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Editorial

Mobility is a great asset to humans and our capability to move seamlessly through
our world contributes to the quality of an active life. On the downside, we pay a
high price for our mobility in the form of traffic accidents, environmental pollu-
tion, consumption of resources and living space, and loss of freely available time
due to congestion. In this situation, two recent developments in the automotive
sector are opening up attractive opportunities. Many experts expect recent advance-
ments in automated driving research will be commercialized in the not-too-distant
future. In addition, communication technology between vehicles and the infrastruc-
ture advances rapidly, so that Car2X communication systems are likely to be standard
equipment in automobiles within a few years.

Used in a targeted way, these technological possibilities can lead to an inno-
vation, if not a revolution, in our mobility. Cooperatively interacting vehicles can
increase traffic efficiency and reduce accidents, economically expand public trans-
port in peripheral areas and at off-peak times, and reduce the use of open space by
traffic in cities. For people, these technologies offer comfortable, safe travel with
freely available time and self-determined mobility with their own vehicle even in old
age and with physical impairments.

Any driver has witnessed the benefits of cooperative behavior in traffic for safety
and efficiency. Likewise, automated vehicles are expected to improve traffic safety
through cooperative interaction. This book addresses research fields in coopera-
tively interacting vehicle technology and is structured along the information flow of
automated driving.

Perception and Prediction of other road agents using on-board sensor informa-
tion stands at the beginning of the perception-action cycle. The first chapters focus
on body posture interpretation of cyclists and how such information can be used for
prediction. It is shown how motion prediction of vulnerable road users (VRU) can
benefit from information exchange between different devices carried by VRUs and
sensors mounted on vehicles or in the infrastructure. Driver behavior at intersections
is analyzed with an emphasis on ambiguous precedence situations.

The potential of Explicit Communication between traffic participants is key to
enhancing the perception horizon even in adverse visibility conditions. Furthermore,
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proper design of V2X communication protocols can alleviate cooperative perception
and maneuver negotiation.

Cooperative Motion Planning—whether with implicit or explicit communica-
tion—opens new abilities for automated vehicles. This book sheds light on a multi-
tude of relevant aspects in this field. The mutual dependence of motion plans of
interacting traffic participants can be framed as a Stackelberg game, where an agent
plans optimal behavior considering its effects on others based on their strategy.
Graph optimization techniques make it possible to assemble complex motion plans
from motion primitives. Networked control forms a joint optimization task whose
complexity can be reduced by a prioritized distributed model predictive control (P-
DMPC) approach. Different time-variant priority assignment algorithms are inves-
tigated. V2V-communication enables negotiation for cooperative driving maneu-
vers. Appropriate strategies allow traffic participants to temporally reserve areas
of the road for their exclusive usage. A layered architecture for motion planning is
proposed to guarantee consistent and safe cooperative driving decisions. The concept
of specification-compliant reachable sets makes it possible to identify and negotiate
potential conflicts within a group of cooperating vehicles. Formal models for V2X
communications facilitate the formation of local traffic systems whose trajectories
can be verified to be free of collisions and deadlocks. Reinforcement learning has
gained large attention in automated driving research. Learning reward functions from
expert trajectories are proposed to mimic human driving styles. Likewise, learned
cooperative maneuver policies enhance traffic efficiency and equity at mixed-traffic
intersections.

Last, not least, Human Factors impose core design objectives for any mobility
system. The combination of use cases and design/interaction patterns bears the poten-
tial to manage the complexity of future cooperative systems. SAE level 3 automated
driving includes potential takeover requests to the human. For such systems, confi-
dence horizons are proposed to predict the takeover capability based on the driver’s
initial orientation reaction. Alternatively, the confidence horizon concept may be
instantiated with a pattern framework. Deadlock situations frequently arise in urban
situations in which the right of way is not regulated. Studies on how human drivers
solve such situations lead to recommendations for automated vehicles. The part
closes with measures and descriptions for cooperation.

The book provides an overview of methods for the implementation of cooper-
atively interacting automobiles. It presents recent research results and references
relevant literature in this domain. The multi-disciplinary expertise of the authors
reflects the nature of the topic.

We hope the readers will find these contributions to this emerging technology
fruitful and inspiring for their own work. Last, not least, the editors and authors
gratefully acknowledge funding for the Focus Program SPP 1835 Cooperatively
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Interacting Automobiles by the German Science Foundation DFG, as well as fruitful
collaboration among the partners.

