenda of their choosing, and junior women faculty and students develop 
their network of colleagues and supporters and encounter important new research 
areas to work in, thereby improving their chances for successful research careers. 

3 Research 

This volume contains six research papers loosely grouped into the following general 
application areas: infectious diseases, contraceptives, breast cancer, and infant res-
piratory distress. Throughout this research are discussions of detailed mathematical 
models for complex physiological processes and treatments, integration with data, 
reviews on the state of the art, and development of potentially impactful new 
methods. The following descriptions of the projects were proposed by the team 
mentors during project team formation. The mentors’ affiliations at the time of 
the workshop are listed. The papers in this volume follow the arbitrary order of 
the project team numbers. Each paper is contained in a separate chapter with all 
authors and affiliations listed there and abstracts updated accordingly for the work 
conducted during and after the workshop. 

Project 1: HIV, Pre-exposure Prophylaxis, and Drug Resistance. Team Men-
tors: Katharine Gurski, Howard University and Yeona Kang, Howard Univer-
sity 
In December 2021, the FDA approved an injectable pre-exposure prophylaxis 
(PrEP) for use in at-risk adults and adolescents to reduce the risk of sexually 
acquired HIV. The cabotegravir extended-release injectable suspension is given first 
as two initiation injections administered 1 month apart and then every 2 months 
thereafter. In this project, we aim to study how dynamics of drug-sensitive and 
drug-resistant HIV strains within hosts affect the prevalence of drug-resistant strains 
in the population when injectable pre-exposure prophylaxis enters the picture. This 
project will use methods from dynamical systems, statistics as it relates to sensitivity 
analysis, data, parameter estimation, and numerical simulation. 

Project 2: Modeling the Stability and Effectiveness of Dosing Regimens of 
Oral Hormonal Contraceptives. Team Mentors: Lisette de Pillis, Harvey Mudd 
College and Heather Zinn Brooks, Harvey Mudd College 
Oral contraceptives are a leading form of birth control in the United States, but 
consistent daily use and unwanted side effects can pose challenges for some users. 
Existing mathematical models of the effects of hormonal contraception on the 
menstrual cycle do not incorporate the dynamics of the on/off dosing regimens 
or the metabolism of the exogenous hormones, although methods from differential 
equations and dynamical systems are well-positioned to investigate these questions.
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We aim to explore the stability of the contraceptive state achieved by oral hormonal 
contraceptives using a mechanistic mathematical model of the menstrual cycle. 
Such a model could provide insight into when a contraceptive state is lost due to 
inconsistency or changes in hormonal birth control use, which may further inform 
the advisement of care providers and the choices of birth control users. 

Project 3: Effects of Exogenous-Hormone Induced Perturbations on Blood 
Clotting. Team Mentors: Karin Leiderman, Colorado School of Mines and 
Anna Nelson, Duke University 
Exogenous hormones are used by hundreds of millions of people worldwide for 
contraceptives and hormonal replacement therapy (HRT). However, estrogen in 
combined oral contraceptives (OC) and HRT have been shown to significantly 
increase the risk of both arterial and venous thrombosis. The objectives for this 
project are to use a mechanistic mathematical model of flow-mediated coagulation 
to investigate the effects of exogenous hormone-induced perturbations that have 
been observed on blood clotting. We will use the model to simulate specified 
hormone-induced perturbation profiles, i.e., percent changes in plasma levels of 
proteins and blood platelets caused by estrogen and progesterone, in varying doses, 
separately and together. The first objective will be to verify the observations from the 
literature showing increased clotting for specified profiles and doses. It is also well 
known that plasma levels of clotting factors vary among individuals. Variation that 
is considered normal and still healthy is a range between 50 and 150% of the mean 
value of the healthy population. Our second objective will be to identify individuals 
that may be more susceptible to thrombosis due to certain hormones and doses. 
We will accomplish this by performing global sensitivity analysis on model output 
metrics where variance is due to uncertainty in the input levels of clotting factors, 
platelets, and hormones. 

Project 4: Development of Effective Therapeutic Schedules in Breast and 
Gynecological Cancers. Team Mentors: Morgan Craig, University of Montreal 
and Adrianne Jenner, Queensland University of Technology 
After lung cancer, breast cancer continues to be projected as the second most 
commonly diagnosed cancer in Canada. Leveraging data on cancer growth, 
pharmacokinetic and pharmacodynamic models of various cancer therapies, and 
models of therapeutic resistance, this project aims to identify responders/non-
responders to treatments and establish effective therapeutic schedules in 
breast and gynecological cancers. For this, we will develop mathematical and 
pharmacokinetic/pharmacodynamic models, integrated with patient data, to 
construct and implement in silico clinical trials. 

Project 5: Modeling Neonatal Respiratory Distress. Team Mentors: Laura 
Ellwein Fix, Virginia Commonwealth University and Sharon Lubkin, North 
Carolina State University 
Respiratory distress in the newborn, a condition characterized by difficulty breath-
ing, occurs in about 7% of newborns. This team’s project will address a question 
related to modeling of respiratory mechanics in the neonatal population. We
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previously developed an ordinary differential equation (ODE) model describing 
dynamic breathing volumes and pressures in aggregate compartments depicting 
the airways, lungs, chest wall, and intrapleural space, in an ideal spontaneously 
breathing preterm infant. Current areas of inquiry include application to ventilated 
infants and parameter identification using clinical data from a neonatal intensive 
care unit or an animal model. Alternatively, a specific unsolved problem could 
arise that requires the incorporation of a different dynamic model type, such as 
spatially dependent or stochastic model, or the connections of the organ level 
respiratory system with different physiology. The team’s co-leaders have interests 
in physiology, biotransport, tissues, cardiovascular and respiratory systems, and the 
use of noninvasive data in modeling. Our expertise centers on physiological mech-
anistic modeling, spatiotemporal systems and dynamics, parameter identification, 
numerics, and model development starting from simple to complex. 

Project 6: On Stable Estimation of Disease Parameters and Forecasting in 
Epidemiology. Team Mentors: Alexandra Smirnova, Georgia State University 
and Ruiyan Luo, Georgia State University 
Real-time reconstruction of disease parameters for an emerging outbreak helps to 
provide crucial information for the design of public health policies and control 
measures. The goal of our team project is to investigate and compare parameter 
estimation algorithms that do not require an explicit deterministic or stochastic 
trajectory of system evolution and where the state variable(s) and the unknown 
disease parameters are reconstructed in a predictor-corrector manner in order to 
mitigate the excessive computational cost of a quasi-Newton step. We plan to look 
at uncertainty quantification and implications of parameter estimation on forecasting 
of future incidence cases. Theoretical study will be combined with numerical 
experiments using synthetic and real data for COVID-19 pandemic. 

4 Concluding Remarks 

This workshop was originally postponed due to the COVID-19 pandemic; we are 
grateful for the continuing support of our team leaders who repeatedly made space 
for this workshop in their schedules until we could safely hold the workshop. We 
were able to accommodate a few needs for virtual participation while maintaining a 
vibrant collaborative event and are proud of the hard work of our participants during 
these challenging times. 

Workshop groups are continuing to work on furthering the projects and pre-
senting their work at conferences. Several teams presented their work at the 2023 
Society for Mathematical Biology Annual Meeting. Past workshops have had 
successful research collaborations last for years following the workshop. The more 
community building we can accomplish, the higher the rate of success for women 
and mathematics. This means more innovative research will be produced and built 
upon by the entire mathematics community.



Collaborative Workshop for Women in Mathematical Biology 7

Acknowledgments The work described herein was initiated during the Collaborative Workshop 
for Women in Mathematical Biology funded and hosted by UnitedHealth Group Optum of 
Minnetonka, MN and supported by University of Minnesota’s Institute for Mathematics and 
its Applications in June 2022. Additionally, the authors and editors thank the anonymous peer 
reviewers for their feedback, which strengthened this work. 

ANFV acknowledges support from National Institutes of Health grant R35GM133763. 

References 

1. K. Lewis-Evans, L. Day-Page, US Pharmacist 47(9), 17 (2022) 
2. Mathematical and Statistical Sciences Annual Survey. Fall 2018 Departmental Profile 

Report. http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-
Report.pdf. Accessed 17 Sep 2023 

3. C. Hill, C. Corbett, A. St. Rose, Why So Few? Women in Science, Technology, Engi-
neering, and Mathematics. https://www.aauw.org/app/uploads/2020/03/why-so-few-research. 
pdf (2010). Accessed 17 Sep 2023 

4. C. Hill, C. Corbett, Solving the Equation: The Variables for Women’s Success in Engineering 
and Computing. https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa. 
pdf (2015). Accessed 17 Sep 2023 

5. P.B. Davis, E.A. Meagher, C. Pomeroy, W.L. Lowe Jr, A.H. Rubenstein, J.Y. Wu, A.B. Curtis, 
R.D. Jackson, Nat. Med. 47(28), 436 (2022) 

6. M. Dunn, M. Gregor, S. Robinson, A. Ferrer, D. Campbell-Halfaker, J. Martin-Fernandez, J. 
Career Assess 30(3), 573 (2022) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
http://www.ams.org/profession/data/annual-survey/2018Survey-DepartmentalProfile-Report.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/why-so-few-research.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Extended-Release Pre-exposure 
Prophylaxis and Drug-Resistant HIV 

Yanping Ma, Yeona Kang, Angelica Davenport, Jennifer Mawunyo Aduamah, 
Kathryn Link, and Katharine Gurski 

1 Introduction 

Human immunodeficiency virus (HIV) is an aggressive virus that attacks the 
body’s immune system via destruction of CD4. + T-cells. More specifically, HIV 
is a lentivirus, a class of ribonucleic acid (RNA) viruses that converts RNA into 
deoxyribonucleic acid (DNA). The name lentivirus is derived from the Latin word 
for slow, “lenti,” referring to the characteristically long incubation period. During 
this incubation period, which can last for multiple years, the virus appears to be 
controlled by the immune system, but in actuality it is not [1]. Recent advances in 
disease progression have asserted three stages: the acute stage, the chronic stage 
(i.e., the incubation period), and finally the acquired immunodeficiency syndrome 
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(AIDS) stage [2]. The acute stage of HIV begins with the initial infection and 
continues for approximately 8–12 weeks [3, 4]. During the acute stage, those 
infected experience a high viral load. After the acute stage, those infected move 
into a chronic stage in which their viral load goes down, and many individuals are 
asymptomatic. 

The HIV virion, in this case, has a capsid that protects its RNA-filled inner core, 
while it is free-floating and searching for a host cell. Once the virion attaches to 
a host CD4. + T-cell and injects its RNA, the infection cycle begins. This RNA 
injection allows HIV to pass through the early most infectious stage without 
detection by the immune system [5]. 

Unlike other retroviruses, lentiviruses do not depend on proliferation of the 
infected cell to integrate into the host genome [6]. After converting their RNA 
genome into DNA, lentiviruses integrate into the host genome, a step necessary 
for the expression of viral proteins. Due to constant selection pressure to evade the 
innate and adaptive immune systems, HIV undergoes frequent mutation as a result 
from this evasion pressure [7]. In addition, it is well known that RNA viruses are 
quite unstable and are inherently more prone to mutation than DNA viruses. More 
specifically, it has been shown through intracellular fidelity assays, which signal 
either mutation inactivation or reversion, that the mutation rate for HIV is . 10−5

per replication cycle [7], on average, which is similar to that of other retroviruses 
[8–10]. 

Note that HIV, in general, refers to HIV-1. Although HIV-1 and HIV-2 share 
many similarities, HIV-2 is characterized by a reduced likelihood of transmission 
and progression to AIDS. In terms of epidemiology, HIV-2 remains largely confined 
to West Africa, whereas HIV-1 is found worldwide. 

Since 1987, different forms of antiretroviral drugs were developed and began to 
transform disease management for HIV-infected individuals as well as susceptible 
individuals [11]. With reliable life-long adherence, antiretroviral therapies (ART), 
including combination pills, give HIV-positive individuals a lifespan comparable 
to that of disease-free individuals [12–15]. In addition, those individuals who have 
started ART may be virally suppressed, which also decreases the chance of HIV 
transmission [16–20]. While ART has helped to reduce HIV fatality rates, allowed 
infected individuals to live with minimal symptoms, and even protected children 
from infection during natural birth [21], it is still not the final answer for HIV 
control. Some of the mutated HIV strains may still have the ability to replicate in 
the presence of drugs. These HIV mutations can develop while undergoing ART, 
making finding an effective treatment much more difficult for the individual, as a 
treatment that once worked will no longer prevent the drug-resistant (DR) mutated 
strain from replicating. 

In addition to managing the viral loads of HIV-positive individuals, ART may 
be taken to prevent infection after exposure. In 1990, the Centers for Disease 
Control and Prevention (CDC) recommended post-exposure prophylaxis (PEP) for 
individuals with occupational HIV exposures [22]. Today, PEP involves a 28-day
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course of ART within 72 hours of possible exposure and is only used in emergency 
situations to prevent HIV infection [23]. 

In 2012, the US Food and Drug Administration (FDA) approved the first 
medication for high-risk individuals to prevent infection, a strategy known as pre-
exposure prophylaxis (PrEP) [24]. By 2016, there were two approved daily pills 
used for PrEP: Truvada, a combination of emtricitabine and tenofovir disoproxil 
fumarate, and Descovy, a combination of emtricitabine and tenofovir alafenamide 
[25]. While daily microdoses of PrEP are widely used and extremely effective in 
preventing HIV infection even with common exposure, daily adherence can be 
challenging, especially when mild to extreme side effects such as trouble breathing, 
fever, tiredness, muscle aches, blisters of the mouth, and swelling of the eyes, face, 
and tongue occur [26]. 

In December 2021, the FDA approved an injectable PrEP medication, Apretude, 
generically known as cabotegravir long-acting (CAB-LA), for use in at-risk adults 
and adolescents to reduce their risk of sexually acquired HIV [27]. The CAB 
extended-release injectable suspension (CAB-LA) is first administered as two 
injections 1 month apart and then administered continually every 2 months [28]. 

In the ECLAIR [29] trial, the long half-life of CAB-LA meant that the drug was 
detectable 52 weeks after the last injection in .14% of the trial participants. While 
this long half-life is beneficial in allowing long intervals between PrEP injections, 
the long pharmacologic drug tail also means that there can be a long period when the 
CAB level is too low to prevent an HIV infection but high enough to give mutations 
an advantage. The wild-type strain of HIV signifies the unaltered version of the virus 
that has not acquired mutation to an antiretroviral drug, i.e., drug-sensitive. Since 
the mutated strain is inherently less pressured by PrEP, it may not be effectively 
suppressed, while the wild-type strain is. This is a concern considering that any PrEP 
drug is just one component of the drug cocktails used in antiretroviral treatment, and 
the emergence of mutations to PrEP should be investigated. We note that in January 
2021, oral CAB (Vocabria) and a combination injectable CAB drug (Cabenuva) 
were approved by the FDA [27] for people living with HIV. Hence, modeling the 
development of drug resistance to CAB-LA as PrEP is necessary. 

Continued experimental efforts for PrEP, especially injectable PrEP, and mutated 
HIV strains in humans can be difficult to find and fund. Thus studies with simian-
human immunodeficiency virus (SHIV) in macaques have been used as a proxy 
to further understand short-term and long-term protection from both wild-type and 
mutated infections. Previous macaque studies with SHIV prior to seroconversion, 
i.e., before having enough virions to test positive for SHIV, show that long-acting 
CAB may encourage rather than inhibit mutations [30]. It has been shown that, 
in patients receiving ART that does not provide sufficient HIV suppression, many 
mutants can develop within days, thus decreasing the likelihood of drug efficacy 
[7]. The growth of mutated strains from the macaque trials and insufficient HIV 
suppression through ART have informed the FDA decision to require HIV tests prior 
to each PrEP injection in order to further protect an individual from mutated strains 
[31]. However, this FDA decision has not been tested using human experiments.
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The main goal of mathematical modeling is to serve as a predictive tool that can 
mechanistically describe highly complex systems. Once a system is understood, 
mathematical models can be used to test specific parameter regimes or treatment 
schedules to save time, money, and effort in a clinical setting. Previous mathematical 
models have been developed to understand wild-type HIV in humans [32–35]. 
Similarly, mathematical models have been built to better understand mutation in 
HIV to particular drugs [36, 37]. However, a model that mechanistically describes 
both wild-type and mutation in HIV, as well as SHIV in macaques and its response 
to CAB PrEP treatment campaigns, has not been built. 

In this manuscript, we have built a within-host, mechanistic, ordinary differential 
equation (ODE) model of the HIV latency and infection cycle in CD4. + T-cells. 
Our model incorporates a pharmacokinetic and pharmacodynamic (PK-PD) model 
to establish the relationship between the inhibitory drug response of CAB and 
its concentration in the plasma as well as rectal, cervical, and vaginal fluids and 
tissue. We then verify our model with viral load data extracted from Reeves et 
al. [38] and Vaidya et al. [39] for humans and macaques, respectively. Once our 
model is calibrated, we build in silico experiments that involve SHIV and CAB-
LA PrEP to replicate behaviors found in literature and observe new phenomena 
[30, 40, 41]. First, we administer CAB-LA PrEP separately to in silico macaque 
and human patients, both before and after exposure to SHIV or HIV, respectively, 
to observe SHIV and HIV infectivity dynamics. We present the drug concentrations 
and inhibitory response of these protocols in Sect. 4. We then study dynamics of 
these in silico experiments with mutations occurring at an observed rate [42]. While 
we do not include a mechanism for PrEP to cause mutations in the model, we can 
observe what occurs when mutations naturally enter the system. We can see under 
what conditions exposure to PrEPmay encourage the mutant strain to grow. With the 
results of these in silico trials, we show that the level of mutation, the effectiveness 
of CAB-LA against the mutant strain, and the aggressiveness with which the mutant 
strain of virions infects healthy T-cells determine whether the mutant strain grows to 
a significant level in the acute stage of infection. In particular, we have found that the 
primary factor determining whether the resistant strain can grow or even overwhelm 
the wild-type is the degree of fitness, or the infectivity, for the drug-resistant strain 
of virions to infect healthy T-cells. 

The results are presented in the following order. In Sect. 2 we present a schematic 
of the HIV life cycle along with the various ARTs targeting different stages of the 
life cycle along with notes about CAB-LA drug resistance. In Sect. 3 we discuss 
the within-host viral dynamics and the T-cell model. In Sect. 4 we introduce the 
model for the inhibitory function of CAB-LA drug. In Sect. 5 we calculate the 
effective reproduction number. Next, we present the parameters with a discussion on 
estimation, acquisitions, and sensitivity in Sect. 6. We present our numerical results 
and comparison to experiments for both humans and macaques in Sect. 7 before 
discussing the connections between human and macaque in silico experiments and 
outlining future directions for this research.
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2 HIV Replication and Antiretroviral Drugs 

HIV attacks and destroys the CD4. + T-cells of the immune system. CD4. + T-cells 
are a type of white blood cell that plays a major role in protecting the body from 
infection. HIV uses the machinery of the CD4. + T-cells to multiply and spread 
throughout the body. This process, which is carried out in seven steps or stages, 
is called the HIV life cycle [43]. The HIV life cycle refers to the series of steps the 
virus takes to infect cells, reproduce, and spread throughout the body. As shown in 
Fig. 1, HIV attaches to CD4. + T-cells (stage 1), the main target of the virus, using 
its envelope proteins (GP 120). The virus then fuses with the cell membrane and 
enters the cell, where the viral RNA is converted into DNA by the viral reverse 
transcriptase enzyme (stage 2). The viral DNA is integrated into the host cell’s 
genome (stage 3) and transcribed into RNA, which is then translated into viral 
proteins by the host cell machinery (stage 4). These viral proteins and RNA come 
together to form new virions (stage 5), which bud off from the host cell (stage 6) 
and are released into the bloodstream to infect other cells (stage 7). Several stages 
of the HIV life cycle are crucial targets for antiretroviral drugs (ARVs), which aim 
to interrupt the cycle and prevent the virus from replicating and spreading. In the 
following list, we group the six classes of ARVs used to treat HIV [44] by HIV life 
cycle stages as illustrated in Fig. 1. 

Fig. 1 Schematic of HIV life cycle. The stage numbers of the life cycle are used to group the 
targets of the antiretroviral drugs
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Stage 1 targets 
CCR5 antagonists: These drugs block virus entry into host cells by binding to the 
viral envelope or to cellular receptors. By blocking the CCR5 co-receptor, CCR5 
antagonists prevent the virus from replicating and spreading within the body, 
helping to slow the progression of the disease; examples: maraviroc (Selzentry) 
and vicriviroc (VRC01). 
Fusion inhibitors: These drugs interfere with the initial stages of virus entry into 
host cells by blocking the fusion of the viral and cellular membranes; example: 
enfuvirtide (Fuzeon). 
Stage 2 targets 
Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): These drugs 
mimic the building blocks of DNA and are incorporated into the growing viral 
DNA chain by reverse transcriptase, causing termination of the chain; examples: 
zidovudine (AZT) and tenofovir (Viread). 
Non-nucleoside reverse transcriptase inhibitors (NNRTIs): These drugs bind 
directly to reverse transcriptase, blocking its activity; examples: nevirapine 
(Viramune), efavirenz (Sustiva), and riplpivirine (Edurant). 
Stage 3 targets 
Integrase strand transfer inhibitors (INSTIs): These drugs block the integrase 
enzyme, which is needed for the integration of the viral DNA into the host 
cell genome; examples: dolutegravir (Tivicay), raltegravir (Isentress), elite-
gravir (Biktary), cabotegravir (Vocabria), and long-acting cabotegravir (CAB-
LA, Apretude). 
Stage 6 targets 
Protease inhibitors (PIs): These drugs block the protease enzyme, which is 
needed for the processing and maturation of the viral polyprotein. This prevents 
the formation of functional virions and the spread of infection; examples: 
lopinavir (Kaletra) and atazanavir (Reyataz). 

Combination antiretroviral therapy (cART) for people living with HIV typically 
involves using multiple drugs from different classes to target the virus at multiple 
stages of the life cycle, increasing the chances of blocking replication and reducing 
the development of drug resistance. One current cART of concern is oral CAB 
(Vocabria), to be used with other ARV, and a combination injectable CAB drug 
(Cabenuva). In a recent study [45], Engelman and Engelman reviewed CAB-LA 
and the technical aspects of integrase inhibitors and resistance. These same authors 
note that, in general, INSTIs’ resistance occurs through substitution of amino acid 
residues near the integrase active sites [46, 47]. Cook et al. [48] reports that the 
INSTI resistance mutations destabilize the magnesium ion cluster, which restricts 
CAB-LA’s ability to effectively increase its rate of dissociation from the integrase 
active site. First-generation INSTI compounds raltegravir [49], approved by the 
FDA in 2007, and elvitegravir [50], approved by the FDA in 2012, select for drug 
resistance more easily [45]. This does not mean that raltegravir and elvitegravir 
cause mutations in HIV, only that naturally occurring mutations in HIV can evade 
these drugs easily. Second-generation INSTI drugs dolutegravir [51] and bictegravir
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[52], licensed by the FDA in 2013 and 2018, have been proven to be less able to 
select for drug resistance. CAB is chemically similar to dolutegravir [45]. Parikh 
et al. [53] note that multiple INSTI mutations are required for extensive CAB drug 
resistance. However, the macaque studies by Radzio-Basu et al. [30] indicate that 
these mutations are selected readily when CAB-LA is given to macaques previously 
infected with SHIV. The alarm is that these mutations may cause resistance to 
another INSTI drug, such as dolutegravir, a first-line ART in low- and middle-
income countries, or other second-line integrase inhibitors, such as bictegravir. 
WHO recommends monitoring INSTI drug resistance, and the introduction of CAB-
LA as PrEP reinforces this need [54, 55]. 

3 Within-Host Viral Dynamics and T-Cell Model 

We model the within-host system with a deterministic system of ODEs to capture 
the infection of CD4. + T-cells by free virus particles, i.e., virions, in plasma. In this 
system, T represents the concentration of healthy CD4. + T-cells. In the absence of 
disease, the number of T-cells in blood is relatively constant. Thus, we use a logistic 
term to maintain this balance 

.
dT

dt
= γ

⎧
1 − T

KT

⎫
T − μT, (1) 

where . γ is the proliferation of healthy T-cells, . KT is the carrying capacity, and . μ is 
the natural death rate. 

We consider virions that are carrying a wild-type strain of HIV, i.e., drug-
sensitive (DS) strain, as well as those carrying a mutant strain of HIV, i.e., 
drug-resistant (DR) strain. They are denoted by . Vs and . Vr , respectively. Once a 
virion, or a number of virions, enters a healthy T-cell, we consider the CD4. + cell 
to be infected. These infected cells are divided into two categories, latently infected 
T-cells, L, and actively infected cells, I . The actively infected T-cell proceeds along 
the HIV replication path described in Sect. 2. We further classify these infected T-
cells as . Ls and . Is for those infected with the DS strain and . Lr and . Ir for those 
infected with the DR strain. In the latent cells, . Ls and . Lr , HIV hides in an inactive 
state. In these resting memory T-cells (. Ls and . Lr ), HIV evades immune clearance. 
When the long-lived latently infected cells activate and once their intravirion levels 
reach some threshold, we consider the T-cell to be actively infected. Once the 
virions inside the actively infected T-cell cause the cell to burst, those virions are 
released back into the population of virions in the plasma, . Vs and . Vr . A table of 
state variables and their descriptions are given in Table 1. Our T-L-I-V model is 
illustrated in Fig. 2. 

Healthy CD4. + T-cells are recruited at the rate . β and die at the natural death rate 
. μ. These healthy cells are proliferated at the rate .γ (1−W/KT )T , which represents 
the reproduction total of T-cells (.W = T + Ls + Lr + Is + Ir ) through mitosis
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Table 1 Symbols and definitions of state variables used in the model. The label DS indicates the 
drug-sensitive strain, and DR indicates the drug-resistant strain 

State variable Description 

T Concentration of healthy T-cells 

.Ls Concentration of latently infected T-cells (by DS strain) 

.Lr Concentration of latently infected T-cells (by DR strain) 

.Is Concentration of actively infected T-cells (by DS strain) 

.Ir Concentration of actively infected T-cells (by DR strain) 

.Vs Concentration of virions in plasma (DS strain) 

.Vr Concentration of virions in plasma (DR strain) 

W .= T + Ls + Lr + Is + Ir , total concentration of T-cells 

Fig. 2 Schematic of HIV latency and infection in CD4. + T-cells. Each square node represents a 
state variable corresponding to either a state of a CD4. + T-cell (.T ,Lj , and . Ij for healthy, latently 
infected, and actively infected, respectively) or an HIV virion (. Vj ), where .j = s (representing 
DS) or r (representing DR). The label DS indicates the drug-sensitive strain, and DR indicates the 
drug-resistant strain. The solid black arrows represent a movement from one state to another, one 
state to itself, or a decay. Dashed arrows represent a release of HIV virions into the plasma from 
lysed CD4. + T-cells 

up to a carrying capacity . KT . The healthy cells are infected by DS virions and 
DR virions at the rates . ks and . kr , respectively. A portion, . σ , of these cells become 
latently infected, and the rest, .(1−σ), move directly into the actively infected state. 
The latent cells die at a slower rate, . μ̂, than the actively infected cells. This slower 
rate implicitly incorporates the self-proliferation of latent cells that make it appear 
as if the latent cells exit at a lower rate than . μ. The latent cells reactivate at the 
rate . χj , which describes the transition rate of target cells from latently infected . Lj

to actively infected . Ij , where .j = s (representing DS) or r (representing DR). 
The concentration of actively infected T-cells decreases due to natural death, . μ, and 
viral-induced death, d. We are modeling the acute stage of the HIV infection and 
disregarding the rate at which the immune system attacks the infected cell . Is or 
. Ir . CAB-LA, as an INSTI, interferes with the HIV replication stage when the viral 
DNA is integrated into the host cell’s genome (in stage 3) and transcribed into RNA.
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Thus, the viral-induced death for the DS-infected T-cells would be reduced to . fαdIs

with treatment, where . fα represents the inhibitory effect of CAB-LA and is valued 
at the fraction of events unaffected by the drug. We discuss the model and evaluation 
of . fα in Sect. 4. Similarly, the viral-induced death for the DR-infected T-cells would 
also be reduced. The parameter . φ represents the percentage of drug efficacy on the 
resistant strain. For example, the drug may be half as effective on the resistant strain 
in comparison to the sensitive one, thus .φ = 0.50. Then, .φ(1 − fα) represents the 
drug efficacy on the DR strain, and the viral-induced death changes from .dIr to 
.(1− φ(1− fα))dIr . Each viral-induced death of the actively infected T-cells would 
lead to the generation of N virions. Hence, the DS virion concentration increases by 
.fαdIsN , and the DR virion concentration increases by .(1− φ(1− fα))dIrN . Both  
concentrations decrease due to natural clearance of the virus, c. It is well known 
that infected cells and virions are not cleared at a constant rate throughout infection 
because they are targeted and cleared by adaptive immune responses that expand 
in response to infection. However, our study focuses on the acute phase of HIV 
infection, and hence we assume a constant clearance rate in our implicitly modeled 
immune system. 

We also assume that the DR virions arise from a naturally occurring mutation at 
the rate .msr = 10−5 [7]. We ignore backward mutations from DR to DS. Since 
extensive drug resistance to CAB requires multiple mutations [53], we assume 
that the chance to reverse multiple mutations is negligible. The forward mutations 
could occur in both latently infected cells and actively infected cells. Since we only 
consider the natural mutation rate per replication cycle and not the mutations that 
solely affect stage 3 of the HIV replication cycle, we have discounted the mutation 
rate by associating it only with the latently infected T-cells. However, in this model, 
we have a portion of latently DS-infected T-cells, . Ls , mutating at rate .msrχ to the 
actively DR-infected category, . Ir , and the non-mutated portion .(1−msr) moving at 
the rate . χ to the actively DS-infected T-cells, . Is . The system of ODE representing 
this model is 

.W = T + Ls + Lr + Is + Ir ,

dT

dt
= β − ksVsT − krVrT − μT + γ

⎧
1 − W

KT

⎫
T ,

dLs

dt
= σksVsT − χLs − μ̂Ls,

dIs

dt
= (1 − σ)ksVsT + (1 − msr)χLs − (μ + fαd)Is, (2)

dLr

dt
= σkrVrT − χLr − μ̂Lr ,

dIr

dt
= (1 − σ)krVrT + χLr + msrχLs − (μ + (1 − φ(1 − fα))d)Ir ,
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dVs 
dt 

= fαNdIs − cVs, 

dVr 
dt 

= (1 − φ(1 − fα))NdIr − cVr . 

The concentration of CD4. + T-cells is large, and the number of virions per 
milliliter of blood is on a significantly different scale. To remove the numerical 
difficulties this will create, we preemptively scale the equations for our use in our 
simulations. We use the constant . T0 to scale the healthy, latently infected, and 
actively infected T-cells. The constant . V0 is used to scale the virions. From these 
constants, the dimensionless variables are defined: .T̃ = T/T0, .L̃j = Lj/T0, 
.Ĩj = Ij /T0, and .Ṽ = V/V0, where j is either s or r . Similarly, all other parameters 
are scaled: .β̃ = β/T0, .k̃s = ksV0, .k̃r = krV0, .K̃T = KT /T0, and .Ñ = NT0/V0, 
where . T0 and . V0 are the initial conditions. The rescaled system looks identical to 
the system in Eq. (2). 

4 Model for CAB-LA Drug Inhibitory Function 

Cabotegravir (CAB) is an INSTI analog of dolutegravir (DTG) that is very potent 
(.50% inhibitory concentration is about .0.22 nM) and active against various subtypes 
of HIV [56]. CAB has the unique feature of a long half-life, which is about 40 
days after oral administration, and can be formulated as a nanoparticle injection. 
Therefore, CAB has the potential to permit its formulation as a long-acting injection 
(LA) amenable to dosing every 2 months, making CAB-LA an attractive alternative 
to daily oral PrEP regimens [57]. Oral PrEP is an effective strategy to reduce the risk 
of HIV transmission in high-risk individuals. The key to the efficacy of any PrEP 
treatment is to maintain a high enough drug concentration in the body, consistently, 
to be effective. Drug concentration in the body varies over time due to various 
factors such as metabolism, excretion, and adherence to the prescribed regimen. 
Adherence to the regimen ensures consistent and sufficient drug levels in the blood, 
which help to suppress the replication of virus, and hence plays a critical role in 
the effectiveness of the drug. The efficacy of oral PrEP is highly dependent on user 
adherence, which some previous trials have struggled to optimize particularly in 
low- and middle-income settings [58]. By replacing the need for a daily pill with a 
bimonthly injection, CAB-LA removes one of the adherence obstacles. 

4.1 General HIV Dose–Response 

The standard form of dose–response function for antiviral drugs is the median 
effect model based on mass action, which plots the fraction of infection events 
unaffected by drug, .fα(t), against log of drug concentration .n(logC), based on the
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Hill equation [59], 

.fα(t) = ICn
50

ICn
50 + C(t)n

, (3) 

where C is the drug concentration, .IC50 is the drug concentration that causes 50% 
of the maximum inhibitory effect, and n is a slope parameter. The slope parameter is 
mathematically analogous to the Hill coefficient, which is a measure of cooperativity 
in a binding process. A Hill coefficient of 1 indicates independent binding, while a 
value of greater than 1 shows positive cooperativity binding [60]. For antiviral drugs, 
the Hill slope values define intrinsic limitations on antiviral activity and are class 
specific. NRTIs and INSTIs have been shown experimentally to have Hill slopes 
of approximately 1, which is characteristic of noncooperative reactions. NNRTIs, 
PIs, and fusion inhibitors show positive cooperativity binding with slopes .> 1 [61]. 
Since CAB is an INSTI, Eq. (3) has a Hill slope of .n ≈ 1. 

The potency of a drug is identified as .IC50, but with HIV, the 90% protein-
adjusted maximal response is the number reported in experimental effectiveness 
reports. The formula for conversion is 

. ICX =
⎧

X

100 − X

⎫√
n

IC50,

where n is the same Hill coefficient as in Eq. (3) and .X = 90. Thus, .IC50 = IC90/9. 
In the literature, the protein-adjusted PA-.IC90 is given instead of the .IC90; therefore 
we use the PA-.IC90 values throughout this chapter. 

4.2 Human CAB-LA Data and Model 

In Fig. 3, we fit an exponential curve to the human plasma drug concentration 
experimental data for CAB-LA versus time (in days) reported in [62]. We find 
the cabotegravir plasma concentration, denoted as .C(t), in  .μg/mL at time t . The  
concentration is given by .C(t) = Cmaxe

−kt using experimental data values for 
.Cmax and .k = ln(2)/τ1/2, where .τ1/2 = 19.1 days is the drug half-life measured 
by Shaik et al. [62]. Then, the drug–plasma concentration in humans is . C(t) =
5.04e−0.0363t , as illustrated in Fig. 3. For human (plasma) CAB levels, we have 
.IC90 = 0.166 .μg/mL, and thus, .IC50 = 0.018 .μg/mL. Therefore, the fraction 
of infection events unaffected by the drug, . f h

α (t), for a single dose in human is 
described by the following equation: 

.f h
α (t) = 0.018

0.018 + 5.04e−0.0363t , (4) 

where the superscript h represents human.
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Fig. 3 Cabotegravir plasma 
concentration in (μg/mL) in 
humans after one PrEP 
injection. The diamonds 
represent the mean data 
reported by Shaik et al. [62]. 
The dotted and dashed 
horizontal lines represent 1× 
PA-IC90 and 4× PA-IC90, 
respectively. The solid line is 
the exponential fit to the 
mean data 
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(a) Human: plasma concentration of CAB-LA 
over 48 weeks of treatment. 
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(b) Human: fraction of infection events unaf-
fected over 48 weeks of treatment. 

Fig. 4 Human cases. (a) Pharmacokinetic profile of plasma CAB-LA concentration (.μg/mL) in  
humans represented by the solid black curve. The dotted and dashed horizontal lines represent . 1×
PA-.IC90 and . 4× PA-.IC90, respectively. (b) Fraction of infection events unaffected by PrEP, .f h

α (t), 
versus time since first injection for humans 

The WHO guideline announced in July 2022 recommends that the first two 
injections be administered 4 weeks apart, followed thereafter by an injection every 8 
weeks [28]. In Fig. 4a, the simulated plasma CAB concentration solid curve always 
stays above .4 × IC90 shown by the dashed line. Figure 4b captures the fraction of 
infection events unaffected by the drug, . f h

α , during the 48 weeks. We note that the 
range of unaffected events varies from 0.5% to 2%. 

Since PrEP is given for HIV prevention for sexual exposures, it is important 
to note the relationship between the plasma concentration of CAB as compared 
to the drug concentration in rectal, cervical, and vaginal tissues and fluids. Shaik 
et al. [62] plotted CAB concentrations for each of these tissues and fluids versus 
plasma concentration. The slopes of these data plots ranged from a high slope 
of 1.173 (cervical tissue CAB concentration vs plasma) to 0.926 (vaginal fluids
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Fig. 5 Human: concentration of CAB-LA over 48 weeks of treatment in plasma, tissues, and 
fluids. The CAB levels are represented by (top to bottom) in plasma with the solid black curve, in 
rectal fluid with the dashed black curve, in vaginal tissue with the dotted black curve, in cervical 
tissue with a solid gray curve, in rectal tissue with a dotted gray curve, and in cervicovaginal fluid 
with a dashed gray curve. The dotted and dashed horizontal lines represent . 1× PA-.IC90 and . 4×
PA-.IC90, respectively 

CAB concentration vs plasma). Rectal tissue and fluids plotted against plasma 
concentration had a slope of 1.012 and 0.929, respectively. Thus, the experimental 
data indicate that the relationship between the plasma–drug concentration and the 
drug concentration in rectal, cervical, and vaginal tissues and fluids is linear, as 
shown in Fig. 5. 

We note that to extend our model for the fraction of infection events unaffected 
by the drug, . f h

α , to rectal, cervical, and vaginal tissues and fluids, we would need to 
scale .IC50 and .C(t) by the slope-intercepts of this relationship. This may result in a 
value for . f h

α in the tissues and fluids that is different from . f h
α in plasma. The authors 

of this chapter are currently unable to find values for .IC50 or .IC90 in tissues or fluids 
for CAB-LA. So, we are unable to calculate . f h

α for tissues and fluids. However, our 
simulations in this chapter all model experiments with HIV infection via plasma, so 
we will be using . f h

α as defined in Eq. (4) and in Fig. 4. 

4.3 Macaque CAB-LA Data and Model 

For macaques, .IC90 is equal to 0.166 .μg/mL for CAB, thereby giving . IC50 =
0.018 .μg/mL. The plasma drug concentration for macaques was calculated by using
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(a) Macaque: plasma concentration of CAB-LA 
over 22 weeks of treatment. 
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fected over 22 weeks of treatment. 

Fig. 6 Macaque cases. (a) Pharmacokinetic profile of plasma CAB concentrations (.μg/mL) based 
on simulations, shown by solid black curve and in individual macaques data, shown in light 
gray curves with markers, from [30] for three injections. The dotted and dashed horizontal lines 
represent .1× .IC90 and .4× .IC90, respectively. (b) Fraction of infection events unaffected by PrEP, 
. fα , versus time since the first injection for macaques. The dash-dotted line is a reference line of 
.f m

α = 0.02. Inset is an enlarged image for the first 13 weeks 

experimental data from [40]. The experiments measured .Cmax = 3.5 and decay 
constant, .k = ln(2)/τ1/2, where .τ1/2 = 14.41 days. The fraction of infection events 
unaffected by the drug for macaques, .f m

α (t), is  

.f m
α (t) = 0.018

0.018 + 3.5e−0.048t
. (5) 

The timing of the CAB-LA injection series for macaques shown in Fig. 6 was 
chosen to match the experimental regime in [30]. Each CAB-LA injection for the 
macaques is given three times, each 4 weeks apart, following the experimental 
regime and data from [30]. In Fig. 6a, the simulated plasma CAB concentration 
solid black curve agrees with the individual macaque data shown by gray curves 
with circular markers. As shown in Fig. 6b, during the first 8 weeks, only a small 
portion of target cells will be unaffected by the drug. After the last injection, the 
drug concentration drops below .4× IC90 5 weeks after the last injection and below 
.1 × IC90 by 10 weeks after the last injection. With the drug–plasma concentration 
waning so quickly, a larger portion of the target cells will be unaffected. By the end 
of week 22, .30% of target cells are unaffected by CAB. 

5 Analysis 

We are interested in the disease-free equilibrium (DFE) state where healthy T-cells 
are persistent and the actively and latently infected T-cells die out. Similarly, viral 
populations are totally cleared from the system. We begin by computing the DFE
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and the effective reproduction numbers for each of the two strains independently 
from the steady state with no virus present. 

Let .E = (T , Ls, Is, Vs, Lr, Ir , Vr) denote an equilibrium of the system described 
by Eq. (2). The system always has the DFE, .E0 = (T ∗, 0, 0, 0, 0, 0, 0), where 

.T ∗ = (γ − μ) + √
(γ − μ)2 + 4γβ/KT

2γ /KT

. (6) 

Following [63], we use the next generation matrix method to obtain the following 
expressions for the reproduction numbers for the DS and DR strains. The calculation 
of the reproduction numbers is given in the proof of Theorem 1. For the wild-type 
HIV(SHIV) infection, we find the reproduction number . Rs

E as 

.Rs
E = df̄αks(χ(1 − σmsr) + (1 − σ)μ̂)NT ∗

c(χ + μ̂)(df̄α + μ)
, (7) 

where .f̄α = average value of .fs(α). For the mutated strain, we also find the 
reproduction number for the . Rr

E as 

.Rr
E = (1 − φ(1 − f̄α))dkr(χ + (1 − σ)μ̂)NT ∗

c(χ + μ̂)(φdf̄α + μ)
. (8) 

With CAB-LA protocol levels, both .Rs
E and .Rr

E are less than 1 for humans and 
macaques. 

Theorem 1 The disease-free equilibrium, . E0, is locally asymptotically stable if 
both reproduction numbers, .Rs

E and . Rr
E , are less than unity and is unstable if at 

least one of the reproduction numbers is greater than unity. 

Proof The proof follows the approach developed in [63]. Let . X = (Vs, Ls, Is, Vr ,

Lr, Ir , S) denote states. Define .Fi (X) as the vector representing the rate of new 
infections and free virions into compartment i, .V+

i (X) (.V−
i (X)) as the rate of 

transfer of cells into (out of) compartment i, and .V = V− − V+. Consider the 
systems .Ẋ = F(X) −V(X) where 

. F(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄αNdIs

σksVsT

(1 − σ)ksVsT

FφNdIr

σkrVrT

(1 − σ)krVrT

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,V+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

(1 − msr)χLs

0

0

χ(Lr + msrLs)

β + γ T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and
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V− = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

cVs 

(χ + μ̂)Ls 

(μ + f̄αd)Is 

cVr 

(χ + μ̂)Lr 

(μ + φfαd)Ir 

(μ + γW/KT )T 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

where .W = T + Ls + Lr + Is + Ir and .Fφ = (1 − φ(1 − f̄α)). The following 
conditions need to be verified: 

(A1) If .X ≥ 0, then . Fi , . V−
i , .V

+
i ≥ 0, for .i = 1, . . . , 7. 

(A2) If .X = 0, then .V−
i (X) = 0. 

(A3) .Fi = 0 if .i > 6. 
(A4) .Fi (E0) = 0 and .V+

i (E0) = 0 for .i = 1 . . . 6. 
(A5) If .F(X) is set to zero, then all eigenvalues of .Df (E0) have negative real parts, 

where .Df (E0) represents the Jacobian matrix about . E0. 

Conditions (A1)–(A4) are easily verified. To verify Condition (A5), we need to 
calculate the Jacobian evaluated at the DFE. 

. Df (E0) =
⎡
J1 0
J2 J3

⎤
,

where 

. J1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−c df̄αN 0 0

(1 − σ)ksT
∗ −(df̄α + μ) (1 − σmsr)χ 0

σksT
∗ 0 −(χ + μ̂) 0

0 0 0 −c dNFφ

0 0 χmsr (1 − σ)krT
∗

⎤
⎥⎥⎥⎥⎥⎥⎦

,

J2 =
⎡

0 0 0 σkrT
∗

−kT ∗ − γ T ∗
KT

− γ T ∗
KT

−krT
∗

⎤
, and

J3 =
⎡
⎢⎣

−dFφ − μ χ 0

0 −χ − μ̂ 0

− γ T ∗
KT

− γ T ∗
KT

− 2γ T ∗
KT

+ γ − μ

⎤
⎥⎦ .

The effective reproduction numbers, . Rs
e and . Rr

e, are found by taking the maximum 
eigenvalues of the next generation matrix, given by .DF(DV)−1. 

The characteristic equation related to .Df (E0) is
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. 

⎧
γ

⎧
1 − 2

T ∗

KT

⎫
− μ − λ

⎫
Ps(λ)Pr(λ) = 0,

where .Ps(λ) and .Pr(λ) are both third-order polynomials. Solving the first term for 

. λ, we find the eigenvalue .λ = −
/

4βγ
KT

+ (γ − μ)2, which has no positive real part. 
The polynomial, .Ps(λ), is  

. Ps(λ) = As + Bsλ + Csλ
2 + λ3,

with the coefficients 

. As = c(χ + μ̂)(df̄α + μ)(1 − Rs
e),

Bs = (χ + μ̂)(df̄α + μ) + c(χ + df̄α + μ + μ̂) − (1 − σ)df̄αksNT ∗, (9)

Cs = c + χ + df̄α + μ + μ̂.

The coefficient . Cs is always positive, and the coefficient . As is positive when .Rs
e < 1. 

The coefficient . Bs requires a little more effort to show it is always positive. We note 
that 

. df̄αksNT ∗ = (χ + μ̂)

((1 − σ)χ + (1 − σmsr)μ̂)
(c(df̄α + μ)Rs

e) ≥ c(df̄α + μ)Rs
e.

Thus, we can substitute this inequality into the coefficient . Bs to find 

. Bs ≥ (χ + μ̂)(df̄α + μ + c) + c(df̄α + μ)(1 − Rs
e).

Therefore . Bs is also always positive when .Rs
e < 1. Then by Descartes’ law of signs, 

since the real polynomial .P3(λ) has zero sign changes in the sequence of its nonzero 
coefficients, then it has zero roots with a positive real part. The polynomial . Pr(λ)

is 

. Pr(λ) = Ar + Brλ + Crλ
2 + λ3,

with the coefficients 

. Ar = c(χ + μ̂)(dFφ + μ)(1 − Rr
e),

Br = (χ + μ̂)(dFφ + μ) + c(χ + dFφ + μ + μ̂) − (1 − σ)dFφkrNT ∗, (10)

Cr = c + χ + dFφ + μ + μ̂).

Similarly we can show that 

.Br ≥ (χ + μ̂)(dFφ + μ + c) + c(dFφ + μ)(1 − Rs
r ).
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Therefore, the real roots of .Pr(λ) have only negative parts when .Rr
e < 1. This  

shows condition (A5) holds. It follows from Theorem 2 in [63] that . E0 is locally 
asymptotically stable when .max{Rs

e,Rr
e} < 1 and unstable when .max{Rs

e,Rr
e} > 1. 

⨅⨆

6 Parameter Sensitivity 

In modeling, equations usually depend on several unknown parameters. Finding the 
appropriate values and ranges is a critical step that is useful for screening outliers 
and as such requires careful consideration. In general, these values can be estimated 
through the least-squares fitting, Bayesian inference, or maximum likelihood. The 
ranges of the parameters can also be determined by setting upper and lower bounds 
on the values, either based on physical constraints or by exploring the parameter 
space through sensitivity analysis. 

Previous literature has stated that understanding the peak of viral load data 
is vital to best predict T-cell latency and infection outcomes [64]. Thus, to best 
calibrate our HIV and SHIV models, we compared our model’s outputs to the 
viral load data extracted from Reeves et al. [38] and Vaidya et al. [39] for humans 
and macaques, respectively, using a simulated annealing technique in MATLAB. 
Simulated annealing is a local optimization technique that takes a user inputted 
initial guess for the global minimum of the system as defined by the user; for 
the purposes of this study, the smallest least squared error between the model 
predictions and the extracted viral load data [65]. Each parameter, in this case . c, the 
clearance rate of free virions and . N, the number of virions produced per infected 
T-cell, is given a lower and upper bound. These two parameters are chosen due to 
their direct, mathematical correlation with peak viral load. The simulated annealing 
algorithm then generates a random value within each boundary, calculates the user 
described error, and then generates a new random value to see if the error increases 
or decreases. This process is repeated until a local minimum is found and parameter 
values are produced [66]. We found when we performed this operation for the DS 
virion model, the resulting macaque values for N and c could not be matched to the 
experimental data. This indicates that the DR virions should not be discounted when 
fitting parameters. 

6.1 Elasticity of the Effective Reproduction Number RE 

In this section we test the sensitivity of the reproduction number, . RE , to its 
parameters. We compute the elasticity (normalized forward sensitivity) index [67] 
to determine to what extent the value of . RE (for the macaque and human models) 
changes following changes to each parameter value. The sensitivity index with 
the reproduction number indicates the impact of the parameter on the disease-free
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equilibrium. Since .RE = max
(
Rs

E,Rr
E

)
, we compute the sensitivity with respect 

to both .Rs
E and . Rr

E . The forward sensitivity indices for these parameters are 
represented by 

.Fx =
⎧

∂Ri
E

∂x

⎫ ⎧
x

Ri
E

⎫
, (11) 

where x represents the parameter and i is s for sensitive and r for resistant. These 
forward sensitivity indices were evaluated using the baseline parameters given in 
Tables 2 and 3, except for . fα and . φ. We replace the time-varying value of . fα with 
a time-average of 0.01. . φ, which is between 0 and 1, and we set equal to +0.5. The 
elasticity results are shown in Table 4. 

