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Editorial 

Mobility is a great asset to humans and our capability to move seamlessly through 
our world contributes to the quality of an active life. On the downside, we pay a 
high price for our mobility in the form of traffic accidents, environmental pollu-
tion, consumption of resources and living space, and loss of freely available time 
due to congestion. In this situation, two recent developments in the automotive 
sector are opening up attractive opportunities. Many experts expect recent advance-
ments in automated driving research will be commercialized in the not-too-distant 
future. In addition, communication technology between vehicles and the infrastruc-
ture advances rapidly, so that Car2X communication systems are likely to be standard 
equipment in automobiles within a few years. 

Used in a targeted way, these technological possibilities can lead to an inno-
vation, if not a revolution, in our mobility. Cooperatively interacting vehicles can 
increase traffic efficiency and reduce accidents, economically expand public trans-
port in peripheral areas and at off-peak times, and reduce the use of open space by 
traffic in cities. For people, these technologies offer comfortable, safe travel with 
freely available time and self-determined mobility with their own vehicle even in old 
age and with physical impairments. 

Any driver has witnessed the benefits of cooperative behavior in traffic for safety 
and efficiency. Likewise, automated vehicles are expected to improve traffic safety 
through cooperative interaction. This book addresses research fields in coopera-
tively interacting vehicle technology and is structured along the information flow of 
automated driving. 

Perception and Prediction of other road agents using on-board sensor informa-
tion stands at the beginning of the perception-action cycle. The first chapters focus 
on body posture interpretation of cyclists and how such information can be used for 
prediction. It is shown how motion prediction of vulnerable road users (VRU) can 
benefit from information exchange between different devices carried by VRUs and 
sensors mounted on vehicles or in the infrastructure. Driver behavior at intersections 
is analyzed with an emphasis on ambiguous precedence situations. 

The potential of Explicit Communication between traffic participants is key to 
enhancing the perception horizon even in adverse visibility conditions. Furthermore,

v
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proper design of V2X communication protocols can alleviate cooperative perception 
and maneuver negotiation. 

Cooperative Motion Planning—whether with implicit or explicit communica-
tion—opens new abilities for automated vehicles. This book sheds light on a multi-
tude of relevant aspects in this field. The mutual dependence of motion plans of 
interacting traffic participants can be framed as a Stackelberg game, where an agent 
plans optimal behavior considering its effects on others based on their strategy. 
Graph optimization techniques make it possible to assemble complex motion plans 
from motion primitives. Networked control forms a joint optimization task whose 
complexity can be reduced by a prioritized distributed model predictive control (P-
DMPC) approach. Different time-variant priority assignment algorithms are inves-
tigated. V2V-communication enables negotiation for cooperative driving maneu-
vers. Appropriate strategies allow traffic participants to temporally reserve areas 
of the road for their exclusive usage. A layered architecture for motion planning is 
proposed to guarantee consistent and safe cooperative driving decisions. The concept 
of specification-compliant reachable sets makes it possible to identify and negotiate 
potential conflicts within a group of cooperating vehicles. Formal models for V2X 
communications facilitate the formation of local traffic systems whose trajectories 
can be verified to be free of collisions and deadlocks. Reinforcement learning has 
gained large attention in automated driving research. Learning reward functions from 
expert trajectories are proposed to mimic human driving styles. Likewise, learned 
cooperative maneuver policies enhance traffic efficiency and equity at mixed-traffic 
intersections. 

Last, not least, Human Factors impose core design objectives for any mobility 
system. The combination of use cases and design/interaction patterns bears the poten-
tial to manage the complexity of future cooperative systems. SAE level 3 automated 
driving includes potential takeover requests to the human. For such systems, confi-
dence horizons are proposed to predict the takeover capability based on the driver’s 
initial orientation reaction. Alternatively, the confidence horizon concept may be 
instantiated with a pattern framework. Deadlock situations frequently arise in urban 
situations in which the right of way is not regulated. Studies on how human drivers 
solve such situations lead to recommendations for automated vehicles. The part 
closes with measures and descriptions for cooperation. 

The book provides an overview of methods for the implementation of cooper-
atively interacting automobiles. It presents recent research results and references 
relevant literature in this domain. The multi-disciplinary expertise of the authors 
reflects the nature of the topic. 

We hope the readers will find these contributions to this emerging technology 
fruitful and inspiring for their own work. Last, not least, the editors and authors 
gratefully acknowledge funding for the Focus Program SPP 1835 Cooperatively
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Interacting Automobiles by the German Science Foundation DFG, as well as fruitful 
collaboration among the partners. 

Karlsruhe, Germany 
October 2023 

Christoph Stiller 
Matthias Althoff 
Christoph Burger 

Barbara Deml 
Lutz Eckstein 

Frank Flemisch
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Perception and Prediction with Implicit 
Communication



How Cyclists’ Body Posture Can Support 
a Cooperative Interaction in Automated 
Driving 

Daniel Trommler, Claudia Ackermann, Dominik Raeck, and Josef F. Krems 

Abstract Automated driving is continuously evolving and will be integrated more 
and more into urban traffic in the future. Since urban traffic is characterized by a high 
number of space-sharing conflicts, the issue of an appropriate interaction with other 
road users, especially with pedestrians and cyclists, becomes increasingly impor-
tant. This chapter provides an overview of the research project “KIRa” (Cooperative 
Interaction with Cyclists in automated Driving), which investigated the interaction 
between automated vehicles and cyclists according to four project aims. First, the 
investigation of body posture as a predictor of the cyclists’ starting process. Second, 
the development of a VR cycling simulation and validation in terms of perceived 
criticality and experience of presence. Third, the experimental evaluation of a drift-
diffusion model for vehicle deceleration detection. And fourth, the investigation 
of factors affecting cyclists’ gap acceptance. With these research aims, it was the 
project’s intention to contribute to a better understanding of the cyclists’ percep-
tion of communication signals and to improve the ability of automated vehicles to 
predict cyclists’ intentions. The results can provide an important contribution to the 
cooperative design of the interaction between automated vehicles and cyclists. 

1 Introduction 

While current advanced driver assistance systems (ADAS) have already improved 
the safety and comfort of manual driving [ 5], automated driving is expected to lead 
to even more benefits, such as reduced congestions and an increased mobility for a 
large number of people [ 18, 33]. However, there are a range of human factors issues 
that need to be overcome prior to launching automated vehicles [ 27]. 
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When used in urban traffic, automated vehicles (AVs) need to be able to inter-
act with vulnerable road users (VRUs), such as pedestrians and cyclists [ 13]. Since 
interaction in road traffic as a social phenomenon can be complex and can involve 
ambiguities [ 21], a detailed understanding of how human drivers and VRUs interact 
in road traffic is essential for the development of appropriate algorithms for AVs 
[ 16, 20]. In addition, cooperation as a collaborative effort is required for a successful 
interaction: In a joint action, road users share common goals and thus follow com-
mon solutions instead of interacting competitively [ 9, 11, 15]. Therefore, it is crucial 
to examine how goals and intentions of VRUs can be recognized and how to com-
municate AV’s intentions to them. It is assumed that such a cooperative interaction 
between AVs and VRUs can lead to higher satisfaction, trust, acceptance, efficiency 
and safety in road traffic [ 12, 15]. 

While the previous project KIVI investigated the cooperative interaction between 
AVs and pedestrians [ 1, 2, 4], the current project KIRa focused on the cooperative 
interaction between AVs and cyclists. In both projects, researchers in traffic psychol-
ogy and communications engineering jointly explored relevant questions regarding 
the analysis of human behavior in road traffic and the development of suitable algo-
rithms. In the following two chapters, the results obtained in KIRa are presented, 
first from a psychological and then from a communications engineering perspective 
(see next book chapter by Raeck et al.). 

1.1 Space-Sharing Conflicts Between Cyclists and AVs in 
Low-Speed Areas 

In this project, cooperative interaction between cyclists and AVs was primarily inves-
tigated in urban low-speed areas such as parking lots or shared spaces. We assume 
that these low-speed areas are often characterized by (1) a shared infrastructure for 
vehicles and cyclists (e.g., no dedicated bike lanes), (2) less formal rules about prior-
ity (e.g., no traffic light control), (3) a higher probability that a road user will change 
its current behavior (e.g., starting or stopping) and (4) the (partial) occlusion of road 
users (e.g., due to parked vehicles). 

These characteristics have the potential for space-sharing conflicts between 
cyclists and AVs. According to Markkula et al. (2020), a space-sharing conflict 
represents “an observable situation from which it can be reasonably inferred that 
two or more road users are intending to occupy the same region of space at the same 
time in the near future” (p. 736) [ 16]. As space-sharing conflicts between cyclists 
and vehicles can lead to safety-critical situations, it is necessary to either anticipate 
and avoid such conflicts (e.g., through recognizing the intentions of cyclists) or to 
handle and solve them safely (e.g., using appropriate communication cues).
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1.2 Recognizing Intentions of Cyclists in Low-Speed Areas 

To enable an AV to anticipate space-sharing conflicts, it can be useful to recognize 
the intentions of cyclists. Trajectory prediction can be used to determine the cyclist’s 
next trajectory using the current state. Thus, potential conflicts with the AV’s tra-
jectories can be identified. In contrast, the starting of a cyclist, as a typical scenario 
especially in low-speed areas, cannot be determined well using trajectory prediction. 
Therefore, further information needs to be included. Previous research with pedestri-
ans showed that human observers can use the body posture of pedestrians to predict 
their intention to cross the street, even when certain information of the body posture 
(e.g., head or legs) is occluded [ 23]. However, due to a lack of research, it is unclear 
whether the body posture of cyclists can contribute to the recognition of cyclists’ 
intentions. Therefore, this project aimed to investigate how human observers use the 
body posture of cyclists to predict their intention to start. Further, because body parts 
of cyclists can be occluded in low-speed areas, it was also aimed to examine the 
prediction accuracy in these scenarios. 

1.3 Communication Between Automated Vehicles and 
Cyclists in Low-Speed Areas 

Implicit and explicit communication can help to solve space-sharing conflicts 
between AVs and cyclists safely and efficiently [ 10]. Implicit communication cues 
refer to the behavior of road users that, on the one hand, change their movement (e.g., 
vehicle deceleration) or perception (e.g., head turning), and, on the other hand, can 
be used by other road users, for example, as a sign of the willingness of a pedestrian 
to cross the road [ 16]. Explicit communication includes signals with no effect on 
one’s own movement or perception, such as light signals to indicate intentions of an 
AV [ 16]. 

Several studies, however, have shown that implicit communication cues are used 
more frequently for interactions between vehicles and pedestrians in low-speed areas 
compared to explicit communication cues [ 7, 14]. From a reanalysis of a naturalistic 
cycling study, it can be assumed that priority between cyclists and vehicles in low-
speed areas is similarly more likely to be negotiated using implicit communication 
cues [ 3]. For example, agents (i.e., vehicles or cyclists), who reach the conflict space 
earlier, often take the chance to solve the space-sharing conflict through accelerating 
or avoiding behavior [ 3]. Therefore, the present project focused on implicit com-
munication and, in particular, investigated cyclists’ gap acceptance and vehicles’ 
deceleration maneuvers. It was examined how different time gaps, the vehicle size 
and speed affect the decision of cyclists to cross a street in front of a vehicle. In addi-
tion, differences in the perceptual decision-making process involved in the detection 
of vehicle deceleration by VRUs were further analyzed using a drift-diffusion model. 
The results can provide important implications for a situation-specific parameteri-
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zation of vehicle deceleration maneuvers. Moreover, the results can indicate when 
explicit communication cues are necessary to support the decision-making process. 

1.4 Investigating Space-Sharing Conflicts Between 
Automated Vehicles and Cyclists 

In the previous project KIVI, video recordings from the perspective of a pedestrian 
at the curb were used to investigate pedestrians’ gap acceptance and deceleration 
detection performance [ 1, 2, 4]. However, this methodology had to be adapted to 
the perspective of a cyclist. Riding with a camera on the bicycle handlebars often 
resulted in blurry recordings due to the pedaling activity. In addition, in such real-
world recordings, it was often difficult for the cyclist to keep a constant speed, on 
the one hand, and to keep the time gap to a moving vehicle, on the other hand. 
Therefore, this project did not use real-world recordings, but rather a VR cycling 
simulation which will be presented. 

1.5 Aims of the Research Project “KIRa” 

The following sections will provide a rough overview of the research within the 
project “KIRa” (Cooperative interaction with cyclists in automated driving) regarding 
the research topics described above: 

1. Investigating the body posture as a predictor for the starting process of cyclists. 
2. Development and validation of a VR cycling simulation. 
3. Experimental evaluation of a drift-diffusion model for vehicle deceleration detec-

tion. 
4. Investigation of factors influencing the gap acceptance of cyclists. 

This chapter aims to give an overall summary of the project activities. Detailed 
information on the experiments can be found in the related publications at the end 
of each section. 

2 Investigating the Body Posture as a Predictor for the 
Starting Process of Cyclists 

A typical scenario in urban traffic, especially in shared spaces and parking lots, is 
the starting of a cyclist. Here, starting is understood as the process between getting 
on the bike and the final roll-off. It is assumed that recognizing the progress within 
the starting process can be crucial for an AV to decide whether it still takes priority
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(in early stages of the starting process) or rather yields priority (in later stages). 
Therefore, this project task intented to investigate how accurately the progress of the 
starting process can be detected based on the body posture of cyclists. Furthermore, 
we investigated the importance of different body parts in this rating as well as the 
accuracy of the ratings when body parts are masked. It is assumed that occluded 
parts of the cyclists’ body, e.g., due to signs, parked vehicles or the bicycle frame, 
could be a highly relevant problem in shared spaces. The results could support the 
development of efficient algorithms for intention recognition and, based on human 
abilities, allow conclusions about how good algorithms’ intention recognition needs 
to be at a minimum. 

For the examinations, 12 cyclists were recorded while starting with their bicy-
cle. The recordings were taken on a parking lot from two different perspectives of 
a car driver: The view from behind and from the side. The period of interest was 
the time between getting on the bike and the final roll-off. The recordings were split 
into four images per second to allow a better visibility of the cyclists’ body posture. 
Further, these images were used either without masking or (after image manipula-
tion) with masked upper or lower body. During six standardized experiments, these 
images were presented both in chronological (baseline condition) and random order 
(experimental condition). In the chronological order, participants were able to build 
up prior knowledge about the progress based on the images before. In the conditions 
with random order, prior knowledge was not available and the ratings were possible 
based on body posture only. For each image, participants were asked to provide rat-
ings about the progress in the starting process using a scale between 0 and 100%. 
Further, the participants were asked to specify which parts of the cyclist’s body were 
relevant to these ratings. 

Surprisingly, the ratings of progress in the starting process were similar between 
the baseline and experimental conditions. In the conditions with random order, the 
ratings often increased in the order the images were originally taken. Thus, the 
randomly presented images of a cyclist could be rearranged well into chronological 
order. This could be shown for the different perspectives as well as the masked images. 
In particular, the ratings at the end of the starting process, shortly before the cyclist 
accelerated, were rated very accurately in each of these conditions. Furthermore, a 
lower variance could be observed in the ratings at the beginning and at the end of the 
starting process. It is assumed that the beginning and the end of the starting process 
are associated with characteristic body postures. Regarding the relevant body parts, 
the legs showed the highest ratings as the decisive part at the beginning. As the starting 
process continued, the importance of the legs decreased, while the importance of the 
upper body, head and feet increased. When body parts were masked, the remaining 
parts were substantially able to compensate the occlusion. 

The results showed that the progress in the starting process can be recognized 
accurately based on body posture even when body parts are masked. Thus, it seems 
possible that the final roll-off can be detected early and ensures a safe interaction. 
Further analysis is required to formally describe the body posture in the starting 
process in order to implement these characteristics in algorithms for the intention 
recognition.
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Related Publications:

 [ 30] Trommler, D., Ackermann, C., Krems, J.F.: Investigating the body posture as 
a predictor for the starting progress of cyclists. In: 33rd International Co-operation 
on Theories and Concepts in Traffic safety (ICTCT) Conference, Berlin, Germany 
(2021).

 Trommler, D., Krems, J.F.: Using cyclists’ body posture to support a cooperative 
interaction in automated driving (in prep.). 

3 Development and Validation of a VR Cycling Simulation 

3.1 Development of a VR Cycling Simulation 

While different virtual reality (VR) cycling simulations are available in the entertain-
ment and sports sectors, these commercial products are of limited use for research 
purposes. For the examination of the interaction between AVs and cyclists in this 
project, a VR cycling simulation has to meet several requirements: (1) Accurate 
control of road user maneuvers, including their trajectories, speed and speed adapta-
tions. (2) Realistic physical visualization of the environment and vehicles, including 
gravity and other physical forces of objects. (3) Detailed data recording. (4) Ide-
ally, a user-friendly graphical user interface (GUI). (5) Cost-efficient development, 
especially regarding the hardware requirements. 

For this purpose, different existing VR (driving) simulations were compared. 
These include CARLA [ 8], OpenDS [ 17], VICOM Editor (TÜV DEKRA arge tp 
21), STISIM driving simulator platform, and Westdrive & LoopAR [19]. Considering 
the criteria mentioned above and seeing as it offers the opportunity to modify the 
VR driving simulation to a VR cycling simulation, Westdrive & LoopAR [ 19] was  
chosen. This VR implementation is based on the Unity 3D game engine. Therefore, 
a realistic physical behavior of all objects is ensured by the Unity3D physics engine. 
Due to the open-source implementation and the availability of a GUI, an individual, 
simple and fine-grained design of road user maneuvers is possible. Likewise, the data 
recording can be accurately adapted to the individual research questions. Lastly, the 
hardware requirements reflect the specification of a modern desktop computer. 

However, Westdrive & LoopAR was originally developed for studies on auto-
mated driving from the passenger’s perspective, specifically to investigate takeover 
requests [ 19]. To generate a naturalistic impression of a bicycle ride, the VR simula-
tion was adapted to the cyclist’s perspective, showing the moving bike, the handlebars 
and the cyclist’s hands in the foreground. The VR cycling simulation can be displayed 
on three different monitors to provide the view to the front, right and left. In labora-
tory studies, these three monitors can be placed in front of a static bicycle on which 
participants can sit. When implemented as an online study, the VR cycling scenarios 
can be saved as video files with a frontal perspective.
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After these adaptations, VR cycling scenarios can be implemented at relatively 
low cost and the setup seems to be suitable to investigate communication signals of 
AVs interacting with cyclists in a safe and replicable way. A disadvantage of this 
implementation is that the participants cannot control the behavior of the cyclist 
in the VR and thus, behavior of cyclists interacting with AVs, such as braking or 
avoiding the vehicle, cannot be studied directly. 

3.2 Validation of the VR Cycling Simulation in Terms of 
Perceived Criticality as Well as Experience of Presence 

Several validation studies were conducted using the VR cycling simulation, for exam-
ple regarding the perceived criticality and experience of presence. It was aimed to 
investigate whether space-sharing conflicts between cyclists and vehicles with vary-
ing proximity are associated with the perceived criticality. Three typical scenarios 
were evaluated: (1) A vehicle exiting a parking lot and crossing the bike lane in 
front of the cyclist. (2) An intersection with a vehicle approaching from the left and 
crossing in front of the cyclist. (3) And a vehicle turning to the right and crossing the 
bike lane in front of the cyclist. The criticality within each space-sharing conflict was 
varied using the initially attempted post encroachment time (IAPT) [ 6]. The IAPT is 
defined as the time interval between one road user leaving a conflict point and another 
road user entering the same point, assuming no behavioral changes, such as speed 
changes, are initiated. Lower IAPT values are associated with a closer proximity 
between the two road users and thus with a higher potential for a critical outcome 
of the space-sharing conflict. In this validation study, the IAPT values ranged from 
one to three seconds for each scenario. Additionally, a baseline ride was performed 
for each scenario in which the crossing vehicle was absent. The perceived criticality 
was assessed using a scale developed by Stange et al. (2021) [ 26]. In addition, the 
experience of presence in the VR cycling simulation was evaluated using the Igroup 
Presence Questionnaire [ 24]. 

An online study was conducted with N = 35 participants. Each scenario with each 
IAPT level (including the baseline trial) was presented twice with a subsequent ques-
tionnaire on perceived criticality. At the end of the study, the experience of presence 
was assessed. The analysis of the perceived criticality revealed that the baseline rides 
were rated as significantly less critical compared to the rides with a space-sharing 
conflict (except for the turning scenario, which showed only a significant increase 
of the perceived criticality for IAPT = 1 s). Furthermore, the conditions with lower 
IAPT values were rated as more critical in each scenario. In addition, the results 
revealed that the turning scenario was perceived to be more critical compared to 
the intersection and parking scenarios. The analysis of the experience of presence 
indicated an acceptable experience of presence with a moderate score in the general 
presence dimension and a good score in the spatial presence dimension.
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Based on these results, it is assumed that the VR cycling simulation is suitable 
to investigate cyclists’ perceived criticality in interactions with AVs. Therefore, the 
simulation can support the development of safe and comfortable driving maneuvers 
of AVs in space-sharing conflicts. Further, an acceptable experience of presence in 
this VR cycling simulation can be assumed for online studies. It may be expected 
that the experience of presence will further increase when the cycling simulation is 
used in laboratory studies with a static bicycle in front of three monitors or using a 
VR headset. 

Related Publication: 

[ 31] Trommler, D., Bengler, P., Schmidt, H., Thirunavukkarasu, A., Krems, J.F.: Val-
idation of a VR cycling simulation in terms of perceived criticality and experience of 
presence. In: Petzoldt, T., Gerike, R., Anke, J., Ringhand, M., Schröter, B. (eds.) Con-
tributions to the 10th International Cycling Safety Conference, pp. 235–237, Dresden, 
Germany (2022). https://www.icsc2022.com/wp-content/uploads/icsc2022_book_ 
of_abstracts.pdf. 

4 Experimental Evaluation of a Drift-Diffusion Model for 
Vehicle Deceleration Detection 

Vehicle deceleration can be used as an implicit communication signal to give pri-
ority to VRUs [ 34]. Results of the previous project KIVI showed that the detection 
performance of vehicle deceleration by VRUs may depend on various factors, such 
as deceleration rate, initial speed, age, and gender [ 1]. To provide a detailed under-
standing of the underlying differences in decision-making, these effects were further 
analyzed using a drift-diffusion model. 

According to these models, perceptual decision-making is based on an accu-
mulation of sensory evidence over time until a boundary is reached [ 22]. Several 
parameters are used to describe this process, which correspond to different com-
ponents of the human information processing. The most important parameters are 
(1) drift rate, which describes the rate of evidence accumulation and is associated 
with the quality of evidence, (2) boundary height, which is related to the amount of 
evidence for a decision and reflected by the response caution in decision-making, (3) 
starting point, which can be positioned closer to the boundary in case of expectations 
towards a decision and 4) the non-decision time, which summarizes the time interval 
for stimulus encoding and motor response execution [ 22]. Using reaction times and 
response accuracies from empirical experiments, these parameters can be estimated 
after a model fitting [ 25]. 

This project task intented to investigate how deceleration rate and vehicle speed 
affect the parameters of a drift-diffusion model. A study was conducted with N = 62 
participants which saw videos of approaching vehicles that either decelerated or not. 
These videos were recorded for the previous project KIVI. A detailed description of 
the video recordings can be found in [ 1]. The participants were instructed to press

https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
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keys indicating whether the vehicles decelerated or not. In case of deceleration, the 
slowing down process was initiated immediately after the video onset. The deceler-
ation rate (. −1.5 and. −3.5 m/s. 2) and the vehicle speed (20 and 40 km/h) were varied 
as independent variables. 

After the model fitting, the results showed substantial differences in the drift 
rate depending on the deceleration rate. This is consistent with the assumption that 
a higher stimulus quantity (i.e., higher deceleration rates) leads to faster evidence 
accumulation. Moreover, the boundary height as a measure of response caution varied 
slightly between the conditions with low and high vehicle speed. Higher values for 
the boundary height were observed for the conditions with higher vehicle speed. 
Additionally, there was a slight increase in non-decision time for the conditions 
with higher vehicle speed. This suggests that stimulus encoding needs slightly more 
time in the conditions with higher vehicle speed than in the conditions with lower 
vehicle speed. Moreover, a slight shift of the starting point towards the decision that 
the vehicle does not decelerate could be observed in conditions with higher vehicle 
speed. This finding suggests a decision bias. 

In summary, a good model fit to the empirical data was achieved. The results 
showed that the contextual factors influenced the model parameters in a way that are 
in line with theoretical considerations. Further studies might investigate whether a 
complementary use of explicit communication signals, especially for slow decelerat-
ing and fast moving vehicles, leads to an improvement of the evidence accumulation 
process and thus to a higher satisfaction and perceived safety of VRUs in interaction 
with AVs. 

Related Publication: 

[ 29] Trommler, D., Ackermann, C., Krems, J.F.:A drift-diffusion model to explain 
vehicle deceleration detection of vulnerable road users. In: Stewart, T.C. (ed.) Pro-
ceedings of the 19th International Conference on Cognitive Modelling, pp. 289–294 
(2021). https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf. 

5 Investigation of Factors Influencing the Gap Acceptance 
of Cyclists 

When modelling human-like deceleration maneuvers for AVs, the deceleration rate 
as well as the time of a deceleration onset that VRUs expect for safe crossings need 
to be considered [ 4]. This expectation can be investigated through the VRUs’ gap 
acceptance which defines the (time) gap that is acceptable for crossing in front of a 
vehicle [ 4]. However, previous studies on pedestrians’ perspective show that the gap 
acceptance behavior may depend on external attributes (e.g., vehicle speed, vehicle 
size and time to arrival) as well as on internal attributes (e.g., gender and age of 
VRUs) [ 28]. Building on these findings for pedestrians, this project task aimed to 
examine the gap acceptance of cyclists. Therefore, the objective was to investigate
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the effects of vehicle size (car vs. truck), vehicle speed (20 vs. 40 km/h) and different 
levels of the time to arrival (TTA; ranging from one to five seconds). 

The videos were generated in the presented VR cycling simulation with a length 
of approximately 10 s each. The videos were shown from the perspective of a cyclist 
riding towards an intersection while a vehicle is approaching from the left. Traffic 
signs and the study instructions indicated that the cyclist does not have priority. 
The TTA was measured as the time gap to the vehicle when the cyclist reaches the 
(theoretical) collision point at the intersection. N = 35 Participants were instructed 
to indicate by pressing a key, whether or not they would cross the road in front of the 
vehicle. As dependent variables, the crossing decision and the time of this decision 
before reaching the (theoretical) collision point were recorded. 

The results revealed that more participants decided to cross in front of the vehicle 
as the TTA level increased. Further, for each TTA level, the willingness to cross was 
higher in conditions with faster vehicles than in conditions with slower vehicles. 
Within the majority of conditions, slightly more participants chose to cross in front 
of a truck compared to a car. Regarding the decision time, the results showed that the 
decision to cross or not is made approximately between two to four seconds before 
reaching the intersection. In conditions with faster vehicles, participants decided 
later (i.e., the cyclist was closer to the intersection) than in conditions with slower 
vehicles. In contrast, the decision was made earlier in conditions with lower TTA 
levels compared to conditions with higher TTA levels. Similarly, the decision was 
made earlier in conditions with trucks than in conditions with cars. 

A further analysis focused on differences between the age of participants. For 
this, the sample was divided into two groups with 18 younger (18–35 years old) 
and 17 older (. >35 years old) participants. The results indicated that participants’ 
crossing decisions were similar, with the exception of the condition with 5 s TTA, 
where more younger participants than older ones expressed their intention to cross. 
Furthermore, older participants tended to make their crossing decisions later than 
younger participants. 

To sum up, similar to the results for pedestrians, it is assumed that no universal 
parameterization is possible to design informal communication between cyclists and 
AVs. The study revealed that there are substantial differences in the gap acceptance 
of cyclists depending on vehicle size, vehicle speed and TTA. The findings also 
suggest the importance of considering age as a factor. Further, the results showed 
differences in decision time. The decision not to cross is made earlier than the decision 
to cross in front the vehicle. Therefore, AVs should use communication signals for 
giving priority early, especially when the TTA level is low and/or the AV is a truck. 
In future studies, additional factors, such as internal (e.g., age of the cyclist) and 
external attributes (e.g., time of day), need to be explored. Moreover, it could be 
relevant to investigate the decision-making process using drift-diffusion models as 
proposed in the previous section. 

Related Publications:

 [ 32] Trommler, D., Springer-Teumer, S., Krems, J.F.: To ride or not to ride: explor-
ing cyclists’ gap acceptance in the interaction with (automated) vehicles. In: 34th
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International Co-operation on Theories and Concepts in Traffic Safety (ICTCT) 
Conference, Györ, Hungary (2022).

 Springer-Teumer, S., Trommler, D., Krems, J.F.: How do vehicle size, speed, TTC, 
age and sex affect cyclists’ gap acceptance when interacting with (automated) vehi-
cles? In: 1st International Conference on Hybrid Societies, Chemnitz, Germany 
(2023). 

6 Summary 

This chapter gave an overview of the research project “KIRa”, which investigated 
the cooperative design of the interaction between automated vehicles and cyclists 
according to four project aims. 

First, the body posture was investigated as a predictor of the cyclists’ starting 
process. The results showed that the progress of the starting process can be accurately 
detected based on body posture by human observers. This was even possible with 
a high accuracy when certain body parts (e.g., head or legs) were masked. Thus, it 
seems possible that an AV can recognize a cyclist’s intention to start and can either 
avoid safety-critical situations with cyclists or can resolve them cooperatively at an 
early stage. 

Second, the development of a VR cycling simulation was presented, including its 
validation in terms of perceived criticality and experience of presence. The findings 
revealed that the VR cycling simulation is suitable to investigate the cyclists’ criti-
cality perception when interacting with AVs. Different levels of proximity between 
a vehicle and a cyclist in three different shared-space conflicts reliably resulted in 
corresponding changes in the perceived criticality. This was investigated for different 
scenarios. Therefore, it is assumed that it is possible to investigate maneuvers of AVs 
interacting with cyclists in a standardized, reproducible and safe way. 

Third, a drift-diffusion model for vehicle deceleration detection was empirically 
validated. The model parameters suggested the applicability of drift-diffusion mod-
els in applied research areas such as automated driving. This can lead to an improved 
understanding of the decision-making process of cyclists and further to the design 
of implicit and explicit communication signals adapted to humans’ information pro-
cessing abilities. This is expected to increase cyclists’ acceptance and trust towards 
AVs. 

And fourth, factors influencing cyclists’ gap acceptance were investigated. The 
effects found for the gap acceptance of pedestrians could be confirmed, such as a 
strong dependence of the gap acceptance on the time gap, the vehicle size and vehicle 
speed. Furthermore, the same factors were associated with different decision time of 
cyclists (i.e., whether they would cross in front of the vehicle or not). These results 
highlight that cooperative interaction between AVs and cyclists is closely linked to 
context-sensitive communication.
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7 Further Reading 

In addition to the publications in this project, we will refer to the publications of the 
previous project “KIVI”, which investigated the interaction between pedestrians and 
automated vehicles:

 Ackermann, C., Beggiato, M., Bluhm, L.F., Löw, A., Krems, J.F.: Deceleration 
parameters and their applicability as informal communication signal between 
pedestrians and automated vehicles 62, 757–768. https://doi.org/10.1016/j.trf. 
2019.03.006. https://www.sciencedirect.com/science/article/pii/S136984781830 
6600.

 Ackermann, C., Beggiato, M., Schubert, S., Krems, J.F.: An experimental study 
to investigate design and assessment criteria: what is important for communica-
tion between pedestrians and automated vehicles? 75, 272–282. https://doi.org/10. 
1016/j.apergo.2018.11.002. https://www.sciencedirect.com/science/article/pii/ 
S0003687018306124.

 Beggiato, M., Witzlack, C., Springer, S., Krems, J.: The right moment for braking 
as informal communication signal between automated vehicles and pedestrians 
in crossing situations. In: Stanton, N.A. (ed.) Advances in Human Aspects of 
Transportation, Advances in Intelligent Systems and Computing, pp. 1072–1081. 
Springer International Publishing. https://doi.org/10.1007/978-3-319-60441-1_ 
101.

 Beggiato, M., Witzlack, C., Krems, J.F.: Gap acceptance and time-to-arrival esti-
mates as basis for informal communication between pedestrians and vehicles. In: 
Proceedings of the 9th International Conference on Automotive User Interfaces 
and Interactive Vehicular Applications, AutomotiveUI ’17, pp. 50–57. Association 
for Computing Machinery. https://doi.org/10.1145/3122986.3122995. 

Acknowledgements This project was funded within the Priority Program 1835 “Cooperative Inter-
acting Automobiles” of the German Science Foundation DFG. The authors appreciate the fruitful 
collaboration with the project partners. 

References 

1. Ackermann, C., Beggiato, M., Bluhm, L.F., Löw, A., Krems, J.F.: Deceleration parameters and 
their applicability as informal communication signal between pedestrians and automated vehi-
cles 62, 757–768. https://doi.org/10.1016/j.trf.2019.03.006. https://www.sciencedirect.com/ 
science/article/pii/S1369847818306600 

2. Ackermann, C., Beggiato, M., Schubert, S., Krems, J.F.: An experimental study to investigate 
design and assessment criteria: what is important for communication between pedestrians and 
automated vehicles? 75, 272–282. https://doi.org/10.1016/j.apergo.2018.11.002. https://www. 
sciencedirect.com/science/article/pii/S0003687018306124 

3. Ackermann, C., Trommler, D., Krems, J.: Exploring cyclist-vehicle interaction - results from 
a naturalistic cycling study. In: Black, N.L., Neumann, W.P., Noy, I. (eds.) Proceedings of

https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1007/978-3-319-60441-1_101
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1145/3122986.3122995
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://doi.org/10.1016/j.trf.2019.03.006
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://www.sciencedirect.com/science/article/pii/S1369847818306600
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://doi.org/10.1016/j.apergo.2018.11.002
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124
https://www.sciencedirect.com/science/article/pii/S0003687018306124


How Cyclists’ Body Posture Can Support a Cooperative … 15

the 21st Congress of the International Ergonomics Association (IEA 2021), Lecture Notes in 
Networks and Systems, pp. 533–540. Springer International Publishing 

4. Beggiato, M., Witzlack, C., Springer, S., Krems, J.: The right moment for braking as informal 
communication signal between automated vehicles and pedestrians in crossing situations. In: 
Stanton, N.A. (ed.) Advances in Human Aspects of Transportation, Advances in Intelligent 
Systems and Computing, pp. 1072–1081. Springer International Publishing 

5. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of 
driver assistance systems: review and future perspectives 6(4), 6–22. https://doi.org/10.1109/ 
MITS.2014.2336271. Conference Name: IEEE Intelligent Transportation Systems Magazine 

6. Cunto, F.: Assessing safety performance of transportation systems using microscopic simula-
tion. https://uwspace.uwaterloo.ca/handle/10012/4111. Accepted: 2008-11-06T15:43:28Z 

7. Dey, D., Terken, J.: Pedestrian interaction with vehicles: roles of explicit and implicit commu-
nication. In: Proceedings of the 9th International Conference on Automotive User Interfaces 
and Interactive Vehicular Applications, AutomotiveUI ’17, pp. 109–113. Association for Com-
puting Machinery. https://doi.org/10.1145/3122986.3123009 

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving 
simulator. https://doi.org/10.48550/arXiv.1711.03938. http://arxiv.org/abs/1711.03938 

9. Flemisch, F., Abbink, D., Itoh, M., Pacaux-Lemoine, M.P., Weßel, G.: Shared control is 
the sharp end of cooperation: towards a common framework of joint action, shared control 
and human machine cooperation 49(19), 72–77. https://doi.org/10.1016/j.ifacol.2016.10.464. 
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547 

10. Habibovic, A., Lundgren, V.M., Andersson, J., Klingegård, M., Lagström, T., Sirkka, A., Fager-
lönn, J., Edgren, C., Fredriksson, R., Krupenia, S., Saluäär, D., Larsson, P.: Communicating 
intent of automated vehicles to pedestrians 9. https://www.frontiersin.org/articles/10.3389/ 
fpsyg.2018.01336 

11. Hoc, J.M.: Towards a cognitive approach to human-machine cooperation in dynamic situa-
tions 54(4), 509–540. https://doi.org/10.1006/ijhc.2000.0454. https://www.sciencedirect.com/ 
science/article/pii/S1071581900904543 

12. Kauffmann, N.: Objektivierung von kooperationsbereitschaft am beispiel eines spurwechsels 
im niedriggeschwindigkeitsbereich. ISBN: 9781668678602 

13. Kyriakidis, M., de Winter, J.C.F., Stanton, N., Bellet, T., van Arem, B., Brookhuis, K., Martens, 
M.H., Bengler, K., Andersson, J., Merat, N., Reed, N., Flament, M., Hagenzieker, M., Happee, 
R.: A human factors perspective on automated driving 20(3), 223–249. Publisher: Taylor & 
Francis. https://doi.org/10.1080/1463922X.2017.1293187 

14. Lee, Y.M., Madigan, R., Giles, O., Garach-Morcillo, L., Markkula, G., Fox, C., Camara, F., 
Rothmueller, M., Vendelbo-Larsen, S.A., Rasmussen, P.H., Dietrich, A., Nathanael, D., Por-
touli, V., Schieben, A., Merat, N.: Road users rarely use explicit communication when inter-
acting in today’s traffic: implications for automated vehicles 23(2), 367–380. https://doi.org/ 
10.1007/s10111-020-00635-y 

15. Lee, Y.M., Madigan, R., Markkula, G., Pekkanen, J., Merat, N., Avsar, H., Utesch, F., Schieben, 
A., Schießl, C., Dietrich, A., Boos, A., Boehm, M., Weber, F., Tango, F., Portouli, E.: interACT 
d. 6.1. methodologies for the evaluation and impact assessment of the interACT solutions 

16. Markkula, G., Madigan, R., Nathanael, D., Portouli, E., Lee, Y.M., Dietrich, A., Billington, 
J., Schieben, A., Merat, N.: Defining interactions: a conceptual framework for understanding 
interactive behaviour in human and automated road traffic 21(6), 728–752. Publisher: Taylor 
& Francis,  https://doi.org/10.1080/1463922X.2020.1736686 

17. Math, R., Mahr, A., Moniri, M.M., Müller, C.: OpenDS: A new open-source driving simulator 
for research 2 

18. Milakis, D., van Arem, B., van Wee, B.: Policy and society related implications of automated 
driving: a review of literature and directions for future research 21(4), 324–348. Publisher: 
Taylor & Francis, https://doi.org/10.1080/15472450.2017.1291351 

19. Nezami, F.N., Wächter, M.A., Maleki, N., Spaniol, P., Kühne, L.M., Haas, A., Pingel, J.M., 
Tiemann, L., Nienhaus, F., Keller, L., König, S.U., König, P., Pipa, G.: Westdrive x LoopAR:

https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://uwspace.uwaterloo.ca/handle/10012/4111
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.1145/3122986.3123009
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://doi.org/10.1016/j.ifacol.2016.10.464
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://linkinghub.elsevier.com/retrieve/pii/S2405896316320547
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01336
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://doi.org/10.1006/ijhc.2000.0454
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://www.sciencedirect.com/science/article/pii/S1071581900904543
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1007/s10111-020-00635-y
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/1463922X.2020.1736686
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.1080/15472450.2017.1291351


16 D. Trommler et al.

An open-access virtual reality project in unity for evaluating user interaction methods dur-
ing takeover requests 21(5), 1879. https://doi.org/10.3390/s21051879. https://www.mdpi.com/ 
1424-8220/21/5/1879. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute 

20. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Agreeing to cross: how drivers and pedestrians com-
municate. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 264–269. IEEE Press. 
https://doi.org/10.1109/IVS.2017.7995730 

21. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Towards social autonomous vehicles: understanding 
pedestrian-driver interactions. In: 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 729–734. https://doi.org/10.1109/ITSC.2018.8569324. ISSN: 
2153-0017 

22. Ratcliff, R., McKoon, G.: The diffusion decision model: Theory and data for two-choice deci-
sion tasks 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420. https://www.ncbi. 
nlm.nih.gov/pmc/articles/PMC2474742/ 

23. Schmidt, S., Färber, B.: Pedestrians at the kerb - recognising the action intentions of 
humans 12(4), 300–310. https://doi.org/10.1016/j.trf.2009.02.003. https://www.sciencedirect. 
com/science/article/pii/S1369847809000102 

24. Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: Factor analytic 
insights 10(3), 266–281. https://doi.org/10.1162/105474601300343603 

25. Shinn, M., Lam, N.H., Murray, J.D.: A flexible framework for simulating and fitting gener-
alized drift-diffusion models 9, e56938. https://doi.org/10.7554/eLife.56938. Publisher: eLife 
Sciences Publications, Ltd 

26. Stange, V., Goralzik, A., Vollrath, M.: Keep your distance, automated vehicle! - configuration 
of automated driving behavior at an urban junction from a cyclist’s perspective. In: Stanton, N. 
(ed.) Advances in Human Aspects of Transportation, Lecture Notes in Networks and Systems, 
pp. 393–402. Springer International Publishing 

27. Tabone, W., de Winter, J., Ackermann, C., Bärgman, J., Baumann, M., Deb, S., Emmenegger, 
C., Habibovic, A., Hagenzieker, M., Hancock, P.A., Happee, R., Krems, J., Lee, J.D., Martens, 
M., Merat, N., Norman, D., Sheridan, T.B., Stanton, N.A.: Vulnerable road users and the coming 
wave of automated vehicles: expert perspectives 9, 100293. https://doi.org/10.1016/j.trip.2020. 
100293. https://www.sciencedirect.com/science/article/pii/S2590198220302049 

28. Tian, K., Markkula, G., Wei, C., Lee, Y.M., Madigan, R., Merat, N., Romano, R.: Explaining 
unsafe pedestrian road crossing behaviours using a psychophysics-based gap acceptance model 
https://eprints.whiterose.ac.uk/187357/. Publisher: Elsevier 

29. Trommler, D., Ackermann, C., Krems, J.F.: A drift-diffusion model to explain vehicle decel-
eration detection of vulnerable road users. In: Stewart, T.C. (ed.) Proceedings of the 19th 
International Conference on Cognitive Modelling, pp. 289–294. https://acs.ist.psu.edu/papers/ 
ICCM2021Proceedings.pdf 

30. Trommler, D., Ackermann, C., Krems, J.F.: Investigating the body posture as a predictor for 
the starting progress of cyclists. In: Proceedings of the 33rd International Co-operation on 
Theories and Concepts in Traffic safety (ICTCT) conference 

31. Trommler, D., Bengler, P., Schmidt, H., Thirunavukkarasu, A., Krems, J.F.: Validation of a vr 
cycling simulation in terms of perceived criticality and experience of presence. In: Petzoldt, 
T., Gerike, R., Anke, J., Ringhand, M., Schröter, B. (eds.) Contributions to the 10th Inter-
national Cycling Safety Conference, pp. 235–237. https://www.icsc2022.com/wp-content/ 
uploads/icsc2022_book_of_abstracts.pdf 

32. Trommler, D., Springer-Teumer, S., Krems, J.F.: To ride or not to ride: Exploring cyclists’ gap 
acceptance in the interaction with (automated) vehicles. In: Proceedings of the 34th Interna-
tional Co-operation on Theories and Concepts in Traffic Safety (ICTCT) Conference 

33. Vollrath, M., Krems, J.F.: Verkehrspsychologie: Ein Lehrbuch für Psychologen, Ingenieure und 
Informatiker. Kohlhammer Verlag 

34. Šucha, M.: Road users’ strategies and communication: driver-pedestrian interaction. https:// 
trid.trb.org/view/1327765

https://doi.org/10.3390/s21051879
https://doi.org/10.3390/s21051879
https://doi.org/10.3390/s21051879
https://doi.org/10.3390/s21051879
https://doi.org/10.3390/s21051879
https://doi.org/10.3390/s21051879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://www.mdpi.com/1424-8220/21/5/1879
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1109/ITSC.2018.8569324
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474742/
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.7554/eLife.56938
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://doi.org/10.1016/j.trip.2020.100293
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://www.sciencedirect.com/science/article/pii/S2590198220302049
https://eprints.whiterose.ac.uk/187357/
https://eprints.whiterose.ac.uk/187357/
https://eprints.whiterose.ac.uk/187357/
https://eprints.whiterose.ac.uk/187357/
https://eprints.whiterose.ac.uk/187357/
https://eprints.whiterose.ac.uk/187357/
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://www.icsc2022.com/wp-content/uploads/icsc2022_book_of_abstracts.pdf
https://trid.trb.org/view/1327765
https://trid.trb.org/view/1327765
https://trid.trb.org/view/1327765
https://trid.trb.org/view/1327765
https://trid.trb.org/view/1327765
https://trid.trb.org/view/1327765


How Cyclists’ Body Posture Can Support a Cooperative … 17

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Prediction of Cyclists’ Interaction-Aware 
Trajectory for Cooperative Automated 
Vehicles 

Dominik Raeck, Timo Pech, Daniel Trommler, and Klaus Mößner 

Abstract Cooperative behaviour is one of the most crucial factors for safety and 
comfort in shared traffic spaces. While a human driver might be able to automatically 
identify behavioural indicators of other traffic participants to predict their movement, 
an automated vehicle is not. This is especially important in interaction situations with 
vulnerable road users (VRU), such as cyclists. The focus of this work is to implement, 
evaluate and compare different possible methods of trajectory forecasts for cyclists 
in order to estimate their behavioural intention. With accurate trajectory information 
of the VRU, an automated vehicle might be able to plan a cooperative reaction 
ahead in time and guarantee a comfortable traffic flow. In sum, three different neural 
network architectures have been tested with the main focus on a CNN, which is 
capable of incorporating map data into the trajectory forecast. The results showed, 
that including external influencing factors, like the infrastructure of a traffic scene, 
can have a beneficial effect on the accuracy of the cyclist’s predicted movement. 

1 Introduction 

The interaction and cooperation of road users is an integral part of urban traffic. In 
highly automated and connected traffic, a self-driving car must be able to identify and 
evaluate an interaction situation as well as perform suitable cooperative manoeuvres. 
This is especially important with vulnerable road users [ 1] to guarantee comfort and 
safety in space sharing conflicts (see previous book chapter by Trommler et al.). In 
this project called “Cooperative Interaction of Cyclists and Autonomous Vehicles” 
(KIRa) the behaviour of cyclists in mixed traffic was investigated. As described in the 
previous book chapter by Trommler et al., the focus of the research is low-speed areas, 
specifically urban intersection scenarios with at least one or more cyclists present 
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and automated vehicles. To allow an assessment of such situations, the gathering 
and communication of the traffic participants’ data is essential. This is especially 
challenging with VRUs, as technical solutions like ITS-G5 and ETSI standardized 
messages like cooperative awareness (CAM) [ 2] or manoeuvre coordination message 
(MCM) [ 3] can only be used between connected vehicles. Otherwise, the on-board 
sensors of an automated car could be used to detect and track VRUs, but this might 
not be possible at intersections, if the VRU is occluded by buildings or parking cars. 
Instead, a more decentralized approach was chosen: Mobile sensors on the bicycle, 
like GPS, accelerometers or gyroscopes can be used to gather position and movement 
data of a cyclists, by utilizing devices like smartphones that already broadly use these 
sensors. The requirement for such an approach is a connection between the road users 
to allow the exchange of the data. 

The kinematic and position data of the traffic participants are hereby not sufficient 
to assess a shared space conflict properly. The behaviour of a cyclist is influenced 
by various factors. While the velocity and movement direction of the bicycle are 
decisive, the manoeuvres are also heavily affected by external conditions, for example 
the infrastructure or other road users. The main goal of this project was to infer and 
predict the cyclist’s behaviour, considering and utilizing the different influencing 
factors. To achieve this, the identification of behavioural indicators is necessary as 
well as a suitable behavioural model. The main indicator for the bicycle’s movement 
represents its trajectory, which estimates the future position and state of the bicycle. 
The proposed algorithm is capable to combine various types of data in order to 
accomplish an accurate trajectory forecast for cyclists. This information can later be 
used by automated vehicles, to allow an early and appropriate cooperative manoeuvre. 
That way a safe and comfortable traffic flow can be ensured for all road users. 

2 Related Work 

Trajectory forecasts for bicycles are not a very common research topic, however 
there is a lot of work regarding cars trajectories that were derived for this use case. 
Typically, there are two types of approaches: physical models and machine learning 
models, both with individual advantages and strengths. The research on physical 
approaches is usually focused around finding a suitable movement model for bicycles. 
As mentioned before, these can, for example, be derived from pre-existing car models 
[ 4]. While a physical model can yield high accuracies in very specific use cases, 
a machine learning model, like the neural network (NN) will often outperform it 
when evaluated in a wider array of scenarios [ 5]. The reason for that is the higher 
adaptability of a machine learning model, when it’s trained with a large amount of 
naturalistic data. Another advantage of the NN is its capability to incorporate data of 
various types to allow for a more accurate trajectory forecast. This makes the approach 
the best choice for this project, as the aim is to combine potential influencing factors 
on the cyclist’s behaviour. One of these influencing factors can be other road users 
in a given traffic scenario, especially at intersections. A proper trajectory forecast
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algorithm should therefore be interaction-aware and aimed to avoid conflicts, which 
is for example realised in the proposed algorithms of Huang [ 6] and Ju et al. [ 7]. In 
addition to potential interaction partners, the infrastructure of a traffic site can have 
a significant influence on the cyclist’s behaviour. The movement of a cyclist can 
depend on different features of an intersection, like the lane markings, road borders 
and visibility of other road users [ 1]. This infrastructural data can be included in the 
prediction model, for example by converting it into rasterized maps [ 8]. 

In this project, we propose a neural network that combines and extends on the 
aforementioned approaches. The model can make use of different data types and 
sources in order to accurately predict a cyclist’s future movement in interaction with 
AVs. For this, not only its kinematic data, but also data from all surrounding vehicles 
and area maps are utilized. 

2.1 Datasets 

Alongside the used training procedure, the quality, type and scope of the training 
data is crucial for the performance of the resulting model. For example, if the used 
position coordinates are unreliable, the accuracy of the model will be limited from the 
start and a meaningful evaluation will be hindered. For this reason, multiple publicly 
available trajectory datasets were analysed for their applicability in this project. 

The criteria for a good training dataset depend on the use case of the desired model. 
In this work, cooperative traffic scenarios were investigated, as already outlined in 
Sect. 1. Given this area of application, the following characteristics are used for the 
selection of a suitable dataset: 

1. The type of featured scenarios These should be comparable with the in Sect. 1 
defined scenario, an intersection situation where multiple road users including at 
least one cyclist have to interact cooperatively with other vehicles. This limits the 
selection to recordings from urban areas. In natural data, the density of the traffic can 
vary a lot. A high density can make the analysis of individual interactions difficult, 
but offer a larger amount of potential training data. 

2. The included road users While there is a multitude of recordings of cars in real 
traffic, the number of datasets which include the movement of the cyclists in the 
area is rather small. In addition to that, each type of road users must be explicitly 
distinguishable from each other, for example through a prior classification and a 
unique label. 

3. The type of measurement data Since this work is focused on the trajectory of 
cyclists, the most important measurements are position coordinates combined with 
corresponding timestamps. Further interesting data are velocity, acceleration and 
driving direction (heading) of the vehicles. Image and video material can be helpful 
to improve the understanding of a traffic scenario and individual situations.
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4. Frequency of the data The Frequency of the data should not be too low to ensure 
that even the movement of faster vehicles can be seamlessly described. Some traffic 
monitoring data is recorded with frequencies of 1 Hz or less and are therefore not 
suitable for this project. Datasets with a recording frequency of more than 2 Hz are 
sufficient for the analysis of low-speed scenarios in this use case. 

5. Size of the dataset For the training of machine learning algorithms, especially 
neural networks, a large-scale and diverse dataset is required. The more complex the 
desired model, the more data is needed to effectively train the model. The minimum 
required number of training data is in most cases way smaller for a MLP than for a 
more complex neural networks like a LSTM or CNN, varying from a few hundred 
data points to several thousands. Measurement data with a high diversity will be 
required, if the trained model should be able to adapt to new scenarios. Alternatively, 
data augmentation methods can be used to enhance the model’s transferability to 
new conditions. 

Under consideration of these criteria, three public datasets were chosen: the 
“ApolloScape trajectories” dataset [ 9], the “Lankershim boulevard dataset” from the 
NGSIM project [ 10] and the “Intersection Drone Dataset” (InD) [ 11]. The included 
measurement data are best suited for the investigation of cyclists’ trajectories. Nev-
ertheless, compromises must be made when using a public dataset, which is not 
specifically designed for the own use case. For this reason, the mentioned datasets 
are further described below regarding their features, strengths and weaknesses. 

The ApolloScape dataset was recorded in the city centre of Hong-Kong and 
includes recordings from multiple big intersections. That means it features mainly 
dense and complex traffic scenarios with a high amount of traffic participants. The 
data contains position coordinates of cars, pedestrians and cyclists, that are distinc-
tively classified and labelled. All data were recorded with a frequency of 2 Hz, which 
is rather low, but sufficient in this case, since the average velocities of the road users 
are not very high. In conclusion, ApolloScape offers a large and accurate dataset. 
The downside is the complexity of the traffic scenarios, making it hardly possible to 
analyse individual interactions between specific traffic participants. Furthermore, a 
localization of the position coordinates in a map is not possible, because these are 
all relative to a local coordinate system and not a world coordinate system. 

The second dataset is part of a collection of trajectory datasets from the NGSIM 
project. It contains recordings from multiple intersections along the Lankershim 
Boulevard in Los Angeles. The measurement data does not only consist of world 
coordinates from cars, trucks and cyclists, but also their velocity, acceleration and 
heading. The featured traffic scenarios are less dense than in ApolloScape, and allow 
for a better investigation of interaction situations between these road users. The 
biggest disadvantage of this dataset is the sparse number and therefore limited diver-
sity of cyclist recordings. 

The InD dataset was created with drones at various intersections in German cities. 
The high number of cyclists at these places create diverse measurement data, which 
are very suitable for the training of machine learning models. The observed inter-
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sections are smaller than the ones in the NGSIM dataset and not regulated by any 
traffic lights, which leads to very heterogeneous behaviour of the cyclists. One special 
feature of this dataset is, a drone image is provided for each measurement location. 
Later, the position coordinates of all road users can be mapped to these images, which 
is a decisive factor for the proposed algorithm (see Sect. 3). 

The described datasets were used to develop a proof of concept for a trajectory 
forecasting algorithm in cooperative traffic scenarios. The large-scale ApolloScape 
dataset was used to design and validate a workflow for extracting, structuring and 
pre-processing data, as well as a first training algorithm. The NGSIM dataset could 
later be used to develop a method to incorporate maps into the training procedure. 
This approach will be further described in Sect. 3.2. The InD Dataset is best suited for 
the training and validation of complex neural networks because of its high diversity 
in cyclist-car interactions and its high amount of data. 

3 Algorithm 

3.1 Model Implementation 

To calculate a cyclist’s trajectory as an indicator for their behaviour, multiple algo-
rithms were implemented. A trajectory forecast allows for a time discrete approx-
imation of the future state of a bicycle through, e.g., its position and velocity. One 
goal of this project was to investigate different influencing parameters on VRUs’ 
behaviours and to explore factors that can support the development of accurate pre-
dictions. A cyclist’s movement in traffic is not only dependent on the kinematic of 
bicycles itself but can be affected, by for example, the given infrastructure or indi-
vidual factors of each person. For that reason, NN have been utilized as they are 
capable of incorporating different types of data into the trajectory forecast. When 
choosing a suitable architecture for a NN, there are many possible model types, each 
with their own possibilities, strengths and weaknesses. In this project, three specific 
NN variations were implemented and compared for their applicability in trajectory 
forecasting. The concept of the used architectures, a multi-layer perceptron (MLP), 
a long-short-term-memory-NN (LSTM) and a convoluted neural network (CNN), 
will be described below. 

1. MLP The first implemented NN was a MLP [ 12], as it is the most simplistic vari-
ant of the aforementioned. The input for the model is a 3s time series of the cyclist’s 
position coordinates and the output are multiple 2D-coordinates of the cyclists’ esti-
mated future position in 0.5s intervals. This means the measurement data has to be 
converted and split into evenly long sequences as a preparation for the training. The 
focus of this first model implementation was to validate the data extraction, trans-
formation and sequencing as well as the training procedure itself. The MLP itself 
consists of one input layer, three dense layers and one output layer, each connected 
with a ReLu activation function. The number of layers and the best suited activation
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function has been determined experimentally which later could be reused to design 
the fully connected parts of the more complex models. Despite its rather simple 
structure, the results showed that the MLP is already capable to predict a cyclist’s 
trajectory, especially for straight movements. 

2. LSTM The described MLP model calculated the cyclists’ trajectory based on 
only its past position, but the behaviour of the cyclist is strongly dependent on the 
movement of all other road users in a scene. Therefore, the next step was to extend 
the model to include the cooperative aspect of a traffic scenario into the prediction to 
allow for an interaction-aware trajectory forecast. The chosen algorithm for this task 
is a LSTM based on the TrajNet++ framework [ 13], which was originally designed 
to predict movements of pedestrians in crowded areas with focus on the coopera-
tion and interaction of the individual attendants. The pre-existing implementation 
was altered and adapted for the use on bicycle trajectories rather than pedestrians. 
The model includes a classification of potential interaction situations through given 
parameters like the distance between the road users, the movement direction or their 
field of view. The conditions for this classification were adjusted to fit the faster 
movement of cyclists and cars in this use case and the bigger possible distances 
between interaction partners. The input of the model can now not only include the 
cyclist’s previous positions, but the movement of all road users within a specific 
area around the cyclist. The output of the model has been kept the same as in the 
MLP, a time series of estimated position coordinates for the bicycle. This ensures 
the comparability between the implemented models. 

3. CNN After looking at the performance of the LSTM in the bicycle trajectory fore-
cast on intersections, it is still noticeable that the model excels in predicting forward 
movement, but shows weaknesses when estimating tight and sudden cornering of 
the cyclist. Cyclists in those kinds of manoeuvres show a high amount of diversity 
in their actual movement, because of their ability for dynamic and fast steering. That 
means the greater possible range of motions for a cyclist when turning will make 
it harder for a model to predict the correct driving path. One way to increase the 
accuracy in those situations is to narrow the potential action radius of the bicycle. 
This is accomplished by providing infrastructural data to the model, like street mark-
ings and borders. In order to process this new kind of input data, a third NN type 
has been chosen. A CNN allows to extend the input for the trajectory forecast, by 
extracting infrastructural data from maps, but just as the LSTM it is also capable of 
incorporating the movement data of all road users in one given scene. How this is 
accomplished will be further described in the next section (see Sect. 3.2). 

The main part of the CNN, the feature extractor, is based on MobileNetv2 [ 14], 
a well-established CNN with high accuracy and fast computation times. Transfer 
learning allows to adapt the pre-trained model for the new use case of this project, 
while keeping its already high precision. The fully connected part of the model is 
loosely based on the MLP that was described before, but experimentally optimized 
in this application. The output of the model is still kept the same, also to allow a 
comparison with the other implemented models.
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Out of the three described model architectures, the CNN showed the highest 
potential in integrating different data types for a trajectory forecast with the highest 
possible accuracy. The input of the model could always be extended by additional 
parameters, as an indicator for the cyclist’s behaviour. It will be part of future works 
to investigate such parameters and utilize them in the proposed algorithm. 

3.2 Data Augmentation 

When training the described CNN, the data pre-processing and augmentation is 
equally important as the model implementation itself. As mentioned earlier, the rea-
son for using a CNN is its capability of processing images fast, in this case recordings 
of the infrastructure in the form of maps, satellite, or drone images. Further, the model 
should also be given the position coordinates and kinematic data of the cyclist and all 
surrounding vehicles. An algorithm is proposed to merge those different data types 
into one combined image, which can then be used as a training input for the CNN. 
This data processing will be described step by step. 

The first step is to convert the cyclist’s past position coordinates into local image 
coordinates (see Fig. 1). For consistency, the origin of the movement is always the 
centre of the image. The dimensions of the area that is shown in the image is a 
parameter of the model and was optimized for the given use case, here 100. ×100 m. 
The chosen image size must be compatible with the input layer of the CNN. 

As second step the position coordinates of all surrounding vehicles in the scene 
were converted in the same way and added to the image (see Fig. 2). Distinct grey 
scale values can be used to separate individual vehicle types from each other. In this 
case the black line shows the cyclist and the grey line the cars. 

Fig. 1 The cyclist’s position 
coordinates (black line) 
added to a blank image. The 
global coordinates of the 
bicycle (UTM) were 
converted into a local 
coordinate system that is 
shown here
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Fig. 2 All other vehicles’ 
position coordinates in the 
scene are added to the same 
image (grey lines) 

Fig. 3 Kinematic data of all 
vehicles and the cyclist is 
scaled to values between 0 
and 255 (typical image color 
values). These values are 
then added to the 
corresponding points in the 
image. The cyclist is shown 
in blue and the car in purple 

The last step of the data conversion is to include kinematic data in the image, in 
this case the velocity and heading value of each vehicle. For this, the given data is 
transformed to a scale between 0 and 255, or colour values for an image. The scaled 
values can then be added to one corresponding colour channel at each corresponding 
position of the vehicle. This means in practice that the trajectory of the vehicles is 
visualized in different colours depending on their velocity and heading (see Fig. 3). 

Next up the infrastructural data is extracted from given images of the intersection. 
This can be done by utilizing satellite images or in this case drone images of the 
scene (see Fig. 4a). Since the color channels of the image are already used in the 
last step to encode kinematic data, the map is converted to grey scale. To further 
highlight important information, e.g., street borders, the image is processed with an



Prediction of Cyclists’ Interaction-Aware Trajectory for Cooperative … 27

(a) Original intersection image. (b) Corresponding grey scale image. 

Fig. 4 Important features in the original image are highlighted using an edge detection algorithm 

Fig. 5 Combined image 
with the position and 
kinematic data of the 
vehicles and the 
preprocessed map image of 
the scene. The cyclist is 
shown in blue and the car in 
purple 

edge detection algorithm (see Fig. 4b). This new image is merged with the previously 
described converted vehicle data, by matching the position coordinates exactly to the 
cut out. Now, the generated image (see Fig. 5) contains all relevant data and can be 
used as input for the CNN. This algorithm is repeated for the next given time step 
until all measurement data are converted into images. This way a training set of more 
than 40,000 images could be created from the InD data, an amount that is more than 
sufficient to train deep neural networks. 

When creating a training set with this many images, it is important that none 
of the possible scenarios is overrepresented, otherwise the model will over-fit on 
these scenes while not performing well in other conditions. In this case one specific
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intersection was featuring a lot more cyclists than any other location and therefore 
offered way more measurement data, which means that the NN could possibly be 
trained on this specific intersection and fail to adapt to other infrastructures. To avoid 
this problem, a random rotation is applied to each image that counteracts overfitting 
and makes the trained models usable with other scenes as well. The adaptability of 
the NNs is proven by utilizing a test dataset from an intersection that was completely 
excluded from the training. 

4 Evaluation 

To evaluate the prediction accuracy of the implemented models, a test dataset has 
been created. For that, 1,000 images have been used which were generated from a 
scene, that was completely excluded from the model’s training. This way the model’s 
adaptability to new scenarios and conditions can be investigated. The test dataset is 
the same for all used NN variations to ensure comparability between the calculated 
trajectory forecast precisions. 

With the given test dataset, a statistical evaluation was conducted to investigate 
the three NN’s prediction accuracy. In the field of trajectory forecasts, a specific error 
metric is commonly used to calculate the deviation of an estimated position from its 
ground truth. This error metric is called average displacement error (short ADE) and 
is widely used in literature to evaluate similar approaches [ 15]. The advantage of 
using an established error metric is, that it does not only allow a comparison between 
the proposed models but also with pre-existing ones. 

.

dx =
n 

i=1

(x̂i − xi )
2

dy =
n 

i=1

(ŷi − yi )
2

ADE =  dx + dy/2n

(1) 

To determine the ADE, the deviation of a predicted point from the ground truth 
is calculated in lateral (dx) as well as longitudinal (dy) direction (see Eq. 1). Both 
individual values are used to evaluate a model’s precision for specific manoeuvres of 
the bicycle. The lateral error indicates how well turning movements can be predicted 
and the longitudinal error shows the precision during straight driving. The combined 
displacement of the prediction is then calculated by the mean of these two values. 
These values were averaged for all predictions that correspond to each image in the 
test dataset in order to obtain the average error for every implemented model.
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Table 1 ADE comparison of the four used models. A constant prediction time frame of 3 s has 
been used with all models 

KF (m) MLP (m) LSTM (m) CNN (m) 

ADE 1.78 1.9 1.24 0.84 

dx 1.12 1.16 0.73 0.45 

dy 2.44 2.64 1.75 1.23 

4.1 Evaluation of Different Input Data 

The main purpose of the evaluation process was to compare the influence of different 
data types on the trajectory prediction accuracy for the cyclist. For that, the three 
NN types were compared, which are used to incorporate additional data each. As 
mentioned in Sect. 3 algorithm the MLP uses only the cyclist’s past positions for a 
trajectory prediction, the LSTM is capable of incorporating movements of potentially 
interacting vehicles, and the CNN additionally uses infrastructural data as input for 
the model. A Kalman filter was used to compare the proposed machine learning 
algorithms with a physical approach. Like the MLP, the Kalman filter uses only the 
cyclist’s position as input and therefore both models offer a baseline accuracy for the 
trajectory predictions. 

The table (see Table 1) shows the ADE of the three implemented NNs and the 
Kalman filter. A constant prediction time frame of 3 s was used for all models to 
make the results comparable. 

The MLP revealed the highest average error of 1.9 m, followed closely by the 
Kalman filter with an error of 1.78 m. Both of these algorithms only use the cyclist’s 
past position as input for the trajectory forecast, which means a lower accuracy is 
to be expected here. Despite the higher overall error, the lower longitudinal error 
indicates that a prediction of movements in driving direction is possible even with 
these comparatively simple models. 

The LSTM column shows that the inclusion of interactions between the cyclist 
and vehicles in close proximity yields a significant accuracy increase. A LSTM is 
generally better suited for a time series forecast than the aforementioned models, 
which means the lower average error is caused by not only the interaction-aware 
prediction but also a more viable algorithm for this use case. 

The best model in this comparison is the CNN with an ADE of 0.84 m. It includes 
all relevant vehicles’ past positions and kinematic data as well as infrastructural 
data of the cyclist’s surroundings. An accuracy increase of up to 42% can be seen in 
longitudinal and lateral direction compared to the LSTM. Especially the improvement 
in lateral movements is important, as it makes the CNN the best model to accurately 
predict cyclists’ turning manoeuvres out of the compared approaches. 

The influence of the infrastructural data on the trajectory forecasts was further 
investigated by implementing a variation of the CNN that is not using this data. All



30 D. Raeck et al.

Table 2 ADE comparison of two CNN variations. One with and one without the usage of map data 

CNN with map data (m) CNN without map data (m) 

ADE 0.84 1.08 

dx 0.45 0.59 

dy 1.23 1.57 

Fig. 6 Comparison of the four used trajectory forecast models with increasing prediction time 
horizons 

other training and model parameters remained constant, which makes this version 
comparable to the aforementioned CNN (Table 2). 

The comparison of the ADEs for both CNN variations shows a clear improvement 
in the forecast accuracy when using infrastructural data. 

4.2 Evaluation of Prediction Time Horizons 

The prediction time horizon is one of the most important parameters of any trajectory 
forecast model. It defines the time frame over which the prediction is supposed to 
happen. Naturally, the accuracy of a calculated trajectory decreases with a higher 
time horizon. The overall precision of a model determines how long the prediction 
time can be chosen before the accuracy is not sufficient anymore for the given use 
case. The previous results were generated using a prediction time horizon of 3 s. In the 
following, the influence of different time horizons on the ADE is investigated. This 
can be achieved by training a separate model with each of the respective prediction 
time frames from one to six seconds (Fig. 6).
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The comparison shows that the ADE of each model increases with higher pre-
diction times. The MLP showed the worst results at high prediction times to a point 
where the model is no longer trainable if the time horizon would be even higher. The 
best performing model is the CNN, which yields a better performance than the other 
models at all prediction times. All error values increase to a value where they are 
no longer reasonable in the use case of an intersection. The crucial difference is that 
the CNN could be used to predict trajectories of cyclists up to 4s length, while the 
Kalman Filter and the MLP are already too inaccurate with a prediction of 3 s. 

In future work, possibilities of increasing the forecast time frame can be further 
investigated. The most important advantage of the used NN is the fact that additional 
types of data, e.g., behavioural or psychological parameters can be incorporated in 
order to allow for an even more precise and long-term trajectory prediction. 

5 Discussion and Future Work 

In both this book chapter and the previous one by Trommler et al., influencing factors 
on the behaviour of cyclists in interaction situations with cars were investigated. The 
analysis of naturalistic cycling studies in the book chapter by Trommler et al. showed 
that the cyclists’ actions can be very dynamic and depend on a variety of conditions. 
Determining every deciding factor on a certain manoeuvre is not always possible. 
A neural network like the proposed model of this chapter is a well-suited method 
to predict such manoeuvres. Not only is this machine learning algorithm capable 
of utilizing input parameters of all sorts but it may also implicitly learn behaviour 
patterns of cyclists, by training it with a large amount of real traffic data. 

The implementation and evaluation of the neural networks proved to be a viable 
approach for an accurate trajectory forecast of cyclists in cooperative interaction 
situations with cars. The dynamic and fast movement of a bicycle makes the cyclist’s 
behaviour generally hard to anticipate. Providing information about the scenery and 
also the other vehicles helps to improve this estimation, by reducing the cyclist’s 
possible range of action. Comparing the effect of additional input data showed that 
the cyclist’s movement can be predicted better by utilizing influencing factors in 
its surrounding, like the infrastructure. This can be seen in the contrast between 
the proposed CNN’s accuracy to the Kalman Filter (see Sect. 4). The advantage of 
a neural network in this use case is its capability to incorporate parameters that a 
physical model could not. In future work, this approach can be expanded to utilize 
even more behaviour indicators like individual factors of the cyclist. 

The evaluation of the proposed CNN for cyclist trajectory prediction showed that 
its accuracy can vary depending on the type of movement. The amount of behaviour 
patterns that a machine learning algorithm can model is limited by the given scenarios 
that are included in the training dataset but also by the used input parameters and if 
they can serve as indicators for a certain manoeuvre. One example of a manoeuvre 
that cannot be predicted early is the starting of cyclist who was standing and waiting 
at an intersection. From the currently used parameters, the kinematic data of the



32 D. Raeck et al.

bicycle and its past position, there is no indication for such a motion making it 
impossible to estimate when the cyclist is going to start. To allow for such a prediction, 
additional input parameters would need to be incorporated. Such potential indicators 
for the cyclist’s starting behaviour were investigated in the previous book chapter 
by Trommler et al.. A body pose detection algorithm could be used to extract these 
features and use them as additional input for the proposed neural network. This would 
widen the algorithms potential field of use and will be subject to future research. 

6 Conclusion 

Neural networks can combine the autonomous vehicle’s trajectory with infrastruc-
tural data to forecast a collision free trajectory for cyclists in interaction situations. 
The research in this project showed that a cyclist’s behaviour in mixed traffic is 
dependent on many factors. A neural network, like the CNN that was discussed in 
this work proved to be a potent algorithm to incorporate data of various types, e.g., the 
kinematic data of the road users and map data, into a trajectory forecast. Combining 
these data types significantly increased the overall accuracy of the movement pre-
diction. In future work this algorithm will be extended by including more potential 
influencing parameters on the VRUs behaviour. 
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Detecting Intentions of Vulnerable Road 
Users Based on Collective Intelligence as 
a Basis for Automated Driving 

Stefan Zernetsch, Viktor Kress, Maarten Bieshaar, Jan Schneegans, 
Günther Reitberger, Erich Fuchs, Bernhard Sick, and Konrad Doll 

Abstract The project Detecting Intentions of Vulnerable Road Users Based on Col-
lective Intelligence as a Basis for Automated Driving (DeCoInt. 2) focuses on detecting 
the intentions of vulnerable road users (VRUs) in automated driving using cooper-
ative technologies. Especially in urban areas, VRUs, e.g., pedestrians and cyclists, 
will continue to play an essential role in mixed traffic. For an accident-free and highly 
efficient traffic flow with automated vehicles, it is vital to perceive VRUs and their 
intentions and analyze them similarly to humans when driving and forecasting VRU 
trajectories. Doing this reliably and robustly with a multimodal sensor system (e.g., 
cameras, LiDARs, accelerometers, and gyroscopes in mobile devices) in real-time 
is a big challenge. We follow a holistic, cooperative approach to recognize humans’ 
movements and forecast their trajectories. Heterogeneous open sets of agents, i.e., 
collaboratively interacting vehicles, infrastructure, and VRUs equipped with mobile 
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devices, exchange information to determine individual models of their surrounding 
environment, allowing an accurate and reliable forecast of VRU basic movements 
and trajectories. The collective intelligence of cooperating agents resolves occlu-
sions, implausibilities, and inconsistencies. We developed new methods by consid-
ering and combining novel signal processing and modeling techniques with machine 
learning-based pattern recognition approaches. The cooperation between agents hap-
pens on several levels: the VRU perception level, the level of recognized trajectories, 
or the level of already detected intentions. 

1 Introduction 

Traffic is what moves us. Due to rapid developments in the past years in the fields of 
hardware, software, communication, and connectivity, it is in close reach that we do 
not even have to steer anymore. In special use cases, e.g., on motorways with reduced 
speeds, we are already there. Autonomous cars aim to combine additional comfort 
with exceeding efficiency when it comes to traffic jam avoidance, pathfinding, and 
car sharing. The most crucial aspect though is the potential to create safer traffic with 
fewer accidents and fatalities. This is the key issue that prevents the installation of 
autonomous cars right now. 

The project Detecting Intentions of Vulnerable Road Users Based on Collective 
Intelligence as a Basis for Automated Driving (DeCoInt. 2) aims at providing the ben-
efits of cooperation in traffic with a focus on pedestrians and cyclists. The consortium 
consists of three partners who work together, contributing novel ideas and algorithms 
to tackle this crucial challenge in future traffic. Collaboration and cooperation are 
necessary for the automated domain as well. Single sources of data always lack 
information. The shift from forward-looking sensors to 360. ◦ perception systems is 
a first step to alleviate this issue, but still, a single sensor-equipped vehicle is not 
able to resolve occlusions or to sense behind corners. Nevertheless, this is crucial for 
a holistic understanding of the current situation and upcoming dangers to provide 
protection for VRUs and enable efficient and comfortable driving. 

Autonomous cars shall not operate in isolation. Their implementation drasti-
cally influences every mobility aspect in the public space. Vulnerable road users 
(VRUs), i.e., micromobility users or pedestrians, are sharing parts of the same space 
as autonomous vehicles. Whereas cars have the capability to communicate and share 
information on a technical level, VRUs are not able to tell an autonomous car that they 
want to cross the street by establishing eye contact as humans would. Special care 
has to be taken to make automated traffic safe for all vulnerable traffic participants. 

The vision of future traffic the  DeCoInt. 2 [ 8] project is based on is illustrated in 
Fig. 1. Equipped vehicles share information about their perception and predictions 
and thus extend their individual limits. Even VRUs themselves and static infras-
tructure can communicate and contribute in this local ad hoc information environ-
ment. These are the three core components in our project to perceive pedestrians 
and cyclists: the intersection infrastructure, the sensor-equipped vehicle, and sensor-
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Fig. 1 Vision of a connected and cooperating world to provide safety for VRUs 

equipped VRUs. Together we collect data to build a labeled ground truth database, 
apply existing approaches in real-world circumstances, and learn from the observed 
behavior by training novel models, thus pushing the state of the art of VRU pro-
tection systems in an automated and connected world. Figure 2 depicts the actual 
sensor setup. In the bottom, the static, wide-angle, synchronized stereo camera setup 
mounted at the research intersection [ 28] in Aschaffenburg, Germany, together with 
two sample images illustrating the fields of view, is shown. The area of the corner of 
the main road to a side road is the common field of view. Additionally, we collected 
data with a research vehicle [ 36] equipped with a LiDAR, a stereo camera, and an 
automotive dynamic motion analyzer (ADMA). The latter provides a self-localization 
ability. We created a local coordinate system with the ADMA of the research vehicle 
and the stereo camera setup of the intersection having the same origin. The third 
component are the VRUs themselves. We conducted measurement campaigns fol-
lowing specific scenarios involving the research vehicle and VRUs in the area of the 
research intersection. The VRUs are equipped with smart devices [ 7], as, for exam-
ple, depicted in Fig. 2a. In the common field of view, labeled data can, together with 
the precise calibration of the stereo camera system, provide a positional ground truth. 
The VRU smart devices provide inertial and positional information about the VRU. 
Altogether, throughout the project, we collected short sequences with instructed and 
uninstructed VRUs capturing the movements listed in Table 1. Curated parts of the 
database are made publicly available [ 41, 44, 65, 66]. Extensive descriptions of 
the data collection and preparation, approaches, algorithms, and evaluations can be 
found in the Ph.D. theses [ 7, 36, 53, 64] that evolved from the project.
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Fig. 2 Cooperative perception and movement prediction sensor setup 

1.1 Main Goals 

The main focus of our approach, and consequently the DeCoInt. 2 project, is the inves-
tigation of techniques for cooperative intention detection and trajectory forecasting 
of VRUs. Our overall goal is to detect the intentions of VRUs early and reliably using 
the collective intelligence of all road users. A schematic of this process is depicted 
in Fig. 3. 

Due to the ability of VRUs to suddenly start a motion or to change the direction 
of motion, a dangerous situation may occur within hundreds of milliseconds. To 
avoid accidents, autonomous vehicles must be aware of their surroundings at all
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Table 1 The gathered dataset with the number of scenes, persons, and motion primitives describing 
the possible motion states of VRUs 

Instructed Uninstructed Total 

Scenes 976 672 1648 

Test persons 89 . ≈672 761 

Stop 344 189 533 

Wait 348 358 706 

Start 342 351 693 

Straight 972 668 1640 

Turn left 269 65 334 

Turn right 271 130 401 

Fig. 3 Schematic representation of the overall process to cooperative perception and cooperative 
intention detection [ 8] 

times. This includes not only the current but also the future positions of VRUs. 
Based on position forecasts, each autonomous vehicle can then plan a safe trajectory 
in mixed traffic. To achieve this goal, we aim to perform cooperative trajectory 
forecasting for VRUs. We generate forecasts over a short time horizon of 2.5 s, which 
is sufficient to perform emergency braking or evasive maneuvers [ 7, 64]. While we 
aim at forecasting trajectories with high positional accuracy, all predictions of VRU 
behavior are subject to error. This is especially true for larger forecast horizons since 
VRUs can change direction quickly without evidence of the behavior at the time 
at which the forecast is made. Therefore, we need to quantize the uncertainty of
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Fig. 4 Two fusion approaches for the basic movement detection [ 7] 

our forecasts as well. This can be achieved by probabilistic trajectory forecasting, 
where, instead of one position for every forecast time step, regions with a certain 
probability are predicted. The main goal of probabilistic trajectory forecasting is to 
generate reliable estimates, i.e., if we estimate regions with a probability of 95%, the 
true position of the VRU should fall into that region in 95% of all forecasts. Another 
goal of probabilistic trajectory forecasting is to estimate regions that are as small as 
possible to allow efficient maneuver planning. Since a single sensor setup is prone 
to occlusion in dense traffic, our goal is to perform these forecasts cooperatively. 

According to the Oxford Dictionary, cooperation is the action of working together 
to the same end [ 51]. Hence, the action is the process of combining information 
originating from different sources, i.e., vehicles, sensor-equipped infrastructure, and 
VRUs themselves, to increase the safety of VRUs. In the following, all involved 
entities are referred to as agents. In our work, we see the cooperative system from 
the perspective of an ego vehicle. All agents (including the ego vehicle) perform 
cyclist detection and intention detection locally. These agents exchange information 
via a wireless ad hoc network (i.e., V2X network). Ego-vehicle information (such 
as the position) and fused information of earlier stages are always available to the 
ego vehicle. For the sake of brevity, the corresponding arrows are not shown in 
Fig. 3. Perception incorporates the detection of cyclists, e.g., the detection of cyclists 
in camera images, RADAR, or LIDAR scans. Smart devices and other wearables 
detect the position using the integrated GNSS receivers, predict the VRU class, and 
perform intention detection (i.e., basic movement detection and trajectory forecasts) 
using their inertial sensors (cf. Sect. 4.2). Furthermore, we assume that the time 
between the agents is synchronized, e.g., via GPS time. 

We conduct cooperative intention detection on the feature- and the decision-level. 
We can further subdivide this into the fusion of basic movements and trajectory 
forecasts. We depict a schematic showing the feature- and the decision-level fusion 
paradigms for the cyclist’s basic movement detection in Fig. 4. We refer to the feature-
level fusion paradigm as the fusion of sensor measurements and features from dif-
ferent sensors and sources. This combined information is used to detect the cyclist’s
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intention better. In the decision-level fusion paradigm, predictions from basic move-
ment and forecasting models of different road users are fused. 

1.2 Outline 

In this chapter, we describe how we solved the issues of detecting and tracking VRUs 
together with the follow-up process of intention detection as our main contribution. 
Our focus lies on the cooperative information gain based on the multimodal set-
ting depicted in Fig. 2. In doing so, we first evaluate the weaknesses of uni-modal 
object detection and determine the strengths and chances of multiple different sen-
sor sources via cooperative tracking in Sect. 2. Towards confidence estimations, we 
identify external factors influencing the tracking performance, i.e., context infor-
mation. VRU tracks form the essential input to the intention detection process in 
Sect. 3, which we divide into basic movement detection and trajectory forecasting. 
We perform both steps separately on the three different device types we have avail-
able, i.e., the stationary cameras, the moving vehicle, and the smart devices. This 
is beneficial, as we point out throughout the work, due to different constraints and 
possibilities. Moreover, we identify additional input data derived from the sensors, 
such as optical flow images and poses. The basic movements form an additional 
input for trajectory forecasting, the essential part of our work. At first, we predict 
the movement of pedestrians and cyclists in a deterministic manner again separately 
for our three sources. Then, we show approaches of how to estimate, predict, and 
evaluate the confidence in the forecasts made on stationary cameras and a moving 
vehicle in our work on probabilistic trajectory forecasts. At this point, we emphasize 
the contribution of our work to the trajectory planning task of autonomous vehicles. 
Object detection, together with tracking and probabilistic trajectory forecast, have 
direct use in the planning of efficient and safe vehicle paths. In Sect. 4, we showcase 
the benefits of cooperatively using our three information sources in the intention 
detection process as we already have for the tracking stage. As shown in Fig. 2, the  
VRUs themselves equipped with multiple smart devices form an information source. 
Therefore, we show how the different devices and wearing positions contribute to 
specific information gains, and we can combine them beneficially. In the next step, 
we examine different methods for cooperative intention detection, including feature-
and decision-level fusion for basic movements and trajectories. In this context, we 
present innovative solutions for a great variety of problems, such as delay, sensor 
outage and occlusion, out-of-sequence fusion, and information loops. Moreover, we 
investigate and compare different approaches and elaborate on the possibilities of 
implementing such a system utilizing current V2X protocols and standards, such as 
collective perception messages (CPM) and collective awareness messages (CAM).
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2 Cooperative Perception and Tracking 

The first step on the road to intention detection and prediction of VRUs is to detect 
pedestrians and cyclists and identify them throughout the scene, i.e., perform track-
ing. This has to be done in a precise and accurate way as it is the basis for all the 
following steps. Accuracy addresses the ability to ensure that a detected VRU is 
existing and indeed of the claimed type. If a VRU is not detected although it is in the 
field of view of the sensors and not occluded, the accuracy is reduced. The precision 
measures the distance of a detected VRU to the ground truth real-world object. Our 
approach is to achieve reliable and precise detection and tracking in a multimodal 
and multi-agent setting, i.e., in a cooperative way. We make use of a stereo camera 
setup at a static road site unit, a stereo camera mounted in a vehicle, and the VRUs 
themselves equipped with smart devices to provide superior coverage and more pre-
cise solutions than one single sensor could provide. Additionally, we will show the 
impact of context information on the performance of our system representative for 
all state of the art detection algorithms and the ability to gather context information 
more extensively and accurately in cooperation. 

2.1 Context Dependent Detection 

In this section, we explore the performance of state of the art object detection methods. 
On the way to fault-free and therefore safe autonomous driving, such perception 
techniques should be reliable in any case. For the viewing angle and lighting situation, 
two exemplary cases of context knowledge, we will discover significant differences 
to the regular performance. 

2.1.1 Viewing Angle Dependent Bicycle Detection 

Neural networks (NNs), in the field of image processing especially convolutional 
neural networks (CNNs), define the state of the art techniques for detecting objects, 
segmenting images, and many more tasks. Although setting the bars higher for algo-
rithms in this domain and outperforming all previous approaches assuming the testing 
data to be at least similar to the training data, there is still room for improvement. In 
this section, we want to highlight some flaws of state of the art detection algorithms 
based on our data. 

Figure 2c shows the viewing angles of our static stereo camera setup. There is a 
bike lane next to the sidewalk on the main street. The lane is directed towards the 
left camera. The right camera has an orthogonal view of the lane. An example of a 
cyclist riding on the described bike lane can be seen in Fig. 5. The figure also shows 
the detection boxes with classes and confidentialities created by a Faster R-CNN [ 56] 
network based on a ResNet-101 [ 29] backbone trained on the COCO dataset [ 46],
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Fig. 5 Bicycle, person, and car detections from the left and right camera view 

Table 2 Viewing angle dependent bicycle detection rate evaluated on 51 scenarios 

View on bicycle Average detection rate 

Right, orthogonal camera . 0.8993

Left, straight ahead camera . 0.2476

which had a state of the art performance at the time of the evaluation considering 
a close to real-time execution speed. A cyclist is not labeled as a separate class. A 
cyclist is detected by a person bounding box and a bicycle bounding box which have 
an intersection over union (IoU) above a determined threshold. We experienced an 
IoU of .0.3 as sufficient. The detection of cyclists is a central part of our project as 
we want to increase the cyclists’ safety by predicting their behavior. In particular, 
reliable bicycle detection is crucial. Figure 5 shows the bicycle detected in the right, 
orthogonal camera view, but not in the left, straight ahead camera view. This is 
indeed no exception in evaluating the bicycle detection rate with respect to the two 
mentioned camera angles. We evaluated 51 scenarios of cyclists riding on the bicycle 
lane or on the pavement next to it in the direction indicated in Fig. 5. The scenarios 
cover most of the possibilities cyclists can be visible in the two cameras. 

Table 2 lists the detection rates with respect to all frames of all 51 scenarios. The 
detection rate in the right camera is.0.8993. It might be a little lower than the expected 
detection rate of an object detection task, but the fact that there are people sitting on 
the bicycles in every image and the, in some parts, low contrast with respect to the 
background makes the task more difficult than in the trained dataset. Moreover, the 
weather conditions are challenging in some scenarios. We will elaborate on that fact 
in more detail in the following. Nevertheless, the detection rate of .0.2476 in the left 
camera is significantly worse than the one on the right. The detection rate is smaller 
for the left camera angle in 50 of the 51 scenarios. The cause can be manifold. It
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might be an underrepresentation of such images in the training dataset or simply a 
more challenging task due to the fact that less of the bicycle is visible and more of 
the bicycle is hidden by the rider. Whatever the case, the consequence is that we are 
not able to reliably detect a cyclist in such a case if only the straight-ahead camera 
is available. 

We, therefore, propose in our approach that at least a second camera angle is 
necessary to be able to track cyclists without gaps. This will be discussed in more 
detail in Sect. 2.3. Moreover, we created a novel algorithm to subtract the background 
from the foreground in static camera setups [ 55] that is able to identify moving 
objects. Regions of movements without detected objects indicate missed detections. 

2.1.2 Lighting Situation Dependent Person Detection 

The differences in the detection performance with respect to the viewing angle give 
a hint that is important to take additional information into account when we estimate 
our trust in the output of our perception system. We call this additional information 
context. It is an explicit goal of our project to investigate the influence of context 
information on the detection and prediction capabilities of our algorithms. Therefore, 
we split our database with respect to another criterion, the time of day. In Sect. 2.4, 
we take a look at further types of weather and lighting condition context types. 
Nevertheless, the main focus in the process of the creation of our dataset was to 
provide a basis for the development of algorithms for VRU intention detection and 
the corresponding evaluation. The different times of day and viewing angles are a side 
product of the data-capturing process. They are represented in significant amounts 
of scenarios to be able to make deductions. We also discovered rain or sun glare but 
in too few scenarios to provide statistically significant results. In the current projects 
of the three participating teams, we are continuing to work on extending the existing 
database specifically with respect to such further aspects to evaluate and address 
model weaknesses. To avoid the viewing angle as an influencing factor, we choose 
the person detection in the two camera views for the 51 scenarios already mentioned. 
The mean detection performance is similar for both cameras with a recall of . 0.825
in the right camera view and .0.780 in the left one. There are 11 scenarios captured 
in the evening or during a thunderstorm which resulted in less daylight and darker 
images. We refer to such scenarios as dawn_dusk in contrast to daytime which is 

Table 3 Lighting situation dependent person detection evaluated on 51 scenarios 

Camera Lighting situation Average detection rate 

Right Daytime . 0.8885

Right Dawn_dusk . 0.6818

Left Daytime . 0.8019

Left Dawn_dusk .0.6910



Detecting Intentions of Vulnerable Road Users Based … 45

the regular case. Table 3 shows the detection rates. The detection rate is lower for 
the 11 dawn_dusk scenarios for both cameras. In the left camera, the difference 
is about .0.11 and in the right one even .0.21. The sample size is still small such 
that with more data and a network training based on more dawn_dusk images the 
difference might not be so big anymore. Nevertheless, we have found a motivation to 
further work on the detection and determination of context information and to include 
context information in the data collection process and the assessment of detection 
confidentialities. 

2.2 Cooperative Detection and Tracking of Cyclists 

Cooperation is an integral component on the way to a comprehensive and reliable 
detection of VRUs in an automated traffic environment. To showcase the ability of 
an equipped multi-agent system to overcome the limitations of single ego-vehicles 
for example, we gathered data in multiple measurement campaigns in real-world 
environments based on the setup described in Sect. 1. 

In a reduced setting, we showcase the benefit of cooperation in [ 54]. We concen-
trate on the tracking of cyclists, i.e., we assumed that the objects we want to track are 
cyclists. The relevant device the cyclists carry is a smartphone in the trouser pocket. 
Followup works described in Sect. 4.2 elaborate more on additional devices mounted 
at different wearing positions. The output of the VRU sensors is an estimation of the 
velocity, the yaw rate, and the GPS-based position. Additionally, we detect and deter-
mine the 3D positions of the cyclists with the static stereo camera setup mounted at 
the research intersection. The intersection sensor setting provides a positional accu-
racy of less than 10 cm in every direction. The accuracy of the intersection detections 
is superior to the ones provided by smart devices. Therefore, if both sources are 
available, the smart devices do not contribute to better tracking performance. Nev-
ertheless, in cases of occlusions, e.g., a truck blocking the view of a cyclist from 
one camera, no 3D object detection can be performed by the stereo camera system 
anymore. An example of such a scenario can be seen in Fig. 6. Smart devices are 

(a) Left camera view (b) Right camera view 

Fig. 6 Cyclist occluded by a truck in the right camera of the static stereo camera system
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Fig. 7 Comparison of static 
stereo camera tracking only 
(red triangles) with 
cooperative tracking 
including smart device data 
(green circles) under a 
temporal occlusion of 2 s. 
The blue squares show the 
ground truth trajectory 
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still able to communicate their measurements. In [ 54], we show that in more than 
84% of the turning scenes under occlusion, the additional smart device information 
benefits the tracking performance significantly. Figure 7 depicts a scene in which the 
cooperative tracking follows the ground truth closely, whereas the tracking based on 
the static camera setup only loses sight and can only predict the following positions 
based on the tracking model. 

The chosen model is the bicycle model tracked with an extended Kalman filter 
(EKF) [ 3, Chap. 10]. The state transition for the state space . x := [x, y, γ, γ̇ , v]T
with the positional coordinates . x and . y, the orientation . γ , its derivation . γ̇ , i.e., the 
yaw rate, and the velocity . v is given by 

. f (x) :=

⎡
⎢⎢⎢⎢⎣

x + cos(γ ) a − sin(γ ) b
y + sin(γ ) a + cos(γ ) b

γ + γ̇ T
γ̇

v

⎤
⎥⎥⎥⎥⎦

(1) 

with .a = sin(γ̇ T ) v

γ̇
and .b = (1−cos(γ̇ T )) v

γ̇
for a time step . T . The  . z coordinate can be 

determined by the stereo camera setup besides . x and . y, but it is not used in the 
referred evaluation. The smart devices contribute with the velocity . v and the yaw 
rate . γ̇ . The occlusion in the case referred to in Fig. 7 starts at the white-filled circle. 
Starting at this point, the trajectories drift apart. Due to the yaw rate information by 
the smart devices, the green cooperative track can follow the ground truth closely. 
The grey and black-filled circles depict one and two seconds after the start of the 
occlusion.
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2.3 Pedestrian and Cyclist Tracking Including Class 
Probabilities 

So far, we have mentioned the perception of cyclists that contains an intersecting 
detection of a bicycle and a person and the tracking of cyclists themselves. The 
movement model used for the cyclist tracking in Sect. 2.2 describes movements by 
arcs and therefore is especially suitable for cyclists but unstable in cases of sudden, 
not smooth, or even backward-oriented changes in the movement direction, which 
is in the nature of pedestrian trajectories. Therefore, a linear constant velocity or 
acceleration model that is independent in the lateral and longitudinal directions is 
more suitable for a pedestrian. We have already mentioned that being able to track 
VRUs is a basis for further steps in our VRU intention detection approach. Besides 
the choice of the tracking algorithm, a tracker tends to perform best if it is applied 
to an object of the class it has been designed or trained for. In our case, we have 
the cyclist model with the state space .[x, y, γ, γ̇ , v] and the pedestrian model with 
the state space .[x, ẋ, y, ẏ]. In the following, we also develop models to predict the 
behavior of cyclists and pedestrians. They depend on the knowledge of the class of 
the VRU, too. Therefore, we want to extend the aforementioned state spaces and 
the tracking described in Sect. 2.2 by an additional class probability functionality. 
There are two information sources for the class probability. The fit of the respective 
model to the movement behavior observed and the object class predictions by the 
NN classifier. The former is a problem that is studied in the literature in the field of 
multiple model approaches. The idea is to have a set of possible models, and each 
of them is fed by the measurements, i.e., the detected object positions. In every step, 
it is evaluated with a probability score of how well each model fits the perception. 
We intend to implement the individual model tracking with Kalman filters following 
Sect. 2.2. Therefore, the bicycle model is implemented via an EKF and the pedestrian 
model via a two-dimensional constant velocity Kalman filter. The interacting multiple 
model (IMM) [ 15, 24] approach is popular, especially together with Kalman filters. 
It shows a robust behavior with respect to model mismatching [ 49]. In addition to 
the individual model states, the IMM holds a common mixed state and covariance 
estimate that form the state of the IMM model. We name the state estimates at a 
given point of time for the bicycle and the pedestrian model .xb and. xp, respectively. 
Every model is assigned a model probability .μb and .μp. The IMM state estimate is 
given by 

.xIMM := xbμb + xpμp. (2) 

The covariance .PIMM is deduced analogously. To perform the prediction step of the 
IMM, mixed states .x̂ j := xbμb| j + xpμp| j are calculated for every model . j with 
.μi | j := 1

ψ j ρ
i, jμi being the conditional model probabilities for model . i assuming 

. j , .ψ j being a normalization factor, and .ρi, j being the respective entry in the state 
switching matrix . ρ. The state switching matrix adds to the stability of the IMM. 
Initially, the probabilities of staying in a state or switching states are initialized with 
.0.5. With the growing age of the track, the probabilities of staying in a state iteratively
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grow. At every prediction step, the mixed model states .x̂b and .x̂ p are propagated 
together with the covariances as new states to the individual models. The prediction 
step is performed based on the propagated states in the way defined by the individual 
models to gain .x̃b and . x̃ p. The update step is performed on the individual models 
given the incoming measurements, i.e., person or cyclist detections. The residuals. rb
and .rp given by the differences of the measurements to the predicted model states 
define the model likelihoods.λb and.λp. The likelihoods are the log of the probability 
density function of the zero averaged normal distribution with the covariance given 
by the innovation covariance matrices of the Kalman filters of model . b and . p. The  
likelihoods are used to update the model probabilities by 

. [μb, μp] = c · [λb, λp]
c[λb, λp]T with c := [μb, μp]ρ

and ‘. ·’ denoting a point-wise product. The IMM state .xIMM can be calculated again 
following formula (2). One adaptation has to be made with respect to the standard 
IMM algorithm described so far. The state spaces of the bicycle and the person 
model differ. The state space of the IMM is the union of the individual state spaces, 
thus .[x, ẋ, y, ẏ, γ, γ̇ , v]. To make the IMM state and covariance compatible with 
the individual model ones in cases of propagation and update, the individual model 
states have to be lifted to the IMM model state space in such cases following [ 63]. 

The standalone IMM tracker is able to classify pedestrians in 38 scenarios with 
a precision of .0.914 by its inherent model probabilities. Nevertheless, if a cyclist is 
waiting at traffic lights for example, the bicycle model is unstable and does not fit the 
behavior very well due to small rapid movements in the process of impatient waiting 
for example. In the regular movements detected in our scenarios, cyclists did not 
follow the bicycle model enough for the IMM to classify it. The average precision 
in 46 scenarios with moving cyclists is 0.335. In comparison to a pedestrian, a 
cyclist is still classifiable on average, as a true cyclist track holds from a frame-wise 
perspective more cyclist classifications than a pedestrian track. Still, for a standalone 
classification, one would expect more from a classifier. The reason might be the 
tracking of the head of the cyclist that we perform. Nevertheless, by taking into 
account the detected class labels as well, the classification can be improved. The 
relative amount of assigned bike detections measured by IoU with a person detection 
as described in Sect. 2.1.1 with respect to the age of the track provides a sufficient 
feature. The classification precision is .0.970 for the pedestrian scenarios and . 0.969
for the cyclist ones. 

The IMM tracker extends our setup by the functionality to track two classes of 
VRUs simultaneously without having to decide at the level of the object detector 
output which measurement is assigned to what kind of tracker. In the case of the 
viewing angle dependent bicycle detection described in Sect. 2.1.1, the cyclist detec-
tions are unreliable. Therefore, a standalone cyclist tracker receives only a few cyclist 
measurements. Table 4 depicts the tracking performance averaged over the 51 cyclist 
scenarios already evaluated in Sect. 2.1.1 comparing the bicycle model taking only 
cyclist detections into account with the IMM approach based on both pedestrian and
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Table 4 Comparison of cyclist tracking based on a bicycle model taking only cyclist detections 
into account with IMM tracking taking pedestrian and cyclist detections into account 

Tracking algorithm Average MOTP Average MOTA 

Bicycle model .0.155 . 0.325

IMM .0.076 . 0.976

cyclist detections but classifying a cyclist. The performance measures MOTP and 
MOTA are standard tracking metrics [ 4] measuring the precision and accuracy of 
the given track, respectively. Due to the small MOTA score, one can induce that the 
bicycle model is far less capable of tracking the object at all. This results from the 
missing detections. Because of the lower MOTP value, the IMM does not only cover 
the object better but is additionally capable of giving a more precise estimate of the 
location due to the mixed-in pedestrian component. 

2.4 Cooperative Context Determination 

We have already mentioned the relevance of context in the field of object detection. 
Moreover, we have shown that cooperation in detection and tracking can overcome 
the limitations of singular sensor sources and extend the tracking ability. The sources 
of context information can be various such as its types. In Sect. 2.1, the context 
information is based on external ground truth information that is able to be manually 
determined as the data is relatively small and the scenery is fixed. This is not possible 
in general. Therefore, in this section, we want to take a look at how we can extend 
the generation of context information and gather it in a cooperative way to aim for 
more reliability and better coverage. 

2.4.1 Cooperative Semantic Maps 

A straightforward idea that comes to mind when thinking about how to extend the 
available information with some extra knowledge is to use maps, more so maps that 
are enriched with additional annotations. We call this semantic maps. Especially in 
the field of prediction and motion planning, maps can help to avoid invalid impossible 
paths. This will be discussed in the following in more detail, especially in Sect. 3.2.2. 
But also the viewing angle dependent object detection evaluation Sect. 2.1.1 shows 
that knowledge of bike lanes with respect to the camera mounting positions and 
orientations contributes to a more accurate assessment of the expected detection 
performance. 

We use a local map provided by the open street map (OSM) [ 48] organization to 
gather static map information. The amount of information and the accuracy varies 
depending on the contributions to the map pool by the community. In our case
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houses and streets are contained, cf. Fig. 8a. Considering additional annotations, high-
definition maps hold precise and excessive information. Nevertheless, it is expensive 
to capture HD maps and thus they are only available in certain areas. To extend our 
initial maps, we included information about sidewalks (yellow) and parking slots 
(brown) in the map visible in Fig. 8b. Whereas the bare OSM map can be retrieved 
automatically, the extensions are made with human interaction. Still, it is expected 
that maps like Fig. 8b are available in close future and even already are in many 
locations. Another way to gain maps is to use sensor information. Using LiDAR point 
clouds and image-based segmentation provided by a stereo camera both mounted on 
our research vehicle, map Fig. 8c was created. There is more detail to it in Sect. 3.2.2. 
It is created and fused in multiple capturing drives. The output has the advantage that 
it can be captured automatically and can contain all the information the segmentation 
classifies. The disadvantage lies in a limited field of view and the dependency on the 
accuracy of the ego-positioning ability of the vehicle and the classification together 

Fig. 8 Semantic map fused from sensor information with enriched OSM maps
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with the association to the LiDAR point cloud. The latter can have serious errors due 
to perspective issues. Moreover, it is difficult to create smooth and convex solutions. 
For example, in Fig. 8c, the holes at the edges of the pavement are visible. Therefore, 
it is beneficial to fuse the two information sources. Figure 8d shows the result. The 
houses are complete and the edges of the pavement are sharper. The benefit of such a 
semantic map for movement prediction is shown in Sect. 3.2.2 and the fusion benefits 
the accuracy in a straightforward way. 

2.4.2 Cooperative Weather, Road, and Lighting Conditions 

In Sect. 2.1.2 we show the effect the brightness of the daylight has on the detection 
rate of objects. We extend this context information to weather and conditions. The 
assumption is that not only the task of perception but also the behavior of traffic 
participants are affected, for example, by heavy rain or icy roads. We train our models 
to detect objects and predict their behavior under the assumption that they act the same 
way we have seen during training under similar conditions. It is crucial that these 
conditions have been met in the training phase. Otherwise, unpredictable behavior is 
the consequence. To support the description of conditions, context information might 
be useful. In this section, we describe what kind of context information we thought 
of being interesting and how we cooperatively detect it. As already mentioned, it was 
not possible to conduct enough field studies to evaluate in a statistically significant 
way the influence of the specific context types on the performance of our algorithms. 
This is one topic of the current project KI Data Tooling [ 33] the partners of this 
project also contribute to. 

Table 5 lists the types of context and conditions we considered with the expected, 
i.e., labeled, values. Not all of them are contained in the dataset described in Sect. 1. 
Moreover, the list is not comprehensive and extended in the context of KI Data 
Tooling. As already mentioned in the evaluation in Sect. 2.1.2, the times of day 
‘daytime’ and ‘dawn_dusk’ can be found in the research intersection dataset. To be 
able to detect the context types automatically, we trained a model for every type 
based on a ResNet-50V2-architecture [ 30]. The challenging parts are to build a good 
training dataset and to conduct consistent labeling. Without further knowledge, for 
example, it is not easy for a human spectator to detect, e.g., rain in images. Neverthe-
less, we labeled 28563 single images manually by ourselves. The images originate 

Table 5 Types of context with the sets of possible values 

Context type Values 

Precipitation Rain, snow, nothing 

Road Dry, wet, slushy, snowy, indistinguishable 

Time_of_day Daytime, dawn_dusk, night, indistinguishable 

Illumination Natural_standard, sunglare, artificial, dark
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Table 6 Number of true context detections on images of 50 scenes from the research vehicle, the 
left and right intersection cameras, and a fused result 

Data source Illumination Time_of_day Precipitation Road 

Left camera 29 39 36 41 

Right camera 48 16 25 – 

Vehicle 13 25 41 36 

Fused 34 26 38 41 

from our own dataset, the University of Passau Weather in Autonomous Robotic 
Driving (UPWARD) dataset containing 15566 samples and from the DENSE See-
ingThroughFog dataset [ 13] providing another 12997 samples. We train and vali-
date on 23028 samples (12630 UPWARD, 10398 DENSE) and test on 5535 images 
(2936 UPWARD, 2599 DENSE). To address the heavy class imbalance, we apply 
undersampling. This necessitates independent training of a separate model for each 
attribute. 

Although the context classes are not all contained in the 50 scenarios used in 
Sect. 2.1—one scenario does not contain vehicle data and is therefore removed—we 
want to show the performance of the context detection models on them, because 
due to the setup we can evaluate the benefit of cooperation. We use the two cameras 
mounted at the research intersection and the camera mounted in the research vehicle 
as sensors. The mounting angle of the right intersection camera is such that the 
reflections of the street give, in any case, ‘wet’ due to the road context. This is due 
to the fact that the training data is gathered from lower-mounted cameras. The right 
camera does not contribute to a fused result as well. 

The evaluation results are shown in Table 6 by the number of correctly classified 
scenarios. To reduce the labeling effort, one ground truth label was created for every 
scenario. This might not be very accurate in case of illumination for example as sun 
glare can be limited to a short time span and the rest of the scenario is not affected. 
This is also the reason why the vehicle performs much worse than the static cameras 
in the illumination context. The left camera is mounted in a way that allows a good 
detection performance with respect to the time_of_day. Precipitation is detected best 
by the vehicle. 

Overall, we discovered two major takeaways throughout the process of coopera-
tive context determination. Firstly, it is difficult to determine consistent labels for the 
specified classes and to detect them properly as a human spectator. The granularity 
of the labeling is also a factor that has to be covered in more detail. Secondly, the 
fused result does not always give the top result but does in almost every case exceed 
the vehicle’s performance capabilities. For a single car equipped with a camera, it is 
not possible, at least at the state of our training data, to detect the defined classes of 
context with an acceptable rate. Additional information sources are necessary.
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Fig. 9 Schematic of the two-stage cyclist intention detection and trajectory forecasting model [ 5] 

3 Intention Detection 

In this section, we describe our work in the field of VRU intention detection. The 
goal of intention detection is to create a basis for maneuver planning algorithms to 
be able to interact with VRUs safely. Therefore, we have to make a forecast about 
the VRUs’ future trajectory, including uncertainties. The main focus of our project 
is on cooperative intention detection. In the first step, we investigate methods for 
intention detection in a non-cooperative way using different sensor modalities and 
analyze their strengths and weaknesses. These investigations are described in this 
section. We then select suitable methods for use in a cooperative manner and explore 
how much improvement can be achieved through cooperation. The investigations 
regarding cooperative intention detection are described in the next section. 

We define intention detection as a two-stage process comprised of basic movement 
detection and trajectory forecasting. A schematic of the process is depicted in Fig. 9. 

The first stage is basic movement detection to identify the VRUs’ current state 
of motion, e.g., waiting or starting. As the results from basic movement detection 
alone do not allow to make a statement about the future VRU positions, the state 
estimations are used as an intermediate result within the intention detection process. 
Our goal is to demonstrate that the state estimations can help to improve the trajectory 
forecast results. Furthermore, we show that basic movement detection results can be 
significantly improved by incorporating video and pose information into the process. 
Additionally, we investigate using data from smart devices worn by VRUs as a 
basis for basic movement detection. Our methods for basic movement detection are 
described in Sect. 3.1. 

The second stage of the intention detection process is trajectory forecast, which 
generates estimates of future VRU positions. The forecasted trajectories are the out-
put of the intention detection process and form the basis for maneuver planning in 
automated vehicles. One of our goals is to include video information and basic move-
ment detections in the forecasting process. Secondly, we aim to generate probabilistic 
trajectory forecasts to quantify the uncertainties of our estimates. To demonstrate the 
applicability of our methods, we combine our probabilistic forecasts with a maneuver 
planning method. Trajectory forecasting is described in Sect. 3.2.
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3.1 Basic Movement Detection 

Basic movement detection of VRUs has become an active field of research over the 
past decade. While many existing methods focus on specific scenarios or movement 
states often placed in a lab environment with ideal conditions [ 32, 52], we aim 
to demonstrate heuristic approaches covering all possible scenarios and states. We 
investigate using different sensor sources, i.e., stationary cameras mounted at an 
intersection, a stereo camera from within a moving vehicle, and smart devices worn 
by the VRUs themselves (Sect. 1). Furthermore, we examine different representations 
of the VRU sensor data in the form of trajectories, human poses, or video sequences. 
In this section, we describe different methods for basic movement detection. In 
Sect. 3.2, we discuss methods to incorporate basic movement detections into the 
forecast process. 

Basic Movement Detection Using Stationary Cameras 

The use of stationary cameras for intention detection leads to multiple advantages. 
Compared to sensors in a moving vehicle, stationary cameras can be mounted at 
higher positions and at an angle to each other to resolve occlusions and to reduce 
uncertainties of single sensors. Stationary cameras also have the advantage that the 
environment is known and the background is static. Furthermore, since stationary 
systems are less limited to space and power consumption requirements compared 
to systems inside vehicles, more powerful systems with regard to their computing 
capabilities can be used. We use these advantages by incorporating video information 
into our basic movement detection. 

Many existing methods use a single past VRU trajectory as input data for basic 
movement detection [ 1, 27]. However, compared to the original video feed from the 
sensors, a lot of information about the VRU behavior is lost, e.g., movements of the 
upper body may signalize a starting motion, or the VRU’s gaze direction can indicate 
a turning motion. 

An approach to preserve information about the VRU’s body gestures uses motion 
history images (MHI) [ 35]. To generate the MHI, the binarized silhouette of the 
VRU is extracted from every image. The silhouettes from the current image and past 
images of a certain observation period are then stacked into a single image, where 
the most recent silhouette has the value 1.0, and older silhouettes receive smaller 
values between 1.0 and 0.0 with regards to their timestamp (Fig. 10). This creates an 
image that encodes the past movements of the VRU, which can now be used with a 
simple image classifier to perform basic movement detection. However, the method 
strongly depends on the quality of extracted silhouettes. Also, a lot of information is 
lost through the binarization of the images. 

To increase the level of information, more recent approaches utilize human pose 
trajectories for basic movement detection. Instead of using a single trajectory from 
an anchor point, such as the center of the VRU’s head, multiple trajectories of the
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... 

Fig. 10 Exemplary MHI generation of a starting cyclist 

VRU Detection Sequence Generation 

Fig. 11 Extraction of a video sequence from the original video feed from camera 1. In the VRU 
detection step, every VRU is detected, and a region of interest is created (left). In the second step, 
images (right, top) and optical (right, bottom) are stacked to sequences that are used as input for 
our model 

VRU’s joints are used. This way, important features such as distinct body poses or 
leg movements are preserved while greatly reducing the feature size compared to the 
original video stream. One disadvantage of the method is that it depends strongly 
on the quality of the pose detection. While larger joints can be detected relatively 
reliably, detecting smaller features, such as the eyes, which can be used to extract the 
gaze direction, proves difficult. Furthermore, information about the surroundings, 
such as road markings or obstacles in the VRU’s way, is lost. 

Therefore, in our approach to basic movement detection with stationary cameras, 
we directly utilize video sequences for basic movement detection. Figure 11 describes 
the extraction of video sequences from the original video feed. In the first step, the 
VRU is detected in the current image. The detection window is used to create a region 
of interest that covers the near vicinity of the VRU, which is used to extract images 
from the current time step and past time steps within the observation period. In our 
case, the past observation horizon covers one second. The extracted images are then 
stacked into a short video of the VRU moving inside the region of interest, which 
is used as input for a three-dimensional convolutional neural network (3D-CNN). 
In a preliminary investigation, where we focused on detecting starting motions of 
a cyclist, we used these image sequences as the only input for the network [ 10].
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However, more recent studies in the field of action recognition aside from intention 
detection in road traffic have shown that the use of an optical flow sequence in 
addition to the image sequence leads to significant improvements with regard to 
detection accuracy [ 18]. Therefore, we additionally use the optical flow sequence for 
our investigations. Furthermore, to reduce negative effects caused by occlusions, our 
movement detection is performed using inputs from both cameras of our wide-angle 
stereo-camera system described in Sect. 1. We investigate the use of single cameras 
individually, both cameras simultaneously, and the use of only image sequences or 
optical flow sequences, respectively. Since the past VRU trajectory is known, we also 
examine its additional use as input data. For our investigations of stationary systems, 
we use the dataset created with the wide-angle stereo-camera system described in 
Sect. 1. Our methods are compared to a single trajectory approach, as well as an MHI-
based approach. The feature extraction from the video sequences is performed using 
the proposed network architecture from [ 18]. To evaluate the results of individual 
time steps, we use standard metrics used in classification. To evaluate the detection 
results over time, we use the segment-based approach proposed in [ 7, 22], allowing 
us to rate the detection method in terms of how often a motion state is wrongfully 
detected over time. We see this as an important metric since wrong detections during 
a motion state can lead to a false trigger of an emergency brake assistant of an 
automated vehicle. A detailed description of the used algorithms and the conducted 
experiments can be found in [ 71]. 

Our experiments regarding the user input data show that the best results are 
achieved by using all inputs, i.e., image and optical flow sequences from both cam-
eras and the past trajectory. However, only slightly worse results are achieved if we 
omit the trajectory input. If we compare the use of input data from both cameras to 
only one camera, we can see a significant improvement by adding the second cam-
era. This is partly due to the resolvement of occlusion, but we also found that some 
motion states are better detected using a certain camera angle. For example, starting 
motions are better detected when the VRU is viewed from the side. We compared 
our motion sequence (MS) based method to the MHI and trajectory-based methods 
and found that our approach outperforms both in terms of frame-based classification 
scores and segment scores. The inference time of the algorithm using an NVIDIA 
RTX 2080 Ti GPU is about 33 ms and can therefore be used in a real-time system. 
The detailed results of our experiments can be found in [ 64, 71]. While our results 
show that our method outperforms existing approaches, we cannot make a statement 
about whether or not the improvements transfer to the use in trajectory forecasting 
methods. This aspect will be discussed in Sect. 3.2, where we investigate the use of 
basic movement detections to improve trajectory forecasts. 

Basic Movement Detection from a Moving Vehicle 

When we compare stationary intention detection to intention detection from within a 
moving vehicle, the requirements for the algorithms change significantly. Since the 
sensors are usually mounted behind the windshield of the car or behind the radia-
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tor grill, VRUs are often occluded by other vehicles or objects at the roadside. The 
consequence is that we often have a significantly shorter observation period to esti-
mate future VRU behavior. Compared to stationary cameras, we do not know the 
surroundings of the cameras, and we have to deal with changing backgrounds. Fur-
thermore, the vehicle cannot accommodate large PCs, and the power consumption 
is limited. Due to these requirements, we investigate the use of human pose trajec-
tories for intention detection from within a moving vehicle and compare them to 
single trajectory approaches. The sparsity of the representation allows us to design 
lightweight models that allow for real-time capability despite limited resources. At 
the same time, we maintain a high level of information about the VRU behavior by 
capturing the trajectories of the body extremities. 

In the first step, we evaluate the quality of human pose estimation from within a 
moving vehicle. While some datasets regarding 2D pose estimation exist, e.g., [ 2], 
they are not designed for research in traffic environments. The amount of data with 
annotated 3D poses are quite limited. Typically, they are created in lab environments, 
e.g., [ 31], and do not include any cyclists. As a consequence, the recorded scenarios 
lack realism with regard to the behavior of the recorded people. Furthermore, there 
are too many dissimilarities compared to real-world traffic scenarios, such as the 
surroundings and occlusions of the VRUs. Therefore, we created a dataset recorded 
in real traffic. The human poses are labeled manually, and we extracted 2D and 3D 
poses. For the generation of reasonably good ground truth for the 3D poses, we use 
our wide-angle stereo-camera system at the research intersection. Using this dataset, 
we evaluate two methods for human pose estimation. The first method detects 2D 
poses in an image. The second method uses 3D lifting to estimate 3D poses, which 
we transfer to the world coordinate system using a stereo camera. Our investigations 
show that both methods perform well and can be used as a basis for vehicle-based 
intention detection. The detailed results can be found in [ 38]. 

Based on these results, we conduct experiments regarding the applicability of 
human pose trajectories for vehicle-based basic movement detection. In a prelimi-
nary investigation, we limit our traffic scenario to starting cyclists. An example scene 
is visualized in Fig. 12. The goal is to detect starting motions as early as possible 
while maintaining high detection scores. The method is compared to a single trajec-
tory approach. The focus of the evaluation is on comparing the two approaches using 
different observation periods. As mentioned above, from the perspective of a mov-
ing vehicle, VRUs are often occluded, highlighting the importance of a method that 
functions well for small observation times. In our experiments, we evaluate observa-
tion periods between 0.12 and 1.0 s. Both methods use the same model architectures, 
i.e., a fully connected network (FCN). Only the inputs differ, where the input of the 
single trajectory model is the past head trajectory, and the pose-based model receives 
all joint trajectories. We find that both models show similar performance for input 
periods of 1.0 s. The results of the single trajectory model strongly deteriorate with 
smaller observation periods, while the pose-based model maintained significantly 
higher scores for all investigated periods. The investigations regarding observation 
periods for starting cyclists are published in [ 39].
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Fig. 12 Example scene of a starting cyclist recorded from within a moving vehicle. On the left, 
two images from the scene are visualized, showing waiting in the first image and starting in the 
second. The starting motion is clearly visible in the poses extracted from the images shown on the 
right. The cyclist’s upper body is bent forward, and uses his foot to push off the ground, which is a 
distinct motion indicating starting process 

Building on our findings on the observation period, we develop a holistic approach 
to pose-based basic movement detection for pedestrians and cyclists. Compared to 
the previous method, our investigation is not limited to a single scenario but includes 
all possibly occurring motion states. Furthermore, we switch our model architecture 
from an FCN to a recurrent neural network (RNN). The advantage is that RNNs are 
specifically designed to model time series and allow for variable input lengths. Our 
method is therefore able to estimate motion states despite short observation periods 
and successively improves with larger periods. As in the previous investigation, we 
compare our method to a single trajectory approach, where the pose-based method 
outperforms the single trajectory approach, especially for short observation periods. 
The evaluation can be found in [ 40]. 

Basic Movement Detection Using Smart Devices 

In the previous sections, we described stationary and vehicle-based basic movement 
detection, where we used camera sensors in both cases. While both methods have 
different advantages and disadvantages, they are both error-prone with regard to 
the shortcomings of camera sensors. Camera-based approaches depend on lighting 
and weather conditions and are affected by occlusions. In contrast, these conditions
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do not affect smart devices worn by VRUs themselves. Therefore, they have great 
potential to serve as additional sensor sources for intention detection. 

In [ 6, 9, 10, 12, 58], we investigate how one can use the inertial sensors of smart 
devices for basic movement detection. The approaches presented in the different 
publications are based on human activity recognition involving a machine learn-
ing classifier at its core [ 17]. A schematic of the six-step detection process using 
accelerometer and gyroscope data is shown in Fig. 13. First, the inertial sensor mea-
surements are preprocessed (i.e., the data is transformed into a rotationally invariant 
coordinate system), then the signal is windowed, and features are extracted based 
on the windowed data. Subsequently, feature selection is performed to filter features 
relevant for detection. These filtered features are then used for detection. For this 
purpose, the detection problem is modeled as a classification problem. The classi-
fier (e.g., an extreme gradient boosting classifier) is trained with labeled example 
data. Finally, a probability calibration of the detection probabilities output by the 
classifier is performed, and a temporal filter filters out any outliers. More details 
about the approach can be found in [ 7, 10, 12]. Regarding the early detection of 
cyclists’ starting movements, we showed that our approach reaches an F. 1 score of 
67% within 0.33 s after the first movement of the bicycle wheel. Further, investiga-
tions concerning the influence of the device wearing location show that for devices 
worn in the trouser pocket, the detector has fewer false detections and detects starting 
movements faster on average. Moreover, we found that we can improve the results 
by training distinct classifiers for different wearing locations. In this case, we reach 
an F. 1 score of 94% with a mean detection time of 0.34 s for the device worn in the 
trouser pocket. 

Based on these findings, we investigate an extended smart-devices-based approach 
to detect longitudinal (i.e., waiting, starting, moving, and stopping) and lateral (turn-
ing left, going straight, and turning right) basic movements. Smart devices can be used 
very well for the detection of longitudinal basic movements; our approach achieves 
a macro F. 1 score of 72% with an average detection time of only 0.36 s, i.e., on aver-
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Fig. 13 Process for basic movement detection using smart devices consisting of six stages: Prepro-
cessing, segmentation, feature extraction, feature selection, classification, as well as post-processing 
and probability calibration [ 12]
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age a movement change is detected within 0.36 s. Curves or changes of direction 
of movement (i.e., lateral basic movements) can be detected even more reliably (F. 1
score of 82%) and equally fast (mean detection time of 0.38 s). A detailed evaluation 
and further results can be found in [ 7]. In [ 16], we showed the successful transfer 
of our smart-device-based movement detection approach to the early anticipation of 
pedestrians’ movements. Yet in [ 11], we moved from movement transition detection 
to short-term cyclist’s movement transition forecasting. 

3.2 Trajectory Forecasting 

The goal of trajectory forecasting is to estimate future VRU positions. The forecasts 
build the basis for automated vehicles to safely interact with VRUs, where the fore-
cast horizon, i.e., the time span for which the positions are estimated, depends on the 
application. In our case, the goal is to perform a short-time forecast for a horizon of 
2.5 s, which is often named a relevant horizon to perform emergency brake maneu-
vers. To perform forecasting, we consider the VRU behavior we extract from video 
sequences. We avoid incorporating information about the traffic situation, such as 
traffic lights since the VRUs’ disregard of such can lead to potentially dangerous 
situations. In the next section, we describe our methods for deterministic trajectory 
forecasting, where the goal is to forecast the VRU positions in the form of points. 
Afterward, we describe our approaches to add uncertainty estimation to our methods. 

3.2.1 Deterministic Trajectory Forecasting 

To perform deterministic trajectory forecasts, we utilize similar methods to the ones 
used for basic movement detection described in Sect. 3.1. While the same network 
architectures can be used, the problem is modeled as regression. 

Deterministic Trajectory Forecasting Using Stationary Cameras 

We investigated the incorporation of video information for trajectory forecasting 
using stationary cameras. We used the same representation as we used for basic 
movement detection, i.e., the image and optical flow sequences from both cameras 
and the past trajectories. We investigated the use of different inputs and compared the 
results to a method solely based on the past trajectory. In contrast to the results from 
basic movement detection, the results achieved by incorporating the optical flow 
sequences from both cameras and the past trajectory outperform the results achieved 
using all inputs. We attribute this to the fact that the optical flow sequences mainly 
contain information about the movement of the VRU, and excess information, such 
as the image background, is removed. The extraction of the optical flow is therefore 
comparable to an attention mechanism [ 62]. The positional accuracy is improved by
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16.9% using the optical flow sequence compared to 8.2% when all inputs are used. 
We found that compared to the trajectory-based method, turning motions are better 
distinguished from straight motions due to a distinct head movement of the VRU 
towards the direction visible in the optical flow sequence. The detailed results of our 
investigations can be found in [ 64, 72]. 

Deterministic Trajectory Forecasting from a Moving Vehicle 

From within a moving vehicle, we utilize 3D poses for trajectory forecast similar to 
the basic movement detection described in the previous section. In our evaluation, 
we perform trajectory forecasts for both pedestrians and cyclists and compare the 
results to a single trajectory method [ 36, 42]. The focus of our investigation is again 
on the length of the observation period, where periods between 0.2 and 1.0 s are 
considered. Furthermore, we compare two different variants of the poses. One variant 
uses joints of the entire body. In the second variant, the arms, i.e., the elbows and 
wrists, are not used as input. We hypothesize that the main features to forecast the 
future trajectory are the orientation of the VRU and the head and leg motions. We 
found that in the case of pedestrians and cyclists, the forecast accuracy improved by 
up to 6.93% for pedestrians, and 17.9% for cyclists by using poses. In both cases, 
no significant improvements were achieved by using the complete poses compared 
to the armless poses, demonstrating that the arm movements do not add additional 
information about the VRUs’ future positions. While especially in the case of cyclists, 
this may seem counterintuitive since they are supposed to indicate turning motions 
by hand signals, we found that turns are seldom signalized. However, cyclists often 
perform a shoulder check before turning, demonstrating the importance of tracking 
head movements. In [ 43], we use RNNs for a pose-based trajectory forecasting of 
pedestrians and cyclists based on observation periods varying between 0.04 and 1 s. 
The use of 3D poses improves forecasting accuracy, especially for short observation 
periods, compared to a single trajectory method. 

As discussed in the previous section, basic movement detection aims to add addi-
tional information to the trajectory forecast process. Therefore, we developed a two-
stage approach to incorporate basic movement detections into the forecasting and 
compared the results to a single-stage approach [ 27, 64]. Instead of a single forecast 
model, we train specialized models for different VRU movements, such as starting 
or waiting. The forecast is generated by performing a forecast for every motion state 
and weighting the results with the probabilities estimated by the basic movement 
detection. The methods for basic movement detection, as well as trajectory fore-
cast, are interchangeable. In our evaluation, we compare all possible combinations 
of the single trajectory and video-based methods. We found that forecast accuracy 
can be significantly improved if basic movement detection adds new information to 
the forecast. No improvements were achieved when the basic movement detection 
does not introduce new information to the model. Compared to the best video-based 
single-stage model, the best two-stage model did not improve the accuracy. Leading 
to the conclusion that in the case of deterministic trajectory forecast, incorporation
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of basic movement detection is only helpful if new information is introduced by the 
detection method, e.g., by cooperation with smart devices. While this holds for deter-
ministic forecasts, probabilistic forecasts are a different matter, which we discuss in 
the next section. 

Deterministic Trajectory Forecasting Using Smart Devices 

Furthermore, we investigate the use of smart devices for trajectory forecasting. For 
this work, we focus on a single wearing position and consider a Samsung Galaxy 
S6 device placed in the trouser pocket. In this investigation, we do not use the two-
stage intention detection process consisting of basic movement detection followed by 
trajectory forecasting. Instead, we focus on the realization of a trajectory forecasting 
module using the smart device sensors and examine the potential of this approach 
in principle. Since the GNSS is too inaccurate, we only forecast relative positions 
in the ego-frame. In doing so, we do not need absolute positioning information for 
forecasting. If we want to use the issued forecast with respect to a global coordinate 
system, we merely have to transform it back from the ego-frame. A possible use 
case would be, for example, that the smartphone issues a trajectory forecast in the 
ego-frame and transmits this forecast to an oncoming vehicle. The vehicle sees the 
cyclist and can determine the cyclist’s position. This vehicle can now use the cyclist’s 
position to transform the received forecast into a global or its local coordinate system. 
The advantage of forecasting the trajectories in the ego-frame is that the trajectory 
forecast is independent of the possible large absolute positioning error of the GNSS 
receiver integrated in the smart device. Furthermore, this approach allows us to 
only predict trajectories based on the inertial sensors. In the following case study, 
we investigate an approach to cyclist trajectory forecasting using only the smart 
device inertial sensors. We use a neural network for trajectory forecasting [ 57]. 
The forecasting time horizon is 2.5 s, and we have a lead time increment of 40 ms. 
Hence, the neural network has an output dimensionality of 126 (63 .× 2, i.e., one 
for the longitudinal and one for the lateral position). The preprocessing and feature 
extraction of our smart device-based forecasting approach is mostly analogous to 
the approach for basic movement detection, i.e., we use multiple different statistical 
features curated from sliding windows of various sizes as input for the neural network. 
However, the feature selection for trajectory forecasting is more difficult because we 
have not only one output variable but two output variables for each forecasting 
lead time, i.e., 126 in total. Hence, we cannot transfer the feature selection method 
designed for classification tasks, i.e., basic movement detection in a straightforward 
way. To solve this, our approach aims to convert the multivariate regression task into 
a multi-class classification task. Therefore, we first perform clustering in the output 
domain, i.e., in the 126-dimensional target space. We use the cluster assignments to 
discretize the output variables into a set of 100 target classes. In this way, we reduce 
the multivariate regression to a classification task and may apply feature selection 
methods for classification tasks. Note that we only use this modeling for feature 
selection. We apply two feature selection approaches, a filter based on the chi-squared
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Fig. 14 The table shows the ASAEE in m/s of the respective motion types. We consider two 
different smart device trajectory forecasting models: One model using all features and a second 
using only the features selected by the feature selection procedure 

statistics and a model-based approach using a gradient-boosting classifier. We union 
the features selected by both methods. As before, the intuition about combining two 
different feature selection methods is to get a diverse set of features. Subsequently, 
we train a neural network with these features. For this purpose, we first standardize 
the features. We optimize the neural network on the ASAEE [ 26] using the Adam 
optimizer [ 34]. The hyperparameters of the neural network, i.e., the learning rate, 
the number of hidden layers, the number of neurons in the hidden layers, and the 
number of epochs for training are determined using Bayesian optimization [ 61]. We 
use exponential linear units (ELU) as the activation function [ 20]. 