Karlsruhe, Germany Christoph Stiller
October 2023 Matthias Althoff
Christoph Burger

Barbara Deml
Lutz Eckstein
Frank Flemisch
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Perception and Prediction with Implicit
Communication



How Cyclists’ Body Posture Can Support | m)
a Cooperative Interaction in Automated e
Driving

Daniel Trommler, Claudia Ackermann, Dominik Raeck, and Josef F. Krems

Abstract Automated driving is continuously evolving and will be integrated more
and more into urban traffic in the future. Since urban traffic is characterized by a high
number of space-sharing conflicts, the issue of an appropriate interaction with other
road users, especially with pedestrians and cyclists, becomes increasingly impor-
tant. This chapter provides an overview of the research project “KIRa” (Cooperative
Interaction with Cyclists in automated Driving), which investigated the interaction
between automated vehicles and cyclists according to four project aims. First, the
investigation of body posture as a predictor of the cyclists’ starting process. Second,
the development of a VR cycling simulation and validation in terms of perceived
criticality and experience of presence. Third, the experimental evaluation of a drift-
diffusion model for vehicle deceleration detection. And fourth, the investigation
of factors affecting cyclists’ gap acceptance. With these research aims, it was the
project’s intention to contribute to a better understanding of the cyclists’ percep-
tion of communication signals and to improve the ability of automated vehicles to
predict cyclists’ intentions. The results can provide an important contribution to the
cooperative design of the interaction between automated vehicles and cyclists.

1 Introduction

While current advanced driver assistance systems (ADAS) have already improved
the safety and comfort of manual driving [5], automated driving is expected to lead
to even more benefits, such as reduced congestions and an increased mobility for a
large number of people [18, 33]. However, there are a range of human factors issues
that need to be overcome prior to launching automated vehicles [27].
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When used in urban traffic, automated vehicles (AVs) need to be able to inter-
act with vulnerable road users (VRUs), such as pedestrians and cyclists [13]. Since
interaction in road traffic as a social phenomenon can be complex and can involve
ambiguities [21], a detailed understanding of how human drivers and VRUs interact
in road traffic is essential for the development of appropriate algorithms for AVs
[16, 20]. In addition, cooperation as a collaborative effort is required for a successful
interaction: In a joint action, road users share common goals and thus follow com-
mon solutions instead of interacting competitively [9, 11, 15]. Therefore, it is crucial
to examine how goals and intentions of VRUs can be recognized and how to com-
municate AV’s intentions to them. It is assumed that such a cooperative interaction
between AVs and VRUs can lead to higher satisfaction, trust, acceptance, efficiency
and safety in road traffic [12, 15].

While the previous project KIVI investigated the cooperative interaction between
AVs and pedestrians [1, 2, 4], the current project KIRa focused on the cooperative
interaction between AVs and cyclists. In both projects, researchers in traffic psychol-
ogy and communications engineering jointly explored relevant questions regarding
the analysis of human behavior in road traffic and the development of suitable algo-
rithms. In the following two chapters, the results obtained in KIRa are presented,
first from a psychological and then from a communications engineering perspective
(see next book chapter by Raeck et al.).

1.1 Space-Sharing Conflicts Between Cyclists and AVs in
Low-Speed Areas

In this project, cooperative interaction between cyclists and AVs was primarily inves-
tigated in urban low-speed areas such as parking lots or shared spaces. We assume
that these low-speed areas are often characterized by (1) a shared infrastructure for
vehicles and cyclists (e.g., no dedicated bike lanes), (2) less formal rules about prior-
ity (e.g., no traffic light control), (3) a higher probability that a road user will change
its current behavior (e.g., starting or stopping) and (4) the (partial) occlusion of road
users (e.g., due to parked vehicles).

These characteristics have the potential for space-sharing conflicts between
cyclists and AVs. According to Markkula et al. (2020), a space-sharing conflict
represents “an observable situation from which it can be reasonably inferred that
two or more road users are intending to occupy the same region of space at the same
time in the near future” (p. 736) [16]. As space-sharing conflicts between cyclists
and vehicles can lead to safety-critical situations, it is necessary to either anticipate
and avoid such conflicts (e.g., through recognizing the intentions of cyclists) or to
handle and solve them safely (e.g., using appropriate communication cues).
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1.2 Recognizing Intentions of Cyclists in Low-Speed Areas

To enable an AV to anticipate space-sharing conflicts, it can be useful to recognize
the intentions of cyclists. Trajectory prediction can be used to determine the cyclist’s
next trajectory using the current state. Thus, potential conflicts with the AV’s tra-
jectories can be identified. In contrast, the starting of a cyclist, as a typical scenario
especially in low-speed areas, cannot be determined well using trajectory prediction.
Therefore, further information needs to be included. Previous research with pedestri-
ans showed that human observers can use the body posture of pedestrians to predict
their intention to cross the street, even when certain information of the body posture
(e.g., head or legs) is occluded [23]. However, due to a lack of research, it is unclear
whether the body posture of cyclists can contribute to the recognition of cyclists’
intentions. Therefore, this project aimed to investigate how human observers use the
body posture of cyclists to predict their intention to start. Further, because body parts
of cyclists can be occluded in low-speed areas, it was also aimed to examine the
prediction accuracy in these scenarios.