The positive sign of the elasticity index specifies that .Ri
E increases with the 

parameter, and the negative sign specifies that .Ri
E decreases. The magnitude of 

the elasticity determines the relative importance of the parameter. If . Ri
E is given 

explicitly, then the elasticity index for each parameter can be explicitly computed 

Table 2 Parameters (Pa.) of the model (Human) 

Pa. Value Range and units Description Ref 

.σh .0.02 .(0.001, 0.02) unitless Fraction of T-cells moving to 
latency 

[68] 

.βh 60 .(50, 60) cells . · . μL. −1 . · day.−1 Recruitment rate of healthy 
T-cells 

[42, 69] 

.ch 25 .(3.07, 25) day.−1 Clearance rate of free virus [69, 70] 

.dh .0.124 .(0.124, 0.95) day.−1 Disease-induced cell death [42, 71] 

.γ h 0.03 day.−1 Proliferation rate of T-cells [72] 

.Ih
0 .0.02 cells . · . μL.−1 Initial infected T-cells 

.kh
s .2.5 × 10−4 RNA copies . · . μL.−1 Infection rate of T-cells (by 

sensitive strain) 
[71] 

.Kh
T .T h

0 + Lh
0 + Ih

0 .1.5 × 103 cells . · . μL.−1 Carrying capacity of T-cells [72] 

.Lh
0 0 cells . · . μL.−1 Initial latently infected T-cells 

.μh .0.05 .(0.006, 0.05) day.−1 Natural death rate of T-cells [69, 71] 

.μ̂h 0.05 day.−1 Total exit rate of latently 
infected T-cells 

[69, 71] 

.Nh 400 .(400, 7100) virions . · cell.−1 Number of virions produced 
per infected T-cell 

[69, 71] 

.msr .10−5 DS-to-DR mutation rate [7] 

.T h
0 .104 cells . · . μL.−1 Initial T-cell count [42, 71] 

.T 0
s .103 cells . · . μL.−1 T-cell rescaling factor 

.V h
0 100 RNA copies . · . μL.−1 Initial viral load [42] 

.V 0
s .101 cells . · . μL.−1 Viral rescaling factor 

.χh 0.05 .(10−4, 0.1) day.−1 Transition rate from latency to 
infection 

[73–75]
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Table 3 Parameters (Pa.) of the model (Macaque) 

Pa. Value Range and units Description Ref 

.σm .0.001 .(10−3, 10−1) unitless Fraction of T-cells moving to 
latency 

[76, 77] 

.βm 10 cells . · . μL. −1 . · day.−1 Recruitment rate of healthy 
T-cells 

[74] 

.cm 60 .(27, 60) day.−1 Clearance rate of free virus [78] 

.dm .6.23 × 10−1 day.−1 Disease-induced cell death [78, 79] 

.γ m .2.15 × 10−1 day.−1 Proliferation rate of T-cells [78] 

.Im
0 .0.001 cells . · . μL.−1 Initial infected T-cells 

.km
s .1.21 × 10−6 .(0.02, 2.34) × 10−6μL . ·

virions . · day. −1
Infection rate of T-cells (by 
sensitive strain) 

[78, 80] 

.Km
T .T m

0 + Lm
0 + Im

0 .(1.68, 1.76) × 103 cells . ·
. μL. −1

Carrying capacity of T-cells [79] 

.Lm
0 0 cells . · . μL.−1 Initial latently infected T-cells 

.μm .0.01 day.−1 Natural death rate of T-cells [76, 81] 

.μ̂m .0.041 day.−1 Total exit rate of latently 
infected T-cells 

[76, 82] 

.Nm .4 × 104 .(4, 5.5) × 104 virions . ·
cell. −1

Number of virions produced per 
infected T-cell 

[83] 

.msr .10−5 DS-to-DR mutation rate [7] 

.T m
0 .1.68 × 103 .(1.37, 1.76) × 103 cells . ·

. μL. −1
Initial T-cell count [78, 79] 

.T 0
s .T m

0 cells . ·μL.−1 T-cell rescaling factor 

.V m
0 5 .(2.66, 100) RNA copies 

. · . μL. −1
Initial viral load [40, 78] 

.V 0
s 1 cells . · . μL.−1 Viral rescaling factor 

.χm .10−3 . (2 × 10−4, 6 × 10−2)

day. −1
Transition rate from latency to 
infection 

[73, 75] 

and evaluated for a given set of parameters. The magnitudes of the elasticity indices 
depend on these parameter values. 

For our model, we calculated elasticity indices for the 15 parameters, with the 
values for human set of parameters and macaque set given separately in Table 4. 
Although the parameter sets for humans (see Table 2) and macaques (see Table 3) 
are different, the response the basic reproduction number gives qualitatively and 
quantitatively is quite similar for both the resistant and sensitive strains, with . fα as 
the outlier. However, the behavior of . fα is to be expected; each index value can be 
thought of as a ratio of the effective change in the reproduction number with respect 
to the applied change in the given parameter. For example, for every .10% increase in 
the infection rate of T-cells, . ks or . kr , the reproduction number will increase by . 5%. 
However, it will decrease by . 5% for every .10% increase in the proliferation rate of 
T-cells, . γ . When . fα increases, CAB-LA is less effective in blocking HIV infections. 
Hence, for the DS infections, the number of infections will rise. On the other hand, 
as the DS strain increases when . fα increases, the DR strain is outcompeted by the 
DS strain.
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Table 4 Elasticity indices of .RE for HIV model evaluated at baseline human HIV parameters 
shown in Table 2 and baseline macaque SHIV parameters shown in Table 3, except for . fα and . φ

Forward Human Human Macaque Macaque 

Sensitivity Parameter .Rs
E .Rr

E .Rs
E . Rr

E

.FN N .+1 .+1 .+1 . +1

.Fks .ks .+1 – .+1 – 

.Fkr .kr – .+1 – . +1

.Fd d .+0.976 .+0.988 .+0.616 . +0.762

.Fβ .β .+0.5 .+0.5 .+0.5 . +0.5

.FKT
.KT .+0.5 .+0.5 .+0.5 . +0.5

.Fχ .χ .+0.005 .+0.005 .+0.009 . +0.009

.Fμ̂ .μ̂ .−0.005 .−0.005 .−0.009 . −0.009

.Fσ .σ .−0.010 .−0.010 .−0.028 . −0.028

.Fγ .γ .−0.5 .−0.5 .−0.5 . −0.5

.Fμ .μ .−0.976 .−0.988 .−0.616 . −0.763

.Fc c .−1 .−1 .−1 . −1

.Fφ .φ – .−0.992 – . −1.218

.Ffα .fα .+0.976 .−0.002 .+0.616 . −0.228

In terms of the effects of drug resistance, we note that the effective reproduction 
numbers, .Rr

E for macaques and humans is twice as sensitive to the reduction in 
effectiveness of CAB-LA, represented by . φ as it is to the fitness of the DR virions 
to infect a healthy T-cell, . kr . 

6.2 Global Sensitivity 

Sensitivity analysis is important for determining which parameters have the largest 
impact on the dynamics of the spread of HIV. Following [84], we employ partial 
rank correlation coefficient (PRCC) analysis to determine the sensitivity of the 
model, given by the system defined in Eq. (2), to each parameter for humans and 
macaques after 48 weeks of PrEP. In this instance, correlation provides a measure of 
the strength of a linear association between a parameter and the number of virions 
and infected T-cells. Rather than capturing the sensitivity of the total number of 
infected T-cells or virions to a single parameter at a time, partial correlation analysis 
reveals hidden true correlations and false correlations explained by the effect of 
other variables. The parameters, specified in Tables 2 and 3, are sampled using Latin 
hypercube sampling (LHS) [85]. LHS/PRCC sensitivity analysis is often employed 
in uncertainty analysis to explore the entire parameter space of a model. 

The magnitude of the PRCC indicates the strength of the correlation between the 
parameter and the output, whereas the sign of the PRCC indicates whether there is 
a positive or negative correlation between the parameter and the output—the total 
number of infected T-cells or virions in this case.
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Fig. 7 PRCC results for the Human HIV Model after 200 days of PrEP. The black bars represent 
the T-cells infected with the DS virus, .Ls + Is , the gray bars represent the T-cells infected with 
the DR virus, .Lr + Ir , the horizontal striped bars represent the DS virions, . Vs , and the diagonal 
striped bars represent the DR virions, . Vr . The label DS indicates the drug-sensitive strain, and DR 
indicates the drug-resistant strain. (a) Human: PrEP before HIV exposure. (b) Human: PrEP after 
HIV infection 

In Fig. 7 the PRCC results are shown first for humans given PrEP (CAB-LA) 
before HIV exposure and second given PrEP 2 weeks after seroconversion. The 
black bars represent .Ls +Is , the gray bars .Lr +Ir , the horizontal striped bars . Vs , and 
the diagonal striped bars . Vr . The parameter sensitivity for the human model does 
not change dramatically between the PrEP before HIV exposure and the PrEP after 
HIV exposure. The infected T-cells, both with the DS and DR strains, are sensitive 
to . ks the infection rate of target cells, . μ the natural death rate of T-cells, and . χ
the transition rate of target cells from latently infected to infected. The DR-infected 
T-cells and both types of virions are sensitive to the viral-induced death rate of 
infected cells, although the number of infected T-cells decreases as d increases and
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Fig. 8 PRCC results for the Macaque SHIV Model after 200 days of PrEP. The black bars 
represent the T-cells infected with the DS virus, .Ls +Is , the gray bars represent the T-cells infected 
with the DR virus, .Lr +Ir , the horizontal striped bars represent the DS virions, . Vs , and the diagonal 
striped bars represent the DR virions, . Vr . The label DS indicates the drug-sensitive strain, and DR 
indicates the drug-resistant strain. (a) Macaque: PrEP before SHIV exposure. (b) Macaque: PrEP 
after SHIV infection 

the number of virions increases as the infected cell bursts. Both classes of virions 
are more strongly sensitive to N , the number of virus produced per burst infected 
cell. When PrEP is given after HIV seroconversion, the infected T-cells become 
more sensitive to N , but less sensitive to c the clearance rate of virus, . fα the ability 
of CAB-LA to block HIV, and . kr the infection rate of target cells by the resistant 
virions. The parameter sensitivity of the virions does not appear to change from the 
PrEP before HIV exposure to the PrEP after HIV infection scenarios. 

In Fig. 8 the PRCC results are shown first for macaques given PrEP before HIV 
exposure and second given PrEP 2 weeks after seroconversion in accordance with 
the experiment in [30]. The black bars represent .Ls + Is , the gray bars .Lr + Ir ,
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the horizontal striped bars . Vs , and the diagonal striped bars . Vr . For PrEP given 
as a preventative measure to the macaques, both the DS-infected and infectious T-
cells and the DS virions are most sensitive to . ks the infection rate of target cells, 
. μ the natural death rate of T-cells, and c the clearance rate of the virus. The cells 
infected with the DR strain are most sensitive to . χ the transition rate of target cells 
from latently infected to infected and . σ the fraction of “stronger” cells moved to 
latently infected. All the infected T-cell types and virions are equally sensitive to 
c, the clearance rate of the virus. This sensitivity does not change in the situation 
when PrEP is given before SHIV exposure or after SHIV seroconversion. Only the 
DS-infected T-cells are sensitive to CAB-LA, designated by . fα . 

In the situation when PrEP is given to the macaques 2 weeks after seroconversion, 
. χ and . σ become sensitive for the infected T-cells and their accompanying virions. 
The infected T-cells become less sensitive to CAB-LA, but the virions become 
strongly more sensitive to changes in the ability of CAB-LA to block SHIV. 

In terms of the effects of drug resistance, we note that the concentration of 
infected T-cells and virions are sensitive to the fitness of the DR virions to infect 
a healthy T-cell, . kr . However, the concentration of infected T-cells and virions are 
not sensitive to the reduction in effectiveness of CAB-LA, represented by . φ. The  
parameter . φ does not appear on the PRCC bar charts since it has a p number greater 
than 0.5 and an insignificant PRCC. 

The forward sensitivity and the global sensitivity appear to give contradictory 
results with regard to the reduction in effectiveness of CAB-LA toward the DR 
HIV strain, represented by . φ. However, these analyses are measuring the sensitivity 
of two different situations. The forward sensitivity measures how changing the 
parameter value will change the effective reproduction number, which indicates 
the sensitivity of the disease-free equilibrium to parameter changes. The forward 
sensitivity indicates that to achieve a disease-free state increasing the effectiveness 
of CAB-LA for the drug resistance will be twice as effective as reducing the fitness 
of the DR virions to infect a healthy T-cell, . kr . But in the global sensitivity after 200 
days of PrEP, the reduction of effectiveness of CAB-LA against the DR strain from 
a baseline of .φ = 1/2 is statistically insignificant to the concentration of infected T-
cells and the number of virions. On the other hand, both sensitivity analyses indicate 
that the fitness of the DR virions to infect a healthy T-cell, . kr , is very important to 
achieving a disease-free equilibrium and after 200 days of PrEP. This indicates that 
the level of drug resistances and the fitness of the DR virions to infect are both very 
important to the effectiveness of CAB-LA as PrEP. 

7 Treatment Simulations 

In our simulations, we are modeling HIV or SHIV infection from the first onset and 
continuing just through the acute infection stage. We do not include antiretroviral 
treatment (ART) in our model. In the wild-type systems, we solely have the DS 
(CAB-LA sensitive) strain of HIV or SHIV, and we assume that there are no
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mutations occurring, i.e., .msr = 0. In the full model, we assume mutations can 
occur naturally, and this is how drug-resistant HIV or SHIV strains are introduced 
into the system. In other words, the SHIV or HIV exposures or initial strains upon 
seroconversion are assumed to be fully drug-sensitive. 

In their paper describing their experimental results, Radzio-Basu et al. [30] 
emphasized that the experimental results for macaques administered PrEP during 
the acute SHIV infection indicated a strong emergence of drug resistance. In 
response, the FDA decided to require HIV tests prior to each CAB-LA dose for 
humans [31]. While caution to avoid the development and propagation of more 
drug-resistant strains of HIV is commendable, the question still remains: Does this 
development of drug resistance in macaques truly foretell the similar development of 
drug resistance in humans? This is a question that is difficult to answer with a dearth 
of clinical human data, but we are attempting to answer it with our mathematical 
model and numerical simulations. Hence the goal of this research is to establish a 
model that can capture the mechanistic behavior of SHIV and HIV virions and their 
interaction with healthy CD4. + T-cells. 

Toward this aim in this section, we validate our model by comparing our 
simulated results to experimental data for humans and macaques. We use the term 
validation in the sense of the National Academy of Sciences report [86] where 
validation is defined to be the process of determining the degree to which a model 
is an accurate representation of the real world from the perspective of the intended 
uses of the model. We note that we have not incorporated formal verification or 
validation methods in this chapter. Instead, our validation is restricted to illustrating 
graphically that the simulations match experimental results. 

In Sect. 7.1 we present our numerical simulations and compare these to experi-
mental data for humans and macaques without any HIV treatment or preventative 
measures, i.e., without ART or PrEP. In Sect. 7.2 we perform our numerical 
simulation for macaques administered PrEP before being exposed to SHIV and 
compare the results to the experiment in [40]. In Sect. 7.3 we perform our numerical 
simulation for macaques administered PrEP before being exposed to SHIV and 
compare the results to the experiment in [30]. 

Once behaviors of SHIV in macaques in pre-clinical settings were captured in 
silico in Sects. 7.1–7.3, human in silico clinical trials were run with standard of 
care in PrEP injection protocols in Sects. 7.4 and 7.5. To see the similarities and 
differences in the macaque and human simulations, we test several values for the 
effectiveness of CAB-LA on the DR strain and on the fitness of the DR virions to 
infect healthy T-cells. 

7.1 Macaques and Humans: Numerical Validation Without 
ART or PrEP  

We first plot our model simulations against data so that we may validate our model 
prior to running in silico pre-clinical and clinical trials. Our system represents
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Fig. 9 Simulation results for drug-sensitive only (msr = 0) infection model given by the system 
defined in Eq. (2) without ART or PrEP and experimental viral load data. In (a) the simulated 
human (HIV) viral load represented by black dash curve is compared to experimental viral load 
data from [38], shown in light gray with each individual recorded with a separate symbol. In 
(b) the simulated macaque (SHIV) viral load, represented by dash black curve, is compared to 
experimental viral load data from [41] given in light gray 

wild-type HIV transmission without mutations, treatment for either post-infection 
ART, or pre-infection PrEP. 

Figure 9a displays experimental viral loads from [38] in light gray with marker 
symbols. The experimental results for each individual human are differentiated by 
the different markers. The simulated viral loads are plotted as the dashed black 
curve. In the early stages, viral loads rapidly increase from . 103 RNA copies per mL 
to .106 or higher, then decline, and reach a plateau around .104 to . 106. The healthy 
T-cell concentration, represented by the solid black curve, rises slightly in the first 
10 days, then drops to around .30% shortly after maximum viral load, then raises to 
.40%, and stays stable. The actively infected T-cells, represented in black dash-dot 
curve, increase from 0 to about 400 cells per . μL at the maximum viral load, then 
decline slowly and remain at 250 cells per . μL after 40 days. The latently infected 
T-cells, represented by the black dotted curve remain low throughout the simulation. 
The combined T-cell concentration (healthy, latently infected, and actively infected) 
drops by about .35% during this infection process. Overall, wild-type HIV model 
simulation viral load (DS) results match with the experimental data for humans 
without ART or PrEP. 

Figure 9b displays the comparison between simulation results and experimental 
data, light gray with marker symbols, in Dobard et al. [41] for macaques. The 
experimental results for each individual macaque are differentiated by the different 
markers. The simulated viral loads are plotted as the dashed black curve. In the 
Dobard et al. [41] experiment the macaques are given a weekly SHIV challenge 
for the first 3 weeks of the experiment. This exposure, included in our simulation, 
is captured in Fig. 9b by the three vertical lines on the virus level. In the early 
stages, viral loads rapidly increase from . 104 RNA copies per mL to a plateau of . 108. 
This is on the higher end of the experimental viral loads in macaques. The healthy
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T-cell concentration, represented by the solid black curve, drops over 8 weeks, much 
slower than in the human simulation shown in Fig. 9a. The actively infected T-cells, 
represented by the black dash-dot curve, increase from 0 to about 200 cells per mL 
at the maximum viral load. The latently infected T-cells, represented by the black 
dotted curve, remain low throughout the simulation. Overall, wild-type SHIV model 
simulation viral load (DS) results match with the experimental data for macaques 
without ART or PrEP. 

Once our model’s sensitive viral load output was calibrated, we varied . φ, the  
percentage of drug efficacy on the resistant strain. In addition, to capture a measure 
of the fitness of the mutated DR strain, we explore the relationship between . kr the 
infection rate of healthy T-cells by DR virions and . ks the infection rate of healthy 
T-cells by DS virions. These tests are conducted to better understand the dynamics 
of the DR viral load. The parameters being varied—. φ, the effectiveness of CAB-LA 
for the DR strain, and . kr , the fitness of DR virions to infect a T-cell—are not known 
in advance. The amount of drug resistance to CAB-LA of the mutated HIV strain 
is of utmost concern. Parikh et al. [53] note that multiple mutations are required for 
extensive CAB drug resistance. However, the macaque studies by Radzio-Basu et al. 
[30] indicate that these mutations are selected when CAB-LA is given to macaques 
previously infected with SHIV. The fitness of the DR virions to infect is included as 
parameters to vary. It is often the case that the mutation that makes the HIV strain 
at least partially drug-resistant may also trade off its ability to invade a T-cell. 

In Fig. 10, we show simulation results of the full mutation model without ART 
and PrEP. For both human and macaques, we set the virus mutation rate from the 
wild-type DS strain to the mutated DR strain to be .msr = 10−5, based on [42]. In 
Fig. 10a, b, the healthy T-cells are represented by solid black curves. The latently 
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(a) Human: Mutation model without PrEP 
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(b) Macaque: Mutation model without PrEP 

Fig. 10 Simulation results for (a) human and (b) macaque model with mutations (.msr /= 0) given  
by the system defined in Eq. (2) without ART or PrEP. Each of the curves is labeled to designate the 
T-cells in various stages plus the virions. The label DS indicates the drug-sensitive strain, and DR 
indicates the drug-resistant strain. Solid curves: healthy T-cells. Dash-dot curve: actively infected 
T-cells. Dash curve: latently infected T-cells. Dark gray: DS, light gray: DR. Dark gray dotted 
curve: DS virus. Light gray dotted curve: DR virus. The concentration of DR infected T-cells and 
latently infected T-cells is close to zero in both humans and macaques
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infected and actively infected by the DS strain are combined and represented by 
black dash-dot curves and the DR by the black dashed curves. The DS virions are 
represented by the gray dotted curves and the DR virions by the black dotted curves. 

In humans, the concentrations of healthy, actively, and latently DS-infected T-
cells and DS virus have almost identical behaviors in wild-type only (.msr = 0) and 
mutation (.msr /= 0) models during the first 10 weeks. In both Figs. 9a and 10a, the 
concentration of healthy T-cells changes from 1000 cells per . μL to a lowest point, 
about 300, in 4 weeks and then increases slowly to reach the plateau in 3 weeks. The 
concentrations of actively DS-infected T-cells increase slowly during the 1st week 
and then quickly until it reaches its peak at the end of the 4th week. They slowly 
drop back to a steady state around the 6th week. The DS virus concentration reaches 
a small peak during the 4th week of infection, then drops slightly, and reaches a 
steady state. The concentrations of latently DS-infected T-cells and both types of 
DR-infected T-cells are negligible throughout the simulation. 

In macaques, when comparing Figs. 9b and 10b, we notice concentrations of 
healthy T-cells stay steady around 1680 cells per . μL for about 60 days, then drop 
to 1400 in next 20 days, and remain at that level. The concentration of actively 
DS-infected T-cells is steady and small and then increases during the same period 
when the concentration of healthy T-cells drops and then stays at a steady state. The 
DS virus concentration grows at an exponential rate during the first 60 days after 
infection and also stays flat afterward. The concentrations of latently DS-infected 
T-cells and both types of DR-infected T-cell concentrations stay low throughout the 
simulation. 

7.2 PrEP Before SHIV Exposure: Numerical Validation for 
Macaque Experiment 

In Andrews et al. [40], there were multiple experiments with three groups of 
macaques given three different PrEP regimes before being exposed to SHIV 
intravenously. The study was intended to evaluate the effectiveness of CAB-LA (as 
PrEP) against intravenous SHIV challenge. This macaque experimental model was 
intended to determine whether human studies for CAB-LA as PrEP in people who 
inject drugs are warranted. 

We simulate the experiment where eight macaques are treated with PrEP twice, 
4 weeks apart. There were also five control macaques who did not receive PrEP. 
On day 14, all the macaques are infected with SHIV. In the simulations we vary . φ
between 0.3 and 0.7 and allow .kr = ks or .kr = ks/2. The parameter sensitivity 
studies indicated that the concentration of infected cells and virions are sensitive 
to the fitness of the DR virions to infect. The elasticity studies with the effective 
reproduction number for the DR strain indicated that there is sensitivity to the 
effectiveness of CAB-LA on the DR virions. We observe that the DS viral loads
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Fig. 11 PrEP injection on days 1 and 28, and SHIV infection on day 14. Macaque SHIV 
infection viral load data with PrEP treatment [40] compared with numerical simulations. The 
label DS indicates the drug-sensitive strain, and DR indicates the drug-resistant strain. Solid curve: 
simulation results for DS virus. Black dot and dash-dot curves: simulation results for DR virus with 
two most extreme levels of fitness and drug effectiveness. Light gray dash curves with crosses: 
experimental data for one macaque given PrEP. All other experimental data for macaques given 
PrEP had virion levels of less than 1 virion/mL and are not shown in this figure. Dark gray dash 
curves with triangles: experimental data for control macaques (no PrEP) 

do not have noticeable changes, but there are obvious changes in the DR viral 
load. In Fig. 11, we present the experimental data of [40] with the control macaques 
(no PrEP) and the one macaque with a virion/mL count above 1. The other seven 
macaques given PrEP had virion concentrations of less than 1, but the exact virion 
concentration was not given. Also in Fig. 11 we display the numerical simulations 
for the DS viral load (solid black curve) and the two most extreme cases of the DR 
viral load (black dotted curve for .φ = 0.3, kr = ks , and black dotted-dashed curve 
for .φ = 0.7, kr = ks/2). Despite varying both the values of . φ and . kr , the amount 
of DR virions is negligible when compared to DS virions. The combined viral load 
is almost identical to the DS viral load. As shown in Fig. 11, the DS viral load solid 
black curve is comparable to the one macaque received PrEP black dashed curve 
with triangles plus the seven macaques with even lower virion concentrations. The 
gray curves with crosses represent the viral load data in the control macaques who 
did not receive PrEP.
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7.3 PrEP After SHIV Infection: Numerical Validation for 
Macaque Experiment 

Radzio-Basu et al. [30] performed experiments infecting eight rhesus macaques 
intravenously with SHIV. Two of the macaques were used as controls. The other 
six macaques were given a treatment of CAB-LA 11 days after infection. The 
experiment was devised to test what would happen when PrEP was initiated during 
an acute HIV infection. In their experiments, Radzio-Basu et al. [30] found that DR 
mutations were frequently selected and maintained for several months. 

In the Radzio-Basu et al. [30] experiment, the macaques were infected with SHIV 
on day 1 and then receive PrEP injections on days 11, 39, and 67. We replicated the 
experiment and then tested several levels of effectiveness of CAB-LA against the 
DR mutations and fitness for the DR virions to infect T-cells. 

We run simulations by varying the effectiveness of CAB-LA, . φ, between 0.3 and 
0.7. To test situations for fitness, we added two scenarios allowing .kr = ks for no 
loss of fitness or .kr = ks/2, which corresponds to a 50% loss of fitness. Similar 
to Fig. 11, we observe that the DS viral loads do not have an obvious change, but 
there are noticeable changes in the DR viral load. In Fig. 12, we plot our numerical 
simulations for DS viral load (the solid black curve). We only plot the two most 
extreme cases of DR viral load with dotted curve for .φ = 0.3, kr = ks and the 
black dash-dot curve for .φ = 0.7, kr = ks/2. The experimental data of [30] are  
included in Fig. 12. The dark gray dash curves with triangles represent viral load in 
macaques without PrEP, and the light gray curves with crosses illustrate the viral 
load in macaques given PrEP. It is clear to see that the sensitive viral load (solid 
black curve) agrees with the experimental observations. The amount of DR virions 
is negligible in comparison to the magnitude of DS virions. There is a noticeable 
difference between the simulated DR viral load when the DR drug effectiveness and 
virion fitness . φ, . kr , and . ks are varied. 

7.4 Macaque and Human Simulations: PrEP Before Exposure 

Once we observed the DR viral load changes due to the efficacy of the PrEP drug, 
. φ, and due to the relationship between the infectivity of DR virions, . kr , and DS 
virions, . ks , we decided to run our own in silico pre-clinical trials in macaques to 
better understand the role of PrEP injection campaigns on the infectivity of DR and 
DS SHIV. 

First, we designed a simulated trial for an extended version of the experiment in 
[40] (see Fig. 11) where there macaques were administered an injection of PrEP on 
day 0, exposed to SHIV on day 14, and then were given a second injection of PrEP 
on day 28 as shown in Fig. 13. We varied the value of the drug effectiveness against 
the mutated DR SHIV strain, . φ, between 30% (top row) and 70% (bottom row). We 
also set the fitness of the DR virions to infect healthy T-cells to equal the fitness of
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Fig. 12 PrEP injections on days 11, 39, and 67 after SHIV infection. Macaque SHIV infection 
viral load data with PrEP treatment [30] compared with numerical simulations. The label 
DS indicates the drug-sensitive strain, and DR indicates the drug-resistant strain. Solid curve: 
simulation result for DS virus. Dot and dot-dash curves: DR virus with two levels of fitness and 
drug effectiveness. Light gray dash curves with triangles: experimental data for macaques given 
PrEP. Dark gray curves with crosses: experimental data for control macaques (no PrEP) 

the DS virions, .kr = ks (first column), i.e., DR virions are equally as infective as 
DS. Next we set the DR virions to half of the fitness, .kr = ks/2 (second column). 
We allow the in silico trial to last for 24 weeks to allow the system dynamics enough 
time to respond to the PrEP treatment and SHIV infection. 

We note that in all four of these simulations with both the DS and DR strains of 
SHIV, the healthy T-cell concentrations (black solid curves) dip significantly when 
the CAB-LA concentration is very low, 27 weeks after the second injection of PrEP. 
The drop in the healthy T-cell concentration follows the rise in DS virions in each 
of Fig. 13a–d. The significant difference between the subfigures is the level of DR 
virions. In Fig. 13a, where CAB-LA is only 30% effective against the DR strain and 
the DR virions are just as infective as the DS virions, the DR virion level rises above 
.102 vRNA copies per mL. It does not outpace the DS virions, but it is at a level of 
concern. In Fig. 13c where the effectiveness of CAB-LA against the DR strain has 
risen to 70% with equal fitness between the DS and DR virions, there is a small 
increase in the DR virions to about 1 vRNA copy per mL. In Fig. 13b, d where the 
fitness of the DR virions is a half of the DS virions, the DR strain remains at a
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Fig. 13 Macaque in silico trial corresponding to the experiment in [40]. PrEP is administered on 
days 0 and 28. The macaque is exposed to SHIV on day 14. The label DS indicates the drug-
sensitive strain, and DR indicates the drug-resistant strain. (a) PrEP is 30% effective against SHIV 
(.φ = 0.3). DR virions are equally as infective as DS virions, thus .kr = ks . (b) PrEP is 30% effective 
against SHIV (.φ = 0.3). DR virions are half as infective as DS (.kr = ks/2). (c) PrEP is 70% 
effective against SHIV (.φ = 0.7). DR virions are equally as infective as DS (.kr = ks ). (d) PrEP is  
70% effective against SHIV (.φ = 0.7). DR virions are half as infective as DS (.kr = ks/2). Solid 
curves: healthy T-cells. Dash-dot curve: actively infected T-cells. Dash curve: latently infected 
T-cells. Dotted curve: virus. Dark gray: DS, light gray: DR 

negligible level. This indicates that the virion fitness may be important as the drug 
efficacy in determining whether a mutated strain will grow to a significant level. 

Once behaviors of SHIV in macaques in pre-clinical settings were captured in 
silico, human in silico clinical trials were run with standard of care PrEP injection 
protocols. Current standard of care for human injectable PrEP is two injections, 1 
month apart, followed by an injection continually, every 2 months [28]. 

In Fig. 14a, where CAB-LA is only 30% effective for the DR strain and the fitness 
of the DR and DS virions is equal, the mutated DR strain overtakes the DS strain 
even before the second PrEP injection is administered. In Fig. 14b, where CAB-
LA is 70% effective for the DR strain and the fitness of the DR and DS virions 
is equal, the DR strain takes longer, after the second administration of PrEP on
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Fig. 14 Human in silico trial. PrEP is administered on days 0 and 28 and then every 2 months. 
The human is exposed to HIV on day 14. The label DS indicates the drug-sensitive strain, and DR 
indicates the drug-resistant strain. (a) PrEP is 30% effective against HIV (.φ = 0.3). DR virions are 
equally as infective as DS virions (.kr = ks ). (b) .φ = 0.3. DR virions are half as infective as DS 
(.kr = ks/2). (c) .φ = 0.7, .kr = ks . (d) .φ = 0.7, .kr = ks/2. Solid curves: healthy T-cells. Dash-dot 
curve: actively infected T-cells. Dash curve: latently infected T-cells. Dotted curve: virus. Dark 
gray: DS, light gray: DR 

week 18, to overtake the DS strain. However, in the scenario with .φ = 0.70 and 
.kr = ks (Fig. 14c), the DR strain is already growing too much to be controlled 
by a third PrEP injection on week 19 (following the once a month PrEP protocol 
for macaques). The situation changes if the DR virion fitness is lowered to 50% 
of the DS virion fitness. In that case, the healthy T-cell count is maintained at a 
high level for both drug effectiveness levels as shown in Fig. 14b, d for the duration 
of the in silico trial. However, of these two cases, if a third PrEP injection were 
administered on week 19, the HIV seroconversion would be avoided if the drug 
were 70% effective against DS virions, but not if the drug were only 30% effective. 
This indicates that the virion fitness, along with the drug efficacy, is important in 
determining whether a mutated strain, and at what time, will overpower PrEP. About 
50% fitness could have caused this seroconversion.
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7.5 Macaque and Human Simulations: PrEP After Infection 

Next, we implemented the PrEP injection protocol of [30], where SHIV exposure 
occurred on day 0, and then macaques were given PrEP on days 11, 39, and 67, as 
shown in Fig. 12. This  in silico pre-clinical trial then lasted for 30 weeks to follow 
the protocol as described in [30]. We similarly varied . φ between 30% efficacy (top 
row) and 70% efficacy (bottom row) and allowed .kr = ks (first column) and . kr =
0.5 × ks (second column). 

We first observe in Fig. 15 that the healthy T-cell concentration, represented by 
the black solid curve, stays high through this whole experiment. The DS virions, 
represented by the black dotted curve, react to each of the PrEP injections, but not 
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Fig. 15 Macaque in silico trial corresponding to the experiment in [30]. The macaque patient is 
exposed to SHIV on day 0, and the PrEP injection is administered on days 11, 39, and 67. The 
label DS indicates the drug-sensitive strain, and DR indicates the drug-resistant strain. (a) PrEP  
is 30% effective against SHIV (φ = 0.3). DR virions are equally as infective as DS virions, thus 
kr = ks . (b) PrEP is 30% effective against SHIV (φ = 0.3). DR virions are half as infective as 
DS (kr = ks/2). (c) PrEP is 70% effective against SHIV (φ = 0.7). DR virions are equally as 
infective as DS (kr = ks ). (d) PrEP is 70% effective against SHIV (φ = 0.7). DR virions are half 
as infective as DS (kr = ks/2). Solid curves: healthy T-cells. Dash-dot curve: actively infected 
T-cells. Dash curve: latently infected T-cells. Dotted curve: virus. Dark gray: DS, light gray: DR
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enough to reduce the overall DS virion level. In each of the in silico trials, the initial 
SHIV dose is .104 vRNA copies per mL and grows to .105 vRNA copies per mL by 
the end of 30 weeks. What does change, just as in Fig. 13 based on the Andrews 
et al. [40] experiment, is the concentration of the DR virions, represented by the 
gray dotted curve. In Fig. 15a where the CAB-LA is only 30% effective against 
the DR strain and the DR and DS virions have equal fitness, the DR virions grow 
to a concentration of .103 and are still rising. Note that in macaques, experiments 
[30] have measured a mean of virion concentration level of .104 RNA copies/mL at 
seroconversion. So this rise in DR virions is significant. In Fig. 15c where the CAB-
LA is now 70% effective against the DR strain and the DR and DS virions still have 
equal fitness, the concentration of DR virions is about 10 vRNA copies per mL. In 
Fig. 15b, d where the DR virions are 50% as infective as the DS virions, the DR 
virions have a concentration of about .10−4 at the end of 30 weeks despite CAB-LA 
being 30% or 70% effective in the two subfigures. 

Lastly, we observed an in silico clinical trial where humans were exposed to 
HIV on day and administered PrEP on days 14 and 42 and then every 2 months 
continually, as shown in Fig. 15. We notice initially, in Fig. 16a, that the healthy 
T-cell population depletes very quickly as the DR virion concentration increases 
to overtake the system. Since the drug efficacy, .φ = 0.3, and the DR virions are 
just as infective as the DS virions, the DS virion concentration slowly depletes, 
but the DR virion concentration grows and saturates. We observe subtle differences 
between trials where the drug is 30% effective and .kr = ks/2 (Fig. 16a) and where 
the drug is 70% effective and .kr = ks (Fig. 16b). In both of these cases, the 
DS virion concentration slowly depletes as a direct result of the PrEP injections, 
but the DR virion concentration increases linearly. The human patient would have 
become seropositive in both cases; however, we notice seroconversion happens 
much quicker in the case where the DR virions are just as infective as the DS virions. 
In the case where the drug is 70% effective and the DR virions are half as infective 
as the DS virions, both virion concentrations deplete over time, and the healthy T-
cell population remains at a healthy steady state. It is interesting to notice that a 
combination of an effective, and consistent, drug schedule along with a decreased 
infectivity of DR virions is necessary to keep HIV seroconversion controlled. 

8 Discussion 

The FDA approved injectable pre-exposure prophylaxis (PrEP) has a long phar-
macologic drug tail that is a plus and a minus. The long half-life is beneficial in 
reducing the burden of PrEP adherence from a daily pill to bimonthly injections. 
However, the long pharmacologic drug tail also means that there can be a long 
period when the CAB level is just high enough to inhibit the growth of the wild-
type DS strain, but low enough that the DR strain can grow unchecked. This 
concern warranted experimentalists to conduct studies on macaque that showed
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Fig. 16 Human in silico trial. Human exposed to HIV on day 0. PrEP injection administered on 
days 14 and 42 and then every 2 months. The label DS indicates the drug-sensitive strain, and DR 
indicates the drug-resistant strain. (a) .φ = 0.3, .kr = ks . (b) .φ = 0.3, .kr = ks/2. (c) .φ = 0.7, 
.kr = ks . (d) .φ = 0.7, .kr = ks/2. Solid curves: healthy T-cells. Dash-dot curve: actively infected 
T-cells. Dash curve: latently infected T-cells. Dotted curve: virus. Dark gray: DS, light gray: DR 

that long-acting CAB may encourage the growth of the DR mutated strain [30], 
despite the fact that multiple INSTI mutations are required for extensive CAB drug 
resistance [53]. 

We developed a mathematical model of the within-host HIV infection with 
naturally occurring mutations that could result in PrEP resistant virions. Our model 
was validated against data for humans in the early stage of HIV before receiving 
antiretroviral therapy. We also parameterized our model using studies on macaques. 
This allowed validation of our model on experimental tests on macaques without 
antiretroviral therapy and several experiments involving PrEP and SHIV exposures. 
In this work we were not able to quantify the exact fitness of a mutation that is 
resistant to CAB-LA to infect a T-cell, . kr . This means we could not pinpoint how 
close our estimate is for the growth of drug resistance in humans when given CAB-
LA and already infected with HIV. However, a study of parameter sensitivity showed 
that the infected T-cell concentration and the virion concentration were sensitive to 
the fitness, . ks and . kr , of the DS and DR virions, respectively, to infect a healthy
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T-cell. Because we do not have a good estimate of . kr and . φ the reduction in the 
effectiveness of CAB-LA, we tested the forward sensitivity and global sensitivity of 
. kr and . φ, along with several simulations at various . kr and . φ levels. The parameter 
studies showed that the effective reproduction numbers for the DR strain were 
more sensitive to the reduction in effectiveness of CAB-LA, . φ, than the infectivity 
fitness, . kr . This led to our in silico trials where we tested combinations of CAB-
effectiveness and the fitness of the DR strain. We found that for the macaques, even 
in the case of 30% effectiveness in PrEP against the DR strain and equal fitness for 
infecting T-cells, the DR strain did not overtake the DS strain. It did show enough 
growth in the DR strain to warrant concern. For humans, this drug effectiveness 
and fitness combination gave more alarming results with the DR strain quickly 
outcompeting the DS strain. 

This work is intended to be a starting point to connect experimental results 
from SHIV studies on macaques to HIV predictions for humans. Our next step 
will be to incorporate work estimating fitness costs associated with different types 
of mutations. We have recently learned of the work by Zanini et al. [87] that 
estimates the rates of mutation and the spectrum of different kinds of mutations 
along with fitness costs of HIV. Zanini et al. [87] make these estimates by using 
whole genome deep-sequencing data of nine untreated patients with HIV-1 [88]. The 
data contain 6–12 longitudinal samples per patient spanning 5–8 years of infection. 
In addition, the updated International Antiviral Society–USA (IAS–USA) drug 
resistance mutations list for HIV from 2019 includes the mutations for cabotegravir 
[89]. This work provides the mutations on the integrase gene associated with 
resistance to cabotegravir. While it will require a significant amount of work to 
combine these sources of information about fitness and specific mutations into a 
workable model, it should help us give a more accurate picture of the drug-resistant 
levels to expect when humans take CAB-LA while unknowingly infected with HIV. 
In addition, as a comparison, we can incorporate the drug mutation model used by 
Smith et al. [90] in their individual simulation studies. 

There are many additional directions to which to continue to expand upon this 
work. We have lumped all mutations into a single DR HIV strain. One could filter 
the mutations into beneficial or deleterious mutations with regard to particular 
mutations taking advantage of tabulated information on key mutations for specific 
mutations giving rise to HIV drug resistance [89]. The experiments with SHIV 
positive macaques given 10 days after seroconversion track the specific mutations 
noted in the daily blood draws [30], so the simulation and experimental results could 
be aggregated and compared. 

We have assumed that each T-cell is infected with only a single strain of the HIV 
virus. However, it has been shown in experimental studies that many cells in the 
body can be infected with multiple strains (see spleen studies [91], for one of many 
experiments). So a natural next step will be to allow co-infection of multiple strains. 
This can occur through cell-to-cell infection, i.e., viral synapsis, not presently 
included in our model. Multiple experiments have verified that HIV is spread 
through synaptic transmissions [92–95]. We could include synaptic transmission 
in our model using the model of [96] as a starting point.
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Retroviruses in general, including HIV-1, are diploid, meaning that each virion 
contains two genomic RNA molecules. These viral RNA molecules then serve as 
the templates for proviral DNA synthesis by the means of virus-encoded enzyme 
reverse transcriptase RT. This creates another means to generate genetic changes and 
perhaps mutations through recombination. Since two RNA molecules are contained 
in each virion, the reverse transcription may switch from one template to another 
[91, 97]. 

While there are a number of ways to improve the precision of our current model, 
we believe that the current model results justify the FDA recommendation for 
extended-release cabotegravir users to take an HIV test before each PrEP injection. 
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A Survey of Mathematical Modeling of 
Hormonal Contraception and the 
Menstrual Cycle 
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Lisette G. de Pillis, and Heather Z. Brooks 

1 Introduction 

Developing a mechanistic understanding of the menstrual cycle is important to 
human health and wellness. Roughly, half of people of reproductive age menstruate. 
About 5–8% of these individuals experience moderate to severe symptoms of 
premenstrual syndrome [1]. Many experience issues with their menstrual cycles 
that affect their health, wellness, and quality of life, including amenorrhea (absence 
of menstruation), dysmenorrhea (painful menstruation), menorrhagia (excessive 
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menstruation), and diseases directly related to the reproductive system, such as 
uterine fibroids, endometriosis, and polycystic ovarian syndrome [2]. Some key 
features of the menstrual cycle are generally robust, with feedback interactions 
between hormones in the hypothalamus, pituitary gland, and ovaries driving mostly 
predictable rhythms. At the same time, the system can exhibit a great deal of 
variation both between different individuals and from cycle to cycle within a single 
individual. 

Mathematical modeling of the menstrual cycle is a relatively recent area of focus, 
and the development and analysis of mathematical models of this system may still 
be considered in the early stages. The menstrual cycle is a potentially rich area of 
study from the perspective of mathematics and dynamical systems. The periodic 
nature of the hormone fluctuations makes it a natural candidate of study for those 
who are interested in oscillations and limit cycles. When analyzing a system that 
evidences naturally cycling behavior, Hopf bifurcations play an important role. A 
Hopf bifurcation is the process whereby periodic orbits (“self-oscillations”) emerge 
from a fixed point when a parameter crosses a critical value [3]. Identifying the types 
of bifurcations that are part of a mathematical system of equations yields insight into 
the structure and mechanisms of a system of equations. Determining how and when 
a Hopf bifurcation, in particular, may develop is therefore of particular interest in 
a mathematical model of the menstrual cycle. The existing mathematical work has 
already made strong contributions in this area. Several early mathematical models 
in the literature have helped quantify the complex interactions that drive the human 
menstrual cycle [4–6]. Selgrade and Schlosser [7, 8] worked on a series of models 
that drove more recent developments in the field, especially as more data became 
available [9–12]. 

The dynamics of this system are made both more interesting and more com-
plicated by the introduction of hormonal contraceptives. An individual’s autonomy 
and ability to understand and control their own reproductive health is an important 
issue in healthcare and in modern society. Contraceptive use is linked to increases in 
economic empowerment, education, and labor force participation for women [13]. 
Hormonal contraceptives (including oral contraceptives) remain a leading form of 
birth control in the United States [14]. However, very few researchers have explicitly 
incorporated hormonal contraception into their mathematical models. 

In this chapter, we provide a survey of the efforts in mechanistic modeling of the 
menstrual cycle, with a special eye toward the modeling of the effects of hormonal 
contraception. We begin in Sect. 2 with an overview of the biology of the menstrual 
cycle, including the different phases and key hormonal drivers of the system. We 
also describe how these hormones are impacted through hormonal contraception. In 
Sect. 3, we turn our attention toward existing mathematical models of the menstrual 
cycle, highlighting the goals and key results from these papers. We discuss strengths 
and limitations of each of these models. We provide a comparative analysis of 
these models in Sect. 4. First, we perform a sensitivity analysis that shows how 
variations in the parameter representing the growth rate of the reserve pool of 
follicular stimulating hormone have considerable impact on the cycle length across 
models. This analysis reveals interesting qualitative and quantitative differences on
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the impact of cycle length in each case. Second, we discuss the different ways 
in which time delays are incorporated into various differential equation models. 
We close the section by introducing a simple modification to the existing models 
to include hormonal contraception and discuss the qualitative responses of each 
model. To the best of our knowledge, this is the first such comparative analysis of 
mathematical models of the menstrual cycle. We conclude in Sect. 5 by highlighting 
existing challenges and important future directions. 

2 Biological Background on the Menstrual Cycle 

2.1 Stages of the Menstrual Cycle 

Here we provide a brief introduction to the stages of the menstrual cycle. A more 
detailed background of the biology can be found in [15–17]. The expected length of 
the menstrual cycle is around 29 days [18], although the variability in cycle length 
is large, with normal cycle lengths ranging from around 15 to 50 days [16, 18]. 
Day 1 of the menstrual cycle is the first day of menstruation (the “period”), and 
a menstrual cycle ends at the start of the next period. Both the uterus and ovaries 
experience changes throughout the menstrual cycle. 

The ovarian cycle consists of two primary phases: the follicular phase and the 
luteal phase. Based on the traditional assumption of a standard 28-day menstrual 
cycle, the first phase of the ovarian cycle, called the follicular phase, lasts approxi-
mately 14 days. The second phase, called the luteal phase, begins on day 15 and lasts 
until the end of the ovarian cycle. Studies show that follicular phase lengths vary 
more than luteal phase lengths [18]. At birth the fetal ovary contains a fixed amount 
of primordial follicles (small, fluid-filled sacs that contain ova or “eggs”). In each 
ovarian cycle, a small portion of primordial follicles are activated at the beginning 
of the follicular phase to begin maturation [19, 20]. During this phase, one of the 
follicles will develop more quickly (the primary or dominant follicle), and the others 
will die out. The primary follicle will continue to develop during the remainder 
of the follicular phase until it fully matures. The key process during this phase is 
meiosis, a special type of cell division that produces genetic variation and ensures 
that all the germ cells needed for sexual reproduction contain the correct number 
of chromosomes [21]. Two rounds of nuclear division (called meiotic division) are 
involved in meiosis; the primary follicle develops into a secondary follicle when the 
first division is completed, and it continues to develop until it fully matures. Around 
day 14, the fully matured follicle ruptures, and the ovum is released, i.e., ovulation 
occurs. After ovulation, the follicle that previously contained the egg transforms 
into the corpus luteum [22, 23]. This signals the beginning of the luteal phase. If 
the ovum is fertilized, the second meiotic division completes. If the ovum is not 
fertilized, the corpus luteum begins to degrade until the start of the next ovarian 
cycle.
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There are three primary phases in the uterine cycle: the menstrual phase, the 
proliferative phase, and the secretory phase. The menstrual phase occurs in the 
first 5–7 days of the uterine cycle. The innermost lining of the uterine wall, called 
the endometrium, sheds through the cervix and vagina. This first phase is often 
commonly referred to as a “period.” The phase from the end of the period until 
ovulation is the proliferative phase. During this phase, the endometrium thickens, 
while the dominant follicle in the ovary develops. The phase after ovulation is called 
the secretory phase. If the egg released from the ovary is fertilized, the thickened 
endometrium is ready for the egg to implant and grow to support the pregnancy. If 
the egg is not fertilized, the thickened endometrium breaks down and menstruation 
occurs. At this point, the cycle begins again. The lower section of Fig. 1 provides 
a visualization of the timeline of these different phases over a standard 28-day 
menstrual cycle. 

2.2 Introduction to the Role of Hormones in the Menstrual 
Cycle 

The menstrual cycle is regulated by several hormones. The key hormonal drivers 
of the menstrual cycle can be divided into two types: gonadotrophic hormones that 

Follicular Phase Luteal Phase 

Uterine 
Cycle 

Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
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Fig. 1 A schematic of a normal 28-day menstrual cycle. Note that in the hormone/ovarian 
schematic, black dashed lines indicate transition between different stages in the ovarian cycle, 
black solid lines indicate hormone production, gray solid lines indicate hormone inhibition, and 
black dash-dotted lines indicate hormone stimulation. The following abbreviations are used in 
the schematic: GnRH, gonadotropin-releasing hormone; FSH, follicle stimulating hormone; LH, 
luteinizing hormone; InhA, inhibin A; InhB, inhibin B; E. 2, estradiol; P. 4, progesterone



Survey of Modeling Hormonal Contraception and the Menstrual Cycle 55

are produced in the pituitary and hypothalamus and travel through the bloodstream 
and reproductive or ovarian hormones that are produced locally in the ovaries. We 
provide a brief overview of the dynamics and interactions of these hormones here; 
we refer the reader to [15, 17, 24] for more in-depth discussions of these hormones 
and their roles. 

The primary gonadotrophic hormones regulating the menstrual cycle are luteiniz-
ing hormone (LH) and follicular stimulating hormone (FSH). There are three key 
reproductive hormones in the menstrual cycle system: estrogen (E. 2), progesterone 
(P. 4), and inhibin. 

During the menstrual phase of the uterine cycle (roughly the first one-third of 
the follicular phase of the ovarian cycle), the levels of E. 2 and P. 4 are very low, 
which triggers the shedding of the endometrium. FSH enhances the development 
of the follicles, preparing an egg for ovulation during the follicular phase of the 
ovarian cycle. The primary follicle secretes E. 2 and inhibin as it grows. Both of 
these hormones suppress further production of FSH via a negative feedback, i.e., 
increased E. 2 and inhibin levels lead to inhibition of FSH [25]. After the period, E. 2
increases over the proliferative phase and causes the endometrium to thicken. When 
E. 2 levels are high enough, a signal is sent to the brain, which causes a rapid and 
significant rise in LH [22]. This surge in LH triggers ovulation [26] and, thus, is 
often used as a biomarker for ovulation. The corpus luteum produces E. 2, P. 4, and 
inhibin during the luteal phase. Right after ovulation, E. 2 levels drop [26], and P. 4
levels increase, which signals the endometrium to stop thickening and prepare for a 
fertilized egg. There is a negative feedback of P. 4 on the further release of LH from 
the pituitary. If the ovum is fertilized, the individual becomes pregnant, beginning 
a new hormonal process. If the ovum is not fertilized, the corpus luteum begins 
to degrade, which results in a reduction of both E. 2 and P. 4. The corpus luteum 
degenerates into corpus albicans toward the end of the menstrual cycle, and the 
resulting sharp drop in E. 2 and P. 4 induces menstruation, where the endometrium 
breaks down. This decline in E. 2 leads to an increase in FSH, which marks the 
beginning of the next menstrual cycle. A diagram showing the relationships of those 
key hormones and the key elements in the ovarian cycle is shown in Fig. 1. Note  
that both FSH and LH increase in the early stages of the menstrual cycle, with 
peaks occurring mid-cycle. The highest levels of E. 2 are observed in the first half 
of the cycle (preceding the LH surge), with a lower secondary peak occurring in 
the second half. The highest levels of P. 4 are observed in the second half of the 
cycle. Representative curves of hormone levels throughout the menstrual cycle are 
depicted in Fig. 2. 