The results of our investigation are presented in Fig. 14. We compare the feature 
selection approach to the one where we do not reduce the number of features. As we 
can see, the model that uses all features has better ASAEE scores across all move-
ment types. Additionally, we compared the smart device-based model, which uses all 
features, to infrastructure- and vehicle-based trajectory forecasting approaches. We 
observed that the smart device-based approach has worse ASAEE scores for almost 
all movement types than vehicle- or infrastructure-based approaches. However, there 
are a few exceptions, e.g., the ASAEE for starting movements is lower. Furthermore, 
the forecasting errors for turning, i.e., right and left, are comparable to those of the 
infrastructure-based approach. The smart device-based approach performs here bet-
ter than the vehicle-based approach. We observe a similar result for moving cyclists. 
Besides, we also observe that the variance or interquartile range (IQR) is usually 
noticeably greater for the smart device-based approach with regard to the ASAEE. 
This applies to both directions, i.e., in some cases, the smart device-based approach 
is considerably better but sometimes also notably worse. These results show that 
the smart device-based approach is not yet fully competitive with the vehicle- or 
infrastructure-based approaches. However, the smart device-based approach per-
forms comparably or better in some cases. 

3.2.2 Probabilistic Trajectory Forecasting 

Most existing methods for VRU trajectory forecasting create deterministic forecasts, 
i.e., estimates of the future VRU positions in the form of points (e.g., [ 27, 52]). Since 
these estimations are error-prone, methods to quantify their uncertainties are needed 
to create a basis for maneuver planning methods in automated vehicles. While there 
are few existing approaches to model uncertainties of trajectory forecasts (e.g., [ 1, 
50]), the authors’ focus is on the positional accuracy achieved by their methods.
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Fig. 15 Example for the 
probabilistic forecast of 
cyclist trajectory for time 
steps 0.5 s (purple), 1.5 s 
(purple), and 2.5 s (purple) 
into to future. The inner 
regions (solid lines) describe 
that the cyclist will reside 
with a probability of 68% 
within the region, and the 
outer regions (dashed lines) 
with 95%, respectively. The 
red line describes the 
cyclist’s head trajectory over 
the past second 

The estimated uncertainties are treated as byproducts, and no further evaluations are 
performed to rate the quality of the estimates. However, to use uncertainty estimates 
as the basis for safe maneuver planning, it is crucial to validate that the chosen 
methods can create reliable outputs. Furthermore, the estimated uncertainties should 
be kept as small as possible. 

To achieve these goals, we perform probabilistic forecasts, where instead of single 
point estimates, we estimate confidence regions for future time steps. The regions 
describe an area where the VRU will reside within with a certain probability (see 
Fig. 15). We propose the use of three different approaches based on widely known 
techniques for uncertainty modeling. The first approach forecasts the parameters of 
probability distributions from which confidence regions can be created. The second 
approach extends quantile regression (QR) to multivariate targets, called quantile 
surfaces (QS). Both approaches are implemented using stationary cameras. The third 
approach is used within a moving vehicle and is based on occupancy grid maps. 
Furthermore, we compare standard metrics and propose novel approaches to rate 
the quality of our uncertainty estimates. Finally, we combine our approaches with a 
method for maneuver planning to demonstrate their applicability in the real world. 

Probabilistic Trajectory Forecasting Using Stationary Cameras 

A widely used method to add uncertainty quantification to the output of neural net-
works is to estimate the parameters of a probability distribution. Usually, Gaussian 
distributions are used. In the field of VRU trajectory forecasts, this method has been 
used to forecast bivariate Gaussian distributions in earlier work (e.g., [ 1, 50]). How-
ever, the focus of these articles is on the positional accuracy of the forecasts, i. e., only 
the means of the distributions are used for evaluation and no statements about the
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Fig. 16 Mulit-modal forecasting pipeline: a Motion state detection with example probabilities 
for states move, left, and  right, with high probabilities for move and left. b Individual Gaussian 
forecasts for the same states for forecast horizons 0.5, 1.5, and 2.5 s. c Gaussian mixture generated 
by weighting Gaussian forecasts with motion state probabilities 

quality of the uncertainty estimates are made. Therefore, we created a method that 
forecasts cyclist trajectories in the form of bivariate Gaussian distributions and eval-
uated the confidence regions generated from the estimated distributions with regards 
to their reliability [ 69]. We consider the regions to be reliable if the frequency with 
which the real position lies within the estimated region equals the probability of 
the region. For example, if we look at the 80% confidence region, the real position 
should fall into the region in 80% of all times. Our evaluations using our real-world 
dataset [ 67] show that the method is not able to create reliable outputs. More pre-
cisely, the method produced underconfident probabilities, meaning that the regions’ 
probabilities are smaller than the percentage of real positions within the regions. This 
especially applies to waiting conditions, where an early forecast of the exact starting 
time is not possible, leading to the conclusion that VRU trajectories are inherently 
multimodal and cannot be modeled by a single Gaussian distribution. 

To solve this problem, we developed a two-stage approach to forecast multimodal 
distributions similar to the deterministic approach from the previous section [ 70]. 
The pipeline of our approach is visualized in Fig. 16. The first stage performs basic 
movement detection by creating a probability for every possible VRU motion state 
(e.g., starting or waiting). Simultaneously, a Gaussian distribution is forecasted for 
every motion state using the uni-modal model from [ 69], where we train one special-
ized model for each motion state. In the second stage, the motion state probabilities 
are used to weigh the estimated density function of the specialized models, leading 
to a Gaussian mixture distribution. For detection of the current motion state, we 
investigate the use of the trajectory-based and image-based methods for basic move-
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ment detection described in the previous section [ 68, 71]. Compared to the deter-
ministic two-stage approach, the probabilistic approach has a significant advantage. 
While in the deterministic case, only a weighted mean of the position is created, we 
add multimodality to the probabilistic approach by incorporating basic movements. 
Every estimated mode represents a motion state of the VRU. E.g., Fig. 15 shows an 
example of a cyclist beginning to make a right turn. The basic movement detection 
outputs high probabilities for the motion states moving straight and turning right 
and low probabilities for the remaining states, leading to two dominant modes. Our 
evaluations show that incorporating both detection methods into the probabilistic 
forecasts leads to reliable uncertainty estimates, solving the problem caused by the 
uni-modal approach. As indicated by the results of the basic movement detection, the 
regions estimated using the video-based method achieve a better sharpness than the 
trajectory-based method. The 95% confidence regions estimated by the video-based 
method are on average 14% smaller compared to the trajectory-based method’s esti-
mates, demonstrating that the results from basic movement detection can be applied 
when incorporating basic movement detection into the probabilistic trajectory fore-
cast process. While we evaluated the method using data from the stationary cameras, 
the method can also be applied in a moving vehicle since the method for basic 
movement detection, and the architecture for trajectory forecast are interchangeable. 

Our second method to forecast reliable confidence regions is based on QR. By 
extension of the single-output of QR to multivariate targets, we QS [ 7] serving the 
same purpose as the confidence regions created by the Gaussian mixture approach. 
The method consists of a two-stage model described in Fig. 17. The first stage per-
forms deterministic point forecasting followed by the probabilistic QS estimation 
that uses the point estimate as the center. The method is capable of producing star-
shaped estimates. While the method is based on a uni-modal approach, the star shape 
of the estimated regions allows us to model the uncertainties of our forecasts reliably. 
In contrast to the Gaussian mixtures, the method is not able to estimate multiple sepa-
rate regions for a single probability, possibly leading to larger regions. However, due 
to the two-stage approach, any existing forecasting method that produces determin-
istic outputs can be extended by a probabilistic output without requiring additional 
detection of basic movements. This leads to a much leaner model with no need to 
train specialized models for every motion state, especially eliminating the need for 
time-consuming labeling of motion states. 

Probabilistic Trajectory Forecasting from a Moving Vehicle 

An approach from within a moving vehicle is described in [37]. As in the deterministic 
forecast, the method utilizes 3D poses. Additionally, we incorporate semantic maps to 
represent the surroundings of the VRUs, allowing us to prevent implausible forecasts, 
such as a VRU moving through an obstacle. The maps are created using 3D positions 
from LiDAR in combination with a semantic segmentation performed on images from 
a stereo camera and contain information about static obstacles, such as buildings, 
and dynamic obstacles, such as cars. Our forecast model is described in Fig. 18. The
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Fig. 17 Qunatile surfaces forecasting pipeline: In the first step, the central tendency estimation is 
performed using a classic deterministic forecasting approach. In the second step, we pass the central 
tendencies together with the used input features to the quantile surface estimation, which generates 
the probabilistic outputs for different confidences 

probabilistic forecast is performed in a discrete way in the form of occupancy grids. 
We forecast one grid for every forecast time horizon centered at the current position 
of the respective VRU. Instead of a continuous probability distribution, we predict a 
probability for every cell within the grid. In our evaluation of the discrete method, we 
compare the use of only the head position to the complete pose with and without the 
semantic maps. Furthermore, we compare the discrete method to the single Gaussian 
approach from [ 69]. We compare the reliability, sharpness, and positional accuracy 
of the models. The comparison of poses with the single trajectory approach shows 
that the positional accuracy is improved by 9.7% in the case of the Gaussian approach 
and by 7.2% for the discrete method. In both cases, reliability and sharpness are also 
improved by using poses. While the semantic maps lead to a slight improvement in 
accuracy, improvements are more apparent when evaluating qualitatively, showing 
that fewer forecasts intersect with obstacles. Comparing the Gaussian method to 
the discrete method, we find both have advantages and disadvantages. While the 
Gaussian model overall achieves a better reliability score, only the discrete method 
is able to model certain motion types, e.g., waiting, reliably due to its ability to model 
multimodality.
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Fig. 18 Grid-based discrete probabilistic forecast: The model input consists of the past 3D pose 
trajectory of the VRU. Additionally, we use a semantic map representing the VRU’s surroundings. 
The model outputs grid maps for each forecasted time horizon containing probabilities for every 
grid cell describing the likelihood of the VRU occupying the respective cell at the forecast time 
horizon 

3.2.3 Application in Planning Algorithms for Autonomous Vehicles 

To investigate whether our methods can serve as a basis for maneuver planning 
methods, we conducted a case study regarding an autonomous vehicle overtaking 
a cyclist [ 59] intending to safely overtake the cyclist while maintaining a lateral 
safety distance of at least 1.5 m. We combine our probabilistic methods with a model 
predictive planning (MPP) approach to achieve this goal. We simulate overtaking 
maneuvers based on cyclist trajectories from our real-world dataset leading to two 
different outcomes. Either a successful overtaking maneuver could be performed, or 
the vehicle stays behind the cyclist without overtaking due to larger uncertainties in 
the forecasted regions. While the second behavior is less desirable, it is considered 
safe. The MPP algorithm expects the estimated confidence region to have a convex 
hull in the form of a polygon. Since neither the multimodal nor the QR approach 
output a convex hull, we compare different approximation methods. We choose a 
method where a single rectangle aligned with the VRU’s ego coordinate system per 
forecast horizon is used to approximate the region. The rectangle shape is chosen 
to keep the computational load of the MPP small since every edge adds to the load. 
For safety reasons, the rectangle over-approximates the actual region. Comparing 
the forecast methods showed that both methods can estimate reliable confidence 
regions. The multimodal approach can estimate sharper regions compared to the
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Fig. 19 Planned overtaking maneuver based on the forecasted confidence regions. The rectangles 
starting in the car lane represent the planned car positions. The rectangles on the bike lane are the 
forecasted cyclist regions. Future time steps are color coded so that the depicted boxes correspond 
to the same point in time 

QR approach, which becomes evident, especially for larger forecast horizons. In our 
case study, the most desirable outcome is a successful overtaking of the cyclist. An 
example of a successful overtaking is displayed in Fig. 19. The less desirable yet 
acceptable behavior would be for the vehicle to abort the overtaking maneuver and 
stay behind the cyclist until overtaking is possible. The second case mainly occurred 
for large confidence regions. None of our tests resulted in a collision. Our results 
show that our methods can be used as the basis for interaction between autonomous 
vehicles and VRUs and highlight the importance of reliable and sharp uncertainty 
estimates. 

4 Cooperative Intention Detection 

Up till now, we focused on investigating intention detection using different sensor 
modalities independently. This helped us to gain an understanding of the different 
challenges of individual modalities. The goal of our project however is cooperative 
intention detection. Therefore, the following section describes our methods to com-
bine intention detection from stationary cameras, vehicles, and smart devices into 
one system in order to improve the intention detection results. Before we describe 
our methods for cooperative intention detection, we give a short interim summary 
of what we have learned about the strengths and weaknesses of different sensor 
modalities used independently.
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4.1 Interim Summary of Vehicle, Infrastructure, and Smart 
Device Based Intention Detection 

In the previous section, we covered VRU intention detection methods. We especially 
showed that approaches for intention detection from within a moving vehicle face 
very different challenges than approaches using stationary cameras. 

The process for moving vehicles is especially complicated due to occlusions 
from the viewpoint of the vehicle’s sensors caused by other vehicles or objects 
on the roadside. This is challenging since many times we only have a short time 
frame within which we can observe the VRU’s behavior to estimate future behavior. 
Therefore, the focus of our investigation was on finding appropriate methods that 
allow us to take the short observation period into account, which we achieved by the 
incorporation of human 3D poses into the intention detection process. We were able 
to improve the results for both basic movement detection and trajectory forecast, 
especially for short observation periods. By utilizing recurrent neural networks, we 
were able to consider observation periods of different lengths. 

Compared to vehicle-based intention detection, stationary intention detection has 
many advantages. By mounting cameras at a higher elevation and using multiple 
cameras in a wide-angle stereo-camera system, we were able to resolve most occlu-
sions. Furthermore, we are not as restricted to space and power consumption as we 
are inside a vehicle, allowing us to use a dense representation of the surroundings as 
a basis for our intention detection algorithms. Therefore, we investigated the direct 
incorporation of video sequences into our methods, leading to significant improve-
ments compared to existing methods for basic movement detection. While stationary 
intention detection solves many problems of vehicle-based intention detection, it is 
not feasible to equip every existing road with cameras. However, stationary systems 
can be installed at busy traffic junctions, where many occlusions and most accidents 
with VRU involvement occur. 

Another possibility we investigated is the use of smart device sensors for intention 
detection. Since smart devices are worn by the VRU directly and are not affected by 
occlusion at all. However, compared to camera-based intention detection we achieve 
far less accurate results due to sensor limitations. Therefore, we don’t see smart 
device sensors as a feasible stand-alone solution for intention detection. However, 
we think that a combination of smart devices and vehicle-based intention detection 
can be used to improve the overall results. 

4.2 Cyclists as Additional Sensors 

Nowadays, almost everyone carries smart devices in form of a smartphone, smart-
watch, or similar with them while taking part in traffic. Accordingly, we examine the 
use of smartphones and other wearable devices for the task of intention detection of 
vulnerable road users. These devices are equipped with a great variety of sensors, e.g.,
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inertial measurement units or GNSS receivers. To work mobile, most smartphones 
are permanently online; they share their location or send the accelerometer profile 
to the server of the fitness application provider for further analysis. Essential for this 
are communication technologies such as UMTS, 4G, and 5G or, in the future, 6G, 
which allow us to send and receive large amounts of data within a few milliseconds. 
In 2010 David and Flach [ 21] proposed using smartphones for advanced pedestrian 
protection, i.e., as a sort of wireless safety belt. Many studies are investigating the 
usage of smartphones and other wearables for pedestrians in cooperative intelli-
gent transport systems (C-ITS) [ 60]. However, cyclists have gained little attention. 
In contrast to vision-based approaches, smart devices also enable reliable intention 
detection in cases of occlusions. The position and the detected intentions, e.g., of 
crossing cyclists appearing from an occlusion, can then be communicated between 
approaching traffic participants using modern means of communication (such as 5G, 
V2V). Regarding our work, the utilization of smart devices worn by cyclists for the 
intention detection of vulnerable road users was the focus of our experimentation. 
We investigate various aspects, including smart device-based positioning as well as 
the influence of the wearing location of the smart devices [ 6]. We propose a novel 
basic movement detection approach for robust and yet fast basic movement detec-
tion using the smart device inertial sensors solely [ 12]. We investigate the usage of 
smart devices for cyclist trajectory forecasting [ 7]. Moreover, we propose a novel 
cyclist ad-hoc network involving the usage of multiple cooperating smart devices 
(e.g., smartphone, smartwatch, or sensor-equipped helmets) for intention detection 
at the same time [ 7, 22]. The main challenges of cooperative intention detection for 
cyclists are: 

1. The localization of the cyclist [ 7] 
2. The detection of the cyclist and their intention [ 7, 58] 
3. The forecasting of the cyclists trajectory (probabilistically) [ 7] 
4. The incorporation of multiple smart devices [ 7, 22]. 

4.3 Smart Device Cooperation for Intention Detection 

Instead of a single smart device, in the future, people will carry many devices, e.g., a 
smartphone, smartwatch, and smart helmet. Smartwatches, for example, are already 
widely used today. Additionally, those may also include cloths containing sensors 
or helmets equipped with sensors, i.e., smart helmets. It is also likely that future 
bicycle generations will be equipped with intelligent assistance systems, sensors 
(e.g., cameras, Lidar, or Radar), and V2X communication capabilities [ 14]. All of 
these smart devices can potentially be used to anticipate cyclists’ movements, to 
communicate them (e.g., to an oncoming vehicle), and thereby make an important 
contribution to improving cyclists’ safety. The smart devices described previously 
measure different aspects of cyclist movement due to their different wearing locations 
or other sensor types. If these devices are connected, for example, using a kind of
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wireless body area network (BAN) [ 45] for cyclists, then the smart devices can 
exchange information. This information can be fused and refined and subsequently 
be used for cyclist intention detection. An example of this is depicted in Fig. 2a. 
The smart devices can communicate with each other, e.g., via Bluetooth, and the 
smartphone might provide communication abilities with cloud services. 

The worn devices provide both redundant as well as complementary information. 
The smart helmet and the smartwatch, for example, might have better GNSS signal 
due to their wearing location, so their information should be preferably used for 
positioning. The smartphone, which is located, for example, in the cyclist’s trouser 
pocket, can give information about the pedaling frequency. If we combine these 
two pieces of information, we could, for example, improve the positioning or the 
forecasting of the future trajectory. We can fuse the communicated information either 
in a centralized manner (e.g., on the smartphone) or in a decentralized fashion (e.g., 
on each device itself). This provides safe handling of a user’s data in regard to privacy. 
Still, the data information could also be processed non-locally on a remote server 
through a secure cloud connection should the computational requirements exceed 
the capabilities of the smart devices or simply to save battery power. 

In the following, we present two case studies to demonstrate the potential of a 
body area network incorporating the usage of multiple smart devices for a cyclist’s 
movement anticipation. In the first case study, we investigated the use of a hel-
met equipped with sensors, i.e., a smart helmet. However, because off-the-shelf and 
ready-to-use smart helmets are not yet commonly available, we utilize a smartwatch 
attached to the cyclist’s helmet. In the second case study, we investigate the use of 
multiple smart devices for longitudinal basic movement detection. 

4.3.1 Combining a Smart Helmet with a Smartphone for Improved 
Orientation Estimation 

In this section, we investigate the possibility to use of a smart helmet as an additional 
device connected to a smartphone. In our investigations concerning GNSS-based 
position, velocity, and orientation estimation, we found that especially the device 
placed on the helmet provides excellent velocity and orientation measurements. How-
ever, the sampling rate of 1 Hz is far too low for our intended applications, e.g., basic 
movement detection. Therefore, we present an approach combining inertial sensor 
measurements with GNSS measurements. In this case study, we combine the GNSS 
measurements from the smart helmet with the inertial sensors of a smartphone car-
ried in the trouser pocket. Thereby, the utilized data comprises 48 test subjects and 
257 trajectories. An implementation of our approach could be that the smart helmet 
sends its current GNSS measurement via Bluetooth to the cyclist’s smartphone. On 
the smartphone, the GNSS data is now combined with the smartphone inertial sensor 
data to obtain an improved velocity or orientation estimate. For the orientation esti-
mation, we use a Kalman filter running on the smartphone. The velocity estimation 
based on the combination of GNSS and inertial sensor data was much more difficult.
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(a) R2 score of orientation estimation (b) RMSE of orientation estimation 

Fig. 20 Performance of the cyclist’s orientation estimation using a smartphone in the trouser pocket 
and a smart helmet, as well as the smart helmet only. The evaluation was carried out for different 
velocity ranges, i.e., all of the available data, moving faster than 0.5 m/s, and slower than 0.5 m/s 

However, we achieved very good results using machine learning models and HAR 
techniques. 

First, we present the results of the orientation estimation involving a smartphone 
and a smart helmet. We examine the following device combinations: First, GNSS 
from the smart helmet with gyroscope data from the smartphone in the trouser pocket 
and, second, only the smart helmet (i.e., GNSS and gyroscope data from the hel-
met). The experiments are conducted offline with real data. We do not consider any 
communication delays, as these are not large compared to the delay of the GNSS 
measurement. We tune the hyperparameters of the Kalman filter, i.e., the process-
and measurement noise, using a grid search. We depict the results of our investi-
gation in Fig. 20. The fusion of the GNSS measurements obtained from the smart 
helmet and the gyroscope measurements of the smartphone in the trouser pocket can 
greatly improve the orientation estimation. Furthermore, we observe that the orienta-
tion estimation based on the smart helmet and smartphone works differently well at 
different velocities. This can be explained since the cyclist might look around at slow 
velocities, e.g., when waiting at a traffic light, which can be mistaken as a change 
in orientation of the bicycle. The smartphone is less prone to such misinterpretation 
when it is kept in the trouser pocket. Although, the orientation of the smart helmet 
is a very helpful source of information to predict the intended cycling direction. 

4.3.2 Inter-Device Cooperation for Basic Longitudinal Movement 
Detection 

In this section, we present a case study for longitudinal basic movement detection 
using multiple smart devices. For this purpose, we consider the smartphone carried 
in the trouser pocket, the smartwatch at the wrist, and the device at the helmet. The 
results of the case study presented in the following have been published in [22]. In this 
case study, we restrict ourselves to data originating from the inertial sensors, i.e., we
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do not consider GNSS measurements. For comparison, we train classifiers for each 
of the three considered devices. These are our baseline models. For classification, we 
apply XGBoost classifiers [ 19], followed by an isotonic regression for probability 
calibration [ 47]. To assess the trade-off between robustness and detection time, we 
consider Pareto fronts. Therefore, we evaluate different hyperparameters using a 
randomized search with 250 trials. In this respect, we apply ten-fold cross-validation 
over the test subjects. 

For fusing, we considered three different methods to combine the measurements 
of the three smart devices: (a) fusion of the feature spaces of all devices (feature 
stacking); (b) fusion at the decision-level of the basic movement detections (classifier 
stacking); (c) a hybrid approach combining the fusion of the feature spaces and the 
decision-level fusion. In the case under consideration, we assume that the fusion of 
the measurements and predictions of the smart devices is performed in a centralized 
manner on the smartphone. The choice of the smartphone as the point of fusion is 
based on the premise that today’s smartphones have the necessary computing power, 
enabling more complex calculations to be performed here. However, this is only an 
example; the fusion could also be carried out on any other device. In this case study, 
we do not consider communication delays, i.e., we assume that the communication 
delay between the devices is negligible. As the devices are all worn at different 
locations on the body, they also measure different aspects of the motions performed 
by the cyclist. To prevent loss of information, we have decided against fusing these 
individual features (e.g., averaging) and instead decided to stack the feature spaces. 
We reduce the dimensionality of this feature space by applying a two-stage feature 
selection procedure. Based on the selected features, we then train a classifier to detect 
the longitudinal basic movements. 

The fusion at decision-level is based on the trained classifiers of the individ-
ual smart devices. For each smart device, we train a dedicated classifier. These are 
referred to as base classifiers. Their outputs (i.e., predicted probabilities of the indi-
vidual classes) constitute a new feature space. Subsequently, we train a new classifier 
based on this feature space. In literature, this approach is also known as classifier 
stacking or stacking ensemble [ 73]. We obtain the predictions of the base classifiers 
used for training the stacked classifiers using cross-validation. 

The third and last approach is a hybrid approach. This hybrid approach uses the 
stacked feature space of all smart devices and, additionally, the predicted probabili-
ties, as described before. The feature space is again reduced by applying the two-stage 
feature selection procedure. 

Overall, when first evaluating individual smart devices, we observed that the 
smart helmet performs rather poorly in terms of the scores considered. Altogether, 
we can conclude that the classifiers based on the data from the smartwatch mounted 
at the wrist provide the best detection results. The results of longitudinal basic move-
ment detection using multiple cooperating smart devices indicate that the combina-
tion of data originating from multiple smart devices leads to both faster and more 
robust longitudinal basic movement detection. Although, the results show that the 
different fusion paradigms yield considerably different results in some cases. The 
decision-level fusion multiple-devices classifiers have smaller detection delays than



Detecting Intentions of Vulnerable Road Users Based … 75

the other approaches. The detection delays are in a range from 0.194 to 0.38 s. The 
hybrid approach achieves detection delays between 0.24 and 0.72 s. Thus, the hybrid 
approach is regarding the detection speed slower but reaches higher scores. The fea-
ture stacking approach usually performs slightly worse than the hybrid approach both 
in terms of detection delay as well as its score. Further detailed consideration and 
extensive evaluation regarding the use of multiple smart devices for basic movement 
detection is provided in the work of Depping [ 22]. 

4.4 Cooperative Basic Movement Detection 

Another approach concerns the use of cooperation to improve basic movement detec-
tion. These cooperatively determined basic movements can then be used for trajectory 
forecasting, i.e., for the parameterization of the forecasting models. In this regard, 
we examine different approaches: 

Stacking of Feature Spaces: In feature space stacking, we assume that the agents 
exchange preprocessed features with each other. These features originating from 
different sensors are combined and used for basic movement detection. We realize 
fusion by concatenating the feature spaces of different sensors. This is, for example, 
the concatenation of orthogonal expansion coefficients (describing the past cyclist’s 
trajectory) with Fourier coefficients (describing the acceleration profile derived from 
the smart device inertial sensors). 

Stacking Ensemble: In the stacking ensemble fusion methodology, we fuse basic 
movement predictions employing a machine learning ensemble. These basic move-
ment predictions, which originate from the basic movement detection models of other 
agents, are combined using a dedicated machine learning model. The combination 
of a stacking ensemble and a stacking of feature spaces is referred to as a hybrid 
model. 

Probabilistic Fusion: Another method that we examine for cooperative basic 
movement detection is the independent likelihood fusion (ILP) fusion. This is a 
probabilistic fusion technique (similar to the Bayes filter) which is based on the 
assumption that the measurements of the sensors are independent of each other given 
the current state. It combines basic movement prediction originating from different 
agents. 

Coopetitive Soft-Gating Ensemble (CSGE): The Coopetitive Soft Gating 
Ensemble (CSGE) [ 25] is an ensemble technique that is used to fuse forecasts of 
different base models. The CSGE has three different weighting aspects, i.e., global-, 
local-, and time-dependent, which are used to compute an overall weight for each 
ensemble member. We modified the original CSGE to cope with the special require-
ments of the task at hand, i.e., handling delayed or missing predictions. 

Orthogonal Polynomials: This approach is a classifier fitted on the cooperatively 
acquired orthogonal expansion coefficients.
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Fig. 21 Micro average F. 1 score for cooperative longitudinal basic movement detection. Results of 
cooperative longitudinal basic movement detection for different agent configurations. The colored 
bars represent different fusion types. The baseline, i.e., the ego vehicle only, is given by the black, 
dashed line [ 7] 

We used real data acquired at the urban research intersection in Aschaffenburg 
to evaluate and compare the different approaches. In this context, we examine the 
cooperation among three agents: a research vehicle, a sensor-equipped infrastructure, 
and a cyclist, i.e., a smart device carried in the cyclist’s trouser pocket. We evaluate 
the results of the cooperative approaches from the perspective of a non-cooperatively 
ego vehicle. The vehicle-based approach is, therefore, our baseline against which we 
compare the cooperative approaches. We observe that almost all fusion methods 
outperform the baseline for almost all considered agent configurations. 

As we can deduce from Fig. 21, cooperation is nearly always advantageous. Espe-
cially remarkable is the performance of the ILP approach. This method is almost 
parameter-free and performs better or at least as well as other methods with signif-
icantly more parameters. The CSGE shows the most significant improvement with 
up to 30% compared to the baseline. Hence, we can increase the F. 1 score for basic 
movement detection significantly through cooperation. However, not only the detec-
tion performance is getting better, but also the mean detection time improves by 
up to 30% [ 7]. In addition, it is important to note that cooperative basic movement 
detection is currently the only cooperation method that effectively allows the inte-
gration of smartphones. Although this is also possible with the other methods, the 
use of the smartphone position often has a negative effect on the fusion result due
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to the poorer position estimation. The practical implementation of the cooperation 
techniques with current communication protocols is possible. Still, depending on the 
type of cooperation, it is not as straightforward to realize as with the probabilistic 
trajectory fusion technique. 

4.5 Cooperative Trajectory Forecasting Using the CSGE 

In this section, we outline an approach for cooperative cyclist trajectory forecasting 
using the CSGE. The underlying idea is that agents share predictions about their 
future trajectory. The trajectory forecasts are then combined using the CSGE. The 
approach described in this section fuses deterministic trajectory forecasts. The fused 
forecast is the starting point of the probabilistic trajectory forecast. We look at the 
fusion from the perspective of an ego vehicle, i.e., the fusion is conducted on the vehi-
cle. The approach can be considered as decision-level fusion. From the perspective of 
sensor configuration, the approach can be classified as competitive fusion. The CSGE 
has three parameters, i.e., the soft gating parameters, which determine the weights of 
the individual ensemble members according to three influencing factors. We use the 
ASAEE as the target function to optimize these parameters of the CSGE. Moreover, 
we assume that the ensemble members are already trained. We also pretend that there 
is a dataset not yet used for training the ensemble members, which can be used for 
the CSGE training. We use ten-fold cross-validation to create this ensemble training 
dataset. The agents share their trajectory forecasts in the cyclist’s ego-frame. The 
usage of this coordinate system has the advantage that errors in the absolute posi-
tioning (e.g., in the global coordinate system) of the respective agent do not influence 
the actual trajectory forecast. This allows us to include trajectory forecasts of agents 
with poor absolute positioning. This is the case, for example, with smart devices 
whose absolute positioning is not comparable to that of modern infrastructure- or 
vehicle-based approaches. Nevertheless, smart device-based trajectory forecasts can 
be helpful in some situations, e.g., when the field-of-view of the infrastructure or 
vehicle cameras is occluded. The CSGE natively supports the outage of a sensor or 
ensemble member. Similar to the CSGE approach for cooperative basic movement 
detection, we only have to re-compute the respective weights. The introduction of a 
new ensemble member can be handled similarly. The prerequisite for this is that the 
corresponding error estimates, i.e., global, local, and lead time-dependent errors, are 
available. However, in both cases (i.e., outage and introduction of a new ensemble 
member), we cannot guarantee that the soft gating parameters are still optimal. 

4.5.1 Extending the CSGE for the Fusion of Delayed Trajectory 
Forecasts 

Additionally, we proposed an extension of the CSGE for the fusion of trajectory 
forecasts that allows the integration of delayed trajectory forecasts. We investigate
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the extension in a case study considering the fusion of vehicle- and infrastructure-
based trajectory forecasts. The fundamental idea of our modeling is analogous to the 
one used to integrate time-delayed basic movement predictions. The provider of the 
forecast always provides an estimate of the forecast quality, i.e., the expected error. 
The receiver uses this as a starting point and tries to model the increased expected 
error due to the delay. We distinguish three different types of expected errors, i.e., 
global, local, and lead time-dependent errors. Hereby, the challenge we face with 
delayed forecasts is that the cyclist’s ego-frame changes over time. This offset is not 
only temporal but is also spatial, i.e., a simple temporal shift of the forecast is not 
sufficient. In addition to the temporal shifting, we must also simultaneously translate 
and rotate the cyclist’s ego-frame. Hence, we cannot simply compare and fuse two 
trajectory forecasts of two agents without considering the time and spatial alignment 
of the ego-coordinate frames first. We have two possibilities for this purpose. First, the 
vehicle itself can estimate the change of the cyclist’s ego-frame, i.e., the translation 
and the rotation, and apply these to the received trajectory forecast. For this purpose, 
the vehicle must estimate the current and the past (i.e., the time of the creation 
of the trajectory forecast) position and orientation of the cyclist. Subsequently, the 
vehicle can use these estimates to determine the translational and rotational shift. The 
second possibility we investigated is to use the trajectory forecast itself to estimate 
the change in terms of the cyclist’s ego-frame and then use this estimation to translate 
and rotate the forecast accordingly. This method has the advantage that we can even 
fuse two trajectory forecasts if we cannot reconstruct exactly the past position and 
orientation at the time of the creation of the trajectory forecast. By artificially shifting 
the forecasting origin, our maximum lead time changes as well. We compensate for 
this by extrapolating the forecast based on its local trend and then padding it again. 

4.5.2 Case-Study Delayed Trajectory Forecasts 

In another case study, we examine the handling of delayed messages in the case 
where a vehicle receives delayed infrastructure-based trajectory forecasts and fuse 
these with its trajectory forecasts using the CSGE. We use the previously described 
modeling of the delays for the different weighting aspects of the CSGE. We assume 
that only the messages from the infrastructure are delayed. A delay on the side of the 
vehicle (e.g., due to data processing) is not considered. The results of this analysis are 
given in Fig. 22. We see that the improvement due to the combination of the trajectory 
forecasts diminishes with increasing delay. We observe a slow convergence towards 
the ASAEE of purely vehicle-based trajectory forecasting methodology. From this, 
we can conclude that the fusion of trajectory forecasts is advantageous for a maximum 
delay of approximately 1 s.



Detecting Intentions of Vulnerable Road Users Based … 79

Fig. 22 CSGE forecasting performance improvements over the vehicle baseline for different 
delays [ 7] 

4.5.3 Comparing Different Approaches for Cooperative Intention 
Detection 

In the following, we compare the presented approaches to cooperative intention 
detection, i.e., cooperation on the data-level using the probabilistic trajectory fusion 
method, cooperation on the level of basic movements using various approaches, and 
cooperation on the level of trajectory forecasts using the CSGE. In our comparison, 
we examine the cyclist trajectory forecasting results of the different approaches using 
the example of three cooperating agents: vehicle, infrastructure, and smart devices 
carried by the cyclist. As a baseline, we use the forecast based on a non-cooperatively 
acting ego vehicle. The results of our investigation are depicted in Fig. 23. We see  
that the cooperative methods almost all perform better than the baseline in terms of 
the median ASAEE. In addition, the spread is also considerably smaller. Trajectory 
Fusion CSGE has the lowest ASAEE. Furthermore, the ASAEE of the infrastructure-
based approach is particularly striking. This result underlines the potential of using 
infrastructure-based technologies for C-ITS in general and cyclist intention detection 
in particular. 

Additionally, we performed a statistical analysis of the results to show whether 
there is a statistically significant difference between the performances of the cooper-
ative methods and the baseline. The trajectory fusion CSGE approach ranks first. It 
is significantly better than all other approaches except the infrastructure-based tra-
jectory forecasting approach. All cooperative approaches outperform the baseline, 
although the difference regarding the average rank is not statistically significant. It is 
not surprising that the ranks of cooperative methods for basic movements are not sig-
nificantly different from the baseline. This is because the actual trajectory forecasts 
only use the ego vehicle data and the cooperatively determined basic movements.
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Fig. 23 Box plot showing the ASAEE for different approaches to cyclist trajectory forecasting. 
All cooperative approaches involve the combination of data originating from three different agents, 
i.e., an intelligent vehicle, sensor-equipped infrastructure, and smart device carried by the cyclist 
itself [ 7] 

Nevertheless, the superior average rank shows the potential of cooperative basic 
movement detection. For future work, the cooperative basic movement prediction 
may be supplemented by cooperation based on trajectory forecasts. 

4.6 Cooperative Probabilistic Trajectory Fusion Using 
Orthogonal Polynomials 

Assuming that road users make at least partial use of the same set of features, e.g., the 
absolute velocity or angular velocity, the cyclist’s trajectory is approximated using 
polynomials with orthogonal basis functions [ 23]. This representation is abstract, 
independent of the sensor’s cycle time, and robust against noise due to implicit data 
smoothing. The feature-level fusion is realized using weighted polynomial approxi-
mation. We are exploiting specific properties of the orthogonal polynomials and the 
approximation technique: (1) fast incremental approximations are possible (update 
mechanisms are available [ 23]), and (2) information can be weighted individually. 
The former keeps the runtime short, and the latter allows us to fade out outdated
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Fig. 24 Cooperative cyclist intention system using trajectory fusion from the view of a single 
agent, e.g., vehicle. The position and orientation estimates (indicated by the blue crosses and gray 
triangles) received via collective perception messages (CPM) or collective awareness messages 
(CAM) are fused probabilistically using a polynomial approximation with orthogonal basis poly-
nomials. Subsequently, the orthogonal expansion coefficients are transformed into the ego-frame. 
These coefficients are used for basic movement detection and trajectory forecasting [ 7] 

information or emphasize more recent information. Furthermore, by additionally 
modeling the posterior distribution over the polynomial coefficients in a Bayesian 
approach, we obtain a fully probabilistic model of the trajectory. New measurements 
are integrated by modeling the likelihood, i.e., implementing a sequential update 
methodology. We obtain the weighting of information originating from different 
road users through a measurement model. The measurement model describes the 
likelihood of an observation given the currently estimated polynomial coefficients. 
We derive the weight of each measurement by combining a global weight (e.g., 
how good is a measurement of an agent’s sensor globally) and a situation-dependent 
weight (e.g., how good is a measurement of an agent’s sensor in the current situation). 
Moreover, due to the usage of a polynomial approximation instead of a state-space 
model-based approach, e.g., a recursive Bayesian filter, we can cope with situations 
where, e.g., due to communication problems, the information does not arrive in the 
correct temporal order (out-of-sequence fusion). The coefficients of the orthogonal 
expansion of the approximating polynomial are optimal estimators of the average, 
slope, curvature, and change of curvature of the approximating trajectory in the con-
sidered time window [ 23]. Hence in terms of the cyclist’s trajectory, the coefficients 
are optimal estimators of the velocity, acceleration, and jerk. As shown in [ 26], these 
are useful features for detecting the intentions of VRUs. We use these coefficients 
as features for basic movement detection and trajectory forecasting. A schematic of 
this cooperative intention detection approach is depicted in Fig. 24. 

For evaluation, we utilize the data from real cyclists driving in real traffic at 
the research intersection. We recorded the cyclists’ trajectories using a wide-angle 
stereo-camera system (i.e., an intelligent sensor-equipped infrastructure), a camera-
equipped vehicle, and a smartphone carried by the cyclists. In the first place, we 
consider the evaluation of the position and orientation estimation derived from the 
probabilistic trajectory fusion. Therefore, we evaluate the approximating polyno-
mial at the current time. We compare the probabilistic trajectory fusion approach 
to a Kalman filter for the fusion of the position measurements showing that our
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(a) Average Euclidean Position Error. (b) Average Orientation RMSE. 

Fig. 25 The average position (AEE) and orientation error (RMSE) for different numbers of vehicles 
and delays [ 7] 

probabilistic approach is on par with the Kalman filter. Furthermore, we study the 
probabilistic trajectory fusion approach’s behavior under message and measurement 
delays. We can show that the use of position and orientation estimates supplied by the 
infrastructure is beneficial, even for larger delays from an ego vehicle’s perspective. 
The fused estimate does not worsen and up to a delay of about 0.7% always leads 
to an improvement. In another experiment with simulated vehicles, we showed that 
the approach scales well to larger vehicle collectives (cf. Fig. 25). Since this method 
only relies on the exchange of positions or velocities between the agents, it can be 
well implemented using existing standards such as CAM or CPM. 

5 Prospects 

We want to conclude this outline of our contribution to VRU safety by detection, 
tracking, basic movement detection, and trajectory forecasting with a short summary 
of our main findings. 

First, we do not see the detection of objects as a solved problem. Despite signifi-
cant improvements due to the success of data learning in the past couple of years, the 
resulting models still lack generality, reliability, and trustworthy confidence approx-
imations. We introduce additional annotations of the data we collected to be able to 
determine types of data that cause poor results. The so-called context information is 
a basis for further research fields. The tasks may include a thorough determination 
of relevant context, concepts to gather data with respect to a specific context effi-
ciently, and an evaluation that the model trained on the enhanced database is able to 
outperform the original model in any case. 

Second, basic movements are an intuitive way of judging the current and short 
time future behavior of a VRU. More than that, they contribute greatly in a method-
ological way to the probabilistic trajectory prediction to reduce the future confidence
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regions in a multimodal approach, a single end-to-end learning approach with a single 
resulting distribution can not. 

Third, trajectory forecasts must be made with probabilistic estimations of future 
VRU appearances. Only in that way is a safe and efficient coexistence of VRUs and 
autonomous cars possible. It will include ethics to find a way of dealing with how 
much risk is acceptable in the case of intersecting confidence regions. 

Finally, an infrastructure to share information between traffic participants and to 
supply additional static knowledge is essential to exceeding the limitations of single 
sources, i.e., solely ego-vehicle sensors, and to be able to perform in a way that is 
acceptable for autonomous driving. Each data source could contribute beneficially 
in every processing step until trajectory prediction. Even relatively imprecise smart 
device data increased the tracking and trajectory forecast performance in cases of 
occluded infrastructure or ego-vehicle sensors. Altogether, we consider as a result of 
our project the proof of a concept that can estimate and predict the unsteady behavior 
of VRUs and thus make VRUs accessible to autonomous cars. The degree of realistic 
conditions and real-time performance capabilities has not been reached so far, to the 
best of our knowledge. 
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Analysis and Simulation of Driving 
Behavior at Inner City Intersections 

Hannes Weinreuter, Nadine-Rebecca Strelau, Barbara Deml, 
and Michael Heizmann 

Abstract Inner city intersections are a challenging scenario for human drivers as 
well as for the development of autonomous vehicles. This is especially the case for 
unsignalized intersections where the right before left rule applies. At these inter-
sections, ambiguous situations can arise. In this chapter, we cover two aspects of 
this intersection type: First, we use driving data from a field study conducted in 
inner city traffic to analyze the relationship between intersections and human driving 
behavior. For that, we describe the intersection, its surrounding environment and 
the traffic there by features that constitute an intersection’s complexity (e.g. street 
width, visibility conditions, number of cooperation vehicles). With those we are able 
to predict features describing the driving behavior reliably. Second, we propose a 
decision making algorithm for unsignalized inner city T-junctions. The algorithm is 
modeled as a discrete event system and does not rely on any explicit communica-
tion. Instead, only the observable state is used. This includes the map, the positions 
and velocities of the cooperation vehicles and the driving pattern. We introduce the 
algorithm in detail and present results of a comprehensive simulation for validation. 
The algorithm is able to drive through all situations in the simulation safely. 
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1 Introduction 

The ongoing development of autonomous driving is a promising field of research. 
When autonomous vehicles are finally admitted onto public roads, one can expect 
several benefits from them. They have the potential to reduce the number and severity 
of traffic accidents. Additionally, it would enable people who are unable to drive for 
themselves access to individual mobility. There are, however, several aspects of 
autonomous driving that currently prohibit its introduction into real world traffic. 
Among them is driving through inner city traffic and especially at unsignalized 
intersections. This intersection type is common in Germany in areas with low or 
medium traffic density. At these intersections the right before left rule applies. It 
states that one has to yield to a driver approaching on the next street to one’s right 
and that one has priority over a driver approaching from the next street to the left. 
Oncoming traffic has priority over turning left. This rule does not, however, provide 
a defined driving order in all possible scenarios. Instead, situations can occur in 
which each driver has to yield to at least one other driver, thus creating a deadlock 
at the intersection. In this case the German traffic regulations for example only 
state that driving before someone who has priority may only occur after the drivers 
communicated and thus cooperated with each other [ 1]. This of course is problematic 
for an autonomous vehicle (A-V) as it has to interpret human behavior, make a 
decision based on potentially unreliable predictions and still drive safely and in a 
way that is acceptable to both its passengers and its human interaction partners. 

In this work we focus on two aspects of driving through unsignalized inner city 
intersections. The first aspect is how intersections influence driving behavior [42]. For 
that we describe an intersection by intersection complexity. We define intersection 
complexity based on features which describe an intersection. This includes both the 
static environment (e.g. visibility or the street width) and the dynamic environment, 
i.e. the traffic at the intersection. Driving behavior is described based on features 
obtained from the driven trajectory. We then predict the behavior features using the 
intersection features as inputs. The basis for that is data from a field study in real world 
traffic. The study, both the intersection and the behavior features and the prediction 
are described in detail in Sect. 3. The second aspect of this work focuses on the 
decision making at unsignalized intersections [ 43]. We present a decision making 
algorithm based on a discrete event system (DES) that is able to drive according to 
the traffic regulations. It is also able to cope with unclear situations like deadlocks or 
if a vehicle yields despite not having to. The strategy to solve these situations is based 
on the findings by [ 20]: They found that human drivers prefer not having to drive first 
in demanding situations such as a deadlock at a T-junction. Our approach does not 
require any explicit communication between the vehicles, the decisions are based 
only on the observable state of the cooperation vehicles, i.e. its position, velocity 
and acceleration. This is in line with findings from literature that state that human 
drivers rely on implicit communication when approaching such scenarios [ 19]. The 
algorithm, alongside a detailed validation, is presented in Sect. 4.
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2 Related Work 

Aspects of this work have been covered in literature before. We first present rele-
vant publications for the behavior analysis as described in Sect. 3, and then on the 
behavior generation (Sect. 4). The first aspect of this work focuses on the influence 
of intersection complexity on the driving behavior. There are previous publications 
that use features describing the environment of a driving task to define complexity. 
[ 9] assume inner city scenarios as most complex and driving on a highway as least 
complex. The type of scenario can also be used to discriminate between complex-
ity levels, [ 20] found a T-junction to be more complex than a symmetrical narrow 
passage. Further features that have been used before include the difference between 
signalized and unsignalized intersections [ 24], whether or not parked vehicles at the 
side of the road are present [ 8] and if a driver drove straight through an intersec-
tion or turned right or left [ 12]. Reference [ 45] uses satellite images and classifies 
intersections as complex if they have at least one street with multiple lanes, traf-
fic islands, sliplanes or more than four roads leading into the intersection. Another 
possible feature is visual clutter [ 14]. All these features so far describe stationary 
surroundings. However, one can also consider the dynamic environment, i.e. the traf-
fic, to describe the complexity of a situation. Reference [ 31] defines high complexity 
as situations that have high demands on both information processing and vehicle 
control and low complexity if there is low demand for either category. A medium 
complexity is assigned to scenarios that require high demand in one category and low 
demand in the other. Reference [ 21] uses the same definition but omits the medium 
class. Traffic density [ 28, 39, 44] can be considered for complexity as well as the 
occurrence of lane changes [ 39] or driving after a congestion compared to regular 
driving [ 23]. Further aspects of traffic and the environment of an intersection have 
also been studied, [ 44] included the number of vehicles from the left and whether or 
not a zebra crossing was present in their work. Reference [ 30] defines complexity by 
the grade of urbanization, the presence of oncoming traffic, leading traffic and the 
street geometry (straight road, tight corner, soft corner). Reference [ 4] considers a 
straight road as less complex than an intersection at which a stop is required or an 
overtaking maneuver. Reference [ 15] defines complexity by the number of adver-
tisement signs, buildings, oncoming vehicles and further infrastructure while driving 
on a highway. 

The second aspect of this work deals with decision making in the context of 
autonomous driving and has also been the focus of many authors. A common method 
for decision making at intersections and other traffic scenarios are partially observ-
able Markov decision processes (POMDP): [ 26] uses a POMDP for decision making 
at intersections and roundabouts. Reference [ 18] uses a POMDP for real-time deci-
sion making where other vehicles are treated as hidden variables to adapt the driving 
behavior to the most likely behavior of the other drivers. Reference [ 38] applies a 
POMDP for decision making at an intersection while turning left. The autors define 
several critical turning points from which a turn can be executed and select the 
most efficient one. Additionally, one can also consider limited visibility caused by
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both static and dynamic objects. A possible solution for that problem is to add vir-
tual vehicles at the edge of the obscured space [ 25]. Reference [ 2] uses POMDPs 
for decision making at intersections and pedestrian crossings with limited visibil-
ity. Besides POMDP, further methods for decision making have been employed as 
well. Reference [ 37] uses a mixed observability Markov decision process to pre-
dict the intention of cooperation partners and base the decision on that. Reference 
[ 29] presents a framework that combines prediction, threat detection and decision 
making. Using a Bayesian network the threat levels of other vehicles are classified 
and the decision is based on that. A decision can also be made by evaluating pos-
sible behavior policies and selecting the optimal one [ 5, 11]. Reference [ 6] selects 
the trajectory of an autonomous vehicle from a list of reference trajectories from 
human drivers during interaction with an additional vehicle. Finally, one can use a 
game theoretic approach by considering a game between the ego vehicle and the first 
oncoming vehicle [ 36]. 

All these works have in common that they do not rely on explicit communica-
tion between vehicles. Instead they rely on the vehicles’ states that are observable by 
onboard sensors. Alternatively, decision making at intersections can also be designed 
to use explicit communication between the vehicles themselves or between the vehi-
cles and a centralized coordination mechanism. Reference [ 27] presents an algorithm 
for coordination of autonomous vehicles at an intersection using model predictive 
control. This decentralized approach requires all vehicles to use the same algorithm 
and to share their current state. Reference [ 34] presents a centralized coordination 
algorithm for autonomous vehicles at unsignalized intersections. The vehicles are 
assigned arrival times and the problem is formulated as an absolute value prob-
lem. Reference [ 10] determines the driving order by centralized coordination using a 
mixed-integer linear problem. All vehicles transmit their state and receive their allot-
ted time to pass the intersection. They regulate their velocity accordingly. Versions 
for mixed traffic and traffic lights are also suggested. 

Certain aspects of inner city traffic have been modeled as DES before by using 
Petri-nets (PN). Reference [ 41] models an intersection with traffic lights using PNs 
for the traffic light control and to model the traffic flow. A PN can also be used to 
model the traffic light control mechanism at several connected intersections as well, 
using the largest intersection as the master control [16]. PN based traffic lights control 
can also be used to give arriving emergency vehicles green light at intersections [ 17]. 
Reference [ 7] models a city environment consisting of intersections with traffic lights 
and connecting streets using deterministic time-based PNs. Reference [ 33] controls 
intersections with traffic lights using deterministic and stochastic PNs. The model is 
adapted in case of incidents that would otherwise cause neighboring intersections to 
be blocked. 

In this work we do not rely on explicit communication with the cooperation vehi-
cles. Instead, the decision making is based only on the observable state of the other 
vehicles. We consider this to be more realistic, especially in the short term, as we 
cannot expect every vehicle to be equipped with such communication interfaces any-
time soon. We further rely on DES as decisions by the system are easily explainable 
and they are made using only basic operations.
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3 Intersection Complexity for Behavior Prediction 

In order to autonomously drive through unsignalized inner city intersections, it is 
helpful to understand why human drivers drive the way they do. This is important for 
two reasons: Autonomous vehicles will have to interact with human drivers for the 
foreseeable future. An understanding of human driving behavior might make these 
interactions more safe and efficient. It might enable autonomous vehicles to predict 
the driving behavior of their interaction partners more reliably. One can secondly 
make such systems behave similar to human drivers, this could improve their accep-
tance. The evaluation of this section is based on a field study that was conducted in the 
inner city of Karlsruhe in Germany [ 42]. In that study 34 participants drove through a 
predefined course during which they encountered several unsignalized intersections. 
At one of the intersections they were confronted with instructed drivers who created 
a deadlock situation. In this work we are investigating the interaction with regular 
traffic, therefore the runs through this intersection are not part of this work. The 
data set includes in total 1818 runs through 13 unsignalized T-intersections and 565 
runs through 4 unsignalized X-intersections. Four of the remaining T-intersections 
were specifically selected. This way we were able to include intersections with high 
and low traffic density and intersections with buildings close to and far from the 
street. The remaining intersections are included in the data set as they lie along the 
drive path between the selected intersections. The test vehicle was equipped with 
a 16 channel lidar, an inertial measurement unit (IMU) and two global navigation 
satellite system (GNSS) receivers. The data was recorded using the robotic operating 
system (ROS) [ 35] and the driven trajectory as well as the transformation of the point 
clouds to a global reference were generated using a simultaneous localization and 
mapping (SLAM) approach [ 13]. We then generated our data set by extracting the 
runs through the intersections which are included in the analysis. For that only those 
parts of the trajectory are included in a run that lie within a 35 m radius around the 
intersection center. Within the point clouds vehicles and pedestrians are detected and 
their trajectories are tracked. We have presented the work described in this section 
before in more detail [ 42]. 

3.1 Intersection and Behavior Features 

From the recorded and preprocessed data we then extract several features to describe 
both the intersection itself and its surroundings. As we additionally need a way to 
describe the driving behavior of the participants, behavior features are calculated from 
the driven trajectories as well. The intersection features include features describing 
properties of the driven path, the intersection itself and features about the traffic at 
the intersection the participant had to interact with. The set of all features can be seen 
as the complexity of an intersection.
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The driven path is described by the entry position and the turning direction. For the 
entry position.pe the T-intersection is rotated such that it resembles the letter “T”. The 
entry position can then either take the value left, bottom or right. The entry position is 
not considered in case of the X-intersections because of their symmetry. The turning 
direction .pt takes one of the values left, straight or right. At T-intersections not all 
turning directions are possible depending on the entry position. 

Further, we define features that describe the traffic at the intersection the partic-
ipants had to interact with. For that we use the number of pedestrians .np and the 
number of vehicles .nv as features. Both pedestrians and vehicles are counted if they 
are detected in the point clouds during the approach to the intersection. Please refer to 
[ 42] for further details on the detection and tracking. The visible vehicles are divided 
into further features: The number of interaction vehicles .nvi are those vehicles that 
are within 10 m from the intersection center at the same time as the test vehicle. 
In order to be counted their observed track has to pass the intersection center. The 
interaction vehicles are further analyzed if they have the right of way over the test 
vehicle or if they have to give way; the number of vehicles that fulfill these conditions 
are counted in .nrw and .ngw, respectively. 

The final class of intersection features is designed to describe the static envi-
ronment at the intersection. Among them is the number of trees .nt that are near 
the intersection and the road a participant uses to enter the intersection. To judge 
the occlusion of an intersection during the approach we include visibility distances. 
These are the distances at which reference points in the streets to the left and right 
of the street the vehicle enters the intersection from are visible for the first time. The 
reference points are placed on the center line of the streets at a distance of 

.dref = vmax tr + v2max

2|ab| (1) 

from the intersection center. This is the distance that is needed to stop when driving 
at the speed limit of.vmax = 30 km h−1. With a reaction time of.tr = 1 s and a braking 
deceleration of.ab = 6ms2, the distance of the reference points is.dref = 14.12m.We  
use two variants to calculate the visibility distance, an approach based on the point 
clouds and one based on object polygons. For the point clouds variant we merge the 
current and the two point clouds before and after to the merged point cloud .P(d). 
This represents the merged point cloud at distance. d from the intersection center. For 
that the current trajectory point is projected onto the center line of the current lane, 
the distance is then measured along the lane center. Within .P(d) cylinders .Cs,i with 
a radius of 0.6 m are placed between the current location and the reference points . i . 
If there is at least one point of .P(d) within .Cs,i , reference point . i is considered not 
visible at distance . d. The visibility distance .dv,c,i to each reference point is then the 
distance at which the reference point is visible for the first time. Alternatively, we 
use polygons of the buildings and tree trunks along the intersection to determine the 
visibility distance. For that we draw a sight line between the current location and 
the reference points. If this line does not intersect with any polygon, the reference 
point is visible. Again, the first distance . d for which this is true determines the
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visibility distance.dv,p,i of a reference point. The visibility distance of an intersection 
is the minimum visibility distance of all its reference points: .dv,· = mini

 
dv,·,i

 
. To  

include the actual and perceived narrowness of the road leading into the intersection, 
we define three widths that are calculated along the normal of each point of the 
trajectory. The street width .ws(d) is the distance from the intersection points of the 
normal at distance . d with the street curbs and is calculated based on the map of the 
intersection. For the visible range the point clouds are analyzed. It describes how 
far a driver can see to the left and right and is supposed to model the perceived 
narrowness of the street. For each trajectory position the lidar data is evaluated along 
the normal at sensor height. The first point within.±5◦ in vertical direction and. ±10◦
in horizontal direction determines the visual range. For the visual range .wv(d) this 
is performed both to the left and right of the trajectory. The available width . wa(d)
is a combination of the previous two widths and describes the space on the street 
that is available to drive on. At each trajectory point the smaller one of the street 
width .ws(d) and visual range .wv(d) determines the available width. For this the 
calculation of the available width is adapted such that it includes all points within 
.±15◦ in vertical direction. All three widths are averaged over the approach interval 
from 25 m to 7 m before the intersection center. A more detailed introduction into 
the features discussed here can be found in [ 42]. 

To describe the driving behavior at the intersections, we define three features 
based on the driven trajectory: the commit distance, the velocity drop and the min-
imum velocity. The commit distance is the distance from the intersection center at 
which, given the current velocity, stopping before the intersection center is no longer 
possible: 

.dc = max
d

 
d < v(d) tr + v(d)2

2|ab|
 
. (2) 

The commit distance can be interpreted as a measure for the distance at which the 
final decision to drive is made. The further from the intersection, the more offen-
sive the driving behavior. The minimum velocity is the minimum velocity that the 
driver assumed during the approach interval of .ds = 25m to .de = 0m distance to 
the intersection center: 

.vmin = min(v(d)), ds > d > de. (3) 

The final behavior feature is the velocity drop. It describes the ratio between the 
minimal velocity during the approach .vmin to the mean initial approach velocity . va
in the interval from 25 m to 20 m: 

.vd = vmin

va
. (4)



96 H. Weinreuter et al.

3.2 Prediction of Driving Behavior 

Using the intersection and behavior features from above we can now predict the 
driving behavior. For that we train several Random Forest (RF) [ 3] regression models. 
RFs are employed because of their ease of use and because they can model non-linear 
dependencies [ 22]. Several other regression methods could be used here as well. 
We use the intersection features, or a subset of them, as predictors and predict the 
behavior features. For each combination of the three behavior features and the two 
intersection types (X- and T-intersections) 10 models are trained. For each of the 10 
models 70 % of the runs are used as the training set, the remaining 30 % are used as 
the test set. In Table 1 the average and standard deviation of the 10 models are given 
for all variants. The performance of the RF regression models is evaluated using the 
root mean squared error (RMSE): 

.RMSE =
    1

N

N 

k=1

 
ŷk − yk

 2
. (5) 

.N is the number of runs in the test set, .yk is the behavior feature of the .k-th run of 
the test set and .ŷk is the value of the behavior feature estimated by the regression 
model for the same run. A first analysis was performed using the entire feature set 
as introduced in Sect. 3.1. For the T-intersection models all 13 features were used. 
In the case of the X-intersections the entry position .pe was omitted as a feature. 
The results of that analysis are given in the first row of Table 1. The last row of this 
table contains the reference value, that is the results of a naive regression model that 
outputs the mean of the training set. The prediction error of the driving behavior 
for all three behavior features is well below the reference value with a low standard 
deviation for both the T-intersections and the X-intersections. The performance of 
this regression model is especially noteworthy given the fact that driving behavior 
might also be influenced by a driver’s personality or mood. 

Additionally, we investigate whether a dimensionality reduction of the feature set 
is feasible. For that we first select a subset of the most relevant complexity features. 
This selection is a compromise between the feature importance of all investigated 
model variants. The remaining features are the entry position .pe (only for the T-
intersections), the turning direction. pt , both visibility distance variants.dv,c and.dv,p, 
the street width .ws and the available width .wa, the number of trees .nt and the num-
ber of visible vehicles . nv. This means that there is only one feature describing the 
traffic. This might, at least in part, be explained by the fact that most runs did not 
include any cooperation partners as this study was conducted in regular traffic. The 
performance of the RF regression models with that feature set are given in the second 
row of Table 1. The regression is less accurate than with the full feature set, but the 
performance is very similar, indicating that these reduced complexity feature sets are 
sufficient to predict the driving behavior at intersections.
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Table 1 Mean RMSE regression results for T-intersections and X-intersections using different 
feature sets and all behavior features: commit distance . dc, minimum velocity .vmin and velocity 
drop. vd. The standard deviation is in brackets 

.dc inm .vmin inm s−1 . vd

T-int. X-int. T-int. X-int. T-int. X-int. 

Full feature 
set 

1.492 1.696 1.033 1.150 0.153 0.159 

(0.050) (0.093) (0.036) (0.057) (0.005) (0.008) 

Reduced 
feature set 

1.512 1.728 1.068 1.173 0.157 0.162 

(0.049) (0.110) (0.036) (0.069) (0.006) (0.008) 

Directions 
feature set 

1.800 2.590 1.298 1.686 0.187 0.209 

(0.068) (0.084) (0.041) (0.045) (0.006) (0.008) 

Reference 3.093 3.229 1.977 2.000 0.275 0.256 

(0.116) (0.135) (0.051) (0.075) (0.004) (0.011) 

As the entry position.pe and turning direction.pt are relevant factors to the driving 
behavior [ 42], we also train models with only these two complexity features. In case of 
the X-intersections we only use the turning direction. pt . The performance of these RF 
regression models is given in the third row of Table 1. The results show that prediction 
is still possible, the performance, however, decreases substantially compared to the 
full and reduced feature sets. This is especially true for the X-intersection. A possible 
explanation for the reduced performance might be that both features can only assume 
three distinct values each. Thus there are only six distinct value combinations possible 
in the case of the T-intersections and only three combinations for the X-intersections. 
This limits the number of possible regression values to the same numbers, thus 
causing a less accurate regression. 

4 Behavior Generation 

The second aspect of this work focuses on an approach to decide on the behavior 
of an A-V at a T-intersection, i.e. whether it drives first or waits for its cooperation 
vehicles (C-V) to pass the intersection before it. Both this high-level decision and the 
resulting longitudinal acceleration of the A-V is covered by our proposed decision 
making algorithm. There are several challenges associated with this problem: As 
the driving paths of the A-V and its C-Vs intersect, there oftentimes is no solution 
that guarantees safety from collisions in any possible scenario. This would only be 
possible if the A-V always waits for all other vehicles to drive first. This, however, 
is not a feasible option. It would firstly lead to a deadlock if there is another A-V 
with the same strategy. This behavior could secondly be more confusing than helpful



98 H. Weinreuter et al.

when interacting with human drivers, especially given that human drivers prefer 
others to drive first in complex scenarios such as deadlocks at T-intersections [ 20]. 
In order to avoid these problems, a certain degree of risk has to be accepted. Also, 
another challenge is the number of possible interactions between the vehicles that 
are involved in the situation. If all pairwise interactions are explicitly modeled the 
model is dependent on the number of cooperation partners. Also, explicitly modeling 
all interactions would be challenging. 

4.1 Basic Setup 

The algorithm is modeled as a discrete event system (DES) and does not assume 
any communication between the vehicles. The only available information is the 
observable state of the C-Vs, i.e. their position, speed and acceleration and the map of 
the intersection. As soon as a C-V is closer than 10 m from the start of the intersection 
we assume that the turning direction is known, e.g. by observing the indicators or 
from the driven trajectory. There exist previous works from literature that support 
this assumption [ 32, 46]. In this work the vehicles follow the center line of their lane, 
so only the longitudinal acceleration has to be controlled. The map is a generic T-
intersection with a 90◦ angle between the bottom street and the street going straight, 
see Fig. 1 for a schematic. Additionally, we consider occlusions at the intersection. 
For that we define two points that specify the corners of obstacles between the 
streets that block the direct line of sight. These points are placed on the bisecting 
lines between the streets and the distance from the curb is used to parameterize the 
visibility conditions. 

To simplify the model and reduce the number of vehicles that have to be evaluated, 
we only consider those vehicles that are currently relevant to the A-V. Each of these 
vehicles is evaluated independently. With that strategy we avoid having to model 
the interaction between all possible pairs of vehicles as well. Each of the relevant 
C-Vs is assigned a virtual traffic light that is either red or green. The A-V only drives 
offensively if all traffic lights are green, a red light thus means that the A-V cannot 
drive due to that vehicle. The first relevant C-V is the vehicle that has priority (P-V) 
over the A-V, i.e. the vehicle closest to the intersection on the next street to the right. 
If the A-V will turn into the next street to the right itself, there is no P-V as the A-V 
does not have to yield to any vehicle in this case. Additionally, the vehicle that has 
to yield (Y-V) to the A-V has to be taken into consideration. The Y-V is the vehicle 
closest to the intersection that is approaching on the next street to the left. If its path 
does not intersect with the A-V’s path, the vehicle behind it is evaluated. To ensure 
a safe passage of the intersection, two more vehicles have to be considered. The 
blocking vehicle (B-V) is the closest vehicle that is leaving the intersection on the 
same road as the A-V will and the leading vehicle (L-V) is the vehicle driving directly 
in front of the A-V on its path. The B-V and the L-V can be the same vehicle. All 
these vehicles are relevant for the decision of the A-V as either their paths intersect 
with the A-V’s (this is the case for the P-V and the Y-V) or because they can hinder
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Fig. 1 Schematic representation of a scenario at a T-intersection. The visibility is determined by the 
visibility edges C1 and C2. These are placed on the bisecting lines between the streets originating 
from the intersection center IC. With that the visible street area can be calculated. In this case 
vehicles B, Y1 and L are visible, vehicles P and Y2 are not visible. The A-V enters the intersection 
from the bottom direction and turns left. It has to yield to vehicles from the right and has priority 
over vehicles from the left. Therefore, vehicle P is the P-V (as soon as it becomes visible). As both 
Y1 and Y2 are turning right, there is no Y-V. If Y2 were to drive straight it would be assigned 
the Y-V even before its preceding vehicle Y1 passes the intersection. Vehicle B is the B-V as it is 
driving on the road the A-V intends to enter and is potentially blocking this road if it is too close to 
the intersection. Vehicle L is driving directly in front of the A-V and is thus the L-V 

the A-V from leaving the intersection right away (in the case of the B-V or the L-V). 
We only consider the vehicles closest to the intersection as only those are directly 
relevant for the decision of the A-V. A vehicle behind e.g. the P-V is irrelevant as it 
cannot interact with the A-V as long as the P-V is before the intersection. The same 
is true for the L-V: The vehicle driving in front of the L-V does not directly affect 
the A-V. If one of the C-Vs passes the intersection the situation is re-evaluated, the 
labels are assigned anew and all considerations are based on the new assignments. In 
the case of limited visibility the A-V might currently not be able to see some of the 
vehicles, despite them existing. To cope with that possibility certain non-existence is 
only assumed if a reference point that is placed on the road center at a radius of 25 m 
from the intersection center is visible. In the case of the B-V the reference point is 
set to a distance of 15 m and the existence of the L-V is assumed to be known in any 
case. If the turning direction is not yet known, the worst case is assumed. Both the 
vehicle assignment and the visibility is showcased in Fig. 1. 

4.2 Decision Making Algorithm 

As the algorithm for decision making is modeled as a DES, the vehicle is described 
and controlled by its current state. The state only changes if an event occurs. For
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the definition of these events features that are based on the observable data are used. 
Based on the current state the behavior of the A-V, i.e. its acceleration, is determined. 

4.2.1 Features 

To indicate for which vehicle a feature is calculated, it is marked by a corresponding 
index: .(·)x , x ∈ {a, p, y, b, l}. All distances are measured along the drive path of a 
vehicle. The distance to scenario .dx

s (t) is positive before, zero within and negative 
after the intersection. The begin of an intersection is defined as the point where lanes 
diverge and the end is the point where lanes merge. All features are calculated for 
the current time. t . For better readability this dependence is omitted in the following. 

At an intersection, the drive paths of vehicles oftentimes intersect. The area where 
the lanes of two vehicles overlap is referred to as the common collision zone. For 
the algorithm only the distances to the collision zones of the A-V with its C-Vs are 
needed. .dx

c,xc,b and .d
x
c,xc,e are the distance of vehicle . x to the beginning and the end 

of the collision zone of the A-V with the C-V . xc. The distance of the A-V to the 
beginning of the collision zone with the P-V is then.da

c,p,b and the distance of the P-V 
to the beginning of the same zone is .dp

c,p,b. Based on the distance to collision zone 
the time to collision zone is calculated using the current velocity .vx of vehicle . x : 

.t xc,xc,· = dx
c,xc,·
vx

. (6) 

Additionally, the distance required to brake to a complete stop assuming the velocity 
.vxa and the acceleration .ax

a is used as a feature: 

.dx
b

 
vxa , a

x
a

 =

⎧
⎪⎪⎨

⎪⎪⎩

− (vxa )
2

2axa
, ax

a < 0ms−2

0 , ax
a = 0ms−2 ∧ vxa = 0ms−2

∞ , otherwise

. (7) 

The distance to the last stopping point .dx
l is the distance to the point a vehicle has 

to stop to not interfere with any other driving path through the intersection. The 
final feature is the free distance behind the B-V. This feature measures the distance 
between the end of the intersection and the rear of the B-V including the distance to 
break in an emergency (.ae = −7.5ms−2) from the current velocity: 

.db
f = db

i − 1

2
lv + db

b

 
vb, ae

 
, (8) 

where.db
i is the current distance along the driven path from the end of the intersection 

and .lv = 4.4m is the length of the vehicle.
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4.2.2 Events 

In our model the behavior is supposed to differ depending on the distance of the A-V 
to the intersection. Thus, the approach to the intersection is split into six zones. The 
current zone is determined by the A-V’s distance to scenario . da

s . In the first zone 
(.da

s > 40m) the A-V is not controlled by the decision making algorithm but drives 
freely. At the beginnings of the second (.40m ≥ da

s > 25m) and the third (. 25m ≥
da
s > 10m) zone a single prediction of the P-V is performed and the behavior of the 
A-V is adapted accordingly. The A-V adapts its behavior to show its intention as 
early as possible. The prediction is only run twice to avoid changing the behavior too 
often. The fourth zone is the area just before the intersection (.10m ≥ da

s > 1m). In 
it the A-V constantly monitors the behavior of its C-Vs and adapts its own behavior if 
necessary. Zone 5 is the area within the intersection itself (.1m ≥ da

s ≥ 0m). In these 
last two zones the final decision on the behavior has to be made and then executed 
accordingly. The final zone 6 is the street past the intersection where the vehicle is 
no longer controlled by the decision making algorithm. 

The model is based on events, most events are themselves a combination of so 
called base events. Their meaning and definition is shown in Table 2 and the events 
are presented in Table 3. Each of the four relevant C-Vs has a traffic light event 
assigned to it. The P-V is the only vehicle that has two variants of that event. In 

Table 2 Base events for the DES for decision making 

Name Description Condition 

.eb1 Certain non-existence of P-V Ref. point is visible and no P-V detected 

.eb2 No conflict expected with P-V . tac,p,e + tp < tpc,p,b ∧ dac,p,e + dp < dpc,p,b

.eb3 P-V stopped near intersection . vp < vs ∧ ap ≤ 0 m
s2

∧ dps < dn ∧ dpc,p,b >
0m

.eb4 P-V yields . tpw > ty

.eb5 Y-V inside collision zone . dyc,y,b < 0m ∧ dyc,y,e > 0m

.eb6 A-V can pass before Y-V . tac,y,e < tyc,y,b

.eb7 Stop possible (comfort dec.) . dal > dab (vi, ac)

.eb8 Y-V stops & A-V could brake . dal >
 
dab (vi, ah)+ 0.2m

 ∧ vy < vsl
. ∧ay < 0 m

s2
∧ dyc,y,b > dyb (v

y, ay)

.eb9 Y-V stopped near intersection . vy < vs ∧ ay ≤ 0 m
s2

∧ dys < dn ∧ dyc,y,b >
0m

.eb10 Certain non-existence of B-V Ref. point is visible and no B-V detected 

.eb11 Enough space behind B-V . dbf > lv + dmin

.eb12 L-V does not exist No L-V detected 

.eb13 L-V passed intersection . d ls < 0m

.eb14 Stop possible (emergency dec.) . dal > dab (v
a, ae)

.eb15 Deadlock possible A-V, P-V, Y-V: turning directions intersect 

.eb16 A-V stopped near intersection .va < vs ∧ aa ≤ 0m s−2∧ < das < dn
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Table 3 Events of the DES for decision making. Most events are a combination of base events 

Definition Description 

.e1,p,I = eb1 ∨ eb2 Green light from P-V in zones 2 and 3 

.e1,p,II = eb1 ∨ eb2 ∨ (eb3 ∧ eb4) Green light from P-V in zones 4 and 5 

.e1,y = ¬eb5 ∧ (eb6 ∨ eb7 ∨ eb8 ∨ eb9) Green light from Y-V 

.e1,b = eb10 ∨ eb11 Green light from B-V 

.e1,l = eb12 ∨ eb13 Green light from L-V 

.e2 Entered next zone 

.e3 = eb14 Emergency stop possible 

.e4 = eb15 Deadlock possible 

.e5 = eb3 ∧ eb9 ∧ eb16 Deadlock detected 

.e6 = eb3 ∧ eb9 Deadlock of C-V detected 

the prediction phase (zones 2 and 3) its light is green (event .e1,p,I) if the  A-V is  
either certain that no P-V exists (base event .eb1) or if it does not expect a conflict 
with its P-V (the A-V is predicted to enter the intersection at least . tp = 2.5 s and 
. dp = 10m earlier,.eb2). In zones 4 and 5 the light is additionally set to green (.e1,p,II) 
if the P-V is currently stopped close to the intersection (the velocity is below the stop 
threshold of.vs = 0.15m s−1, it does not accelerate and it is closer than the threshold 
.dn = 12m to the start of the intersection, .eb3) and the wait time .tpw has exceeded its 
.ty = 2 s limit (i.e. both vehicles stood for 2 s at the intersection and it is not due to 
a deadlock, .eb4). The parameters are either set to the authors considerations and are 
thus options to parameterize the model or are due to physical constraints. 

The traffic light of the Y-V (.e1,y) is green if the Y-V is currently not within the 
common collision zone (.¬eb5) and if at least one of these events is true: The A-V 
is predicted to be able to pass the collision zone before the Y-V (base event .eb6); 
the Y-V is stationary close before the intersection (.eb9); the distance to the last stop 
point of the A-V is still large enough so that it is able to stop before it without 
exceeding the comfort deceleration of .ac = −2.5m s−2 and assuming a velocity 
within the intersection of .vi = 6.5m s−1 if driving straight and .vi = 4.0m s−1 if 
turning (.eb7); the Y-V is slow (.vsl = 2m s−1), it currently brakes such that it will 
come to a complete stop before the beginning of the collision zone and the A-V 
has enough space remaining for a hard stop (.ah = −4.5m s−2) if it should become 
necessary (.eb8). The latter two base events allow the A-V to drive despite currently 
not being predicted to pass the intersection before the Y-V. With these conditions 
we avoid unnecessarily defensive behavior. Only if the A-V is very close to the 
intersection and still cannot drive first safely, it yields to the Y-V. 

The B-V gives green light (.e1,b) if the A-V is certain that it does not exist (base 
event.eb10) or if there is enough space (i.e. the length of a vehicle. lv and the minimum 
distance for a following vehicle during standstill .dmin = 1.5m) behind the B-V so 
that the A-V can pass the intersection without the risk of having to stop inside the
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intersection (.eb11). The L-V has a green traffic light assigned to it (.e1,l) in case it does 
not exist (.eb12) or after it has passed the intersection (.eb13). 

Additionally, some further events are needed for the model. If the A-V enters a 
new zone in the current time step, event .e2 is triggered. Event .e3 is triggered if an 
emergency stop before the intersection is still possible. If the turning patterns of the 
A-V, the P-V, and the Y-V all intersect with each other, a deadlock is possible (. e4). 
A deadlock occurs (. e5) if both the P-V (.eb3) and the Y-V (.eb9) as well as the  A-V  
(.eb16) are stopped before the intersection at the same time. If only the P-V and the 
Y-V are standing at the intersection, a deadlock of the C-Vs occurs (. e6). 

4.2.3 DES Model 

Each zone has states associated to it. The model can only be in a state that is associated 
with its current zone. In zones 1 and 6 there is only one state each (.s10 and .s60), as 
the model does not influence the behavior in these states. The remaining states each 
have a state for offensive driving (states .s21, .s31, .s41 and .s51) and defensive driving 
(.s22, .s32, .s42 and .s52). Offensive states prepare the A-V for driving directly through 
the intersection or are the state in which the vehicle actually passes the intersection. 
The defensive states correspond with waiting before the intersection or describe the 
waiting state directly. State .s53 describes offensive driving after waiting in state .s52. 
The model switches between states if certain events occur. The model and all its 
states and events are shown in Fig. 2. 

Fig. 2 DES of the A-V. If none of the events attributed to the current state occurs, the system 
remains in that state. These events have been omitted for better readability. The event. eg = e1,p,II ∧
e1,y ∧ e1,b ∧ e1,l describes the case that the traffic lights of all four relevant C-Vs are green in zones 
4 and 5. Event .edl = e4 ∧ e5 ∧ e1,b ∧ e1,l is true if a deadlock is possible, has occurred and both 
the L-V and the B-V do not obstruct the A-V from driving
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During the approach the model always starts in state .s10. It remains there until 
it leaves the first zone (event . e2). When this happens, the prediction of the P-V is 
evaluated for the first time. In the prediction phase only the P-V is considered as the 
A-V only has to yield to this vehicle. In case of green light (.e1,p,I) the A-V assumes 
its offensive state .s21, otherwise it drives more defensively in state .s22. When it 
eventually enters zone 3 the same evaluation is performed again. If the evaluation 
leads to a green light, it enters state .s31 that is associated with offensive behavior, 
otherwise it enters state .s32 and shows defensive behavior. When the A-V leaves 
zone 3 there is no prediction, it transitions from state .s31 to .s41 or from .s32 to .s42, 
thus keeping its offensive or defensive behavior, respectively. This can be done as 
the prediction is run constantly (i.e. in every time step) in zones 4 and 5. 

In addition to the constant prediction, all four relevant vehicles are now considered 
for decision making, as the A-V is close to or within the collision zones with its C-Vs 
in these zones and dangerous situations can thus occur easily. If the A-V is in the 
defensive state.s42 and all four lights are green (event.eg = e1,p,II ∧ e1,y ∧ e1,b ∧ e1,l) 
and if a deadlock cannot occur (.¬e4), it transitions to state.s41. If it is in the offensive 
state.s41 it switches to.s42 if at least one of the four lights is no longer green (.¬eg) and 
if there is still enough space for an emergency stop by the A-V (. e3). This does not 
pose a large risk as the parameterization for the green lights is rather conservative. 
Additionally, this strategy avoids a potentially dangerous stop within the intersection. 
If the vehicle reaches the end of zone 4 and enters zone 5 (event . e2), it progresses 
from.s41 to.s51 or from.s42 to.s52, respectively. If the vehicle is in state.s51 it remains in 
this offensive state unless at least one of the traffic lights is no longer green (.¬eg) and 
there is still enough space for an emergency stop (. e3). In this case it transitions to state 
.s52. There is no transition from.s52 to.s51. Instead, the A-V can only leave the waiting 
state .s52 to .s53 if all traffic lights are green again (. eg) while no deadlock is possible 
(.¬e4) or if there is a deadlock that the A-V tries to solve (.edl = e4 ∧ e5 ∧ e1,b ∧ e1,l). 
If a deadlock is detected by the A-V it always tries to drive first. An alternative 
strategy would be to drive after a certain waiting period. State .s53 is an offensive 
state that is assumed after the A-V was defensive. From it, the A-V either progresses 
to.s60 after it leaves the intersection (. e2) or it returns to the defensive state.s52 if it can 
no longer drive safely. The latter is the case if an emergency stop is still possible (. e3) 
and either a deadlock is possible (. e4) but the cooperation vehicles are not stopped 
(.¬e6) or a deadlock is not possible (.¬e4) and not all lights are green (.¬eg). State 
.s60 is the only state of zone 6. This state is not controlled by the algorithm as the 
interaction at the intersection is now over. 

4.2.4 Acceleration 

So far the DES only describes the current situation of the interaction. To actually 
control it, the behavior of the A-V has to be set depending on the current state of 
the DES. For that we set a target velocity for each state (see Table 4) and control the 
vehicle using the intelligent driver model (IDM) [ 40]:
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Table 4 Target velocities.vt in m s−1 for the states of the DES. Entries marked with an asterix are 
set in conjunction with a virtual vehicle to enforce stopping before the intersection 

State .s21 .s22 .s31 .s32 .s41, s51, s53 . s42, s52

.vt straight 8.3 6.0 7.5 6.0 6.5 6.5* 

.vt turning 8.3 6.0 6.0 6.0 4.0 4.0* 

.aa = am

 

1 −
 
va

vt

 4

−
 
d∗

 d

 2
 

with d∗ = dmin + va tmin + va  v

2
√
am ab

. (9) 

With the maximum acceleration .am = 2.5ms−2, the braking deceleration .ab = ac, 
the target velocity .vt as specified in Table 4, the distance along the drive path to the 
L-V . d, the difference in velocity . v = va − vl and the minimum time between 
following vehicles.tmin = 1.2 s. The acceleration.aa by the IDM is limited to a lower 
threshold of .amin = ac. If there is no L-V  . d is set to infinity and .vl = 0m s−1. In  
states .s42 and .s52 the A-V is supposed to stop .1m before the last stopping point. If 
this is not possible, the A-V brakes harder (.amin = ah) to still stop at that point. If 
this is also no longer possible, an emergency stop with.amin = ae is initiated and the 
A-V will stop directly at the last stopping point. To ensure that the A-V stops at its 
stopping point, a virtual vehicle is placed such that its rear is .dmin before the stop 
point. The virtual vehicle is not used if there is an L-V that is closer. .vt is set to the 
same value as in the offensive states .s41 or .s51. This approach ensures that the A-V 
proceeds to its stopping point if there is no L-V before the intersection and that the 
A-V is able to restart after waiting in a queue to proceed to its stop point. 

4.3 Simulation Results 

To test and validate our proposed decision making system we implemented a simu-
lation framework. To properly test the algorithm, also the C-Vs have to be simulated. 
For that a simplified version of the proposed algorithm is used because we are only 
interested in testing the A-V’s algorithm. In it, the conditions for driving depend on 
fewer features and events and zones 4 and 5 of the original algorithm are merged. 
In this zone the decision to drive first is not revised, i.e. once the algorithm decides 
to drive, it continues to do so regardless of any future development of its surround-
ings. In case of a deadlock, the C-V waits for a random duration before it tries to 
resolve the situation. The C-Vs detect a deadlock before the A-V does. That way, 
it is also possible for the C-Vs to drive first despite the A-V driving as soon as it 
detects a deadlock. That way it is possible to test the behavior of the A-V’s algorithm 
if someone else tries to resolve a deadlock. Additionally, visibility is not taken into 
consideration for the C-Vs, all vehicles are visible by the simplified algorithm at 
all times. Finally, the algorithm of the C-Vs can have some special behavior to test
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certain aspects of the main algorithm: They can be set to drive first despite having 
to yield and alternatively they can be set to wait for an arbitrary duration if they are 
allowed to drive first. This behavior is only shown when the relevant cooperation 
partner from the C-V’s perspective is the A-V. With both variants we can test the 
A-V’s behavior towards unexpected behavior. Additionally, the target velocity inside 
and after the intersection can be reduced. With that one can further ensure that the 
A-V only drives once the intersection is cleared. 

Within the simulation framework, the simulation for a single run is performed as 
follows: First, the map for the simulation is loaded and all vehicles are initiated. Then 
each time step is simulated: The currently visible vehicles are determined and only 
the current states of these vehicles are presented to the algorithm. Then the C-Vs are 
identified and the features are calculated. Afterwards, the currently active events are 
checked and the DES is updated. Finally, the acceleration is calculated. These steps 
are performed for the A-V and all C-Vs. 

For the simulations we used the generic map as described above, the visibil-
ity distance was set to either .dv ∈ {7m, 14m, 21m} and there were either . nc ∈
{1, 2, 3, 4, 5, 6} cooperation vehicles present in the simulation. Each of these com-
binations was simulated 200 times, resulting in 3600 simulations in total. In each 
simulation run the distances to the intersection of all vehicles and their initial veloc-
ities and turning patterns were set randomly within a certain feasible range. The 
special behavior and the waiting durations were set randomly as well. 

None of the simulations resulted in a collision. One should note, however, that 
it is possible for two C-Vs to restart simultaneously after a deadlock. As the deci-
sion to drive is not revised, this would result in a collision. Such a run could safely 
be disregarded for evaluation as we are only interested in the performance of the 
A-V’s algorithm. For each run we also measured the time to drive through the 
intersection .td (time while the A-V was within .30m > da

s ≥ 0m). If we average 
over all runs with the same visibility distance, we get the following average dura-
tions and corresponding standard deviations: .td (dv = 7m) = 12.10 s (.σ = 6.03 s), 
.td (dv = 14m) = 12.14 s (.σ = 6.18 s) and .td (dv = 21m) = 12.16 s (.σ = 6.23 s). 
As these values are very similar, we did not analyze the results separately for each 
visibility distance. In Table 5 the time to drive through the intersection is averaged 
over all runs that have the same number of P-Vs and Y-Vs. The results from that 
table have to be interpreted with caution as there are some aspects that are not con-
sidered, e.g. a leading vehicle that has to wait can increase the duration even though 
the A-V would not have had to stop. Also, there are only a few runs with more than 
three vehicles of a kind, the average is thus less reliable. Nonetheless, the results 
indicate that the algorithm results in reasonable decisions: The average time to pass 
the intersection increases with the number of cooperation vehicles. The increase is 
more pronounced for the P-Vs than for the Y-Vs. This is to be expected as one has 
to yield to the P-Vs instead of the interaction with Y-Vs where one should have to 
wait less often.
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Table 5 Average time to clear the intersection by the number of P-Vs and Y-Vs for all visibility 
distances 

0 P-Vs 1 P-V 2 P-Vs 3 P-Vs 4 P-Vs 5 P-Vs 

0 Y-Vs 9.49 s 14.02 s 19.43 s 22.49 s 24.26 s 29.39 s 

1 Y-V 9.62 s 16.79 s 21.95 s 25.45 s 29.87 s 36.6s  

2 Y-Vs 13.53 s 19.83 s 25.28 s 27.31 s 36.87 s – 

3 Y-Vs 15.87 s 20.58 s 24.73 s – – – 

4 Y-Vs 26.87 s 15.22 s – – – – 

5 Conclusion 

The results from Sect. 3 show that the driving behavior of human drivers depends on 
the intersection. We can thus predict the driving behavior using features that describe 
the intersection itself, its surroundings and the traffic there. As these features can be 
considered as a description of an intersection’s complexity, one can conclude that the 
complexity of an intersection has an influence on the driving behavior. We further 
show that it is possible to predict the driving behavior using only a subset with the 
most relevant features. In future work we intend to directly ask human participants 
for a complexity rating of such situations. With that we hope to find a dependence 
between the perceived complexity and the resulting behavior. 

In Sect. 4 we further present a decision making algorithm that is able to reliably 
drive through an unsignalized T-intersection while interacting with other drivers. We 
validate our proposed algorithm with a simulation and the results indicate a reliable 
performance. Future work on this topic will include variants of this algorithm for 
further scenarios such as X-intersections, roundabouts or narrow passages. We further 
intend to run the algorithm on real world maps. 
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Robust Local and Cooperative 
Perception Under Varying 
Environmental Conditions 

Jörg Gamerdinger, Georg Volk, Sven Teufel, Alexander von Bernuth, 
Stefan Müller, Dennis Hospach, and Oliver Bringmann 

Abstract Robust perception of the environment under a variety of ambient con-
ditions is crucial for autonomous driving. Convolutional Neural Networks (CNNs) 
achieve high accuracy for vision-based object detection, but are strongly affected by 
adverse weather conditions such as rain, snow, and fog, as well as soiled sensors. We 
propose physically correct simulations of these conditions for vision-based systems, 
since publicly available data sets lack scenarios with different environmental condi-
tions. In addition, we provide a data set of real images containing adverse weather for 
evaluation. By training CNNs with augmented data, we achieve a significant improve-
ment in robustness for object detection. Furthermore, we present the advantages of 
cooperative perception to compensate for limited sensor ranges of local perception. 
A key aspect of autonomous driving is safety; therefore, a robustness evaluation of 
the perception system is necessary, which requires an appropriate safety metric. In 
contrast to existing approaches, our safety metric focuses on scene semantics and the 
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relevance of surrounding objects. The performance of our approaches is evaluated 
using real-world data as well as augmented and virtual reality scenarios. 

1 Introduction 

Autonomous driving is one of the big challenges in society and currently of great 
interest in research. Autonomous vehicles are a promising approach to reduce traffic 
jams and the number of accidents and furthermore increase the comfort for the drivers 
respectively passengers. To achieve market readiness, autonomous vehicles have to 
be safe, this requires a complete and correct perception of the environment. 

Different sensors like LiDAR, RADAR, and cameras are available for perception; 
of them, cameras are most frequently employed [107]. Since camera sensors are 
vision-based, they are affected by weather circumstances such as rain or fog [107]. 
The effect of adverse weather on the frequency of car crashes is not to be neglected 
as shown by the National Highway Traffic Safety Administration; on average over 
the past 10 years, adverse weather is responsible for 21% of the car accidents in the 
United States [106]. 

Therefore, these characteristics must be taken into account when developing per-
ception algorithms in order to obtain a robust perception, which is crucial for a safe 
system. Car manufacturers are able to capture data using their own test vehicles, 
however, in research often publicly accessible data sets are utilized. Most of them 
contain no or only few data under adverse weather conditions. One method is to 
create artificial weather conditions and use those to enhance the data set. 

Two major issues come with simulating weather conditions. In order to gain a 
benefit, it is first necessary to simulate a wide range of potential conditions, such as 
rain, snow, and fog. A second problem is that these simulations must be physically 
accurate. 

Harsh weather affects not just the image itself but also neural network-based object 
detectors, whose performance is highly dependent on their training [108]. Hence, 
neural networks must be trained under different weather conditions to achieve a safe 
and robust perception. 

Even with robust neural networks, the perception is limited due to occlusion and 
sensor ranges. At this point the so-called cooperative or collective perception (CP) 
comes into play. Using multiple distributed vehicles to perceive objects locally and 
share these detections with other vehicles via Vehicle-to-Everything (V2X) commu-
nication helps to acquire information even about vehicles which cannot be perceived 
locally. 

In Sects. 1.1–1.4 we describe the concept of our work as well as the simula-
tion framework “RESIST”. Section 2 considers our physically-correct image-based 
weather augmentations. The following section presents a new way to evaluate safety 
of object perception systems. Section 4 presents optimization approaches for local 
and cooperative perception. Finally, in Sect. 5 we present our conclusion and give an 
outlook about further research topics.
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1.1 Concept 

A complete perception of the environment under all circumstances is crucial for 
autonomous driving. Hence, it must be robust against environmental influences like 
rain and fog as well as physical restrictions such as limited sensor ranges. This work 
mainly considers the environmental perception with camera sensors since this sen-
sor type is one of the most frequently used [107]. Our goal is a safe and complete 
perception of the environment. An overview of our work is shown in. We consider 
two different ways to achieve this goal: Local perception and cooperative perception. 
First we consider the local perception of an ego vehicle and investigate strategies to 
enhance the vision-based perception. The proposed robustness enhancement is based 
on training CNNs for object detection on a more comprehensive data set including 
weather augmentations. Thus, a significant part of our research covers the physically 
correct simulation of the weather conditions rain, snow and fog. Realistic weather 
simulations allow to augment existing data sets and increase the data variety for the 
training of neural networks. Also, the influence of weather on object detection itself 
must be investigated in detail. Some findings are transferred to LiDAR sensors by 
our group, since these are also vision-based (see work of Teufel et al. [100]). More-
over, the robustness improvement of RADAR sensors is investigated in our group by 
Zlavik [ 95]. The work presents a noise modulated pulsed radar system which out-
performs commercial state-of-the-art radar systems. Additionally, with compressive 
sensing the effort for signal acquisition is reduced by 70% [ 95]. Instead of sensor 
specific optimization, other approaches from our team use more generic deep learn-
ing techniques to optimize robustness. Rusak et al. [ 84] demonstrate that a simple 

B) Weather Simulation C) Local Perception 

E) Cooperative PerceptionF) Safety Evaluation 

A) Scenario Generation 

D) V2V Communication 

Evaluation 
Training 

Fig. 1 Overview of the project’s total concept. We focus on b weather simulation (see Sect. 2), 
the improvement of c local perception (see Sect. 4.2) and  e cooperative perception (see Sect. 4.3). 
Furthermore, we investigate f how to evaluate safety for object perception (see Sect. 3.2). a Scenario 
generation is out of the scope of this work due to space limitation. d V2V communication is part 
of the workflow but not a focus of our research and covered in more detail in Chap. 6. Images 
from [ 19, 108, 110, 112]
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but properly tuned training with additive Gaussian and Speckle noise generalizes 
surprisingly well to unseen corruptions. Michaelis et al. [ 64] extend the ImageNet-C 
robustness benchmark from image classification to object detection in order to pro-
vide an easy-to-use benchmark to assess how object detection models perform when 
image quality degrades. 

Even with significant improvements in the local perception, a full perception of 
the environment is not possible due to physical restrictions regarding sensor ranges 
as well as covered line-of-sights through infrastructural elements or buildings. Thus, 
as a second improvement strategy, we investigate cooperative perception and an 
optimization approach to determine the validity and trustworthiness of collectively 
perceived information before performing a fusion. Cooperative perception aims to 
increase the sensor ranges through distributed perception and helps to see traffic 
participants that are occluded by e.g., buildings. 

Since the goal is to achieve safety, we also have to consider how to evaluate safety. 
Therefore, we present a novel metric to evaluate safety for local and cooperative 
perception systems which incorporates important factors such as velocity and the 
object class. 

1.2 Related Work 

Most simulations of rain are made for computer games and only a few simulations 
consider physical correctness [ 6]. Therefore, Hospach et al. [ 42] proposed a realistic 
rain simulation based on falling, white-colored triangles. They use alpha-blending 
to simulate different intensities; but this approach does not consider effects like 
refraction. The approach of Wang et al. [115] uses ray tracing for the rendering of 
raindrops. Therefore, they have to know the exact position of the light source. Sato 
et al. [ 87] are using a single hemisphere in front of the camera; but this approach 
ignores the real distance of objects towards the camera. Furthermore, they had to 
use various simplifications to achieve real-time capability. Many more publications 
consider the rendering of realistic fluid dynamics of water droplets on different 
surfaces [ 47, 51, 52, 116]. A further study of Garg and Nayar considers the shape 
of falling water drops [ 29]. Moreover, interesting physical properties of rain can be 
learned from [ 36, 119]; both works regard the detection and removal of raindrops 
on images. A comprehensive work about the physical correct simulation of rain and 
fog was presented by Hasirlioglu [ 38]. 

For water spray of vehicles driving on wet roads (in the following: road spray) 
fewer works exist. The size of road spray was investigated by Kooij et al. [ 56]. 
Beginning with the work of Kamm and Wray [ 50] different researchers considered 
the movement of the road spray [ 31, 32, 44, 49]. Slomp et al. [ 96] presented a fast 
and efficient rendering method for water droplets based on OpenGL. 

To simulate snow, a simple approach without considering depth or falling speed 
was introduced by Wang and Wade [117]; they produced a texture with 2D-
snowflakes that surrounds the camera. Another approach is presented by Zhou and
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Libaicheng [103], they propose a method to draw falling snowflakes. Since these 
snowflakes are visible every time, it lacks in realism regarding the rotation of flakes. 
While the falling snowflakes as well as how the snow covers the ground and even 
the process of snow melting is investigated very well [ 24, 69, 86, 114], the move-
ment of the flakes while falling is considered less. This was covered by Langer and 
Zhang [ 59] who used Fourier transformations to add noise; this results in snow-like 
artifacts in dependence to a virtual depth. 

To augment fog, very basic fog simulations are presented by Sellers et al. [ 91] 
and Aleshin et al. [ 3]. Further authors generate noise to simulate different fog den-
sities [120]. Even new works only use simple light attenuation formulas such as 
presented by Sakaridis et al. [ 85]. This fog simulation was used to augment the 
well known Cityscapes data set [ 14] and create foggy Cityscapes. More realistic 
and advanced methods are presented by Dumont [ 20] as well as Jensen and Chris-
tensen [ 46]. Both approaches use Monte-Carlo-driven methods with multiple rays 
per pixel to get a realistic virtual result. Another more advanced method was pre-
sented by Biri and Michelin [ 9] who even integrated wind into their simulation. More 
realistic fog data can be produced with synthetic fog in fog chambers, such as shown 
by Colomb et al. [ 12]. They have built a 30 .× 5.5 m fog chamber, which allows fog 
simulation for some static scenarios. 

For the vision-based object detection mostly CNN-based methods are used. The 
effects of blurring, image compression and different types of noise on object detec-
tion were investigated by Dodge and Karam [ 18] and Costa et al. [ 15]. Both works 
show that noise or image corruptions lead to a lower accuracy in object detection and 
classification. The same result was shown by Nazaré et al. [ 70]. Since the accuracy 
of neural networks depend on the training, it is a common way to extend existing 
data sets by image transformations such as geometric and color transformations as 
proposed by Montserrat et al. [ 66]. The approaches in [ 15, 18, 70] mainly consider 
generic errors but no realistic environmental influences. A more realistic data set 
extension was presented by Hasirlioglu and Riener [ 39] who proposed a rain simu-
lation to investigate the effect of weather on the detection performance. The strong 
effect of synthetic rain on the object detection accuracy was also shown by Müller 
et al. [ 68]. Tian et al. [102] proposed DeepTest; a methodology to evaluate neural 
networks for autonomous driving to detect erroneous behavior by augmenting the 
data. Similar to DeepTest, Pei et al. [ 73] proposed DeepXplore to evaluate neural 
networks; additionally they did an optimization with augmented data and achieved a 
higher detection accuracy. Further works [ 5, 25, 53] considered using General Adver-
sial Networks (GANs) to augment data. Luc et al. [ 61] used GANs and achieved a 
reduction of overfitting for semantic segmentation. Karacan et al. [ 53] created syn-
thetic environmental conditions through a combination of GANs and semantic image 
information. It is necessary to point out that for the augmentations of [ 5, 25, 53, 73, 
102] there is no proof of realism. 

As aforementioned, the local perception is not only affected by environmental 
conditions but also limited due to sensor ranges and occlusion. These are problems 
which can be addressed by cooperative perception (CP).
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Two initial works to CP were presented by Rauch et al. [ 77, 78]. They present dif-
ferent approaches, how to handle and fuse information of distributed vehicles. Meth-
ods for multiple-object tracking and CP using camera and LiDAR were proposed by 
Obst et al. [ 72] and Kim et al. [ 54]. To evaluate the capability and advantages of CP, 
a correct V2V communication model must be used. An approach of modeling the 
reception probability and communication delay was presented by Torrent-Moreno et 
al. [104]. However, this approach does not consider environmental influences such 
as weather and buildings which cover the line-of-sight between sender and receiver. 
More advanced models, which are parameterizable and consider different environ-
ments such as buildings at an intersection, are proposed in [ 2, 62] or by Boban et 
al. [ 10]. Nowadays, the European Telecommunications Standards Institute (ETSI) 
works on a standard for a message format and exchange frequency for information 
about the ego vehicle and detected objects in cooperative perception [ 21, 22]. These 
work-in-progress standards and the rules for the message generation are reviewed 
by different researchers [ 17, 30, 101]. Since the simulations of [ 21] lack in realism 
due to missing delays and simplified sensor models. Allig and Wanielik [ 4] extended 
this simulation setup by more realistic vehicle dynamics and sensor models. Another 
simulation approach is presented by Schiegg et al. [ 89]. A real-world demonstra-
tion of the capabilities of CP was done by Shan et al. [ 94]. Next to simulations and 
real-world demonstrations there exist some analytical models for CP as presented in 
[ 45, 88]. 

To evaluate object detection, in common benchmarks like COCO [ 60] or  
KITTI [ 34] simple performance indicators like precision, accuracy, average pre-
cision (AP), and mean average precision (mAP) [ 16, 23, 74] are used. Since this 
does not satisfy the safety constraints of autonomous vehicles, this is not sufficient 
to evaluate object detection systems. Stiefelhagen et al. [ 97] proposed a slightly more 
comprehensive metric, using the Intersection over Union (IoU) [ 83] and the distance 
between track estimation and real position. A metric considering real-time aspects is 
proposed by Kim et al. [ 58]. The metric considers the detection time of video surveil-
lance systems, which is also a factor for autonomous vehicles. A model to achieve 
safety is the Responsible-Sensitive Safety (RSS) model. Shalev-Shwartz et al. [ 93] 
proposed a guideline that mathematically describes how safety can be achieved in 
autonomous driving. The RSS model has become well known but does not include 
any metric to evaluate safety. 

1.3 Data Sets 

Comprehensive data is crucial for development in the field of autonomous driving. 
Basically, the data can be split into two groups: real-world data and simulation data. 
Here we present the data sources used for our experiments; therefore, it should be 
pointed out that it is not a complete overview over data sources for object detection 
in the field of autonomous driving.
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As real-world data, the KITTI data set by Geiger et al. [ 34] was used. KITTI 
consists of different benchmarks for 2D- and 3D object detection as well as tracking. 
The KITTI data set was recorded in Karlsruhe (Germany) using a stereo-camera setup 
and a LiDAR sensor [ 34]. The data set consists mostly of inner-city recordings. The 
2D object detection benchmark consists of about 15,000 images with over 80,000 
labeled objects [ 34]. Further examples of real-world data sets are Cityscapes [ 14] 
and the Waymo data set [ 98]. A more comprehensive data set regarding adverse 
weather was presented by Bijelic et al. [ 8]. The presented DENSE data set contains 
real-world recordings including different weather conditions such as rain, snow or 
fog as well as recordings from a fog chamber. For a more sophisticated evaluation we 
created our own 2D image data set with heavy rain scenes. Therefore, we collected 
images of challenging rainy road scenes from our archive of self-conducted test 
drives and from dashcam videos on YouTube. This resulted in a very diverse data set 
of international road scenes. In the following, we call it realrain data set [112]. It 
contains 2062 images with 9551 labeled objects. The objects are labeled according 
to the KITTI label format. The realrain data set contains 7368 cars, 626 vans, 955 
trucks, 395 pedestrians, 205 cyclists and one tram. The scenes are well spread from 
urban to freeway scenarios and contain heavy rain, mist and drops on the windshield 
representing challenging environmental conditions for vision-based object detection 
systems. 

Since publicly available real-world data sets are limited, they possibly do not cover 
all scenarios which should be tested during development. This disadvantage can be 
solved by using realistic and parameterizable simulation frameworks. An exemplary 
commercial simulation framework is Vires VTD [ 1]. VTD provides different simu-
lation scenarios such as rural road, freeway sections or an inner-city intersection. A 
more extensive, highly realistic (see Fig. 2) and open source simulator called CARLA 
was presented by Dosovitskiy et al. [ 19]. CARLA is based on the Unreal Engine 
and provides a set of different maps, containing many inner-city scenarios as well 
as rural sections and multiple freeway sections. Besides the maps, CARLA provides 
a wide range of different vehicles (bicycle, motorbike, truck, van, different types 
of cars) and pedestrians which can be spawned at different locations. Each vehicle 
can be equipped with different sensors such as camera, RADAR and LiDAR. More 
information about available sensors can be found in [ 19]. CARLA also includes 
weather variations as well as day and nighttime. Furthermore, if a specific route is to 
be driven, the vehicles can be controlled by a user. Scenarios can also be described 
using the OpenScenario standard, which CARLA can execute. 

1.4 RESIST Framework and Workflow 

For algorithm development and simulation a configurable and deterministic pipeline 
is necessary. Therefore, we use the RESIST framework developed in our team by 
Müller et al. [ 67] with the improvements by Volk et al. [108]. RESIST is a QT-based 
C++ framework, which allows combining different plugins to a perception pipeline
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Fig. 2 Example image generated with CARLA simulator [ 19] with the proposed weather augmen-
tations (original, rain, snow, fog) from Sect. 2 

with different inputs and an evaluation. The framework’s main focus lies on local 
and cooperative perception with simulation of the weather conditions rain, snow, 
and fog as proposed in Sect. 2. RESIST can read a wide range of data sets such as 
KITTI [ 34] or Cityscapes [ 14]. Moreover, the simulation frameworks Vires VTD [ 1] 
and CARLA [ 19] can be used as input for the sensor data. This allows a comprehen-
sive evaluation of perception algorithms using a comprehensive range of data sets. 
This sensor data is used to simulate the perception using realistic camera-models. 
Various well known vision-based object detection algorithms like Faster-RCNN [82], 
RRC [ 81] and YOLOv3 [ 79] are implemented in the framework, which allows a com-
parison between different architectures. For the object tracking, a Kalman filter [118] 
with different models such as constant velocity, constant acceleration or constant turn 
rate can be used. 

RESIST is also capable to simulate cooperative perception. To simulate CP, 
RESIST includes a comprehensive communication channel simulation and process-
ing delays [109]. The transmission of locally detected objects is done by V2X commu-
nication. A V2X channel simulation based on the analytical model of IEEE 802.11p 
by Sepulcre et al. [ 92] is integrated into RESIST. For the CP the focus lies in the 
perception and less on the V2X communication; but to gather valid results a correct 
communication model is necessary. 

In the area of CP, different algorithms for matching and fusion are integrated. For 
the matching of measurements to existing tracks Hungarian matching [ 57], Nearest 
Neighbor or Expectation Maximization can be used with different cost metrics such 
as euclidean distance or IoU. For the Track-to-Track fusion there are also various
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algorithms available, such as covariance intersection [ 48], Kalman filter [118] or a  
simple mean fusion. 

To evaluate algorithms a comprehensive evaluation plugin exists. This plugin 
allows an evaluation of a defined environment with different metrics such as precision, 
recall, mAP or the safety metric [110] presented in Sect. 3.2. 

In conclusion RESIST is a comprehensive framework for a realistic simulation of 
local and cooperative object perception with physically correct vision-based weather 
simulation. 

2 Simulation of Environmental Conditions 

Simulating realistic weather influences allows extending existing data sets, which 
mainly consists of images with clear weather. Therefore, we present different weather 
augmentations for image data in this section. 

2.1 Rain 

The simulation of realistic rain is based on two approaches developed in our team by 
Hospach et al. [ 42] for simulation of falling rain and the simulation of raindrops on 
the windshield by von Bernuth et al. [ 6]. By combining these two steps it is possible to 
achieve a photorealistic simulation of rain. The rain simulation workflow is illustrated 
in Fig. 3. Examples of the proposed simulation are illustrated in Figs. 4 and 5. The  
first step is the reconstruction of the 3D scene with a depth image containing the scene 
depth for each pixel. Afterwards the falling rain as already introduced by Hospach 
et al. [ 42] is applied. The reconstructed 3D scene is used to distribute rain streaks 
in the space between camera and background, respecting the well known Marshall 
Palmer distribution [ 63]. The simulation of rain streaks respects camera parameters 
such as focal length, field of view, aperture, pixel size and shutter speed. Hence, the 
length of the simulated rain streaks varies depending on the configured shutter speed 
and the sharpness is depending on the aperture and the distance of the simulated 
rain streak from the camera. As next step, raindrops on the windshield are generated 
with the approach presented by von Bernuth et al. [ 6]. Raindrops are distributed 
on a virtual windshield and ray tracing is used for a physically correct rendering 
of these raindrops. Finally, the brightness of an image can be altered to achieve a 
realistic setting. This can be necessary if rain shall be simulated on a sunny image. By 
reducing the overall brightness of the image the simulated rain looks more realistic. 

The proposed rain simulation can be parametrized with six parameters. Falling 
rain is parametrized by the rain intensity .ri and the rain angle .ra of the vertical 
rain streaks. The simulation of raindrops on the windshield uses .ri as well as the 
additional parameter drop count .dcount which specifies the number of drops resting 
on the virtual windshield. The mean drop radius .dμ and the standard deviation .dσ
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Fig. 3 Rain simulation workflow from reading the input data over the scene reconstruction to the 
defined rain simulation. Image from [112] 

(a) Image of scene without rain (b) Image of scene with real rain 

(c) Image of scene with synthetic rain (d) Real rain vs. synthetic rain 

Fig. 4 Comparison of our synthetic rain and brightness augmentation technique against real rain. 
Image from [112] 

specify the drop size distribution on the windshield. With parameter. rb the brightness 
of the image can be adapted. 

Compared to other solutions such as applying a simple rainfilter mask as in [ 40], 
our approach allows a more realistic rain simulation by taking the current environment 
such as scene depth together with sensor characteristics into account. Additionally, 
our approach allows simulating variations of different rain instances by adapting the 
six presented parameters. 

To show the visual realism of the presented synthetic rain model we compared 
the same scene without rain (Fig. 4a), with real rain (Fig. 4b) and with synthetic rain 
(Fig. 4c). The same image extract is enlarged in (Fig. 4d) for better visibility. The real 
rain image (Fig. 4b) as well as the synthetic rain (Fig. 4c) have identical rain streaks, 
blur effects and drops, showing that the used rain model produces similar optical
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Fig. 5 Synthetic rain augmentation technique on KITTI dataset [ 34]. Image from [112] 

effects as real rain. An additional comparison of an original KITTI image compared 
to the same image with our synthetic rain augmentation is illustrated in Fig. 5. 

In addition to the qualitative realism evaluation before, a quantitative evaluation is 
performed as well. Measurements of images containing real rain have shown that rain 
has a significant influence on basic image processing metrics like for example Harris 
features [ 42]. Edge detection based algorithms (SURF, Canny, Harris, Sobel) allow 
a deliberate generalization to validate the realism of this rain simulation. Therefore, 
these basic image processing algorithms are applied to validate our rain simulation. 
The influence of real rain on these features will be compared to the influence of 
simulated rain for the exact same scene. If simulated rain as well as real rain have 
similar effects on these features we state that our model is realistic. Two sets of 
images of a well-structured scene containing edges and corners for the algorithms to 
detect were recorded for validation. The first set of images was recorded under heavy 
real rain (RefReal). The rain intensity was averaged over the period of recording 
this set of images. The rain intensity of RefReal was 52 mm h. −1. The second set 
of images (RefClean) has been recorded immediately after the rain had stopped. 
RefClean was used as input for the rain simulation with intensities of 10, 40, 70 
and 100 mm h. −1. The simulated rain will be called SimX with X specifying the 
simulated rain intensity. The effects of SimX and RefReal on Harris features were 
then compared. Therefore, the 20 best Harris features of seven randomly chosen 
frames of RefReal and SimX have been compared against RefClean. For RefClean 
16.27 correspondences were identified correctly, while for RefReal only 15.71 correct 
correspondences were found. Sim40 was closest to RefReal with an average of 15.57 
correct correspondences. For Sim70 and Sim100, 13.81 and 13.14 correspondences 
have been found respectively. Another simulation run without rain streaks, Sim0, has 
shown that the simulation does not produce unwanted side effects and has exactly 
the same value as RefClean with 16.27 correspondences. Further validation results 
were in close agreement to the presented example for Harris features. This shows
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that the presented model for simulating synthetic rain variations produces similar 
effects compared to real rain. For more details on validation we refer to [ 41]. 

2.2 Road Spray 

In contrast to rain as presented in Sect. 2.1, road spray represents a rather locally 
occurring noise. It occurs behind the wheels of a vehicle driving on a surface that is 
covered with water. However, as road spray occurs directly behind a driving vehicle, 
it covers large parts of the vehicle, making it more difficult to detect by vision-based 
object detection algorithms. Therefore, realistic simulation of road spray is important 
for performance characterization. 

To simulate the droplets, physical properties were used to calculate the trajectory 
of each droplet. When looking at the 2D case, neglecting the lateral distribution of 
the droplets, the drops have an initial velocity equal to the rotation velocity of the 
wheel [113]. After the spray is detached from the wheel, air resistance and gravity 
slow down the droplets until they reach the road surface again. For the 2D case the 
trajectory of a single droplet represents a curve given projectile motion. To transfer 
this simulation into 3D space, jitter was added to the droplet positions for every time 
step. The standard deviation of the jitter was increased the longer the time of flight 
of a single droplet was in simulation. A result of the 3D positioning of droplets is 
illustrated in Fig. 6. 

As wheel positions are known and the drop positions are calculated, the droplets 
are rendered as spheres. The mean diameter of droplets was set to 200 µm with a 
standard deviation of 10 µm. This is just large enough for the droplets to influence 
visible light geometrically. Instead of using ray tracing for refraction and reflection 
calculations, reflection and refraction vectors were precalculated. Therefore, many 
of these vectors were calculated depending on the distance of a droplet to the camera 
and the location within a droplet where a ray would have hit it. With this look-up 
vectors the location where the reflected ray would hit the environment is the last 

Fig. 6 Example drop distribution behind an imaginary wheel positioned at the origin. To maintain 
visibility, this plot reduced the number of drops. Colors indicate the longitudinal distance from the 
origin and aid spatial vision. The axes dimension is in [m]. Image from [113]
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Fig. 7 Qualitative comparison of real spray (taken from the realrain data set [112]) on the left, and 
our simulated spray on the right. Because of the lack of clean spray data sets, we can only compare 
the occlusion of the lower end of the vehicle. Here, we can observe similar behavior: parts of the 
wheel are not visible, as well as part of the rear end and parts of the rear lights. The spray color 
blends in with the background and the color of the street; it reaches the same height as the real 
spray. Image from [113] 

thing to be calculated for rendering. This was solved by generating an approximated 
cubemap of the 2D input image. Droplets too small to qualify for geometric reflection 
and refraction were generally considered to be fog. Instead of rendering those large 
number of micro droplets the sky color is assumed to be the color sampled by an 
up-pointing reflection vector and is mixed to the droplet color. The result of the 
presented rain spray simulation can be seen in Fig. 7. For more details of road spray 
simulation, we refer to the work from our team by von Bernuth et al. [113]. 

2.3 Dust 

Camera sensors are affected by different types of dust throughout the year, making 
object detection more difficult by partially obstructing the field of view. Dirt on the 
windshield ranges from pollen in the spring to dirt thrown onto the windshield from 
the tires of vehicles in front, to tire wear particles. 

Our proposed simulation of dust consists of two steps as presented by 
Hospach [ 41]. First, dust particles are distributed on a virtual windshield in front 
of the camera sensor. The size, number, transparency and color of the particles is 
configurable as well as the distance and angle of the virtual windshield. Afterwards 
a filter mask with the influence on each sensor pixel is calculated respecting the 
geometry of the particles as well as the camera parameters. In contrast to the rain 
simulation in Sect. 2.1 or the snow simulation in Sect. 2.4 a complete scene recon-
struction is not necessary as dust is a rather static environmental influence restricted 
to the windshield. Hence, the filter mask can be precalculated once and applied to
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Fig. 8 Original image generated with CARLA on the left and image with dust on the right with 60 
simulated particles and a distance of 50 mm distance to sensor 

a complete video stream, saving computation time. The calculated filter mask is 
then applied pixel wise to the input data in the second step. The result of the dust 
simulation on an image from CARLA [ 19] is illustrated in Fig. 8. 

The dust simulation was validated comparing the influence on HARRIS and SURF 
features as well as the number of edge points found by Canny edge detection [ 41]. 
The experimental setup was as follows: five black, round paper particles distributed 
on a glass pane were recorded with a real camera. Additionally, a single particle 
was recorded at different distances from the glass pane to investigate different par-
ticle sizes and edge blur effects. These real dust recordings are called RefReal in 
the following. The same scene without particles denoted as RefClean was recorded 
as baseline and input for dust simulation. Afterwards the baseline image was aug-
mented by dust simulation denoted as SimX, where X stands for the number of 
simulated particles. SimX is then compared against RefReal. If the influence of Ref-
Real to basic image processing algorithms is similar to RefSim we have shown that 
the dust simulation produces equal effects. For evaluation based on Harris features: 
20 and eight correct correspondences have been found for RefClean and RefReal, 
respectively. Sim10000 was closest with an average of 9.35 found correspondences. 
Sim20000 resulted in 5.25 correct correspondences and the simulation run with the 
lowest number of dust particles Sim1000 resulted in 16.6 found correspondences. 
This shows that the higher the number of simulated particles the lower the num-
ber of found Harris features gets. The found SURF features decrease as well with 
increasing amount of dust particles [ 41] for SimX. The results show similar effects to 
RefReal, which also reduces the average number of features found. Other simulation 
results with Canny edge detection were in close agreement. For more details on dust 
validation we refer to [ 41]. 

2.4 Snow 

Similar to the simulation of rain (see Sect. 2.1), the first step of the snow simulation 
is the reconstruction of the 3D scene. Either stereo images to calculate the depth 
image, a camera image together with LiDAR data or simulation data from e.g., 
CARLA with a perfect depth image can be used for 3D scene reconstruction. After
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scene reconstruction, snowflakes have to be distributed in front of the camera sensor. 
For snow simulation the first step is to determine the number of snowflakes which 
shall be simulated per volume: 

.Ns = Ms

2mg
. (1) 

.Ms represents the mass concentration in air according to Koh and Lacombe [ 55]: 

.Ms = 0.30 · Rs, (2a) 

.Ms = 0.47 · Rs . (2b) 

Equation (2a) represents the mass concentration for dense snow such as in snow 
storms whereas (2b) represents the regular snow mass concentration. .Rs is the snow 
precipitation rate in [mm h. −1]. After having the number of snowflakes per volume 
specified with (1), the size of the simulated snowflakes has to be determined. With 
a given snowflake diameter .D in [mm] and.Rs , the frequency of a snowflake having 
diameter .ND can be calculated as follows [ 35, 90]: 

.ND = N0 · e− D, (3a) 

.N0 = 2.50 × 103 · R−0.94
s [m−1m−3], (3b) 

. = 2.29 · R−0.45
s [mm−1]. (3c) 

For each snowflake an appropriate diameter is assigned using a piece-wise defined 
probability distribution function weighted by .ND . Each snowflake is either repre-
sented by a flat crystal or a three-dimensional crystal constructed out of three flat 
ones. The orientation of each flake is randomly chosen based on velocity vectors 
given by gravity, the velocity of the car onto which the camera sensor is attached and 
additional wind speeds. 

The result of the snow simulation can be seen in Fig. 9. Here, a comparison with 
real snow is illustrated showing the realism of the proposed simulation approach. 
For more details on our approach of snow simulation, we refer to [ 7]. 

2.5 Fog 

Similar to rain, fog consists of little water droplets. However, the amount of water 
droplets per volume is extremely high (.105 times higher than for rain), and the 
droplets are very small (.103 times smaller compared to rain) [ 76]. Therefore, a 
simulation based on 3D reconstruction with trillions of particles and ray tracing 
would be extremely expensive considering computing power and time. Hence, the 
fog simulation will use light attenuation algorithms.
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(a) Real Snow (b) Simulated Snow 

Fig. 9 Visual comparison of real and simulated snowflakes. The images on the left were taken 
during snowy weather. On the right, snow was simulated onto images of the exact same scene that 
were taken on days without any snow fall. Images from [ 7] 

When light traverses fog its rays are partially scattered or absorbed when hitting 
the small water droplets. It can be assumed that each ray passes a fixed number of 
fog particles for a specific traveled distance. When passing through fog the amount 
of scattered or absorbed light can be described by the first term of (4), where . Ii
describes the incident light intensity, .αext in .[m−1] an extinction factor and . d in . [m]
the distance the light travels through fog. Given the i-th pixel color .Ii of an image 
and a sky color . Is , every pixel with depth . d is assigned its new color [ 7] 

.I = Ii e
−αext d + Is(1 − e−αext d). (4) 

In Fig. 10 the resulting fog simulation on an image from Cityscapes data set is 
depicted. It can be seen that depending on the distance of a given pixel within the 
image the scattering and absorbing effects of fog differ. Distant objects are harder to 
spot than closer ones, as they are affected more by the fog. This results in a realistic 
fog simulation which takes the environment into account. For more information and 
results we refer to the work of von Bernuth et al. [ 7].
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Fig. 10 The upper image is from the Cityscapes data set [ 14], the lower image shows the image 
with our fog simulation applied. Image from [ 7] 

3 Evaluation Metrics for Object Perception 

To rate and compare object detection systems, different metrics exist. These metrics 
consider the accuracy of the perceived bounding boxes and indicate the perception 
rate. An overview is given in Sect. 3.1. As aforementioned, autonomous vehicles 
must be safe. Since performance and safety do not always correlate, a new metric to 
evaluate the safety of perception systems is presented in Sect. 3.2. 

3.1 Common Metrics for Perception Evaluation 

In existing benchmarks like COCO [60] orKITTI  [  34], simple performance measures 
such as precision, accuracy, recall, and mean Average Precision (mAP) are used to 
evaluate object detection [ 16, 23, 74]. These metrics are calculated on the number 
of true positive (TP) or false positive (FP) detections. The classification of TP/FP 
is based on the IoU of detection and ground truth (GT) bounding box. The IoU, is 
a well known metric in the field of object detection [ 83]. For calculation the area 
of intersection and union of detection .D and the corresponding GT .G is used as 
described by Rezatofighi et al. [ 83]: 

.IoU = |D ∩ G|
|D ∪ G| . (5) 

IoU is used by object detection benchmarks like COCO [ 60] or Pascal VOC [ 23]. 
The threshold value to classify an object as TP can be parameterized; different thresh-
old values like 0.5 in Pascal VOC or 0.7 in KITTI are used. The aforementioned met-
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rics concentrate on analyzing a single frame and are applicable to both 2D and 3D 
bounding box-based object detection. However, none of these measures can evaluate 
object-tracking techniques; they only take into account tagged GT objects. 

The performance metrics precision (. P) and recall (. R) [  74] include the true neg-
ative (TN) and false negative (FN) results to describe the percentage of correct 
detection and how accurate the detections are: 

.P = TP

TP + FP
, R = TP

TP + FN
. (6) 

The accuracy (. A) [  74] can be calculated as : 

.A = TP + TN

TP + TN + FP + FN
. (7) 

The average precision (AP) is equal to the area of the corresponding precision 
recall curve (see (8)). Similarly the average accuracy (AA) is defined. The mean 
average precision (mAP) describes the precision averaged over all available classes. 

.AP =
 1

0
P(R)dR (8) 

The Classification of Events, Activities and Relationships (CLEAR) defined dif-
ferent metrics to evaluate object detection,—tracking and head-pose estimation. 
For the detection/tracking evaluation, the Multiple-Object-Detection and Multiple-
Object-Tracking precision (MODP/MOTP), and accuracy (MODA/MOTA) were 
defined [ 97]. 

With .mt as misses, .fpt as amount of FPs and .gt as number of GT objects at time 
. t and the IoU of each object as well as .Nmapped

t as number of mapped object sets at 
. t , MODA and MODP are defined as [ 97]: 

.MODA(t) = 1 −
 

t (mt + fpt ) 
t gt

, MODP(t) =
 Nmapped

t
i=1 IoUi

Nmapped
t

. (9) 

The tracking metrics include additional parameters; .mmet as number of mis-
matches between GT and tracking hypothesis, .di,t as deviation between tracking 
hypothesis and GT as well as .ct as number of matches. Using these parameters 
MOTA and MOTP are defined as [ 97]: 

.MOTA(t) = 1 −
 

t (mt + fpt + mmet ) 
t gt

, MOTP(t) =
 

i,t di,t 
t ct

. (10) 

The CLEAR metrics are used in the KITTI Multiple-Object-Tracking bench-
mark [ 34].
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Fig. 11 Exemplary scenario showing the necessity for a metric to evaluate safety 

The higher level of detail in the CLEAR metrics gives them a significant edge over 
more fundamental performance indicators like precision and accuracy. As opposed 
to the binary method of computation based on TP and FP quantity, using the IoU 
or distance to determine the accuracy scores, allows a better statement about the 
precision. 

3.2 Safety Metric 

Since the semantics of a scenario are not taken into account by current performance 
measures, it is necessary to utilize a metric that assesses the real-world safety of an 
object perception system. 

This can be shown by the scenario in Fig. 11. Based on the detections, the given 
perception system achieves a precision of 100% and a recall of 86% since 12 of 14 
objects are correctly perceived. These results appear to be good, but the undetected 
vehicle in front of the ego vehicle or the one in the bottom right corner of the 
intersection could lead to an accident. 

The goal is the development of a metric that allows to evaluate safety of vari-
ous perceptual techniques in various traffic situations and weather conditions. The 
outcome must be a single value inside a specified range for this use. Therefore, we 
propose the “Comprehensive Safety Metric (CSM)”. 

The composition of the individual safety metric components and their relation-
ship is presented in Fig. 12. It demonstrates the method through which our strategy 
integrates many factors to produce a single safety-metric score that makes it simple 
to compare the perception algorithms.
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Fig. 12 Process overview of the single components and their relation to one another to determine a 
safety metric score. S. Red areas around ego (black) indicate safety critical areas. Image from [110] 

For the assessment of safety, three criteria to consider were defined: 

Quality The effectiveness of perception is crucial for subsequent activities, such 
as trajectory planning. 

Relevance It is important to recognize any objects that may be related to a collision. 
We must therefore discriminate between objects that are relevant and those that 
are not. 

Time Time is always an important consideration in a real-time system. Less reac-
tion time and fewer driving maneuvers are feasible as a result of longer detection 
durations. 

3.2.1 Basis of the Safety Metric 

The accuracy of object perception is extremely important when assessing 
autonomous driving safety. Further activities, such as motion planning, will be car-
ried out based on the perception. Low-quality detection or tracking may result in 
incorrect planning, which may put the occupants of the vehicle and other road users 
in danger. 

Thus, perception quality is one main safety factor and will be used as basis of 
the CSM. To combine accuracy and precision we use the CLEAR metrics [ 97] (see 
Sect. 3.1). The choice of CLEAR metrics was based on the completeness of the 
metric, as it combines accuracy and precision for detection as well as tracking. 

One issue with the MOTP score emerges when utilizing the CLEAR criteria to 
assess safety. A better tracking is indicated by a lower MOTP score. Contrary to
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the safety metric score, which equates a higher number to better safety, this is not 
the case. To invert the MOTP indication, an advanced mapping to a MOTP safety 
metric score.MOTPs ∈ [0, 1] is defined. With.Tu as upper and.Tl as lower threshold, 
.MOTPs can be determined by using: 

. fnorm(x) =

⎧⎪⎨
⎪⎩
1 x < Tl,

1 − x−Tl
Tu−Tl

Tl ≤ x ≤ Tu,

0 otherwise.

(11) 

For our experiments it holds that .Tl = 0.8m, as this value corresponds to a step 
width of a vulnerable road user (VRU) to avoid a collision. By similar reasoning we 
set .Tu = 2.5m, which roughly corresponds to a misjudgment that could lead to a 
collision. A linear function is used because MOTP is metrically scaled. 

The threshold values of . fnorm can be parameterized based on the application 
domain and the accompanying requirements. This increases the variability and makes 
the metric applicable for the assessment of various systems. 

Precision and accuracy are equally important to us for the suggested safety mea-
sure, so we use the accuracy and precision score of detection and tracking to generate 
a second safety metric basis rating. The detection safety (.SD) and the tracking safety 
(.ST ) are defined as: 

.SD = MODA + MODP

2
, ST = MOTA + MOTPs

2
. (12) 

This evaluation is just a baseline and further values must be evaluated to cover 
the three safety criteria, which were introduced in Sect. 3.2. 

3.2.2 Distance-Based IoU Verification 

A second parallel assessment is carried out before the CLEAR metrics are computed. 
For objects closer to the ego vehicle, the perception must be more precise. The shorter 
amount of time to react during motion planning is the basis for this harsher criterion 
for closer objects. We need to differentiate the perception quality, since these things 
exhibit a higher safety criticality. 