1.3 Communication Between Automated Vehicles and
Cyclists in Low-Speed Areas

Implicit and explicit communication can help to solve space-sharing conflicts
between AVs and cyclists safely and efficiently [10]. Implicit communication cues
refer to the behavior of road users that, on the one hand, change their movement (e.g.,
vehicle deceleration) or perception (e.g., head turning), and, on the other hand, can
be used by other road users, for example, as a sign of the willingness of a pedestrian
to cross the road [16]. Explicit communication includes signals with no effect on
one’s own movement or perception, such as light signals to indicate intentions of an
AV [16].

Several studies, however, have shown that implicit communication cues are used
more frequently for interactions between vehicles and pedestrians in low-speed areas
compared to explicit communication cues [7, 14]. From a reanalysis of a naturalistic
cycling study, it can be assumed that priority between cyclists and vehicles in low-
speed areas is similarly more likely to be negotiated using implicit communication
cues [3]. For example, agents (i.e., vehicles or cyclists), who reach the conflict space
earlier, often take the chance to solve the space-sharing conflict through accelerating
or avoiding behavior [3]. Therefore, the present project focused on implicit com-
munication and, in particular, investigated cyclists’ gap acceptance and vehicles’
deceleration maneuvers. It was examined how different time gaps, the vehicle size
and speed affect the decision of cyclists to cross a street in front of a vehicle. In addi-
tion, differences in the perceptual decision-making process involved in the detection
of vehicle deceleration by VRUs were further analyzed using a drift-diffusion model.
The results can provide important implications for a situation-specific parameteri-
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zation of vehicle deceleration maneuvers. Moreover, the results can indicate when
explicit communication cues are necessary to support the decision-making process.

1.4 Investigating Space-Sharing Conflicts Between
Automated Vehicles and Cyclists

In the previous project KIVI, video recordings from the perspective of a pedestrian
at the curb were used to investigate pedestrians’ gap acceptance and deceleration
detection performance [1, 2, 4]. However, this methodology had to be adapted to
the perspective of a cyclist. Riding with a camera on the bicycle handlebars often
resulted in blurry recordings due to the pedaling activity. In addition, in such real-
world recordings, it was often difficult for the cyclist to keep a constant speed, on
the one hand, and to keep the time gap to a moving vehicle, on the other hand.
Therefore, this project did not use real-world recordings, but rather a VR cycling
simulation which will be presented.

1.5 Aims of the Research Project “KIRa”

The following sections will provide a rough overview of the research within the
project “KIRa” (Cooperative interaction with cyclists in automated driving) regarding
the research topics described above:

1. Investigating the body posture as a predictor for the starting process of cyclists.

2. Development and validation of a VR cycling simulation.

3. Experimental evaluation of a drift-diffusion model for vehicle deceleration detec-
tion.

4. Investigation of factors influencing the gap acceptance of cyclists.

This chapter aims to give an overall summary of the project activities. Detailed
information on the experiments can be found in the related publications at the end
of each section.

2 Investigating the Body Posture as a Predictor for the
Starting Process of Cyclists

A typical scenario in urban traffic, especially in shared spaces and parking lots, is
the starting of a cyclist. Here, starting is understood as the process between getting
on the bike and the final roll-off. It is assumed that recognizing the progress within
the starting process can be crucial for an AV to decide whether it still takes priority
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(in early stages of the starting process) or rather yields priority (in later stages).
Therefore, this project task intented to investigate how accurately the progress of the
starting process can be detected based on the body posture of cyclists. Furthermore,
we investigated the importance of different body parts in this rating as well as the
accuracy of the ratings when body parts are masked. It is assumed that occluded
parts of the cyclists’ body, e.g., due to signs, parked vehicles or the bicycle frame,
could be a highly relevant problem in shared spaces. The results could support the
development of efficient algorithms for intention recognition and, based on human
abilities, allow conclusions about how good algorithms’ intention recognition needs
to be at a minimum.

For the examinations, 12 cyclists were recorded while starting with their bicy-
cle. The recordings were taken on a parking lot from two different perspectives of
a car driver: The view from behind and from the side. The period of interest was
the time between getting on the bike and the final roll-off. The recordings were split
into four images per second to allow a better visibility of the cyclists’ body posture.
Further, these images were used either without masking or (after image manipula-
tion) with masked upper or lower body. During six standardized experiments, these
images were presented both in chronological (baseline condition) and random order
(experimental condition). In the chronological order, participants were able to build
up prior knowledge about the progress based on the images before. In the conditions
with random order, prior knowledge was not available and the ratings were possible
based on body posture only. For each image, participants were asked to provide rat-
ings about the progress in the starting process using a scale between 0 and 100%.
Further, the participants were asked to specify which parts of the cyclist’s body were
relevant to these ratings.