The reproductive hormone inhibin is involved in negative feedback control of 
FSH [15]. Inhibin is divided into two types: inhibin A (InhA) and inhibin B (InhB). 
The contrasting profiles of InhA and InhB suggest that FSH and LH regulate these 
two inhibins differently [27]. InhA is secreted in the luteal phase by the corpus 
luteum and peaks in the second half of the menstrual cycle, while InhB is secreted in 
the follicular phase by developing follicles and peaks in the first half of the menstrual 
cycle [12]. According to [28], “the appearance of measurable inhibin A can be seen 
as a marker for a follicle having at least matured to a stage corresponding to the late
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Fig. 2 Schematic time courses of hormone levels throughout the menstrual cycle based on data 
by Welt et al. [12] 

follicular stage in adult women.” InhB has been shown to be useful in the evaluation 
of the ovarian reserve and the assessment of an individual’s reproductive capacity 
[29, 30]. 

2.3 Hormonal Contraception and Its Effect on the Menstrual 
Cycle 

As a means to prevent pregnancy, hormonal contraception aims to inhibit ovulation 
or fertilization. The primary biomarkers for ovulation are large increases in P. 4 and 
LH, so contraceptives that work to inhibit ovulation attempt to suppress levels of 
P. 4 and LH [31, 32]. Keeping FSH and E. 2 levels low is also important to attain a 
contraceptive state. If FSH level is low, follicular growth is limited, and follicles 
cannot mature. Low levels of E. 2 mean that LH level cannot increase because of the 
positive feedback on LH. 

Oral contraceptives are the most widely used variant of hormonal contraception 
in the United States [33]. There are two primary types of oral contraceptives: 
pills that are synthetic progesterone only (sometimes called “mini pills”) and 
pills that contain both synthetic estrogen and synthetic progesterone (“combination 
pills”) [34]. Synthetic progesterone directly reduces the synthesis of LH, although 
it also contributes to inducing a contraceptive state more indirectly through its 
effect on FSH (limiting follicle growth) and through thickening of the cervical 
mucus [11, 35]. Synthetic estrogen contributes to contraception via suppressing 
LH (thereby eliminating the LH surge) and by enhancing the effects of synthetic 
progesterone by increasing receptor effectiveness. Other hormonal contraceptive
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methods (e.g., vaginal rings, transdermal inserts, and intrauterine devices) also 
employ the mechanisms of reducing P. 4 and LH [33]. 

3 Mathematical Models of the Menstrual Cycle 

There are a number of research groups that have developed mathematical models of 
the menstrual cycle over the years (cf. [5, 6, 36–40]). Of this collection of modeling 
efforts, the models first developed by Selgrade, Schlosser, and Harris Clark [7, 8, 
41, 42] stand out because they have been used as the foundation for a significant 
number of subsequent models [43–47]. Another modeling approach was introduced 
more recently by Röblitz et al. [48] and built upon by George et al. [49]. The model 
structure created by Röblitz et al. diverges in several ways from the models in the 
Selgrade lineage. In the following subsections, we introduce the main features and 
contributions of each of these models. In Fig. 3, we provide a chart depicting the 
relationship among several of the Selgrade-based models, and we implement and 
test four of them in this chapter. 

3.1 Early Modeling Efforts 

Very early efforts in mathematical modeling of the menstrual cycle date back 
to the 1970s. Shack et al. [4] used first-order differential equations to create a 

Fig. 3 Selgrade-based mathematical models of the human menstrual cycle. We implement and 
compare models (3), (5), (6), and (7)
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phenomenological computational model of the menstrual cycle. These authors were 
able to simulate periodic behavior that qualitatively captures some of the hormone 
fluctuations of the system. In two papers by Bogumil and colleagues [5, 6], the 
authors observed that short-duration, random events could significantly affect the 
qualitative behavior of the cycle and that rapid changes in hormone levels were 
likely responsible for regulating the cycle. In particular, computational simulations 
of this model were used to study how the introduction of estradiol (E. 2) at various 
points in the cycle might contribute to phase shifts or “resetting” of the cycle, 
and it was observed in a contemporaneous study that this model did not produce 
results that agreed with physiologically observed behavior in this context [50]. 
Biological knowledge of the menstrual cycle has advanced a great deal since these 
early works; nevertheless, they provide an important foundation for more modern 
modeling efforts. 

Motivated by the problem of exposure to environmental estrogen affecting 
reproduction, Selgrade and Schlosser developed two mechanistic models that 
tracked the follicular phase and the luteal phase of the ovarian cycle [7, 8]. The 
first model [7] used a system of nine linear ordinary differential equations (ODEs) 
to capture the stages of the cycle that drive the production of the gonadotropin 
hormones LH and FSH. The production of the ovarian hormones E. 2, P. 4, and inhibin 
was modeled as functions of LH and FSH. The ODE system presented in the second 
model was nonlinear [8] and introduced delays. This model focused on separating 
the processes of gonadotropin synthesis and gonadotropin release. In this second 
model, the functions for E. 2, P. 4, and inhibin were simplified to be functions of 
time only, with no direct dependence on LH or FSH [7]. While the first model 
was able to capture the dynamics of E. 2, P. 4, inhibin, FSH, and LH for normally 
cycling adult women with no external interference, the second model was extended 
to allow for the administration of exogenous ovarian hormones E. 2 and P. 4. The  
authors stated that their second model could be used as a testbed for exploring a 
variety of hormone-modulating scenarios. The authors suggested that future uses of 
this second model could include exploring the role of xenoestrogens in breast and 
ovarian cancer, better understanding anorexia’s role in the cessation of menstruation, 
and testing the effects of different methods of hormonal birth control [8]. Both 
the first and second models were fit to hormone-level data from McLachlan et al. 
[9]. Selgrade and Schlosser’s model systems [7, 8] together form the foundation 
for a number of subsequent modeling efforts [41–43, 51]. We explore several of 
these models in detail in the subsections below. A detailed comparison of models is 
provided in Table 1 located in supplementary information at the end of this chapter. 

3.2 Available Data Sets on Normal Menstrual Cycles 

Two data sets are commonly used in models of the menstrual cycle: McLachlan 
et al. [9] and Welt et al. [12]. Each of the models we review in Sects. 3.3–3.7 
was fit to one of these two data sets. Both studies followed approximately 40
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women with a history of regular menstrual cycles (around 25–35 days). Daily blood 
samples were taken from participants during one complete menstrual cycle in order 
to measure bloodstream hormone levels (LH, FSH, E. 2, P. 4, and inhibin). The mean 
daily hormone levels were reported in each of these studies, with data centered 
around ovulation (the day of the LH surge). The Welt et al. data were normalized 
to a 28-day cycle using mean hormone levels in seven phases, including early, mid, 
and late follicular and luteal phases and the mid-cycle surge [12, 52]. An important 
distinction between the sets is that Welt et al. reported separate data for inhibin A 
and inhibin B, while McLachlan et al. reported a measurement of total inhibin since 
the separate assays for inhibin A and inhibin B were not yet available. 

There are other more recent data sets on the normal menstrual cycle (published 
in or after the year 2000), but these published data sets do not provide the 
information on all the hormones that may be interesting from a mathematical 
modeling perspective. For example, Sehested et al. [53] collected daily blood 
samples from study participants and reported the mean daily levels of inhibin A, 
inhibin B, FSH, E. 2, and LH, but they did not report levels of P. 4. In another study, 
Stricker et al. [54] summarized the mean, median, 5th, and 95th percentiles of the 
daily levels of LH, FSH, E. 2, and P. 4 of study participants but did not report inhibin 
levels. 

3.3 Harris Clark et al. Model 

The Harris Clark et al. model was presented in both a manuscript and a Ph.D. 
dissertation [41, 42]. Harris Clark, Schlosser, and Selgrade [41] merged the two 
models of Schlosser and Selgrade [7, 8] to create a version of the model that included 
both a system of nonlinear delay differential equations to describe synthesis and 
release of gonadotropin hormones LH and FSH (as in [8]), as well as the more 
complicated functional forms for the ovarian hormones E. 2, P. 4, and inhibin that 
depend directly on the values of LH and FSH (as in [7]). This model was tuned to 
published data on normally cycling women (McLachlan et al. data [9]) to predict 
serum levels of these ovarian and pituitary hormones. The model also allowed 
for a stable abnormal cycle (in the sense of serum levels of ovarian and pituitary 
hormones), which can be used to fit for women with polycystic ovarian syndrome. 
Harris Clark et al. used this model to capture how exogenous administration of E. 2
and P. 4 impacts the menstrual cycle. They presented numerical experiments that 
show that hypothetical exogenous P. 4 therapy can move a disrupted cycle into a 
normal cycle and that hypothetical exogenous E. 2 can disrupt a normal cycle. We 
reproduced numerical solutions of this model, which are graphed in Fig. 4. The  
authors suggested that an exhaustive study of state space should be carried out to 
determine whether there are additional stable solutions. They pointed out that the 
following two changes would make the model more biologically realistic: future 
models should separately model inhibin A and inhibin B, instead of just generic 
inhibin, and should include a model component that explicitly captures the GnRH
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Fig. 4 Numerical solutions to the Harris Clark et al. [41] model plotted against data from 
McLachlan et al. [9]. The root mean square error (RMSE) for each variable is shown, and the 
period is computed to be approximately 30.1 days. Note that the units for the hormone levels 
mirror the units reported in the McLachlan et al. data set 

pulse frequency and amplitude, which can be affected by the ovarian hormones. The 
first of these two challenges was later taken up by Pasteur and Selgrade (described 
in Sect. 3.4). 

3.4 Pasteur and Selgrade Model 

Prior to the mid-1990s, separate bioassays for inhibin A and inhibin B were not 
available [55], so hormone models typically incorporated their effects in a single 
term. In 2011, Pasteur and Selgrade published the first hormone model to incor-
porate separate inhibin terms [43]. This model first appeared as part of Pasteur’s
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dissertation [44]. Pasteur and Selgrade estimated parameters for the pituitary and 
ovarian systems individually and then merged the models. In their multi-inhibin 
model, one of the key changes was to the functional form of FSH synthesis function. 
They asserted that because the circulating level of each inhibin has a negative 
effect on FSH synthesis, they replaced what they called an “unrealistic” quadratic 
inhibition term (E. 22) that inhibits FSH with a linear term (E. 2). They also modified 
the governing equation for the reserve pool of FSH. Incorporating multiple inhibins 
required two separate delay terms: one for inhibin A and one for inhibin B. The 
authors expanded the ovarian model by adding two new stages at the beginning 
of the follicular phase and an additional one around the time of ovulation to 
capture both an early and a mid-cycle peak by inhibin B. They considered the 
effects of exogenous hormones, noting that increasingly large amounts of exogenous 
E. 2 suppressed the LH surge to an increasingly large degree. After treatment, the 
hormone concentrations returned to a stable normal cycle after a few months. 

Aside from the multi-inhibin model, Pasteur’s dissertation [44] also included a 
five-hormone model that is almost identical to the Harris Clark et al. [41] model, 
but it was fit to the Welt et al. data instead of the McLachlan et al. data. We do not 
include Pasteur’s five-hormone model in this review. Instead, we point the readers 
to [56], where Selgrade et al. thoroughly compared these two models and discussed 
their sensitivity to the data used for parameter fitting. 

3.5 Margolskee and Selgrade Model 

Margolskee and Selgrade [45] carried out a bifurcation analysis of the Harris Clark 
et al. [41] model and focused, in particular, on the size of the time delay parameter. 
In [41], three separate time delay values were used—one for each of the three 
corresponding ovarian hormones. Margolskee and Selgrade concluded that it is 
sufficient to include only a delay of .τ = 1.5 days for the effect of the inhibin on the 
pituitary’s secretion of FSH. In the Harris Clark et al. [41] model, the delay for the 
inhibin term was .dIh = 2.0. Margolskee and Selgrade found that the delays required 
for E. 2 and P. 4 were less than 1 day and could be set to zero. The authors said that 
this change to the delay values improves the fit to the data for normally cycling 
women from Welt et al. [12], and they provided extensive bifurcation analysis 
exploring the effects of changing the length of the inhibin delay. They discussed 
why the shorter inhibin delay is consistent with biological evidence and how it 
permits increased ovarian development during the follicular phase of the cycle. We 
reproduced numerical solutions of this model, which are graphed in Fig. 5. 

We note that when the authors fit the model to this new data set [12], a mismatch 
in units occurred. Unfortunately, all descendants of this model seem to inherit this 
unit mismatch.
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Fig. 5 Numerical solutions to the Margolskee and Selgrade [45] model plotted against data from 
Welt et al. [12]. The root mean square error (RMSE) for each variable is shown, and the period is 
computed to be approximately 28 days. The units for the hormone levels in these plots reflect the 
units reported in the Welt et al. data set 

3.6 Wright et al. Model 

The focus of the Wright et al. [46] model was to explore the effects of oral 
contraceptive drugs in hormonal control of the menstrual cycle of adult women. 
This model also included a system of nonlinear delay differential equations with 
four auxiliary equations representing the ovarian hormones E. 2, P. 4, and inhibin A. 
Hormonal contraceptive treatments via oral administration of ethinyl estradiol and 
progestin were modeled by modifying state variables for blood concentrations of 
E. 2 and P. 4. The authors assumed that a contraceptive state is attained if model 
simulations show a reduction in the LH surge to non-ovulatory levels or a reduction 
in P. 4 levels throughout the cycle. The model extended the Margolskee and Selgrade 
[45] and Harris Clark et al. [41] models by adding autocrine mechanisms to
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describe how exogenous estrogen and progesterone could push a normal cycle into 
a contraceptive state. Model parameters were generally kept at the values used in 
[45], except for the changes needed for the new model components. 

While this model did include more realistic mechanisms to account for exoge-
nous hormones, there were still several simplifying assumptions. The authors 
assumed that the effect of estrogen on progesterone can be combined into one term 
P.app that does not differentiate between the neuroendocrine and the ovarian systems. 
They also assumed that P.app cannot be larger than P. 4. As with the previous works of 
Harris Clark et al. [41] and Margolskee and Selgrade [45], this model only tracked 
inhibin A and did not incorporate inhibin B. 

Wright et al. showed that the administration of synthetic progesterone, synthetic 
estrogen, or a combination of these can have a contraceptive effect by preventing 
ovulation. They concluded that a low dose of both treatments given together is most 
effective at achieving contraception. They provided numerical experiments that 
illustrate how the combined contraceptive treatment pushes the system into a non-
ovulatory menstrual cycle fairly quickly and that the cycle also returns to normal 
in short order after the treatment ends. Future work mentioned coupling the model 
with a model for absorption and metabolism of oral contraceptive drugs. Wright et 
al. suggested that the addition of absorption and metabolism could help discover 
minimal effective doses of contraceptive drugs and may lead to patient-specific 
dosing strategies through pharmacokinetic/pharmacodynamic (PK/PD) modeling 
based on individual hormone data. We reproduced numerical solutions of this 
model, which are graphed in Fig. 6. 

3.7 Gavina et al. Model 

The aim of the Gavina et al. [47] model was to employ optimal control techniques 
to minimize the total exogenous estrogen or progesterone doses required to enter a 
contraceptive state. This work was novel in that it considered nonconstant dosage 
as well as constant dosage of exogenous hormones. This model was also built on 
the normal menstrual cycle models of Harris Clark et al. [41] and Margolskee 
and Selgrade [45]. As with those models and the model of Wright et al. [46], 
this work incorporated only inhibin A (denoted as Inh in their model). The 
authors justified this assumption by stating that inhibin B is more important when 
studying reproductive aging. In addition to the system of nonlinear delay differential 
equations, these authors used auxiliary equations to track E. 2, P. 4, and Inh. In 
order to make the optimal control analysis more tractable, the authors made some 
simplifications from previous models. For example, instead of using the nonlinear 
term for inhibition and the additional equations employed in Wright et al. [46], these 
authors opted to use a linear inhibitory term and fewer additions to the Margolskee 
and Selgrade model; they found that these simplifications reduced computation time 
when running the optimization code.
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Fig. 6 Numerical solutions to the Wright et al. [46] model plotted against data from Welt et al. 
[12]. The root mean square error (RMSE) for each variable is shown, and the period is computed 
to be approximately 28.7 days. The units for the hormone levels in these plots reflect the units 
reported in the Welt et al. data set 

The authors showed that the baseline simplified model without the administration 
of exogenous hormone reasonably matches the 28-day data from Welt et al. 
[12] and then proceeded to explore optimal dosing schedules. They observed a 
reduction in dosage of about 92% in estrogen monotherapy and 43% in progesterone 
monotherapy. Their simulations showed that delivering the estrogen contraceptive 
in the mid-follicular phase is the most effective. In addition, they showed that 
combination therapy significantly lowers doses even further, which is in line with 
the findings of [46]. While this work made promising steps by studying nonconstant 
dosing of exogenous hormones, it is important to note that the authors did not 
discuss whether the optimal dosing schedules are biologically feasible or would 
be possible to incorporate from a pharmacological perspective. For example, they 
presented an optimal dosing strategy for delivering synthetic estrogen that requires 
a large mid-follicular spike in this treatment. While this regimen minimizes the
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Fig. 7 Numerical solutions to the Gavina et al. [47] model plotted against data from Welt et al. 
[12]. The root mean square error (RMSE) for each variable is shown, and the period is computed to 
be approximately 28 days. The units for the hormone levels in these plots reflect the units reported 
in the Welt et al. data set 

total amount of estrogen delivered over the entire cycle, it is unclear whether 
the magnitude of estrogen applied at this mid-follicular stage would be plausible 
to administer or if it would create adverse effects for the user. We reproduced 
numerical solutions of this model, which are graphed in Fig. 7. 

3.8 Models Incorporating GnRH 

The models discussed in the previous subsections focus on modeling the hormones 
that are produced in the hypothalamus and pituitary (FSH and LH) and the ovaries 
(P. 4, E. 2, InhA, and InhB). They are potentially well-suited to the incorporation 
of exogenous hormones. However, these models do not include the gonadotropin-
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releasing hormone GnRH, which controls the synthesis of FSH and LH. We are 
aware of two recent models that do incorporate GnRH, which we describe briefly 
here: Röblitz et al. [48] and George et al. [49]. 

In 2013, Röblitz et al. [48] published a hormone model with the aim of explicitly 
exploring GnRH-receptor binding. The focus of this work was to develop a detailed 
model of GnRH to explore GnRH-receptor binding in response to the introduction of 
GnRH analogs. Motivated by model equations from Harris Clark [42], Pasteur [44], 
and Reinecke [51], this model included several novel features. Unlike other models 
discussed here, this work developed explicit terms for the GnRH system. Moreover, 
the model eliminated time delays by introducing “effect” compartments, so that the 
effects of a given hormone could be delayed without incorporating time delays into 
the differential equations. Finally, the model included separate terms to account for 
the effects of InhA and InhB. Importantly, their model correctly predicted cycle 
variations due to doses of a GnRH agonist (which causes the ovaries to stop making 
estrogen and progesterone) and a GnRH antagonist (which impedes ovulation in 
in vitro fertilization treatment). The authors also communicated an explicit goal to 
model individual patients, instead of an idealized patient from aggregate data. 

In a more recent model by George et al. [49], the authors proposed a simplified 
model of six nonlinear differential equations to explore the effects of GnRH on the 
dynamics of the key hormonal drivers in the menstrual cycle. While the model was 
dramatically simplified from that of Röblitz, the authors were still able to capture 
some of the qualitative effects of GnRH on the gonadotrophic hormones, including 
that increasing the width of a GnRH pulse can affect the timing of the release of LH, 
thereby affecting the timing of when the ovarian hormones are produced. 

4 Comparisons Between Existing Menstrual Cycle Models 

In this section, we provide a comparative analysis of four menstrual cycle models 
discussed in Sect. 3: Harris Clark et al. [41], Margolskee and Selgrade [45], Wright 
et al. [46], and Gavina et al. [47]. For ease of comparison, we selected these four 
models from the Selgrade lineage, Fig. 3. Our analysis focuses on three areas of 
interest: a sensitivity analysis of the shared parameter .VFSH , a comparison of the 
ways modelers represent inhibitory delays and the disparate effects of inhibin in the 
system, and the models’ responses to exogenous estrogen and progesterone. The 
MATLAB codes for the four models we implemented here are available on GitHub: 
https://github.com/rubyshkim/menstrual-cycle_models. 

4.1 Sensitivity to VFSH  

By investigating the sensitivity of the models by Harris Clark et al. [41], Margolskee 
and Selgrade [45], Wright et al. [46], and Gavina et al. [47] to variations in

https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
https://github.com/rubyshkim/menstrual-cycle_models
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parameter values, we discover that the maximum growth rate of the FSH reserve 
pool (.VFSH ) significantly influences the length of the menstrual cycle. 

For each model, we vary all parameters one at a time by 25% to determine 
which parameter values create the most sensitive behaviors when perturbed. Since 
periodic rhythms are an essential part of the menstrual cycle, we use period length 
(numerically approximated) as our metric. Of the parameters generating the most 
sensitivity, we chose to focus on a shared parameter .VFSH , which represents the 
maximum rate of growth of the reserve pool of FSH. Note that although FSH is a 
measurable hormone, .VFSH represents a maximum growth rate. .VFSH , therefore, 
is a parameter that is useful in a modeling context, but experimental data on the 
physiological ranges of .VFSH are sparse. Since .VFSH is not typically measured 
in an individual, we focus on the qualitative (rather than the quantitative) model 
response to changing the values of the rate .VFSH . In the models of Selgrade, 
Schlosser, and Harris Clark [7, 41], the authors cite Odell [58] and state that the 
nominal values of the follicle growth rates during the follicular phase are chosen by 
assuming they are proportional to the FSH serum levels. FSH is regulated through 
negative feedback, and its baseline level can change depending on the availability 
of regulatory hormones. FSH stimulates the growth of follicles, which modulate 
inhibins, which in turn then inhibit FSH secretion. Female reproductive aging is 
accompanied by an increase in circulating FSH due to the loss of follicles, which 
lowers inhibin levels [12]. In the mathematical models, increasing .VFSH from its 
nominal values shortens the period of the menstrual cycle; see Fig. 8 where the 
nominal value of .VFSH for each model is identified by an orange point. This 
relationship is consistent with findings that suggest that lower circulating FSH 
levels lengthen the menstrual cycle [57]. Lowering .VFSH from the nominal values 
generally increases the period in all four models. 

However, there is some notable sensitivity in the model behaviors. The model by 
Harris Clark et al. [41] undergoes a non-smooth change in the approximated period. 
When .VFSH is below just 0.966 of its nominal value of 5700 . μg/day, E. 2 loses 
its secondary peak during the luteal phase; example time courses with . VFSH =
5415 . μg/day are provided in Fig. 9. Our simulations of the Wright et al. [46] and 
Margolskee et al. [45] models also show a sharp transition in approximated period 
at particular values of .VFSH associated with a loss of the E. 2 secondary peak. In 
addition, the length of a regular menstrual cycle is considered to range from 26 
to 35 days [16]. A 25% reduction in .VFSH results in a loss of periodicity in our 
simulations of the Gavina et al. [47], Margolskee and Selgrade [45], and Harris 
Clark et al. [41] models. 

4.2 Variation in Incorporating Delays in the Models 

In many of the models, discrete time delays are key components that represent the 
delays between changes in blood hormone levels and their effects on synthesis rate. 
Among all models we reviewed in this manuscript, only the models of Röblitz et al.
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Fig. 8 Sensitivity of the model simulations to .VFSH . We approximate the period of numerical 
solutions over 100 cycles for the models by Harris Clark et al. [41], Margolskee and Selgrade [45], 
Wright et al. [46], and Gavina et al. [47] for values of the parameter .VFSH between 75% and 125% 
of its nominal value indicated by the orange point in each model. .VFSH is the maximum growth rate 
of reserve pool FSH and generally has an inverse relationship with the period in our simulations. 
This result is consistent with the findings in [57]. There is notable sensitivity to variations in . VFSH

in all four models. The axes for each model are chosen to center the nominal value for . VFSH

Fig. 9 Example time series 
from Harris Clark et al. [41] 
model simulations with 
.VFSH = 5415 . μg/day or 95% 
of its nominal value. 
Compared with Fig. 4, 
concentrations of all four 
hormones are reduced, and 
FSH and E. 2 no longer have a 
secondary peak during the 
luteal phase
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[48] and George et al. [49] do not involve any delay differential equations. Röblitz 
et al. argued that the delayed inhibitory effect of inhibin B on FSH synthesis in their 
model was incorporated by the mechanisms in which low GnRH frequencies would 
stimulate FSH synthesis with adjusted rate constants. To avoid the use of delay 
differential equations, they introduced a new compartment for effective inhibin A, 
IhA. e, to account for the delayed inhibitory effect of inhibin A on FSH synthesis. 

In the original Selgrade and Schlosser [8] model of the pituitary component of the 
menstrual cycle that five of the models we reviewed were based on, they included 
three discrete time delays—one corresponding to each ovarian hormone. First, . dE =
0.42 day is the delay in the input function .E2(t), which appears in the LH synthesis 
term in order to simulate both the rapid rise and fall of LH during the surge, as 
well as the time difference between the peaks of E. 2 and LH. There is a . dP = 2.9
day delay in the input function .P4(t), which appears in the LH synthesis term to 
correctly simulate the timing of the surge in LH synthesis following the changes in 
serum levels of P. 4. Finally, there is a .dIh = 2 day delay in the input function .Ih(t), 
which appears in the FSH synthesis term to capture the period of time between the 
changes in the inhibin blood levels and the FSH synthesis rates. 

The Harris Clark et al. [41] model removed the delay in the input function E. 2(t)

in the LH synthesis term, as their parameter identification indicated that it was 
insignificant; they kept the delay .dIh = 2 day but modified the other delay . dP

to be 1 day. The Margolskee and Selgrade [45] model reduced the number of delays 
to one, incorporating only a .τ = 1.5 day delay in the effect of the peptide inhibin on 
FSH synthesis. This led to an improvement in the fit to the Welt et al. data. They set 
the other two delays to 0 as the values were less than a day and did not contribute 
significant additional improvement on data fitting. Similarly, both the Wright et al. 
[46] and Gavina et al. [47] models kept the discrete time delay, .τ = 1.5 day, in the 
input function .InhA(t), which appears in the FSH synthesis term. The Pasteur and 
Selgrade [43] multi-inhibin model includes four time delays: a .dE = 0.5086 day 
delay in the input function .E2(t) in the LH synthesis term, a .dP = 0.9156 day delay 
in the input function .E2(t) in the LH synthesis term, a .dIhA = 2.5 day delay in the 
input function .IhA(t) in the FSH synthesis term, and a .dIhB = 1 day delay in the 
input function .IhB(t) in the FSH synthesis term. 

In this collection of models, we see that there are two main approaches taken 
to capturing the timing of the cascade of events from the onset of changes in 
blood hormones to the subsequent effect on synthesis: using delays or incorporating 
more model detail. The models of [8, 41, 45–47] incorporate explicit time delays 
in strategic parts of the models, and variations in the way the delays are included 
lie in the fine-tuning of the lengths of the delays. The models of [48, 49] have  
taken the approach of including more detailed steps in the hormone-synthesis 
cascade that in turn implicitly produce the necessary time delays. Although software 
for the numerical solution of delay differential equations is readily available, the 
delay-free approach may be preferable when implementing numerical solutions 
because traditional numerical ODE solution methods tend to be stable and easy 
to implement.
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4.3 Subtle Differences in Modeling Inhibins 

As mentioned in Sect. 3.2, data from McLachlan et al. [9] and Welt et al. [12] are  
commonly used in models of the menstrual cycle. It is important to note that these 
two data sets are different with respect to inhibin, and this impacts modeling choices. 
Separate bioassays for inhibin A and inhibin B were not available until the mid-
1990s. As such, many of the models discussed here represented the total effects of 
inhibin using one compartment, despite the fact that they peak at different times in 
the cycle. In this section, we discuss the variations in choices of modeling inhibin 
and how it connects to these data sets. 

Harris Clark et al. [41] fit their model to the McLachlan et al. data set [9], which 
only reported total inhibin values. Many other authors [43, 45–47] parameterized 
their models using the Welt et al. data set [12], but the ways they handled the inhibin 
data are slightly different. Pasteur and Selgrade [43] used the data from the younger 
age group with 23 women aged 20–34 for parameterization to model both inhibin 
A and inhibin B. Note that Pasteur et al. parameterized their five-hormone model 
using both the McLachlan et al. and Welt et al. data in [44, Chapter 3], but they used 
the inhibin A data from the Welt et al. data only, as they concluded that its profile 
matched the total inhibin profile from the McLachlan et al. data. Both Gavina et al. 
[47] and Wright et al. [46] included only inhibin A in their model and used the data 
from the younger age group (note that in [47] the state variable Inh denotes inhibin 
A). Margolskee and Selgrade [45] also fit their model to the data from the younger 
group in the Welt et al. data, but it is unclear how they handled the inhibin data as 
they did not distinguish inhibin A and inhibin B explicitly in their model. 

4.4 Incorporation of Hormonal Contraception in Models 

Perhaps the simplest way to incorporate hormonal contraception into a menstrual 
cycle model is with a constant dosing of exogenous estrogen (e.g., estradiol) 
and/or progesterone (e.g., progestin). In this section, we compare the qualitative 
behaviors of each of the models under this simple strategy for modeling hormonal 
contraception. As discussed in Sect. 2.3, a contraceptive state is marked by the 
absence of an LH surge. However, contraception may refer to total contraception, 
where LH levels are low and roughly constant, or biological contraception, where 
LH levels increase and decrease in an oscillatory manner but remain low. We 
capture the dynamics of response to hormonal contraception in each of these models 
by measuring (a) the amplitude of the LH peak (a biomarker for whether or not 
ovulation will occur) and (b) the period of P. 4 oscillations (a proxy for whether total 
contraception is achieved).
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As expected, with no exogenous progesterone and no exogenous estrogen (i.e., 
no hormonal contraceptives), all of the models we discuss in this manuscript have 
a relatively high LH peak and a mean cycle length between 28 and 30 days. This 
is consistent with the biology of the menstrual cycle in a non-contraceptive state. 
To visualize the response of each model to the addition of hormonal contraception, 
we create heatmaps in Fig. 10 for the effect of exogenous estrogen (horizontal axis) 
and exogenous progesterone (vertical axis) on the maximum value of the LH peak 
(colors, top panels) and the period of the P. 4 oscillations (colors, middle panels) 
computed using findpeaks in MATLAB. It is advantageous to use the time course of 
P. 4 to estimate the period because it only has one peak (or local maximum) per cycle, 
while the other variables have multiple peaks. Note that these models have some 
differences in units and baseline concentrations of variables. For each model, we 
administer exogenous estrogen up to the mean endogenous estradiol concentration 
in that model and exogenous progesterone up to 0.3 of the mean endogenous 
progesterone concentration in that model. These choices are based on the exogenous 
hormone concentrations used in the models which consider exogenous hormones 
[41, 46, 47]. 

First, we explore the behavior of the Harris Clark et al. [41] model to the 
introduction of exogenous hormones (Fig. 10A and E). We note that this model 
was not designed primarily with questions of hormonal contraception in mind. 
In Fig. 10A, we notice that, in the case without any exogenous estrogen, the LH 
peak increases as the level of exogenous progesterone increases. From a biological 
perspective, we know that progesterone-only hormonal birth control methods do 
induce contraceptive states [35], and this is not captured by this model. However, we 
do see that increasing exogenous estrogen induces a contraceptive state. Biological 
contraception is achieved for values of .edose larger than 20, while total contraception 
is achieved only for very large doses of exogenous estrogen. This model has a 
smaller variance in cycle length (as measured by the period of oscillations in LH) 
in this parameter space as compared to other models we tested, and we observe a 
non-monotonic response in cycle length to exogenous estrogen. 

As noted in Sect. 3.5, Margolskee and Selgrade [45] modified the model of Harris 
Clark et al. [41] to perform bifurcation analyses to explore the effects of delays 
and to fit the data of normally cycling women more closely than previous efforts. 
The level of the LH peak in this updated model does depend on both exogenous 
estrogen and exogenous progesterone, but the effect of exogenous estrogen is 
stronger (Fig. 10B and F). We further observe that contraception is not achieved with 
progesterone-only treatment, and this model did not achieve total contraception for 
any values of parameters we tested. As with the model of Harris Clark et al. [41], the 
authors did not design this model to explore the effects of hormonal contraception, 
so it is perhaps not surprising to see that these effects are not strongly captured.
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Fig. 10 LH peak concentration and menstrual cycle period for the various models [41, 45– 
47] with daily administration of exogenous hormones, i.e., hormonal contraceptives. We vary 
the amount of exogenous estrogen .edose up to its mean concentration (horizontal axis) and 
exogenous progesterone .pdose up to 30% of its mean concentration (vertical axis) in each model. 
In panels A–D, we visualize the effects of .edose and .pdose on LH peak concentrations, with yellow 
representing high peak concentrations of LH and blue representing low peak concentrations of 
LH. These blue values represent the parameter ranges where the model is in a contraceptive state. 
In panels E–H, we visualize the effects of .edose and .pdose on the period of P. 4 oscillations, with 
yellow representing a longer cycle length and red representing a shorter cycle length. The white 
regions in these plots correspond to the absence of oscillations, which indicates that the model is in 
a total contraceptive state. Schematic plots of example 28-day hormone trajectories corresponding 
to contraceptive states for the Wright et al. [46] model are provided in panels i (.pdose = 0.6) and  
ii (.pdose = 1.3), which correspond to the dots indicated in panel C. Simulations were run for 100 
cycles before each computation to help eliminate the effects of transient initialization behavior 

In contrast to previous models, Wright et al. [46] developed their model with 
the intention of including hormonal contraception. In Fig. 10C and G, we see that 
as both exogenous estrogen (.edose) and exogenous progesterone (.pdose) increase, 
the LH peak decreases, indicating that the system is in a contraceptive state. This 
occurs for relatively low values for both parameters. We notice that the cycle length, 
as measured by the period of the oscillations in LH, is relatively stable over a large 
range of parameter values. Total contraception is achieved for large enough values
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of .edose and .pdose, as indicated by the white region in Fig. 10G. Mathematically, a 
transition to this parameter regime corresponds to a Hopf bifurcation. 

The model of Gavina et al. [47] was also created to explore the effects of 
hormonal contraception, although from a different perspective than [46]. We notice 
that the modifications made in this model introduce different qualitative dynamics 
with constant exogenous hormonal contraception (Fig. 10D and H) than for the 
Wright et al. [46] model. While we do see the expected behavior of a reduction 
of LH peak when either exogenous hormone is increased initially, we notice that 
the LH peak again begins to increase for large values of .edose. We see that LH 
undergoes a Hopf bifurcation in .edose, with periodic behavior only occurring for 
small parameter values. Combining these observations, we can conclude that for 
large values of .edose, LH is being held constant at a high level, which is not 
conducive to the expected contraceptive state. 

5 Outlook and Future Directions 

In this survey, we describe the biological mechanisms behind the menstrual cycle 
and hormonal contraception and review the existing mathematical models of this 
system. In a comparative analysis of several of these models, we highlight the 
ways different models are sensitive to parameters, focusing in particular on the 
maximum growth rate of the reserve pool of follicular stimulating hormone. We 
discuss the variation in incorporating delays and inhibins into these models. Finally, 
we explore the qualitative behavior of these models under the incorporation of 
exogenous hormones to model hormonal contraception. We conclude this chapter 
by discussing some of the existing challenges in this area and potentially promising 
future directions. 

The complexity of the biological system may seem like a daunting challenge to 
mathematical modelers. Indeed, even models that try to simplify while including 
crucial mechanisms can lead to relatively large systems of differential equations 
with many parameters. The models by Harris Clark et al. [41], Pasteur et al. 
[43], Margolskee and Selgrade [45], Wright et al. [46], and Gavina et al. [47] all  
contain on the order of 13 ODEs, 4 auxiliary equations, and 50 parameters. The 
model of Röblitz et al. [48] considers the system in even more detail, including 
gonadotrophin-releasing hormone, which facilitates the synthesis and secretion of 
the gonadotrophic hormones FSH and LH. This model contains 33 ODEs and 
114 parameters. These detailed models strive to accurately capture the range of 
temporal and spatial scales represented in this system. Furthermore, detailed models 
may provide more flexibility for use in preliminary drug development or testing 
interventions beyond what the model was originally built for, which is not usually 
possible in overly simplified phenomenological models. More detailed models
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do have some limitations, however. Parameter identification and overfitting can 
be concerns in large systems of differential equations; thus care must be taken 
when applying or extending these models. Large models are often less amenable 
to mathematical analysis, which may limit the possible insight into qualitative 
behaviors or general properties of the models. These different styles of models each 
have roles to play in gaining a deeper understanding of the menstrual cycle and 
hormonal contraception. There is still ample opportunity for developing simpler, 
more analytically tractable models of the menstrual cycle in the style of George et 
al. [49] that are nevertheless grounded in biological mechanisms. 

The parameters in the existing models can present a challenge from the perspec-
tive of data fitting and model analysis. While some parameters in the model may 
be inferred from data, many cannot. When comparing or working with the models 
of the menstrual cycle discussed in this chapter, it is important to note that even 
parameters that share the same name or represent the same quantity across different 
models may not be the same order of magnitude or even the same units. There 
can also be challenges with a lack of consistency of units and dimensions, even 
within a single model. For readers who are interested in generalizing, extending, or 
applying the models we discuss in this chapter, we provide a detailed dimensional 
analysis on our public GitHub repository (https://github.com/rubyshkim/menstrual-
cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf). 

One of the interesting features of the menstrual cycle is that it has a high level of 
variability. Several of the models discussed in this chapter use data from Welt et al. 
[12], and the models are fit to the mean hormone levels reported across 23 subjects. 
In the experiments, there is a high level of variability in hormone levels both within 
and between individuals. For example, in [12, Fig. 5], the authors show hormone 
levels from two subjects, aged 36 and 47, of two menstrual cycles approximately 10 
years apart. These data demonstrate that hormone levels can vary greatly between 
different subjects: In particular, inhibin A/B and P. 4 levels are quite different in 
individuals of different ages. Even the same subject demonstrates variability of 
their hormone levels in two cycles. Unfortunately, this variability is not currently 
incorporated with any of the existing modeling approaches we have reviewed here. 
While variability can be challenging from the perspective of trying to fit models 
to data, we believe it also presents an excellent opportunity for further modeling. 
For example, it may be interesting to study the addition of intrinsic and/or extrinsic 
sources of noise into these models.

https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
https://github.com/rubyshkim/menstrual-cycle_models/blob/main/SupplementalFiles/SupplementalMaterial.pdf
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Incorporation of hormonal contraception into mathematical models of the men-
strual cycle is still in the early scientific stages. We discuss very few models 
of the menstrual cycle that incorporate the impact of hormonal contraceptives 
on the menstrual cycle in Sect. 4.4; of these, only [47] explores time-varying 
exogenous hormones. This means that at the time of writing, there are no existing 
mathematical models of the effects of hormonal contraception on the menstrual 
cycle that incorporate the dynamics of the on/off dosing regimens or the metabolism 
of the exogenous hormones, even though methods from differential equations and 
dynamical systems are well-positioned to investigate these questions. One potential 
area of inquiry would be to develop a model of contraceptive dosing regimens on 
the menstrual cycle, either by creating a new model or by generalizing an existing 
model discussed here. This would allow for the exploration of the stability of the 
contraceptive state achieved by oral hormonal contraceptives using a mechanistic 
mathematical model of the menstrual cycle. Such a model could provide insight 
into when a contraceptive state is lost due to inconsistency or changes in hormonal 
birth control use, which may further inform the advisement of care providers and 
the choices of birth control users. Another interesting direction of study would be 
to explore the impact of hormonal stimulation used in cases of infertility. While 
infertility treatments have increased in their use and success over the last few 
decades, there are still substantial risks, including high-risk multiple pregnancies 
and ovarian hyperstimulation [59]. A mathematical model that can successfully 
incorporate the impact of hormonal contraceptives on the menstrual cycle could 
be leveraged to explore open questions in this budding field. 

Supplementary Information 

Table 1 provides a summary of six of the models we reviewed in this chapter. It 
contains a brief overview of the characteristics of each model (such as the number of 
differential equations/auxiliary equations/parameters, whether constant time delays 
are implemented, and how the exogenous hormones are modeled), study focus, 
some of the contributions, and limitations of each model.
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Studying the Effects of Oral 
Contraceptives on Coagulation Using 
a Mathematical Modeling Approach 

Amy Kent, Karin Leiderman, Anna C. Nelson, Suzanne S. Sindi, 
Melissa M. Stadt, Lingyun (Ivy) Xiong, and Ying Zhang 

1 Introduction 

Exogenous hormones are used by hundreds of millions of people worldwide 
for contraceptives and hormonal replacement therapy. Hormonal contraceptives 
contain either exclusively progestin—a synthetic progesterone—or a combination 
of progestin and estrogen in the form of ethinyl estradiol. Combined oral contra-
ceptives (OCs) are classified by the type of progestin and the level of estrogen 
dose used in the formulation, where the action of progestin prevents ovulation by 
suppressing luteinizing hormone and estrogen prevents breakthrough bleeding [1]. 
Progestins used in OCs are grouped by “generations” that correspond to when they 
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first appeared in the formulation. For example, second-generation progestins were 
used in the 1970s and include levonorgestrel and norgestrel, and third-generation 
progestins introduced in the 1990s include gestodene, norgestimate, and desogestrel 
[1, 2]. 

The use of combined, or combination, oral contraceptives (OCs) and hormone 
replacement therapies is known to increase the risk of both arterial and venous 
thrombosis (pathological blood clot formation) [3–8]. While the estrogen com-
ponent of combination OCs is known to be prothrombotic [4, 5], the progestin 
formulation has also been shown to affect clotting propensity [9, 10]. Indeed, 
studies suggest that for a fixed estrogenic dosage, patients on a third-generation 
OC containing desogestrel and gestoden have a higher risk for venous thrombosis 
than patients on second-generation OCs that use progestins, such as levonorgestrel 
and norethisterone [11]. However, the mode of delivery of the OC does not affect 
the risk for thrombosis, as transdermal and transvaginal forms of contraception 
also show an increased risk of thrombosis [12, 13]. Exogenous hormones from 
combined OCs can modulate components of the procoagulant, anticoagulant, and 
fibrinolytic components of blood coagulation [14–17]. One example is the changes 
in plasma levels of clotting factors when using OCs [17]. These alterations may 
elicit a prothrombotic state that is dependent on dose of estrogen and hormonal dose 
combination [18, 19]. Individuals with deficiencies in endogenous anticoagulant 
proteins are also more susceptible to thrombosis when taking combination OCs 
[10, 20, 21]. How various modulations to the clotting system mechanistically 
contribute to an increased thrombosis risk is not fully understood. 

Clotting factors that are modulated while on OCs are components of the blood 
coagulation network, which is responsible for the generation of the important 
clotting enzyme thrombin. Blood coagulation involves inhibitors, both positive and 
negative feedback loops, and must exhibit a robust clotting response given a wide 
variety of factor levels. Due to these complexities, mathematical modeling can be 
used to better understand how modulations like exogenous hormones can affect this 
process. In this study, we are particularly interested in modeling the clotting factors 
involved in blood coagulation. Our mathematical model uses factor concentration as 
an input and outputs thrombin concentration over time. For a review of the variety 
of mathematical models used to describe various components of the blood clotting 
process, see [22]. 

One measure that is known to correlate with thrombosis risk is the resistance of 
the clotting system to the inhibitory effects of activated protein C (APC) [9, 23, 24]. 
APC is an anticoagulant protein generated during coagulation that serves as a brake 
on the clotting system to prevent over clotting and spreading of clotting to areas 
beyond an injury. A clotting system that is more resistant to the effects of APC could 
therefore be more prothrombotic. The use of OCs is associated with an increased 
APC resistance [16, 25–27], with patients on third-generation (desogestrel-based) 
OCs having a more pronounced APC resistance than patients on second-generation
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(levonorgestrel-based) OCs [16]. Taken together, the use of OCs is thus associated 
with an increased risk of thrombosis, and the APC resistance (or sensitivity) is one 
metric to predict this risk. 

There are different ways to test for APC resistance, but the most common ways 
are by comparing an activated partial thromboplastin time (APTT) or an endogenous 
thrombin potential (ETP) with and without APC [27]. The complete details of these 
assays are beyond the scope of this chapter, but essentially they test the timing and 
strength of a clotting response. de Visser et al. [27] performed both kinds of APC 
resistance tests on hundreds of patients, some of whom were on OCs and some of 
whom were not. Their study suggested that, in general, clotting factor VIII (FVIII) 
and clotting factor II (FII, also known as prothrombin), to a lesser extent, are primary 
determinants of the outcomes in APTT-based tests and that the clotting inhibitor 
tissue factor pathway inhibitor (TFPI) and protein S are primary determinants in 
ETP-based tests. Additionally, they suggested that the use of OCs only moderately 
affected the APTT-based test but strongly affected the ETP-based test and that in the 
latter case the effects may not be due to clotting factor levels alone. The comparisons 
were performed on patients on and off OCs, but they were not the same individuals. 
Furthermore, the correlations were computed using single clotting factors; thus, they 
would not be able to capture simultaneous contributions from multiple factors. 

Midderdorp et al. [17] studied the effects of OCs on clotting factor levels in an 
elegant cross-over study that reported levels of six clotting factors in 28 patients off 
OCs and on levogestrel (lev) and desogestrel. This study provided information about 
how factor levels are changed by the OCs, which enables further study regarding 
the link between OCs, factor levels, and thrombosis risk. However, what was not 
reported in the paper was the individual patient changes, rather just mean and 
standard deviation of the study cohorts. 

In the current study, we used the data from the Middeldorp et al. [17] study, 
together with a mathematical model of coagulation, to investigate how factor level 
changes from OCs affect production and timing of the coagulation enzyme thrombin 
in addition to an APC sensitivity metric. Because the individual factor level changes 
were not reported in the Middeldorp et al. [17] study, we used the reported means 
and standard deviations to generate a large virtual patient population (VPP). We then 
simulated the effects of lev by adjusting the factor levels by the mean effect of lev 
reported in [17]. We analyzed the concentration and timing of thrombin generation 
among the entire VPP after the use of lev and reported the characteristics of patients 
that had large and small changes in outputs. We computed APC sensitivity ratios 
and showed that the use of lev, by way of factor level changes alone, increased 
the systems’ sensitivity to APC. Our results suggest that factor changes induced 
by lev are enough to explain both a change in APC sensitivity and an increased 
prothrombotic profile.
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2 Methods 

2.1 Brief Review of Mathematical Model of Flow-Mediated 
Coagulation 

Here we give a brief review of a mathematical model of flow-mediated coagulation 
[28–32] on which we build for the current study. A more detailed description of the 
model can be found in the supplementary information at the end of this chapter 
along with the full model equations in Eqs. (4)–(122), parameters in Tables 2, 
3, 4, 5, 6, 7, and 8, and a schematic of the flow-mediated coagulation model in 
Fig. 12. Further details about this model and its sensitivity to parameters can be 
found elsewhere [33]. Briefly, the model simulates blood coagulation and platelet 
deposition under flow. Blood coagulation is a network of biochemical reactions 
that culminate in the production of the enzyme thrombin. Platelet deposition and 
aggregation is a biophysical process that initially stops leakage of blood from a 
vessel. Thrombin is generated on the platelet surfaces and then cleaves the soluble 
protein fibrinogen into fibrin that turns into a gel and stabilizes the platelets. Here, 
we are assuming a very small injury completely contained in a blood vessel. 

The model simulates the coagulation reactions and platelet deposition at a small 
injury patch with exposed tissue factor, all occurring in flowing blood (Fig. 12). 
The reactions occur in two main compartments: the reaction zone (RZ) and the 
endothelial zone (EZ). Represented schematically in Fig. 1a, the RZ compartment 
models the region above an injury site, and the EZ compartment models the 
surrounding region, introduced to account for the effects of flow-mediated transport. 
Each compartment is assumed to be well-mixed; thus, the time evolution of 
the concentration of all species is modeled using ordinary differential equations. 
Different variables are introduced to account for the platelet-bound, membrane-
bound, and free concentrations of the relevant enzymes and zymogens (enzyme 
precursors) within each compartment. The height of the RZ is given by the length 
scale where diffusive and advective transport are comparable, and the width is taken 
to be the characteristic size of an intravascular injury, i.e., 10 microns [28]. The EZ 
height is taken to be the same as the RZ, and the width is dependent on the flow shear 
rate and protein diffusion coefficients [29]. The coagulation reactions occur in the 
RZ, where tissue factor (TF) in the subendothelium (SE) is exposed, as depicted 
in Fig. 12b. The clotting factors, denoted by Roman numerals, and platelets are 
transported into and out of the RZ. This is represented in the model by a simplified 
combination of flow and diffusion in the form of a mass transfer coefficient, which 
characterizes the flow-mediated transport between the two compartments. Clotting 
factor concentrations in the RZ change due to their involvement in reactions and by 
transport in and out of the zone. Platelet concentrations are treated similarly. But as 
platelets build up in the RZ, they are assumed to cover and hinder the enzymatic 
activity on the subendothelium, and they alter the height and volume of the RZ. The 
EZ is located adjacent to the RZ, in the direction perpendicular to the flow with 
height equal to that of the RZ. In the EZ, thrombin that has diffused from the RZ
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can bind to thrombomodulin (TM) and then protein C in the EZ and activate protein 
C into APC. This APC either diffuses back into the RZ or is carried away by the 
flow. APC in the RZ can bind to and inactivate FVa and FVIIIa, which may slow 
thrombin generation. The inhibitory effect depends on how much FVa and FVIIIa 
are already in a complex (FVa binds to FXa, and FVIIIa binds FIXa on platelet 
surfaces) because once bound, they are protected from APC. 