The distance-based IoU verification uses the cover .Co of GT object . G. For  a  
detected object . o with detection .D the cover is defined as: 

.Co = |Do ∩ Go|
|Go| . (13) 

Using .Co, a safety function . fs is defined as:
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. fs(Co) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+mC+(1−mC) sin(π(Co− 1
2 ))

2 Co ∈ [mC, 1],
1 Co ∈ (1, oT ],
1+cos( π

mO−oT (Co−oT))

2 Co ∈ (oT,mO],
0 otherwise.

(14) 

This function guarantees a minimum detection precision.mC. Between the thresh-
olds.mC and.mO, trigonometric functions are used for a smooth distance-based scal-
ing factor depending on the precision of the detection. .oT defines a threshold how 
much larger an object is allowed to be detected without lowering the detection preci-
sion. If .Co is larger than.oT , .mO represents the upper bound up to which. fs reduces 
the precision towards zero. 

The distance-based score is calculated by function .g : [0, 1]2 → [−1, 1], where 

.g(x, y) = x − (1 − x) · (1 − y). (15) 

The function.g( fs(Co), do)must be transformed to.[0, 1] to be used as a precision 
factor. The transformation is described by 

. fv = g( fs(Co), do)+ 1

2
. (16) 

For each detected object . o the IoU gets multiplied by . fv . This additional consid-
eration leads to a stricter rating, which should be preferred in context of safety. 

3.2.3 Consideration of the Collision Relevance 

The second criteria to assess the perception safety is the relevance of an object. 
A possibly safety critical object has a higher importance than a non safety critical 
object. 

First, it must be defined when an object must be considered as safety critical. An 
object is safety critical if its distance to the ego vehicle is less than a correspond-
ing safety distance. To calculate the safety distance, we use the approach of the 
“Responsible-Sensitive Safety” (RSS) model [ 93]. The RSS model is an attempt to 
formalize the human judgment in different road scenarios in a mathematical sense. 
The RSS model consists of 34 definitions of different safety distances, times, and 
procedural rules. These rules specify how an autonomous vehicle should behave and 
provide a mathematical description of a safe conduct. 

We use the longitudinal safety distance with same direction of movement .dlong,s , 
with opposite direction of movement .dlong,o and the lateral safety distance .dlat [ 93, 
Definition 1, 2, 6]. 

To evaluate the collision relevance of an object, the future position must be pre-
dicted. With the ego velocity.v0 and the weather-dependent brake acceleration. a, the  
prediction time frame .tp is defined as:
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Fig. 13 Schematic identification of collision relevant objects from KITTI raw data set [ 33]. The 
right image represents the bird’s eye view of the camera image on the left. Blue boxes illustrate 
ground truth annotations, light blue boxes represent the predicted object positions. Red filled objects 
are collision relevant and white ones are not. The corresponding collision relevant objects in the 
camera image are marked in red. Image from [110] 

.tp = 1.1 · v0
a
. (17) 

For each time step in the position prediction phase, it is verified whether the 
distance between ego and the object is higher than the corresponding safety distance. 
The object is marked as safety critical if this is not the case and the perception system 
did not perceive it. 

Figure 13 shows this process schematically. The red area in the bird’s eye view 
marks the safety critical area identified by lateral and longitudinal RSS safety dis-
tances. The collision relevant objects are marked in red. If they are not perceived, 
they are considered safety critical, as shown in Fig. 13. 

To rate the relevance in context of safety, we need to approximate the effect 
of a missing detection and a hypothetical resulting collision. The first step is an 
approximation of the impact velocity, in case of an in fact collision. 

Since safety in automated driving affects not only the vehicle occupants but also 
other road users, these must also be taken into account. Road users can be categorized 
into VRUs and road users with a crush collapsible zone, like cars, vans or trucks. 

The combination of impact velocity and the road user category . c of the collision 
relevant object leads to a collision score .sc,ro for a relevant non-detected safety 
critical object . ro. To assess .sc,ro, a classification of the impact velocity with four 
levels is defined. The level definition is based on the common accident categories 
used in Germany. These categories are defined by the Ministry of the Interior of the 
state North Rhine-Westphalia in Germany as UK 1 (fatality)—UK 3 (minor injuries 
only) [ 65]. Furthermore, an additional category UK 5 is used to include collisions 
with material damage only [ 65]. 

More about the effects of vehicle impact velocity in a collision can be found in 
the publications of Frederiksson et al. [ 27] and Han et al. [ 37]. 

The defined categories with their collision scores .sc,ro are:
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.sc,ro :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9 no or almost no effect (UK5),

0.75 risk of minor injuries (UK3),

0.5 risk of serious violation (UK2),

0 high probability of fatality (UK1).

(18) 

In our approach,.sc,ro is used as a factor for a single frame. A collision that is rated 
as having a high chance of fatalities is unacceptable and receives a score of 0. The 
case with almost no effect is worse than no accident, thus a factor of 0.9 is defined. 
.sc,ro must not be too strict, otherwise no accurate differentiation of the final safety 
value would be possible. 

For a single frame the worst case .sc,ro is calculated and used as factor . fc on . ST
and .SD . 

3.2.4 Evaluation of Perception Time 

The time is the third requirement for a safety-critical real-time perception system. 
The longer object identification takes, the less time there is to avert a life-threatening 
situation. The time requirements of the proposed safety metric is covered by the soft 
real-time approach of Kim et al. [ 58]. 

For the CSM, the perception time .td,o of object . o is defined as time from falling 
below the safety distance (see Sect. 3.2.3) until its perception. 

A weighted perception time is used to convert the detection time to a perception 
time factor. The introduction of the weighting was necessary, since the problem 
becomes more dangerous the longer it takes to identify it. The mean perception time 
is used to categorize long and short durations for this purpose. Let .m be the number 
of all weights and .td the mean perception time. The weighted perception time . tdw
with .m as number of all weights is defined as: 

.tdw = 1

m

 
o

 
td,o td,o ≤ td ,

2 · td,o otherwise.
(19) 

Similar to Kim et al. [ 58], the CLEAR scores are mapped by a function depending 
on .tdw. The mapping of .tdw to . ft is done with (11). The parameter .Tl is set to 0.1s,  
as tolerable delay for the detection. .Tu is set to ego braking time . tb. If  .tdw > tb, . ft
has to be 0, since an emergency braking would not be possible anymore. 

3.3 Comprehensive Safety Metric Score 

The result of the CSM has the requirement of an easy comparability. Hence, the 
safety metric score is a single value .S ∈ [0, 1], where 1 describes the maximum
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Table 1 Rating of the safety metric score. Table from [110] 

.S∈ . Classification

.[0.0 − 0.2] High risk of fatality 

.(0.2 − 0.4] Existing risk for serious violation 

.(0.4 − 0.6] Low probability of minor injuries 

.(0.6 − 0.8] Low risk UK 5 collisions 

.(0.8 − 1.0] High probability of safe status 

safety. Like the previous described performance metrics, . S is determined for each 
frame of a scenario. Therefore, .SD and .ST including the evaluation of collision 
relevance and perception time are combined. 

To achieve a high variability in the CSM, .SD and .ST can be weighted with 
.wD, wT ∈ [0, 1] : wD + wT = 1. The safety score . S is defined as: 

.S = wDSD + wT ST . (20) 

The comprehensive safety is not a percentage value, in contrast to precision or 
accuracy, which results in a non-intuitive interpretability. It is necessary to specify a 
categorization of . S (see Table 1) in order to improve interpretability. The five-level 
defined classification is based on the evaluation of the individual CLEAR metrics 
values as well as the specified influences of collision relevance and detection time 
analysis. 

This classification offers a quick and easy performance comparison safety evalu-
ation of different test scenarios and perception systems. 

3.4 Data Set Evaluation with the Safety Metric 

Initially, we motivated the safety metric by the scenario shown in Fig. 11. The result-
ing precision of 100% and a recall of 86% indicate a very good perception. Depending 
on the velocity of the vehicles in an inner-city scenario, the result of the CSM would 
be in the range of 0.4 and therefore indicating minor to serious injuries which are far 
away from a safe state. 

Table 2 shows the results of an image-plane object detection using YOLOv3 [ 79] 
on three VTD scenarios (freeway, crossing and rural) [ 1] and the KITTI raw data 
set [ 33]. As we can see, the precision is over 80% for the virtual scenarios but recall 
and mAP are rather low with about 30% for freeway and crossing. The significant 
gap between the mAP for KITTI and the simulated scenarios can be explained by 
the number of objects and their positioning. Multiple objects are occluded and thus 
cannot be perceived correctly. For the state-of-the-art performance, these results 
seem acceptable but the CSM has a result of 0.14/0.20 for freeway/crossing. Using
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Table 2 Evaluation results for object detection with YOLOv3. Table from [110] 

KITTI Virtual scenarios 

Freeway Crossing Rural 

Precision 0.59 0.82 0.86 0.96 

Recall 0.60 0.23 0.36 0.60 

mAP 0.51 0.21 0.35 0.60 

Safety score.S 0.48 0.14 0.20 0.78 

the corresponding classification of Table 1, this indicates a high risk of fatality due 
to undetected relevant objects. For the rural scenario the safety score. S is higher than 
the corresponding recall and mAP. Even if the recall is not perfect, we can observe 
that the perception is close to a safe state. This is based on the scenario of a rural 
road with our ego vehicle following two further vehicles. Single misdetections do 
not have an influence, since the distance between the objects is big enough that there 
is no significant risk of an accident. For the KITTI raw data set, the safety score 
. S, the recall and the mAP are quite similar, but the interpretation of these values is 
quite different. While a recall or mAP of 50–60% seems good, a safety score of 0.48 
indicates that some missing detections could lead to accidents with a probability of 
injuries, which is not acceptable. 

Further results for Faster-RCNN, RCC and a Birds-Eye 3D detection can be found 
in [110]. 

4 Optimization of Object Perception 

This section thematizes the optimization of local and cooperative perception. First, 
the need of robustness improvement is motivated by showing the influence of weather 
on vision-based object detection. Sections 1.3 and 4.2 present the used data sets and 
introduce our proposed robustness enhancement for local perception. Concluding, 
the advantages of cooperative perception are introduced and an environment-aware 
optimization approach for the data fusion in CP is presented. 

4.1 Influence of Weather on Perception 

Object detection relying on camera sensors is prone to adverse weather conditions 
such as heavy rain or difficult lighting conditions. Therefore, vision-based object 
detection in particular needs to be resilient to adverse and varying weather conditions. 
In order to determine its resilience and robustness, the capabilities of vehicle-local



Robust Local and Cooperative Perception … 139

(a) Faster-RCNN (b) YOLOv3 

Fig. 14 Mean average precision depending on varying rain and brightness intensities for a Faster-
RCNN and b YOLOv3. Image from [112] 

perception under varying weather conditions are investigated. In the following vision-
based perception will be referred to as perception. 

For robustness assessment of perception, two different neural networks (Faster-
RCNN [ 82] and YOLOv3 [ 79]) will be evaluated. Both networks are trained with 
the KITTI data set [ 34] and the quality of object detection is assessed with the well 
known average precision metric (AP) as presented in Sect. 3.1. To evaluate resilience 
against adverse weather conditions, a realistic synthetic rain augmentation is used to 
modify the KITTI data set. The augmentation consists of two steps, the generation 
of falling rain [ 43] followed by rendering raindrops on the windshield [ 6]. The exact 
process of simulating rain is explained in Sect. 2.1. The rain augmentation technique 
consists of various parameters to adjust the simulated rain. For evaluation, the same 
parameter ranges as used for the optimization from Table 3 were used. However, the 
ranges of rain intensity and image brightness have been adapted to cover a large 
variation in the evaluation phase: 

• rain intensity .ri . [0mm h−1, 80mm h−1]
• brightness .rb . [25%, 200%]

The exact parameter values were randomly chosen in between the above defined 
parameter ranges. The networks which were initially trained on the original and not 
augmented KITTI data set are then evaluated on the distinct test set of KITTI which 
was not used for training. The test set is augmented with synthetic rain augmentations 
and the perception capabilities are investigated. 

The result to identify the influence of synthetic rain variations on mAP of Faster-
RCNN is illustrated in Fig. 14a and b for YOLOv3 respectively. The achieved mAP 
is plotted for different rain intensities and brightness levels. Drop radii are implicitly 
included in the varying rain intensities. The angle of the falling rain is not plotted 
separately as it had fewer influence compared to rain rate and brightness. 

Faster-RCNN achieved a mean mAP of 45.45% while YOLOv3 achieved a mean 
mAP of 33.74% over all rain and brightness variations. The networks were not 
separately trained for cars, pedestrians and cyclist only as usually done for the KITTI
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benchmark. We rather used all present KITTI labels for training. Hence, the mAP 
of 50.42% (Faster-RCNN) and 48.42% (YOLOv3) without augmentation are not 
to be confused with the online available results. Additionally, the online available 
AP values are given per class, and we average the AP over all classes regarding the 
number of objects per class. 

Increasing rain intensities and brightness values below 100% drastically lower 
mAP of the investigated neural networks. For Faster-RCNN, the most critical situ-
ation was observed for 80 mm h.−1 rain intensity, 0. ◦ rain angle and 25% brightness, 
which resulted in a drop by 94.21% compared to not augmented KITTI. YOLOv3 
had the worst detection rates at 80 mm h.−1 rain intensity, .−30◦ rain angle and 25% 
brightness, which led to a detection drop of 99.61%. Hasirlioglu and Riener [ 39] 
found similar results in their investigation about the influence of rainy weather on 
the object detection performance. The investigation shows that neural networks are 
not robust against adverse weather conditions. Data sets such as KITTI lack weather-
influenced scenarios. Therefore, it is not possible to obtain robust networks just by 
training on them. 

4.2 Optimization of Local Perception 

Vehicle-local perception is strongly affected by adverse weather conditions such as 
heavy rain (see Sect. 4.1). To optimize perception capabilities of vision-based object 
detection, we introduce a methodology that uses realistic augmentation techniques 
as presented in Sect. 2 to diversify existing data sets with adverse weather condi-
tions. This makes neural networks more robust by having as diverse training data as 
possible. An overview of our proposed workflow is illustrated in Fig. 15. 

The first step is to extend the KITTI training set [ 34] with augmented data. Next 
the training of Faster-RCNN [ 82] and YOLOv3 [ 79] is performed again on this new 
and diversified data set. The KITTI training set was split as before in a training set 
consisting of 6800 images and a test set containing 468 images. Rain augmentation is 
performed for the whole training set of 6800 images and added to the original training 
data set resulting in a training data set of 13600 images. Hence, only half of the images 
from the training data are augmented while the other half are not. This prevents 
overfitting to adverse weather conditions and the neural networks will have still good 
performance on the original data set. To validate the effectiveness of the proposed 
data augmentation through synthetic rain and brightness variation, additional data 
augmentation methods were compared against our approach. Therefore, the neural 
networks were also trained with a data set extended by Gaussian noise (GN), Salt-
and-Pepper noise (SPN) and a combination of GN and SPN. 

A large variation of different augmentations (see Table 3) has been used to extend 
the training data set. Six parameters for synthetic rain have been chosen as in the 
evaluation (see Sect. 4.1). For GN two parameters, for SPN one parameter and for 
the combination three parameters specify the noise intensity. The selected parameter 
ranges were chosen as follows: The evaluation has identified that only a bright-
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Fig. 15 Workflow of local robustness optimization and evaluation by simulating rain variations. 
Image from [112] 

Table 3 Parameter ranges for data augmentation in the optimization phase of our workflow. Table 
from [112] 

Case Parameters Value intervals 

GN .μ . [10, 50]
.σ . [1, 20]

SPN Density . [1%, 30%]
GN .μ . [10, 50]
& .σ . [1, 20]
SPN Density . [1%, 30%]
Synthetic rain Rain intensity.ri . [30mm h−1, 80mm h−1]

Rain angle.ra . [−30◦, 30◦]
Brightness.rb . [40%, 100%]
Drop count.dcount . [1000, 2000]
Mean drop radius.dμ . [0.3mm, 0.8mm]
Std dev of drop radius.dσ . [0.25mm, 1.25mm]

ness below 100% has a strong negative effect on the neural networks. For a higher 
brightness an increasing rain rate affects the neural networks less. The intervals for 
brightness augmentation and rain intensity have therefore been set to the ranges found 
as critical in the evaluation phase. The lower bound of the brightness augmentation 
was set to 40% as this has shown to be more effective compared to lower brightness 
values. The lower bound of rain intensity was raised to 30 mm h. −1, as challenging 
situations only occurred above this rain intensity.
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(a) Examples containing rain streaks and blur 

(b) Examples containing rain streaks, blur and rain drops on the windshield 

Fig. 16 Comparison of GT (blue), Faster-RCNN baseline (red), optimization with GN and SPN 
(yellow) and our optimization with rain and brightness variations (green) on example images taken 
from our realrain data set. Images from [112] 

Similar to the evaluation phase, the exact parameter values for every augmentation 
technique were randomly chosen for each image within the specified parameter 
ranges to generate a training set of various conditions, except for .dμ and .dσ . 

.dμ and .dσ are calculated according to the randomly chosen rain intensity with 
equations according as introduced in Sect. 2.1. The random number generator was 
seeded to be able to generate reproducible results. 

4.2.1 Results for Optimization of Local Perception 

To evaluate the presented perception optimization approach the realrain data set 
(see Sect. 1.3) was used. This data set was solely used for validation and not for 
training. The perception capabilities in terms of AP and AA were investigated for the 
baseline, GN and SPN augmentation techniques and our optimization. A qualitative 
comparison is illustrated in Fig. 16. 

Quite remarkable is the fact, that only with our optimization approach the CNN 
was able to detect the vehicle obstructed with raindrops in Fig. 16b. A complete 
overview of the results is presented in Table 4. It can be seen that our optimiza-
tion performs best for YOLOv3 as well as for Faster-RCNN considering AP. With 
our approach, the unoptimized detection for Faster-RCNN was improved by 4.37% 
points (p.p.) and by 7.33 p.p. for YOLOv3. The second-best optimization in compar-
ison achieved an improvement of 1.65 p.p. for Faster-RCNN and 2.18 for YOLOv3. 
Looking at AA instead of AP it can be seen that AA decreased by 1.67 p.p. for Faster-
RCNN but on the other hand gets improved by 0.53 p.p. for YOLOv3. Optimization 
with SPN performs best for AA but worst when it comes to AP. When it comes to
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Table 4 Average precision and accuracy results for Faster-RCNN, YOLOv3 and RRC on the 
evaluation of our realrain data set and the original KITTI test set. Table shortened from [112] 

Neural 
network 

Training 
method 

Realrain data set KITTI test set 

AP in % AA in % AP in % AA in % 

Faster-RCNN Baseline 7.48 36.22 50.42 41.87 

GN 10.20 38.08 51.02 42.90 
SPN 7.62 39.93 48.82 40.78 

GN and SPN 9.96 37.62 49.59 40.98 

Synthetic rain 
variations 

11.85 34.55 49.95 42.27 

YOLOv3 Baseline 5.15 37.96 48.42 60.93 
GN 10.30 42.26 45.51 58.25 

SPN 3.40 43.95 37.72 59.36 

GN and SPN 5.10 42.33 39.61 56.19 

Synthetic rain 
variations 

12.48 38.49 47.79 59.86 

RRC Baseline 12.97 64.33 74.60 74.60 

safety under adverse weather conditions not perceiving an obstacle is more severe 
than false positive detections which e.g., could result in additional breaking maneu-
vers. Therefore, the AP metric is more relevant than the AA metric for assessing 
perception performance because it considers recall as well as precision. 

Furthermore, we compare our two optimized networks to the more robust neural 
network RRC [ 81]. RRC achieves a mean AP of 74.60% on the KITTI test set. 
This is a lower mean AP value compared to the online available results on the 
KITTI benchmark website as RRC was trained on all present KITTI labels and not 
separately for cars, cyclists and pedestrians. However, on the realrain data set RRC 
only achieves an AP of 12.97%. This shows that even more robust networks are 
incapable of handling adverse weather conditions such as heavy rain. Both networks 
which were optimized with rain variations achieve similar performance like RRC in 
AP on the realrain data set, although the unoptimized versions perform drastically 
worse. 

A disadvantage of many data augmentation techniques for enlarging training data 
sets is the decrease of performance on the original data set. Hence, we evaluated 
the performance on the original KITTI data set as well. The results are present 
in Table 4. It can be observed that our optimization approach with synthetic rain 
variations almost has no negative effect on the performance on the original KITTI 
data set. For Faster-RCNN the AP got lowered by 0.47 p.p. and for YOLOv3 AP 
got decreased by 0.63 p.p. Comparing our approach with the augmentation with GN 
the performance got increased for Faster-RCNN and decreased for YOLOv3. The 
remaining augmentation techniques including SPN lowered AP slightly for Faster-
RCNN but significantly for YOLOv3.
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B) Weather SimulationA) Scenario Generation 

C) Local Perception 

D) V2V CommunicationE) Cooperative Perception 

Fig. 17 Process of cooperative perception including a weather simulation (b). Image from [108] 

The presented approach shows that using realistic synthetic rain variations to 
extend existing data sets for the training of neural networks can improve the robust-
ness of these networks against adverse weather conditions. It has been shown that the 
performance on the completely different realrain data set could be improved while 
maintaining the performance on the original data set. 

4.3 Cooperative Perception 

Cooperative Perception describes a process in which the perception is done across 
multiple distributed vehicles. Information about locally perceived objects is trans-
mitted via V2X communication between different vehicles. The ETSI defined two 
message formats for this purpose. The first message is the Cooperative Awareness 
Message (CAM) [ 22] which contains the state (position, velocity, orientation) of 
the ego vehicle. The second message type is the Collective Perception Message 
(CPM) [ 21] which contains the ego state as well as the states of the locally perceived 
objects. The ego must align all information of the local perception and the data from 
the cooperative vehicles to its ego vehicle coordinate system; afterwards all infor-
mation must be matched before a fusion can be executed. The fusion is necessary 
to combine different information about the same object as exact one valid state per 
object is necessary. 

The advantages of CP are manifold. The main advantage is the increase of the 
perception range. Local perception can be limited through weather conditions (see 
Sect. 4.1), limited sensor ranges and occlusion. The CP, as shown in Fig. 17, enables 
the perception of objects that cannot be perceived locally. The ego vehicle (blue) 
can only locally detect the gray vehicle in front; the other objects are occluded by 
a building. The cooperative vehicle (red) can detect the gray vehicle in front of it
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Table 5 Comparison of mean average precision of local perception (LP) against cooperative per-
ception (CP) over different rain rates on a rural, intersection and freeway scenario. CP40 refer to 
cooperative equipment rate of 40%. Table shortened from [108] 

Rain-rate Rural Intersection Freeway 

in mm/h LP in % CP in % LP in % CP40 in % LP in % CP40 in % 

0 32.17 37.83 15.86 32.98 10.63 28.27 

10 23.50 39.50 15.60 31.57 7.86 26.44 

30 12.50 38.83 15.46 31.28 4.21 25.40 

50 11.33 38.50 14.72 29.72 1.51 24.48 

70 3.67 35.50 11.65 25.85 0.07 23.30 

90 1.67 31.33 8.64 22.59 0.00 23.75 

and send this detection together with its state to the ego. The ego now knows about 
the existence of two further objects behind the corner. Furthermore, CP can lead to 
multiple detections of the same vehicle, which allows a more precise estimation of 
an object’s state. 

The advantage of CP under different weather conditions was investigated by Volk 
et al. [108]. Their results can be used to quantify the above described advantage. 

As shown in Table 5, they achieved remarkable results. For a freeway scenario 
without any rain CP could increase the mAP from 10.63 to 28.27% with 40% coop-
erative vehicles. At higher rain rates of about 70–90 mm h.−1 the local perception 
was not able to detect any object while the CP still achieved a mAP of about 24%. 
Similar results could be observed for a rural and an intersection scenario. The rural 
scenario only consists of two vehicles except the ego; one of the further vehicles is 
a cooperative vehicle. 

4.3.1 Optimization of Cooperative Perception 

Cooperative perception complicates the measurement-to-track assignment problem, 
as well as data tracking and fusion. There are two basic methodologies for tracking 
and fusion. The first is to have a centralized tracking component that directly han-
dles sensor data [ 77]. The second method, known as Track-to-Track Fusion (T2TF), 
employs decentralized tracking components and fuses preprocessed sensor data avail-
able as tracks (state vector and corresponding covariance/confidence). T2TF has the 
advantage of providing more information about object dynamics and compensating 
V2X transmission latencies for CP [ 77]. 

Covariance Intersection (CI) of Julier and Uhlmann [ 48] was one of the first fusion 
approaches considering unknown correlations. 

The CI to determine a fused state.x̂g with covariance matrix (CM).Pg for two track 
states .x̂i , x̂ j with their CMs.Pi ,P j is defined by Julier and Uhlmann [ 48] as
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Fig. 18 Process overview 
from the pre-evaluation of a 
local perception over the 
validation of the received 
tracks in the track-validation 
to the T2TF fusion. Image 
from [111] 
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.P−1
g = ωP−1

i + (1 − ω)P−1
j , (21) 

.x̂g = Pg(ωP
−1
i x̂i + (1 − ω)P−1

j x̂ j ), (22) 

.ω = argmin det Pg, ω ∈ [0, 1]. (23) 

Improvements of the CI regarding the sequential fusion of multiple data and the 
approximation of . ω were presented by Cong et al. [ 13] as well as Niehsen [ 71] and 
Fränken and Hüpper [ 26]. 

The CI has some disadvantages; for more than two tracks it was proven by Rein-
hardt et al. [ 80] that the CI does not necessarily deliver the optimal result. Further-
more, the CI does not consider inconsistent inputs. To address the problem of incon-
sistent inputs, Covariance Union (CU) was presented [105]. If the deviation between 
two inputs exceeds a defined threshold they are considered as inconsistent [ 11]. 

In addition to CI and CU, there exist many more approaches for the T2TF. More 
information about T2TF can be found in [ 11, 75, 77, 111] 

However, the CI can not fulfil the performance requirements for CP in autonomous 
driving. As a result, the robust but suboptimal CI must be optimized so that only 
accurate and trustworthy data contribute to the cooperatively perceived environmen-
tal model. A pre-evaluation analyzes the capabilities of local perception systems so 
that the T2TF algorithm can evaluate the trustworthiness and validity of coopera-
tively transmitted data before fusing it. Therefore, the assumption is made that the 
local perception system of each vehicle is known. 

Figure 18 shows a schematic overview of our proposed optimization pipeline. The 
pre-evaluation is used to determine the reference data .Rconf for the confidence and 
.Rcov for the covariance. The reference data, combined with corresponding tracks 
used in a track-validation module; this performs the suggested validation before the 
CI is used for T2TF.
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Pre-Evaluation of Local Perception 

For our approach we assume that the local perception system . lv (sensor configura-
tion and processing pipeline) of a cooperative vehicle . v is known. Additionally, the 
current weather condition. e including its intensity must be known. Adverse weather 
is considered since it has a significant influence on the perception capabilities [112]. 
The pre-evaluation investigates the local perception systems by their perception accu-
racy, measured with the CMs and the perception capabilities in terms of confidence 
which is measured by the recall. 

The local perception is analyzed under varying weather conditions and the objects 
are clustered in distance bins . d of size .sbin = 5m; this approximately corresponds 
to the length of an average car. 

The results of a local perception are analyzed to get realistic and comparable con-
fidences and CMs, to determine if a track from a cooperative vehicle seems plausible 
and is considered as valid to fuse it. Based on this evaluation two weather-related 
lookup-tables of the local perception capabilities for each specific perception system 
.lv are built. These lookup-tables are .Rconf(lv, e, d) (abbr. .Rconf ) and . Rcov(lv, e, d)
(abbr. .Rcov). 

The recall [ 74] at a distance bin. d for. lv is used as confidence. The IoU [ 83] must  
be greater 0.5 for a classification as true positive. 

A cloudy day is used as baseline for the evaluation. To include adverse weather 
condition, a local perception under foggy condition with different densities from 
0.01.µm−3 to 0.15.µm−3 is performed. To achieve reliable results each weather con-
dition is executed for 10 runs with random positioning of the vehicles. Even for 10 
runs it can occur that no objects were present at specific distances. Hence, no refer-
ence data can be calculated. To avoid missing values in .Rconf as well as .Rcov, linear 
interpolation is used to determine missing values. 

Optimization Strategies 
Based on the pre-evaluation, our proposed approach validates collectively received 
tracks by comparison to.Rconf and.Rcov. This enables sophisticated validation of per-
ceived data in order to improve the resilience of unoptimized data fusion methods to 
harsh weather conditions as well as forged data. Two different validation approaches 
will be investigated. First a selection of tracks to reduce the number of tracks is 
presented. Second an advanced filtering approach based on the pre-evaluation is 
investigated. 

Track Selection 
Reinhardt et al. [ 80] have proven that the CI is not necessarily optimal for more than 
two tracks. As a result, one optimization strategy considers reducing the number 
of tracks used for fusion to two. For the selection of the tracks used for fusion, two 
approaches based on confidence and CM are considered. The first strategy only takes 
the two tracks with the highest confidence into account. The second strategy uses 
the two estimates with the smallest trace of their CM. The two advantages of this 
approach are the simplicity and a reduction of noise from inaccurate estimations; but
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the method only works if more than two estimations exist and can not avoid forged 
data. 

Track Filtering 
The second investigated optimization is filtering based on validation using pre-
evaluated reference data. This technique addresses fusion precision as well as secu-
rity; it’s split into confidence-based and CM-based validation. 

A received detection has an assigned confidence, describing its trustworthiness. 
Distant objects are perceived less precisely [108]; thus lower confidence values are 
expected. An attacker is interested to make sure that the forged information are con-
sidered for fusion; thus they are sent with a high confidence which can be implausi-
ble. The corresponding reference confidence from.Rconf can be used for validation. If 
reference and received confidence differ more than a defined threshold the received 
information is either inaccurate or maybe forged and thus considered as invalid and 
not used for fusion. Therefore, we assume a standardized assessment for confidence 
values. 

A similar approach is possible using the CMs of the received state estimations. 
The CMs of .Rcov are used to validate the received CM by trace or element wise. 
The CM’s main diagonal consists of the variances of the track-state items. Higher 
variances stand for a more inaccurate estimation such as for occluded or far distant 
objects. To avoid an inaccurate fusion, inaccurate estimates with a high variance 
must be discarded, even if their influence is small through the calculation of . ω. 

If the received information’s trace exceeds the reference trace by a threshold 
.ttrace, the received information is deemed incorrect and discarded before the fusion. 
However, as some variation is acceptable, the threshold should not be set too low. 

Not only the trace can be used for validation but also an element wise validation on 
the main diagonal is possible. To do so a threshold vector .telem with the size . n of the 
main diagonal of the CM must be defined. Mathematically the validation process of 
the two mentioned techniques for filtering inaccurate estimations can be formulated 
as: 

. tr(Ps)− tr(Rcov) > ttrace, or

Ps(i, i)− Rcov(i, i) > telem(i) for i = 1, 2, . . . , n.

If one of the conditions applies, the track .s(x̂s,Ps) is considered inaccurate and 
discarded. 

The two advantages of the element wise approach are the higher flexibility and 
more detailed validation. The element wise approach allows a more specific filtering 
based on the requirements of the current system. Additionally, errors of single values 
can be detected. 

To achieve an influence as high as possible an attacker would send forged data 
with a significant low CM. Contrary to the filtering of inaccurate estimations . Rcov

must not exceed the received information by more than .ttrace or .telem. 
Mathematically this can be described with the two following conditions:
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Table 6 Overall precision [%] for a cloudy day, varying fog densities and different rates of coop-
erative vehicles. CR1 refer to 16.7% cooperative vehicles, CR2 refer to 30.6% cooperative vehicles. 
Adapted from [111] 

Cloudy Fog density [.µm−3] 

0.01 0.07 0.13 

CR1 CR2 CR1 CR2 CR1 CR2 CR1 CR2 

Baseline 61.2 56.5 58.9 54.1 67.4 57.4 67.7 68.8 

2TracksConf 53.5 46.7 56.8 52.8 67.6 57.5 67.3 68.8 

2TracksCov 61.0 48.7 58.4 53.7 67.6 56.9 67.3 68.3 

FilterConf0.2 66.7 55.8 58.9 54.1 67.4 57.4 67.7 68.8 

FilterTrace4 62.4 57.4 60.3 58.1 73.2 65.1 77.2 77.2 

FilterElement 82.4 73.3 80.6 75.5 94.7 85.8 89.4 91.5 

. tr(Rcov)− tr(Ps) > ttrace, or

Rcov(i, i)− Ps(i, i) > telem(i) for i = 1, 2, . . . , n.

If one of the conditions is evaluated as true, the track must be considered as 
possibly forged and therefore will be discarded. 

Results for Optimization of Cooperative Perception 
First results showed a precision increase for the detection. Table 6 shows an extract 
of the precision results for a Vires VTD freeway scenario with 36 vehicles in total for 
different optimization strategies. With 16.7% (CR1) and 30.6% (CR2), two different 
equipment rates for cooperative vehicles are investigated. To test the robustness of 
the approach under realistic environmental conditions, a fog simulation with three 
different densities is incorporated. Baseline describes the regular CI fusion using all 
tracks. We can observe a precision of about 55–69%. For the track selection strategies 
based on the confidence (2TracksConf ) and the covariance matrix (2TracksCov), we 
can observe that the precision drops for no or low fog (0.01.µm−3). For medium 
(0.07.µm−3) and dense (0.13.µm−3) fog, the precision is similar to the original CI 
fusion. Using a confidence deviation threshold of 0.2 for the track filtering leads to 
a minor increase for a cloudy day. For the different fog densities no effect on the 
precision can be observed. Filtering tracks by trace with.ttrace = 4.0 leads to slightly 
better results for the cloudy day and low fog with an increase of about 2.5 p.p. 
For medium and dense fog the precision could be increased significantly by up to 
9.5 p.p. for CR1 at dense fog. The element wise track filtering strategy with threshold 
.telem = {1.5, 0.8, 0.2, 2.0, 1.0, 0.3} achieved the best precision scores. For the cloudy 
day as well as for all fog densities, there is a significant increase of precision. Using 
this strategy the precision can be increased by at least 16.8 p.p. and up to 28.4 p.p. 
for CR2 and a fog density of 0.07.µm−3. 

Further details about the confidence and covariance based optimization of the 
covariance intersection fusion and more results can be found in Volk et al. [111].
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5 Conclusion and Outlook 

In this chapter we presented environment-aware approaches for robustness enhance-
ment of local and cooperative perception. Vision-based object detection must be 
robust against harsh weather to ensure safety. To enhance existing data sets, which 
lack adverse weather scenarios, we presented physically correct image-based sim-
ulations for rain (including raindrops in the windshield and road spray of driving 
vehicles), snow and fog. With our proposed RESIST framework [ 67], a workflow 
to investigate different local and cooperative object perception setups exist. A wide 
range of possible input sources allows a comprehensive evaluation of the imple-
mented algorithms. In addition, the realistic weather augmentations were used to 
study the effects of different weather conditions of varying intensity on vision-based 
object detection, showing a significant decrease in average accuracy as rain intensity 
increased. This leads to the statement that state-of-the-art neural networks are not 
robust against harsh weather. However, it was shown that training neural networks 
on data sets containing images with our proposed weather augmentations leads to an 
increase of the perception performance of up to 7.33 p.p. for the YOLOv3 network. 

Additionally, we have shown that even with robust neural networks, the local 
perception is limited by different factors. To overcome these disadvantages, we con-
sidered vision-based cooperative perception. Gathering information with multiple 
vehicles allows perceiving objects outside the local sensor range or occluded in 
difficult inner-city scenarios. For different scenarios it was shown that cooperative 
perception can increase the mean average perception by about 18 p.p. compared 
to a local perception without any influence of adverse weather. Considering adverse 
weather it could be shown that a cooperative perception is possible to achieve a mean 
average precision of about 23% while the local perception was not able to detect any 
object. Hence, the cooperative perception increases safety. 

Moreover, we have shown that state-of-the-art evaluation metrics for object per-
ception do not necessarily satisfy the safety constraint. Hence, we considered addi-
tional factors such as velocity and object class for the evaluation of object perception 
systems to determine the safety with a comprehensive safety metric. 

Besides all achievements some further research topics are still open. 

Extend Weather Simulation to Further Sensors 

The influence of weather circumstances on vision-based object detection was inves-
tigated and presented in detail. To achieve a safe system, autonomous vehicles must 
have a redundancy in sensors to balance the advantages and disadvantages of differ-
ent sensor types. LiDAR is a promising technology for object detection because it is 
highly accurate and has a high sensor range. Since LiDAR sensors emit light waves, 
they are affected by weather as well. Rain, snow or fog can scatter the light waves 
such that false detections occur or the sensor range decreases. A first approach to 
weather simulations for LiDAR perception has been proposed by Teufel et al. [100].
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Similar to the camera-based object detection, the optimization of LiDAR-
based object detection has been investigated to increase robustness of LiDAR 
perception [ 99]. 

Safety Metric for Environment Perception 
Object Perception is only one part of the perception for an autonomous vehicle. 
There are more subsystems such as lane detection, traffic sign recognition or motion 
planning. To achieve a safe autonomous vehicle all subsystems are required to be safe. 
Thus, the safety must be evaluated. Since lane detection and traffic sign recognition 
are part of the perception, the proposed safety metric can be extended to these tasks. 
For both tasks some requirements exist; e.g., a lane detection should at least cover 
the distance required for an emergency brake to enable safety. 

Optimization of Cooperative Perception 
An inaccurate local perception could lead to deviations of a state estimation of a 
cooperatively perceived object. As a worst case, the estimation error increases that 
much that the benefit of cooperative perception disappears. Thus, only valid and 
accurate information should be considered for fusion. Additionally, for cooperative 
perception, the communication channel should not be overloaded by transmitting 
erroneous information. Therefore, validation strategies at sender and receiver should 
be investigated to improve communication channel usage as well as fusion accuracy. 
Moreover, the concept of cooperative perception has been extended to lane detection 
by Gamerdinger et al. [ 28]. 
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Communication Protocols for 
Cooperatively Interacting Automobiles 

Quentin Delooz, Daniel Maksimovski, Andreas Festag, and Christian Facchi 

Abstract This chapter studies two key communication services for the support 
of cooperative driving capabilities using Vehicle-to-Everything (V2X) communi-
cations: sensor data sharing and maneuver coordination. Based on the current state 
of the art in research and pre-standardization of V2X communications, we enhance 
the protocol design for both services and assess their performance by discrete-event 
simulations in highway and city scenarios. The first part of this chapter addresses the 
performance improvement of sensor data sharing by two complementary strategies. 
The shared sensor data are adapted to the available resources on the used channel. 
Furthermore, the redundancy of the transmitted information is reduced to lower the 
load on the wireless channel, whereas several approaches are proposed and assessed. 
The second part of the chapter analyzes cooperative maneuver coordination pro-
tocols. We propose a distributed approach based on the explicit exchange of V2X 
messages, which introduces priorities in maneuver coordination and studies several 
communication patterns for the negotiation and coordination of maneuvers among 
two and more vehicles. The results demonstrate the potential of V2X communi-
cations for automated driving, showcase several approaches for enhancements of 
sensor data sharing and maneuver coordination, and indicate the performance of 
these enhancements. 
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1 Motivation and Technical Background 

In recent years, various Advanced Drivers Assistance Systems (ADAS) have been 
developed [ 1], while automated vehicles with an increasing different level of auton-
omy are being extensively tested and deployed on the roads. It is commonly assumed 
that safety, comfort, and efficiency on the road can be enhanced by the introduction 
of automated and fully autonomous vehicles, especially utilizing cooperative driving 
capabilities. 

Cooperation among traffic participants is essential to reach a high level of automa-
tion. The cooperation requires interaction, which can be implicit or explicit. With 
implicit interaction, a vehicle infers the desired information of another traffic partici-
pant based on its behavior and actions. For example, it can recognize the intention of 
another vehicle by its local sensors and predict its future driving intentions when the 
other participant slows down. With explicit interaction, traffic participants exchange 
information by different means, such as by light projections in front of an auto-
mated vehicle for pedestrians. Communications can be regarded as a specific type of 
explicit interaction enabling an automated vehicle to warn others, exchange detailed 
information about the perceived environment or even negotiate maneuvers. 

Vehicle-to-everything (V2X) communication enables the direct information 
exchange among traffic participants in an ad hoc network, as opposed to the typical 
communication with a communication infrastructure. It comprises communication 
among vehicles and with the road infrastructure as well as with pedestrians, bicy-
clists, etc. V2X communication operates in the 5.9 GHz frequency band, which has 
been specifically allocated for road safety and traffic efficiency applications in Europe 
and other regions of the world. Two access technologies have reached a mature sta-
tus of research and development towards widespread deployment: WLAN-V2X and 
Cellular-V2X [ 37, 44]. Both facilitate an information exchange based on messages 
carrying application-specific content. 

The development and deployment of V2X communications are commonly divided 
into three subsequent phases that rely on communication services with increasing 
complexity and requirements using dedicated, standardized message types (Fig. 1): 

1. The Cooperative Awareness Message (CAM) and the Decentralized Environ-
mental Notification Message (DENM) for the exchange of information about 
the vehicle state (position, speed, heading, acceleration) and about safety-critical 
events, respectively (Day 1); 

2. The Collective Perception Message (CPM) for exchange of sensor data as lists of 
detected and classified objects in the perception range of a vehicle (Day 2); and 

3. The Maneuver Coordination Message (MCM) for the exchange of intended 
maneuvers and coordination data among Connected and Automated Vehicles 
(CAVs) (Day 3+). 

In Europe, these messages types and corresponding protocols are standardized 
by the European Telecommunications Standards Institute (ETSI): The specification 
of Day-1 message types CAM [ 15] and DENM is completed, CPM is close to com-
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Fig. 1 Evolution of V2X communication in phases: Day 1, Day 2 and Day 3+ 

pletion [ 14], while the MCM is still very early in the research and standardization 
phase [ 17]. 

For performance evaluation of the studied V2X communication protocols, the 
discrete-event simulator Artery [ 42] is applied. The simulator relies on Vanetza, 
INET, and OMNeT++ [ 48] to implement the ETSI Cooperative-Intelligent Trans-
port System (C-ITS) communication protocol stack. Furthermore, Artery realizes an 
environmental model and sensor models that represent vehicles to perceive objects, 
such as vehicles and bicycles, in their vicinity. To model node mobility, Artery is 
coupled with microscopic traffic simulator SUMO [ 31]. To model realistic traffic and 
vehicle movement, the traffic scenario of the city of Ingolstadt (Bavaria, Germany), 
referred to as InTAS [ 30], is chosen. The InTAS scenario lasts 24 hours long and 
relies on real daily data traffic from Ingolstadt. Figure 2 illustrates the road topology 
of the InTAS scenario. 

This chapter is divided into two main parts. The first part considers the sensor 
data sharing based on the exchange of CPMs with lists of detected and classified 
objects. The second part focuses on cooperative maneuver coordination relying on 
the exchange of intention and coordination data among the vehicles. These parts are 
structured as follows: 

• In the first part about sensor data sharing, an overview is provided in Sect. 2.1 
along with the description of the state of the art and research questions in Sect. 2.2. 
Section 2.3 reviews the protocol design from research and current standardization 
efforts. Sections 2.4 and 2.5 present in detail the proposed changes to the current 
protocol design, followed by an analysis of the obtained results in Sect. 2.6. 

• The maneuver coordination part consists of three sections. Section 3.1 presents an 
overview that also includes maneuver coordination use cases and a description of 
the state of the art in the field. Section 3.2 presents the Priority Maneuver (PriMa) 
coordination protocol design including the maneuver coordination message, com-
munication patterns, and an example scenario. An overview of the simulation
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Fig. 2 Road topology for the studied scenario of the city Ingolstadt 

framework and a discussion of the results for the studied coordination scenarios 
are presented in Sect. 3.3. 

Finally, a summary and outlook of both parts, Collective Perception (CP) and coop-
erative maneuver coordination are given in Sect. 4. 

2 V2X Communications-Based Sensor Data Sharing 

This section presents an overview of V2X communications-based sensor data shar-
ing, i.e., CP, followed by its state of the art, protocol designs, and our proposed 
improvements with performance evaluations. 

2.1 Overview 

Sensor data sharing for V2X communications has been studied extensively during 
the last few years. European research and standardization activities, e.g., in ETSI, 
commonly refer to it as “Collective Perception (CP)”. The protocol design of CP 
slowly reaches a stable state and is further used as a baseline. We investigate two 
remaining and relevant problems of CP: First, the information to be included in a
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Fig. 3 Overview of the addressed research problems and studied solutions for Collective Perception 

CPM—the detected and classified objects—needs to be carefully selected to avoid 
overloading the bandwidth-limited wireless channel. This can be achieved by apply-
ing smart filtering approaches to reduce the number of objects to transmit, called 
filtering rules within the rest of this chapter. The problem with the current design 
of these filtering rules is that they do not take into account the available channel 
resources, e.g., objects are unnecessarily filtered even when the channel usage is 
low. Our first research question to improve CP is, therefore, how and when object 
filtering should be modified to adapt to the available channel resources. The sec-
ond problem addresses information redundancy. Currently, many vehicles can send 
information about the same object, unnecessarily dissipating channel resources. To 
diminish it, the second research question is how to address information redundancy 
by filtering objects considering the information received by other traffic participants. 
The following sections will focus on these two main research questions. Figure 3 
gives a brief overview of the addressed research problems and the studied solutions 
(Fig. 4). 

2.2 State of the Art in Collective Perception 

Initial work on sensor data sharing or Collective Perception dates back to 2012 [ 39]. 
Ideas developed in [ 20] and others have led to standardization activities, the pub-
lication of the ETSI study item TR 103 562 [ 14], and draft versions of a European 
standard for CP in TS 103 324 [ 16]. Besides message format, [ 14] defines different 
design aspects of CP such as message format as well as the CPM dissemination
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Fig. 4 Intersection use case for sensor data sharing based on V2X communication 

concept to determine when to generate a CPM, i.e., the CPM generation rules. These 
rules determine which objects to include in a message and the triggering conditions 
to generate a CPM. Several publications, such as [ 7, 18, 46, 51], have reviewed 
the design for CP and elaborated on algorithms for message generation and object 
filtering. 

The problem of information redundancy has been already considered in [ 14] 
and several redundancy mitigation approaches were defined but not evaluated. Only 
a few studies have addressed the redundancy problems. [ 6] has investigated two 
approaches, Dynamic and Self-Announcement redundancy mitigation rules (see 
Sect. 2.5), before [ 14] was published but applied different CPM generation rules than 
the currently designed ones [ 14, 16]. The authors of [ 47] focused on the redundancy 
mitigation approach using the object dynamics to filter objects, i.e., the dynamics-
based redundancy mitigation rule (see Sect. 2.5). In [ 25], the authors reduce redun-
dant object information on the wireless channel using a probabilistic object filtering 
approach based on the perceived density of vehicles, market penetration, and road 
geometry. The paper showed the efficiency of object filtering using a highway sce-
nario and a minimal urban scenario with two roads. In [ 4], objects are filtered taking 
into account three criteria: channel load, and the number as well as the type of V2X 
stations that have already provided information about these objects. The main idea 
is to adapt the number of V2X stations that send information about the same object 
to the channel load. The lower the channel load is, the larger the number of stations 
that can send information about this object.
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Congestion control algorithms in the context of safety applications have been 
the subject of intense research and resulted in ETSI standards such as the ETSI TS 
102 687 [ 13] which specifies two different types of congestion control mechanism: 
reactive and adaptive. Both congestion control mechanisms rely on the perceived 
channel load to estimate available channel resources and enforce the respect of the 
channel access limitations imposed by the European norm [ 12]. These mechanisms 
attempt to share channel resources fairly among V2X stations by imposing constraints 
on the message transmission parameters, e.g., by reducing the allowed message 
transmission rate. The performance of CP with the constraints imposed by the reactive 
congestion control mechanism was initially studied in [ 19, 21] and later used in the 
evaluations realized in [ 14]. Our work [ 9] distinguishes itself by being the first to 
evaluate the CP performance with the adaptive approach and propose to adapt the 
filtering of objects based on the current channel access constraints. 

In comparison to other works, we assess the performance of four redundancy miti-
gation approaches, the impact of their parameter settings, and the congestion control 
aware object filtering with the Artery framework in a complex and diverse urban 
scenario. We design and use novel metrics for a fair comparison, and compute the 
information value brought by the different message generation rules while consider-
ing the object dynamics. For an assessment of all redundancy mitigation approaches 
considered in the standardization process [ 14], we refer to our publication in [ 10]. 

2.3 Protocol Design 

The published standardization document ETSI TR 103 562 [ 14] is considered as 
the baseline for the protocol design of Collective Perception. The corresponding 
dedicated message type CPM is composed of distinct containers with different pur-
poses. The containers relevant for this paper are the Sensor Information Container 
(SIC), Perceived Object Container (POC), and the Station and Management Con-
tainer (SMC) (Fig. 5). The SIC contains information about the sensing capabilities 
of a transmitting V2X station. The sensing capabilities are described using a list of 
capability descriptions of each of the sensors mounted on the vehicle, e.g., by indi-
cating the Field of View (FOV) and the mounted position of the sensor. Since this 
information is static, the SIC does not need to be repeated with a high frequency and 
is included only once every second. The second and most relevant container is the 
POC, which contains all objects that a vehicle perceives with its local sensors. An 
object is selected for inclusion in the POC if it fulfills at least one of the following 
conditions [ 14]: 

1. The object was never sent previously, i.e., it is considered new for the transmitting 
station. 

2. The object’s position changed by more than 4 m (absolute euclidian distance) 
since its last inclusion in a CPM of the transmitting station. 

3. The object’s speed changed by more than 0.5 m/s since its last inclusion.
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Fig. 5 CPM format and data elements as defined in [ 14]. .© ETSI 2019. All rights reserved 

4. The object’s heading changed by more than 4 degrees since its last inclusion. 
5. The object was previously included in a CPM of the transmitter more than one 

second ago. 

The SMC contains information about vehicle mobility such as position and velocity. 
Following the message generation rules in [ 14], a CPM is generated whenever the 

SIC needs to be transmitted, the POC contains at least one object for transmission or 
both. However, the CPM generation interval cannot be higher than 1 000 ms or lower 
than 100 ms. Following these message generation rules, the size and frequency of 
generated CPMs can considerably vary within the interval. 

These rules were originally proposed in [ 18] with the idea that an object is included 
in a CPM whenever it would generate a CAM, presuming that the object is capable 
to generate messages, e.g. it is a vehicle capable of V2X communication. CP helps 
increase awareness of unconnected vehicles, especially in the first years of V2X 
deployment. However, it can overreach the goal when the V2X market penetration 
ratio grows over the years and it can start overusing the communication channel. On 
the opposite, at a low market penetration rate and when a few vehicles with V2X 
capabilities are within communication range, the hypothesis is that object filtering 
does not bring significant value (see Sect. 2.1). 

Figure 6 shows an example of how to realize the CPM generation process as 
described in [ 14]. The Collective Perception Service (CPS) checks every .Tcheck if a 
CPM has to be generated. The common value for .Tcheck is 100 ms. Then, the CPS 
checks if any congestion control mechanism prevents the generation of a CPM (see 
Sect. 2.4.1), referenced as “Triggering” in Fig. 6. If allowed, the filtering rules and 
generation rules as described above are applied to the detected objects. Finally, the 
CPM is generated and passed to the lower layers for transmission. 
Our contributions are the following: 

1. To adapt the object filtering to the available channel resources, works have been 
realized in [ 9] and in [ 8]. The modification in the protocol design happens in the 
“Add filtered objects*” step of Fig. 6. 

2. To address information redundancy, several redundancy mitigation approaches 
have been analyzed following the relevant approaches in ETSI TR 103 562 [ 14]. 
The resulting modifications occur in the “Filtering rules” step in Fig. 6.
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Fig. 6 CPM generation process. Figure derived from [ 9] 

2.4 Adapting Object Filtering to the Available Channel 
Resources 

In the 5.9 GHz bandwidth in which V2X communications are deployed, channel 
resources are scarce and have to be used mindfully. The default data rate for WLAN-
V2X is 6 Mb/s [ 26]. Communication services, such as Cooperative Awareness or Col-
lective Perception with semi-periodic message generation consume a large amount of 
the wireless bandwidth. Moreover, the availability of resources for a service depends 
on two main factors: the presence of other V2X stations transmitting messages and 
the number of services of a V2X station attempting to generate messages on the 
same channel. To adapt to these two factors, congestion control mechanisms are 
being considered. For WLAN-V2X in Europe, these mechanisms are referred to as 
Decentralized Congestion Control (DCC). We review the main DCC mechanisms in 
Sect. 2.4.1. To adapt the CPM generation rules to the current DCC restrictions, we 
propose an algorithm following a principle explained in Sect. 2.4.2. The objective is 
to allow more objects to be transmitted when channel resources can support it. 

2.4.1 Decentralized Congestion Control (DCC) 

DCC is a cross-layer functionality with interacting entities at all layers. The DCC 
entities at the access layer [ 13] provide different control for the outgoing packets. 
Practically, a “gatekeeper” is implemented and it realizes a first-in-first-out (FIFO) 
packet queuing system for each channel. A gatekeeper relies on multiple simple 
priority queues for the packets to be selected for transmission and acts as a single 
server. The non-empty queue with the highest priority is dispatched first. If a queue 
is full and a packet arrives or if the lifetime of a packet expires inside the queue, 
the packet is discarded. The gatekeeper acts as a switch by opening and closing 
its gate repetitively. When a packet passes the opened gate to the lower layers,
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the gate is closed by the gatekeeper for a period of time depending on the current 
channel condition and the size of the packet. To determine the closing time of the 
door, ETSI TS 102 687 [ 13] specifies two DCC access layer strategies: reactive and 
adaptive. Both strategies respect the following DCC-related regulatory requirements 
for operation in the 5.9 GHz frequency band as specified in [ 12]: 

• .0 < Ton < 4ms: .Ton is the duration of a packet transmission. 
• .δ <= 3%, whereas . δ is the duty cycle defined as the allowed ratio of the trans-
mitter’s total “on” time relative to 1 s. .3% means that a station can occupy at most 
.3%, i.e., 30 ms, of channel time within 1 s. 

• .Toff >= 25ms: .Tof f is the duration before the gatekeeper re-opens its gate after 
the transmission of packet. In another word, the maximum packet transmission 
frequency is 40 Hz for a V2X station on a channel. 

• if .CBR >= 0.62, .Toff >= min(1000ms, Ton(4000 × CBR−0.62
CBR − 1), see  

Sect. 2.6.1 for the definition of the Channel Busy Ratio (CBR). 

LIMERIC is the adaptive DCC algorithm approach proposed in ETSI TS 
102 687 [ 13]. Every 200 ms, it updates the duty cycle . δ. Table 3 from [ 13] is used to  
parametrize LIMERIC. To improve the convergence time of LIMERIC and fairness 
during transition phases, [ 45] proposes a dual-. α approach which we used for the 
simulations in this paper. 

To enforce the allowed duty cycle . δ determined by LIMERIC, the following 
equations from [ 13] are used: 

.Toff = min(max(
Tonpp
δ

, 25ms), 1 s), (1) 

where .Tonpp denotes the transmission time of the previous packet. If . δ is updated 
during the.Toff interval, the closing time of the gatekeeper needs to be updated as per 
.Toff ∗ given by (2). 

.Toff ∗ = min(max(
Tonpp
δ

× tremain
Toff

, 25ms), 1 s − tpassed) (2) 

.tremain is the remaining time to wait with respect to the unmodified.Toff and.tpassed the 
time since the gatekeeper closed. 

An interesting feature of the gatekeeper implementation is the fact that it takes 
into account the size of the previously transmitted packet to determine the time to 
wait between two transmissions. Thus, .Tonpp is also affected by the size of CPMs 
directly, and indirectly by the applied filtering rules. This characteristic is exploited 
to adapt the size of a CPM to the closing time of the gatekeeper.
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2.4.2 Congestion-Aware Collective Perception 

Principle: We propose to enhance the current generation rules such that the Collective 
Perception service avoids filtering objects when the channel resources are sufficient 
to transmit them. The modifications brought to the current design of the CPS [ 14] 
add a new step into the CPM generation algorithms (Fig. 6) marked as “Add filtered 
objects” box. This new step is motivated by two observations. 

First, services such as the CPS are currently not specified to adapt to the DCC 
constraints. It is expected that with the Release 2 set of standards for V2X communi-
cations, mechanisms such as the one proposed here to adapt to the available channel 
resources and DCC restrictions will be specified or suggested. In particular for CP, 
when channel resources are sufficiently available, objects should not be filtered as 
rigorously as in congested situations. 

Second, following the CPM generation rules (see Sect. 2.3), if there is no object 
to transmit then no CPM is generated in most of the cases. Therefore, the filtering of 
objects influences the message generation procedure. Moreover, the current object 
filtering approach relies on object dynamics, and including more objects in a message 
increases the probability of having none of them transmitted at the next attempt at 
CPM generation. The expected result is to generate a smaller number of CPMs 
containing more objects. The advantage of reducing the CPM generation rate is the 
reduction of the overhead created by the lower layer headers. 

To address the two points discussed above, we worked on the following principle: 
if a CPM is to be generated and the addition of an object from the set of filtered 
objects does not directly impact the CPM generation rate, the object will be included 
in the CPM. This principle is possible thanks to.Tcheck and the gatekeeper as explained 
in Sect. 2.4.1. 

The following example illustrates the principle: Let’s consider that .Tcheck equals 
100 ms. If a generated CPM just passed the gatekeeper, and the resulting .Toff is 
115 ms, the next potential CPM generation will be not earlier than 200 ms later. At 
the first occurrence of .Tcheck , the  .Toff interval has not elapsed yet. Hence, the CP 
service has to postpone the message generation to the next .Tcheck cycle, which is 
200 ms after the preceding CPM generation. The resulting gap of 85 ms remains 
unused. If by adding filtered objects, the increased CPM size causes the gatekeeper 
to extend.Toff by less than those 85 ms, the effective CPM generation rate would not 
get reduced at all. As a result, the CPM generation at an interval of 200 ms is not 
prevented by DCC, independently of some additional filtered objects included. 

Effects on the Collective Perception Service: With consideration of the chan-
nel congestion, the previously described principle has three possible effects on the 
CP service: 

1. The CPM includes all objects (filtered and non-filtered) without restrictions from 
DCC on the CPM generation rate. This will occur when channel resources are 
largely available. We refer to this effect as ”One-For-All”, i.e., all objects are 
included if a CPM is to be generated.
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2. Part of the filtered objects is included in the generated CPM. This occurs when 
DCC would start delaying packet transmissions if all objects, filtered and non-
filtered, would be included. As result, the CPM contains some filtered objects 
chosen randomly. 

3. No filtered objects are included. The CPMs generated using the current ETSI 
rules are sufficient for DCC to restrict the generation rate. 

Process: The principle elaborated in the previous section was analyzed and evaluated 
in [ 9]. We enhanced the algorithm developed in [ 9] by simplifying its implementa-
tion and limiting its application. This enhancement was proposed in [ 8]. The main 
modification is to avoid adding filtered objects if the DCC restrictions before the next 
message to generate are higher than.Tof fthresh with a default value of 100 ms, which 
is the minimum time to wait between two consecutive messages. In this chapter, 
we evaluate additional values for .Tof fthresh as shown in Table 1. Figure 7 shows 
the resulting process to include filtered objects considering DCC, named Enhanced 
DCC Aware Filtering (EDAF) rules. First, the CPM containing the objects that have 
passed the POC inclusion rules and other containers is created. Second, the highest 
.Tof fworst that DCC could impose is computed. The steps to compute .Tof fworst are 
not included in this book but the reader is kindly invited to find them in [ 9]. Then, if 
.Tof fworst is lower than .TGenCpmMin, one of the objects filtered is added. These steps 
are repeated until either there are no more objects or .Tof fworst exceeds .TGenCpmMin. 

2.5 Redundancy Mitigation Rules 

A problem remaining with the current CP protocol design is that many vehicles can 
send information about the same object without any control. Information redundancy 
is not bad in itself and could help to improve the perception of the surrounding. How-
ever, in the context of limited channel resources, a too-high information redundancy 
does not bring any benefit. Moreover, it may even decrease the perceived quality 
of the object by adding extra processing delay. To address this problem, different 
techniques were elaborated in [ 14] and analyzed in other documents (see Sect. 2.2). 
Based on [ 14], parts of the techniques established for the RMRs are described in the 
following: 

The Distance-based RMR: An object is filtered if it was already received from 
another V2X station within the R_Redundancy range during the last time window 
W_Redundancy. The parameter R_Redundancy needs to be carefully tuned such that 
the RMR efficiently allow enough object transmissions while controlling the channel 
load. CAMs and CPMs are considered sources of information for this RMR. A benefit 
of this RMR is that it attempts to maintain the awareness range by distributing in 
space the sources of information. 

The Dynamics-based RMR:The logic behind this RMR is inspired by the “POC 
inclusion rules” of the CPM and the CAM triggering rules [ 15]. If the last
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Table 1 Summary of the simulation parameters 

Parameters Values 

Protocol stack European WLAN-V2X 

Frequency band 5.9 GHz 

Channel model Two Ray Interference 

Transmission power 23 dBm 

DCC Dual-alpha LIMERIC 

Services Cooperative Awareness (SCH0), Collective 
Perception (SCH1) 

Scenarios InTAS 

MPR {0.1, 0.2, ..., 1} 

Time of simulation 9:15 a.m. 

Number of vehicles . ≈2 800 

Simulation time 13 s (incl. 10 s of warmup) 

Number of repetitions 2 

Vehicle sensor equipment 2 radars: (160 m, 35. ◦, Front), (80 m, 325. ◦, 
Back) 

Area of relevance 500 m 

EDAF 

.Tof fthresh {25, 50, 75, 100} ms 

Distance-based RMR 

.W_Redundancy 1s  

.R_Redundancy {25, 50, 100, 200} m 

Dynamics-based RMR 

.P_Redundancy {2, 4} m 

.S_Redundancy {0.25, 0.5} m/s 

Frequency-based RMR 

.W_Redundancy 1s  

.N_Redundancy {1, 3, 5, 10, 15} 

update received time, position, or absolute speed of an object changed less than 
P_Redundancy meters or S_Redundancy meters per second, respectively, the object 
is filtered. As for the ”POC inclusion rules”, the advantage of this rule is that the 
updates of objects will depend on their dynamics, avoiding too many objects of non 
or slow-moving vehicles. 

The Self-Announcement-based RMR:If an object is detected as capable of trans-
mitting V2X messages (e.g., CAM or CPM), the object is filtered. 

The Frequency-based RMR:An object is filtered if it is subject to a number of updates 
higher than N_Redundancy during last time window W_Redundancy.
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Fig. 7 The Enhanced DCC Aware Filtering (EDAF) rules 

2.6 Simulation Results 

The following of this section describes the evaluation framework used for the per-
formance evaluations of the different proposed CP protocol designs. 

2.6.1 Evaluation Framework 

We review in this section the relevant parameters and components of our simulation 
framework. Table 1 summarizes the parameters used. 
Communication: The insertion of V2X devices into the market is expected to increase 
slowly over the coming years. For our simulations, the following V2X market pen-
etration rates (MPRs), i.e., the rate of vehicle able to generate and receive V2X 
messages, were investigated: .0.1, 0.2, ..., 1. 

For communication, vehicles operate a WLAN-V2X-compatible transceiver capa-
ble of working on two channels simultaneously without co-channel interference. For 
DCC, the adaptive approach described in Sect. 2.4.1 is deployed for all V2X capable 
vehicles. 

Messages: CAM and CPMs are transmitted on all vehicles with enabled V2X capa-
bilities. The CAMs are assigned to the control channel (SCH0) (or IEEE channel # 
180) and generated according to ETSI EN 302 637-2 [ 15]. The CPMs are assigned to 
the SCH1 (IEEE channel # 176) and triggered following Sect. 2.3 and according to 
the studied filtering rules. In a CPM, the itsPduHeader, the  managementContainer, 
and the stationDataContainer counts for 44 B together. A SIC is included once a 
second and is 12 B large. A POC in a CPM is 35 B after encoding. The FreeSpaceAd-
dendumContainer is omitted.
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Sensor Configuration: In Artery, object perception is assumed idealistic, i.e., there 
are no inaccuracies, and all the object information, such as dimensions, position, 
and speed, are available to the perceiving vehicle. Sensors can be allocated with a 
defined field of view, range, and attachment point to vehicles in the simulations. A 
direct line of sight between the sensor and one of the object corners is required for 
successful detection. Buildings and other vehicles are obstacles to the perception. 

In our simulations, vehicles have two radars: one with 80 m range and 325. ◦ FOV 
facing backward and one with 160 m range and 35. ◦ FOV facing forwards. This 
configuration is inspired by the one Tesla states to use for their autopilot on its 
vehicles. 1

EDAF Rules: With the sensor configuration used in our simulation, vehicles detect 
with their mounted sensors around 7.5 objects on average. In [ 9], only the configura-
tion.Tof fthresh=100ms was investigated with a different sensor configuration. In this 
book chapter, different .Tof fthresh values are investigated: 25, 50, 75, 100 ms. The 
objective is to find a threshold allowing enough filtered objects to reduce the number 
of CPMs to generate while avoiding high information redundancy by including too 
many filtered objects. The sensor-equipped configuration on the vehicle is similar to 
the study performed in [ 10] and presented in Sect. 2.5. 

Metrics: The following metrics were used to assess the performance of the different 
object filtering techniques and CPM generation rules: 

• Channel Busy Ratio (CBR): Fraction of time that the radio channel is perceived 
as busy to the total period under observation. 

• CPM rate: The number of CPMs generated per second. 
• CPM size: The size in bytes of the generated CPMs. 
• Environmental Awareness Ratio (EAR): The ratio of vehicles known within a 
delimited area around a vehicle. The area considered in our simulation is a circle 
centered on the vehicle with a diameter of 500 m. 

• Redundancy Level (RL): During the last second, the number of updates received 
about an object is divided by the number of updates that the object would have 
sent if it would have generate CAMs. More details on this metric can be found 
in [ 10]. 

• Score: This metric is realized using (3). The Gompertz function G is the valuation 
of the RL score measured for each object and has the following parametrization: 
.a = 1, b = 7, c = 2.31337. The objective is to facilitate the comparison among 
the CPM generation and filtering rules. More details on this metric are explained 
in [ 10]. 

.Score = (1 − CBR) × G(RL) × E AR (3)

1 https://www.tesla.com/autopilot, last accessed: 25. Nov 2022. 

https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
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2.6.2 Results for Enhanced DCC Filtering (EDAF) Rules 

Results to adapt the object filtering to the available channel resources were initially 
presented in [ 9] and [ 8]. Because the scenario and part of the metrics used for sim-
ulation in [  9] are different from the ones presented in Sect. 1, simulations were 
performed again to align the simulation configuration. 

To evaluate the EDAF rules, we compare them to two default configurations: the 
“No Filtering” for which all the objects are included every 100 ms and the ETSI rules 
as defined in Sect. 2.3. The EDAF rules were explained in Sect. 2.4 and its parameter 
.Tof fthresh is configured for different values as indicated in Table 1. 

Figure 8 shows the obtained results for the CBR with the different CPM generation 
rules. In general, the higher the MPR, the higher the CBR. This is expected as more 
vehicles transmit messages. Considering the greediest approach, the “No Filtering” 
strategy results in the highest average CBR perceived within the scenario (up to CBR 
around 0.55 at MPR=100 %). 

In contrast, the ETSI filtering approach, which is the most conservative regarding 
the inclusion of objects in CPMs, shows the second lowest obtained CBR indepen-
dently of the MPR. The CBR starts at around 0.04 at MPR = 0.1 and increases up to 
0.42 at MPR = 1.0. 

All EDAF configurations result in a lower channel usage than the No Filtering 
approach. With the EDAF-100 ms configuration, the CBR reaches a maximum of 
0.45 at MPR = 1.0. We can observe that the EDAF-50,75,100 ms have similar CBR 
values up to different MPRs. For example, for MPR higher than 0.4, the EDAF-50 ms 
starts obtaining a lower CBR than the two other configurations. It indicates that the 
rules are in different phases as explained in Sect. 2.4.2. First, the three configurations 
are in the “One-for-All” phase. Then, as DCC starts to impose a higher closing gate 

Fig. 8 Average CBR perceived by vehicles on SCH1 for different CPM generation rules
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Fig. 9 Average CPM rate in [CPM/s] 

delay, not all filtered objects are included in a CPM for the EDAF-50 ms. The phase 
change occurs at MPR = 0.4 for EDAF-50 ms and at MPR = 0.6 for EDAF-75 ms. 

In contrast to the other EDAF configurations, the EDAF-25 ms results in a slightly 
lower CBR than the ETSI rules while being more permissive for object inclusion. 

To explain this phenomenon, Figs. 9 and 10 show the resulting tradeoff between 
CPM size and rate obtained with both the ETSI and EDAF rules. The CPM size 
obtained at low MPR for the EDAF-50, –75, –100 ms is around 2.5 times higher 
(. ≈250 B) and 1.7 higher (. ≈170 B) for the EDAF-25 ms than for the ETSI rules 
(. ≈100 B). On the opposite, the obtained CPM rate is on average higher for the 
ETSI rules (. ≈9 CPM/s) than for the EDAF-50,75,100 ms rules (. ≈4.8 CPM/s) and 
EDAF-25 ms (. ≈5.3 CPM/s). This tradeoff between CPMs containing more objects 
but with a lower message generation rate is due to the nature of the filtering rules. 
For example, let’s consider the scenario of a V2X vehicle perceiving two objects 
requiring to be transmitted every 500 ms (due to their dynamics). There are two 
possible scenarios of CPM generation for these objects. In the first scenario, two 
CPMs are transmitted every second containing both objects. In the second scenario, 
four CPMs are generated per second containing each one of the objects. The second 
scenario is what happens in many cases with the ETSI rules, as the objects are not 
grouped for transmission. The first scenario is an example of what happens with the 
EDAF rules. As there are enough channel resources, the station creates a CPM for 
both objects, even if one of them shouldn’t have been transmitted at that time due to its 
last transmission. The advantage of the first scenario is to reduce the communication 
overhead from the lower layer headers. For the No filtering strategy, the CPM rate 
stays at a high value (around 10 CPM/s) with most of the included objects. 

As shown b Fig. 11, the resulting EAR is similar, independently of the employed 
generation rules. The lowest EAR is obtained at MPR = 0.1 with around 67 % of the 
detected objects. At MPR = 0.3, the obtained EAR is around 92 %.
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Fig. 10 Average CPM size in [B] 

Fig. 11 EAR for the studied filtering strategies 

Figure 12 for the Redundancy Level metric, the No filtering strategy results in 
the highest RL. Independently of the rules, the higher the MPR, the higher the RL 
is. Moreover, with the No Filtering rules, the RL can go up to 20 on average, i.e., 
a vehicle has 20 times more updates about an object than if this object would have 
sent CAMs following the CAM generation rules. This underlines the necessity to 
have RMR. We point out again that the tradeoff proposed by the EDAF-25ms creates 
more data redundancy, for a lower channel load, and a similar EAR than the ETSI 
rules. 

The resulting scores depend only on RL and CBR. Indeed, the EAR does not 
differ significantly among the filtering rules for the same MPR. Figure 13 shows the 
obtained scores. At MPRs. <0.15, the EDAF-50, 75, 100 ms rules resulted in the best 
score of around 0.64. At the same MPRs, the No Filtering scored better (0.61) than
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Fig. 12 Redundancy level for the different filtering strategies 

Fig. 13 Score as defined by (3) obtained for the different filtering strategies 

the EDAF-25 ms (0.56) and the ETSI one (0.46). This result shows that at low MPRs, 
greedier approaches than the ETSI one could and should be applied. At higher MPRs, 
the No Filtering approach does not score well and finishes with a score of around 
0.45 at MPR = 1.0. This score is expected from the high RL and CBR obtained. 
At MPR. >0.2, the EDAF-25 ms rule performs the best with the highest score of 
0.8 obtained at MPR = 0.3. The maximum score obtained by the different filtering 
approaches is reached between MPR = 0.2 and MPR = 0.3. For higher MPR, the RL 
is too high, resulting in a reduced gain from the Gompertz function compared to the 
generated channel load.
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2.6.3 Results for Redundancy Mitigation Rules (RMRs) 

The RMRs as described in Sect. 2.5 have been evaluated in [ 10] using the parameters 
indicated in Table 1 with the metrics: CBR, EAR, RL, and Score. By lack of place, 
only the score is shown here as a summary of the results. We did not evaluate the 
RMR “confidence level” proposed in [ 14] because they required detailed and realistic 
modeling of the environmental data capturing. The current version of Artery used in 
our study provides detailed modeling of the communication but does not have the 
capabilities for realistic sensor modeling yet. Therefore, the assumed ideal perception 
(no delay and no errors) in the object measurement is not suitable to study the 
confidence level. To better understand the impact of realistic sensor models on the 
RMR performance, enhanced simulation models and alternative simulation tools 
such as [ 49] would need to be used. 

Figure 13 shows the obtained score for the RMRs and their respective parametriza-
tions. Similarly to the results of the EDAF rules, the score is not affected by the EAR. 
Consequently, the score is influenced mostly by the CBR and the RL. Note that the 
None RMR is equivalent to the ETSI rules of Sect. 2.6.2. In the experiments per-
formed for these RMRs, the highest CBR was obtained with the None RMR. The 
results do not match exactly between the two sets of simulations. The reason is that 
two slightly different implementations of the CP Service and InTAS scenario were 
used to collect the results, which lead to the differences observed between Figs. 13 
and 14. 

The obtained score for the None RMR goes from 0.385 at MPR = 0.1 up to 0.77 
at MPR = 0.5 and decreases down to 0.62 at MPR = 1. In comparison to the other 
RMRs, the None-RMR rule performs best at an MPR lower or equal to 0.25. 

For the Self-Announcement-based RMR, the score evolves from 0.38 at MPR = 0.1 
to 0.83 at MPR = 0.75 then decreases until 0.66 at MPR = 1. Relatively to the other 
rules, this rule performs as one of the best scorers up to MPR = 0.5. At a higher MPR, 
it starts to underperform compared to others. 

The best scores relative to other RMRs obtained with the Frequency-based RMR 
are between MPR = 0.1 to 0.5 with N_Redundancy = 3. At higher MPRs, this rule 
underperforms in comparison to the best scores obtained at each MPR. 

The scores obtained by the Dynamics-based RMR are lower than the best-
performing RMRs at MPRs lower than 0.5. At MPR = 0.5 and higher, independently 
of the chosen parameter value, this RMR obtains some of the best scores from around 
0.83 at MPR = 0.5 to 0.875 at MPR=1. 

For the Distance-based RMR, the results differ predominantly for R_Redundancy 
= 200 and the other configurations. For R_Redundancy = 200, the obtained score is the 
same as for the Frequency-based RMR with N_Redundancy = 1, even by behaving 
differently. The reason is that both rules allow only a single vehicle to transmit 
information about an object. Still, both configurations result in some of the lowest 
scores obtained independently of the MPRs. With R_Redundancy = 50 m, the scores 
are some of the best at MPR higher and equal to 0.25, which corresponds to one of the 
best performing rules independently of the MPR. The other remaining configurations 
perform in general well but are either better at low or at high MPRs.
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Fig. 14 Scores obtained for the different RMRs. The score is based on the obtained performance 
for the CBR, EAR, and RL. To ease the readability, an offset in the x axis has been applied to each 
line 

2.6.4 Conclusion 

We made proposals to address two problems of the current protocol design for CP: 
adapt the filtering of objects on the available resources and reduce the problem of 
information redundancy by applying filtering rules considering objects received by 
other stations. 

We conclude that within this evaluation framework, the EAR is not affected by 
the filtering rules. The score, as currently configured, shows that at low MPR, i.e., 
.MPR ≤ 0.25, an RMR is not necessary. By allowing the inclusion of all or part 
of the filtered objects in CPMs, the EDAF rules have shown better performance 
than the current CP protocol design with a carefully chosen value for the parameter 
.Tof fthresh. At higher MPRs, RMRs relying on either distance or dynamics criteria
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perform well to decrease the number of objects included and maintain a balance 
between channel usage and information redundancy. Combining EDAF rules with 
RMRs is the next logical step for this research and is considered future work. The 
end objective is to have an approach addressing both problems simultaneously. The 
presented research opens a clear path to the following works. We expect to derive a 
new approach combining and using the advantages of both EDAF and some of the 
RMRs to obtain the best of CP, independently of the available channel resources. 

Furthermore, more work is required to analyze these filtering rules with a focus on 
perception. Indeed, in this research, measurement inaccuracies were not considered 
while being a critical factor for the development of CP. Further investigations are 
needed to understand how error-prone perception would impact the operation and 
choice of the RMRs and EDAF rules. 

3 V2X Communication-Based Maneuver Coordination 

After the detailed presentation of the sensor data sharing service, the following part 
of the chapter presents the V2X service for sharing intention and coordination data. 

3.1 Overview 

Cooperative Maneuver Coordination (CMC) represents a V2X-based application for 
exchanging of intentions and coordination data among the CAVs through V2X com-
munication. Through this process, the vehicles can broadcast their planned maneu-
vers, request and negotiate a coordinated maneuver or accordingly accept a coordina-
tion offer from other CAVs which is presented by Fig. 15. Increased safety, comfort 
and traffic optimization are the main goals of V2X enabled CMC. The standardiza-
tion process of the Maneuver Coordination Service (MCS) is still in a very early 
stage at ETSI [ 17]. 

CMC applications can be classified based on different criteria. One of them is to 
divide the applications into use case specific and generic ones where the former can 

Fig. 15 Illustration of a maneuver coordination process
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only be used for one traffic use case, while the latter can be applied to multiple use 
cases. 

Another way to categorize the CMC applications is by centralized and decentral-
ized coordination. Centralized coordination involves a central unit, mostly a Road 
Side Unit (RSU) that receives all the information from the involved vehicles and 
accordingly calculates and distributes the coordinated maneuvers to all involved vehi-
cles. Infrastructure-controlled CMC can be applied to different use cases especially 
for signalized or non-signalized intersections, roundabouts and junctions, as well as 
cooperative merging situations through Vehicle-to-Infrastructure (V2I) communi-
cation. Decentralized CMC utilizes only Vehicle-to-Vehicle (V2V) communication 
among CAVs to negotiate and coordinate maneuvers. 

Furthermore, the coordination can be implicit and explicit. In an implicit coordi-
nation, the vehicles broadcast messages with intention and coordination data without 
specifying which vehicles are included in the negotiation. This can lead to a con-
flicted situation if more vehicles are negotiating a maneuver. Explicit coordination 
involves the IDs of the negotiating and coordinating vehicles that leads to an explicit 
agreement among the vehicles for an acknowledged maneuver. 

3.1.1 Use Cases 

Various use cases exist [ 34] where CMC can bring certain benefits to increase the 
traffic safety, comfort and efficiency as well as the road capacity. Some of these use 
cases are presented in Fig. 16: 

Cooperative-Adaptive Cruise Control (C-ACC): V2X communication enhanced 
ACC that enables additional information exchange between the vehicles to synchro-
nize their velocities. 

Platooning: A platoon consists of a group of vehicles driving in a stable formation, 
usually trucks, that can keep small distances among each other by sharing V2X 
messages that include their current state information. Typically, there is a master 
vehicle that leads and manages the platoon consisting of following vehicles. 

Cooperative lane change: Two or more vehicles can cooperate to create a gap for a 
safe and efficient lane change maneuver. 

Cooperative lane merging: Common highway situation that can be facilitated by 
V2X communication to allow safe and comfortable lane merging for the CAVs. 

Cooperative overtaking: Another common maneuver that occurs frequently on 
highways and rural roads that can be utilized especially for heavy loaded trucks. 

Cooperative driving at intersections, roundabouts and junctions: Such traffic use 
cases can often cause conflicted outcomes. By exchanging the planned and desired 
intentions, the involved CAVs can coordinate each other in a safe and efficient way.
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(a) C-ACC, Platooning (b) Cooperative lane change 

(c) Cooperative lane merging (d) Cooperative overtaking 

(e) Cooperative junction (f) Cooperative intersection 

Fig. 16 Cooperative driving use cases 

3.1.2 State of the Art in Maneuver Coordination 

The topic of cooperative maneuver coordination is a relatively new field with a lot 
of open research gaps. Much of the earlier research was done on use case-specific 
coordination, whereas in the recent years more work emerged on generic maneu-
ver coordination. Platooning [ 50] and C-ACC [ 11] represent typical examples for 
use case-specific cooperative driving applications that have been more extensively 
researched and analyzed. These approaches utilize V2V communication to achieve 
coordination that is mostly focused on longitudinal acceleration and deceleration. 
Numerous approaches exist with different control strategies and characteristics pre-
sented in [ 11, 40, 50]. A research on driving in a convoy is presented in [ 35] where 
the vehicles adjust their longitudinal and lateral dynamics to keep a stable driving 
formation. Certain applications like lane change, merging and overtaking require 
coordination in both longitudinal and lateral direction in order to create the needed 
space. Such a lane change approach is presented in [ 24] consisting of three different 
phases: search, preparation and execution, where dedicated lane change messages 
are broadcast in each phase. C-ACC have been used for lane change and merging sce-
narios, as presented in [ 2]. Various message sets are utilized by distributed resource
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reservation protocols in [ 3] to analyze distributed intersection and roundabout man-
agement without infrastructure support. 

Generic decentralized maneuver coordination focuses on using one protocol to 
achieve coordination in different traffic use cases. There are different approaches 
presented in the last several years, however a lot of gaps in the protocol design, 
testing and evaluation still exist. Maksimovski et al. already published surveys [ 33, 
34] that analyze the up to date proposed coordination approaches and their advan-
tages and limitations. Comparison of the approaches was performed as well. Several 
research gaps were highlighted focusing on the detection and decision logic, the 
maneuver coordination protocol and the V2X communication. The detection and 
decision logic part includes research questions related to: decision when to request a 
maneuver on the side of the requesting vehicles as well as when to accept a maneu-
ver coordination on the side of the accepting vehicle. In the maneuver coordination 
protocol section, the following research questions are discussed: the message type 
and format, additional use case-specific information in the message, message gen-
eration rules, number of messages, number of vehicles included in a coordination, 
maneuver cascading, data security and privacy as well as a question related to the 
implementation, testing and evaluation of the maneuver coordination protocol. The 
V2X communication section discusses the communication requirements for CMC, 
the improvement of the access technologies, the communication type as well as 
multi-channel operation. 

The early standardization work by ETSI [ 17] is based on the work presented 
in [ 27] that proposed a Maneuver Coordination Service that utilizes periodic broad-
cast of dedicated Maneuver Coordination Messages (MCMs) consisting of trajectory 
related data, namely planned and desired trajectories, further enhanced by an explicit 
coordination approach and a safety analysis [ 28]. An explicit approach with extended 
communication pattern based on [27] with three new MCMs is proposed in [ 52] where 
a lane merge scenario was also used to evaluate the approach in different situations 
with and without coordination among the vehicles. An implicit approach utilizing 
MCMs is presented in [ 29], where the trajectory data have cost values representing 
the need or willingness to cooperate with the surrounding vehicles. A space time 
reservation protocol (STRP) using reservations of position and time constraints has 
been presented in [ 23] and continuously upgraded and evaluated for different traf-
fic scenarios [ 38]. This protocol uses an extended CAM message in an event based 
manner to broadcast the request in comparison to the other approaches that pro-
pose periodic MCM with trajectory data. Extended CAM message to include future 
vehicle trajectories in an event based manner is presented in [ 41] as well to be used  
in hazardous situations to mitigate or avoid an accident. An additional maneuver 
suggested container in the MCM is presented in [ 5] to be used by the infrastruc-
ture through V2I communication to send suggestions to the CAVs, which was also 
demonstrated on real world tests in [ 43]. The Complex Vehicular Interactions Pro-
tocol (CVIP) is another explicit approach presented in [ 22], utilizing four different 
messages in an event based manner also involving joint maneuver negotiation. The 
maneuvers in the message can be represented with standardized names, functions or 
trajectories. Maneuver Coordination Service with abstracted functions for automated
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driving is proposed in [ 36] consisting of seven messages that demonstrates reduced 
communication bandwidth and increases the speed of the participating vehicles in 
the coordination. 

The Priority Maneuver Coordination (PriMa) approach is proposed in [ 32] which 
relies on decentralized and explicit exchange of MCMs introducing three levels of 
maneuver requests and accordingly different negotiation process among the CAVs. 
Different communication patterns depending on the number of included vehicles in 
the coordination are also proposed, including cascading scenario. The current work 
is based on this approach and will be presented in more details in the next section. 

3.2 Protocol Design 

This section presents the PriMa coordination [ 32] protocol design. Three different 
priority levels are introduced that describe the different maneuver types. Communi-
cation patterns for different cooperative driving situations depending on the number 
of involved vehicles are studied too. The proposed MCM format is also introduced 
consisting of intention and coordination data required to complete a coordination. 

3.2.1 Priority Maneuver Request 

The proposed PriMa coordination relies on an explicit exchange of MCMs using 
different communication patterns with additional three levels of maneuver requests 
that facilitate the decision-making process of the involved CAVs in the negotiation 
phase. Three different levels of priority requests were defined in the concept that 
are based on different metrics and costs which vary depending on the use case. The 
following type of maneuver requests are defined: 

Low priority—desired maneuvers that the vehicle wants to execute in order to 
improve time efficiency. 

Medium priority—necessary maneuvers that the vehicle needs to perform in order 
to stay on the route or significantly improve time efficiency. 

High priority—critical maneuvers to avoid an emergency maneuver or accident. 
A thorough analysis of cooperative driving use cases is required to determine the 

priority of the requested maneuvers utilizing metrics and cost values based on the 
road rules, velocity, acceleration, time efficiency, conflicted traffic situations, as well 
as potential collisions and emergency situations. Such a different level of requests 
will also lead to a different negotiation process between the involved participants. On 
the side of the accepting vehicles, similar metrics can be used to evaluate whether a 
request is feasible and worthy to accept because in most of the cases the vehicles that 
accept the maneuvers will be disadvantaged. In [ 32] estimated values were used for 
a lane change scenario where the priority level of the request was based on the time
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Fig. 17 Maneuver Coordination Message 

gap to the front vehicle. On the other side, the accepting vehicles were evaluating the 
request based on the required deceleration and velocity reduction. Three different 
thresholds for reducing the velocity were used based on the priority level of the 
request. However, a high priority critical maneuver is accepted whenever the vehicle 
can plan and execute a conflict free trajectory. 

3.2.2 Maneuver Coordination Message 

The MCM consists of vehicle state information, trajectory related data that represent 
the planned movement of the vehicle as well as trajectories included in the negotiation 
process. Figure 17 presents the MCM which includes several containers and is similar 
to the already standardized ETSI message formats. The ITS PDU (protocol data 
unit) header includes the version of the protocol, the ID of the station sending the 
message as well as the message type, in this case the MCM subtypes which are 
introduced below. Along the header, the timestamp when the MCM was generated is 
also included in each message. The basic container consists of the current reference 
position and the station type that can also be a vehicle or a RSU. The main container 
of the message is the vehicle maneuver container that includes the required vehicle 
dynamics, namely the planned (PT), requested (RT) and offered (OT) trajectories. 
The data type that represents the trajectory is a sequence of data points that includes 
the vehicle pose (position and orientation), the velocity as well as the time step 
between the trajectory points. The pose includes the longitude and latitude values, 
alongside the heading of the vehicle. Furthermore, the lane ID that the vehicle is 
currently driving on is also included. In a request MCM, the priority level as well 
as the request ID are also included alongside the IDs of the potential accepting 
vehicles. Accordingly, during negotiation the replying vehicles also include the ID 
of the request they refer to. The inclusion of the ID of the request and the IDs of 
the vehicles involved in the negotiation makes the coordination process explicit and 
unambiguous.
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(a) (b) (c) 

Fig. 18 Message flow in coordination between two vehicles (a), three vehicles (b) and cascading 
situation with three vehicles (c) 

3.2.3 Communication Pattern 

PriMa proposes three different communication patterns depicted in Fig. 18 repre-
senting coordination between two, more than two (in this case three) vehicles and 
a cascading situation using the following MCM subtypes explained below: regular, 
request, offer, confirm, accept, reject, execute, cancel, abort, emergency, cascading 
request, cascading accept and cascading reject. 

As an intention sharing message, the vehicles regularly broadcast MCMs. In a 
coordination between two vehicles, only two MCMs are required to complete the 
negotiation process: request and accept. However, in a situation involving three or 
more vehicles, additional MCM subtypes like offer and confirm are needed in order 
to ensure an unambiguous and efficient negotiation process. This avoids a divergent 
situation that can lead to conflicted and inefficient maneuvers between the involved 
vehicles. In such a way, the influence of the lost message packets on the negotiation 
process can also be limited. The impact of the unreliable communication is also 
discussed in more detail in [ 32] and will be analyzed in the next section too. In a 
cascading situation, the accepting vehicle in order to accept the incoming request, 
has to send a cascading request to another vehicle which prolongs the negotiation 
process. PriMa proposes a limited cascading coordination involving three vehicles. 
Additional subtypes are cancel, abort and emergency messages that can be used to 
cancel a request, to abort an agreed maneuver from the requesting vehicle as well 
as to send an emergency MCM involving an emergency trajectory that the vehicle is 
going to take without a negotiation. The final execute message from the requesting 
vehicle is not needed in order to complete the negotiation, however can be useful to 
confirm that the vehicle is executing the request. 

3.2.4 PriMa Example Scenario 

Figure 19 depicts a proof of concept scenario presented in [ 32] that includes four 
CAVs. In the scenario, the ego vehicle V1 needs to change a lane or decelerate because 
the vehicle V2 in front of V1 is stopping. In order to avoid a critical decelerating 
maneuver, V1 sends a high priority request message to vehicle V3. However, at the
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(a) Before coordination ( 1) (b) V1 and V4 send requests ( 2) 

(c) V1 executes the request ( 3) (d) V1 completes the maneuver ( 4) 

Fig. 19 PriMa coordination [ 32] 

same time vehicle V4 also sends a low priority lane change request to V3 (Fig. 19b). In 
this situation V3 broadcasts an accept message to the high priority request and allows 
V1 to avoid the decelerating maneuver and perform a lane change. V4 also receives 
the accept message, however the message includes the station ID and request ID 
of V1, therefore showing the benefit of explicit and unambiguous communication. 
In an implicit coordination, V3 only sends an accept message that can lead to a 
conflicting situation where both V1 and V4 start to execute the lane change maneuvers. 
Furthermore, this scenario also demonstrates the benefit of the PriMa coordination 
to perform maneuvers that have a higher priority. 

3.3 Simulation Results 

In order to design and evaluate the proposed coordination approach, a simulation 
was performed for a highway lane merging scenario. The simulation is performed in 
the discrete-event simulator Artery [ 42], see Sect. 1. 

3.3.1 Scenario Description and Evaluation Metrics 

Scenario description: Figure 20 shows the map of the SUMO scenario taken from 
InTAS [ 30] which is modeled based on a highway in the outside parts of Ingolstadt, 
including the speed limits. The main highway road with a driving direction to the 
right has a total length of 705,78 m, of which on the first 251,86 m the speed limit 
is 80 km/h (22.22 m/s), while the rest of the road has a speed limit of 100 km/h 
(27.77 m/s). The first merging road on the bottom has a total length of 146.2 m and 
also has a speed limit of 80 km/h. However, the vehicles coming from this lane must 
give way to the vehicles on the main highway road. The merging point of the two 
roads is shown as well. The vehicles coming from the main road drive a total length
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Fig. 20 SUMO scenario map 

of 158,84 m until the merging point, while the vehicle coming from the first merging 
road drive a similar length of 145.2 m. The simulation is run for 22 s. 

Scenarios: Three different situations are considered: 

• Scenario without coordination—SUMO simulation following the right of way 
rules. 

• Scenario without right of way rules—the vehicle coming from the merging road 
drives without giving way to the vehicles on the main road. 

• Coordinated scenario—the vehicle coming from the merging road coordinates a 
merging maneuver with the vehicles driving on the main road. 

Evaluation metrics: To evaluate the coordination protocol the following metrics are 
considered: 

• Safety metrics: The time gap between the negotiated and executed trajectories 
of the cooperative vehicles needs to be bigger than 1 s. The results also show 
the position of the vehicles and the distance between them during the merging 
maneuver. 

• Comfort metrics: the car following models from SUMO are used in the simulation 
with desired acceleration of up to 3 m/s. 2 and deceleration of up to 4 m/s. 2 to keep 
the comfort values according to the ACC standard. 

• Efficiency metrics: The results show the time loss of each cooperating vehicle in 
the simulation. SUMO calculates the time loss as the time that the vehicle spends 
in the simulation driving below the desired speed, in this case the maximum speed 
limit on the road. 

• Communication related metrics—The results present the total negotiation time 
between the vehicles to complete the coordination. Additionally, the unreliable 
communication effect on the coordination is analyzed too by introducing a package 
loss rate of 10, 20 and 30%. The average negotiation time for different packet 
reception rate (PRR) is calculated based on ten simulation runs for each scenario



Design and Evaluation of V2X Communication Protocols … 189

using random number generators with different seeds. It has to be noted that the 
processing delays of the motion planning system that plans a maneuver request or 
evaluates an incoming request are not considered, as well as the additional delay 
and latency that can arise due to the communication device or communication 
channel (Decentralized Congestion Control—DCC). More details on DCC can be 
found in the first part of the chapter about collective perception. 

3.3.2 Coordination Protocol Implementation 

The maneuver coordination protocol is implemented as a V2X service based on 
the ETSI ITS-G5 protocol and is analyzed for coordination involving two and three 
negotiating vehicles. The priority request analysis was not performed in this evalu-
ation. MCMs are broadcast every 100 ms (broadcasting interval of 10 Hz) by each 
of the involved CAVs in the simulation. The broadcast trajectories include 20 points 
with a time step of 0.25 s between the points representing the intention of the vehi-
cles in the next 5 s. Cartesian coordinates (x, y) are used to represent the position 
of the vehicle in the local coordinate system, however they can be transformed to 
the global coordinate system with longitude and latitude values as used in the ETSI 
standards. The trajectory is calculated based on the constant velocity model, in this 
case joining the highway with 22.22 m/s. A very important part of the coordination 
is the time when the ego vehicle starts to send the request. The negotiation needs 
to be completed at a certain distance before the merging point, to let the requesting 
vehicle decelerate on time with a comfortable deceleration in case if the negotiation 
is not successful. The required distance to stop the vehicle with the current speed and 
desired deceleration can be calculated using the generic braking distance formula: 
.d = (V 2

f − V 2
i )/(2(−a)), where .V f is final velocity, .Vi is initial velocity, and . a is 

the deceleration. Additionally, a timeout of 1 s is added to complete the negotiation. 
Therefore, the vehicle starts sending a request once it is away from the merging point 
at a distance equal to the braking distance + the distance required for driving 1 s with 
the current speed. Since the vehicle is driving with 22.22 m/s, and has a desired com-
fortable deceleration of 4 m/s. 2, it starts sending requests around 4 s before reaching 
the merging point with the current speed. 

3.3.3 Coordination—Two Vehicles 

This simulation involves two vehicles: the ego vehicle Vego and V1. In the first 
scenario, Vego decelerates to let V1 that has the right of way which leads to a big 
reduction of the velocity as shown on the velocity-time graph in Fig. 21a. The second 
situation involves the same vehicles without following the right of way rules, which 
leads to a conflict and an emergency deceleration from V1, which is also shown in 
Fig. 21b. Vego, on the other side, joins the road with a small deceleration that is
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(a) Uncoordinated scenario (b) No right of way scenario 

(c) Coordinated scenario 

Fig. 21 Velocity change—two coordinating vehicles 

(a) No right of way scenario at t = 
7.0 s, emergency braking 

(b) Coordinated scenario at t = 
7.0 s 

Fig. 22 Coordination scenario comparison—two coordinating vehicles 

required to drive in the curve. The position of the vehicles during the emergency 
deceleration at t = 7.0 s is also shown in Fig. 22a. 

The third situation, involves the implemented maneuver coordination service. The 
message flow during the negotiation is shown in Fig. 23. Two regular messages at 
time steps t. 1 and t. 2 are included as well to show the periodic flow of the messages. 
Since the vehicles broadcast MCMs, Vego detects a conflict between its desired 
trajectory and the PT from V1. In order to avoid deceleration, once Vego arrives at 
the required distance before the merging point, it broadcasts a request MCM (t. 3)



Design and Evaluation of V2X Communication Protocols … 191

Fig. 23 Message flow in a coordination between two vehicles 

Table 2 Time loss—coordination of two vehicles 

Vehicle/scenario Uncoordinated No right of way Coordinated 

Vego 4.8 s 0.21 s 0.21 s 

V1 0.3 s 2.3 s 1.53 s 

Total time loss 5.1 s 2.51 s 1.74 s 

including the RT that starts at the merging point. After performing collision check, 
V1 broadcasts an accept message and starts adapting the new PT (t. 4). After receiving 
the acceptance from V1, Vego broadcasts an execute message at t. 5, completing the 
negotiation in 100 ms, in a situation with 100% communication reliability. In case of 
repeating the request, Vego accordingly updates the time when the RT should start, 
as the vehicle is getting closer to the merging point. If there is no accept message or 
if Vego receives a reject message, it will follow the right of way rules and decelerate 
before the merging point. After accepting the request, V1 is reducing the speed with a 
small comfortable deceleration as depicted in Fig. 21c. Figure 22b shows the already 
coordinated merging of the vehicles at t = 7.0 s with a safe distance between the 
vehicles, in comparison with the emergency maneuver situation. The PT from Vego 
is calculated with constant velocity of 22.22 m/s, however it differs little bit in the 
execution since Vego requires small deceleration in the curve before merging to the 
highway. Because of that, it can be observed from the velocity-time graph that it 
leads to an additional small deceleration from V1, as can be seen at around 9 s. This 
also shows that keeping a time gap bigger than 1 s between the negotiated trajectory 
points also allows for safe adjustment of the these trajectories without causing further 
conflicts. The acceleration and deceleration values are also kept within the comfort 
interval as it can also be observed from the velocity change graph. 

Table 2 includes the time loss of the vehicles in the different situations. It can be 
observed that in the uncoordinated SUMO simulation, Vego experienced time loss of 
4.8 s, in comparison with the other two situations where the time loss is only 0.21 s, 
however, the second scenario leads to emergency braking from V1. As expected, since 
V1 needs to decelerate, it will be disadvantaged and the coordination leads to a time 
loss of 1.53 s due to the deceleration. The total time loss is however reduced by half 
in comparison without coordination, equaling 2.51 s, thus making the cooperative 
maneuver more time efficient. 

The average negotiation time was also analyzed by introducing the packet recep-
tion rate. Table 3 shows that for 70% reliability the negotiation time doubles to 
210 ms, however is still well below 1 s that is set as a negotiation timeout.
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Table 3 Average negotiation time—coordination of two vehicles 

PRR 100% 90% 80% 70% 

Negotiation time 100 ms 120 ms 150 ms 210 ms 

Fig. 24 Coordinated scenario 

3.3.4 Coordination—Three Vehicles 

The scenario with three coordinating vehicles involves a longer negotiation process 
utilizing the communication pattern for a coordination with three or more vehicles, in 
order to ensure unambiguous and effective coordination. Figure 24 shows the coor-
dinated scenario involving all of the vehicles in the simulation. The vehicles involved 
in the coordination are Vego, V1 and V2. V3 is included in the scenario to show the 
effect of the coordination on the other traffic participants but it is not participating in 
the coordination process. In this scenario, the ego vehicle is introduced 1.4 s after V1 
into the simulation. Vehicles V2 and V3 are also introduced after V1 in the same lane 
and they have smaller speed than V1 in the beginning of the simulation since they 
need to keep the gap with the vehicle in front: Therefore, these vehicles experience a 
bigger time loss while driving below the desired speed. In the uncoordinated SUMO 
scenario, the ego vehicle decelerates in a similar way as in the scenario with two 
vehicles. Hence the velocity-time graph is not shown, but this time Vego needs to 
wait longer because there are three vehicles driving on the main road. Figure 25a 
depicts the velocity-time graph for the second situation without the right of way. 
Also, the position of the vehicles at time t = 8.3 s is shown in Fig. 26a. Vego needs to 
perform emergency deceleration due to V1 which is not affected by Vego now, since 
Vego was introduced 1.4 s later in the simulation. V2 needs to perform emergency 
deceleration due to Vego, while V3 also performs a high deceleration because of the 
emergency braking of V2. 

The message flow in the coordination is depicted in Fig. 27. It can be observed that 
the negotiation time is increased to 200 ms for perfect communication conditions. 
Since the ego vehicle is introduced later, the request is sent at t = 4.35 s, once the 
vehicle is at the same distance from the merging point as in the previous scenario. 
In this situation, Vego requires a merging gap between V1 and V2, hence the longer 
communication pattern is required for the negotiation process, meaning Vego needs 
to wait for the offer and accept messages from both of the vehicles in order to start 
the requested maneuver. After receiving the offer messages from V1 and V2 which 
include their offered trajectories and confirming that there is no conflict, Vego sends



Design and Evaluation of V2X Communication Protocols … 193

(a) No right of way scenario (b) Coordinated scenario 

Fig. 25 Velocity change—three coordinating vehicles 

(a) No right of way scenario at t = 8.3 s, 
emergency braking 

(b) Coordinated scenario at t = 8.3 s 

Fig. 26 Coordination scenario comparison—three coordinating vehicles 

Fig. 27 Message flow in a coordination between three vehicles 

the confirm message at t. 4. However, it still needs to wait for the negotiated maneuvers 
to be acknowledged by both of the accepting vehicles. The maneuver negotiation 
process is finally over after the accept messages from V1 and V2 are received and 
the requested maneuver can be performed. In the end, the execute message is sent, 
but it is not needed to complete the coordination. After the negotiation, the vehicles 
keep sending the regular MCMs with their new PTs. Figures 25b and 26b present the 
velocity-time graph and position of the vehicles at the merging point, showing the 
smooth velocity change as well as the safe time gap between the involved vehicles 
in the coordinated maneuver. 

The time loss of all included vehicles in the simulation is shown in Table 4. In  
an uncoordinated situation Vego experiences significant time loss because it has to 
let three vehicles pass. As mentioned, V2 and V3 experience higher time loss in the 
uncoordinated SUMO scenario due to driving with lower speeds in the beginning 
of the scenario. In the no right of way scenario, the vehicles experience higher time
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loss and additionally need to perform emergency deceleration. In the coordinated 
scenario, Vego has almost no time loss, similar as V1 that only changes the lane 
in the coordinated scenario, therefore does not experience any additional time loss. 
V3 is also included in the time loss table in order to show the oscillating effect of 
the coordination on the other traffic participants as it also has to decelerate in this 
situation to keep the safe time gap to the vehicle in front. However, the maneuver 
for Vego was highly optimized with no waiting time to merge into the lane, and 
in this situation required small deceleration from V2, and a lane change with no 
time loss from V1. The total time loss for the three vehicles in the coordination, 
as well as the one with V3 (in brackets) is also presented in Table 4, which shows 
that the total time loss for all of the vehicles is significantly reduced in comparison 
with the uncoordinated scenario. The coordination makes the merging maneuver 
much more efficient without compromising the safety or comfort of driving as the 
vehicles also keep safe time gaps between each other and comfortable acceleration 
and deceleration values. 

The effect of the unreliable communication on the negotiation process was also 
analyzed and is presented in Table 5. Since the vehicles require in total six messages to 
complete the negotiation process (without the execute message), the negotiation will 
be much more affected by the unreliable communication. With increased number 
of vehicles, the negotiation will become more complicated. However, the results 
show that for this traffic scenario, even with a PRR of 70%, the negotiation can 
still be completed under 1 s, as the average negotiation time is 500 ms and in each 
of the ten runs the negotiation was completed under 1 s. However, considering the 
processing delays of the motion planning system, the communication device and 
communication channel, the negotiation time will be increased and needs to be taken 
into account when designing the coordination protocol for real world applications. 
Further analysis is required to have an approximation of the negotiation time in 
different traffic situations. 

Table 4 Time loss—coordination three vehicles 

Vehicle/scenario Uncoordinated No right of way Coordinated 

Vego 7.74 s 1.43 s 0.21 s 

V1 0.3 s 0.3 s 0.3 s 

V2 0.58 s 3.99 s 1.77 s 

V3 0.79 s 4.52 s 2.41 s 

Total time loss (with 
V3) 

8.62 s (9. 41 s) 5.72 s (10.24 s) 2.28 s (4.69 s) 

Table 5 Average negotiation time—coordination three vehicles 

PRR 100% 90% 80% 70% 

Negotiation time 200 ms 290 ms 360 ms 500 ms



Design and Evaluation of V2X Communication Protocols … 195

3.3.5 Conclusion 

Cooperative maneuver coordination represents a V2X communication enabled appli-
cation that has the potential to significantly improve the safety, comfort and efficiency 
of the CAVs on the road. By exchanging the intention and coordination data, the CAVs 
will be able to detect and perform cooperative maneuvers that can improve the traf-
fic flow in different traffic situations. The proposed decentralized Priority Maneu-
ver (PriMa) Coordination approach introduces three different levels of maneuver 
requests: low, medium and high priority differentiating between desired, necessary 
and critical maneuvers that can improve the decision making process of the cooper-
ating vehicles. The Maneuver Coordination Message that includes trajectory related 
data is also presented with additional subtypes. Different communication patterns 
are proposed that can be utilized depending on the number of included vehicles in 
the coordination, whether there are two vehicles, more than two vehicles, or cas-
cading situation. Such a designed protocol aims to ensure safe, fast, efficient and 
unambiguous coordination in different traffic situations. 

This work shows a proof of concept and evaluation of the coordination protocol as 
a V2X service in the simulation framework Artery for a coordination involving two 
and three vehicles utilizing different communication patterns. A highway merging 
scenario was simulated in three different situations: uncoordinated, scenario with no 
right of way rules and a coordinated scenario. The evaluation is based on metrics 
regarding the safety, comfort, efficiency and communication. The results show the 
potential that the coordination offers to perform safe and comfortable maneuvers 
that can significantly improve the traffic flow and time efficiency of the vehicles. 
The impact of the unreliable communication on the coordination was evaluated for 
different packet reception rates as an important part in the protocol design that ensures 
enough time to complete the negotiation and coordination process. The presented 
work can be seen as a contribution to further research and development of generic 
decentralized maneuver coordination applications based on V2V communication. 

Future work will include enhancement of the coordination protocol and implemen-
tation and evaluation for different traffic scenarios. The communication requirements 
will also be specified for various cooperative driving use cases. An analysis will be 
performed to define the threshold values for different priority maneuvers. Further-
more, the simulation results will also be verified in a real world testing environment. 

4 Summary and Outlook 

In this chapter, we presented, analyzed, and enhanced two key V2X communication 
protocols for cooperatively interacting automobiles. The first one, Collective Per-
ception, is part of the Day 2 development of V2X applications and is expected to be 
deployed in the coming years. We investigated the adaption of information included 
in CPMs depending on the channel load and the observed information redundancy on
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the channel. We proposed approaches to address independently each of these prob-
lems. In future work, we plan to develop a combination of the developed solutions. 

The second one, Maneuver Coordination, is part of the Day 3+ development of 
V2X applications. It is expected to be deployed later in the mass market and is still 
at an early stage of development. In this book chapter, we proposed a new maneuver 
coordination approach introducing three different levels of maneuver priorities. The 
potential of this approach was analyzed and we showed its capacity to perform safe, 
efficient, and comfortable maneuvers. Future works include enhancements of this 
protocol considering more traffic scenarios and proof of concept in a real-world 
testing environment. 

Acknowledgements This work was gratefully supported by the German Science Foundation 
(DFG) by project KOALA 2 under number 273374642 within the priority program Cooperatively 
Interacting Automobiles (CoIn-Car, SPP 1835). The illustration toolkit from C2C-CC was used to 
create the figures illustrating the cooperative driving use cases (https://www.car-2-car.org). 

References 

1. Bengler, K., et al.: Three decades of driver assistance systems: review and future perspec-
tives. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014). https://doi.org/10.1109/MITS.2014. 
2336271 

2. Bevly, D., et al.: Lane change and merge maneuvers for connected and automated vehicles: 
a survey. IEEE Trans. Intell. Veh. 1(1), 105–120 (2016). https://doi.org/10.1109/TIV.2015. 
2503342 

3. Chen, L., Englund, C.: Cooperative intersection management: a survey. IEEE Trans. Intell. 
Transp. Syst. 17(2), 570–586 (2016). https://doi.org/10.1109/TITS.2015.2471812 

4. Chtourou, A., Merdrignac, P., Shagdar, O.: Context-aware content selection and message gen-
eration for collective perception services. Electronics 10(20), 2509 (2021). https://doi.org/10. 
3390/electronics10202509 

5. Correa, A., et al.: Infrastructure support for cooperative maneuvers in connected and automated 
driving. In: IEEE Intelligent Vehicles Symposium (IV), pp. 20–25 (2019). https://doi.org/10. 
1109/IVS.2019.8814044 

6. Delooz, Q., Festag, A.: Network load adaptation for collective perception in V2X communi-
cations. In: 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE) 
(2019). https://doi.org/10.1109/ICCVE45908.2019.8964988 

7. Delooz, Q., Festag, A., Vinel, A.: Revisiting message generation strategies for collective per-
ception in connected and automated driving. In: VEHICULAR 2020 (2020) 

8. Delooz, Q., Festag, A., Vinel, A.: Congestion aware objects filtering for collective perception. 
Electron. Commun. EASST 80 (2021) 

9. Delooz, Q., Riebl, R., Festag, A., Vinel, A.: Design and performance of congestion-aware 
collective perception. In: 2020 IEEE Vehicular Networking Conference (VNC), pp. 1–8 (2020). 
https://doi.org/10.1109/VNC51378.2020.9318335 

10. Delooz, Q., et al.: Analysis and evaluation of information redundancy mitigation for V2X col-
lective perception. IEEE Access 10, 47076–47093 (2022). https://doi.org/10.1109/ACCESS. 
2022.3170029 

11. Dey, K.C., et al.: A review of communication, driver characteristics, and controls aspects of 
cooperative adaptive cruise control (CACC). IEEE Trans. Intell. Transp. Syst. 17(2), 491–509 
(2016). https://doi.org/10.1109/TITS.2015.2483063

https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063


Design and Evaluation of V2X Communication Protocols … 197

12. ETSI: Intelligent Transport Systems (ITS); Radiocommunications equipment operating in the 
5 855 MHz to 5 925 MHz frequency band; Harmonised Standard covering the essential require-
ments of article 3.2 of Directive 2014/53/EU (2017). ETSI EN 302 571 V2.1.1 

13. ETSI: Intelligent Transport Systems (ITS); Decentralized Congestion Control Mechanisms for 
Intelligent Transport Systems operating in the 5 GHz range; Access layer part (2018). ETSI 
TS 102 687 V1.2.1 

14. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Analysis of the Collective Perception Service (CPS); Release 2 (2019). ETSI TR 103 
562 V2.1.1 

15. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Appli-
cations; Part 2: Specification of Cooperative Awareness Basic Service (2019). ETSI EN 302 
637-2 V1.4.1 

16. ETSI: Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applica-
tions; Specification of the Collective Perception Service (2022). ETSI TS 103 324 V0.0.45 
(Draft) 

17. ETSI: Intelligent Transport Systems (ITS); Vehicular Communication; Informative Report for 
the Maneuver Coordination Service (2022). ETSI TR 103 578 V0.0.8 (Draft) 

18. Garlichs, K., Günther, H., Wolf, L.C.: Generation rules for the collective perception service. 
In: 2019 IEEE Vehicular Networking Conference (VNC), pp. 1–8 (2019). https://doi.org/10. 
1109/VNC48660.2019.9062827 

19. Günther, H., Riebl, R., Wolf, L., Facchi, C.: Collective perception and decentralized congestion 
control in vehicular ad-hoc networks. In: IEEE VNC (2016). https://doi.org/10.1109/VNC. 
2016.7835931 

20. Günther, H., Trauer, O., Wolf, L.: The potential of collective perception in vehicular ad-hoc 
networks. In: 2015 14th International Conference on ITS Telecommunications (ITST), pp. 1–5 
(2015). https://doi.org/10.1109/ITST.2015.7377190 

21. Günther, H.J., Riebl, R., Wolf, L., Facchi, C.: The effect of decentralized congestion control 
on collective perception in dense traffic scenarios. Elsevier Comput. Commun. 122 (2018). 
https://doi.org/10.1016/j.comcom.2018.03.009 

22. Häfner, B., et al.: CVIP: a protocol for complex interactions among connected vehicles. In: 
IEEE Intelligent Vehicles Symposium, pp. 510–515 (2020). https://doi.org/10.1109/IV47402. 
2020.9304556 

23. Heß, D., et al.: Fast maneuver planning for cooperative automated vehicles. In: IEEE Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 1625–1632 (2018). 
https://doi.org/10.1109/ITSC.2018.8569791 

24. Hobert, L., Festag, A., Llatser, I., Altomare, L., Visintainer, F., Kovacs, A.: Enhancements 
of V2X communication in support of cooperative autonomous driving. IEEE Commun. Mag. 
53(12), 64–70 (2015). https://doi.org/10.1109/MCOM.2015.7355568 

25. Huang, H., et al.: Data redundancy mitigation in V2X based collective perceptions. IEEE 
Access 8, 13405–13418 (2020). https://doi.org/10.1109/ACCESS.2020.2965552 

26. Jiang, D., Chen, Q., Delgrossi, L.: Optimal data rate selection for vehicle safety commu-
nications. In: Proceedings of the fifth ACM international workshop on VehiculAr Inter-
NETworking, pp. 30–38 (2008) 

27. Lehmann, B., Günther, H., Wolf, L.: A generic approach towards maneuver coordination for 
automated vehicles. In: IEEE International Conference on Intelligent Transportation Systems 
(ITSC), pp. 3333–3339 (2018). https://doi.org/10.1109/ITSC.2018.8569442 

28. Lehmann, B., Wolf, L.: Safety analysis of a maneuver coordination protocol. In: IEEE Vehic-
ular Networking Conference (VNC), p. 8 (2020). https://doi.org/10.1109/VNC51378.2020. 
9318359 

29. Llatser, I., Michalke, T., Dolgov, M., Wildschütte, F., Fuchs, H.: Cooperative automated driving 
use cases for 5G V2X communication. In: IEEE 2nd 5G World Forum, pp. 120–125 (2019). 
https://doi.org/10.1109/5GWF.2019.8911628

https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628


198 Q. Delooz et al.

30. Lobo, S., Neumeier, S., Fernandez, E., Facchi, C.: InTAS – the Ingolstadt traffic scenario for 
SUMO. In: SUMO User Conference. DLR, Hamburg, Germany (2020). https://www.eclipse. 
org/sumo/2020, Extended version in ArXiv:abs/2011.11995, GitHub repository: https://github. 
com/silaslobo/InTAS, retrieved Jun 2, 2022 

31. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International 
Conference on Intelligent Transportation Systems (ITSC), pp. 2575–2582. IEEE (2018). https:// 
doi.org/10.1109/ITSC.2018.8569938 

32. Maksimovski, D., Facchi, C., Festag, A.: Priority Maneuver (PriMa) coordination for connected 
and automated vehicles. In: 2021 IEEE International Intelligent Transportation Systems Con-
ference (ITSC), pp. 1083–1089 (2021). https://doi.org/10.1109/ITSC48978.2021.9564923 

33. Maksimovski, D., Facchi, C., Festag, A.: Cooperative driving: research on generic decentral-
ized maneuver coordination for connected and automated vehicles. In: Smart Cities, Green 
Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021. Commu-
nications in Computer and Information Science, vol 1612. Springer, Cham. (2022). https://doi. 
org/10.1007/978-3-031-17098-0_18 

34. Maksimovski, D., Festag, A., Facchi, C.: A survey on decentralized cooperative maneuver 
coordination for connected and automated vehicles. In: Proceedings of the 7th International 
Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, 
pp. 100–111. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010442501000111 

35. Marjovi, A., Vasic, M., Lemaitre, J., Martinoli, A.: Distributed graph-based convoy control 
for networked intelligent vehicles. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 
138–143 (2015). https://doi.org/10.1109/IVS.2015.7225676 

36. Mizutani, M., Tsukada, M., Esaki, H.: Automcm: maneuver coordination service with 
abstracted functions for autonomous driving. In: 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC), pp. 1069–1076 (2021). https://doi.org/10.1109/ 
ITSC48978.2021.9564556 

37. Molina-Masegosa, R., Gozalvez, J.: LTE-V for sidelink 5G V2X vehicular communications: A 
new 5G technology for short-range vehicle-to-everything communications. In: IEEE Vehicular 
Technology Magazine, pp. 30–39 (2017). https://doi.org/10.1109/MVT.2017.2752798 

38. Nichting, M., Heß, D., Schindler, J., Hesse, T., Köster, F.: Space time reservation procedure 
(STRP) for V2X-based maneuver coordination of cooperative automated vehicles in diverse 
conflict scenarios. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 502–509 (2020). 
https://doi.org/10.1109/IV47402.2020.9304769 

39. Rauch, A., Klanner, F., Rasshofer, R., Dietmayer, K.: Car2X-based perception in a high-level 
fusion architecture for cooperative perception systems. In: 2012 IEEE Intelligent Vehicles 
Symposium, pp. 270–275 (2012). https://doi.org/10.1109/IVS.2012.6232130 

40. Renzler, T., Stolz, M., Watzenig, D.: Decentralized dynamic platooning architecture with 
V2V communication tested in Omnet++. In: 2019 IEEE International Conference on Con-
nected Vehicles and Expo (ICCVE), pp. 1–6 (2019). https://doi.org/10.1109/ICCVE45908. 
2019.8965224 

41. Renzler, T., Stolz, M., Watzenig, D.: Looking into the path future: extending CAMs for cooper-
ative event handling. In: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 
pp. 1–5 (2020). https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776 

42. Riebl, R., Günther, H., Facchi, C., Wolf, L.: Artery: Extending Veins for VANET applications. 
In: MT-ITS 2015, pp. 450–456 (2015). https://doi.org/10.1109/MTITS.2015.7223293. 

43. Schindler, J., Coll-Perales, B., Zhang, X., Rondinone, M., Thandavarayan, G.: Infrastructure-
supported cooperative automated driving in transition areas. In: IEEE Vehicular Networking 
Conference (VNC), p. 8 (2020). https://doi.org/10.1109/VNC51378.2020.9318392 

44. Sjöberg, K., Andres, P., Buburuzan, T., Brakemeier, A.: Cooperative intelligent transport sys-
tems in Europe: current deployment status and outlook. IEEE Veh. Technol. Mag. 12(2), 89–97 
(2017). https://doi.org/10.1109/MVT.2017.2670018 

45. Soto, I., Amador, O., Urueña, M., Calderon, M.: Strengths and weaknesses of the ETSI adaptive 
DCC algorithm: a proposal for improvement. IEEE Commun. Lett. 23(5), 802–805 (2019). 
https://doi.org/10.1109/LCOMM.2019.2906178

https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
ArXiv:abs/2011.11995
 13326 1633 a 13326 1633 a
 
http://arxiv.org/2011.11995
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178


Design and Evaluation of V2X Communication Protocols … 199

46. Thandavarayan, G., Sepulcre, M., Gozalvez, J.: Analysis of message generation rules for col-
lective perception in connected and automated driving. In: 2019 IEEE Intelligent Vehicles 
Symposium (IV), pp. 134–139 (2019). https://doi.org/10.1109/IVS.2019.8813806 

47. Thandavarayan, G., Sepulcre, M., Gozalvez, J.: Redundancy mitigation in cooperative per-
ception for connected and automated vehicles. In: 2020 IEEE 91st Vehicular Technology 
Conference (VTC2020-Spring), pp. 1–5. IEEE (2020). https://doi.org/10.1109/VTC2020-
Spring48590.2020.9129445 

48. Varga, A.: Omnet++. In: Modeling and Tools for Network Simulation, pp. 35–59. Springer 
(2010) 

49. Volk, G., et al.: Towards realistic evaluation of collective perception for connected and auto-
mated driving. In: 2021 IEEE International Intelligent Transportation Systems Conference 
(ITSC), pp. 1049–1056. IEEE (2021). https://doi.org/10.1109/ITSC48978.2021.9564783 

50. Vukadinovic, V., et al.: 3GPP C-V2X and IEEE 802.11p for vehicle-to-vehicle communications 
in highway platooning scenarios. Elsevier Ad Hoc Netw. 74, 17 – 29 (2018). https://doi.org/ 
10.1016/j.adhoc.2018.03.004 

51. Willecke, A., Garlichs, K., Schulze, F., Wolf, L.C.: Vulnerable road users are important as well: 
Persons in the collective perception service. In: 2021 IEEE Vehicular Networking Conference 
(VNC), pp. 24–31. IEEE (2021). https://doi.org/10.1109/VNC52810.2021.9644669 

52. Xu, W., Willecke, A., Wegner, M., Wolf, L., Kapitza, R.: Autonomous maneuver coordination 
via vehicular communication. In: IEEE/IFIP International Conference on Dependable Systems 
and Networks Workshops (DSN-W), pp. 70–77 (2019). https://doi.org/10.1109/DSN-W.2019. 
00022 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Motion Planning



Interaction-Aware Motion Planning 
as a Game 

Christoph Burger, Shengchao Yan, Wolfram Burgard, and Christoph Stiller 

Abstract Motion planning for automated vehicles (AVs) in mixed traffic, where 
AVs share the road with human-driven vehicles, is a challenging task. To reduce 
the complexity, state-of-the-art planning approaches often assume that the future 
motion of surrounding vehicles can be predicted independently of the AV’s plan. This 
separation can lead to suboptimal, overly conservative behavior especially in highly 
interactive traffic situations. In this work, we introduce a motion planning algorithm 
to generate interaction-aware behavior for highly interactive scenarios. The presented 
algorithm is based upon a reformulation of a bi-level optimization problem, which 
frames interactions between a human driver and a AV as a Stackelberg game. In 
contrast to existing works, the algorithm can account for general nonlinear state and 
input constraints. Further, we introduce mechanisms to integrate cooperation and 
courtesy into motion planning to prevent overly aggressive driving behavior. 

1 Introduction 

When automated vehicles (AV)s first enter traffic, they will not drive in isolation 
but share the road with predominantly human drivers. Thus, interacting with them is 
crucial for smooth and efficient operation. This is especially important in interactive 
situations where the actions of multiple vehicles are tightly coupled. For instance, 
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(a) (b) 

Fig. 1 Illustrated are the results of a planner following a predict-then-plan structure for a merge 
scenario in (a) low traffic and (b) high traffic. While in low traffic, separating prediction and 
planning is a useful simplification, in high traffic it can lead to suboptimal, overly conservative 
driving behavior of the  AV  

a driver on a highway might decide to slow down so that another driver can merge, 
or a driver might start to nudge into the adjacent lane, hoping that the driver behind 
will slow down and open a gap. 

A key aspect to master such scenarios with AVs is to consider interactions with 
human drivers. However, to reduce the computational complexity of motion planning, 
most state-of-the-art planners follow a structure that overlooks these mechanisms. 
In particular, they follow a predict-then-plan scheme, where the motion planning is 
separated into a prediction step, where the future motion of surrounding drivers is 
predicted, and a subsequent planning step, where the motion of the AV is determined. 
During the planning, surrounding vehicles are treated as moving objects with an 
immutable trajectory. 

While this separation poses a useful simplification for many traffic scenarios, it 
can lead to situations similar to the frozen robot problem [ 34], a state in which the 
predictions of other traffic participants block all paths, and thus the planner is not 
able to find a solution to its goal anymore. Fig. 1 illustrates this issue for a merge 
scenario. Following a predict-then-plan structure, the AV, in blue, first predicts the 
future motion of surrounding vehicles and plans its trajectory in a subsequent step. 
In Fig. 1(a) the result in low traffic is shown. Following the same principle in high 
traffic, shown in Fig. 1(b), the planner is unable to find a collision-free trajectory 
onto the highway and the AV stops at the end of the lane. 

Some approaches are already able to overcome the structural limitation of planners 
following a predict-then-plan scheme by solving the prediction and planning task 
simultaneously. These planners can be categorized into the following three classes: 
Forward simulation methods, multi-agent methods, and game-theoretic methods. 
Forward Simulation Methods: One technique to generate interaction-aware behavior 
is via forward simulation. Here, the current traffic scene is simulated for different 
actions of the AV. Transition models are used to describe how the environment 
changes due to the actions of the AV and further how other drivers react to these 
changes in the environment. We refer to such techniques as forward simulation 
methods. Most sampling-based planning methods that consider interactions can be 
associated with this category [ 11, 27]. An important group among the sampling-
based planning methods are methods based on partially observable Markov decision 
process (POMDP), e.g. as presented in [ 17].
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The behavior of other agents is often modeled with specific driver models such as 
the Intelligent Driver Model (IDM) [ 35] or the Minimum Overall Braking Induced by 
Lane change (MOBIL) model [ 18]. An example where the IDM is used to determine 
the reaction of other vehicles is presented in [ 11]. Here, to generate the behavior 
for the AV, multiple candidate trajectories are simulated and evaluated based on the 
effect imposed on others. In forward simulation methods the influence the AV exerts 
on others is not explicitly given, but must be determined by trying out several actions 
and subsequent forward simulations of the traffic scene. 
Multi-Agent Methods: In multi-agent methods, the separate prediction of other vehi-
cles is replaced by planning coupled trajectories. Therefore, the traffic scene is mod-
eled as a multi-agent planning problem with the underlying assumption that all traffic 
participants behave towards optimizing a joint objective [ 2, 4, 5, 8, 19, 22, 32]. The 
AV then solves the multi-agent problem assuming that other agents will also roughly 
follow their part of the plan. Varying weights can be used to model different levels 
of cooperation or incorporate asymmetries in the traffic scene [ 4, 7]. To cope with 
uncertainties in the behavior of humans, these methods are combined with tracking 
approaches to estimate if humans roughly follow the same model [ 5, 32]. 
Game-Theoretic Methods: In real traffic, the assumption that each driver is behav-
ing towards optimizing a common objective might not be valid, since some drivers 
are only interested in optimizing their own driving. To model interactions among 
agents with different objectives, a game-theoretic perspective might be more suit-
able. Several game-theoretic methods have already successfully been used, e.g., for 
lane change, merge, intersection, round-about, and overtaking scenarios [ 6, 10, 12, 
13, 21, 29– 31, 38, 39]. E.g., in [ 30], human-like driving behavior, e.g., slowing down 
before intersections or nudging into the adjacent lane while doing a lane change, could 
be generated. 

Apart from these driving applications, game-theoretic methods have been used for 
agile maneuvering of multiple ground vehicles in close proximity [40], and automated 
car racing [ 23, 25, 37, 39], where it is shown that game-theoretic planners yield 
complex strategies such as blocking and faking and significantly outperform baseline 
MPC planners. 

In game-theoretic formulations, there is no optimal solution in the traditional 
sense, but depending on the game’s structure, different solutions are possible, also 
referred to as equilibria. Therefore, an important feature to categorize game-theoretic 
methods is the type of solution they are solving for. In literature, it is distinguished 
between Nash and Stackelberg equilibria. A Nash equilibrium describes a set of 
strategies where no individual agent can benefit from unilaterally changing its strat-
egy, given that all other agents will stick to their strategy. This type of equilibrium 
has been investigated, e.g., in [ 3, 10, 14, 20, 37, 40]. 

Compared to a Nash equilibrium, a Stackelberg equilibrium involves turn taking 
and, therefore, an asymmetry in the decision-making process. It is typically modeled 
for a two-player game, where one player is the leader, and the other is the follower. 
The leader chooses its strategy first, and the follower then optimizes its strategy as 
the best response to the leader’s strategy. In contrast, the Nash solution can be seen
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as the best response from everyone to everyone else without hierarchical turn-taking. 
Stackelberg equilibria are considered in [ 6, 12, 23, 29, 30, 33, 41, 42] 

In this work, we present a model based on a game-theoretic formulation that 
directly captures interactions between a AV and a human driver (HD) as a Stackel-
berg game. This algorithm enables AVs to be aware of how their actions influence 
other drivers and thereby allows generating interaction-aware driving behavior. In 
contrast to existing works, the algorithm can account for general nonlinear state 
and input constraints. Additionally, we present mechanisms to integrate cooperation 
and courtesy into interaction-aware methods to prevent overly aggressive driving 
behavior, which has been reported as an issue of existing approaches. 