Surprisingly, the ratings of progress in the starting process were similar between
the baseline and experimental conditions. In the conditions with random order, the
ratings often increased in the order the images were originally taken. Thus, the
randomly presented images of a cyclist could be rearranged well into chronological
order. This could be shown for the different perspectives as well as the masked images.
In particular, the ratings at the end of the starting process, shortly before the cyclist
accelerated, were rated very accurately in each of these conditions. Furthermore, a
lower variance could be observed in the ratings at the beginning and at the end of the
starting process. It is assumed that the beginning and the end of the starting process
are associated with characteristic body postures. Regarding the relevant body parts,
the legs showed the highest ratings as the decisive part at the beginning. As the starting
process continued, the importance of the legs decreased, while the importance of the
upper body, head and feet increased. When body parts were masked, the remaining
parts were substantially able to compensate the occlusion.

The results showed that the progress in the starting process can be recognized
accurately based on body posture even when body parts are masked. Thus, it seems
possible that the final roll-off can be detected early and ensures a safe interaction.
Further analysis is required to formally describe the body posture in the starting
process in order to implement these characteristics in algorithms for the intention
recognition.
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Related Publications:

e [30] Trommler, D., Ackermann, C., Krems, J.F.: Investigating the body posture as
a predictor for the starting progress of cyclists. In: 33rd International Co-operation
on Theories and Concepts in Traffic safety ICTCT) Conference, Berlin, Germany
(2021).

e Trommler, D., Krems, J.F.: Using cyclists’ body posture to support a cooperative
interaction in automated driving (in prep.).

3 Development and Validation of a VR Cycling Simulation
3.1 Development of a VR Cycling Simulation

While different virtual reality (VR) cycling simulations are available in the entertain-
ment and sports sectors, these commercial products are of limited use for research
purposes. For the examination of the interaction between AVs and cyclists in this
project, a VR cycling simulation has to meet several requirements: (1) Accurate
control of road user maneuvers, including their trajectories, speed and speed adapta-
tions. (2) Realistic physical visualization of the environment and vehicles, including
gravity and other physical forces of objects. (3) Detailed data recording. (4) Ide-
ally, a user-friendly graphical user interface (GUI). (5) Cost-efficient development,
especially regarding the hardware requirements.

For this purpose, different existing VR (driving) simulations were compared.
These include CARLA [8], OpenDS [17], VICOM Editor (TUV DEKRA arge tp
21), STISIM driving simulator platform, and Westdrive & LoopAR [19]. Considering
the criteria mentioned above and seeing as it offers the opportunity to modify the
VR driving simulation to a VR cycling simulation, Westdrive & LoopAR [19] was
chosen. This VR implementation is based on the Unity 3D game engine. Therefore,
a realistic physical behavior of all objects is ensured by the Unity3D physics engine.
Due to the open-source implementation and the availability of a GUI, an individual,
simple and fine-grained design of road user maneuvers is possible. Likewise, the data
recording can be accurately adapted to the individual research questions. Lastly, the
hardware requirements reflect the specification of a modern desktop computer.

However, Westdrive & LoopAR was originally developed for studies on auto-
mated driving from the passenger’s perspective, specifically to investigate takeover
requests [19]. To generate a naturalistic impression of a bicycle ride, the VR simula-
tion was adapted to the cyclist’s perspective, showing the moving bike, the handlebars
and the cyclist’s hands in the foreground. The VR cycling simulation can be displayed
on three different monitors to provide the view to the front, right and left. In labora-
tory studies, these three monitors can be placed in front of a static bicycle on which
participants can sit. When implemented as an online study, the VR cycling scenarios
can be saved as video files with a frontal perspective.
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After these adaptations, VR cycling scenarios can be implemented at relatively
low cost and the setup seems to be suitable to investigate communication signals of
AVs interacting with cyclists in a safe and replicable way. A disadvantage of this
implementation is that the participants cannot control the behavior of the cyclist
in the VR and thus, behavior of cyclists interacting with AVs, such as braking or
avoiding the vehicle, cannot be studied directly.