2.2 Model Extension: Thrombomodulin and APC Generation 
in the Reaction Zone 

TM is located on endothelial cell (EC) membranes and is generally not embedded 
in the SE, hence the development of separate compartments in our previous models. 
Here, we have assumed that portions of ECs protrude into the RZ, thereby providing 
some mixing of the two zones and their contents. Under this assumption, thrombin 
in the RZ could readily access and bind to the TM in the RZ, creating active 
complexes to generate APC within the RZ. Compared to our previous models, where 
APC entered the RZ compartment only by diffusion [29, 31], this assumption should 
lead to more APC that is available to inactivate FVa and FVIIIa in the RZ. We 
also assume that platelets cannot cover and inhibit the activity on these protruding 
EC surfaces, i.e., APC generation occurs even after platelets have covered the 
subendothelium. Details of the EZ and RZ in models, old and new, are shown 
schematically in Fig. 1. In the previous model, APC diffusion into the RZ was 
modeled as .kc

flow(cout−c), where c is the concentration in the RZ, .cout is the upstream 
concentration, and .kc

flow is the rate constant for flow-mediated transport, related to 
the diffusion coefficient, lumen velocity, and injury size as given in [29]. 

In this chapter, we allow for protrusion of EC debris into the injury zone. EC 
protrusion into the RZ compartment allows for direct generation of APC in the RZ 
via TM, in addition to the flow-mediated transport considered previously. To account 
for the protrusion of EC into the injury zone within the model, we introduce TM 
and its associated complexes into the RZ compartment. Three new species were 
added to the model: TM in the RZ TM. rz, TM in the RZ that is in complex with 
thrombin TM. rz:E. 2, and the complex of TM, thrombin, and protein C TM. rz:E. 2:PC. 
The reactions involved are 

.TMrz + E2
k+
−⇀↽−
k−

TMrz : E2, (1) 

.TMrz : E2 + PC
k+
pc−−⇀↽−−
k−
pc

TMrz : E2 : PC
kcat
pc−−→ TMrz : E2 + APC, (2) 

where Reaction (1) is the binding of thrombin to TM in the RZ and Reaction (2) 
is the binding of thrombin-bound TM to protein C and the subsequent enzymatic
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Fig. 1 Model schematics: (a) the top and side view of the reaction zone (RZ) and endothelial zone 
(EZ) in our previous models and (b) the updated zones in our current study. Our previous model 
had distinct RZ and EZ zones that relied on thrombin from the RZ to diffuse to the EZ to make 
APC, and then the APC had to diffuse back into the RZ to have an inhibitory effect. In the new 
model, due to protruding ECs into the RZ, thrombin and APC can be generated together in the RZ 

cleavage into activated protein C (APC). The kinetic rates in these reactions 
were taken from a study using the previous mathematical model [29]. The model 
extension impacts on the model equations are highlighted as bold underlined terms 
in Eqs. (23), (40), (121), and (122). 

2.3 Virtual Patient Population Generation 

Based on the data presented in [17], we generated a large virtual patient population. 
We first generated the smooth kernel density estimates for the population distribu-
tion of clotting factors II, V, VII, VIII, and X for patients not on OCs from reported 
data from [17]. Kernel density functions allowed us to estimate an underlying 
probability distribution from a sample (see [34] for details). We used the MATLAB 
function ksdensity to create our kernel density estimates independently for each 
factor level. 

We then created 10,000 virtual patients by randomly and independently sam-
pling factor levels from our kernel density estimates. See Fig. 2 for factor level 
distributions and kernel density estimates. To determine the factor levels for each 
virtual patient under lev treatment, we added the mean change in each individual 
coagulation factor level as reported in [17] (see Table 1). Because virtual patients 
should represent normal, healthy individuals, we then removed any virtual patients 
that did not exhibit factor levels within normal physiological range. Specifically, we



Effects of Oral Contraceptives on Blood Coagulation 89

Fig. 2 Factor levels for virtual patients (VPs) were sampled from kernel density estimates 
computed from data in [17]. Distributions of coagulation factor levels for the virtual patient 
population before taking OCs. The blue curves indicate the smooth kernel density estimates. Virtual 
patients with factor VIII level less than 50% were removed (.n = 412) and are highlighted in yellow. 
For factor levels while on levonorgestrel, factor levels for each virtual patient were changed by the 
fixed amount given in Table 1 

Table 1 Percent change in 
factor levels applied to all 
virtual patients post-exposure 
to levonorgestrel (lev). These 
values are the mean percent 
changes of the patient data 
reported in [17] 

Coagulation factors Increase after lev (%) 

Factor II 12 

Factor V . −3

Factor VII 12 

Factor VIII 6 

Factor X 22 

removed the 412 virtual patient samples that had factor VIII levels below 50% (i.e., 
out of normal physiological range). 

2.4 Model Workflow 

Each virtual patient had a set of unique factor levels, sampled from the kernel density 
estimates independently. These factor levels were then used as input (initial condi-
tions) to our mathematical model, which consists of a system of ordinary differential 
equations that track how each model variable changes in time, under flow. See the 
supplementary information for more model details, equations, and parameters. The 
equations of the model were solved numerically to predict concentrations of each 
species through time. We mainly analyzed thrombin concentrations for this study, 
but all species concentrations are available for further mechanistic studies.
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3 Results 

3.1 Thrombomodulin in the Reaction Zone 

The addition of thrombomodulin (TM) into the RZ is described in Sect. 2.2. Briefly, 
TM was added to the RZ to enable APC generation by thrombin within the RZ. This 
feature was added to the model to enhance the sensitivity of the system to APC. 
Here we study how it alters the clotting dynamics. Figure 3 shows the thrombin 
concentration after 10 min of activity as a function of the tissue factor density. Tissue 
factor is the protein embedded in the subendothelium that stimulates the initiation 
of coagulation and thus thrombin generation. Any single curve in Fig. 3 shows the 
known threshold dependence of thrombin on tissue factor; the system should have 
a strong response only when necessary, as clotting is unwarranted without injury. 
Threshold plots are shown for concentrations of TM in the RZ varying between 
zero and the concentration assumed in the EZ (500 nM [29]). As the concentration 
of TM in the RZ increases, an increased tissue factor density is required to attain the 
same thrombin concentration as we expect, since the APC generation in the RZ has 
increased. APC inactivates FVa and FVIIIa, which inhibits the formation of two key 
complexes in the coagulation pathway (Fig. 12): FXa:FVa (prothrombinase), which 
activates prothrombin to thrombin, and FIXa:FVIIIa (tenase), which activates FX to 
FXa. 

The effects of increased APC generation on clotting dynamics can be explored 
by considering the time evolution of different factors (Figs. 4 and 5). In Fig. 4, the  
thrombin lag time (i.e., the time when 1 nM thrombin is generated) increases with 
increased concentration of TM in the RZ. This is likely due to increased TM in the 
RZ and the inhibitory effects of the associated increases in APC. Increased APC 
generation arising from the introduction of TM in the RZ is confirmed in Fig. 4. 
When no TM is present in the RZ, APC is transported into the RZ from the EZ by 
diffusion alone, as shown in the model schematic (Fig. 1). Introducing TM into the 
RZ, thereby allowing APC generation directly within the RZ, increases the amount 
of total APC generated (Fig. 4). 

Fig. 3 Thrombin 
concentration after 10 min 
over a range of tissue factor 
densities that subsequently 
increase activated protein C 
(APC) in the reaction zone 
(RZ). To achieve the same 
level of thrombin response, 
more tissue factor is needed 
as thrombomodulin (TM) is 
added



Effects of Oral Contraceptives on Blood Coagulation 91

Fig. 4 The effects of thrombomodulin (TM) in the reaction zone (RZ) on (a) thrombin and (b) 
activated protein C (APC) concentrations in the RZ and endothelial zone (EZ) over 10 min of 
clotting activity. TM in the RZ leads to increased thrombin generation and increased APC in the RZ 

APC causes a reduction in thrombin generation via its inhibitory effects. The 
specific effect by inactivating factors Va and VIIIa is illustrated in Fig. 5, where the 
time evolution of total and APC-bound factors Va and VIIIa is shown. Increasing the 
concentration of TM in the RZ increases the proportion of activated Va and VIIIa. 

In summary, the model extension of TM in the RZ led to APC in the RZ that 
inactivated FVa and FVIIIa, thereby limiting the formation of VIIIa:IXa and Va:Xa 
complexes, which directly and negatively affected the generation of thrombin. 
Having established that this extension results in a sensible clotting response, in the 
next section we use the model to simulate the clotting response of a cohort of virtual 
patients. 

3.2 Predicted Effects of Levonorgestrel on Thrombin 
Generation 

We performed simulations of thrombin generation over 20 min for each of the virtual 
patients before OC (no OC condition) and after taking lev (lev condition). The mean 
and 95% confidence intervals of the time series results for select tissue factor (TF) 
levels are shown in Fig. 6. We can see that at low TF density, i.e., [TF] . = 2 fmol/cm. 2, 
thrombin generation is minimal, which is in line with the TF threshold behavior of 
thrombin. This is true for virtual patients on no OCs and on lev. For higher TF levels, 
thrombin generation increases with increased TF concentrations, again as predicted 
by the threshold behavior of thrombin on TF. 

For TF levels greater than 2 fmol/cm. 2, the factor level changes due to lev have 
a trend that shifts the thrombin curves up and to the left, which means a higher
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Fig. 5 The effects of activated protein C (APC) generation in the reaction zone (RZ) on (a) FVa,  
(b) FVIIIa, (c) FXa:FVa, and (d) FIXa:FVIIIa over 10 min of clotting activity. APC generation in 
the RZ leads to inactivation of FVa and FVIIIa and a reduction of prothrombinase and tenase 

average thrombin concentration at the end of the simulation as well as a shorter lag 
time (i.e., the time to reach 1 nM) as compared to the same patients on no OC. 

Although average behavior of the population showed a trend of increased 
thrombin and decreased lag time, we further explored the behavior on an individual 
patient level. First, we collected all virtual patients whose thrombin levels reached 1 
nM within 20 min, for the TF levels of 6, 10, and 14 fmol/cm. 2. Next, we examined 
the changes in lag time and thrombin concentration at 20 min before and after lev 
usage for each individual virtual patient collected. Figure 7 shows the lag time 
(top row) and thrombin concentration (bottom row), with these metrics for each 
individual on lev vs. on no OC. For the lag times, all of the data points lie below 
the gray dashed line, indicating that all patients had a decreased lag time on lev vs. 
on no OC. For the thrombin concentration, all of the data points lie above the gray 
dashed line, indicating that all patients had an increased thrombin concentration on 
lev vs. on no OC. Furthermore, the largest changes occurred at the lower TF levels. 
These data suggest that lev induces a heightened thrombotic response.
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Fig. 6 Simulated thrombin shows an upward and leftward shift on average for patients on lev, 
with decreased lag times and increased thrombin at 20 min. Simulated thrombin concentration time 
series results for virtual patients (.n = 9, 588) with no oral contraceptive (no OC) and levonorgestrel 
(lev) over 20 min for varied concentrations of tissue factor as given. The 95% confidence intervals 
(CIs) for the virtual patients on no OC and on lev are shown. The virtual patient individuals with 
the maximal change in thrombin on no OC and on lev as well as the maximal change in lag time 
are also plotted. Virtual patient factor level distributions are shown in Fig. 2 

Fig. 7 Use of levonorgestrel (lev) heightens thrombosis response. Scatter plots on the left compare 
lag time (top) and thrombin concentration after 20 min (bottom) before and after lev usage, for 
varying concentrations of tissue factor (TF) levels: 6 fmol/cm. 2 (.n = 4, 755), 10 fmol/cm. 2 (. n =
9, 588), and 14 fmol/cm. 2 (.n = 9, 588). Dashed diagonal line indicates matching outcomes before 
and after lev usage. Density plots on the right show changes in corresponding metrics upon lev 
usage 

3.3 Factor Levels Inducing an Extreme Response 

Having established that all virtual patients exhibit an increase in thrombin and 
a decrease in lag time following the use of lev, we now turn to identifying the
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Fig. 8 Patients with lowest thrombin generation before oral contraceptive (OC) use had the 
largest relative change in thrombin generation after using OCs. Left: distribution in the thrombin 
concentration at 20 min before OC use for the whole population and subpopulations with the 
greatest and smallest increases in thrombin generation following OC use. Center: distribution in 
the percentage change in thrombin following OC use. Tissue factor [TF] . = 10 fmol/.cm2 for these 
simulations 

characteristics of patients with the most extreme changes in their thrombin metrics. 
For TF . = 10 fmol/cm. 2, we considered the distribution of the simulated thrombin 
concentrations after 20 min on no OCs (the left side of Fig. 8) and the relative 
increase in thrombin concentration reached after 20 min when on lev compared to 
when on no OC (the center of Fig. 8). To do this, virtual patients were ordered by 
the relative increase in thrombin concentration reached after 20 min when on lev 
compared to when on no OC, discounting 11 patients where the simulated thrombin 
failed to reach 1 nM thrombin. The light blue curves represent the entire virtual 
patient population, and the dark blue and green curves represent subpopulations of 
patients that had the largest 5% and smallest 5% relative increases in thrombin after 
lev use. We see that the average thrombin concentration for the entire population 
is near 250 nM, and the mean increase in thrombin generation is . 5%. We found 
that the largest relative changes in thrombin came from patients that had the lowest 
thrombin concentration prior to lev use. Similarly, the smallest relative changes in 
thrombin came from patients that had the highest thrombin concentration prior to 
lev use. This is somewhat intuitive since patients that already have strong thrombin 
responses prior to OC use are unlikely to have a much stronger increase after OC 
use. Those patients who had a smaller thrombin response prior to OC use would 
then likely be able to have larger relative increases in thrombin. 

It is interesting to consider the combination of factor levels that characterize 
the virtual patients that experienced large relative increases in thrombin generation 
following OC use. We next considered the normalized distributions of factor 
levels in each subpopulation that exhibited the largest and smallest increases in 
thrombin concentration (Fig. 9). Relatively low factor VIII levels prior to OC use 
are observed for patients with the greatest increase in thrombin generation. Factor 
VIII is associated with increased thrombin generation as when activated, it binds 
to activated FIX on the platelet surface to form a key complex in the coagulation 
cascade. Given the greatest increases in thrombin generation were observed for
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Fig. 9 Patients with lowest levels of FVIII prior to oral contraceptive (OC) use had the largest 
relative increase in thrombin generation following OC use. Distribution of patient factor levels 
in the whole population compared with the factor distributions for the 5% of patients exhibiting 
the largest and smallest percentage increase in thrombin generation following OC use. All tissue 
factors (TFs) are reported before OC use, and [TF] . = 10 fmol/.cm2 for the simulation of the 
thrombin curves that produced these percentiles 

patients with an initially low thrombin response (Fig. 8), reduced FVIII levels may 
be a key indicator that the virtual patient is at risk of large changes in thrombin 
generation following OC use. 

Conversely, the patients with the smallest increase in thrombin generation fol-
lowing OC use were those with high prothrombin (FII) levels (Fig. 9). Prothrombin 
is activated by the Va:Xa complex at the platelet surface to form thrombin in vivo. 
Thus, high prothrombin levels before OC use will contribute to a larger initial 
thrombin concentration, which results in virtual patients with a small relative change 
in thrombin generation following OC use (Fig. 8). 

Distributions in the relative change in lag time following OC use have a similar 
behavior; virtual patients that undergo the greatest decrease in lag time following 
OC are those with a lag time at baseline that is longer than average and vice 
versa. The distributions of factor levels for the .5% of virtual patients undergoing 
the greatest and smallest decrease in lag time are shown in Fig. 10. Low factor 
VIII levels again signpost the greatest change following OC use, while high factor 
VIII levels are associated with a small change in lag time. Elevated prothrombin
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Fig. 10 Patients with lowest levels of FVIII prior to oral contraceptives (OC) use had the largest 
relative decrease in lag time following OC use. Factor distributions for the 5% of patients exhibiting 
the greatest and smallest percentage decrease in lag time following OC use. All factors are reported 
before OC use with tissue factor [TF] . = 10 fmol/. cm2

levels are linked to a reduced increase in thrombin generation (Fig. 9); there is less 
change in thrombin since thrombin is already high with increased prothrombin. 
Similarly, low prothrombin levels are associated with the greatest relative increase 
in thrombin; this allows room for greater change in thrombin when thrombin is 
not as high in the first place. The effect of high prothrombin levels on decreasing 
changes in lag time is not as pronounced (Fig. 10), and there is no association with 
low prothrombin and lag time changes. Hence, while a large proportion (80%) of 
virtual patients are in the subpopulation undergoing the greatest .5% change for 
both changes in thrombin generation and lag time, factor levels that induce a large 
change in thrombin generation do not necessitate a large change in lag time. These 
results provide some insight into the factor levels that bring the greatest increase in 
thrombin generation and reduction in lag time. Although the TF level is relatively 
high in this example and there is more variance in these metrics with the lower 
TF (Fig. 7), the trends in factor levels and relative increases and decreases are 
similar (not shown). In the future work, a sensitivity analysis could be conducted 
to systematically identify which combinations of factors are associated with the 
greatest thrombotic risk.
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3.4 APC Sensitivity Metric 

To quantify the effect of APC on thrombin generation between OC and non-OC 
users, we developed a new APC sensitivity ratio. Our ratio is similar to the ETP-
based metric [27] described in Sect. 1, because we will use an area under the curve of 
simulated thrombin. Ours differs from the ETP-based test in that we are not adding 
exogenous APC. The two cases we compare are a case with TM in the RZ (APC 
generation in the RZ) and no TM in the RZ (no APC generation in the RZ, so 
minimal effects of APC). Our metric is defined as 

.APC-sr =
⌠ τ

0 TAPC+OC(t) dt
⌠ τ

0 TOC(t)dt

/ ⌠ τ

0 TAPC(t) dt
⌠ τ

0 T(t) dt
, (3) 

where . τ denotes the termination time for simulating thrombin generation, 
.TAPC+OC(t) denotes the thrombin concentration over time for the virtual patient 
with APC generation in the RZ and taking OC, and .TAPC(t) denotes the thrombin 
concentration over time with APC generation in the RZ but without OC. We define 
.TOC(t) to be the thrombin concentration over time without APC generation in the 
RZ but with OC usage and .T(t) to be the thrombin concentration over time without 
APC generation or OC. The ratio in the numerator of Eq. (3) gives the effect of APC 
when a virtual patient is on OC, whereas the ratio in the denominator of Eq. (3) 
represents the effect of APC when a patient is off OC. Taken together, Eq. (3) 
allows us to explore the inhibitory effect of APC in the presence of OC. Note that 
in the case where a patient does not use OC and has no APC generation in the RZ, 
.APC-sr = 1. 

To compute .APC-sr for different TF levels, we removed virtual patients that do 
not reach 1 nM thrombin, so the ratio in Eq. (3) is well-defined. We set . τ to be 
20 min. Examining the ratios for [TF] = 6, 10, and 14 fmol/.cm2 in Fig. 11, we see  
that the APC sensitivity ratios are increased with OC use since they are always 
above 1. This means that for all TF levels patients following OC use have a higher 
APC sensitivity (Fig. 11) than non-OC users and therefore may have an increased 
risk of thrombosis. In comparing the ratio as the TF level is increased, we see that 
.APC-sr decreases on average (see red dots in Fig. 11). This shows that patients are 
less sensitive to APC when TF level is high. 

4 Discussion 

In this study we used a mathematical model of flow-mediated coagulation to study 
the effects of the OC lev on thrombin generation. To simulate the effects of the 
OC, we used clotting factor levels and their changes due to OC use, measured in 
28 patients as part of a cross-over study [17]. Based on the clotting factor levels for 
the patients prior to OC use, we generated a large virtual patient population with
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Fig. 11 The activated protein C (APC) sensitivity ratio (APC-sr) is greater than 1 for all TF levels 
for patients on oral contraceptives. For TF . = 6 fmol/cm. 2 (.n = 4,755), 10 fmol/cm. 2 (.N = 9,588), 
and 14 fmol/cm. 2 (.n = 9,588), the APC-sr is calculated using Eq. (3) with the sample mean 
represented as a solid red dot and the sample median represented as a red cross. The thick gray 
bar in the center represents the interquartile range. Patients with simulated thrombin curves that 
did not reach 1 nM thrombin by 20 min were removed from these calculations 

the same mean and standard deviation as the reported data. Next, we represented 
the effects of the OCs on that virtual patient population by changing the clotting 
factor levels according to mean changes reported in the real patient data. The 
clotting factor levels were used as initial conditions for our mathematical model 
that simulates thrombin generation under flow. After analyzing the outputs of the 
virtual population before and after OC use, we found that the changes in clotting 
factor levels due to OC use always increased thrombin generation and decreased 
the lag time (sped up the process), with these changes being more pronounced at a 
low to moderate TF level. We concluded from this that the changes in factor levels 
alone can heighten the prothrombotic state of the clotting system in our model. 
Additionally, to test the system’s sensitivity to APC, we extended our previous 
mathematical model to include thrombomodulin, and thus APC generation within 
the reaction zone so that APC was not only confined to generation in the endothelial 
zone assumed to be distinct and adjacent to the reaction zone. In previous studies, 
where it was confined to the adjacent endothelial zone, APC has little to no 
inhibitory effect [29]. As seen in the TF threshold and thrombin plots, our model 
shows susceptibility to inhibition by APC. With this new model, we were then able 
to study the APC sensitivity that may occur with OC use. Indeed, we showed that the 
changes in clotting factor levels alone were enough to increase the APC sensitivity 
(as shown by an increased APC sensitivity ratio). Previous studies have shown only 
minor to moderate changes in APC sensitivity ratios due to changes in factor levels 
[27]. However, the assays in that study used high tissue factor levels, which possibly 
masked differences in relatively small factor level changes. Our model in this study 
focused on varied tissue factor levels to allow for more sensitivity in the system.
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We have shown here that the effects of lev on our virtual patient population, in 
the form of clotting factor level changes alone, contribute to a prothrombotic state. 
However, there are some limitations of this study. We did not allow for variation in 
the changes with lev beyond the means reported in the data. In the future we plan 
to develop statistical methods to refine that assumption. Additionally, the cross-over 
study included data from the same patients on another OC (third generation) that we 
did not study here. In fact, it has been shown that the use of third-generation versus 
second-generation OCs is associated with an increased resistance. In the current 
study, we have created virtual patient populations based on the patients’ distributions 
of factor levels in the data, and then we changed the levels of individual patients 
by the same value (the mean change reported). The third-generation OC leads to 
a further increase in FII and FVII and a further decrease in FV. Thus, based on 
our results with lev, we speculate that changing the levels of the virtual patients, 
simply by the mean of the desogestrel data [17], should give us a similar, albeit 
slightly enhanced, result in terms of APC sensitivity. Investigating the effects of 
third-generation OCs using more sophisticated techniques to sample the data is a 
primary focus of our immediate future work. 

Supplementary Information 

The model includes the coagulation reactions shown in Fig. 12a. The reactions 
involve many coagulation proteins: inactive enzyme precursors (zymogens), active 
enzymes, and inactive and active cofactors. Active cofactors are not enzymes 
themselves but act to make the enzymes to which they are bound more effective 
than if they would be alone. In Fig. 12a, the zymogens are FVII, FIX, FX, FXI, 
and FII (prothrombin), which have respective active enzymes FVIIa, FIXa, FXa, 
FXIa, and FIIa (thrombin). The inactive/active cofactor pairs are FV/FVh/FVa and 
FVIII/FVIIIa. It is also shown that many of the coagulation reactions occur only 
on a cellular surface, some on the subendothelium (SE), some on the endothe-
lium (EC), and others on an activated platelet’s surface (APS). There are three 
critical surface-bound enzyme-cofactor complexes: TF:FVIIa on the SE (“extrinsic 
tenase”), plt-FVIIIa:FIXa (“intrinsic tenase,” which we refer to simply as tenase), 
and plt-FVa:FXa (“prothrombinase”) on an APS. Their substrates (i.e., the proteins 
that the enzyme complexes activate) must also be bound to the cellular surface to 
become activated [35]. 

The mathematical model simulates the clotting response due to a small injury to a 
vessel wall. The response is monitored in a reaction zone (RZ) above a region where 
tissue factor (TF) in the SE is exposed to flowing blood (Fig. 12b). Within the RZ, 
coagulation protein concentrations are assumed to change due to transport into and 
out of the RZ and due to their involvement in the coagulation reactions depicted in 
Fig. 12a. Similarly, platelet concentrations change as platelets adhere to the injured 
wall, become activated, and are transported into and out of the RZ. The height of the 
RZ and the rate of platelet and protein transport into and out of the RZ depend on the
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Fig. 12 Schematic of flow-mediated coagulation model. (a) Schematic of coagulation reactions 
included in the model. Dashed red arrows show cellular or chemical activation processes. Blue 
arrows show chemical transport in the fluid or on a surface. Green arrows depict binding and 
unbinding from cell surfaces. White boxes denote surface-bound species. Solid black lines show 
enzyme action in a forward direction, while dashed black lines show feedback action of enzymes. 
Black lines with a fade indicate release from the platelet. Purple shapes show inhibitors. (b) 
Schematic of the reaction zone. Notation: The lowercase letter “a” on any species means that it 
is in an “activated” form, e.g., FX and FXa are clotting factor X and activated clotting factor FX. 
EC: endothelial cell. See the text for other species definitions 

flow’s shear rate and on the species’ diffusivities. Each species in the RZ is assumed 
to be uniformly distributed (well-mixed) and is described by its concentration, 
whose dynamics are tracked through an ordinary differential equation. Adjacent to 
the RZ, in the direction perpendicular to the flow, is an endothelial zone with height 
equal to that of the RZ and width dependent on the flow shear rate and protein 
diffusion coefficients [36]. Each species in the endothelial zone is also assumed to
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be well-mixed. Endothelial cells also protrude into the RZ, and any reaction in the 
endothelial zone can also occur in the RZ. 

Platelets are either (i) unactivated, unattached, and so free to move with the 
fluid or (ii) activated, bound to the SE or to other activated platelets (APs), and 
therefore stationary. Platelet activation occurs by contact with the SE, by exposure 
to thrombin, or by contact with other APs. The last of these is used as a surrogate for 
activation by platelet-released ADP, which we do not explicitly track in this model. 
Activation results in the release of platelet-derived FV with no FVa functionality or 
resistance to APC. Additionally, activation upregulates binding sites for coagulation 
proteins involved in surface-bound reactions. We characterize each coagulation 
protein not only by its chemical identity but also by whether it is in the fluid, bound 
to the SE or bound to an APS. Proteins bound to a surface are stationary, whereas 
proteins in the plasma move with the fluid. During a transition from SE to APS, or 
vice versa, a protein is subjected to flow and thus might be carried downstream. 

An in-house FORTRAN program is used to set up the system of differential 
equations, set parameter values, and run the simulation. It uses the software package 
DLSODE [37] to solve the differential equations. Simulation sampling was carried 
out via a Python wrapper of the FORTRAN program. Graphical processing of 
simulation results was performed with MATLAB. 

For each simulation, we specify the initial plasma concentrations of platelet and 
protein species, the rate constants for all reactions, the numbers of specific binding 
sites for coagulation factors on each APS, the dimensions of the injury, the flow 
velocity near the injured wall, the diffusion coefficients for all fluid-phase species, 
and the density of exposed TF. The outputs of the simulation are the concentration 
of every protein species in the RZ at each instant of time from initiation of the injury 
until the completion of the simulation and the concentrations of platelets attached 
either directly to the SE or to other platelets. 

We have listed the full model equations for all species in Eqs. (4)–(122). Critical 
parameters are listed in Tables 2, 3, 4, 5, 6, 7, and 8. The model detailed includes 
extensions of our previous work [28–32]. New terms are in bold and underlined 
in Eqs. (23), (40), (121), and (122). The model consists of 119 species (and their 
corresponding ordinary differential equations) and 239 parameters including kinetic 
rates and initial/upstream concentrations. The solution of the model equations was 
carried out with our in-house FORTRAN code that uses DLSODE for the numerical 
solution of the differential equations; each run of the model that simulates 40 min 
of clotting activity takes less than 10 s on a Linux-based laptop. Simulations of this 
model (in the absence of heparin) can be performed with our online coagulation 
simulator ClotSims available at https://clotsims.app. 

.
d

dt
z7 = − kon

7 z7[T F ]avail + k
off

7 zm
7 − k+

z7:e2
z7e2 (4) 

+ k−
z7:e2

[Z7 : E2] −  k+ 
z7:e10 

z7e10 + k−
z7:e10

[Z7 : E10] 
+ kf low(z up 

7 − z7) − k+
z7:e9 

z7e9 + k−
z7:e9

[Z7 : E9]
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https://clotsims.app
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Table 2 Normal 
concentrations and surface 
binding site numbers 

Species Values and units Notes 

Prothrombin 1.4 . μM a 

Factor V 0.01 . μM b 

Factor VII 0.01 . μM a 

Factor VIIa 0.1 nM c 

Factor VIII 1.0 nM a 

Factor IX 0.09 . μM a 

Factor X 0.17 . μM a 

Factor XI 30.0 nM a 

TFPI 0.5 nM d 

Protein C 65 nM e 

Platelet count .2.5 × 105 μl e 

.N2 1000/plt f 

.N∗
2 1000/plt f 

.N5 3000/plt g 

.N8 450/plt h 

.N9 250/plt i 

.N∗
9 250/plt i 

.N10 2700/plt j 

.N11 1500/plt k 

.N∗
11 250/plt k 

.n5 3000/plt l 

.pPLAS 0.167 nM m 

AT 2.4 nM n 

(a) From [38]. (b) From [39]. (c) [40] 
suggests that normal plasma concentra-
tion of fVIIa is about 1% of the nor-
mal fVII concentration. (d) From [41]. 
(e) From [42]. (f) Estimated as described in 
the text of the supplementary information. 
(g) From [43]. (h) From [44]. (i) From 
[45]. (j) From [46]. (k) From [47, 48]. 
(l) Number of fV molecules released per 
activated platelet [49]. (m) Maximum con-
centration of platelets in a 2 . μm high reac-
tion zone assuming that 20 platelets can 
cover a .10 μm . × .10 μm injured surface [50]. 
(n) From [51] 

d 
dt 

e7 = −  kon 
7 e7[T F ]avail + k off 

7 em 
7 + kcat 

z7:e2
[Z7 : E2]. (5) 

+ kcat 
z7:e10

[Z7 : E10] +  kf low(e up 
7 − e7)+ kcat 

z7:e9
[Z7 : E9] 

d 
dt 

z10 = −  kon 
10z10p

avail 
10 + k off 

10 zm 
10 − k+ 

z10:em 
7 
em 

7 . (6) 

+ k− 
z10:em 

7 
[Z10 : Em 

7 ] +  kf low(z up 
10 − z10)
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Table 3 Binding to platelet surfaces 

Reaction Reactants Products .(M−1sec−1 ) .(sec−1 ) Note 

Factor IX .Z9, P9 .Zm
9 .kon

9 = 1.0 × 107 .koff
9 = 2.5 × 10−2 a 

Factor IXa .E9, P9 .Em
9 .kon

9 = 1.0 × 107 .koff
9 = 2.5 × 10−2 a 

Factor IXa .E9, P
∗
9 .E

m,∗
9 .kon

9 = 1.0 × 107 .koff
9 = 2.5 × 10−2 b 

Factor X .Z10, P10 .Zm
10 .kon

10 = 1.0 × 107 .koff
10 = 2.5 × 10−2 a 

Factor Xa .E10, P10 .Em
10 .kon

10 = 1.0 × 107 .koff
10 = 2.5 × 10−2 a 

Factor V .Z5, P5 .Zm
5 .kon

5 = 5.7 × 107 .koff
5 = 0.17 c 

Factor Vh . Eh
5 , .P5 .Ehm

5 .kon
5 = 5.7 × 107 .koff

5 = 0.17 c 

Factor Va .E5, P5 .Em
5 .kon

5 = 5.7 × 107 .koff
5 = 0.17 c 

Factor VIII .Z8, P8 .Zm
8 .kon

8 = 5.0 × 107 .koff
8 = 0.17 d 

Factor VIIIa .E8, P8 .Em
8 .kon

8 = 5.0 × 107 .koff
8 = 0.17 d 

Factor II . Z2, .P2 .Zm
2 .kon

2 = 1.0 × 107 .koff
2 = 5.9 e 

Factor IIa .E2, P2 .Em
2 .k

∗,on
2 = 1.0 × 107 .k

∗,off
2 = 0.2 f 

Factor XI .Z11, .P11 .Zm
11 .kon

z11
= 1.0 × 107 .koff

z11
= 0.1 g 

Factor XIa .E11, .P ∗
11 .Em

11 .kon
e11

= 1.0 × 107 .koff
e11

= 0.017 h 

(a) For fIX binding to platelets, .Kd = 2.5 × 10−9 M [45], and for fX binding to platelets, . Kd

has approximately the same value [43]. For fX binding to PCPS vesicles, the on-rate is about 
.107 M−1sec−1, and the off-rate is about .1.0 sec−1 [52] giving a dissociation constant of about 
.10−7 M. To estimate on- and off-rates for the higher affinity binding of fX to platelets, we keep 
the on-rate the same as for vesicles and adjust the off-rate to give the correct dissociation constant. 
The rates for fIX binding with platelets are taken to be the same as for fX binding. (b) We assume 
binding constants for fIXa binding to the specific fIXa binding sites are the same as for shared 
sites. (c) fV binds with high affinity to phospholipids (PCPS) [52], and we use the same rate 
constants reported there to describe fV binding to platelets. (d) The .Kd for fVIII binding with 
platelets is taken from [44]. We set the off-rate .koff

8 for fVIII binding to platelets equal to that for fV 
binding to platelets and calculate the on-rate . kon

8 . (e) For prothrombin interactions with platelets, 
.Kd is reported to be .5.9 × 10−7 M [53]. We choose .koff

2 and set .kon
2 = koff

2 /Kd . (f) Estimated as 
described in the text of the supplementary information. (g) .Kd = 10 nM [54]. (h) .Kd = 1.7 nM 
[48] 

d 
dt 

e10 = −  kon 
10e10p

avail 
10 + k off 

10 em 
10 + kcat 

z10:em 
7 
[Z10 : Em 

7 ]. (7) 

+ (kcat 
z7:e10 

+ k−
z7:e10 

)[Z7 : E10] −  k+
z7:e10 

e10z7 

+ (kcat 
zm 

7 :e10 
+ k− 

zm 
7 :e10 

)[Zm 
7 : E10] −  k+ 

zm 
7 :e10 

e10z
m 
7 

− k+ 
T FPI :e10 

e10[T FPI ] + k− 
T FPI :em 

10 
[T FPI  : E10]
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− k+ 

T FPI :ehm 
5 

ehm 
5 [T FPI ] 

+ k− 
T FPI :ehm 

5 
[T FPI  : Ehm 

5 ] −  k+ 
T FPI :eh 

5 
eh 

5 [T FPI ] 

+ k− 
T FPI :eh 

5 
[T FPI  : Eh 

5 ] − k+ 
T FPI :em 

10 
em 

10[T FPI ] 

+ k− 
T FPI :em 

10 
[T FPI  : Em 

10]
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− k+ 
T FPI :PROh 

v10 
PROh[T FPI ] 

+ k− 
T FPI :PROh 

v10 
[T FPI  : PROh 

v10] 

− k+ 
T FPI :PROh 

v5 
PROh[T FPI ] 

+ k− 
T FPI :PROh 

v5 
[T FPI  : PROh 

v5] 
d 
dt

[T FPI  : E10] = k+ 
T FPI :e10 

e10[T FPI ] − k− 
T FPI :e10

[T FPI  : E10]. (34) 

+ k− 
T FPI :e10:em 

7 
[T FPI  : E10 : Em 

7 ] 
− k+ 

T FPI :e10:em 
7 
em 

7 [T FPI  : E10] 
+ kf low([T FPI  : E10]up − [T FPI  : E10]) 
− k+ 

T FPI :e10:eh 
5 
[T FPI  : E10]eh 

5 

+ k− 
T FPI :e10:eh 

5 
[E10 : T FPI  : Eh 

5 ] 

− kon 
10 [T FPI  : E10]pavail 

10 + k off 
10 [T FPI  : Em 

10] 

.
d

dt
[T FPI : E10 : Em

7 ] = − k−
T FPI :e10:em

7
[T FPI : E10 : Em

7 ] (35) 

+ k+ 
T FPI :e10:em 

7 
em 

7 [T FPI  : E10] 

− [T FPI  : E10 : Em 
7 ] 

d 
dt

[PLs 
a] 

1 

pavail 
PLAS  

.
d

dt
[Z7 : E2] = kf low([Z7 : E2]up − [Z7 : E2]) + k+

z7:e2
e2z7 (36) 

− (kcat 
z7:e2 

+ k−
z7:e2 

)[Z7 : E2] 

.
d

dt
[Z7 : E10] = k+

z7:e10
e10z7 − (kcat

z7:e10
+ k−

z7:e10
)[Z7 : E10] (37) 

+ kf low([Z7 : E10]up − [Z7 : E10]) 

.
d

dt
[Zm

7 : E10] = k+
zm

7 :e10
e10z

m
7 − (kcat

zm
7 :e10

+ k−
zm

7 :e10
)[Zm

7 : E10] (38) 

− [Zm 
7 : E10] d 

dt 
[PLs 

a] 
1 

pavail 
PLAS
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.
d

dt
[Zm

7 : E2] = k+
zm

7 :e2
e2z

m
7 − (kcat

zm
7 :e2

+ k−
zm

7 :e2
)[Zm

7 : E2] (39) 

− [Zm 
7 : E2] d 

dt
[PLs 

a] 
1 

pavail 
PLAS  

.
d

dt
[APC] = (kcat

em
5 :APC

+ k−
em

5 :APC
)[APC : Em

5 ] − kcat
em

5 :APC
em

5 (40) 

+ (kcat 
em 

8 :APC + k− 
em 

8 :APC )[APC : Em 
8 ] 

− k+ 
em 

8 :APC e
m 
8 [APC] 

+ kf low([APC]up − [APC]) 
− kdiff ([APC] − [APCec]) − k+ 

e5:APCe5[APC] 
+ (kcat 

e5:APC + k− 
e5:APC)[APC:E5] −  k+ 

ehm 
5 :APC e

hm 
5 APC 

+ (kcat 
e8:APC + k− 

e8:APC)[APC : E8] −  k+ 
e8:APCe8[APC] 

+ k− 
ehm 

5 :APC
[APC : Ehm 

5 ] + kcat 
ehm 

5 :APC
[APC : Ehm 

5 ] 

− k+ 
eh 

5 :APC e
h 
5APC + k− 

eh 
5 :APC

[APC : Eh 
5 ] 

+ kcat 
eh 

5 :APC
[APC : Eh 

5 ]+ kcat 
pc [T MRZ : E2 : PC] 

.
d

dt
[Z10 : Em

7 ] = k+
z10:em

7
em

7 z10 − (kcat
z10:em

7
+ k−

z10:em
7
)[Z10 : Em

7 ] (41) 

− [Z10 : Em 
7 ] 

d 
dt 

[PLs 
a] 

1 

pavail 
PLAS  

.
d

dt
[Zm

10 : T EN ] = k+
zm

10:T EN
zm

10[T EN ] (42) 

− (kcat 
zm 

10:T EN  + k− 
zm 

10:T EN  )[Z10m : T EN ] 

.
d

dt
[Z5 : E2] = k+

z5:e2
e2z5 − (kcat

z5:e2
+ k−

z5:e2
)[Z5 : E2] (43) 

+ kf low([Z5 : E2]up − [Z5 : E2]) 

.
d

dt
[Zm

5 : em
10] = k+

zm
5 :em

10
em

10z
m
5 − (kcat

zm
5 :e10

+ k−
zm

5 :em
10

)[Zm
5 : Em

10] (44)
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d 
dt

[Zm 
5 : Em 

2 ] =  k+ 
zm 

5 :em 
2 
em 

2 z
m 
5 − (kcat 

zm 
5 :em 

2 
+ k− 

zm 
5 :em 

2 
)[Zm 

5 : Em 
2 ]. (45) 

.
d

dt
[Zm

8 : Em
10] = k+

zm
8 :em

10
em

10z
m
8 − (kcat

zm
8 :em

10
+ k−

zm
8 :em

10
)[Zm

8 : Em
10] (46) 

d 
dt

[Zm 
8 : Em 

2 ] = k+ 
zm 

8 :em 
2 
em 

2 z
m 
8 − (kcat 

zm 
8 :em 

2 
+ k− 

zm 
8 :em 

2 
)[Zm 

8 : Em 
2 ]. (47) 

.
d

dt
[Z8 : E2] = k+

z8:e2
e2z8 − (kcat

z8:e2
+ k−

z8:e2
)[Z8 : E2] (48) 

+ kf low([Z8 : E2]up − [Z8 : E2]) 
d 
dt

[APC : Em 
8 ] = k+ 

em 
8 :APC e

m 
8 [APC]. (49) 

− (kcat 
em 

8 :APC + k− 
em 

8 :APC )[APC : Em 
8 ] 

d 
dt

[Z9 : Em 
7 ] = k+ 

z9:em 
7 
em 

7 z9 − (kcat 
z9:em 

7 
+ k− 

z9:em 
7 
)[Z9 : Em 

7 ]. (50) 

− [Z9 : Em 
7 ]

d 
dt

[PLs 
a] 

1 

pavail 
PLAS  

d 
dt

[Zm 
2 : PRO] =  k+ 

zm 
2 :PRO  z

m 
2 [PRO]. (51) 

− (kcat 
zm 

2 :PRO  + k− 
zm 

2 :PRO  )[Zm 
2 : PRO] 

d 
dt

[APC : Em 
5 ] = k+ 

em 
5 :APC e

m 
5 [APC]. (52) 

− (kcat 
em 

5 :APC + k− 
em 

5 :APC )[APC : Em 
5 ] 

d 
dt

[Z7 : E9] = k+
z7:e9 

e9z7 − (kcat 
z7:e9 

+ k−
z7:e9 

)[Z7 : E9]. (53) 

d 
dt 

[Zm 
7 : E9] = k+ 

zm 
7 :e9 

e9z
m 
7 − (kcat 

zm 
7 :e9 

+ k− 
zm 

7 :e9 
)[Zm 

7 : E9]. (54) 

− [Zm 
7 : E9] d 

dt
[PLs 

a] 
1 

pavail 
PLAS  

d 
dt

[T F ] = − [T F ] d 
dt

[PLs 
a] 

1 

pavail 
PLAS  

. (55) 

d 
dt 

em∗ 
9 = kon 

9 p
∗,avail 
9 e9 − k off 

9 em∗ 
9 + k− 

em 
8 :em 

9 
[T EN∗]. (56) 

− k+ 
em 

8 :em 
9 
em 

8 e
m∗ 
9 − kAT 

em 
9 

em∗ 
9 [AT ]
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d 
dt

[T EN∗] =  −  k− 
em 

8 :em 
9 
[T EN∗] +  k+ 

em 
8 :em 

9 
em 

8 e
m∗ 
9 . (57) 

+ (kcat 
zm 

10:T EN  + k− 
zm 

10:T EN  )[Zm 
10 : T EN∗] 

+ k+ 
zm 

10:T EN
[T EN∗]zm 

10 

d 
dt

[Zm 
10 : T EN∗] = k+ 

zm 
10:T EN

[T EN∗]zm 
10. (58) 

− (kcat 
zm 

10:T EN  + kzm 
10 

: T EN)−[Zm 
10 : T EN∗] 

d 
dt 

eec 
2 = kdiff (e2 − eec 

2 ) + kf low(e ec,up 
2 − eec 

2 ). (59) 

− kon 
T Meec 

2 [T M]avail + k off 
T M [T M  : Eec 

2 ] −  kAT 
eec 

2 
eec 

2 [AT ] 
d 
dt

[APCec] = kf low([APC]up − [APCec]). (60) 

+ kdiff ([APC] − [APCec]) 
+ kcat 

PC:T M:e2
[T M  : Eec 

2 : APC] 
d 
dt 

eec 
9 = kdiff (e9 − eec 

9 ) + kf low(e up 
9 − eec 

9 ) − kAT 
eec 

9 
eec 

9 [AT ]. 
(61) 

d 
dt 

eec 
10 = kdiff (e10 − eec 

10) + kf low(e up 
10 − eec 

10) − kAT 
eec 

10 
eec 

10[AT ]. 
(62) 

d 
dt

[T M  : Eec 
2 ] = k+ 

T M [Eec 
2 ](1 − [T M  : Eec 

2 ] − k+ 
PC:T M:e2

[T M  : Eec 
2 ]. 

(63) 

− [T M  : Eec 
2 : APC]) − k− 

T M [T M  : Eec 
2 ] 

+ (k− 
PC:T M:e2 

+ kcat 
PC:T M:e2 

)[T M  : Eec 
2 : APC] 

d 
dt

[T M  : Eec 
2 : APC] =  k+ 

PC:T M:e2
[T M  : Eec 

2 ]. (64) 

− (k− 
PC:T M:e2 

+ kcat 
PC:T M:e2 

)[T M  : Eec 
2 : APC] 

d 
dt

[APC : E5] = −  (kcat 
e5:APC + k− 

e5:APC)[APC : E5] +  k+ 
e5:APCe5[APC]. 