2 Problem Statement 

To derive a model to directly capture interactions, we consider a system with one AV, 
referred to as the leader . L , and one HD, referred to as the follower . F . The system’s 
state at time. t is given by the leader’s and follower’s state.xLt , x

F
t ∈ X , where.X is the 

set that contains all possible states. The leader’s and follower’s actions are described 
by their trajectories.ξL(t), ξF (t) : [0, T ] → X . Further, each agent has its individual 
objective function denoted by .JL and .JF . 

The objective is minimized subject to the vehicle’s initial state .ξ(0) = x0 and 
the evolution of the state described by the trajectory, which is only allowed to pass 
through the set of feasible states .Xfeasible(t) ⊆ X . .Xfeasible(t) encodes, for instance, 
collision avoidance. Additionally, system dynamics and bound constraints can be 
enforced by .D(ξ(t), ξ̇ (t), ξ̈ (t), . . . ) = 0. The set of all feasible trajectories .ξ(t) is 
denoted by .  . 

In contrast to traditional multi-agent systems, we assume a turn-taking structure, 
where the follower optimizes its trajectory as a response to the leader’s trajectory. 
To do so, the follower predicts the leader’s future motion .ξ̃L and then plans by 
minimizing its objective function .JF considering these predictions. Therefore, the 
follower’s optimal trajectory can be described as: 

. argmin
ξF∈ F

JF (xL0 , x
F
0 , ξ̃L , ξF ) (1) 

For simplicity, we assume that for short time horizons, a human can predict the 
trajectory of the AV sufficiently well, such that the prediction .ξ̃L can be assumed to 
be the actual trajectory.ξL of the AV. Hence, the optimal trajectory of the follower as 
a function of the leader’s trajectory .ξL is given as: 

.ξ ∗
F (x

L
0 , x

F
0 , ξL) = argmin

ξF∈ F

JF (xL0 , x
F
0 , ξL , ξF ) (2)
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With this link between the leader’s actions and the follower’s actions the optimal 
trajectory for the AV can be stated as: 

.ξ ∗
L = argmin

ξL∈ L

JL
 
xL0 , x

F
0 , ξL , ξ

∗
F (x

L
0 , x

F
0 , ξL)
 

(3) 

Equation (3) gives the leader the ability to reason about how its actions will influ-
ence the follower’s response and is therefore the fundamental model which enables 
interaction-aware planning. 

3 Bi-level Formulation 

The derived model, in (3), describes a Stackelberg game, where the leader decides 
on its behavior first and the follower optimizes its behavior given the decision of the 
leader (Fig. 2). If the follower’s best response to the leader’s actions can be stated in 
closed form, (3) can be solved as a standard optimal control problem (OCP). However, 
this is, in general, not the case since.ξ ∗

F is the outcome of an OCP itself. This results in a 
nested or bi-level optimization problem. Further, solving the underlying Stackelberg 
game would require planning until . T , which is the end of an interaction. However, 
the end of an interaction is not trivial to determine and requires the consideration of 
a varying time horizon. 

In the following, we propose an approximate solution to (3) based on model 
predictive control (MPC), where we solve the problem on a receding horizon with a 
fixed length. T , execute the first action and then replan. We utilize multiple shooting 
methods and discretize the time horizon .t ∈ [0, T ] into .N = T/τ intervals, where 
. τ denotes the duration of one time step. To improve readability, we subsume the 
state and input sequences of the leader and follower as.x := [x0, . . . , xN ]T and. u :=
[u0, . . . ,uN−1]T . In the following, the resulting nonlinear programs (NLP)s of the 
follower and leader are stated. The equality constraints . h can be used to represent 
constraints imposed by the system dynamics while the inequality constraints. g collect 
bound constraints, collision constraints, and dynamic constraints. 

3.1 NLP of the Follower 

The follower’s NLP is parametrized by the leader’s states and inputs .(xL ,uL) and 
can be formulated as:
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Fig. 2 Structure of a bi-level optimization problem. Here, the follower optimizes its objective 
function as a response to the given actions of the leader 

. argmin
xF ,uF

JF (xL , xF ,uF ) (4a) 

.s.t. hF (xF ,uF ) = 0, (4b) 

.gF (xL , xF ,uF ) ≤ 0 (4c) 

3.2 NLP of the Leader 

The leader’s bi-level optimization problem can be stated as: 

. argmin
xL ,xF ,uL ,uF

JL(xL , xF ,uL) (5a) 

.s.t. hL(xL ,uL) = 0, (5b) 

.gL(xL , xF ,uL) ≤ 0, (5c) 

.(xF ,uF ) ∈ argmin
xF ,uF

{JF (xL , xF ,uF ) : hF = 0, gF ≤ 0} (5d)



Interaction-Aware Motion Planning as a Game 209

Formulating the follower’s optimization problem as a constraint, (5d), ensures 
that only optimal solutions for the follower are considered feasible solutions for the 
leader. 

4 Single-Level Representation 

To efficiently solve (5), we need to reformulate the bi-level optimization problem 
into a regular, single-level problem. Therefore, we assume that the follower will act 
optimally with respect to its own objective function (4). With this assumption, we can 
replace the inner optimization problem with its necessary conditions for optimality. 

If the follower’s problem is convex, the Karush Kuhn Tucker (KKT) conditions 
are necessary and sufficient for optimality. However, due to the combinatorial nature 
of driving it is, in general, non-convex, e.g., due to non-linear collision avoidance 
constraints or a non-convex cost function. To obtain locally optimal solutions, we 
convexity the follower’s problem around an initial guess, which at the same time 
encodes the considered homotopy class. For the convexification, the constraints are 
linearized, and the cost function is approximated by a 2. order Tailer expansion. 

By replacing the follower’s optimization problem with its KKT conditions in (5), 
we obtain the following single-level optimization problem: 

. argmin
xL ,xF ,uL ,uF ,λ,μ

JL(xL , xF ,uL) (6a) 

.s.t. hL(xL ,uL) = 0, (6b) 

.gL(xL , xF ,uL) ≤ 0, (6c) 

.∇(xF ,uF )L(x
L , xF ,uF ,λ,μ) = 0, (6d) 

.hFlin(x
F ,uF ) = 0, (6e) 

.gFlin(x
L , xF ,uF ) ≤ 0, (6f) 

.μ ≥ 0, (6g) 

.μ⊥gFlin(x
L , xF ,uF ) (6h) 

with the Lagrangian 

.L(xL , xF ,uF ,λ,μ) = JFcon(x
L , xF ,uF )

+λThFlin(x
F ,uF )+ μT gFlin(x

L , xF ,uF )
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Here, . λ and. μ are the KKT multipliers and.hFlin , gFlin and.JFcon are the constraints 
and objective after the convexification. For the reformulation we assume sufficient 
regularity of the follower’s NLP, differentiability of.hF and.gF , and the cost function 
.JF to be twice differentiable. 

4.1 Solving the Complementarity Constraints 

The leader’s NLP in (6) forms an instance of a mathematical program with com-
plementarity constraints (MPCC). Due to the complementarity constraints .μ⊥gFlin , 
MPCCs are non-smooth and non-convex. MPCC are particularly challenging to solve 
because at every feasible point, ordinary constraint qualifiers (CQ) such as LICQ or 
Mangasarian-Fromovitz CQ are violated [ 9]. Therefore, to solve (6), we reformulate 
the complementarity constraints using relaxation methods [ 16] as shown  in  (7). 

. −  ≤ μT gF . (7) 

With . > 0 a regularized NLP is obtained, and CQ can be satisfied again. The 
smaller.  is chosen, the closer any feasible solution is to achieving complementarity. 
However, if .  is chosen too small, the problem may be numerically unstable and the 
solver will fail to find a feasible solution at all. 

5 Application to Motion Planning for AVs 

So far the derived model represents a formulation of how interactions between a 
robot and a human can be considered during motion planning or decision-making 
for robots in general. In the following, we present a modeling to apply the bi-level 
algorithm to motion planning for AVs. The section starts by stating the OCP used 
for trajectory optimization of an AV. This OCP contains the system dynamics, bound 
constraints, as well as an objective function to encode desirable driving behavior. 
For the purpose of the evaluation in Sect. 6, we assume that a good approximation 
of a human objective function is provided. Such a function could be obtained, e.g., 
via inverse reinforcement learning.
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5.1 Trajectory Optimization for AVs 

The OCP used for trajectory optimization can be stated as: 

. argmin
x,u

Jbase = Jx + Ju + Ju̇ (8a) 

. s.t. :
xk+1 = f(xk,uk) k = 0, . . . , N − 1 (8b) 

.x0 = x̂ (8c) 

.gdyn ≤ gdyn(xk) ≤ gdyn k = 1, . . . , N (8d) 

.gcol(x
F
k , x

L
k ) ≤ 0 k = 1, . . . , N (8e) 

.gobs(xk) ≤ 0 k = 1, . . . , N (8f) 

.x ≤ xk ≤ x k = 1, . . . , N (8g) 

.u ≤ uk ≤ u k = 0, . . . , N − 1 (8h) 

The objective function .Jbase is used to generate a desirable driving behavior. The 
equality constraints (8b) enforces the vehicle dynamics. Further, (8c) ensures that 
the trajectory is planed from the current state. x̂. The inequality constraints (8d)–(8h) 
are used for collision avoidance and to account for physical limitations of the real 
system. 

5.1.1 Vehicle Model 

To describe the dynamics of the vehicle (8b), the kinematic single-track model is 
used. The vehicle state at time . k, .xk = [xk, yk, ψk, vk]T , is described by the lateral 
and longitudinal position .(x, y) of the vehicle’s center of gravity, the orientation 
. ψ , and the absolute velocity . v. Together with the input .uk = [δk, ak]T consisting of 
steering angle . δ and acceleration . a, the dynamics of a vehicle are given by (Fig. 3):
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Here, . β is the slip angle which is given by .β = arctan
 lr
l tan(δ)

 
. 

Further, . l is the wheelbase, and . lr is the distance between the center of gravity 
and the rear axis. To obtain the discrete dynamics model .xk+1 = f (xk,uk) in (8b) 
we use a fourth-order Runge-Kutta method. 

To ensure the validity of the kinematic single-track model [ 28], .gdyn (8d) are  
introduced to limit the lateral acceleration as follows: 

.|vkψ̇k | = |v
2
k

l
tan(δk) cos(βk)| ≤ alat,max = 4

m

s2
(9) 

To also limit the jerk, the following constraints on the acceleration change are intro-
duced: 

. jmin ≤ ak − ak−1

τ
≤ jmax (10) 

Here, . jmin and . jmax are the minimum and maximum allowed jerk values. 

5.1.2 Collision Avoidance 

The collision avoidance constraints (8e) are formulated pairwise between vehicles. 
Hereby, the shape of one vehicle is approximated by a finite number of circles and the 
shape of the second vehicle is approximated with a superellipses, as illustrated in Fig. 
4. Compared to regular ellipses, superellipses provide a more accurate approximation 
of the vehicle’s rectangular shape [ 24]. 

Collision avoidance between a point .p = [x, y]T and a superellipse defined by 
the semi-major . a, the semi-minor . b, and order .n ∈ N can be formulated as: 

.
n

  x
a

 n +
 y
b

 n ≥ 1 (11) 

Fig. 3 Kinematic bicycle model
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Similarly, collision avoidance between a circle with radius. r and a superellipse can be 
formulated as a point mass constraint on the center point of the circle.pc = [xc, yc]T . 
Therefore,.pc needs to be outside the Minkowski sum of the superellipse and a circle 
with radius . r2 , see Fig. 5. 

To maintain an efficient formulation, the Minkowsi sum is approximated by an 
enlarged superellipse. In case of a superellipse of order .n = 4, enlarging the semi-
major and semi-minor by the radius . r is a sufficient over approximation, see Fig. 
5. 

Henceforth, the collision avoidance constraints can be stated as: 

.
n

  
xc

a + r

 n
+
 

yc
b + r

 n
≥ 1 (12) 

(a) (b) 

Fig. 4 Illustrated are the shape approximations by (a) multiple circles and (b) a superellipse of 
order. n = 4

r 

r 
2 

Fig. 5 Comparison of the Minkowski sum, shown in blue, and a superellipse with the semi-major 
and semi-minor enlarged by. r , shown in red. The original superellipse is shown in grey
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5.1.3 Objective Function 

The objective function (8a) consists of three components, . Jx, . Ju, . Ju̇, penalizing 
deviations from a desired state .xref = [xk,ref, yk,ref, ψk,ref, vk,ref]T , any control effort, 
and any changes in control, respectively. The function can be stated as: 

.Jbase(x,u) = Jx + Ju + Ju̇ (13a) 

. =
N 

k=1

⎛

⎜⎜
⎝

xk − xk,ref
yk − yk,ref
ψk − ψk,ref

 v

⎞

⎟⎟
⎠

T

Q

⎛

⎜⎜
⎝

xk − xk,ref
yk − yk,ref
ψk − ψk,ref

 v

⎞

⎟⎟
⎠ (13b) 

. +
N−1 

k=0

uk T Ruuk (13c) 

. +
N−1 

k=1

(uk − uk−1)
T Ru̇(uk − uk−1) (13d) 

. + (u0 − û)T Ru̇(u0 − û) (13e) 

With the velocity vector .v = [v cos(ψ + β), v sin(ψ + β)]T and the road tan-
gential unit vector . t, . v = v · t − vref measures the difference between the current 
velocity along the road and the reference velocity.vref. Further, . û is the control input 
from the previous step. Finally, .Ru ,.Ru̇ and .Q are weighting matrices used to model 
the desired driving behavior. 

6 Evaluation 

The efficacy of the proposed bi-level algorithm is evaluated in two different settings. 
First, the ability of the AV to deliberately influence the HD’s state through its driving 
behavior is investigated. These experiments make use of the direct link between the 
AV’s actions and the HD’s response which the bi-level approach provides. 

Since in real driving applications, the goal of the AV is to drive efficiently and 
comfortably rather than to influence the state of other vehicles, the focus of the 
second part, is to demonstrate how the approach can be used to plan interaction-
aware, cooperative driving behavior. 

Apart from the efficacy, the algorithm’s runtime is analyzed followed by a dis-
cussion highlighting the advantages and limitations of the algorithm.
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Straight road 

Merge 

Fig. 6 Depending on the experiment, either a multi-lane or a merging scenario, where the right 
lane ends, is considered 

Table 1 MPC parameters 

Parameter Value 

.N 30 

.T 6s  

.Q . diag(0, 1, 0, 100)

.Ru . diag(1, 1)

.Ru̇ . diag(10000, 1000)

.vmin, vmax . 0 m
s , 30

m
s

.δmax 30◦ 

.amin, amax . −8 m
s2
, 3 m

s2

. jmin, jmax . −10 m
s3
, 6 m

s3

.l 4m  

.lr 2m  

6.1 Base Scenario 

We evaluate our approach in multi-lane scenarios as shown in Fig. 6, where the 
AV is depicted in blue and the HD is depicted in gray. For the purpose of these 
experiments, the AV is considered the leader, and the HD is considered the follower. 
In the following, we will use the terms leader and AV as well as follower and HD 
interchangeably. 

Both vehicles have a width of .2.0m and a length of.4.0m. Collision avoidance is 
implemented using a superellipse of order .n = 4 for the leader and two circles for 
the follower. Further parameters are given in Table 1. 

The follower directly uses the cost function (13) for its trajectory optimization 
with the weights and vehicle characteristics given in Table 1. The leader’s NLP is also 
based on (13) but additionally considers the KKT conditions of the follower’s NLP 
as constraints, as stated in (6). Further, the leader’s objective function is augmented 
with additional cost terms to set scenario-specific incentives.
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Table 2 Leader’s and follower’s initial and reference states 

Parameter Value 

.xL0 . [12.0m, 3.0m, 0◦, 10.0 m
s ]T

.xF0 . [2.0m, 5.0m, 0◦, 10.0 m
s ]T

.xLref = xFref . [0.0m, 5.0m, 0◦, 10.0 m
s ]T

If not stated otherwise, the initial and reference states listed in Table 2 are used 
for the leader and follower. 

6.2 Influence the Human’s State 

The following two experiments investigate the leader’s ability to influence the fol-
lower’s state. To provide the appropriate incentives, the leader’s objective function is 
augmented with.Jinfluence. The leader’s objective is, therefore, the following weighted 
sum: 

.JL = wL Jbase + winfluence Jinfluence (14) 

Henceforth, a ratio of .winfluence
wL

= 107 is used. 

6.2.1 Slow Down the Human 

In this experiment, the leader’s goal is to slow down the follower to a certain velocity, 
.vFref. To incentivize this behavior, deviations of the follower’s velocity to .v

F
ref are 

penalized. The scenario-specific .Jinfluence is therefore set to 

.Jinfluence =
N 

k=1

(vF
k · tk − vFref)2 (15) 

with .v = [v cos(ψ + β), v sin(ψ + β)]T and . t as the road tangential unit vector. 
The results for a desired velocity of .vFref = 5. ms are illustrated in Fig. 7. As can 

be seen, the leader changes to the left lane to get in front of the follower. Despite its 
interest in driving fast, the leader starts to brake, forcing the follower to slow down. 
To prevent the follower from overtaking, the leader drives close to the center of the 
road.
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Fig. 7 By sole penalizing the follower’s velocity the bi-level approach yields an intuitive solution; 
The leader has to change the lane and needs to brake to slow down the follower 

6.2.2 Push the Human to the Adjacent Lane 

In this experiment, the ability to also influence the follower in the lateral direction is 
investigated. Therefore, a 3-lane road is considered, see Fig. 8. 

The leader’s goal is to enforce a lane change of the human to the adjacent left lane. 
This incentive is encoded by setting.Jinfluence to penalize deviations of the follower’s 
lateral position to a reference .yFref as: 

.Jinfluence =
N 

k=1

(yFk − yFref)
2 (16) 

Figure 8 shows the behavior for.yFref = 8.5m, which corresponds the center of the 
leftmost lane. To push the follower to the left, the leader changes lanes and slows 
down, almost coming to a full stop. The leader thereby blocks the middle lane, which 
forces the follower to also slow down to avoid a collision. To continue, the follower 
starts an overtaking maneuver. At the same time, the leader accelerates again to stay 
next to the follower, blocking him from changing back to his original lane. 

6.3 Interaction-Aware Trajectory Optimization 

In real traffic, the primary goal of the AV is to drive comfortably and efficiently rather 
than to change the state of surrounding vehicles in a certain way. Therefore, the
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Fig. 8 The leader changes lanes and brakes harshly to enforce an overtaking maneuver of the 
follower. As soon as the follower tries to overtake, the leader accelerates again, blocking the follower 
from changing back to the middle lane 

generated behavior when planning trajectories with the proposed interaction-aware 
algorithm in different lane change scenarios is investigated next. To better show the 
effect of the planned behavior, the desired velocity of the follower is increased to 
.vFref = 15. ms . Throughout the scenarios, the leader aims to perform a lane change to 
the left. 

6.3.1 Efficient Planning 

We start by formulating the leader’s objective in an egocentric way, similar to how 
it is formulated for planners following a predict-then-plan scheme. Here, the leader 
solely considers attributes of its own trajectory, formulated by only optimizing.Jbase. 

The resulting trajectories are shown in Fig. 9. As can be seen, the leader plans 
a very efficient lane change without any acceleration. However, as a response, the 
follower has to brake harshly to avoid a collision, see Fig. 10. This aggressive cut in 
is a result of the leader knowing that the follower will react, which the leader then 
exploits to further optimize its own driving behavior. 

This example shows that interactive behavior not only occurs when the leader is 
incentivized to alter the state of the follower but also emerges out of efficiency.
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Fig. 9 When only considering its own costs, the leader performs an aggressive lane change 

6.3.2 Cooperative Interaction-Aware Planning 

The proposed interaction-aware model gives the leader the ability to anticipate the 
follower’s reaction. When naively using an egocentric objective function, the leader 
exploits the follower’s response and generates an overly aggressive behavior, as 
demonstrated in the previous example. 

To mitigate this effect, the impact imposed on others must be considered in the 
objective function of the leader. Therefore, a formulation base on a cooperative cost 
function that includes the leader’s and followers’s cost in the leader’s objective is 
considered in the following: 

Velocity 

[s] 
0.0 

0.0 2.0 4.0 6.0 8.0 

5.0 

15.0 

10.0 

[ m 
s ] 

time 

Fig. 10 While the leader can perform a smooth lane change without accelerating, the follower has 
to brake harshly to avoid a collision
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.Jcooperative = α JF,base + (1 − α)JL ,base (17) 

In this formulation, the variable.α ∈ [0, 1] determines to which extent the leader’s 
and the follower’s cost are considered. Therefore,. α provides a way to design different 
driving behaviors, ranging from overly aggressive to overly conservative. 

The impact the parameter . α has on the generated behavior is investigated in the 
following. Therefore, we consider a scenario including a mandatory lane change for 
the leader, see Fig. 11. The different .α-dependent acceleration and velocity profiles 
for .α = 0.0, .α = 0.5 and .α = 0.99 are illustrated in Fig. 12. 

In detail, for .α = 0.0, the leader does not accelerate, and all the discomfort has 
to be carried out by the follower. This represents the aggressive, egocentric behav-
ior presented in the previous experiment. With a larger . α, the leader increases its 
acceleration until reaching the acceleration limits. In the case of.α = 0.99, the leader 
mostly considers the follower’s cost and tries to intervene with its optimal plan as 
little as possible. This value of . α generates a very conservative behavior similar to 
a predict-then-plan approach. With .α = 0.5, the leader’s and the follower’s cost are 

Fig. 11 Illustrated is a scenario where the leader has to perform a lane change to the left. Depending 
on the value of . α, different behaviors are generated, ranging from overly aggressive to overly 
conservative
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Fig. 12 Depending on the value of . α different acceleration and velocity profiles are obtained. 
Thereby, the langer . α is, the more discomfort the leader accepts. Further, with different . α the 
vehicles approach different stationary velocities which might significantly differ from their desired 
velocities
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considered equaly, which leads to an approximately equal distribution of discomfort. 
Note however, that, besides adjusting the acceleration during the lane change, the 
leader also adapts its stationary velocity depending on . α. 

6.3.3 Courtesy Constraints 

The cooperative cost formulation presented in the previous experiment has the side 
effect that for .α > 0.0, the leader permanently drives faster than its desired velocity 
.vLref. For some scenarios, e.g., overtaking a slow-moving truck on the highway, a 
temporal increased velocity might be acceptable or even desirable for traffic effi-
ciency. However, in most situations, a vehicle in front does not adapt its velocity to 
the desires of rear traffic. 

An alternative to the cooperative cost formulation is introducing courtesy con-
straints. With these constraints, the leader’s impact on others can be limited without 
altering the leader’s objective function. 

In this experiment, we introduce a constraint such that the leader is allowed to, 
at max, cause a deceleration of .alimit to the follower. To enforce this, the following 
constraints are added to the leader’s NLP: 

.gcourtesy,k = aF
k − alimit ≥ 0 (18) 

Here, .aF
k is the acceleration of the follower. 

The effect of the courtesy constraint with.alimit = −2.0 on the considered merging 
scenario is illustrated in Fig. 13. By introducing the constraint, the leader acceler-
ates during the lane change, which successfully limits the induced deceleration to 
.−2.0 m

s2 . The velocity profiles are shown in Fig. 13b. Compared to the cooperative cost 

Acceleration 

[s] 
−8.0  

0.0 2.0 4.0 6.0 8.0 

−6.0  

2.0 

0.0 

[ m 
s2 
] 

−2.0  

−4.0  

time 

(a) 

Velocity 

[s]0.0 
0.0 2.0 4.0 6.0 8.0 

5.0 

15.0 

10.0 

[ m 
s ] 

time 

(b) 

Fig. 13 Shown are the acceleration (a) and velocity (b) profiles when planning with the courtesy 
constraints. Introducing these constraints into the leader’s NLP generates a behavior that success-
fully limit the follower’s deceleration to .alimit = −2.0. Further, after the merge is completed, the 
leader returns to its desired velocity
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formulation, the leader returns to its desired velocity of .10.0 m
s after the successful 

merge. 
Both, the cooperative cost and the courtesy constraint method have traffic scenar-

ios where they are particularly suited. E.g., when overtaking a slower driving vehicle 
on the highway, the cooperative cost formulation might be more suitable as it leads 
to a temporal increase in velocity for the duration of the overtaking maneuver. In 
contrast, for a merging scenario or a permanent lane change, the courteous constraint 
method might be the better choice since the leader returns to its desired velocity after 
the merge is completed. 

6.4 Runtime Experiments 

The presented method for interaction-aware trajectory optimization computes an 
open-loop solution for the AV. More precisely, the control inputs are functions of 
time and not of the state. To adapt to unforeseen changes in the environment, the 
algorithm needs to run in an MPC fashion. For MPC, a sufficiently high update rate 
is crucial. Therefore, we analyze the performance of the algorithm with a proof of 
concept MPC implementation. 

The MPC was implemented in Python. All necessary derivatives were calculated 
using the open-source software CasADi [ 1]. CasADi utilizes automatic differentia-
tion methods to accurately calculate the derivatives. Compared to, finite difference 
methods, automatic differentiation is faster and more accurate. Further, IPOPT [ 36] 
was used to solve the formulated NLP. IPOPT is a general-purpose solver for large-
scale nonlinear problems. We cold started the IPOPT solver with a feasible solution 
of the desired driving maneuver, which we obtained by sequentially solving a single 
vehicle NLP, as in (8), first for the leader and then for the follower. This initialization 
was only performed for the very first iteration of the planner. All subsequent itera-
tions were warm started with the solution of the previous iteration. To get a better 
initial guess, the previous solution was shifted by the duration between the planning 
iterations. 

The timing results were obtained by considering a merging scenario, with the two 
most relevant methods for the application to real traffic, namely, the cooperative cost 
function method, with .α = 0.5 and the courtesy constraints method, with . alimit =
−2.0. We simulate each method for .9.0 s. A horizon length of .N = 30 steps is 
considered for the MPC. Further parameters were taken from Table 1. The runtime 
results are obtained by running the MPC implementation .100 times on the merging 
scenario with both methods. The mean solve time over the .100 simulation runs are 
shown in the histogram in Fig. 14. Additionally, the mean and standard deviation of 
the mean solve times are listed in Table 3. All timing results were obtained on an 
Intel Core i7-8565U CPU with a clock rate of 1.80GHz. 

Even though the experiments were conducted with an MPC implementation that 
leaves great potential for improvements, we could already demonstrate our algo-
rithm’s real-time capability with mean solve times of.96.82ms and.83.85ms, respec-
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Fig. 14 Mean solve times obtained by running the MPC implementation 100 times on the merging 
scenario with (a) the cooperative cost and (b) the courtesy constraint method 

Table 3 Mean and standard deviation of the mean solve times obtained by running the MPC 
implementation 100 times 

Method .μ . σ

cooperative cost .96.82ms . 2.61ms

courtesy constraints .83.85ms . 5.50ms

tively. The presented results can be considered a conservative estimate of the achiev-
able performance. However, in the future, this could be greatly improved by utilizing 
tailored solvers and implementing the approach in a high-performance programming 
language, e.g., C++. 

7 Algorithm Discussion 

A core assumption that we made to obtain the model for interaction-aware planning, 
stated in (3), is that the human does not try to influence the AV but rather reacts 
to its actions. According to [ 30, 31], this is a valid assumption for a wide range of 
interactive scenarios. Further, compared to a Nash equilibrium, it might even be the 
better model for how humans act in interactive situations since humans typically do 
not solve games in their everyday lives when they are not playing chess [ 15]. 

The formulated NLP (6), is a non-convex and non-smooth problem. As such, one 
can not expect to find globally optimal solutions. However, we use derivative-based 
optimization methods to find local optima. These methods require an initial guess, 
which sets the considered homotopy, as solutions of local methods are typically in the 
same homotopy as the initial guess. In the context of automated driving, homotopies 
are often thought of as maneuvers. Thus, we use the initial guess to encode the desired
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driving maneuver. Via the experiments, we empirically observe that initializing with 
a rough, but feasible initial guess of the desired maneuver is sufficient to reliably 
solves the problem. To take multiple maneuvers into consideration, it is advisable 
to combine the presented approach with a global method. E.g., a higher abstraction 
behavior planner based on an arbitration scheme as in [ 26] could be used to generate 
good initial guesses. 

The focus of the experiments was to analyze the capabilities and the performance 
of the proposed bi-level planner. As such, the algorithm was evaluated in a tailored 
simulation environment, where one important modeling assumption was that the 
human driver is always attentive. However, in real traffic, this is not the case, and 
human drivers are sometimes distracted and do not respond to the actions of the 
AV. Therefore, the presented algorithm needs to be combined with an intention 
estimation, e.g, as presented in [ 5], to cope with unattentive drivers. 

8 Conclusion 

In this chapter, we presented an algorithm that is able to generate interaction-aware 
trajectories for AV. The interaction between a HD and an AV is modeled as a Stack-
elberg game, where the human responds rationally to the AV’s actions optimizing its 
own objective. This leads to a nested optimization problem which we approximate 
by MPC based on a bi-level optimization formulation. To solve this, we reformu-
lated the problem into a single-level representation, exploiting the assumption that the 
human will act optimally with respect to its objective function. We solve the obtained 
NLP using derivative-based optimization methods. The presented algorithm is able 
to solve the interaction-aware trajectory optimization problem in a continuous state 
and input space. Further, in contrast to existing methods, general nonlinear state and 
input constraints can be considered, which allows for an accurate dynamics model. 

The algorithm enables the AV to anticipate how surrounding HD will react to 
its actions. This gives the AV the possibility to deliberately influence the state of 
the human. Here, simply encoding the desired effect into the AV’s objective func-
tion is enough to generate complex, interaction rich behavior, without the need for 
hand designed decision heuristic. Further, interactive behavior does not only occur 
if incentivized in the AV’s objective function, but also emerges out of optimizing the 
AV’s behavior. 

However, care must be taken to avoid that the AV exploits interactions to fur-
ther optimize its own objective, and thereby generates an overly aggressive driving 
behavior. To prevent such an aggressive behavior, the AV’s objective is extended to 
also consider the costs of the HD. 

As an alternative to modifying the AV’s objective function, we presented a strategy 
to establish courtesy in the planning algorithm via additional constraints. These con-
straints allow a motion planner to utilizes an egocentric objective function, provided 
that the negative impact imposed on other vehicles is limited.
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The experiments demonstrated the efficacy of our algorithm and suggest that 
the algorithm can be used in challenging interactive driving scenarios. Further, we 
could achieve real-time performance even with an unoptimized proof-of-concept 
implementation. 
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Designing Maneuver Automata 
of Motion Primitives for Optimal 
Cooperative Trajectory Planning 

Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee, 
and Kathrin Flaßkamp 

Abstract Trajectory planning techniques form a central step to enable autonomous 
driving. The motion primitives method generates an automaton of precomputed 
maneuvers with structure-exploiting properties. Thereby, the trajectory planning 
problem can be reduced to finding an admissible/optimal sequence of motion prim-
itives. In this chapter, we present ways to designing maneuver automata based on 
different system models and on either analytical or data-based approaches for automa-
ton generation. Moreover, numerical methods for computing optimal maneuvers are 
listed and we discuss graph-based planning techniques. A subsequent chapter shows 
the evaluation of motion primitives automata in the Cyber-Physical Mobility Lab. 

1 Introduction 

The task of planning trajectories for multiple vehicles can be solved by many available 
techniques (see, for instance, [ 2, 3, 17]). However, there are still key challenges to be 
tackled for a multi-vehicle trajectories planner: (a) the admissibility of the planned 
trajectories, (b) the real-time capability of the optimization solvers on the respective 
vehicles and (c) the feasibility of the communication overhead between the vehicles. 
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Complemented into two chapters, 1 our work brings new methodologies for solving 
the cooperative trajectory planning problem for autonomous driving. We address the 
challenges mentioned above through graph-based optimal solutions. Before going 
into more detail about which methods we use and how we use them, let us first give 
an overview of how it is contextualized within vehicle automation. 

Automated driving systems basically consist of three modules [ 31]: 

1. Sensing or perception: capture the environment objects and conditions through 
sensors. 

2. Planning: find a feasible trajectory. 
3. Acting or control: track the trajectory by controlling the vehicle’s actuators. 

We place our focus on solving the second step. Motion planning aims to find a 
sequence of control inputs to move a vehicle from an original state to a set of possible 
goal states, while avoiding collisions during the trajectory [ 30]. At first, this task can 
be achieved by solving an optimal control problem (OCP). However, it could be 
computationally costly to get optimal control solutions when dealing with nonlinear 
vehicle models. Complex environments can also make it difficult to properly design 
all the obstacles into the optimization problem, which make the OCP unsuitable for 
many applications [ 14]. As an alternative, discrete planning techniques sample the 
state space, map it as a graph and perform a graph search for a minimum-cost path 
[ 22]. As disadvantages, we can cite the total neglect of the model in the case of the 
most famous graph search, the A*, or the numerically complex and non-time-critical 
solutions for the also well-known Hybrid A* search [ 10, 23, 26]. 

In order to get the best of both worlds, i.e., decreasing the motion planning prob-
lem complexity and avoiding a full discretization over the state space, we use the 
concept of motion primitives, originally proposed by [ 14]. Motion primitives are 
finite-time pieces of trajectories that can be concatenated. They are constructed from 
the dynamical system model. That is, the final path resulting from their interlocks is 
feasible with respect to the selected model. References [ 12, 14, 19] showed that, by 
using them, the highly complex problem of trajectory planning can be transformed 
into a graph search, in which solutions can be found with a suitable difficulty. How-
ever, for this to happen, it is of fundamental importance to have a library of primitives 
at hand that ensures appropriate routes for the desired road scenarios. At the same 
time, it should also have a size that makes the problem as computationally inex-
pensive as possible. Note that all this should also take into account the cooperative 
communication between agents, since it is desirable to have a trajectory planning 
with a sufficiently small communication effort. 

The realization of motion primitives is only possible when the dynamic model has 
the symmetry property. To give an intuition, this property indicates that it is possible 
to perform rotations and translations in mechanical systems—without deformation 
of their path profile under the same sequence of control inputs. In the original work 
[ 14], the symmetry property of systems was exploited to develop two special kinds of

1 Trajectory planning strategies for multiple vehicles are presented in the Chapter “Prioritized 
Trajectory Planning for Networked Vehicles Using Motion Primitives”. 
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Fig. 1 Example of a 
maneuver automaton with 
four trim primitives: 
.{p1, p2, p3, p4} and eight 
maneuvers: 
. {m1,1, m1,2, m1,4,

. m2,3, m3,2, m3,3, m3,4, m4,1}
(figure from [ 24]) 
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motion primitives: the trim primitives and the maneuvers. Trims are steady motions, 
where the control inputs are kept fixed, while the maneuvers are motions transitioning 
between the steady motions. Their rules for concatenation can be translated into a 
directed graph, which we call motion primitive automaton (MPA), also referred in 
[ 14] as maneuver automaton. Figure 1 illustrates an example of an MPA with four 
trims and eight maneuvers. Then, solving the motion planning problem consists 
of using a graph search method to find a sequence of primitives, which can be 
concatenated according to the MPA. 

In this chapter, with the first part of our studies, we present the development of 
methods to architect the motion primitives selection and construction, as well as 
the relationship between them. The second part, written in the chapter “Prioritized 
Trajectory Planning for Networked Vehicles Using Motion Primitives”, is devoted 
to detailing the cooperative trajectory planning algorithms that represent maneuvers 
primitives. The general workflow is given in Fig. 2. 

This chapter is organized as follows. In Sect. 2, we evaluate, from a list of different 
vehicle models, the suitable dynamics for the planning problem and determine the 
symmetry group for a generic class of vehicle models. In Sect. 3, based on previous 
works, e.g., [ 12– 14, 21, 23], we determine a method to analytically select trim 
primitives from a vehicle model and, alternatively, abstract typical trim primitives 
from traffic data. In Sect. 4, we model the computation of maneuvers as an OCP and 
solve the respective OCP to obtain the optimal maneuvers. Automata of different 
configurations with respect to their computational complexity and solution quality 
are analyzed in Sect. 5. It also investigates both time-optimal and maximum comfort 
motion graphs via the analysis of multi-objective maneuvers. In Sect. 6, we briefly 
present possible algorithms to solve the graph-based planning problem. Lastly, we 
give concluding remarks in Sect. 7. 

2 Models and Symmetry 

There are several ways to represent the dynamic system of vehicles, from the simplest 
cases, such as the point-mass model, the Dubins curves [ 11] and the Reeds–Shepp 
curves [ 25], to detailed, vehicle-specific models. Both Dubins and Reeds–Shepp 
curves take into account a kinematic car model consisting only of the pose, i.e., the 
position and orientation. Halfway through, the CommonRoad benchmarks present a
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Fig. 2 Workflow of our methodology 

hierarchical list of models that considers increasingly complex lateral vehicle dynam-
ics and tire models [ 5]. This list includes, among others, the following models: kine-
matic single-track model, single-track model, and a multi-body model. It is assumed 
for these models the existence of controllers that can realize a commanded accel-
eration. The choice of the appropriate model depends on which detail you want to 
capture the physics of motion. In the Appendix, the reader can find the description 
of the equations for the kinematic single-track and the single-track models, as they 
will be used in this chapter. 

All of the CommonRoad models have in common the following generic structure 
of ordinary differential equations: 

.ẋ = f (x, u) :=

⎡
⎢⎢⎣
f1(r, u) cos ( f2(r, u)+ ψ)
f1(r, u) sin ( f2(r, u)+ ψ)

fψ(r, u)
fr (r, u)

⎤
⎥⎥⎦ , (1) 

with the vector of states .x =  sx sy ψ r
 T

belonging to a manifold . X, where .sx and 
.sy are the positions of the center of gravity, .ψ is the vehicle orientation, . r is any 
vector of .n − 3 states, .u ∈ U is the vector of inputs and . f1(r, u), f2(r, u), . fψ(r, u), 
and. fr (r, u) are arbitrary nonlinear functions. For convenience, we omit the notation 
for dependence of .x(t) and .u(t) on time .t ∈ R≥0. We assume the function . f (x, u)
of Eq. (1) as being continuous and locally Lipschitz w.r.t. .x(t). Then, we guarantee 
the existence and uniqueness of solutions given by the flow 

.x(t) = ϕu(x(0), t) (2) 

for a given input function . u on the time interval .t ∈ [0, T ].
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Many mechanical systems, including vehicles, exhibit the symmetry property, 
which acts as state transformations defined by Lie group representations [ 14]. They 
are necessary to build the primitives from the model. To describe them mathemati-
cally, we need to introduce some considerations. 

Let the Lie group be denoted by. G, its identity element by. e, and its left action on 
. X by. : G × X → Xwith. smooth,. (e, x) = x for.x ∈ X, and.  (g,  (h, x)) =
 (gh, x) for all .g, h ∈ G and .x ∈ X. 
Definition 1 (Symmetry) The tuple .(G,  ) is a symmetry for .ẋ = f (x, u) on. X, if  
for any fixed control .u ∈ L∞

loc([0,∞),Rm), 

.ϕu( (g, x0), t) =  (g, ϕu(x0, t)) (3) 

holds for all .g ∈ G, .x0 ∈ X, and .t ≥ 0. 

We can produce a symmetry group that fits the entire set of models described in 
[ 5]. It is given by combined rotations and translations on the pose, which we represent 
by .p =  sx sy ψ

 T ∈ R
2 × S1, in the following form [ 24]: 

Theorem 1 The symmetry group for Eq. (1) is given by 

.G :=
 
g ∈ SE(n) : g := g( x) =

 
R  x
0 1

  
, (4) 

where 

. R =
 
RSO(3) 0
0 I

 
∈ SO(n), (5) 

. x =

⎡
⎢⎢⎣
 sx
 sy
 ψ

0

⎤
⎥⎥⎦ ∈ R

2 × S1 × {0}n−3, (6) 

. RSO(3) =
⎡
⎣
cos( ψ) − sin( ψ) 0
sin( ψ) cos( ψ) 0

0 0 1

⎤
⎦ ∈ SO(3), (7) 

for . I being the identity matrix with appropriate dimension, a vector . x, and . g
given in homogeneous coordinates, such that the affine-linear group action can be 
represented by: 

. g(x) = Rx + x . (8) 

To prove it, we show the equivariance of the system (1) w.r.t. the symmetry action 
(8). We will show the idea of the proof, while details can be found in [ 24]. 

Proof The vector field . f is equivariant w.r.t. the symmetry action . if
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. f ( g(x), u) = d g(x)

dx
· f (x, u). (9) 

Let . p =   sx  sy  ψ
 T
. The group action (8) can be written as 

. g(x) =
 
RSO(3) p + p

r

 
=

⎡
⎢⎢⎣
cos( p)sx − sin( p)sy + sx
sin( p)sx + cos( p)sy + sy

ψ + ψ
r

⎤
⎥⎥⎦ . (10) 

Then, from Eqs. (1), (10) and (5), we get that the left-hand side of Eq. (9) is:  

. f
 
 g(x), u

 = R f (x, u). (11) 

Considering . g(x) = Rx + x as in Eq. (8), 

.
d g(x)

dx
= R, (12) 

which we can replace in Eq. (11), proving the equivariance of the vector field by 
satisfying Eq. (9). 

Given the proper considerations, we can now define motion primitives as equiv-
alence classes of trajectories. 

Definition 2 (Motion primitive) A motion primitive is the equivalence class of a 
representing pair .(x, u) on.[ti , t f ], if for any class member .(x̄, ū) on.[t̄i , t̄ f ], it holds 
that .t f − ti = t̄ f − t̄i and there exists a group element .g ∈ G and a shift . t ∈ R, 
such that 

.(x(t), u(t)) = ( (g, x̄(t − t)), ū(t − t)) ∀t ∈ [ti , t f ]. (13) 

In the next sections, we will introduce the two types of motion primitives: trim 
primitives and maneuvers. 

3 Trim Primitives 

These primitives are characterized by fixed, i.e., trimmed, controls and are symmetry-
induced motions. They were introduced in [ 14], and the authors add that the trims are 
identified with steady-state motions, also known as relative equilibria of the system. 
Formally, they can be defined as follows. 

Definition 3 (Trim Primitive) Following the Definition 1, let. g denote the Lie algebra 
of . G with the exponential map .exp : g → G, and .ū ∈ U a fixed control input. The
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tuple .(x, u) on .[0, T ] with .x(0) = x0 is called a trim primitive if it is a solution to 
the system dynamics expressed, for all .t ∈ [0, T ], by  

.

 
x(t) =  (exp(ξ t), x0),
u(t) ≡ ū,

(14) 

with .ξ ∈ g being a suitable chosen Lie algebra element. 

The duration of a trim primitive is, in principle, not fixed and is called “coast-
ing time”. For the kinematic single-track or the single-track models, the trims are 
characterized by a fixed velocity and a constant curvature 2 (see [ 23, 24]). 

A choice for a finite number of trim primitives has to be taken. The question of 
representation and well-spread trims arises. A “plain vanilla” approach is to uni-
formly grid the Lie algebra up until borders that seem physically plausible [ 19]. 
More sophisticated approaches choose representative trim primitives based on data, 
either the road-geometry of interest or from driving, as detailed in the following two 
subsections. 

3.1 Choice Based on Road-Geometry 

One way to select the trim primitives is to fit them to the geometry of the roads on 
which the vehicle is to drive. As an example, we take the map of the Cyber-Physical 
Mobility Lab (CPM Lab) [ 16] drawn using the CommonRoad interface [ 5], depicted 
in Fig. 3a. From information contained in the CommonRoad scenario file, we can 
decompose the roads into the discrete points taken from the center of each lane, as 
can be seen in the upper left of the Fig. 3b and generate trims by the sequence: 

1. Calculate all the possible curvatures from the map. 
2. Select the most frequent curvatures. 
3. Choose an arbitrary set of speeds within the boundaries interval. 
4. Combine curvatures and speeds in tuples that represent each trim. 

The yaw angles at each point of the decomposed map could be calculated from the 
vectors tangent to the lane’s center (see Fig. 3b). Then, we can get and store the set of 
different curvatures, which might be a large data set. To reduce it, we can cluster the 
data points, for instance via k-means, to get a smaller number of the representative 
curvatures [ 24]. However, we can directly steer the number of different curvatures 
by the considered rounding accuracy, as we can have many similar data points. For 
example, the set of curvatures .{0.0507..., 0.0543..., 0.0539...} could be reduced to 
the values .{0.051, 0.054} when considering three decimal places, or to just to the 
value of.0.05 if two decimal places are considered. See Fig. 4 for checking the number

2 The curvature is calculated by dividing the yaw rate by the velocity. Then, the trims could, alter-
natively, be represented by a constant speed and constant yaw rate. 
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(a) CPM Lab’s map (b) Lane’s centers (upper left) with their discrete decom-
position 

Fig. 3 Road geometry decomposition of the CPM Lab’s map into 208 different points. The axes 
are the coordinates in meters 

Fig. 4 The number of different curvatures computed in the example according to the tolerated 
decimal places 

of different curvatures considered according to the accepted decimal places for this 
example. Having two decimal places, we get 14 classes of curvatures, that can be 
representative for this map. Lastly, a set of arbitrary speeds can be combined with 
these different classes and we get a set of trims to be used in the planning problem. 

3.2 Choice Based on Driving Data 

An automatic generation of data-based automata was proposed in [ 24]. The authors 
assumed that the data represents a dynamical model with symmetries. Also, this 
model is observable such that the full system state could be reconstructed from the 
available states on the data. Then, making an assumption on the model, the following 
sequence of steps was carried out: 

1. Find invariances of trims in data. 
2. Cluster trim primitives.
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(a) Extracted trims (b) Trims clustered 

Fig. 5 Trims clustered using k-means in seven representative points, where the black squares are 
the centers of each cluster (figure from [ 24]) 

3. Evaluate a transition matrix. 

The selected data in [ 24] was taken from the nuScenes data set [ 8], having multiple 
information about the vehicle’s states, including the pose, the velocity, the accelera-
tion, and the rotation rate recorded using an inertial measurement unit during urban 
driving in Singapore (Singapore) and Boston (United States). It is worth mention-
ing that this data set represents the interaction of the car in real traffic with other 
vehicles, including overtaking, braking, waiting on corners, etc. That is, several real 
interactions between vehicles are embedded in the selected primitives, ideal for a 
cooperative planning scenario. 

Consider the data points being represented by the triples .(ti , xi , ui ) for . i =
0, 1, 2, . . . , D, where .D ∈ R is the number of elements in the data set. Consider 
that, for a suitable chosen symmetry .(G,  ), there exist solutions .(x, u) satisfying 
Definition 3 for a model .ẋ = f (x, u). Then, subsequent data points belong to the 
same trim if 

.

 
||ui+1 − ui || <  u, and
|| (exp(ξ(ti+1 − ti )), xi )− xi+1|| <  x (15) 

for a sufficient small positive error margins . x and .  u . 
We can determine a minimum time length . τ for the duration of a trim primitive, 

i.e., a minimal coasting time. Then, a trim will be considered only if, for a sequence of 
.N > 1 points, the conditions (15) hold from. i to .i + N − 1 such that .ti+N − ti ≥ τ . 

However, the number of extracted trims from the data can be huge. Then, we 
need to look for a finite amount of clusters that define the most representative trims 
during a route in real traffic. In [ 24], they worked with the k-means algorithm, an 
unsupervised learning technique that finds clusters in a set of data points, where the 
amount of clusters is given [ 20]. The representative trims will be selected as the 
center points of each cluster. Figure 5 shows an example of trims being clustered 
for the kinematic single-track model (28) from [ 24]. The trims are represented by a 
constant speed (x-axis) and a constant curvature (y-axis).
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At first, we could consider that a vehicle would be able to transit from any relative 
equilibrium to any other. For instance, in a kinematic robot model under nonholo-
nomic constraints, given by 

.

⎡
⎣
ṡx (t)
ṡy(t)
ψ̇(t)

⎤
⎦ =
⎡
⎣
cos(ψ(t))
sin(ψ(t))

0

⎤
⎦ u1(t)+

⎡
⎣
0
0
1

⎤
⎦ u2(t), (16) 

where the states are the pose and the controller manages the linear velocity . u1(t) =
v(t) and the angular velocity.u2(t) = ψ̇(t), trajectories can switch directly from one 
trim to another [ 13]. This is due to this model directly controlling the velocities and, 
thus, allowing discontinuities thereof. In this case, as well as in the (kinematic) single-
track model, every constant control input defines a trim, either going straight with 
constant velocity or going in a circle with constant rotational velocity. However, in 
the (kinematic) single-track model, the control inputs correspond to the longitudinal 
acceleration and the steering angle velocity (see the Appendix for these models’ 
equations). Thus, trims necessarily correspond to uncontrolled, i.e., constant-velocity 
motion. Smooth transitions between trims are then needed for, e.g., accelerating and 
decelerating to a new cruising speed, or for transitioning between straight and circular 
motions. 

We can search and select these transitions according to their occurrence in the data. 
That is, only transitions with a high probability of occurrence will be considered. 
The probabilities are organized in a transition matrix, in which, for each trim cluster, 
the transitions from all points of this cluster to other clusters are counted in the data. 

These transitions are another kind of primitive, called “maneuvers”. The last step 
for the automatic generation of an automaton is the computation of the maneuvers. 
Their formal definition, as well as techniques to compute them, will be given in the 
next section. 

4 Maneuvers 

The second type of motion primitives is the maneuvers. They are responsible for 
smooth transitions in the system from one trim primitive to another. Formally, we 
can define them as follows. 

Definition 4 (Maneuver) A maneuver is a finite-time trajectory that connects two 
trim primitives and is identified by: 

• a time duration . T ; 
• a sequence of control actions .u : [0, T ] → R

m ; 
• and an evolution in the form of (2) such that.(x(0), u(0)) and.(x(T ), u(T )) belong 
to trim primitives characterized by (14).
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In the class of vehicle models, the physics of maneuvers depends on the specific 
choice of the dynamical system model. 

To derive maneuvers for the considered family of vehicle models, we present a 
geometric approach, in which polynomial equations define the transitions from the 
predecessor trim to the successor one. Alternatively, maneuvers can be computed as 
solutions of an OCP. In this case, we can also explore Pareto fronts in a multiobjective 
optimization problem. 

4.1 Polynomial Approach 

The paper [ 23] exemplifies a concrete case of formulating the geometric method 
using the single-track model (30) from [  5]. In this case, a smooth transition needs 
to be made between the velocities . v and steering angles . δ from the predecessor 
trim to the successor one, both having these parameters fixed. Then, for a maneu-
ver with the duration .T > 0, we have the constraints .v(0) = v0 and .v(T ) = vT . A  
jump in acceleration at the beginning or the end of the maneuver would theoretically 
result in infinite jerk, which can be avoided by setting.u(0) = u(T ) =  0 0

 T
. Then, 

the control inputs are continuous, but we have additional constraints on the veloc-
ity .v̇(0) = v̇(T ) = 0. These constraints are met by the following cubic polynomial 
transitions for . 0 ≤ t ≤ T : 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(t) = (vT − v0)
 
3 − 2

t

T

  
t

T

 2
+ v0,

δ(t) = (δT − δ0)
 
3 − 2

t

T

  
t

T

 2
+ δ0.

(17) 

Then, the corresponding control signals .u v̇ and .u δ̇(t) are 

.

⎧⎪⎪⎨
⎪⎪⎩

u v̇(t) = 6(vT − v0)
 
1 − t

T

 
t

T 2
,

u δ̇(t) = 6(δT − δ0)
 
1 − t

T

 
t

T 2
.

(18) 

In addition, to ensure the feasibility of the maneuver, constraints on the longitu-
dinal acceleration and the derivative of the steering angle need to be considered. For 
the selected model, there exist the constraints 

.|v̇| ≤
    
3

2

vT − v0
T

    and |δ̇| ≤
    
3

2

δT − δ0
T

    . (19) 

When the maneuvers have positive acceleration (i.e.,.v0 < vT ), another constraint 
needs to be considered:
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.u v̇ ≤ amax
vs

v
, (20) 

with the switching velocity . vs , representing limited engine power, and a maximal 
longitudinal acceleration.amax > 0. Then, the duration of the maneuver can be chosen 
according to 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T =max

 
3

2

|vT − v0|
amax

,
3

2

|δT − δ0|
δ̇max

,
3

2

(vT − v0)vT
amaxvs

, Tmin

 
,

for v0 < vT ,

T =max

 
3

2

|vT − v0|
amax

,
3

2

|δT − δ0|
δ̇max

, Tmin

 
, otherwise.

(21) 

where .Tmin is a defined shortest duration, set as a design choice. 

4.2 Optimal and Pareto-Optimal Maneuvers 

Alternatively, the maneuvers can be computed optimally with respect to a cost func-
tional .J (T, x, u), for a duration . T . Then, each maneuver is obtained by solving the 
following OCP: 

. minimize
T,x,u

J (T, x, u) (22a) 

.subject to ẋ(t)= f (x(t), u(t)), 0 < t ≤ T (22b) 

. 0 ≥ g(x(t), u(t)), 0 < t ≤ T (22c) 

. x(0)= x0 (22d) 

. x(T )= xT , (22e) 

with .x0 and .xT as fixed states 3 evaluated at the predecessor and successor trims, 
respectively, and .g(·) as the constraints for the states and inputs. 

In the case of multiple cost functionals to be considered, the problem (22a) 
becomes a multiobjective optimal control problem. Then, we can select a Pareto-
optimal maneuver by computing the so-called Pareto set of optimal compromises 
between the concurrent objectives [ 9] and choosing one of its points (see Fig. 6). 

For instance, consider the kinematic single-track model (28), the costs.J1 = T and 
.J2 =  T0 ||u v̇||22, for a trade-off between fast and comfortable trajectories. The maneu-
ver goes from a trim described by.(v, δ) = (0 km h−1, 0◦) to a trim. (20 km h−1, 15◦)
and it is limited by .5 s. The Pareto front with 25 points is given in Fig. 6 together 
with their respective pose and inputs. Optimal control problems can be solved using 
numerical software tools, for instance CasADi [ 6] or TransWORHP [ 18]. We can

3 Depending on the dynamical system, only part, not all, of the states. x could be considered as fixed 
at the initial and final times of the maneuver. 
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Fig. 6 Example of a Pareto front for a maneuver with.J1 = T and. J2 =  T0 ||uv̇ ||22

select a Pareto-optimal point based on a decision-making, to get the maneuver to be 
considered in the MPA. 

5 Maneuver Automaton Selection 

In [ 14], motion graphs are introduced as “maneuver automata”, in which trims form 
the vertices and maneuvers the edges of the graph. This defines the concatenation 
rules, i.e., any path in the automaton defines a sequence of primitives. Together with 
a choice of coasting times, this sequence can be transformed into an admissible, 
controlled trajectory of the underlying dynamical system. 

As presented in Sect. 3, maneuver automata can be constructed in an automatic 
way by extracting representative primitives from a data set. In [ 24], numerical exam-
ples were solved to compare handcrafted and extracted automata for the kinematic 
single-track model (Eq. (28)). The handcrafted automata consider a usual pragmatic 
way of designing it: a grid covering the entire space of allowed velocities and steering 
angles for the model [ 23]. For comparison, the handcrafted and extracted automata 
had the same quantity of trims and a similar number of maneuvers. A visual com-
parison of these two different ways of constructing an automaton is given in Fig. 7, 
considering the selection of 21 trim primitives. The difference in the trajectory plan-
ning when using each of these automata is replicated in Fig. 8. Note that the extracted 
primitives fit better to the road shape and the final goal position. 

For the planning problem, a starting trim is assumed and an initial condition 
.x(0), i.e., a starting node in the MPA, is given. For a guarantee of the existence of a 
solution from an initial trim to a final trim (or node), it is shown in [ 14] that one of 
the requirements is the strong connectivity of the MPA. However, a priori, an MPA
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Fig. 7 Automata with 21 trim primitives. The dots correspond to trim primitives (axes: velocities 
versus steering angle) and the colored lines represent maneuvers connecting the trims (figures from 
[ 24]) 

Fig. 8 Trajectories for the two different automata with 21 trim primitives (figures from [ 24])
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Fig. 9 Comparison between different graph search methods: the goal regions are denoted in red 
and the yellow area is an optimization region, where the II* will try to optimize the trim’s coasting 
times to lead the vehicle to a goal point inside the goal region 

does not need to be strongly connected. For the cases where there exists more than 
one admissible solution, an optimization problem can be posed. 

6 Planning Algorithms 

With a library of primitives condensed into a graph, path planning can be done using 
different techniques. In this section, we will mention some of the ideas developed. The 
complementary chapter will, however, delve into planning in a cooperative trajectory 
planning scenario. 

6.1 Optimized Primitives (.  *) Search 

The .  * search was developed in [ 23] and it is inspired by the Hybrid A* algorithm 
[ 10], an A*-based search. In the Hybrid A*, continuous states are associated with 
grid cells and the costs of the states, therefore, are the cost of their respective cell. 
However, in.  * search, each state is fully continuous, instead of being associated with 
discrete grid cells. The trims’ coasting times can be adjusted by an online optimization 
problem of reduced complexity. The algorithm encapsulates the method of anytime 
search to deal with time deadlines [ 32]. The search, then, can lead the vehicle to an 
exact goal point in the state space while respecting computation time constraints. 
Figure 9 compares the different graph search methods.
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Fig. 10 The interaction of 
agent and environment in 
reinforcement learning 

6.2 Reinforcement Learning 

Reinforcement learning as a Markov decision process, as described in [ 29], is the 
task of learning from the interaction between an agent and an environment to achieve 
a goal. The agent is the decision-maker and learns which is the best action given the 
current state. A numerical value evaluates an action and it is called “reward”. Thus, 
the action is selected to maximize the rewards. The environment, in turn, responds to 
the agent with a new state and the reward for a given action. A schematic depiction 
of this iterative process can be seen in Fig. 10. 

It is possible to use primitives as the actions of a reinforcement learning agent, 
as opposed to using a discrete or continuous set of control inputs as the action space 
[ 15]. A work in this regard was developed in the Bachelor’s thesis [ 28]. 

6.3 Graph-Based Receding Horizon Control 

Introduced in [ 27], this method aims to transfer the receding horizon control approach 
into graph-search problems, specially made for maneuver automata. Thus, nonlinear, 
nonconvex optimization problems are solved in real-time, in opposite to traditional 
graph-search approaches that keep the search until the goal vertex is found. This 
approach was applied to cooperative planning of multiple networked and autonomous 
vehicles on the CPM Lab [ 16]. Also, it was shown that the solutions are recursively 
feasible by design of the finite state automaton. This method is explained in detail in 
the chapter “Prioritized Trajectory Planning for Networked Vehicles Using Motion 
Primitives”. 

6.4 Motion Graphs as Mixed Logical Dynamical System 

We can model the motion graphs as a mixed logical dynamical (MLD) system to 
transform the graph search into an OCP. MLD systems were introduced by [ 7] and 
describe systems by a combination of continuous variables with Boolean ones. As an 
example of application, an MLD system was modeled to solve collision avoidance 
of collaborative vehicles in [ 4]. The authors did not use primitives, but linearized
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the vehicle model over the operation points and solved mixed-integer linear and 
quadratic programming problems. 

In short, the idea of our proposed MLD system is to formulate the execution of a 
primitive at a discrete-time . k by “enabling” one primitive over all others available, 
given which node of the MPA is active for the vehicle. For that, we can define the 
Boolean variables, for .i = 1, 2, . . . , as  

.mi (k) =
 
1, if the primitive pi is executed at k,

0, otherwise.
(23) 

where the set of available primitives at time. k is .{pi , i ∈ N}. Then, given the current 
automaton state in the MPA and .x(k), the system dynamics can be written as: 

. 

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) =
 
i

 gi (x(k)) · mi (k), (8.24a)

 
i

mi (k) = 1, (8.24b)

for the continuous times given by 

.tk+1 = tk +
 
i

τimi (25) 

with .τi representing the duration of the primitive . pi . This modeling approach leads 
to a mixed-integer nonlinear programming problem when searching for the optimal 
sequence for a given planning problem within an MPA. 

Thus, it is possible to extend this modeling into a model predictive control (MPC) 
formulation and thus exploit the tools available for MPC, for example, stability, 
robustness, and inclusion of constraints, in the computation of trajectories with 
motion primitives. 

7 Conclusion 

We presented in this chapter a description of methods to design an automaton of 
motion primitives by properly selecting and constructing them. This automaton of 
primitives is implemented in trajectory planning for cooperative vehicles and its 
architecture is essential for efficient paths. We presented a list of vehicle models 
abstracted in a general formulation. Then, we showed how to abstract typical trim 
primitives from traffic data and derived maneuvers by the polynomial method and 
by an OCP. This last one is useful for finding Pareto-optimal maneuvers. We also 
compared different automata and presented possible algorithms to solve the graph-
based planning problem.
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Appendices 

Here, we present two vehicle models from [ 5], the kinematic single-track and the 
single-track model. 

A. The Kinematic Single-Track Model 

The kinematic bicycle model has the state vector 

.x =  sx sy ψ v δ
 T ∈ R

5, (26) 

and the input vector: 
.u =  u v̇ u δ̇

 T ∈ R
2, (27) 

where .sx and .sy are the positions of the rear axis, .ψ is the vehicle orientation, . v is 
the velocity, . δ is the steering angle, .u v̇ is the longitudinal acceleration, and .u δ̇ is the 
velocity of the steering angle. The state space equations are given by: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡx (t) = v(t) · cos(ψ(t)),
ṡy(t) = v(t) · sin(ψ(t)),
ψ̇(t) = v(t)

L
· tan(δ(t)),

v̇(t) = u v̇(t),

δ̇(t) = u δ̇(t),

(28) 

for . L being the wheelbase of the vehicle. In [ 24], it was used the wheelbase of the 
Renault Zoe, used in obtaining the nuScenes data, with value 2.588 m [ 1]. 

B. The Single-Track Model 

The state vector 
.x =  sx sy ψ ψ̇ v δ β

 T ∈ R
7, (29) 

has the same variables described for Eq. (26) together with the slip angle at the center 
of gravity . β (see Fig. 11). The inputs are the same as in Eq. (27). The state space 
equations are:
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Fig. 11 Single-track model 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡx (t) = v(t) · cos(ψ(t)+ β(t)),
ṡy(t) = v(t) · sin(ψ(t)+ β(t)),
ψ̇(t) = d

dt
ψ(t),

ψ̈(t) = μM

IzL

 
lf · αf,r · δ(t)+ (lr · αr,f − lf · αf,r)β(t)

− (l2f · αf,r + l2r · αr,f) ψ̇(t)
v(t)

 
,

v̇(t) = u v̇(t),

δ̇(t) = u δ̇(t),

β̇(t) = μ

L · v(t)
 
αf,r · δ(t)− (αr,f + αf,r)β(t)

+ (lr · αr,f − lf · αf,r) ψ̇(t)
v(t)

 
− ψ̇(t),

(30) 

where .αi, j := αi, j (u δ̇(t)) is a function of the input .u δ̇(t) defined as 

.αi, j = Ci (g · l j − h · u δ̇(t)) (31) 

for .i, j ∈ {f, r}, . L given by.L = lf + lr and the parameters described in Table 1 with 
the values used in [ 23].
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Table 1 Single-track model’s parameters 

Parameter Symbol Unit Value 

Distance from the center of gravity to front axle .lf .[m] 0.883 

Distance from the center of gravity to rear axle .lr .[m] 1.508 

Total vehicle mass .M .[kg] 1.225 

Moment of inertia about. z axis .Iz .[kg · m2] 1.538 

Center of gravity height of.M .h .[m] 0.557 

Cornering stiffness coeff. (front, rear) .Cf , .Cr .[1/rad] 20.89 

Friction coefficient .μ .[−] 1.048 
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for Networked Vehicles Using Motion 
Primitives 
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Abstract The computation time required to solve nonconvex, nonlinear optimiza-
tion problems increases rapidly with their size. This poses a challenge in trajectory 
planning for multiple networked vehicles with collision avoidance. In the centralized 
formulation, the optimization problem size increases with the number of vehicles in 
the networked control system (NCS), rendering the formulation unusable for exper-
iments. We investigate two methods to decrease the complexity of networked trajec-
tory planning. First, we approximate the optimization problem by discretizing the 
vehicle dynamics with an automaton, which turns it into a graph-search problem. Our 
search-based trajectory planning algorithm has a limited horizon to further decrease 
computation complexity. We achieve recursive feasibility by design of the automaton 
which models the vehicle dynamics. Second, we distribute the optimization prob-
lem to the vehicles with prioritized distributed model predictive control (P-DMPC), 
which reduces the problem size. To counter the incompleteness of P-DMPC, we 
propose a framework for time-variant priority assignment. The framework expands 
recursive feasibility to every vehicle in the NCS. We present two time-variant pri-
ority assignment algorithms for road vehicles, one to improve vehicle progress and 
one to improve computation time of the NCS. We evaluate our approach for online 
trajectory planning of multiple networked vehicles in simulations and experiments. 
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1 Introduction 

Networked and autonomous vehicles (NAVs) have the potential to increase the safety 
and efficiency of traffic [ 42]. Realizing this potential requires advances in many fields 
of networked and autonomous vehicles (NAVs), among which is the field of decision 
making [ 56]. In decision making, we develop a plan and control the actuators of 
the vehicle to execute this plan. Planning can be decomposed into three hierarchical 
layers. The highest layer plans a route through the road network, the middle layer 
plans behaviors for the vehicle on the road, and the bottom layer plans motions 
to realize the behavioral plan [ 46]. The work in this article focuses on the middle 
and bottom layer of planning for a multi-agent system. We will refer to this area as 
trajectory planning for multiple NAVs. Section 1.1 motivates our work on networked 
trajectory planning, Sect. 1.2 presents the state of the art and Sect. 1.3 states our 
contribution to the state of the art. We introduce our notation in Sect. 1.4 and give 
an overview of this chapter in Sect. 1.5. 

1.1 Motivation 

Trajectory planning for multiple NAVs with collision avoidance can be modeled as 
a nonconvex, nonlinear optimal control problem (OCP). For trajectory planning in 
changing environments, this OCP must be solved within a duration of tenths of a 
second. With an increasing amount of controlled vehicles, the OCP grows large, 
and finding a solution quickly becomes intractable. This chapter investigates two 
approaches to decrease computation time of networked trajectory planning: simpli-
fying and distributing the OCP. 

When simplifying the OCP, a compromise between global optimality and compu-
tational efficiency must be found [ 12]. Trajectory planning approaches can be classi-
fied as optimization-based and graph-based [ 46]. Optimization-based algorithms are 
often based on convexification of the original nonconvex OCP [ 5, 6, 28, 52, 58]. The 
advantage of convexification is a short computation time, which comes at the cost 
of disregarding nonlinearities in the vehicle model and of disregarding parts of the 
solution space. Graph-based methods based on motion primitives (MPs) can retain 
the nonlinearities and the complete solution space. The coarseness of quantization 
of states and control inputs highly influences the computational complexity and the 
trajectory quality. 

Distributing the centralized OCP, which plans trajectories for all vehicles at once, 
reduces the computational effort at the cost of global system knowledge. Prioritized 
trajectory planning for vehicles is first presented in [ 21]. In a prioritized approach, 
vehicles with lower priority adjust their objectives and constraints to respect coupled 
vehicles with higher priority. The core problem of prioritized planning algorithms 
is their incompleteness. That is, there might exist a priority assignment that leads to



Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives 255

feasible optimization problems of all participating agents, but the algorithm can fail 
to find it. 

1.2 Related Work 

This section presents related work on trajectory planning with MPs and on prioritized 
trajectory planning. 

1.2.1 Trajectory Planning with Motion Primitives 

The goal of trajectory planning with MPs is to find an optimal sequence and duration 
of MPs that achieve a desired objective while satisfying constraints. MP consists of a 
control and state trajectory. Multiple MPs can be concatenated to form a vehicle tra-
jectory plan. There are mainly two kinds of methods to plan trajectories using MPs: 
methods based on continuous optimization problem formulations, such as mixed inte-
ger programming (MIP), and methods with graph-based problem formulations, such 
as an A. 

∗ algorithm or a rapidly-exploring random tree algorithm [ 39]. A literature 
review on both methods follows. 

MIP formulates an OCP with both continuous and discrete variables. MIP can 
find the optimal sequence and duration of MPs for trajectory planning of a single 
vehicle [ 23, 26, 27]. When dealing with multiple NAVs, collision constraints can be 
modeled with binary decision variables [ 7]. The ability of MIP to find the optimal 
solution comes at the cost of high computation time, which rapidly increases with 
the size of the OCP. Centralized trajectory planning for multiple vehicles with MPs 
[ 2, 20, 22] encounters this problem. 

A popular search algorithm for trajectory planning using MPs is A. 
∗ and its variant 

hybrid A. 
∗ [ 1, 19, 49]. When operating on a gridded environment representation, A. 

∗
associates a cost value with a grid cell center and the cell center’s state value, whereas 
hybrid A. 

∗ associates a cost value alongside a continuous state value with a grid cell. A 
computationally demanding task in search algorithms for trajectory planning are edge 
evaluations, as they incorporate the collision constraints [ 39]. The number of edge 
evaluations can be reduced using a lazy approach, in which an edge is only evaluated 
when the connected vertex is chosen for expansion [ 17, 18, 43]. The computation 
time of graph-search algorithms increases with the length of its horizon. Limiting 
the horizon decreases computation time [ 9, 36, 45]. Algorithms for graph-based 
trajectory planning for multiple NAVs include a Monte Carlo tree search [ 37] and a 
traditional A. 

∗ graph search [ 24, 25]. Graph searches with an infinite horizon suffer 
from high computation time [ 17– 19, 43, 49]. This challenge can be overcome with 
a receding horizon at the cost of global optimality guarantees. Graph-based receding 
horizon approaches do not yet guarantee recursive feasibility [ 9, 40, 45].
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1.2.2 Prioritized Distributed Control 

The distributed control strategy for networked control system (NCS) examined in 
this work is prioritized distributed model predictive control (P-DMPC), in which 
each vehicle optimizes only its own decision variables. Lower prioritized vehicles 
consider a communicated optimized solution of coupled higher prioritized vehicles 
in both in their objective function and their constraints. The benefit of the greedy 
P-DMPC algorithm is its short computation time [ 3, 57]. One of the main challenges 
in P-DMPC is its incompleteness [ 40]. That means, a priority assignment might lead 
to an infeasible OCP of a vehicle although the problem is solvable with a different 
priority assignment. Additionally, the priority assignment influences the solution 
quality and the computation time. 

The following works have designed priority assignments for robots and NAVs 
with the goal of feasibility and solution quality. In our work [ 32] the ordering is 
based on rules, i.e., we assign time-variant priorities to multiple vehicles compet-
ing on a racetrack based on their race position. Constraint-based heuristics increase 
the priority of a vehicle with the number of constraints it has [ 13, 16, 41, 48, 60]. 
The goal of these heuristics is to maintain feasibility of the control problems. In our 
work [ 35], we assign priorities to vehicles based on the time remaining before they 
enter an intersection. In our work [ 31], we assign priorities to vehicles based on the 
crowdedness of their goal location. Objective-based heuristics assign priorities to 
improve the solution quality of the NCS [ 15, 59]. A randomized priority assignment 
with hill-climbing is proposed in [ 10]. In [ 8], all priority assignments are considered 
to find the optimal one. Both approaches achieve higher solution quality with higher 
computation time. In [ 61], priorities are assigned based on machine learning and 
achieve results competitive to heuristics. The priority assignment can also influence 
computation time [ 4]. The number of simultaneous computations in prioritized plan-
ning is maximized in [ 38]. Despite the number of priority assignment strategies, the 
incompleteness of P-DMPC remains. Many works assign time-invariant priorities for 
a specific scenario [ 13, 16, 38, 41, 48, 59, 60]. Time-variant priority assignments 
improve feasibility in changing operating conditions over time-invariant priority 
assignments [ 10, 15]. In [ 38], time-invariant priorities are shown to produce recur-
sively feasible solutions. Similarly, this property needs to be shown for time-variant 
priorities. 

1.3 Contribution 

The contribution of this chapter is twofold. First, we present our method of reced-
ing horizon graph search (RHGS), a search-based trajectory planning algorithm for 
road vehicles. We reduce the computation time by limiting the planning horizon. We 
prove that our method fulfills recursive feasibility by design of the motion primitive 
automaton (MPA) [ 55]. Second, we present a framework for distributed reprioritiza-
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tion of vehicles. We prove that it fulfills recursive NCS-feasibility for P-DMPC with 
any time-variant priority assignment algorithm [ 51]. 

We present two priority assignment algorithms, one for vehicle progression using 
a constraint-based heuristic, and a one for computation time reduction of the NCS 
using graph coloring. We demonstrate the effectiveness of the presented approach in 
a simulative case study of P-DMPC for trajectory planning. 

1.4 Notation 

A variable. x is marked with a superscript.x ( j) if belonging to agent. j , and with. x (− j)

if belonging to the neighbors of agent . j . The actual value of a variable . x at time. k is 
written as .x(k), while values predicted for time.k + i at time. k are written as .xk+i |k . 
A trajectory is denoted by substituting the time argument with . · as in .x·|k . An agent 
equals a vehicle in our application of prioritized trajectory plannning. In this chapter, 
we use the terms vehicle, road vehicle and NAV interchangeably. 

1.5 Structure 

The remainder of this chapter is structured as follows. Section 2 presents our vehicle 
model, our RHGS for trajectory planning, and our proof of recursive agent-feasibility. 
Section 3 presents the distribution of RHGS with P-DMPC for trajectory planning. 
We show recursive NCS-feasibility of our reprioritization framework before present-
ing two time-variant priority assignment algorithms, one for vehicle progression and 
one for computation time reduction. In Sect. 4, we evaluate both the RHGS and the 
P-DMPC in experiment, before combining both in a simulative case study. 

2 Receding Horizon Graph Search for Trajectory Planning 

This section presents how we transfer a receding horizon control (RHC) approach 
to graph-based trajectory planning. The content is based on our previous publication 
[ 55]. Section 2.1 states the RHC trajectory planning problem that we subsequently 
map to graph search based on an MPA. Section 2.2 presents our approximation of 
the vehicle dynamics as an MPA, Sect. 2.3 shows the graph-based optimization in 
our RHGS algorithm. In Sect. 2.4, we prove that our RHGS produces recursively 
agent-feasible trajectories by design of the MPA.
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Fig. 1 Kinematic 
single-track model of a 
vehicle [ 55] 

v 

ℓ 

( ) 

2.1 Trajectory Planning Problem 

This section presents the ordinary differential equations describing the vehicle 
dynamics and our cost function before both are incorporated in a RHC problem 
for trajectory planning. 

Figure 1 shows an overview of the variables for the nonlinear kinematic single-
track model [ 47]. Assuming low velocities, we model no slip on the front and rear 
wheels, and no forces acting on the vehicle. The resulting equations are 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = v(t) · cos(ψ(t) + β(t)),

ẏ(t) = v(t) · sin(ψ(t) + β(t)),

ψ̇(t) = v(t) · 1

L
· tan(δ(t)) cos(β(t)),

v̇(t) = uv(t),

δ̇(t) = uδ(t),

(1) 

with 

.β(t) = tan−1

 
 r

L
tan(δ(t))

 

, (2) 

where .x ∈ R and .y ∈ R describe the position of the center of gravity (CG), . ψ ∈
[0, 2π) is the orientation,.β ∈ [−π, π) is the side slip angle,.δ ∈ [−π, π) and. uv ∈ R

are the steering angle and its derivative respectively,.v ∈ R and.uv ∈ R are the speed 
and acceleration of the CG respectively,. L is the wheelbase length and. r is the length 
from the rear axle to the CG. The position of the CG and the orientation together 
form the pose . p. 

The system dynamics defined in (1) are compactly written as 

.ẋ(t) := d

dt
x(t) = f

 
x(t), u(t)

 
(3) 

with the state vector 
.x =  

x y ψ v δ
 T ∈ R

5, (4) 

the control input



Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives 259

.u =  
uv uv

 T ∈ R
2 (5) 

and the vector field . f defined by (1). Transferring (3) to a discrete-time nonlinear 
system representation yields 

.xk+1 = fd
 
xk, uk

 
(6) 

with .k ∈ N, the vector field . fd : R5 × R
2 → R

5, the state vector .x ∈ R
5 and the 

input vector .u ∈ R
2. 

We define the cost function to minimize in our trajectory planning problem as 

.Jk→k+N |k =
N 

i=1

 
xk+i |k − xref,k+i |k

 T
Q
 
xk+i |k − xref,k+i |k

 
(7) 

with the planning horizon length. N , the positive semi-definite, block diagonal matrix 

.Q =
 

I2 02×3

03×2 03

 

∈ R
5×5 (8) 

and a reference trajectory .xref,·|k ∈ R
5. 

We combine the system model (6) and the cost function (7) to an OCP  

.. minimize
Uk→k+N |k

Jk→k+N |k (9a) 

. subject to

xk+i+1|k= fd
 
xk+i |k, uk+i |k

 
, i = 0, . . . , N − 1 (9b) 

.uk+i |k∈ U, i = 0, . . . , N − 1 (9c) 

.xk+i |k∈ X i = 1, . . . , N − 1 (9d) 

.xk+N |k∈ X f (9e) 

.xk|k= x(k) (9f) 

with the vector .Uk→k+N |k of stacked control inputs .(uk|k, uk+1|k, . . . , uk+N−1|k), the  
input constraint set .U ⊆ R

2, the state constraint set .X ⊆ R
5 and the terminal set 

.X f ⊆ R
5. We assume a full measurement or estimate of the state .x(k) is available 

at the current time . k. The  OCP (9) is solved repeatedly after a timestep duration . Ts
and with updated values for the states and constraints, which establishes the RHC. 

2.2 Motion Primitive Automaton as System Model 

This section presents how we model the state-continuous system (6) as an MPA, a  
type of maneuver automaton [ 23]. The MPA incorporates the constraints on system
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dynamics (9b), on control inputs (9c), and on both the steering angle and the speed 
(9d) and (9e). 1

From the system dynamics (1), we derive a finite state automaton which we call 
MPA and define as follows. 

Definition 1 (Motion primitive automaton) An MPA is a 5-tuple . (Q, S, γ, q0, Q f )

composed of: 

• .Q is a finite set of automaton states . q; 
• . S is a finite set of transitions . π , also called motion primitives; 
• .γ : Q × S × N → Q is the update function defining the transition from one 
automaton state to another, dependent on the timestep in the horizon; 

• .q0 ∈ Q is the initial automaton state; 
• .Q f ⊆ Q is the set of final automaton states. 

An automaton state is characterized by a specific speed . v and steering angle . δ. 
An MP is characterized by an input trajectory and a corresponding state trajectory 
which starts and ends with the speed and steering angle of an automaton state. It 
has a fixed duration which we choose equal to the timestep duration . Ts . MPs can be 
concatenated to vehicle trajectories by rotation and translation. Our MPA discretizes 
both the state space with the update function .γ and the time space with a fixed 
duration .Ts for all MPs. This  MPA replaces the system representation (6). Note that 
the dynamics model on which our MPA is based is exchangeable. Its complexity is 
irrelevant computation-wise for trajectory planning since MPs are computed offline. 

2.3 Receding Horizon Graph Search Algorithm 

This section demonstrates how our RHGS incorporates the constraints on the pose, 
which are included in (9d) and (9e), while minimizing the cost function (9a). 

Our RHGS algorithm constructs a search tree.T up to a limited depth. N . A level. i
in the tree directly corresponds to the timestep.k + i in the OCP (9). The information 
contained in each vertex . v of the tree is a tuple . q, p, i, J  , whose elements are the 
automaton state, the vehicle pose, the distance to the root vertex, and the value of the 
cost function, respectively. When the algorithm finds the leaf vertex with the minimal 
cost value at the horizon .k + N , it returns the path from the root vertex to this leaf 
vertex. The algorithm ensures optimality of the returned path with an admissible and 
underestimating cost estimation, similar to A. 

∗.

1 A detailed explanation of modeling with MPAs is found in this book’s chapter “Designing Maneu-
ver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning”. 
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Algorithm 1 shows the main steps of our RHGS algorithm. At the beginning of the 
control loop at time. k, the algorithm determines the search tree’s root vertex.v0 from 
the state vector.x(k) and initializes the open list with this root vertex (Line 1). Sorting 
the open list by the cost function value brings the vertex with the lowest cost .vp to 
the front (Line 3). It is removed from the open list (Line 5). We evaluate the edge 
to the selected vertex by checking inter-vehicle collisions and obstacle collisions 
(Line 6). If there is a collision, the algorithm continues to the next vertex in the open 
list. If the vertex is collision-free, satisfies the constraint (9e), and is at the planning 
horizon . N , it is optimal (Line 8). The algorithm returns the path to the vertex (Line 
9). Otherwise, the algorithm expands the vertex based on its automaton state . q, the  
update function . γ , and its state vector . x (Line 10). The algorithm evaluates edges 
to successors lazily by computing only the cost function without collision checks 
to reduce computation time (Lines 11 to 12). In informed graph-search algorithms, 
the cost function consists of the cost-to-come (CTC) and the cost-to-go (CTG). Our  
algorithm minimizes (7) as the  CTC is equal to (7) and the CTG is an underestimation 
of (7). We underestimate the cost from a vertex . v at depth .iv by moving a vehicle 
towards its reference position at each subsequent timestep with maximum speed in 
a straight line 

. JCTG(iv) =
N 

i=iv+1

max
 
0,

 
xk+i |k − xref,k+i |k

 T
Q
 
xk+i |k − xref,k+i |k

 − i · vmax · Ts
 

(10) 

with the same.Q as in (7). At the end of the loop, all successor vertices are added to 
the open list (Line 13).
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2.4 Recursive Agent-Feasibility 

This section proves recursive agent-feasibility of our RHGS. The property is com-
monly known as recursive feasibility or persistent feasibility. We design the time-
variant update function . γ of our MPA such that an equilibrium state can always be 
reached within the horizon .N from expanded successors (Line 10). 

A set  .Cinv ⊆ X is a control invariant set for the system (6) subject to constraints 
(9b)–(9f) if  

.
x(k) ∈ Cinv =⇒ ∃u(k) ∈ U such that

x(k + 1) ∈ Cinv,∀k ∈ N.
(11) 

Lemma 1 If .X f is a control invariant set of the system (9) with .N > 1, then (9e) 
ensures recursive agent-feasibility of the RHC. 

Proof The proof is given in [ 11].  

We reformulate the condition of control invariant sets for MPAs as follows. 

Definition 2 (Control invariant set for an MPA) A  set.Cinv ⊆ X is a control invariant 
set for the system (6) given by an MPA if 

.

x(k) ∈ Cinv with q(k) ∈ Q f =⇒ ∃π ∈ S such that

x(k + 1) ∈ Cinv with q(k + 1) ∈ Q f and

γ (q(k), π, k) = q(k + 1),∀k ∈ N.

(12) 

Note that the automaton state . q follows from the state vector . x. 

Theorem 1 RHGS achieves recursive agent-feasibility if the generated sequence of 
transitions ends in an automaton state and a state vector that together form a control 
invariant set. 

Proof Follows directly from Lemma 1 with Definition 2 of control invariant sets for 
MPAs.  

In an equilibrium of the system, it holds that. fd
 
x(k), u(k)

 = x(k). If a sequence 
of transitions ends in an automaton state from where there exists a transition which 
keeps the system at an equilibrium, .x(k) represents a control invariant set. Such 
an automaton state in our MPA has a speed .v = 0m s−1. Figure 2 depicts a simple 
example of an MPA with a time-invariant update function. This MPA can generate 
sequences of transitions which are not recursively feasible. We design a time-variant 
update function which only generates recursively feasible sequences, as shown in an 
example MPA in Fig. 3.
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Fig. 2 MPA which does not 
guarantee recursive 
agent-feasibility, rolled out 
over a planning horizon with 
length. N = 3

Fig. 3 MPA which 
guarantees recursive 
agent-feasibility by only 
allowing a speed of. 0 m s−1

at the end of the horizon, 
rolled out over a planning 
horizon with length. N = 3

3 Prioritized Trajectory Planning 

This section presents our approach for distributed trajectory planning with distributed 
reprioritization while guaranteeing recursive NCS-feasibility. It is based on our pub-
lications [ 51, 53]. Our P-DMPC loop consists of the steps coupling, prioritization, 
trajectory planning, and communication of trajectories. We couple agents if they 
potentially interact during their planning horizon. N . We represent couplings between 
agents with a coupling graph. Denote by .V = {1, . . . , NA} the set of agents and by 
.NA = |V| ∈ N its cardinality. 

Definition 3 (Coupling graph) A coupling graph .G = (V,E) is a graph that rep-
resents the interaction between agents. Vertices represent agents and edges denote 
coupling objectives or constraints in the OCP associated with the vertex. 

The agents connected to agent . j are called its neighbors .V( j). Introducing prior-
ities results in clear responsibilities to satisfy collision constraints. We direct edges 
in the coupling graph from a higher prioritized agent to a lower prioritized agent. 

Definition 4 (Directed coupling graph) A directed coupling graph . G  = (V,E )
results from a coupling graph.G = (V,E) by keeping all vertices.V and a subset of 
edges.E ⊂ E of. G. In a directed coupling graph, a directed edge denotes a coupling 
objective or constraint in the OCP associated with the ending vertex. 

Vehicles determine their priorities using a priority assignment algorithm. A time-
variant priority assignment algorithm yields an injective priority assignment function 
.p : V × N → N, which assigns a unique priority to each vehicle in the NCS at every 
timestep. If .p(l, k) < p( j, k), then vehicle . l has a higher priority than vehicle . j at 
timestep. k. At each timestep. k, every vehicle groups its current neighbors.V( j)(k) in 
a set of higher prioritized neighbors.V̂( j)(k) and lower prioritized neighbors.V̌( j)(k). 
When a vehicle . j has received the planned trajectories of all vehicles in .V̂( j)(k), it  
plans its own trajectory while avoiding collisions with the received trajectories. It
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communicates its own trajectory to vehicles in .V̌( j)(k). Each vehicle . j adds con-
straint functions.c( j,l) to its OCP (9) to ensure collision-free trajectories with vehicles 
in . V̂( j)(k)

.c( j,l)
 
x( j)
k+i |k, x

(l)
k+i |k

 
≤ 0, ∀i = 1, . . . , N , ∀l ∈ V̂( j)(k). (13) 

3.1 Reprioritization Framework for Recursive 
NCS-Feasibility 

One of the main challenges for P-DMPC is its incompleteness: even though there 
exists a priority assignment that results in an NCS-feasible P-DMPC problem, a 
specific priority assignment might fail to produce a solution. Changing the priority 
assignment during runtime can prevent such a failure, but loses recursive NCS-
feasibility of the P-DMPC problem. 

Definition 5 (NCS-feasible) A  P-DMPC problem is NCS-feasible if every agent in 
the NCS finds a feasible solution to its OCP. 

A P-DMPC problem is recursively NCS-feasible if from NCS-feasibility at time 
. k we can guarantee NCS-feasibility for all future times. Figure 4 illustrates our 
distributed reprioritization framework to maintain NCS-feasible P-DMPC trajectory 
planning problems while using a time-variant priority assignment function. At the 
beginning of every timestep . k, each agent attempts to plan its trajectory given the 
priorities from time. k. If any agent fails to find a feasible solution, it notifies all other 
agents. All agents stay on their recursively agent-feasible trajectory. At any point, if 
the P-DMPC problem is NCS-feasible, the corresponding input is applied. 

A proof for recursive NCS-feasibility of time-invariant priorities is given in [ 38]. 
We need to prove recursive NCS-feasibility with time-variant priorities and our dis-
tributed reprioritization framework. We assume an initially NCS-feasible problem 
and bounded disturbances which an underlying controller can compensate. 

Theorem 2 A P-DMPC problem with our distributed reprioritization framework, 
the OCP (9) with coupling constraints (13), and any time-variant priority assignment 
function . p is recursively NCS-feasible. 

Fig. 4 Distributed 
reprioritization framework 
which guarantees recursive 
NCS-feasibility, as seen from 
agent. j . Figure adapted 
from [ 51] 

New timestep k 
P-DMPC 
with p(j, k) reuse input u(j) 

·|k−1 

apply u(j) 
kfeasible 

infeasible
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Proof Without loss of generality, assume the computation order resulting from the 
priority assignment function.p( j, k) to be.1, . . . , NA. Assume an NCS-feasible solu-

tion.

 
u( j)

·|k , x
( j)
·|k
 
,∀ j ∈ V at timestep. k. Because of bounded disturbances which an 

underlying controller can compensate, we have 

.x( j)(k + 1) ≈ x( j)
k+1|k, ∀ j ∈ V. (14) 

Every agent shifts and extends the feasible solution of the previous timestep 

.
x( j)
k+1+i |k+1 = x( j)

k+1+i |k, ∀ j ∈ V, ∀i = 1, . . . , N − 1

x( j)
k+1+N |k+1 = x( j)

k+N |k, ∀ j ∈ V
(15) 

For agent . 1, who does not consider other agents, recursive feasibility is given by 
Theorem 1. For any agent .2 ≤ j ≤ NA, the coupling constraints (13) must also be  
considered. Substituting (15) in  (13) yields 

.c( j,l)
 
x( j)
k+1+i |k+1, x

(l)
k+1+i |k+1

 
= c( j,l)

 
x( j)
k+1+i |k, x

(l)
k+1+i |k

 
, (16) 

.∀i = 1, . . . , N − 1 and .∀l ∈ V̂( j)(k). Since the agents stand still at the horizon, we 
have for the last timestep . k + N + 1

.c( j,l)
 
x( j)
k+N+1|k+1, x

(l)
k+N+1|k+1

 
= c( j,l)

 
x( j)
k+N |k, x

(l)
k+N |k

 
(17) 

.∀l ∈ V̂( j)(k). This establishes recursive NCS-feasibility of the P-DMPC at time . k. 
Because of a time-variant directed coupling graph, the set of higher prioritized agents 
.V̂( j)(k + 1) might differ from .V̂( j)(k). Still, all coupling constraints are fulfilled. 
Our coupling constraints are symmetric, i.e.,.c( j,l) = c(l, j). A new coupling constraint 
is guaranteed to be satisfied, as there was no collision possibility in timestep . k. A  
vanished coupling constraint cannot interfere with feasibility. Since all constraints 
are satisfied at timestep .k + 1, the  P-DMPC problem with time-variant priorities is 
recursively NCS-feasible with our reprioritization framework.  

3.2 Priority Assignment Algorithms 

This section introduces two priority assignment functions. Section 3.2.1 describes 
a constraint-based heuristic which aims at assigning priorities for NCS-feasibility. 
Section 3.2.2 presents a priority assignment function based on coloring of the cou-
pling graph which reduces computation time.
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3.2.1 Constraint-Based Heuristic 

The goal of the priority assignment function presented in this subsection is to reduce 
the risk of standstill of the NCS due to infeasible OCPs of vehicles. We propose 
a distributed, time-variant priority assignment algorithm for road vehicles on road 
networks based on our previous work [ 51]. Each vehicle . j first plans a trajectory 
without inter-vehicle collision constraints (13), which we call the free trajectory 
. y( j)free. Then, each vehicle. j counts the number of collisions.Nc with other free trajec-
tories. y(− j)

free and possibly already planned, optimal trajectories. y(− j)∗ . Vehicle. w with 
most collisions receives the next priority and plans its trajectory considering already 
planned, optimal trajectories . y(−w)∗ by solving OCP (9) with coupling constraints 
(13). The loop repeats until all vehicles have planned their optimal trajectories. If a 
vehicle cannot find a feasible solution, all vehicles use the previous input as illus-
trated in Fig. 4. This algorithm results in a time-variant priority assignment function 
.pfca : V × N → N. The index “future collision assessment (FCA)” reflects the inspi-
ration of this approach from [ 41]. 

3.2.2 Graph Coloring 

In P-DMPC, if there is no path between two vehicles in the coupling DAG, they can 
compute in parallel [ 4]. We call the number of necessary sequential computations the 
number of computation levels. This section presents a priority assignment function 
which minimizes the number of computation levels by vertex coloring based on 
our previous work [ 53]. Figure 5 illustrates the proposed problem solution with an 
example. From an example undirected graph, a baseline approach which assigns 
priorities equal to the vertex number results in four computation levels. Assigning 
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Fig. 5 Example of computation levels from graph coloring compared to baseline. Left: Undirected 
coupling graph. Middle: Coupling DAG with computation levels from baseline priorities equal 
to vertex number. Right: Coupling DAG with computation levels from priorities based on graph 
coloring. Figure adapted from [ 53]
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priorities with our coloring approach reduces the number of computation levels to 
three, as each color corresponds to a computation level. 

In vertex coloring, we map vertices .i ∈ V(G) to colors .c ∈ C ⊂ N>0 with the 
function .ϕ : V(G) → C. In order to produce a valid coloring, . ϕ has to satisfy 

.ϕ(i)  = ϕ( j), ∀i, j ∈ V(G),∀ei j ∈ E(G), i  = j. (18) 

Our distributed graph coloring algorithm must produce the same coloring. ϕ in every 
vehicle and must be fast enough for online execution. We propose a combination 
of saturation degree ordering, largest degree ordering and first-fit to achieve a deter-
ministic coloring as detailed in [ 53]. We translate our graph coloring function. ϕ to a 
priority assignment function . p. Let .Vc be all vertices of color . c

.Vc = {v | v ∈ V, ϕ(v) = c} . (19) 

We can generate a coupling DAG from an undirected coupling graph colored with. ϕ

with an injective priority assignment function . p that fulfills the requirement 

.p(i) < p( j) ⇐⇒ c1 < c2, ∀i ∈ Vc1 , ∀ j ∈ Vc2 . (20) 

4 Numerical and Experimental Results 

This section describes the evaluation platform, our Cyber-Physical Mobility Lab 
(CPM Lab). 2 It presents the evaluation of our RHGS algorithm for recursive agent-
feasibility and of our reprioritization framework for recursive NCS-feasibility. Our 
algorithms are implemented in MATLAB R2023a and openly available online. 3

4.1 Cyber-Physical Mobility Lab 

The evaluation hardware for this work is our 1:18 model-scale CPM Lab [ 34]. 
It is a remotely accessible open-source platform consisting of 20 networked and 
autonomous vehicles (µCars) [ 54]. Our trajectory planning algorithms run on a PC 
with an AMD Ryzen 5 5600X 6-core 3.7 GHz CPU and 32 GB of RAM. This PC 
communicates with the other components in the CPM Lab via the data distribution 
service standard over WLAN [ 33]. Figure 6 illustrates the road network in the CPM 
Lab. It replicates a wide variety of common traffic scenarios with a 16-lane urban 
intersection, a highway, highway on-ramps, and highway off-ramps.

2 https://cpm.embedded.rwth-aachen.de. 
3 https://github.com/embedded-software-laboratory/p-dmpc. 

https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
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Fig. 6 1:18 model-scale road network in the CPM Lab with an intersection, a highway, highway 
on-ramps, and highway off-ramps 

Fig. 7 The MPA for our experiments. The position of a state marks its speed . v and its steering 
angle . δ. For clarity of presentation, the figure omits the time dependency of transitions to ensure 
recursive feasibility 

Our algorithm plans trajectories using the MPA shown in Fig. 7. It is based on 
a kinematic bicycle model (1) of our  µCars with . r = 7.5 cm and .L = 15 cm. It is  
designed such that transitions between automata states respect input constraints of 
the µCars used in the experiments. The transitions change the control inputs linearly 
over the duration of the sampling time .Ts = 0.2 s. The planning horizon is .N = 8. 

4.2 Evaluation of Receding Horizon Graph Search 

In our RHGS algorithm, we achieve recursive agent-feasibility by design of the MPA, 
as illustrated in Fig. 3. The recursive agent-feasibility is verified in [ 55]. 

In [ 55], we compare our RHGS planner with a state-of-the-art graph search (SGS) 
planner. The SGS planner computes the trajectory once at the beginning of the exper-
iment with a horizon spanning the whole experiment duration. The test scenario 
contains moving obstacles with known future trajectories. Both planners manage to 
avoid the obstacles. In the specific test scenario, the RHGS planner stops in front of
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the obstacles, while the SGS avoids the obstacles by steering early enough. Conse-
quently, the cost function value is lower for the SGS than for the RHGS. However, 
in the worst case, the computation effort increases exponentially with the horizon 
length. A video of an experiment using RHGS with multiple vehicles in the CPM 
Lab is available online. 4

4.3 Evaluation of Time-Variant Priority Assignment 

This section presents P-DMPC trajectory planning with time-variant priority assign-
ment using our reprioritization framework depicted in Fig. 4 to guarantee recursive 
NCS-feasibility. A time-invariant priority assignment algorithm and a time-variant 
random priority assignment algorithm represent state-of-the-art priority assign-
ment algorithms for our evaluation. In the time-invariant priority assignment algo-
rithm, each vehicle receives a unique priority corresponding to its unique num-
ber . j ∈ V at the beginning of the experiment. The priority assignment function 
.pconst : V × N → N is 

.pconst( j, k) = j. (21) 

In the random priority assignment algorithm, each vehicle receives a random priority 
in each timestep. The priority assignment function .prand : V × N → N is 

.prand( j, k) = r(k). (22) 

The evaluation focuses on two criteria: (i) the ability to maintain progress of the 
vehicles, i.e., to avoid a standstill, and (ii) the ability to reduce computation time. We 
call the absence of progress a standstill, which we define as a situation where two or 
more vehicles stop for the rest of the experiment. 

Our evaluation spans 720 numerical experiments with an individual duration of 
180 s, a combination of the four priority assignment functions (.pfca,.pcolor,.prand, and 
.pconst) with vehicle amounts from 1 to 20 in 9 random scenarios. All scenarios are 
based on the map shown in Fig. 6. The vehicle starting positions and their reference 
paths in the map are determined randomly to replicate various traffic situations. 
We use the Mersenne Twister algorithm [ 44] with a manually set random seed for 
reproducible experiments. 

Figure 8 depicts the performance on a scale of 0 to 1 of the four priority assign-
ments in three aspects. The first aspect is the number of vehicles up to which all 
vehicles in all scenarios could maintain progress over the experiment duration. The 
functions.pconst and.pfca are able to move up to 10 and 9 vehicles respectively, whereas 
.prand and .pcolor produce a standstill with already 6 and 5 vehicles respectively. The 
second aspect is the percentage of scenarios from all scenarios with all numbers 
of vehicles, for which the corresponding priority assignment function successfully

4 https://youtu.be/7LB7I5SOpQE. 

https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
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Fig. 8 Performance of priority assignment functions scaled from 0 to 1:.NA min: standstill-free up 
to number of agents (.×10), % succ.: percentage of standstill-free scenarios (.×100), Time: average 
time until standstill (.×145.1 s) 

Fig. 9 Median and maximum number of computation levels.NCL in all timesteps of all standstill-
free scenarios per priority assignment function over the number of vehicles. NA

maintained progress over the full experiment duration. The performance tendency is 
similar to the first aspect. Both aspects indicate that a change in the priority assign-
ment can decrease NCS-feasibility. A constant priority might not be ideal in all 
situations, but can help maintaining NCS-feasibility and avoid standstills. The third 
aspect is the average time until standstill, in which .pfca performs best with an aver-
age time of 145.1 s. These results indicate that changing priorities might harm the 
systems performance. A better approach might be to change priorities only when the 
P-DMPC problem becomes NCS-infeasible. 

The computation time in P-DMPC is mainly determined by number of compu-
tation levels, i.e., the minimum number of sequential computations of the NCS [ 4]. 
Figure 9 shows the median and maximum number of computation levels per prior-
ity assignment function in experiments without standstills. A scenario will develop 
differently for different priority assignment functions. To mitigate the effect of this 
difference, we consider each timestep from all experiments on its own. In every
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timestep, we assign priorities with all four priority assignment functions and analyze 
the resulting number of computation levels. The strength of the priority assignment 
function .pcolor lies in this criterion, as it produces the lowest amount of median and 
maximum computation levels for all experiments. In the scenarios with 17 to 19 
vehicles, it reduces the number of computation levels by up to 33 %. 

A video of an experiment in the CPM Lab is available online. 5 It presents the 
priority assignment function .pfca with our distributed reprioritization framework. 

5 Conclusion 

This chapter presented two approaches to deal with the complexity of a nonconvex 
trajectory planning problem: discretization of control inputs using motion primitives 
and distribution of the control problem using prioritization. We showed recursive 
agent-feasibility for our receding horizon graph search using motion primitives, mak-
ing it a viable alternative to receding horizon approaches using optimization. The 
efficiency of the informed search algorithm is highly dependent on the quality of 
the cost-estimating heuristic. We showed recursive NCS-feasibility for time-variant 
priority assignment functions in prioritized planning. We presented and evaluated 
two priority assignment functions for road vehicles, one for maintaining progress 
of vehicles and one for reduced computation time. Changing the priorities during 
an experiment affects NCS-feasibility of the P-DMPC problem, as it alters the con-
straints of the vehicles’ OCPs. Experiments with up to 17 vehicles in our CPM Lab 
showed efficient computation and effective results for networked trajectory planning 
problems. 

The priority assignment function offers potential for improvement. A strategy that 
might be worth examining is the application of game theory to assign priorities [ 30]. 
Our framework for distributed reprioritization achieves recursive NCS-feasibility 
through standstill at the end of the prediction horizon. While ensuring safety, this 
counteracts the goal to maintain progress in traffic. Some of the scenarios we evalu-
ated resulted in a standstill which could not be resolved through the priority assign-
ment function. In these situations, the priority assignment function could be altered 
to explore different priority permutations. The trajectory planner could also switch 
to a cooperative or centralized trajectory planning algorithm, which is more flexible, 
but has higher computation time [ 29]. The minimum number of computation levels 
and thus the expected computation time in our P-DMPC is decided by the coupling 
graph. If the allowed computation time is fixed and the number vehicles increases, 
less computation time for each vehicle is available. This issue will be addressed in our 
future work. Another topic to explore is the cooperation of our distributed trajectory 
planning algorithm with others such as [ 14], and the cooperation with human-driven 
vehicles [ 50].

5 https://youtu.be/RqwbHUwip10. 

https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
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Maneuver-Level Cooperation 
of Automated Vehicles 

Matthias Nichting, Daniel Heß, and Frank Köster 

Abstract Cooperative behavior of automated vehicles at the maneuver level is of 
utmost importance for the efficient and safe use of traffic space. This chapter discusses 
a vehicle-to-vehicle communication-based negotiation and cooperation method for 
maneuver cooperation. The method is based on the negotiation about explicitly 
defined reservation areas on the road for the exclusive use of a particular traffic 
participant. It covers all standard traffic situations occurring on regular streets and 
thus achieves universal applicability. The evaluation of simulations and driving tests 
shows the suitability of the method for effective maneuver cooperation in various 
traffic situations. Furthermore, based on this method, the planning and execution of 
cooperative maneuvers in emergency situations are investigated. Simulations show 
that collisions can be avoided in relevant cases by this method. Moreover, further 
simulations and driving tests show that joint maneuvers can avoid sharp braking 
maneuvers in many situations. In addition, research on a methodology for implicit 
maneuver cooperation is presented. Based on reinforcement learning methods, par-
tially cooperative decision-making functions are studied in a setting that benefits 
from cooperative behavior. The evaluation shows that cooperative behaviors of road 
participants can be achieved using this technique. 
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1 Introduction 

Road traffic rules should ensure efficient and, above all, safe traffic. In doing so, the 
participants in road traffic are taken into account with their capabilities. Automated 
vehicles have much greater potential than manually operated vehicles concerning 
the exchange and utilization of data so that more suitable solutions can replace static 
traffic rules on a situational basis. The cooperative behavior of automated cars at 
the maneuver level can contribute significantly to this. Joint maneuvers can, for 
example, increase efficiency and comfort in road traffic. For instance, explicitly 
coordinated cooperative behavior allows vehicles to keep shorter safety distances 
than human drivers or to give way in conflicting traffic situations, such as changing 
lanes, entering roundabouts, or at intersections. In summary, cooperative behavior 
at the maneuver level based on explicit communication enables the optimization of 
vehicle movements concerning shared objectives, whereas, without this cooperative 
behavior, vehicles act only based on their own goals. 

Another possible use of cooperative maneuver execution addresses emergency 
situations. Unforeseen events may disrupt the planned movement of a vehicle and 
require a change in the preconditions for trajectory planning to achieve or maintain a 
safe state. This is often neither dangerous nor uncomfortable because other road users 
act considerately and do not force other participants to make last-minute changes in 
their motion planning, even if just out of self-interest. However, there are situations 
where prompt response is required to prevent or mitigate collisions. For example, 
the door of a car parked at the side of the road may suddenly be torn open and 
protrude into the planned path of the vehicle. Likewise, pedestrians or bicyclists 
may unexpectedly block the path of travel, for example, by suddenly changing the 
direction and speed of travel without correctly being predicted by the automated 
vehicle. 

Figure 1 shows an exemplary traffic situation in which an immediate reaction of 
the automated vehicle is required. There, an automated vehicle approaches a suddenly 
occurring pedestrian on the right of two parallel lanes leading in the same direction. 
Depending on the time and location of the obstacle’s occurrence and the speed of 
the approaching vehicle, a specific braking rate must be attained to avoid a collision 
with the obstacle without changing lanes. There may be constellations in which a 
lane change is more favorable in terms of an associated cost function than a pure 

Fig. 1 Exemplary depiction of an emergency situation. The depicted pedestrian steps unexpectedly 
and irregularly into the lane, forcing the approaching automated vehicle to adapt its plan. The 
illustration indicates a cooperative lane change in response to the event
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braking maneuver, e.g., a high braking rate is required without a lane change, or a 
collision cannot be avoided without changing the lane due to the physically limited 
braking rate. To execute a lane change, a suitable gap is required in the adjacent lane 
so that the lane change does not create a risk of collision. If an appropriate gap is 
available, it can be used by the swerving vehicle to resolve the situation. However, 
if this is not the case, cooperative behavior of vehicles in the target lane would 
be desirable so that the vehicle can tackle the emergency as smoothly as possible. 
Because of the dynamic nature of the situation, achieving this goal requires a quick 
agreement among the vehicles involved. Thus, a joint maneuver could increase road 
safety in safety-critical cases by allowing a coordinated, targeted response without 
the uncertainty and delay of inexplicit human communication. 

Another critical point of cooperative maneuver-level behavior is the decision-
making of an automated vehicle. The decisions that an automated vehicle has to make 
in road traffic range from very simple to complex. Examples include starting to move 
when a traffic light has just switched to green, selecting a cruising speed, choosing 
a distance to the vehicle in front, when to change lanes, and selecting a suitable gap 
for a lane change or crossing an intersection. Complexities are added by the traffic 
dynamics, differing or even unknown goals of road users, and their interactions. 
Reinforcement learning, a subcategory of machine learning, is particularly suitable 
for problems where it is relatively easy to evaluate the outcome of a decision, but 
engineering an algorithm to solve a given task is very complex or too time-consuming. 

Up to this point, three essential aspects of Cooperative Automated Driving have 
been outlined. The research conducted in the CoInCiDE project on these three aspects 
is expounded in this chapter. Sect. 2 presents research on a foundational univer-
sal cooperation methodology based on explicit vehicle-to-vehicle communication 
(V2V). In the following Sect. 3, research on the further development of the method 
with regard to emergency situations is presented. Sect. 4 contains the research results 
on reinforcement learning methods for cooperative maneuver-level decision-making. 
Last, this chapter is concluded in Sect. 5. 

2 Framework of Explicitly Negotiated Maneuver 
Cooperation via V2V 

While human drivers on the road must rely mainly on implicit communication and 
communication methods that can rarely be interpreted beyond doubt, automated 
vehicles can easily exchange data via explicit communication. This enables explicit 
agreements between vehicles regarding joint maneuvers to be executed. This section 
presents a method, the Space-Time Reservation Procedure (STRP), based on the 
work already published on this topic [ 14, 15, 24, 25].
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2.1 Related Work 

Several approaches for the coordination and cooperation of automated vehicles based 
on explicit data exchange have already been documented in the literature. And there 
are already several message types that support cooperative driving functions defined 
or under development. Some of the messages have already been standardized or are 
in the process of being standardized. The Cooperative Awareness Message (CAM) is 
already standardized and contains basic information such as the position and velocity 
of the sender [ 6]. The likewise standardized Decentralized Environmental Notifica-
tion Message (DENM) can be used for exchanging data on particular danger spots in 
the road network [ 7]. It contains information about the type and position of the area 
to be described. Collective Perception Messages (CPM) can be used to share infor-
mation about obstacles and other road users detected by the sensors of the originating 
system [ 8]. This message is already standardized, too. 

In many cases, specific, frequently occurring traffic situations are considered. One 
example is the change between parallel lanes. An approach is to equalize the speeds 
of the vehicles involved in the lane change to enable the maneuver [ 22]. This method 
is adapted from a technique for cooperation at intersections [ 28]. Another method for 
cooperative lane changes on highways achieves safe lane change maneuvers based 
on a minimum safety spacing model (MSS), even in complex situations [ 34]. The 
method performs trajectory planning based on the distances at different points in 
time between the involved vehicles calculated by the MSS. 

The Maneuver Coordination Message (MCM) that is currently under standard-
ization [ 5] allows the exchange of trajectories. Based on this, an approach in which 
vehicles continuously publish their currently planned trajectory is presented in [ 19]. 
In addition to the currently planned trajectory, a trajectory can be broadcast that is 
marked as desired and conflicts with the plans of other road users. Other vehicles 
can adjust their planned trajectory so that it no longer conflicts with other road users’ 
desired trajectory. The desired trajectory can be executed once all trajectory con-
flicts are resolved. This method can be extended by a coordination protocol [ 35] 
which allows vehicles to form cooperative groups. A similar method that also relies 
on MCM and the continuous exchange of trajectories is presented in [ 21]. In this 
method, other trajectories in addition to the reference trajectory are sent that can be 
either more favorable for the sending vehicle or advantageous for other vehicles but 
to the disadvantage of the sending vehicle. Cooperation is achieved by evaluating 
the received trajectories and adjusting the reference trajectory. 

A co-simulation framework for evaluating and testing cooperative driving func-
tions is presented in [ 20]. The framework couples a vehicle dynamics simulation and 
a traffic flow simulation. It contains a machine learning module to generate and eval-
uate test scenarios. These three components together allow for extracting scenes from 
the traffic flow simulation, automatically testing them using the vehicle dynamics 
simulation, and evaluating the cooperative driving functions.
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The space time reservation procedure (STRP) is another approach to achieve coop-
erative maneuver level behavior of automated vehicles [ 15]. The method is based 
on a structured negotiation about reservations of road space for agreeing on binding 
cooperative maneuvers. This approach has also been tested for more than two partic-
ipating vehicles [ 24] and by test drives with two automated research vehicles [ 14]. 
Moreover, universality has been investigated to cover all traffic scenarios [ 25]. In the 
following, this method is presented in detail. 

2.2 Definition of a Cooperative Maneuver 

The foundation of the STRP is a set of rules for explicitly defining joint maneuvers. 
These rules avoid misunderstandings and allow the details of coordinated maneuvers 
to be described precisely. The reservation templates described in Sect. 2.3 are specifi-
cally adapted for different types of joint maneuvers. In this section, attributes that are 
used for all templates are explained. The method is based on reserving temporarily 
and spatially limited traffic space for the exclusive use of one automated vehicle. A 
data set represents the restriction of the traffic space reserved during a cooperative 
maneuver. First, this includes information for uniquely identifying the lane contain-
ing the reservation area. This is covered by two points .P0 and .P1 connected by the 
lane to be identified. Both points are described by their longitude, latitude, and eleva-
tion coordinates. The reservation area is longitudinally bounded by the length values 
.s0 and . s1. Both values refer to the point .P0 and determine the exact start and end of 
the reservation lengthwise. In the lateral direction, the reservation area is predeter-
mined by the lane width. Therefore, the reservation area is spatially unambiguously 
defined. A time interval .[t0, t1] specifies the time limit within which the reserving 
vehicle must start to enter the reservation area. Otherwise, the cooperative maneuver 
becomes invalid. The reservation templates for different situations extend this basic 
definition as needed for specific traffic situations. 

With this set of rules for explicitly defining reservation areas for cooperative 
maneuvers, a schematic negotiation process between road users can take place. A 
vehicle can use a definition of a reservation area to request cooperative behavior 
from other road users via vehicle-to-vehicle communication. To do this, a request 
message containing the reservation definition is broadcast. All receiving vehicles 
can then evaluate the request based on the requested reservation and ignore, reject, 
or accept it depending on their own goals. The evaluation of the responses is done 
solely by the requesting vehicle. It can execute the intended maneuver if the cars 
required for the coordinated maneuver have agreed to collaborate. Due to physical 
limits and incompatible objectives, a vehicle may not send an acceptance message. 
In this case, the requesting vehicle can cancel the reservation using an abort message 
so that other participants do not avoid the reservation area unnecessarily. If a vehicle 
has agreed to a reservation, the agreement is binding. The vehicle must then avoid 
the area according to the reservation definition, provided that the reserving car starts 
to enter the reservation area within the time interval .[t0, t1].
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2.3 Reservation Templates 

In order to make the method universally applicable for standard driving maneuvers 
occurring on regular streets, three patterns for reservation are defined. These differ, 
e.g., in terms of additional data that is transmitted and the end of a cooperative 
maneuver. The first template covers a vehicle’s intention to change from a parallel lane 
to the lane containing the reservation area, e.g., a standard lane change. The second 
template covers cases in which vehicles leave the original lane, use another lane for a 
limited distance, and change back to the initial lane afterward. This can be used, for 
example, to drive around a traffic obstruction in the presence of oncoming traffic. The 
third template defines a reservation area located on the original lane of the vehicle. 
This template is suitable, for example, at intersection crossings for cooperation with 
cross-traffic. A more detailed presentation of the reservation templates can be found 
in [ 25]. 

2.3.1 Lane Change 

To keep the length of the reservation area as short as possible and still allow the 
lane-changing vehicle a certain tolerance, an additional parameter . v defines a speed 
at which the boundaries of the reservation area specified by .s0 and .s1 move along 
the direction of the road from time . t0. Furthermore, joint maneuvers agreed upon 
based on this reservation template end with their activation. That means the cooper-
ative maneuver ends as soon as the reserving vehicle begins to enter the reservation 
area in the interval .[t0, t1]. After that, the vehicles involved continue their journey 
individually. 

The sequence of a cooperative maneuver with this reservation template is shown 
in Fig. 2. At the bottom of the figure, the two lanes are sketched, and the points 
.P0 and .P1, as well as the distances .s0 and . s1, are drawn in so that the reservation 
area marked in green is spatially clearly delimited. In the upper part of the figure, 
an s-t diagram is shown. In this, distances .s0 and . s1, as well as the time interval 
.[t0, t1], and an exemplary path on the target lane. τ are drawn. Furthermore, the chart 
shows three different areas. The hatched area indicates the longitudinal positions 
and times where the vehicle must not be on the target lane. This is the case before 
. t0 and spatially before the lower limit of the reservation determined by . s0. The area 
in which the vehicle must begin to enter the reservation area is shown in dark green. 
Within the time interval, the spatial boundaries move with velocity. v so that this area 
forms a parallelogram in the chart. The white space in the diagram marks time and 
space intervals on the target lane that may be used after the vehicle has activated the 
cooperative maneuver by entering the reservation area within the dark green area.
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Fig. 2 Reservation shape for lane change: The s-t-diagram shows three different areas for the target 
lane. The hatched area must not be used by the reserving vehicle, the dark green area must be used 
for starting to enter the target lane, and the white area can be used after; . τ is an exemplary path of 
the vehicle, adapted from [ 25] 

2.3.2 Evasion With Oncoming Traffic 

This reservation template allows the requesting vehicle to avoid an obstacle by using 
the lane of, e.g., the oncoming traffic. The vehicle must start entering the reservation 
area within the interval .[t0, t1]. The defined reservation area is spatially static and 
must be left before reaching the upper longitudinal limit defined by. s1. The maneuver 
ends as soon as the vehicle has left the reservation area; there is no predefined time 
end. Figure 3a is analogous to Fig. 2. The s-t diagram refers to the target lane. The 
dark green room indicates when and in which area to enter the reservation. The 
hatched areas must not be entered at all within the target lane. The fading green color 
indicates the unlimited temporal validity of the reservation. The maneuver ends when 
the vehicle leaves the area. A possible path . τ of the car on the target lane is drawn 
in black. 

2.3.3 Lane Keeping 

This reservation pattern is suitable, e.g., for a crossing passage. In this case, the 
reservation area is also spatially static and unrestricted in time. The start of the entry 
must lie in the interval .[t0, t1]. Figure 3b shows this area in dark green in the s-t-
diagram. After that, the reservation is valid for an unlimited time until the reservation 
area has been left.
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Fig. 3 Reservation shapes for evasion and lane keeping, adapted from [ 25] 

2.4 Simulations and Driving Experiments 

Several experiments were conducted in simulation and using two automated research 
vehicles to analyze the method in more detail. Eclipse ADORe [ 13] is used to run  
the research vehicles and the simulation. For more information, please refer to this 
source. The research vehicles are equipped with hardware for vehicle-to-vehicle 
communication, special sensors, and other devices to operate the automation. An 
accurate map of an actual urban intersection in Braunschweig, Germany, is used for 
the experiments. The map was shifted accordingly to perform the driving experiments 
on a test site. 

2.4.1 Simulation: Lane Change 

In the simulation, two automated vehicles start about 200 m distant from a merging 
area. Coordination is required to drive through the area as efficiently as possible. 
The test drive results are shown in Fig. 4. Two vehicles are plotted at four consec-
utive time instants with .tA < tB < tC < tD . At the earliest time, . tA, both vehicles 
approach the merging area in parallel lanes without coordination. Just before time



Maneuver-Level Cooperation of Automated Vehicles 285

Fig. 4 Simulation of a cooperative lane change: The reservation area depicted in green is requested 
by the lane changing vehicle (blue), adapted from [ 25] 

. tB , the reservation area marked in green is requested by the lane changing vehicle, 
depicted in blue. The lane following vehicle shown in red has evaluated this and 
agreed to the request. At the time . tC , the reservation area is just activated by the 
lane changing vehicle entering. Thus, the cooperative maneuver is finished, and both 
vehicles continue independently on the now single-lane road. As a result, the method 
is shown to coordinate the situation appropriately. The lane keeping vehicle brakes 
slightly, and the lane changing vehicle drives through the area without braking. 

2.4.2 Driving Test: Three Vehicles at an Intersection 

Since only two automated vehicles were available for the driving experiments, one 
of the three vehicles was simulated. Figure 5 shows the situation during the cooper-
ative maneuver. The left-turning vehicle, shown in red, and the straight-out vehicle, 
shown in blue, are the two physical vehicles. The third car (green) is simulated. 
While approaching the intersection, the left-turning vehicle had requested the shown 
reservation area, and the other two conflicting cars had agreed to the maneuver. As a 
result, the left-turning vehicle can pass the intersection unimpeded. In contrast, the 
other two vehicles reduce speed to the required extent until the left-turning car has 
cleared the respective lane. Although the usefulness of this experiment in terms of 
traffic efficiency is not apparent at first glance, there are situations in which such 

Fig. 5 Driving experiment 
with three vehicles at an 
intersection, adapted 
from [ 25] 
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a cooperative maneuver is beneficial. For example, such cooperation can allow the 
automated vehicle to turn safely in heavy traffic, possibly including mixed traffic. 
Furthermore, it can enable fast and reliable priority for emergency vehicles. 

2.5 Conclusion 

Cooperation at the maneuver level between road users can contribute to the efficient 
use of road space. The presented approach uses vehicle-to-vehicle communication 
and a method designed for explicit negotiation and agreement of cooperative maneu-
vers. Various reservation templates establish the universal applicability of the tech-
nique. These templates are not limited to the traffic situations discussed in this section 
but may also be used for other conflicts between road users. The driving experiments 
and simulations conducted to research and improve the method show that it is suitable 
to ensure coordination in the studied situations. Furthermore, by design, the tech-
nique is inherently safe against message loss and suitable for mixed traffic scenarios. 
Its decentralized architecture allows flexible use at any place. The reader is referred 
to the publications [ 14, 15, 24, 25] for a deeper look at this method and more results 
of many simulations and driving experiments in various traffic situations. 

3 Cooperation in Emergency Situations 

This section discusses research on adapting the cooperation method presented in 
Sect. 2 to emergency situations. The effectiveness of the method to coordinate maneu-
vers of automated vehicles in emergency situations is evaluated by both simulations 
and driving tests. 

3.1 Related Work 

The related work regarding vehicle-to-vehicle communication-based cooperation 
of automated vehicles given in Sect. 2.1 is relevant here, too. In addition, a few 
publications concerning emergency maneuvers shall be presented here. 

The authors of [ 16] propose a method for guaranteeing safety based on verifying 
the planned trajectory while the vehicle is in motion. The core of the approach is a 
two-step evasive strategy based on a discrete decision for an evasive maneuver and 
the computation of an appropriate low-level control to follow this maneuver. The 
method was validated in simulation.
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An approach for lateral control in evasive maneuvers is proposed in [ 4]. The 
method, based on a sliding mode control, calculates a steering angle taking into 
account, among other factors, the tire slip saturation. Simulations show that lane 
changes are possible within 1.1 s at speeds of up to 130 km/h under certain circum-
stances. Another proposal involves taking into account the dynamics of the steering 
system during evasive maneuvers [ 27]. The model predictive control in this pub-
lication contains two models. Besides the vehicle model, also a steering model is 
included. 

A parameterization of a geometric path for an evasive maneuver based on rein-
forcement learning is proposed in [ 9]. The path consisting of straight lines and 
clothoids is then executed by means of a model predictive control loop. Simulations 
of a common emergency situation show that the method significantly outperforms 
human drivers. 

3.2 Approach 

The basic framework of the cooperation and negotiation method has already been 
stated in Sect. 2. This approach is adapted to the particular requirements in emer-
gencies. Negotiating the cooperative maneuver in the shortest possible time without 
avoidable delay is of the utmost importance in emergency situations. This is because 
these situations are highly dynamic, and any delay reduces the ability to respond to 
the situation. For example, evasive maneuvers may become impossible because of 
the intermediate progress of the surrounding traffic. Therefore, negotiation is started 
immediately after a cause for an emergency response is detected. Due to the safety-
critical nature of emergencies, cooperative maneuver requests are of higher priority 
than other requests. The receiving vehicles can consider that during the evaluation 
of the request. 

3.3 Simulations and Driving Experiments 

To verify and investigate the method, simulations and driving experiments are con-
ducted. The basis in each instance is the traffic situation shown in Fig. 1. The param-
eters, such as speeds and distances, vary in the different runs. A simulation run and 
a driving experiment are presented below with their evaluation and results.
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3.3.1 Simulation 

At the time .t = 0, the obstacle occurs on the lane of the lane changing vehicle (lc-
vehicle). At this point in time, the vehicle approaches the obstacle at a speed of 
27.73 m/s, and the lane following vehicle (lf-vehicle) on the adjacent lane to the 
left is driving at a speed of 27.16 m/s. The distances measured along the road from 
the front bumpers of the vehicles to the position of the obstacle are 43.16 m for 
the lf-vehicle and 38.96 m for the lc-vehicle. In this scenario, the obstacle does not 
block the entire width of the right lane. The blocking is limited to the right side 
of the lane so that only the outer 50% of the width is blocked at the longitudinal 
position .d = 0. The physically maximum possible braking rate of the lc-vehicle is 
assumed to be 9.81  m/s2. Even with hypothetical constant deceleration at this rate, 
a collision would occur between the obstacle and the lc-vehicle since the braking 
distance exceeds the distance to the block. Therefore, the lc-vehicle immediately 
starts negotiating a cooperative maneuver and requests a reservation area just before 
the obstacle. The lf-vehicle in the target lane accepts the request and brakes to allow 
the requesting vehicle to change lanes. 

Figure 6 shows the positions of the two vehicles in the distance-time diagram. 
Time.t = 0 corresponds to the point in time of the obstacle occurrence. The obstacle 
is longitudinally located at .d = 0. Two curves that are connected by a hatching are 
plotted for each vehicle. The two curves correspond to the longitudinal positions of 
the front and rear bumpers of both vehicles. The hatching patterns indicate which 
lateral zone the vehicles use at the respective time. The inclined single hatching 
corresponds to the left lane, which is unaffected by the obstacle at .d = 0. The hori-

Fig. 6 Simulation: Distances between the front and rear bumpers of the lf-vehicle (red) and the 
lc-vehicle (blue) and the obstacle located at.d = 0, with.t = 0 being the point in time of the obstacle 
appearance; the distances are measured along the lane. The hatching patterns indicate the lateral 
area used by the vehicle: Horizontal single hatching indicates the use of the right half of the right 
lane, and inclined single hatching indicates the use of the left lane
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Fig. 7 Simulation: 
Velocities of lc-vehicle 
(blue) and lf-vehicle (red) 
during the simulation.. t = 0
is the point in time when the 
obstacle appears 

zontal parallel hatching indicates the usage of the lateral zone blocked from .d = 0, 
i.e., the right 50% of the right lane. Directly after the occurrence of the obstacle, the 
lc-vehicle requests a reservation which is evaluated and accepted by the lf-vehicle. A 
gray box in the diagram depicts the reservation area. The lf-vehicle brakes sharply to 
respect the reserved area for the emergency lane change. Within the interval in time 
and longitudinal position, the lc-vehicle leaves the blocked part of the right lane and 
changes towards the left lane. The cross-hatching in the diagram indicates the short 
period in which the lc-vehicle uses both the left and the blocked part of the right 
lane. Figure 7 shows the development of the velocities of both vehicles during the 
scenario. While the lf-vehicle brakes and reduces its speed by approx. 7 m/s to assist 
the emergency evasion of the lc-vehicle, the latter reduces its velocity marginally. 

Fig. 8 Automated research vehicles VIEWCar II (left) and FASCar E during the demonstration of 
a cooperative emergency lane change at the IEEE Intelligent Vehicles Symposium 2022
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3.3.2 Driving Experiment 

In addition to the simulations, physical tests were performed with automated research 
vehicles. These tests of the method were demonstrated at the IEEE Intelligent Vehi-
cles Symposium 2022 in Aachen, Germany. Figure 8 shows the two automated 
research vehicles on the site during the driving demonstration. The results of the 
tests are presented in the following. 

The two research vehicles, FASCar E and VIEWCar II, were used for the driv-
ing experiments and demonstrations. These vehicles are provided with the neces-
sary hardware for communication via ITS-G5. The software framework for vehicle 
automation ADORe [ 13], further developed in the CoInCiDE project, is used in 
both cars for these tests. Currently, the maximum deceleration set by the automated 
research vehicles is limited to 3 m/s2. This limitation is due to the vehicle interface 
and cannot be influenced by the automation software. To account for that limitation, 
the driving test distances are larger than those used in the simulation. In this way, 
meaningful results can be obtained despite the restriction. 

The initial situation of the scenario is again two automated vehicles traveling 
in the same direction on adjacent lanes. The point in time of the virtual obstacle 
occurrence is defined as.t = 0, and its longitudinal position is.d = 0. In this scenario, 
the entire width of the right lane is blocked by the obstacle, so the vehicle must have 
left it entirely before passing this location. The lc-vehicle in the right, blocked lane 
approaches the obstacle at a speed of 13.65 m/s at a distance of 73.86 m at time.t = 0. 
The lf-vehicle driving on the adjacent lane travels at this time with 13.45 m/s at a 
distance of 81.85 m measured along the lane in the same driving direction. Figure 9 
shows the distances analogously to the evaluation in Sect. 3.3.1. The longitudinal 
distances from the front and rear bumpers to the obstacle are plotted for both vehicles. 
The hatching again gives information about the lateral position of the vehicles. Here, 
the inclined line hatching corresponds to the use of the unblocked left lane, and the 
horizontal line hatching indicates the use of the right lane, which is blocked from 
.d = 0. The cross-hatching represents areas where both lanes are used at the same 
time. 