3.2 Validation of the VR Cycling Simulation in Terms of
Perceived Criticality as Well as Experience of Presence

Several validation studies were conducted using the VR cycling simulation, for exam-
ple regarding the perceived criticality and experience of presence. It was aimed to
investigate whether space-sharing conflicts between cyclists and vehicles with vary-
ing proximity are associated with the perceived criticality. Three typical scenarios
were evaluated: (1) A vehicle exiting a parking lot and crossing the bike lane in
front of the cyclist. (2) An intersection with a vehicle approaching from the left and
crossing in front of the cyclist. (3) And a vehicle turning to the right and crossing the
bike lane in front of the cyclist. The criticality within each space-sharing conflict was
varied using the initially attempted post encroachment time (IAPT) [6]. The IAPT is
defined as the time interval between one road user leaving a conflict point and another
road user entering the same point, assuming no behavioral changes, such as speed
changes, are initiated. Lower IAPT values are associated with a closer proximity
between the two road users and thus with a higher potential for a critical outcome
of the space-sharing conflict. In this validation study, the IAPT values ranged from
one to three seconds for each scenario. Additionally, a baseline ride was performed
for each scenario in which the crossing vehicle was absent. The perceived criticality
was assessed using a scale developed by Stange et al. (2021) [26]. In addition, the
experience of presence in the VR cycling simulation was evaluated using the Igroup
Presence Questionnaire [24].

An online study was conducted with N = 35 participants. Each scenario with each
IAPT level (including the baseline trial) was presented twice with a subsequent ques-
tionnaire on perceived criticality. At the end of the study, the experience of presence
was assessed. The analysis of the perceived criticality revealed that the baseline rides
were rated as significantly less critical compared to the rides with a space-sharing
conflict (except for the turning scenario, which showed only a significant increase
of the perceived criticality for IAPT = 1 s). Furthermore, the conditions with lower
TAPT values were rated as more critical in each scenario. In addition, the results
revealed that the turning scenario was perceived to be more critical compared to
the intersection and parking scenarios. The analysis of the experience of presence
indicated an acceptable experience of presence with a moderate score in the general
presence dimension and a good score in the spatial presence dimension.



10 D. Trommler et al.

Based on these results, it is assumed that the VR cycling simulation is suitable
to investigate cyclists’ perceived criticality in interactions with AVs. Therefore, the
simulation can support the development of safe and comfortable driving maneuvers
of AVs in space-sharing conflicts. Further, an acceptable experience of presence in
this VR cycling simulation can be assumed for online studies. It may be expected
that the experience of presence will further increase when the cycling simulation is
used in laboratory studies with a static bicycle in front of three monitors or using a
VR headset.

Related Publication:

[31] Trommler, D., Bengler, P., Schmidt, H., Thirunavukkarasu, A., Krems, J.F.: Val-
idation of a VR cycling simulation in terms of perceived criticality and experience of
presence. In: Petzoldt, T., Gerike, R., Anke, J., Ringhand, M., Schroéter, B. (eds.) Con-
tributions to the 10th International Cycling Safety Conference, pp. 235237, Dresden,
Germany (2022). https://www.icsc2022.com/wp-content/uploads/icsc2022_book_
of_abstracts.pdf.

4 Experimental Evaluation of a Drift-Diffusion Model for
Vehicle Deceleration Detection

Vehicle deceleration can be used as an implicit communication signal to give pri-
ority to VRUs [34]. Results of the previous project KIVI showed that the detection
performance of vehicle deceleration by VRUs may depend on various factors, such
as deceleration rate, initial speed, age, and gender [1]. To provide a detailed under-
standing of the underlying differences in decision-making, these effects were further
analyzed using a drift-diffusion model.

According to these models, perceptual decision-making is based on an accu-
mulation of sensory evidence over time until a boundary is reached [22]. Several
parameters are used to describe this process, which correspond to different com-
ponents of the human information processing. The most important parameters are
(1) drift rate, which describes the rate of evidence accumulation and is associated
with the quality of evidence, (2) boundary height, which is related to the amount of
evidence for a decision and reflected by the response caution in decision-making, (3)
starting point, which can be positioned closer to the boundary in case of expectations
towards a decision and 4) the non-decision time, which summarizes the time interval
for stimulus encoding and motor response execution [22]. Using reaction times and
response accuracies from empirical experiments, these parameters can be estimated
after a model fitting [25].

This project task intented to investigate how deceleration rate and vehicle speed
affect the parameters of a drift-diffusion model. A study was conducted with N = 62
participants which saw videos of approaching vehicles that either decelerated or not.
These videos were recorded for the previous project KIVI. A detailed description of
the video recordings can be found in [1]. The participants were instructed to press
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keys indicating whether the vehicles decelerated or not. In case of deceleration, the
slowing down process was initiated immediately after the video onset. The deceler-
ation rate (—1.5 and —3.5 m/s?) and the vehicle speed (20 and 40 km/h) were varied
as independent variables.