(65) 

.
d

dt
[APC : E8] = − (kcat

e8:APC + k−
e8:APC)[APC : E8] + k+

e8:APCe8[APC] (66)
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d 
dt 

z11 = kf low(z up 
11 − z11) − kon 

z11 
z11p

avail 
11 + k off 

z11 z
m 
11. (67) 

− k+ 
z11:eh 

11 
z11e

h 
11 + k− 

z11:eh 
11 

[Z11 : Eh 
11] 

− k+
z11:e11 

z11e11 + k−
z11:e11

[Z11 : E11] 
− k+

z11:e2 
z11e2 + k−

z11:e2
[Z11 : E2] 

d 
dt 

e11 = kf low(e up 
11 − e11) − ke on,s 

11 
e11p

avail 
111 + k

e off,s 
11 

em∗ 
11 . (68) 

− k+
z9:e11 

z9e11 + (k−
z9:e11 

+ kcat 
z9:e11 

)[Z9 : E11] 
− k+

z11:e11 
z11e11 + (k−

z11:e11 
+ kcat 

z11:e11 
)[Z11 : E11] 

+ kcat 
eh 

11:eh 
11 

[Eh 
11 : Eh 

11] −  k+ 
eh 

11:e11 
eh 

11e11 

+ (k− 
eh 

11:e11 
+ 2kcat 

eh 
11:e11 

)[Eh 
11 : E11] 

+ kcat 
eh 

11:e2 
[Eh 

11 : E2] −  kAT 
e11 

e11[AT ] 
d 
dt 

zm 
11 = kon 

z11 
z11p

avail 
11 − k off 

z11 z
m 
11 − k+ 

zm 
11:e h,m 

11 

zm 
11e h,m 

11 . (69) 

+ k− 
zm 

11:e h,m 
11 

[Zm 
11 : E11hm] −  k+ 

zm 
11:em∗

11 
zm 

11e
m∗ 
11 

+ k− 
zm 

11:em∗
11 

[Zm 
11 : Em∗ 

11 ] −  k+ 
zm 

11:Em 
2 
zm 

11e
m 
2 

+ k− 
zm 

11:em 
2 
[Zm 

11 : Em 
2 ] 

d 
dt 

em∗ 
11 = kon∗

e11 
e11p

avail 
111 − k off ∗

e11 em∗ 
11 − k+ 

zm 
9 :em∗

11 
em∗ 

11 z
m 
9 . (70) 

+ (k− 
zm 

9 :em∗
11 

+ kcat 
zm 

9 :em∗
11 

)[Zm 
9 : Em∗ 

11 ] 
− k+ 

zm 
11:em∗

11 
zm 

11e
m∗ 
11 + (k− 

zm 
11:em∗

11 

+ kcat 
zm 

11:em∗
11 

)[Zm 
11 : Em∗ 

11 ] +  k+ 
e h,m∗ 

11 :em∗
11 

e h,m∗ 
11 em∗ 

11 

+ (k− 
e h,m∗ 

11 :em∗
11 

+ 2kcat 
e h,m∗ 

11 :em∗
11 

)[Ehms 
11 : E h,m 

11 ] 

+ kcat 
e h,m∗ 

11 :em 
2 
[Ehms 

11 : Em 
2 ] +  kAT 

e11 
em∗ 

11 [AT ] 
d 
dt

[Zm 
11 : Em 

2 ] =  k+ 
zm 

11:em 
2 
zm 

11e
m 
2 − (k− 

zm 
11:em 

2 
+ kcat 

zm 
11:em 

2 
)[Zm 

11 : Em 
2 ]. (71) 

d 
dt

[Zm 
9 : Em∗ 

11 ] =  k+ 
zm 

9 :em∗
11 

zm 
9 e

m 
11s − (k− 

zm 
9 :em∗

11 
+ kcat 

zm 
9 :em∗

11 
)[Zm 

9 : Em∗ 
11 ]. (72)
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d 
dt

[Z11 : E2] =  kf low([Z11 : E2]up − [Z11 : E2]) + k+
z11:e2 

z11e2. (73) 

− (k−
z11:e2 

+ kcat 
z11:e2 

)[Z11 : E2] 
d 
dt

[Z9 : E11] =  kf low([Z9 : E11]up − [Z9 : E11]) + k+
z9:e11 

z9e11. (74) 

− (k− 
z9:E11 

+ kcat 
z9:e11 

)[Z9 : E11] 
d 
dt

[Z11 : E11] =  kf low([Z11 : E11]up − [Z11 : E11]). (75) 

+ k+
z11:e11 

z11e11 − (k−
z11:e11 

+ kcat 
z11:e11 

)[Z11 : E11] 

.
d

dt
[Z9 : Eh

11] = kf low([Z9 : Eh
11]up − [Z9 : Eh

11]) + k+
z9:eh

11
z9e

h
11 (76) 

− (k− 
z9:eh 

11 
+ kcat 

z9:eh 
11 

)[Z9 : Eh 
11] 

d 
dt

[Zm 
9 : E h,m 

11 ] = k+ 
zm 

9 :e h,m 
11 

zm 
9 e h,m 

11 − (k− 
zm 

9 :eh 
11m + kcat 

zm 
9 :eh 

11m )[Zm 
9 : E h,m 

11 ]. (77) 

d 
dt

[Z11 : Eh 
11] = kf low([Z11 : Eh 

11]up − [Z11 : Eh 
11]). (78) 

+ k
z11:e hp 

11 
z11e

h 
11 − (k− 

z11:eh 
11 

+ kcat 
z11:eh 

11 
)[Z11 : Eh 

11] 
d 
dt

[Eh 
11 : Eh 

11] = kf low([Eh 
11 : Eh 

11]up − [Eh 
11 : Eh 

11]). (79) 

+ k+ 
eh 

11:eh 
11 

eh 
11e

h 
11 − (k− 

eh 
11:eh 

11 
+ kcat 

eh 
11:eh 

11 
)[Eh 

11 : Eh 
11] 

d 
dt

[Eh 
11 : E11] = kf low([Eh 

11 : E11]up − [Eh 
11 : E11]) + k+ 

eh 
11:e11 

eh 
11. (80) 

− (k− 
eh 

11:e11 
+ kcat 

eh 
11:e11 

)[Eh 
11 : E11] 

d 
dt

[Eh 
11 : E2] = kf low([Eh 

11 : E2]up − [Eh 
11 : E2]) + k+ 

eh 
11:e2 

eh 
11e2. (81) 

− (k− 
eh 

11:e2 
+ kcat 

eh 
11:e2 

)[Eh 
11 : E2] 

d 
dt 

[Zm 
11 : E h,m 

11 ] = k+ 
zm 

11:e h,m 
11 

zm 
11e h,m 

11 − (k− 
zm 

11:e h,m 
11 

+ kcat 
zm 

11:e h,m 
11 

)[Zm 
11 : E h,m 

11 ]. (82) 

d 
dt

[Zm 
11 : Em∗ 

11 ] = k+ 
zm 

11:em∗
11 

zm 
11e

m∗ 
11 − (k− 

zm 
11:em∗

11 
+ kcat 

zm 
11:em 

11s 
)[Zm 

11 : Em∗ 
11 ]. (83)
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d 
dt

[Ehms 
11 : E h,m 

11 ] = k+ 
e h,m∗ 

11 :e h,m 
11 

e h,m 
11 . (84) 

− (k− 
e h,m∗ 

11 :e h,m 
11 

+ kcat 
e h,m∗ 

11 :e h,m 
11 

)[Ehms 
11 : E h,m 

11 ] 

d 
dt 

[Ehms 
11 : Em∗ 

11 ] = k
e h,m∗ 

11 :e h,m∗ 
11 

em∗ 
11 . (85) 

− (k− 
e h,m∗ 

11 :em∗
11 

+ kcat 
e h,m∗ 

11 :em∗
11 

)[Ehms 
11 : Em∗ 

11 ] 

d 
dt

[Ehms 
11 : Em 

2 ] = k+ 
e h,m∗ 

11 :em 
2 

e h,m∗ 
11 em 

2 . (86) 

− (k− 

e 
hms:em 

2 
11 

+ kcat 
e h,m∗ 

11 :em 
2 
[Ehms 

11 : Em 
2 ]) 

.
d

dt
eh

11 = kon∗
eh

11
eh

11p
avail
111 + k

off ∗
eh

11
e
h,m∗
11 − kon

eh
11

eh
11p

avail
11 (87) 

+k off 
eh 

11 
e h,m 

11 −k+ 
z9:eh 

11 
z9e

h 
11+(k− 

z9:e h,m 
11 

+kcat 
z9:eh 

11 
)[Z9 : Eh 

11] 

− k
z11:e hp 

11 
z11e

h 
11+(k− 

z11:eh 
11m

+2kcat 
z11:eh 

11 
)[Z11:Eh 

11 
] 

+ kcat 
z11:e11

[Z11 : E11] +  kcat 
z11:e2

[Z11 : E2] 
− 2k+ 

eh 
11:eh 

11 
eh 

11e
h 
11 + (2k− 

eh 
11:eh 

11 
+ kcat 

e g 
11:eh 

11 
)[Eh 

11 : Eh 
11] 

− k+ 
eh 

11:e11 
eh 

11e11 + k− 
eh 

11:e11 
[Eh 

11 : E11] 

− k+ 
eh 

11:e2 
eh 

11e2 + k− 
eh 

11:e2 
[Eh 

11 : E2] 

+kf low(e h,up 
11 − eh 

11)−kAT 
eh 

11 
eh 

11[AT ] 
d 
dt 

e h,m 
11 = kon 

eh 
11 

eh 
11p

avail 
11 − k off 

eh 
11 

e h,m 
11 − k+ 

zm 
9 :e h,m 

11 

zm 
9 e h,m 

11 . (88) 

+(k− 
zm 

9 :e h,m 
11 

+kcat 
zm 

9 :e h,m 
11 

)[Zm 
9 : E h,m 

11 ] 

+(k− 
zm 

11:e h,m 
11 

+2kcat 
zm 

11:e h,m 
11 

)[Zm 
11 : E h,m 

11 ] 

− k+ 
zm 

11:e h,m 
11 

zm 
11e h,m 

11 + kcat 
zm 

11:em∗
11 

[Zm 
11 : Em∗ 

11 ] 

+ kcat 
zm 

11:em 
2 
[Zm 

11 : Em 
2 ] −  k+ 

e h,m∗ 
11 :e h,m 

11 

e h,m∗ 
11 e h,m 

11 

+ (k− 
e h,m∗ 

11 :e h,m 
11 

+ kcat 
e h,m∗ 

11 :e h,m 
11 

)[Ehms 
11 : E h,m 

11 ] − kAT 
e11 

ehm 
11 [AT ]
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.
d

dt
e
h,m∗
11 = kon∗

eh
11

eh
11p

avail
111 − k

off ∗
eh

11
e
h,m∗
11 (89) 

− k+ 
e h,m∗ 

11 :e h,m 
11 

e h,m∗ 
11 e h,m 

11 + k− 
e h,m∗ 

11 :e h,m 
11 

[Ehms 
11 : E h,m 

11 ] 

− k+ 
e h,m∗ 

11 :em∗
11 

e h,m∗ 
11 em∗ 

11 + k− 
e h,m∗ 

11 :em 
11s

[Ehms 
11 : Em∗ 

11 ] 

− k+ 
e h,m∗ 

11 :em 
2 

e h,m∗ 
11 em 

2 + k− 
e h,m∗ 

11 :em 
2 

[Ehms 
11 : Em 

2 ] 
d 
dt 

ehm 
5 = kcat 

zm 
5 :em 

10 
[Zm 

5 : Em 
10] + kon 

5 eh 
5pavail 

5 − k off 
5 ehm 

5 . (90) 

− k+ 
ehm 

5 :em 
10 

em 
10e

hm 
5 + k− 

ehm 
5 :em 

10 
PROh 

− k+ 
ehm 

5 :em 
2 
em 

2 e
hm 
5 + k− 

ehm 
5 :em 

2 
[Ehm 

5 : Em 
2 ] 

− k+ 
T FPI :ehm 

5 
ehm 

5 T FPI  + k− 
T FPI :ehm 

5 
[T FPI  : Ehm 

5 ] 

− k+ 
ehm 

5 :APC e
hm 
5 APC + k− 

ehm 
5 :APC

[APC : Ehm 
5 ] 

− k+ 
T FPI :e10:ehm 

5 
[T FPI  : Em 

10]ehm 
h 

+ k− 
T FPI :e10:ehm 

5 
[Em 

10 : T FPI  : Ehm 
5 ] 

− k+ 
T FPI :e10:ehm 

5 :em 
10 

[T FPI  : Em 
10]ehm 

5 

+ k− 
T FPI :e10:ehm 

5 :em 
10 

[T FPI  : PROh 
v10] 

.
d

dt
eh

5 = − k5one
h
5pavail

5 + k
off

5 ehm
5 + kf low(e

up

5 − eh
5 ) (91) 

+ (1 − f5)N5dpl · p − k+ 
eh 

5 :e2 
eh 

5 

+ k− 
eh 

5 :e2 
[Eh 

5 : E2] −  k+ 
eh 

5 :APC APC · eh 
5 

+ k− 
eh 

5 :APC
[APC : Eh 

5 ] −  k+ 
T FPI :eh 

5 
eh 

5T FPI  

+ k− 
T FPI :eh 

5 
[T FPI : Eh 

5 ] −  k+ 
T FPI :e10:eh 

5 
[T FPI : E10]eh 

5 

+ k− 
T FPI :e10:eh 

5 
[E10 : T FPI  : Eh 

5 ] 

− k+ 
T FPI :em 

10:eh 
5 
[T FPI  : Em 

10]eh 
5 

+ k− 
T FPI :em 

10:eh 
5 
[Em 

10 : T FPI  : Eh 
5 ]
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d 
dt 

PROh = k+ 
ehm 

5 :em 
10 

em 
10e

hm 
5 − k− 

ehm 
5 :em 

10 
PROh

. (92) 

− k+ 
zm 

2 :PROhPROh zm 
2 + k− 

zm 
2 :PROh[Zm 

2 : PROh] 

+ kcat 
zm 

2 :PROh [Zm 
2 : PROh] 

− k+ 
T FPI :PROh 

v10 
PROh[T FPI ] 

+ k− 
T FPI :PROh 

v10 
[T FPI  : PROh 

v10] 

− k+ 
T FPI :PROh 

v5 
PROh[T FPI ]k− 

T FPI :PROh 
v5 

[T FPI  : PROh 
v5] 

− k+ 
PROh:em 

2 
PROh em 

2 + k− 
PROh:em 

2 
[PROh : Em 

2 ] 
d 
dt

[Zm 
2 : PROh] =  k+ 

zm 
2 :PROhPROh zm 

2 − k− 
zm 

2 :PROh [Zm 
2 : PROh]. (93) 

− kcat 
zm 

2 :PROh [Zm 
2 PROh] 

d 
dt

[Ehm 
5 : Em 

2 ] =  k+ 
ehm 

5 :em 
2 
em 

2 e
hm 
5 − k− 

ehm 
5 :em 

2 
[Ehm 

5 : Em 
2 ]. (94) 

− kcat 
ehm 

5 :em 
2 
[Ehm 

5 : Em 
2 ] 

.
d

dt
[Eh

5 : E2] = + k+
eh

5 :e2
e2e

h
5 − k−

T FPI :eh
5
[Eh

5 : E2] (95) 

− kcat 
eh 

5 :e2 
[Eh 

5 : E2] +  kf low([Eh 
5 : E2]up − [Eh 

5 : E2]) 

d 
dt

[T FPI  : Ehm 
5 ] =  k+ 

T FPI :ehm 
5 

ehm 
5 T FPI . (96) 

− k− 
T FPI :ehm 

5 
[T FPI  : Ehm 

5 ] 

− k+ 
T FPI :ehm 

5 :e10m
[T FPI  : Ehm 

5 ]em 
10 

+k− 
T FPI :ehm 

5 :e10m
[Em 

10 : T FPI  : Ehm 
5 ] 

+ kon 
5 [T FPI  : Eh 

5 ]pavail 
5 − k off 

5 [T FPI  : Ehm 
5 ] 

− k+ 
T FPI :e10:ehm 

5 
[T FPI  : Ehm 

5 ]em 
10 

+ k− 
T FPI :e10:ehm 

5 
[T FPI  : PROh 

v5]
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− k+ 
T FPI :ehm 

5 :e10 
[T FPI  : Ehm 

5 ]e10 

+ k− 
T FPI :ehm 

5 :e10 
[E10 : T FPI  : Ehm 

5 ] 
d 
dt

[APC : Ehm 
5 ] =  k+ 

ehm 
5 :APC E

hm 
5 APC − k− 

ehm 
5 :APC

[APC : Ehm 
5 ]. (97) 

+ kcat 
ehm 

5 :APC
[APC : E5hm] 

d 
dt

[APC : Eh 
5 ] =  k+ 

eh 
5 :APC e

h 
5APC − k− 

ehm 
5 :APC

[APC : Eh 
5 ]. (98) 

− kcat 
eh 

5 :APC
[APC : Eh 

5 ] 

+ kf low([APC : Eh 
5 ]up − [APC : Eh 

5 ]) 

.
d

dt
[T FPI : Eh

5 ] = kT FPI :eh
5upeh

5T FPI − k−
kT FPI :eh

5
[T FPI : Eh

5 ] (99) 

+kf low([T FPI  : Eh 
5 ]up − [T FPI  : Eh 

5 ]) 
− k+ 

T FPI :eh 
5 :e10 

[T FPI  : Eh 
5 ]e10 

+k− 
T FPI :eh 

5 :e10 
[E10 : T FPI  : Eh 

5 ] 

+ kon 
5 [T FPI  : Eh 

5 ]pavail 
5 + k off 

5 [T FPI  : Ehm 
5 ] 

.
d

dt
[T FPI : Em

10] = k+
T FPI :em

10
em

10T FPI − k−
T FPI :em

10
[T FPI : Em

10] (100) 

− k+ 
T FPI :e10:eh 

5m
[T FPI  : Em 

10]ehm 
5 

+ k− 
T FPI :e10:ehm 

5 
[Em 

10 : T FPI  : Ehm 
5 ] 

+ kon 
10 [T FPI  : E10]pavail 

10 − k off 
10 [T FPI  : Em 

10] 
− k+ 

T FPI :em 
10:ehm 

5 
[T FPI  : Em 

10]ehm 
5 

+k− 
T FPI :em 

10:ehm 
5 

[T FPI  : PROh 
v10] 

− k+ 
T FPI :em 

10:eh 
5 
[T FPI  : Em 

10]eh 
5 

+ k− 
T FPI :em 

10:eh 
5 
[Em 

10 : T FPI  : Eh 
5 ]
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.
d

dt
[T FPI : PROh

v10] = k+
T FPI :PROh

v10
PROh[T FPI ] (101) 

− k− 
T FPI :PROh 

v10 
[T FPI  : PROh 

v10] 

+k+ 
T FPI :em 

10:ehm 
5 

[T FPI  : E p 
10][T FPI  : Em 

10]ehm 
5 

− k− 
T FPI :em 

10:ehm 
5 

[T FPI  : PROh 
v10] 

d 
dt 

[T FPI  : PROh 
v5] =  k+ 

T FPI :PROh 
v5 

PROh[T FPI ]. (102) 

− k− 
T FPI :PROh 

v5 
[T FPI  : PROh 

v5] 

+ k+ 
T FPI :e10:ehm 

5 
[T FPI  : Ehm 

5 ]em 
10 

− k− 
T FPI :e10:ehm 

5 
[T FPI  : PROh 

v5] 
d 
dt

[Em 
10 : T FPI  : Ehm 

5 ] =  k+ 
T FPI :e10:eh 

5m
[T FPI  : Em 

10]ehm 
5 . (103) 

− k− 
T FPI :e10:eh 

5m
[Em 

10 : T FPI  : Ehm 
5 ] 

+ k+ 
T FPI :ehm 

5 :e10m
[T FPI  : Ehm 

5 ]em 
10 

− k− 
T FPI :ehm 

5 :e10m
[Em 

10 : T FPI  : Ehm 
5 ] 

+ kont 
10 p

avail 
10 − k off t 

10 [Em 
10 : T FPI  : Ehm 

5 ] 
+ kont 

5 [Em 
10 : T FPI  : Eh 

5 ]pavail 
5 

− k off t 
5 [Em 

10 : T FPI  : Ehm 
5 ] 

.
d

dt
[E10 : T FPI : Eh

5 ] = k+
T FPI :e10:eh

5
[T FPI : E10]eh

5 (104) 

− k− 
T FPI :e10:eh 

5 
[E10 : T FPI  : Eh 

5 ] 

+ k+ 
T FPI :eh 

5 :e10 
[T FPI  : Eh 

5 ]e10 

− k− 
T FPI :eh 

5 :e10 
[E10 : T FPI  : Eh 

5 ] 

− kont 
5 [E10 : T FPI  : Eh 

5 ]pavail 
5 

+ k off t 
5 [E10 : T FPI  : Ehm 

5 ] 
− kont 

10 [E10 : T FPI  : Eh 
5 ]pavail 

10
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+ k off t 
10 [Em 

10 : T FPI  : Eh 
5 ] 

+ kf low([E10 : T FPI  : Eh 
5 ]up− [E10 : T FPI  : Eh 

5 ]) 
d 
dt

[E10 : T FPI  : Ehm 
5 ] =  kont 

5 [E10 : T FPI  : Eh 
5 ]pavail 

5 . (105) 

− k off t 
5 [E10 : T FPI  : Ehm 

5 ] 
− kont 

10 [E10 : T FPI  : Ehm 
5 ]pavail 

10 

+ k off t 
10 [Em 

10 : T FPI  : Ehm 
5 ] 

+ k+ 
T FPI :ehm 

5 :e10 
[T FPI  : Ehm 

5 ]e10 

− k− 
T FPI :ehm 

5 :e10 
[E10 : T FPI  : Ehm 

5 ] 
d 
dt

[Em 
10 : T FPI  : Eh 

5 ] =  kont 
10 [E10 : T FPI  : Eh 

5 ]pavail 
10 . (106) 

− k off t 
10 [Em 

10 : T FPI  : Eh 
5 ] 

− kont 
5 [Em 

10 : T FPI  : Eh 
5 ]pavail 

5 

+k off t 
5 [Em 

10 : T FPI  : Ehm 
5 ] 

+ k+ 
T FPI :em 

10:eh 
5 
[T FPI  : Em 

10]eh 
5 

− k− 
T FPI :em 

10:eh 
5 
[Em 

10 : T FPI  : Eh 
5 ] 

.
d

dt
[PROh : Em

2 ] = k+
PROh:em

2
PROhEm

2 (107) 

− k− 
PROh:em 

2 
[PROh : Em 

2 ] −  kcat 
PROh:em 

2 
[PROh : Em 

2 ] 
d 
dt

[E9 : AT ] = −  kon 
9 pavail 

9 [E9 : AT ] +  k off 
9 [Em 

9 : AT ]. (108) 

+ kAT 
e9 

e9[AT ] + kf low([E9 : AT ]up − [E9 : AT ]) 
− kon 

9 pavail 
91 [E9 : AT ] +  k off 

9 [Em∗ 
9 : AT ] 

d 
dt

[Em 
9 : AT ] =  kAT 

em 
9 

em 
9 [AT ] − k off 

9 [Em 
9 : AT ]. (109) 

+ kon 
9 pavail 

9 [E9 : AT ] 
d 
dt

[Em∗ 
9 : AT ] =  kAT 

em 
9 

em∗ 
9 [AT ] −  k off 

9 [Em∗ 
9 : AT ]. (110) 

+ kon 
9 pavail 

91 [E9 : AT ]
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d 
dt

[E10 : AT ] =  kAT 
e10 

e10[AT ] +  kf low([E10 : AT ]up − [E10 : AT ]). (111) 

+k off 
10 [Em 

10 : AT ] −  kon 
10 pavail 

10 [E10 : AT ] 
d 
dt

[Em 
10 : AT ] = +  kAT 

em 
10 

em 
10[AT ] − k off 

10 [Em 
10 : AT ]. (112) 

+ kon 
10 pavail 

10 [E10 : AT ] 
d 
dt

[E2 : AT ] = +  k off 
e2 [Em 

2 : AT ] − kon 
e2 

pavail 
2 [E2 : AT ]. (113) 

+ kAT 
e2 

e2 + kf low([E2 : AT ]up − [E2 : AT ]) 

.
d

dt
[Em

2 : AT ] = kAT
em

2
em

2 [AT ] − k
off
e2 [Em

2 : AT ] (114) 

+ kon 
e2 

pavail 
2 [E2 : AT ] 

d 
dt

[E11 : AT ] =  kAT 
e11 

e11[AT ] − kAT 
e11 

[E11 : AT ][AT ]. (115) 

+ k off 
11 [Em∗ 

11 : AT ] −  kon 
11 pavail 

111 [E11 : AT ] 
d 
dt

[AT : E11 : AT ] =  kAT 
e11 

[E11 : AT ][AT ]. (116) 

d 
dt

[Em∗ 
11 : AT ] =  kAT 

e11 
em∗ 

11 [AT ] −  k off 
11 [Em∗ 

11 : AT ]. (117) 

+ kon 
11 pavail 

111 [E11 : AT ] 
d 
dt

[Eh 
11 : AT ] =  kAT 

e11 
eh 

11[AT ] + k off 
11 [Ehm 

11 : AT ]. (118) 

− kon 
11 pavail 

11 [Eh 
11 : AT ] 

d 
dt

[Ehm 
11 : AT ] =  kAT 

e11 
ehm 

11 [AT ] − k off 
11 [Ehm 

11 : AT ]. (119) 

+ kon 
11 pavail 

11 [Eh 
11 : AT ] 

d 
dt

[AT ] = −  kAT 
e9 

e9[AT ] −  kAT 
em 

9 
em 

9 [AT ]+kAT 
em 

9 
em∗ 

9 [AT ]. (120) 

− kAT 
e10 

e10[AT ] + kem 
10 

AT 
em 

10[AT ] − kAT 
e2 

e2[AT ] 
− kAT 

em 
2 

em 
2 [AT ] −  kAT 

e11 
e11[AT ] −  kAT 

e11 
[E11 : AT ][AT ] 

− kAT 
e11 

em∗ 
11 [AT ] −  kAT 

e11 
eh 

11[AT ] −  kAT 
e11 

eh 
11[AT ] 

+ kf low([AT ]up − [AT ])
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.
d

dt
[T MRZ : E2] =kon

T MRZ
e2T Mavail

RZ
− koff

T MRZ
[T MRZ : E2] (121) 

− k+
pc[T MRZ : E2][PC] 

+ (k−
pc + kcat 

pc )[T MRZ : E2 : PC] 
d 
dt 

[T MRZ : E2 : PC] =k+
pc[T MRZ : E2][PC] 

− (k−
pc + kcat 

pc )[T MRZ : E2 : PC]. (122) 
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Deconstructing the Contributions of 
Heterogeneity to Combination Treatment 
of Hormone-Sensitive Breast Cancer 

Samantha Linn, Jenna A. Moore-Ott, Robyn Shuttleworth, Wenjing Zhang, 
Morgan Craig, and Adrianne L. Jenner 

1 Introduction 

Breast cancer is the most common invasive malignancy in women; a woman has a 
one in eight chance of developing breast cancer in her lifetime [1, 2]. The treatment 
of breast cancer requires a multifaceted approach combining surgery, radiation, 
neoadjuvant, and adjuvant treatments [3]. There are five molecular subtypes of 
breast cancer (luminal A, luminal B, HER-2, basal, and normal)—each with a 
different combination of cancer cells that over- or under-express progesterone 
receptor (PR.+/−), estrogen receptor (ER.+/−), and human epidermal growth 
factor receptor 2 (HER2.+/−) [4]. Effective treatment of these varying subtypes 
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of breast cancer requires a deep understanding of heterogeneity in their responses 
to the different treatment types; unfortunately, there is still no completely curative 
treatment for any subtype. 

Combination therapy, i.e., combining two or more therapeutic agents, is a 
cornerstone of cancer therapy [5]. The major goal of combination therapy in 
oncology is to enhance the therapeutic efficacy of a single anti-cancer drug through 
co-administration with a synergistic or additive drug that targets key pathways 
[5]. For example, metformin, an agent used to treat type 2 diabetes, was found to 
increase the susceptibility of a p53 breast cancer cell line to therapeutic molecule 
tumor necrosis factor-related apoptosis inducing ligand (TRAIL) [6]. To that end, 
a combination therapy in breast cancer with recognized potential is palbociclib 
combined with fulvestrant [7, 8], which was approved in early 2016 by the FDA 
to treat hormone receptor-positive breast cancer [9]. 

Palbociclib (brand name Ibrance) is an orally available, highly selective inhibitor 
of cyclin-dependent kinase 4 and 6 (CDK4 and CDK6) [10–12]. CDK4/6 are critical 
mediators of the cellular transition into the S phase and are crucial for the initiation, 
growth, and survival of many cancer types [13]. As such, pharmacological inhibitors 
of CDK4/6 are rapidly becoming a new standard of care for patients with advanced 
hormone receptor-positive breast cancer. Palbociclib is an inhibitor of CDK4/6 and 
thus forces cells to stay in the G1 phase in lieu of undergoing cell division (Fig. 1). 
Importantly, palbociclib does not induce apoptosis but instead halts cellular division. 
According to the US National Institutes of Health (NCT03007979), patients have 
historically been on a 21-day-on, 7-day-off palbociclib schedule, though there were 
concerns that the off days were the reason behind worse patient outcomes [14]. 
A 5-day-on, 2-day-off schedule has thus far shown better health outcomes for the 
treatment of ER+ breast cancer [14, 15], though this study is still ongoing. 

Fulvestrant is a novel endocrine therapy for breast cancer that binds, blocks, 
and degrades the estrogen receptor, leading to complete inhibition of estrogen 
signaling through the ER [16, 17]. Through extensive preclinical and clinical trials, 
fulvestrant has demonstrated improved clinical efficacy compared to established 
endocrine agents [17]. Fulvestrant has been combined with several different classes 
of therapeutics, in particular, CDK4/6 inhibitors [16]. The PALOMA-3 study 
investigated fulvestrant with palbociclib or placebo in both pre- and postmenopausal 
patients who had progressed on previous endocrine treatment [18, 19]. The trial 
demonstrated a substantial increase in progression-free survival from 4.6 months to 
9.5 months in the placebo compared to palbociclib arms [16]. The FLIPPER trial 
was a phase II study comparing fulvestrant and palbociclib with fulvestrant and 
placebo in the first-line metastatic setting [20]. 

While it can be challenging to fully capture the effects of heterogeneity on 
treatment outcomes experimentally and clinically, mathematical modeling is well-
placed to provide insight into how cancer treatments are affected by multiple scales 
of heterogeneity. Previously, groups have used deterministic mathematical models 
to examine the combined treatment of breast cancer using palbociclib and AZD9496 
[21]. For example, He et al. [22] used a mathematical model that captured the 
cell cycle and signaling pathways in response to endocrine therapy and CDK4/6
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inhibition. Their model successfully predicted the combined effects of estrogen 
deprivation and palbociclib and was used to explore combination scheduling. 
Mathematical modeling studies can also be extended to a virtual or in silico clinical 
trial setting to account for variations in patient characteristics and comprehensively 
explore dosing regimens in ways that are clinically unfeasible [23–26]. There are 
many examples of virtual clinical trials employed in cancer therapies [27–31] to  
this end, and this approach continues to gain traction within pharmaceutical and 
other applications [32, 33]. 

As heterogeneity can impact combination strategies aimed at CDK4/6 inhibition 
at multiple levels, we developed a simple mathematical model of two unique 
ER. + breast cancer cell types and their responses to combination treatment with 
palbociclib and fulvestrant to understand how different sources of variation impact 
this therapeutic approach. We examined in situ how co-culturing of heterogeneous 
cell types, specifically two commonly used breast cancer cell lines exhibiting 
different degrees of aggressivity, affects their responses to treatment. Using our 
model, we next explored how interindividual variability in PK within a virtual breast 
cancer patient cohort affects treatment outcomes. Lastly, we used our integrated 
framework to establish how therapeutic scheduling determines treatment responses, 
providing insight into effective regimens using this combination treatment. 

2 Methods 

2.1 Mathematical Model of Breast Cancer Co-cultures and 
Combination Therapy 

In this section, we detail the development of a mathematical model to capture the 
action of palbociclib and fulvestrant on a heterogeneous population of breast cancer 
cells. This type of model of the effects of the drugs on the target tissue in the body is 
known as a pharmacodynamic (PD) model. To capture and understand how intrinsic 
cell characteristics affect combination palbociclib and fulvestrant treatment, we 
considered co-cultures of MCF7 and T47D cell lines—two commonly used breast 
cancer cell lines that display different sensitivities to each drug, with T47D thought 
to be more aggressive (i.e., exhibit stronger/faster growth) than MCF7. A schematic 
overview of our model is provided in Fig. 1. 

2.1.1 Palbociclib’s Impact on Cell Growth 

We first constructed a mathematical PD model describing the growth of a cell 
population under treatment by palbociclib, a drug whose effects were assumed to 
inhibit the cell cycle. To model these effects, we adopted a general inhibitory effects 
model given by
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Fig. 1 Schematic summarizing the mathematical model of combination therapy on breast cancer 
cells. (a) Our model consists of pharmacokinetics and pharmacodynamics (PK/PD) of two drugs 
(palbociclib and fulvestrant), each with different mechanisms of action. Palbociclib targets and 
arrests the cell in the cell cycle, and fulvestrant degrades the estrogen receptor on cells, essentially 
causing cell death. To examine the impact of heterogeneity on tumor composition prior to, during, 
and at the end of treatment with this combination, we considered heterogeneous tumors composed 
of less aggressive and more aggressive cells. We parameterized the model’s parameters to in vitro 
data from two cell lines: MCF7 and T47D. (b) Schematic overview of the mechanism of action of 
palbociclib on cell cycle arrest—inhibiting the cell cycle transition from G1 to S phase 

.Ei = E0,i − E0,iImax,i[P ]hi

[P ]hi + [IC50,i]hi
, (1) 

where . Ei with .i = M,T specifies the effect on cell line MCF7 and T47D, 
respectively, P is the concentration of palbociclib at the tumor site, .E0,i denotes the 
baseline effect of the drug palbociclib on cell type i, .Imax,i represents the maximal 
effect of the drug at high concentrations, . hi is the Hill coefficient measuring 
the slope of the inhibitory curve for cell type i, and .IC50,i represents the drug 
concentration eliciting 50% of the maximal inhibition. This model formulation is 
regularly used to capture the effect of a drug on inhibiting a cell population [34]. 

As palbociclib arrests cells in the cell cycle, the general growth inhibition model 
for a population of cells of type i, .Ci(t), inhibited by palbociclib is given by 

. 
dCi

dt
= λ(Ci)EiCi,

where .λ(Ci) is a function describing cell population growth in the absence of 
treatment (see Fig. 1). As in vitro tumor growth is constrained by the availability 
of nutrients, space, etc., we modeled cell growth using the logistic growth law 

.λ(Ci) = ri

⎧
1 − Ci

K

⎫
, (2)
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where . ri is the cell line-specific proportionality constant and K is the total cell 
population carrying capacity in a given space. We chose logistic growth as this 
provided the most accurate fit to cell count measurements; however, Gompertzian 
tumor growth also provided a close (but less accurate) fit to our data (Figs. 10 
and 11). Thus, the complete model of monoculture growth under treatment with 
palbociclib is given by 

. 
dCi

dt
= Ciri

⎧
1 − Ci

K

⎫ ⎧
E0,i − E0,iImax,i[P ]hi

[P ]hi + [I50,i]hi

⎫
.

Typically, tumors are not homogeneous in nature and are comprised of a variety 
of different cell types. We accounted for this phenotypic heterogeneity by modeling 
both MCF7 and T47D cell types within a single tumor environment in co-culture. 
As mentioned above, while both MCF7 and T47D are ER+, they differ in their 
responses to treatment. We, therefore, considered each to have separate parameters, 
with co-culture growth rates affected by the available space in the domain. In 
addition, since the effect parameters will depend on the drug being applied, we now 
update our PD variables to be drug specific. In other words, since parameters are 
cell line and drug specific, the specific combination is represented in their subscript 
as .XCELLdrug , where drug is denoted by either p for palbociclib or f for fulvestrant 
and the cell line is denoted either by M for MCF7 or by T for T47D. 

For simplicity, and owing to the absence of data, we did not consider switching 
between tolerant and resistant types [35]. We assumed that the carrying capacity and 
growth of each cell type is affected by the presence of the other cell type in the dish, 
thus modifying our logistic growth model. Therefore, to account for the impact of 
variable growth between each cell type, we included cell-specific carrying capacities 
in our model of cell growth in Eq. (2). Our final model describing the change in 
population of two, indirectly interacting, cell types (MCF7 and T47D) is given by 

.
dCM

dt
= CMrM

⎧
1 − CM + CT

KMφM + KT φT

⎫ ⎧
E0,Mp − E0,MpImax,Mp [P ]hMp

[P ]hMp + [I50,Mp ]hMp

⎫
. 

(3) 

dCT 
dt 

= CT rT

⎧
1 − CM + CT 

KMφM + KT φT

⎫⎧
E0,T p − 

E0,T pImax,T p [P ]hT p 

[P ]hT p + [I50,T p ]hT p

⎫
, 

(4) 

where . φi is the volume fraction of cell type i for either type MCF7 or T47D, 
respectively, in the domain and is calculated by .φi = Ci/(CM+CT )with . φM+φT =
1. The global carrying capacity in the domain is given by .K = KMφM + KT φT , 
where . Ki is the individual carrying capacity for each cell type, MCF7 and T47D, 
respectively.
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2.1.2 Modeling the Effects of Fulvestrant on a Heterogenous Tumor 

As fulvestrant degrades cells, we modeled its effect on the rates of decay for both 
the MCF7 and T47D cells. We updated the ordinary differential equation (ODE) 
system for the effect of palbociclib in Eqs. (3) and (4) to include a decay term for 
both cell populations, . di , that is affected by the concentration of fulvestrant (F ), 
using a modified version of the effect function in Eq. (1): 

. 
dCM

dt
= CMrM

⎧
1 − CM + CT

KMφM + KT φT

⎫ ⎧
E0,Mp − E0,MpImax,Mp [P ]hMp

[P ]hMp + [I50,Mp ]hMp

⎫

− CMdM

⎧
E0,Mf Imax,Mf [F ]hMf

[F ]hMf + [IC50,Mf ]hMf

⎫
. (5) 

dCT 
dt 

= CT rT

⎧
1 − CM + CT 

KMφM + KT φT

⎫ ⎧
E0,T p − 

E0,T p Imax,T p [P ]hT p 

[P ]hT p + [I50,T p ]hT p

⎫

− CT dT

⎧
E0,T f Imax,T f [F ]hT f 

[F ]hT f + [IC50,T f ]hT f

⎫
, (6) 

where .E0,if is the basal effect of fulvestrant on cell type i, .Imax,if is the maximum 
effect of fulvestrant, . hif is the Hill coefficient for fulvestrant, and .IC50,if is the half-
effect of fulvestrant, given i represents either M or T for cell type MCF7 or T47D, 
respectively. Note that this modified effect function for fulvestrant aims to capture 
the death rate increase that results from fulvestrant concentration F increase. To 
determine the concentration of palbociclib and fulvestrant after administration, we 
introduced pharmacokinetic (PK) models parameterized from clinical PK studies 
for both drugs. 

2.1.3 Palbociclib and Fulvestrant Pharmacokinetic Models 

We used a linear two-compartment PK model with first-order absorption and 
absorption lag to model the dynamics of orally administered palbociclib, 

.
dM0

dt
= −kaM0, . (7) 

dM1 

dt 
= kaM0 − M1

⎧
ke + kel 

VC

⎫
+ M2

⎧
ke 
VP

⎫
, . (8) 

dM2 

dt 
= −M2

⎧
ke 
VP

⎫
+ M1

⎧
ke 
VC

⎫
, (9)
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where . M0, . M1, and . M2 are the palbociclib concentrations pre-absorption, in plasma, 
and in peripheral tissue, respectively. Furthermore, . ka is the rate of absorption into 
plasma, . kel is the rate of linear elimination, . ke is the exchange rate between plasma 
and tissue, and . VC and . VP are the apparent plasma and peripheral tissue volumes, 
respectively. The concentration of palbociclib at the tumor site is then calculated by 
.P(t) = M1(t)/VC in Eqs. (5) and (6). 

Based on data from 38 postmenopausal women with advanced breast cancer 
who received 250mg doses of extended-release fulvestrant (in a single 5mL 
intramuscular (IM) injection or two 2.5mL IM injections [36]), a two-compartment 
PK model with zero-order administration and linear elimination was developed. The 
fulvestrant PK model is given by 

.
dF1

dt
= In − kelF1 + k21F2 − k12F1, . (10) 

dF2 

dt 
= −k21F2 + k12F1, . (11) 

In  = 
D 

Tk0V 
, (12) 

where . F1 and . F2 denote fulvestrant concentrations in the plasma and tissues, respec-
tively, In  represents the administered dose (here taken to be an IM administration), 
. kel is the rate of linear elimination, . k12 and . k21 are transit rates between the plasma 
and tissue compartments, D represents the IM dose, . Tk0 is the time for absorption, 
and V is the volume of distribution. The concentration of fulvestrant at the tumor 
site is set as .F(t) = F1(t) in Eqs. (5) and (6). 

2.2 Parameter Estimation 

2.2.1 Estimating Tumor Growth Parameters 

Cell counting was performed in breast cancer cell lines MCF7 and T47D by 
Vijayaraghavan et al. [37]. Cells were plated in six-well plates and treated with 
indicated agents for 10 days. The medium was replaced every other day over the 
course of the experiment. Cells were then collected and counted using BioRad TC20 
Automated Cell Counter on days 0, 3, 6, and 10 (see data in Figs. 10 and 11). We 
estimated parameters governing cell growth by setting all drug concentrations to 
zero in our model, Eqs. (5) and (6), and fitting the proliferation rate . ri and carrying 
capacity . Ki to cell type i count data. Fitting was performed in MATLAB using 
the nonlinear least-squares fitting function lsqnonlin; the trust-region-reflective 
algorithm with 1000 maximum function evaluations was chosen. The model was 
solved using ode45.
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2.2.2 Estimating Drug Effect Parameters from Cell Viability Assays 

Cell viability measurements for MCF7 and T47D with palbociclib were measured 
by Vijayaraghavan et al. [37]. For these dose–response studies, cells were plated 
on a 96-well plate and treated with increasing concentrations (0.01–12 . μM) of 
palbociclib for 1, 2, 4, 6, or 8 days. The medium was replaced with drug-
containing medium every other day. At the completion of drug treatment, cultures 
were continued in drug-free medium until day 12 after which they were stained 
with 0.5% crystal violet solution. Values were normalized to those of their no 
treatment controls. We assumed that after 8 days of drug exposure, the drug effects 
were saturated. We fit the 8-day data (see Fig. 12) and estimated the values of 
.E0,ip , Imax,ip , and .IC50,ip for each cell type i in Eqs. (5) and (6) by minimizing 
the least-squares error between the data and the inhibitory growth model using 
lsqnonlin in MATLAB. We additionally estimated the 95% confidence intervals 
for the parameters using the Jacobian returned from the lsqnonlin fit. All fitted 
parameters and their bounds are given in Fig. 12 for both MCF7 and T47D cell lines. 

In similar experiments, Nukatsuka et al. [38] measured MCF7 cell growth under 
varying fulvestrant concentrations. Measurements were calculated as means and 
standard deviation of cell growth relative to that of the control for three independent 
experiments. Lewis-Wambi et al. [39] measured DNA (. μg/well) from T47D cells 
after treatment with fulvestrant. Cells were seeded in 24-well dishes and after 24h 
were treated with varying drug concentrations for 7 days. At the conclusion of the 
experiment, cells were harvested, and proliferation was assessed as cellular DNA 
mass (. μg/well). We assumed this as a proxy for cell viability relative to control. As 
with the palbociclib experiments from Vijayaraghavan et al. [37], we estimated the 
PD parameters in Eqs. (5) and (6) by minimizing the least-squares error between the 
data and the inhibitory growth model using lsqnonlin in MATLAB (see Fig. 12). 

2.2.3 Estimating Pharmacokinetic Parameters 

We used a nonlinear mixed effects model in Monolix to estimate parameters of the 
fulvestrant PK model in Eqs. (10)–(12). As the data reported in Robertson et al. 
[36] were pooled, we extracted the reported mean and lower and upper bounds to 
estimate interindividual variability (IIV). We then fit the model in Eqs. (10)–(12) to 
this data assuming lognormal distributions on parameters (Fig. 13) subject to IIV 
according to 

. ρi = θj exp(ηji), ηji ∼ N(0, ω2
j ),

where . ρi is the value of a given model parameter (e.g., . kel , . k12, etc.) for subject i, 
. θj is the population mean, and . ηji represents the deviation from the mean (i.e., IIV) 
for the i-th individual. Estimated model parameters are presented in Tables 1 and 2.
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Table 1 Estimated 
parameter values for the 
palbociclib population 
pharmacokinetic model in 
Eqs. (7)–(9) 

Fixed effects 

Parameter Units Mean Variance 

.ka 1/hour 0.617 0.484 

.kel/F L/hour 48 0.0451 

.ke/F L/hour 4.49 0.61 

.VC/F L 1520 0.0185 

.VP /F L 2780 – 

Table 2 Estimated 
parameter values for the fixed 
effects of the fulvestrant 
population pharmacokinetic 
model in Eqs. (10)–(12) and 
other terms used in Monolix 

Parameter Units Mean 

Fixed effects 

.Tk0 hour 6.74 

V L 5.61 

.kel 1/hour 0.284 

.k12 1/hour 15.2 

.k21 1/hour 3.01 

Standard deviation of random effects 

.ωT k0 – 0.276 

.ωV – 0.554 

.ωkel – 0.0311 

.ωk12 – 0.0263 

.ωk21 – 0.068 

Correlations 

.ρT k0−V – 0.976 

The model in Eqs. (7)–(9) is based on the clinical and theoretical work of Yu 
et al. [40], which described data from 26 advanced breast cancer patients who 
received palbociclib and letrozole on a 3-weeks-on, 1-week-off treatment regimen. 
The palbociclib PK model parameters were taken from Yu et al. and were used to 
simulate patient populations. We assumed lognormal distributions on parameters 
subject to interindividual variability using . ρi from Eq. (2.2.3). Parameter values for 
fulvestrant were taken directly from Robertson et al. [36]. 

2.3 Generating Heterogeneous Pharmacokinetics and 
Pharmacodynamics 

2.3.1 Pharmacokinetic Parameters 

We investigated palbociclib and fulvestrant individually to quantify each of their 
contributions to the effects of PK IIV on tumor growth. For palbociclib, we sampled 
. VC , . VP , . kel , . ke, and . ka from lognormal distributions according to the parameters 
in Table 1 to produce a virtual patient population. Similarly, for fulvestrant, we 
sampled . Tk0, V , . kel , . k12, and . k21 from lognormal distributions according to the best-
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fit nonlinear mixed effects model determined by our parameter fitting (see Table 2) 
to generate virtual patients. In the case of each drug, by simulating the full model 
(with all other components’ parameters set to their average values), we selected only 
those virtual patients whose predicted trajectories were realistic (as confirmed by 
visual predictive check of their concentration time courses) before accepting them 
into our cohort. This left 500 virtual patients in the case of palbociclib and 438 for 
fulvestrant. 

2.3.2 Pharmacodynamic Parameters 

To investigate the effect of heterogeneity of the PD of palbociclib and fulvestrant, we 
generated 400 sets of parameter values by sampling . E0, .Imax , h, and .IC50 for each 
cell type–drug combination from the ranges established during parameter fitting 
(Fig. 14). As each of these four parameters is drug and cell type specific, this gave 
16 parameters to sample: 

. p̂ = [E0,Mp , Imax,Mp , hMp, IC50,Mp , E0,T p , Imax,T p , hT p , IC50,T p , . . .

E0,Mf , Imax,Mf , hMf , IC50,Mf , E0,T f , Imax,T f , hT f , IC50,T f ]. (13) 

Parameters were sampled from a multivariate normal distribution with mean . μ set 
to the fitted values in Table 3 for . p̂ and standard deviation . σ determined from the 
confidence intervals (CIs) returned for the fitted parameters and the formula 

. 
CI − μ

1.96
= σ,

where 1.96 was chosen to return values in the 95% confidence interval. Any samples 
resulting in negative parameter values were discarded. The resulting distributions of 
parameters are provided in Fig. 14. 

3 Results 

3.1 Shorter Treatment Cycle Reduces Aggressive Cell 
Viabilities as Compared to Conventional Schedule 

We first set out to predict whether a shortened treatment cycle (i.e., 5 days on of 
palbociclib followed by 2 days of rest, repeated for 28 days) was a viable strategy as 
compared to a conventional (21 days on of palbociclib followed by 7 days of rest) 
schedule. Both protocols included combination therapy with 125 mg of fulvestrant 
on days 1 and 15. For this, we simulated the complete model with mean values for 
both the palbociclib and fulvestrant PK models (Tables 1 and 2 for Eqs. (7)–(12))
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Table 3 Fitting parameter values obtained by fits in Figs. 10 and 11 to the pharmacodynamics 
model in Eqs. (5) and (6) 

Bounds 

Cell line Variable Description Units Fit Upper Lower 

MCF7 .rM Growth rate 1/day 0.6083 0.5390 0.6776 

.kM Carrying capacity cells .7.61 × 106 .3.98 × 106 . 11 × 106

.E0,Mp Palbo. initial no-drug effect – 98.9 96.1 101.7 

.Imax,Mp Palbo. max inhibition – 0.879 0.86 0.9 

.hMp Palbo. hill coefficient – 1.65 1.38 1.91 

.IC50,Mp Palbo. half-effect . μM 0.67 0.61 0.73 

.E0,Mf Fulv. initial no-drug effect – 96.3 95.4 97.2 

.Imax,Mf Fulv. max inhibition – 0.81 0.81 0.82 

.hMf Fulv. hill coefficient – 1.85 1.75 1.95 

.IC50,Mf Fulv. half-effect . μM .4.4 × 10−4 .4.3 × 10−4 . 4.5 × 10−4

T47D .rT Growth rate 1/day 0.6726 0.6512 0.6941 

.kT Carrying capacity cells .5.27 × 106 .4.6 × 106 . 5.9 × 106

.E0,T p Palbo. initial no-drug effect – 96.2 87.5 96.2 

.Imax,T p Palbo. max inhibition – 0.95 0.79 1.11 

.hT p Palbo. hill coefficient – 1.02 0.53 1.52 

.IC50,T p Palbo. half-effect . μM 1.13 0.64 1.62 

.E0,T f Fulv. initial no-drug effect – 100 82.5 117.5 

.Imax,T f Fulv. max inhibition – 0.84 0.74 0.95 

.hT f Fulv. hill coefficient – 1.85 0.2 1.32 

.IC50,T f Fulv. half-effect . μM .1.2 × 10−4 .−1 × 10−4 . 2 × 10−4

and PD effects model (Table 3 for Eqs. (5) and (6)). We considered only the case 
where the two cell types were present in equal fractions (i.e., .φi = 0.5) with a total 
cell count of .CM,i + CT,i = 7× 104 cells. We called this an “average patient.” Left 
untreated over the course of 28 days, unsurprisingly both cell lines were predicted 
to grow to the global carrying capacity of .K = KMφM + KT φT (see Fig. 15). 

We then introduced treatment to this average patient. We first simulated 125mg 
of palbociclib daily for 21 days followed by a period of rest for 7 days, with 125mg 
of fulvestrant on days 1 and 15, consistent with current treatment schedules [40] 
(Fig. 2). Our model predicted the resulting viabilities at the end of treatment to be 
0.39 (MCF7) and 0.51 (T47D). Here, cell viability was determined by comparing 
treatment outcomes to the untreated scenario for the same parameters, i.e., the 
viability of each cell line was calculated by comparing the total cells at the end 
of treatment to the total number of cells under no treatment. Repeating this strategy 
for a treatment course of 125mg of palbociclib for 5 days followed by 2 days of 
rest repeated over a period of 28 days, with 125 mg of fulvestrant administered on 
days 1 and 15, we found viabilities after 28 days of 0.38 (MCF7) and 0.47 (T47D), 
respectively (Fig. 2). Notably, this change in treatment schedule was predicted to 
somewhat lower the viability of T47D, which is the more aggressive cell type.
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Fig. 2 Comparison of alternate protocols for combination therapy. (a) Two established protocols 
are considered for combination palbociclib and fulvestrant treatment denoted by this schematic: 
(left) conventional treatment with 21 days on of palbociclib followed by 7 days of rest, and (right) 
shortened treatment with 5 days on of palbociclib followed by 2 days of rest, repeated for 28 
days. Both protocols include combination therapy with 125mg of fulvestrant on days 1 and 15. 
(b)–(d) Tumor growth dynamics on conventional treatment. (e)–(g) Tumor growth dynamics on 
shortened treatment. (b) and  (e) Fulvestrant pharmacokinetic model (Eqs. (10)–(12)). (c) and  (f) 
Palbociclib pharmacokinetic model (Eqs. (7)–(9)). (d) and  (g) Tumor response to treatment by 
pharmacodynamic model (Eqs. (5) and (6)). For (d) by comparing the total number of MCF7 
and T47D cells at the end of treatment to the trial that did not receive treatment (Fig. 14), the 
cell viability was calculated as 0.39 and 0.51 for MCF7 and T47D cells, respectively. For (g) by  
comparing the total number of MCF7 and T47D cells at the end of treatment to the trial that did not 
receive treatment (Fig. 15), the cell viability was calculated as 0.38 and 0.47 for MCF7 and T47D 
cells, respectively. Figure 16 shows plots of the corresponding effect function values over time 

3.2 Initial Tumor Composition Has Little Impact on Treatment 
Outcomes 

Given that our model predicted a slight reduction in T47D viability under shortened 
schedules for an average patient, we next interrogated how various levels of 
heterogeneity (e.g., intrinsic to the tumor population, PK, PD, and treatment 
scheduling) would affect outcomes. First, we explored the effects of the initial tumor
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Fig. 3 Results for varying initial tumor composition and total initial cell count, conventional 
treatment (i.e., 21 days on followed by 7 days off for palbociclib, Fig. 2a). Initial fraction of 
MCF7 cell line (. φM ) and the total number of cells (.CM + CT ) are varied over . 0 < φM < 1
and .101 < CM + CT < 105. (a) Viability of the MCF7 line for conventional treatment over 
varied .φM and .CM + CT . Viability is calculated by comparing the total number of MCF7 cells 
with treatment compared to the total number of MCF7 cells without treatment after 28 days; both 
trials have the same initial conditions and only differ in whether treatment is administered. (b) 
Viability of the T47D line for conventional treatment over varied . φM and .CM + CT . Viability for 
T47D is larger than that of MCF7. (c) The final fraction of MCF7 cell line (. φM ) after the 28 days 
of treatment. (d) The final fraction of MCF7 cell line (. φM ) after the 28 days of treatment compared 
to the initial fraction. Note the differences in the color bars between panels 

composition and initial total cancer cell count on the outcomes of different treatment 
regimens (Figs. 3 and 17). 

To isolate the effect of the initial tumor composition, we set all model parameters 
in both the palbociclib and fulvestrant PK models and their PD models to be their 
mean values (Tables 1, 2, and 3), as in the previous section. We then varied the initial 
fraction of MCF7 cells (. φM ), i.e., the less aggressive cell type, from 0 to 1 and the 
total initial cell count (.CM + CT ) from  .101 to .105 cells. To accurately capture the 
effect of changing these parameters, we chose values of . φM and .CM + CT in these 
ranges evenly spaced apart to give 440 unique parameter combinations. 

We found that the cell viability—defined as stated earlier by comparing the total 
cells at the end of treatment to the total number of cells under no treatment—and 
final fraction (.φM after 28 days of treatment) over these varying initial conditions 
showed decreased T47D viability for the shortened treatment (i.e., shortened vs.
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conventional, see Figs. 3 and 17). At lower initial cell counts, our model predicted 
that the more aggressive T47D cells were more likely to dominate at the end of 
treatment (Fig. 3). Our predictions show that as the initial number of cells increased, 
so too did the cell viability. This implies that with more cells, the drug combination 
becomes less effective. In both regimens, there appeared to be a switching point 
for the initial cell fraction above which MCF7 cells can dominate (. ∼0.75). 
Though T47D viability did decrease with the shortened treatment, there was not an 
exceptional difference between the shortened and conventional treatment, indicating 
that the dosing schedules are more dependent on other factors of variability, i.e., PK 
and/or PD. 