Immediately after the virtual obstacle appears, the lc-vehicle requests a reser-
vation area in the target lane so the obstacle can be passed without braking. After 
evaluating this emergency request, the lf-vehicle sends a confirmation message. Thus, 
the cooperative maneuver is bindingly agreed upon. The temporarily and spatially 
limited reservation area is indicated by a gray box in Fig. 9. Right at the beginning 
of this area, the lc-vehicle activates the reservation. The cross-hatching indicates the 
partial use of both lanes. Before reaching the obstacle at the longitudinal position 
.d = 0, the lane change is completely finished, and both vehicles drive on the left 
lane one after the other. Figure 10 shows the speeds of the two vehicles during the 
experiment. The speed profile of the lc-vehicle is almost constant. The lf-vehicle, on 
the other hand, brakes and thus enables the cooperative maneuver.
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Fig. 9 Test drive: Distances between the front and rear bumpers of the lf-vehicle (red) and the lc-
vehicle (blue) and the obstacle located at .d = 0, with.t = 0 being the point in time of the obstacle 
appearance; the distances are measured along the lane. The hatching patterns indicate the lateral 
area used by the vehicle: Horizontal single hatching indicates the use of the right lane, and inclined 
single hatching indicates the use of the left lane 

Fig. 10 Test drive: 
Velocities of lc-vehicle 
(blue) and lf-vehicle (red) 
during the test drive..t = 0 is 
the point in time when the 
obstacle appears 

3.4 Conclusion 

Emergencies in road traffic can hardly be avoided due to complexity and, not least, 
due to humans. Therefore, appropriate handling of such situations is of the utmost 
importance for developing automated vehicles. A basic example of such a hazardous 
situation is an obstacle’s sudden and unforeseen occurrence within the planned path 
of movement. The most basic method of responding to such a situation is to brake the 
vehicle to avoid a collision or at least reduce the impact energy as much as possible. 
Evasive maneuvers can be used in some instances to avoid heavy braking or even 
to avoid collisions. The prerequisite is that the traffic space required for swerving



292 M. Nichting et al.

is not in use by other road users. The method discussed in this section aims to use 
vehicle-to-vehicle communication to negotiate a reservation of the space required for 
an evasive maneuver with conflicting road users. Hence, evasive maneuvers should 
be possible in more situations than before, thus avoiding heavy braking maneuvers 
and collisions. 

The evaluation of the performed simulation and test drive shows that the method is 
suitable for this purpose. It was shown in the test drive that the cooperative behavior 
reduced the impact of the obstacle. The simulation is parameterized so that a braking 
maneuver within the lane cannot avert a collision. Initially, a lane change is impossible 
because of the blocked adjacent lane. However, the cooperative behavior negotiated 
using the presented method can effectively resolve the emergency situation without 
causing a collision. Thus, the method can prevent collisions and reduce the impact 
of unforeseen obstacles. To further improve cooperative emergency behavior, future 
research can address, e.g., pre-negotiation of emergency responses and lane sharing 
in emergency situations. This could prevent collisions in a wider range of situations. 

4 Implicitly Cooperative Decision-Making 

The research presented here builds upon prior work on cooperation of automated 
vehicles [ 25] and the use of reinforcement learning for decision-making [ 26]. While 
the previous reference investigated deep Q-learning for the decision-making of an 
automated vehicle without considering interactions between road users, this section 
presents a method that does this based on the soft actor-critic approach [ 10] and 
proximal policy optimization algorithms [ 29]. For this purpose, a multi-agent system 
is built, and partly cooperative objective functions are designed. A common problem 
of road traffic is selected to show and research the methodology. Figure 11 shows a 
traffic situation similar to a highway entrance. Two lanes are in parallel for a limited 
stretch of way, with the right lane ending at the end of the segment and the left 
lane proceeding as part of a road with an arbitrary number of lanes. In such traffic 
situations, participants with different objectives interact, implicitly communicate and 
sometimes even cooperate. 

4.1 Related Work 

In literature, several methods have already been documented to implement parts of 
the decision-making of an automated vehicle using reinforcement learning methods. 
There are a few examples where end-to-end learning approaches are employed [ 3, 
33] with the decision-making being part of the end-to-end architecture. But the task of 
automated driving is usually split into subtasks that are solved by different methods. 
Tram et al. [ 30] use deep Q-learning to adjust the speed of an automated vehicle as it 
passes through an intersection. The surrounding traffic, which consists of simulated
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manually driven vehicles, is used as input for an artificial neural network and a 
recurrent artificial neural network for comparison. As a result, the automated vehicle 
passes the intersection without collision in the majority of cases for both networks, 
with better results obtained from the recurrent network. 

Wang et al. [ 31] consider lane changing and investigate a methodology to perform 
it in various situations. To do this, they model the problem with a state space consisting 
of road information such as curvature and width and vehicle dynamics information 
such as acceleration, speed, and position. Here, the reinforcement learning agent 
serves as the lateral controller, and the action space contains the yaw acceleration 
of the vehicle. The results show that the lane change controller manages the control 
task but lacks robustness and flexibility. The principal author later reformulated the 
task and published an approach for the lateral control during lane changing using 
deep deterministic policy gradient [ 32]. As a result, stable lane changing is achieved 
with the proposed architecture. 

Kurzer et al. [ 18] propose a method to represent the environment in a generalized 
way with as few restrictions as possible. This is intended to improve the capability for 
generalization of the methods using this representation. To do this, the path in front 
of the vehicle is divided into segments and properties such as time to occupancy and 
time to vacancy are assigned to each segment. Together, these pieces of information 
form the state representation. Experiments presented in the paper show the successful 
abstraction of the environment representation from the concrete driving situation. 

Bouton et al. [ 1] propose a decision-making algorithm for automated vehicles 
to navigate at intersections. In addition to a reinforcement learning algorithm, a 
model checker is used to make the decisions safe. Furthermore, perception errors 
are addressed with the help of a recurrent neural network. As a result, the algorithm 
proves to be robust and safe concerning the decisions. 

For relevant examples of multi-agent reinforcement learning, reference is made 
to the survey by Hernandez-Leal et al. [ 12] and the article by Canese et al. [ 2]. Both 
references provide a literature review on multi-agent reinforcement learning. 

4.2 Approach 

The approach involves two independent agents that follow their goals defined by a 
reward function in a scenario. The lane change agent (lc-agent) has to change lanes in 
a limited time and on a limited road section while the lane following agent (lf-agent) 
follows the lane the lc-agent wants to change to. By adjusting the speed, the lf-agent 
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Fig. 11 Overview of the map and gap identifiers; gap .g5 has no longitudinal lower bound in this 
case, adapted from [ 26]
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can let the lc-agent merge cooperatively. The agents differ in terms of the algorithm 
used, the state space, and the action space definitions. The specific components are 
described in Sects. 4.2.1 and 4.2.2. 

The characteristics of the map are part of the state spaces of both agents. The map 
is depicted in Fig. 11, with . l being the longitudinal distance between the first and 
last possibility to change lanes. In addition, a speed limit .vspeedlimit is defined for the 
area in which the examined traffic situation occurs. Other road characteristics, e.g., 
curvature, are not part of the state spaces to keep the definition general. Besides the 
map-specific part of the environment, the traffic participants themselves are part of 
the environment as they interact and limit the possibilities of the other participants 
in the scenario. 

4.2.1 Lane Change Agent 

The lc-agent controls the light-colored vehicle depicted in Fig. 11 and selects the gap 
on the target lane depending on the observed state of the environment. The proximal 
policy optimization algorithm [ 29] is used for this purpose. The state description 
consists of the longitudinal boundaries of the five gaps depicted in Fig. 11, the veloc-
ities of the vehicles on the target lane, the position and velocity of the ego-vehicle, 
and the longitudinal boundaries of the lane change area. The action space contains 
the discrete gap selection. For training the agents, a reward signal is used to induce 
the intended properties of the agents. For this purpose, a reward function is defined 
that rewards high values of.vego and penalizes the use of the original lane in each time 
step. A systematic parameter study has been conducted to define the exact reward 
functions of both agents. The lc-agent’s reward function .Rlc is defined as follows: 

.Rlc =
{−0.8+ 1

14 × vego, if lane change is not finished
1
14 × vego, if lane change is finished

(1) 

4.2.2 Lane Following Agent 

For the lf-agent, the soft actor-critic algorithm [ 11] is used. This is an off-policy algo-
rithm that seeks to maximize both expected reward and entropy. The state description 
of this agent consists of the longitudinal distances to the vehicle in front, the vehicle 
behind, the vehicle that attempts to perform a lane change, and the boundaries of 
the lane change area. Moreover, the ego velocity .vego as well as the velocities of 
the lane changing vehicle and the vehicles in front and behind are part of the state 
representation. The continuous action space consists of a set-point velocity input to 
the trajectory planning. The reward function.Rlf depends on the velocity.vego and, to 
induce a partly-cooperative behavior, on the lane change state of the lc-agent: 

.Rlf =
{
0.7× vego, if lane change is not finished
1× vego, if lane change is finished

(2)
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4.3 Experiment 

The experiment involves training the agents in dense surrounding traffic. During the 
training, the policies of the agents are continuously evaluated. The scenario shown 
in Fig. 11 is used for the experiment. 

4.3.1 Configuration 

The length of the segment in which a lane change is possible is .l = 200m. The  
speed limit in the scenario is set to .vspeedlimit = 13.89m/s. Each episode consists 
of 40 training steps and takes 40 s of simulation time. A collision between traffic 
participants is impossible as the action space consists of inputs for the trajectory 
planning, which is inherently safe. Multiple simulations are conducted to identify 
proper hyperparameters. Table 1 gives the most important hyperparameters that are 
selected for the training process of the agents as they turned out to perform best after 
a limited parameter study. Besides, the standard parameters are chosen, as given 
in [ 11, 29]. 

The surrounding traffic on the middle and left lanes of the road shown in Fig. 11 is 
simulated by SUMO [ 23]. This traffic consists of differently parameterized vehicles, 
so random and busy traffic situations arise. The individual speed limit of each vehicle 
is taken from a normal distribution considering but not always obeying the global 
limit.vspeedlimit. As a measure of the density, an emission probability of 43% for each 
of the middle and left lanes is specified. This value determines the probability of the 
emission of one vehicle each second. 

Two agents are permanently trained during the simulation. The lc-agent starts 
from a standstill 150 m distant from the beginning of the merging lane and drives 

Table 1 Hyperparameters 

lf-agent lc-agent 

Learning rate Actor: 6e-5 
critic: 1e-6 
alpha: 1e-5 

3e-4 

Discount factor.γ 0.999 

Activation function Rectified linear unit 

Optimizing algorithm Adam [ 17] 

Batch size 512 128 

Reward scale 1.0 n.a. 

Size of replay buffer 10,000 

Network topology All networks: 
two fully connected layers 
with 256 nodes each 

all networks: 
two fully connected Layers 
with 64 nodes each
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Fig. 12 Reward per episode 
during evaluation of the lane 
following agent 
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towards it. After the end of the episode, as defined above, the agent is reset to the 
starting position, and the next episode begins. The simulation control ensures that 
the lf-agent always controls a vehicle that is at a position suitable for potential coop-
eration during training. The vehicles of the lf-agent and the lc-agent are controlled 
by ADORe [ 13]. The interaction between the agents takes place solely implicitly 
through their behavior and the understanding of that behavior. Each agent executes 
decision-making at a frequency of .1 Hz. 

4.3.2 Results 

The training was conducted for 200,000 training steps. After every ten thousandth 
training step, twenty episodes were executed for evaluation. For each episode, the 
cumulative reward is logged. Figure 12 shows the accumulated reward per episode in 
relation to the training progress for the lf-agent, Fig. 13 shows that data analogously 
for the lc-agent. Initially, as the number of training episodes progresses, the rewards 
of both agents per episode increase continuously and reach their maxima. Then, 
the rewards remain approximately constant until the training is discontinued after 
200,000 training steps. Figure 14 shows the number of evaluation episodes with
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Fig. 14 Number of 
successful .(—) and 
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and without successful lane changes depending on the training progress. While the 
number of episodes without a successful lane change increases at the beginning of 
training, the slope flattens sharply with progressing training. 

4.4 Conclusion 

The experiment results show the suitability of reinforcement learning methods for 
the partially cooperative decision-making process. The agents use the soft actor-critic 
and the proximal policy optimization algorithms to cooperatively adapt their behavior 
to the other agent and maximize the reward per episode. Regardless of the presence of 
automated and manually driven vehicles, understanding the other vehicles’ behavior 
is essential for efficiently accomplishing those situations. Extending the state spaces 
by a prediction of the vehicles in the scenario may further improve the performance. 

The experiment does not consider direct communication via vehicle-to-vehicle 
communication. However, many cooperation methods work based on explicit com-
munication. The combination of these two techniques can be addressed in the next 
steps. Furthermore, the variance of reward functions of the agents can be increased. 
More objectives can be considered, and thus more general applicability of the method 
can be reached.
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5 Conclusion 

The last three sections cover three important aspects of maneuver-level cooperation 
of automated vehicles. First, a fundamental method for defining, negotiating, and 
agreeing on cooperative maneuvers is presented. The STRP is based on reserving 
temporarily and spatially limited traffic space for exclusive use. The driving tests 
with automated research vehicles and simulations show that the method is suitable 
for effective cooperative resolutions of conflicts on the road. The different reserva-
tion templates allow universal applicability in conflict situations occurring in traffic. 
In the second part, research on cooperation in emergency situations is presented. The 
investigated approach is based on STRP and tested both in test drives and simula-
tions. It is shown that the method allows to avoid collisions and to mitigate the impact 
of suddenly occurring obstacles by performing cooperative emergency maneuvers. 
The last part presents research on a cooperative high-level decision-making method. 
It is based on reinforcement learning algorithms and does not require explicit com-
munication. Simulations show that cooperative behavior can be elicited by defining 
suitable objective functions for the vehicles present in a traffic scenario. 

The results contribute to the achievement of safe and efficient behavior of auto-
mated vehicles in the three addressed aspects of cooperative automated driving. Based 
on the research presented in this chapter, the cooperative behavior of automated vehi-
cles can be further researched. For example, an integration of STRP relying on explicit 
communication into the method for cooperative decision-making can be investigated. 
This could then be used to research an integrated approach for decision-making and 
explicitly negotiated cooperation of automated vehicles. 
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Hierarchical Motion Planning 
for Consistent and Safe Decisions 
in Cooperative Autonomous Driving 

Jan Eilbrecht and Olaf Stursberg 

Abstract The immersion of autonomous cars in continuously changing environ-
ments of on-road traffic requires procedures for decision-making with fast adapta-
tion as well as guarantees on safe motion and collision-avoidance. This contribution 
proposes a three-layer hierarchic decomposition of the task of automatically steer-
ing the autonomous car along a designated route in cooperation with neighbored 
vehicles. The upper layer of the hierarchy identifies cooperative groups of those 
vehicles which are involved in a joint scenario for a phase of the planning horizon. 
The medium layer employs set-based computations of the free space for any vehicle 
of a joint scenario together with constrained optimal control to determine optimized 
motion plans. These plans are used on the lower layer as reference signals for tracking 
control in order to realize motion trajectories. The architecture ensures consistency of 
the vehicle motion with respect to safety for given assumptions, as well as relatively 
small computation times by combining offline with online computation. 

1 Introduction 

Autonomous driving of road vehicles promises to release passengers from paying 
attention to traffic, to enable car-sharing concepts relying on automated vehicles, 
and to enhance traffic flow by better coordination [ 34]. An anticipated additional 
advantage—and a required property at the same time—is the reduction of the number 
of accidents, injuries, and fatalities per driven distance. To see that this property 
indeed is achieved, the process of determining driving decisions for automated cars 
needs to continuously evaluate if an encountered scenario bears the risk of safety-
critical evolutions, and to choose only driving options for which the motion remains 
safe as likely as possible. With respect to designing safe motion of single autonomous 
vehicles, intense research efforts in the past years have led to considerable insight into 
how to accomplish the main tasks of environment perception, vehicle localization, 
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and control, see [ 2, 36, 40] among many others. Recent tremendous progress in 
inter-vehicle communication [ 48] paves the path, however, to employ techniques 
of coordination and cooperation to further improve safe autonomous operation also 
for groups of vehicles. The exchange of driving plans among neighbored cars (or 
the distribution of jointly computed plans to these cars) can obviously reduce the 
uncertainty about the actions of other traffic participants, and thus can contribute 
to safety. This book chapter investigates how hierarchical concepts of cooperative 
motion planning for groups of autonomous vehicles can ensure driving decisions that 
are consistent with respect to safe interaction. 

1.1 Relevant Work 

Due to the complexity of the tasks to timely identify a current traffic situation, of 
computing a safe driving decision, and possibly to communicate with and align to 
the behavior of connected vehicles, the use of modular and hierarchic approaches has 
been investigated in various forms, see e.g. [ 5, 6, 10, 41, 50]. While such schemes 
are often expected to lead to quicker reactions, to more flexibility and suitability for 
maintenance (such as easier update of modules) [ 38], they also bear to the challenge 
of ensuring consistency between different decision units: For the information-flow 
from a top layer of a hierarchy, which typically determines a qualitative behavior 
(such as lane following, turning, emergeny braking, etc.), to the bottom-most layer, 
which takes care of the vehicle actuation, it must be ensured that decisions are not 
contradictive. 

For the subtask of path planning of autonomous vehicles, a large set of different 
approaches has been proposed in the past, as reported in the survey papers [ 3, 21, 
22]. One class of techniques is based on gridding of the state space of a vehicle 
and searching a path along a set of grid points, e.g., by path-velocity decomposition 
[ 27], by RRT*-algorithms [ 26, 30], or by Monte-Carlo trees [ 28]. The complexity 
of these approaches, however, grows exponentially with the dimension of the state 
space, as obtained for larger sets of vehicles. A second class of techniques is that 
of learning-based approaches comprising supervised learning based on data from 
human driving experience, e.g. [ 45, 47], and reinforcement learning [ 31]. While 
these methods do not require structural insight into traffic situations and the com-
putational effort required online is relatively low, the data set required for learning 
offline is very large, and means to always guarantee safety are not known yet. A 
different class of methods, which is relevant for the approach to be proposed in 
this paper, uses elements for structuring driving behavior into maneuvers, motion 
primitives, or homotopies. The common idea is to group behaviors which satisfy a 
notion of similarity or symmetry (such as invariance to translation or rotation), see 
e.g. [ 18, 19]. Maneuvers together with principles of optimal control can be used for 
motion planning [ 19, 33, 44], as well as for verifying safety of vehicle motion [ 25]. 
To satisfy conditions under which maneuvers or motion primitives can be concate-
nated to longer driving plans, and the consideration of obstacles are challenging for
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these techniques. In addition, these concepts are so far not used for sets of cooper-
ative autonomous vehicles. A fourth class of relevant techniques for the work to be 
proposed in this chapter are approaches based on mixed-integer programming. The 
underlying optimization problems combine logic conditions modeled by integer vari-
ables with continuous variables to represent vehicle motion, see e.g. [ 29, 35, 37, 39, 
43]. While the subclasses of mixed-integer linear or quadratic programming ensure 
that globally optimal solutions can be found, the computational effort is typically an 
issue if used in online optimization. 

For the subtask of tracking a reference on a lower layer of a control hierarchy, dif-
ferent variants of model-predictive control (MPC) have been considered in the past, 
since this class of techniques is suitable to consider constraints of the inputs and states 
(such as the adherence to the admissible regions). On the one hand, approaches of 
nonlinear MPC have been considered for this purpose [ 16, 17, 23], but it is question-
able whether the nonlinear optimization problem can be solved with the frequency 
required for low-level tracking control. On the other hand, linearized-based variants 
of MPC [ 10, 24, 32, 50] need to account robustly for linearization errors, typi-
cally leading to conservativeness, thus implicitly reducing the space from which the 
reference signals can be chosen. Similar reasoning applies to methods relying on 
linear-parameter-varying models, see e.g. [ 1, 4]. For these reasons, the use of track-
ing techniques based on nonlinear dynamics, with consideration of constraints, but 
without embedding online optimization seems preferable. The techniques reported 
in [ 20, 49] for tracking by stabilizing feedback control motivate the concept used in 
this paper for the same purpose, but those techniques require extensions to account 
for the constraints imposed by the second layer. 

1.2 Contribution 

In order to timely adapt the driving behavior of sets of cooperative vehicles to chang-
ing situations, this book chapter proposes a hierarchic approach using three layers of 
decision: The first (and upper) layer structures the setting into cooperative groups, 
the second layer computes driving plans which are guaranteed to exclude collision 
while leading to the goals of the involved vehicles, and the third layer uses the plans 
as reference signals for the online control tasks. One particular focus with respect to 
the second layer is the division into an offline and an online part for computational 
efficiency. The offline part determines and stores admissible driving regions as well 
as selected optimized trajectories for the vehicles grouped together for a specific 
maneuver. The online part comprises only the relatively easy steps of interpolating 
between the pre-computed optimal trajectories. A second focus of this chapter is on 
the third layer, on which a feedback control task is solved for a more detailed repre-
sentation of nonlinear vehicle dynamics such that following the plan obtained from 
the second layer (as reference signal) is achieved. At the same time, it is ensured that 
the admissible driving region is not left. Thus, a main benefit of the approach to be
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presented is that consistency of the decisions at the interfaces between the first and 
second layer, and between the second and third layer respectively, is guaranteed. 

2 A Hierarchical Approach to Decision Making 

This section first provides an overview of the proposed hierarchic procedure of deci-
sion making for cooperative autonomous driving, while details on the techniques 
assigned to the three layers will be described in the subsequent sections. According 
to Fig. 1, the upper-most layer is termed group coordination and aims at identi-
fying the traffic scenario in a particular road area. The underlying (and required) 
information is the road topology in the respective area, the set of traffic participants 
and obstacles in this area, and the routes of the vehicles (leading essentially to the 
point at which each vehicle intends to leave the area). The sources of information 
are the route planners of the vehicles, the communication units of the vehicles (and 
possibly of road-side stations), and the on-board vision and perception systems. The 
mechanisms of the latter are not in the scope of this paper, but the assumption is that 
the onboard sensorics together with algorithms of object identification deliver the 
complete set of objects in the environment, together with predictions of the motion 
of dynamic objects. The available information is used to identify the current scenario 
and to select a maneuver from a maneuver library, which is computed a-priori in an 
offline phase. The selection of the maneuver comprises the formation of cooperative 
groups, i.e. the set of vehicles is partitioned into subsets which cooperate in executing 
a maneuver jointly, see Sect. 2. (Non-cooperative traffic participants are assigned to 
separate groups.) 

Group Coordination 

Maneuver Planning 

Trajectory Control 
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Fig. 1 Hierarchical structure of the decision-making procedure and additional information from 
the environment
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For any of such cooperative groups, the maneuver selection is passed to layer 
2, termed maneuver planning. For each maneuver, the set of possible behaviors for 
each car of the respective group is computed offline based on reachable sets of hybrid 
automata. These automata (to be defined in Sect. 4) combine the driving plans of the 
vehicles assigned to a cooperative group, and they ensure that any vehicle exclusively 
occupies a certain region of the road, thus excluding collision. The computation of 
reachable sets is based on simplified linear dynamics and considers the goal set for 
the chosen maneuver and constraints arising from obstacles and the road topology. 
Optimized sample trajectories within these reachable sets are computed offline, and 
are stored in a maneuver library for the respective situation. In the online execution, an 
interpolation between the optimized sample trajectories is computed for each vehicle 
and its exact position as observed by the sensors. These interpolated trajectories 
determine a reference forwarded to the third layer, and they remain contained in 
the set of admissible regions. An acknowledgement is sent back to the first layer to 
either report success of maneuver planning, or to initiate the selection of a different 
maneuver, if the one considered before was not found to be executable in the online 
procedure. 

On the third layer, each vehicle controller locally aims at controlling the vehicle 
position and speed to the reference obtained from the second layer. As opposed to 
the linearized dynamics used on layer 2, this feedback control task is based on a 
higher-dimensional nonlinear model of the vehicle dynamics, which involves the 
quantities obtained from the on-board sensors, the actuated quantities, as well as 
possible disturbances (such as wind gusts). It is important for this layer that the 
local tracking error between the planned reference and the actual vehicle path is 
hold in suitable bounds. For the trajectory tracking, a tailored method is proposed 
which uses a nonlinear model of the tracking error represented in the Frenet frame. 
The tracking errors of the position, their speed of change, and of the yaw angle is 
controlled by state feedback control. Bounds on the maximum deviation arising for 
bounded uncertainties of wind and tire forces can be computed, and thus can be 
compared with the driving corridors used in maneuver planning on layer 2. If an 
inconsistency occurs, the acknowledgement signal from layer 3 to 2 needs to report 
this and triggers modification of the reference trajectory. 

The computations on the three layers are iteratively updated with appropriate 
frequency: In the nominal case, formed groups on layer 1 would be expected to exist 
for a range of several seconds until a maneuver is terminated, but possible occurrence 
of new situations (including emergencies like suddenly occurring obstacles) requires 
to react within a few milliseconds. If layer 2 follows a selected maneuver over 
several seconds, incoming new measurements about the exact vehicle positions or 
communicated information allow to update the computation of updated reference 
trajectories—an update of every of 10–50 milliseconds can be deemed reasonable 
for implementations of the hierarchy, while emergency situations again require to 
switch much faster to, e.g., a mode of hard braking. On layer 3, the update of the 
feedback control action would be executed nominally in the range of milliseconds.
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3 Group Coordination 

The task of group coordination is explained based on the example scenario shown 
in Fig. 2. Assume that a set of vehicles is present in a defined section of the road 
network, here the area of a T-intersection. A decision unit performing the functions 
of the upper two layers of the control hierarchy is assigned to this section. Physically, 
this unit could either be embedded into the infrastructure of the intersection, or one 
of the car controllers could temporarily assume this role. Let all vehicles be equipped 
with devices for wireless communication, such that the intended routes, the current 
positions and speed, and the driving plans (as outcome of the planning on layer 2) 
can be exchanged among the vehicles and with the decision unit. If the five vehicles 
follow the intended directions as indicated by the solid arrows, the assignment to 
two cooperative groups is straightforward, namely the red-colored and the two gray-
colored vehicles form a group.G1, while the white and the green vehicle are assigned 
to .G2. Obviously, a simple lane following maneuver needs to be planned for .G2, 
whereas it has to be decided for.G1 at which position the car intending the right turn 
merges into the convoi of the two others. Assuming that the green car intended a left 
turn (indicated by the dashed arrow), the vehicle needed to be assigned to .G1. 

The situation becomes more complicated if non-cooperative traffic participants 
are present: If the red car were non-cooperative, the decision unit would assign it 
to an additional group .G3. It had to be distinguished if this car communicates its 
planned trajectory, or not. If it did, the trajectory would be considered as disturbance 
for the maneuver planning of the gray cars in .G1. If it did not, the complete set of 
possible behaviors of the red car would have to be considered (or estimated based on 
the sensor data), leading to more conservative maneuver planning for the gray car 
turning right. More details on considering non-cooperative traffic participants can be 
found in [ 8, 42], where vulnerable road users (cyclists or pedestrians) are addressed. 

Note that for some scenarios the assignment of vehicles to groups is not related 
to a fixed section of a road, but to a moving section, as e.g. if a set of interacting 
vehicles on a highway perform an over-taking maneuver. 

While the approach presented in this paper determines cooperative maneuvers for 
each group by the procedure described in the next section, the following alternative 
approach from [ 9, 41] should be briefly mentioned: There, the different vehicles in 
a road section compute a proposal for collision-free trajectories by MPC using lin-

Fig. 2 Example of forming 
cooperative groups: The 
green car is assigned to. G2
or.G1 depending on the 
driving intention. In case of a 
non-cooperative red car, it 
forms another group.G3. All  
vehicles communicate with a 
decision unit 

1 

2 

3 

Decision 
Unit
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earized dynamics (as an alternative to layer 2). These trajectories are then negotiated 
by an auction-like bidding procedure, i.e. the vehicle controllers determine which 
proposed trajectories are agreeable for all vehicles of a group (as an alternative solu-
tion on layer 1). 

4 Maneuver Planning 

4.1 Planning Based on Hybrid Models and Controllable Sets 

The maneuver planning for a cooperative group is based on joint modeling of the 
vehicle dynamics by hybrid automata. This choice is motivated by the observation that 
most maneuvers can be understood as a sequence of qualitatively different phases, 
as shown for the example of an over-taking scenario in Fig. 3, adopted from [ 11]. 
The process of the red car overtaking the gray one can be separated into the phase 
.P1 of accelerating and approaching the gray car, the phase .P2 of changing lane and 
passing the gray car, and the phase.P3 of changing back to the right lane and possibly 
decelerating. The maneuver is straightforwardly cast into a hybrid automaton, as 
shown in the bottom part of Fig. 3: Each phase . Pi , .i ∈ {1, 2, 3} is modeled by a 
discrete state . qi , and transitions .θ12, .θ23 represent the instantaneous change of the 
discrete state if an associated transition condition.g(θ12, xk), or.g(θ23, xk) holds true. 
These conditions depend on the continuous-valued state vector.xk at a discrete point of 
time indicated by. k. The state vector comprises the position (in cartesian coordinates) 
and the speed of all vehicles in the cooperative group. Based on . xk , the condition 
.g(θ12, xk) formulates, e.g., the conjunction of the facts that the red car has approached 
the gray one up to a lower distance threshold, that the speed of the red car is sufficiently 

Fig. 3 Partitioning of the overtaking procedure of the red car into three phases and construction of 
a hybrid automaton modeling the procedures
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larger that than the speed of the gray car, and that the distance to the white car is 
sufficiently large for a given speed of the white car. Conditions of similar type can be 
formulated to characterize the admissible values of.xk for each of the discrete states. qi , 
then referred to as invariants .xk ∈ inv(qi ). They play an important role in separating 
safe from unsafe driving behavior, i.e., any.xk modeling a dangerously close distance 
between two vehicles is excluded from the invariants. Likewise, obstacles and regions 
outside of the drivable road space are not included in .inv(qi ). The evolution of 
the state is modeled by discrete-time difference equations .xk+1 = fi (xk, uk, wk), 
which depend on the vector of control inputs .uk (available to actively change . xk
by accelerating, braking, and steering) and on a possible vector of disturbances 
.wk—for both vectors, static bounds .uk ∈ U and .wk ∈ W are assumed to be known.  
Formally, a hybrid automaton.H A = (T, Q, q0, qT , inv,U,W, X0, XT , , g, f ) is 
introduced for a maneuver, containing the set .T ⊂ N of discrete points of time, the 
set.Q ⊂ N of discrete states, discrete initial and target states.q0 ∈ Q and.qT ∈ Q, the  
assignment.inv of invariants to discrete states, the bounded sets.U ⊂ R

m and. W ⊂ R
r

of inputs and disturbances, the sets .X0 ⊂ R
n and .XT ⊂ R

n of possible continuous 
initial states and target states, the transition conditions . g, and the discrete-time state 
transfer functions . fi (collected in . f ). See [ 7, 12] for more details on the semantics 
of the model. 

Given this model, a maneuver is defined as a tuple .M = (G,N, H A, h) of the 
group .G of cooperating cars, the set .N of non-cooperating vehicles, the hybrid 
automaton, and a planning horizon . h (as a maximum number of time points to 
complete the maneuver). Such a tuple is modeled offline as a template for a class 
of scenarios of the same pattern, as for the example of overtaking procedures on a 
single lane road involving three vehicles. A tuple.M is modeled offline for any class 
of scenarios the autonomous vehicles are expected to get in, and .M is stored in a 
maneuver library. 

The advantage of using maneuvers of this type for planning is that set-based offline 
computations allow (under some assumptions) to represent the set of feasible and 
collision-free maneuver instances. For this purpose, let all . fi be affine mappings of 
its arguments and all continuous sets in.H A be chosen polytopic. Then, j-step robust 
controllable sets can be computed for .H A as a sequence of polytopic subsets of the 
invariants: 

. K| = (K0, . . . , K j )

for which an input trajectory .(u0, . . . , u j ) exists to definitely transfer the state . x0 ∈
X0 in at most . j steps into the target .XT , despite of the presence of the disturbances 
.wk ∈ W . These sets are instrumental for the guarantee of finding a winning control 
strategy for an arbitrary initialization .x0 ∈ X0 measured in online operation, i.e. to 
determine .(u0, . . . , u j ) for: 

.(x0 ∈ K0, . . . , x j ∈ XT ⊆ K j ) (1)
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(compare to [ 12, 46]). Such a trajectory ensures for .h ≤ j that a maneuver .M can 
be successfully completed, and it implies that the vehicles are coordinated in safe 
interaction. 

Of course, the choice of .(u0, . . . , u j ) is not unique. In order to determine an 
optimal choice with respect to a cost functional, such as minimizing the control 
effort and the distance to a target point of the maneuver, a minimization problem: 

. min
(u0,...,uh)

h 

k=1

 C · (xk − xT ) 22 +  D · uk 22 (2) 

(with weighting matrices .C, D) could be solved (e.g. for worst-case values of the 
.wk). This minimization, however, is subject not only to (1), but also to the constraints 
arising from the dynamics of .H A. Its encoding with respect to the assignment of 
. fi to .inv(qi ) and the transitions involves to use binary variables and several linear 
inequalities, leading to an optimization of type mixed-integer quadratic program-
ming. The computation times found to be required to solve such problems are often 
too large compared to the update frequency targeted for layer 2. In addition, even 
smaller times are required to decide whether a selected maneuver leads to a feasible 
solution (in order to report back to layer 1 that an alternative maneuver is needed). 
Thus, the proposal is to use a combination of offline computation of optimal strategies 
and quick online interpolation [ 13]: First, polytopic inner approximations . K̂k ⊂ Kk

of the control invariant sets are determined. The objective is to obtain good coverage 
of the .Kk , to consider the worst-case disturbances (if present), and to use only a 
relatively small number of facets of the polytopes .K̂k . A procedure for this step is 
described in [ 7], and it considers the transition dynamics and the invariants of .H A. 
Note that, as the result of this procedure, still a control trajectory leading to .XT is 
guaranteed to exist for any initialization to a state in the .K̂k . 

Secondly and still carried out offline, the vertices of the polytopes.K̂k are optimally 
projected forward onto.K̂k+1,.k ∈ {0, . . . , h − 1} by solving an optimization problem 
similar to (2). This procedure is exemplary sketched in Fig. 4 by dashed gray-colored 

Fig. 4 Gray-colored arrows represent the optimal projections. ϕ of the vertices of the polytopes. K̂k
(which are inscribed to the corresponding subset of .Kk ). The path shown in red is obtained online 
from stepwise linear interpolation. ϕ̃ between the optimal vertex proejctions
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arrows, and is denoted by. ϕ. The triples of vertex. vi , optimal input.u∗i and the optimal 
projected state .x∗i = ϕ(vi , u∗i ) are stored with the maneuver for online use. 

In the online execution, the following is accomplished: First, it is checked whether 
the currently measured state, denoted by . x0, is contained in any of the sets .K̂k of 
the selected maneuver .M. If not, the maneuver is not guaranteed to be executed 
safely, and an alternative maneuver has to be determined. If .x0 ∈ K̂k for any . k, the  
barycentric coordinates of .x0 in .K̂k (with respect to its vertices . vi ) are computed. 
The input .u0 is then determined as the interpolation of the inputs .u∗i (as optimized 
offline for the vertices . vi ) by use of the same barycentric coordinates. In Fig. 4, the  
outcome is shown by a red dashed line for the interpolated state path, and is denoted 
by . ϕ̃. The corresponding sequence of interpolated inputs along this path determines 
the control strategy which transfers the state.xk eventually into the goal set.XT of the 
maneuver. The interpolation requires only relatively small computational effort. 

4.2 Illustration for an Overtaking Maneuver 

For illustration of the procedure, consider again the overtaking maneuver from Fig. 3, 
see also [ 7, 13]. Let the longitudinal position of the three vehicles be denoted by. p(i)x
and the lateral position by .p(i)y , where .i = 1 refers to the red car, .i = 2 to the gray 
car, and.i = 3 to the white car approaching from opposite direction. To simplify the 
model, the relative longitudinal positions .p(2)r = p(2)x − p(1)x and . p(3)r = p(3)x − p(1)x
are introduced, and the lateral positions of the gray and white car are assumed to be 
constant (thus their lateral speeds equal zero). The reduced state vector: 

. x =  
p(2)r p(3)r p(1)y v(1)x v(2)x v(3)x v(1)y

 

is thus defined on a 7-dimensional space. The inputs are chosen identical to the 
accelerations in longitudinal and lateral direction (.u(i)x := v̇(i)x , .u(i)y := v̇(i)y ), leading 
to a 4-dimensional input vector: 

. u =  
u(1)x u(2)x u(3)x u(1)y

 
.

A simple double integrator dynamics is used for longitudinal and lateral motion, 
leading to a linear model .ẋ(t) = A · x(t)+ B · u(t) with only entries . 0 and . 1 in the 
matrices. A and. B. While very simple, such a model (with subsequent discretization of 
time) is very frequently used in path planning—and well justifiable for the hierarchic 
approach, since it only serves the purpose of computing a reference trajectory for a 
control problem with more detailed dynamics on layer 3. 

The model is complemented by constraints for the state and input vector, by a 
target set formulating the ranges of the vehicle positions for completing the maneu-
ver, by a nominal longitudinal speed (as .xT ), and by weighting matrices .C, D of the 
cost functional (here chosen to identity matrices). The hybrid model.H A is obtained
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Fig. 5 Two-dimensional projections of the controllable sets obtained for the overtaking maneuver; 
the white sets represent the exact controllable sets, while the gray sets establish polytopic inner 
approximations; from [ 7] 

Fig. 6 Results for the overtaking procedure: left part—lateral over longitudinal position (crossed: 
red vehicle, boxed—gray vehicle, circled—white vehicle),. h denotes the end of the planning horizon; 
right part—longitudinal speed over time (solid—red car, dashed—gray car, dotted—white car) 

(according to Fig 3) by adding the discrete states, the invariants (which consider 
a safe minimal distance between the vehicles in both coordinates), and the transi-
tions including the conditions.g(θ) (corresponding to reaching the boundaries of the 
invariants); see [ 7] for a full parametrization of these components. 

Based on this hybrid model (which does not include disturbances), the control-
lable sets are computed over . j = 5 steps, and are shown in Fig. 5. After optimizing 
the trajectories originating from the vertices of the controllable sets, the interpola-
tion procedure is applied. Figure 6 shows example trajectories of the positions and 
longitudinal speeds for a chosen initialization. The trajectories demonstrate that the 
maneuver is successfully completed without collision, and they indicate cooperation 
in the sense that the gray vehicle lowers its speed and the white vehicle keeps a 
low speed until the red vehicle has passed. The references [ 7, 13] provide insights 
into the computation times for the proposed scheme of online interpolation between 
offline optimized trajectories compared to online trajectory optimization within the 
controllable sets: For a large number of test instances for this example (with varying 
initialization) it was found that the interpolation approach required an average time 
of 0.25 milliseconds, while the results for the online optimization were obtained in
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average after 12.1 milliseconds. The first value can be deemed sufficiently small for 
execution within the hierarchic approach. 

For a second example describing the cooperative maneuver of vehicles merging 
into highway traffic at an on-ramp, the interested reader is referred to [ 15]. 

5 Trajectory Control 

The technique described in the preceding section provides a feasible path for any 
vehicle involved in a scenario with respect to the simplified (piecewise) linear dynam-
ics used on layer 2. The control strategies obtained there for realizing the paths are, 
however, not immediately useful for controlling the autonomous vehicles for the 
following reasons: (a) vehicle motion comprises nonlinear effects which need to be 
considered for low-level vehicle control, (b) the state and input vectors used for layer 
2 do not contain the full set of controlled and actuated variables typically employed 
for vehicle control. In consequence, it is not ensured that the vehicle would indeed 
follow the plan computed on layer 2—thus, the control hierarchy includes the addi-
tional layer 3 for local low-level vehicle control. This layer employs more accurate 
models, and the paths computed on layer 2 serve as reference signals for the local 
vehicle controllers. Two questions immediately arise from this choice: First, a more 
accurate and nonlinear model lets one expect higher computational effort. Reference 
tracking by nonlinear MPC, as in [ 10], may not be feasible if the time required for 
the online solution of the optimization problem is not compatible to high execu-
tion frequencies for low-level control. Hence, the approach proposed below uses a 
state-feedback controller with very low computational demands. Secondly, the use 
of different models for plan generation and tracking control may compromise con-
sistency between the two decision levels—this point is addressed below. (See also 
[ 14] for a discussion on the relation between linear integrator models for planning 
and the nonlinear motion of vehicles on curved roads.) 

To prepare the control design, it is convenient to transform the setting for a given 
reference trajectory into so-called Frenet-coordinates, which specify positions rela-
tive to their projection onto the reference path. This means that a point on the path is 
described by a path coordinate . s, and an offset that is measured in normal direction 
to the reference. 

The standard bicycle model is used here as starting point for vehicle modeling, 
with a state vector. χ containing the positions.px and.py (in cartesian coordinates), the 
vehicle orientation. ψ , and the longitudinal and lateral speeds.vX , vY , and the yaw rate 
. ω. The input vector . μ is defined to contain longitudinal tire slip .sX and the steering 
angle . δ. With a rotation matrix .R(ψ) and external accelerations . a := (aX , aY , aψ)T
to account for effects like wind and tire forces, the model is formulated to:
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.

⎛

⎜⎜⎜⎜⎜⎜⎝

ṗx
ṗy
ψ̇

v̇X
v̇Y
ω̇

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

R(ψ)

 
vX
vY

 

ω⎛

⎝
aX
aY
aψ

⎞

⎠+
⎛

⎝
vXω

−vYω
0

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3) 

It is assumed that the accelerations .a := ā + a can be written as the sum of a 
nominal part . ā and a bounded offset . a, .|| a|| ≤  amax . As detailed in [ 7], the 
dependency of (3) on  .sX is obtained from an appropriate tire model leading to the 
function .ā(δ, sX , sY , vY , ω). 

By defining the error state vector (with tangential and normal part to the reference 
indicated by indices . t and . n): 

. e :=  
et en ėt ėn eψ eω

 T =  
eTpos ė

T
pos e

T
yaw

 T
,

the error dynamics can be derived to: 

.
d

dt

 
epos
ėpos

 
=

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1
θ̇2 θ̈ 0 2θ̇
−θ̈ θ̇2 −2θ̇ 0

⎞

⎟⎟⎠

 
epos
ėpos

 
−

⎛

⎜⎜⎝

0
0
s̈
θ̇ ṡ

⎞

⎟⎟⎠+
⎛

⎝
0 0
0 0

R(eψ)

⎞

⎠
 
āX
āY

 
+
⎛

⎝
0 0
0 0

R(eψ)

⎞

⎠
 
 aX
 aY

 
(4) 

and: 

.
d

dt

 
eψ
ėω

 
=
 
0 1
0 0

  
eψ
ėω

 
+
 
0
1

 
(āψ + aψ − θ̈ ). (5) 

In here,. θ describes the orientation angle between the longitudinal direction (indicated 
by . X , tangential to the reference signal) and the cartesian coordinate . x . 

For given .vX , .vY , and . ω, the nominal acceleration . ā is controlled by appropriate 
choice of . δ and.sX (while . a is a disturbance). By defining a virtual input vector . μ̃, 
. ā can be computed: 

.μ̃ : =
 
θ̇2 θ̈ 0 2θ̇
−θ̈ θ̇2 −2θ̇ 0

  
epos
ėpos

 
−
 
s̈
θ̇ ṡ

 
+ R(eψ)

 
āX
āY

 
(6) 

. ⇔
 
āX
āY

 
= R(eψ)

T

 
μ̃+

 
s̈
θ̇ ṡ

 
−
 
θ̇2 θ̈ 0 2θ̇
−θ̈ θ̇2 −2θ̇ 0

  
epos
ėpos

  
(7) 

To reduce the tracking error by feedback compensation, define a feedback law: 

.μ̃ = −K

 
epos
ėpos

 
(8)
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with controller matrix . K , by which the closed-loop position and speed error are 
obtained to: 

.
d

dt

 
epos
ėpos

 
= f pos(e, a) :=

 
02×2 I2×2

−K

  
epos
ėpos

 
+
⎛

⎝
0 0
0 0

R(eψ)

⎞

⎠
 
 aX
 aY

 
. (9) 

The transformation of a given. ā into. δ and.sX is detailed in [ 7], as well is the derivation 
of an expression for the yaw error dynamics: 

. 
d

dt

 
eψ
eω

 
= fyaw(e, x̄, a).

For several variables contained in the nonlinear model, physical constraints need to be 
satisfied in order to establish safe driving. Only those reference trajectories from layer 
2 which satisfy these constraints, can be characterized as realizable. Furthermore, 
deviations from the reference signal (in terms of the introduced tracking errors) 
must be located inside of those constraints. Thus, for given bounds . amax of the 
uncertainties, admissible ranges for the tracking errors can be computed in order to 
satisfy the constraints. While out of scope of this book chapter, the reader is referred 
to the approach described in [ 7] for synthesizing the matrix.K in the feedback control 
law (8). This law keeps the tracking error (for .epos and .ėpos) within the admissible 
ranges (for single reference values). The synthesis is based on solving a semi-definite 
program constrained by linear matrix inequalities. The analysis of the tracking error 
of the yaw dynamics is more intricate due to its nonlinear and time-varying nature, 
but boundedness of this error can be shown, too, under appropriate assumptions [ 7]. 

6 Conclusions 

This book chapter has proposed the concept of a hierarchic decision architecture 
to enable cooperative driving of a set of autonomous vehicles (even in presence 
of non-cooperative traffic participants). While the implementation and testing of 
this proposal in practice (i.e. on an autonomous vehicle) is still matter of future 
investigations, the following principal advantages are highlighted: 

• The decomposition of the overall problem into three layers for separating the tasks 
of group determination, planning of joint maneuvers, and local vehicle control 
makes the problem tractable, even for the challenging timing of real-world traffic 
scenarios. The additional partitioning of the maneuver planning on layer 2 into an 
offline and an online part further increases the computational efficiency. 

• With the objective to provide guarantees on safety of the cooperative driving 
strategies, particular emphasis has been set on embedding constraints for excluding 
collision, and on reasoning about consistency of the decisions across the layers.
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Along this line, mechanisms for checking admissibility of the information received 
from the super-ordinated layers have been proposed. 

• The feedback control scheme on layer three is not only computationally very 
efficient, but it allows to derive conditions for which constraint compliance is 
obtained. Upper bounds on the tracking errors (for bounded disturbances) allow 
to construct reference trajectories on layer 2 which have sufficient safety margins 
for excluding collision. 

Aspects of future research include the construction of an as complete as possible 
maneuver library for layer 2. If a scenario is encountered for which no compliant 
maneuver has been defined, stopping one or more vehicles is the only and undesired 
choice. (Of course, this lack of completeness applies for all existing approaches, 
including those relying on learning from massive data sets.) Systematic classification 
of scenarios and structured modeling of atoms of maneuvers (and concatenation 
hereof) may help to run into this situation very rarely. With respect to the third layer, 
the inclusion of measurement uncertainties constitutes a valuable future extension. 
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Specification-Compliant Motion 
Planning of Cooperative Vehicles Using 
Reachable Sets 

Edmond Irani Liu and Matthias Althoff 

Abstract Automated vehicles must comply explicitly with specifications, includ-
ing traffic-based and handcrafted rules, in order for them to safely and effectively 
participate in mixed traffic. In addition to driving individually, there are many traffic 
situations in which cooperation between vehicles maximizes their collective benefits, 
including preventing collisions. To realize these benefits, we compute specification-
compliant reachable sets for vehicles, i.e., sets of states which can be reached by 
vehicles over time that are constrained by a set of considered specifications. We 
summarize and combine our previous works on computing specification-compliant 
reachable sets and negotiating conflicting reachable sets within a group of cooper-
ating vehicles. As a result, conflicts between specification-compliant reachable sets 
of vehicles are resolved, and specification-compliant trajectories can be individually 
planned for each vehicle within the negotiated reachable sets using arbitrary motion 
planners. 

1 Introduction 

When compared with human-driven vehicles, automated vehicles are expected to 
deliver enhanced road safety, passenger comfort, and traffic efficiency compared with 
human-driven vehicles. To safely and effectively participate in mixed traffic, in which 
both automated and human-driven vehicles share the road, automated vehicles must 
comply explicitly with specifications, including traffic regulations and handcrafted 
rules. Compliance with the former is essential in order to exempt manufacturers from 
liability claims in the event of an accident, while compliance with the latter allows 
motion plans to be generated that satisfy additional requirements. An example of a 
handcrafted rule is: Follow vehicle 1 up to step. k1, then completely overtake it from the 
left before step. k2. Generating a drivable trajectory that satisfies a set of specifications 
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for an automated vehicle involves reasoning not only with continuous states (which 
may reflect the physical motion of the vehicle) but also discrete states (possibly due to 
discretization of the continuous state space or action space) of the vehicle. This poses 
computational challenges from a variety of aspects, including vehicle dynamics, the 
specifications under consideration (including collision avoidance), and dependencies 
between planned trajectories and constraints originating from the specifications. On 
the one hand, planning solely in the discrete state space may produce plans that meet 
specifications but violate vehicle dynamic constraints or lead to collisions. On the 
other hand, motion planners may generate dynamically drivable trajectories that do 
not comply with the specifications. 

One solution to this problem is to guide the motion planning of an automated 
vehicle using its specification-compliant reachable set, which is defined as the set of 
states reachable by the vehicle over time that is constrained by a set of considered 
specifications. Computing the reachable sets in an over-approximative fashion will 
enclose all drivable trajectories of the automated vehicle [ 34]. The smaller the solu-
tion space is, the faster reachable sets can be computed, as demonstrated in [ 22]. In 
addition, the search space for the motion planner is greatly reduced particularly in 
critical situations. In contrast to conventional approaches, both effects result in quick 
computations even in critical situations. Low-level trajectory planning constraints 
can be extracted from the computed reachable sets and passed on to motion planners 
to generate specification-compliant trajectories. 

In addition to driving individually, there are many traffic situations that demand 
cooperation between vehicles in order to maximize their collective benefits and to pre-
vent collision in a potential emergency. Human drivers typically interact with each 
other through implicit communication and by anticipating the most likely behav-
iors of others. In comparison, automated vehicles can communicate and collaborate 
explicitly to jointly offer and suggest more sophisticated and efficient solutions in an 
ongoing traffic situation. One of the challenges of such cooperation lies in developing 
a computationally efficient scheme that does not compromise the optimality of the 
output solutions. 

Reachable sets can be employed to tackle this challenge. The reachable sets of 
a group of cooperating vehicles can be computed and negotiated where conflicts in 
the position domain arise. This negotiation can be systematically organized such that 
each vehicle unambiguously receives its own negotiated reachable set, within which 
trajectories can be planned. This prevents exponential complexity of the collaborative 
motion planning. 

In this chapter, we summarize and combine our previous works on computing 
specification-compliant reachable sets for an ego vehicle [ 13] as well as on nego-
tiating conflicting reachable sets between a group of cooperating vehicles [ 21]. As 
a result, conflicts between specification-compliant reachable sets of vehicles are 
resolved, and each vehicle plans its own specification-compliant trajectories within 
its negotiated reachable set, for example, using the planners described in [ 22, 36]. 

The remainder of this article is organized as follows: Sect. 2 reviews related 
work on specification-compliant motion planning and cooperative motion planning. 
Section 3 presents the necessary preliminaries and definitions. The computation of
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specification-compliant reachable sets is summarized in Sect. 4 and the negotiation 
of reachable sets in Sect. 5. Example results are presented in Sect. 6, and we conclude 
in Sect. 7. 

2 Related Work 

In this section, review related works on specification-compliant motion planning and 
cooperative motion planning of vehicles. 

2.1 Specification-Compliant Motion Planning 

The efforts to obtain a specification-compliant trajectory can be categorized on the 
basis of whether compliance with specifications is examined after, during, or  before 
motion planning. 

2.1.1 Considering Compliance After Motion Planning 

The most straightforward approach to obtain a specification-compliant trajectory 
is to examine the compliance with specifications after the trajectories have been 
generated. The process of checking whether an execution of a system satisfies the 
expected behaviors is often referred to as runtime verification or monitoring. For  
example, article [ 29] presents a monitor for formally examining the compliance 
of automated vehicles with traffic rules (safe distances and overtaking); a monitor 
for so-called responsibility-sensitive safety rules [ 31] is described in [ 10]. While 
monitoring can be performed efficiently, monitors typically only provide a verdict, 
i.e., a true or false appraisal, on whether the specifications have been satisfied. If the 
trajectory under examination is rejected, no alternative trajectory is returned. This 
often necessitates the (re)planning of multiple trajectories in order to locate a valid 
solution for more complex specifications. 

2.1.2 Considering Compliance During Motion Planning 

Works in this category often adopt a mechanism that simultaneously handles plan-
ning in both the continuous and discrete state spaces of a system, with the generated 
discrete plans guiding the trajectory planning process. For example, a satisfiability 
modulo convex programming framework for cyber-physical systems was introduced 
in [ 32] that handles both convex constraints on a continuous model and Boolean 
constraints on a discrete model; article [ 16] puts forth a multilayered synergistic 
framework for motion planning of robots considering linear temporal logic (LTL);
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timed automata are used in [ 37] to synthesize timed paths for indoor robots that com-
ply with specifications expressed in metric temporal logic. In these works, discrete 
plans are generated in the discrete state space based on abstractions of the consid-
ered systems, and trajectories are planned in the continuous state space by motion 
planners, with the discrete plans taken into consideration. In most cases, the dynamic 
constraints of the system are not reflected in the discrete plans. Thus, the drivability 
of these plans is often not ensured, requiring frequent replanning of both the discrete 
plans and the trajectories. 

2.1.3 Considering Compliance Before Motion Planning 

The final category of works considers the specifications prior to trajectory planning, 
e.g., in high-level maneuver planners, from which trajectory planning constraints can 
be extracted. The work in [ 15] generates maneuvers that respect simple traffic rules 
by traversing a graph defined in a discretized state space of the ego vehicle; arti-
cle [ 8] embraces a similar concept and produces maneuvers satisfying specifications 
expressed in LTL; in [ 33], so-called driving corridors are extracted from reachable 
sets of an ego vehicle that reflect different position relations to other vehicles over 
time. Our approach to computing specification-compliant reachable sets [ 13] falls 
into this category. It can handle propositional logic with predicates related to posi-
tions, velocities, accelerations, and certain traffic regulations introduced in [ 18, 19]. 

2.2 Cooperative Motion Planning 

Survey articles [ 9, 24, 28] reviewed recent advances in cooperative driving of 
automated vehicles with varied focuses on architecture, maneuver planning, and 
motion planning use cases. Optimization-based and reservation-based approaches 
are common paradigms for cooperative motion planning [ 9, 28]. In optimization-
based approaches, one or more optimization problems are formulated based on the 
motion planning constraints and cost functions of cooperating vehicles. The opti-
mization problems are solved with a (centralized) optimizer, which corresponds to 
trajectories to be followed by the cooperating vehicles. The complexity of the opti-
mization problem increases dramatically with the number of vehicles considered, 
which requires either a high computation power or a limit to the number of vehicles 
in a group. 

Our approach to cooperative motion planning falls into the reservation-based 
category and employs auction algorithms for resolving conflicts in reachable sets 
of vehicles. Reservation-based methods assign free space to vehicles for trajectory 
planning. Earlier works with a focus on intersection management were introduced by 
Dresner [ 4]: Tiles are created from the intersection region, which can be requested by 
vehicles approaching the intersection. A centralized intersection manager proceeds 
to assign tiles with multiple requests to vehicles, using a first-come-first-served pro-
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tocol, ensuring that no tile is occupied by more than one vehicle at any one time. Its 
extensions and variations are presented in [ 5, 6]. As the first-come-first-served policy 
for reservation assignment may be inefficient in situations with higher traffic density, 
it was replaced in [ 3, 27, 35] by auction-based methods. In auction-based methods, 
each bidder (cooperating vehicle) bids for offered packages (e.g., combinations of 
tiles representing road areas) in a way that reflects its interests or utilities. An auction 
algorithm is then executed to maximize the total revenue of the packages. Instead of 
tiles, some works identify possible conflicting points, regions, or moving space-time 
corridors and allocate them to vehicles in the event of a conflict [ 17, 20, 23, 38]. The 
corridors correspond to predefined behaviors, such as following a lane or performing 
a lane change; vehicles receiving such corridors must act accordingly. In [ 11, 25], 
an efficient and explicit space-time reservation protocol was devised for cooperative 
maneuver planning, through which a vehicle broadcasts requested space envelopes 
over time and drives within the envelopes once the request has been accepted by 
surrounding vehicles of interest. 

3 Preliminaries 

This section introduces the necessary preliminaries, including the general setup, 
coordinate systems, definitions of reachable sets, and propositional logic. 

3.1 Setup and Coordinate System 

In this work, the considered scenarios are described in the CommonRoad 1 [ 1] format,  
which consists of (1) a road network constructed of lanelets [ 2], whose left and right 
bounds are represented by polylines, (2) dynamic and static obstacles, and (3) traffic 
rule elements (such as road markings, traffic signs, and traffic lights). Figure 1 depicts 
an exemplary traffic scenario. We denote by.Vc =  

V c
1 , . . . , V

c
N

 
the set of cooper-

ative vehicles.V c
n with IDs.N = {1, . . . , N } for which trajectories are planned. Each 

.V c
n is associated with a planning problem with a planning horizon of up to .kh ∈ N0, 

which includes the initial state of .V c
n and a set of goal states. A reference path . n is 

constructed for a planning problem with a given route planner, which is then used to 
establish a local curvilinear coordinate system.FL

n of .V c
n as described in [ 2]. Within 

.FL
n , .(sn, dn) describes the longitudinal coordinate .sn and the lateral coordinate . dn . 

Adopting this coordinate system facilitates the formulation of maneuvers from the 
perspective of .V c

n , examples of which include lane-following and preventing driv-
ing backwards. We use .LL to denote the set of lanelets in the road network of a 
considered scenario. Without loss of generality, we assume obstacles present in the 
scenarios to be non-cooperating vehicles, denoted by.Vo =  

V o
1 , . . . , V

o
M

 
with IDs

1 https://commonroad.in.tum.de/. 

https://commonroad.in.tum.de/
https://commonroad.in.tum.de/
https://commonroad.in.tum.de/
https://commonroad.in.tum.de/
https://commonroad.in.tum.de/
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Fig. 1 A scenario containing planning problems with two cooperating ego vehicles .V c
1 and .V c

2 , 
and four lanelets with IDs 1–4. The triangles at the beginning of each lanelet indicate the driving 
directions 

.M = {1, . . . ,M}. In addition, we assume that the most likely predictions of trajec-
tories of other vehicles .V o

m are given as input. The conflicts between the reachable 
sets of vehicles in .Vc are detected and resolved in the global Cartesian coordinate 
system.FG. 

3.2 System Dynamics 

The dynamics of an ego vehicle.V c
n is abstracted by a point-mass model with the cen-

ter of the vehicle as the reference point. Notably, the reachable sets of the point-mass 
model over-approximate those of high-fidelity vehicle models; thus, this abstraction 
does not exclude possible behaviors of .V c

n . This model is represented with two dou-
ble integrators in its longitudinal .sn and lateral .dn directions. Let . n be a variable of 
.V c

n , with minimum and maximum values denoted by . n and . n , respectively. The 
system dynamics of .V c

n is 

.xn,k+1 = f (xn,k, un,k) =

⎛

⎜⎜
⎝

1  t 0 0
0 1 0 0
0 0 1  t

0 0 0 1

⎞

⎟⎟
⎠ xn,k +

⎛

⎜⎜
⎝

1
2 

2
t 0

 t 0
0 1

2 
2
t

0  t

⎞

⎟⎟
⎠ un,k, (1) 

where.k ∈ N0 is a step corresponding to time.tk = k t , with. t ∈ R+ being a prede-
fined time increment. The variable.xn,k ∈ Xn,k ⊂ R

4 represents the state of.V c
n in the 

state space.Xn,k , and.un,k ∈ Un,k ⊂ R
2 represents an input in the input space.Un,k of 

.V c
n , each at step. k. The states and inputs are modeled as. xn,k = (sn,k, ṡn,k, dn,k, ḋn,k)T

and .un,k = (s̈n,k, d̈n,k)T, respectively. The velocities and accelerations at a position 
.(sn,k, dn,k) are bounded by 

.ṡ( n) ≤ ṡn,k ≤ ṡ( n), ḋ( n) ≤ ḋn,k ≤ ḋ( n), (2a) 

.s̈( n) ≤ s̈n,k ≤ s̈( n), d̈( n) ≤ d̈n,k ≤ d̈( n). (2b)
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The bounds are chosen conservatively to consider the kinematic limitations and 
effects of representing the system dynamics using the point-mass model within a 
curvilinear coordinate system, see, for example, article [ 7]. We define an operator 
.proj♦(·) for subsequent computations, which maps the input to its elements . ♦. An  
example is: .proj(s,ṡ)(x̃n,k) = (sn,k, ṡn,k)T for .x̃n,k = (sn,k, ṡn,k, s̈n,k)T. A set .X̃n,k can 
be projected using the same operator: 

. proj♦(X̃n,k) =
 
proj♦(x̃n,k)

   x̃n,k ∈ X̃n,k

 
.

3.3 Reachable Set 

We denote the occupancy of.V c
n by.Qn(xn,k) ⊂ R

2 and the occupancies of all vehicles 
in .Vo as well as the regions outside the road surface by .On,k ⊂ R

2, both within .FL
n . 

The set of forbidden states .XF
n,k of .V

c
n at . k is defined as 

. XF
n,k :=

 
xn,k ∈ Xn,k

   Qn(xn,k) ∩ On,k  = ∅
 
.

Let .R∗
n,0 = Xn,0 be the initial reachable set of .V c

n , with .Xn,0 being the initial set of 
states. The reachable set.R∗

n,k+1 of the next step is defined as the set of states reachable 
from the current reachable set .R∗

n,k while avoiding the forbidden states: 

. R∗
n,k+1 :=

 
xn,k+1 ∈ Xn,k+1

   ∃xn,k ∈ R∗
n,k, ∃un,k ∈ Un,k :

xn,k+1 = f (xn,k, un,k) ∧ xn,k+1 /∈ XF
n,k+1

 
.

Efficient computation of .R∗
n,k is generally difficult; hence, we compute its over-

approximation.Rn,k ≈ R∗
n,k , which encloses all trajectories of.V

c
n . We adopt the union 

of so-called base sets .R(i)n,k , .i ∈ N as a set representation for .Rn,k [ 34]. Each base set 

.R(i)n,k = P̂(i)s,n,k × P̂(i)d,n,k is chosen to be a Cartesian product of two convex polytopes 
that enclose the reachable positions and velocities of .V c

n in the .(sn, ṡn) and . (dn, ḋn)
planes, respectively (see Fig. 2a, b). To simplify the notation, we also denote the 

collection (set of sets) of .R(i)n,k by .Rn,k =
 
R(1)n,k, . . . ,R(i)n,k, . . .

 
. The projection of 

.R(i)n,k onto the position domain yields axis-aligned rectangles.D(i)
n,k (see Fig. 2c), whose 

union is referred to as the drivable area .Dn,k . Similarly, we use .Dn,k to denote the 
collection of .D(i)

n,k . 

In this study, each base set .R(i)n,k carries a set of semantic labels .L(i)n,k , whose 
collection is denoted by.Ln,k . The generation of.L(i)n,k will be explained in Sect. 4.6.3. 
To store the relationships of.R(i)n,k in terms of reachability and time, we create a directed 
and acyclic graph .Gn , which is referred to as a reachability graph, see Fig. 3. Each
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Fig. 2 Polytopes and drivable area of a base set.R(i)n,k (adapted from [ 13]) 

Fig. 3 Reachability graph .Gn connecting nodes of different steps. Nodes of the same color have 
the same labels (adapted from [ 13]) 

node in.Gn corresponds to one base set with its labels. An edge connecting.R(i)n,k and 
.R( j)n,k+1 indicates that .R( j)n,k+1 is reachable from.R(i)n,k after one step. 

3.4 Propositional Logic 

We consider specifications expressed in propositional logic [ 12] for .V c
n , denoted by 

.Fn , which are directly integrated during the computation of the reachable sets (see 
Sect. 4.6.4). Let.ϕn ∈ Fn be a propositional logic formula, we introduce an additional 
syntax.GI (ϕn),.I = [a, b],.0 ≤ a ≤ b ≤ kh , where. I is an integer interval specifying 
steps for which .ϕn should hold. If . I is not specified, we assume it to be the entire 
planning horizon .[0, kh]. For example, the following specification requires .V c

n to 
follow.V o

1 between steps . 0 and .10, and never to be on the right of .V o
1 : 

.G[0,10]
 
behind(V o

1 ) ∧ aligned _with(V o
1 )
 ∧ G

 ¬ right _ of(V o
1 )
 
.
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Table 1 Selection of considered predicates inspired by [ 19] (adapted from [ 13]) 
Category Type Predicate 

Position VI . in _ lanelet, on _main _ carriageway, on _ access _ ramp, . . .

VD . behind, beside, in _ front _ of, left _ of, aligned _with, right _ of, . . .

Velocity VI . below _ fov _ velocity _ limit, below _ type _ velocity _ limit, . . .

VD . safe _ following _ velocity _ speed _ limit, safe _ leading _ velocity _ speed _ limit, . . .

Acceleration VD . admissible _ braking, . . .

General VI . change _ lanelet, preserve _ traffic _ flow, standing _ still, . . .

VD . in _ congestion, exists _ slow _ leading _ vehicle, . . .

4 Computing Specification-Compliant Reachable Sets 

To obtain specification-compliant and negotiated reachable sets for.V c
n , we (1) seman-

tically label reachable sets considering relevant predicates, (2) constrain reachable 
sets to subsets satisfying specifications .Fn , and (3) negotiate conflicting reachable 
sets with other cooperating vehicles in .Vc. This section summarizes our previous 
work [ 13] covering steps 1 and 2; step 3 will be covered in the next section. A 
selection of considered predicates is listed in Table 1: The evaluation of a vehicle-
dependent (VD) predicate is dependent on other vehicles .Vo, whereas that of a 
vehicle-independent (VI) predicate is not. 

4.1 State Space Partitioning 

To expedite the labeling of reachable sets, we partition the state space of .V c
n based 

on considered position predicates. Velocity predicates are not considered in the par-
titioning since they require computationally demanding splitting of the state space 
of .V c

n with (non)linear curves (see Fig. 5c, d). For efficiency, we instead directly 
evaluate them on individual reachable sets (see Sect. 4.6.2). Set operations such as 
intersection and difference are required to compute the partitions of the state space. 
We model the partitions for .V c

n with a set of hyperrectangles .Rn,q to avoid gross 
approximations while keeping computational complexity at a reasonable level. This 
choice is not mandatory; any other set representation that captures the partitions will 
also suffice. .Rn,q is defined as the Cartesian product of intervals over the position 
and velocity domains within .FL

n : 

.Rn,q :=
 

[sn,q , sn,q ] × [ṡn,q , ṡn,q ]
 

×
 

[dn,q , dn,q ] × [ḋn,q , ḋn,q ]
 
, (3) 

where .sn,q and .ṡn,q denote the position and velocity of the .q-th hyperrectangle in 
the .sn direction, respectively. The same applies to .dn,q and .ḋn,q in the .dn direction. 
A regular grid of axis-aligned cells is formed along . n and the .q-th cell in the grid
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occupies.[sn,q , sn,q ] × [dn,q , dn,q ] ⊂ R
2. The default values of the velocity intervals 

.[ṡn,q , ṡn,q ] and .[ḋn,q , ḋn,q ] are set according to (2a). 
The set of considered position predicates as well as its power set are denoted by 

.Ppos = {σ1, σ2, . . . } and .2Ppos
, respectively. We also denote by .partn(k;Zn, j ) the 

set of hyperrectangles of.V c
n for which the predicates in.Zn, j ∈ Zn ⊆ 2Ppos

evaluate 
to true at step . k. Figures 4 and 5b illustrate example partitions projected onto the 
.(sn, dn) and .(sn, ṡn) planes, respectively. 

4.2 Position Predicates 

only a few example evaluations position predicates. Vehicle-independent position 
predicates do not depend on other vehicles; examples are: 

• .in _ lanelet(Rn,q; Lid) ⇔ .proj(s,d)(Rn,q) ∩ occn(Lid)  = ∅, where . Lid ∈ LL
denotes the lanelet with ID .id, and .occn(Lid) returns its occupancy within .FL

n . 
• .drives _ rightmost(Rn,q;XRM) ⇔ .proj(s,d)(Rn,q) ∩ XRM  = ∅, where . XRM ⊂ R

2

denotes the rightmost region of lanelets. Within this region, the distance between 
any point to the right bound of a lanelet does not exceed a predefined distance [ 19]. 

For the sake of brevity, we omit.Rn,q in the arguments of the predicates in the rest of 
this work. 

Vehicle-dependent position predicates describe position relationships between 
an ego vehicle .V c

n and non-cooperating vehicles in .Vo. Following [ 19], 
we define necessary helper functions to assist the evaluation of predicates. 
The functions .front(k; n;m) and .rear(k; n;m) return the maximum and mini-

Fig. 4 Projection of the partitions of realizable sets of position predicates onto the position domain. 
Lanelet IDs are shown with numbered boxes. In this example we only consider position predicates 
related to.L1,.L2, and.V o

2 (adapted from [ 13])
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mum longitudinal coordinates of .V o
m within .FL

n , respectively, each at step . k. 
Along the longitudinal direction, the mutually exclusive predicates . Ppos

n,m,s = {in _ front _ of(V o
m )}, {behind(V o

m )}, 
.{beside(V o

m )}
 
can be evaluated as follows: 

• .in _ front _ of(V o
m ) ⇔ .sn,q − ln/2 > front(k; n;m), 

• .behind(V o
m ) ⇔ .sn,q + ln/2 < rear(k; n;m), 

• .beside(V o
m ) ⇔ . ¬ in _ front _ of(V o

m ) ∧ ¬ behind(V o
m ) ∧ (left _ of(V o

m ) ∨
right _ of(V o

m )). 

We define the mutually exclusive set of predicates . Ppos
n,m,d =  {left _ of(V o

m )},
.{right _ of(V o

m )}, {aligned _with(V o
m )}

 
similarly along the lateral direction. 

4.3 Realizable Sets of Position Predicates 

The partitions of the collection.Zn of realizable sets of position predicates of.V c
n are 

used for splitting the reachable sets (see Sect. 4.6.2). Sets .Zn, j ∈ Zn are said to be  
realizable for.V c

n if.∃k ∈ 0, . . . , kh : partn(k;Zn, j )  = ∅, with.kh being the planning 
horizon. We refer the readers to [ 13, Sect. III.C] for the computation of.Zn . Figure 4 
shows an example of the partitions of .Zn, j projected onto the position domain for 
a scenario containing two lanelets and one non-cooperating vehicle. It follows from 
our formulation of the predicates that the aforementioned projection is collision-free 
with respect to other vehicles. 

4.4 Velocity Predicates 

We briefly present examples of the evaluation of velocity predicates required for the 
subsequent computation of reachable sets. Vehicle-independent velocity predicates 
often relate to extremum requirements on velocities. For example, rule R-G3 [ 19] 
specifies maximum velocity limits originating from different sources, which should 
be respected. These include velocity limits introduced by the type of lane(let), the 
type of vehicle, and the limited field of view of the ego vehicle. 

The evaluation of vehicle-dependent velocity predicates depends on other vehicles 
.Vo. Examples are predicates indicating whether the ego vehicle .V c

n is driving at a 
safe velocity with respect to a leading or a following vehicle.V o

m [ 19, cf. Sect. IV.C]. 
See [ 19] for further examples.
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Algorithm 1 One-Step Computation of Specification-Compliant Reachable Sets 
Inputs: Specifications Fn , base sets Rn,k−1, realizable sets of predicates Zn . 
Output: Updated reachability graph Gn . 
1: RP n,k ← Propagate(Rn,k−1)  Sect. 4.6.1 
2: RS n,k ← Split(RP n,k ,Zn)  Sect. 4.6.2 
3: Ln,k ← Label(RS n,k ,Fn)  Sect. 4.6.3 
4: CheckCompliance(RS n,k ,Ln,k ,Fn)  Sect. 4.6.4 
5: Rn,k ← CreateNewBaseSets(RS n,k )  Sect. 4.6.5 

6: for R(i) n,k ∈ Rn,k do 

7: Gn .AddNode(R(i ) n,k ,L(i) n,k ) 
8: end for 

4.5 General Traffic Situation Predicates 

General traffic situation predicates may reveal the states of a cooperating or non-
cooperating vehicle. These include whether .V c

n or .V o
m has conducted a lane change 

maneuver, whether a slow leading vehicle exists for .V c
n , and whether .V

c
n is stuck in 

traffic congestion. See [ 19] for further examples. 

4.6 Computation of Reachable Sets 

Algorithm 1 details one step of the computation of specification-compliant reach-
able sets for an ego vehicle. The reachable sets of subsequent steps are computed 
analogously. 

4.6.1 Forward Propagation 

Each base set .R(i)n,k−1 ∈ Rn,k−1 from the previous step is forward-propagated based 

on the discrete-time system model (1), resulting in the propagated sets .RP,(i)
n,k (see 

Fig. 5a). We perform the forward propagation as described in [ 34], except that addi-
tional acceleration constraints originating from the specifications can be imposed 
(for example, unnecessary braking rule R_G2 in [ 19]). 

4.6.2 Splitting 

The propagated sets .RP,(i)
n,k are split into new sets .RS,(i)

n,k with respect to position and 
velocity predicates: 

1. .RP,(i)
n,k are split such that the new sets only intersect with a single partition (see 

Fig. 5b).
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Fig. 5 Propagation, splitting, and labeling of base sets. We only show the operations in the .s-
direction. Labels of polytopes are shown in gray boxes. Notably, in d, the two newly split polytopes 
are slightly over-approximated and convexified due to the nonlinearity introduced by the velocity 
predicate (adapted from [ 13]) 

2. The split sets are further split, over-approximated, and convexified with respect 
to velocity predicates (see Fig. 5c, d). 

4.6.3 Semantic Labeling 

The semantic labels .L(i)n,k of reachable sets .RS,(i)
n,k are updated as follows: 

1. .RS,(i)
n,k propagated with acceleration-specific specifications include atomic propo-

sitions .σ ∈ AP corresponding to acceleration predicates in their set of labels. 
2. .RS,(i)

n,k include atomic propositions .σ ∈ AP corresponding to the position pred-
icates associated with the partition with which it intersects, velocity predicates, 
and traffic situation predicates that hold in .RS,(i)

n,k in their set of labels.
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4.6.4 Compliance Check 

In this step, we iterate through.RS,(i)
n,k and examine the compliance of the labels . L(i)n,k

with the given specifications .Fn . We discard .RS,(i)
n,k if .∃ϕn ∈ Fn : L(i)n,k  |= ϕn . If all  

sets are discarded, .Fn cannot be complied with by any trajectory of the ego vehicle 
(recall that our reachable sets are over-approximative). In this case, one can either 
recompute the reachable sets with respect to a different set of specifications or execute 
a previously computed fail-safe trajectory [ 26]. 

4.6.5 Creation of New Base Sets 

Finally, the new base sets are created by computing the drivable areas.DS,(i)
n,k of.RS,(i)

n,k , 

repartitioning .DS,(i)
n,k , and producing .R(i)n,k . We refer the reader to [ 34] for a detailed 

explanation of these steps. The reachability graph.Gn is updated by adding.R(i)n,k along 
.L(i)n,k as new nodes. 

5 Negotiation of Reachable Sets 

This section summarizes our previous work on the negotiation of conflicting reach-
able sets .Rn,k among a group of cooperating vehicles [ 21]. We use the notation 
.[ n]N1 = [ 1, . . . , N ] to denote a list of elements . n of vehicles .V c

n . Algorithm 2 
details the steps for resolving conflicts between cooperating vehicles at each step . k: 

1. Compute specification-compliant reachable sets for each cooperating vehicle. 
2. Identify conflicting cells based on reachable sets of cooperating vehicles (see 

Sect. 5.1). 
3. Determine the optimal allocation of packages of cells among cooperating vehi-

cles (see Sect. 5.2). 
4. Compute negotiated reachable sets for each cooperating vehicle (see Sect. 5.2). 

Step 1 is computed as described in Sect. 4; we will now elaborate on steps 2–4. 

5.1 Problem Statement 

We denote by .C = {C0,C1, . . . ,Cĩ , . . . } a grid with cells .Cĩ of rectangular shape, 
created by tessellation of the position domain within the global Cartesian coordinate 
system.FG. Each cell is an individual asset representing an area of the road surface and 
can be combined into unions of assets, which we refer to as packages.C j̃ . We specify 
the mapping.celln : 2Xn,k → 2C that returns the cells .Cĩ ∈ C occupied by vehicle. V c

n
due to its set of states.Xn,k at step. k and its shape. The cooperating vehicles in.Vc act
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Algorithm 2 Computation of Negotiated Reachable Sets 

1: function ComputeNegotiatedReachableSet([Rn,0]N 1 ,C) 
2: [RN n,0]N 1 ← [Rn,0]N 1  Initialization 
3: for k = 1 to  kh do 
4: for n = 1 to  N do 
5: Rn,k ← ComputeReachableSet(RN n,k−1)  Sect. 4.6 
6: end for 
7: CC k ← IdentifyConflictingCells([Rn,k ]N 1 ,C)  Sect. 5.1 
8: W∗ ← DetermineOptimalAllocation([Rn,k ]N 1 ,CC k )  Sect. 5.2 
9: for n = 1 to  N do 
10: RN n,k ← ComputeNegotiatedReachableSet(Rn,k ,W∗)  Sect. 5.2 
11: end for 
12: end for 
13: return [∪kRN n,k ]N 1 
14: end function 

as bidders and propose bids to packages .C j̃ for which .C j̃ ∩ celln(Rn,k)  = ∅ holds. 

Let us introduce .2N>=2 to denote all subsets of the power set of .N with a cardinality 
greater than one,.CCk ⊆ C denotes the set of conflicting cells requested by at least two 
vehicles at step . k: 

.CCk :=
 

I∈2N>=2

 

n∈I
celln(Rn,k). (4) 

We restrict the packages to those containing at least one conflicting cell, denoted 
by .CPk ⊆ 2CCk (see Fig. 6). We assume that every cooperating vehicle .V c

n bids its true 
value, with .bk(C j̃ ) being the maximum bid of the package.C j̃ proposed by .Vc. The  
overall revenue is maximized, while no single cell is assigned to multiple bidders: 

. max
δk (C j̃ )

 

C j̃

δk(C j̃ ) bk(C j̃ ), (5) 

where.δk(C j̃ ) = 1 if package.C j̃ is assigned to the bidder with the highest bid at step 
. k. Problem (5) is known as the winner determination problem, and its solution is 
NP-hard [ 30]. Furthermore, accepting every package .C j̃ demands that each bidder 

.V c
n bids for .2|CCk | − 1 packages at step . k, which becomes more computationally 

demanding as.|CCk | grows. Using a hierarchical tree structure for the packages allows 
us to attain computational tractability and ensures that the optimal allocation of 
packages will be found in the time .O(|CCk |2) [ 30]. 

5.2 Conflict Resolution 

We employ an auction-based mechanism to resolve conflicts with occupied road cells 
between cooperating vehicles. At every step . k, the conflicts are resolved as follows:
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Fig. 6 Visualization of the 
road grid. C, the set of 
conflicting cells.CCk , the set 
of packages.CPk , and  the  
individual packages. C j̃
(adapted from [ 21]) 

1. Determine packages .C j̃ based on .CCk and their position within the hierarchical 
tree (see Sect. 5.2.1). 

2. Evaluate individual bids of packages.C j̃ and determine the maximum bid. bk(C j̃ )

(see Sect. 5.2.2). 
3. Determine the optimal allocation .W∗ of packages to cooperating vehicles (see 

Sect. 5.2.3). 

5.2.1 Hierarchical Tree of Packages 

All conflicting cells .CCk at . k are included in the root node of a hierarchical tree . T . 
At each level of the tree, the cells in a parent node are decomposed into disjoint sets 
of cells, each of which is a package associated with a child node (see Fig. 7). To 
decompose the cells into more granular packages, we consider the following levels: 

Fig. 7 Example grouping of conflicting cells (adapted from [ 21])
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1. Connected components: Connected regions on the road surface prevents ego 
vehicles having disjointed drivable areas, which would complicate subsequent 
motion planning. We aggregate connected cells into packages. 

2. Road network: Vehicles have to obey the traffic rules imposed by the road net-
work; therefore, we encourage the creation of packages based on lanelets. A cell 
is assigned to the lanelet with which it has the largest intersecting area. 

3. Longitudinal position coverage: The packages of the parent nodes are decom-
posed in the longitudinal direction such that the longitudinal coverage of each 
new package does not exceed a predefined threshold. 

4. Lateral position coverage: The packages of the parent nodes are decomposed in 
the lateral direction such that the lateral coverage of each new package does not 
exceed a predefined threshold. 

5. Singletons: The packages comprise only a single cell. 

5.2.2 Bids on Packages 

We adopt a common utility function for cooperating vehicles to avoid a situation in 
which a vehicle could continuously outbid others due to differences in the scales and 
weights used to calculate the bids on packages. We use the following sets as the basis 
for computing the utility of .V c

n for .C j̃ to determine .bn,k(C j̃ ): 

1. the conflict-free reachable set: .RCF
n,k :=  

xn,k ∈ Rn,k

  celln({xn,k}) ∩ CCk = ∅
 
. 

2. the conflicting reachable set depending on package .C j̃ that would be lost if . C j̃

was not assigned to .V c
n : .RCP

n,k(C j̃ ) :=
 
xn,k ∈ Rn,k

  celln({xn,k}) ∩ C j̃  = ∅

 
. 

3. the assigned reachable set that .V c
n possesses given that .C j̃ is assigned to .V

c
n : 

.RAS
n,k(C j̃ ) := RCF

n,k ∪ RCP
n,k(C j̃ ). 

For computational reasons, the sets .RCF
n,k ,.RCP

n,k(C j̃ ), and .RAS
n,k(C j̃ ) are approximated 

by the union of base sets (see Sect. 3.3) and are denoted by .∪iRCF,(i)
n,k , .∪iRCP,(i)

n,k , 

and .∪iRAS,(i)
n,k , respectively. To take the objectives of the vehicles into account while 

preventing the complete loss of the reachable set of a vehicle (so that a trajectory 
can still be found), the utilities of vehicles are computed differently for regular mode 
and survival mode: 

. bn,k(C j̃ ) :=
 
UR

n,k(C j̃ ), area(RCF
n,k) > A, (regular mode)

US
n,k(C j̃ ), otherwise, (survival mode)

where.area(·) returns the size of the drivable area of the input (see Sect. 3.3) and A is 
a threshold. We now proceed with explaining the regular mode and survival mode. 
(1) Regular Mode: The utility of .RAS

n,k (or .RCF
n,k , as the case may be) is defined as 

the sum of the utilities of .RAS,(i)
n,k (or .RCF,(i)

n,k ), weighted by their areas. The function 
.UR

n,k(C j̃ ) reflects the utility of .C j̃ for.V
c
n by computing the ratio of the utility of . RAS

n,k
to that of .RCF

n,k :
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. UR
n,k(C j̃ ) =

 
i

 
upos(RAS,(i)

n,k )+ uref(RAS,(i)
n,k )

 
× area

 RAS,(i)
n,k

 

 
i

 
upos(RCF,(i)

n,k )+ uref(RCF,(i)
n,k )

 
× area

 RCF,(i)
n,k

 ,

with partial utility functions .upos and .uref. To encourage advances in traffic flow, 
we reward progression in the longitudinal direction with 

. upos( n,k) = y

 
max(proj(s)( n,k))− max(proj(s)(RN

n,k−1))

1
2 s̈n,k  

2
t + ṡn,k  t

 

,

where .s̈n,k and .ṡn,k are determined according to (2a), and . y is a generalized logistic 
function that maps the utility to .(0, 1); in addition to [ 21], we also consider the 
deviation of .V c

n from its reference path: 

. uref( n,k) = e−w d  
, d  = min(

 |d   |   d   ∈ proj(d)( n,k)
 
),

where.w ∈ R+ is a tunable weight that dictates how fast.uref( n,k) approaches. 0 as 
the deviation increases. 
(2) Survival Mode: Two countermeasures are introduced to prevent reachable sets 
of .V c

n from vanishing: (1) if any .V c
n is in survival mode, no other vehicle in regular 

mode can bid on the package .C j̃ ; (2) the utility function is switched to 

. US
n,k(C j̃ ) = area

 RCP
n,k(C j̃ )

 

area
 Rn,k

 ,

which reflects how close the reachable set of .V c
n is to vanishing given that .C j̃ is not 

assigned to .V c
n . 

5.2.3 Optimal Allocation of Packages 

The algorithm for finding the optimal allocation .W∗ of packages .C j̃ is based 
on [ 30]. In each iteration, we retrieve the deepest node .Ndeep in the hierarchi-
cal tree .T (see Sect. 5.2.1), its parent node .Nparent, and the set of child nodes 

.Nchild =
 
. . . , Nchild

q̃ , . . .
 
of .Nparent. Next, we compare the summed maxi-

mum bids (revenue) of all child nodes .rev(Nchild) :=  
q̃ bk(N

child
q̃ ) with the 

maximum bid of the parent node .bk(Nparent): 

• If .bk(Nparent) > rev(Nchild), .Nchild is excluded from.W∗. 
• If .bk(Nparent) ≤ rev(Nchild), .Nparent is excluded from.W∗.
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Following this comparison,.Nchild is removed from the tree. The process is repeated 
until .Nparent becomes the root node. After obtaining .W∗, each ego vehicle . V c

n
proceeds to determine its negotiated reachable sets: 

. RN
n,k :=  

xn,k ∈ Rn,k

  celln({xn,k}) ∩ CUAn,k = ∅
 
,

where .CUAn,k ⊆ CCk denotes the set of unassigned cells of .V c
n based on .W∗. 

6 Evaluation 

This section provides example results for specification-compliant reachable sets for 
a single ego vehicle and its extension to cooperative vehicles. The implementation 
is based on the CommonRoad-Reach toolbox [ 14] for computing the reachable sets 
of vehicles. 

6.1 Scenario I: Precise Overtaking 

This scenario depicts a situation in which the vehicle .V c
1 should overtake a leading 

vehicle .V o
1 in the presence of another vehicle .V o

2 . Let the following specification be 
issued by a high-level maneuver planner of .V c

1 : 

. G[0,15]
 
behind(V o

1 ) ∧ aligned _with(V o
1 )
 ∧

G[16,38]
 
in _ lanelet(L2) ∨ in _ lanelet(L4)

 ∧
G[39,45]

 
in _ front _ of(V o

1 ) ∧ behind(V o
2 ) ∧ in _ lanelet(L3)

 
.

The specification-compliant reachable sets are computed as described in Sect. 4. 
The non-empty result implies that it is possible to find a trajectory that meets the 
specifications. Figure 8 visualizes the drivable areas of .V c

1 along with a trajectory 
planned within the reachable sets using the motion planner described in [ 22]. For a 
more detailed evaluation of computing specification-compliant reachable sets for a 
single ego vehicle, we refer the reader to [ 13]. 

6.2 Scenario II: Highway 

In this scenario, we negotiate the reachable sets of four cooperating vehicles driving 
on a highway. Figure 9 shows the computation results at different steps. As can be 
seen, our method can allocate road areas to cooperating vehicles even in such complex 
traffic situations with many non-cooperating traffic participants. For a more detailed
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Fig. 8 Overtaking scenario. 
a Drivable area at different 
steps. b A trajectory planned 
within the reachable set 
(adapted from [ 13]) 

evaluation of negotiating reachable sets among a group of cooperating vehicles, we 
refer the reader to [ 21]. 

6.3 Scenario III: Roundabout 

This scenario illustrates a situation in which two vehicles.V c
1 and.V c

2 should cooperate 
to go around a roundabout. We show the computation results under different settings: 
(1) no specification is considered; (2) .V c

1 yields to .V c
2 ; (3)  .V

c
2 yields to .V c

1 . The  
latter two settings are relevant when a yield traffic sign is present at the junction and 
specifies which vehicle has to yield to other vehicles entering with a higher passing 
priority. The specification can be expressed as follows: 

. G(exists _ yield _ sign∧ exists _ other _ entering _ vehicle ⇒ brake _ to _ stop),

which can be regarded as a simplified version of the intersection rules described 
in [ 18] but without temporal logic connectives. Figure 10 illustrates the computation 
results under these settings. In Fig. 10b,.V c

2 can either accelerate and enter the round-
about ahead of.V c

1 or decelerate to enable.V c
1 to enter first. In Fig. 10c, d, the yielding 

vehicles have to brake in order to stop and yield to the other entering vehicle.
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Fig. 9 Highway scenario. Subfigures b–d show the drivable areas of the negotiated reachable sets 
of vehicles at different steps 

7 Conclusions 

In this chapter, we summarized our previous works on computing specification-
compliant reachable sets for an ego vehicle and negotiating conflicting reachable sets 
between a group of cooperating vehicles. The specification-compliant and negotiated 
reachable set is used to guide subsequent motion planners to find specification-
compliant trajectories. As a result, the cooperative vehicles can consider traffic rules 
and handcrafted rules expressed in propositional logic that involve position, velocity, 
acceleration, and general traffic situation predicates. A limitation of the method is 
that it does not yet handle specifications formulated in temporal logic, which reflects
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Fig. 10 Roundabout scenario..V c
2 intends to reach the first exit, and.V c

1 intends to reach the second 
exit. Subfigures b–d show the drivable areas of the negotiated reachable sets of vehicles at step 
. k = 30

temporal requirements on vehicles, both in the computation and negotiation of the 
reachable sets. This will be a subject of future research. 
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AutoKnigge—Modeling, Evaluation 
and Verification of Cooperative 
Interacting Automobiles 

Christian Kehl, Maximilian Kloock, Evgeny Kusmenko, Lutz Eckstein, 
Bassam Alrifaee, Stefan Kowalewski, and Bernhard Rumpe 

Abstract The development of cooperative driving functions to optimize traffic 
systems shows high potential to improve individual autonomous driving systems 
with respect to topics like traffic flow, vehicle safety and user comfort. The core 
concept of the presented solutions is the Local Traffic System (LTS). Following the 
messages defined in European Telecommunications Standards Institute (ETSI) Intel-
ligent Transport Systems (ITS) G5 for Vehicle-to-everything (V2X) cooperation we 
introduce concepts and implementations to intelligently group vehicles based on the 
exchanged V2X data with respect to the individual vehicle capability for cooperation. 
Based on the determined grouping, we present algorithms for cooperative trajectory 
planning. We develop a verification method for the cooperatively planned trajectories 
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within a LTS. The verification guarantees collision avoidance and deadlock-freeness 
in real-time. Finally we introduce a model language based on MontiArc to enable 
a systematic representation and description of the presented concepts for grouping, 
cooperation and interaction. 

1 Introduction 

Rapid technological advancements in the area of automated driving functions in 
recent years make large-scale deployment of SAE Level 4 and 5 [ 45] automated 
vehicles likely in the next few years. While technological progress is mainly limited 
to the development of vehicle-specific automation functions, the development of 
cooperative automation functions for the optimization of traffic systems already 
shows high potential to significantly improve current topics of concern such as traffic 
flow, vehicle safety and user comfort. 

Current Vehicle-to-everything (V2X) systems show a beacon-like behavior with-
out a direct sender or receiver and are rather designed to transmit one-time events to 
alert other traffic participants. The next logical step towards the development of coop-
eratively interacting vehicles requires a significant extension of existing V2X systems 
at all levels. The extension of these systems from a one-time event-based communi-
cation to a continuous data exchange for the execution of cooperatively interacting 
algorithms [ 4, 28, 39], raises questions regarding the grouping of the involved road 
users [ 29], reliability vehicle communication [32], the type of information exchanged, 
the underlying algorithms as well as the basic model description of these systems. 
Methods that present cooperative trajectory planning of vehicles in different scenar-
ios are, e.g., the works in [ 31, 33, 34]. These works focus on the applicability of 
cooperative trajectory planning in intersections, pose control, and vehicle racing. 

The core concept of the solutions presented in the following is the Local Traffic 
System [ 7]. Local Traffic Systems can be understood as cooperating C-ITS subsys-
tems as defined in European Telecommunications Standards Institute (ETSI) Intelli-
gent Transport Systems (ITS) G5. Based on this concept, different approaches for the 
detection of the corresponding traffic scenarios, the formation of Local Traffic Sys-
tems as well as their evaluation are presented. Within these systems the cooperation 
takes place. In the context of this work, the cooperative trajectory planning, as well as 
a real-time verification of the cooperatively planned trajectories are presented. The 
verification guarantees the absence of collisions and deadlocks for the trajectories of 
all vehicles in one or multiple LTS. Finally, a model language based on MontiArc is 
presented for the systematic representation and description of the presented concepts 
for grouping, cooperation and interaction.
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2 Learning-Based and Vehicle Capability-Aware 
Architecture for Clustering of Cooperative Interacting 
Automobiles 

One of the central aspects within the overall process for cooperation and interaction 
of vehicles is the clustering of traffic participants relevant for cooperation. The forma-
tion of these clusters for the purpose of cooperation inevitably leads to the following 
questions: When is cooperation and interaction between traffic participants useful? 
What kind of vehicle data must be exchanged before and during cooperation? How 
can relevant traffic participants be identified? 

In order to group the corresponding traffic participants, this work takes up the con-
cept of Local Traffic Systems (LTS) [ 7] and develops it further. Local Traffic Systems 
are defined as a grouping of road users for the purpose of information exchange as 
well as cooperation. The cooperation take place exclusively within the LTS. 

Previous work [ 8] in the area of Local Traffic Systems has been based on a single 
evaluation function. This evaluation function consists of various normalized distance 
metrics such as the distance between individual vehicles, the derivative of the distance 
function, the direction of travel, etc. The position information is based on a predefined 
road graph that must be known to all road users. The nodes of the road graph represent 
different points within the traffic network and have a distance of a few meters. The 
edges of the road graph represent the roads themselves. Road properties such as the 
maximum permitted speed are assigned to the edges. The individual distance metrics 
are then normalized and multiplied by a developer defined weighting factor. The now 
normalized and weighted metrics are finally added to an overall evaluation function. 
The objective is to minimize the evaluation function. The LTS configuration with 
the most minimized evaluation function is considered as an optimal solution. The 
information exchanged here to determine the individual metrics is already based on 
current standardizations such as the Cooperative Awareness Message (CAM) [ 13] 
and are extended when necessary. The vehicle data is exchanged cyclically. After the 
LTS formation, the cooperation takes place through data exchange within the system. 

However, this approach has several disadvantages. The recurring calculation of the 
entire LTS configuration leads to an enormously high computing load, which makes 
a calculation in real time almost impossible. In [ 8] therefore a greedy algorithm is 
recommended, which makes only small changes at the past configuration in each 
time step without recalculating the total configuration. Additionally, the number of 
permitted LTS participants is limited to a maximum of 5-10 participants. This serves 
on the one hand to reduce the total computation time, and on the other hand to reduce 
the amount of information exchanged within the LTS in order to prevent an overload 
of the available bandwidth. 

The necessity for a common road graph model shared by all vehicles represents 
a considerable limitation. The formation based on a road graph is here not limited 
by the mere necessity of the graph itself, but by the required correspondence of 
the graph between all road users. It is already apparent today that predefined map 
data will play a decisive role in the implementation of autonomous driving functions
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[ 47]. However, they often take on a supporting role for localization [ 41]. Due to 
the frequent changes in the road network and the resulting inaccurate data, possible 
cooperation approaches should be map-independent. Furthermore, planning based 
on the road graph limits the accuracy of LTS formation to the accuracy of the existing 
map material because all positions are defined relative to the underlying graph. This 
poses a problem especially for cooperative maneuvers when the required vehicle 
distance is below the minimal accuracy level defined by the road graph. 

Another disadvantage is the decoupling of exchanged vehicle data, LTS genera-
tion, the underlying cooperation algorithms, and the current driving situation. The 
permanently high amount of exchanged vehicle data leads to an unnecessarily high 
utilization of the available V2X data rate in the vehicle. IEEE 802.11p and LTE V2X 
can support data rate of up to 27 Mbit .s−1 and 28.8 Mbit .s−1 [ 44]. The lack of a 
link to the current vehicle situation and the underlying algorithms not only makes 
it difficult to prioritize individual LTS systems, but also ignores the influence of the 
current driving situation on LTS generation. The following section is intended to give 
a better impression of the resulting problems and derive additional requirements for 
improvements. 

2.1 Requirements for an Extended LTS Architecture 

Using selected examples, this section attempts to provide insight into the motiva-
tion for extending the previous approach and to derive possible requirements for an 
extended architecture. The goal is to preserve the general concept while identify-
ing concept limitations and avoiding the disadvantages identified in the course of 
previous work. 

The question of when a Local Traffic System should be formed at all and which 
road users should participate in it is closely linked to the respective traffic scenario. 
Possible traffic scenarios are shown in Fig. 4. In the following an exemplary traffic 
scenario of a roundabout with five vehicles is displayed in Fig. 1. The planned 
routes of the vehicles are marked in color along the center of the lane. The drawn 
rectangles indicate the possible LTS groupings for the scenario at hand. Vehicles can 
be grouped based on their respective vehicle state relative to other road users as well 
as relative to their surroundings. This can be based on various vehicle data such as 
the spatial proximity to the next vehicle, the overlap of the planned trajectories, the 
general overlap of the planned routes, or the spatial proximity of the vehicle under 
consideration relative to a relevant traffic node such as an intersection or roundabout. 

One of the central problems here is the influence of cooperation, or cooperation 
capability, as well as the driving situation on LTS generation itself. The scenario 
shown in Fig. 2 illustrates the problem. A fast moving vehicle is approaching a slow 
moving vehicle on the right lane. In order to avoid heavy braking of the right vehicle 
behind, a lane change to the left lane is attempted. In general, two possible LTS are 
conceivable in this situation. One LTS consisting of the rear two vehicles to coordinate 
the lane change and one overall LTS consisting of all vehicles. However, if the rear
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Fig. 1 Possible local traffic systems—roundabout scenario 

Fig. 2 Motion planning LTS layers 

vehicle does not have the ability to change lanes cooperatively, the formation of a 
third LTS from the two right vehicles for the purpose of speed adaptation is necessary. 
A downstream cooperation without consideration of the vehicle capabilities leads to 
an incorrect LTS formation. 

If we now extend the given scenario as shown in Fig. 3, assuming the ability to 
change lanes, another problem becomes apparent. In order to enable a lane change 
of the right vehicle, in principle three vehicles would have to slow down their speed, 
which is unfavorable from the point of view of a global optimization. However, a
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Fig. 3 Motion planning LTS layers conflict 

Directional/Spatial 
Proximity 

Roundabout Highway Access/Exit 

Intersections Parking 

Vehicle Accidents Road Condition Blocked Vision 

Fig. 4 Possible LTS scenarios
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human actor would possibly prefer the light braking of several vehicles to the strong 
braking maneuver of a single vehicle. The respective driving situation therefore also 
has a decisive influence on the vehicle grouping here. The simple static weighting 
of different distance metrics is highly unlikely to meet this requirement. 

The examples described above show that the selection of LTS participants is 
complex and a wide variety of conflict situations can occur within a single scenario. 
These are strongly dependent on the direct driver environment and require a high 
level of algorithmic understanding of the driving situation which, as shown in Fig. 3, 
cannot be solved solely within the cooperation algorithm but has direct repercussions 
on the LTS formation. The incorrect too narrow selection of the LTS makes an optimal 
solution impossible. 

In addition to the wrong selection of the LTS participants, there is also the possibil-
ity of potential target conflicts between different LTSs. If a vehicle is simultaneously 
a member of several competing LTSs, it is necessary to establish a prioritization 
between the individual systems. 

2.2 Extended LTS Architecture 

The disadvantages and problems of the previous concept described in the previous 
sections are to be solved by an extension of the architecture. The basic principles 
and advantages of the previous approach are to be preserved. 

Figure 5 describes the novel approach to the clustering of vehicles. The most 
obvious difference is the division into different LTS levels between level 0 and level 
4. The individual levels represent an increasing urgency in the need for cooperation 
between the road users and allow prioritization between individual LTS. Systems with 
a higher level are always given priority. In case of identical levels, no cooperation 
is performed. The system waits for escalation to higher levels. If several systems 
reach the highest level at the same time, cooperation between all traffic participants 
is required. The traffic systems are merged into a larger system. Each LTS level is 
associated with a specific set of exchanged vehicle data, boundary conditions, and 
available cooperation algorithms. At the beginning, every vehicle that has not yet been 
assigned to a specific group is at level 0. No active cooperation takes place here. Only 
simple awareness based information, like the current vehicle position or additional 
road information, like emergency warnings, are exchanged. This also provides a 
way to integrate passive road users unable to participate in a cooperative effort such 
as pedestrians, cyclists or infrastructure components like traffic lights. Each level 
is assigned a cooperation algorithm in addition to the vehicle data and associated 
boundary conditions. The LTS level is increased if the exchanged vehicle data exceeds 
the level specific boundary conditions. The type of cooperation algorithm increases 
according to the intensity of the intervention in the longitudinal and lateral control of 
the vehicle. The vehicle data required for the cooperation must not exceed the scope 
of the data exchange planned for the level. The amount of data exchanged increases 
here because more complex cooperation maneuvers usually require a larger pool of
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data. The data exchanged is roughly based on the data specified by the ETSI ITS 
G5 standard. Large parts of the described ETSI ITS G5 functionalities are still in an 
early stage of development at the time of this work and are therefore susceptible to 
possible changes. ETSI ITS G5 defines Cooperative Intelligent Transport Systems 
(C-ITS) as ITS subsystems such as people, vehicles, roadside units that exchange 
information or cooperate with each other to improve driving safety, traffic guidance 
or driving experience. The cooperation capabilities to be realized are referred to as 
services. 

A general distinction is made between three categories of services. Cooperative 
Awareness Services [ 12– 14] define the lowest level and describe the exchange of sim-
ple status information such as position and speed for the purpose of simple warnings. 
Cooperative Perception Services [ 17, 18] describe the second type of information 
exchange on top of status data. Within this service, other traffic participants are not 
only warned but also enabled to perform more complex functions such as Coopera-
tive Adaptive Cruise Control. Cooperative Maneuver Coordination Services [ 15, 16] 
describe the highest level of cooperation. In addition to status and observation data 
road users can share their intention in order to allow cooperation in complex driving 
situations. These include scenarios like platooning or cooperative lane changes. The 
approach to LTS education presented here is oriented along the escalating nature of 
these services in terms of user interaction and user collaboration. In addition to min-
imizing intervention in the longitudinal and lateral control of the vehicle to increase 
user comfort, this also reduces the required bandwidth. Instead of exchanging all 
driving information periodically, only the information required for cooperation at 
the current level is exchanged. Further development and replacement of individual 
cooperation algorithms is possible without adaptation to the overall system. 

For further development of the described architecture, a stimulative implemen-
tation approach is used. The developed framework is structured according to the 
diagram in Fig. 6. The CARLA simulator [ 10] serves as the basic foundation. The 
CARLA simulator is an open source driving simulator providing a virtual environ-
ment to simulate different driving scenarios and test autonomous driving functions in 
a virtual environment. The simulator is using a server/client concept. While the server 
is responsible for the simulation itself, the client controls the simulator by reading 
and writing data from and to the simulation using a TCP/IP. The client exposes the 
provided functions using an API to control traffic generation, pedestrian behavior, 
weather, sensors, maps and much more. During this project the provided Python 
API is used by the simulator interface to expose relevant functionality to the other 
components of the Autoknigge Framework. All components are connected using 
a ROS2 Communication Layer. This applies to messages controlling the simulator 
itself as well as messages exchanged between simulated vehicles. ROS2 uses the 
Data Distribution Service (DDS) which is also part of the Automotive Open System 
Architecture (AUTOSAR) Adaptive Platform. DDS is a middleware specified by the 
Object Management Group for data-centric communication in distributed systems. 
Based on the ROS Communication Layer there are higher level components like the 
World component. The World acts as a central repository for all data relevant to the 
simulation, such as vehicle positions, velocities, planned routes and trajectories, LTS
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Fig. 6 Autoknigge architecture (Cooperation (Coo.), Vehicle (Veh.)) 

allocations, etc. The World component is also the central repository for all data rele-
vant to the simulation. Unlike the data stored in the individual vehicle components, 
all data is available here. The controller is responsible for controlling the simulation 
itself and provides functions for selecting the map, adding vehicles and people. The 
controller is in turn used by the Scenario Loader to load various traffic scenarios. 
The Traffic Manager is used to abstract the management and communication of indi-
vidual vehicles in the simulation. Here, for example, a distance-based forwarding 
of V2X messages takes place in order to simulate a range limitation of the vehicle 
messages. The number of managed vehicles is determined by the vehicles currently 
present in the simulation. Each vehicle component can theoretically contain its own 
Cooperation Manager to start and stop cooperation maneuvers. For simplicity in the 
context of the simulation, all vehicles currently share a Cooperation Manager. This 
also applies to the LTS Manager which assigns vehicles to the individual LTS. 

The architecture described so far still lacks a concrete cooperation algorithm. 
Therefore Sect. 2.3 presents the implementation of a method for cooperative velocity 
adaptation for LTS level 1 systems.
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2.3 Cooperative Velocity Adaption Algorithm 

Cooperative adjustment of vehicle velocity represents one of the most minimally 
invasive forms of active cooperation, as it only interferes with the longitudinal con-
trol of the vehicle. By intervening in the vehicle’s longitudinal control at an early 
stage, it is often possible to resolve conflict situations without impairing the vehicle 
occupants’ sense of comfort due to strong longitudinal or lateral acceleration. The 
cooperative speed adaptation algorithm presented in the following is designed as a 
constraint optimization problem. The relevant boundary conditions are formulated 
as hard constraints and soft constraints. Hard constraints are unbreakable rules that 
must be fulfilled in any case, otherwise the result is not considered as a valid solution 
of the problem. Soft constraints represent less strict constraints and are understood as 
a kind of optimization parameter to distinguish several valid solutions in their qual-
ity. The problem is formulated in the form of a model and then passed to a solver. 
The concrete algorithm uses the Google OrTools CP-Sat Solver [ 42]. Due to the 
limitations of the solver, all variables and parameters of the model are formulated as 
integer values. Input and output values that are represented as floating point numbers 
are appropriately scaled by the algorithm beforehand. 

The algorithm expects for each vehicle . j two position arrays specifying the 
planned x,y-trajectories for each timestep . i as well as additional parameters like 
the allowed minimum speed .v j,min , the maximum speed .v j,max . In addition, lim-
its for the permitted longitudinal acceleration .amax as well as a minimum time gap 
.tgap,min to ensure collision avoidance need to be defined. The variables are defined 
for each vehicle . j involved. 

The algorithm defines a vehicle velocity variable.v j,i as well as a resulting times-
tamp .t j,i for each vehicle position .p j,i = (x j,i , y j,i ). The maximum acceleration is 
used to determine the permitted velocity change.v j, ,max,i for each distance step.d j,i . 
The timestamp.t j,i+1 is automatically calculated in the solver model using the distance 
.d j,i between the position.p j,i and.p j,i+1 as well as the velocity.v j,i determined by the 
solver. To avoid a collision the model requires the time gap between two timestamps 
of two vehicles to be greater than the predefined time gap .tgap,min threshold if the 
positions are closer than.dthres . The algorithm currently does not take into account the 
actual vehicle geometry. Therefore, the position distance value .dthres must be cho-
sen sufficiently large. At every position the calculated velocity.v j,i must be between 
.v j,min and .v j,max to be considered as valid result. As an optimizable soft constraint, 
the algorithm determines the maximum total duration of the maneuver as the time at 
which the last vehicle reaches the last target position in the planned trajectory. 

The goal of the optimization is to minimize the total maneuvering time while 
taking into account the constraints described above. 

As an example the algorithm is applied to the intersection scenario presented in 
Fig. 7. The vehicles are each positioned 10 m from the center of the intersection. The 
given speed is chosen for both vehicles so that the trajectories intersect at the same 
time and place. The usage of the presented algorithm with a spatial resolution of 1 m 
results in an optimal solution shown in Fig. 8. Compared to the individual use of the



358 C. Kehl et al.

0 
5 

10 
15 0 

10 
0 

500 

1,000 

Position X 
Position Y 

T
im

e 

Fig. 7 Intersection scenario—conflict 

0 
5 

10 
15 0 

10 
0 

500 

1,000 

Position X 
Position Y 

T
im

e 

Fig. 8 Intersection scenario—conflict resolution by velocity adaption 

intersection by each vehicle, the travel time for the braking vehicle is increased by 
approximately 13.5 %. The specified time gap is marked in green. The labeling of the 
displayed time axis does not correspond to the actual time in seconds but represents 
the direct integer solution value of the solver. 

The formulation as a constraint optimization problem offers several advantages. 
On the one hand, the solver is able to capture the problem completely and detect 
conflicting constraints or prove the unsolvability of the problem at an early stage. 
The LTS system can thus detect the unsolvability of the cooperation task at an early
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stage with the algorithms available at this LTS level and increase the level. On 
the other hand, the solver is able to recognize optimal solutions as such and abort 
further optimization at an early stage. The term optimal here refers only to the given 
solution space based on the discretization used. For example, a finer discretization 
of the vehicle position would lead to an improved optimal solution. 

A disadvantage of the used approach is the generally slower solution of complex 
constraint optimization problems with many variables. If in the given example the 
accuracy of the trajectory is increased from 1 m to 10 cm, the calculation time of the 
solution increases by a factor of 10-12 to around 1.2 s. The solver allows to set a wall 
time to reduce the calculation time. This represents the allowed calculation time. The 
best available solution at this time is used. Figure 9 shows the computation time of 
the algorithm for different given maximum computation times. For each calculation 
time, 10 runs were performed. It can be seen that the algorithm respects the specified 
maximal calculation time with a deviation of a few milliseconds. The lower value at 
a maximal calculation time of 1.5 s shows the automatic termination process, since 
on average an optimal solution is already found at 1.2 s.  

The limitation of the calculation time has a significant influence on the reduction 
of the solution quality. Figure 10 shows that below 1.0 s in most cases no optimal 
solution can be found. Between 0.1 s and 1.0 s the algorithm finds sufficient solutions 
with constantly decreasing quality. The percentage increase in the duration of the 
cooperation maneuver relative to an optimal solution is shown in Fig. 11. With a 
limited calculation time of 0.1 s, the algorithm only finds a valid solution in 50 % 
of the cases. The measurements also show that the initial abandonment of an opti-
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Fig. 11 Intersection scenario—cooperation time increase relative to optimal solution 

mal solution brings significant speed advantages without a dramatic loss in solution 
quality and increase in maneuver duration.
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2.4 Learning-Based Clustering 

The architecture described in Fig. 6 successfully decouples the formation of Local 
Traffic Systems from the actual cooperation between the participating vehicles and 
the associated algorithm. 

However, the limits for determining the LTS level are still statically defined by 
the developer. This static specification of the LTS parameters has several disadvan-
tages. On the one hand, static optimization of the corresponding parameters is often 
suboptimal. The system is only adapted to a small set of possible conflict situations 
and traffic scenarios and is likely biased towards these scenarios used as test cases 
during the development. The administration and maintenance of a corresponding 
traffic scenario collection is time-consuming and often does not meet the require-
ment of completeness. On the other hand, there is no direct connection between 
the exchanged vehicle information shown in Fig. 5, the respective LTS Boundary 
Conditions and the capabilities of the underlying cooperation algorithm. However, 
changes to the underlying algorithms should logically also have an impact on the 
transmitted data as well as the LTS formation. Due to the disadvantages presented, 
a static parameter definition should be considered unsuitable for fully meeting the 
requirements of an LTS generation architecture described before. 

A deep learning based approach offers a possible solution to the aforementioned 
problems. Here, the formation algorithm based on static parameters is replaced by a 
deep learning model. The model decides whether the LTS level should be increased 
or decreased, based on the exchanged vehicle data. The internal decision process is 
learned by the model during the training process based on a stimulative approach. 
The system can be trained in a simulation environment without managing a complex 
data set of conflict scenarios. 

In this way, the model learns the link between the exchanged vehicle data and the 
underlying algorithms. The system learns not only the influence of a single parameter 
on the formation of the respective LTS level, but also the implicit relationships 
and similarities of individual traffic scenarios represented by the exchanged vehicle 
data. The detection of the traffic scenario takes place implicitly. If the underlying 
cooperation algorithms or the training scenarios are changed, the model can be trained 
again without additional changes. 

However, a training process as described in Fig. 12 is unfortunately not applicable 
to the current problem. On the one hand, it is not possible to provide a static data set 
for training the deep learning model, since already after the first time step the LTS 
formation has an impact on the training environment surrounding the vehicle. Another 
central problem is caused by the time-delayed verifiability of the LTS formation for 
correctness. Common supervised/unsupervised deep learning approaches are based 
on presenting the model with input data based on a training data set. From this input 
data, the model generates the output data, which is then compared with a label. 
Labels are part of the training data set in the case of supervised learning and are 
generated from it in the case of unsupervised learning. The label is considered as 
the correct output of the model on the existing input data. The deviation from the
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Fig. 12 Basic training architecture of supervised/unsupervised deep learning models 

output of the model is represented by a loss function. The underlying parameters of 
the model are adjusted with the goal of minimizing the loss function. However, in the 
present case, such a label does not exist for a given set of input data. Whether an LTS 
formation was goal-directed becomes apparent only in the course of the executed 
cooperation maneuver several time steps after the actual LTS formation. Therefore, 
a reinforcement-based approach is used in the following.
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Fig. 13 Basic training architecture of reinforcement learning models 

The diagram in Fig. 13 shows the general structure of a reinforcement learning 
algorithm. The algorithm consists of three main components. The reinforcement 
learning agent, the surrounding environment and a reward function. The reinforce-
ment learning agent has the task to make optimal decisions based on the surrounding 
environment. The decision made by the agent at a time . t is called action .At . The  
action.At is determined on the basis of the current environment. This is represented by 
the current state. St . To evaluate the quality of a decision, the reward.Rt is calculated 
by a reward function. Thus, the agent’s goal is to maximize the total reward. 

To transform the previous concept into a reinforcement-based approach, modifi-
cations to the architecture described in Fig. 6 are necessary. The changes are shown 
in Fig. 14. 

A higher-level component RL-Agent is introduced. The previous algorithm based 
on static thresholds for determining whether a local traffic system is formed is 
removed from the LTS Manager. The LTS formation is made in the LTS Manager
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Fig. 14 Learning enabled Autoknigge architecture 

on the basis of the action.At by the RL agent. These actions are based on the current 
state.St which is determined by the already existing World component. Furthermore, 
the previous pure data collection of the World component has been extended by a 
reward component to determine .Rt . The required data . St , .Rt for the computation 
of .At are provided by a reinforcement learning interface to the agent during train-
ing. The access to the Scenario Loader allows switching between different conflict 
scenarios during the training process. 

2.5 Example Cooperation Intersection and Highway Access 

The following section shows two example applications of the described concepts 
described and gives a visual impression about the cooperation result. The first sce-
nario describes the conflict situation between two vehicles crossing an intersection. 
The second scenario describes the conflict situation at a highway access. The envi-
ronment perception of the vehicles involved was completely deactivated. The only 
information exchanged is the data specified for LTS formation. Cooperative driving 
maneuvers are visualized within the simulator by a green line between the involved 
participants.
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As visible in Figs. 15 and 16, a short time gap was deliberately chosen in order 
to test the system at its limits. Both conflict situations are solved successfully on 
the LTS Level 1 by early cooperative adjustment of the vehicle speed. The fact that 
the present different conflict scenarios can be successfully solved with the same 
cooperation maneuver supports the chosen approach of using simple cooperation 
maneuvers, similar to human behavior, to solve different conflict situations. 

2.6 Conclusion and Outlook 

The presented architecture fulfills the requirements placed on the system. The trans-
mitted vehicle data, the LTS formation as well as the underlying cooperation algo-
rithms are successfully separated without neglecting the retroactive influences of 
the driving situation and cooperation algorithm on the LTS formation. Successful 
separation avoids the black box behavior of an end-to-end trained machine learn-
ing architecture. The cooperation algorithms are exchangeable. The introduction of 
LTS levels allows for easy prioritization in case of conflicting goals. The vehicle data 
assigned to the individual levels and the quantity of transmitted data, which increases 
proportionally to the urgency, as well as the constantly increasing interference in the 
longitudinal and lateral guidance of the vehicle, both reduce the necessary quantity 
of data for simple cooperation maneuvers and increase driving comfort. 

Although the current approach is promising, there is still a need for research in 
the field of LTS education. This can be found in three main areas. First—The cost 
function. In addition to simplified basics such as a traffic flow optimization function, 
this should take into account other factors such as the CO2 emissions of vehicles. 
Second—The underlying cooperation algorithms and the exchanged data. Since the 
focus of this work is on the optimization of approaches to LTS formation, there is 
still a high need for research in this area. In particular, as standardization contin-
ues, changes in V2X message definitions are to be expected. In the long run, V2X 
communication should be realized by frameworks like Veins, Artery [ 20] instead 
of ROS2 messages. Third—Further consideration of single-agent and multi-agent 
concepts of the reinforcement learning approach. The current system uses a single 
agent that learns the LTS formation. A multi-agent system where each vehicle uses an 
individual agent could offer significant advantages as there is no need to ensure that 
all vehicles have the same agent. This offers advantages in simplifying the learning 
process or realizing vehicle individual optimizations relevant to specific user prefer-
ences. Whether such a system contributes at all to the minimization of a global cost 
function if each agent follows an individual optimization remains to be researched.
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3 Verification of Cooperative Interacting Automobiles 

3.1 Introduction 

This section proposes an approach to use formal methods for verifying trajectories 
in our LTS framework. Our algorithm generates behavior patterns that guarantee 
collision-free and deadlock-free trajectories. In order to generate the behavior pat-
terns, we use the model checker nuXmv [ 6], which is specialised in synchronous 
finite-state systems. 

This section is structured as follows. We introduce our verification architecture in 
Sect. 3.2. Section 3.3 presents the offline part of our approach, i.e., our modeling and 
verification of traffic scenarios and the generation of rule sets. Section 3.4 introduces 
the implementation of our rule checker and Sect. 3.5 evaluates the verification and 
rule checker. Finally, Sect. 3.6 concludes this section. 

3.2 Verification Architecture 

Figure 17 shows our verification architecture from [ 30]. The verification works in 
an offline and an online part. The offline part consists of modeling and verification 
of traffic scenarios. The verification classifies the traffic scenarios as collision-free 
and deadlock-free or provides a counter example in case of possible collisions or 
deadlocks. We generalize the counter examples to traffic rules for networked and 
autonomous vehicles. The traffic rules are stored in a rule set. The online part is 
a rule checker, which uses the map and planned trajectories of the current driving 
situation and the rule set generated by the offline part as input. The rule checker 
checks if the trajectories comply with the traffic rules of the rule set. If no rule is 
violated, the trajectories are considered safe.
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Fig. 17 Verification architecture of [ 30], consisting of an offline and an online part. Before deploy-
ment, counter examples of safety verification are generalized into rules that guarantee the absence 
of collisions and deadlocks. At run-time, a rule checker classifies trajectories of vehicles into safe 
and unsafe trajectories, depending if they follow the rules for the scenario 

3.3 Rule Set Generation 

We decompose the traffic scenario model into two parts: the map and vehicles’ trajec-
tories. Through this modular approach, it becomes easier to develop general purpose 
encodings for vehicles and maps independently of each other. We call the map the 
static model and we call the trajectory model dynamic model. We model both com-
ponents time and spatial discrete. Section 3.3.1 and 3.3.2 summarize our modeling 
of [ 30, 46]. Section 3.3.3 introduces our extension to combined models of connected 
LTS. Section 3.3.4 presents our NuXmv encoding and Sect. 3.3.5 introduces the rule 
generation. 

3.3.1 Roadway Model 

The map consists of blocks and transitions. Each block represents a part of the 
physical road. Blocks are non-overlapping and identified by unique Identities (IDs). 
A discretization takes care of the vehicles’ dynamics and safety distances. Each 
vehicle can occupy only one block at each time step. If a vehicle holds a block, the 
block is occupied, otherwise the block is free. To model valid transitions between 
blocks, each block has a list of successor-tuples. 

Definition 1 (Successor-Tuple [ 30]) Successor-tuples are defined as 

.tsuc = (I Dsuc,Cost,Watchlist, I ), (1)
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Fig. 18 Example model of a narrowing road, adapted from [ 30] 

where: 

• .I Dsuc denotes the ID of the successor block, 
• .Cost stores the costs for the transition, 
• .Watchlist is a list of block IDs. A vehicle can only use the transition if all blocks 
in its watchlist are free, and 

• .I = (T ype, Veloci ty) ∈ (String × Z) is a scenario-dependent instruction.. T ype
describes which behavior is expected by the vehicle, e.g., “move forward”, “turn 
right”, and “switch to left lane”. 

Figure 18 shows an example model of a narrowing scenario. Only physically 
possible transitions respective to road boundaries and vehicle dynamics are included. 

3.3.2 Trajectory Model 

Trajectories consist of a sequence of adjacent blocks. The first block of a trajectory 
is the vehicle’s current position. The last block represents the vehicle’s destination.
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Each time step, the vehicles transit to the next block in their trajectories. The same 
block may be used multiple times in a trajectory. Trajectories can have different 
lengths. After leaving the LTS, the vehicle moves into a final block with the ID . n
with no further process. One of the following two statements hold for any consecutive 
blocks in each trajectory: 

1. The blocks have the same ID, i.e., the vehicle does not move. 
2. There is a valid transition between the blocks in the direction of movement. 

In traffic scenarios, some vehicles may be important for more than one LTS. We pro-
pose a method to create connected traffic scenarios. A connected traffic scenario com-
bines two traffic scenarios with transitions from one traffic scenario to the other traffic 
scenario. Using these transitions, vehicles can travel between both traffic scenarios. 
In connected traffic scenarios, different rules may apply in comparison to separate 
traffic scenarios. Our approach extends the methods from our previous works done 
in [ 30, 46] by connecting traffic scenarios and generating rules for connected traffic 
scenarios. We classify pairs of traffic scenarios into overlapping traffic scenarios and 
non-overlapping traffic scenarios. Overlapping Traffic scenarios are scenarios where 
both single scenarios have entrance blocks, which have the same ID. In Fig. 19 two 
single traffic scenarios are sketched. Both have blocks with the same IDs. 

3.3.3 Connected LTS 

In order to verify connected LTS, this subsection extends the modeling of Sects. 3.3.1 
and 3.3.2. We start with an example of collision-free and deadlock-free single LTS, 
while the combination of both LTS is collision-free but not deadlock-free. 

Motivating Example 

In the following, we give an example of rule sets generated for single traffic scenarios 
that do not provide deadlock-freeness in overlapping LTS. The rules were generated 
by our method in [ 30]. In this example, we use two overlapping intersections, both 
with 4 entrances. Each single intersection has only one rule. This rule does not allow 
vehicles in the center to drive in 4 different directions. In Fig. 20 we can see an 
initial configuration. Each center of the model is filled with vehicles and all cars 
try to reach the end of the opposite center. Using this configuration, we were able 
to show that this rule is not sufficient to avoid deadlocks. As seen in Fig. 21, this  
configuration leads to a deadlock in both centers of the intersections. In the upper 
part, both vehicles on position c0 and d3 try to move to c1. Since only one vehicle 
may occupy block c1, a deadlock is caused. The same holds for position c2 in the 
bottom part, which is blocked by vehicles at position c3 and u0. These two situations 
cause a deadlock, since every vehicle tries to take the entrance to get to the opposite 
center and block one another. The entrances are blocked by the vehicles on block 
d2 in the upper part and u1 in the bottom intersection. Both vehicles cannot make 
any progress. This example shows that rules that apply for a single scenario must
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Fig. 19 Two single traffic scenarios, here crossroads, with overlapping borders in blue
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Fig. 20 Starting positions of vehicles for deadlock scenario in nuXmv
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Fig. 21 Deadlock situation for a connected traffic scenario
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not be enough to guarantee safety properties also in the connected traffic scenario. 
Therefore we generated rule sets for overlapping LTS. 

The rest of this subsection introduces our model of connected LTS in order to 
guarantee collision-freeness and deadlock-freeness in connected LTS. 

Border Blocks 

Each entrance consists of multiple blocks. We divide these blocks in three categories: 

1. blocks which border to a center block c1, c2, c3 or c4, e.g., the blocks l1 and l3 
in Fig. 19a, 

2. blocks which leave or enter the traffic scenarios, e.g., l2 and in Fig. 19a, and 
3. all other blocks that are forming the middle of each lane. 

In the following, we will call blocks of category 2 border blocks. Border blocks are 
critical states, because taking only single traffic scenarios into consideration when 
verifying for safety properties, e.g. collisions, everything that happens outside the 
current traffic scenario is not considered. For example, it could be that a vehicle’s 
position is currently a border block which is the exit of the traffic scenario. Not 
considering the next traffic scenario after the border block could lead to deadlocks 
or collisions. Verifying only separate traffic scenarios could lead to false negative 
classification. 

Transition States 

There may be traffic scenarios that are not overlapping. In this case, no border blocks 
lead from one traffic scenario into another traffic scenario. We model connection 
points between traffic scenarios. Possible connection points are two border blocks, 
each belonging to the other traffic scenario. These two border blocks form a connec-
tion pair. 

We use lane information to identify connection pairs of multiple traffic scenarios. 
In order to be connectable, the traffic scenarios require the same number of lanes. 
If two traffic scenarios have the same number of lanes, we use the lane positions to 
identify the border blocks of both traffic scenarios that form a connection pair. We 
introduce an argument TransitionStates to model connection pairs in nuXmv. The 
argument TransitionStates contains the following information: 

• the number of border blocks contained in the input traffic scenario, 
• the successor blocks of each border block, 
• the corresponding lane to which a block belongs, 
• the number of lanes existing in the input traffic scenario, and 
• each lane’s position compared to the other ones in the same entrance. 

The argument TransitionStates is a list that contains all possible blocks for a con-
nection pair. Each element of the list represents an entrance or exit of the traffic 
system.
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Definition 2 (Entrance) An entrance consists of multiple blocks that form a group 
of pairing border blocks. In Fig. 19a, the pairs (l0, l2), (d0, d1), (r1, r4), (u2, u3) 
form four entrances. 

Our method checks for opposing border blocks and create connection pairs. Then, 
a transition is created between the corresponding border blocks. The transition starts 
at the border block which is an exit block of its traffic scenario and is connected to 
the corresponding input block from the connection pair. 

An example combined model is the model in Fig. 20. The combination of multi-
ple LTS increases the size of the scenarios to be verified. Since large models cause 
performance issues during verification, we reduce the combined model, while main-
taining the correctness of verification. 

Model Reduction 

We reduce the models of combined LTS to keep computational efficiency of the offline 
verification. To this end, we reduce the number of blocks in the resulting model. We 
include the center blocks of both single LTS models and all blocks connecting the 
center blocks. Each center block that lead to an exit state becomes an exit state, while 
each center block connected to an entrance becomes an entry block. The gray states 
in Fig. 20 are the states included in the reduced model of connected LTS. 

3.3.4 NuXmv Encoding 

Based on our work in [ 46], we translate our models into the nuXmv input language. 
NuXmv distinguishes four input types: variables, transitions, dictionaries, and spec-
ifications. 

Variables 

We model vehicles as variables in nuXmv. The possible states of each variable are 
the blocks the corresponding vehicle will occupy in the scenario. In the example 
shown in Fig. 18, Vehicle .v0 has the following path: c0 - c1 - c2 - c3 - l4 - l5. 

In nuXmv, the path is represented as follows: 

VAR 
v0 : {c0 , c1 , c2 , c3 , l4 , l5 , n};  

The initial state of each vehicle is the first block of its trajectory, e.g., vehicle . v0
in Fig. 18 starts at block c0. The corresponding nuXmv code is 

INIT 
v0 = c0 .  

Transitions To encode transitions, we use the case statement for every pair of consec-
utive blocks in a vehicle’s trajectory.(Bi , Bi+1). We use the following two statements:
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.(Pos = Bi )&(φ) : Bi+1 (2) 

.(Pos = Bi )&(¬φ) : Bi , (3) 

where .Pos denotes the current block and . φ is a Boolean expression. . φ evaluates to 
true, if the transition is safe to use, i.e., if all blocks in the watchlist of this transition 
are free. Equation (2) allows the vehicle to move to its next block.Bi+1, if the transition 
is safe. Equation (3) forces the vehicle to remain in its current block, if the transition 
is not safe. The block c0 in Fig. 18 is given as 

c0:  [ (c1,  1 ,  [c1]  ,  ( f  ,1) ) ]  ,  

where .I Dsuc = c1, .cost = 1, .Watchlist = [c1], and .I = ( f, 1). The instruction . I
states that the vehicle moves forward one block. 

Suppose an example vehicle.v1 that moves from c0 to c1 in the scenario in Fig. 18. 
If there is another vehicle in the LTS with ID . v0, the nuXmv statements for this 
transition are as follows: 

( (v1 ) = (c0))  &  ((v0 ) != (c1))  
: c1;  

( (v1 )  =  (c0))  &  ( ! ( (  v0 )  !=  (c1)))  
: c0;  

The first statement states that if vehicle .v1 is on block c0 and vehicle .v0 is not on 
block c1, .v1 moves to c1. The second statement states that if vehicle .v0 is on block 
c1, vehicle .v1 remains on block c0. 