After the model fitting, the results showed substantial differences in the drift
rate depending on the deceleration rate. This is consistent with the assumption that
a higher stimulus quantity (i.e., higher deceleration rates) leads to faster evidence
accumulation. Moreover, the boundary height as a measure of response caution varied
slightly between the conditions with low and high vehicle speed. Higher values for
the boundary height were observed for the conditions with higher vehicle speed.
Additionally, there was a slight increase in non-decision time for the conditions
with higher vehicle speed. This suggests that stimulus encoding needs slightly more
time in the conditions with higher vehicle speed than in the conditions with lower
vehicle speed. Moreover, a slight shift of the starting point towards the decision that
the vehicle does not decelerate could be observed in conditions with higher vehicle
speed. This finding suggests a decision bias.

In summary, a good model fit to the empirical data was achieved. The results
showed that the contextual factors influenced the model parameters in a way that are
in line with theoretical considerations. Further studies might investigate whether a
complementary use of explicit communication signals, especially for slow decelerat-
ing and fast moving vehicles, leads to an improvement of the evidence accumulation
process and thus to a higher satisfaction and perceived safety of VRUs in interaction
with AVs.

Related Publication:

[29] Trommler, D., Ackermann, C., Krems, J.F.:A drift-diffusion model to explain
vehicle deceleration detection of vulnerable road users. In: Stewart, T.C. (ed.) Pro-
ceedings of the 19th International Conference on Cognitive Modelling, pp. 289-294
(2021). https://acs.ist.psu.edu/papers/ICCM2021Proceedings.pdf.

5 Investigation of Factors Influencing the Gap Acceptance
of Cyclists

When modelling human-like deceleration maneuvers for AVs, the deceleration rate
as well as the time of a deceleration onset that VRUs expect for safe crossings need
to be considered [4]. This expectation can be investigated through the VRUSs’ gap
acceptance which defines the (time) gap that is acceptable for crossing in front of a
vehicle [4]. However, previous studies on pedestrians’ perspective show that the gap
acceptance behavior may depend on external attributes (e.g., vehicle speed, vehicle
size and time to arrival) as well as on internal attributes (e.g., gender and age of
VRUs) [28]. Building on these findings for pedestrians, this project task aimed to
examine the gap acceptance of cyclists. Therefore, the objective was to investigate
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the effects of vehicle size (car vs. truck), vehicle speed (20 vs. 40 km/h) and different
levels of the time to arrival (TTA; ranging from one to five seconds).

The videos were generated in the presented VR cycling simulation with a length
of approximately 10 s each. The videos were shown from the perspective of a cyclist
riding towards an intersection while a vehicle is approaching from the left. Traffic
signs and the study instructions indicated that the cyclist does not have priority.
The TTA was measured as the time gap to the vehicle when the cyclist reaches the
(theoretical) collision point at the intersection. N = 35 Participants were instructed
to indicate by pressing a key, whether or not they would cross the road in front of the
vehicle. As dependent variables, the crossing decision and the time of this decision
before reaching the (theoretical) collision point were recorded.

The results revealed that more participants decided to cross in front of the vehicle
as the TTA level increased. Further, for each TTA level, the willingness to cross was
higher in conditions with faster vehicles than in conditions with slower vehicles.
Within the majority of conditions, slightly more participants chose to cross in front
of a truck compared to a car. Regarding the decision time, the results showed that the
decision to cross or not is made approximately between two to four seconds before
reaching the intersection. In conditions with faster vehicles, participants decided
later (i.e., the cyclist was closer to the intersection) than in conditions with slower
vehicles. In contrast, the decision was made earlier in conditions with lower TTA
levels compared to conditions with higher TTA levels. Similarly, the decision was
made earlier in conditions with trucks than in conditions with cars.

A further analysis focused on differences between the age of participants. For
this, the sample was divided into two groups with 18 younger (18-35 years old)
and 17 older (>35 years old) participants. The results indicated that participants’
crossing decisions were similar, with the exception of the condition with 5s TTA,
where more younger participants than older ones expressed their intention to cross.
Furthermore, older participants tended to make their crossing decisions later than
younger participants.

To sum up, similar to the results for pedestrians, it is assumed that no universal
parameterization is possible to design informal communication between cyclists and
AVs. The study revealed that there are substantial differences in the gap acceptance
of cyclists depending on vehicle size, vehicle speed and TTA. The findings also
suggest the importance of considering age as a factor. Further, the results showed
differences in decision time. The decision not to cross is made earlier than the decision
to cross in front the vehicle. Therefore, AVs should use communication signals for
giving priority early, especially when the TTA level is low and/or the AV is a truck.
In future studies, additional factors, such as internal (e.g., age of the cyclist) and
external attributes (e.g., time of day), need to be explored. Moreover, it could be
relevant to investigate the decision-making process using drift-diffusion models as
proposed in the previous section.