3.3 The Effects of Pharmacokinetic Variability Are Determined 
Uniquely Through Fulvestrant Interindividual Variability 

To quantify the effects of interindividual variability in PK parameters on the out-
comes of both MCF7 and T47D cells, we simulated the conventional dosing regimen 
of each drug in the population of virtual patients defined by our estimated population 
PK models (see Figs. 4 and 18) using the methods described in Sect. 2.3.1. 

For palbociclib, our results suggest that variability in the PK parameters has a 
negligible influence on tumor growth outcomes for both cell types (Figs. 4 and 19). 
Interestingly, examining the palbociclib parameters by classifying patients as either 
responders or non-responders based on their predicted terminal T47D cell count, 

Fig. 4 Predicted outcomes on conventional regimen in palbociclib virtual patient cohort. (a) 
MCF7 and (b) T47D cell counts over the course of the conventional treatment regimen with 
variation in palbociclib pharmacokinetic parameters summarized in Fig. 18. Color bar: viability 
of T47D cells
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Fig. 5 Some palbociclib pharmacokinetic parameters differ between responders and non-
responders. Virtual patients were classified as responders or non-responders based on the predicted 
terminal T47D cell count of each virtual patient. Upon performing a two-sided Kolmogorov– 
Smirnov test for each parameter between these two subcohorts, significant differences were found 
in (a) the elimination rate (. kel) and  (d) the absorption rate (. ka); no significant differences were 
observed in (b) the central volume (. VC ) and  (c) the intercompartmental clearance rate (. ke) 

we see a clear distinction in the cohort’s value for . kel , which is high for those with 
high terminal concentrations and low for those without (Fig. 5). Upon performing a 
two-sided Kolmogorov–Smirnov test for each parameter between the responder and 
non-responder subcohorts, we found significant differences in the elimination rate 
(. kel) and the absorption rate (. ka) (Fig. 5). 

In contrast, our results suggest that fulvestrant PK variability has a significant 
impact on tumor growth outcomes for both cell types (Fig. 6a, b). Distributions 
of fulvestrant PK parameters in the virtual patient cohort are provided in Fig. 20. 
We observed that virtual patients who sustained high concentrations of fulvestrant 
over the treatment period have significantly and consistently lower tumor growth as 
compared to virtual patients who more rapidly cleared the drug (Fig. 6c). 

Given the clear relationship between terminal fulvestrant concentrations and 
outcomes in our virtual patients, we defined virtual patients with “high concentra-
tion” to be those with terminal fulvestrant concentrations above .−1.4 log(. μM) and 
those with “low concentration” as those with concentrations below .−3.97 . log(μM)

(Fig. 7). Using a two-sided Kolmogorov–Smirnoff test to test for statistically 
significant differences in distributions between these two subcohorts, we found 
significant differences in all fulvestrant PK parameters between these groups. This 
suggests that not only is fulvestrant the key driver of PK heterogeneity (as compared 
to palbociclib), but that differences in final tumor viability were related to higher 
.tk0, VD, kel , and . k21 values and lower . k12 values than those virtual patients who 
were predicted to have strong responses to fulvestrant treatments (Fig. 7).
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Fig. 6 Spaghetti plots for fulvestrant virtual patients. Predicted dynamics for 438 patients in 
fulvestrant virtual patient cohort after treatment with 125mg of fulvestrant on days 1 and 15. 
(a) MCF7 cells, (b) T47D cells, and (c) fulvestrant concentrations. In all, color bar indicates total 
tumor viability 

3.4 Variability in Each Drug’s Maximal Effect Drives 
Heterogeneity in Outcomes 

To next explore the effect of PD variability on treatment outcomes, we fixed all 
model parameters to be that of an average patient (see Tables 1, 2, and 3) except 
the PD parameters in Eqs. (5) and (6) noted in . p̂ from Eq. (13). We generated 400 
parameter sets within this range as described in Sect. 2.3.2. We then examined 
whether we could discern a relationship between each individual’s response to 
treatment and their inherent PD response. For each virtual patient, the shortened 
treatment protocol was simulated, and the corresponding MCF7 and TD47 cell 
counts were recorded (Fig. 8a) along with the total number of tumor cells (Fig. 8b). 
We observed large variance in counts of both cell types across the cohort, but our 
model did not predict tumor eradication for any patient (Fig. 21). 

To examine the correlation between the final numbers of MCF7 and T47D cells at 
the end of the treatment, we next plotted the total number of MCF7 and T47D cells 
at the end of treatment (Fig. 8c) for each generated parameter set in our ensemble. 
Our results clearly show that as the final amount of MCF7 cells decreased, there
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Fig. 7 Fulvestrant pharmacokinetic parameters differ between virtual patients with high terminal 
fulvestrant concentrations and those with low terminal concentrations. We classified virtual 
patients as “high concentration” or “low concentration” based on the predicted terminal fulvestrant 
concentration of each virtual patient (Fig. 6c). Using a Kolmogorov–Smirnoff test for differences 
in distributions, significant differences were found in (a) absorption delay (. tk0), (b) central 
volume of distribution (. VD), (c) rate of elimination (. kel), (d) rate of transfer from central to 
peripheral compartment (. k12), and (e) rate of transfer from peripheral to central compartment 
(. k21). In legends, “high conc” corresponds to those virtual patients with high terminal fulvestrant 
concentrations above .−1.4 log(. μM) and “low conc” to those with low terminal fulvestrant 
concentrations below .−3.97 .log(μM)
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Fig. 8 Virtual cohort investigation into the effect of pharmacodynamics on combination treatment. 
400 virtual patients were generated with varying pharmacodynamic parameters (see . p̂ in Eq. (13)). 
The shortened 5-day-on, 2-day-off palbociclib regimen combined with two fulvestrant dosages was 
considered. (a) Cell counts for MCF7 (. CM ) and T47D (. CT ) cells over time plotted as mean and 
standard deviation of patient cohort. (b) Individual patient trajectories for total cell count .CM +CT . 
(c) A scatter plot of the final number of each cell type after 28 days of treatment, colored by the 
corresponding total number of cells after treatment. (d)–(e) Waterfall plots for patient specific 
.E0,T f and .Imax,T f against the total cells relative to the cohort average. Color bar corresponds to 
the value of each patient’s parameter normalized to a range between 0 and 1 

was a corresponding increase in the final T47D cell count and vice versa. In other 
words, final MCF7 and T47D were predicted to have an inverse linear relationship 
when PD variability was considered. We also correlated the final MCF7 and T47D 
cell counts with the final tumor size and found that the largest tumors are those that 
are predominately made up of T47D, whereas the smallest tumors are a mixture of 
both cell types. 

We then examined which PD characteristics were the major drivers of final tumor 
size. We found that . E0 and .Imax for T47D (i.e., .E0,T f ,.Imax,T f ) were most correlated 
with the final tumor size (Fig. 8d, e), as we predicted that small values of either 
parameter corresponded to large tumor sizes relative to the average (Fig. 22). All 
other parameters were not found to contribute significantly to the final tumor size. 

3.5 Examining the Long-Term Effect of Variation on the 
Combination Protocol 

Finally, with our understanding of the effects of cell-intrinsic, PK, and PD vari-
ability on combination palbociclib and fulvestrant therapy, we explored alternative 
treatment regimens to study whether we could improve upon the conventional
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Fig. 9 Investigating long-term dynamics of Regimens 1, 2, and 3. (a), (c), and (e) cancer cell ratios 
after treatment with Regimens 1, 2, and 3, respectively. Blue curves: ratio of cancer cell line MCF7 
given by .CM/(CM +CT ), and red curves: ratio of cancer cell T47D given by .CT /(CM +CT ). (b), 
(d), and (f) comparison of the total cell load of both cell lines after treatment with Regimens 1, 2, 
and 3, respectively 

and investigational schedules using virtual clinical trials of three different dosing 
regimens. On the current standard-of-care conventional 3-weeks-on/1-week-off 
dosing schedule of palbociclib, numerous patients have been reported to develop 
grade 3 or higher degree of neutropenia [15]. This adverse event could result 
in dose reduction or treatment discontinuation [15]. Furthermore, it has been 
hypothesized that the one week off-drug in the conventional combination schedule 
could potentially lead to an increase in the retinoblastoma tumor suppressor protein 
(Rb) [15]. 

Therefore, we explored alternative schedules with the aim of reducing the time 
off-drug (as compared to the conventional regimen) and limiting dose intensity to 
minimize off-target effects (Regimen 1). Additionally, clinical reports suggest that 
fulvestrant is most likely to cause acute liver injury [41, 42]. To reduce the risk 
of hepatotoxicity, we virtually reduce the dose level of fulvestrant and test the 
effectiveness of this dual-agent combination therapy in Regimens 2 and 3. Thus, 
we compared the following three schedules (Fig. 9): 

Regimen 1 125mg of oral palbociclib administered once daily for 5 consecutive 
days, followed by 2 days off, plus 500mg of intramuscular (IM) 
fulvestrant administered every 14 days for the first three injections 
and then every 28 days.
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Regimen 2 125mg of oral palbociclib administered once daily for 5 consecutive 
days, followed by 2 days off, plus 250mg IM of fulvestrant adminis-
tered every 7 days for the first five injections and then every 14 days. 

Regimen 3 500mg of oral palbociclib administered once daily for 5 consecutive 
days, followed by 2 days off, plus 250mg IM of fulvestrant adminis-
tered every 7 days for the first five injections and then every 14 days. 

Simulations of Regimen 1 suggest that this schedule leads to the competitive 
exclusion of aggressive T47D cells. Selective killing of the therapy sensitive 
cells removes competitive restriction of MCF7 cells (Fig. 9a). The troughs of the 
fluctuating total cell loads come down to 3.×107, while the peaks still reach a high 
level (Fig. 9b). In contrast, by reducing the dose of fulvestrant, Regimen 2 did not 
lead to competitive exclusion of the T47D cells (Fig. 9c) but resulted in an overall 
significant decrease in the total number of tumor cells (Fig. 9d). We further found 
that Regimen 3 did not lead to competitive exclusion of the T47D cells (Fig. 9e), 
and our model predictions suggest that the total number of cancer cells from both 
lines would continue to decrease (Fig. 9f). 

Overall, we found that increasing the dose level of palbociclib within acceptable 
toxicity levels could achieve a lower level of total cancer cell load. Importantly, 
based on the simulations of our three dosing regimens, it is possible that higher 
doses/concentrations of fulvestrant could cause competitive exclusion of the T47D 
cell line. As a result, the relative strength of the less aggressive MCF7 cells may in 
fact inhibit the efficacy of the palbociclib-fulvestrant combination therapy. 

4 Discussion 

Heterogeneity is a key factor in cancer therapeutic planning, particularly when 
considering combination therapies that may have overlapping and interacting factors 
driving treatment responses. The interest in establishing different treatment regi-
mens for palbociclib plus fulvestrant for the treatment of hormone-sensitive breast 
cancers gives rise to a number of questions relating to optimal scheduling. These 
include various scales of heterogeneity and their impact on combination palbociclib 
and fulvestrant, i.e., cell-intrinsic, PK, and PD heterogeneities. Understanding the 
contributions of each of these elements to tumor responses helps to establish new, 
and perhaps more potent and less toxic, therapeutic regimens. In this work, we used 
a simple model of interacting cells to quantify these contributions to help guide 
preclinical studies of palbociclib plus fulvestrant. 

Considering a tumor composed of lesser and more aggressive cells (i.e., MCF7 
and T47D cell lines), each type sensitive to a different degree to each drug, 
we predicted the overall tumor cell population and composition after treatment 
under variable initial fractions. Our model’s predictions showed that the initial cell 
fractions have little impact on the final tumor composition after treatment on either
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the shortened (i.e., 5 days on of palbociclib followed by 2 days of rest, repeated 
for 28 days) or conventional (21 days on of palbociclib followed by 7 days of rest) 
schedule. This is encouraging, in the sense that it suggests that it is primarily PK/PD 
variability controlling outcomes, and these can be more easily modulated to provide 
better outcomes. 

When considering both PK and PD heterogeneity through the generation of 
virtual patients, we found that palbociclib PK variability alone had little impact 
on outcomes, whereas the PK of fulvestrant (as a cytotoxic agent) was a strong 
determinant of final tumor compositions. This is perhaps expected, as palbociclib 
acts to freeze the cell cycle rather than to induce apoptosis. Our results further show 
that palbociclib and fulvestrant are truly synergistic when given in combination, 
with each being less effective on its own. 

Lastly, we used our investigations of the impact of various scales of heterogeneity 
to propose three alternative regimens to conventional and shortened. These regimens 
were designed to account for the undesired side effects of each drug through dose 
fractionation. Our model predictions suggest that it is possible that fulvestrant could 
cause competitive exclusion of the MCF7 (i.e., less aggressive) cells composing the 
tumors in our study. Indeed, our results showed that the more aggressive T47D cells 
act to inhibit the efficacy of the palbociclib-fulvestrant combination therapy, acting 
similarly to drug tolerant cells despite us not considering resistance in our study. 
Moreover, within acceptable toxicity levels, increasing the dose level of palbociclib 
could achieve better outcomes with respect to final tumor size. 

In our model, we implemented a logistic growth function to model tumor growth. 
While Gompertzian tumor growth returned a similar Akaike information criterion 
and was able to capture the data (Fig. 11), we do not anticipate a large difference in 
our predictions between the two growth models. This is largely due to the fact both 
exhibit sigmodal style growth to a carrying capacity. 

There are limitations to our approach. The lack of robust clinical data measuring 
this combination therapy presents a limitation in the reliability of our predictions. 
Given this is an exploratory study focused primarily on the effects of different 
sources of heterogeneity, we believe our results support further experiments into 
combination therapy that may be used in the future to validate our model predic-
tions. Our parameterization could be further validated with in vivo experiments. 
Future work could also look to refine the number of parameters in the model and 
introduce simpler terms to model the effect of the drugs on the cancer cell population 
or simplify the cancer growth function. 

Though we considered heterogeneity in tumor composition, we did not include 
the mammary stem cell cascade [43, 44], nor does our model include the actions 
of the immune system. We opted for the simpler model studied herein to provide 
a straightforward initial (more in vitro-focused) conceptualization of the impact 
of many scales of heterogeneity affecting treatment outcomes under combination 
palbociclib and fulvestrant; future studies will include key in vivo factors impacting 
therapies. As seen in Fig. 12a, there is a loss of fidelity in the MCF7 fits for high 
fulvestrant concentrations. This is a byproduct of the standard nonlinear effect
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function in Eq. (1) used here. As can be seen in the data, after an initial plateau 
beginning around .10−2 μM, there is a second dip in the observed viability around 
. 1μM. Unfortunately, our effect function is unable to capture this second decrease, 
resulting in a higher predicted maximal effect than what is suggested in the data. 
To confirm the asymptotic behavior of MCF7 cells under treatment with fulvestrant, 
it would be necessary to have more viability data above . 1μM. Nonetheless, as our 
maximal effect is potentially slightly higher than in the data, our predictions are 
more conservative with respect to the overall treatment response to fulvestrant. We 
also did not consider the ways in which each degree of heterogeneity interacts with 
one another, opting instead to study each individually. This can be incorporated in 
subsequent iterations of our work. 

Our study provides a roadmap for the continued study of CDK4/6 inhibitors 
and combination therapies in anti-cancer treatments more broadly. Despite using a 
simple model of tumor growth, our model’s predictions showed important, perhaps 
unexpected behaviors, including how competition between less and more aggressive 
cells in a heterogeneous tumor impacts treatment scheduling. Ultimately, this work 
demonstrates the importance of merging mathematical modeling within preclinical 
studies to improve drug development considerations. 

Supplementary Information 

See Figs. 10–22. 

Fig. 10 Fit of logistic growth to cell count measurements for MCF7 and T47D from Vijayaragha-
van et al. [37]. A logistic growth curve (Eq. (2)) was fit to the cell count measurements to obtain 
a cell growth rate . ri and a cell carrying capacity . Ki , where  i represents either M or T for cell 
type MCF7 or T47D, respectively. The fit is given as a solid curve with a shaded 95% confidence 
interval. The data are represented as solid points. The resulting parameters are in Table 3
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Fig. 11 Comparative analysis of model selection to MCF7 and T47D cell count data. We 
compared the least-squares fit for (a, d) exponential growth, (b, e) logistic growth, and (c, f) 
Gompertzian growth. We calculated the corrected Akaike information criterion for each figure, 
which returned (a) 134.3, (b) 131.1, (c) 134.5, (d) 131.7, (e) 116.5, and (f) 115.0. We also 
considered the confidence intervals plotted for each model fit. Given that the Gompertzian growth 
has wider confidence intervals compared to logistic growth, we concluded that logistic growth was 
a good model choice for tumor growth 

Fig. 12 Fit of drug effect parameters in the pharmacodynamics model in Eqs. (5) and (6) to 
cell viability measurements for fulvestrant and palbociclib on MCF7 and T47D. Cell viability 
measurements for (a) fulvestrant on MCF7 cells [38] and  (b) fulvestrant on T47D cells [39]. 
Cell viability measurements for (c) palbociclib on MCF7 and (b) palbociclib on T47D by 
Vijayaraghavan et al. [37]. The resulting parameters are in Table 3. In (a) the inset zooms in on the 
confidence intervals surrounding the data fit
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Fig. 13 Fulvestrant pharmacokinetic parameter estimation fits. Population pharmacokinetic data 
from Robertson et al. [36] was pooled to extract the mean and lower and upper bounds of the data. 
Pharmacokinetic parameters were estimated for Eqs. (10)–(12) to these data assuming lognormal 
distributions on parameters subject to interindividual variability using a standard nonlinear mixed 
effects model in Monolix 

Fig. 14 Virtual patient parameter values for investigation varying the drug effect pharmacody-
namic parameters. Parameters relating the effect of fulvestrant and palbociclib on MCF7 and T47D 
were sampled from normal distributions as described in Sect. 2.3.2 to obtain 400 unique parameter 
combinations corresponding to 400 virtual patients



Combination Treatment of Hormone-Sensitive Breast Cancer 157

Fig. 15 Tumor growth 
dynamics under no treatment. 
The total number of MCF7 
and T47D cells, .CM and . CT , 
respectively, was simulated in 
the absence of palbociclib and 
fulvestrant, i.e., . F = P = 0

Fig. 16 The effect functions corresponding to the simulation in Fig. 2. The effect function Eq. (1) 
for fulvestrant (a)–(b) and palbociclib (c)–(d) for the two dosage protocols considered in Fig. 2: 
(a), (c) shortened treatment with palbociclib 5 days on and 2 days off and (b), (d) conventional 
treatment with palbociclib 21 days on and 7 days off. Both protocols include combination therapy 
with 125 mg of fulvestrant on days 1 and 15 

Analysis of the Two Cell Line Model Dynamics 

To understand the dynamics of the system of ODEs used in our study, we carried out 
a linear steady-state analysis to determine long-term stability of a simplified version
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Fig. 17 Results for varying initial tumor composition and total initial cell count, shortened 
treatment (i.e., 5 days on followed by 2 days off, repeated for 28 days, for palbociclib, Fig. 2a). 
Initial fraction of MCF7 cell line (. φM ) and the total number of cells (.CM + CT ) are varied over 
.0 < φM < 1 and .101 < CM + CT < 105. (a) Viability of the MCF7 line for shortened treatment 
over varied .φM and .CM + CT . Viability is calculated by comparing the total number of MCF7 
cells with treatment compared to the total number of MCF7 cells without treatment after 28 days; 
both trials have the same initial conditions and only differ in whether treatment is administered. 
The overall viability of MCF7 is less for the shortened treatment, compared to the conventional 
treatment. (b) Viability of the T47D line for shortened treatment over varied .φM and .CM + CT . 
The overall viability of T47D is less for the shortened treatment, compared to the conventional 
treatment. (c) The final fraction of MCF7 cell line (. φM ) after the 28 days of treatment. (d) The  
final fraction of MCF7 cell line (. φM ) after the 28 days of treatment compared to the initial fraction. 
At lower initial total cell numbers, T47D has a greater propensity to overtake the cancer tumor and 
take up a greater fraction of the total tumor. Note the differences in the color bars between panels 

of the system. We took the one-drug model in Eqs. (3) and (4) and considered only 
the effects of palbociclib on MCF7 and T47D cells. 

We assumed both cell lines share the same carrying capacity due to them co-
existing in the same spatial location and hence having the same spatial limitations, 
that is, .K = KM = KT . For convenience for this analysis, we also assume that all 
PD parameters are equivalent for the two cell types, i.e., .I50,Mp = I50,T p = IC50, 
.hMp = hT p = h, .Imax,Mp = Imax,T p = Imax , and .E0 = E0,Mp = E0,T p , etc. For  
convenience, we denote .rME0 = r̃M and .rT E0 = r̃T .
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Fig. 18 Distributions of palbociclib virtual patient pharmacokinetic parameters: (a) elimination 
rate (. kel), (b) central volume (. VC ), (c) intercompartmental clearance rate (. ke), and (d) absorption 
rate of palbociclib (. ka) constructed from 500 virtual patients sampled as described in Sect. 2.3.1. 
Experimental data suggests negligible variation in the parameter . VP . This parameter is thus taken 
to be constant, hence the lack of distribution. The virtual patient population randomly generated to 
produce these distributions is maintained in Fig. 5 

Fig. 19 Parameter sensitivity of the palbociclib pharmacokinetic parameters: (a) elimination rate 
(. kel), (b) central volume (. VC ), (c) intercompartmental clearance rate (. ke), and (d) absorption rate 
of palbociclib (. ka). Curves convey changes in cell counts resulting from varying each parameter 
uniformly within three standard deviations of its mean (Table 1). Numerical values on the axes 
correspond to the fractional deviation of an end-of-treatment cell count from its mean scaled 
by the fractional deviation of one standard deviation of a parameter from that parameter mean. 
Qualitatively, the distribution of a parameter non-negligibly influences final cell count if the curves 
have coordinate values far from zero and close to one. Thus, our results show that all the parameter 
distributions have a negligible influence on the final cell counts
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Fig. 20 Distributions of fulvestrant virtual patient pharmacokinetic parameters: (a) absorption 
delay (. tk0), (b) central volume of distribution (. VD), (c) rate of elimination (. kel), and (d)–(e) rates 
of transit between central and peripheral compartments (. k12 and . k21). Distributions describe the 
438 virtual patients in the fulvestrant virtual patient cohort, generated as described in Sect. 2.3.1 

Fig. 21 Results of simulating the virtual cohort with varying pharmacodynamics. (a)–(c) the mean 
and standard deviation for the 400 virtual patients’ cohort simulated with varying effect parameters 
(Fig. 12). (d)–(f) the corresponding individual patient trajectories
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Fig. 22 Results of simulating the virtual cohort with varying pharmacodynamics. Each column 
corresponds to a virtual patient where the patients are ordered by the number of cells (left: T47D 
and right: MCF7) at the end of the treatment. The rows correspond to the parameter value where 
the column is the normalized value for that parameter. The color bar corresponds to the value of 
the parameter normalized between 0 and 1 

The model has three isolated equilibrium points 

. (C∗
M,C∗

T ) = (0, 0), (C∗
M,C∗

T ) = (0,K), (C∗
M,C∗

T ) = (K, 0)

and a line containing infinite number of equilibrium points: 

. CM + CT − K = 0.

Linear stability analysis shows that .(C∗
M,C∗

T ) = (0, 0) has two positive eigenvalues 

. λ01 =
⎾ 
ICh

50 − (Imax − 1)P h
⏋
r̃T K > 0 and

λ02 =
⎾ 
ICh

50 − (Imax − 1)P h
⏋
r̃MK > 0,

with corresponding eigenvectors 

. v01 = [1, 0]T , v02 = [0, 1]T .

The equilibrium .(C∗
M,C∗

T ) = (0,K) has eigenvalues: 

. λ11 =
⎾ 
(Imax − 1)P h − ICh

50

⏋
r̃T K < 0 and λ12 = 0,

with corresponding eigenvectors 

.v11 = [0, 1]T , v12 = [−1, 1]T .
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Fig. 23 Simulated vector field. Three equilibria .(0, 0), .(0,K), and  .(K, 0) are denoted in red 
circles. The line with infinite equilibria, .CM + CT − K = 0, is plotted in red. The eigenvector 
corresponding to the negative eigenvalues (i.e., . λ11, . λ22, and . λ2) is denoted by the green lines. The 
eigenvector corresponding to the zero eigenvalue is represented as a pink line and collapses with 
the equilibrium line, .CM + CT − K = 0. As a result, the vector field (blue arrows) points toward 
the red equilibrium line. Moreover, there is no movement in the red line 

Lastly, the equilibrium .(C∗
M,C∗

T ) = (K, 0) has two eigenvalues 

. λ21 = 0 and λ22 =
⎾ 
(Imax − 1)P h − ICh

50

⏋
< 0r̃MK < 0,

with corresponding eigenvectors 

. v21 = [−1, 1]T , v22 = [1, 0]T .

The line of infinite equilibria .CM + CT − K = 0 has two eigenvalues 

. λ1 = 0, and λ2 =
⎾ 
(Imax − 1)P h − ICh

50

⏋
(K − CM)r̃M

+ r̃T CT

⎾ 
(Imax − 1)P h − ICh

50

⏋
< 0,

with corresponding eigenvectors 

.v1 = [−1, 1]T , v2 =
⎾

(K − CT )(P h(Imax − 1) − ICh
50)r̃M

CT r̃T (P h(Imax − 1) − ICh
50)

, 1

⏋
.
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Flow along nonzero eigenvalues is much faster than flow along zero eigenvalues. 
Therefore, in the fast timescale, cell trajectories are repelled from equilibrium 
.(C∗

M,C∗
T ) = (0, 0) and quickly converge to the neighborhood of the eigenvector 

associated with zero eigenvalue. Moreover, the eigenvector associated with zero 
eigenvalue .v12 = v21 = v1 = [−1, 1]T collides with the equilibrium line 
.CM+CT −K = 0, which is the slow manifold. Therefore, in the slow timescales, the 
flow on the slow manifold has no movement. It implies that the cancer population 
will eventually converge to the carrying capacity K but will have a different 
proportion depending on the initial fractions. A simulated vector field under the 
assumption .KM = KT = K is shown in Fig. 23. 
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of Ventilator-Induced Lung Injury in 
Preterm Rat Pups 
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1 Introduction 

Infants born at less than 28 weeks gestation or less than 1000 g in weight are 
considered extremely preterm and are prone to a multitude of breathing issues 
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associated with bronchopulmonary dysplasia (BPD) and lifelong co-morbidities 
[1]. BPD may also be linked to maternal infection during pregnancy [2], such as 
chorioamnionitis, which can lead to preterm birth and lung distress [3]. Respiratory 
therapies, such as non-invasive pressure support and surfactant replacement, are less 
effective in the extremely preterm demographic, resulting in the use of invasive 
mechanical ventilation applied as a last resort. However, such treatment can cause 
various forms of trauma, such as hyperoxia or endotracheal tube injury, leading 
to ventilator-induced lung injury (VILI) that can be exacerbated by infection. 
Inflammation from VILI and co-infections changes lung structure in ways that are 
hypothesized to stiffen them by increasing their resistance (opposition to movement) 
or decreasing compliance (ability to change the volume with applied pressure). 
However, it is not clear which particular histological changes are the proximate 
agents of inflammation-induced stiffening. The challenges associated with clinical 
studies in this and other fragile demographics necessitate computational and animal 
experiments to understand these mechanisms. 

Mandell et al. [2] addressed this question using a neonatal rat model of 
chorioamnionitis to investigate what altered lung mechanics underlie the pressure-
volume (PV) responses to mechanical ventilation. Maternal infection was simulated 
by prenatal exposure to an endotoxin (ETX). Their data included rat pup pressures, 
volumes, and histology images acquired at birth (D0) and day 7 (D7) of life, with 
and without ETX, and under either protective (SAFE) ventilation or two levels 
of injurious ventilation. Metrics of respiratory mechanics were determined from a 
forced oscillation technique and by applying standard image analysis techniques 
to the histology. Their results suggested that infection-related inflammation was 
correlated with a stronger VILI response, presenting in part as progressive airspace 
enlargement and increased compliance with increased inspiratory pressure. Interest-
ingly, this is counter to what happens in adults. In the preterm pup demographic, this 
was speculated to result from insufficient collagen due to incomplete development 
of lung tissue. However, the group receiving ETX and the highest level of injurious 
ventilation exhibited decreased compliance and increased stiffness, possibly result-
ing from alveolar flooding, reducing lung capacity. This counter-intuitive result 
(see Fig. 2 of [2] for visualization) suggests additional analyses are needed to help 
elucidate mechanisms. 

The histology was evaluated in Mandell et al. [2] with radial alveolar counts 
(RAC) and mean linear intercept (MLI). These techniques, while well-established, 
are subject to sampling bias [4, 5], can be labor-intensive, and may quantify 
only some aspects of the lung structure. Hence, there may be some benefit 
to the development of additional histological metrics. In particular, we expect 
that septal thinness and crimp (tortuosity) would be significantly correlated with 
parenchymal compliance; thickened and/or straight septa would be expected to be 
stiffer. Localized pockets of inflammation, in the form of locally thickened tissue, 
would be expected to pre-stress the parenchyma, rendering it stiffer. Bespoke image 
processing techniques could quantify such features. 

Adverse respiratory system mechanics have traditionally been assessed with the 
classical single-compartment hydraulic model, dating back at least as far as the
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1950s [6, 7]. This model consists of a pressure drop across the lung represented 
as a combination of a resistive component proportional to the rate of change 
of volume and an elastic component proportional to volume. Such models have 
grown in complexity over the years with the addition of new features such as 
lung heterogeneity, chest wall and other compartments, nonlinear components, 
respiratory muscle driving functions, ventilation, and even gas composition and 
cardiovascular dynamics [8–12] but have been overlooked in favor of simpler 
models in the context of data fitting [13–15]. The newer constant phase model used 
by Mandell et al. [2, 16] fits impedance measurements from a forced oscillation 
technique to determine a different set of mechanics metrics describing airways 
resistance, energy dissipation, and energy storage in the lungs [17]. However, it 
is also only a single-compartment model and a linear characterization of respiratory 
dynamics. Despite their growing prevalence and complexity, respiratory models are 
still primarily applied to adult physiology, in part due to the scarcity of relevant 
data and associated parameterization for children and infants. Applying parameter 
inference to a compartmental model specifically designed and evaluated against 
typical PV data obtained in a clinical setting may help assess the mechanics of a 
challenging demographic such as the extremely preterm infant. 

In the current study, we explored new alternate parameter inference techniques 
via nonlinear modeling and image analysis applied to respiratory mechanics data 
from a neonatal demographic that is difficult to obtain and analyze. The experi-
mental data described above obtained from ventilated rat pups in Mandell et al. 
[2] was used because it serves as an accepted surrogate of human data, is current, 
is amenable to our techniques, and generates an interesting open question. The 
primary objective was to determine if the proposed parameter inference techniques 
can uncover new information about breathing mechanics in the context of additional 
model complexity and for preterm infants. Secondary to the main objective was 
the opportunity to address the particular open questions from Mandell et al. 
[2] regarding mechanisms underlying changes in breathing mechanics related to 
inflammation and VILI. 

We proposed a reduced compartmental model of lung pressure and volume that 
can capture the observed PV dynamics in the data for simulated experimental 
mechanical ventilation (Sect. 2.2). We then applied global and local sensitivity 
analyses to remove non-influential model components and obtain a minimal model 
(Sect. 2.3). Next, we performed parameter estimation on this minimal model 
(Sect. 2.4) with a gradient-based optimization algorithm and compared key param-
eter values for different groups. Concurrently, we developed and applied novel 
image analysis procedures for quantifying injury-related parameters extracted from 
histological images (Sect. 2.5). Metrics extracted from the images were statistically 
analyzed and their connections with the model parameters from this study and 
previously obtained biomechanical and biochemical data [2] were investigated. 
Results for all analyses are given in Sect. 3. Finally, we discussed our results 
in Sect. 4, including correlations that inspire new hypotheses that may improve 
understanding of the driving mechanisms of VILI response.
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2 Methods 

2.1 Experimental Data 

The experimental groups from Table 1 of [2] were divided into pups from mothers 
injected with ETX and pups from healthy controls injected with saline (SAL). 
These were further divided into a group ventilated immediately upon birth at D0 
and a group ventilated at D7. A protective level and two harmful levels (maximum 
pressures of 20 cm H. 2O and 24 cm H. 2O, denoted P20 and P24, respectively) of 
ventilation were administered. See Fig. 1 for a flowchart describing the experimental 
ventilation procedure. 

2.2 Reduced Compartmental Model of Pressure-Volume 
Dynamics 

We adapted a “reduced model” from a previous compartmental model developed by 
Ellwein Fix et al. [18] to simulate breathing mechanics in a preterm human infant. 

Fig. 1 Flowchart of the experimental procedure of ventilation. The experiment includes several 
recruitment maneuvers within the measurement block, which would add complexity that may be 
challenging to model if we chose to extend our model to simulate the entire experimental sequence
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We retained compartments describing the airways with nonlinear resistance and the 
lungs with a nonlinear compliance in series with a parallel viscoelastic resistance 
and compliance. The diaphragm driving pressure from the previous model was 
replaced by mechanical ventilation. The original model [18] included components 
that could differentiate between types of airways and levels of chest wall com-
pliance; given the limited experimental pressure and volume data characterizing 
the lungs directly, it was expected that the impact of these components would be 
unobservable. The extremely high chest wall compliance observed in preterm rat 
pups and human neonates was expected to contribute a nearly negligible amount to 
total compliance, further supporting the choice to remove the related compartment 
from the model [2, 19]. A schematic of the reduced model is given in Fig. 2. Tables 1, 
2 give definitions for all variables and parameters, respectively. 

Fig. 2 Schematic of compartmental model shown as (a) an electrical circuit analog and (b) a  
pressure-volume analog. Simulated mechanical ventilation pressure drives the model at the airway 
opening (. Pao). Fixed pressures include alveolar (. PA) and lung tissue (. PT ). Pressures across 
compliant boundaries include lung elastic (. Pel) and lung viscoelastic (. Pve), such that transmural 
pressure across the lung .Pl = Pel + Pve. Volumetric air flow . V̇ is positive in the direction of the 
arrows across the small airways with resistance . Rs and across the lungs with viscoelastic resistance 
.Rve, thereby increasing lung volume with positive ventilation. Compliances are denoted by . Ci , 
where i matches the subscript for the corresponding zone. .VA denotes the volume of the airway 
lung compartment. Pleural pressure (. Ppl) is modeled as equal to atmospheric pressure (. Patm) since  
chest wall effects and diaphragm breathing are considered negligible



172 R. A. Luke et al.

Table 1 Variables (states and constitutive quantities) used in the reduced and minimal models. (-) 
denotes a dimensionless quantity 

Variable Physiological description (units) Source 

.Rs Small airway resistance (cm H. 2O . · s . · mL. −1) Eq. (7) 

.CA Lung compliance (mL . · (cm H. 2O). −1) 

.V̇ Airflow rate (mL . · s. −1) 

t Time (s) . a 

.Frec Recruitment function, contribution of (de)recruitment of alveoli to 
compliance (-) 

Eq. (10) 

Pressures (cm H. 2O) 

.Pao Airway opening pressure Eq. (11), . a 

.PA Lung alveolar pressure 

.PT Lung tissue pressure 

.Pel Lung elastic recoil pressure 

.Pve Viscoelastic pressure 

.Pl,dyn Dynamic pulmonary pressure Eq. (1) 

Volumes (mL) 

.VA Volume of airway lung compartment Eq. (8) 

.Vel Volume due to lung unit structure aggregate elasticity Eq. (9) 

. aAdapted from data [2] 

2.2.1 State Equations 

State variables include pressures .P(t) and volumes .V (t) within each compartment. 
Airflow through the cumulative airways is equal to the change in volume across lung 
compartments and is represented by both .V̇ (t) and .dV/dt . The basic mass balance, 
Ohm’s law, and Kirchoff’s law are used with the circuit/hydraulic analog of flow 
such that resistances .R = ΔP/V̇ and compliances .C = ∂V/∂P . Pressures denoted 
by . Pao, . PA, and . PT represent airway opening, alveolar, and (lung) tissue pressures, 
respectively. The dynamic transmural pressure across the lung .Pl,dyn is the sum of 
elastic recoil pressure and the viscoelastic pressure: 

.Pl,dyn = Pel + Pve, (1) 

which are described respectively by 

.Pel = PA − PT , (2) 

.Pve = PT − Patm. (3) 

Differentiating .Pel with respect to time and applying the chain rule gives 

.
dPel

dt
= ∂Pel

∂VA

dV

dt
= 1

CA(VA)

dV

dt
, (4)
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Table 2 Parameters used in the reduced and minimal models. Nominal values are those used for 
simulation (Sect. 3.1) and as initial guesses in optimization (Sect. 2.4); ranges are the bounds used 
in Morris screening (Sect. 2.3.1). . Rs is included here as a parameter due to results from sensitivity 
analyses. The fixed parameters are not varied via sensitivity analyses (Sect. 2.3). (-) denotes a 
dimensionless quantity 

Parameter Physiological description (units) Notes Nominal value [range] 

IC Inspiratory capacity volume (mL) .a 0.5 [0.233, 1.11]. c 

.Cve Viscoelastic compliance (mL . · (cm H. 2O). −1) .a 0.0159 [0.0044, 0.0769]. c 

k Characterizes slope, aggregate lung elasticity 
((cm H. 2O). −1) 

.b 0.1 [0.001,0.2] 

.Ks Small airway resistance low pressure 
coefficient (-) 

.b 15 (0,20] 

.γ Maximum recruitable fraction of lung (-) .b 0.9 (0,1] 

.β Baseline fraction of lung recruited at . Pel = 0 
(-) 

.b 0.5 (0,1] 

Pressures (cm H. 2O) 

.cFR
Mean opening pressure (recruitment curve) .b 17 [4, 25] 

.cFD
Mean closing pressure (derecruitment curve) .b 6 [0, 20] 

.dFR
Variance in opening pressure (recruitment 
curve) 

.b 4 [1, 10] 

.dFD
Variance in closing pressure (decruitment 
curve) 

.b 0.1 [0.01, 5] 

Resistances (cm H. 2O . · s . · mL. −1) 

.Rs,d Change in small airway resistance .b 0.3 [0.225, 0.375] 

.Rs,m Minimum small airway resistance .b 0.1 [0.075, 0.125] 

.Rs Small airway resistance .a 0.276 [0.0002, 4.231] 

.Rve Lung viscoelastic resistance .a 12 [2.27, 73.5] 

Fixed parameters for ventilation 

.Patm Atmospheric pressure (cm H. 2O) 0 

.Pmax Maximum recruitment maneuver pressure (cm 
H. 2O) 

.a 30 

.nsteps Number of stair-step pressure increases (-) .a 7 

.τ Total time of ventilation procedure (s) .a 16 

.td Time delay in recruitment maneuver (s) .a 0.25 

.tw Stair-step width (s) .a 0.05 

. a Nominal values taken directly from or motivated by biomechanical metrics computed from the 
data [2]; in particular, . Rs , .Rve, and total compliance compare to . RN , G, and . 1/H 
. b Morris screening bounds hand-tuned to produce realistic pressure-volume curves 
. c Ranges widened during sensitivity analysis to [0.1, 1.5] for IC and [0.001, 0.1] for . Cve; see  
Sect. 2.3 

where lung elastic compliance is calculated via symbolic computation as . CA(VA) =
dVA

dPel
. Likewise, for the viscoelastic component, we can state 

.
dPve

dt
= ∂Pve

∂VCve

dVCve

dt
= 1

Cve

dVCve

dt
, (5)
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where .Cve is a constant viscoelastic compliance. Since . dV
dt

= dVRve

dt
+ dVCve

dt
, i.e., 

the sum of the volume changes (flows) over .Rve and . Cve, Eq. (5) can be rewritten as 

.
dPve

dt
= 1

Cve

⎧
dV

dt
− dVRve

dt

⎫
. (6a) 

= 
1 

Cve

⎧
dV 
dt 

− 
Pve 
Rve

⎫
. (6b) 

2.2.2 Constitutive Equations 

The previous representation of upper airway dependence on airflow from [18] does 
not apply in our minimal model due to the quasi-static ventilation scheme and 
resulting data. We restrict the airway model to the resistance of the small airways 
such as bronchioles, which are presumed to decrease resistance with increased 
alveolar volume . VA. The equation for the resistance of the small airways . Rs reflects 
this inverse relationship: 

.Rs = Rs,d exp

⎾−KsVA

IC

⏋
+ Rs,m, (7) 

where .Rs,d is the change in small airway resistance, .Ks is the small airway 
resistance low pressure coefficient, IC is the inspiratory capacity volume, and 
.Rs,m is the minimum small airway resistance. Parameter . Ks > 0. As .VA → 0, 
.Rs → Rs,m + Rd,m; likewise, as .VA → IC, .Rs → Rs,m. 

The volume of the lung compartment .VA is given by the product of the volume 
due to aggregate elasticity of the lung unit structure . Vel and the fraction of recruited 
alveoli .Frec. Both quantities are functions of lung elastic recoil pressure: 

.VA = Vel(Pel)Frec(Pel). (8) 

We model .Vel as in prior studies [18, 20, 21] with a saturated exponential function 

.Vel = IC[1 − exp(−kPel)], (9) 

where k is a parameter that characterizes slope and aggregate lung elasticity. The 
alveolar (de)recruitment function .Frec changes for recruitment and derecruitment of 
alveoli. Following [21], we assume that the form of the models for recruitment and 
derecruitment are identical except that the closing alveolar pressures are lower than 
the opening pressures. Thus, we model (de)recruitment by the piecewise function
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.Frec =

⎧⎪⎪⎨
⎪⎪⎩

β + (γ − β)

⎧
1−exp(−Pel/dFR

)

1+exp
⎾−(Pel−cFR

)/dFR

⏋
}

, 0 ≤ t < τ/2

β + (γ − β)

⎧
1−exp(−Pel/dFD

)

1+exp
⎾−(Pel−cFD

)/dFD

⏋
}

, τ/2 ≤ t ≤ τ

, (10) 

where . β is the baseline fraction of lung recruited at .Pel = 0, . γ is the maximum 
recruitable fraction of lung, .dFR

is the variance in opening pressure, .cFR
is the mean 

opening pressure, .dFD
is the variance in closing pressure, .cFD

is the mean closing 
pressure, and . τ is the total time of the ventilation procedure. Here, the parameters 
. cF and . dF are allowed to vary between inspiration and expiration for one breathing 
loop for a single rat. The subscripts R and D denote recruitment and derecruitment, 
respectively. 

The data in this study come from a quasi-static stepwise ventilation [2], thus 
the driving pressure is a simulated protocol applied at the airway opening . Pao. The  
stepwise ventilation is a 16-second procedure, whereby the airway opening pressure 
.Pao is increased from zero (or nearly zero) to 30 cm H. 2O in a stair-step fashion: the 
maneuver comprises seven increases in pressure (7 “steps up”) with roughly equal 
duration and comparable decreases from maximum pressure back down to zero. 
We approximate the stair-step function with the sum of narrow .tanh functions and 
include the possibility for a slight delay . td in order to better match the experiments: 

. Pao(t) = 1

2

Pmax

nsteps
switch(τ/2 − t)

N⎲
j=0

⎾
1 + tanh

⎧
t − [jτ/(2nsteps) + td ]

tw

⎫⏋
,

(11) 

where .Pmax is the maximum recruitment maneuver pressure, .nsteps is the number 
of stair-step pressure increases, . τ is the total time of the ventilation procedure, . td
is the time delay in the recruitment maneuver, and . tw is the stair-step width. The 
narrowness of the stair-step is enforced by using .tw = 0.05 s; the value is selected to 
best match experimental ventilation pressure curves [2]. Here, .N = ⎿t/(τ/2nsteps)⏌, 
.Pmax = 30 cm H. 2O, .nsteps = 7, .τ = 16 s, .td = 0.25 s, and switch.(x) is essentially 
the sign function that returns 1 or .−1 depending on the sign of the argument, but 
takes the value 1 at 0: 

.switch(x) =
⌠

sgn(x), x /= 0

1, x = 0
. (12) 

The switch function facilitates the step direction: “up” until .t = 8 s and then “down” 
until .t = 16 s. 

2.2.3 Model Formulation 

Recalling the relationship between resistance, change in pressure, and time deriva-
tive of volume, we may write
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.
dV

dt
= Pao − Pl,dyn

Rs

. (13) 

We also recall that .Pl,dyn is calculated via Eq. (1). Substitution into Eqs. (4) and (6b) 
yields the system for viscoelastic and elastic pressure, .Pve and . Pel , which is given 
by 

.
dPel

dt
= 1

CA(VA) Rs

(Pao − Pel − Pve), (14) 

.
dPve

dt
= 1

Cve

⎧
Pao − Pel − Pve

Rs

− Pve

Rve

⎫
. (15) 

Equations (14)–(15) are solved on .t ∈ [0, 16] s because this time frame represents 
one mechanical PV ventilation maneuver. The initial conditions used are . Pel(0) =
0.954 cm H. 2O and .Pve(0) = 0 cm H. 2O following [18]. Then, .Vel and .VA are 
calculated via Eqs. (8) and (9). 

The system in Eqs. (14)–(15) is solved using ode15s in MATLAB. We use 
default ODE solver and optimization tolerances of .10−3 for the relative error 
tolerance and .10−6 for the absolute error tolerance. 

2.3 Sensitivity Analysis 

The reduced model includes components that we hypothesize could reflect the 
physiology of breathing mechanics as evident in PV data, especially nonlinearities. 
Determination of the impact of model parameters on model output and estimation of 
reasonable parameter values requires a mathematical understanding of the practical 
identifiability of the underlying parameters in the context of available data [22]. 
Parameters that are identified as insensitive or correlated with other sensitive 
parameters are commonly handled either by keeping them at a reasonable nominal 
value for all data sets or by removing them from the model altogether. We perform 
two analyses for this purpose: (1) the Morris global screening method, a one-at-
a-time method that calculates a set of randomized but structured finite difference 
derivatives over the full parameter space versus a set of key scalar outputs; and (2) 
a coarse univariate local sensitivity analysis, whereby each parameter is perturbed 
by a factor of two starting with nominal parameters describing an ‘average’ animal 
subject and the magnitude of change in scalar outputs is categorized by effect size. 
Sensitivity analyses are applied to the parameter set: 

.p = {Ks, IC, Cve, Rve, Rs,d , Rs,m, k, cFR
, cFD

, dFR
, dFD

, β, γ }. (16) 

Note that the ventilation setting parameters are not included, as they are taken 
directly from the experimental settings.



Towards a Mathematical Understanding of Ventilator-Induced Lung Injury 177

2.3.1 Morris Effects Analysis 

As a global sensitivity analysis, we use the technique of Morris elementary effects, 
or Morris screening analysis [23]. In contrast to local sensitivity analysis, which 
studies the effect of individual parameter perturbations, global sensitivity analysis 
explores the effect of combinations of parameters that are perturbed across the 
feasible parameter space [24]. The method aims to compute “elementary effects” 
that approximate derivatives of model output changes with respect to parameter 
perturbations [25, 26]. These are then combined in order to rank parameter 
sensitivities. 

Let .f (t;p1, . . . , pn) be the model output with respect to parameters . p =
(p1, . . . , pn). Let . ei denote the ith unit vector. Then the ith Morris elementary effect 
is given by 

.EEi = f (t;p + eiδ) − f (t;p)

δ
. (17) 

Here, .δ = 𝓁/2/(𝓁 − 1) describes a step in the parameter space such that .p + eiδ is 
still within the allowable bounds for the parameter. We choose .𝓁 = 60, which gives 
.δ ≈ 0.51. This choice allows for a symmetric sampling distribution [23]. We also 
normalize the parameters to the interval .[0, 1] for the sampling following Colebank 
and Chesler [24]. 

The summary statistics are computed after conducting N random initializations 
for each .EEi . The arithmetic mean associated with each parameter is given by 

.μi = 1

N

N⎲
j=1

EEj
i , (18) 

and the corresponding sample variance is found by 

.σ 2
i = 1

N − 1

N⎲
j=1

(EEj
i − μi)

2. (19) 

To study the magnitude of the elementary effects while avoiding potential cancella-
tion issues, we use the mean absolute elementary effect . μ∗

i in our analysis following 
[27]: 

.μ∗
i = 1

N

N⎲
j=1

|||EEj
i

||| . (20) 

To compare and rank the relative effects of the parameters on the model output, we 
use the combined statistic termed the Morris ranking:



178 R. A. Luke et al.

Table 3 Scalar metrics used by the Morris screening analysis 

Metric (units) Equation Physiological description Nominal value 

WOB (mL . · cm H. 2O) (22) Work of breathing 2.49 

.vmax (mL) .max(VA) Maximum lung volume 0.428 

Slopes (mL/(cm H. 2O)) 

.slR 0–10 (23) Recruitment slope, .P1 = 0, .P2 = 10 cm 
H. 2O 

0.0157 

.slD 0–10 (24) Derecruitment slope, .P1 = 0, . P2 = 10 
cm H. 2O 

0.0311 

.slR 10–30 (23) Recruitment slope, .P1 = 10, . P2 = 30 
cm H. 2O 

0.0131 

.slD 10–30 (24) Derecruitment slope, .P1 = 10, . P2 = 30 
cm H. 2O 

0.00621 

.Mi =
/

μ∗2
i + σ 2

i . (21) 

We vary thirteen free parameters (the set listed in Eq. (16)) for our Morris 
sensitivity analysis; descriptions and their nominal values are given in Table 2. We  
choose six scalar metrics as key characteristics of the PV curves that were observed 
in the data to differ across treatment and ventilation groups. These are work of 
breathing (WOB) [mL . · cm H. 2O], maximum lung volume .vmax [mL], and four 
slopes of the PV curve [mL/(cm H. 2O)]: (1) recruitment and (2) derecruitment curves 
between pressures of 0 and 10 cm H. 2O and (3) recruitment and (4) derecruitment 
curves between pressures of 10 and 30 cm H. 2O. These four slopes are denoted by 
.slR 0–10, .slD 0–10, .slR 10–30, and .slD 10–30, respectively. WOB is defined as 

.WOB =
⎧

Pl,dyn

⎾
VA,D(Pl,dyn) − VA,R(Pl,dyn)

⏋
dPl,dyn, (22) 

where the D and R subscripts on .VA denote the derecruitment and recruitment 
portions of the lung volume, respectively. This integration is calculated numerically 
with a standard trapezoid rule in MATLAB. The second metric .vmax is the maximum 
of . VA, the lung volume, over the PV loop. The slope .slR between pressures of . P1
and . P2 cm H. 2O is calculated by 

.slR = VA,R(P2) − VA,R(P1)

P2 − P1
, (23) 

and the slope .slD between pressures of . P1 and . P2 cm H. 2O is calculated by 

.slD = VA,D(P2) − VA,D(P1)

P2 − P1
. (24) 

The metrics are summarized in Table 3.
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2.3.2 Local Sensitivity Analysis 

We perform a coarse univariate sensitivity analysis in which we change one 
parameter at a time by a fixed percent of its nominal value and note the percent 
change in the scalar output, while holding all other parameters constant at their 
nominal values. In particular we look at the effect of doubling and halving each 
of the following parameters .Rs,m, .Rs,d , . Ks , .Rve, . cFR

, .cFD
, .dFR

, .dFD
, and k on the 

six scalar effects defined in Sect. 2.3.1. Parameters . γ and . β nominally represent 
fractions of recruitable lung such that .0 < γ, β ≤ 1, so their low and high 
values are chosen explicitly to be .[0.85, 0.95] and .[0.1, 0.9], respectively. These 
also represent reasonable possible values for these fractions with respect to the 
physiology. Finally, for .Cve we use 70% as opposed to 50% to ensure simulation 
output remains physiologically viable. The nominal values are listed in Table 2. 