This is done for every pair of consecutive blocks in the vehicle’s trajectory. Once 
a vehicle reaches the last block of its trajectory, it moves to block . n and stays there 
through the following equations: 

.Pos = Bend : n (4) 

.Pos = n : n (5) 

Equation 4 causes all vehicles to move to block . n after their trajectory ended. 
Equation 5 states that vehicles that reached block . n will remain there. 

Dictionaries 

We use dictionaries to represent LTS entrances. Each entrance is represented by 
two dictionaries, because there are always at least two lanes per entrance, one exit 
and one entrance into the traffic scenario. Each dictionary can have multiple border 
blocks. The number of elements in this dictionary represents the number of lanes 
of the corresponding entrance’s exit or entry and the position of a block in this 
dictionary represents its corresponding lane, to which the block belongs. An example 
TransitionStates argument for the intersection of Fig. 19a looks like the following:
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[ 
# border blocks of upper entrance 
{’u2’ :  [(  ’u0’  ,  1 ,  [  ’u0’]  ,  (  ’ f  ’  ,  1))]}  

,  {’u3’ :  [(  ’u3’  ,  1 ,  [  ’u3’]  ,  (  ’ s  ’  ,  0))]} 
# border blocks of right entrance 
,  {’r4 ’ :  [(  ’ r2 ’  ,  1 ,  [  ’ r2  ’ ]  ,  (  ’ f  ’  ,  1))]} 
,  {’r1 ’ :  [(  ’ r1 ’  ,  1 ,  [  ’ r1  ’ ]  ,  (  ’ s  ’  ,  0))]} 
# border blocks of bottom entrace 
,  {’d1’ :  [(  ’d3’  ,  1 ,  [  ’d3’]  ,  (  ’ f  ’  ,  1))]} 
,  {’d0’ :  [(  ’d0’  ,  1 ,  [  ’d0’]  ,  (  ’ s  ’  ,  0))]} 
# border blocks of l e f t entrance 
,  {’l0  ’ :  [(  ’  l1  ’  ,  1 ,  [  ’ l1  ’ ]  ,  (  ’ f  ’  ,  1))]} 
,  {’l2  ’ :  [(  ’  l2  ’  ,  1 ,  [  ’ l2  ’ ]  ,  (  ’ s  ’  ,  0))]} 
] .  

The first two elements represent the border blocks of the upper entrance, the next 
two the border blocks of the right entrance, the next two the border blocks of the bot-
tom entrance, and the last two for the border blocks of the left entrance. Each block 
that is an element of an entrance lane stores the information about its successor block. 

Specifications 

We verify the safety of our traffic system. To this end, we formulate specifications 
by invariants and temporal logic. We give more details on the specifications in [ 30]. 

We use invariants to check for collision-freeness. A collision occurs, if multiple 
vehicles occupy the same block at the same time. The invariants to check collision-
avoidance are 

.(pos1  = n)⇒ (pos1  = pos2), (6) 

where .posi is the position of vehicle . i . Equation (6) models that two vehicles 1 and 
2 do not occupy the same block, unless vehicle 1 finished its trajectory and moved to 
the end block . n. We check this invariant for each pair of vehicles at each time step. 

We use temporal logic to check deadlock-freeness. We use Linear Temporal Logic 
(LTL) [ 43]. In LTL, we model deadlock-freeness as 

.F(pos1 = n ∧ pos2 = n ∧ . . . ), (7) 

where .F(·) denotes the eventually operator of LTL. Equation (7) models that each 
vehicle eventually reaches block . n, i.e., finished its trajectory. 

3.3.5 Summarize Rules 

We alter the static and dynamic models to create different verification scenarios. 
NuXmv provides counter examples if a verification scenario is not collision-free and



AutoKnigge—Modeling, Evaluation and Verification … 379

Topology 

Rule set 1 Rule set 2 

Safe Unsafe 

minimal T-intersection 
otherwise 

intersect priority 

otherwise 

# directions 

otherwise 

Fig. 22 Evaluations of rule sets in an intersection scenario. Different rule sets apply, depending on 
the intersection topology 

deadlock-free. We generalize counter examples derived from the same group of static 
models to generate rules for this group. The rule sets formulated for each scenario 
group prevent any collisions or deadlocks found during verification. Depending on 
the static and dynamic model, different rule sets have to be applied. 

We demonstrate the generalized rule sets for intersection models. In the following, 
“inner lanes” refer to the leftmost lane of each direction and “center” refers to the 
area of the intersection, where the lanes intersect. In the intersection model, the 
rule set depends on the intersection topology and the priority rule, i.e., the right of 
way, applied in the trajectories. Figure 22 gives an overview of the rule set selection 
process. If the map represents a T-intersection with only one lane in each direction, 
it is called a minimal T-intersection. For minimal T-intersections, we need to check 
the priority rule for vehicles, denoted as Rule set 1. If the vehicles in the intersection 
consistently have priority over vehicles outside, the rules of Rule set 1 are met and 
the trajectories are always safe to execute. In all other cases, Rule set 2 is applied. In 
Rule set 2, trajectories are considered safe if the center never has vehicles traveling 
in four different directions, denoted by the red arrows in Fig. 23. 

3.4 Rule Checker 

The rule checker takes the static and dynamic model, i.e., the map and trajectory 
data, as input. The output of the rule checker is the classification of the trajectories 
according to the rule sets generated in Sect. 3.3. The rule checker classifies the 
trajectories into safe and unsafe trajectories. The rule checker detects the vehicle’s
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Fig. 23 Minimal T-intersection deadlock example 

behavior, e.g., the applied priority rules. Different scenarios have different rule sets. 
We form groups of scenarios with similar rule sets. We demonstrate the idea using 
the intersection example in Fig. 19a. 

One behavior that need to be identified is if the vehicles inside or outside the 
intersection have priority at the entrances. In the intersection model shown in Fig. 19a, 
the blocks c1 and r2 are a pair of interest, since vehicles on both blocks are able to 
move into c3. The rule checker checks for all pairs of interest if the following two 
conditions are satisfied at each time-step: 

• both blocks in the pair of interest are occupied, and 
• the vehicle in the intersection does not leave the intersection. 

If both conditions are satisfied, the rule checker checks the next instructions of the 
vehicles. If the vehicle in the intersection is the only one instructed to move forward, 
then we have a case where vehicles in the intersection have priority. If the vehicle that 
tries to enter the intersection is the only one instructed to move forward, then we have 
a case where vehicles entering the intersection have priority. If none of the mentioned 
possibilities happened, then we cannot decide what has happened and conclude that 
there is no consistent priority rule between them. There are three possible cases after 
the rule checker iterated over each pair of interest: 

• vehicles in the intersection consistently have priority over vehicles outside of the 
intersection, 

• vehicles that enter the intersection consistently have priority over vehicles in the 
intersection, and 

• there are no consistent priority rules. 

We formulate rules for all three cases.
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3.5 Evaluation 

We evaluate the feasibility of our verification process for single LTS in Sect. 3.5.1 
and for connected LTS in Sect. 3.5.2. Moreover, we evaluate the computation time 
of the offline verification and online rule checker in Sect. 3.5.3. 

3.5.1 Feasibility in Single LTS 

This section presents evaluation results of the verification process for single LTS. 
We evaluate the generation of rule sets and the performance of the rule checker. We 
divide combinations of roadways and trajectories into different classes. We evaluate 
scenarios of multiple classes. 

We define classes of roadways according to their generated rule sets. Within the 
same model class, different rules need to be applied depending on the road topology 
and vehicles’ trajectories. For example of an intersection model, the rules to apply 
depend on the number of entries of the intersection and the trajectories’ priority rules. 
As such, a T-intersection has 3 potential classes: 

1. The model is a T-intersection with one lane in each direction, vehicles in the inter-
section area always have priority over vehicles that are outside of the intersection. 

2. The model is a T-intersection with one lane in each direction, all vehicles give 
priority to vehicles on the right. 

3. The model is not a T-intersection with one lane in each direction. 

We evaluate our rule checker on a four-way intersection. Table 1 presents the 
input trajectories for vehicles. v1,. v2,. v3, and.v4 and compares the expected and actual 
rule checker results. Figure 24 visualizes the first example of Table 1. The roadway 
is a minimal T-intersection and the vehicles’ trajectories give priority to vehicles in 
the intersection. Please note that the lower entrance (the blocks d0 and d1) are not 
included in the T-intersection model. The rule checker gives the expected results in all 
cases. It classifies collision-free and deadlock-free scenarios as safe and unsafe oth-
erwise. Nevertheless, the rule checker may classify collision-free and deadlock-free 
scenarios as unsafe. Figure 25 shows such a false positive result. The rule checker 
rejects these trajectories since vehicles in the center are traveling in all four directions 
on a non-minimal T-intersection. However, the rule checker will not classify unsafe 
scenarios as safe. 

3.5.2 Feasibility in Overlapping LTS 

We extend the rule sets for single LTS to guarantee collision-free and deadlock-free 
trajectories also in connected LTS. As an example we present two new rules for the 
intersection scenario:
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Table 1 Evaluation scenarios for the intersection model. We show the trajectories of four vehicles 
in each scenario, the expected result and the actual result of the rule checker. The trajectories of the 
first evaluation are visualized in Fig. 24, represented by the corresponding color 

Minimal T-intersection with priority of vehicles in the intersection 

Input trajectory Expected Result 

. v1: c2 - c0 - d1 Safe Safe 

. v2: l0 - l0 - c0 - c1 - r1  

. v3: d0 - c1 - c3 - c2  

. v4: r0 - c3 - c2 - l1  

. v1: c2 - c0 - d1 Safe Safe 

. v2: c0 - c1 - r1  

. v3: c1 - c3 - c2 - l1  

. v4: c3 - c2 - l2  

Any other intersection model 

Input trajectory Expected Result 

. v1: c2 - c2 - c0 - d1 Unsafe Unsafe 

. v2: l0 - c0 - c1 - r1  

. v3: d0 - c1 - c3 - c2  

. v4: r0 - c3 - c2 - l1  

. v1: c2 - c2 - c0 - d1 Safe Safe 

. v2: l0 - c0 - d1l 

. v3: d0 - c1 - c3 - c2  

. v4: r0 - c3 - c2 - l1  

. v1: r0 - c3 - u1 Safe Safe 

. v2: u0 - c2 - c0 - d1  

. v3: l0 - c0 - c1 - r1  

. v4: d0 - c1 - c3 - u1  

. v1: r0 - c3 - c2 - l1 Unsafe Unsafe 

. v2: u0 - c2 - c0 - d1  

. v3: l0 - c0 - c1 - r1  

. v4: d0 - c1 - c3 - u1  

• Vehicles entering the center must be able to exit the center. We refer to this rule as 
exit free. 

• Vehicles may not leave the center in the same entrance, which was used to enter 
the center. We will call this rule entry and exit differ. 

All developed models have been checked for correctness. To verify the correct-
ness of the scenario 2-intersection, we generate trajectories. Since the 2-intersection 
model is a connection of two single crossroad scenarios, we only generated trajecto-
ries that are valid for single intersection models. Tables 2 and 3 show the test cases for 
the newly generated rules exit free and entry and exit differ. For each rule, we show an 
expected positive classification and an expected negative classification. The results
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Fig. 24 Visualization of Table 1 
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Fig. 25 False-positive result
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Table 2 Rule entry and exit differ test cases for traffic scenario 2-intersection 

Input trajectories Expected Results 

u2 u0 c2 c0 d2 d0 Safe Safe 

l1 c0 c1 c3 u1 u3 

d3 c1 c3 c2 l3 l2 

r4 r4 r3 c3 u1 u3 

u0 c2 c0 c1 c3 u1 Unsafe Unsafe 

l1 c0 c1 c3 u1 u3 

d3 c1 c3 c2 l3 l2 

r4 r4 r3 c3 u1 u3 

Table 3 Rule exit free test cases for connected traffic scenario 2-intersection 

Input trajectories Expected Results 

l0 l1 c0 c1 c3 u1 u3 .n Safe Safe 

d1 d3 c1 c3 c2 l2 .l4 . n

r4 r2 c3 u1 u3 .n .n . n

l0 l1 l1 c0 c1 c3 u1 u3 Unsafe Unsafe 

d1 d3 c1 c3 c2 l2 .l4 . n

r2 c3 u1 u3 .n .n .n . n

of the rule checker were as expected. Both rules are also valid in single intersection 
scenarios. 

3.5.3 Computation Time 

As extension to our evaluation in [ 30], we evaluate the computation time of the 
rule generation for connected LTS. We measured the computation times on a laptop 
running nuXmv 2.0.0 on Windows 10 using a processor with 2x 3.20GHz and 8 GB 
RAM. 

Offline Computations 

We present the results for the 2-intersection scenario. Each intersection model con-
sists of 4 entries, each consisting of one lane. We execute 100 runs per measure-
ment. Figure 26 shows the results. The execution time increases exponentially for an 
increasing number of vehicles. For 6 vehicles, the execution time is less than 15 s. 
For more vehicles, the execution time increases to around 1.7 min for 12 vehicles. 

Online Performance 

Figure 27 shows the execution time of one run of the rule checker. The execution 
times are average values of 100 runs to reduce measurement inaccuracies. For up to
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Fig. 27 Execution time of rule checker 

16 vehicles, the execution time is almost constant and below 1.5 ms. For more than 
17 vehicles, the execution time increases to around 2.8 ms for 28 vehicles.
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3.6 Conclusion 

This verification method is able to verify collision-freeness and deadlock-freeness 
of trajectories in one or more LTS. We summarized the space and time discrete 
model of [ 46] and the verification architecture of [ 30]. Our verification architecture 
generalizes counterexamples of the offline verification to generate rule sets. The rule 
sets restrict the solution space of valid trajectories so that all trajectories that fulfill 
the corresponding rule set are collision-free and deadlock-free. This work considered 
the verification of connected LTS. Evaluation results show that this method is real-
time capable even for scenarios with a high number of vehicles. Further research 
may include evaluations on more complex LTS with more than one overlap. 

4 Modeling Dynamic Systems 

4.1 Why Modeling? 

Vehicles of all SAE levels are safety critical systems and hence, their development 
needs to comply with legal regulations and safety standards. For instance, the func-
tional safety standard ISO26262 highly recommends the usage of formal and semi-
formal notations, hierarchical components of restricted size, the usage of strong type 
systems, range and plausibility checks, as well as the avoidance of hidden data-flows. 
In this section we are going to discuss the EmbeddedMontiArc (EMA) language 
family, a model-driven design approach for dynamic cyber-physical systems such as 
cooperative vehicles based on the component-and-connector (C&C) principle [ 37, 
38]. The C&C paradigm views a software system as a composition of hierarchi-
cally organized components communicating with each other over connectors. The 
approach can help the development team to enforce the design principles required by 
ISO26262 by providing a domain-oriented syntax, a strong type system, verification 
mechanisms and a code generation toolchain. 

4.2 The EMA Data Type System 

Type systems are an important error avoidance mechanism of many programming 
languages. Strong typing is highly recommended by the ISO26262 for the develop-
ment of automotive software. While most type systems are based on technical types 
such as integers, floats, and doubles, we are going to show how more abstract type 
systems can support modeling of cyber-physical systems on a more domain-oriented 
level. The type system of EMA is based on primitive types, which can be refined or 
grouped together, enabling the developer to create new types tailored to the appli-
cation. The primitive types are abstract in the sense that they are not bound to a
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specific realization or standard such as IEEE754 [ 25]. Instead, EMA types resemble 
mathematical sets they aim to represent. EMA supports the following basic types: 
N represents the set of positive integers including 0, i.e. . N, N1 represents the set of 
positive integers not including 0, i.e. .N \ {0}, Z represents the set of signed integers 
. Z, Q represents the set of signed rational numbers . Q, C represents the set of Gaus-
sian rationals .Q[ j] = {z ∈ C : z = a + jb : a, b ∈ Q} ⊂ C, B represents the set of 
Booleans (true and false). For the sake of convenience the alias Boolean can 
be used interchangeably. 

The types N1, N, Z, Q, and C form a directed compatibility relation, where a type 
is compatible with another type if the latter can represent all the elements of the 
former. For instance, N is compatible with Z, Q, and C, but not with N1, since the 
latter does not include zero. A variable of type N can hence be assigned to variables 
of types Z, Q, and C, but not to variables of type N1. Note that these types represent 
infinite sets of numbers. Since no technical system can represent arbitrarily large 
numbers, using primitive EMA types leads to a model that can only be implemented 
partially by definition. Obviously, this does not hold for Booleans (B). The decision 
how to implement such types is delegated to the compiler and can depend on the 
application. 

Technical systems are generally bounded, e.g. a vehicle has a maximum velocity, 
a minimum turning radius, etc. To model such bounds explicitly, EMA types can be 
refined by ranges consisting of a lower and an upper bound. A bounded type is defined 
asT(minValue : maxValue), where T can be any primitive type except B. The  
bounded type covers a subset of the primitive type T bounded by minValue and 
maxValue. minValue and maxValue must be of type T themselves and their 
values are included in the bounded type. For instance, the bounded type N(5:7) 
represents the set .{5, 6, 7}. A type can be defined as half-open using the infinity 
operator oo as one of the bounds. For instance, N(5:oo) is a type covering all 
integers in .{n ∈ N|n ≥ 5}. 

Bounded types are not completely implementable if the base type is Q or C, as a  
technical system cannot handle arbitrarily high resolutions. To obtain a completely 
realizable type, a bounded type needs to be refined by a resolution or step size. 
This parameter is written between the minimum and maximum value of a bounded 
type, i.e. T(minValue : resolution : maxValue). The refined type only 
contains values of the form minValue+. k×resolution satisfying minValue 
. ≤ minValue+. k×resolution . ≤ maxValue, where .k ∈ N. For instance, the 
type Q(5:0.5:6.5) represents the set .{5.0, 5.5, 6.0, 6.5} Similarly to the lower 
and the upper bounds, the step size needs to be of the basic type it is restricting. 

Different levels of type refinements can be employed in different phases of a sys-
tems engineering process such as the specification method for requirements, design, 
and test (SMArDT) [ 11, 22] during the development of a cyber-physical system 
(CPS). 

In complex technical systems, data is often multidimensional. For this reason, 
primitive types of EMA can be organized as one-, two- or multidimensional arrays. 
The syntax to do so is based on the LATEX syntax for raising a base to a power. To 
specify the dimensionality of an array type, we need to append a circumflex fol-
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lowed by a list of comma-separated integer-valued dimension sizes in curly brackets 
to the primitive type’s name: T. ̂ {a,b,...}. Each argument initializes the size 
of the respective array dimension. For instance, Q. ̂ {5} represents the set of all 
five-dimensional rational vectors .Q5, Z. ̂ {2,3} represents the set of all integer-
valued .2 × 3 matrices, and so on. We refer to one-dimensional arrays as vectors, 
to two-dimensional arrays as matrices, to three-dimensional arrays as cubes, and to 
multidimensional arrays as (.n-dimensional) hypercubes. The base type of an array 
can also be a bounded type. For instance, the type N(0:255). ̂ {3,w,h}, is often  
used to represent images with three channels, a size of w. ×h, and a color depth of 
8 bit. In contrast to dynamic types systems as used by MATLAB or Python, dimen-
sions are set at compile-time and cannot be changed at runtime. Variables of the 
aforementioned matrix type Z. ̂ {2,3} can only be assigned .2 × 3 matrices. 

In EMA, a data type can be refined by the SI unit of the physical quantity it 
represents. For instance, Q(0m:1dm:1km) is a rational variable representing a 
length between 0 m and 1 km with a resolution of 1 dm. If the type has no range, 
only the unit is given in brackets. For instance, Q(m) denotes the rangeless rational 
number type to be interpreted as meters. Two EMA variables are only compatible if 
they represent the same physical quantity. Conversions are carried out automatically 
in assignments featuring compatible but different units. This way, the developer does 
not need to keep track of the physical quantities of the variables used in a program, 
nor does she have to carry out the conversions of units manually. EMA supports all 
SI units as well as common prefixes. 

4.3 Components, Ports, and Connectors 

In EMA components are first-level citizens. A component type is defined using 
the keyword component followed by a name which can later be used to create 
instances of this component type. 1 For instance, we declare the component type 
Main in L.1 of Fig. 28. Optionally, a component type declaration can include a list 
of generic parameters in angle brackets and another list of component parameters 
in round brackets. While generic parameters are allowed to change a component’s 
interface, component parameters can only be used to parameterize a component’s 
implementation. Depending on the use case, a generic parameter can be set to a 
component type, a data type, or a concrete value. 

The syntax for declaring a generic component or data type in a component header 
definition is just the parameter name, cf. parameter T in L.1. If the generic parameter is 
a concrete value, its name needs to be preceded by its data type, cf. generic parameter 
n, which is of type N(2:10) in this example. Component parameters, in contrast to 
generic parameters, can only be of a data type. The syntax resembles the definition of

1 The component type system is not to be confused with the data type system introduced in Sect. 
4.2. 
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Fig. 28 A basic example of an EMA architecture. The component Main contains two subcompo-
nents Add adder and Mult multiplier 

function parameters in many languages, where a type is followed by a unique name, 
cf. parameters Q param1 and N param2 in L.1. 

The body of a component definition is enclosed in curly brackets and contains 
an interface and a structure definition. The interface definition is initiated with the 
keyword ports and is followed by a port list. A port definition consists of the port 
kind, which can be either in or out (EMA ports are strictly unidirectional), a data 
type, and a unique port name, cf. L.2-4 in Fig. 28. A component must have at least one 
input and one output port, since a major assumption of EMA is the absolute absence of 
side effects. Clean side effect-free models are crucial for testability, maintainability, 
and extensibility. An exception are components outputting a constant or a (possibly 
parameterizable) constant sequence. Such components obviously do not need an 
input port, but can require a component parameter, which alone defines the output 
behavior in every execution step. 

Subcomponents are created using the keyword instance followed by the com-
ponent type to instantiate and a component instance name, which is unique in the 
scope. If the component type to be instantiated has generic and/or component param-
eters, these have to be set by providing appropriate arguments in angle and/or round 
brackets, respectively. In L.6-7 of Fig. 28 two components are instantiated with their 
generic parameters being set to the type T and the value n. Furthermore, both sub-
components receive a component parameter in round brackets, which is 0 in L.6 and 
1 in L.7.  

To interconnect the subcomponents and to connect them to the parent component 
in the first place, we need to create connectors. The source of a connector must be 
either an output port of a sibling or subcomponent or an input port of the enclosing 
component. Similarly, the target of a connector must be either an input port of a 
sibling or subcomponent or an output port of the enclosing component. A connector 
is created using the connect keyword followed by the source port, the arrow 
operator ->, and a target port. Ports of subcomponents can be referenced by using 
the subcomponent’s name and the dot access operator. Connector examples are given
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Fig. 29 An EMA architecture example featuring port and component arrays. The component Main 
contains nAdd2 components, each operating on one of n operand pairs coming from the port arrays 
A and B. The  Mult2n component computes the product of 2n operands passed through the port 
arrays A and B of the Main component to the port array factors of Mult2n 

in L.9-13. Connectors define explicit dataflows. At execution time, data is exchanged 
only between ports connected by connectors. 

Once a component cannot be subdivided into smaller subcomponents, it can be 
linked to a concrete behavior as will be discussed later. In standard EMA, the struc-
ture, i.e. the subcomponents as well as the connectors between them, is fixed at 
design-time. 

Modeling cooperative systems and agent networks often requires the replication of 
large numbers of similar components and the interconnection thereof. EMA enables 
the designer to create multiple similar components and/or ports by means of arrays. 
Based on the array syntax of many languages, an array is created by appending the 
array size to the port or component name in brackets. For instance, in Fig. 29 we 
define the input ports A and B as well as the output port C as port arrays of length 
n. Since parameter n affects the interface of Main by changing the length of the 
port arrays A, B, and C, it cannot be defined as a component parameter, but must be 
a generic parameter instead. 

In this example we demonstrate two interconnection patterns which are commonly 
used when dealing with port and component arrays. In the first one, we instantiate 
an array of components to deal with an array of incoming streams. Therefore, we 
create n adders of the component type Add2 in L.7, each instance to operate on two 
scalar inputs. Now, we need to connect the ports of the two arrays A and B of the 
parent component to the respective subcomponents, i.e. A[1] and B[1] should be 
connected to adder[1] and so on. This can be done in just one line, cf. L.10, by 
selecting the elements 1 to n from the port array A and, similarly, the components 1 
to n from the adder component array. The connect operator connects each source 
element to the respective target element based on the index. Since this connection
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Fig. 30 Graphical views of the component defined in Fig. 29. On the lhs, the elements of two port 
arrays are connected to target ports of a component array. On the rhs, a port array is connected to 
another port array 

pattern is often applied to all elements of an array, EMA offers syntactic sugar 
allowing the developer to leave out the indices of the first and last elements as is 
done in L.11. Similarly, in L.12 the output of each component in the adder array is 
connected to a corresponding port in the target port array C. This structural pattern 
is depicted graphically in the view on the left side of Fig. 30. 

Furthermore, we can connect a port array to the port array of a target compo-
nent, let this component aggregate the data and output a single result or a constant 
number of values. In our example, the port array A is connected element-wise to 
the first n elements of the input port array of the multiplier component of type 
Mult2n in L.14, while the port array B is connected to the remaining n input ports 
of multiplier in L.15. The output of the multiplier component is forwarded 
to the output port D of the enclosing component in L.16. This connection pattern is 
depicted graphically in the view on the rhs of Fig. 30. 

4.4 Execution Semantics 

Standard EMA has a synchronous and weakly causal execution semantics, which is 
based on the FOCUS theory [ 3] and inspired by Simulink [ 40]. In each cycle, every 
component is executed exactly once. Once a component has finished its execution, 
the computation results are immediately available at its output ports. We assume that 
data transmission over connectors is lossless and has no delay. Connectors transmit 
data instantly, i.e. when a source port of a connector is updated, the data is replicated 
immediately to the target port. A component is only allowed to be executed, once
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Fig. 31 This example shows two C&C architectures Main1 and Main2, which are semantically 
equivalent in EMA due to its synchronized and weakly causal execution model, but which might 
have different interpretations in a language with strongly causal semantics 

all of its predecessors, i.e. components connected to its input ports via a connector, 
have finished execution. Therefore, the identification of a dataflow-based execution 
order is crucial for a correct realization of the model semantics. A fixed execution 
order is established at compile-time and no re-scheduling needs to be performed 
at runtime. This is similar to Simulink’s sorted execution order list. 2 In EMA, the  
C&C model is flattened at compile-time before the execution order is computed. 
Hence, only atomic components receive an execution order id. In EMA, multiple 
component instances can share a single execution order id if the execution order 
of these respective component instances can be exchanged without affecting the 
computation results. For instance, the adders of the adder component array of Fig. 
28 can be executed independently. 

At runtime all the components are executed sequentially based on the execu-
tion order list in each cycle. A cycle is finished when all components have been 
executed. The next cycle can be started, once the preceding cycle is finished. In 
EMA the input until time . t completely determines the output until time . t rendering 
the semantics weakly causal [ 3], which is convenient for modeling algorithms and 
physical processes. As an example consider the two architectures in Fig. 31. Both  
systems have the same semantics in EMA and can be described mathematically 
using the equation .Ck = (Ak + Bk) Bk, where . k is a sequential index. In contrast, 
if the system were strongly causal under the assumption that each subcomponent 
required. n timesteps to compute and communicate the output, the equations describ-
ing Main1 and Main2 would become .Ck = (Ak−n + Bk−n) Bk−n for the left and 
.Ck = (Ak−2n + Bk−2n) Bk−n for the right model, respectively. 

Finding an execution order for linear models, i.e. models without cyclic port 
dependencies, is straightforward: each component instance is put on the execution 
list after all component instances its input ports depend on. When structural loops 
are present in the model, i.e. when there is a path from a subcomponent’s output to 
its own input without a delay, the compiler checks if the loop is algebraic. If yes, the 
compiler tries to transform the algebraic loop to a loop-free equivalent model.

2 https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html, 
accessed November 25, 2022. 
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If an explicit solution cannot be found, i.e. if the loop does not correspond to 
a known (solvable) pattern, it can be solved at runtime using an algebraic solver. 
Since this must be done in each timestep and there is no guarantee that a solution 
exists, a runtime solver would not only affect the runtime performance heavily, but 
might also lead to unpredictable behavior, which must be avoided in safety-critical 
systems. For this reason we only allow loops, which can be transformed into loop-
free architectures at compile-time. If no such transformation can be found, the model 
is considered invalid. 

To resolve algebraic loops, knowledge of the component behavior is required. 
A means to integrate behavior models into EMA components will be discussed in 
Sect. 4.5. 

4.5 MontiMath 

MontiMath is an imperative language developed for the design and implementation 
of math-heavy algorithms and to describe physical processes. It has been inspired 
by MATLAB’s matrix-oriented paradigm. However, in contrast to MATLAB, Mon-
tiMath uses the EMA type system, which makes it a statically and strictly typed 
language similar to EMA itself. An example showing the basic language constructs 
is given in Fig. 32. The declaration of a MontiMath variable requires a type def-
inition, which is expressed by preceding the newly declared variable by an EMA 
type, e.g. Q(0 Ohm : 1 nOhm : 1 MOhm). ̂ {2,2} impedance. The syn-
tax to define a matrix constant is the same as in MATLAB, but the literals inside the 

Fig. 32 This listing shows a simple MontiMath example exhibiting the main language constructs 
including variable declarations, matrix literal definitions, loops and conditions
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matrix can be enriched by système international d’unités (SI) units if needed. As in 
MATLAB, a matrix constant is defined in square brackets. Thereby, columns and 
rows are separated by commas and semicolons, respectively. The initialization of the 
impedance matrix impedance modeling a two-port network can hence be written 
as impedance = [10 Ohm, 5 Ohm; 6 Ohm, 8 Ohm];. 

To maintain compatibility to MATLAB, MontiMath indices start with 1 as 
opposed to most general purpose programming languages (GPLs), where arrays 
are zero-based. Scalars are treated as .1 × 1 matrices, but the square brackets can be 
dropped when defining a scalar literal. Other than in MATLAB, statements, except 
conditional statements and loops, need to be terminated with a semicolon. 

MontiMath supports the typical operators needed in many computations including 
addition (+), subtraction (-), multiplication (*), division (-), and power (. ̂ ). If applied 
to matrices, these operators perform the corresponding algebraic matrix operation, 
e.g. a matrix multiplication. Division by a matrix, e.g.A/X, is semantically equivalent 
to multiplying the dividend with the inverse of X, i.e. A/X is equivalent to A*X.ˆ-1 
or A*inv(X). 

Furthermore, MontiMath supports the Hadamard product or element-wise multi-
plication (.*), inverse Hadamard product (./), and element-wise power (.. ̂ ). The trans-
pose operation for real and the Hermitian transpose operation for complex-valued 
matrices can be expressed by appending the apostrophe operator (’) to a matrix name, 
e.g. A’. Furthermore, the entries are conjugated in the complex case. Since matrix 
dimensions are statically typed, incompatibilities are detected at compile-time. 

MontiMath supports the standard control flow constructs including for loops 
and if clauses, enabling us to write arbitrarily complex algorithms. Many tasks in 
CPS engineering can be expressed as optimization problems, e.g. model-predictive 
controllers. For this reason, we introduce optimization statements in MontiMath. 
The syntax provides dedicated keywords for optimization problems to come as close 
as possible to the original mathematical formulation enabling the developer to write 
down the objective function, to define the optimization variable, as well as a set of 
constraints. 

A MontiMath program can be embedded into an EMA component by means of 
an implementation block as is shown in Fig. 33. This way the MontiMath script is 
executed in every execution cycle of the EMA component. It can read the input ports 

Fig. 33 An EMAM model embeds a MontiMath script into an EMA component
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of the EMA component and write the computation results to the output ports. To 
let a MontiMath script pass variable values from one execution cycle to another, we 
introduce the static keyword. A variable declared with this modifier, e.g.static 
Q cumulativeError, is saved in a cycle-independent scope. Its value does not 
get lost when an execution cycle is finished and can be reused in the next cycle. 
Alternatively, variables can be passed between cycles by feeding the output of a 
component back to one of its input ports and putting a delay block in between. 

The modular structure of the EMA language family enables an easy composition 
with other modeling languages to be used in the implementation block of an EMA 
component for the definition of the component behavior. The language used can be 
another domain-specific language (DSL) or a GPL such as C++ or Java. For the com-
position to work, the embedded language must have a MontiCore implementation 
[ 23]. A particularly important DSL for component behavior definition is the deep 
learning modeling language MontiAnna [27, 35, 36]. It enables a concise modeling of 
deep neural networks as directed acyclic graphs (DAGs) of neuron layers. The Mon-
tiAnna generator produces code for data loading, training, and execution of the neural 
network. Furthermore, it controls the machine learning lifecycle of the deep learning 
component, e.g. supporting data management [ 2] and deciding whether a training 
phase is needed or can be skipped if a trained model is already available, based on a 
machine learning artifact model [ 1]. MontiAnna has been applied to model deep neu-
ral networks for various domains, including image processing convolutional neural 
networks (CNNs) [ 35], language processing networks [ 35], reinforcement learning 
applications [ 19], generative adversarial networks (GANs), variational autoencoders 
(VAEs), etc. A  CNN for the recognition of handwritten digits embedded into an EMA 
component is depicted in Fig. 34. The neural network is assembled from predefined 
layers and the custom layer conv in L.13-21. While the example is a linear graph 
of layers, arbitrary DAGs can be constructed using MontiAnna. 

4.6 Cooperative Agents and EmbeddedMontiArc Dynamics 

Until now the focus was on static architecture modeling of closed, isolated systems 
such as autonomous vehicles using EMA. The elements of a static architecture are 
fixed at design time and cannot be altered, removed, or added at runtime. With this 
approach we can cover the majority of closed systems such as embedded devices and 
control software. However, cooperative driving systems which are highly dynamic 
by nature require the ability to restructure or reconfigure parts of their architecture 
according to changing circumstances and requirements at runtime. For this reason, 
we are going to discuss an extension for EMA introducing dynamics to architectural 
elements such as ports, connectors, and components based on [ 26]. 

Different forms of dynamic architecture description languages (ADLs) are known 
in the literature tackling different concerns of architectural dynamics [ 5]. In particu-
lar, the choice of appropriate means of architectural runtime reconfiguration depends 
on the kind of system under development and the application domain. The concepts
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Fig. 34 A CNN for handwritten digit recognition embedded into an EMA component, also referred 
to as an EMADL component 

discussed in this chapter are intended for the Local Traffic System (LTS) domain 
discussed in the previous sections. Our design decisions will hence be based on the 
following list of assumptions: 

• The agents are instances of compatible types or share a common interface. In the 
automotive domain, for instance, agents are equal or similar vehicles or roadside 
units (RSUs). The agents are independent processes with proprietary goals. They 
are not part of and do not contribute to the functioning of a bigger system (in 
contrast to an aircraft architecture designed using a language like Architecture 
Analysis & Design Language (AADL), where architectural dynamics is used to 
model functional variations of a single but complex system). 

• The agents do not know each other by default and there is no communication 
between them at the beginning. Furthermore, the total number of agents living in 
the system is not known to an agent. Each agent’s knowledge about its peers is 
limited to what it perceives through its sensors and communication. 

• The number of agents in the system can vary throughout time. Agents can be 
spawned without existing agents to be notified explicitly. In the cooperative vehi-
cles domain, new vehicle instances can come into existence by being manufactured 
or by entering the area of interest from outside. 

• There is a communication channel which can be used by the agents to send and 
receive messages to and from other agents, respectively. This channel can be used 
for both directed and broadcast communication. However, since we are dealing 
with the application layer, we will not care about lower network protocols in this
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work, assuming an end-to-end channel connecting the logical interfaces, e.g. EMA 
ports, of two different agents directly. 

To be able to model interactions between participants of a dynamically changing 
traffic system, the C&C language used needs to support changes in the component 
structure and variations of the dataflows at runtime. Such changes can be induced 
by specific events, such as the occurrence of a new traffic participant, which the 
developer should be able to model with the same language, as well. 

The aim of this section is to introduce the main concepts of an EMA language 
extension for dynamic reconfiguration, which we are going to refer to as Embedded-
MontiArc Dynamics (EMAD). The extension is conservative [24], meaning that stan-
dard, non-dynamic models can be parsed and generated by EMAD without changes. 

4.7 EMAD Execution Semantics 

In Sect. 4.4 we have discussed the synchronous execution semantics of EMA. The  
system is executed stepwise. In each step all the subcomponents are executed accord-
ing to an execution order determined at compile-time. To enable reconfiguration and 
to support dynamically evolving architectures, we extend the execution semantics of 
EMA by a reconfiguration phase which takes place in each execution cycle. 

In the reconfiguration phase, reconfiguration triggers are checked and, if present, 
the corresponding reconfigurations are performed. This possibly activates further 
reconfiguration triggers which are then handled as well, until the reconfiguration 
queue is empty. We introduce two main concepts for runtime reconfiguration in 
EMAD: 1. Data-triggered and 2. Service-based reconfiguration. 

4.7.1 Data-Triggered Internal Reconfiguration 

The simplest way to trigger and model reconfiguration is the data-triggered approach. 
Thereby, a reconfiguration is initiated when a signal fulfills a given condition, e.g. 
a port value exceeds a predefined threshold. The reconfiguration is executed and 
maintained as long as the condition is satisfied. The approach can be easily motivated 
and illustrated by non-linear components used in electronics. For instance, a diode 
is conductive only if the applied voltage is higher than the threshold voltage; a 
multiplexer passes the data signal chosen by a control signal; when a battery electric 
vehicle (BEV) is connected to a charging station, the connection is signaled to the 
charging electronics which reacts by enabling the charging process as long as the 
connection signal is active. 

To enable modeling data-triggered reconfiguration, we extend the body of an 
EMA component definition by a list of reconfiguration blocks. The header of such a 
reconfiguration block contains a condition formulated as a Boolean expression over 
port values and architectural properties, which needs to be fulfilled in order to trigger
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Fig. 35 A multiplexer component choosing two of its inputs to be passed to the inner multiplexer 
dependent on a control signal 

the reconfiguration. The body of the reconfiguration block follows for the most part 
the same syntax as the body of a standard non-dynamic component and contains a 
declarative definition of the architectural changes to be performed as a response to 
the triggering event. These changes are rolled back as soon as the reconfiguration 
condition in the reconfiguration block header ceases to hold. 

To illustrate the syntax and the mechanics behind data-triggered reconfiguration, 
we introduce a simple multiplexer example in Fig. 35. The  BMux4 component has 
four data inputs of a generic type T and two Boolean control inputs. The purpose of 
the component is to choose one of the four input signals of the inSig port array 
based on the values of the control signals (ctrSig port array) and to forward it 
to the output port. The idea is to realize this behavior by altering the connectors 
corresponding to the control signal. Therefore, we first choose two of the four data 
signals (the first two or the second two ports of the inSig array) based on the value 
of inSig[1] and then forward them as well as a further control signal inSig[2] 
to a subcomponent of type BMux2, which in turn uses the received control signal 
inSig[2] to choose one of the remaining two data signals. Its choice is then output 
through the parent component’s output port. 

The static connectors of the component are defined in L.8-9 to connect the first 
control signal with the inner multiplexer and its output to the output of the parent 
BMux4. There are two reconfiguration definitions given in L.11-14 and L.16-19. In 
L.11 and L.16 the .@ symbol denotes the beginning of a reconfiguration condition. 
The actual reconfiguration code is a block enclosed in curly brackets following the 
condition. As can be seen in L.12-13 and in L.17-18, the configuration code is 
composed of ordinary connect statements as we know them from the static EMA
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syntax. The connections defined in these two blocks are established and released in 
the reconfiguration phase at the beginning of an execution cycle as discussed earlier. 
In this example, this is used to choose two of the four incoming inputs to be forwarded 
to the child component mux2. 

A reconfiguration is executed once the condition becomes true and remains active 
as long as the condition remains true, i.e. as long as the value at the port ctrSig[1] 
is true in L.11 and as long as it is false for L.16. When the condition of an active 
reconfiguration goes back to false, the reconfiguration is rolled back, i.e. all the 
architectural elements defined in the reconfiguration block are removed (irrespective 
of whether or not another reconfiguration becomes active instead). In our example, the 
two reconfiguration conditions are mutually exclusive, but their disjunction is always 
true. Consequently, exactly one of the two reconfigurations is active at any given point 
in time. In general, arbitrarily many reconfigurations (including zero) can be active 
in parallel. However, each combination must result in a valid architecture. That is, an 
input port must not be the target of more than one connector. Furthermore, under no 
circumstances an input port may be floating. This is verified by context conditions 
at compile-time. Consequently, none of the two reconfigurations can be removed 
from the component in the multiplexer example: when no dynamic reconfiguration 
is active, only the static part of the architecture is present. In this case, the inSig 
ports of mux2 would be floating. 

Note that in order to access the value of a port in an EMAD reconfiguration, we 
use the port function value() accessible for each port of the component using the 
:: operator. The syntax highlights that we are not trying to use a model element in 
a conventional manner (which would require a dot), but want to perform a runtime 
query related to a model element instead. The function is available in reconfiguration 
conditions and bodies only. If the port we are referring to belongs to a subcomponent, 
we can access it by specifying the port’s name preceded by the (subcomponents’) 
instance name, e.g. mux2.outSig::value(). Note that a component can only 
query the values visible in its scope, i.e. values of its own or of its immediate sub-
components’, but not of its subsubcomponents’ or the parent component’s ports. 

A reconfiguration condition can be an arbitrary Boolean expression. Similarly to 
other languages the Boolean OR and the Boolean AND operators are denoted by || 
and &&, respectively. For equalities and inequalities we use the following operators: 
.==, .<=, .>=, . <, . >. 

Reconfiguration conditions can be formulated in terms of an expression sequence 
in order to identify sequence patterns. A value sequence can be notated similarly 
to an EMA row vector with the oldest value coming leftmost. To avoid confusions 
with vector-valued variables, the tick keyword is used as a separator instead of a 
comma. For instance, the condition ctrSig[1]::value() == [true tick 
false tick false] is evaluated to true at execution cycle . n if the following 
sequence of values was observed: true at.n − 2, false at.n − 1, false at. n. The  
type of each expression in the sequence must be compatible with the corresponding 
port type. The sequence notation implies that past values of the underlying port need 
to be stored at runtime. In this particular example, in addition to the current value at
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Fig. 36 The two architectural states of the BMux4 component 

the ctrSig[1] port, the component needs to store two of this port’s past values in 
order to be able to evaluate the reconfiguration condition in each execution step. 

Until now, we have been using a graphical representation of EMA models to 
facilitate the understanding of the architecture. Given the fact that there is no single 
representation of an EMAD model, we need an appropriate extension of the graph-
ical syntax. Diagrams representing the two reconfigurations of the BMux4 model 
are depicted in Fig. 36. Thereby, we introduce two syntactic elements: first, the 
reconfiguration condition triggering the reconfiguration is specified in a box under 
the component’s name. Second, model elements, which are added in this recon-
figuration, are denoted by dashed figures instead of solid ones. In this example, 
only connectors are created dynamically at runtime. Components and ports can be 
added in a similar way by the means of dynamic arrays, which will be discussed in 
Sect. 4.7.2. 

The aim of the example in Figs. 35 and 36 was to introduce the main ideas behind 
data-triggered reconfiguration. The exactly same behavior can be achieved with a 
mode model with two states [ 21].  Using a mode  finite state machine (FSM) for 
a system with a small number of states and state transitions can be favorable as 
it facilitates a state-centric model analysis. In cases with many, possibly partially 
overlapping reconfiguration conditions and state transitions between all possible 
states, however, the data-triggered reconfiguration concept presented in this chapter 
can lead to much more concise models, since we don’t need to define all possible states 
explicitly and no transitions need to be modeled at all. On the other hand, modes 
are more powerful since reconfigurations can depend on the current architectural 
state, which is not possible with our concept. We recommend using modes and data-
triggered reconfiguration interchangeably depending on the requirements and the 
nature of the modeled system.
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4.7.2 Service-Based External Reconfiguration 

To enable the creation of more complex, propagating reconfigurations, we introduce 
a second way of triggering architectural changes at runtime, the service-based recon-
figuration. The idea behind it is to trigger reconfigurations by external architectural 
change requests and to propagate such requests from component to component. 

We are going to present the concepts of service-based reconfiguration by the 
example of a cooperative collision prediction component given in Fig. 37. The  
CollisionSystem component receives the planned trajectories from other vehi-
cles of an LTS and checks each of these trajectories for a collision with its own 
one. Each trajectory is input into the component through a dedicated port. Further-
more, each pairwise collision check is executed by a dedicated subcomponent of 
type CollisionCalculator. 

Before we proceed with the discussion of the service-based trigger mechanism, 
we need to introduce the concept of dynamic component and port arrays. In Sect. 4.3, 
static component and port arrays were introduced, allowing us to model an arbitrary 
but fixed number of similar components and ports in a single line of code. In the 
collision detection example described here we don’t know at design time, how many 
traffic participants will be present in the LTS. Furthermore, the number of peers 
can change over time. The concept of dynamic arrays enables us to cope with this 
modeling challenge by allowing us to specify a range instead of a fixed number of 
elements in the array. At runtime the concrete number of elements in the array can 
change. 

Fig. 37 Collision system of an autopilot calculating potential collisions with up to 32 other vehicles
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The syntax is based on the range syntax of EMA types: the modeler needs to spec-
ify the minimum and the maximum number of elements inside the square brackets 
of an array declaration separated by a colon instead of a single length value. This is 
done in L.4 and L.5 of Fig. 37 to define a dynamic port array and in L.8 to define 
a dynamic component array. In the case of port arrays it is obligatory to use the 
dynamic keyword. If the component interface contains dynamic port arrays, it is 
also necessary to mark the component with the dynamic keyword in the header, cf. 
L.1 of Fig. 37. 

In case the lower bound of the element count is greater than zero, the minimum 
number of elements will be created at instantiation of the component. Once the upper 
bound of the elements in an array has been reached, events leading to an instantiation 
of further elements cannot be handled. The availability of free port and/or component 
slots in an array can hence be regarded as a further implicit condition of a reconfigu-
ration. Upper bounds on elements in an array have been introduced with embedded 
systems in mind often having very limited resources and strict performance require-
ments. The upper bound can be set to infinity by putting oo, similarly to EMA type 
bounds. However, since this can have a negative impact on the performance of an 
overloaded system, this is not an advisable modeling pattern and results in a warn-
ing. A system knowing its limits can react to an overly high demand in a controlled 
manner. 

In our collision system example, the port arrays otherStatus and 
otherTrajectory are supposed to receive status and trajectory messages from 
other cooperative vehicles in the LTS. The maximum number of connections is lim-
ited to 32. On the other hand, if there are no other vehicles in the network, the port 
arrays can be empty. 

For each connected vehicle, the CollisionSystem component provides an 
individual CollisionCalculator component instance. Accordingly, the num-
ber of these instances varies between 0 and 32, as well. At system start up, the 
minimum number of components and ports is instantiated, i.e. zero. 

The question arises how the free slots in the component and port arrays can be 
used and released at runtime. We realize this by introducing a reconfiguration service 
interface. This interface allows external components or even external software to 
request reconfigurations. More precisely, it allows external clients to request a port 
from a dynamic array. 

The reconfiguration interface is defined not just by declaring a dynamic port 
array, but by the reconfiguration conditions using it, cf. L.13 in Fig. 37. To  
query reconfiguration requests in a reconfiguration condition, we introduce the 
new port property connect, which is basically a Boolean flag indicating whether 
a connect request for this port has been issued, bundled with an id to avoid 
confusions with other requests sent to the same port. Similarly to the value at 
a port, the connect property can be queried using the :: operator, i.e. as 
portName::connect(). A reconfiguration condition can be composed as a 
conjunction of arbitrarily many connect atoms, i.e. portName1::connect() 
&&,...,&& portNameN::connect(), where the port names used must be 
dynamic port arrays declared in the component’s interface. Disjunctions and nega-
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tions of connect atoms are forbidden by a context condition to prevent inconsisten-
cies (in a disjunction we do not know at design-time which port(s) will be actually 
requested and hence, cannot define meaningful reconfigurations using these ports). 

The resulting reconfiguration interface can be used by issuing connect request for 
all the ports required by the reconfiguration condition simultaneously. In our example 
this means that, due to the reconfiguration condition in L.13 of Fig. 37, connections 
to the otherStatus and the otherTrajectory port must be requested at 
once. Such a request is created in an EMAD model in the reconfiguration body 
of a parent component as connect statements targeting the corresponding dynamic 
port arrays. This is shown in Fig. 38, where a component holding an instance of 
CollisionSystem connects to the aforementioned port arrays otherStatus 
and otherTrajectory of the latter in L.4-5 of its own reconfiguration body. 

Note that the reconfiguration bodies of Figs. 37 and 38 are chained: 
the reconfiguration of the latter triggers the one of the former. If 
ReconfigurationCondition in L.3 of Fig. 38 is a data-driven 
reconfiguration as discussed in Sect. 4.7.1, the chain starts in Fig. 38. If  
ReconfigurationCondition defines a reconfiguration interface similar 
to L.13 in Fig. 37, it must be triggered from another reconfiguration body itself. 
Hence, arbitrarily long service-based reconfiguration chains can be initiated by a 
data-driven reconfiguration. 

Note that the reconfiguration request issued by the parent component of the 
CollisionSystem component in L.4-5 of Fig. 38 matches the reconfigura-
tion interface defined in L.13 of Fig. 37 exactly. This is verified at compile-
time by a context condition. An invalid usage of the reconfiguration interface of 
the CollisionService component is shown in Fig. 39. Here we are trying 
to connect to the otherStatus port only. However, this is not supported and 
results in a compile-time error as there is no such reconfiguration condition in the 
CollisionSystem component. 

To be able to deal with dynamic port and component arrays in reconfiguration 
descriptions, we need a syntax allowing us to access the newly created elements. To 
do so, we introduce the ?-operator. It is used instead of the element number in square 
brackets to request and access new elements in a dynamic port or component array, 
e.g. myArray[?]. Usage of the operator is restricted to reconfiguration bodies. 

Fig. 38 The listing shows a valid usage of the reconfiguration service interface of the Collision 
System component of Fig. 37 by a parent component
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Fig. 39 The listing leads to a compile-time error since CollisionSystem does not have a reconfig-
uration triggered by requesting only the otherStatus port 

An example is given in L.14-17 of the CollisionSystem model in Fig. 37. 
In L.14 the ?-operator is used to connect the ownTrajectory port to a new com-
ponent cc[?]. Since this is the first access to cc[?] in this reconfiguration body, 
it implicitly triggers the creation of a new component instance. In contrast, further 
accesses to cc[?] in L.15-17 are pure access operations, no implicit instantiation is 
involved. If the component type of the component array requires component param-
eters, the parameter list can be passed in parenthesis right after the array brackets 
and before the dot operator, e.g. cc[?](param1, param2,...).ownTraj. 

Since the cc array has a maximum capacity which cannot be exceeded, a further 
implicit reconfiguration condition is that the maximum capacity of this array has not 
yet been reached. If, however, the array is maxed out, the reconfiguration condition 
will evaluate to false and the reconfiguration will thus not be activated. 

The reconfiguration service interface is available not only at modeling level 
allowing other components to use it, but also in the generated code. The lat-
ter can be used by any client. For instance, C++ code can be generated for the 
CollisionSystem component. Then it can be compiled to a library to be 
deployed as a building block of the vehicle run-time environment (RTE). The  RTE 
receives a stream of vehicle to vehicle (V2V) messages and redirects them to the 
right ports of the CollisionSystem library (each sender is assigned to one port). 
If a new LTS participant starts sending, the RTE can request a new port from the 
CollisionSystem library by calling a generated request function. The library in 
turn checks whether the request is satisfiable. If yes, it provides a new port instance 
the RTE can forward messages of the new vehicle to. Otherwise no reconfiguration 
is carried out and the library call returns with an error. The client can then withdraw 
the request or wait until the dynamic component satisfies the request in a future 
reconfiguration cycle. 

To facilitate the usage of the generated reconfiguration interface, we gen-
erate request methods allowing the client to require all necessary ports to 
activate a reconfiguration with a single function call, e.g. .. requestOther
. StatusAndOtherTrajectory(Port<T1> *otherStatus, Port<T2>
.*otherTrajectory), where .Port <T> is a generic class representing an 
EMA port of type T at C++ level. This way, it is not possible to create invalid 
request, e.g. requiring only an otherStatus, but no otherTrajectory port, 
when using the generated code as a library.
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Fig. 40 Adder with 0 to 32 inputs 

Figure 40 shows an example combining a dynamic interface with a MontiMath 
implementation. The purpose of the component is to compute a sum of all inputs 
and to output the result. This is a typical data aggregation example working on a 
varying number of inputs. The dynamic input port array summands can contain 0 
to 32 elements, i.e. at instantiation the component has no inputs and outputs zero 
due to the initial assignment .tmp = 0 in L.6. The loop in L.7-9 iterates over all 
ports in the summands array and adds each port’s value to the overall sum, which 
is accumulated in the tmp variable. In this example, we treat the dynamic port array 
in a stateless anonymous way. We iterate over the port array and are only interested 
in the value present at each available port without caring about its history. This is the 
natural way to deal with dynamic port arrays in MontiMath. Tracking states related to 
dynamic ports using MontiMath is possible but should be avoided. Instead, to track 
a concrete dynamic port’s history, we need to replicate a dynamic subcomponent for 
each dynamic port instance, as was done in Fig. 37. This way, each communication 
partner requiring a port in a dynamic port array is assigned a dedicated processing 
subcomponent maintaining the corresponding state. Each of these dedicated pro-
cessing subcomponents only sees a single input port of the dynamic port array it 
is assigned to instead of the whole port array. This pattern enforces the separation 
of concerns and high cohesion principle as the processing related to each commu-
nication partner is clearly encapsulated and limited to the actual logic (no explicit 
iterating over the port array is needed in the behavior implementation). 

Based on the reconfiguration mechanism described in this section, we can model 
whole reconfiguration chains to realize deep or flat reconfigurations. A deep recon-
figuration means that reconfiguration of a parent component triggers reconfigurations 
in child components. A connect to a subcomponent’s port activates this port’s con-
nect flag which can in turn be used to trigger a reconfiguration in the subcomponent. 
In the same way, the subcomponent can trigger reconfigurations in its subcompo-
nents and so on. When a parent component instantiates a static subcomponent in an 
EMAD model, it can connect its output ports immediately, e.g. as is done in L.11 
of Fig. 37. However, the subcomponent might be dynamic and new output ports 
might be added throughout the subcomponent’s reconfiguration procedures. In this 
case, the parent component can react to newly created ports of the subcomponent by
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observing the dynamic ports’ connect flags in the same way as it would observe 
connect request to its own input ports. This enables us to create reconfiguration chains 
propagating downwards into the hierarchy as well as those coming from the bottom 
and propagating upwards. 

A reconfiguration chain is always performed in one single reconfiguration phase as 
an atomic transaction, i.e. if the chain breaks at some point, the whole reconfiguration 
is considered infeasible. If a failure occurs after some reconfiguration steps of the 
chain have already been carried out, these steps will be rolled back. 

As in data-triggered reconfiguration, a reconfiguration remains active as long as 
the respective condition is fulfilled. Whenever a new port request is issued, the port 
is created and a connector connected to it, the port::connect() property is 
activated for this port. This flag and hence, the configuration remain active until the 
requesting client removes its connector to the dynamic port. If the client created the 
connector as part of an EMAD reconfiguration, it would remove it, when the condition 
of this original reconfiguration ceased to hold. If the client is an external software, it 
can use the reconfiguration service interface to roll back a reconfiguration available in 
the generated code. Such a rollback would remove all architectural elements created 
in the reconfiguration and trigger the rollback of reconfigurations of subcomponents. 
This way, a reconfiguration chain is rolled back completely. The rollback interface 
is not usable explicitly in an EMAD model to prevent arbitrary removals of ports 
leading to inconsistencies in an architecture. 

The service-based reconfiguration procedure of EMAD models boils down to the 
following steps: 

1. Request: an external component sends a set of connect requests. 
2. Reservation: the receiving component checks if the requested ports are available, 

i.e. if the corresponding dynamic port arrays do not violate their respective upper 
limit constraint. If yes, the component returns references for the new ports, i.e. the 
newly allocated array indices, to the requester so that explicit access is possible in 
the future. Otherwise, the requester is informed that its request has been rejected. 

3. Reconfiguration: in the reconfiguration phase of the component, the reconfigu-
ration bodies of all valid reconfiguration requests, i.e. those fulfilling a reconfig-
uration condition, are realized (L.14-17 in the CollisionSystem example). 
Consequently, the component reacts to the external reconfiguration request by 
internal self-modifications. 

4. Follow-up requests: possibly, the reconfiguration instructions of the previous step 
contain the creation of new ports and/or subcomponents, as well. In this case, the 
component becomes a requester itself initiating a follow-up reconfiguration in its 
subcomponents or external components. 

In our target domain of interconnected vehicles we mostly need the combination 
of both data-driven and service-based reconfiguration, which, when used together, 
can result in a powerful symbiosis. Reconfigurations which emerge as reactions to 
environmental changes measured by sensors or to incoming messages can be mod-
eled using the following pattern: a data-driven event stands at the beginning of an
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Fig. 41 A reconfiguration chain involving input and output ports of the PlatoonManager com-
ponent. An arriving platoon message causes the creation of new input ports in the diagram on the 
left. Follow-up reconfigurations inside the PlatoonManager result in a new output port and a 
new outgoing connector as depicted in the diagram on the right 

event chain. The reconfiguration caused by this event requests new components and 
ports triggering service-based reconfigurations, which in turn trigger further service-
based reconfigurations. As soon as the original trigger vanishes, the reconfiguration 
chain is rolled back completely and the architecture returns to its initial state. A data-
driven source event can be based on a sensor measurement (including the vehicle’s 
antenna receiving messages from other cooperating traffic participants). A particular 
measurement value or the reception of a specific message would trigger a reconfigu-
ration of the controller architecture, the internal reconfigurations of which are mostly 
service-based. 

An important aspect of EMAD is that there is no explicit way to remove archi-
tectural elements. Instead, elements are removed implicitly, whenever the triggering 
reconfiguration condition switches back to false. This guarantees that an architecture 
can always be put back into its original state. 

A further important property is that all possible reconfigurations are fixed by the 
design time model. Component and port replication is limited by an upper dynamic 
array size. Consequently, there is only a finite number of possible architectural states 
at runtime. This is an important design decision preventing a system to reach unex-
pected states and behaviors and facilitating verification. 

Often reconfigurations trigger each other resulting in reconfiguration chains. We 
can visualize such chains using reconfiguration views, each view only showing the 
part of the model which is being changed in the current reconfiguration step. One 
such reconfiguration chain is depicted using views in Fig. 41. In the first reconfigura-
tion view, depicted on the left, the CoOpAutopilot component, a controller of a 
cooperative vehicle, instantiates a platoon manager when a platoon port is requested 
and the velocity is greater than 0. In a second reconfiguration step, an inner compo-
nent of the platoon manager requests a new output port and the CoOpAutopilot 
component reacts by creating a new connector. The ports triggering the reconfigu-
rations are emphasized with an exclamation mark. Additionally, the data condition 
(v>0) is set next to the corresponding v port. Note that the PlatoonManager
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component is depicted using a dashed line in the left view, while it is solid in the 
view on the rhs. This is because the component is already there, when the second 
reconfiguration event is triggered. A big arrow between the two views stresses the 
order of the reconfigurations. Obviously, a reconfiguration must have taken place 
inside the PlatoonManager component to request the creation of its new output 
port PlatoonManager.platoonMsg. This reconfiguration (chain) is not part of 
the depicted sequence as it is not in the scope of the CoOpAutopilot component 
and should be visualized in a separate view chain. 

4.8 Conclusion 

In this chapter we discussed EMA, an architecture description language based on the 
component-and-connector paradigm. The language facilitates the component-based 
design of technical systems such as cooperative vehicles thereby enforcing a compli-
ance with functional safety standards. While core EMA only allows the description of 
static architectures, its conservative extension EMAD enables the developer to model 
architectural changes such as the creation, removal, and (re)connection of compo-
nents which are performed at runtime. Due to the conservative extension property, 
each valid EMA model is also a valid EMAD model [ 24]. 

EMAD introduces an event-based reconfiguration system which can react to data-
driven as well as architectural events. An EMAD component can instantiate ports, 
subcomponents, and connectors at runtime as a reaction to a trigger event. Thereby, 
it can trigger further events of its subcomponents, enabling the modeler to define 
complex reconfiguration chains. 

In EMAD, all possible configuration states are implicitly defined at design time, 
maintaining the possibility to analyze, predict, and verify the behavior of dynamic 
components at design and compile-time. A set of context conditions ensures that 
reconfigurations never clash, making the language applicable to safety-critical sys-
tems. 

In particular, EMAD can be used to model cooperative systems and their dynam-
ically changing communication channels and processing chains, e.g. in the context 
of local traffic systems. 

To embed behavior into EMA and EMAD components, two behavior description 
languages are presented: first, MontiMath is a strongly typed matrix-based scripting 
language offering common constructs such as loops and conditions; second, the 
MontiAnna language can be used to describe deep neural networks as DAGs of neuron 
layers, enabling the integration of AI components into larger software architectures.
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5 Conclusion 

This work demonstrates basic concepts for cooperation and interaction of 
autonomous vehicles. Basic approaches to the architecture and formation of local 
traffic systems are shown which are subsequently verified in a real-time verification 
method for cooperative vehicles. The verified trajectories are collision free and dead-
lock free. The presented modeling language allows a formal description of vehicle 
software architectures as well as cooperation and interaction of distributed systems. 

Although the presented concepts represent and implement the feasibility and basic 
approaches, there is a need for further research. The focus of future work should be on 
further investigation of the reciprocal influence of local traffic systems as well as the 
cooperation algorithms used and the resulting requirements for necessary modeling 
languages for distributed systems. Further research is needed in the standardization of 
necessary V2X messages as well as algorithms used. In the area of V2X messages, it is 
still not clear whether WLAN-based standards such as ITS-G5 or cellular network-
based standards such as C-V2X will prevail. While WLAN-based standards are 
already used by some manufacturers, C-V2X offers significantly greater potential. 
With regard to the algorithms used for grouping and actual cooperation, there is a 
need for more research when considering possible failure cases such as a spontaneous 
communication interruption with regard to functional safety and achieving required 
safety standards like ISO 26262 ASIL D [ 9]. 
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Implicit Cooperative Trajectory Planning 
with Learned Rewards Under 
Uncertainty 

Karl Kurzer, Philipp Stegmaier, Nikolai Polley, and J. Marius Zöllner 

Abstract Urban traffic scenarios often require high interaction between traffic par-
ticipants to ensure safety and efficiency. While the capabilities of automated driving 
systems have made remarkable progress in the past decade, they lack two criti-
cal abilities: anticipation and provision of cooperation between traffic participants 
without communication, i.e., implicit cooperation. Observing the behavior of other 
traffic participants, humans infer the need to cooperate and act accordingly. Our work 
presents a system that utilizes a sampling-based cooperative trajectory planner that 
accounts for all possible actions of other traffic participants, enabling cooperation. 
Further, we extend the planner employing learned reward models based on expert 
trajectories to demonstrate its ability to adapt to a desired human driving style for 
smooth integration into today’s traffic. Lastly, we address the issue of measurement 
uncertainties to robustify the decision-making process in real-world environments 
utilizing return distributions over start states according to a belief. We exemplify the 
effectiveness of our solutions on 15 challenging multi-agent scenarios. 

1 Introduction 

While the capabilities of Automated Vehicles (AVs) are evolving rapidly, they still 
lack an essential component that distinguishes them from their human counterparts: 
the ability to cooperate (implicitly, i.e., without explicit communication, e.g., through 
eye contact or indicators) with others. Many of the remaining challenges in Auto-
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mated Driving (AD) are due to the complex interactions between AVs and humans. 
Thus, it is paramount to equip future AVs with the ability to implicitly demand and 
provide cooperation where necessary to integrate smoothly into today’s heteroge-
neous traffic. 

Our work addresses this challenge with three key contributions: 

1. A cooperative multi-agent trajectory planner in continuous space, see Sect. 2. 
2. A method to infer reward functions from human expert demonstrations to ensure 

a human-like behavior, see Sect. 3. 
3. A method to integrate measurement uncertainties into the algorithm to robustify 

the planning, see Sect. 4. 

The code of our work is publicly available on GitHub 1 under the BSD 3-Clause 
License. 

2 Implicit Cooperative Trajectory Planning 

Cooperative planning considers all traffic participants’ possible actions, intentions, 
and interdependencies, and seeks to maximize the total utility by following the best 
combination of actions. It is important to note that cooperation does not need to 
be beneficial for an individual agent (rational cooperation) but that it is sufficient if 
the combined utility increases compared to a reference point (i.e., a possible action 
sequence that fulfills the goals of individuals less efficiently) [ 15, 39]. 

2.1 Related Work 

While the reward models vary depending on the desired behavior of the respective 
method [ 37], all approaches model the problem of implicit cooperative trajectory 
planning as a Markov decision process (MDP) or a partially observable Markov 
decision process (POMDP). And all approaches aim to find an optimal trajectory or 
policy by planning or learning. 

The following methods were developed for cooperative planning. The major-
ity of methods take the interdependence of each traffic participant’s choices into 
account; nevertheless, some call for communication, and only one can plan cooper-
ative maneuvers for continuous action spaces required by obstructed road designs 
and congested urban areas.

1 https://github.com/ProSeCo-Planning. 

GitHub
 19468 14031 a 19468 14031 a
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2.1.1 Planning 

Schwarting et al. [ 46] propose to determine the best individual plan using an egoistic 
driver model. If this strategy causes a conflict, a pairwise recursive conflict resolu-
tion procedure is started assuming that the traffic ahead influences the decision. The 
algorithm chooses the best non-conflicting solution. Similarly, Düring et al. [ 15] also  
conduct an exhaustive search over a communicated set of discrete actions between 
two vehicles and choose the joint action with minimum cost. Using this as a founda-
tion, extensions have been created that incorporate fairness enhancements to prevent 
cooperation from becoming one-sided [ 39] and precomputed maneuver templates 
that match a given traffic scene with particular initial constraints to expedite the 
search [ 35]. Others propose a game-theoretic, interactive lane change method based 
on an exhaustive search [ 4]. 

Conducting an exhaustive search has the drawback of quickly becoming intractable 
for a larger number of traffic participants or longer time horizons. Thus, the problem 
of cooperative decision-making has been addressed by employing Monte Carlo Tree 
Search (MCTS) to estimate the best maneuver combination over multiple time steps. 
While some approaches rely on higher-level abstractions, such as the probability of 
participants yielding and driver models such as the Intelligent Driver Model (IDM) 
[ 22, 33], other approaches model the complete interaction and reasoning [ 29, 55]. 

Hubmann et al. [ 20, 21] propose interactive intersection-navigation and lane-
change systems, modeled using POMDPs. They are solved via the Adaptive Belief 
Tree algorithm [ 23, 48]. 

Based on game-theoretical modeling, Schwarting et al. present an interactive lane-
changing and intersection-navigation method [ 47]. Each of the traffic participants is 
considered with its entire action space. The cooperative component is included by 
assessing the agent’s social value orientation. A state-of-the-art nonlinear optimizer 
is employed to solve the nonlinear program. 

Other approaches are not explicitly cooperative. However, they capture the inter-
dependencies of actions as they evaluate the risk resulting from different maneuver 
combinations. They predict the motions of vehicles [ 32] and can generate proactive 
and cooperative driving actions [ 3]. 

2.1.2 Learning 

Model-free Reinforcement Learning (RL) is used by Saxena et al. to propose an 
interactive lane change method in dense traffic [ 42]. Similar to the Social Generative 
Adversarial Network (SGAN) [ 2], the interactions of traffic participants do not need 
to be explicitly modeled, as they are learned implicitly. The data for training is 
generated with driver models based on IDM and Minimizing Overall Braking Induced 
by Lane Changes (MOBIL) in a simulator. 

Bouton et al. propose an intersection navigation method capable of handling 
occlusions using model-free RL and a probabilistic model checker to ensure safety 
[ 8]. Two other traffic participants are modeled using rule-based models. The resulting
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interactions are learned implicitly from data during training. Further, the extension to 
scenarios with additional traffic participants is realized through scene decomposition, 
possibly leading to extremely conservative behavior. 

Similarly, they propose an interactive single-lane lane change method in dense 
traffic using model-free RL [ 7]. The interactions of traffic participants do not need 
to be explicitly modeled, as they are learned implicitly from data during training 
generated in a simulator based on IDM driver models. The cooperativeness of other 
drivers is estimated using a recursive Bayesian filter. It can be seen that an MCTS 
approach with full observability performs best. 

2.1.3 Combined Learning and Planning 

Bae et al. propose an interactive lane change method in dense traffic using the pre-
dictions of an SGAN [ 17] as a basis for planning controls using Model Predictive 
Control (MPC) [ 2]. The SGAN is trained on simulations of dense traffic using the 
IDM and MOBIL driver models. The controller uses Monte Carlo rollouts to create 
a set of trajectories during planning that is assessed alongside the SGAN predictions. 
The trajectory with the lowest cumulative cost, which does not violate the constraints, 
is chosen. This approach is limited to lane changes and uses simple driver models 
for other traffic participants. Further, the amount of interaction is reduced due to the 
planning horizon of 2 s. 

Hoel et al. propose an interactive lane change method using a combination of 
MCTS and RL [ 18]. The driver models used for other traffic participants are also 
based on IDM and MOBIL. The driver state is only partially observable, and its belief 
state is inferred using a particle filter. The action space does not include actions that 
result in collisions. An artificial neural network (ANN) that guides the sampling 
within the MCTS also generates state-value targets for the MCTS. 

2.2 Problem Formulation 

We model the cooperative trajectory planning problem with a variable number of 
non-communicating agents interacting in a Markov Game (MG). In a multi-agent 
system, the state transition and reward depend on the behaviors of all actors. But for 
every timestep, each agent individually picks an action without being aware of the 
choices made by others. All agents receive an immediate reward, and the system is 
transferred to the next state. 

Therefore, it is the aim of each agent to maximize its expected cumulative reward, 

.G(τ ) =
 

(st ,at )∈τ
γ tRat

st , (1)
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in the MG, by choosing a trajectory. τ consisting of state-action tuples.(st , at ) that 
maximize the sum of rewards .Rat

st over the time horizon discounted by the discount 
factor . γ . 

While there are multiple ways to maximize the expected cumulative reward, one 
of them is value-based RL. Here, the agent attempts to estimate the state value 
function.V π(s) for each state . s of the MDP to later determine the optimal policy. π∗
by maximizing the state value for each state, 

.π∗(a | s) = argmax
π

V π(s). (2) 

Value-based RL can find the optimal policy; however, it is very time intensive. There-
fore, in contrast to learning the optimal policy (global optimization for all states), we 
frame the problem as searching for an optimal action (local optimization for a single 
state, i.e., the current state). 

Hence, the problem is formulated as the search for the optimal action, given a 
state in an MG.  

2.3 Approach 

We employ Monte Carlo Tree Search (MCTS) to search for the optimal action. 
MCTS, a reinforcement learning method [ 56], has shown great potential when fac-
ing problems with huge branching factors. The most prominent example, AlphaGo, 
reached super-human performance in the game Go [ 49]. The following introduces 
the basics of MCTS. 

2.3.1 Monte Carlo Tree Search 

An exhaustive tree search can find the optimal trajectory through any MDP with a 
finite set of states and actions [ 9]. However, as the action space grows, it quickly 
becomes intractable to search for the optimal trajectory through the entire tree. 

Tree Search combined with Monte Carlo sampling addresses this issue by approx-
imating the optimal solution asymptotically. Monte Carlo Tree Search (MCTS) is 
a computationally efficient, highly selective best-first search [ 13, 24], that explores 
different trajectories through the MDP to discover the trajectory that maximizes the 
return .G from the root state. 

Given an initial root state of the MDP, MCTS approximates the state-action value 
in four sequential steps during each iteration until a terminal condition is met (e.g., 
until a time budget or computational budget is exceeded). Since MCTS is an anytime 
algorithm [ 24], it returns an estimate after the first iteration.
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Selection Expansion 

Fig. 1 Selection and expansion in MCTS: circles denote states and edges denote actions 

Selection 

The most popular form of MCTS uses an Upper Confidence Bound for Trees (UCT), 
to control the selection of successor states. The UCT value [24] of all explored actions 
from the current state is calculated during the selection phase, see (3), and the state 
action tuple with the maximum UCT value is selected. This process repeats until a 
state is selected that has not been fully explored (i.e., not all available actions in the 
state have been expanded), see Fig. 1. 

Using UCT, MCTS solves the exploration—exploitation dilemma [ 24], an upper 
confidence bound for the estimation of the true state-action value. The first term in (3), 
the estimated state-action value function. Qπ(s, a), fosters exploitation of previously 
explored actions with high state-action values. The second term guarantees that all 
actions for a given state are being explored at least once, with .N (s) being the visit 
count for state . s and .N (s, a) the number of times action . a has been chosen in that 
state. To balance the exploration-exploitation trade-off, a constant factor . c is used 
[ 24]. 

. UCT(s, a) =  Qπ(s, a)+ c

 
2 log N (s)

N (s, a)
(3) 

Expansion 

Once the selection policy encounters a state with untried actions left, it expands that 
state by randomly sampling an action from a uniform distribution over the action 
space, see (4), and executing the action reaching a successor state, see Fig. 1. 

.a ∼ U [min(A),max(A)] (4)
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Simulation Update 

Fig. 2 Simulation and update in MCTS: circles denote states and edges denote actions 

Simulation 

After the expansion of an action completes, a simulation (i.e., a roll-out) of subsequent 
random actions is conducted until a terminal condition is met (i.e., the planning 
horizon is reached or an action resulting in a terminal state is sampled). This generates 
an estimate of the state-action value for the previous expansion, see Fig. 2. 

Update 

Lastly, the return G of the trajectory τ generated by the iteration is backpropagated to 
all states along the trajectory, see Fig. 2, and the state-action values and visit counts 
for all actions of the trajectory are updated, see (5) and (6), respectively. 

.N (s, a)← N (s, a)+ 1 (5) 

.Qπ(s, a)← Qπ(s, a)+ 1

N (s, a)
(G(τ )− Qπ(s, a)) (6)
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2.3.2 Multi-agent Driving Simulator 

To simulate an agent’s experience, RL-based methods need access to an environment, 
such as a simulator or the real world. However, as RL is founded on the notion of 
trial and error, it is challenging to guarantee safety while learning in the actual world. 
Consequently, we use simulation; the multi-agent driving simulator created for and 
utilized throughout this work is described in the following. 

State Space 

The state . s of a traffic participant is defined with its 

• longitudinal position .xlon, 
• lateral position .xlat , 
• longitudinal velocity .ẋlon, 
• lateral velocity .ẋlat , 
• longitudinal acceleration .ẍlon, 
• lateral acceleration .ẍlat , and 
• heading . φ. 

Further, each traffic participant is a vehicle denoted by its 

• width . w, 
• length . l, 
• wheelbase .lwb, 
• maximum acceleration .amax and 
• maximum steering angle .δmax. 

An agent . υ represents a traffic participant. Generally, this could be any participant, 
such as a car, truck, trailer, motorcycle, bicycle, or even a human. This work uses the 
kinematics of a single-track model. Thus, only car-like vehicles are considered. 

Action Space 

The action space of an agent is two-dimensional. The two dimensions are the lon-
gitudinal velocity change . ẋlon and the lateral change in position . xlat . The tuple 
describes the desired state change over the action duration . T = t1 − t0, with . t0
denoting the start and .t1 the end of an action. Based on the current state and the 
chosen action, a jerk-optimal trajectory is calculated using quintic polynomials [ 54], 
one for the longitudinal and lateral direction, respectively, see (7), 

.

x(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5

ẋ(t) = a1 + 2a2t + 3a3t
2 + 4a4t

3 + 5a5t
4

ẍ(t) = 2a2 + 6a3t + 12a4t
2 + 20a5t

3

(7)
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as well as in matrix form (8). 

.Ma =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 t1 t21 t31 t41 t51
0 1 2t1 3t21 4t31 5t41
0 0 2 6t1 12t21 20t31

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5

⎤

⎥⎥⎥⎥⎥⎥⎦
(8) 

With each polynomial requiring six coefficients, six constraints need to be defined. 
The constraints are denoted by . c, see  (9). 

.c =

⎡

⎢⎢⎢⎢⎢⎢⎣

x(t0)
ẋ(t0)
ẍ(t0)
x(t1)
ẋ(t1)
ẍ(t1)

⎤

⎥⎥⎥⎥⎥⎥⎦
(9) 

The start constraints are determined by the current state of the vehicle. The end 
constraints for .ẋlon and .xlat are based on the selected action. The end position is 
given by the mean of the start and end velocity and the action duration. T . Further, 
the acceleration in longitudinal and lateral direction, as well as the velocity in lateral 
direction are set to zero (10). 

.

xlon(t1) = xlon(t0)+ ẋlon(t0)+ ẋlon(t1)

2
 T

ẋlon(t1) = ẋlon(t0)+ ẋlon
ẍlon(t1) = 0

xlat(t1) = xlat(t1)+ xlat
ẋlat(t1) = 0

ẍlat(t1) = 0

(10) 

Using the constraints, (7) can be solved for its coefficients a, see  (11) (assuming. M
is invertable). 

.

Ma = c

M−1Ma = M−1c

a = M−1c

(11) 

We generate trajectories utilizing the Frenet frame, a dynamic reference frame 
that aligns with the road’s centerline rather than Cartesian coordinates [ 59]. This 
transformation enables the separation of longitudinal and lateral trajectory planning.
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Transition Function 

Since this work does not focus on trajectory planning close to physical limits (e.g., 
required by evasive maneuvers), trajectories are evaluated using a single track model 
[ 45] as it has been shown to perform sufficiently well for trajectory planning tasks 
[ 25]. The execution of trajectories derived from the selected action is deterministic. 

Physical Constraints 

To ensure that a chosen trajectory is drivable for a single-track model, the differential 
and kinematic constraints, i.e., the maximal acceleration and the minimum curve 
radius, must be accounted for [ 31]. 

Based on the polynomials that describe the trajectories in longitudinal and lateral 
directions, the heading 

.φ = arctan

 
ẋlat
ẋlon

 
, (12) 

curvature 

.κ = ẋlon ẍlat − ẋlat ẍlon
 
ẋ2lon + ẋ2lat

 3
2

, (13) 

steering angle 
.δ = arctan (lwbκ) , (14) 

acceleration 

.ẍ =
 
ẍ2lon + ẍ2lat, (15) 

and velocity 

.ẋ =
 
ẋ2lon + ẋ2lat (16) 

are calculated. 
A new action is sampled if a selected action violates either the maximum steering 

angle or the maximum acceleration. Resampling also occurs if an action would lead 
a traffic participant off the road, see Fig. 3. However, resampling is limited to a 
maximum number of retries. 

The physical constraints are considered in the validation reward of the reward 
function, see Sect. 2.3.2. 

Reward Function 

The reward function .Ra
s is the basis for the agent’s behavior. It considers the state . s

and the action . a of an agent.
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Fig. 3 Invalid states: invalid 
successor states resulting 
from different actions 

.r = rs + ra + rvalidation (17) 

The importance of each of the features mentioned below is adjusted with a corre-
sponding weight. 

State Reward 

The state reward. rs is based on the divergence of the current state to the desired state. 
The desired state is defined by a longitudinal velocity .vdes and a lane index.ldes. The  
desired values must be estimated for all agents by a separate module. We assume that 
the desired longitudinal velocity and the lane index are equal to the values before the 
interaction in each scenario. 

Additionally, the agent is encouraged to drive close to the center of a lane by 
reducing the reward for deviations from the center. 

Action Reward 

Actions are selected to minimize the deviation from the desired state, ideally leading 
to an equilibrium state. Thus, all actions are penalized, and the action reward . ra
is always negative, i.e., a cost. In this work, .ra considers longitudinal and lateral 
acceleration as well as lane changes, with .w being the weights and . l the number 
of lane changes an action results in. If desired, both the state and action reward 
can easily be extended to capture additional safety, efficiency, and comfort-related 
aspects of the generated trajectories.
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Validation Reward 

The last term is the action validation reward, see (18). It evaluates whether a state 
and action are valid, i.e., being inside the drivable environment and adhering to the 
physical constraints and whether a state action combination is collision-free. 

.

rvalidation = winvalid state1invalid state

+ winvalid action1invalid action

+ wcollision1collision

(18) 

Cooperative Reward 

To achieve cooperative behavior, a cooperative reward.r icoop is defined. The coopera-
tive reward of an agent. i is the sum of its own rewards, see (17), as well as the sum of 
all other rewards of all other agents multiplied by a cooperation factor . λi , see  (19), 
[ 29, 33]. The cooperation factor determines the agent’s willingness to cooperate with 
other agents with.λi = 0 being purely interactive and.λi = 1 being fully cooperative. 

.r icoop = r + λi
n 

j=0, j  =i

r j (19) 

The cooperation factor can be used to represent different driver types. For example, 
an offensive driver weighs his own goals more than the goals of other road users. 
The joint reward function (19) is agent-individual and does not represent a global 
cost function. Therefore, the cooperative rewards of the individual agents cannot be 
compared since they have different values depending on the respective cooperation 
factor. 

2.3.3 Decentralized Continuous MCTS 

We depict an exemplary application of MCTS to a traffic scenario requiring cooper-
ation in Fig. 4. It is important to note that while it is possible to apply MCTS directly, 
specific extensions are required to model the interdependence of actions between 
traffic participants and allow for continuous action spaces. 

The original MCTS algorithm uses UCT [ 24], designed for sequential decision-
making games with a finite set of states and actions. However, if traffic partici-
pants interact without communication, the actions of other traffic participants are 
not known until they are observed. Thus the basic MCTS used in turn-based games 
is not applicable, and we need to extend it to simultaneous move games. In addi-
tion, the requirement of trajectory planning in a continuous state and action space
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Selection Expansion 

Simulation Update 

Fig. 4 Phases of MCTS for a scenario with a narrow passage; The gray vehicles are parked, and 
the red and the blue vehicle can pass the narrowing simultaneously if the red vehicle deviates from 
its optimal trajectory. During the selection, MCTS traverses the tree by selecting auspicious future 
states until a state is encountered that has untried actions left. After the expansion of the state, a 
simulation of subsequent actions is run until the planning horizon is reached. Next, the result is 
backpropagated to all states along the selected path. Reference [ 29] © 2018 IEEE 

requires alterations to the standard selection procedure of actions. These alterations 
are necessary because UCT would degenerate MCTS to Monte Carlo Search (MCS), 
as each action in each state needs to be selected at least once; see (3).
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Decoupled UCT 

We employ Decoupled UCT (DUCT) to address the problem of decentralized, simul-
taneous decision-making [ 53]. While the decoupled version of UCT does not guaran-
tee to converge to an optimal policy [ 43], it has been shown to perform best compared 
to other variants [ 53]. 

The complexity of simultaneous decision-making results from incomplete infor-
mation regarding the decision of other agents. Thus, the state-action value for an 
action. ai from agent. i can only be approximated by averaging over all possible actions 
of the other agents. Based on the description of MCTS in Sect. 2.3.1, DUCT hence 
tracks the state-action value and visit count on a per-agent basis, and the dependency 
between different agents . i is not considered when calculating the DUCT value, 

. DUCT(s, ai ) =  Qπ(s, ai )+ c

 
2 log N (s)

N (s, ai )
, ai ∈ Ai . (20) 

Each agent selects the action that maximizes its DUCT value during the selection 
step. The resulting joint action. a leads to the successor node if it exists or expands a 
new node. 

For two agents with identical action spaces with three actions, Fig. 5 depicts 
all possible successor states. Since DUCT tracks the state-action value and visit 
count separately for each agent, .s0 is considered fully expanded once each agent 
has executed each of its available actions (.a0, a1, a2) at least once (.s2, s6, s7), rather 
than all possible combinations resulting from the joint action space. Thus, an action 
can only be executed again if all of an agent’s actions have already been explored at 
least once. Only by randomly selecting a joint action . a that has not previously been 
selected the remaining combinations (.s1, s3, s4, s5, s8, s9) are added to the search 
tree. 

Similarly, the final selection is conducted independently of other agents. 

0 | 0 

0 

1 2 3 4 5 6 7 8 9 

0 | 1 2 | 0 1 | 0 1 | 1 1 | 2 2 | 0 2 | 1 2 | 2 

Fig. 5 Action combinations in DUCT: the resulting successor states are based on an identical action 
space.[a0, a1, a2] ∈ A(s0) for two agents, with.·|· denoting the joint action. a that  led to a state
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Progressive Widening 

The use of UCT, see (3), in MCTS requires exploring all possible actions from a given 
state [ 24]. Actions of the successor states are only explored [ 9, 24] once all actions 
of the predecessor have been explored. Thus, if the action space is continuous, the 
application of UCT within MCTS degenerates to MCS. 

Progressive widening, sometimes called progressive unpruning, aims to address 
the issue of large action spaces [ 10, 13], with additional research considering 
infinitely many actions within UCT [ 57]. 

Progressive widening gradually expands the existing action space of a node by 
adding additional actions. The number of actions for a state follows a sublinear 
function of the visit count. N , see  (21), with.c ∈ R+ and.α ∈ (0, 1) being determined 
empirically. The expansion of the action space can be random or follow a heuristic. 

.|A(s)| =  cN (s)α (21) 

Picking a random action from the theoretical action space is the simplest technique 
to add new actions. Another more advanced method is to utilize a heuristic, such as 
blind value, as described below. 

Since the visit count for individual actions decreases with increasing search depth 
due to branching, the application of progressive widening is restricted to a spe-
cific depth within the tree that we determined empirically. Therefore, the restriction 
ensures that the available actions at larger depths are still sufficiently explored. 

Expansion Strategies 

The expansion strategy is either random or guided. The random expansion strategy 
samples uniformly from the entire action space. In order to be able to use a continuous 
action space, we employ progressive widening to decide whether the action space 
should be expanded. The guided expansion strategy uses a heuristic such as blind 
value to find a promising node for expansion. 

Final Selection Strategies 

After the computational budget of the planning phase is exhausted, an action must 
be selected to be executed. While UCT defines a clear selection criterium within the 
search tree of MCTS, different strategies for the final selection exist. Two of the most 
common are 

. MaxVisitCount(s) = argmax
a∈A(s)

N (s, a) (22) 

and
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. MaxActionValue(s) = argmax
a∈A(s)

 Qπ(s, a). (23) 

Blind Value 

Whenever a node is to be expanded, MCTS needs to add an action to the action space 
of the node. The standard strategy for discrete as well as small continuous action 
spaces is to employ uniform sampling over the entire action space [ 9, 11]. However, 
as the action space grows, it becomes less likely that promising regions are sampled. 

A heuristic that aims to increase the likelihood of sampling promising regions is 
called blind value (BV) [ 11]. Blind value uses the previously explored actions of a 
node to guide the next expansion. It first focuses on regions away from previously 
explored actions and then shifts towards regions with many highly valued actions. 

The blind value for an action .ai of a set of randomly sampled actions .Arnd is 
calculated using the set of explored actions.Aexp as well as an adaptation coefficient 
. ρ, see  (24) and (26), respectively. 

. BV(ai ,Aexp, ρ) = min
a j∈Aexp

UCT(s, a j )+ ρd(ai , a j ) (24) 

.d(ai , a j ) =
  

a ẋlon
i − a ẋlon

j

 2 +
 
a xlat
i − a xlat

j

 2
(25) 

.ρ(Aexp,Arnd) = σ
  
UCT

 
s, a j

 | ∀a j ∈ Aexp
  

σ ({d (0, ai ) | ∀ai ∈ Arnd}) (26) 

The action with the highest blind value is finally selected, see (27) (Fig. 6). 

.a∗ = argmax
ai∈Arnd

BV(ai ,Aexp, ρ) (27) 

Fig. 6 Blind values of 
actions in the continuous 
space: assuming that the 
previously explored actions 
have identical UCT values, 
.ai ∈ Arnd has the highest 
blind value, since its distance 
to other actions is largest, cf. 
(24) and  (25)
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2.4 Experiments 

We evaluate the algorithm’s performance on 15 challenging multi-agent scenarios, 
which can be found online. 2 Each scenario consists of at least two agents with 
conflicting goals. Further, the start state of each agent is determined randomly within 
predefined nonoverlapping areas. 

Each scenario has a defined terminal condition; we deem it solved once reached. 
The resulting average scenario length is 16.5s.  

Due to the inherent random nature of the algorithm, we evaluated each configu-
ration using 250 random seeds to generate statistically relevant results. 3

We assess the results with the success rate indicating the fraction of collision-free 
and valid trajectories. An agent’s trajectory is valid if the agent stays within the road 
boundaries and if the trajectory is physically drivable. We compare the results for 
different numbers of iterations. 

First, we demonstrate that resampling invalid actions (i.e., randomly sampling a 
new action to sample a valid action), either due to violations of physical constraints, 
collisions with static obstacles, or driving off the road, improves the algorithm’s 
performance substantially, see Fig. 7a. With this, scenarios one to six reach a mean 
success rate close to 98.07 % for 1280 iterations, Fig. 7b. For scenarios seven to 
twelve, the mean success rate decreases to 95.13 % for 1280 iterations. This demon-
strates the general applicability of our approach in cooperative driving scenarios. 
The more challenging scenarios, thirteen to fifteen, reach a mean success rate of 
42.13 % for 1280 iterations and thus require a larger computational budget due to 
their complexity. 

Second, we show that applying the blind value heuristic improves the baseline 
slightly, Fig. 7c. However, while most deviations are significant, no selected num-
ber of samples increases the performance consistently in a significant manner. This 
observation is surprising since the insignificant change only occurs for 160 itera-
tions. Further, increasing the number of samples does not necessarily increase per-
formance either. Overall, 10 and 20 samples perform best. The results for ten samples 
are depicted in Fig. 7d. The changes are negligible for scenarios one to six, already 
reaching high overall performance. The scenarios that profit the most from the blind 
value heuristic to guide the exploration of the action space are scenarios seven to 
nine and scenario fifteen. The overall improvement for scenarios seven to fifteen is 
3.21 % points over all iterations.

2 https://url.kurzer.de/ProSeCo-Scenarios. 
3 If the deviation from the baseline for any configuration is significant, we annotate it by an asterisk. 
In addition, if a configuration is consistently deviating from the baseline, i.e., the deviation is 
significant for all numbers of iterations, we mark that trace with an asterisk as a suffix in the legend. 

https://url.kurzer.de/ProSeCo-Scenarios
https://url.kurzer.de/ProSeCo-Scenarios
https://url.kurzer.de/ProSeCo-Scenarios
https://url.kurzer.de/ProSeCo-Scenarios
https://url.kurzer.de/ProSeCo-Scenarios
https://url.kurzer.de/ProSeCo-Scenarios
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Fig. 7 Comparison of the mean success rates of the baselines if invalid actions are included or 
resampled (a), with a detailed view of the absolute performance of resampling invalid actions (b). 
In (c) the performance is assessed in comparison with the blind value (BV) heuristic. The absolute 
difference of BV compared to the baseline is shown in (d)
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3 Learning Reward Functions 

Reinforcement Learning (RL) based approaches frequently use manually specified 
reward models [ 30, 60]. In environments where systems must interact with humans, 
their decisions must be comprehensible and predictable. However, as the complexity 
of the reward model rises its manual parametrization to generate a desired behavior 
becomes infeasible. 

In the case of driving, it is clear that various features influence the reward of any 
given trajectory [ 37]. While tuning the weighting of features to create the desired 
behavior in a diverse set of scenarios is tedious and error-prone, Inverse Reinforce-
ment Learning (IRL) has proven to be able to recover the underlying reward model 
from recorded trajectories that demonstrate expert behavior in areas such as robotics 
and automated driving [ 1, 26, 38, 63, 65]. 

Our work builds upon the previously introduced cooperative trajectory planning 
algorithm to generate expert trajectories. Our contribution is twofold. The first is a 
system that conducts Guided Cost Learning (GCL) [16], a sampling-based Maximum 
Entropy Inverse Reinforcement Learning method with Monte Carlo Tree Search 
(MCTS) to efficiently solve the forward RL problem in a cooperative multi-agent 
setting. The second is an evaluation that compares a linear and nonlinear reward 
model to a manually designed one. We demonstrate that the performance of the 
learned models is similar to or better than the tediously tuned baseline. An overview 
of the system is depicted in Fig. 8. 

Fig. 8 Overview of the system: at first, an initial set of expert trajectories .TE is generated. Then 
the cooperative trajectory planning algorithm computes a set of sample trajectories .TS using the 
randomly initialized reward model. Next, using the .TE and .TS, the likelihood of the parameters 
. θ given the expert trajectories is increased using gradient ascent. Finally, the process repeats with 
the cooperative trajectory planning algorithm, sampling new trajectory samples until convergence. 
Reference [ 28] © 2022 IEEE
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3.1 Related Work 

While RL’s task is deducing an optimal policy from an agent’s interactions with the 
environment based on a reward model [ 52], the opposite is the case for IRL. Here, the 
task is to infer the underlying reward model that the optimal policy aims to maximize 
[ 38]. Since the reward model is the most succinct and transferable description of an 
agent’s behavior [ 1], a close approximation of the underlying reward model will yield 
a behavior similar to the behavior that results from the optimal policy, i.e., the expert 
behavior. 

Early work in IRL performed feature matching rather than estimating the true 
underlying reward function [ 1] to learn driving styles in a discrete driving simulator. 
More recently, driving styles have been learned using continuous trajectories and 
action spaces [ 26], including additional features that impact driver preference [ 37]. 

Wulfmeier et al. demonstrate the effectiveness of learning nonlinear reward mod-
els building on Maximum Entropy IRL [65] using Deep Neural Networks [ 62], which 
they extended to learning cost maps for path planning from raw sensor measurements 
[ 63]. 

Further improvements in the approximation of the partition function and the effi-
ciency of IRL in combination with RL have been proposed by Guided Cost Learning 
[ 16]. By adapting the IRL procedure, the method yields both a cost function and pol-
icy given expert demonstrations using sampling-based methods. In addition, more 
efficient one-shot sampling methods have been proposed [ 61]. 

3.2 Problem Formulation 

Using the definitions of a policy 

.π(a | s) a ∈ A(s), (28) 

and a trajectory 
.τ = (s0, a0, s1, a1, . . . , sT ), (29) 

a policy over trajectories can be defined as 

.ρ(τ) = ρ(s0, a0, s1, a1, . . . , sT ) =
T 

t=0

π(at | st ), (30) 

assuming a deterministic start state distribution and transition model. The return of 
a trajectory . τ equals its accumulated discounted reward at time step . t , taking action 
.at in state. st [ 52], see (1). The value function of a policy. π for an MDP  with a reward  
model parameterized by . θ is the expectation of the return of trajectories sampled 
from that policy,
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.V πθ (s) = Eτ∼ρ [Gθ (τ )] . (31) 

While the forward RL problem is solved by finding the optimal policy, see (2), the 
inverse RL problem is solved by finding the parameters θ so that, 

.V πEθ (s) ≥ V πθ (s) ∀π ∈  , (32) 

with πE being the expert policy as part of the policy space .  . 
This work aims to learn the parameters θ of a reward model for cooperative 

trajectory planning so that the optimal trajectories of the planning algorithm are 
similar to the demonstrated expert trajectories, i.e., that the expert policy yields the 
highest state value of all policies given the parametrization of the reward model (32). 

3.3 Approach 

IRL is used to learn a reward model from expert demonstrations so that the behavior 
sampled from the optimal policy based on this reward model resembles the expert 
demonstrations. Concisely, this work makes use of the previously introduced coop-
erative trajectory planning algorithm based on MCTS [ 29], and Maximum Entropy 
IRL [ 65], yielding a system that is similar to Guided Cost Learning [ 16]. 

The MCTS is used to solve the (forward) RL problem, i.e. finding the optimal 
policy/action given a reward model and generating near optimal trajectory samples 
.TS for that policy. Using these trajectories in combination with the expert trajectories 
.TE, Maximum Entropy IRL is used to conduct a gradient ascent step increasing the 
likelihood of the parameters . θ given the expert trajectories, (50), (51), see Fig. 8. 

3.3.1 Reward Model 

The reward model is a central part of an RL system, as the goal of RL is to maximize 
the cumulative discounted reward by finding the optimal policy [ 52]. 

Initially, IRL applied solely linear reward models that are represented as a linear 
combination of features φ(s, a) and parameters θ (42) [  1]. However, especially for 
larger RL problems, linear reward models have been outperformed by nonlinear 
reward models such as ANNs [ 16, 62]. This work uses both a linear reward model 
and a nonlinear reward model in the form of an ANN. 

Features 

Similar to many other planning methods, the cooperative trajectory planner assumes 
the desired lane ldes as well as the desired velocity vdes for each agent [ 37]. State 
and action dependent features .φ(s, a) are scalar values that consider specific char-
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acteristics of a state and action. Each feature is evaluated for each time step . t of the 
trajectory, 

.φ(τ) = 1

T

T 

(st ,at )∈τ
φ(st , at ). (33) 

The parameters θ are identical for all agents, however features are not. All features 
are normalized to lie between.[−1, 1] for the length . T of a trajectory τ . The feature 
for the desired lane is defined as 

.φdesLane(τ ) = 1

T

T 

(st ,at )∈τ
max (1 − |lt − ldes| ,−1) , (34) 

encouraging the agent to drive on the desired lane. A deviation from the desired 
velocity vdes larger than 10 % results in a negative feature value. 

.φdesVelocity(τ ) = 1

T

T 

(st ,at )∈τ
max

 
1 − 10

    
vt

vdes
− 1

    ,−1

 
(35) 

Similarly, deviating more than a quarter of the lane width lwidth from the lane center 
lcenter yields a negative feature value. 

.φlaneCenter(τ ) = 1

T

T 

(st ,at )∈τ
max

 
1 − |lcenter − yt |

lwidth/4
,−1

 
(36) 

To avoid excessive accelerations, a proxy value for the acceleration. a of an action is 
determined, 

.cacceleration = 1

g

  t+ T
t (a(t))2 dt

 T
. (37) 

If this value is larger than an eighth of the gravity g, the feature turns negative, 

.φacceleration(τ ) = 1

T

T 

(st ,at )∈τ
max

 
1 − cacceleration

g/8
,−1

 
. (38) 

In addition, the following binary features are defined for trajectories that either result 
in collisions (39), invalid states (i.e. an agent drives off the road) (40) or invalid 
actions (41) (i.e. an agent executes a physically impossible action). Each of these 
binary features mark a terminal state.
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.φcollision(τ ) =
 
1 if τ contains a collision

0 if τ does not contain a collision
(39) 

.φinvalid state(τ ) =
 
1 if τ contains an invalid state

0 if τ does not contain an invalid state
(40) 

.φinvalid action(τ ) =
 
1 if τ contains an invalid action

0 if τ does not contain an invalid action
(41) 

Linear Reward Model 

The linear reward model .Rθ is a linear combination of the parameters θ and their 
respective features φ(s, a), 

.Rθ (st , at ) = θ φ(st , at ). (42) 

The feature count is normalized using the length of the trajectory. Since each feature is 
bounded between.[−1, 1], the return of a trajectory is bounded between.[−||θ ||, ||θ ||]. 

Nonlinear Reward Model 

To allow for a more complex reward structure, a nonlinear reward model in the form 
of an ANN is introduced, 

.Rθ (st , at , st−1) = W2 (W1φ(st , at , st−1)). (43) 

It consists of two fully connected layers, with parameters .W1 and .W2 respectively. 
The first layer is followed by a ReLU activation function .  . The inputs to the ANN 
are the features for the linear model in addition to the values of .φdesLane, . φdesVelocity
and .φlaneCenter at the previous time step. 

3.3.2 Maximum Entropy Inverse Reinforcement Learning 

IRL learns the parameters θ of a parameterized reward model .Rθ so that the expert 
policy πE becomes the optimal policy given the reward model [ 38]. 

Instead of requiring access to the expert policy πE itself, it is sufficient to observe 
trajectories .TE that originate from that policy [ 1]. 

.τE = (s0, a0, s1, a1, . . . , sT ) at ∼ πE(at |st , θ) (44)
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Similarly to the policy π as a distribution over actions (28), a policy ρ as a distribution 
over trajectories can be defined (30). 

A prominent method for IRL is Maximum Entropy Inverse Reinforcement Learn-
ing [ 65], which assumes a probabilistic model for expert behavior. Using the defini-
tion of a policy over trajectories (30), Maximum Entropy IRL specifies the distribu-
tion over expert trajectories conditioned on the parameters of the reward model 

.ρE(τ ) = eGθ (τ )

Zθ
. (45) 

This model implies that the probability of an expert trajectory increases exponentially 
with its return. The numerator is the exponentiated return of a trajectory (1) and the 
denominator the partition function (46), the integral of the exponentiated return of 
all trajectories. 

.Zθ =
 

eGθ (τ ) dτ (46) 

The likelihood of the parameters θ given the expert trajectories .TE is defined with 

.L(θ |TE) =
 

τ∈TE

eGθ (τ )

Zθ
. (47) 

Applying the logarithm to (47) yields the log-likelihood 

.l(θ |TE) =
 

τ∈TE

(Gθ (τ )− log Zθ ) , (48) 

which is proportional to 

.
1

|TE|
 

τ∈TE

Gθ (τ )− log Zθ . (49) 

The maximization of the log-likelihood 4 (49) through the parameters θ will result in 
the parameters that best explain the expert trajectories. 

. max
θ∈ 

1

|TE|
 

τ∈TE

Gθ (τ )− log Zθ (50) 

Using the gradient of the log-likelihood in a gradient ascent step, locally optimal 
parameters can be found (51). 

.θ ← θ + α∇θ l(θ) (51)

4 In the following, the log-likelihood refers to the proportional log-likelihood. 
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Using the logarithmic and exponential derivatives, the gradient of the log-likelihood 
can be formulated as an expectation (52) [  28]. 

.∇θ l(θ) = 1

|TE|
 

τ∈TE

∇θGθ (τ )− Eτ∼ρE(τ ) [∇θGθ (τ )] (52) 

3.3.3 Guided Cost Learning 

GCL is an algorithm that combines sampling-based Maximum Entropy IRL with RL 
[ 16]. 

Since the partition function (46) can only be calculated for small and discrete 
MDPs, it cannot be computed for the cooperative trajectory planning problem. 
Instead, GCL circumvents this problem by sampling to approximate it. 

It estimates the partition function (46) using the distribution over trajectories 
generated by a sampling-based method (in this work, the MCTS-based cooperative 
trajectory planner [ 29]) (55). The optimal proposal density for importance sampling 

.ρ∗
S(τ ) ∝ eGθ (τ ) (53) 

is the distribution that yields the lowest variance [ 16]. The key concept of GCL is 
the adjustment of this sampling distribution to the distribution that follows from the 
current reward model (45). In order to achieve this within the MCTS, this work 
introduces a probabilistic final selection policy named Softmax Q-Proposal, 

.πMCTS(a|s0) = ecQ
π (s0,a)

 
a∈A(s0) e

cQπ (s0,a)
. (54) 

The numerator is the exponentiated state-action value .Qπ(s0, a) (i.e. the expected 
return (1)) of taking action a in root state .s0 over the sum of the state-action values 
of all explored actions .A in the root state . s0. The coefficient . c can be used to scale 
the variance of the distribution, its value is determined empirically. Based on (30), 
this results in the following distribution over trajectories 

.ρ(τ) = ρMCTS(s0, a0, s1, a1, . . . , sT ) =
T−1 

t=0

πMCTS(at |st ). (55) 

Applying importance sampling, the expectation in (52) can be calculated using the 
policy .ρS(τ ) [ 28], 

.Eτ∼ρE(τ ) [∇θGθ (τ )] = Eτ∼ρS(τ )
 

eGθ (τ )

ρS(τ )Zθ
∇θGθ (τ )

 
(56)
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Further, the partition function can be approximated using importance sampling as 
well, 

. Zθ := 1

|TS|
 

τ∈TS

eGθ (τ )

ρS(τ )
. (57) 

Substituting the expectation in (52) with (56) as well as the partition function (46) 
with (57), the final approximation of the gradient can be obtained (58). 

.

∇θ l(θ) = 1

|TE|
 

τ∈TE

∇θGθ (τ )− Eτ∼ρE(τ ) [∇θGθ (τ )]

= 1

|TE|
 

τ∈TE

∇θGθ (τ )− Eτ∼ρS(τ )
 

eGθ (τ )

ρS(τ )Zθ
∇θGθ (τ )

 

≈ 1

|TE|
 

τ∈TE

∇θGθ (τ )− 1

|TS|
 

τ∈TS

eGθ (τ )

ρS(τ ) Zθ
∇θGθ (τ )

(58) 

Given this form of the gradient, the proposed Softmax Q-IRL algorithm (Algo-
rithm 1) performs gradient ascent, converging towards the expert behavior. 

Algorithm 1: Softmax Q-IRL [ 28] © 2022 IEEE. 
Input: TE 
Output: θ 

1 θ 0 ∼ U [−1, 1]; 
2 for i ← 0 to M do 
3 TS ← ∅; 
4 for j ← 0 to N do 
5 TS, S ← (TS, S)∪ generateSamples(θ); 

6  ∇θ l(θ ) = 1 
|TE |

 
τ ∈TE 

∇θ Gθ (τ ) − 1 
|TS|

 
τ∈TS 

eGθ (τ ) 

ρS(τ ) Zθ 
∇θ Gθ (τ ); 

7 θ i+1 ← θ i + α ∇θ l(θ i ); 
8 return θ 

The necessary data sampling routine (Algorithm 1 Line 5) is depicted in Algo-
rithm 2. It generates the sample trajectories .TS as well as their policies .  . Here, ϒ 
denotes the number of agents in the respective scenario. 

3.4 Experiments 

Using our cooperative trajectory planner, we create a set .TE of 50 expert trajectories 
for each scenario that resembles expert behavior. Each trajectory has a length of 
10.4 s. The number of agents and obstacles in a scenario is set, but we sample its start
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Algorithm 2: Sampling of Trajectories and Policies [ 28] © 2022 IEEE. 

1 Function generateSamples(θ) 
2 T ← ∅;  ← ∅; ρ(·) ← 1; 

// sample from the start state distribution 
3 s0 ∼ d; 
4 for t ← 0 to T − 1 do 

// estimate for each action explored at the root state 

5  Q(st , a0),  . . . ,  Q(st , am ) ← MCTSQEstimate(θ, st); 
6 πMCTS(a|st ) ← ec Q(st ,a) 

a∈A(st ) ec
 Q(st ,a) 

; 

// for each agent in the scenario 
7 for i ← 0 to |ϒ | do 
8 ai ∼ πMCTS(a|st ); 
9 ρ(τi ) ← ρ(τi )πMCTS(ai |st ); 

10 τi ← τi ∪ (st , ai ); 
11 if t = T − 1 then 
12 T ← T ∪ τi ; 
13  ←  ∪ ρ(τi ); 

14 st ← EnvironmentStep(st , a0, . . . ,  am); 
15 return T , 

state from a distribution. The agents’ lateral and longitudinal positions are drawn 
from a normal distribution. Further, different random seeds are used to initialize the 
sampling-based trajectory planning algorithm. 

We trained the linear and nonlinear reward models for 2000 gradient steps with a 
learning rate of 5 × 10−4. 

We compare the performance of the linear and nonlinear models with the manu-
ally tuned baseline in Table 1. The reward model of the baseline has been hand-tuned 
over numerous days through an iterative process of parameter modification and quan-
titative and qualitative analysis of the resulting trajectories. The results were shown 
in Sect. 2.4. It can be seen that both models perform well in all scenarios. The non-
linear model outperforms the manually tuned baseline in SC02 and SC06, as it does 
not generate any collisions or invalid trajectories. Further, the learned models man-
age to reach the desired velocity .vdes in an additional 46 % of the cases, while the 
desired lane is reached less frequently −5 %. Finally, both models yield a lower mean 
distance to the expert trajectories than the manually tuned baseline, while only the 
nonlinear model is consistently better. A Euclidean distance metric is depicted in 
Fig. 9. As expected, the linear and the nonlinear model converge toward the expert 
trajectories. However, neither model converges completely but stall at a distance of 
1.98 and 1.30 m for the linear and nonlinear, respectively. A possible remedy could 
be a reward model with a higher capacity.
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Table 1 Absolute change in performance: the performances of the linear and nonlinear reward 
models are compared with the manually tuned baseline on the scenarios. Columns .  collision, 
.  invalid, . ldes, and . vdes denote the fraction of trajectories compared to the baseline that reach 
that feature. Similarly,. μ(d) and. σ(d) represent the mean and standard deviation of the Euclidean 
distance. d to the k-nearest neighboring (.k = 3) expert trajectories compared to the baseline. 

Scenario Model .  

collision 
.  invalid . ldes . vdes . μ(d) .  σ(d)

SC01 Linear 0.00 0.00 0.06 0.03 . −0.02 0.06 

Nonlinear 0.00 0.00 0.07 0.01 . −0.04 0.03 

SC02 Linear 0.01 0.00 0.31 0.50 . −1.56 0.15 

Nonlinear 0.00 . −0.01 0.09 0.79 . −3.58 . −0.80 

SC03 Linear 0.00 0.00 0.02 0.61 . −1.14 . −0.25 

Nonlinear 0.00 0.00 0.03 0.60 . −1.22 . −0.35 

SC04 Linear 0.00 0.00 . −0.20 0.61 . −0.49 0.34 

Nonlinear 0.00 0.00 . −0.11 0.48 . −0.40 0.35 

SC05 Linear 0.05 0.01 . −0.25 0.51 1.54 0.27 

Nonlinear 0.00 0.00 . −0.17 0.41 . −0.38 0.27 

SC06 Linear . −0.01 0.00 . −0.27 0.58 . −0.67 0.42 

Nonlinear . −0.01 0.00 . −0.15 0.41 . −0.76 0.28 

Mean Linear 0.01 0.00 . −0.06 0.47 . −0.39 0.16 

Nonlinear 0.00 0.00 . −0.04 0.45 . −1.06 . −0.04 

Fig. 9 Distance mean and standard deviation between .TE and .TS: the Euclidean distance to the 
k-nearest neighboring (.k = 3) expert trajectories throughout the training for the linear (blue) and 
nonlinear reward model (orange). Reference [ 28] © 2022 IEEE 

The visual resemblance of the generated samples to the expert trajectories by 
the nonlinear reward model can be assessed in Fig. 10. Some of the trajectories that 
deviate significantly from the majority of the optimal trajectories could be the result 
of the inherently stochastic sampling-based trajectory planning algorithm.



Implicit Cooperative Trajectory Planning with Learned Rewards Under Uncertainty 441

(SC01) Delaying merge due to approaching ve-
hicle in desired lane 

(SC02) Reacting to approaching vehicle 

longitudinal adjustment 

(SC05) Changing lane as other vehicle needs to 
merge onto lane 

(SC06) Delaying lane change as other vehicle 

Fig. 10 Sample trajectories from the nonlinear reward model: expert trajectories (red) that are used 
to learn the parameters of the reward model and the optimal trajectories (blue, after 2000 training 
steps of the nonlinear reward model). Reference [ 28] © 2022 IEEE 

4 Planning Under Uncertainties 

In reality, the true state of the surrounding environment is never exactly known. 
Autonomous vehicles use perception and localization sensors to observe their envi-
ronment and try to deduce the current state from these observations. The real state 
often differs from the observations due to noisy measurements and imperfections in 
the perception algorithms. Hence, the true state of the environment is uncertain. If 
this uncertainty is not considered in the planning process, the chosen actions may 
lead to unwanted outcomes such as collisions or undesirable driving behavior. There-
fore, we also present an approach that considers uncertainty by constructing search
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trees from different start states with MCTS and applying kernel regression and risk 
metrics afterward to find robust actions. 

4.1 Related Work 

Uncertainties have been addressed with various MCTS approaches in the literature. 
For example, Kernel Regression UCT [ 64] tackles the execution uncertainty in con-
tinuous action spaces by selecting actions according to a modified upper confidence 
bound value that incorporates all action assessments by kernel regression. Further-
more, the estimated value of a selected action is refined by applying progressive 
widening to add similar actions to the search tree. Another concept is determinization 
which describes sampling several deterministic problems with perfect information 
from a stochastic problem with imperfect information, solving these problems, and 
fusing their results to get a solution for the original problem [ 9]. For instance, Couë-
toux et al. [ 12] employ UCT with Double Progressive Widening in a setting with 
stochastic state transitions and continuous action and state spaces. Their method 
expands the set of available actions and the set of sampled outcomes iteratively. 
Another example is HOP-UCT [ 6], which uses Hindsight Optimization (HOP). Sev-
eral deterministic UCT search trees are constructed, and their results are averaged to 
determine the action assessments. Ensemble-Sparse-UCT [ 6] creates multiple trees 
and restricts the number of outcomes for an action to a sampling width parameter. 
Afterward, the results of the search trees are combined. A different approach is Infor-
mation Set MCTS [ 14], which uses nodes representing information sets. An informa-
tion set comprises all indistinguishable states for an agent. This approach restricts the 
search tree to regions consistent with a determinization. The real-state uncertainty 
can be modeled by a POMDP approach [ 50] that uses a search tree with history nodes 
and an unweighted particle filter representing the belief state. A black box simulator 
samples successor states and observations, and actions are selected according to the 
UCT criterion. Generally, POMDPs can be solved online with search trees of belief 
states with Branch-and-Bound Pruning, Monte Carlo Sampling, or Heuristic Search 
[ 41]. 

In the domain of automated driving the Toolkit for Approximating and Adapting 
POMDP solutions In Realtime (TAPIR) [ 23] based on Adaptive Belief Trees [ 27] is  
successfully applied if the action space is sufficiently small [ 19, 20, 44]. Another 
approach to account for uncertainty is to use Distributional Reinforcement Learning 
in combination with risk metrics [ 5]. Instead of learning a return for each state and 
action, Distributional Reinforcement Learning learns a return distribution. This can 
be done offline, exposing the agent to various uncertainties during training. Online, 
during inference, a risk metric is applied to the (risk-neutral) return distribution to 
select the best action.
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4.2 Problem Formulation 

Besides the execution uncertainty, which is already modeled by the transition function 
of an MDP/MG, a POMDP also models the uncertainty emerging from the fact that 
the real state of the environment can only be partially observed in reality. 

A POMDP introduces an observation space .D as a set of possible observations 
and an observation function .Os  

a that defines the probability of an observation after 
reaching state . s  by executing action . a. With the help of past observations, an agent 
can determine a belief . b about the real state in the form of a probability distribution 
over the state space . S. The objective is to find a policy .π(a| b) that specifies which 
action shall be executed given the belief . b. 

In our multi-agent setting [ 51], the ego-agent only receives an observation with 
stochastic features of the environment. The position, orientation, and velocity of 
other agents and the length and width of the agents’ vehicles are modeled as Gaus-
sian distributions. Furthermore, obstacles’ position, orientation, length, and width 
are normally distributed. Lastly, the observation of the lane width of the road is also 
regarded as stochastic. All used Gaussian distributions use mean vectors correspond-
ing to the true state since the sensor system is assumed to be unbiased. The uncertainty 
is hence specified by the covariance matrixes, which are derived from the accuracy 
statistics of standard perception systems using lidar or radar sensor systems. For 
simplicity reasons, we assume that the stochastic observation features are mutually 
independent, and thus each feature follows an individual Gaussian distribution. 

In the next section, we present an approach that considers the uncertainties men-
tioned above explicitly to find more robust actions. 

4.3 Approach 

In this section, we modify our previous approach so that the uncertainty about the 
real state due to noisy measurements is explicitly considered during planning. The 
objective is to find robust actions given an initial belief state .b0 that represents a 
probability distribution over the state space . S. Our approach [ 51] does not propose 
a procedure to update the belief state after each new observation in a new planning 
cycle. Instead, it uses the information of a belief state to select robust actions in the 
current planning cycle. 

Similar to the modeling of the stochastic observations, we also use Gaussian 
distributions for the belief about the real state features. However, since we assume 
for simplicity reasons that the features are mutually independent, each belief feature 
is individually normally distributed with a mean corresponding to the observed value 
and the variance representing the accuracy of the sensor system. 

Our approach samples multiple start states .S0 according to a modified procedure 
given the initial belief state. b0. It constructs a search tree with MCTS from each start 
state .s0 ∈ S0 to obtain action values .Q(s0, ·). Action assessments from all search
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Fig. 11 Using the distribution of the belief state. b0, possible start states are sampled. Then, for each 
start state. s0, an MCTS is run to determine the action values.Q(s0, ·), yielding a return distribution 
over start states.S0. Reference [ 51] © 2022 IEEE 

trees are combined with kernel regression to yield a return distribution over the start 
states .S0 (see Fig. 11). After the computational budget for the planning phase is 
exhausted, a risk metric is applied to the return distribution to select the best action 
vector . a∗. This concept is sensible since robust actions should perform well from 
multiple likely start states according to the belief about the environment so that the 
risk of failure is reduced. 

Algorithm 3 summarizes the uncertainty handling concept. The sampling of start 
states and the construction of search trees are conducted iteratively until the compu-
tational budget is exhausted. Afterward, the best action vector is selected, given the 
search trees. Before we present further details about the construction of the search 
trees and the final selection of actions, the next sections briefly summarize the con-
cepts of kernel regression and risk metrics. 

4.3.1 Kernel Regression 

The general objective of regression is to find the regression function 

.m(x) = E[Y |X = x] =
 ∞
−∞ y f (x, y)dy
 ∞
−∞ f (x, y)dy

(59) 

specifying the conditional expected value of a random variable . Y given the realiza-
tion of a random variable . X [ 58]. Since the joint probability density function . f is 
unknown, kernel regression [ 36, 58] estimates . f by 

. f̂ (x, y) = 1

n

n 

i=1

 K (x − xi , y − yi ) (60)
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Algorithm 3: Uncertainty Handling Concept [ 51] © 2022 IEEE 
Input: belief state b0 
Output: best action vector a∗ 

1 create initial start states S0 
2 for iteration i ← 1, . . . ,  I do 
3 if start states S0 shall be expanded then 
4 s0 ← create a new start state 
5 S0 ← S0 ∪ {s0} 
6 else 
7 s0 ← select an existing start state ∈ S0 

8 v ← select a node in the tree of s0 that shall be expanded 
9 v ← expand v by creating a new node according to the selected action vector 

10 add v as a child node of v 
11 run a simulation from v 
12 update the tree of s0 according to the simulation results 
13 update the start state s0 

14 a∗ ← FinalSelectionPolicy selects the best action vector given the search trees 

with a kernel . K (i.e., a non-negative smoothing function whose integral over both 
dimensions equals one) from a finite set of data samples .{(x1, y1), . . . , (xn, yn)}. 
Under mild requirements, the estimated regression function can then be formulated 
as 

.m̂(x) =
 n

i=1 yi  K (x − xi ) n
i=1

 K (x − xi )
=

 n
i=1 yi K (x, xi ) n
i=1 K (x, xi )

, (61) 

where. K (·) is the “marginal” kernel and the kernel value.K (x, xi ) is just a simplified 
notation for . K (x − xi ) [ 58]. 

In the context of an MDP/MG, kernel regression can be used to assess actions. 
The kernel regression value 

. KR(s, a) =
 

a ∈A(s) K (a, a )Q(s, a )N (s, a )
W(s, a)

(62) 

for a state . s and action . a combines the state-action value estimates .Q(s, a ) of all 
actions .a of a finite action set .A(s) weighted by the visit counts .N (s, a ) and a 
kernel .K that specifies the similarity between the actions [ 64]. The denominator in 
(62) is the kernel density 

.W(s, a) =
 

a ∈A(s)
K (a, a )N (s, a ) (63) 

and denotes the exploration of action . a and similar actions. The kernel regression 
lower confidence bound
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. KRLCB(s, a) = KR(s, a)− c

 
log

 
a ∈A(s)W(s, a )
W(s, a)

(64) 

penalizes poorly explored actions by subtracting a normalized exploration term 
scaled by a constant .c ∈ R≥0 from the kernel regression value [ 64]. 

4.3.2 Risk Metrics 

A risk metric is a measure of risk, but it is not a metric in a mathematical sense 
since it does not represent a distance function. Let .Z :  → R be a random variable 
assigning costs (in monetary units) that are caused by an action to each outcome 
.ω of the sample space .  . Furthermore, let .Z denote the set of all cost random 
variables, then a risk metric .ρ : Z → R maps each cost random variable . Z to a real  
number that represents the amount of risk [ 34]. Sensible risk metrics should fulfill the 
following axioms [ 34]: Monotonicity, Translation Invariance, Positive Homogeneity, 
Subadditivity, Comonotone Additivity, and Law Invariance. 

One example for a risk metric that fulfills all six axioms is the Conditional Value 
at Risk (CVaR) [ 34]. For the definition of CVaR, the Value at Risk (VaR) 

.. VaRα(Z) := min {z ∈ R | P(Z > z) ≤ α} (65) 

. = min {z ∈ R | P(Z ≤ z) ≥ 1 − α} (66) 

for a cost random variable .Z is necessary, which specifies the smallest .(1 − α)-
quantile of. Z for a given probability. α [34, 40]. CVaR is then defined as the conditional 
expected value 

. CVaRα(Z) := E [Z | Z ≥ VaRα(Z)] . (67) 

under the condition that all costs are less than or equal to .VaRα(Z). In addition, the 
Upper Value at Risk 

.. VaR+
α (Z) := inf {z ∈ R | P(Z > z) < α} (68) 

. = inf {z ∈ R | P(Z ≤ z) > 1 − α} (69) 

specifies the largest .(1 − α)-quantile of .Z for a given probability .α [ 40]. . VaR+
α

and .VaRα only differ if the cumulative distribution function is constant around the 
probability level .(1 − α).
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4.3.3 Construction of Search Trees 

Search trees are constructed iteratively from the start states sampled according to the 
belief state. We apply the idea of progressive widening (cf. Sect. 2.3.3) to balance 
the number and the depth of the trees. In each iteration, it is checked whether the 
condition 

. |S0| ≥ cpw N
αpw (70) 

with start states .S0, constant parameters .cpw ∈ R≥0 and .αpw ∈ [0, 1), and the total 
visit count .N holds true. If this condition is fulfilled, an already existing start state 
is selected uniformly from .S0, and its subtree is expanded according to MCTS. 
Otherwise, a new start state associated with a new search tree is generated. 

The generation of a new start state is a modified sampling process. Given the 
belief that is modeled as a random vector following a Gaussian distribution. N(μ,  )
with mean vector. μ and covariance matrix.  , a start state is sampled from the scaled 
Gaussian distribution .N(μ, c ). If the sampled start state represents a collision or 
is invalid, the scaling factor. c is increased, and a new sampling attempt is conducted. 
The scaling factor . c is determined by 

.c = min
  
cstep

 lstep
, cmax

 
, (71) 

where.cstep ∈ R≥0 is a constant,.lstep is a step counter and.cmax ∈ R≥0 is the maximally 
allowed value. The step counter 

.lstep =
 
lattempt

lstepSize

 
(72) 

is dependent on the number of total attempts conducted so far.lattempt ∈ R≥0, and the 
step size .lstepSize ∈ R≥0 specifies the number of attempts for one step. 

Since this process is executed independently for sampling each start state, the.i-th 
start state is a realization of the random vector .Xi ∼ N(μ, ci ) with an individual 
factor . ci . 

Increasing the scaling factor . ci increases the variance of the sampled start states. 
Hence the probability of obtaining a collision-free and valid start state from which 
planning is sensible rises. Furthermore, actions must perform well from a greater 
variety of start states, increasing robustness. On the other hand, we restrict the vari-
ance to a realistic level by limiting the scaling factor to a maximum scaling factor 
.cmax. 

4.3.4 Final Selection 

After the computational budget is exhausted for constructing the search trees, a 
robust action is finally selected. We present two variants using the Kernel Regression
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Algorithm 4: Basic Final Selection Policy [ 51] © 2022 IEEE 
Input: search trees of the planning phase 
Output: best action vector a∗ 

1 a∗ ←   // empty best action vector 
2 foreach agent i ∈ ϒ do 
3 Ci ← getActionCandidates(i) 
4 if Ci = ∅  then 
5 store default action “Maintain (0)” in a∗ 

6 else 
7 Wi , KRi ← kernelRegression(Ci) 

8 Qi ← getACValues(Ci , Wi , KRi) 

9 a∗ ← arg maxa∈Ci Qi (a) 
10 store a∗ in a∗ 

11 return a∗ 

Lower Confidence Bound (KRLCB) and the Conditional Value at Risk (CVaR). 
Both variants follow the general steps of Algorithm 4. For each agent .i ∈ ϒ , action 
candidates .Ci are determined at first. This set comprises all actions from collision-
free and valid start states that have been visited more often than a threshold. This 
condition ensures that unreliable action value estimates with large variances are not 
considered. If the set .Ci is empty, the default action “Maintain (. 0)” is selected for 
the agent. i . Otherwise, kernel regression is applied to calculate the densities.Wi and 
kernel regression values.KRi . Given these values, each final policy variant computes 
action candidate values .Qi that assess the performance and robustness of the action 
candidates. Finally, the action with the largest value .Qi is selected. 

Similar to (63), the density for an action candidate .a ∈ Ci is calculated as 

.W[a|Ci ] =
 

a ∈Ci

K (a, a )N(sa , a ) (73) 

with the kernel 
.K (a, a ) = exp

 
−γ   a − a   2

 
(74) 

and the visit count.N(sa , a ) of action candidate. a from the corresponding start state 
.sa . Furthermore, the kernel regression value (c.f., 62) is then defined as 

. KR[a|Ci ] =
 

a ∈Ci K (a, a )Q(sa , a )N(sa , a ) 
a ∈Ci K (a, a )N(sa , a )

(75) 

with .Q(sa , a ) being the estimated action value of action .a from the start state .sa . 
The first final policy variant calculates the Kernel Regression Lower Confidence 

Bound (KRLCB) by
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. KRLCB[a|Ci ] = KR[a|Ci ] − c

 
log

 
a ∈Ci W[a |Ci ]
W[a|Ci ] (76) 

with a constant .c ∈ R≥0. Actions with high KRLCB values are well explored from 
many start states due to the exploration term (subtrahend) and provide large returns 
from many start states due to the exploitation term (minuend). Hence, the KRLCB 
selects robust actions. 

The second policy variant employs the Conditional Value at Risk (CVaR). Since 
CVaR has been defined for a cost random variable .Z in Sect. 4.3.2, we derive a 
consistent definition for a reward random variable.R := −Z . The Value at Risk (VaR) 
of . Z can be transformed with 

.

VaRα(Z) = min {z ∈ R | P(−R > z) ≤ α}
= −max {r ∈ R | P(R < r) ≤ α}
= − inf {r ∈ R | P(R ≤ r) > α}
= − inf {r ∈ R | P(R > r) < 1 − α}
(68)= −VaR+

1−α(R)

(77) 

where .VaR+
1−α is the Upper Value at Risk and . α is a probability. 

The objective is to select the best action.a∗ from a set of available actions.Ãi
that 

minimizes the risk of costs according to risk metric CVaR (see (78)). The following 
derivations 

. a∗ = argmin
a∈ Ãi CVaRα(Z)

= argmin
a∈ Ãi E [−R | − R ≥ VaRα(Z)] (78) 

. 
(77)= argmin

a∈ Ãi E
 −R | R ≤ VaR+

1−α(R)
 

= argmax
a∈ Ãi E

 
R | R ≤ VaR+

1−α(R)
 

(79) 

show that this idea is equivalent to choosing the action that maximizes a conditional 
expected value based on the reward random variable . R. We denote this expected 
value as Complementary Conditional Value at Risk (CCVaR) and define it as 

.CVaR1−α(R) := E  R | R ≤ VaR+
1−α(R)

 
. (80) 

In the context of MDPs and POMDPs, an agent selects the action with the largest 
.CVaR1−α(G) value, where . G denotes the return (1). 