Related Publications:

e [32] Trommler, D., Springer-Teumer, S., Krems, J.F.: To ride or not to ride: explor-
ing cyclists’ gap acceptance in the interaction with (automated) vehicles. In: 34th
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International Co-operation on Theories and Concepts in Traffic Safety (ICTCT)
Conference, Gyor, Hungary (2022).

e Springer-Teumer, S., Trommler, D., Krems, J.F.: How do vehicle size, speed, TTC,
age and sex affect cyclists’ gap acceptance when interacting with (automated) vehi-
cles? In: 1st International Conference on Hybrid Societies, Chemnitz, Germany
(2023).

6 Summary

This chapter gave an overview of the research project “KIRa”, which investigated
the cooperative design of the interaction between automated vehicles and cyclists
according to four project aims.

First, the body posture was investigated as a predictor of the cyclists’ starting
process. The results showed that the progress of the starting process can be accurately
detected based on body posture by human observers. This was even possible with
a high accuracy when certain body parts (e.g., head or legs) were masked. Thus, it
seems possible that an AV can recognize a cyclist’s intention to start and can either
avoid safety-critical situations with cyclists or can resolve them cooperatively at an
early stage.

Second, the development of a VR cycling simulation was presented, including its
validation in terms of perceived criticality and experience of presence. The findings
revealed that the VR cycling simulation is suitable to investigate the cyclists’ criti-
cality perception when interacting with AVs. Different levels of proximity between
a vehicle and a cyclist in three different shared-space conflicts reliably resulted in
corresponding changes in the perceived criticality. This was investigated for different
scenarios. Therefore, it is assumed that it is possible to investigate maneuvers of AVs
interacting with cyclists in a standardized, reproducible and safe way.

Third, a drift-diffusion model for vehicle deceleration detection was empirically
validated. The model parameters suggested the applicability of drift-diffusion mod-
els in applied research areas such as automated driving. This can lead to an improved
understanding of the decision-making process of cyclists and further to the design
of implicit and explicit communication signals adapted to humans’ information pro-
cessing abilities. This is expected to increase cyclists” acceptance and trust towards
AVs.

And fourth, factors influencing cyclists’ gap acceptance were investigated. The
effects found for the gap acceptance of pedestrians could be confirmed, such as a
strong dependence of the gap acceptance on the time gap, the vehicle size and vehicle
speed. Furthermore, the same factors were associated with different decision time of
cyclists (i.e., whether they would cross in front of the vehicle or not). These results
highlight that cooperative interaction between AVs and cyclists is closely linked to
context-sensitive communication.
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7 Further Reading

In addition to the publications in this project, we will refer to the publications of the
previous project “KIVI”, which investigated the interaction between pedestrians and
automated vehicles:

e Ackermann, C., Beggiato, M., Bluhm, L.F,, Loéw, A., Krems, J.F.: Deceleration
parameters and their applicability as informal communication signal between
pedestrians and automated vehicles 62, 757-768. https://doi.org/10.1016/j.trf.
2019.03.006. https://www.sciencedirect.com/science/article/pii/S136984781830
6600.

e Ackermann, C., Beggiato, M., Schubert, S., Krems, J.F.: An experimental study
to investigate design and assessment criteria: what is important for communica-
tion between pedestrians and automated vehicles? 75, 272-282. https://doi.org/10.
1016/j.apergo.2018.11.002.  https://www.sciencedirect.com/science/article/pii/
S0003687018306124.

e Beggiato, M., Witzlack, C., Springer, S., Krems, J.: The right moment for braking
as informal communication signal between automated vehicles and pedestrians
in crossing situations. In: Stanton, N.A. (ed.) Advances in Human Aspects of
Transportation, Advances in Intelligent Systems and Computing, pp. 1072—-1081.
Springer International Publishing. https://doi.org/10.1007/978-3-319-60441-1_
101.

e Beggiato, M., Witzlack, C., Krems, J.F.: Gap acceptance and time-to-arrival esti-
mates as basis for informal communication between pedestrians and vehicles. In:
Proceedings of the 9th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, AutomotiveUI 17, pp. 50-57. Association
for Computing Machinery. https://doi.org/10.1145/3122986.3122995.
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Prediction of Cyclists’ Interaction-Aware | M)
Trajectory for Cooperative Automated oo
Vehicles

Dominik Raeck, Timo Pech, Daniel Trommler, and Klaus Mo6finer

Abstract Cooperative behaviour is one of the most crucial factors for safety and
comfort in shared traffic spaces. While a human driver might be able to automatically
identify behavioural indicators of other traffic participants to predict their movement,
an automated vehicle is not. This is especially important in interaction situations with
vulnerable road users (VRU), such as cyclists. The focus of this work is to implement,
evaluate and compare different possible methods of trajectory forecasts for cyclists
in order to estimate their behavioural intention. With accurate trajectory information
of the VRU, an automated vehicle might be able to plan a cooperative reaction
ahead in time and guarantee a comfortable traffic flow. In sum, three different neural
network architectures have been tested with the main focus on a CNN, which is
capable of incorporating map data into the trajectory forecast. The results showed,
that including external influencing factors, like the infrastructure of a traffic scene,
can have a beneficial effect on the accuracy of the cyclist’s predicted movement.