2.4 Optimization 

For the parameters identified as sensitive for at least one metric (Table 3), we 
determined optimal values by minimizing the sum of the squared differences 
between the quasi-static points of the PV curves given in the data and the quasi-static 
points of our simulated PV curves. Parameters that were identified as non-sensitive 
across all six metrics used in the Morris screening were kept constant at the nominal 
values reported in Table 2. Optimization was performed using the constrained 
optimization algorithm lsqnonlin in MATLAB using the Levenberg-Marquardt 
option and an ODE solver relative tolerance of 10. −12. The step tolerance for the 
optimization algorithm was set equal to the square root of the relative tolerance of 
the ODE solver. The nominal values from our sensitivity analyses were used as the 
initial guesses for k, . cFR

, .cFD
, . β, and . γ . 

We determined optimal parameters for each rat in the data by minimizing the 
least-squares objective function J : 

.J = 1

2

⎲
[VA(Pl,dyndata

) − VAdata(Pl,dyndata
)]2. (25) 

Since pulmonary system elastance and tissue damping coefficient for individual rats 
were reported in the data as obtained from the forced oscillation impedance fit to the 
constant phase model ([2, 16], denoted as H and G), we based our initial iterates 
for .Cve and .Rve on these data. Constant upper and lower bounds were imposed on 
the algorithm. Initially, we used the same bounds that were imposed in the Morris 
screening for . Cve, which were estimated from pulmonary system elastance in [2]. 
However, we were unable to achieve acceptable fits without decreasing the lower 
bound for .Cve (equivalent to increasing the upper bound on .1/Cve, which is how we 
later present our results). Since the viscoelastic compliance, . Cve, in our model does
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Fig. 3 Schematic of image processing procedure. Raw RGB image is entropy filtered and 
converted to grayscale, before thresholding (Otsu method) to create a binary image where tissue is 
white and lumens are black. The binary image is quantitatively analyzed by a variety of additional 
methods, including skeletonization. Here, the skeletonized image is dilated for visibility 

not actually encapsulate the whole system compliance/elastance, it is unsurprising 
that we had to adjust the bounds. 

For some rat data sets, the optimization appeared to stagnate or converge to a 
local minimum that creates a non-physiological simulated output. In these cases, the 
initial iterate was modified so the optimization algorithm converged appropriately. 
We calculated the mean optimal values for each rat group along with the variance. 
The average values and the variances are reported in Table 5. 

2.5 Image Analysis 

In order to quantify morphological differences relevant to biomechanical differences 
among treatment and age groups, we develop a procedure to analyze lung histology 
images using known techniques. The implementation uses the MATLAB Image 
Processing Toolbox. RGB images from a previous study [2], of uniform pixel 
dimensions and magnification, are passed through an entropy filter, using a filter 
neighborhood equivalent to a disk of radius 5 microns, which minimizes the 
impact of irrelevant small-scale details such as individual cells. Filtered images are 
converted to grayscale and binarized with Otsu thresholding. Binarized images are 
then analyzed by skeletonization, erosion, connected region identification, and other 
methods to yield image metrics. The basic procedure is illustrated in Fig. 3. We do  
not identify or segment specific non-alveolar structures in the images, such as blood 
vessels. 

2.5.1 Metrics of Lumens 

Lumen Count 

A raw count c of lumens in each image will include both lumens falling completely 
within the image and also lumens clipped by the edge of the image (Fig. 4). 
Considering them together would skew the lumen metrics (count, area, and others),
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Fig. 4 The images include lumens cropped by the image boundaries. The lumen count is used 
as an independent metric and in calculating other image analysis metrics. (a) When segmenting 
lumens to count them, it is crucial to make a distinction between complete lumens (black) and those 
clipped by the edge of the image (green). (b) A simple estimate of the corrected image analysis 
metrics in the presence of the clipped lumens begins with assuming a regular grid of square lumens 
and deriving the correction terms for the lumen count 

as well as other tissue metrics, such as tortuosity, that are derived from lumen counts. 
Therefore, we use a corrected lumen count, on the assumption that, on average, each 
edge lumen is missing half its true area. 

Consider a grid of equal square lumens, each of side length l, in a square image of 
side length L (Fig. 4). On average, the image length and width each hold . n = L/l

lumens, each of area . l2, so the whole image holds .N = n2 = (L/l)2 lumens, 
each of area . l2, for a total area of . L2. The image has a perimeter of 4L, and the 
image edge cuts 4n lumens. The edge lumens are assumed to be, on average, cut in 
half. Thus, if N is the true lumen count, and c is the raw lumen count, on average, 
.c = N + 2n = N + 2

√
N . Solving for N gives the corrected lumen count, N , based 

on the raw lumen count c: 

.N = c + 2 − 2
√

c + 1. (26) 

Lumen Areas 

For each lumen found, we measure its area . Ai . Again, the image contains a 
significant fraction of lumens that are cut by the image edge, so aggregate area 
metrics have to account for the estimated true areas of clipped lumens. Again 
considering a regular grid of squares, the total lumen area of the image is . L2 =
Nl2 = cĀmeas where .Āmeas = [(N − 2n)l2 + 4nl2/2)]/c. Thus, the true mean 
area per lumen . Ā, for the square grid model, would be . Ā = l2 = Āmeasc/N =
Āmeasc/(c + 2 − 2

√
c + 1).
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For comparison with the existing lumen metric mean linear intercept (MLI, a 
length), we define a length-based area metric for image lumens, by normalizing the 
lumen areas . Ai to an equivalent disk of radius . Ri

.Requiv,i = √
Ai/π. (27) 

Since the set of lumens with measured areas includes clipped lumens, when finding 
the average .Requiv, we adjust the calculation of the mean by the expected edge 
counts: 

.R̄equiv = √
c/N

1

N

N⎲
i=1

√
Ai/π. (28) 

All analyses of .Requiv use this corrected quantity, .R̄equiv, but we drop the bar for 
convenience. 

We define another area metric using the cumulative distribution of areas . Ai : 

.Acumul(n) =
n⎲

i=1

Ai. (29) 

Then the total area of lumens .Alum = Acumul(c). We define .Rmid as the equivalent 
radius .Requiv,j such that .Acumul(j) ≈ 1

2Acumul(c) as closely as possible. 

2.5.2 Metrics of Tissue 

Tissue Area Fraction 

We calculate the total tissue area .Atiss by counting tissue pixels in the binarized 
image. Tissue area fraction . φ is then (tissue pixel count)/(total pixel count). 

Tissue Length 

For each image, tissue length or total perimeter . Λ is calculated from the skeletonized 
image as the total length of tissue centerlines. We expect an allometric relation 
between . Λ and the number of lumens N . Following the extremely simplified square 
grid models of Sect. 2.5.1 and Fig. 4, an image of a tissue grid has total area 
.A = L2 = Nl2 and the total length (perimeter) is . Λ = 2Nl = 2(L/l)L = 2nL =
2L

√
N . Thus, for a general image of lung parenchyma, we expect that the total 

tissue length . Λ is proportional to .
√

N .
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Tortuosity 

At the length scale of whole alveoli, septal tortuosity results from adjacent alveoli 
pushing into the septum. Collagen tortuosity is at a much smaller length scale. We 
quantify tortuosity at an intermediate length scale, smaller than a single alveolus, 
but substantially larger than the polymer length scale. For a single geometric object 
of area A and perimeter . Λ, we define its dimensionless tortuosity ratio T as 

.T = Λ2

4πA
. (30) 

A circle has .T = (2πr)2

4π(πr2)
= 1, the minimum possible value. For a square, . T =

4/π ≈ 1.3. 
To extend this metric to a non-simply-connected object or a partitioning of the 

space, we propose the following. Suppose an image contains N lumens with total 
perimeter length . Λ and total of lumen areas .Alum, which in our images may be close 
to the total area of the image. Because of the shared boundaries between adjacent 
lumens, we need to count the total perimeter twice. We generalize the tortuosity 
ratio T for a single object to an image tortuosity metric 

.T̃ = Λ̄2

4πĀ
= (2Λtot/N)2

4πAlum/N
= Λ2

NπAlum
, (31) 

where N is the estimated true lumen count from Eq. (26). Note that . Λ does not need 
an adjustment for intersecting the edge. 

For a grid of squares, it is easy to confirm that .T̃ = 4
π

≈ 1.3, and for regular 

hexagonal packing .T̃ = 2
√

3
π

≈ 1.1, which is the lower bound, approaching the 

minimum of 1 for a circle. We expect a greater tortuosity ratio . T̃ to correspond 
to higher tissue compliance since the lumens would expand by straightening their 
crimps. 

Septal Width and Its Distribution 

Our most basic width metric is the mean width: 

.w̄ = Atiss/Λ, (32) 

where .Atiss is the total area of septa and . Λ is the total length of septa. We can infer 
more about the histology, and potentially the biomechanics, if we go beyond the 
mean of width to look at its distribution. 

Consider a 2D image containing a network of septa with a fixed total tissue area 
.Atiss or area fraction . φ and total tissue length . Λ. If the tissue is uniformly thick, i.e., 
the tissue area is spread evenly along its length, we expect that network to have a
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Fig. 5 Example of applying the pruning algorithm with a disk of radius r to a representative lung 
tissue image, where r increases from left to right. Eventually using a large enough disk, no tissue 
remains. (a) The binarized tissue image before pruning. The structuring element used in (b) is a  
disk with radius 5 . μm, in (c) 10 . μm, in (d) 15 . μm. Hence (b), (c), and (d) show all tissue in (a) 
thicker than 10, 20, and 30 . μm, respectively 

certain stiffness. If that same area is distributed unevenly over the same total length, 
i.e., in a mixture of thick and thin septa, we would expect that network to be more 
compliant, as the thin portions would stretch more than the thick portions under 
the same load. We expect uneven width from a variety of pathological conditions, 
including fibrosis and inflammation. 

To obtain the distribution of septa of width w, we follow a previous study [28] 
quantifying vascular networks. We define a pruning algorithm as follows: 

1. Starting with the binarized image, erode the image using a disk of radius .w/2. 
2. Dilate the eroded image by the same disk. 
3. Measure the area of tissue remaining in the image. 
4. Repeat 1–3 until no tissue remains. 

This serves to remove any image details finer than the gauge w (Fig. 5). For a 
large enough w, no pixels remain after the pruning. We can consider the functions 
.Atiss(w) or .φ(w), which show the distribution of structures of width greater than w. 

2.6 Statistical Analysis 

Statistical analyses were performed in MATLAB and JMP (SAS Institute, Cary, NC) 
and using the FactoMineR package [29] in R [30]. Analyses included distributions 
of image metrics and their fits to multivariate models, as well as correlations with 
previously reported metrics of biomechanics and cytokine concentrations [2] and 
with fitted model parameters. Multivariate statistical models for metric distributions 
were evaluated by significance (strictly .p < 0.05, but generally much lower) and by 
small-sample corrected Akaike information criterion (AICc). Optimized parameter 
values are compiled by mean and variance.
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3 Results 

3.1 Model Solutions 

A representative dimensional solution of the reduced model output airway lung 
compartment volume .VA against dynamic pressure .Pl,dyn is shown in Fig. 6. This  
solution uses nominal values for a D0 control (SAL) group rat under SAFE 
ventilation, also used for the later sensitivity analyses (Sect. 2.3), and is plotted 
against the corresponding data for a single rat from this group. The effect of the stair-
step ventilation pressure applied at the airway opening .Pao on model solutions can 
be seen in Fig. 6b, as the curve exhibits cusps at quasi-static points corresponding to 
the edge of a stair. The expiration curve is higher than the inspiration curve, which 
is consistent with the lung air sacs requiring a higher pressure on average to open 
than to close for a given volume. 

3.2 Morris Screening 

We implement Morris screening using 100 randomized initializations of model 
parameters. A small number of outlier results are excluded: any model imple-
mentation with an integration tolerance failure, an infeasible metric output (e.g., 
a negative WOB), or a drastic outlier .EE

j
i (defined as more than 1000 times the 

median magnitude) that suggests an infeasible combination of parameter values. 
These excluded results comprise less than 1% of the original simulations. 

The absolute value of the mean . μ∗
i from Eq. (20) is plotted on a log-log scale 

against the sample variance .σ 2
i for the thirteen parameters studied over the six 

Fig. 6 (a) Simulated stair-step ventilation pressure applied at the airway opening. (b) Simulated 
pressure-volume loop for nominal parameter values (see Tables 1, 2). The experimental quasi-static 
points from a pressure-volume loop [2] are shown for comparison
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metrics analyzed (Fig. 7). Parameters with both large .μ∗
i and . σ 2

i are considered 
influential because they have both nonlinear and interacting effects with other 
parameters. Conversely, parameters with both small . μ∗

i and . σ 2
i are considered non-

influential. For example, inspiratory capacity IC is consistently the most influential 
parameter, and change in small airway resistance .Rs,d is consistently a non-
influential parameter across all six metrics. This categorization follows [23]. 

The Morris statistic rankings per elementary effect by Eq. (21) are shown in Fig. 8 
on a log scale. Note that the Morris ranking plot for the recruitment slope between 
pressures of 0 and 10 cm H. 2O does not show values for .cFD

and .dFD
because the 

analysis determined those rankings to be zero. Parameter rankings falling above the 
mean ranking, shown by the dashed horizontal line, are deemed sensitive and are 
indicated in red [31, 32]. Eight out of the thirteen reduced model parameters form 
the union of the sensitive parameters over all six effects (Table 4), which we call the 
“Morris sensitive set” and summarize as 

Fig. 7 Absolute value of the mean elementary effect . μ∗
i of signal (Eq. 20) is plotted against sample 

variance of signal for the results of the Morris effects analysis. The six metrics analyzed are work 
of breathing (WOB), maximum lung compartment volume (.vmax), and recruitment or inspiratory 
(R) and derecruitment or expiratory . (D) slopes between pressures 0 and 10 cm H. 2O and 10 and 
30 cm H. 2O
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Fig. 8 Ranking from the Morris effects analysis. The black dashed line shows the mean ranking. 
Parameters with rankings above the mean are colored in red, and those with ranking below the 
mean are colored in blue. The six metrics analyzed are work of breathing (WOB), maximum lung 
compartment volume (.vmax), and recruitment or inspiratory (R) and derecruitment or expiratory 
. (D) slopes between pressures 0 and 10 cm H. 2O and 10 and 30 cm H. 2O 

.pMor = {IC, Cve, Rve, k, cFR
, cFD

, β, γ }. (33) 

Inspiratory capacity was evaluated as the most sensitive parameter for all six 
metrics. This is not surprising since IC has a direct effect on .VA through Eqs. (8)– 
(9), which comprise one axis of a PV curve. The parameter k, representing lung 
elasticity and contributing to the saturation of the function . Vel , is sensitive across 
all six metrics. For the four slope metrics, the Morris rankings of the mean and 
variance in recruitment or decruitment pressure seem to correspond to the part of 
the PV curve studied. For example, .cFR

and .dFR
have higher Morris rankings than 

the same for derecruitment (.cFD
and . dFD

) for .slR from 0 to 10 cm H. 2O. This holds 
for all .cFR

and .cFD
pairs and for all but one pair of .dFR

and .dFD
; in this case, the 

values are nearly identical. 
Certain parameter groupings were found to be either all part of .pMor (Eq. 33) 

or all non-influential. The pressure range parameters .dFR
and .dFD

describing the
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Table 4 Sensitive parameters as determined by the Morris screening. The middle six columns 
indicate the parameters that had ranking larger than the mean for each of the metrics. The far right 
column indicates the union of the rankings above the mean to form the Morris sensitive set 

Sensitive by Morris analysis Union of sensitive 

Parameter WOB .vmax .slR 0–10 .slD 0–10 .slR 10–30 .slD 10–30 parameters 

. Ks 
IC X X X X X X X 

.Cve X X X 

.Rve X X X 

. Rs,d 

. Rs,m 
k X X X X X X X 

.cFR
X X 

.cFD
X X X 

. dFR 

. dFD 

.β X X X X X X 

.γ X X X X 

variance of the opening or closing pressures were found to be non-influential; 
however, the mean opening and closing pressures, .cFR

and .cFD
, and baseline and 

maximum recruitment fractions, . β and . γ , respectively, were found to be influential. 
We note that .dFR

and .dFD
characterize the heterogeneity of the lung by allowing 

for a transition to full (de)recruitment [18, 21]; since these are not sensitive, this 
suggests that our model cannot identify this alveolar variation in the opening or 
closing of lung units. In contrast, .cFR

and .cFD
represent average information. This 

suggests that a limitation of our model is that it must treat alveolar recruitment as 
a homogeneous action across the lung, although we recognize that in actual lungs, 
recruitment occurs in specific locations. The parameters . Ks , .Rs,d , and .Rs,m govern 
the nonlinear small airway resistance, . Rs , and are not part of .pMor (Eq. 33). Note 
that the function for .Rs is also dependent upon inspiratory capacity IC, but IC 
governs the variable volume .VA as well. This suggests that the reduced model can 
be minimized further to eliminate the nonlinearity of our small airway resistance so 
that . Rs is set to a constant value: .Rs = Rs,const. For the optimization that follows in 
Sect. 3.4, we use this “minimal” version of our reduced model. We also create our 
vector of free parameters to vary in the optimization as .pMor (Eq. 33) without IC, 
which is given by 

.pfree = {Cve, Rve, k, cFR
, cFD

, β, γ }. (34) 

While IC was determined to be sensitive by the Morris screening, subject-specific 
metrics were directly measured by Mandell et al. [2], so we use each animal’s IC 
data for our analysis.
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3.3 Local Sensitivity Analysis 

Results from the univariate local sensitivity analysis are shown in the tornado plots 
in Fig. 9. The parameters in a given plot are organized from the largest increase to 
the largest decrease in metric upon an increase in parameter, with parameters with 
the least effect on the metric in the center of the plot. For most parameters, there is 
either a positive relationship across all metrics or a negative relationship across all 
metrics. 

Fig. 9 Local sensitivity analysis of the twelve parameters discussed in Sect. 2.3.2 and their impact 
on six scalar metrics defined in Table 3. The blue bar for each parameter represents the percent 
change in the scalar metric given an increase (typically 200%) in the parameter, while the orange 
bar represents the percent change in the scalar output given a decrease (typically 50%) in the 
parameter. Parameters are organized from the largest increase to the largest decrease in metric 
upon an increase in parameter
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Of note are the parameters that do not have a strictly positive or negative 
relationship. WOB increases when viscoelastic resistance .Rve is both increased and 
decreased. While WOB increases when change in airway resistance .Rsd increases, 
there is no change to the metric when .Rsd is decreased. Both positive and negative 
changes to k cause a decrease in .slR 10–30. When decreased, mean closing pressure 
.cFD

causes no change in .slD 0–10 and .slD 10–30; however, increasing .cFD
increases 

.slD 10–30 and decreases .slD 0–10. 
We see that k has the largest impact on .slD 0–10, .slD 10–30, and .vmax, while 

. β has the largest impact on .slR 0–10 and .slR 10–30. Multiple parameters affect 
WOB; . cFR

, .Rve, and . β have the largest impacts. Encouragingly, the findings of 
local sensitivity analysis (Fig. 9) confirm the Morris screening conclusions of the 
least influential parameters. 

3.4 Optimization Results 

Optimized PV curves are plotted against the data in Fig. 10 for one rat in the D0 
SAL group under SAFE ventilation and one rat in the D7 ETX group under high-
pressure ventilation (P24). Using the nominal parameters, the initial guesses for the 
optimization are shown as dashed lines to indicate reasonable convergence to the 
optimal solution representing observed rat lung dynamics. 

3.4.1 Mean Values 

After fitting parameters to the data for each rat and then calculating summary 
statistics per group, we obtained the mean optimized parameter values for each 
group shown in Fig. 11 (blue circles) with normalized maximum and minimum 

(a) (b) 

Fig. 10 Optimized pressure-volume curves (red solid curves), experimental quasi-static points 
(black circles), model simulated quasi-static points (red circles), and initial optimization guess 
(blue dashed curves) are plotted for a representative rat in (a) the D0 SAL-SAFE group and (b) the  
D7 ETX-P24 group. The optimized curves are close fits to the experimental data [2]
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Fig. 11 Normalized optimal parameter values by rat group. We show mean values (blue circles), 
standard deviation range (red lines), and maximum and minimum values (black squares) for each 
group
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Table 5 Optimal values were determined for parameters identified as sensitive by at least one 
metric (see Fig. 8 and Table 3). Optimal values were determined for each rat and then averaged 
across each group (n = number of rats in the group). Here, we report the mean . μ optimal parameter 
values for each rat group as well as the variances . σ 2 

Parameters (units) 

k .cFR
.cFD

. β 
((cm H. 2O). −1) (cm H. 2O) (cm H. 2O) (-) 

n .μ .σ 2 .μ .σ 2 .μ .σ 2 .μ . σ 2 

D0 

SAL-SAFE 14 0.18 0.001 16.58 0.08 4.18 5 0.45 0.004 

SAL-P20 12 0.17 0.001 15.27 0.44 5.39 0.87 0.51 0.004 

ETX-SAFE 9 0.15 0.0009 16.54 0.20 5.13 3.83 0.47 0.0006 

ETX-P20 10 0.16 0.0005 15.87 0.56 5.70 1.08 0.50 0.0026 

D7 

SAL-SAFE 8 0.18 0.0011 14.94 1.76 3.61 3.01 0.55 0.0032 

SAL-P20 8 0.16 0.0002 13.61 1.37 3.02 3.51 0.59 0.0023 

SAL-P24 6 0.13 0.0007 15.58 3.46 1.75 3.90 0.56 0.01 

ETX-SAFE 8 0.19 0.00007 15.27 0.38 2.93 7.65 0.55 0.0008 

ETX-P20 8 0.17 0.0005 14.44 1.32 2.89 3.82 0.58 0.0036 

ETX-P24 9 0.12 0.0004 16.05 0.61 4.37 5.10 0.49 0.0047 

Parameters (units) 

.γ .1/Cve . Rve 
(-) (cm H. 2O (mL). −1) (cm H. 2O . · s . · (mL). −1) 

n .μ .σ 2 .μ .σ 2 .μ . σ 2 

D0 

SAL-SAFE 14 0.97 0.0005 367.27 47,673 17.52 10.8 

SAL-P20 12 0.98 0.0002 500 0 19.26 53.35 

ETX-SAFE 9 0.97 0.0012 445.47 26,760 30.61 250.13 

ETX-P20 10 0.98 0.0008 417.74 30,587 29.46 652.86 

D7 

SAL-SAFE 8 0.96 0.0006 259.94 65,988 6.94 0.90 

SAL-P20 8 0.98 0.0002 257.14 67,417 4.74 0.84 

SAL-P24 6 0.99 0.0002 252.50 73,508 5.67 10.50 

ETX-SAFE 8 0.97 0.00004 382.01 47,883 7.49 2.08 

ETX-P20 8 0.98 0.0001 198.14 62,539 4.61 0.82 

ETX-P24 9 0.99 0.0007 343.73 55,132 8.16 8.74 

values (black squares) and one standard deviation above and below the mean 
(solid red line). Normalizing by the parameter constraint upper bound allows for 
easier comparison between groups and shows the degree of variability of optimized 
parameter values. Mean and variance for each optimized parameter per rat group 
are also reported in Table 5. The largest variation is observed for the optimal values 
for viscoelastic elastance .1/Cve across all groups, with non-normalized variances 
on the order of . 104. Large variation is also seen in viscoelastic resistance .Rve in the 
D0 ETX group. The mean optimized value for k for the D7 group decreases with 
increased ventilation for both the SAL and ETX groups. In contrast, .cFD

decreases 
from P20 to P24 in the D7 SAL group but increases in the D7 ETX group.
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Fig. 12 Comparisons of optimized parameter values to estimated quantities from Mandell et al. 
[2]. (a)–(b) Comparing the averaged pulmonary system elastance from Eq. (35) in the current 
model (1/Ctotal) to the pulmonary system elastance from Mandell (H ) for (a) day 0 and (b) day  
7 rats. (c)–(d) Comparing the averaged viscoelastic resistance from the current model (Rve) to the  
tissue damping from Mandell (G) for (c) day 0 and (d) day 7 rats. Simulated values are plotted as 
blue triangles, and experimental values are plotted as red circles 

3.4.2 Biomechanical Metrics 

Figure 12 shows comparisons to tissue damping coefficient and pulmonary system 
elastance, two biomechanical metrics obtained from Mandell et al. [2] who fit the 
constant phase model to forced oscillation technique data. We adopt their notation 
as G for tissue damping coefficient and H for pulmonary system elastance. Total 
pulmonary system elastance .H = 1/Ctotal was calculated in this study from lung 
compliance .CA and viscoelastic compliance .Cve in series by 

.
1

Ctotal
= 1

CA

+ 1

Cve

, (35) 

(see also Fig. 2). Since .CA is a dynamic variable (cf. Sect. 2.2), the time-averaged 
lung compliance for each rat is computed via
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Fig. 13 Pressure-volume curves computed using averaged optimized parameter values for each 
group at day 7 

.CAavg = 1

T − t0

⎧ T

t0

CA dt (36) 

using optimal parameter values. Pulmonary system compliance/elastance is calcu-
lated from mean compliances for each group via Eq. (35). Viscoelastic resistance 
.Rve serves as a proxy for tissue damping, G. We observe in Fig. 12a,b that compared 
to the experimentally estimated H , average .1/Ctotal values are about 50% larger for 
D0 rats and approximately one order of magnitude larger for D7 rats. Figure 12c,d 
show closer agreement between .Rve and G, especially for the D7 rats. 

3.4.3 Sensitivity Analyses 

The sensitivity analysis (Sect. 3.2) addresses how model parameters affect the slopes 
of the PV curve. We considered recruitment and derecruitment slopes between 
pressures of 0 and 10 cm H. 2O and between 10 and 30 cm H. 2O (.slR 0–10, .slD 0–10, 
.slD 10–30, and .slD 10–30). PV curves simulated using averaged optimal parameter 
values for each D7 rat group are shown in Fig. 13. Each curve is divided into four 
regions bounded by the four slopes; divisions are shown by black dashed lines. The 
parameters that were determined to be sensitive by the Morris screening analysis for 
each slope of the curve are stated in red. 

Lung elasticity constant k highly influences all four slopes, suggesting that small 
changes in k can significantly change the shape of the PV curve. The airway opening 
pressure .cFR

was not found to be highly influential for any of the PV slopes and 
thus is not represented in Fig. 13. In contrast, the airway closing pressure .cFD

was
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Table 6 Relative change (%) from SAFE ventilation to VILI for each parameter in the D7 control 
group (SAL) and D7 endotoxin group (ETX). A red down arrow indicates a decrease from the 
baseline value, and a blue up arrow indicates an increase. Relative changes are calculated from 
average parameter values from optimizations taken over each group 

Parameter 

Ventilation k cFR cFD β γ 1/Cve Rve 

D7 SAL 
P20 ↓ 11.4 ↓ 8.9 ↓ 16.4 ↑ 7.5 ↑ 2 ↓ 1.1 ↓ 31.7 

P24 ↓ 26.5 ↑ 4.3 ↓ 51.4 ↑ 2.5 ↑ 2.6 ↓ 2.9 ↓ 18.3 

D7 ETX 
P20 ↓ 7.8 ↓ 5.5 ↓ 1.3 ↑ 5.1 ↑ 1.2 ↓ 48.1 ↓ 38.5 

P24 ↓ 34.9 ↑ 5.1 ↑ 49.1 ↓ 10 ↑ 2 ↓ 10 ↑ 8.9 

determined to be highly influential for the derecruitment slope between 10 and 30 
cm H . 2O and slightly less influential for the derecruitment slope between 0 and 
10 cm H. 2O. We find .cFD

to be higher in the D0 rat groups. For the D7 control 
group, .cFD

decreases as the ventilation pressure increases. However, for the D7 
endotoxin group, it increases. The parameter . β is the baseline fraction of lung 
recruited and was determined to be influential for all four PV slopes. In every rat 
group, we notice an increase in . β from safe ventilation to P20 and P24 ventilation, 
except for the D7 endotoxin group where it decreases by 10% from safe to P24 
ventilation. The viscoelastic elastance .1/Cve was only found to be highly influential 
for the derecruitment slope between 10 and 30 cm H. 2O. A lower viscoelastic 
elastance flattens the dynamics between the static points, while a higher value makes 
them more pronounced. Viscoelastic resistance, .Rve, is highly influential for the 
derecruitment slopes. The viscoelastic resistance is higher for the D0 rat pups and 
for the endotoxin rats in both age groups. 

3.4.4 Comparisons of Saline Versus Endotoxin 

The relative change, as a percent, of the D7 optimal parameter values for the P20 
and P24 groups as compared to the SAFE ventilation groups are reported in Table 6. 
The two levels of injurious ventilation produce relative decreases in k with a larger 
change for P24 than P20. Similarly, . γ increases with increasing ventilation for both 
the SAL and ETX groups, but the increases are small (.∼ 3%) and may be considered 
negligible. The P24 SAL group average .cFD

is roughly half the SAFE average; in 
contrast, the corresponding ETX value is a 50% increase. Although the changes 
are relatively small overall (up to 10%), the P24 SAL average . β increases from the 
SAFE average whereas the same for ETX decreases. The parameter .Rve also shows 
differing responses under SAL versus ETX for P24 ventilation, as .Rve is decreased 
further from that of P20 for the SAL whereas the value increases beyond the SAFE 
average for ETX.
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3.5 Image Analysis 

We developed a customized image analysis procedure to analyze lung histology data 
in novel ways. Calculations of metrics for 424 histology images (207 for D0 and 217 
for D7) of 47 individual rats (23 for D0 and 24 for D7) from [2] are presented below. 

3.5.1 Distributions of Image Metrics 

We performed model screening and, based on AICc, found the best statistical model. 
Lumen count per image depends significantly on the day and ventilation strategy 
(.p < 0.01) but was not found to depend significantly on SAL versus ETX treatment 
(.p > 0.07) (Fig. 14). The best model (by AICc) for lumen count N per standard-
area image is 

.N = 48.8 +
⎧

D0 ⇒ 0
D7 ⇒ 22.3

}
+

⎧⎪⎪⎨
⎪⎪⎩

NV ⇒ 6.0
SAFE ⇒ 1.7
P20 ⇒ −6.0
P24 ⇒ −1.7

⎫⎪⎪⎬
⎪⎪⎭

. (37) 

Fig. 14 Distribution of lumen counts categorized by experimental groups
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Fig. 15 Lumen equivalent radii .Requiv by experimental groups 

The lumen equivalent radii .Requiv had a strong dependence on postnatal age, with 
lumens decreasing in size as the lungs developed (Fig. 15). We performed model 
screening and, based on AICc, found the best statistical model for lumen radius 
.Requiv to be (in microns) 

.Requiv = 25.4 +
⎧

D0 ⇒ 0
D7 ⇒ −5.5

}
+

⎧⎪⎪⎨
⎪⎪⎩

NV ⇒ 1.2
SAFE ⇒ 0.4
P20 ⇒ 1.7
P24 ⇒ 0

⎫⎪⎪⎬
⎪⎪⎭

. (38) 

For the area fraction, we calculated the proportion of each image . φ that is tissue, 
and for each pruning width w, the proportion .φ(t) of the w-pruned image that is 
tissue. For each image, tissue area fraction at each pruning width w is shown in 
Fig. 16 grouped by experimental day and treatment. Most of the tissue is thinner 
than 40 microns; only a few experimental categories show any amount of tissue 
thicker than 80 microns, notably D0 ETX P20. At D0, ETX-treated lungs show 
about 10% greater tissue fraction .φ(0), corresponding to about a 30% increase in 
tissue area, when compared with the controls (SAL). At D7, the differences between 
SAL and ETX are minimal, but there is a substantial difference between the most 
aggressively ventilated lungs (P24) and the others.
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Fig. 16 Comparison of the tissue area fraction .φ(w) across the 15 experimental groups for which 
histology was collected [2]. Here, w is width in microns. At D0, the ETX subgroup shows about 
10% greater fraction of tissue. At D7, the differences between SAL and ETX are minimal, but there 
is a substantial difference between the most aggressively ventilated lungs (P24) and the others 

Tissue length . Λ (per standard image size) was confirmed to have the expected 
allometric relationship with lumen count N , with total length . Λ proportional to 
.
√

N (Fig. 17). Comparison among all experimental groups revealed a significant 
dependence of tissue mean width w on all categories (Fig. 18). We performed model 
screening and, based on AICc, found the best model of mean tissue width (in 
microns) to be 

.w̄ = 19.3 +
⎧

D0 ⇒ 0
D7 ⇒ −1.7

}
+

⎧⎪⎪⎨
⎪⎪⎩

NV ⇒ −1.3
SAFE ⇒ −0.3
P20 ⇒ 0.4
P24 ⇒ 1.2

⎫⎪⎪⎬
⎪⎪⎭

+
⎧

SAL ⇒ −0.2
ETX ⇒ 0.2

}
(39) 

with the SEM for each parameter ranging from 0.07–0.15 microns. Tissue is seen 
to thin by a mean of 1.7 microns from D0 to D7. Each pressure increase in the 
ventilation strategy correspondingly increases tissue width. Interestingly, the least 
significant variable was SAL versus ETX, which only made a difference at P20. 
Day and ventilation strategy were more significant. 

The tortuosity metric from Eq. (31) had substantial variation between images, 
so even the best predictive models had a very small . R2. However, there were 
statistically significant trends (Fig. 19; .p < 0.01 for SAL/ETX and P24 vs. other 
ventilation). Notably, there was an increase in tortuosity at the highest ventilation



Towards a Mathematical Understanding of Ventilator-Induced Lung Injury 199

Fig. 17 Total tissue length, 
as calculated by the length of 
centerlines per standard 
image, goes as . 

√
N , where  N 

is the adjusted lumen count 
per image 

Fig. 18 Distribution of mean tissue width . w̄, categorized by experimental groups 

pressures. Model screening determined the best fit to include linear terms for 
ventilation and SAL versus ETX, as well as an interaction term between those two 
variables. Postnatal day was not found to be significant.
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Fig. 19 Tortuosity ratio by experimental groups (.p < 0.01 for SAL/ETX and P24 vs. other 
ventilation). Dependence on postnatal day was negligible. The reference line indicates the 
tortuosity ratio for standard hex packing 

3.6 Correlations Between Optimization Metrics, Image 
Metrics, and Biomechanical and Inflammatory Markers 

The results from our customized modeling and analysis procedures were examined 
via exploratory data analysis techniques to search for connections between the 
optimized model parameters, the imaging metrics, and biomarkers determined in 
[2]. Principal component analysis (PCA) provided a measure of broad relationships 
between variables, and cluster analysis indicated natural groupings of variables. 

3.6.1 Optimized Parameters vs Biomechanical and Inflammatory 
Markers 

PCA was applied to the mean optimized parameter values in the current study 
(Table 5) together with biomarkers reported by [2] for 10 available groups based 
on age (D0 or D7), exposure (SAL or ETX), and ventilation type (SAFE, P20, or 
P24). As seen in both the correlation heat map (Fig. 20) and factor map (Fig. 21), 
the parameter k, which characterizes the aggregate lung elasticity in the model, 
is negatively correlated with . γ , the maximum recruitable lung fraction, and the 
inflammatory metrics IL-6, TNF-a, and CXCL2. Interestingly, k is also included 
in the sensitive Morris set .pMor (Eq. 33, Table 4). These generally represent the 
second principal component PC2 (23%). The parameter . β describing baseline 
lung recruitment is strongly correlated with IC and biomechanical compliance
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Fig. 20 Correlations of optimized parameter values with biomechanical and inflammatory mark-
ers from [2]. The parameter k, which characterizes aggregate lung elasticity in the model, is 
negatively correlated with inflammatory markers 

biomarkers, Cst. Negatively correlated with . β are the lung opening pressures . cF , 
viscoelastic parameters .Rve and .1/Cve, and biomechanical markers G and H . These 
generally comprise the first principal component PC1 (62%). Cst15 and TNF-a 
strongly correlate with each other but not as strongly with the other variables. 
Additionally, a cluster analysis revealed that k, . γ , and Cst15 grouped together with 
inflammatory metrics IL-6, TNF-a, and CXCL2 in the same cluster, while the rest 
of the variables grouped into a second cluster. The cluster analysis results are not 
explicitly shown, as they are a subset of the analyses in Sect. 3.6.3. 

3.6.2 Image Metrics vs Biomechanical and Inflammatory Markers 

We calculated the mean values of image metrics, biomechanical variables, and 
chemical measures of inflammation for the 14 different groups for which there was 
data of all three types. The 14 groups are formed by dividing the available data 
according to the age of the rat (D0 or D7), its exposure to endotoxin (SAL or ETX), 
and the ventilation pressure that it received (NV, SAFE, P20, or P24) [2]. PCA was 
applied to the mean values calculated for each category, as seen schematically in the 
correlation heat map (Fig. 22) and factor map (Fig. 23). 

The biomechanical measures of compliance, such as Cst, are strongly correlated 
among themselves and with inspiratory capacity IC. This is consistent with the 
findings in [2]. The measures of tissue stiffness, pulmonary system elastance H , 
tissue damping coefficient G, and central airway resistance .RN are all strongly 
correlated with each other and inversely correlated with measures of compliance
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Fig. 21 Principal component analysis of optimized parameter values as seen in Table 5 with 
biomechanical and inflammatory markers from [2] 

and IC. Among the image metrics, we observe a strong correlation between . Requiv
and MLI measurements. Between the image metrics and biomechanical variables, 
biomechanical measures of tissue stiffness show a strong positive correlation with 
.Requiv and a strong negative correlation with the number of lumens. Therefore, the 
first principal component PC1, accounting for almost half (45%) of the variation 
(Fig. 23), can be described loosely as the compliance versus resistance axis. In terms 
of image metrics, this axis can also be described as many small lumens versus few 
large lumens. 

In addition to these findings regarding the biomechanical data, we note a strong 
correlation between all the inflammatory markers. The biomechanical measures of 
compliance and IC are strongly correlated with TNF-a and less correlated with 
the other inflammatory markers. Each of the inflammatory markers has its highest 
correlation, among the measures of compliance, with .Cst15. Tortuosity . T̃ is strongly 
correlated with tissue area fraction .φ(0) and not strongly correlated with most 
other variables. The inflammatory variables are generally weakly correlated with 
the image metrics, with the following exceptions. IL-6 is moderately correlated with 
. T̃ , .φ(0), and .φ(20). . T̃ is the best predictor for IL-6. IL-6 is moderately negatively
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Fig. 22 Heat map of correlations for image, biomechanical, and inflammatory variables 

Fig. 23 Principal component analysis of image, biomechanical, and inflammatory metrics: first 
two principal components
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correlated with MLI. TNF-a is moderately correlated with . T̃ , .φ(0), and . φ(20). It is  
also moderately negatively correlated with .Requiv and MLI. CXCL2 is moderately 
correlated with tissue width . w̄, .φ(20), and .φ(40). Therefore, the second principal 
component, PC2 (29%), is to a great extent a broad representation of tissue width, 
which is a key identifier of inflammation. 

The cluster analysis on this data set produced five clusters to explain 82% of the 
variation among the 14 experimental groups. The clusters are, in order of proportion 
of variation explained, 

. C1: [. Cst3, IC, .Cst6, .−G, .−H ] 

. C2: [.Requiv, .−N , . RN , .−φ(0), .Rmidpoint, MLI]  

. C3: [.φ(60), .φ(80), .φ(100), . w̄] 

. C4: [TNF-a, .Cst15, IL-6, CXCL2] 

. C5: [.φ(20), .φ(40), . T̃ ] 

Here, the minus signs signify negative cluster coefficients. Within each cluster, 
variables are ordered by their component size. 

Cluster . C1 is a measure of low-pressure compliance, or inversely, elastance H 
and damping G. Notably, airway resistance .RN appears in cluster . C2, which is 
otherwise a measure of lumen size. Cluster .C3 represents tissue width. Cluster 
.C4 represents inflammatory markers and high-pressure compliance. Cluster . C5
represents tissue thinness and tortuosity. 

3.6.3 All Variables 

There were 10 groups for which we had image metrics, biomechanical markers, 
inflammatory markers, and P-V data for parameter optimization. We analyzed 
means for each of these 10 groups for metrics obtained by the four different 
approaches and applied PCA and cluster analysis. The strongest correlations (.±0.7) 
were between 1/.Cve and both .Requiv and .Rmidpoint (positive correlation), as well 
as with N (inverse correlation), which are strongly correlated (positively and 
negatively) with each other. The other strong correlation was between .Rve and 
.φ(60). 

We also performed a cluster analysis on this data set, spanning the four major 
approaches. Four clusters serve to explain 82% of the variation among these 10 
experimental groups. The clusters are, in order of proportion of variation explained, 

. K1: [H , G, . −.Cst3, . −.Cst6, . Rve, IC, . −β, .cFD
, .1/Cve, . cFR

, . RN ] 
. K2: [.φ(0), . −MLI, .φ(20), .−Rmidpoint, .−Requiv, . T̃ , N ] 
. K3: [. −k, . γ , CXCL2, . Cst15, IL-6]  
. K4: [.φ(60), .φ(80), .φ(100), . w̄, .φ(40)] 

Here, the minus signs signify negative cluster coefficients. 
Notably, cluster .K1 includes only biomechanical variables, but these span both 

the Mandell et al. [2] data and the optimized model parameters. Thus . K1 represents
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the measured and fitted biomechanics. Clusters .K2 and .K4 contain only metrics 
of histology. Of these, cluster .K4 is a measure of thickened regions of tissue, and 
cluster . K2 is a measure of thin, tortuous, and numerous septa between small lumens. 
Cluster . K3 contains inflammatory markers, the two optimized parameters k and . γ , 
and .Cst6. 

4 Discussion 

Mandell et al. [2] found that the rat lungs subjected to the most injurious ventilation 
pressure (P24) exhibited decreased compliance and increased stiffness compared to 
lower ventilation pressure (P20). Our model is able to replicate their findings and 
show the counter-intuitive pressure-volume curve trend for the highest ventilation 
(Fig. 13). The large variance in .Cve as seen in Table 5 and Fig. 11 suggests that the 
optimizer was not able to uniquely identify this parameter despite the sensitivity 
analysis findings. The structure of Eq. (6b) suggests that the viscoelastic parameters 
.Cve and .Rve have similar effects on the dynamics of . Pve, and the correlation heat 
map (Fig. 20) indicates a strong correlation with each other. While the PV curves are 
adequately replicated, this observation suggests that only one of the two viscoelastic 
parameters is observable. 

4.1 Compartmental Model Analyses 

The sensitivity analyses (Sects. 3.2–3.3) identified the key parameters of the 
fractional recruitment function k, . γ , and . β as sensitive, though they are correlated 
with different variables from the compartmental model and the data. The parameter 
k, which characterizes the aggregate lung elasticity, is a highly sensitive model 
parameter. A lower k value models a less compliant or stiffer lung, meaning higher 
pressure must be applied to expand and fill the lung for a given volume of air. While 
k does not strongly depend on the age of the rat, we observe k trending down as more 
aggressive ventilation is applied. We note that k and . γ have no direct analog in the 
biomechanical or inflammatory markers from Mandell et al. [2]; however, they were 
anti-correlated (k) and correlated (. γ ) with inflammatory markers CXCL2 and IL-6. 
This suggests a strong connection between the level of inflammation and the ability 
of the lungs to inflate, as expected. The parameter . β, the recruitment fraction at 
.P = 0 cm H. 2O, is anti-correlated with biomechanical markers H , G, and . Rn from 
[2], suggesting that increases in these markers might oppose a healthy lung status. 
Of the Morris sensitive set .pMor (Eq. 33), the mean opening airway pressures . cFR

and .cFD
were the least sensitive across the six metrics but were strongly correlated 

with optimized parameters and data markers representing biomechanics. 
The relative changes in average optimized parameter values from SAFE venti-

lation to P20 and P24 for D7 rats (Table 6) are of particular interest because these
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may connect to the counter-intuitive nature of the PV curves from the observed 
data [2]. The direction of change differs noticeably between SAL and ETX groups 
for .cFD

, . β, and .Rve. Generally, a lower mean opening pressure is a sign of a 
healthier respiratory system. Increased mechanical ventilation should aid in opening 
the lungs and reduce .cFD

. However, for the ETX group, when P24 ventilation has 
been applied, there is subsequently a much greater pressure required to open the 
lungs. This was speculated to occur due to alveolar flooding and increased elastance 
[2], which is consistent with our parameterization. The contrasting relative changes 
in . β may not be surprising, as an unhealthy lung further stressed by a high level of 
injurious ventilation may not be able to recruit as large a fraction of alveoli at zero 
pressure. The inverse relationship between the relative changes in .Rve for P24 SAL 
and ETX may suggest that a stretching limit has been reached in the latter case. For 
the ETX group, the unhealthy and injured lung may be more resistant to expansion, 
and therefore a higher resistance is observed. Interestingly, the relative changes for 
the P20 SAL and ETX groups are all of the same sign, although they can differ 
significantly in magnitude. This may reinforce the findings of Mandell et al. [2], 
who observed such dynamics in their experiments. 

4.2 Image Analysis 

The customized image metrics from this study, in some cases, confirm other 
related measurements. The lumen metrics .Requiv and .Rmid are seen to be highly 
correlated with MLI (Sect. 3.6.2), which was used in [2]. This makes intuitive sense 
and provides alternate methods for quantifying lumen size. Moreover, the image 
processing via segmentation that is summarized in .Requiv and .Rmid provides a route 
to a more detailed analysis of lumen sizes and shapes, and their distribution, for 
future histological analysis. 

Other image metrics in our analysis quantitatively reveal patterns in the exper-
imental groups that may have only been reported qualitatively. For example, from 
our model fitting, we see a clear developmental signature in the increase in the 
lumen count N from D0 to D7 (Fig. 14 and Eq. 37) and the decrease in lumen radius 
.Requiv from D0 to D7 (Fig. 15, Eq. 38), which correspond to the process of secondary 
septation. We can also see quantitatively, from the model fit for N , that secondary 
septation is inhibited by aggressive ventilation; our statistical fit from Eq. (37) shows 
that P20 ventilation results in approximately 3 days’ developmental delay relative 
to nonventilated pups. Our measurements of the distribution of tissue width for each 
treatment group (Fig. 18) show small but statistically significant differences in the 
quantitative histology by Eq. (39). 

Similarly, we found that tortuosity shows modest increases with endotoxin 
treatment and/or higher-pressure ventilation, though, surprisingly, it is not seen 
to be dependent on the developmental day (Fig. 19). That our tortuosity metric 
does not correlate with developmental day, despite our expectation of increasing 
parenchymal surface area, suggests that either the differences are not significant at
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these specific stages, or that they are not visible at the length scale of the imaging 
or with the sample preparation techniques used. It may also suggest that changes in 
crimp (tortuosity) are histologically insignificant relative to the much larger changes 
observed in lumen count and size (Figs. 14 and 15). 

The correlations (Sect. 3.6.2) between the image metrics and each other are 
somewhat expected, but the correlations (Figs. 22 and 23) between image metrics 
and biomechanical and inflammatory metrics from Mandell et al. [2] are to some  
extent surprising. The first principal component PC1 and the first two variable 
clusters .C1 and .C2 show a relationship between the biomechanical variables 
from [2] and lumen size (or number, which is inversely related to lumen size). 
Larger lumens, which might be expected to provide less fluid drag, and hence less 
resistance, were instead associated with greater airway resistance, damping, and 
elastance and lower compliance. Tortuosity, which would be expected to reflect the 
nonlinearity of the typical stress-strain curve, was not here found to be correlated 
with mechanical parameters. It is only one of several factors in tissue compliance, 
along with tissue width and material elasticity. It was, however, highly correlated 
with inflammatory marker IL-6. 

4.3 Relationship Between Approaches 

Examining the full set of metrics using PCA and cluster analysis was the first 
step toward generating hypotheses about possible relationships between compart-
mental model parameters and lung tissue histology metrics. Viscoelastic elastance 
(reciprocal of compliance) was strongly correlated with lumen metrics; however, 
the variance was large enough to suspect that the values for compliance were not 
uniquely identified. The other strong correlation was between viscoelastic resistance 
and tissue area fraction with a pruning diameter of 60 microns. This significance is 
unclear; however, it is notable that the largest correlations were with the viscoelastic 
parameters. 

The cluster analysis identified groupings that may hold significance. Cluster . K1
grouped all the biomechanical metrics together regardless if derived from the data or 
from the compartmental model. Some of the related correlations as discussed earlier 
suggest that the model parameters could act as surrogates for the experimentally 
derived biomechanical markers. An additional biomechanical marker . Cst15, the  
compliance of the PV curve during derecruitment at a pressure of 15 cm H. 2O, 
was grouped with the inflammatory markers in a separate cluster .K3 along with 
k and . γ . The compliances .Cst3 and .Cst6 represent compliance at low pressures of 
3 and 6 cm H. 2O, whereas . γ impacts the curve at high pressures and k impacts the 
entire pressure range. This may indicate that inflammation has a greater effect on 
PV dynamics at higher pressures. 

The separate correlation and cluster analyses were done because of different 
numbers of experimental groups for the P-V fitting than for the images. The results
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of the separate analyses are consistent, except that cluster . C2 reveals a relationship 
between the image metrics and one of the biomechanical variables, . RN . 

4.4 Extensions and Clinical Implications 

A goal of this work was to apply mathematical techniques to a neonatal rat model 
of chorioamnionitis and VILI to better understand the mechanisms of breathing 
and quantify differences between healthy and diseased groups in a challenging 
population. To this end, our approaches focus on what is feasible given the 
available experimental data [2]. This allows for several extensions given additional 
measurement types. Here, we detail potential future steps and subsequent clinical 
implications. 