Before the CVaR idea can be applied, a return distribution must be determined. We 
use kernel regression to calculate the density .Wi

a,s0 := W[a|Ci
s0 ] (see (73)) and the 

kernel regression value.KRi
a,s0 := KR[a|Ci

s0 ] (see (75)) of each action. a with respect 
to the action candidates.Ci

s0 ⊆ Ci from each start state. s0. Each kernel regression value 
.KRi

a,s0 for a specific start state .s0 serves as an unweighted particle in the set
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Algorithm 5: CVaR Final Selection Policy [ 51] © 2022 IEEE 

Input: action candidates Ci for agent i 
Output: density distributions Wi and kernel regression value distributions KRi for agent i 

1 Function kernelRegression(Ci) 
2 Wi ← ∅  
3 KRi ← ∅  
4 foreach action a ∈ Ci do 
5 foreach start state s0 ∈ S0 do 
6 Ci 

s0 ← {action candidates from s0} ⊆ Ci 

7 Wi 
a,s0 ← W[a|Ci 

s0 ] // see (73) 

8 if Wi 
a,s0 ≥ wmin then 

9 KRi 
a,s0 ← KR[a|Ci 

s0 ] // see (75) 

10 append Wi 
a,s0 to W

i and KRi 
a,s0 to KRi 

11 return Wi , KRi 

Input: action candidates Ci , densities Wi , kernel regression values KRi for agent i 
Output: CCVaR values Qi for agent i 

12 Function getACValues(Ci , Wi , KRi) 
13 Qi ← ∅  

/* number of start states from which actions have been 
appended to the action candidates */ 

14 Ns0 ← see (82) 
15 foreach action a ∈ Ci do 

16 KRi 
a ←

 
KRi 

a,s0 | s0 ∈ S0 ∧ KRi 
a,s0 ∈ KRi

 

17 if |KRi 
a | ≥  cm Ns0 with cm ∈ [0, 1] then 

18 Qi 
a ← CVaR1−α(KRi 

a ) // see (80) 
19 else 
20 Qi 

a ← −∞  
21 append Qi 

a to Qi 

22 return Qi 

.KRi
a =  

KRi
a,s0 | s0 ∈ S0 ∧ KRi

a,s0 ∈ KRi ⊆ KRi (81) 

representing the return distribution of an action. a from different start states. A particle 
is not added to the set if the density .Wi

a,s0 is smaller than a threshold .wmin ∈ R≥0. 
This condition ensures that unreliable return estimates due to a low visit count of 
similar actions do not distort the distribution. 

After the particle sets have been constructed, the action candidate values .Qi can 
be determined. Let 

.Ns0 = |{Ci
s0 | s0 ∈ S0 ∧ Ci

s0 = {action candidates from s0} ⊆ Ci ∧ Ci
s0  = ∅}| (82) 

be the number of start states from which actions have been appended to the action 
candidates. Ci . If the final selection policy follows the process described at the begin-
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ning of Sect. 4.3.4 for the initialization of . Ci , .Ns0 corresponds to the number of 
collision-free and valid start states visited more often than a threshold. Then, the 
condition 

.|KRi
a| ≥ cmNs0 (83) 

with a constant .cm ∈ [0, 1] indicates whether .KRi
a has enough elements to be a 

meaningful representation for the return distribution of action . a. If this is the case, 
the action candidate value .Qi

a is set to .CVaR1−α(KRi
a) (see (80)). Otherwise, .Qi

a is 
set to negative infinity, which prevents the selection of this action. 

The CVaR final selection policy, summarized in Algorithm 5, favors robust actions 
since it combines the performances from several start states and limits the influence 
of high-return outliers from a few specific start states. 

4.4 Experiments 

We evaluate the presented approach in the same manner as described in Sect. 2.4. 
In addition, we compare our approach with a baseline corresponding to our basic 
approach of Sect. 2.3.3, which neglects uncertainties. The results are summarized in 
Fig. 12. 

In an uncertain environment with noisy measurements, the performance of the 
baseline decreases significantly in comparison to a deterministic environment (see 
Fig. 12a and c). For instance, the mean success rate drops from 85 % to 24 % for 
1280 iterations. If the number of iterations increases, the success rate of the base-
line also rises due to better action assessment and exploration. Our approach that 
uses the KRLCB final selection policy outperforms the baseline significantly. For 
1280 iterations, the success rate reaches 62 %, for instance. As indicated in Fig. 12b, 
scenarios one to ten are solved nearly completely, with a success rate approaching 
100 %. Furthermore, a greater number of iterations improves the performance in 
general. However, more complex scenarios with multiple agents, such as scenarios 
11–15, need more iterations than 1280 for satisfactory performance. 

Our approach that employs the CVaR final selection policy also outperforms the 
baseline with 320 iterations or more but consistently performs worse than KRLCB 
over all evaluated iteration counts (see Fig. 12a). The experiments show that CVaR 
needs more iterations to unfold its potential. For instance, more than 160 iterations 
are necessary to improve the success rate upon the baseline. This is plausible since 
a sufficient amount of particles is necessary for a reasonable representation of the 
return distribution. 

If our approach is applied in a deterministic environment (see Fig. 12c), the suc-
cess rates are lower on average compared to the baseline. This behavior is expected 
since the baseline can plan from the environment’s real state without needing robusti-
fication. On the other hand, the KRLCB and CVaR improve their performances with 
increasing iteration counts. Fig. 12d shows that KRLCB even solves scenarios two
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(d) KRLCB in deterministic environment 

Fig. 12 Comparison of the mean success rates between the baseline, KRLCB, and CVAR final 
selection policies in an uncertain (a) and a deterministic (c) environment. The performance of 
KRLCB is depicted in more detail for uncertain (b) and deterministic (d) scenarios (SC)
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to six better than the baseline in a deterministic environment. However, the success 
rates are significantly lower for the other scenarios. 

5 Conclusion 

Our work proposes a method to plan cooperative trajectories in challenging interac-
tive urban scenarios and tight spaces. At its core, MCTS powers the search for opti-
mal actions. We employ Decoupled-UCT to model the simultaneous action selection 
process of multiple interacting agents. In addition, we augment the planning algo-
rithm with progressive widening to enable a continuous action space that allows for 
arbitrary trajectories. 

Further, we combine Maximum Entropy IRL with MCTS to learn reward models 
for the cooperative trajectory planning problem. The efficacy of the MCTS to quickly 
generate (approximately) optimal samples for arbitrary reward models, in combina-
tion with adjusting the sampling distribution after gradient updates, yields reward 
models that quickly converge towards the experts. Furthermore, with this approach, 
it is no longer necessary to manually tune reward functions to mimic human drivers. 

Last, we extend the resulting cooperative trajectory planning algorithm to explic-
itly model uncertainties and thus account for noisy perception and partially unknown 
environments. By constructing search trees from multiple start states, combining their 
action assessments by kernel regression to yield a return distribution, and applying 
risk metrics to this distribution, our approach significantly improves the performance 
in uncertain environments. 
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Learning Cooperative Trajectories 
at Intersections in Mixed Traffic 

Shengchao Yan, Tim Welschehold, Daniel Büscher, Christoph Burger, 
Christoph Stiller, and Wolfram Burgard 

Abstract Intersections are a significant bottleneck in traffic and have been a topic of 
much research. Optimization approaches incorporating traffic models are often lim-
ited by the intractable complexity resulting from the combinatorial explosion asso-
ciated with increasing numbers of vehicles. Learning cooperative maneuver policies 
with deep neural networks from traffic data is a promising approach to address this 
issue. This chapter presents two approaches for managing traffic at intersections 
using deep reinforcement learning. The first approach learns an adaptive traffic sig-
nal controller, serving as a trajectory planner for all vehicles at the intersection. For 
smaller intersections with less traffic and fewer lanes, traffic signs are preferred over 
traffic lights due to their lower cost and higher efficiency. The second approach uses 
a centralized control unit to optimize efficiency and equity by ordering automated 
vehicles to yield to vehicles on conflicting routes with lower priorities. Self-driving 
cars have the potential to improve traffic flow in mixed environments with human-
driven vehicles. The chapter evaluates the approaches using a traffic simulator with 
simulated and real-world traffic data. The approaches achieve state-of-the-art perfor-
mance in terms of traffic efficiency and equity compared to non-learning and other 
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learning-based methods. The chapter concludes with a discussion of possible future 
work on learning cooperative trajectories in mixed traffic. 

1 Traffic Signal Controller with Deep Reinforcement 
Learning 

Traffic congestion is a tremendous cost factor in terms of fuel and time and many 
cities all over the world suffer from it [ 19]. Moreover, the emissions of road transport 
have been considered as the main cause for air pollution [ 6, 39]. To alleviate traffic 
congestion and the associated problems, smarter and cleaner vehicles have been 
investigated [ 23, 28]. In addition to that, the effectiveness of road traffic can also be 
improved by optimizing the scheduling of traffic lights. 

In this section, we focus on reducing congestion by improving automated traffic 
light controllers. More specifically, we focus on traffic signal controllers (TSCs) for 
isolated intersections [ 31], i.e., signalized intersections whose traffic is unaffected 
by any other controllers or supervisory devices. 

The performance of conventional fixed-time or actuated TSCs is limited by the 
restricted setup and the relative primitive sensor information available. Recently, 
adaptive TSCs [ 20] attracted more attention due to their high degree of flexibility. 
Advances in perception and vehicle-to-everything (V2X) communication [ 18] could 
make such controllers even better by providing additional (real-time) information, 
such as locations and velocities of the vehicles. With more detailed information 
available, adaptive TSCs have the potential to provide optimal control according to 
current traffic situations. One approach to achieve this is to consider traffic signal 
optimization as a scheduling problem [ 20, 47], in which a junction is considered 
as a production line and the input vehicles as different products to be processed. 
However, this type of methods suffers from the curse of dimensionality which limits 
their applicability to small numbers of vehicles [ 1]. As a result, these methods in 
general only satisfy real-time requirements for either oversimplified intersections or 
under small traffic flow rates. 

A recent line of research proposes to design adaptive TSCs based on deep rein-
forcement learning (DRL). DRL has been shown to reach state-of-the-art perfor-
mance in various domains [ 30, 37]. However, we believe that the performance of 
DRL approaches in the traffic domain can be pushed further, in particular with regards 
to the following limitations: 

• Most previous approaches have focused on improving efficiency, which is cal-
culated according to the throughput of intersections. However, we argue that the 
equity of the travel time of individual vehicles is also of vital importance. Pre-
vious works have been mostly evaluating in scenarios with relatively low traffic 
flow, in which case the trade-off between efficiency and equity might not have 
a great influence on the performance of the controller. However, in dense traffic
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with nearly- or even over-saturated intersections and unbalanced traffic density on 
incoming lanes, the efficiency-equity trade-off can be an important factor. 

• The flexibility of adaptive TSCs has not been sufficiently explored. Instead, most 
approaches employ fixed green traffic light duration or fixed traffic light cycles. 

• Previously proposed DRL agents are trained and evaluated in relatively simplified 
traffic scenarios: very few traffic demand episodes with limited variation or evenly 
distributed flow for each incoming lane [16]. Thus, their experimental results might 
not be sufficient indicators of their performance in real traffic scenarios. 

• Current DRL-based approaches have shown performance improvement mainly 
against fixed-time or actuated TSCs. They either have not compared with state-of-
the-art adaptive TSCs, such as the Max-pressure controller [ 43], or do not surpass 
state-of-the-art performance [ 15, 16]. 

To overcome these limitations, we present a novel method that introduces the 
following innovations: 

• An equity factor to trade off efficiency (average travel time) against equity (vari-
ance of individual travel times) as well as a solution to calculate a rough bound 
for it. 

• An adaptive discounting method to account for the issues brought by transitional 
phases of traffic signals, which is shown to substantially stabilize learning. 

• A learning strategy that surpasses state-of-the-art baselines. It is generic with 
regards to different traffic flow rates, traffic distributions among incoming lanes 
and intersection topologies. 

In line with the aforementioned DRL approaches, we conduct experimental studies 
in the traffic simulation environment SUMO [ 25]. We show that our method achieves 
state-of-the-art performance, which had been held by traditional non-learning meth-
ods, on a wide range of traffic flow rates with varying traffic distributions on the 
incoming lanes. The content of Sect. 1 is based on [ 49]. 

1.1 Related Works 

In traditional fixed-time TSC designs [ 31], the traffic flow rates at intersections are 
treated as constants, and the green-red phases for each route are scheduled in a cyclic 
manner. Then the duration for each green phase is optimized using history flow rates. 
The Uniform TSC with the same fixed duration for all green phases and the Webster’s 
method [ 44] with pre-timed duration according to latest traffic history are usually 
used as baselines in TSC works [ 16]. As the real traffic flow rates generally vary 
across lanes and across time, the performance of such TSCs is restricted. 

Actuated TSCs [ 31] make use of loop detectors, which are electromagnetic sensors 
mounted within the road pavement. Such sensors can detect the incoming vehicles 
and estimate their velocity when they pass by, so that actuated TSCs can dynamically
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react to the vehicles driving into the intersection. Yet, their performance are still 
restricted due to the limited information provided by the sensor. 

Since decades researchers have investigated on developing adaptive TSCs, which 
can schedule traffic lights acyclic and with flexible green phase duration according 
to the real-time traffic situation. Some early works like [ 14, 26] have been largely 
applied in real traffic designs. Yet it is still believed that the performance of TSC can be 
further improved. In recent years, analytical [ 18, 50], heuristic [ 17, 43] and learning-
based [ 11, 15, 16, 46] approaches have been proposed. Among these, the heuristic 
Max-pressure method [ 43] is reported to be holding state-of-the-art performance [16]. 
DRL-based methods hold great promise with the possibility to learn generalized and 
flexible controller policies by interacting with traffic simulators, and that they could 
provide scheduling decisions in real-time, as opposed to some non-learning methods 
that need optimization iterations before giving out each decision. 

A few works have deployed DRL for isolated intersection TSCs [ 15, 16, 21, 33]. 
However, none of them were able to surpass state-of-the-art performance achieved by 
the Max-pressure method. Each of these method proposes its own reward functions 
for training the agent, but the connection between them has not been clear. In this 
work we attempt to give such an analysis of those different reward functions that 
have been proposed (Sect. 1.2.3). 

While efficiency has been the main objective for most of these works, some previ-
ous algorithms actually had considered equity implicitly. They [33, 45, 46] design the 
reward as a weighted sum of several different quantities about the intersection. How-
ever, finding the optimal weighting is non-trivial. In this work we instead propose an 
equity factor along with a method to calculate its rough bound. 

1.2 Methods 

We consider the task of TSC in standard reinforcement learning settings. At each 
step, from its state .s ∈ S the agent selects an action .a ∈ A according to the policy 
.π(·|s). It then transits to the next state .s  ∈ S and receives a scalar reward .r ∈ R. 
The state and action spaces and the reward function in our work are discussed in the 
next subsections. 

For learning the optimal policy that maximizes the discounted (by. γ ) cumulative 
expected rewards, we use proximal policy optimization (PPO) [ 37] as the backbone 
DRL algorithm. For a policy .πθ parameterized by . θ , PPO maximizes the following 
objective: 

. Jθ = Et

 
min
 
ρt (θ)At , clip (ρt (θ), 1 −  , 1 +  ) At

 
+ βentropy · H

 
πθ(st )
  

,

(1) 

where the expectation is taken over samples collected by following .πθold , . ρt (θ) =
πθ (at |st )/πθold (at |st ) is the importance sampling ratio, and.  is a hyperparameter for clip-
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ping the probability ratio. .H represents the entropy of the current policy, . βentropy

adjusts the strength of entropy regularization..At is a truncated version (on trajectory 
segments of length up to . K ) of the generalized advantage estimator [ 36], which is 
an exponentially-weighted average (controlled by . λ): 

.At = δt + (γ λ)δt+1 + · · · + (γ λ)K−1−tδK−1, (2) 

where.δt = rt + γ Vφold(st+1) − Vφold(st ). The value function.Vφ , parameterized by. φ, 
is learned by minimizing the following loss (with coefficient .βvalue): 

.Lφ = βvalue · Et

    Vφ(st ) −
 
Vφold(st ) + At

    
2

2

 
. (3) 

1.2.1 Action Space 

We carry out our method on a four-road intersection where each road contains 
three incoming lanes (one forward-only, one forward+right-turning, one left-turning, 
Fig. 1a). We note that our approach can easily generalize to other intersections by 
adjusting the state and action representations accordingly. 

The agent has an action space of size . 4: while one of the two sets of facing 
directions (north and south, east and west) has only red light, the other set can 
schedule either of the following two traffic light signal combinations (Fig. 1b): 

• Green for the forward-only and forward+right-turning lanes and red for the rest; 
• Green for the left-turning lanes and red for the rest. 

In order to give the agent more flexibility, we set the duration for each of the. 4 actions 
as . 1 second. 

We note that choosing one action means scheduling a distinct green phase. Dur-
ing the transition between different green phases, yellow or all-red phases must be 
scheduled. In our work, a .3s-yellow and .2s-all-red phase is scheduled before acti-
vating a new green phase. We denote the constant .Tyr = 5 s as the duration for the 
yellow-red phase. 

(a) Four-road intersection with three incoming 
lanes for each road. 

(b) Four green phases (actions) for the 
intersection. 

Fig. 1 The intersection and its corresponding action space
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Due to this setting, if two different actions (green phases) are scheduled consec-
utively, the effective duration of the second action is .6 s instead of .1 s; while if the 
same action (green phase) is scheduled twice in a row, then the effective duration for 
the second action is still .1 s. During the learning process, the aforementioned two 
scenarios should not be treated equally. To cope with this we propose the method of 
adaptive discounting which will be presented when discussing the reward function 
(Sect. 1.2.3). 

1.2.2 State Space 

At each process step, the state .st the agent receives is comprised of the following 
components: 

• The distance along the lane to the traffic light and the velocity of each vehicle 
that has not passed the light and is within.150m range (each lane has a maximum 
capacity of.19 vehicles) to the center of the intersection. A block of.19 × 2 scalars 
in the state vector is reserved for the vehicles in each incoming lane. The vehicles’ 
states in each block are sorted according to their distance values. The order of lanes 
in the state vector has to be kept unchanged. All the values are normalized to be 
within.[−1, 1]. If any lane does not reach its maximum capacity, the corresponding 
position and velocity values will be set to . 1 and .−1. 

• The action of the last step .at−1 (in one hot encoding so a .4-dimensional vector). 
• A counter that contains for each action the time in seconds since its last execution. 
The .4-dimensional vector is normalized by .500 s. This component along with the 
last action .at−1 helps to avoid state-aliasing. 

1.2.3 Reward Function 

Several different reward functions have been proposed in previous works to train DRL 
agents for controlling traffic signals. However, the reasoning behind different designs 
have not been clearly presented, also the connections between those different choices 
and the different effects they are causing have not been thoroughly analyzed. We 
attempt for such an analysis below, which indicates that the vanilla versions of those 
rewards tend to result in policies that only consider time efficiency (average travel 
time in an intersection). We then propose solutions that also take equity (variance of 
individual travel time) into consideration. 

Definitions 
We first give the definitions of several important concepts in traffic intersection 
systems. We visualize the important ones in Fig. 2. 

• Total number of vehicles in the intersection (. N ): At . t , the number of vehicles in 
the intersection system.Nt is the total number of vehicles that are within a certain
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Fig. 2 Illustration on the proposed adaptive discounting, as well as several important concepts in 
the traffic intersection domain. In the figure we show each released car with a distinguish symbol 
on top. As for the colors, the cars in yellow are those that have not yet passed through the traffic 
light, and they would be depicted in purple immediately after they pass through their traffic lights 
(judged by the head of the car). The cars in yellow are considered in the state representation, while 
the cars that turned from yellow to purple are calculated into the throughput. The 1. st, 2.nd and 4. nd
sub-figures correspond respectively to system elapsed time: .{10, 11, 17}s, and to learning process 
step: .{t, t + 1, t + 2}. Since the action .at+1 chooses to schedule a different green phase than that 
of . at , a  .3s-yellow and .2s-red phase will be scheduled before the new green phase. The 3.rd sub-
figure in red dashed bounding box shows the 1. st second in the yellow phase. In previous works, 
the discounting has been conducted with respect to the process step. While we propose to discount 
according to system elapsed time which is shown in our experiments to be of vital importance for 
stable learning 

range to the intersection center (e.g., .150m) but have not yet passed through the 
corresponding traffic lights. 

• Throughput (.NTP): The number of vehicles that pass through the traffic lights of 
their corresponding incoming lanes within .(t − 1, t] is denoted .NTP

t . 
• Travel time (.Ttravel): For a single vehicle, its travel time is counted as the time 
period starting from when it enters the intersection and ending when it passes 
through the traffic light. The total travel time of the intersection is the summation 
of the individual .Ttravel of each vehicle in the intersection. We note an equivalent 
way of calculating the total travel time is to count .Nt at every second and sum it 
over a given time period. 

• Delay time (.Tdelay): Similar to travel time, except that a constant is subtracted from 
each individual travel time:.Tdelay = Ttravel − Tfree, where.Tfree is the constant time 
length for a vehicle to pass through the intersection system with no cars ahead and 
green lights always on. 

• Traffic flow rate (. F): The number of vehicles that pass through an intersection in 
unit time. A commonly used unit is the number of vehicles per hour .v/h. 

• Saturation flow rate (. Fs): This is a constant representing the traffic flow rate for 
one lane under the condition that the traffic light stays green during unit time and 
that the flow of traffic is as dense as it could be [ 5].
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Reward Function Categories 
Given the above definitions, the majority of the reward functions proposed in the 
TSC domain can be categorized into the following two types: 

• Throughput-based reward functions .RTP [ 46]. The vanilla form of this type uses 
the throughput .NTP

t as the reward for step . t . Learning on this reward function 
means maximizing the cumulative throughput of the intersection. The change in 
throughput .NTP

t − NTP
t−1 has also been used as a reward function [ 35]. • Travel-time-based reward functions.RTT [ 11, 15, 16, 33, 46]. As mentioned before, 

the total travel time of an intersection for a given period of time .[τstart, τend] can 
be calculated as the summation of .Nt during that time: .

 τend
τstart

Nt . The vanilla 
reward function of this type thus uses .−Nt as the reward for step . t . We note that 
.Nt = Nt−1 − NTP

t + N in
t where.N in

t denotes the number of new vehicles input into 
the system from .t − 1 to . t , which is commonly assumed to be determined solely 
by the traffic flow distribution thus is out of the control of TSC. Learning on this 
reward function would result in policies that minimize cumulative travel time. 
Reward functions utilizing the change of cumulative delay time between actions 
and the total delay time of the intersection have also been investigated. 

The above description indicates that maximizing cumulative throughput and min-
imizing total travel time could both result in policies that puts efficiency in the top 
priority. During research we observed that throughput-based reward generally leads 
to more stable learning with smaller variance across different runs. Therefore, we 
focus on throughput-based reward in the following content. 

Adaptive Discounting 
Treating the two scenarios discussed in Sect. 1.2.1 equally when discounting rewards 
in either of the two reward categories can result in suboptimal policy performance. 
We propose the method of adaptive discounting that properly discount for those 
scenarios and is shown to be critical for convergence in our experiments. 

We illustrate this method under the throughput based reward.RTP
t = NTP

t in Fig. 2: 
At system elapsed time.10 s the reinforcement learning process is at step. t . The action 
.at is chosen that schedules green lights for the left-turning lanes for the north-south 
roads. Transitioning from. t to.t + 1, the throughput reward obtained is.rt+1 = 2. This  
is a normal RL iteration and no special adjustments need to be done. But at step. t + 1
when the system elapsed time is at .11 s, the action .at+1 is chosen to schedule green 
lights for the forward+right turning directions of the north-south roads, which is a 
different green phase than that of . at . This means a .3s-yellow and a .2s-all-red phase 
will be automatically scheduled before the new green phase. The .5 s intermediate 
phase and the chosen.1 s green phase are both within step.t + 2of the learning process. 
During this step the throughput obtained at elapsed times . {12, 13, 14, 15, 16, 17}s
are .{1, 0, 0, 0, 0, 2}. With no special treatment when calculating the reward for step 
.t + 2 it would be .rt+2 = 3. But this could lead to undesired properties since the 
agent gets the intermediate phase “for free” for collecting extra rewards whenever 
it chooses to schedule a different green phase, and that the subsequent states are 
not sufficiently discounted. Furthermore, given that the throughput of two episodes
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matches at every system elapsed second, the agent should obtain exactly the same 
return, even with different traffic light schedules. However, with the transitional 
phases it is not anymore a one-to-one mapping between the system time and the 
process step. So when discounting according to process steps, those two episodes of 
interest could lead to different returns. This issue has been overlooked in the current 
literature of DRL based TSC designs [ 11, 16]. Thus we propose the method of 
adaptive discounting to account for the mismatch between the two timing paradigms, 
in which we discount the reward according to system elapsed time instead of learning 
process steps. As a result, the reward for .t + 2 is calculated as: 

.rt+2 = 1 + γ · 0 + γ 2 · 0 + γ 3 · 0 + γ 4 · 0 + γ 5 · 2, (4) 

and a discount factor of .γ 6 instead of . γ will be used for the subsequent reward or 
value. 

The Equity Factor 
Having presented the adaptive discounting technique, now we present the equity fac-
tor for reward functions for training TSC. The aforementioned two types of reward 
functions (throughput-based and travel-time based) both treat efficiency, i.e., average 
travel time of the intersection as the major concern. Equity, the variance of individual 
travel times, is not explicitly considered. Take the following scenario as an example: 
Assuming that the north-south roads are saturated, while the east-west roads have 
lighter traffic, the policy to maximize the cumulative throughput should always keep 
the north-south traffic lights green, while keeping the east-west lights red. Conse-
quently, the vehicles on the east-west roads might have to wait for an intolerable 
long time to pass through the intersection. This is due to that in the vanilla reward 
definitions, every vehicle contributes equally to the throughput or to the travel time, 
regardless of how long it has been waiting. 

Following the above analysis, we propose to use the vehicle’s travel time together 
with an equity factor . η in the reward function. The basic idea is to adapt the contri-
bution of each vehicle to the throughput-based reward according to its travel time in 
the intersection while passing the traffic light. Instead of just counting value. 1 when 
a vehicle passes through, we consider three ways to incorporate . η into the reward 
calculation: linear (.η · Ttravel), power (.Ttravelη) and base (.ηTtravel ). Since simply scaling 
the rewards does not change the value function landscape, we mainly considered 
the power and base forms. During research our experiment results show that the 
power form equity factor leads to convergence to better policies than the base form. 
Therefore, we focus on the analysis of the .Ttravel

η in the following. 
To define the proper range of . η, two special scenarios are considered. 

• Scenario 1: Only one vehicle is before the traffic light, and its travel time at step. t
is . τ . With the equity factor . η and the discount factor . γ , the return contributed by 
this vehicle would be .τ η if it passes through the traffic light at . t , and . γ · (τ + 1)η

if one second later. We require .τ η > γ · (τ + 1)η so that releasing this vehicle 
sooner is more desired. With this we get .η < ln(γ )/ln τ

τ+1 ,
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• Scenario 2: One lane with green light is over-saturated, while a single car is waiting 
at red light in another lane. In the case where the over-saturated lane always has 
green light on and the single vehicle is never released, the highest return for any 
state is: 

. Ge = Tfree
η
 
1 + γ

1
Fs + (γ

1
Fs )2 + · · ·

 
= Tfree

η
/1−γ

1
Fs

(denoted as.Ge as in this case efficiency is the top priority). If the waiting vehicle is 
released at step. t when its travel time is . τ , the upper limit of the return the system 
can obtain at state . st is: 

. sup(Ge+e) = Tη

free + τ η · γ Tyr +
 
Tfree+2·Tyr+1

 η
·γ 2·Tyr+1

/1−γ
1
Fs

(we use.Ge+e since this strategy cares about efficiency and equity). The three terms 
in the summation are all calculated out of the best case scenario (the traffic light 
on the saturated lane turns yellow then red for a total of .Tyr elapsed time, then the 
light on the single vehicle lane turns green for one second then turns yellow) to 
get the upper limit: the first term is the reward obtained from the vehicle on the 
saturated lane that manages to pass through at the beginning of the yellow phase; 
the second term is contributed by the single vehicle passing through the traffic 
light in its .1 s green phase; the last term is the summation of the reward obtained 
by the vehicles on the saturated lane after the green phase switches back to this 
lane. We require .Ge < sup(Ge+e) to release the single vehicle after certain travel 
time . τ . 

With these analysis a range of. η can be found. We note that this is a rough calculation 
under our system settings as for example the traffic flow in the saturated lane does not 
recover instantaneously to .Fs after the green light switches back. Nevertheless the 
analysis gives a general solution to calculate a rough bound for . η. The experimental 
results show that the desirable TSC policies could be learned in this bound. 

1.3 Experiments 

1.3.1 Experimental Setup 

We conduct experiments using the urban traffic simulator SUMO [ 25] and evaluate 
the trained agents in both simulated one-hour traffic demand episodes (with the 
intersection type described above) and a real-world whole-day traffic demand (with 
a different type of intersection in Freiburg, Germany). Both intersections have a 
speed limit of 50 km/h. We compare with the following common baselines in the 
TSC domain:
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• Uniform: This controller circulates ordered green phases in the intersection. Each 
green phase is scheduled for a same fixed period, the duration of which is a hyper-
parameter of this algorithm. 

• Webster’s [ 44]: Same as the Uniform controller, it schedules traffic phases in a 
cyclic manner. But each phase duration is adjusted in accordance with the latest 
traffic flow history. It has three hyperparameters: the length.Thistory of how long the 
traffic flow history to take into account for deciding the phase duration for the next 
.Thistory period, and the minimum and maximum duration for one complete cycle. 

• Max-pressure [ 43]: Regarding vehicles in lanes as substances in pipes, this algo-
rithm favors control schedules that maximizes the release of pressure between 
incoming and outgoing lanes. More specifically, with incoming lanes containing 
all lanes with green traffic light in a certain phase, and outgoing lanes being those 
lanes where the traffic from the incoming lanes exit the intersection system, this 
controller tends to minimize the difference in the number of vehicles between 
the incoming and outgoing lanes. The minimum green phase duration is a hyper-
parameter. 

We note that previous learning methods were not able to surpass the state-of-the-art 
performance held by the non-learning method Max-pressure TSC [ 16]. 

Regarding our network architecture for the intersection in Fig. 1a, the input size 
for both the policy network . θ and the value network . φ is .4 + 4 + 2 · 19 · 12 = 464. 
Then . θ consists of fully connected layers of sizes .2 048 (ReLU), .1 024 (ReLU) and 
. 4 (SoftMax), where. 4 is the size of the action space. For. φ the fully connected layers 
are of sizes.2 048 (ReLU),.1 024 (ReLU) and. 1. We perform a grid search to find the 
hyperparameters. We use.2.5e−5 as the learning rate for the Adam optimizer, . 1e−3
as the coefficient for weight decay. For PPO, we use .32 actors, .0.2 for the clipping 
.  . In each learning step a total number of around .20 mini-batches of size .1 000 is 
learned for . 8 epochs. 

1.3.2 Training 

Previous methods focused on relatively limited traffic situations, for example a single 
one-hour demand episode [ 11] and traffic input less than .3 000v/h [ 15, 16]. In this 
paper we challenge our method to experience a wider range of traffic demand. For the 
four-way junction we consider, the upper bound of the traffic flow can be calculated as 
.4 · Fs , where.Fs is the saturation flow rate for one incoming lane. This maximum flow 
is reached when all . 4 forward-going lanes of either the north-south or the east-west 
roads have green lights and are in full capacity. However, this extreme scenario rarely 
happens in real traffic. In our experiments we found that the intersection already starts 
to saturate with around.3 000v/h of total traffic input. In our training we set the range 
of traffic flow rate to be .[Fmin, Fmax] = [0, 6 000v/h] which is much wider than that 
used in previous works. 

With this flow rate range, we sample traffic demand episodes for training. Each 
episode is .1 200 s long and defined by these randomly sampled parameters: the
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total traffic flow at the beginning and end .Fbegin and .Fend, and for each incom-
ing lane its traffic flow ratio of the total input at the beginning and end. . Fbegin

is randomly sampled from .[Fmin, Fmax]. Then .Fend is sampled uniformly within 
.[max(Fmin, Fbegin − 1 500),min(Fmax, Fbegin + 1 500)]. The flow ratios are decided 
by sampling .12 uniform random numbers then normalized by their sum. The traf-
fic flow during the episode is then linearly interpolated. The sampled episodes with 
possibly big change of traffic flow and unbalanced distribution should be enough to 
cover real traffic scenarios. 

1.3.3 Evaluation During Training 

During training, we conduct evaluation to monitor the learning progress every . 20
learning steps, which corresponds to.640 episodes experienced by.32 actors. For each 
evaluation phase . 5 evaluators are deployed, corresponding to traffic flow ranges of 
.[500, 1 500],.[1 500, 2 500],.[2 500, 3 500],.[3 500, 4 500] and.[4 500, 5 500] respec-
tively. Each evaluator samples traffic demand for evaluation in the corresponding 
range similar to how training episodes are sampled except that the flow rates at the 
beginning and end are independently sampled from the same corresponding range. 

An ablation study is conducted to analyze the individual contributions of differ-
ent components in our proposed algorithm. The plots are shown in Fig. 3, where 
the following agent configurations are compared: .[×] + [η = 0], .[×] + [η = 0.25], 
.[ad] + [η = 0], .[ad] + [η = 1], .[ad] + [η = 0.25]. .[ad] means the agent utilizes 
adaptive discounting while .[×] means not; .[η = ·] denotes the value of the equity 
factor used by the agent, where the .[η = 0] agents, which use exactly the vanilla 
throughput-based reward, care only about efficiency while the .[η = 1] ones favor 
equity. 

Interestingly, from Fig. 3 we can observe that the two agents without the technique 
of adaptive discounting struggle to learn successful policies in both low and high 
flow rates. We can also observe the influence of the equity factor . η: the . [ad][η = 0]
agent who does not care about equity converges to a better policy than the. [ad][η = 1]
agent in lower traffic density, while the latter agent outperforms the former one in 
denser traffic. This makes sense, since with little traffic input the equity problem is 
not critical, while with higher traffic flow the intersection could be saturated with 
continuously growing queues even under optimal policies. The efficiency-first poli-
cies favor releasing more vehicles in saturated traffic, thus vehicles in other lanes 
could have long waiting time. 

We observe that the.[ad] + [η = 0.25] configuration obtains the best performance 
across different traffic flow rates, thus this is used for the agent Ours in the following 
experiments. 

Having compared the plots of travel time (for released vehicles) and waiting time 
(for not released vehicles), we notice that the average waiting time always decreases 
during training when the policy gets better, while the average travel time may vary in 
different ways. This is because the travel time only considers the released vehicles. 
Some initial poor policies may choose the same action all the time, which leads to fast
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Fig. 3 Waiting time obtained in evaluation during training for all agent configurations under abla-
tion study. Each plot shows the mean with.±1/5 standard deviation over 3 non-tuned random seeds 
(we show.1/5 of the standard deviation for clearer visualization). The left figure shows the logs of 
the evaluators of traffic flow range .[500, 1 500], while the right one shows that of .[4 500, 5 500]. 
The vehicles passed the traffic light are not considered for the waiting time. The waiting time for a 
vehicle is calculated with .Tepisode − Tin, where .Tepisode is the episode duration and .Tin is the time 
when it enters the intersection 

throughput for vehicles on the lanes with green light while extremely long waiting 
time for other vehicles. The waiting time, however, considers only the vehicles not 
passed the intersection during the episode. As the policy gets better, the number of 
vehicles staying in the intersection at the end becomes smaller. In order to show the 
training process clearly, we choose to use the plot of waiting time. 

1.3.4 Evaluation on Simulated Traffic Demand 

To test the performance of our agent we first evaluate on simulated traffic demand 
episodes that each lasts one hour. For each of the . 5 traffic flow rate ranges as used 
for the evaluators during training, we randomly sample.30 episodes; this exact set of 
.5 · 30 episodes are used to test all compared algorithms. These demand episodes are 
sampled following the similar procedure to that for evaluation during training. 

To ensure a fair comparison, in each demand episode, we use the exactly same 
vehicles generation time for different methods. Via the sampling process described
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Fig. 4 Performance comparison of our work with baselines on .150 one-hour simulated demand 
episodes (.30 from each of the . 5 ranges). We note that the baselines are optimized for each of the 
test episodes before they are tested on it 

above, our test set covers a very wide range of traffic scenarios and could in turn 
provide a more thorough evaluation. 

The evaluation results are shown in Fig. 4. We observe that our method reaches 
state-of-the-art performance on all traffic flow ranges. It is worth noting that for each 
baseline that we compare with, we find its optimized hyperparameters for each of 
the.150 test episodes; while our agent is trained only once and a single agent is used 
to evaluate on all .150 test episodes. This means that the overall performance of our 
one trained model outperforms that of the .150 individually optimized models. The 
performance improvement at about .1 000 and .5 000 v/h is not very obvious, because 
in light traffic many vehicles do not have to wait in queue and in over-saturated 
traffic, where there is a queue in every incoming lane, the best policy is similar to 
scheduling the green phases cyclically. The capability of our agent to react to real time 
traffic situation can be fully utilized for the traffic flow ranges in the middle, where 
the improvement against the Max-pressure controller and the fixed-time controllers 
could be over .20 and.40%. The Webster’s method performs worse than the Uniform 
controller due to the quick change and short duration of the test episodes, which is 
most of the time not the case in real traffic (Fig. 5). 

As mentioned, the travel time only indicates how fast the released vehicles drive 
through. In order to show that our agent can also benefit more drivers than baselines, 
we present the testing statistics for throughput in Table 1. The percentage values are 
the ratio of the released vehicles in the total vehicle number generated. With traffic 
flow lower than about .3 000 v/h, all TSCs can properly release traffic input. Not . 100
percent of the generated vehicles can be released, because the test is stopped directly 
after one hour. Some vehicles generated at the end do not have enough time to travel 
through. From about .3 000 v/h the throughput of the baselines start to drop, which 
means the TSC can not fully release the input traffic flow and traffic jam starts to 
form, while our agent can avoid traffic jams in much denser traffic. With the increased
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Fig. 5 Performance comparison of our work with baseline models on a whole-day real-world traffic 
demand 

Table 1 Throughput (. %) of considered methods in Fig. 4 

Traffic flow input (v/h) Throughput. (%)

Uniform Webster’s Max-pressure Ours 

500–1 500 .97.38 .97.47 .97.59 . 97.76

1 500–2 500 .97.09 .97.52 .97.54 . 97.95

2 500–3 500 .93.77 .95.34 .95.91 . 97.76

3 500–4 500 .87.16 .86.65 .88.84 . 92.88

4 500–5 500 .77.62 .74.90 .81.75 . 86.27

efficiency, our agent can still guarantee equity, which is shown by the low standard 
deviation of vehicles travel time and the high throughput. 

1.3.5 Evaluation on Real-World Traffic Demand 

To further measure the performance of our agent in more realistic traffic scenarios, 
we conduct additional tests with a whole-day traffic demand of a real-world intersec-
tion of Loerracherstrasse and Wiesentalstrasse located in Freiburg, Germany. This 
intersection has different layout than the one in Fig. 1a. Here each road has one 
forward+right turning lane with one additional short lane for protected left turn. 
So the size of the state changes to 224. We regard the short left-turning lane, the 
forward+right-turning lane and the lane segment before the branching as separated 
when we construct the state. 

Since the size of the input is different from the experiments above, we need to train 
another agent. As we want to test the generalization capabilities of our method, the 
training traffic demand is sampled in the same way as before (only the maximum limit 
of the traffic flow is reduced to .1/2 to reflect the change in the intersection layout) 
The trained agent is tested on the real-world traffic demand of February 4, 2020, 
with typical traffic flow peaks at rush hours. The input traffic flow is in the range
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.[0, 1 740]v/h. We sincerely appreciate the support of city Freiburg (www.freiburg.de/ 
verkehr), which provides us with the traffic flow data measured with inductive-loop 
detectors. 

The results of this real-world experiment is shown in Fig. 5. All the TSCs can 
properly release all vehicles, because the traffic flow is nearly zero in the night when 
the demand episode ends. We can observe that our method is again outperforming 
all baseline methods, even though the baselines are firstly optimized with exactly 
this whole-day demand and our model is only trained on the simulated episodes with 
.1 200 s duration. The substantial improvement of nearly .30% on average travel time 
is even greater than the performance gain in the simulated evaluations. This validates 
that out proposed method has great generalization capabilities and can adapt to a wide 
range of traffic scenarios. 

2 Courteous Behavior of Automated Vehicles 
at Unsignalized Intersections 

Traffic control signals are not panacea for intersection problems [ 42]. For example, 
they may reduce traffic efficiency for low or unbalanced traffic demand. Although 
recent works [ 43, 49] developed more intelligent adaptive traffic signal control meth-
ods, for the majority of all intersections, which often have only one lane per road and 
mostly small traffic volume [ 13], the use of static road signs assigning priority has 
proven to be more efficient [ 42]. Ulbrich et al. [ 41] summarized how humans coop-
erate with other traffic participants to improve the whole traffic utility. Consider, as 
an example, the situation shown in Fig. 6. Even though vehicle 1 has higher priority 
and can proceed through the intersection before vehicle 2, its driver might prefer to 
yield to vehicle 2 so that the traffic behind vehicle 2 can be released sooner. 

Based on the expectation that future traffic will consist of connected autonomous 
vehicles (CAVs), a large majority of current research excludes human-driven vehicles 
(HVs) in their development of traffic management approaches. However, it might 

Fig. 6 Our intersection management agent optimizes traffic flow by assigning virtual red traffic 
lights to connected autonomous vehicles (vehicle number 1). Once vehicle 2 is released, the vehicles 
following it can also proceed through the intersection

www.freiburg.de/verkehr
www.freiburg.de/verkehr
www.freiburg.de/verkehr
www.freiburg.de/verkehr
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take decades for the technology, the infrastructure and the users to be ready for 
traffic with only connected autonomous vehicles [ 24]. We therefore believe that, for 
the near future, applicable traffic management solutions must (i) consider various 
degrees of mixed traffic, (ii) pose no complications or major adjustment requests for 
human-driven vehicles, and (iii) not present a traffic disturbance or danger when the 
communication between the connected autonomous vehicles fails. 

In this section, we propose a novel centralized method to improve intersection 
management in mixed traffic. Our approach learns a policy for CAVs that maximizes 
the overall utility while at the same time showing courteous behavior [ 27]. We make 
the following contributions: 

• We present a centralized intersection management method based on deep rein-
forcement learning that improves traffic performance at unsignalized intersections 
in mixed traffic scenarios. 

• We introduce return scaling for training in environments with a large imbalance 
of cumulative rewards at different states. In our case, this helps to balance policy 
updating of states with different traffic densities, in particular to counteract the large 
cumulative reward collected in heavy traffic, which would otherwise dominate the 
stochastic gradient descent process and make the policy unstable for states in 
sparse traffic. 

• We present a comprehensive performance comparison for various traffic densities 
and changing rates of CAVs to demonstrate the potential of our approach. 

We conduct experimental studies in the traffic simulation environment SUMO [ 25] 
and show that our method outperforms the state-of-the-art intersection management 
method on a wide range of traffic densities with varying traffic distributions. The 
content of Sect. 2 is based on [ 48]. 

2.1 Related Work 

Among the first ones to propose an intelligent intersection management system were 
Dresner and Stone whose reservation-based approach [ 7, 8] divides the junction with 
intersecting trajectories into a grid of tiles. Their autonomous intersection manage-
ment approach, realized as a centralized controller, applies a first-come-first-served 
(FCFS) strategy to deal with the requests by CAVs for time slots of the tiles along their 
trajectories. To accommodate HVs they employ traffic lights and the so-called FCFS-
light policy [ 9, 10]. Later, this framework was extended to allow for the centralized 
intersection management to set the speed profiles of vehicles with cruise control [ 3]. 
To improve the performance of FCFS-light, Sharon and Stone introduced hybrid 
autonomous intersection management [ 38]. With this extension, requests of CAVs 
can be approved regardless of the traffic lights if there are no HVs in the intersecting 
routes. 

In general, the methods based on autonomous intersection management [ 7] pro-
vide a relative advantage to CAVs over HVs, which, in our opinion, should be avoided
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as it might cause the public to repel automated vehicles. Furthermore, human drivers 
will be more sensitive to stopping and waiting than the passengers in CAVs. We 
therefore suggest that the benefit brought by intersection management and CAVs in 
general should be evenly shared with human drivers. 

Lin et al. developed a method similar to the FCFS-light policy [ 22]. It reserves 
conflicting sections among different routes instead of the grid of tiles. Another first-
come-first-served reservation based method has been proposed by Bento et al. [ 4]. 
They suggest to control both CAVs and HVs via speed profiles sent by the intersection 
management unit. This places an undesirable burden on human drivers to follow a 
given speed profile and additionally even requires all HVs to be connected. 

The described approaches make the vehicles roughly follow a first-come-first-
serve strategy to traverse intersections. However, as shown by Meng et al. [ 29], the 
performance of an intersection management strategy mainly depends on the passing 
order of vehicles and not so much on the individual trajectory planning algorithms. 
As the computation time grows exponentially with the number of considered vehi-
cles [ 29], often simplifying assumptions are made including linear constraints, no 
overtaking, no lane changing, constant speed, and constant traffic input. The coordi-
nation of the passing order can mitigate control uncertainties, which makes it more 
suitable for mixed traffic. Based on this idea, our work is aimed at finding better 
passing orders, while having vehicles drive based on their own trajectory planning 
model. 

Qian et al. [ 34] assign priorities representing the passing order to vehicles. While 
CAVs receive the priority from a central control unit and plan trajectories accordingly, 
the passing order of HVs is regulated by traffic lights. With high rates of HVs, this 
potentially results in an inefficient, mostly first-come-first-served control. Fayazi 
et al. [ 12] propose to formulate the intersection management problem as a mixed-
integer linear program. Their controller assigns times of arrivals to a virtual access 
area around the junction to CAVs, while HVs are regulated by traffic lights. 

The approaches of these related works are already outperformed by Webster’s 
method or fixed-time traffic signal controllers when over .10–.20% of the vehicles 
are driven by humans [ 7, 9, 12, 22]. The exception is our previous state-of-the-
art learning-based adaptive traffic signal controller, which further outperforms these 
two controllers in any traffic flow range and reduces the average travel time by up to 
.30–.60% in the experiment with real-world traffic input. Therefore, we evaluate our 
proposed method mainly against Sect. 1 in a wide range of dynamic traffic demands 
and show that the performance gain is available even with a small portion of CAVs 
in the traffic system. 

2.2 Methods 

Like Sect. 1.2, we model the intersection management task at unsignalized intersec-
tions as a Markov Decision Process, and use proximal policy optimization [ 37] for  
training due to its stability, good performance and ease of implementation. Our work
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N 

(a) Three-way intersection with six routes. (b) Four actions. 

Fig. 7 Common regulation of a right-hand traffic three-way intersection (a). The high-priority-
routes are W-E, W-S and E-W. The low-priority-routes are S-W and S-E. Route E-S has intersecting 
routes with higher and lower priority. The proposed set of actions (b) stops CAVs on routes along 
the indicated directions 

is aimed at training a centralized agent for an intersection that timely stops the CAVs 
on the routes with higher priority to let the vehicles on conflicting routes with lower 
priority pass, so that the performance of the whole system is optimized. Since this is 
similar to red traffic lights for CAVs on the routes with higher priority, we denote our 
method as Courteous Virtual Traffic Signal Control (CVTSC). We evaluate our pro-
posed approach on the most common type of three-way intersections as illustrated in 
Fig. 7. By adjusting the state and action representations, our approach can easily be 
generalized to other intersection layouts, as we show for the real-world intersection 
in Sect. 2.3.5. 

As we focus on an isolated intersection, we assume that the vehicles can drive 
freely after they passed the junction and entered the outgoing lanes. Thus the vehicles 
on the outgoing lanes do not influence the intersection management. However, unlike 
in Sect. 1, in which we only considered vehicles in front of the stop lines, we here 
also take the vehicles into account, which already passed the stop line but not yet 
entered the outgoing lanes. This is necessary as at unsignalized intersections vehicles 
very often choose to wait after stop lines and coordination may happen there inside 
the junction. 

2.2.1 Action Space 

For the intersection in Fig. 7a we assume that vehicles drive according to the priorities 
predefined by the road signs, where the diamond indicates priority roads and the 
triangle indicates yield. Vehicles on the routes with lower priority have to wait until 
there is enough gap on the conflicting routes with higher priority before passing the 
junction. Note that in Fig. 7a the route E-S has intersecting routes with higher and 
lower priority. 

To obtain courteous behavior for CAVs on routes with higher priority, without 
loss of generality, we define a discrete set of four actions {(), (W-E), (W-E, W-
S), (W-E, E-W, E-S)} as the action space .A in relation to Fig. 7b. The indicated 
directions show the corresponding routes on which the intersection management unit
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commands CAVs to halt before the respective stop lines to give priority to vehicles 
waiting on intersecting routes with lower priority. The action restricting no routes 
uses the default priorities to manage the intersection. We set the duration of each 
action to 1 s. A categorical policy is learned: during training the actions are sampled 
according to the output distribution, while during testing the action with the highest 
probability is always chosen. When a new action .at is chosen, CAVs on the routes 
indicated in .at will receive stopping commands, while the instruction for the routes 
restricted by .at−1 is canceled, if they are not regulated by . at . If a CAV receives a 
stopping command while being too close to the stop line, it will continue through the 
intersection thus ignoring the command. Acceleration, collision avoidance and safe 
distance are managed by the low-level controllers of the individual vehicles (both 
CAVs and HVs). 

2.2.2 State Space 

Due to the restriction of sensors and wireless communication, we assume that the 
intersection management unit can collect information of vehicles that are within a 
distance of .150m along the road measured from the center of the intersection. We 
assume that every vehicle’s state, composed of continuous values (its position along 
the road, velocity and time since entering intersection) and discrete values (a binary 
value for CAV or HV and optionally a route index indicating the driving direction 
if the lane contains more than one route), is available to the control unit. Similar to 
Sect. 1.2.2, the state . st of the intersection at time . t is given by a vector that contains 
the structured information of vehicles in it. 

As described in Sect. 2.2.1, only CAVs are controlled by the agent. Every . 1 s a  
new action should be chosen according to the new state. However, at certain points 
in time there are no CAVs in the intersection and including these states in training 
hinders the learning process. We therefore remove states without CAVs from the 
training data. As a result, the influence of actions is not limited to a fixed interval 
and the duration of one step in the learning process can be any positive integer in 
seconds. To deal with this variable step length, we employ the method of adaptive 
discounting as proposed in Sect. 1.2.3. 

2.2.3 Reward Function 

The common objective of intersection management methods is to improve the effi-
ciency while keeping a certain level of fairness for all vehicles. Here, we extend 
the idea of a reward function with equity factor. Instead of using .Ttravelη, we pro-
pose to use .ηa · Ttravel + ηb as the reward for each released vehicle, where . η, .ηa and 
.ηb are equity factors. Due to the flexible step lengths discussed above, the reward 
of each step . rt is calculated by accumulating discounted rewards generated during 
step . t which might contain up to . k environment steps (each one second). I.e., we 
accumulate the contribution of .NTP

t released vehicles by
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.rt =
k−1 
i=0

γ i

NTP
t_i 

j=1

(ηa · τ j + ηb), (5) 

where .NTP
t_i is the throughput of the . i th second in step . t and .τ j is the travel time of 

the . j th released vehicle in the . i th second. 
The values of.ηa and.ηb are selected as in Sect. 1.2.3 based on two heuristics. First, 

we favor releasing each vehicle as soon as possible for the purpose of efficiency. The 
second heuristic aims at equity by considering a traffic situation, where one vehicle 
waits for saturated traffic flow on an intersecting route. Since efficient traffic flow on 
the high priority route should not be achieved on the expense of accumulating too 
large waiting time on the single vehicle, we increase the reward contributed by each 
released vehicle according to its travel time. This linear relation between reward and 
travel time is more intuitive than the previous exponential formulation. Moreover, the 
additional free variable in this formulation can be used to scale the rewards of single 
released vehicles to keep them around unity, which is beneficial for hyperparameter 
tuning in common deep reinforcement learning setups. 

2.2.4 Return Scaling 

According to the reward definition, the return .G(st ) is mainly influenced by the 
throughput and the travel time of released vehicles. Since both of them increase with 
the traffic input, the scale of.G(st ) could vary from less than. 5 to over.100 if the state 
of the intersection changes from nearly empty .slow to saturated .shigh. Consequently, 
.shigh would have a much larger impact on.πθ and.Vφ during the update phase, making 
the learning process of a policy for light traffic less stable. 

We introduce return scaling to resolve the issues caused by imbalanced return of 
states, which has shown to be critical for convergence with low traffic volumes in 
our experiments. In order to reduce the difference between.G(slow) and.G(shigh), we  
scale the cumulative rewards before the update phase with 

.G(st ) = ρ(st ) ·
 
i≥t

(γ
 i−1

j=t k j )ri , (6) 

where. k is the number of environment steps (each one second) in one step of learning 
process. The scaling factor . ρ is defined as 

.ρ(st ) = (N
V
c /nV)ξ , (7) 

where .nV and .NV
c are the current number of vehicles in the intersection and its 

capacity, respectively, and . ξ is a hyperparameter.
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2.3 Experiments 

2.3.1 Experimental Setup 

We use the open-source traffic simulator SUMO [ 25] to train and evaluate various 
intersection management agents. Besides simulated traffic episodes we also evaluate 
our approach on real-world rush hour traffic demand. For all roads we set a speed 
limit of 50 km/h. We compare our approach CVTSC to baselines managing the 
intersection with road signs (RS) defining static priorities for routes and with traffic 
lights (TL) controlled by a deep reinforcement learning agent according to Sect. 1. 
A possible set of green phases for the three-way intersection is shown in Fig. 9. 

Two fully connected networks . θ and . φ are used as the policy and value func-
tion estimators. They have an input layer of size .343 and the same structures as in 
Sect. 1.3.1. A grid search was used to select the hyperparameters. We use.5e−6 as the 

Fig. 8 Results obtained in evaluation during training for all agents with varying CAV rates in traffic 
(solid lines) and an ablation study for the usage of the return scaling (dashed black line). The plots 
show the mean with standard deviation, where the latter is scaled by.±1/10 for the travel times (for 
clearer visualization), over three non-tuned random seeds. By the end of each episode there are still 
some vehicles, which have not passed the junction. The travel time for such a vehicle is calculated 
with.Tepisode − Tspawn, where.Tepisode is the episode duration and.Tspawn is its scheduled spawning 
time in the simulator 

Fig. 9 Traffic light green phases for the intersection in Fig. 7a
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learning rate for the Adam optimizer and .0.001 as the coefficient for weight decay. 
For proximal policy optimization algorithm, we use.32 actors, the clipping threshold 
of . = 0.001 and the discount factor of .γ = 0.98. For the return scaling factor, we 
use .ξ = 0.2, which is found to be the optimal value in the range of .(0, 1]. In each 
learning step mini-batches of size.100 are used to update the agents in. 8 epochs. The 
number of mini-batches in each learning step is, however, variable due to the varying 
step lengths. The equity factors .ηa and .ηb for reward calculation are set to . 0.0027
and .0.946. The training process of .150 k steps takes about 40–60 h (depending on 
the corresponding CAV rate) running on four NVIDIA TITAN X GPUs, while CPU 
computation is not a limiting factor. 

2.3.2 Training Setup 

Most current related work has been developed and tested with simplified traffic 
demand, such as constant traffic input to the intersection. We challenge our approach 
and train it with more dynamic traffic input ranges to cover as many real traf-
fic scenarios as possible. For the three-way junction in Fig. 7a the saturation flow 
rate .Fs of each incoming lane is .1 670 v/h and as it is very rare that two non-
conflicting routes are simultaneously saturated, we set the traffic demand range to 
.[Fmin, Fmax] = [0, 3 000] v/h. The simulated traffic episodes are sampled in the same 
way as Sect. 1.3.2. We train five agents (a1, a3, a5, a7, a9), each corresponding to 
a fixed CAV  rate  of .[10, 30, 50, 70, 90]%, corresponding to the expected increasing 
CAV rates in the future traffic. 

2.3.3 Evaluation During Training 

To monitor the learning process the performance is evaluated for traffic input of dif-
ferent ranges: .[0, 1 000], .[500, 1 500], .[1 000, 2 000], .[1 500, 2 500], .[2 000, 3 000]. 
The generation of traffic demand is analogous to that of training episodes except that 
the total traffic inputs at the beginning.Fbegin and end.Fend are sampled independently 
in the five given ranges. 

The plots in Fig. 8 show the performance of agents trained with different CAV 
rates and present an ablation study for the usage of the return scaling. The agent 
a5 w/o rs is trained with a CAV rate of.50%without using return scaling. We analyze 
the throughput in percentage of released vehicles among all spawned vehicles, the 
travel time of released and not released vehicles at the highest traffic density level 
and the travel time of released vehicles at the lowest level. The calculated travel 
time is the mean among all released or not released vehicles during three evaluation 
episodes. We analyze the throughput and travel times instead of the accumulated 
reward as they give us a better estimate of the overall performance. The variance of 
the travel times is of particular interest as it is a good indicator for the equity. Large 
variances correspond to some vehicles with long waiting times at the intersection.



482 S. Yan et al.

As illustrated in Fig. 8a, b and c, CVTSC with higher CAV rate leads to more 
throughput, more efficient clearance (lower average .Ttravel) of the intersection and 
more fairness (shown by lower standard deviation of .Ttravel) to all the vehicles. As 
expected, from Fig. 8c and d, we observe that the agent without return scaling fails 
to learn an efficient policy for light traffic, although its performance is similar to that 
of a5 in heavy traffic. We plan to conduct further investigation on return scaling, in 
particular whether it is applicable to a broader class of problems or can be replaced 
with other methods like .γ -tuning. 

2.3.4 Evaluation on Simulated Traffic Demand 

We first test our agents with simulated traffic episodes, each with a duration of one 
hour. For each of the five traffic demand levels described above, we first create . 50
traffic episodes with spawning time of each vehicle following the procedure to that for 
evaluation during training. Then we generate five sets of mixed traffic episodes with 
different CAV rates by randomly setting each vehicle as CAV or HV according to the 
penetration rate. Note that the baseline methods road sign (RS) and traffic light (TL) 
do not distinguish between CAV and HV. Following this setup, we test both baselines 
and our trained agents with identical number of vehicles and same spawning times. 
In the following, the five agents are first tested with their corresponding CAV rates 
to evaluate their performance against the baseline methods. Then we cross-evaluate 
them on settings corresponding to different CAV penetration rates. 
Performance of Intersection 
The performance is shown in Fig. 10 and Table 2. For all the tested traffic density 
levels, our CVTSC agents can improve the performance of the unsignalized intersec-
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Fig. 10 Performance comparison of our CVTSC with baselines RS and TL in traffics with different 
CAV rates. For each controller with each traffic density, the mean (opaque bars) and positive standard 
deviation (translucent bars) of .Ttravel are calculated over all vehicles (including released and not 
released) of .50 simulated traffic episodes. Each CVTSC agent is trained and evaluated in traffics 
with its corresponding CAV rate
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Table 2 Throughput (. %) of considered methods in Fig. 10 

Traffic input (.v/h) Throughput. (%)

RS a1 a3 a5 a7 a9 TL 

0–1 000 .99.4 .99.4 .99.4 .99.4 .99.4 .99.4 . 99.4

500–1 500 .99.2 .99.3 .99.3 .99.4 .99.3 .99.4 . 99.2

1 000–2 000 .91.1 .97.7 .98.6 .99.0 .99.1 .99.2 . 98.5

1 500–2 500 .72.2 .85.3 .90.6 .93.5 .94.7 .96.8 . 88.5

2 000–3 000 .59.8 .74.6 .82.1 .85.8 .88.5 .91.9 . 77.9
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Fig. 11 Performance comparison of different vehicle groups at traffic demand 1 000–2 000.v/h. The  
plotted travel times show the median, lower quartile and higher quartile over all released vehicles 
among all evaluated episodes. The plotted throughput is the percentage of released vehicles among 
all spawned vehicles throughout all episodes 

tion. Not only more vehicles are released during the same period, but also the mean 
and standard deviation of their travel times are reduced. The higher the CAV rate is, 
the better our approach performs. The performance gain of CVTSC on the lowest 
traffic density is not obvious, because nearly no vehicles have to stop at the junction. 
When there is little traffic, employing TL can cause unnecessary stopping due to the 
transition phase (amber or red lights). In heavier traffic over.1 500 v/h TL outperforms 
a1 by a little margin. However, it is outperformed by CVTSC when .30% or more 
vehicles are CAVs. 

Performance of Vehicle Groups 
In contrast to the relative advantage of CAVs over HVs suggested by the methods 
based on autonomous intersection management [ 9], our CVTSC tends to share the 
performance gain evenly between the two types of vehicles. Figure 11 shows how 
CVTSC can increase the intersection management performance while keeping the 
balance between different vehicle categories. Since the actions are executed only for 
CAVs on the main road, we divide vehicles on the main road into Main road CAV and 
Main road HV and assign all vehicles on the side road to a third group Side road all. 
As illustrated, the performance gain against RS is mainly caused by the improvement 
of the traffic on the side road. With only .10% CAVs the throughput of the side road 
traffic is increased from.74.3% to.95.6% and the median travel time is decreased by
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Table 3 Performance comparison of different agents with different traffic input settings. For each 
agent with each traffic setting, the average.Ttravel is calculated over all vehicles (including released 
and not released) of.50 simulated traffic episodes 

Traffic input Average.Ttravel [. s] Throughput. [%]
CAV 
rate 
(%) 

Input flow 
[.v/h] 

a1 a3 a5 a7 a9 a1 a3 a5 a7 a9 

.10 500–1 500 .25.8 .25.7 .25.8 .26.3 .27.5 .99.3 .99.3 .99.3 .99.3 . 99.3

1 000–2 000 .63.2 .69.9 .80.8 .102.1 .131.4 .97.7 .97.4 .96.9 .95.8 . 94.2

1 500–2 500 .287.8 .299.3 .339.0 .364.2 .432.3 .85.3 .84.7 .82.1 .80.6 . 77.1

2 000–3 000 .471.0 .482.5 .517.8 .554.4 .610.1 .74.6 .73.9 .72.0 .69.3 . 65.9

.30 500–1 500 .24.7 .24.3 .24.4 .24.9 .24.8 .99.3 .99.3 .99.3 .99.3 . 99.3

1 000–2 000 .42.1 .40.0 .43.4 .49.4 .58.7 .98.5 .98.6 .98.6 .98.2 . 98.0

1 500–2 500 .213.4 .190.0 .204.2 .237.9 .274.1 .89.5 .90.6 .90.0 .88.1 . 85.9

2 000–3 000 .367.3 .334.2 .347.0 .411.7 .430.6 .80.3 .82.1 .81.4 .77.5 . 76.6

.50 500–1 500 .24.1 .23.6 .23.6 .23.9 .23.9 .99.3 .99.3 .99.4 .99.3 . 99.3

1 000–2 000 .36.0 .33.7 .33.5 .35.6 .38.9 .98.9 .99.0 .99.0 .98.9 . 98.7

1 500–2 500 .191.0 .145.5 .138.8 .159.7 .174.7 .90.6 .93.2 .93.5 .92.3 . 91.8

2 000–3 000 .346.9 .269.0 .267.0 .308.6 .313.4 .81.4 .85.9 .85.8 .83.5 . 83.3

.70 500–1 500 .23.6 .23.2 .23.1 .23.4 .23.3 .99.4 .99.4 .99.4 .99.3 . 99.3

.1000–2000 .32.6 .29.8 .28.6 .29.9 .30.0 .99.0 .99.1 .99.1 .99.1 . 99.1

.1 500–2500 .176.3 .120.7 .101.1 .111.2 .112.1 .91.2 .94.4 .95.6 .94.7 . 95.0

.2000–3000 .323.2 .234.2 .203.5 .219.0 .217.0 .82.6 .87.3 .89.3 .88.5 . 88.5

.90 .500–1500 .23.1 .22.8 .22.6 .23.1 .22.9 .99.4 .99.4 .99.4 .99.3 . 99.4
.1 000–2000 .30.3 .27.9 .26.7 .27.4 .27.3 .99.0 .99.2 .99.2 .99.2 . 99.2
.1 500–2500 .164.8 .105.5 .77.0 .76.5 .77.9 .91.8 .95.2 .96.8 .96.7 . 96.8
.2 000–3000 .311.5 .192.0 .161.6 .154.5 .157.8 .83.2 .90.0 .91.9 .92.2 . 91.9

.61%. As a necessary side effect, the courteous behavior adds about.13 s to the median 
travel time of CAVs on the main road and slows down some HVs following the CAVs 
consequently. However, the median travel time of Main road HV and the throughput 
of both vehicle groups on the main road are nearly not influenced. With growing rate 
of CAVs in traffic, the performance of the traffic on the side road continues to be 
improved while the initial disadvantage for the main road is compensated. 

Comparison of Agents 
To cross-evaluate their performance on other traffic settings than their natives, we 
further test each agent (a1 to a9) on the five different CAV rates on .50 simulated 
episodes on each of the five traffic densities. Since CVTSC brings nearly no measur-
able difference for the lowest traffic density, only the results for the other four traffic 
densities are listed in Table 3. 

We observe that all trained CVTSC agents outperform RS in any mixed traffic 
setting. Furthermore, two significant patterns can be observed in the results. First,
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for each CAV rate the agents trained with similar rate values are among the best, 
as expected. Second, as the CAV rate increases the performance of all agents is 
continuously improved. Interestingly, a5, the one trained with CAV rate of .50%, 
outperforms or performs equally well as a7 and a9 even in settings where CAVs are 
the majority. We suppose this is because a5 during training is exposed to more diverse 
traffic situations, especially ones with fewer CAVs in the intersection. As shown in 
Figs. 10 and 11, the margin of the performance gain decreases with increased CAV 
rate. Even though a7 and a9 can handle highly automated traffic better than a5, the  
performance gain is so small that it can not compensate the performance loss when 
occasionally more HVs drive in the intersection. 

2.3.5 Evaluation on Real-World Traffic Demand 

To further evaluate CVTSC in more realistic traffic situations, we conduct additional 
tests with real-world traffic demand recorded at an intersection in Freiburg, Germany, 
which is sketched in Fig. 12. Unlike the intersection in Fig. 7a, one part of the main 
road (Tullastrasse) forks before the stop line. After adjusting the state representation 
and the intersection structure in the simulator we trained two new agents a3 and 
a5 and employ them in the test. The traffic demand, listed in Table 4, was manually 
recorded on October 19, 2017 by the traffic department of Freiburg. The total traffic 
input was about .1 000−1 500 v/h with roughly .20% on the side road. 

Figure 13 shows box plots of the travel times of released vehicles controlled by 
RS and CVTSC agents in traffic scenarios with different CAV rates. The agent a3 is 
employed for .10% and .30% automated traffic, while a5 is employed for the other 
three. In all scenarios over.99.7%of all vehicles traverse the intersection. Our method 
continuously improves the traffic flow with increasing rate of CAVs in traffic. We 
notice that the median of travel times in all scenarios stay similar, which means the 
performance gain comes mainly from the vehicles with long travel times on the side 
road. CVTSC agents manage to release them faster without delaying the traffic on 
the main road. 

Fig. 12 Intersection of 
Tullastrasse and 
Hans-Bunte-Strasse in 
Freiburg, Germany N
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Fig. 13 Box plot of travel times with different CAV rates over all released vehicles in the simulation
based on the real-world intersection of Fig. 12. The whiskers extend.1.5 · IQR (interquartile range)
from the upper and lower quartiles

3 Conclusion and Future Work

3.1 Conclusion

In this chapter we first present an approach to learning traffic signal controllers using
deep reinforcement learning. Our approach extends existing reward functions by a
dedicated equity factor. We furthermore proposed a method that utilizes adaptive
discounting to comply with the learning principles of deep reinforcement learning
agents and to stabilize training. We validated the effectiveness of our approach using
simulated and real-world data.

Then we present an approach to improving mixed traffic management at unsignal-
ized intersections using deep reinforcement learning. Our proposed method CVTSC
creates courteous behavior for automated vehicles in order to optimize the overall
traffic flow at intersections. Furthermore, we introduce return scaling to counteract
the imbalance of cumulative rewards at different states and to stabilize training. We
validate the effectiveness of CVTSC using simulated and real-world traffic data and
show that CVTSC improves the traffic performance continuously with increasing
percentage of automated vehicles. With more than.10% of automated vehicles it also
outperforms the state-of-the-art adaptive traffic signal controller. Besides the perfor-
mance gain, our method does not require a change of the current driving habits of
humans. Moreover it is fault-tolerant, since the method is an add-on to the existing
traffic rules and thus the intersection will still be fully functional even if the intersec-
tion management unit fails. Besides outperforming state-of-the-art methods, both of
our approaches can be easily adopted to different intersection topologies.
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3.2 Future Work 

Given the current status, there are still some interesting problems to be solved for 
learning cooperative driving behaviors at intersections in mixed traffic. In this section, 
we explain two of them and try to propose some possible approaches to the solutions. 

Simulation and Real World 
Due to the difficulty of real-world experiments in traffic, most of the research in this 
area are developed in simulators. However, discrepancies between simulators and 
the real world traffic system can make it challenging to transfer the learned behav-
iors from simulation. Some important discrepancies include human driver models, 
behavior models of other traffic participants and physical models of vehicles. There 
are three possible solutions for this problem. First we can utilize Sim2Real meth-
ods like domain randomization to have enough variability in the simulator, the real 
world may appear to the model as just another variation [ 40]. The second approach 
is training the agent via offline reinforcement learning with history real-world traffic 
data instead of in simulators. Although lacking online interactions with the environ-
ment, it is still optimistic that the agent can learn high quality policies [ 2]. The third 
solution is to use more naturalistic data-driven behavior models of traffic participants 
including human drivers [ 32]. 

Decentralized Control 
Both of the presented approaches use centralized controller, which requires road 
infrastructures for collecting traffic data and communicating with the CAVs. To 
enable cooperative trajectory planning without additional infrastructures, decentral-
ized version of the presented controllers can be an interesting future work. Decen-
tralized control in this task has some main challenges. First, perception systems of 
CAVs are limited due to sensors property or physical occlusion, leading to a par-
tial observable environment for each agent. Secondly, the number of agents in the 
environment is constantly changing, which makes it impossible to assign a policy 
to each agent. The recent advance of multi-agent reinforcement learning [ 52] and 
neural networks operating on sets [ 51] show us very promising approaches. 
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Abstract This chapter describes central cooperative activities in the research prior-
ity program Cooperatively Interacting Vehicles (CoInCar). If the whole research 
program CoInCar can be seen as a wheel, which is turning research questions 
into answers, knowledge and hopefully progress for society, the individual research 
projects described in the other chapters could be seen as spokes of the wheel, and 
the aspects described in this chapter as an informal cooperative hub of the wheel. 
Starting with common essential definitions, a use case catalogue was derived and 
documented. Based on that, cooperation and interaction pattern were sketched and 
documented into a pattern database. While the details of the research hub described 
here are specific for this DFG priority program, the general principles of a research 
hub could be transferred to any other research and development activity. 
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Fig. 1 One of the spears of Schoeningen, used for cooperative hunting as an example for cooperative 
movement, cooperative reasoning and acting 

1 Introduction: The Big Picture—From Cooperative Homo 
Heidelbergensis to Cooperative Human Machine Systems 

In general, movement through space and time is a vital feature of life. Movement in 
form of mobility, by foot, bicycle, car, train or airplane is an important part of our life 
as individuals, organizations and societies. Cooperation in contrast to competition is 
a central aspect of mobility already for a long time, and was already quite important 
for our development as homo sapiens, as the following example shows. 

Figure 1 shows one of ten wooden spears which were excavated in 1994ff at 
Schoeningen near Braunschweig in the north of Germany. These throwing spears, 
dated between 380,000 and 400,000 years old, represent the oldest preserved hunting 
weapons of prehistoric Europe yet discovered [ 34]. These spears are not only an 
early example of weapon technology, but also for an art which is much later called 
Human Factors (Engineering), for which Homo Heidelbergensis, a prerunner of 
Homo Sapiens, was already able to combine different techniques like cutting to 
carve, and fire to harden an effective tool and adapt it to the individual bearer. These 
spears are also an early example of Human Systems Integration, which in the 21st 
millennium is understood as integration of humans, technology, organization, and 
environment, and which was already an important factor for Homo Heidelbergensis: 
Close to the location of the spears, many horse bones were found. Anthropologists 
reconstructed that a tribe of Homo Heidelbergensis hunted, rounded up, speared, 
and ate these horses. Especially the production of the spears, which can be seen as a 
clever use of or integration with the environment, and the cooperative hunting took 
a degree of organization, which was not available to other rival species. 

It is obvious that movement and mobility in combination with these tools was one 
of the key factors for success of these homo tribes. But how could these relatively 
slow species round up and eat other species which were physically much faster and 
stronger? The key issue can be found not so much on the physical layer, but on the 
cognitive layer of evolution: Tomasello [ 35] describes how human cognition evolved 
together with the ability to create and handle such tools, and especially how the coop-
eration and shared intentionality e.g. of hunting AND tool manufacturing fostered 
the evolution of homo towards homo sapiens as one of the most dominant species 
on this planet. Cooperation and teaming were obviously essential for early hunt-
ing. Cooperation and teaming might also be essential for cooperatively interacting 
vehicles, and for researchers and developers addressing these complex cooperative 
systems. It is not by accident that communities of research institutions applying for 
a research grant nickname themselves “hunting communities” or “hunting tribes”, 
but by insight that the ability to cooperate might be similarly important with hunting 
and with research.
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Fig. 2 Shared mental 
models to create shared 
intentionality, example 
Homo Heidelbergiensis 
hunting 

What Tomasello [ 35] describes as shared intentionality, other researchers like 
Norman [ 28] or Gentner [ 16] describe as shared mental models (c.f. Fig. 2), where 
mismatches between the mental model of system designer and system users might 
lead to dangerous errors in design or use of sociotechnical systems. Mental models 
are also at the very core of cooperatively interacting vehicles, and of the cooperative 
research on cooperative interacting vehicles. 

Applied to cooperatively interacting vehicles, the setup of cooperatively inter-
acting vehicles might use similar cognitive capacities which already helped homo 
heidelbergensis to move cooperatively, but might include a new complexity: Here, 
not only individuals and groups of homo sapiens are involved, but also a new player 
on the cognitive evolution: The computer. In less than a century from its first inven-
tion by Konrad Zuse in 1941, the computer and later Artificial Intelligence (AI) has 
become a central player in sociotechnical systems. The teaming of computer and 
humans is already hinted in Wieners famous book about Cybernetics in 1950, where 
he describes feedback loops as the central mechanism of intelligence both in the ani-
mal and the machine. Later Licklider [ 24] describes symbiotic human—computer 
systems. Rasmussen [ 31] proposed the term cooperation, Hollnagel and Woods [ 22] 
and Sheridan [ 33] defined initial principles, Hoc and Lemoine [ 20] and Hoc [ 19] 
described the common ground and know-how-to-cooperate as important parts of 
developing human computer cooperation. 

A major breakthrough was to think of cognition not only as something sepa-
rated/assigned to individual agents, but also as something which is combined or 
joined between the different players, i.e. Joint Cognition or Joint Cognitive Systems. 
Hollnagel sketches how these Joint Cognitive Systems can be nested, from the small 
to the big, and already prepared the ground for a system of systems approach. Sys-
tem of systems can be understood as the joining of individual systems which “deliver 
important emergent properties, which have an evolving nature that stakeholders must 
recognize, analyze and understand” (e.g. Maier [ 27]). Flemisch et al. [ 9] described 
how humans and machine cognition in system of systems can cooperate on levels 
with different time frequencies, yet still work together like the blunt end and the 
sharp end of a spear. Flemisch et al. [ 13] extended this view also to conflicts that 
can happen between agents in cognitive systems, and how these can be mitigated. 
Examples for conflicts are different intentions of humans and machines, e.g. vehicle
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automation, of where to go and how fast. Flemisch et al. [ 11] describe a holistic 
bowtie model of meaningful and effective control, which brings together the individ-
ual human-machine system with a system-of-systems, organizational, societal and 
environmental perspective. Cooperation between these layers are—once again—a 
central key for failure or success of these systems. 

As already hinted by Hoc [ 19], the key of any cooperative activity is to have 
sufficient common ground and common work space between humans and computers 
in the form of shared mental models. This proved to apply even more so for cooper-
atively interacting vehicles. Related to common ground is the concept of inner and 
outer compatibility (e.g. Flemisch et al. [ 8]), which describes the ability of interfaces 
on the outside system border between humans and machines to play together, and 
the ability of inner mental models to interact in a cooperative way. 

In general, the development of shared mental models does not start from scratch 
but is always a development and migration. Starting point could be basic image 
schemes which we inherited from our ancestors (e.g. Lakoff [ 23], Baltzer [ 3]), pat-
terns we learned during our life to deliberate discussions in our research and devel-
opment community on how sociotechnical systems, here cooperatively interacting 
vehicles, should work together amongst themselves and with the humans involved. 
In this ongoing effort to shape the mental models, it is important that mental models 
evolve cooperatively. They are never all up to date at the same time, as Fig. 3 shows. 

Applied to cooperatively interaction vehicles, Fig.  3 shows an example of incon-
sistent mental models, where the human on board of an automated vehicle assumes 
that the vehicle automation has the control, while the other user assumed that the 
human was in control. Such a misunderstanding already led to a deadly accident in 
2018 with a highly automated vehicle operated by Uber [ 29]. 

Figure 4 depicts a very simplified model of how shared mental models in the 
research community of automated and interconnected driving might have evolved, 
starting with a simple “black and white” model of manual or fully automated driving, 
then the intense discussions on different levels of automation, sparked by the theoretic 
work of Parasuraman et al. [ 30], boosted with insights like the H(orse)-Metaphor [ 7], 
the first formulation of highly automated driving, and its practical solutions like H-
Mode [ 2] or Conduct by Wire [ 37], leading to the BASt and SAE levels of driving 

Fig. 3 Shared mental models between humans and computers on cooperatively interacting vehicles 
(Flemisch et al. [ 12] based on Flemisch et al. [ 9]
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Manual or autonomous Level of automation Cooperative automation 

Fig. 4 Vehicle and traffic automation from “on/off-automation” of the 1990ties via “Levels of 
Automation” of 2000ff to Cooperative Automation 2010ff, as a cooperative development of shared 
mental models in the research and development community [ 12] 

automation [ 15, 32]. With CoInCar, we entered a new stage of automation, which 
still uses levels of driving automation, but connects the differently automated users 
and automations with cooperative driving patterns. 

2 Bringing Researchers Together: Concepts and 
Definitions Wiki, Ph.D. Workshops 

In general, common ground and common mental models for researchers usually do 
not start with definitions, but with common inspiration, ideas and visions, as vague or 
fuzzy as they might initially be. Only if this inspirational common ground is assured 
first, the more tedious work on common concepts and definitions has a chance to 
succeed. Even then, with complex systems and interdisciplinary teams, it is often 
impossible to achieve a similar crispness of definitions, as scientist were able to 
achieve in physical sciences. Especially in the integration of humans, technology, 
organization and the environment, so many disciplines are involved, that crisp defi-
nitions like in physics are highly unpractical, but a higher plasticity of concepts and 
definitions has to be tolerated from the very beginning, if the definitions should really 
open the chance to converge between disciplines. 

Applied to CoInCar, in a series of workshops in mixed subgroups, concepts 
and definitions were worked out, documented in a Wiki and deconflicted over the 
duration of the project (see Fig. 5). It is important to note that the approach was 
not to deconflict all differences in the definitions—this alone would have consumed 
most of the research budgets—but to find a common ground just big enough to start 
cooperations, and to further consolidate the Wiki “on the job”. 

For further networking within the priority program, a series of structured activi-
ties took place for the Ph.D. researchers. For example, every two years there was a 
cross-project Ph.D. workshop in which the researchers presented their research top-
ics, discussed, and identified links between the subprojects. Furthermore, individual
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Fig. 5 Concept and definition Wiki of the CoInCar project. (Weßel and Herzberger [ 36], exemplary 
screenshots taken form the CoInCar intranet) 

disciplines had regular Ph.D. workshops. One example is the regular meeting for 
human factors researchers, which met once a month for one hour in a hybrid format. 
Here, short presentations were given in a rotating process and the researchers own 
progresses and difficulties were exchanged and discussed within the group in order 
to benefit from the experiences of the other research groups. 

3 Bringing Researchers and Developers Together: Use Case 
Catalogues 

In general, to really understand and master complex sociotechnical systems with 
all their possible combinations, a system analysis can lay the structure for inter-
disciplinary teams. Over the years of Systems Engineering and Human Systems 
Integration, a structuring of systems in problem and solution space (e.g. Haberfell-
ner et al. [ 18]), and in design space, use space and value space has shown good results 
of mastering the complexity (for an overview and history of these concepts and their 
application to the exploration of human-machine systems, see e.g. Flemisch et al. 
2022a). 

Applied to CoInCar, the alignment of mental models of researchers started with 
the use space, i.e. the dimensions of use and their combination into use cases and 
use situations. Based on the positive experience in EU-projects on highly automated 
driving of working with use cases (e.g. Hoeger et al. [ 21]), and research efforts to 
find define a unified ontology for test and use case catalogues in DFG-projects before
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Fig. 6 Use case catalogue representing the research topics of the subprojects within the CoInCar 
project (Canpolat et al. [ 5], published in the CoInCar intranet SSELab) 

CoInCar (e.g. Geyer et al. [ 17]), CoInCar started with the discussion, selection and 
definition of initial use cases of cooperatively interacting vehicles. 

Figure 6 shows the use case tree of CoInCar as an overview of use cases addressed 
in the consortium. Starting with the use case family of obstacle avoidance, the use 
case families of lane change, intersection, parking and roundabout are identified, 
and individual use cases documented. In deconflicting sessions the use cases were 
discussed and if possible aligned. The use case catalogue also served as a map to 
explain the priority program, and to onboard new researchers. 

4 Bringing Researchers, Developers and Users Together: 
Pattern Catalogue of Cooperatively Interacting Vehicles 

In general, complex systems can be decomposed into system models, use space, 
design space and value space. This helps with the understanding of the individual 
components of the system, but not yet with the understanding of the relations and only 
partially with the recomposing and designing of system variants. Seeing design, use 
and value space as systems themselves, and taking Luhmann’s argument “Contact 
happens at the border” [ 26] of these systems seriously, it is crucial to find a way to 
describe the interplay of these dimensions as a combination which has a combined 
effect: How a certain system design is used by the user, and what effects this has on 
users and the surrounding system. The challenge for this to find a representation that 
really grasps the essence of a specific design, use and value in a way that it is general 
enough to be reused, and understandable enough that it can connect researchers, 
developers and users. 

An essential concept to achieve this are patterns, here as design and interaction 
patterns. Patterns can be traced back to the philosophical theory of Forms (e.g. Plato 
427 B.C.). Just neglecting the long philosophical dispute whether forms are some-
thing outside of the physical world or just mental models in the brain of the analysts,
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Christopher Alexander described architecture as a language of design patterns [ 1]. 
This concept was transferred to software design patterns by Gamma et al. [ 14], to 
human computer interaction by Borchers [ 4] and to human-machine systems e.g. 
by Flemisch [ 6], Baltzer [ 3]. Based on Alexander’s initial definition, Flemisch et al. 
[ 10] understand patters as follows: 

A pattern describes something that occurs over and over again. An example for this is 
a problem and/or its solutions. If this can be observed, and its core can be mapped and 
modelled, you can either observe and match the pattern over and over again, without ever 
making the identical observation twice. And/or you can instantiate and design with this 
pattern over and over again, not necessarily doing it the same way twice. Examples for this 
are designing, engineering and using of artefacts like human-machine systems. (Flemisch et 
al. [ 10] based on Alexander et al. [ 1]) 

Patterns bridge the more concrete world of applications with the more abstract 
world of concepts, and can provide a common mental model of the sociotechnical 
system and its principal understanding, design and usage. With that, patterns can be a 
crucial technique to bring designers, engineers, users and other stakeholder together 
(see Fig. 7). 

Patterns can be based on use cases or use situations, and then describe how the use 
is usually happening with which results. This can be described on different levels of 
detail, e.g. very general usage (e.g. Baltzer [ 3]) up to a more detailed description of the 
interaction happening in a certain use situation (e.g. Flemisch [ 6], López Hernández 
et al. [ 25]). 

Patterns can be freely formed, or transferred between domains, e.g. from the bio-
sphere to the technosphere. A striking example, shown in Fig. 8, for the potential of 
transferring design and interaction patters is flying, where Otto Lilienthal systemat-
ically evaluated the flight of birds, and transferred the most important principles to 
design patterns e.g. of wings, foils etc., which still form the basis of flying today. 

Applied to CoInCar, patterns influenced the scientific undertaking from the very 
beginning, e.g. in form of the H-Metaphor as an inspiration for the cooperation 
between automation and the driver, but also the cooperation between vehicles as 
a herd or flock. More inspiration came from other domains like dancing, where a 
common understanding of figures and movements, i.e. patterns, allow dancers to 
move together and enjoy it (see Fig. 9). 

More concretely, the pattern concept was introduced in the second half of the 
CoInCar focus program, discussed and refined in a series of workshops. 

Based on this conceptual work between the individual research groups, a first 
database was built up and filled for a first test. Figure 10 shows a fundamental pattern 
“inform, warn, intervene” as an example for a cooperation pattern, which was used 
in a couple of use cases of CoInCar. Figure 11 shows another fundamental family of 
patterns “Transition of control”, which were investigated in a couple of explorations 
and experiments in CoInCar.
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Fig. 7 Human-machine pattern as an interplay of researchers, designers, engineers and users in 
understanding, designing, engineering and using human-machine systems (adapted from Flemisch 
et al. [ 10]) 

Fig. 8 Design and interaction patters as a connection of decomposing/understanding, recompos-
ing/engineering and using, example flying (Otto Lilienthal, 1874ff) 

5 Conclusion and Outlook 

It is important to note that focus programs are usually not as rigidly organized as e.g. 
excellence clusters or even industrial research and development projects. Organizing
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Fig. 9 Example for cooperation patterns and image schemes, derived in other domains and trans-
lated to cooperatively interacting vehicles [ 10] 

Fig. 10 Example for cooperation pattern “inform, warn, intervene”, which can be applied between 
humans, humans and machines, or between machines [ 3] 

a research hub like in CoInCar, based on a concept Wiki, a use case catalogue and 
a first pattern database was an exploration of ideas, with promising first results, but 
far from providing complete catalogues or databases which are now ready to use in 
industry. Nevertheless, these results can provide an inspiration, or a concrete first 
core for more rigid research and development projects in the realm of cooperatively 
interacting vehicles, or beyond in the realm of cooperating human-machine systems 
including human—AI systems. 

We see a huge potential in the combination of use cases and design/interaction 
patterns, which can clearly help to manage the complexity of future cooperative 
systems. Our vision is that the know-how about human machine patterns and their 
usage is increasingly collected in easy to access and easy to use data bases, ideally 
globally (c.f. Fig. 12). The key will be to provide the human machine patterns in a way
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Fig. 11 Cooperation pattern “Transition of control” as an example of pattern in the online pattern 
database 

Fig. 12 Our vision are 
Global Databases for Design 
and Interaction patterns to 
collect knowledge and 
know-how about the design, 
engineering and usage of 
sociotechnical systems [ 10] 

that it can be easily used in design, engineering, and research activities, so that know-
how can flow freely back and forth between researchers, designers, engineers, users 
and policy makers. This could also be the core for incident and accident databases 
that, along with cooperative research and development, could make our world safer, 
more sustainable, and more fun and joy to live in. 
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Mařík, V. (ed.) International Conference on Systems, Man, and Cybernetics. IEEE (2022) 

26. Luhmann, N.: Soziale systeme: Grundriss einer allgemeinen Theorie. Suhrkamp (1984). https:// 
ixtheo.de/record/040204065 

27. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. 1(4), 267–284 (1998). 
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D 

28. Norman, D.A.: The Psychology of Everyday Things. Basic Books (1988) 
29. NTSB, National Transportation Safety Board: Highway Accident Report NTSB/HAR-19/03: 

Collision Between Vehicle Controlled by Developmental Automated Driving System and 
Pedestrian (2019). https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903. 
pdf 

30. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human inter-
action with automation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(3), 286–29 
(2000). https://doi.org/10.1109/3468.844354 

31. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions 
in human performance models. IEEE Trans. Syst. Man Cybern. SMC-13 (3), 257–266 (1983). 
https://doi.org/10.1109/tsmc.1983.6313160 

32. SAE: SAE International Standard J3016: Taxonomy and Definitions for Terms related to Driv-
ing Automation Systems for On-Road Motor Vehicles (2021) 

33. Sheridan, T.B.: Humans and automation: system design and research issues (2002). https:// 
www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858 

34. Thieme, H.: Lower Palaeolithic hunting spears from Germany. Nature 385(6619), 807–81 
(1997) 

35. Tomasello, M.: A Natural History of Human Thinking. Harvard University Press (2014)

http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
http://bast.opus.hbz-nrw.de/volltexte/2012/587/pdf/F83.pdf
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1016/B0-08-043076-7/01487-X
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1049/iet-its.2012.0188
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1207/s15327108ijap0801_1
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1016/s0020-7373(83)80034-0
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://doi.org/10.1109/thfe2.1960.4503259
https://ixtheo.de/record/040204065
https://ixtheo.de/record/040204065
https://ixtheo.de/record/040204065
https://ixtheo.de/record/040204065
https://ixtheo.de/record/040204065
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://doi.org/10.1109/tsmc.1983.6313160
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/s0263574702274858


508 F. Flemisch et al.

36. Weßel, G., Herzberger, N.D.: Concept and definition Wiki of the CoInCar project (2018) 
37. Winner, H., Hakuli, S.: Conduct-by-wire–following a new paradigm for driving into the future 

(2006) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Cooperation Between Vehicle and Driver: 
Predicting the Driver’s Takeover 
Capability in Cooperative Automated 
Driving Based on Orientation Patterns 

Nicolas Herzberger, Marcel Usai, Maximilian Schwalm, and Frank Flemisch 

Abstract This chapter first describes central development steps of cooperative 
vehicle control before focusing on the cooperation within the vehicle, between driver 
and co-system. To enable smooth transitions within this internal cooperation, both 
agents (driver and co-system) need a mutual understanding of the current capabilities 
for safely executing the driving task. For this purpose, first the model of confidence 
horizons is briefly introduced, which represents these mutual capability assessments. 
In the following, the focus of this chapter is on the assessment of the driver’s ability 
to take over. First, the state of the art of Driver State Monitoring Systems (DSMS) 
as well as current challenges are presented. Here it is shown that a prediction based 
purely on driver observation is not yet possible. Therefore, an alternative approach, 
the diagnostic takeover request (TOR), is presented, which predicts the takeover 
capability based on the driver’s initial orientation reaction. In the following, two 
driving simulator studies are presented in which the diagnostic TOR was used for 
the first time and thereafter the results are presented and discussed. Finally, a brief 
outlook is given on how both the diagnostic TOR and the concept of confidence 
horizons will be further developed. 

1 Cooperative Driving 

The intensive research and development of the last decades on driver assistance 
systems and automated vehicles already enables a synthesis of assistance and automa-
tion systems. And we are seeing the first automated vehicles [28] in real road traffic 
(in Germany), although still in limited operational design domains (ODD), driving 
certain sections of the highway in a highly automated mode (SAE level 3, SAE 
International Standard J3016 2021). During active automation, the driver may turn
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to non-driving related tasks, but must still be able to take over the driving task at 
any time. However, increasing vehicle automation also raises the question of how 
the cooperation and interaction between driver and vehicle should be designed in the 
future. 

An initial idea in the early days of assistance systems and automation was to 
take over either longitudinal or lateral driving. By switching a function on or off, the 
driver decides which task is to be taken over, i.e. either lateral (LKAS) or longitudinal 
control (ACC). Afterwards, the driver cannot intervene further in the execution of 
the task, except to deactivate the automation. However, this form of interaction was 
already identified as complicated and disadvantageous by Schieben et al. [35] and 
Hoeger et al. [27]. 

An approach that goes beyond this black and white view of automation is shared 
and cooperative control. This can be explained with the H(orse)-Metaphor. The H-
Metaphor describes how a driver and a highly automated vehicle cooperate similar 
to a rider and a horse, sharing and trading control in an assistance and automation 
scale of assisted, partially and highly automated driving. This insight was the starting 
point for the invention of highly automated driving (e.g. [13], Hoeger et al. [27]), 
for the German Federal Highway Research Institute (BASt) [16] and later on for the 
SAE levels of automation [34]. In a more general way, this parallels the thought of 
Christoffersen and Woods [2], who proposed based on ideas like assistant systems, 
e.g. Flemisch and Onken [11], to design an automation as a team player. 

The concept of cooperative highly automated driving describes that the cooper-
ation increases with a mutual understanding between the human and the co-system 
e.g. regarding the abilities of the partner and the distribution of control (e.g. Hoeger 
et al. [27, 15]). 

A basic requirement for the co-system is to detect and understand the status of 
the driver and to use this information in order to balance between the driver and 
the co-system, e.g. by trading control towards the partner who still has the ability to 
control the vehicle. This allows harmonizing the driving strategies of the two agents 
(co-system and driver) into a common strategy [29]. Griffiths and Gillespie [18] use  
the term shared control to describe that the driver as well as the automation can have 
control over the vehicle at the same time. Flemish et al. [5] describe more precisely 
a design space of cooperative control, which combines shared and traded control. 

A concept that includes shared control but has a wider scope can be referred 
to as cooperative automation and cooperative guidance and control (e.g. [4, 6]). 
Cooperation in this context implies working together towards the same goal. Coop-
erative automation is mainly understood as the cooperation between vehicles, e.g. 
Stiller et al. [39], Völker et al. [44]. However, cooperation can also be applied to 
the cooperation between the driver/operator and the automated driving system, as 
hinted already by Onken [32], Schulte [37] and Flemisch [9]. This driver-vehicle-
cooperation requires a common mental model about the capabilities and limits of 
the automation and the driver [14]. In highly automated driving, the ability of the 
automation or co-system to observe and assess the abilities of the human partner has 
been an integral aspect of the concept of cooperative driving from the very beginning, 
e.g. in the EU-HAVEit project (Hoeger et al. 27).
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Fig. 1 Confidence horizon concept with an example of a potential safety buffer (Flemisch et al. 
[5], based on Flemisch et al. [10] Herzberger et al. [26], Usai et al. [43]) 

One possible implementation of such an embedded mental model of the capabil-
ities of cooperation partners is the concept of confidence horizons (Flemisch et al. 
[5], based on Flemisch et al. [10], Herzberger et al. [26], Usai et al. [43]). In this 
concept, the capabilities of the driver are continuously compared with those of the 
automated subsystem, resulting in two horizons: First, the confidence of the technical 
subsystem in its own ability to safely control the vehicle, and second, the confidence 
of the technical subsystem in the driver’s ability to take over the vehicle control. With 
that, it is possible to quickly identify whether transitions between different levels of 
automation are safe, whether there is a balanced distribution of control, and whether, 
when, and how a maneuver with minimal risk might be required. Figure 1 depicts 
the Confidence Horizon concept. 

A fundamental cornerstone of a dynamic balance between driver and co-system, 
here within the concept of confidence horizon, is the assessment of the driver’s 
(takeover) capabilities, which is addressed in the following section. A more detailed 
description of driver assessment can be found in the dissertation by Herzberger 
[23], which was written as part of the Priority Program Cooperative Interacting 
Automobiles (CoInCar) of the German Science Foundation DFG. 

2 Driver Monitoring—State of the Art 

In their meta-study on driver state monitoring systems (DSMS), Hecht et al. [20] 
point out that there is currently no commonly used definition of the term driver state. 
However, not only the basic definition, but also the possible states differ greatly: 
For example, Rauch’s [33] model focuses on vigilance and drowsiness, Marberger
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et al. [30] model focuses on drivers’ understanding of presented information during 
transitions, and Herzberger’s [23] model focuses on drivers’ assessment of driving 
performance. The majority of research on the classification of possible states focuses 
on the following constructs, or excerpts thereof: situational awareness, attention, 
stress, fatigue, strain, and confidence in automation (e.g., Heikoop et al. [21], or 
Guettas et al. [19]). 

In this context, involvement in the driving task as well as the associated awareness 
for relevant information (ARI) plays a role in the assessment of takeover quality [17]. 
This ARI concept is also followed by the definition of Herzberger et al. [22]. Regard-
less of which definition for potential driver states is followed, it will be essential to 
have a reliable detection of those operator states by the technical system in order 
to avoid handing over the driving task in critical situations to drivers who are not 
ready for takeovers. In the following, therefore, an overview of the state of the art of 
current DSMS as well as current research approaches will be given. 

In the past, vehicle manufacturers have mainly focused on drowsiness detection 
and the suitable warning. Most systems have focused on monitoring the driver’s 
steering behavior and concluded that a change in steering behavior, such as jerki-
ness, indicates a change in vigilance, e.g., the “Drowsiness Detection System” (Volk-
swagen AG). The detection of steering behavior is often additionally coupled with 
lane departure detection systems that register deviations from the zero line, such as 
“Attention Assist” (Daimler AG). In the case of newer, SAE level 2-capable vehicles 
with traffic jam assistant system, the vehicles sometimes also drive independently for 
several minutes. Here, however, the attention checks by the systems differ greatly: 
Some systems allow longer subsequent periods of driving in traffic jams without deac-
tivation if hands are always detected to be on the steering wheel, e.g. “Traffic Jam 
Assist” (Audi AG). Other systems, such as “Driving Assistant Professional” (BMW 
AG) or “Blue Cruise” (Ford Motor Company), enable several-minutes periods of 
driving without hand contact with the steering wheel provided that the driver’s gaze 
is always directed on the road. For this purpose, the gaze is monitored by a camera 
system, e.g., above the instrument cluster. This system enables a warning and deacti-
vation if the driver turns away from the driving task, since in SAE level 2 the driving 
task must be permanently monitored despite activated assistance systems and the 
responsibility lies with the driver ([23, 34]). 

In addition to systems that detect the direction of the driver’s gaze, a great number 
of research projects are also focusing on different systems for measuring physiolog-
ical parameters, such as electrocardiography (ECG), photoplethysmography (PPG), 
electroencephalography (EEG) or the measurement of electrodermal activity (EDA, 
also known as skin conductivity measurement). Sensors are usually attached to the 
driver’s body to record the signals most accurately. In addition, non-invasive methods 
are also being researched, where the sensors are built into the steering wheel rim, or 
the seat, for example Guettas et al. [19], but these require continuous contact with 
the body. Most common are studies that use ECG to record cardiac parameters such 
as heart rate and heart rate variability, e.g., Minhad et al. [31] and Taherisadr et al. 
[40]. This is used to draw conclusions about fatigue, stress, emotional responses, and 
general health of the driver. Much more complex are studies on EEG, which records
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electrical potentials of cerebral cortical neurons at the scalp. These studies attempt 
to detect cognitive states, such as activity or boredom, or even to transmit individual 
driving commands to the automation, such as hazard braking, e.g. Teng et al. [41]. 
Another approach are EDA measurements, where changes in sweat gland activity are 
recorded and analyzed. This methodology is used to assess emotional state, emotional 
arousal, or sleepiness [42]. However, this cannot validly capture which emotion is 
being measured because, for example, stress and anger elicit similar responses [45]. 

A disadvantage of some physiological measurement systems, e.g., EEG is that 
they are expensive, which would significantly increase the total vehicle cost, and that 
their use is hardly practical. In addition, other systems, such as EDA, are sensitive 
to surrounding temperature, and, clearly more serious, however, is that some of the 
signals detected may have different causes and vary greatly from person to person, 
making automated interpretation of these signals virtually impossible to date [1]. 

An alternative could be DSMS that focus on measuring the direction of the driver’s 
gaze. These have the distinct advantage that they can be permanently installed in the 
vehicle and do not need to be attached to the driver in any way. Further advantages are 
that vehicle manufacturers as well as suppliers already have experience with the series 
use of camera systems for observation, these systems can now be procured at low cost 
and require little installation space. For these reasons, many development approaches 
currently focus on camera-based state estimation. Hecht et al. [20] therefore describe 
DSMS based on eye tracking as the technology with the greatest potential. 

However, for the use of such DSMS, it is necessary to identify measurable criteria 
that correlate with possible driver states or the future takeover quality. Despite various 
efforts to compile such a set of criteria (e.g. [17, 25]), the authors are not aware of any 
valid set of criteria to date. And even if the prediction of the driver’s future takeover 
capability should remain the major goal in driver assessment, the question arises 
whether today’s DSMS already make takeovers safer. The concept of the Diagnostic 
Takeover Request (Diagnostic TOR), which is described below, pursues this idea. 

3 Theoretical Concept of the Diagnostic Takeover Request 

Since the desired criteria that would enable the prediction of a future takeover quality 
are not (yet) available, an alternative approach, first published by Herzberger et al. 
[24] and Schwalm and Herzberger [38], and now patented [36], was developed. 

This method, hereafter referred to as Diagnostic TOR, no longer focuses on infer-
ring a state from the operator’s behavior during automated driving, but on predicting 
risky takeovers based on a driver’s response to a takeover request (TOR). The general 
idea is to detect missing or reduced takeover capability based on classifying drivers’ 
orientation reactions after a TOR. For that, orientation reactions will first be recorded 
and evaluated for a large number of drivers, together with the subsequent takeover 
quality. Based on this data set, post-hoc safe and thus good takeovers can be separated 
from riskier, poor takeovers. After this classification is done, the previously shown 
orientation responses to the TOR can be analyzed. The hypothesis here is that the
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Fig. 2 Pattern for a diagnostic takeover: potential time gain for a minimum risk maneuver (MRM) 
using the Diagnostic TOR in comparison to the recommendation for level 4 by the SAE [24] 

orientation responses of drivers before safe and unsafe takeovers differ significantly 
[23]. 

If the orientation reactions do indeed differ significantly, this would allow to 
predict a risky takeover already after the orientation phase of the driver, which would 
enable multiple early intervention options such as the initiation of a minimum risk 
maneuver (MRM), or the transition to a higher level of automation. This is illustrated 
in Fig. 2 using the example of a SAE level 4 automated driving system (ADS) 
with a system failure. Following the SAE recommendation, the vehicle has to wait 
(dynamic driving task (DDT) fallback) for the driver’s response to take over control. 
The Diagnostic TOR concept aims to significantly reduce this waiting time, since it 
is not the driver’s actual intervention that has to be waited for, but only his or her 
orientation reaction. 

4 Review of the Concept and First Application 

In this study, first published by Herzberger [23], the concept of the Diagnostic TOR 
was applied for the first time to find out whether it is indeed possible to detect 
distinguishable orientation reactions before safe and unsafe takeovers. 

The study was conducted in the static driving simulator of the Institute of Auto-
motive Engineering (ika) at RWTH Aachen University (see Fig. 3). A 5-series BMW 
(F10) served as mock-up and Virtual Test Drive (VTD) was used as driving simulation 
software. By using a curved projection surface, a visual range of up to 210° horizon-
tally and 40° vertically was achieved. A three-lane highway with hard shoulder (RQ 
31; FGSV [3]), with both straight and curved passages, was chosen as the driving
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Fig. 3 In-vehicle study setup in the static driving simulator of the Institute of Automotive 
Engineering (ika) at RWTH Aachen University 

situation. Since the environment was to be designed with as little stimulus as possible, 
there was no flowing or oncoming traffic. 

The study design included an SAE level 2 driving function, which was activated by 
pressing an orange button on the steering wheel. The automation was designed so it 
could be activated at speeds above 120 km/h, whereupon it displayed a confirmatory 
feedback in the HMI and accelerated or decelerated to the maximum permissible 
speed of 130 km/h. After activation, longitudinal and lateral guidance was fully 
executed by the automation, provided the system limit (unforeseen situation ahead) 
was not reached. Furthermore, it was not necessary to have the hands on the steering 
wheel continuously or to re-engage with the steering wheel after a certain period 
of time. This system design was chosen because the goal was to have as many as 
50% of the subjects (not) manage a safe takeover in order to have a data set as equal 
as possible for each of the takeover qualities (safe/unsafe). The system could be 
deactivated by both braking and steering interventions and by pressing the orange 
steering wheel button again. 

After 15 min of SAE level 2 driving at 130 km/h in the center lane, a critical 
situation occurred, in the form of a broken-down vehicle (white Audi Q5) in the 
center lane ahead. The vehicle was parked with its hazard warning lights activated, 
but without any other markings e.g., a warning triangle. In addition, starting two 
minutes before the TOR, there was heavy traffic on the left lane at a higher speed, 
so that it was not possible to change to the left lane.
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Fig. 4 AOIs according to the numbering of ISO 15007:2020 (adapted from Herzberger [23]) 

During automated driving, half of the participants were offered a non-driving 
related task (NDRT). This, visual-haptic NDRT, was a Tetris game running on a tablet 
(Samsung Galaxy Tab S3) mounted in the center stack. The NDRT was chosen to 
provide a relevant variance in takeover performance shown in the experiment. Under 
real-world conditions, Tetris, during a SAE level 2 drive, would not be an acceptable 
NDRT and thus represents a miss-use. 

The subjects’ gaze direction was measured both during the automated drive 
and during the takeover. The head-mounted eyetracker Dikablis Professional by 
Ergoneers was used for this purpose. The defined areas of interest (AOIs) were 
based on the recommendations of ISO 15007:2020, see Fig. 4, which include the 
road ahead (1), the rearview mirror (2), the TICS (Transport information and control 
system) display (3), the instrument cluster (IC, 4), the driver-side rearview mirror 
(5), the driver-side side window (6), the passenger-side rearview mirror (7), and the 
passenger-side side window (8). For this study, the AOIs highlighted in blue (1, 2, 
3, 4, 5, 7) were selected because additional hardware would have been required for 
the side window detection, which was not available at the time the experiment was 
conducted. 

N = 50 subjects participated in the study (52% female). The age of the participants 
ranged from 20 to 69 years (M = 32.18 years, SD = 11.03 years) and the average 
annual mileage was M = 16,076 (SD = 18,221 km). The results of the Karolinska 
Sleepiness Scale (KSS) as well as the Sofi scale, which measure the fatigue of test 
subjects, did not differ significantly between the groups safe takeover (ST) and 
unsafe takeover (UST)—the participants of both groups thus assessed themselves 
comparably awake. ST were defined as emergency braking in front of the broken-
down vehicle, or swerving into the clear right lane, UST as swerving into the right 
lane occupied by faster moving vehicles, hitting a broken-down vehicle, or hitting 
the guardrail. 

The subjects’ takeovers of the driving task were analyzed after the study. The 
evaluation of the objective driving simulator data revealed 34% ST by the driver 
without NDRT and 14% in the Tetris group. The UST break down as follows: 16% 
without NDRT and 36% in the Tetris group—in each case as a percentage of the total 
takeovers. Thus, the goal of obtaining data from both successful and unsuccessful 
takeovers in each group was achieved. The gaze sequences were then analyzed. No
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distinction was made as to whether the gaze sequences prior to a UST were from 
individuals with or without NDRT, since future algorithms would have to be able to 
handle both drivers with and without NDRT. Several gaze sequences were identified 
that were unique to UST (results see Table 1). A discussion of the results, together 
with those from the second study, follows after Table 1. 

However, the most obvious limitation is that the number of participants per gaze 
sequence is very small, which is due to the fact that there are six possible AOIs that can 
be stringed together in any combinatorial order. Accordingly, there are a large number 
of possible combinations, which minimizes the probabilities of each occurring. In 
order to obtain a representative sample for each of the cases, driving simulation 
studies are simply not suitable, as they are too time-consuming and too expensive. 
However, the aim of the study was not to generate an exhaustive data set, but to 
perform a first analysis based on the question whether the Diagnostic TOR could 
be implemented in principle. This analysis showed that the orientation responses 
differ before ST and UST (at least for this first sample), which strongly supports the 
usefulness of this approach. But, given the small number of participants, a replication

Table 1 Gaze patterns from the first and second study (S1 and S2) and the likelihood (L) of an 
unsuccessful takeover (UST) after a gaze pattern (adapted from Herzberger [23]) 

Gaze 
Pattern 

ST 
S1 

UST 
S1 

ST 
S2 

UST 
S2 

UST  L 
S1 

UST  L 
S2 

UST  L 
total 

T 0 0 0 1 100% 100% 
T R 2 4 0 1 67% 100% 71% 
T R T 0 1 0 0 100% 100% 
T R IC 0 3 2 3 100% 60% 75% 
T R ML 1 1 0 0 50% 50%  
T R MM 0 0 1 1 50% 50%  
T R MR 1 0 0 0 0% 0% 
T IC R 1 8 4 4 89% 50% 71% 
T IC T 0 1 0 0 100% 100% 
T IC ML 0 0 0 1 100% 100% 
R 4 0 5 1 0% 17% 10%  
R IC R 4 5 3 2 56% 40% 50% 
R ML R 6 0 1 0 0% 0% 0% 
R MM R 1 0 1 0 0% 0% 0% 
R MR R 2 0 0 0 0% 0% 
IC 0 1 0 0 100% 100% 
IC R 0 1 0 0 100% 100% 
IC R IC 0 0 2 0 0% 0% 
IC R ML 1 0 0 0 0% 0% 
IC T R 0 0 1 0 0% 0% 
ML R 1 0 0 0 0% 0% 
ML R IC 0 1 0 0 100% 100% 
MM R IC 0 0 3 0 0% 0% 
MR R IC 0 0 0 1 100% 100% 
N  = 88      n 24 26 23 15 
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study (see next section) was needed to find out whether another sample shows similar 
gaze orientations and whether, despite further data, distinctive sequences are still 
preserved. 

5 Generalizability of Orientation Reactions 

The purpose of this replication study, first published by Herzberger [23] was to find 
out whether comparable orientation reactions could be found in a different sample 
under conditions that were as comparable as possible. Furthermore, the recorded 
orientation patterns should be merged with those from the previous study to check 
whether distinguishable sequences can still be identified in a larger sample. 

This replication study was conducted in the static driving simulator of the IAW 
of the RWTH Aachen University. Since this is not based on a real vehicle mock-up 
but on a Bosch-Rexroth setup, it was possible to replicate the dimensions of the 
vehicle exactly. For this purpose, the mock-up at the ika was precisely measured to 
record both the distances between the mirrors and the exact positions of the IC and 
TICS. This ensured that as few confounding variables as possible were introduced 
into the study. A four-camera remote eye tracking system (Smart Eye Pro 6) was 
used. The system uses four cameras of which two were placed at the bottom of the 
A-pillars, one above the dashboard, and one at the bottom right of the TICS to reliably 
detect the relevant AOIs. This system was chosen because the head-based system 
had difficulties with sudden head movements and to best meet the requirement for 
a method that could be used in the real world. The study design was replicated as 
closely as possible. 

N = 38 subjects participated in the study (55% male). Participants’ ages ranged 
from 18 to 65 years (M = 33.26 years, SD = 15.01 years), and mean annual mileage 
was M = 8,860 (SD = 11,289 km). After the study, the takeovers were classified. 
This resulted in the following takeover qualities by group: Successful were 36.8% 
of participants without NDRT and 23.7% with NDRT. Unsuccessful were 7.9% of 
the subjects without NDRT and 31.6% with NDRT. Thus, the replication study also 
achieved its goal of collecting data from both successful and unsuccessful takeovers 
in each group. 

Table 1 provides the participants’ gaze patterns from both studies as well as the 
likelihood for a subsequent UST. The AOIs were labeled according to the following 
classification: Road ahead (1) is R, TICS display (3) is T, instrument cluster (4) is 
IC, driver-side rearview mirror (5) is Mirror left ML, passenger-side rearview mirror 
(7) is Mirror right MR, and rearview mirror (2) is MM (Mirror middle, since RM 
was too similar to MR). It becomes apparent that even after merging the data sets 
from the first and the second study (S1 and S2), it is still possible to identify distinct 
sequences. The gaze patterns that have a probability >0.5 and a sample n > 1 are  
highlighted in gray. 

It is noticeable that takeovers are most often unsuccessful when they start at the 
TICS display (T). This is not surprising since drivers who have not lowered their
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gaze to T may at least still be peripherally aware of their surroundings or may even 
be able to recognize the critical situation at an early stage. These results should be 
taken as an opportunity to reconsider the warning strategy in the course of takeover 
requests, since warnings in the instrument cluster (IC) do not seem to be very helpful 
for safe takeovers, to say the least. An alternative could be to display the warning 
(additionally) in the TICS or the head-up display, so that the driver does not have to 
look into the instrument cluster to grasp the content or trigger of the warning. Since 
even with an enlarged sample separating orientation reactions were identified, the 
Diagnostic TOR seems to be a promising approach to detect a UST at an early stage 
in case of a necessary handover of the driving task to the driver by comparing the 
detected orientation reaction with previously recorded gaze patterns and thus to be 
able to initiate safeguarding measures. 

6 Conclusion and Outlook 

The presented concept of the Diagnostic TOR shows that a meaningful use of 
DSMS is already possible today, which could enable early detections of unsuccessful 
takeovers. Nevertheless, the major goal remains to identify criteria in the future that 
can be used to predict the driver’s capability to take over from the driver’s behavior 
during the automated drive. Until this is possible, however, approaches such as the 
Diagnostic TOR could be helpful in gaining more reaction time during critical tran-
sitions. Importantly, the limit in terms of reaction time as well as accuracy is far from 
being reached: In the presented studies, only the gaze pattern was used to estimate the 
human’s capability to take over. For more advanced approaches, such as confidence 
horizons, the human horizon can be determined in much greater detail. For example, 
there are ongoing studies that also include the driver’s body posture, weight shift and 
grip strength. The gaze direction, therefore, is only a small part of a takeover pattern 
[12, 8], and a large number of variables forms of takeover responses. More detailed 
takeover patterns are being investigated in the Exploroscope [7] of the IAW at the 
RWTH Aachen University and will also be included in the design of the confidence 
horizon in the future. This concept, which allows the two agents (driver and vehicle) 
to have a shared mental model, will enable dynamic in-vehicle cooperation of the 
driving task. The information about the mutual capabilities or limits of driver and 
automated system could also be made available to other automated vehicles in a 
next development step. If, for example, a transition to the driver fails and an evasive 
maneuver has to be performed at the last moment, surrounding automated vehicles 
could react adaptively based on this data, taking vehicle-vehicle-cooperation to a 
next level. 
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Confidence Horizons: Dynamic Balance 
of Human and Automation Control 
Ability in Cooperative Automated 
Driving 

Marcel Usai, Nicolas Herzberger, Yang Yu, and Frank Flemisch 

Abstract This chapter presents the concept of confidence horizon for cooperative 
vehicles. The confidence horizon is designed to let the automation predict its own and 
the human’s abilities to control the vehicle in the near future. Based on the pattern 
approach originating from Alexander et al. [ 1], the confidence horizon concept is 
instantiated with a pattern framework. In case of a necessary takeover of the driving 
task by the human, a mode transition pattern is initiated. In order to determine when 
the takeover is required, which pattern to start and when to omit the takeover attempt 
and directly start a minimum risk maneuver, the confidence horizon for both human 
and co-system is an important parameter. A visual representation of the confidence 
horizon for the driver in different scenarios prior to a takeover request was explored. 
Intermediate results of a simulator study are presented, which assess the confidence 
horizon in automation safety-critical takeover scenarios involving an intersection 
and a broken-down vehicle on a highway. 

1 Cooperation Between Human, Co-system 
and Environment 

Cooperation in automated driving is a bridging paradigm connecting many facets, 
e.g., cooperation between machines and machines, between humans and humans as 
well as between humans and machines. Cooperation does not necessarily need simi-
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larity among cooperation partners. Compatibility, however, is a crucial requirement. 
It needs to be sufficiently developed between the outer borders of the cooperating 
sub-systems (outer compatibility) and between the inner, often cognitive, aspects 
of the cooperating sub-systems (inner compatibility) [ 9], leading to outer and inner 
cooperation. In these complex systems, not only the humans and machines in the 
directly acting human-machine system should cooperate, but also the people and 
machines in the meta-system, e.g., in research and development. 

The cooperation between multiple vehicles reflects the outer cooperation from 
the viewpoint of a single automated vehicle and is examined in various details in 
many other chapters of this book. The following chapter focuses on the cooperation 
of a single human with a single automation within a highly automated vehicle. Any 
cooperation with other vehicles, between these vehicles and with the ego vehicle 
itself are considered as part of the environment. 

In general, there are three main entities within the system of the ego automated 
vehicle: The human, the co-system (including the automation and other technical 
subsystems), both of which are considered agents within the system, and the envi-
ronment. As shown in Fig. 1, the human and co-system influence the environment 
through joint actions. To enable a joint action [ 25], the human and the co-system 
have to cooperate either through direct communication or through a mediator, which 
is represented by the center element of the diagram. 

In this system model, it is assumed that both the human and the co-system may 
share the vehicle control and transition control between one another. The direct 
communication between the two agents is crucial for the co-system to communicate 
decisions made by a network of cooperating vehicles as well as possible actions 
needed by the human if the co-system reaches its limitations. 

In order to successfully design human-machine cooperation, it is necessary to 
align the “mental model” of the co-system with the mental model of the human 

Fig. 1 Simple model for the 
cooperation between human 
and co-system. Human and 
co-system both act on and 
control the vehicle as a part 
of the environment. (Based 
on Flemisch et al. [ 8] and  
Löper [ 21])



Confidence Horizons: Dynamic Balance of Human and Automation … 527

[ 9] to include the environment, and to keep it transparent and repeatable. One tool 
to achieve this is a design metaphor, which has been successfully applied e.g. in 
the form of the desktop-metaphor (as established by Alan Kay from Xerox PARC 
in 1970) or the H(orse)-metaphor [ 8], transferring the mental model of a rider and 
horse to the domain of highly automated vehicles. A more generalized approach is 
the pattern approach based on Alexander et al. [ 1], applied to music by Borchers [ 5], 
to software by Gamma et al. [ 16] and applied to human-machine systems by Baltzer 
[ 2], Herzberger et al. [ 20], López Hernández [ 22], and others. For more details on 
patterns see Flemisch et al. [ 15] and the chapter of Flemisch et al. [ 7]. 

2 The Concept of Confidence Horizons 

The idea behind the confidence horizon concept is to bring together the prediction 
of the time points of when and until when the human and the automation are able to 
control the joint system, in this case an automated vehicle. 

In this sense, the confidence horizon is coupled to the prediction of the abil-
ity to execute control over the joint system. Combining the predictions for human 
and automation makes clear when a safe transition of control between human and 
automation can be expected and how automation and human need to communicate, 
depending on the severity of the situation. Figure 2 depicts the confidence horizon 
concept. 

As shown on the left, human and automation are more or less involved in the cur-
rent driving task, depending on the current automation mode (e.g. manually, partially 
or highly automated), and the resulting distribution of control [ 10]. As stated in the 
SAE [ 24], starting from SAE Level 4 automation, the driver is explicitly allowed 
to disengage completely from the driving task, which results in a potential loss of 

M
an

ua
lly

 

1 

H
ig

hl
y/

fu
lly

 
au

to
m

at
ed

 

Ego 

Safety buffer 

Safety 
buffer 

Pa
rt

ia
lly

/ 
co

nd
iti

on
al

y 
au

to
m

at
ed

 

Human can 
take over 
from here 

Up to here can 
the automation 

Confidence 

Horizon 

Fig. 2 The confidence horizon as a product of the distribution of the ability to control for human 
and automation. Displayed in the control distribution according to (left, based on Herzberger et 
al. [ 20]) and projected onto a use case of highly automated driving (center). Application of the 
confidence horizon start (human) and end (automation) to the driving simulator (right)



528 M. Usai et al.

situation awareness for the driving task, especially when engaging in a non-driving 
related task (NDRT) [ 28]. Even in lower automation levels (automation according to 
SAE Level 2), despite the driver’s obligation to be ready to intervene and ongoing 
liability for the vehicle’s actions, the driver may tend to lose awareness, a mecha-
nism described as the unsafe valley of automation [ 11]. With the confidence horizon 
concept, we propose to make this unsafe valley visible at least to the automation and 
its developers, as an option also for the driver, so that she can act accordingly. The 
control distribution in Fig. 2 (left) shows, on the one hand, who has to control the 
vehicle in a given automation mode and, on the other hand, the ability of the human 
(in orange) and automation (in blue) to actually execute the vehicle control. Project-
ing the ability distribution for the human and the automation into a real situation (see 
Fig. 2, right) directly shows the need for a control transition due to a lack of ability 
of the automation to handle an obstacle in this situation. Furthermore, it shows the 
available time frame for a transition to the human, in which this transition has to take 
place (shown as safety buffer). 

In a critical situation (system boundary or system failure), the confidence horizons 
clearly show a safety gap, i.e., a time frame in which neither automation nor human are 
able to control the driving related task. The confidence horizon concept enables the 
automation to detect such cases as early as possible and act accordingly. Depending 
on the time remaining until the system failure is reached and the current ability of 
the driver, the automation either triggers a diagnostic take-over request (TOR), in 
case that there is a safety buffer present before the system would fail, or a minimum 
risk maneuver (MRM). 

We propose to use the confidence horizon concept for the design of highly auto-
mated human-machine systems to identify the proper transition strategy in case of 
an upcoming control gap and to predict the future ability of the human and the 
automation to control the joint system. However, based on our exploration results, 
we recommend using the confidence horizon as a basis for designing HMI designs in 
situations of varying criticality, including the communication strategy of the automa-
tion, rather than a simple visual representation of the confidence horizon as in Fig. 2 
(right). 

3 Application of the Pattern Approach to Cooperative 
Automated Driving 

To achieve good cooperation between two agents, both need to understand each other. 
When designing human-machine cooperation, the challenge is to find a common 
language. A promising solution is the approach of interaction patterns to find common 
ground at large scale. Based on Alexander et al. [ 1], Flemisch et al. [ 14] describe a 
pattern as follows: 

A pattern describes something that occurs over and over again. An example for this is 
a problem and/or its solutions. If this can be observed, and its core can be mapped and
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modelled, you can either observe and match the pattern over and over again, without ever 
making the identical observation twice. And/or you can instantiate and design with this 
pattern over and over again, not necessarily doing it the same way twice. Examples for this 
are designing, engineering and using of artefacts like human-machine systems. Flemisch et 
al. [ 14] 

Alexander et al. [ 1], Borchers [ 5] and Baltzer [ 3] use patterns to describe a solu-
tion to a given problem and propose a pattern language for the design of patterns. 
Another focus is set by Flemisch [ 6] and López Hernández [ 22] on the structure of 
the solution by describing in detail the sequence of interaction within a pattern. This 
focus, however, further tailored to matching a given pattern instance for the case of 
cooperatively interacting vehicles, is also applied in the proposal of the authors. 

When using the pattern approach for active cooperation, the pattern structure is 
extended by a set of properties to detect which cooperation partner should, wants 
and is currently performing a given pattern, resulting in a new subset of patterns: 
Cooperation patterns. In the proposed setup, all properties are predicted by the co-
system. Each property can be described by a sub-pattern, so that if the sub-pattern 
matches the co-system, the activation value and confidence for the respecting property 
increases as well. 

The fundamental properties of a cooperation pattern are utility, ability, intention 
and execution. Utility describes how useful the activation of the current pattern 
would be for the respecting agent. Ability represents the agent’s ability to execute the 
pattern now and in the near future. Intention describes the agent’s inner determination 
to execute the pattern, while the execution property describes the matching of the 
agent’s actual current action with the actions required to execute the pattern at hand. 

Derived from the cooperation pattern, the relevant patterns are activity patterns 
and transition patterns. Applied to cooperative vehicles, there are driving related and 
non-driving related activities (see Fig. 3). 

Fig. 3 Simple illustration of 
the change of focus on an 
activity using transitions. 
The symbol in the right 
corner of the activity shows 
which agent is currently 
active the most in the 
respectin g activity
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Fig. 4 Possible transitions between activity and transition patterns for human (left) and automation 
(right) in case of a take-over initiated by the co-system 

Both agents, the human as well as the automation, can focus on one of these 
activities. They can change their own focus and try to change the other’s focus by 
starting a transition pattern, e.g., a takeover request (TOR). 

Figure 4 depicts the pattern network for the application in transition control for 
highly automated driving. It displays the same process as in Fig. 4 with the patterns as 
states and for each agent individually. On the most basic level, the activity of human 
and automation can be considered as driving related or non-driving related. Since 
activity patterns are derived from cooperation patterns, they contain their properties 
for the utility, ability, intention and execution of the activity by both agents according 
to the co-system’s prediction. The same applies to transition patterns. 

The detection of the ability of both human and automation to execute the driving 
related ability directly reflects the current state of the confidence horizon. Transitions 
are used to switch from one activity to the other. Various transitions are available 
based on the initiator of the transition, the current size of the safety buffer in the 
confidence horizon and the predicted ability to execute the target activity for human 
and automation. It should be noted that, in the case of a transition, both human 
and automation have to change their activity. As part of the co-system, a mediator 
arbitrates conflicts between human and machine [ 4] and provides transparency of the 
automation’s behavior to maximize the overall utility of the human-machine system. 
This mediator makes all joint decisions. It is the mediator’s responsibility to let the 
co-system initiate a certain transition or prevent the human from using a transition 
that is not feasible for the system. Figure 4 illustrates the possible transitions between 
activity and transition patterns for both human and automation, assuming that each 
agent is focused on a single task at any given time. In this application, the automation
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can initiate a take-over request (TOR) that, if successful, leads to a change in activity 
for both agents, or be pushed into a minimum risk maneuver (MRM). 

A combined representation of both diagrams of Fig. 4 is  shown in Fig.  3, high-
lighting that all activities are considered states with the properties of utility, ability, 
intention and execution for each agent. Additionally, an agent is not limited to focus 
on a single activity, but rather uses transition patterns to change focus from one 
activity to another. 

Applied to human-automation cooperation in cooperatively interacting vehi-
cles, this could be implemented as follows (Fig. 5): The co-system detects a safety 
gap ahead and needs to transition the human activity from a non-driving related to 
the driving related task. This has to be done before the safety gap comes to close. 
Otherwise, the co-system has to initiate a minimum risk maneuver, which, however, 
might involve a higher risk than a successful take-over of the human. Figure 5 depicts 
this situation at time .t1.1. If there is enough time to hand over control to the human, 
the co-system starts a two-stage take-over pattern (as based on e.g. Rhede et al. [ 23], 
Winkler et al. [ 27] or Guo et al. [ 17]) to let the driver gain situational awareness and 
enable the driver to take back control safely. Depending on the predicted ability of 
the driver, the first warning might be sufficient, or, the second warning stage has to be 
triggered, starting at .t1.2. If the transition fails because the human is either unwilling 
or unable to take over in time, according to Herzberger et al. [ 19], the co-system 
starts another transition to the MRM and aborts the take-over transition, leading to 
.t2.1. Only if the transition is successful, control is transferred to the human and the 
automation accordingly loses control over the driving related activity (.t2.2). 

4 Exploration of the Confidence Horizon Cooperation 
Design 

To explore the design options for the cooperation between human and co-system 
and in particular the HMI used in the use case of a breakdown vehicle, a Human 
Systems Exploration (as described by Flemisch et al. [ 13]) was conducted at the 
IAW Exploroscope. 

The chosen use case was the appearance of a stopped vehicle on a three-lane 
highway in the center lane with traffic to the left lane. To avoid a collision with the 
vehicle in front, there are two possibilities: Either one breaks and stops in front of 
the vehicle, staying vulnerable to traffic from behind, or one changes to the right 
lane to avoid a collision. It is assumed that the automation is unable or not allowed 
to perform 1 the evasive maneuver. 

The setup consisted of two scenarios representing the safety buffer and safety gap 
cases in two different severity levels of time to collision (TTC) with.T TC = 10 s and 
.T TC = 3 s, indicated by the distance between the ego and the breakdown vehicle.

1 In Germany and other European countries, traffic rules do not allow the overtaking of other road 
users from the right when driving out of town, e.g. on highways. 
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Fig. 6 Snapshot from the on-site Exploration (left) and situation as it was displayed in the online 
Exploration (right) to show the view of one situation as in the simulator 

A total of.N = 12 persons (.41, 67% female,.58, 33%male) with an average age of 
.30 (.σ 2 = 7, 98) years participated in the exploration. Due to the Covid-19 restrictions 
in 2020, the exploration was conducted partly on-site (.n = 5 participants) and online 
(.n = 7 participants). A digital whiteboard tool was used for documentation in both 
cases. 

Participants were shown all four resulting situations on a digital whiteboard with 
the confidence horizon markings (cf. Fig. 6, right) displayed for reference and asked 
to share their thoughts on how the co-system should communicate a take-over request 
to the human. They were given the task of drawing a sketch of their proposed head 
up display (HUD) concept. 

As a first finding, it should be noted, that only one in .12 (.8%) would display 
the confidence horizon (as in Fig. 6, right) directly to the driver. .42% of participants 
would display the confidence horizon only for the ability of the co-system and under 
certain conditions. And.50% would never display it to the driver, especially because 
predicting human capability is perceived as confusing or uncanny, and displaying 
information in an area where the co-system cannot control the vehicle is considered 
plausible. From these results, it is concluded that the confidence horizon might be a 
useful tool for cooperation design and to initiate transitions in foresight but should 
only be used with caution as a too detailed HMI element. 

Participants also noted that the information displayed in the visual HMI should be 
limited to focus attention and that they prefer not to read text in a critical situation. 
.33% indicated that a general warning message in the corners of the visible area would 
be useful..42% commented positively on the visualization of a lane change trajectory 
as well as the display of the center lane trajectory with changing colors indicating 
the criticality of the distance to the obstacle ahead. Figure 7 shows the proposal for 
the safety buffer scenarios combined from all the results collected. The participants 
wanted to be shown how much way they still have before the situation becomes too 
critical if they do not react. The left lane is shown as blocked and an arrow indicates 
the possible lane change to the right lane. An icon in the center of the field of view



534 M. Usai et al.

Fig. 7 Examples for combined hand-drawn HMI concepts from the exploration workshops on 
safety buffer scenarios. Left: scenario for.T TC = 10 s; right: . T TC = 3 s

indicates necessary action. The broken-down vehicle is highlighted with a frame in 
warning color (red), annotated with the remaining distance in meters. In the corners 
of the field of view (might be realized as part of the HUD or ambient lighting), light 
flashing colors emphasize the possible and impossible directions. 

The safety gap scenarios were not fully understood by most of the participants. 
The main reason for that was that it is difficult to understand why the co-system would 
provide information on the situation despite it itself failing in the very moment. This 
shows that it was unclear to the participants that situation awareness and ability to 
execute the driving task are separated in the case of the co-system. Most importantly, 
participants wanted transparency of the automation’s actions for both cases. For 
example, the co-system should inform the driver, that a minimum risk maneuver is 
being executed and that the driver may only take over control after the maneuver is 
completed. 

5 Simulator Study of the Confidence Horizon Cooperation 
Design 

To evaluate the proposed application of the confidence horizons, a study with. N = 20
participants was conducted in the static driving simulator at the IAW Exploroscope 
of the RWTH Aachen University. The study produced much more results than can 
be shown in the last part of this chapter, so that only an overview can be given, with 
more detailed publications to follow. The study tested three different designs in two 
different use cases. The use cases were: 

Use case 1 “Avoidance of broken-down vehicle”, starting on the highway in SAE 
level 3/4, where drivers engaged in a non-driving related task had to take over control 
and avoid to the obstacle by changing from the center to the right lane, as the left 
lane is blocked by fast dense traffic. 

Use case 2 “Avoidance of collision at X-intersection”, starting on a rural road in 
SAE level 3/4, where drivers engaged in a non-driving related task had to take over 
control and avoid a collision with a vehicle coming from the right.
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Since the use cases are already very detailed here, they could be considered as 
use situations. In order to maintain the conceptual connection to the other chapters, 
we will nevertheless continue to refer to use cases here. 

Each participant experienced both use cases and one of the three cooperation 
designs: 

Design 1 is the baseline: Here, the driver only receives an acoustic takeover request 
from the automation combined with an immediate dropout/ deactivation of the auto-
mated system. 

Design 2 is a combination of the first design with an MRM (Minimum Risk Maneu-
ver). If the driver does not intervene after the drop out, emergency braking is auto-
matically initiated. 

Design 3 is a more complex attention sensitive design that combines the ideas of the 
confidence horizon: On the one hand, the driver’s ability to take over is determined 
by his orientation reaction, as proposed in the diagnostic TOR approach [ 19]. On the 
other hand, the capabilities of the automation are derived from the tested use cases. 
If the driver is classified as not ready to take over, a second warning stage is initiated. 
Here, depending on the human’s reaction to the TOR, her or his ability to execute 
the driving task, and the time remaining before the accident, the interaction mediator 
decided to either immediately return control to the automation, wait until the human 
was ready to take over, or immediately transfer control to the human. Thus, the time 
advantage resulting from the detection of the readiness to take over (see chapter by 
Herzberger et al. [ 18]) is used to either trigger a second warning, with a still possible 
strong MRM, or an early and comfortable MRM. As in design 1 and 2, the driver in 
design 3 receives a TOR that is combined with visual warnings, based on the results 
from the exploration (see Fig. 8), in the HUD. 

The photo at the bottom of Fig. 8 shows the HMI from design 3 in the highway 
use case with the broken-down vehicle. Here, the left lane, which is occupied by 
fast moving traffic, is covered by a semi-transparent red wall. In addition, a hands-
on symbol is displayed above the road, along with the text “please take over” (in 
German). Starting from the ego-vehicle, a possible safe trajectory to the right lane 
is suggested by a green turn arrow. The clear right lane is also indicated by a green 
check mark at the bottom right of the windshield. In both designs with MRM (design 
2 and design 3), the emergency braking can be overridden and it does not start until 
it is detected that the driver is not responding to the TOR. Figure 9 shows a tree or 
state-transition diagram of the three designs. 

.N = 20 subjects participated in the study (.45% female). The age of the partici-
pants ranged from.18 to.54 years (.M = 28.90 years,.SD = 12.57 years). The results 
of the Karolinska Sleepiness Scale (KSS) as well as the Sofi scale, which measure 
the fatigue of test subjects, did not differ significantly between the takeover design 
groups. Subjects were randomly assigned to the use cases intersection and highway 
and to the designs, resulting in each subject experiencing one design and both use
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Fig. 8 Simulator study of confidence horizon designs in two use cases (.N = 20, Snapshots from 
the gaze scene video, blue dot represents drivers gaze) 
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Fig. 10 Principle of balanced analysis in the example of the driving simulator study 

cases. The distribution of subjects was carefully balanced so that, as far as possible, 
there were an equal number of subjects in each design and in each possible use case 
sequence combination..n = 6were assigned to design 1,.n = 7 to design 2 and. n = 7
to design 3. All subjects experienced each use case twice. The first use case trial is 
referred to as . t1 and the second trail as . t2. 

6 Results and Discussion 

The evaluation was carried out in accordance with the principle of balanced analysis, 
which combines and balances subjective with objective, quantitative with qualitative, 
individual with averaged, and time-longitudinal with time lateral perspectives (see 
Fig. 10, e.g. Flemisch et al.  [  12]). 

The subjective data are further subdivided into results from the closed and open 
questions (quantitative vs. qualitative). An extraction of the objective results is shown 
in Table 1. Here, the takeover success by design and use case is presented. 

Not surprisingly, the results reveal that across all designs and situations, subjects 
took over more successfully at . t2 than at . t1. Contrary to the hypothesis that subjects 
in design 3 were fundamentally more successful in taking over the driving task than 
in designs 1 and 2, it appeared that design 3 performed better than design 1 only
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Table 1 Takeover success by design and use case 

Design 1 Design 2 Design 3 

Successful Unsuccessful Successful Unsuccessful Successful Unsuccessful 

Intersection 
. t1

1 5 4 3 3 4 

Intersection 
. t2

4 2 5 2 5 2 

Highway.t1 5 1 2 5 2 5 

Highway.t2 5 1 6 1 6 1 

in the intersection use case. In the highway use case, however, the results were 
inverse, indicating an effect of the cooperation design, or of the experimental design. 
However, these influencing effects need to be investigated in more detail to avoid 
potential side effects of the more complex attention-sensitive design, and realize the 
true potential of the concepts, already seen in the results in one of the two use cases, 
in the future for all use cases. 

Analysis of data related to driver ability in both use cases and all designs was 
conducted based on aggregated data sets, as shown exemplary in Fig. 11. The data 
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Fig. 11 Example of a data set for a single participant. (AOI = gaze area of interest, 1 = front view, 
2 = instrument cluster, 3 = center stack, 4 = mirror left, 5 = mirror right, 6 = rear mirror; GF = 
sum of normalized grip force activation; Steer = steering angle [deg]; Pedals = normalized pedal 
activation (straight line: accelerator, dashed line: brake); SP = change of seat pressure focus point 
(straight line: longitudinal coordinate, dashed line: lateral coordinate))
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ORIENT 
gaze on road 

PREPARE 
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PREPARE 
grip force =0 

t - t  < 1s0 t - t  <  2s0 

PERFORM 
no/hazard. action 
t - t  < 3s0 

Transition_Pattern_unsuccessful_driver_takeover 
CAN WANT DO 
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Fig. 12 Top: Structure of the successful takeover pattern. Drivers follow the pattern of orient, 
prepare, then perform. Time annotations of each interaction block shows the time window in which 
the event has to occur for the takeover to be still successful in both use cases, with.t = observation 
time and.t0 = time point that TOR is issued by the automation. Bottom: Structure of the unsuccessful 
pattern. The driver fails to fulfill the subpatterns in the given time frame. Activation of subpatterns 
does not necessarily follow an order in this case 

set consists of gaze AOI (area of interest) data, grip force on the steering wheel, 
steering angle, pedal activation and seat and seat back pressure. Data sets were 
evaluated to find a most universal pattern, which describes the ability or inability of 
the human driver to takeover control after the TOR was issued. 

Regarding the ability of the driver, results indicate a possible detection of the 
inability to take over. Gaze behavior shows, that only .11.7% of successful drivers 
did take a look at any mirror more than once and tend to have a stable gaze on the 
road, which tends to lead to a successful takeover, however, it does not guarantee it. 

While the initial driver gaze gives a hint on the early orientation behavior of 
drivers, its analysis also leads to the conclusion, that a successful takeover is not 
describable by driver gaze alone, hence more data points (c.f. Fig. 11) were added to 
the analysis. 

The combination of gaze, grip force and driver input (pedals and/or steering 
wheel) leads to a first model of a pattern for the successful 2 control transition to the 
driver after the TOR was issued by the automation. Figure 12 displays the successful 
(Fig. 12 top) and unsuccessful (Fig. 12 bottom) pattern found. .87% of all successful 
drivers followed the successful transition pattern, while .95% of all unsuccessful 
drivers followed the unsuccessful pattern, which hints towards a better performance 
of the unsuccessful pattern. Focusing on the orientation and preparation stages of 
the pattern alone, still .82% of both successful and unsuccessful transitions are being 
detected.

2 Successful means in this context that the driver took over and resolved the situation without causing 
a crash of the ego vehicle or other vehicles. 
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This analysis and first pattern model give an orientation on how to implement the 
human part of the confidence horizon, however, the transfer from post-processing to 
an online detection of the confidence horizon still has to be made. A more detailed 
report on the analysis and found pattern will be published in the near future [ 26]. 

The subjective, qualitative results from the balanced analysis provided a variety of 
indications for possible causes as well as further adaptation options for the HMI. For 
example, several subjects from all designs (.n = 6) stated that they would like to see 
a TOR notice on the tablet. Furthermore, a clearer description of the hazard situation 
via a voice output instead of just a sound was desired (.n = 4). The participants’ 
statements on perceived criticality, subjectively perceived takeover quality, and stress 
did not differ significantly between the designs, which is probably due to a small 
sample size. A detailed evaluation of the results and recommendations for the further 
development of the confidence horizon concept will be published in the near future. 

7 Conclusion and Outlook 

The initial concept of confidence horizon, in conjunctions with new ideas of diag-
nostic take over requests (described in more detail in the chapter by Herzberger et 
al.), helped us to open up a new direction of attention and ability sensitive design 
of automated and cooperative systems. The concept can support design and devel-
opment teams in cooperative vehicle automation, but also in other domains where 
machines and humans cooperate, to dynamically balance abilities of agents, and to 
design and engineer the transitions of control in a more transparent way compared to 
the traditional “on/off”-thinking. With design explorations and experiments, some of 
which were described here, we were able to cut through a vast design and use space 
at least in the driving simulator, and to identify the most prominent dimensions of the 
vast space of possibilities. Even if we are far from really mastering this new space 
of attention- and ability-based transitions, the chances are good that in close cooper-
ation with other research projects e.g., from the DFG priority program CoInCar, the 
first design patterns can already be transferred to real vehicles and products. Equally 
important, we have paved the ground for more research which will be necessary 
to fully master this design and use space of transitions, as an important aspect of 
cooperatively interacting vehicles and human machine cooperation. 
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Cooperation Behavior of Drivers at Inner 
City Deadlock-Situations 

Nadine-Rebecca Strelau, Jonas Imbsweiler, Gloria Pöhler, 
Hannes Weinreuter, Michael Heizmann, and Barbara Deml 

Abstract In urban traffic, there are several situations in which the right of way 
is not regulated. For automated vehicles in mixed traffic to show behavior that is 
considered acceptable by all parties, the cooperation behavior of drivers in these 
situations must be understood. An observational study identified several behaviors 
in these situations at equal narrow passages and T-intersections that can be classified 
as offensive and defensive. These behaviors were tested in an experiment whether 
they can communicate the intention to drive or to stop. Drivers respond to defensive 
behaviors of the cooperation partner by continuing to drive, and stopping when the 
behavior is offensive. In the equal narrow passage, drivers felt safest when they 
drove first, whereas at the T-intersection, drivers felt safest when the cooperation 
partner drove first. In further experiments, it was shown that at T-intersections the 
entry position has an influence on whether drivers drive first or stop. Pedestrians or 
other traffic do not have an influence on the behavior. However, if drivers follow a 
vehicle that is driving ahead of them, they drive first through the deadlock situation. 
Recommendations for the behavior of automated vehicles in these situations are 
derived from the findings of the studies. 

1 Introduction 

The introduction of highly automated vehicles in the coming years holds great poten-
tial for road safety [ 44]. Nevertheless, potential problems can also arise, especially 
in mixed traffic of manual and automated vehicles. This is particularly critical in 
inner-city traffic, for example at intersections, where there is a higher risk of acci-
dents [ 38]. These critical situations include situations that are not clearly regulated 
by road traffic regulations. Here, the behavior of other road users must be predicted 
in each case in order to then cooperate adequately. These deadlock situations occur, 
for example, at equal narrow passages or T-intersections with a certain constellation 
of road users (Fig. 1). Here, none of the drivers has the right of way and the situation 
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Fig. 1 Examples of deadlock situations 

must be resolved by cooperative behavior. In this case, an automatic vehicle guidance 
must also be able to solve the situation cooperatively and recognize the intention of 
the manual drivers. At first glance, the safest solution would be for the automated car 
to stop and allow the other road users to drive first [ 9]. However, this behavior is not 
necessarily the most comfortable and accepted behavior. For example, if another road 
user is driving defensively and wants to yield the right of way, it would cause a com-
plete stillstand. This undesirable and possibly unexpected behavior could degrade 
the acceptance of automated vehicles by both the passenger and interaction partner. 
In order to cooperate successfully, it is necessary to correctly classify the behavioral 
decisions of other road users and to be able to predict the intention of the other driver. 
If the behavior of the other person is not correctly anticipated, this can lead to unsuc-
cessful cooperation, which in turn can lead to conflict [ 42]. In deadlock situations, 
it is therefore necessary for both manual drivers and automatic vehicle guidance to 
recognize the intention of the other in order to resolve this situation successfully. 
The intention of the other can be recognized by communication signals. Therefore, 
the first goal of our project was to understand the communication of drivers in the 
two presented deadlock situations and thus to be able to predict the intention of the 
drivers. Since one of our findings was that the complexity of the situation could affect 
cooperation behavior, as a second step, the influence of complexity in the sense of 
the presence of other traffic participants on cooperation behavior was investigated. 
Based on the findings, recommendations for the behavior of automated vehicles can 
be derived. 

The chapter is structured as follows: First, an overview of the theoretical back-
ground of communication in road traffic is given. Then, two studies are described 
that examine communication in deadlock situations. Furthermore, the theoretical 
background on the influence of other road users on driving behavior in the context of 
complexity and the conducted studies are described. Finally, recommendations are 
given for the behavior of automated vehicles in deadlock situations.
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2 Communication in Road Traffic 

Communication is a necessary requirement for successful cooperation [ 29]. Accord-
ing to Hoc  [  15], cooperation occurs when two agents interfere on goals or resources 
and try to manage these interferences to facilitate each individual goal. Because com-
munication is also necessary for cooperation, no cooperation takes place when two 
road users meet briefly on a road from the oncoming direction, for example. The same 
resource is shared, but communication does not take place [ 23]. In contrast, the two 
deadlock situations to be investigated fulfill the requirements of a cooperative situa-
tion. All road users need to use the same part of the road and need to communicate in 
some way to resolve this situation without conflict by agreeing who will drive first. 
Drivers must effectively communicate with each other so that they can understand 
and predict each other’s intentions and actions. If this is not successful, the situation 
cannot be understood correctly and thus the drivers cannot react appropriately in the 
situation [ 23]. Furthermore, the way in which drivers communicate with each other 
can have an influence on their decisions to act [ 49]. Since the communication of the 
intentions is essential in these cooperative situations, it is important to understand 
how drivers communicate. 

In general, communication is understood as the exchange of information. A sender 
transmits a signal or message to a receiver who is intended to get this information 
[ 36]. The challenge in transmitting the information is to ensure that the signal sent 
arrives correctly at the receiver [ 35]. A characteristic of human communication is that 
both verbal and nonverbal channels can be used. Nonverbal communication through 
gestures and body language can be used for very fast communication [ 29] and can 
also initiate, coordinate, or be used to avoid cooperation [ 5]. However, these general 
findings of communication cannot be fully applied to communication in road traffic. 
Road traffic is a volatile system in which situations can be dynamic and very com-
plex. In order to cope with the complexity of situations in road traffic, road users 
apply schemata in which behavior is concluded from road user characteristics or 
they signal the expected action to other road users. A different strategy is to wait 
in a situation and first gather as much information as possible about it or to follow 
the actions of other road users [ 30]. Another limitation in road traffic is the limited 
options for communication, which can lead to misunderstandings [ 41], as commu-
nication is limited to the nonverbal level and is also anonymous [ 30]. Furthermore, 
drivers cannot escape the situation. This means that any actions at any time can be 
interpreted by others as a communication signal. It can thus lead to both intentional 
and unintentional communication in road traffic [ 3]. In the context of everyday com-
munication, the axiom of Watzlawick, Bavelas, and Jackson [ 46] is applicable here, 
which states that one cannot not communicate. Since there is always communication, 
it can further be divided into explicit and implicit communication. This division can 
also be assigned to the different driving tasks according to Geiser [ 13]. Here, the 
driving task is divided into three subtasks. The primary driving task includes naviga-
tion as well as maneuvering and stabilizing the vehicle. The secondary driving task 
supports the primary driving task and mainly serves to inform other road users and
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to react to environmental conditions. This includes, for example, using the indicator 
or the headlight flasher. The tertiary driving task is independent of the actual driv-
ing task and serves primarily to increase comfort by, for example, operating the air 
conditioning or radio. It can be concluded that the implicit communication through 
the driven trajectories falls under the primary driving task, while the explicit com-
munication belongs to the secondary driving task. According to this categorization, 
implicit communication always takes place, while explicit communication is always 
just an additional form of communication that can support implicit communication. 

Communication in road traffic can only take place non-verbally and this can be 
a challenge. Different areas of non-verbal communication can be distinguished [ 1, 
9, 33]: Facial expression and eye contact, gestures and body movements, voice and 
manner of expression, spatial behavior, and technical signals. Merten [ 30] proposes 
the thesis that without eye contact no communication can take place in road traf-
fic. However, Witzlack, Beggiato, and Krems [ 48] showed that eye contact is often 
overestimated in driver-pedestrian interactions. Eye contact only served as confirma-
tion and is thus not a necessary requirement. Moreover, in mixed traffic, eye contact 
would not be helpful under certain conditions, for example, when the driver of the 
automated vehicle is looking at the traffic but is not involved in the driving task [ 9]. 
Among the most commonly used gestures are gestures indicating to other road users 
that they should slow down, that they can or should drive, and that the driver’s own 
right of way is being yielded [ 9]. 

Kitazaki and Myhre [ 25] showed that at intersections, using a hand gesture com-
bined with the vehicle behavior showed larger effects on the drivers’ anticipation 
of intention and therefore decision compared with the vehicle behavior alone. Pos-
sible technical signals that drivers can use include the turn signal, horn, headlight 
flashers, and hazard warning lights [ 33]. Ba, Zhang, Reimer, Yang, and Salvendy [ 2] 
investigated these explicit signals (with the exception of the headlight flasher) for 
different traffic situations. They found that drivers prefer when the other driver uses 
an explicit signal. However, even without an explicit signal, subjects can recognize 
the intention of drivers. Lee and Sheppard [ 26] showed subjects both pictures and 
videos of a vehicle approaching an intersection that would either continue straight or 
turn. The vehicles used a valid or invalid turn signal. Even though the subjects were 
better to judge the behavior of the vehicle when it gave a valid signal, in most cases 
they were also able to correctly judge the behavior despite the invalid signal. Thus, 
the explicit signal is helpful to estimate the intention of a driver, but not necessary. 
This is also supported by the finding that the intention could be better estimated in 
the videos than in the pictures. Drivers therefore also use the dynamic behavior of 
the vehicle, such as the braking behavior, to estimate the intention. 

When looking at all these explicit signals, it becomes clear that they cannot be used 
alone, but only in combination with other signals. This is especially true for spatial 
behavior, since the driver is moving on the road at all times and thus the driven 
trajectory can be interpreted as a communication signal at any time. The driven 
trajectory from lateral and longitudinal driving behavior is considered to be implicit 
communication. In some situations, this is even more meaningful than the explicit 
signals [ 48]. Especially longitudinal behavior, i.e. approaching, is used for intention
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detection. For example, when changing lanes, deceleration behavior, speed reduction, 
and reaction speed in particular are used as indicators of cooperative behavior [ 24]. 
At intersections, when the other driver maintains speed or accelerates, drivers expect 
the other to proceed through the intersection. In contrast, when slowing down, the 
vehicle is expected to yield and stop [ 4]. 

Implicit behavior is especially interesting for automatic vehicle guidance to predict 
the intention of other road users. One reason for this is that it is technically easier 
to interpret implicit behavior rather than explicit signals, which may not be used 
consistently, especially in situations that are not clearly defined, such as deadlock 
situations. In mixed traffic, it is crucial that both automated vehicle guidance and 
human drivers are able to recognize each other’s intentions. This is especially true in 
deadlock situations, where the intention must be anticipated in order for the situation 
to be resolved. Since intentions can be communicated via both explicit and implicit 
signals, an automatic vehicle guidance system must be able to interpret both in 
order to react appropriately. At the same time, it should also be able to use the 
signals itself to display behavior that the human cooperation partner expects. There 
has not yet been sufficient research on how intentions are communicated and which 
combination of possible signals is used in deadlock situations. In a first step, the use of 
communication signals at intersections and equal narrow passages was investigated. 

2.1 Observational Study 

The aim of the observational study [ 17] was to identify cooperative behavior, to 
classify it into offensive and defensive behavior, and to derive behavioral sequences 
from the behavioral patterns. For this purpose, a T-intersection and an equal nar-
row passage in Karlsruhe (Germany) were each observed for five hours by two and 
three trained observers, respectively. The behavior of the cooperating drivers were 
recorded: the order of arrival and departure, the direction of driving (right, left, 
straight ahead), driving behavior (acceleration, deceleration, stopping, maintaining 
speed), and explicit signals (turn signal, horn, gesture). Analysis of individual ges-
tures as well as the recording of drivers’ gaze direction was omitted, as this is dif-
ficult to observe and technical aids could not be used for data protection reasons. 
The observations of the individual observers were combined afterwards in order to 
extract behavior sequences for the individual situations. 

A total of 33 events with 12 different traffic situations could be observed at the 
T-intersection. The results of the observation showed that explicit communication 
plays a minor role. In fact, 71 implicit signals were observed in contrast to only 32 
explicit signals. Of these explicit signals, the indicator was mostly used to indicate 
turning. Of the behaviors, defensive behaviors such as stopping and braking were 
more frequently exhibited than offensive behaviors such as accelerating or maintain-
ing speed. In particular, left-turning was associated with a defensive behavior pattern, 
while right-turning showed more offensive behavior. For the deadlock situation at 
the T-intersection, six different situations could be observed. These could be classi-
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fied into defensive and offensive behavior patterns and were used in the following 
experiment (see Sect. 2.2). 

At the equal narrow passage, 40 events could be registered. As at the T-intersection, 
the observation showed that explicit communication takes a minor role compared to 
implicit communication. The most frequently used explicit signal was the headlight 
flasher. When drivers arrived first at the narrow passage but drove second, defensive 
behaviors were mainly exhibited and they stopped. Conversely, drivers who arrived 
second at the equal narrow passage but drove first could be observed to exhibit mainly 
offensive behaviors such as maintaining speed and accelerating. Our findings from 
the T-junction and equal narrow passage suggest that implicit communication plays 
an important role in deadlock situations in order to be able to recognize the intentions 
of the other drivers. Furthermore, behavioral sequences can be classified well into 
offensive and defensive behaviors. 

2.2 Experiments 

The behaviors identified in the observational study were further examined in two 
experiments to test whether they are suitable for conveying intention and whether it 
is possible to determine from the behaviors whether drivers want to drive or stop in 
deadlock situations. For this, subjects drove a test vehicle on a traffic training area 
through a deadlock situation at an equal narrow passage [ 19] and a T-intersection [ 20] 
(Fig. 2). The cooperation vehicles in these situations were driven by one respectively 
two instructed examiners, who followed predefined behavior scripts. These behaviors 
were intended to convey the intentions to drive or not drive and to represent offensive 
or defensive behaviors. For the defensive behavior, the examiner was to stop and let 
the subjects drive first. For the offensive behavior, on the other hand, the examiners 
were asked to drive through the equal narrow passage or T-intersection first, if the 
subject’s behavior allowed. For both the equal narrow passage and the T-intersection, 
six different situations were presented, each with three offensive and three defensive 

Fig. 2 Deadlock-Situation at the T-intersection during the experiment at the traffic training area
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Table 1 Approaching behaviors of the examiners at the T-intersection [ 20]. The number of the 
examiner describes the position in the T-Intersection (see Fig. 1) 

Situation Behavior classification Behavior 

1 Defensive Examiner 3 decelerates, stops, uses flasher Examiner 
1 or 2 indicates and stops 

2 Defensive Examiner 3 decelerates and stops Examiner 1 or 2 
indicates and stops 

3 Defensive Examiner 1 or 2 decelerates and indicates Examiner 
1 or 2 decelerates, indicates, uses flasher 

4 Offensive Examiner 3 maintains speed Examiner 1 or 2 
indicates and decelerates 

5 Offensive Examiner 3 decelerates Examiner 1 or 2 indicates 
and decelerates 

6 Offensive Examiner 1 or 2 decelerates and indicates Examiner 
1 or 2 indicates, decelerates, uses gesture 

behaviors. Each situation was driven through twice, resulting in a total of 12 runs 
through the intersection or equal narrow passage for each subject. For the equal 
narrow passage, the defensive behaviors of the examiners were: 1. stopping distinctly, 
2. braking to a speed of 15km/h and using the flasher, 3. stopping distinctly and using 
the flasher. The offensive behaviors were: 1. maintaining speed, 2. accelerating, 3. 
braking to 15km/h and continuing to drive toward the equal narrow passage. The 
behaviors of the examiners for the T-intersection are shown in Table 1. 

After driving through all situations, subjects were shown video clips of their 
driving and asked to rate how confident they were to drive first or second, how high 
they perceived the risk of an accident and the willingness of the involved drivers to 
cooperate. During the drive, the CAN bus data of the test vehicle were also recorded, 
as well as the eye movements of the subjects using an eye tracker. The results of 
these data can be found in [ 18, 21]. In total, the experiments lasted approximately 
90 min. For the equal narrow passage, 22 subjects (21 males, average age.M = 23.91, 
.SD = 2.10) were surveyed, for the T-intersection 20 subjects (18 males, average age 
.M = 23.35, .SD = 3.51). 

2.2.1 Results and Implications for the Situation “Equal Narrow 
Passage” 

For the equal narrow passages, defensive behaviors by the examiners resulted in a sig-
nificantly higher probability of subjects driving first rather than stopping. For defen-
sive behaviors 1 and 2, the subjects had a probability of 83% to drive first through the 
equal narrow passage, for behavior 3 the value was 75%. For the offensive behaviors, 
the probabilities of driving first were significantly lower at 31% (behavior pattern 
4), 35% (behavior pattern 5), and 9% (behavior pattern 6). Furthermore, for the
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Fig. 3 Perceived accident risk and safety to drive for the different behavior scripts at the equal 
narrow passage 

different behaviors, there were significant differences in how confident the subjects 
were in driving first or second (.F(1, 3.426) = 4.42, .p < .05). They felt the safest 
when the cooperative vehicle braked and flashed its lights (defensive behavior). In 
contrast, they felt least safe when the oncoming vehicle slowed down from 30 to 
15 km/h (offensive behavior) (see also Fig. 3a). The perceived accident risk also dif-
fered significantly between the different behaviors (.F(1, 3.221) = 6.942,.p < .001) 
(Fig. 3b). In particular, when the cooperation vehicle accelerated before the equal 
narrow passage, the accident risk was perceived to be significantly higher compared 
to the defensive behaviors. For the perceived willingness to cooperate, there were 
significant differences between the behaviors, .F(1, 5) = 14.096, .p < .001. Defen-
sive behaviors of the cooperation partner were perceived to be more cooperative than 
offensive behaviors. Perceived willingness to cooperate further influenced whether 
subjects would drive first or yield the right-of-way to their counterparts. When per-
ceived willingness to cooperate is considered very low, the probability of driving first 
decreases significantly even for the defensive behaviors. For the offensive behaviors, 
the probability of driving first increases accordingly if the behavior is perceived as 
cooperative. 

Overall, the results of the study show that all six behavior patterns produce the 
expected behavior in the cooperation partner and are therefore also suitable for pro-
ducing a desired behavior in a certain situation. An important requirement is that the 
behavior is perceived as cooperative. This works very well with behavior pattern 2, 
for example, braking with the headlight flasher. Here, the behavior is perceived as 
cooperative, the drivers drive first with a high probability, and are very confident in 
their decision to do so. Thus, this behavior seems to be suitable for automatic vehicle 
guidance at an equal narrow passage. Behavior 5, acceleration, on the other hand, 
also shows the expected behavior: the drivers stop and let the other person drive 
first. With this decision, they also feel safe. However, this behavior is not perceived 
as cooperative. Since automatic vehicle guidance should probably be perceived as 
cooperative in order to be accepted, such behavior would likely be inappropriate for 
automatic vehicle guidance.
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2.2.2 Results and Implications for the Situation “T-Intersection” 

As in the case of the equal narrow passage, the different behavior patterns of the 
cooperation partners showed a significant influence on whether the subjects drove 
through the T-intersection first or gave way to one of the other two vehicles. For 
defensive behaviors 1 and 3, the probabilities of driving first were relatively high 
at 58% and 74%, respectively. Defensive behavior 2, on the other hand, failed to 
produce the expected behavior. Here, the probability of driving first was only 5%. The 
offensive behaviors showed lower probabilities to drive first with 56% (behavior 5), 
8% (behavior 4) and 30% (behavior 6). The increased probability of behavior 6 may 
have been due to the fact that some subjects thought they were driving on a main road. 
Thus, with the exception of one behavior, a desired behavior can be achieved among 
drivers at a T-intersection, similar to the equal narrow passage. Subjective evaluations 
of the situation also showed differences between the different behavior patterns. For 
the offensive behaviors, subjects were significantly more confident with their decision 
to drive than for the defensive behaviors (.χ2(5) = 621.776,.p < .001). Additionally, 
the order in which subjects drove through the intersection had an influence. When 
subjects drove second or third, they were significantly more confident in this decision 
than when they drove first. There was also a significant difference between behaviors 
for perceived cooperativeness (.χ2(5) = 5.190, .p < .001). The offensive behaviors 
were rated less cooperative than the defensive behaviors. The accident risk, on the 
other hand, is estimated to be the same for all behaviors. A possible reason for this 
could be that in many cases the vehicles were in a standstill, thus minimizing the 
objective risk of accidents. In addition, this experiment aimed to investigate whether 
the subjects themselves gave explicit signals. Explicit signals were used in only 42 
of the 240 cases. It is noticeable that half of them were given to the right cooperating 
partner, i.e. the one who has the right of way over the subject anyway according to 
the road traffic regulations. This could be an indication that the deadlock situation 
is sometimes not correctly understood and that accordingly no adequate strategy is 
used to resolve the situation. 

2.2.3 Conclusion from the Experiments 

In summary, both at the equal narrow passage and at the T-intersection, certain offen-
sive as well as defensive behaviors influence the behavior of drivers, i.e. whether they 
stop in a deadlock situation or drive first. There is an interesting difference in terms 
of perceived safety for driving: subjects rate their confidence of driving at the equal 
narrow passage higher when the cooperation partner shows defensive behavior. In 
contrast, at the T-intersection, confidence of driving is rated higher when the coop-
eration partners show offensive behavior. In other words, it can be concluded that 
drivers prefer to drive first themselves at the equal narrow passage, while they prefer 
to give way to other vehicles at the T-intersection. One difference between the two 
situations is their complexity. At the equal narrow passage, only one lane needs to be 
considered and there is only one cooperation partner, making it a relatively simple sit-
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uation. In contrast, at the T-intersection, two lanes and two cooperation partners must 
be considered. Therefore, it is apparent that in more complex deadlock situations, 
drivers prefer not to drive first. Following this logic, drivers should show different 
cooperation behavior within the same situation, which differs only in its complexity. 
This was further investigated using the deadlock situation at the T-intersection. 

3 Complexity and Driving Behavior 

In order to examine the effects of different aspects of complexity on cooperation 
behavior at deadlock situations, it is useful to look at the definition of complexity in 
the context of road traffic as well as its effects on drivers’ behavior. The influence 
of complexity on driver behavior and workload has been studied for a variety of 
situations, but not for cooperation behavior at deadlock situations. Additionally, 
there is no precise consistent definition or operationalization of complexity among 
these studies. A basic classification of traffic situations in terms of their complexity 
was established by Fastenmeier [ 10]. According to him, the task complexity of traffic 
situations results from the demands on information processing and vehicle handling. 
Faure, Lobjois, and Benguigui [ 11] used this classification to measure the subjective 
and objective mental workload of drivers. They classified driving on the highway 
with low demands on both information processing and vehicle handling, driving 
in rural environment with high demands on vehicle handling and low demands on 
information processing, and an urban environment that is visually rich with buildings, 
street furniture, traffic lights, intersections and roundabouts with high demands on 
both information processing and vehicle handling. Driving on the highway showed 
the lowest mental workload according to both the subjective ratings of the participants 
as well as eyetracking and steering wheel parameters. The results for rural and urban 
environment were not quite as expected. Although the subjective workload was higher 
for the urban environment, the eyetracking and steering wheel parameters indicated 
a higher workload for the rural environment. A possible explanation according to 
the authors is that there were only few intersections or roundabouts on the urban 
roads and thus the demands on vehicle handling were low. In contrast, on the rural 
roads there were many sharp curves, which resulted in very high demands on vehicle 
handling. Similarly, Oviedo-Trespalacios, Haque, King, and Washington [ 31] found 
that sharp bends on roads increase task demands and drivers therefore adapt their 
speed more compared to straight roads. Another reason given by Faure et al. [ 11] 
is that there were no other road users in their urban environment and therefore little 
information processing was required. This is in contrast to the results of Oviedo-
Trespalacios et al. [ 31], who showed that in urban areas a greater speed adaptation 
takes place due to higher demands compared to suburban areas, even if in both no 
other traffic is present. 

Jahn, Oehme, Krems, and Gelau [ 22] also used Fastenmeier’s [ 10] classification, 
but interpreted it differently from Faure et al. [ 11]. Like Faure et al. [ 11], they classi-
fied highway as a situation with low demands on information processing and vehicle
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handling. In contrast to Faure et al. [ 11], however, they classified a rural environment 
and urban environment without interactions with other traffic with low requirements 
on both dimensions. According to them, only city centers and complex intersections 
are situations with high requirements for information processing and vehicle han-
dling. They also found the expected differences in mental workload between these 
two differently defined complexity groups. However, since Faure et al. [11] also found 
differences between highway and rural environment, this division is apparently not 
sufficient. Patten, Kircher, Östlund, Nilsson, and Svenson [ 32] used another group 
in addition to the two groups of low and high demands: they defined situations with 
high demands on information processing and low demands on vehicle handling and 
vice versa, such as intersections regulated by traffic lights or by road signs where 
the driver has the right of way. Compared to the situations with low demands in both 
categories, drivers who do not drive much showed significantly longer reaction times 
for a peripheral detection task and thus higher workload in these medium situations, 
but not drivers with high mileage. The latter, on the other hand, showed worse per-
formance in the high demand situations compared to the medium demand situations. 
Driver experience thus also appears to play a role in how different situations affect 
drivers. Overall, these studies with the different classifications of complexity and 
results show that the classification according to Fastenmeier [ 10] into different traf-
fic situations is not sufficient in that way and can only give a first indication of the 
complexity. Instead, the exact specific conditions within these situations must also 
be defined, as these can have a direct influence on driver behavior. 

Törnros and Bolling [ 45] showed this for the urban environment. They found that 
reaction time of drivers in a complex urban environment is higher than in a medium or 
low complex urban environment. The high complex urban environment was thereby 
described with buildings on both sides, pedestrian tracks, car and pedestrian cross-
ings, parked cars and busses. The medium and low complex urban environments, 
on the other hand, featured only some traffic, parked busses and were residential 
areas. Drivers also show lower speed and higher subjective ratings of mental work-
load when driving on streets where buildings and shops are located directly to the 
sidewalk compared to streets where the buildings are set far back from the road [ 34]. 
The same can be shown for areas where cars are parked at the roadside compared 
to streets with no parking spaces or empty parking spaces [ 8]. The amount of visual 
information a driver pays attention to seems to have an influence on behavior. At 
intersections with more visual information (vehicles, pedestrians, stores, construc-
tion site) drivers reduce their speed. On the highway with a lot of visual information 
(advertisements, billboards, buildings, highway furniture), drivers do not estimate 
their subjective mental workload higher than for stretches of road with little visual 
information, but do decrease their speed here nonetheless [ 16], indicating that there 
is an effect of those visual information on drivers. 

Other road users themselves have an effect on drivers’ behavior and workload. 
For example, traffic congestion causes drivers to behave more aggressively in the 
section after the congestion than if they had not driven through any congestion 
[ 27]. Individual road users also influence drivers. When a vehicle is in front of 
their own vehicle, drivers adjust their speed more than when they are free to drive
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on the road [ 31]. In turn, overtaking a vehicle in front also leads to an increased 
workload compared to driving freely [ 6]. Traffic density also has a negative impact 
on the workload of driving. This is true for both driving on the highway [ 43] and at 
intersections [ 28]. 

To the authors knowledge, up to now, the influence of complexity on cooperation 
behavior and especially on deadlock situations has not been studied. Since the studies 
presented so far only give an indication of the influence of complexity on general 
driving behavior and, as described, do not provide a comprehensive description or 
definition of complexity, the task-capability model of Fuller [ 12] was considered. 
According to this model, driving behavior can be explained in terms of task difficulty. 
This is composed of the relative proportion of task demands on the driver’s capability. 
The task demands can have both information input and response output character. 
The incoming information of the task demands includes a variety of factors such as 
operational characteristics of the vehicle, route choice, environmental characteristics 
and other road users. Task demands in the sense of output factors are the driver’s 
own behavior, i.e. speed and trajectory. The capability includes knowledge and skills 
arisen from training and experience, the mental representation of the situation as 
well as physiological characteristics like information processing capacity or reaction 
time. The task difficulty then results from the task demands and the capability, for 
which in turn each driver has an individual range that they accept. If this threshold is 
exceeded, compensatory actions are taken to reduce the task difficulty. This is usually 
done by reducing the speed, i.e. an output function of the task demands. Applied to 
cooperation behavior at deadlock situations, this would imply that compensatory 
actions should be taken in more difficult deadlock situations and that drivers should 
therefore stop rather than proceed through the intersection or equal narrow passage 
first. 

The environmental factors according to Fuller [ 12] are not broken down in detail. 
Since this can be essential for describing a situation as described above, the classifica-
tion of visual clutter according to Edquist [ 7] was further considered. This concept is 
closely related to that of task difficulty, but offers a further breakdown of the relevant 
factors. The visual clutter is divided into objects that must be attended for safe driving 
and objects that distract from safe driving. The latter, together with the background 
complexity, are called built clutter and refer, for example, to stores, advertising or 
infrastructure such as light poles. The objects that must be observed for safe driv-
ing can be further subdivided according to this taxonomy. Road markings, traffic 
signs or signals are referred to as designed clutter. The situational clutter consists 
of vehicles, cyclists and pedestrians. For the deadlock situation in the present study, 
the influence of other vehicles and pedestrians on the perceived visual clutter as well 
as the perceived difficulty was investigated. In addition, the position from which the 
intersection is entered was considered. At intersections, it has an impact on the work-
load whether drivers drive straight ahead or turn. This difference was implemented in 
the methodology of the experiment described above for communication at deadlock 
situations [ 20]. Yet, it was not distinguished from where the drivers approached the 
intersections. However, this position also has an influence on the driving behavior
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Fig. 4 The screenshot of a video used in study 1 shows the approach from entry position left with 
a vehicle in front of the ego vehicle 

[ 14], which is why the entry position to the intersection was additionally taken into 
account in the following experiments. 

3.1 Experiments 

To investigate the influence of entry position of the T-intersection and complexity 
in a controlled setting, two online studies [ 39, 40] were conducted with 30 and 
34 subjects, respectively. The subjects were shown videos of the approach to T-
intersections from the driver’s perspective, which were created using the driving 
simulation software SILAB 6.5 (see Figs. 4 and 5). All three possible entry positions 
to a T-intersection were shown. The two cooperation vehicles as well as the own 
vehicle decelerated before the intersection and came to a stop at the intersection. 
One second before this, the videos were cut off so that the situation had not yet been 
resolved. The subjects were then asked to state how likely they themselves would 
then be to drive through the intersection first in this situation. In addition, they were 
asked to rate the perceived difficulty and visual clutter. In study 1 [ 39], it was varied 
whether a vehicle passed through the intersection in front of the ego vehicle, whether 
other vehicles were traveling behind the cooperation vehicles at the intersection, and 
whether other traffic was seen during the approach to the intersection. Study 2 [ 40] 
examined the influence of pedestrians. For this, the number of pedestrians walking 
on the sidewalk was varied (none, 20, 80). In addition, it was varied whether the 
pedestrians were walking close to the front of the house or street as well as a barrier 
separating the sidewalk from the street. 

3.1.1 Results 

Across all situations, the probability of driving first was relatively low at 24% in 
both study 1 and study 2 (Fig. 6). The entry position had a significant effect on
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Fig. 5 The screenshots of videos used in study 2 show the approach from the left for two different 
scenarios 

whether subjects would drive first through the T-intersection or not (study 1:. χ2(2) =
88.14, .p < .001; study 2: .F(2, 776) = 64.35, .p < .001). When drivers approach 
from below, the intention to drive first is lowest. Study 2 additionally showed a 
significant difference between entry positions left and right. The lower probability 
when approaching from below could be an indication that the deadlock situation was 
not recognized correctly and that the straight-through road was possibly interpreted 
as a priority road. This was also the case for some subjects in the previously described 
study at the traffic training site [ 20]. In addition, Björklund and Åberg [ 4] were able to 
show that this main road effect exists at intersections (however, they did not consider 
deadlock situations). If one were to assume such a main road effect exists also in 
deadlock situations, one would expect that drivers from entry position left would 
drive first, since this would be in accordance with the right-of-way rule of a main 
road. However, this is not evident in the data from either study. In study 1, there are 
no differences between the entry positions left and right. In study 2, there is even 
a higher probability of driving first from entry position right compared to left, i.e. 
an opposite behavior to the right-of-way rule on a main road. Overall, therefore, 
there seems to be no accurate understanding of the deadlock situation. An automated 
vehicle must therefore be aware that manual drivers may think they have the right 
of way at a deadlock situation. The prediction of the intention through the displayed 
behavior then plays a special role. 

The perceived difficulty of the situation does not differ between the three posi-
tions. For the assessment of the visual clutter, however, there are significant differ-
ences for the different entry positions (study 1: .χ2(2) = 13.461, .p = .001; study 
2: .χ2(2) = 13.58, .p = .001). When approaching from below, visual clutter is rated
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Fig. 6 Probability to drive first through the T-intersection for study 1 and 2 

higher than from the other positions; in study 2, visual clutter is also rated higher 
when approaching from the right compared to the left. This is against the expec-
tation according to Edquist (2008) that drivers should show a lower probability to 
drive first in situations with high visual clutter. The entry positions below and right 
were both rated with higher visual clutter than the position on the left. Nevertheless, 
for these two positions different tendencies for the probability to drive first can be 
seen: For the position below, a lower probability of driving first is shown, whereas 
for the position on the right, a higher probability of driving first is shown than for 
the position on the left. Again, a lack of or incorrect understanding of the situation 
could be an explanation. Overall, it can be concluded from these results that both 
perceived difficulty and visual clutter do not seem to be adequate to explain or predict 
cooperative behavior in deadlock situations. 

Situations with no pedestrians (27%) showed on a descriptive level a slightly 
higher probability to drive first than those with few (24%) or many pedestrians 
(23%), but this difference was not significant. The zone in which pedestrians walked 
as well as the barrier did not affect the subjects’ indicated behavior. As with the dif-
ferent entry positions, there were no differences in perceived difficulty. For the visual 
clutter, however, differences could be observed. The presence of many pedestrians 
increased the perceived visual clutter of the situation in contrast to situations with 
no pedestrians. However, since the pedestrians had no influence on the cooperation 
behavior, it can also be assumed that there is no correlation between behavior and 
visual clutter in deadlock situations. 

A vehicle passing through the intersection before one’s own vehicle increased the 
probability that drivers themselves would be the first to pass through the intersection. 
Further traffic, on the other hand, had no influence. When considering additionally 
the perceived difficulty and visual clutter, an interesting pattern emerges. A vehicle 
ahead significantly increases both the difficulty and visual clutter of the situation. In 
this more difficult and more cluttered situation, the probability of driving through 
the intersection first increases. The effect of position, on the other hand, showed the 
opposite pattern. Here, situations that were rated higher in visual clutter showed a 
lower probability of being the first to drive through the intersection. These results
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support two findings: First, the concepts of visual clutter and difficulty are not effec-
tive in explaining or predicting drivers’ cooperation behavior in deadlock situations 
at T-intersections. Since the complexity of intersections without deadlock can con-
tribute to predicting certain behaviors [ 47], this seems to be exclusive to deadlock 
situations. This in turn supports the second finding: deadlock situations do not seem 
to be comprehended sufficiently or there seems to be an uncertainty about how to 
proceed in such situations. In an uncertain situation, where one is not clear how to 
behave, the behavior of others is imitated [ 37]. This is precisely what can be observed 
in the deadlock situation: In a situation that is perceived as more difficult, subjects 
follow the vehicle in front, thus imitating the behavior of another road user. 

4 Conclusion 

The aim of the work was to better understand the cooperation behavior of drivers 
in deadlock situations in inner city traffic, so that automated vehicles can show 
cooperation behavior in mixed traffic of automated and manual vehicles, which is 
similar to that of humans and thus is accepted by all involved parties. To identify 
the communication behavior that drivers exhibit in these situations, an observational 
study was conducted, and these observations were then further investigated in an 
experiment. In addition, building on the findings from the experiment, video studies 
were conducted in which the influence of complexity, in this case other traffic and 
pedestrians, as well as the entry position of the T-intersection was investigated. 

The observational study showed that drivers communicate at intersections and 
equal narrow passages primarily through implicit signals, that is, driving behavior. 
Explicit communication, on the other hand, plays only a minor role. Of the explicit 
signals, the headlight flasher was most often used as a sign of defensive behavior, 
especially at the equal narrow passage. For deadlock situations at both T-intersections 
and equal narrow passages, several behaviors could be observed that can be classified 
into offensive and defensive behaviors. These were tested in an experiment to find out 
whether these behaviors can communicate the intention to drive or stop, and if drivers 
adjust their behavior accordingly. In both situations, participants showed a higher 
probability of stopping when the cooperating partner showed offensive behavior. In 
contrast, when the cooperating partner showed defensive behavior, they were more 
likely to drive first. Thus, in deadlock situations, drivers are able to recognize the 
intention of the other person based on his or her behavior and behave accordingly. 

A difference between the T-intersection and the equal narrow passage can be seen 
in the subjective evaluation. At the equal narrow passage, drivers feel safest when 
the cooperating vehicle shows defensive behavior, and they themselves can drive 
first and least safe when the cooperating vehicle shows offensive behavior. At the 
T-intersection, on the other hand, the opposite picture emerges. For the offensive 
behaviors, subjects were significantly more confident with their decision to drive 
when the cooperation partner showed offensive behaviors and participants therefore 
drove as second or third. Thus, for different deadlock situations, there also seem to
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be different expectations and behaviors. Since the two situations differ in the number 
of vehicles and lanes involved, it seems that the complexity of the situation has an 
influence on the cooperation behavior. For the simpler of the two situations, the equal 
narrow passage, it is therefore easier to make recommendations for the behavior of 
an automated vehicle. 

Drivers prefer to drive first in deadlock situations at equal narrow passages. 
Accordingly, an automated vehicle should rather show defensive behavior in order 
to give the manual driver the opportunity to drive first. To show defensive behavior 
and the intention to stop, a use of the headlight flasher or a clear stop seems to be 
most suitable for the narrow passage. For the T-intersection, the recommendations for 
the behavior of automated vehicles cannot be derived quite as clearly. Since drivers 
tend to prefer to drive second or third here, automated vehicle guidance should tend 
to show offensive behavior and drive through the intersection first. Since there is 
no clear explicit signal for offensive behavior, driving behavior must be used here 
to indicate to the manual driver that the automated vehicle will proceed. For this 
purpose, it is most suitable to maintain the speed. 

At the T-intersection, however, other aspects must be considered as well, as the 
findings from the video studies indicate. The entry position to the intersection can 
influence whether drivers stop or not. When approaching from below, most drivers 
would stop. Automated vehicle guidance encountering a manual driver from the entry 
position below in a deadlock situation should proceed through the intersection first. 
One possible reason why drivers from the position below do not drive first is that 
the deadlock situation is not recognized as such. This is especially important when a 
manual driver approaches from the positions on the left or right. Here, drivers show 
a higher probability of driving first themselves. Therefore, the automated vehicle 
guidance system must expect that manual drivers may want to drive first, because 
they may assume that they have the right of way in this situation. In its intention 
detection, the automated vehicle guidance system must therefore recognize whether 
drivers are approaching the intersection as if they have the right of way or whether 
there is uncertainty in their behavior that suggests they have recognized the deadlock 
situation. In the latter case, the automated vehicle should then drive first. Other traffic 
with which the vehicles involved in the deadlock situation do not interact, as well as 
pedestrians, have no influence on the cooperation behavior and can be ignored for the 
behavior decision. However, if a vehicle passes through the intersection before the 
manual vehicle, it can be expected that this manual vehicle will also pass through the 
intersection first in the deadlock situation. In this case, an automated vehicle should 
then exhibit defensive behavior, preferably by coming to a distinctive stop, and yield 
the right of way to the manual driver. 

Overall, the studies provided initial insights into the cooperation behavior of 
drivers in two different deadlock situations. These provide indications of how an 
automated vehicle should behave in these situations in order to resolve the situation 
to everyone’s satisfaction. 
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Measuring and Describing Cooperation 
Between Road Users—Results from 
CoMove 
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Noèmi Földes-Cappellotto, Meike Jipp, and Caroline Schießl 

Abstract Safe and efficient traffic requires that road users interact and cooperate 
with each other. Especially in situations which are not explicitly regulated, and the 
right of way is not clearly defined, it is of great importance that road users are able 
to communicate their own intentions and understand the communication and coop-
eration behaviour of the other involved road users. When automated vehicles enter 
the current traffic system, their ability to fit into the system, that is their ability to 
communicate and cooperate, will determine their success. Therefore, the develop-
ment of cooperatively interacting, automated vehicles requires detailed knowledge 
about human cooperation behaviour in traffic, which can only be obtained using 
appropriate methods and measures. By focusing on road narrowings and lane chang-
ing, this chapter gives an overview on how to measure cooperation between road 
users, considering methods for data collection, subjective and objective measures of 
cooperation as well as behaviour modeling, to support the systematic research on 
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cooperation in road traffic. This overview is extended by findings from studies con-
ducted within CoInCar, including results on factors influencing human behaviour in 
cooperative situations, either in a manual or an automated setting, and initial findings 
from modeling the cognitive processes underlying cooperative driving behaviour. 

1 Introduction 

Given the technological development in recent years and the expected further devel-
opment, the introduction of automated agents, such as highly or fully automated 
vehicles, into the traffic system seems to be within reach in the near future. Accord-
ing to previously published roadmaps of many car manufacturers, suppliers and other 
stakeholders, driving highly automated in certain driving contexts was expected to 
occur in the next decade [ 19]. With reference to the defined automation levels by the 
Society of Automotive Engineers (SAE) [ 35], this means that the vehicle automation 
is able to perform the longitudinal and lateral control, to monitor the environment 
and to bring the vehicle into a safe state if necessary in any given situation, not 
requiring the human driver as a back-up for the automation if the vehicle is in the 
high automation level. The efforts behind these developments are motivated by the 
promise that the technology will bring benefits regarding traffic safety and efficiency, 
convenience for drivers, mobility for different types of road users etc. 

However, these promised benefits can only be achieved if these automated vehi-
cles are not only able to drive safely but also possess the required communicative 
and cognitive capabilities to cooperate with the human road users effectively and 
efficiently. The reason for this is that the traffic system can be seen as a social system 
in which different types of road users, such as drivers, pedestrians, or bicyclists, try 
to safely, efficiently and comfortably achieve their goals. This in turn requires that 
either possible goal conflicts in the future are detected and prevented by an appro-
priate adaptation of behaviour or, if road users are already in a conflict situation, 
that negotiation strategies are available to solve the conflict. In many situations, this 
requires that different individuals cooperate with each other to achieve their own 
goals. These interactions between them have essential influences on traffic safety, 
such as the interaction or communication between driver and pedestrian [ 63]. 

Accordingly, in Germany, for example, the road traffic regulations explicitly call 
on road users to show mutual consideration (§1, StVO) and to communicate (§ 11, 
StVO). Both aspects are especially important in situations which are not explicitly 
regulated, and the right of way is not clearly defined, e.g., two drivers simultaneously 
arriving at a two-sided road narrowing from opposite directions. To resolve this 
situation safely and efficiently, the two drivers have to be considerate of each other and 
cooperate by communicating who will pass the bottleneck first. Additionally, road 
users can cooperate with other road users by facilitating their intended maneuvers, 
e.g., drivers on highways adapting their speed to facilitate a lane change for other 
vehicles. Therefore, it is of great importance that road users are able to understand 
the behaviour of the other involved road users and infer their intentions, i.e., that
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they can correctly interpret the signals of other road users, and send clear signals 
themselves. 

As a new participant in the traffic system, automated vehicles need to be able to 
participate in these interaction and cooperation processes with human road users, in 
order to integrate themselves smoothly into the traffic system, negotiate conflicting 
action plans and adapt efficiently to the traffic situation. For this it is necessary that 
automated vehicles are able to understand and predict others’ states and behaviour, 
that they are able to establish and maintain a shared situation representation with 
their interacting human partners [ 6, 23], and that these vehicles are able to change 
their own action plans and/or trigger their cooperating human partners to adapt their 
action plans in the light of changing situational characteristics and demands [ 14, 90]. 

Consequently, introduction of cooperatively interacting vehicles demonstrates the 
relevance of understanding cooperation in traffic. When automated vehicles enter the 
current traffic system, their ability to fit into the traffic system will determine their 
success [ 78], that is their ability to communicate and cooperate. Current automated 
vehicles lack an understanding of human behaviour in traffic, making conserva-
tive and defensive behaviour necessary for safe operation, which is associated with 
reduced traffic flow and higher accident involvement [77, 80]. Therefore, the develop-
ment of cooperatively interacting, automated vehicles requires detailed knowledge 
about human cooperation behaviour in traffic, which can only be obtained using 
appropriate methods and measures. For example, we must understand how human 
drivers communicate their intentions, e.g., via movement patterns or explicit signals, 
how human drivers understand these signals, in which contexts which signals are 
used, what kind of situational characteristics trigger cooperative behaviour, espe-
cially when cooperation is optional, and what cooperative behaviour looks like. 

The aim of our work within the project CoMove as part of the priority program 
“Cooperatively Interacting Vehicles” (CoInCar) of the German Research Foundation 
was, on the one hand, to find measures for the systematic description and evaluation 
of cooperation and, on the other hand, to identify situational factors which influence 
human behaviour in cooperative situations in order to develop a comprehension- and 
decision-based model of driver-vehicle cooperation. The present chapter gives an 
overview on how to measure cooperation in traffic, considering potential methods for 
data collection (Sect. 2), subjective and objective measures of cooperation (Sect. 3) 
as well as behaviour modeling (Sect. 4). This overview is complemented by selected 
findings and results of studies conducted as part of CoMove. In this chapter, we 
focus on two concrete scenarios that are prototypical for two classes of cooperation 
situations: lane changing situations as an example of cooperation situations where 
not cooperating is an option, and two-sided road narrowings where cooperation is 
necessary to solve the deadlock in the situation. 

The term cooperation requires a domain-specific definition since interaction and 
cooperation in traffic differ from other forms of social interaction. For example, 
drivers will most likely never meet again [ 45]. In this chapter, cooperation is under-
stood as a specific form of interaction between two or more (human) road users whose 
actions interfere with each other (space-sharing conflict; [ 57]), and who adjust their 
behaviour to support each other and to solve the potential conflict [30, 54]. This coop-
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eration is achieved by means of communication [ 30], which includes explicit (e.g., 
horn, indicator, hand gesture) and implicit signals (e.g., deceleration, acceleration) 
[ 17, 59]. Cooperative situations are characterized as being often non-symmetrical, 
meaning one of the involved road users has to make a compromise [ 58]. 

2 Methods for Data Collection 

Appropriate data collection methods are a prerequisite for studying cooperation. 
This section describes exemplary studies that have investigated cooperation in road 
traffic in order to give a brief overview of potential data collection methods, mention-
ing some important advantages and disadvantages of the different methods. Traffic 
observations, video-based online and laboratory experiments as well as test track 
and simulator studies are considered. Special attention is given to coupled simulator 
studies, as they represent a promising but under-researched method. 

2.1 Traffic Observations 

On-site observations are an inexpensive and simple tool to study cooperative 
behaviour, but are limited in that not every detail can be recorded, such as the dura-
tion and exact sequence of signals. Imbsweiler et al. and Rettenmaier et al. [ 31, 71], 
for example, conducted on-site observations of drivers at narrow passages. Obser-
vation protocols included lateral and longitudinal behaviour (e.g., swerving to the 
side of the road, accelerating, stopping), use of horn, indicators, headlights, and hand 
gestures, and order of arrival and departure. These protocols were used to examine 
implicit and explicit communication signals and to derive prototypical offensive and 
defensive approaching behaviours, which were evaluated in further studies (e.g., [ 34, 
70]). 

Traffic observations using video cameras that are either permanently installed or 
set up for a specific period of time (see Fig. 1 for an example) allow a much more 
detailed analysis of traffic behaviour. Schuler et al. [ 76], in comparison to [ 31, 71], 
based their analysis on video data, and were able to determine not only the frequency 
and sequence of communication signals, but also the spatial occurrence of the signals 
with respect to the distance to the narrow passage. Quante et al. and Zhang et al. [ 67, 
94] demonstrate that additional trajectory data is useful in pre-selecting relevant 
interactions (e.g., based on surrogate safety measures such as time to collision) and 
allows the inclusion of precise measures of, for example, drivers’ velocity and relative 
position, in the analysis. 

Traffic observations have in common that the observers take an external perspec-
tive on the situations and thus the subjective experience of the observed road users is 
usually missing. In addition, the observed behaviour usually shows a large variance, 
so that only limited conclusions can be drawn about factors influencing behaviour.



Measuring and Describing Cooperation Between Road Users … 569

Fig. 1 DLR’s application platform for intelligent mobility (AIM) research junction (right) and 
mobile installations (left) 

2.2 Online Experiments 

One possible tool to efficiently study the reactions of a large number of human drivers 
to highly controlled traffic scenarios in a standardized manner are online experiments 
(e.g., [ 49, 59]). Online experiments are generally easy to implement and time- and 
cost-efficient and allow both the collection of specific reaction data, such as decision 
data, and even reaction times, as well as subjective data, such as ratings. However, 
they partly lack realism since participants only passively experience a situation sit-
ting in front of a computer screen. One such example is [ 59]: In two video-based 
online experiments, Miller and colleagues presented videos of vehicles approaching 
a narrow passage in which participants took the perspective of the driver approaching 
from the opposite direction. The approaching behaviour was systematically varied 
with respect to the longitudinal and lateral vehicle movements as well as the timing 
of a given movement. Participants were asked to rate the other driver’s intention, the 
intention’s explicitness and the cooperativeness of the observed behaviour. 

2.3 Laboratory Studies 

Similar to online studies, laboratory-based studies using video material allow a high 
level of standardization of the investigated situations, since the exact same situation
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can be presented to the participants. It allows the measurement of reaction time and 
eye-tracking parameters. Compared to online studies, the number of participants is 
smaller. However, it is easier to control that participants fully focus on the study. 
In CoMove, these kinds of studies were carried out to identify situational factors 
that influence the driver’s behaviour in lane changing situations both when changing 
lanes on the highway and when a car merges onto the highway from an on-ramp 
[ 85– 87], which were then further investigated in a driving simulator setting [ 83, 84] 
(see Sect. 3.3). 

2.4 Test Track and Simulator Studies 

Test track and simulator studies, in comparison to online and laboratory video-based 
studies, allow both subjective experience and objective behaviour to be studied in a 
more realistic, yet controlled and standardized (but costlier) setting. Imbsweiler et al. 
[ 34], for example, conducted a study on a test track in which participants encountered 
another driver at a narrow passage. The other driver was trained to approach the 
narrow passage in six predefined ways. After every encounter, participants rated the 
other driver’s cooperativeness, the degree of cooperation in the given situation and 
the participants’ confidence to pass first or second. Rettenmaier et al. [ 70] performed 
a similar study in a driving simulator: Participants repeatedly encountered a vehicle 
at a narrow passage, which showed nine different approaching behaviours. With 
the goal of designing movements for autonomous vehicles, participants’ driving 
behaviour and subjective ratings were used to evaluate the implemented approaching 
behaviours. In [ 83], the selected behaviour in lane changing situations when another 
vehicle wants to overtake a slower truck were investigated. Participants were told 
to support their automated vehicle to find the best decision. In [ 84], the automated 
vehicle was carrying out the decision on its own and participants were asked if they 
agree with their vehicle’s decision. 

When comparing test track and simulator studies, test track studies offer the 
advantage of interaction with real road users. This, however, may bear a certain 
risk for the participants and is therefore not always ethical. However, simulated road 
users are usually only human-like to a limited extent, which can be problematic when 
studying cooperation. A promising alternative are coupled simulators, in which two 
or more participants move and interact in the same simulated environment [ 24, 60, 
61, 64, 75]. 

2.5 Coupled Simulator Studies 

Coupled simulators have been used to study, for example, traffic safety (e.g., [ 26]), 
driver-assistance systems (e.g., [ 66]), and automated vehicles (e.g., [ 24]), not only 
considering drivers but also pedestrians (e.g., [ 52]), cyclists (e.g., [ 53]), and motor-
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cyclists (e.g., [ 92]). With respect to cooperation, only a limited number of published 
studies exists. For example, [ 25, 28] investigated cooperative behaviour in a lane-
change scenario in a multi-driver simulator. In both studies, the driver on the right 
lane had to perform a lane change to the left lane because of a braking lead vehicle, 
interfering with the driver in the left lane. In this scenario, [ 28] studied the effects 
of the availability of a left lane, indicator use and the brake strength of the lead 
vehicle on the occurrence of cooperative behaviour. Friedrich et al. [ 25], in addition, 
manipulated participants’ belief about whether the other driver was a human driver 
or simulated. 

2.5.1 Exemplary Coupled Simulator Study 

Within CoMove, a coupled driving simulator study was conducted to describe and 
evaluate cooperative behaviour of two drivers encountering narrow passages (S6 
in Table 1). Two scenarios were implemented: In one scenario, drivers came from 
opposite directions and had to pass a narrow passage caused by traffic beacons on 
both sides of the road (two-sided bottleneck; Fig. 2A). In the other scenario, drivers 
came from the same direction but on separate lanes. The right lane was blocked by 
an excavator (one-sided bottleneck; Fig. 2B), so a lane change was necessary. The 
two drivers were driving through a city on a fixed route, which took them past the 
two narrow passages eight times each. They were synchronized by traffic lights to 
ensure they would encounter each other in the two scenarios. 

The coupled driving simulator MoSAIC (Modular and Scalable Application-
Platform for ITS Components) at the Institute of Transportation Systems at the 
German Aerospace Center (Braunschweig, Germany) was used. For the study, two 
fixed-based driving simulators were coupled. Each driving simulator was equipped 
with a steering wheel, accelerator and brake pedal. Three monitors created a . 180◦
view (see Fig. 2C). The driving simulators were placed on the right and left side of 
the room, separated by a third simulator which was not used during the study. Par-
ticipants could use the headlights, indicators, and horn. The sound of the engine and 
horn was transmitted via headphones. The environment was designed using Unreal 
Engine (Version 4.24) and Trian3DBuilder. In-house software was used to connect 
and control the driving simulators. 

Twenty-two participants, i.e. eleven pairs, took part in the study (16 male, 6 
female). The mean age was 27.3 years (SD = 6.6 years). After receiving general 
information and driving a ten-minute training session, participants encountered each 
other 16 times in the two scenarios. After every encounter they stopped and answered 
several questions about the interaction. At the end of the study, they filled out different 
questionnaires regarding demographic information, driving behaviour, personality, 
and their experience with the simulator. In addition to subjective data, driving data 
(e.g., velocity, acceleration, pedal positions) and videos of the experimental drive 
from the drivers’ perspective were recorded. Participants knew that they were inter-
acting with each other in the simulation.
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Fig. 2 The cooperative scenarios of the simulator study, two-sided bottleneck (A) and one-sided 
bottleneck (B), which were implemented in DLR’s coupled simulator AIM MoSAIC (C) 

Besides the aim to describe and evaluate participants’ cooperation behaviour (not 
published yet), part of the analysis was also to answer whether cooperative behaviour 
could be provoked within the study and whether it felt realistic. Focusing on the two-
sided bottleneck, in more than 80% of the encounters, drivers stated that they coop-
erated with the other driver. On average, the driving and communication behaviour 
of the other driver as well as the interaction with the other driver were rated as real-
istic. When asked what aspects of the interaction behaviour were not realistic, 14 
participants mentioned limited communication, noting the absence of hand signals 
and missing eye contact. 

2.5.2 Implications for Future Studies 

Based on these findings, future studies on cooperation in a coupled driving simula-
tor should investigate whether performing and perceiving hand gestures and seeing 
the other driver’s head orientation increases the feeling of realistic interaction and 
cooperation. It should also be considered that drivers might behave more defensively 
and cooperatively when knowingly interacting with another human driver (see also 
[ 25]). At this point, it is important to note that neither the influence of limited com-
munication possibilities, the awareness of interacting with real humans, nor other 
factors such as the repeated encounter of the same participants, the spatial proximity 
in the laboratory, the degree of familiarity of the participants, (lack of) sympathy, 
and participants’ characteristics (e.g., age, gender) have been systematically investi-
gated so far. Accordingly, there is a great need for research to ensure that cooperative
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behaviour shown in a coupled simulator is equivalent to cooperative behaviour shown 
on the road. 

3 Measures of Cooperation 

In order to study cooperation systematically and gain a detailed understanding of how 
and when road users cooperate, the construct of cooperation has to be operationalized, 
i.e., cooperation must be made measurable. This requires, on the one hand, a precise 
definition of cooperation and its aspects and, on the other hand, measures that can 
reliably capture these different aspects of cooperation. Within CoMove, we have 
therefore conducted several empirical studies to methodically advance the systematic 
and scientific assessment of cooperation (see Table 1 for an overview). 

This section first presents one of these studies which was conducted with the 
goal of better understanding the construct of cooperation and identifying aspects 
of cooperation in road narrowings and lane changing situations, followed by an 
overview of existing objective and subjective measures of cooperation. Finally, it is 
complemented by a detailed outline of experiments investigating factors influencing 
cooperation in lane changing scenarios in order to give a practical example of how 
to measure cooperation. 

3.1 Identifying Aspects of Cooperation 

Focused interviews were conducted and qualitatively analysed to identify potential 
criteria and metrics for the description and evaluation of cooperation (see also [ 69]). 
It was focused on two cooperative scenarios: drivers encountering each other from 
opposite directions at a narrow passage and a lane change with surrounding traffic. 
Twelve traffic researchers (5 male, 7 male) were interviewed. They were between 26 
to 37 years old (M. =30.08 years, SD. = 3.87 years) and owned a driver’s licence for 
at least eight years (M . = 11.67 years; SD. = 3.37 years). Interviewees were presented 
with short videos of traffic encounters. For the lane change, the video material was 
recorded from within a vehicle driving either on a highway or in an urban environ-
ment. One camera was directed to the front, the other camera was directed to the back 
(see Fig. 3B). For the narrow passage, videos were recorded from two perspectives 
at a road narrowing in Braunschweig, Germany (see Fig. 3A) via two portable sensor 
poles which are part of DLR’s Application Platform for Intelligent Mobility Mobile 
Traffic Acquisition [ 46] (see Fig.  1). 

Encounters between two or more drivers were extracted and rated with respect to 
their degree of interaction by two raters. Videos with identical ratings and different 
degrees of interaction were chosen for the interview study, resulting in 29 videos of 
encounters at the narrow passage and 51 videos of lane changes (of which 12 were 
recorded in an urban environment). After answering demographic questions, every 
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Table 1 Empirical studies conducted within CoMove to improve the systematic assessment of 
cooperation 

No. Method Scenario Goal Refs 

S1 Focussed 
interviews 

NP, LC Identification of potential 
indicators/metrics of 
cooperation 

[ 69] 

S2 Video-based 
online 
experiment 

NP Influence of arrival order 
and time delay on 
evaluation of cooperation 

S3 Video-based 
online 
experiment 

NP Influence of arrival order, 
time delay, perspective and 
stopping distance on 
evaluation of cooperation 

S4 Traffic 
observation 

NP Identification of metrics to 
quantify arrival order 

[ 67] 

S5 Online survey NP Development of 
questionnaire for the 
subjective evaluation of 
cooperation (CoopQ) 

[ 68] 

S6 Coupled 
simulator 

NP, LC Further development of 
CoopQ; exploratory 
analysis of cooperation in 
coupled simulator setting 

S7 Coupled 
simulator 

NP Influence of arrival order 
and approaching behaviour 
of oncoming driver on 
evaluation of cooperation 
and cooperation behaviour 

S8 Online survey German validation of the 
Prosocial and Aggressive 
Driving Inventory (PADI) 

[ 82] 

NP.= narrow passage; LC.= lane change 

Fig. 3 Examples of video material used in the interview study. A shows a narrow passage scenario, 
B shows a lane change 
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participant sequentially watched 37 videos while commenting aloud on the drivers’ 
behaviour. The instruction was given as follows (translated from German): 

“Please comment aloud on the videos by describing and evaluating the 
behaviour of the drivers. The following questions serve as a guide: How do 
you evaluate the behaviour of the drivers? What do you base your evaluation 
on? Did the drivers communicate with each other? If so, who communicated 
what? And how did the other react? On what do you base this? In what order 
did they communicate?” 

The order of blocks (lane change vs. narrow passage) and trials were random-
ized between participants. Four interviews were conducted in person, eight were 
conducted via Skype for Business calls due to Covid-19 restrictions. Participants’ 
answers were recorded, transcribed and analysed via MAXQDA Analytics Pro 2020. 
As an example, a participant’s comment on a narrow passage video is presented below 
(translated from German): 

“Here we see that two vehicles are approaching the bottleneck at relatively 
the same time and therefore also meet in the bottleneck or shortly before it. 
And you can already see that the vehicles have to brake heavily in any case, 
or at least one of them, namely the 734, is really hitting the brakes. The, what 
is it, the T5 or whatever, it’s speeding through it quite recklessly, I would 
say. So, he says I’m the stronger one and, yes, okay, admittedly, because he’s 
faster, he’s also the first to get into the bottleneck. Well, how do I evaluate the 
behaviour of the drivers? Well, one of them [...] drives defensively. That’s the 
one who brakes, of course. The T5 is driving [...] offensively, [...], also drives 
much faster”. 

Codes were developed in an iterative process and organized into four categories: 
description of behaviour, interpretation of behaviour, factors influencing behaviour, 
and evaluation of behaviour. The results for the categories description and evaluation 
of behaviour are summarized in Tables 2 and 3. Aspects mentioned by at least half 
the interviewees are listed. 

Particularly relevant for the description and evaluation of the narrow passage 
scenario seem to be (1) the time delay with which drivers arrive at the narrow passage, 
and (2) the arrival and departure order (who arrives first and who passes the narrow 
passage first). For the lane change, (1) the distance between vehicles, (2) the speed 
difference of vehicles, and (3) the necessity of a lane change seem to be most relevant. 

3.2 Operationalizing Cooperation 

Once it has been worked out which aspects of cooperation are to be investigated, 
these aspects need to be operationalized to be either experimentally manipulated 
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Table 2 Aspects used to describe drivers’ behaviour (number of interviewees who mentioned a 
given aspect) 

Individual 
behaviour 

Narrow passage Lane change 

Longitudinal 
behaviour 

Wait 
Stop (standstill) 
Decelerate 
Constant 
Accelerate 

(12) Decelerate 
Constant 
Accelerate 

(12) 

Lateral behaviour Movement to the 
right side 

(12) To/from 
left/middle/right 
lane 
Fast/slow lane 
change 

(12) 

Velocity Fast 
Slow 

(12) Fast 
Slow 

(12) 

Start of behaviour Early 
Late 

(10) Suddenly 
Early 
Late 
Simultaneously 

(12) 

Explicit 
communication 

Headlight flash 
Indicator 

(4) Headlight flash 
Indicator 

(12) 

Relative 
behaviour 

Narrow passage Lane change 

Time/space 
distance 

Successive 
Simultaneous 

(12) – 

Arriving/leaving 
vehicle 

Same 
Different 

(10) – 

Distance between 
vehicles 

– Large 
Small 

(12) 

Speed difference – Large 
Small 

(11) 

as independent variables or analyzed as dependent measures. Based on the defini-
tion of cooperation given in Sect. 1 and the findings from the focussed interviews 
(Sect. 3.1), at least three aspects of cooperation could be derived: the temporal and 
spatial proximity of road users, costs and benefits of a cooperative situation, and 
the dynamics between interacting road users. Section 3.2.1 provides an overview of 
potential objective measures to assess these three aspects. Since cooperation in road 
traffic is not a clear-cut phenomenon but depends on the subjective evaluation of the 
involved road users, subjective measures of cooperation are presented in Sect. 3.2.2. 
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Table 3 Aspects used to evaluate drivers’ behaviour (number of interviewees who mentioned a 
given aspect) 

Aspect Narrow passage Lane change 

Defensiveness Defensive, 
passive, calm, 
considerate, 
careful, cautious, 
cooperative 

(12) Polite, 
considerate, 
defensive, 
anticipatory, 
cooperative 

(9) 

Clarity Predictable, 
explicit, 
unambiguous, 
certain, clear, 
anticipated, 
expected 

(11) Clear, ambiguous, 
unexpected 

(8) 

Offensiveness Offensive, 
aggressive, 
inconsiderate, 
careless, 
dynamic, brash, 
brazen, impatient, 
uncooperative 

(10) Ruthless, 
aggressive, 
egoistic, 
impudent, brash, 
reckless, 
uncooperative 

(7) 

Criticality Critical, safe, 
risky, dangerous, 
unproblematic 

(10) Critical, 
uncritical, 
dangerous, safe, 
unsafe, 
unproblematic 

(12) 

Efficiency Efficient, well 
timed, fast, 
flowing, time 
saving, 
obstructive 

(8) Flow, time 
saving, 
obstructive 

(10) 

Necessity – Necessary, 
unnecessary, 
causeless, 
needless 

(7) 

3.2.1 Objective Description of Cooperative Behaviour in Traffic 

A space-sharing conflict [ 57], i.e., a certain temporal and spatial proximity of road 
users, is a precondition for cooperation. The measurement of temporal and spatial 
proximity is particularly relevant with respect to traffic safety. Well-known surro-
gate measures of safety have been described [ 36], for example, the time to collision 
(TTC) or the post encroachment time (PET), which can provide information on the 
criticality of a situation and thus, on the presence of a space-sharing conflict. In addi-
tion to temporal and spatial proximity, cooperation is associated with facilitated goal 
achievement and, in the case of non-symmetrical cooperation, with the postpone-
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ment of one’s own goals. Therefore, it might be of interest to measure the costs and 
benefits of cooperating road users, for example, in terms of safety, efficiency or com-
fort. Safety, as described above, can be assessed by surrogate measures of safety, for 
example TTC , PET, deceleration to safety time or conflict severity [ 36]. Efficiency, 
in turn, can be measured by, for example, passing time (e.g., [ 70]), journey time 
and standard deviation of speed (e.g., [ 94]). Driving style, which can be described 
in terms of acceleration, jerk, quickness, and lane deviation, among others, has a 
major influence on experienced comfort [ 7]. Düring and Pascheka [ 20], for example, 
took the idea of costs and benefits and determined the type of cooperation, namely 
altruistic, rational, and egoistic, by comparing the utility of a maneuver (calculated 
by cost functions for both agents involved) with a reference behaviour. 

A major challenge is to describe the dynamics between interacting road users, 
since there is usually not only one stimulus (e.g., a headlight flash) and one reaction 
(e.g., acceleration), but an interplay of multiple stimuli and reactions evolving over 
time. So far, mainly scenario-specific approaches exist. Hidas [ 29], for example, used 
the gaps between following and leading vehicles before and after a lane change to 
infer whether behavioural interference occurred between road users and to classify 
a lane change as free, forced or cooperative. For a convoy of vehicles, the length 
of the convoy and the standard deviation of the lateral position of the vehicles have 
been used to describe the interactions between the convoy’s vehicles [ 60, 61, 64]. 
Oeltze and Schießl [ 64], in addition, used the distances between vehicles to describe 
the adaptive behaviour of vehicles within a convoy in response to a driver assistance 
system. We adapted this approach in order to estimate the arrival order of drivers at 
a narrow passage [ 67]. In this study, trajectory data was used to calculate both the 
distance and time to arrival (TTA) to the narrow passage for both drivers. Next, the 
difference in distances/TTAs was calculated such that this difference was positive 
(negative) for one driver if he/she was closer (more distant) to the narrow passage 
than the other driver. The arrival order was then defined based on the minimum of 
this difference over a given space. The relationship of arrival order and cooperation 
for the narrow passage scenario has been investigated in further studies but results 
have not yet been published (S2, S3 and S7 in Table 1). 

A more general approach is to correlate time series data, e.g., drivers’ velocity, 
to capture the dependency of two road users and thus their interaction behaviour 
[ 51, 52, 61]. Furthermore, different visual descriptions have been used to study the 
interplay of road users, such as interaction plots (e.g., [ 61, 92]), time-space-diagrams 
(e.g., [ 61]), and sequence diagrams (e.g., [ 91]). Figure 4 depicts two encounters from 
the coupled simulator study (S6 in Table 1), illustrating interaction plots, time-space 
diagrams and cross correlations. The upper interaction plot in Fig. 4 illustrates an 
encounter, in which the two drivers arrive simultaneously at the narrow passage (i.e., 
they are the same distance away from the bottleneck for a longer period of time; 
see also the upper time-space diagram) until the driver passing second (red) stops 
while the other driver (green) passes the bottleneck. In contrast, the lower interaction 
plot visualizes an encounter, in which the two drivers arrive after each other, i.e., 
the driver passing first (green) is always closer to the narrow passage than the driver 
passing second (red). The cross-correlation plots show that for the upper encounter 
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drivers’ velocities show a high positive correlation (i.e., velocities are similar) when 
the time series are shifted by . −1.25 s, whereas for the lower encounter, the highest 
correlation is negative (i.e., velocities are in reverse) for a lag of. −3.75 s. The lag for 
which the correlation maximizes might allow to identify the leading and following 
driver [ 51]. 

It must be emphasized that so far there are only isolated cooperation-specific 
objective measures. Most of the measures originate from other research areas, so 
that the relationship with cooperation has yet to be investigated. Thus, on the one 
hand, measures to objectively capture cooperation are still missing, and on the other 
hand, existing measures’ reliability and validity for the construct cooperation still 
have to be proven. 

3.2.2 Subjective Evaluation of Cooperation: PADI and CoopQ 

To complement objective measures, cooperative behaviour in traffic also needs to be 
captured from a subjective perspective, for example by self-reporting questionnaires. 
The Prosocial and Aggressive Driving Inventory (PADI; [ 27]) is based on two scales, 
addressing both prosocial and aggressive driving behaviour, which distinguishes 
this questionnaire from other self-reporting driving questionnaire that only focus 
on one of the two (e.g., The Positive Driver Behaviour Scale by [ 65]). It is based 
on the assumption that driving behaviour is a stable and enduring characteristic of 
drivers [ 27]. Since prior studies linked unsafe driving behaviour to dimensions of 
the Five-Factor Model of personality, [ 15, 27, 89] correlated the PADI scales with 
the Big Five traits. Since no comparable questionnaire existed in German before, 
the questionnaire was translated into German and successfully validated during the 
course of this project [ 82] and used in different studies [ 81]. Based on [ 11], PADI 
was translated into German by two independent translators. These two versions 
were compared and combined into a third version which was translated back into 
English by a third translator. Finally, the third version was compared with the initial 
English version regarding the meaning of each single item. After some minor wording 
adaptation, a final version was used for the questionnaire’s validation. In an online 
study,.N = 291 filled in the PADI, NEO-Five-Factor Inventory (NEO-FFI) [ 10] and 
driving-related questions. A confirmatory factor analysis, a principal component 
analysis with varimax rotation and a logistic regression supported the structure of 
the original questionnaire. Only one item had to be excluded in the German version. 
The German version of PADI consists of 28 items: 16 measuring prosocial driving 
(e.g., “drive more cautiously to accommodate people or vehicles on the side of the 
road (e.g., slow down, move over)”) and twelve measuring aggressive driving (e.g., 
“speed up when another vehicle tries to overtake me”) [ 82]. 

The subjective evaluation of cooperation in a specific encounter, on the other 
hand, has mainly been measured uni-dimensional using multilevel response scales. 
Kauffmann et al. [ 37], for example, asked their participants to rate how cooperative 
another driver was on a scale from 0. = not at all to 15. = very cooperative. Similarly, 
participants in [ 59] rated another driver’s cooperativeness on a 7-point rating scale 



Measuring and Describing Cooperation Between Road Users … 581 

(1 .= not cooperative at all, 7 .= completely cooperative). In [ 32], the willingness 
to cooperate (of themselves and another driver) and the intensity of cooperation 
in a given situation were each judged on 7-point rating scales. In contrast, [ 96] 
assessed the subjective perception of cooperation in more detail by addressing the 
dimensions satisfaction, relaxation, accordance, and trust. Their participants rated 
twelve adjective pairs (e.g., frustrating/satisfying, delaying/time-saving) on 6-point 
forced choice semantic differential scales, with four items related to the experienced 
situation, three to the participant him-/herself, three to the other driver, and two to 
the situation impact. 

Building on [ 96], a questionnaire has been designed within CoMove to assess the 
subjective evaluation of cooperation in a traffic encounter in even more detail (see also 
[ 68]). The questionnaire was developed to answer the following questions: (A) Could 
a given encounter between road users be considered cooperation? (B) Did road users 
cooperate successfully? For question A, 39 statements reflecting different aspects of 
cooperation were formulated, for example “The drivers competed with each other”. 
Based on different definitions of cooperation, aspects like altruism, coordination, 
communication, competition, goal orientation, reciprocity, dependence, interference, 
mutual agreement, negotiation, costs and benefits were considered [ 8, 18, 20, 22, 30, 
39]. To answer question B, 40 adjective pairs were identified, which reflect common 
motives in road traffic, for example safety and efficiency [ 8, 79, 88]. Based on an 
online survey with 123 participants, the number of items was reduced. By means 
of descriptive statistics, item analysis and factor analysis, ten items and 22 pairs of 
adjectives were selected for a first version of the cooperation questionnaire (CoopQ; 
Table 4). The CoopQ questionnaire was used in studies S2, S3, S6, and S7 (Table 1). 
An evaluation of the questionnaire’s reliability and validity has still to be published. 

3.3 Situational Characteristics Influencing Cooperative Lane 
Changing 

3.3.1 A Model of Recognition-Primed Decision Making in Cooperative 
Situations 

Within CoMove, we adapted the recognition-primed decision (RPD) model by [ 41, 
42] to investigate how situational factors influence the behaviour in the cooperative 
situation of a lane change [ 81]. The RPD model is a naturalistic decision-making 
model. According to this model, rather than trying to find the best possible option in 
a decision situation, the first workable option is selected by the decision maker. The 
RPD model was developed to describe decision making for experienced agents under 
complex and uncertain conditions facing personal consequences of their actions and 
having to react fast. As these assumptions fit to the dynamics of traffic situations 
and the context of drivers’ decision making in traffic the model has been selected to 
describe decisions made by drivers. 
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Table 4 Selected items and adjective pairs for the first version of CoopQ 

Part A—Could a given encounter between road users be considered cooperation? 

The drivers wanted to occupy the same space at the same time 

The drivers have adapted to each other 

The drivers cooperated 

The drivers competed with each other 

The drivers acted amicably 

(At least one driver/Driver X) showed the other driver consideration 

(At least one driver/Driver X) acted selfishly 

(At least one driver/Driver X) were at an advantage because of the situation 

(At least one driver/Driver X) were at a disadvantage because of the situation 

(At least one driver/Driver X) acted with foresight 

7-point rating scale (“does not apply at all” to “applies perfectly”) 

Part B—Did road users cooperate successfully? 

Beneficial/obstructive Supportive/hindering 

Relieving/burdening Enjoyable/unpleasant 

Satisfying/frustrating Pleasant/unpleasant 

Relaxed/stressful Calm/aggressive 

Effective/ineffective Efficient/inefficient 

Goal-oriented/unplanned Coordinated/uncoordinated 

Harmonized/not harmonized Consensual/non-consensual 

Fair/unfair Controlled/uncontrolled 

Safe/unsafe Harmless/dangerous 

Risk-free/risky Understandable/misleading 

Unambiguous/ambiguous Necessary/unnecessary 

5-point forced choice semantic differential scale, e.g. efficient ❐ ❐ ❐ ❐ ❐  inefficient 

Following the model, well experienced drivers do not have to weigh several alter-
natives but match the current situation with patterns they already know [ 43]. The 
most relevant clues are highlighted by the patterns, which also provide expectations, 
identify plausible goals and suggest typical forms of reactions in the specific situ-
ation [ 42]. If the situation contains similarities to an already known situation, the 
most typical alternative is mentally simulated regarding its outcomes in the context 
of the current situation. If the mental simulation is successful, the intended action will 
be carried out. Otherwise, this action will be modified mentally until the expected 
outcome can be reached. Our adapted version of the model is presented in Fig. 5. 

In [ 33], we combined the RPD model with a questionnaire survey inspired by 
[ 9], which investigated yielding behaviour in crossings. They surveyed the usage of 
formal and informal traffic rules and showed that traffic decisions can be portrayed 
using questionnaires. We used their approach in a questionnaire study on cooperative 
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Fig. 5 Adapted decision making model from [ 81] after the original model from [ 41]; grey shading 
represents changes from the original. If experienced drivers encounter a familiar situation, they 
typically recognize goals, possible actions, situational factors and expectancies. If there are no 
violations of expectations this knowledge structure allows to simulate actions and their effects to 
decide whether these actions will solve the current interference. If such an action is found, it is 
carried out 

traffic situations with .N = 281 participants, which was analysed with the Natural 
Decision Making approach. This approach made it possible to categorize individual 
communication signals into offensive or defensive signals and thus make predictions 
about the intention of the driver. 

When a cooperative situation occurs, both partners have to detect the interference 
and figure out if the situation is familiar. Therefore, the process shown in Fig. 5 has to 
be carried out by both partners and will be influenced by the actions of the cooperating 
partner. Moreover, since the cooperative situations are dynamic, it might have to be 
assessed multiple times depending on the changing conditions due to the behaviour 
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of the interfering partners or other involved agents (e.g., drivers in additional lanes or 
behind the agents). In a lane-change scenario, the driver who is asked for cooperation 
has to assess the situation as familiar or not. Since lane changing is a common driving 
situation, drivers are expected to have experience with this situation and to be able 
to recognize the situation. 

The mental simulation is influenced by expectancies, different situational factors, 
the goals as well as the possible actions that could be carried out [ 41]. If a mental 
simulation indicates that a certain action would solve the interference this action is 
chosen and carried out. During the simulation process, it might be detected that a 
certain action only partly solves the interference, which implies that the action has 
to be adapted or reconsidered. It might be necessary to decelerate even stronger than 
originally simulated or to adapt the behaviour in another way. 

Meanwhile, the driver that wants to change lanes has to indicate the intention and 
wait until the behaviour of the driver being asked for cooperation indicates that the 
cooperation being asked for is accepted and the corresponding actions are or will 
be carried out. This action has to be interpreted correctly by the partner asking for 
cooperation which has to react to that. Nevertheless, this is the optimal process. At 
every step of the process, errors might occur. If an interference is not detected or one 
of the involved drivers finds him-/herself in an unfamiliar situation, the process might 
be very different and the cooperative situation might not be solved successfully. It 
could be that the driver that wants to change lanes does not wait, which forces the 
other driver to step back (e.g., open a gap) even though this driver decided not to 
accept cooperation. 

To better understand which situational characteristics facilitate drivers’ recogni-
tion of an interference situation and under which circumstances which actions are 
preferred to solve the situation, we carried out several studies [ 81, 83– 87] investi-
gating how situational factors influence the processes in cooperative situations on 
the example of lane changing on highways. An overview over these studies – which 
will be discussed in the following – is given in Table 5. 

In these studies, participants were taking the perspective of a vehicle on the faster, 
left lane on the highway (egocar). On the slower right lane, a vehicle (lane changer) 
was driving behind a slower commercial vehicle (see Fig. 6a). This scenario describes 
a discretionary lane change meaning a vehicle merges into another lane to maintain 
the desired speed level [ 2] but being not obliged to change the lane. In contrast to 
that, in [ 87] we investigated a mandatory lane change [ 2] in the form of an on-ramp 
scenario: The egocar drives on the highway when approaching an on-ramp from 
which another vehicle (lane changer) wants to merge onto the highway (see Fig. 6b). 

3.3.2 Investigating Influencing Factors on Preferred Actions 
in Cooperative Situations 

Scope of Action and Situation Criticality 
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Table 5 Empirical studies conducted within CoMove to investigate the effect of situational char-
acteristics on drivers’ recognition of and behavioural preferences in cooperative situations 

No. Method Scenario Goal Refs 

S9 Video-based 
laboratory 
experiment 

Highway LC 
(2 lanes) 

Investigating influence of 
scope of action and 
criticality for the 
lane-changing vehicle on 
the preferred action. 

[ 85] 

S10 Video-based 
laboratory 
experiment 

Highway LC 
(2 vs. 3 lanes) 

Investigating influence of 
scope of action, criticality 
for the lane-changing 
vehicle, indicator usage and 
additional lane on the 
preferred action 

[ 86] 

S11 Video-based 
laboratory 
experiment 

On-ramp (2 vs. 
3 lanes) 

Investigating the influence 
of criticality for lane 
changer vehicle, indicator 
usage, additional lane and 
traffic signs on the preferred 
action 

[ 87] 

S12 Driving 
simulator 

LC (2 lanes) Investigating influence of 
scope of action, criticality 
for the lane-changing 
vehicle and indicator usage 
on the selected action. 

[ 83] 

S13 Driving 
simulator 

LC (2 lanes) Investigating the acceptance 
of automated behaviour 
depending on scope of 
action, criticality for the 
lane changing vehicle, 
indicator usage and the 
maneuver which was 
carried out by the 
automation 

[ 84] 

S14 Driving 
simulator 

LC (2 lanes) Investigating the influence 
of highlighting relevant 
situational factors on the 
preferred action 

[ 81] 

LC.= lane change 

In S9 [ 85], a video-based study, the preferred behaviour of the driver in the faster 
lane was investigated based on manipulating the scope of action (here called distance 
in time and space) and the situation’s criticality for the other driver (lane changer) 
in the slower vehicle. The participants took the perspective of a driver in the faster 
left lane (egocar) while the simulation-controlled lane changer driving in the right 
lane approached a slower truck. An experimental setting using videos allowed strict 
control over these influential factors at a fixed decision point, on which certain lev-
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Fig. 6 These two sketches show the principal scenarios investigated in the different experiments. 
The participants were always situated in the car on the left lane (blue car called “Egocar”) from 
where they observed the development of the situation. The red car (called “Lane changer”) was 
always controlled by a simulation and represented a vehicle that might intend to change the lane. 
In Fig. 6a the situation of a discretionary lane change of the “Lane changer” is depicted, in Fig. 6b 
a mandatory lane change situation of the “Lane changer” is shown. The captions of the figures list 
the experiments where each of the situations was applied 

els of situation’s criticality for the lane changer and scope of action were reached. 
Each of the 43 participants assessed 81 lane-change scenarios regarding the preferred 
behaviour (accelerate, decelerate or maintain speed) and the situation’s criticality (on 
a five-point rating scale) when the video stopped. The scope of action was opera-
tionalized in two ways: first by TTC and second by headway distance (HW) between 
the egocar and the lane changer. The situation’s criticality for the lane changer was 
operationalized by TTC between the lane changer and the truck and the HW between 
the lane changer and truck. TTCs were manipulated on three levels, ranging from a 
critical TTC (2 s) to ambivalent (4 s) and an uncritical TTC (6 s). The HWs between 
these vehicles were set at 6 m, 13 m, and 20 m. One aim of the exploratory study was 
to identify the best operationalizations for the scope of action and situation’s critical-
ity for the lane changer. The study design was a 3x3x3x3 within-subjects design with 
a randomized presentation of each scenario. For the egocar, the speed was between 
87 km/h and 152 km/h. The truck’s speed was kept at 80 km/h which is the maximum 
allowed speed level for trucks on German highways. The speed of the lane changer 
varied between 84 km/h and 116 km/h. These ranges result from the combination of 
TTC and HW manipulation. All vehicles kept their speed constant during the video. 

Results showed that the preferred behaviour was almost equally distributed 
between the options accelerate, decelerate, and maintain speed. A generalized linear 
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mixed model was used to analyze the effects of TTCs and HWs. It showed that the 
TTC between egocar and lane changer was a significant predictor for the preferred 
behaviour: By increasing this TTC (higher scope of action), the frequency of decel-
erating increased, and the frequency of maintaining speed decreased. In contrast, 
if the TTC between changer and truck increased (a less critical situation for the 
changer), the frequency for decelerating decreased, and the frequency for accelerat-
ing and maintaining speed increased. HW between egocar and changer showed to be 
a significant factor for accelerating but not for decelerating, while the HW between 
changer and truck was a significant factor for decelerating but not for accelerating. 
When the participants decided to decelerate the mean criticality rating was highest 
and lowest when they decided to maintain speed. This study [ 85] indicates that the 
situational factors criticality for the lane changer and the scope of action are both rel-
evant for the participants to adapt their decision in accordance with the interference 
in this lane change situation. Furthermore, the results showed that the manipulation 
of TTC was the more useful manipulation for the scope of action and criticality for 
the lane changer compared to HW, even though it might be more difficult to estimate 
[ 40]. 

Following [ 85], a second video-based study was carried out [ 86] (S10). In [ 85], 
the options regarding the preferred behaviour for the participants were limited to a 
longitudinal adaptation of vehicle speed due to the two-lane paradigm. In [ 86], the 
possibility for lateral adaptation by changing to a third lane as an additional option 
was investigated. Changing lanes is considered less costly compared to decelerating 
[ 28]. We expected participants to prefer the less costly alternative and, therefore, to 
change lanes if possible. In [ 85], the lane changer used the indicator in all presented 
situations. Since we expected that the communication of intention has an effect on 
the preferred behaviour, we also manipulated the communication of intention in the 
form of indicator usage in [ 86]. 

The scenario was similar to the one of [ 85]. 51 participants had to assess different 
lane-change scenarios. Four factors were manipulated: The scope of action by the 
distance between egocar and lane changer (TTC; 2 s vs. 6 s), the availability of a 
lane change to the left (2 vs. 3 lanes; lane change possible yes vs. no), the criticality 
for the lane changer (TTC; 2 s vs. 6 s), and the way the intention to change lanes 
was indicated. The latter was manipulated on four levels: (1) no indicator usage, (2) 
brake lights, (3) indicator usage, and (4) indicator and an additional arrow over the 
vehicle as an augmented-reality (AR) display. With this fourth way of indication, 
we investigated if the indicator is salient enough or if a more salient stimulus is 
needed. Additionally, by flashing brake lights, we investigated how another form of 
communication influences the participants’ behaviour because braking lights might 
be interpreted such that the vehicle is slowing down in order to stay behind the truck. 
Every combination of the four factors was shown twice as a repeated measurement. To 
hide this repetition the surrounding landscape was changed between the repetitions. 
The presented highway was a three-lane highway, but in half of the scenarios, the 
left lane was closed due to a construction site, creating a two-lane scenario. If the 
left lane was free, participants had the additional option to change lanes to solve the 
interference in the situation. 
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The results of S10 [ 86], displayed in Fig. 8 (left), showed a clear behavioural 
preference for a lane change to the left to solve the cooperative situation when an 
additional lane was available which was in line with our expectation. In the two-
lane condition, without the possibility to change lanes for the participants, partici-
pants preferred maintaining speed over decelerating and accelerating. Moreover, the 
factors situation’s criticality, scope of action, and the indicator usage affected the 
preferred behaviour. If a third lane was available, a lower scope of action increased 
the preference to change lanes compared to maintaining speed but not for acceler-
ating or decelerating. In the two-lane condition, indicating the intention to change 
lanes increased the preference for lane changing to the left, decelerating, and even 
accelerating compared to maintaining speed. 

An additional arrow had only a small additional effect compared to a regular 
indicator due to a ceiling effect. When the braking lights were turned on or when 
no signal was presented, the preference was to maintain the current speed. In these 
cases, no need for cooperation was detected by the participants. 

The main difference to S9 [ 85], the introduction of an additional option on how 
to solve the cooperative situation and the indication of the intention to change lanes 
were both influential on the preferred behaviour. The results indicate that indicator 
lights seem to be salient enough. Therefore, a missing adaptation in behaviour can 
not be explained by the low salience of an intention signal. 

Discritionary Versus Mandatory Lane Changes 

The aim of S11 [ 87] was to investigate the behaviour in an on-ramp situation (see 
Fig. 6b), which is categorized as a mandatory lane change [ 2]. On-ramps are consid-
ered as challenging situations that are a cause of traffic jams [ 3, 55]. We aimed to 
investigate if the factors indication of the intention (blinking) to change lanes and the 
situation’s criticality for the lane changer are influencing the preferred behaviour as 
they did in a discretionary lane change situation on highways [ 85, 86]. Based on ear-
lier studies, we expected more adaptation of the behaviour (any behaviour which is 
not to maintain the current speed) (1) if the situation’s criticality for the lane changer 
is high, (2) if the intention to change lanes is communicated explicitly, and (3) if 
the third lane was available. Additionally, a traffic sign explaining merging traffic 
was shown. We expected more adaptation in behaviour if this sign was presented at 
the beginning of the scenario since it should help drivers identify the interference. 
Moreover, we expected a two-lane scenario to be perceived as more critical than a 
three-lane scenario. 

The videos were presented to the same 51 participants as in [ 86]. Again, the 
perspective was the one of a vehicle driving on the highway while, this time in front 
of them, another vehicle wanted to merge onto the highway coming from an on-ramp. 
As in S10 [ 86], we manipulated the way the merging vehicle indicated its intention to 
merge onto the highway on the same four levels ((1) no indicator usage, (2) braking 
lights turn on, (3) indicators usage, and (4) indicator and an additional arrow over 
the vehicle as an AR display). The situation’s criticality for the merging vehicle was 
operationalized by manipulating the TTC towards the end of the on-ramp (2 s vs. 
6 s). Additionally, we manipulated the availability of unoccupied lanes. In half the 
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scenarios, the left lane was free, while in the other half of the scenarios, this lane 
was blocked by a construction site. As in S10 [ 86], this leads to the additional option 
“change lanes” in these scenarios. Every factor combination was presented twice. 
Therefore, each participant experienced 64 lane-change scenarios. 

Results show that when having the possibility to change lanes to the left, this was 
the preferred behaviour (see Fig. 8). When this option was not given, the preference 
was to decelerate (see Fig. 7). The situation’s criticality for the lane changer was 
considered in the two-lane condition both for maintaining speed versus decelerating 
as well as accelerating vs. decelerating, increasing the preference for decelerating if 
the criticality for the lane changer was raised. 

In the three-lane condition only the odds of accelerating compared to changing 
lanes increased if the criticality for the lane changer decreased. The indicator usage 
or the indicator usage with an additional AR arrow decreased the odds of maintaining 
speed or accelerating compared to decelerating in the two-lane condition, which was 
not found in the three-lane condition. When braking lights of the other vehicle were 
turned on, the odds of accelerating compared to decelerating increased significantly 
in the two-lane condition and also in the three-lane condition in comparison to lane 
change. The traffic sign explaining merging traffic only had an effect in the two-lane 
condition for maintaining speed compared to decelerating, in the form that the odds 
for maintaining speed were lower when the sign was presented. In all other cases, it 
was not significant. The participants assessed the two-lane scenario as more critical 
than the three-lane condition. 

Comparable to [ 86], participants preferred the less costly alternative of chang-
ing lanes if possible [ 28]. This human behaviour corresponds with the maneuver 
automated vehicles most likely will carry out in these situations [ 12]. 

The effect of a traffic sign explaining merging traffic was small. However, a 
carry-over effect might have influenced the results since participants might have 
remembered the traffic sign even in the scenarios in which the sign was not presented 
at the beginning of the video. Therefore, further studies should investigate whether 
this sign or other signs facilitate the recognition of an oncoming interference using 
a between-subjects design. 

The results indicate that participants considered the mandatory character of the 
lane change due to the end of the on-ramp in their preferred behaviour. 

Since [ 86, 87] were carried out together, it was possible to investigate whether 
more behavioural adaptation is shown when the lane changer intends to carry out a 
mandatory lane change compared to a situation in which the lane changer intends to 
carry out a discretionary lane change [ 81]. As Fig. 7 shows, the preferred action in 
the discretionary lane change condition with two lanes was to maintain the speed, 
while in the mandatory lane change condition, the preferred option was to deceler-
ate. The proportion of accelerating was marginally lower in the mandatory condition 
compared to the discretionary lane change condition. In the three-lane condition, 
the preferred choice was to change lanes both in the discretionary lane change and 
in the mandatory scenario (Fig. 8). However, in the mandatory scenario, the other 
behaviour options were rarely selected, while in the discretionary lane-change sce-
nario, maintaining speed was selected in 35 % of the cases. 
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Fig. 7 Percentage of chosen actions in discretionary (left) from [ 86] and mandatory (right) from 
[ 87] lane change situations 
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Fig. 8 Percentage of chosen actions in situations with three lanes either for discretionary lane 
chances (left) or mandatory lane changes (right) 
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The results support the hypothesis that more behavioural adaptation is shown 
when the lane changer intends to carry out a mandatory lane change compared to a 
situation in which the lane changer intends to carry out a discretionary lane change 
for the two-lane condition. The difference between discretionary lane change and 
mandatory lane change was significant both for accelerate vs. maintain speed, and 
decelerate vs. maintain speed. The differences between discretionary and mandatory 
lane change were significant for accelerate versus maintain speed, decelerate vs. 
maintain speed and change lanes versus maintain speed. 

If a mandatory lane change was intended, the willingness to adapt the behaviour 
increased in this study. This is in line with the research by [ 2]. However, the behaviour 
carried out in actual traffic might differ from the first intention participants show in 
this study. 

Besides the intention to facilitate a necessary lane change, the results might be 
influenced by the experience participants made in this situation. Zheng [ 95] assumes 
that the decision making for the driver changing lanes is different in a mandatory 
lane change compared to a discretionary change. Their research indicates that drivers 
carrying out a mandatory lane change are willing to take higher risks than drivers in a 
discretionary lane change situation. Further studies investigating these lane changes 
will be needed, also focusing on the agent intending to change lanes regarding the 
decision making when and how to change lanes. 

In three studies [ 85– 87] the focus was on the preferred behaviour at a particular 
moment rather than the behaviour the participants would show when experiencing 
this situation as a driver supported by an automation. However, the behaviour they 
would carry out might differ from the preferred behaviour of an automated vehi-
cle they are sitting in. Therefore, the next step was to investigate the effect of the 
influencing factors when the situation was experienced in the driving simulator [ 83]. 

3.3.3 Preferred Actions of Automated Vehicles in Cooperative 
Situations 

To achieve comparability to the previous studies [ 85– 87], the same levels of TTCs 
were set to investigate the scope of action and the criticality for the lane changer. To 
do so, automated driving was introduced, since individual differences in speed, accel-
eration, and deceleration under manual driving would have affected comparability 
between participants as well as to the earlier results. 

Based on the results of the video studies, we expected an adaptation in behaviour 
(deceleration or acceleration) if (1) the scope of action was high compared to when 
it was low, (2) if the criticality for the lane changer was high compared to when it 
was low, and (3) if the lane changer used the indicator to communicate the intention 
to change lanes compared to no communication of intentions. 

In a driving simulator study, 32 participants experienced 36 lane-change scenarios 
on a two-lane highway. Three factors were manipulated: The scope of action (TTC 
2 vs. 6 s), the criticality for the lane changer (TTC 2, 4 and 6 s), and indicators usage 
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(yes vs. no). Every scenario was presented twice. The landscape around the highway 
was altered in the scenario so that the participants did not notice the repetition. 

Participants were instructed that their automated vehicle would ask for their pref-
erence in specific situations and would carry out the selected maneuver automatically. 
This preference had to be provided at a specific point in time, indicated by an acoustic 
signal. The specific point varied based on the manipulated factors. Participants had to 
answer within 2 s, and if they did not decide, the car would continue with the current 
speed, and the lane changer would stay behind the truck. No change in behaviour was 
shown by the lane changer if participants selected maintaining speed or accelerating. 
When decelerating was selected, the lane changer would change the lane to the left 
and overtake the truck and return back to the right lane after the maneuver. 

Results showed that maintaining speed was the maneuver that was selected the 
most, followed by decelerating and accelerating. As expected, the indicator usage had 
a significant effect on the selected behaviour: If the lane changer used the indicator 
to indicate the intention to change lanes, the preferred behaviour was to decelerate. 
In line with the hypothesis, the adaptation in selected behaviour was significantly 
influenced by the criticality for the lane changer. When the TTC was low, decelerating 
and accelerating were selected more often compared to when TTC was high. 

Additionally, an interaction between criticality for the lane changer and indicator 
usage occurred: More adaptation of the behaviour was shown both for decelerating 
and accelerating when the scope of action increased. The additional effect that the 
indicator was stronger in situations with a low criticality for the lane changer might 
indicate that participants need this additional information that the lane changer has 
the intention to merge into the faster lane when the situation is uncritical, while in 
situations with a high criticality for the changer, the short distance to the truck in front 
might need less additional explanation through the indicator. Therefore, additional 
possibilities to communicate one’s intentions were focused on in the final study [ 81]. 

Moreover, it is relevant to know how the actively chosen behaviour differs from 
the acceptance of a behaviour carried out by an automation since future technology 
might work like that, which was addressed in study [ 84]. 

3.3.4 Investigating Acceptance of Automated Maneuvers 
in Cooperative Situations 

In [ 84], we investigated the acceptance of the performed maneuver by an automated 
vehicle in the same lane-change scenario as used in [ 83]. Different to the study 
described above (see Sect. 3.3.3), here the automation suggested a maneuver and 
participants were asked whether they would accept the suggestion. 

Research related to driving style and comfort indicates that participants would 
accept behaviour carried out by an automation that differs from their manually per-
formed driving behaviour [ 4, 93]. Therefore, it is necessary to know if a comparable 
pattern can be found in cooperative situations and how situational factors that influ-
ence the preference of certain behaviour influence the acceptance when an automated 
vehicle is in control. 
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It was investigated if drivers prefer the automation to adapt its behaviour over not 
adapting the behaviour when another vehicle wants to change lanes. Additionally to 
the studies before, the influence of being cognitively distracted by a secondary task 
on this preference was investigated. Higher acceptance for the automated behaviour 
was expected (1) when the behaviour was an adaptation (decelerating or accelerating) 
and the lane changer used its indicator, (2) when the scope of action was small and (3) 
when the participants were cognitively distracted. That third hypothesis was based 
on the assumption that distracted participants would have less situation awareness 
and agree with any decision made by the automation. Additionally, it was expected 
that higher criticality for the lane changer increases the acceptance of a behavioural 
adaptation. 

In a driving simulator study, 20 participants experienced 48 lane changes in an 
automated vehicle. The vehicle was either accelerating, maintaining speed, or decel-
erating when it approached the lane changer driving behind the truck. The scenarios 
were the same as in the study before [ 83], with the same manipulations of indi-
cator usage, the scope of action, and criticality for the lane changer. After each 
scenario, participants had to decide if they accepted (yes vs. no) the automated vehi-
cle’s behaviour. In half the scenarios, participants were distracted by an auditory 
one-back task. 

Overall, the acceptance rate was generally high (74%). The highest acceptance was 
shown for decelerating, resulting to be a significant factor. Acceptance for maintain-
ing speed or accelerating decreased when the lane changer was using the indicator 
compared to decelerating. We expected a higher acceptance both for decelerating 
and accelerating compared to maintaining speed, when the indicator was turned on. 
However, the effect was only significant for decelerating compared to maintaining 
speed. Therefore, this hypothesis had to be rejected. In line with the hypothesis, a 
small scope of action resulted in a significantly higher acceptance compared to a 
large scope of action. Also, the indicator usage significantly affected the acceptance. 
Being engaged in a secondary task had no significant effect on the acceptance, which 
contradicts our hypothesis. 

Participants, sitting in a simulated automated vehicle, showed a clear preference 
that the automation adapts the behaviour when another vehicle plans to change lanes 
with the highest acceptance rate for decelerating. They preferred a more defensive 
driving style than the participants in the studies before when being the driver: In 
comparison to [ 83], they accepted maneuvers performed by the automation that dif-
fered from what participants would have preferred when asked before the maneuver. 
Indicator usage influenced the acceptance rate. The general high acceptance of the 
automated behaviour dropped, if the automation accelerated or maintained the speed. 

The results show that with a higher scope of action, the preference or selec-
tion of deceleration increased while accelerating or maintaining speed decreased. 
Decreasing the speed allows the lane changer to merge in front of the egocar while 
accelerating would close the gap. Additionally, the less critical the situation was 
for the lane changer, the more maintaining speed was selected. Therefore, it can be 
assumed that participants considered the criticality of the situation. Moreover, also 
the necessity of the lane change is taken into account as the results showed: Partic-



594 L. Quante et al. 

ipants’ selection of decelerating was higher in the on-ramp scenario when the lane 
change was necessary compared to the lane change on the highway when the lane 
change was discretionary. When given the additional option to change lanes to a third 
lane on the left, participants preferred this option, which is generally seen as a less 
costly alternative [ 28]. 

Regarding communication, participants expected the lane changer to communi-
cate the intention to change lanes. If no intention was communicated, they kept their 
speed constant [ 83, 86]. An additional more salient indicator was not necessary [ 86]. 
In line with that, participants expected their automated vehicle to behave accord-
ingly: If the lane changer used the indicators and the automated vehicles reacted 
with maintaining speed or acceleration, the acceptance was lower compared to the 
automated reaction of deceleration [ 84]. 

Further research will be needed but the results imply that participants prefer 
cooperative automated vehicles. 

Fig. 9 Different presented information: a no additional information, b identifying the lane changer, 
c distance to the slower vehicle, d the planned trajectory. Note: The current speed was presented in 
all four conditions but was not presented here for better visualization. Original from [ 81] 
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3.3.5 Supporting Situational Awareness by Highlighting Situational 
Factors in Cooperative Situations 

In the final study [ 81], situational factors were highlighted using an AR display to 
investigate how highlighting aspects of the situation influences the preferred action 
(see Fig. 9). Results of prior studies [ 38, 48] show that AR displays could be a 
suitable way of supporting human drivers in cooperative situations. Correspond-
ing with the Situation Awareness model by Endsley [ 23], we highlighted either: 
(1) The vehicle that wants to change lanes, which should help the driver identifying 
the vehicle that wants to cooperate. This corresponds to the perception (Level 1) in 
Endsley’s model. (2) The reason for the lane changer to change lanes, which in this 
case was the decreasing distance between the vehicle and the vehicle ahead. This 
should support the comprehension level (Level 2) in Endsley’s situation awareness 
model. (3) The planned trajectory was shown, which should support the projection 
level of situation awareness (Level 3). 

In the experiment, 29 participants took part. All participants held a valid driving 
license for at least one year. In contrast to studies so far, there were two vehicles 
following the truck. Between the scenarios, it varied which vehicle (Car A or Car 
B) wants to change lanes. The intention was to better test the HMI since one of the 
elements intends to improve the detection of a potential lane-changing vehicle. 

The results from [ 81] indicate that highlighting relevant situational factors to sup-
port the driver in the understanding of being in a cooperative situation is a promising 
approach. Compared to not showing any additional information, highlighted rele-
vant factors increased deceleration, which is seen as an increase in the willingness to 
support solving the cooperative situation. When highlighting the planned trajectory 
for the vehicle asking to change lanes, the preference to decelerate and open a gap 
was the preferred choice (Fig. 10). 

3.3.6 Summary of the Empirical Studies on Factors Influencing Action 
Preferences in Cooperative Situations 

The aim of these six studies was to deepen the understanding of the influence of 
situational factors on the action selected in cooperative situations under the theo-
retical framework of decision-making. For that reason different influencing factors 
were manipulated: The criticality for the changing vehicle, the scope of action, and 
indicating the intention to change lanes. These were investigated regarding their 
influence on the preferred action via video studies (S9, S10 and S11 in Table 5) and 
on the selected action (S12 in Table 5) as well as accepted action (S13 in Table 5). 
In the final study (S14 in Table 5), these influential factors were highlighted in an 
AR display to investigate how drawing attention towards these factors influences the 
preferred action. 
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Fig. 10 Percentage of preferred automation behaviour with HMI supporting different levels of 
situation comprehension. Results from [ 81] 

4 Modeling Cooperation Behaviour 

In addition to the need for valid forms of measuring cooperative behaviour and for 
a firm empirical base on the factors that influence it, there is a need for theories of 
cooperative behaviour that are able to integrate the various empirical findings and 
that allow for generalization across various concrete scenarios. As driving is a task 
that involves many psychological processes, from perception to decision making 
and action execution, aspects of driving can only be described and explained by 
considering the interplay of these processes in a given situation and how it produces 
a given behaviour. 

As described above, one of the theoretical concepts that is highly relevant to the 
field of cooperation in traffic is the understanding of the current situation and its future 
development [ 6, 21, 23]. Successful cooperation requires a shared understanding of 
the current situation and its requirements. This includes also a mutual understanding 
of the interaction partner’s goals, state and action plans [ 14, 44] to enable appro-
priate communication and plan negotiation between the partners [ 44] as seen in our 
experimental studies described above [ 83, 84, 86] and referred to in the cooperation 
model based on recognition primed decision making [ 33] (see Fig. 5). 

Comprehension based models of situation understanding [ 6, 21] describe in detail 
the psychological processes and structures underlying the construction of a mental 
representation of a dynamic situation and thus provide a suitable basis for modeling 
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the cognitive processes involved in the construction of a shared situation represen-
tation in cooperation in traffic. In general, this construction includes the perception 
of the relevant situation elements, the understanding of these elements in relation to 
the overall situation and the prediction of the future development of the situation on 
the basis of learned expectations or active projections of the driver [ 23]. That means, 
the construction of this mental representation involves many cognitive processes and 
structures of the human information processing system. It is the interplay between 
perception, attention, long-term memory, working memory, evaluation processes and 
decision making that leads to a given representation in a given situation which is then 
the basis of, as in our experimental situation, the decision whether to accelerate, to 
decelerate or to maintain speed in the lane change situation depicted in Fig. 6a. 

Consequently, to model the process of comprehending a dynamic situation and 
of maintaining and updating it requires to model the interplay of all these processes 
in a dynamic scenario. One possible framework that can be used for modeling this 
interplay are cognitive architectures based on Alan Newell’s concept of unified the-
ories of cognition [ 62]. Cognitive architectures represent a theory of how the brain 
achieves cognition. They are implemented as computational modeling platforms for 
cognitive tasks that enable the creation of models that can be used to explain and pre-
dict task performance. They have been used by researchers of artificial intelligence 
and cognitive psychology for many decades [ 47]. Many of these architectures are 
extensively used in modeling complex cognitive tasks involved in driving situations 
[ 73], piloting air-crafts [ 13], and air-traffic control [ 50]. 

4.1 ACT-R: A Unified Theory of Cognition 

One of the most prominent candidates of unified theories of cognition is ACT-R [ 1]. 
ACT-R (which stands for Adaptive Control of Thought—Rational) underwent multi-
ple revisions since its original publication, and has spawned over 1.100 publications 
in the field of cognitive science [ 72]. It is grounded on a firm empirical basis of basic 
psychological research on cognitive processes that play a major role in theories of 
how humans comprehend dynamic situations and was already successfully applied 
to model some aspects of the driving task [ 73, 74]. Therefore, we decided to use 
this architecture to develop a computational cognitive model of decision making in 
cooperative lane change situations such as those depicted in Fig. 6a. 

The computational implementation of the ACT-R theory is a production-system 
architecture, that models knowledge either as declarative or procedural knowledge. 
Declarative knowledge is knowledge we are aware of and we are generally able 
to verbalize. An example would be “Berlin is the capital of Germany”. In ACT-
R declarative knowledge is represented as a set of chunks of factual information. 
Each chunk consists of a collection of pairs of attributes and values. This declarative 
knowledge represents the knowledge that a person is assumed to have when she/he 
performs a task or solves a problem. An example of such a possible chunk of ACT-R’s 
declarative knowledge database is shown in Fig. 11. 
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Procedural knowledge represents knowledge that controls behaviour but of which 
we are often not conscious. Examples are how we produce language or ride a bike. 
Procedural knowledge is represented as condition-action production rules in ACT-R 
as shown in Fig. 12. The condition side of a production rule specifies a set of features 
that has to be true for the rule to be selected and executed. The action side of the 
production rule consists of a set of actions that the model performs if the rule is 
selected, i.e. “fired”. It has to be noted that Figs. 11 and 12 represent an informal 
natural language description of chunks and production rules to provide an overview 
of what the concepts mean. “Real” ACT-R chunks and production rules have to be 
more precise and specific to be actually implemented in ACT-R. 

Chunks and production rules are the basic building blocks of any ACT-R model 
that is executed by the ACT-R cognitive architecture. This architecture consists of 
a set of modules and each module implements a specific cognitive function. Infor-
mation is exchanged between the modules via buffers. Each module includes any 
number of buffers and each buffer can hold one chunk at a time. The information held 
in a buffer is accessible for other modules to be read or modified. The chunks in the 
buffers of the modules consequently represent that set of information that is immedi-
ately accessible to the ACT-R model. The declarative module holds all chunks of the 
ACT-R model, that is it represents the model’s declarative memory. It has one buffer, 
the so called retrieval buffer. The declarative module reacts to requests to the module 
by searching through its set of chunks to find a chunk that matches the request. This 
chunk is then placed into the retrieval buffer. 

The production rules of an ACT-R model are held in the procedural module. The 
procedural module does not have a buffer and it does not react to requests. The 
procedural module continuously checks the buffers of the other modules for patterns 
that match the conditions of some of the productions it holds. If it finds such a pattern 
the matching production rule is fired and the actions defined on the action side of the 
production rule are executed. Such actions usually modify the contents of buffers of 

Fig. 11 An example of an ACT-R chunk that represents that there is a car on the right lane that has 
a lead car in front 

Fig. 12 An example of an ACT-R production rule that might represent a piece of procedural 
knowledge as part of a driving strategy that prioritizes safe driving 
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one or more modules. The procedural and declarative module are accompanied by a 
number of other modules, such as a visual module to process information from the 
visual field, a manual module to control motor skills, or a goal module to oversee 
and control objectives and intentions. 

The internal structure and rules of the whole architecture are inspired by cognitive 
neuroscience and make ACT-R capable of validating experiments in cognitive science 
by matching human reaction times and predicting error rates and strategy choices 
[ 16, 56]. 

4.2 Modeling Decision Making in Cooperative Traffic 
Situations in ACT-R 

As the starting point for an ACT-R model of cooperation in traffic we used the adapted 
decision making model of [ 81] depicted in Fig. 5 in combination with the basic ideas 
of theories of situation comprehension [ 6, 21]. In this chapter we can only sketch the 
main components of the assumed information processing steps of the first version of 
the ACT-R model of cooperation in traffic. These steps are depicted in Fig. 13. 

As an empirical basis for the model development data and the experimental 
paradigm from previous studies with human participants [ 81, 83– 87] were used. 
We designed a traffic simulation scenario in ACT-R identical to the one shown in 
Fig. 14. The ACT-R model is given the task to decide whether to accelerate, decel-
erate or maintain speed in dynamic scenarios with differing TTC values between 
the vehicles. In the visual field of the model, three visual objects are present: (a) 
the blue box representing the lane changer car, (b) the red block representing the 
slow truck, and (c) a virtual near point on the road in front of the egocar based on 
[ 73]’s model of gaze behaviour while driving. The model continuously moves its 
visual attention between the visual objects to gather relevant information about the 
situation. Visual information such as the indicator of the lane changer and the visual 
cues used for estimating the TTC values between the different vehicles are crucial 
in selecting the appropriate action for the given traffic situation. As can be seen in 
Fig. 13, perceiving these situational characteristics triggers a memory retrieval pro-
cess by which a chunk representing a previously experienced comparable situation 
is retrieved. This corresponds to the recognition of familiar situations as described in 
the decision making model in Fig. 5. The retrieved chunk contains information about 
the possible development of the situation in the near future, and about the criticality 
that has been experienced in similar situations in the past. Consequently, based on 
this memory retrieval the model assesses the situation in terms of its criticality and 
whether an action has to be carried out to avoid a safety critical situation or whether 
no action is necessary. If the model comes to the conclusion that an action is required 
it selects the action that has led to a successful solution in the past and that is therefore 
connected to the retrieved situation representation. This process corresponds to the 
recognition based decision-making process as described in Fig. 5. 
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Fig. 13 Flow chart of the information processing steps of the first version of the ACT-R model for 
cooperation in traffic as described in [ 5] 

Fig. 14 The traffic scenario in the ACT-R simulation at different time stamps. The red rectangle 
represents the truck, the blue rectangle depicts the lane changer, and the yellow circle illustrates the 
location of the visual attention 

To date, however, the necessary understanding of the role and underlying processes 
of criticality estimation and its integration into an understanding of the situation 
represented in a situational model of the driving situation has yet to be clarified to 
be able to model it precisely in ACT-R. The preliminary experiments conducted to 
validate the first model versions clearly show that the perception of the indicator 
status of the lane changer and the TTC values are crucial for the model’s decision 
making. This is, of course, in line with the experimental data collected in the series of 
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experiments by Stoll and colleagues [ 81– 87]. But the simulation data based on these 
first model versions also show that these situational characteristics are not sufficient 
to explain the observed behaviour. It became clear that, for example, the integration 
of assumptions about the other driver’s perception and interpretation of the current 
situation and its projection into the near future into the situation representation of 
the driver on the left lane is necessary to be able to describe the observed behaviour 
of human drivers in such situations. In Fig. 13, this is represented by the grey boxes 
“Other road users” next to the “Interpretation” and “Projection” box. Filling these 
gaps and identifying general causal mechanisms underlying cooperation behaviour 
in a variety of driving situations are the goals of future studies on cooperation in 
traffic. Although the current studies in ACT-R are inconclusive to date, modeling 
the underlying psychological processes in ACT-R is a promising method to advance 
research on cooperation in traffic and to validate experimental results because it 
provides quantitative predictions of driver behaviour that enable robust hypothesis 
testing. 

5 Conclusion 

By focusing on road narrowings and lane changing, this chapter gives an overview on 
methods for data collection, subjective and objective measures of cooperation, fac-
tors influencing cooperation behaviour and behavioural and computational cognitive 
modeling to support the systematic research on cooperation in traffic. This overview 
is based on findings collected in studies conducted within CoInCar in the project 
CoMove. In this respect, the results on factors influencing human behaviour in coop-
erative situations, either in a manual or an automated setting, and initial findings 
from modeling the cognitive processes underlying cooperative driving behaviour are 
worth highlighting. This chapter illustrates that there is still a great need for research 
on cooperation in road traffic, which includes not only the manifold thematic research 
questions but also the methodological approach. 

So far, there are only a small number of (scenario-specific) measures of coopera-
tion and no standardized and established procedures to assess and measure cooper-
ative behaviour. Coupled simulators are a promising method to investigate coopera-
tive situations, but need further research on their behavioural validity. With respect 
to subjective measures of cooperation, the German version of the Prosocial and 
Aggressive Driving Inventory [ 27, 82] was successfully validated and an additional 
multidimensional questionnaire for the subjective evaluation of cooperation [ 68] was  
developed within the project. Both questionnaires now allow to assess cooperative 
traffic behaviour either in general or within a specific traffic situation. In addition, 
objective measures allow to quantify different aspects of cooperation, for example 
the temporal and spatial proximity, costs and benefits, and the dynamic interplay of 
road users, but their reliability and validity have yet to be confirmed. In particular 
the last aspect, the dynamic interplay, requires further measures in order to system-
atically describe cooperation. In this regard, within CoMove we have been able to 
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develop measures, at least for road narrowings, that allow us to quantify the arrival 
order of drivers [ 67]. 

In a series of highly controlled experiments various situational characteristics 
have been identified that influence drivers’ decision making in dynamic cooperative 
situations. The results indicate that, besides others, the perceived criticality of the 
situation, the available scope of action, and the assumed planned actions of the inter-
action partner asking for cooperation clearly influence the decision-making process 
of the driver being asked for cooperation. The empirical results also show that there is 
a clear overlap between actions chosen by drivers when driving manually and which 
actions of an automation are preferred in cooperative situations. But this overlap is 
not complete and the origin of the differences has still to be explained in order to 
create automation behaviour that is accepted by human drivers. 

The results of the first versions of an ACT-R model of cooperative behaviour in 
traffic show that considering the situational characteristics of a cooperative situation 
is important but definitely not sufficient to explain human cooperation behaviour 
in traffic. Clearly, the driver’s assumptions about the situation understanding of the 
cooperating partners and their likely goals and action plans are strongly influencing 
the driver’s own decision making in these situations. This becomes very clear when 
one considers the effects of situational elements that provide information about the 
future development of the situation or the cooperating partners’ intentions. The first 
one was investigated via a HMI that highlights situational elements that should sup-
port different levels of situation understanding. The results clearly showed that it 
is the support of the projection that has the greatest effect on triggering cooperative 
behaviour. In the same sense, basically all empirical studies, in which indicator usage 
was manipulated, showed a significant effect on action selection of the indicator. This 
supports the importance of understanding the cooperating partner’s intention for the 
selection of one’s own behaviour in cooperative situations. Building a computational 
cognitive model of the underlying psychological processes is associated with many 
both theoretical and technical challenges, but offers a great potential both for the 
theoretical progress and for integrating behaviour into technical systems, such as the 
vehicle automation, that is accepted and trusted by humans as it considers human-like 
behaviour preferences. 

In much more cases than we as psychologists and human factors specialists would 
wish, we have to admit that there is not enough empirical knowledge available, the 
available knowledge is too vague or our theories are not precise enough to provide the 
basis for the precise statements that are required when building such computational 
models. But exactly this requirement for precise theories make the existing gaps 
visible and help to fill this gaps by dedicated and theory-driven experimental studies. 
And the prize to win with such modeling is that the huge amount of empirical results 
that was collected in the past and will be collected in the future becomes available for 
the integration into technical systems as this knowledge is condensed and transformed 
into computational models that can be used by engineers and computer scientists to 
inform their automation algorithms. The vision is that this leads to technical systems, 
such as cooperatively interacting vehicles, that then behave in way that is accepted 
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and trusted by human road users as they possess an executable knowledge about 
human preferences, goals and needs. 
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