The image analysis metrics could be inputs into an augmentation of our 
compartment model. However, since these metrics cannot be obtained from human 
subjects except postmortem, the clinical applications of such a pipeline remain 
unclear. At present, we envision that our model optimization could be applied 
to recorded pressure-volume data from human patients, and then lung histology 
relationships could be inferred based on our identified correlations with model 
parameter values. For example, if an optimal parameter value that is positively 
correlated with inflammatory markers is high, this suggests that a scan of the 
patient’s lung might show inflammation. 

Our results suggest trends in safe versus injurious ventilation between healthy 
and unhealthy lungs that could be of clinical interest, but additional work is needed 
to verify these hypotheses, including a validation with a significantly larger data 
set. Analysis of our optimal parameters identified that for the ETX group with 
P24 ventilation, a much greater pressure is needed to open the lungs than for a 
healthy rat and that a stretching limit may be reached. Together these confirm the 
need for caution during ventilation of neonates that have mothers with histories of 
chorioamnionitis or other infections during pregnancy in order to prevent BPD and 
other respiratory conditions. 

4.5 Limitations 

The Morris screening and coarse local sensitivity analysis are both conducted using 
scalar model outputs, whereas a classical gradient-based local sensitivity analysis 
would calculate a sensitivity index across the full time course of data. Given the 
sizeable number of rats and associated data sets, the latter analysis was out of the 
scope of this study to perform on each rat pup. Thus, it is possible that parameters 
affected the scalar outputs differently than the quasi-static points of the pressure-
volume loop, and the related optimizations in Sect. 3.4 might be based on an 
incomplete understanding of parameter sensitivities. In future work, an optimization
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algorithm could be formulated in which the objective function is weighted based on 
the WOB or .vmax. Further, the Morris screening uses the mean ranking in Eq. (21) 
as a sensitivity threshold [31, 32]; we note that other options are available, such 
as using 5% of the maximum rank. Using this alternative method on our Morris 
rankings results in eleven out of thirteen parameters deemed sensitive, rather than 
the eight that we report in Sect. 3.2. The subjectivity of this choice allows for other 
interpretations of relative parameter importance; Colebank and Chesler [24] state 
the need for a consistent selection method. 

It is expected that inflammation from VILI or infections stiffens lung tissue by 
increasing resistance and decreasing compliance. Indeed, we saw increases in the 
viscoelastic resistance parameter .Rve between most saline and endotoxin groups, 
but only one difference was statistically significant (Day 0, SAFE ventilation, 
.p < 0.04, two-sample t-test with unequal variances). As previously mentioned, 
.Cve and .Rve may not be uniquely identifiable by our optimization; therefore, an 
important next step is to independently measure or estimate one quantity and re-run 
the optimizer. 

We developed a new correction method for counting objects (lumens) that 
are clipped by the image edge. Our correction was, for simplicity, based on an 
assumption of monodispersity (equal sizes). It improves the accuracy of lumen 
count and other metrics based on lumen count, even though the lung lumens 
are quite polydisperse. A more detailed correction method might use a kind of 
bootstrapping to estimate lumen size distribution and, therefore, the size distribution 
of clipped lumens. Our image analysis protocols did not make a distinction between 
alveoli, alveolar ducts, bronchioli, and blood vessels, on the assumption that these 
other structures comprise a relatively small proportion of each image and can be 
neglected. Our quantitative analysis could potentially be improved by performing 
additional segmentation on the images to identify these structures and consider 
them separately. For example, by not separately segmenting the blood vessels, they 
contribute to the quantification of the non-vascular tissue and may skew the results. 

The biggest challenges with quantitative image analysis reside in the image 
acquisition. Our image metrics were defined in a relatively straightforward fashion 
but can be thwarted by fields of view that encompass too few alveoli. Our estimates 
of the corrections for lumen counts, areas, etc. assumed regular, convex, and uniform 
lumen shapes and sizes. The actual lumens in lung slices are far from regular, 
convex, and uniform. If lumens are of even moderate size relative to the image 
size (as in Fig. 4a), most—possibly even all—will be clipped by the edge of the 
image. Lumens clipped by the edge may appear small and distinct but may actually 
be fingers of the same larger lumen. These considerations complicate the estimation 
of true lumen counts and sizes. An alternative approach would ignore all lumens 
clipped by the image edge and only measure lumens with complete edges. However, 
this approach is again complicated by the presence of lumens that are moderate in 
size relative to the image, which will skew the statistics. 

Ideally, each image would be large relative to the lumens it contains, but that 
is not always possible, either due to imaging constraints or due to the particular 
slice or lung itself. An additional factor out of our control is sample preparation.
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The tissue in this study was fixed at 20 cm H. 2O and, therefore, shows a tortuosity 
characteristic of a specific portion of the breathing cycle. Different inflation states 
at fixation would certainly be expected to alter most of our metrics, including lumen 
count, tissue width, and tortuosity. 

4.6 Conclusions 

We applied parameter estimation to a compartment model of pressure-volume lung 
dynamics and created novel image analysis metrics in an attempt to better under-
stand the mechanisms of stiffening and inflammation and affected locations within 
the pulmonary structure. Importantly, our optimizations identified key parameter 
differences between healthy and unhealthy groups in data from a neonatal rat model 
from Mandell et al. [2] that may suggest the mechanisms of VILI in infected 
respiratory systems. Further, combined analyses of the two strategies identified 
correlations between inflammatory markers and model parameters with no analog in 
the data, suggesting that mathematical approaches provide an important path toward 
understanding VILI and infection. 
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Estimation of Time-Dependent 
Transmission Rate for COVID-19 SVIRD 
Model Using Predictor–Corrector 
Algorithm 

Ruiyan Luo, Alejandra D. Herrera-Reyes, Yena Kim, Susan Rogowski, 
Diana White, and Alexandra Smirnova 

1 Introduction 

Compartmental disease models, which track the progression of individuals between 
different disease stages and risk levels, remain at the kernel of epidemic the-
ory [1]. A simple example of a compartmental framework is the Susceptible– 
Infected–Recovered (SIR) model proposed in [2]. This model has been extended 
to include other states, such as the Susceptible–Infectious–Recovered–Deceased 
(SIRD) [3] and the Susceptible–Infectious–Recovered–Vaccinated (SIRV) models 
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[4]. Recently, generalizations of SIR models have been implemented to study the 
spread of COVID-19 with the adherence and non-adherence of social behavior 
protocols such as masking, social distancing, and the enforcement of closures and 
lockdowns [5–9]. Earlier models described the spread of the disease in uncontrolled 
systems and in the presence of different mitigation strategies such as social 
distancing and lockdown restrictions. 

Since the development and widespread distribution of vaccines, incorporation of 
vaccination into such models has been an important development [10, 11]. However, 
few models have accounted for differing disease transmission within vaccinated and 
unvaccinated individuals. Here, we propose a new compartmental model of COVID-
19 transmission that takes into consideration some of these important dynamics 
by including the vaccination status of both susceptible and infected humans. We 
also include the possibility of losing immunity and becoming reinfected within 
both vaccinated and unvaccinated populations. Thus, our new model incorporates 
important disease dynamics that have not been covered by previous COVID-19 
models. Additionally, the proposed model can easily be adjusted to other seasonal 
outbreaks. With new variants of COVID-19 and other viruses occurring regularly, 
along with fluctuations of vaccine efficacy among these variants, this new model 
will help to understand past and current disease dynamics and make predictions 
about future cases. 

Another important novel feature of our compartmental model is the use of a time-
dependent transmission rate. Oftentimes, the transmission rate of a disease is the 
most challenging parameter to estimate [12]. The emerging new variants of COVID-
19 make stable estimation of disease transmission even more complicated. To 
simplify this, many previous COVID-19 models incorporated constant transmission 
rates found in the literature. To better assess the efficiency of control and prevention 
and to account for new COVID-19 strains, in our proposed model, we introduce a 
time-dependent transmission rate for vaccinated and unvaccinated individuals. This 
rate is reconstructed from noise-contaminated data on new incidence cases and daily 
deaths by solving a parameter estimation inverse problem. 

A commonly used method for estimating parameters of ordinary differential 
equations (ODEs) from noisy data is nonlinear least squares (NLS), where model 
predictions for an invading pathogen are fitted to reported incidence cases and daily 
new deaths [13–16]. In the NLS, a numerical method, such as Runge–Kutta or 
similar, is used to approximate the solution of a given ODE system using a trial 
set of values for parameters and initial conditions. The fit value is then input into 
an optimization algorithm that updates parameter estimates. As a result, the NLS 
framework can be computationally expensive when noisy data is considered or a 
highly nonlinear model is being used to describe a complex biological process. In 
[17, 18], a two-stage approach for this method was proposed, which first fit a smooth 
curve to given noisy data and then estimated the unknown parameters in the ODE 
system. Ramsay et al. [19] expanded on this method by proposing to alternate the 
two procedures and by imposing a smoothness penalty on curve fitting. To that end, 
Ramsay et al. developed a novel profiling estimation procedure where the data fitting 
and the fidelity to the ODE were combined into a penalized log-likelihood criterion,
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which provided the statistical inference for the ODE parameters. For other prior 
work on alternating minimization, also known as (block) coordinate descent, one 
may consult [20–25] and the references therein. 

A more general nonlinear constrained minimization problem was studied in [26], 
where parameter estimation was carried out in a predictor–corrector manner. In the 
predictor–corrector algorithm of [26], one updates the epidemiological parameters 
by a regularized second-order method while freezing the state variables, and then 
the state variables are modified while the system (epidemiological) parameters 
are fixed. These updates are iterated until convergence. Here, we propose a new 
predictor–corrector algorithm that extends the earlier version in [26] to the case of 
parameter-dependent nonlinear observation operators. The new algorithm success-
fully mitigates the associated computational costs and incorporates an extra layer 
of stability in the optimization process. In what follows, the proposed version of 
the predictor–corrector algorithm is used to get stable estimates of a time-dependent 
transmission rate and effective reproduction number from our new compartmental 
model, which is applied to the study of COVID-19 dynamics in a post-vaccination 
stage. 

The chapter is organized as follows. In Sect. 2, we introduce our Susceptible– 
Vaccinated–Infectious–Recovered–Deceased (SVIRD) model. In Sect. 3, we  
describe the new computational algorithm for estimating disease parameters in the 
proposed epidemic model. In Sects. 4 and 5, the method is evaluated on synthetic 
and real data sets, respectively. Possible directions of future work are outlined in 
Sect. 6. 

2 Mathematical Model: SVIRD 

Prior studies have underscored the importance of stable parameter estimation related 
to infectious disease transmission models based on ordinary or partial differential 
equations [27–29]. Lack of stable parameter estimation, which is evident when 
parameter estimates are associated with large uncertainties, may be attributed to 
the model structure or to the lack of information in a given data set, which could be 
linked to the number of observations and to the spatial granularity of the data [28]. 

Within epidemiology, stable estimation of the effective reproduction number, 
.Re(t), and its underlying transmission rate, .β(t), is particularly important [30–32]. 
Unlike other system parameters, i.e., incubation and recovery rates, the effective 
reproduction number and the transmission rate of the disease are directly influenced 
by mitigation measures. Therefore, it is critical to develop both suitable epidemic 
models and regularized computational methods to reliably quantify disease-specific 
parameters, especially in the face of noise-contaminated data and substantial 
uncertainty in approximate solutions. 

In this chapter, to model the COVID-19 dynamics and estimate the effective 
reproduction number, .Re(t), and its underlying transmission rate, .β(t), we propose 
the following system of ODEs:
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.
dS

dt
= −β(t)

S(t)

N − D(t)
(Is(t) + Iv(t)) − pS(t) + δrR(t) + δvV (t). (1) 

dV 
dt 

= pS(t) − (1 − α)β(t) 
V (t)  

N − D(t) 
(Is(t) + Iv(t)) − δvV (t). (2) 

dIs 
dt 

= β(t) 
S(t) 

N − D(t) 
(Is(t) + Iv(t)) − (γs,r + γs,d)Is(t). (3) 

dIv 
dt 

= (1 − α)β(t) 
V (t)  

N − D(t) 
(Is(t) + Iv(t)) − (γv,r + γv,d)Iv(t). (4) 

dR 
dt 

= γs,r Is(t) + γv,rIv(t) − δrR(t). (5) 

dD 
dt 

= γs,dIs(t) + γv,dIv(t). (6) 

The system defined by Eqs. (1)–(6) includes susceptible unvaccinated (S), suscep-
tible vaccinated (V ), infected vaccinated (. Iv), infected unvaccinated (. Is), recovered 
(R), and deceased (D) compartments. With N denoting the population size at the 
beginning time point of the study period, we use .N − D(t) as the total population 
size at time t . This is based on the assumption that the population increase (due to 
birth or immigration) and population decrease (due to reasons other than COVID-
19) balance out, and the change in population size is just due to COVID-19 death. 
The diagram of the SVIRD model in Eqs. (1)–(6) is given in Fig. 1, which illustrates 
the transition of individuals between various disease compartments. Susceptible 
humans become vaccinated at a rate of p. Both vaccinated and unvaccinated 
individuals can be infected. The disease transmission rate, .β(t), for susceptible 

Fig. 1 Diagram of the SVIRD model used. Susceptible individuals get vaccinated at a rate p and 
become infected at a time-dependent transmission rate .β(t). A constant parameter, .0 < α < 1, is  
a measure of vaccine efficacy. The lower values correspond to less efficacy, and .(1 − α)β(t) is the 
rate of disease transmission for vaccinated individuals. Both infected unvaccinated and vaccinated 
can recover at rates .γs,r and .γv,r and die at rates .γs,d and .γv,d , respectively. Loss of immunity 
is accounted for by considering movement back to the susceptible class from the vaccinated and 
recovered classes at rates . δv and .δr
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individuals is assumed to be time-dependent. We assume that vaccinated individuals 
become infected at a slower rate, which is taken into account by the incorporation of 
a vaccine efficacy parameter, denoted by . α; that is, vaccinated individuals become 
infected at a rate of .(1 − α)β(t), where .0 < α < 1. 

Motivated by the report that unvaccinated individuals are more likely to have 
severe symptoms from COVID-19 infections leading to a higher risk of hospitaliza-
tion and death [33], we assume different death rates for vaccinated and unvaccinated 
individuals, denoted by .γv,d and .γs,d , respectively. The severity in symptoms also 
leads to differing recovery rates for vaccinated and unvaccinated populations. The 
recovery rates for vaccinated and unvaccinated individuals are denoted by .γv,r and 
. γs,r , respectively. 

We further consider the case of possible reinfection due to the loss of immunity 
by vaccinated individuals at a rate of . δv and recovered individuals at a rate of . δr . 
We note from Eq. (1) that the rate of transmission depends only on the number of 
contacts between the living susceptible and infected individuals (described by the 
division by .N − D(t), the total living population at any instance in time). 

The disease transmission rate, .β(t), is an important underlying factor for the 
effective reproduction number, .Re(t), which quantifies the number of secondary 
cases per primary case in a completely susceptible population during the entire 
course of the outbreak. Similar to the transmission rate, the effective reproduction 
number is significantly impacted by environmental conditions and the behavior of 
the population. A sustainable reduction of .Re(t) to a level less than 1 would indicate 
that mitigation measures are successful and that the disease is contained, because 
every infected person, on average, can only transmit the virus to less than one other 
human. 

Using the next-generation matrix [34, 35], the effective reproduction number for 
compartmental model (Eqs. (1)–(6)) is estimated as 

.Re(t) = β(t)

(γs,r + γs,d)

S(t)

N − D(t)
+ (1 − α)β(t)

(γv,r + γv,d)

V (t)

N − D(t)
. (7) 

From Eq. (7), we note that .Re(t) increases with increasing disease transmission 
.β(t), as well as increasing numbers of susceptible individuals (vaccinated and 
unvaccinated). In addition, .Re(t) decreases with increasing recovery rates. Next, 
in Sect. 3, we describe our predictor–corrector algorithm that will be used to 
reconstruct the disease transmission rate, .β(t), which allows us to provide an 
estimate for the effective reproduction number, .Re(t). 

3 Methodology and Algorithm 

Let . C and . T be incidence data on new COVID-19 confirmed cases and deaths, 
respectively, and n be the number of data points in each set. Naturally, we assume 
that both data sets are noise contaminated. According to our SVIRD model given
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by Eqs. (1)–(6), the daily number of new COVID-19 cases is 

.C(t) := β(t)
S(t)(Is(t) + Iv(t))

N − D(t)
+ (1 − α)β(t)

V (t)(Is(t) + Iv(t))

N − D(t)
, (8) 

which we define as the rate of new infections into the system. On the other hand, by 
Eq. (6), the daily number of new deaths is 

.T(t) := γs,dIs(t) + γv,dIv(t). (9) 

Assume that in a particular region, the values .a = t1 and .b = tn are the first and 
the last days of the study period. We note that, fortunately, the number of deceased 
individuals is considerably smaller than infectious ones. So, we multiply daily new 
deaths, . T, by a positive scaling parameter, . λ, to ensure that new deaths and new 
cases have the same order of magnitude. Let the data, d, for new cases and deaths, 
. C and . T, be reported on days .t1, t2, ..., tn. That is, 

.d := [C(t1), ...,C(tn), λT(t1), ..., λT(tn)]T . (10) 

Combining Eqs. (8) and (9), we now introduce the observation operator as 

.B := [C(t1), ...,C(tn), λT(t1), ..., λT(tn)]T . (11) 

Then our goal is to recover the unknown time-dependent transmission rate, .β(t), 
from the nonlinear constrained minimization problem: 

. min
β,S,V,Is ,Iv,D

f (β, S, V, Is, Iv,D) (12) 

subject to system in Eqs. (1)–(6), where 

. f (β, S, V, Is, Iv,D) : = ‖B− d‖2

=
n⎲

i=1

⎨
(C(ti) − C(ti))2 + λ2 (T(ti) − T(ti))

2
⎬

. (13) 

To solve Eqs. (12) and (13) numerically, we discretize unobserved state variables, S, 
V , . Is , and . Iv , and the time-varying transmission rate, .β(t), using basis expansions. 
The vector of expansion coefficients for the transmission rate, . β(t), is of primary  
interest. The vector of expansion coefficients for the state variables is of less 
practical importance, and it is primarily needed for the estimation of . β(t). For  
this reason, in statistics literature, the expansion coefficients for state variables are 
often referred to as nuisance parameters [19]. Upon discretization, we iteratively 
update both sets of unknown expansion coefficients using alternating minimization 
as described below.
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In order to obtain the discrete approximation of .β(t), we consider a finite 
subset spanned by shifted Legendre polynomials of degree .0, 1, ..., m − 1, which 
are orthogonal on the interval .[a, b] with respect to .L2 inner product, defined 
recursively as follows: 

. x = 2t − a − b

b − a
, P0(x) = 1, P1(x) = x, t ∈ [a, b],

. (j + 1)Pj+1(x) = (2j + 1)xPj (x) − jPj−1(x), j = 1, 2, ..., m − 2.

This gives rise to the following finite-dimensional approximation of the transmission 
rate: 

.β̄i[θ ] =
m−1⎲

j=0

θj+1Pj (ti), i = 1, 2, ..., n. (14) 

Likewise, we express the state variables .S, V, Is , and . Iv as 

. S̄i[u] =
l−1⎲

j=0

uj+1Pj (ti), V̄i[u] =
l−1⎲

j=0

ul+j+1Pj (ti),

.Īs,i[u] =
l−1⎲

j=0

u2l+j+1Pj (ti), Īv,i[u] =
l−1⎲

j=0

u3l+j+1Pj (ti), (15) 

which generates discretized daily rates of incidence and death, .C̄d,i[θ, u] and 
.T̄d,i[u], respectively, if one substitutes .β̄i[θ ] from Eq. (14) and .S̄i[u], V̄i[u], Īs,i[u], 
and .Īv,i[u] from Eq. (15) for .β(ti), .S(ti), V (ti), Is(ti), and .Iv(ti) in Eqs. (1)–(6) 
and Eqs. (8) and (9). The derivatives of .S, V, Is , and . Iv get discretized by replacing 
.Pj (ti) with .P '

j (ti) in the identities above. 
Next, we define vectors for the unknown parameters, . θ and u, from the discrete 

approximation of the transmission rate, .β(ti), in identity Eq. (14) and from the 
discrete approximation of the state variables, .S(ti), V (ti), Is(ti), and .Iv(ti), . i =
1, 2, ..., n, in Eq. (15) as 

. θ :=[θ1, ..., θm]T and u := [u1, ..., ul, ul+1, ..., u2l , u2l+1, ..., u3l , u3l+1, ..., u4l]T .

This enables us to introduce the observation operator, B: 

.B(θ, u) :=
⎾
C̄d,1[θ, u], ..., C̄d,n[θ, u], λT̄d,1[θ, u], ..., λT̄d,n[θ, u]

⏋T

(16) 

and the operator G to account for the constraints
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. Gi(θ, u) := S̄'
i[u]+β̄i[θ ] S̄i[u](Īs,i[u]+Īv,i[u])

N − D̄i[u] +pS̄i[u]−δr R̄i[u] − δvV̄i[u]

Gn+i (θ, u) := V̄ '
i [u] − pS̄i[u] + (1 − α)β̄i[θ ] V̄i[u](Īs,i[u] + Īv,i[u])

N − D̄i[u] + δvV̄i[u]

G2n+i (θ, u) := Ī '
s,i[u] − β̄i[θ ] S̄i[u](Īs,i[u] + Īv,i[u])

N − D̄i[u] + (γs,r + γs,d)Īs,i[u]

G3n+i (θ, u) := Ī '
v,i[u]−(1−α)β̄i[θ ] V̄i[u](Īs,i[u] + Īv,i[u])

N−D̄i[u] +(γv,r + γv,d)Īv,i[u]

for .i = 1, 2, ..., n. Here .D̄i[u] is the reported cumulative number of deaths on day 
. ti and 

.R̄i[u] := N − (S̄i[u] + V̄i[u] + Īs,i[u] + Īv,i[u] + D̄i[u]). (17) 

We can now recast the constrained minimization problem as follows: 

. minimize ‖B(θ, u) − d‖2 with respect to θ and u

.subject to G(θ, u) = 0. (18) 

Note that the data-fitting operator, B, also depends on the input data, . D̄, the  
cumulative number of deceased individuals. However, the cumulative data, as 
opposed to daily number of cases and deaths on the right-hand side, are smooth, and 
the noise in cumulative data is consistent with discretization and modeling errors. 

To reconstruct the transmission rate, .β(t), we employ a predictor–corrector 
algorithm, where one updates . θ while freezing u, and then u is modified while . θ is 
kept unchanged. The process is repeated until a desired tolerance level is achieved. 

More specifically, given .

⎧
θk

uk

⎫
, one transitions from . θk to .θk+1 by applying one step 

of the iteratively regularized Gauss–Newton (IRGN) procedure: 

. θk+1 = θk − [G'∗
θ (θk, uk)G

'
θ (θk, uk) + B '∗

θ (θk, uk)B
'
θ (θk, uk) + τkI ]−1

{G'∗
θ (θk, uk)G(θk, uk)+B '∗

θ (θk, uk)(B(θk, uk)−d)+τk(θk − θ̄ )}, (19) 

where . τk is the regularization parameter needed to incorporate stability in the 

optimization process and . θ̄ is a prior value of . θ . Then, given .

⎧
θk+1

uk

⎫
, one computes 

.uk+1 using the classical Gauss–Newton scheme 

. uk+1 = uk − [G'∗
u (θk+1, uk)G

'
u(θk+1, uk) + B '∗(θk+1, uk)B

'(θk+1, uk)]−1

{G'∗
u (θk+1, uk)G(θk+1, uk) + B '∗(θk+1, uk)(B(θk+1, uk) − d)}. (20)
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A simpler version of this algorithm was introduced and analyzed in [26]. In [26], 
the data-fitting operator, B, does not depend on the system parameter, . θ , and is a 
function of the state variable only, i.e., .B = B(u). The IRGN scheme in Eq. (19) 
originates from variational regularization in the form 

. min
θ∈Rm

⌠
1

2
||G(θ, uk)||2 + 1

2
||B(θ, uk) − d||2 + τk

2
||θ − θ̄ ||2

⎫
. (21) 

The method in Eq. (20), on the other hand, is the classical Gauss–Newton algorithm 
applied to the nonlinear minimization problem 

. min
u∈R4l

⌠
1

2
||G(θk+1, u)||2 + 1

2
||B(θk+1, u) − d||2

⎫
. (22) 

The Gauss–Newton procedure in Eq. (20) does not need to be regularized, since 
solving the ODE system of equations in Eqs. (1)–(6), with respect to .S, V, Is, Iv, R, 
and D, is a forward problem, which is not generally ill-posed. Thus, its discrete 
approximation is also stable (as our numerical experiments below confirm). 

The algorithm in Eqs. (19) and (20) was coded in MATLAB, using the 
optimization and parallel toolboxes. The code, along with figures, simulated data, 
and parameter estimates, can be found in our GitHub repository: https://github.com/ 
donajialej/WIMB2022team5.git. 

For all numerical simulations (with synthetic and real data), the unobserved state 
variables, .S, V, Is , and . Iv , are normalized; that is, in place of .S, V, Is , and . Iv , we  
reconstruct the expansion coefficients for .S/N, .V/N, .Is/N , and .Iv/N , where N is 
the total population of the region. 

To select the number of basis functions for .β(t) and for the unobserved state 
variables (m and n, respectively), we start with .m = n = 5 and keep increasing 
them until the reconstructed functions, .β(t), .S(t), .V (t), .Is(t), and .Iv(t), no longer 
visibly change. 

An important part of parameter estimation is the choice of . λ in Eqs. (10)–(11), 
which ensures that the two data sets—reported daily new cases and deaths—are 
well-balanced. In all our experiments, the value of . λ is equal to 1000. For .λ = 1, 
the misfit in daily new deaths is perceived as part of noise in incidence data, and the 
process is less sensitive to daily new deaths as compared to new incidence cases. 

4 Numerical Experiments with Synthetic Data 

In this section, we test our proposed predictor–corrector algorithm (Eqs. (19)–(20)) 
using two synthetic data sets for incidence cases and deaths. The first synthetic data 
set was generated using the transmission rate .β(t) shown in Fig. 2, which represents 
a case when initial success in disease prevention is followed by some setbacks 
causing the transmission rate to fluctuate. Specifically, this transmission rate was

https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
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Fig. 2 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) for Scenario 1 (non-effective mitigation) from synthetic noisy data 
on new daily cases and deaths in Fig. 3. Simulations are carried out with 10 basis functions for 
the transmission rate .β(t) and 40 basis functions for each unobserved state variable, .S, V, Is , 
and . Iv , i.e., 160 basis functions for all state variables combined. The regularization sequence is 
.τk = 1010/(k+1)15, and the iterations are stopped when .k = 43. This stopping time is determined 
by the goodness of fit to both data sets 

chosen to model a “non-effective mitigation” scenario where .Re(t) remains above 
1 for multiple time periods showing that the disease persists and spreads quickly. 
This is illustrated in the graph of .Re(t) in Fig. 2. The second synthetic data set was 
generated using the transmission rate shown in Fig. 4 and represents an “effective 
mitigation” scenario where the disease transmission rate is reduced during the study 
period and where .Re(t) stays below 1 more consistently. 

In what follows, we evaluate the performance of the proposed method in 
reconstructing the unknown time-dependent transmission rate, .β(t), given synthetic 
daily rates of incidence cases and new deaths over a certain period of time. Two 
model transmission rates, described above, were selected (see Figs. 2 and 4). Each 
model transmission rate was used to solve the forward problem, i.e., the system 
of ODEs (Eqs. (1)–(6)), and to generate clean data on incidence cases, .C(t), and
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Fig. 3 Synthetic study of Scenario 1: non-effective mitigation. Top to bottom: synthetic (Synth) 
data (dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values 
(dash line) and model reconstructions (solid line) for .S(t) (blue), .V (t) (green), .Is(t) (red), and 
.Iv(t) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line 
of the color corresponding to each compartment 

daily new deaths, .T(t), on a given time interval .[t1, tn] according to expressions, 
Eqs. (8) and (9), respectively. Then, random Gaussian noise (with 0 mean and a 
rather aggressive standard deviation) was added to epidemic data in order to mimic 
noise-contaminated data in a real-life setting, as shown in the top panels of Figs. 3 
and 5. Since real incidence cases and deaths are known to be positive, uniform noise 
was added if the incidence became negative at any point. 

Given “real” data for incidence cases and daily new deaths, we employed 
the regularized algorithm (Eqs. (19) and (20)) to simultaneously reconstruct the 
unknown transmission rate, .β(t), and the state variables, .S, V, Is, and . Iv , with 
discrete approximation given by Eqs. (14) and (15). In order to quantify uncertainty 
in the extracted transmission rate, we refit the model (using parallel programming 
via the parfor function in MATLAB) to .M = 100 additional data sets for incidence
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cases and daily deaths assuming Poisson error structure. The resulting M best-fit 
parameter sets are used to build the histogram for each Legendre coefficient, . θj , 
.j = 1, 2, ..., m, representing the frequency distribution of the reconstructed values. 

To ensure an unbiased choice of the initial guess for . β(t), we take  
.[β0, 0, ..., 0]T to serve as initial approximation for .[θ1, θ2, ..., θm]T at every 
bootstrap iteration, where .0.1 < β0 < 1. To find initial approximations for 
u, we solve the system of ODEs (Eqs.  (1)–(6)) with .β(t) = β0 one time 
before the start of the iterative process and then evaluate Legendre expansion 
coefficients for the computed .S, V, Is, and . Iv to form the initial vector . u :=
[u1, ..., ul, ul+1, ..., u2l , u2l+1, ..., u3l , u3l+1, ..., u4l]T .

For the non-effective mitigation scenario (Scenario 1) with transmission rate . β(t)

shown in Fig. 2, the fitting procedure is initiated with .β0 = 0.5 and is carried out 
using .m = 10 basis functions for the transmission rate, .β(t), and .n = 40 basis 
functions for each unobserved state variable, . S, V , . Is , and . Iv , giving a total of 160 
basis functions for all state variables combined. 

With no regularization, the iterative process to estimate the transmission rate in 
Scenario 1 (Fig. 2) turns out to be divergent. However, the process can be stabilized 
with a broad range of initial values, . τ0, as long as they are consistent with the rate of 
decay of the regularization sequence, . τk . In our experiment, we selected . τ0 = 1010

and the regularization sequence, .τk = 1010/(k + 1)15, the fastest rate of decrease 
that gives rise to a convergent iterative process. Iterations of Eqs. (19) and (20) are 
stopped when .k = 43. This stopping time is determined by the goodness of fit to 
both data sets . C and . T. 

For the effective mitigation case (Scenario 2), where the transmission rate . β(t)

is presented in Fig. 4, the parameter estimation process is initiated with .β0 = 0.3. 
As before, the reconstruction is done with .m = 10, .n = 40, and .τ0 = 1010, and 
the regularization sequence is driven to zero at the rate .1010/(k + 1)15. But in this 
scenario, the iterative process is terminated when .k = 19. 

Figures 2 and 4 illustrate the connection between exact and reconstructed 
effective reproduction numbers, .Re(t), for the two scenarios with different model 
transmission rates. As stated in Sect. 2, .Re(t) > 1 describes time periods for which 
the disease persists and spreads quickly, and .Re(t) < 1 describes time periods 
for which the disease is contained (i.e., the disease is spreading slowly, eventually 
dying out). In the non-effective mitigation scenario described in Fig. 2, we see two  
approximately month-long windows for which the disease persists, highlighting 
that after the first push to decrease transmission (.Re(t) falls to less than 1 in mid-
August), mitigation strategies are not successful at keeping the transmission rate 
low enough, and a second wave begins in early October. For the effective mitigation 
scenario, described in Fig. 4, we see that although the effective reproduction rate 
.Re(t) is greater than 1 for an extended initial period of time, once it drops below 1 
(close to September) it stays below 1. 

The top panels of Figs. 3 and 5 show how the bundles of incidence curves for 
daily new cases and deaths corresponding to the reconstructed transmission rates, 
.β(t), are compared to the noisy synthetic data used for data fitting.
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Fig. 4 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) in Scenario 2 (effective mitigation) from synthetic data on new daily 
cases and deaths in Fig. 5. Simulations are carried out with 10 basis functions for the transmission 
rate .β(t) and 40 basis functions for each unobserved state variable, .S, V, Is , and . Iv , i.e., 160 basis 
functions for all state variables combined. The regularization sequence is .τk = 1010/(k+1)15, and  
the iterations are stopped when .k = 19. This stopping time is determined by the goodness of fit to 
both data sets 

Reconstructed .S(t), V (t), Is(t), and .Iv(t) from these two scenarios can be 
viewed in the lower panels of Figs. 3 and 5, respectively. While there are inevitable 
errors due to noise contamination in both data sets and due to accuracy loss 
stemming from regularization, Figs. 2, 3, 4, and 5 illustrate numerical experiments 
for synthetic data where the uncertainty is very low and the reconstruction of all 
unknown parameters is very stable. Yet, as evident from Figs. 3 and 5, it is harder to 
reconstruct the dynamics of the vaccinated population compared to the susceptible 
one since vaccinated individuals are less likely to contribute to new incidence cases 
(and especially deaths). 

When comparing the time series for the reconstructed state variables between 
our two scenarios in the lower panels of Figs. 3 and 5, the progression of the disease 
follows the trend of the disease transmission rates. In particular, two infection peaks
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Fig. 5 Synthetic study of Scenario 2: effective mitigation. Top to bottom: synthetic (Synth) data 
(dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values 
(dash line) and model reconstructions (solid line) for .S(t) (blue), .V (t) (green), .Is(t) (red), and 
.Iv(t) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line 
of the color corresponding to each compartment 

are in the lower panel of Fig. 3, which follow the peaks in the transmission rate and 
effective reproduction number curves in Fig. 2. A similar trend for a single infected 
peak is in the lower panel of Fig. 5, which follows the peaks in the transmission rate 
and effective reproduction number curves in Fig. 4. We also note that in the non-
effective mitigation scenario (Fig. 3) the initial population is assumed to be . N =
39, 237, 836 and for the effective mitigation scenario (Fig. 5) .N = 10, 799, 566. 

Our simulated data and the inversion results for both experiments with synthetic 
data largely depend on the values of pre-estimated parameters, p, . α, . γs,r , .γv,r , .γs,d , 
.γv,d , . δv , and . δr , and the initial values for .S, V, Is , and . Iv . In both scenarios, we 
simulated for 140 days with the parameters as those from the real epidemic listed in 
Table 2. For initial values of .S, V, Is, and . Iv , see the lower panels of Figs. 3 and 5.
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5 Simulations with Real Data for COVID-19 Pandemic 

In this section, we apply our SVIRD model (Eqs. (1)–(6)) and regularized com-
putational algorithm (Eqs. (19) and (20)) to real data on incidence cases and new 
daily deaths for the second wave of COVID-19 in the United States in 2021, 
when the Delta variant was one of the more widely spread strains [36]. Most 
states experienced this second wave during an approximately 4-month period 
between July 9 and November 25, 2021, while vaccines were distributed to the 
US general population starting in early 2021. So we can study the progression of 
the pandemic under the effect of vaccination. For our experiments, we choose data 
sets for two states, Georgia and California, as both have different population sizes 
(Georgia is much smaller with approximately 11 million people versus the nearly 
40 million living in California), had different proportions of vaccinated individuals 
between July 9 and November 25, 2021, and had different COVID-19 protocols. 
In particular, California had more vaccinated people at the onset and at the end of 
this time window [36], and California had stricter masking protocols; masks were 
required indoors in most places during this time period, whereas they were only 
recommended in the state of Georgia. The model variables and initial conditions 
corresponding to the population sizes in Georgia and California at the onset of the 
second wave are given in Table 1. Initial conditions were found using Census and 
CDC data [36–39]. Here, .I (0) = Is(0) + Iv(0) is the number of cases within the 
most recent week of the onset of the second wave, as most people with COVID-
19 are no longer contagious 5 days after they first have symptoms and have been 
fever-free for at least 3 days. 

Table 1 Initial conditions used in the SVIRD model for the Georgia and California data. 
Population size was based on the January 7, 2021 data from https://www.census.gov/quickfacts/ 
GA and https://www.census.gov/quickfacts/CA 

Variable Meaning 

.S(t) Number of susceptible unvaccinated individuals 

.V (t) Number of susceptible vaccinated individuals 

.Is(t) Number of infectious unvaccinated individuals 

.Iv(t) Number of infectious vaccinated individuals 

.R(t) Number of recovered individuals 

.D(t) Number of deceased individuals 

Initial condition Georgia California 

.S(0) .10,799,566 − V (0) − I (0) . 39,237,836 − V (0) − I (0)

.V (0) .3,942,002 . 20,086,693

.Is(0) .3,580 . 25,039

.Iv(0) .731(= 3580 ∗ 5116/25039) . 5,116

.R(0) 0 0 

.D(0) 0 0

https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
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Table 2 Parameter values recorded for California and Georgia during the second wave of the 
pandemic, July 9–November 25, 2021 (approximately 4 months). The bars “–” in the last column 
mean that these values were calculated using .γs,d , as described in the text 

Parameter Meaning Value Source 

.β(t) Transmission rate 

p Vaccination rate 0.00086 day.−1 [37–39] 

.α Vaccine dose efficacy 0.8 [40, 43, 44] 

.γs,r Recovery rate of unvaccinated 0.0995 day.−1 – 

.γv,r Recovery rate for vaccinated 0.09996 day.−1 – 

.γs,d Case-fatality for unvaccinated 0.00027 day.−1 [45] 

.γv,d Case-fatality for vaccinated 0.000021 day.−1 – 

.δv Loss of immunity for vaccinated 0 day.−1 [46] 

.δs Loss of immunity for unvaccinated 0.011 day. −1

System parameter values used for California and Georgia during the second wave 
of the pandemic are presented in Table 2. The rationale for the selection of these 
values is as follows:

• Vaccination rate p: Based on the CDC data [39], during the selected time 
window, the proportion of fully vaccinated people changed from 37.5% to 49.8% 
in Georgia and from 51.1% to 63.1% in California, both of which resulted in 
about 12% increase in vaccination. Dividing this by our 140-day window gives 
the approximate daily vaccination rate p of 0.00086 day. −1.

• Vaccine effectiveness . α: We choose .α = 0.8 as the age-standardized crude 
vaccine effectiveness for infection was reported at .80% during July–November 
of 2021 [40].

• Death rate .γs,d : We calculate .γs,d = 0.005/18.5 = 0.00027 days. −1 as the 
infectious fatality ratio IFR was reported as .0.5% from [41], and the median 
time from illness onset to death is 18.5 days (reported number for vaccinated vs 
unvaccinated [42]).

• Death rate . γv,d : We take .γv,d = (0.005/12.7)/18.5 = 0.000021 days. −1 because 
during October–November, unvaccinated persons had 12.7 times the risks for 
COVID-19—associated death compared with those that were vaccinated without 
booster doses [33].

• Recovery rate . γs,r : Assuming that individuals infected with COVID-19 either 
recover or die and using a recovery rate of 10 days, we conclude that the recovery 
rate for unvaccinated individuals is .γs,r = (1 − 0.005)/10 = 0.0995 days. −1.

• Recovery rate .γv,r : With a similar rationale as above, we estimate the recovery 
rate for vaccinated individuals as .γv,r = (1−0.005/12.7)/10 = 0.09996 days. −1.

• Loss of immunity rate for recovered individuals . δr : We set . δs = 1/90 = 0.011 
days. −1.

• Loss of immunity rate for vaccinated individuals . δv: We use .δv = 0 as the 
Moderna and Pfizer-BioNTech vaccines offer immunity against COVID-19 for 
at least 6 months, and most people in the USA were fully vaccinated by the
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end of April 2021 or later. Therefore, they still had immunity against COVID-19 
during most of the study period. 

In the case of real data, apart from the measurement errors, which were 
incorporated in our earlier experiments, we also encounter modeling errors, which 
make the process considerably more unstable. Thus, apart from the penalty term, 
.
τk

2 ||θ − θ̄ ||2, the iterative scheme also needs to be regularized by discretization. 
For this reason, fewer basis functions are used for the state variables. Specifically, 
we take 6 basis functions for each unobserved state variable, .S, V, Is , and . Iv , for  
the Georgia data, and 12 basis functions for each unobserved state variable for the 
California data. To further stabilize the process, we also introduce a smaller step 
size, .ζ = 0.1, as we update .S(t), V (t), Is(t), and .Iv(t). This calls for more iterations 
needed to achieve the desirable data fit. The iterative process is terminated when 
.k = 130 for the Georgia data with regularization sequence .τk = 1/(k + 1)10 and 
.k = 58 for the California data with .τk = 103/(k + 1)7. Overall, the time until 
convergence remains the same as for the case of synthetic data since the increase 
in the number of iterations is balanced by the reduction in the number of basis 
functions. 

Another important aspect is the reporting rate of new cases. While it is natural to 
assume that the reporting rate for deaths due to COVID-19 is high, the reporting rate 
for daily new COVID-19 cases is unlikely to be anywhere close to 100% considering 
the large number of mild and asymptomatic cases (“silent spreaders” [47]). Figures 6 

Aug Sep Oct Nov 

Time (days) 2021   

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

R
e
(t

) 

Report 10% 
Report 20% 
Report 30% 
Report 40% 
Report 50% 
Report 60% 
Report 70% 
Report 80% 
Report 90% 
Report 100% 

Fig. 6 Reconstructed effective reproduction numbers, .Re(t), for various assumed reporting rates 
in the state of Georgia. Simulations are carried out with 10 basis functions for the transmission 
rate, .β(t), and 6 basis functions for each unobserved state variable, . S, V, Is , and . Iv , i.e., 24 basis 
functions for all state variables combined. The regularization sequence is .τk = 1/(k + 1)10, and  
the iterations are stopped when .k = 130. This stopping time is determined by the goodness of fit 
to the Georgia data set
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Fig. 7 Reconstructed effective reproduction numbers, .Re(t), for various assumed reporting rates 
in the state of California. Simulations are carried out with 10 basis functions for the transmission 
rate, .β(t), and 12 basis functions for each unobserved state variable, .S, V, Is , and . Iv , i.e., 48 basis 
functions for all state variables combined. The regularization sequence is .τk = 103/(k + 1)7, and  
the iterations are stopped when .k = 58. This stopping time is determined by the goodness of fit to 
the California data set  

and 7 compare reconstructed time-dependent effective reproduction numbers, .Re(t), 
for various assumed reporting rates of daily new cases in Georgia and California, 
respectively (for both states, we fixed the reporting rate for daily new deaths due 
to COVID-19 at 90%). We know that at the onset of the Delta variant wave of the 
COVID-19 pandemic, the reproduction number must have been above 1 for some 
time. Thus, Fig. 6 suggests that the reporting rate of new COVID-19 incidence cases 
in the state of Georgia is 10–30%. For California, we see that the reporting rate is 
10–60% as illustrated in Fig. 7. This is consistent with the estimation of COVID-
19 incidence reporting rate carried out in [48]. In [48], the reporting rate was cast 
as one of the unknown parameters in the model and had to be reconstructed by the 
optimization algorithm. For the initial pre-vaccination stage of COVID-19 pandemic 
in the state of Georgia, the reporting rate for new incidence cases was estimated to 
be 0.23 (95% confidence interval (CI): [0.22,0.24]). For the reasons listed previously 
and as suggested by our numerical study, in simulations presented in Figs. 8, 9, 10, 
and 11, we assume a 90% reporting rate for new daily deaths due to COVID-19 and 
a 20% reporting rate for new incidence cases in the states of Georgia and California. 

In Figs. 8 and 10, we show the transmission rate, .β(t), and the effective 
reproduction number, .Re(t), reconstructed from daily data on new cases and deaths 
for the states of Georgia and California, respectively, for the period from July 9 to 
November 25, 2021. The top panels of Figs. 9 and 11 show how incidence curves 
for daily new cases and deaths in the states of Georgia and California are compared 
to real data used for parameter estimation in the optimization process (Eqs. (19)
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Fig. 8 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number . Re(t) for the state of Georgia  

and (20)). Reconstructed .S(t), V (t), Is(t), and .Iv(t) for the states of Georgia and 
California can be viewed in the lower panel of the same figures. One may notice 
that the California incidence data (top panel of Fig. 11) are more “spread out” than 
the Georgia incidence data (top panel of Fig. 9). This is because, for the Georgia 
data, a rolling 7-day average was recorded each week since in Georgia new cases 
were often not reported on the weekends when the Delta variant was dominant. So, 
the approximation of unobserved state variables for the state of California is more 
uncertain as compared to Georgia and to the sets of synthetic data. 

The parameter estimation process is initiated with .β0 = 0.5 for both Georgia and 
California. The reconstruction is done with .m = 10 in both cases (the number of 
basis functions for the transmission rate). For Georgia, the number of basis functions 
for each unobserved state variable is .n = 6 (i.e., 24 basis functions for all state 
variables, S, V , . Is , and . Iv , combined). The iterative process started with .τ0 = 1. 
The regularization sequence is driven to zero at the rate .1/(k + 1)10. Like in the  
case of Georgia, for the California data set the number of basis functions for . S,

V , . Is , and . Iv is significantly reduced (from .n = 40 to .n = 12), as compared to
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Fig. 9 State of Georgia (GA) case study. Top to bottom: state data (dots) and model fit (solid line) 
for daily new cases and daily new deaths; 100 bootstrap model reconstructions for .S(t) (blue), 
.V (t) (green), .Is(t) (red), and .Iv(t) (pink). The mean of the bootstraps is a darker line of the color 
corresponding to each compartment 

reconstructions with synthetic data in order to further stabilize predictor–corrector 
algorithm (Eqs. (19) and (20)) in the presence of modeling error. 

By comparing Figs. 8 and 10, one can see that the start of the Delta variant 
wave in the state of California was more rapid as compared to Georgia, but it took 
longer for Georgia to get the virus under control (as compared to California). In 
California, the effective reproduction number, .Re(t), dropped under 1 around mid-
August, while in Georgia .Re(t) remained greater than 1 until early September 2021. 
However, in California, the effective reproduction number almost bounced back to 
1 in late October before going down again toward the end of the study period. In 
Georgia, on the other hand, .Re(t) remained very low after the end of September. 

In the top panels of Figs. 9 and 11, we note the peak of around .9,000 new 
incidence cases in the state of Georgia in early September and the peak in mid-
August of approximately .13,000 new incidence cases in the state of California.
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Fig. 10 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) for the state of California 

In both states the daily reported new deaths are under 150 people. The peaks in 
deaths follow the peaks of incidence cases, in early October in Georgia and in 
early September in California. Reconstructed curves, .Is(t) and .Iv(t), are consistent 
with the reported percentage of vaccinated individuals in the states of Georgia and 
California, respectively (Figs. 9 and 11). 

6 Conclusion and Future Work 

In this chapter, we propose a new dynamic model of COVID-19 transmission that 
takes into account the vaccination status of both susceptible and infected humans. It 
also includes a possible loss of immunity and reinfection within both vaccinated and 
unvaccinated populations. To estimate the unknown disease parameters, we develop 
a novel computational algorithm, which employs a parameter cascade approach. 
The proposed method is used to reconstruct time-dependent transition rates, .β(t),
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Fig. 11 State of California (CA) case study. Top to bottom: state data (dots) and model fit (solid 
line) for daily new cases and daily new deaths; 100 bootstrap model reconstructions for .S(t) (blue), 
.V (t) (green), .Is(t) (red), and .Iv(t) (pink). The mean of the bootstraps is a darker line of the color 
corresponding to each compartment 

and effective reproduction numbers, .Re(t), from synthetic and real data for the 
COVID-19 pandemic. Apart from COVID-19, the proposed compartmental model 
and iteratively regularized optimization method can be applied to the study of other 
infectious diseases. 

In the course of our numerical study, the new optimization technique has 
emerged as a reliable alternative to more traditional trust-region and gradient-
descent algorithms that are commonly used in parameter estimation. The efficiency 
of these algorithms is limited when a complex biological model (which may be 
a system of nonlinear ordinary or partial differential equations) constraining the 
underlying minimization problem does not have a closed-form solution and has to 
be solved numerically at every step of the iterative process. Our new method, on the 
other hand, does not require either exact or approximate solution to the constraining 
system.
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In reconstructing time-dependent transmission rates, .β(t), in order to reduce 
the computational load and to improve the estimate efficiency, we pre-specified 
the values of other system parameters by conducting a thorough review of the 
literature. To assess the sensitivity of reconstructed transmission rates to slight 
variations in pre-estimated parameters, one can build a Bayesian model to assign 
priors to pre-specified parameters, and the posterior distributions of transmission 
rates will incorporate the uncertainty in these parameters. This is an important 
topic for future work. Note that for a simpler SIRD model corresponding to a 
pre-vaccination stage of the COVID-19 pandemic, the sensitivity analysis has been 
conducted in [48]. In [48], for every bootstrap iteration, the recovery rate, . γ , and 
the fatality rate, . ν, have been sampled from normal distributions, . N(0.20, 0.02)

and .N(0.005, 0.001), respectively. The normal distribution, .N(0.20, 0.02), for the  
recovery rate, . γ , reflected an average infectious period between 3 and 20 days, while 
the normal distribution .N(0.005, 0.001) for the fatality rate, . ν, accounted for the 
variation of this parameter within different risk groups. The reconstructed values of 
.β(t) with normally distributed . γ and . ν were almost identical to those reconstructed 
with constant (mean) values of these pre-estimated parameters showing a very low 
sensitivity of .β(t) to inevitable variations in COVID-19 infectious periods and 
fatality rates. 

With a considerable portion of mild and asymptomatic cases, the number of 
reported daily new cases is much lower than the actual value. In this chapter, we 
change the reporting rates of new incidence cases and investigate how different 
reporting rates affect the reconstruction of effective reproduction numbers, . Re(t), in  
our numerical simulations. Thus, another important direction of future research will 
be to modify our reconstruction process to include the estimation of the unknown 
percentages of new incidence cases along with the unknown time-dependent 
transmission rate, .β(t), and other system parameters. The problem of the reporting 
rate can also be addressed by extending the model to include the compartment of 
asymptomatic spreaders. 

We also plan to add line search routines and incorporate nonnegativity con-
straints for unobserved state variables, .S, V, Is , and . Iv , in iteratively regularized 
predictor–corrector algorithm (Eqs. (19) and (20)). This will allow further accuracy 
improvements and stability of the proposed optimization method. 

Last but not least, the methodology must be extended to provide near real-
time forecasting of future incidence cases and deaths (among vaccinated and 
unvaccinated individuals) from early data for an unfolding outbreak. This research 
is crucial for control and prevention, in particular, for the assessment of various 
vaccination strategies. 
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