1 Introduction

The interaction and cooperation of road users is an integral part of urban traffic. In
highly automated and connected traffic, a self-driving car must be able to identify and
evaluate an interaction situation as well as perform suitable cooperative manoeuvres.
This is especially important with vulnerable road users [1] to guarantee comfort and
safety in space sharing conflicts (see previous book chapter by Trommler et al.). In
this project called “Cooperative Interaction of Cyclists and Autonomous Vehicles”
(KIRa) the behaviour of cyclists in mixed traffic was investigated. As described in the
previous book chapter by Trommler et al., the focus of the research is low-speed areas,
specifically urban intersection scenarios with at least one or more cyclists present
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and automated vehicles. To allow an assessment of such situations, the gathering
and communication of the traffic participants’ data is essential. This is especially
challenging with VRUs, as technical solutions like ITS-G5 and ETSI standardized
messages like cooperative awareness (CAM) [2] or manoeuvre coordination message
(MCM) [3] can only be used between connected vehicles. Otherwise, the on-board
sensors of an automated car could be used to detect and track VRUs, but this might
not be possible at intersections, if the VRU is occluded by buildings or parking cars.
Instead, a more decentralized approach was chosen: Mobile sensors on the bicycle,
like GPS, accelerometers or gyroscopes can be used to gather position and movement
data of a cyclists, by utilizing devices like smartphones that already broadly use these
sensors. The requirement for such an approach is a connection between the road users
to allow the exchange of the data.

The kinematic and position data of the traffic participants are hereby not sufficient
to assess a shared space conflict properly. The behaviour of a cyclist is influenced
by various factors. While the velocity and movement direction of the bicycle are
decisive, the manoeuvres are also heavily affected by external conditions, for example
the infrastructure or other road users. The main goal of this project was to infer and
predict the cyclist’s behaviour, considering and utilizing the different influencing
factors. To achieve this, the identification of behavioural indicators is necessary as
well as a suitable behavioural model. The main indicator for the bicycle’s movement
represents its trajectory, which estimates the future position and state of the bicycle.
The proposed algorithm is capable to combine various types of data in order to
accomplish an accurate trajectory forecast for cyclists. This information can later be
used by automated vehicles, to allow an early and appropriate cooperative manoeuvre.
That way a safe and comfortable traffic flow can be ensured for all road users.

2 Related Work

Trajectory forecasts for bicycles are not a very common research topic, however
there is a lot of work regarding cars trajectories that were derived for this use case.
Typically, there are two types of approaches: physical models and machine learning
models, both with individual advantages and strengths. The research on physical
approaches is usually focused around finding a suitable movement model for bicycles.
As mentioned before, these can, for example, be derived from pre-existing car models
[4]. While a physical model can yield high accuracies in very specific use cases,
a machine learning model, like the neural network (NN) will often outperform it
when evaluated in a wider array of scenarios [5]. The reason for that is the higher
adaptability of a machine learning model, when it’s trained with a large amount of
naturalistic data. Another advantage of the NN is its capability to incorporate data of
various types to allow for a more accurate trajectory forecast. This makes the approach
the best choice for this project, as the aim is to combine potential influencing factors
on the cyclist’s behaviour. One of these influencing factors can be other road users
in a given traffic scenario, especially at intersections. A proper trajectory forecast
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algorithm should therefore be interaction-aware and aimed to avoid conflicts, which
is for example realised in the proposed algorithms of Huang [6] and Ju et al. [7]. In
addition to potential interaction partners, the infrastructure of a traffic site can have
a significant influence on the cyclist’s behaviour. The movement of a cyclist can
depend on different features of an intersection, like the lane markings, road borders
and visibility of other road users [1]. This infrastructural data can be included in the
prediction model, for example by converting it into rasterized maps [8].

In this project, we propose a neural network that combines and extends on the
aforementioned approaches. The model can make use of different data types and
sources in order to accurately predict a cyclist’s future movement in interaction with
AVs. For this, not only its kinematic data, but also data from all surrounding vehicles
and area maps are utilized.

2.1 Datasets

Alongside the used training procedure, the quality, type and scope of the training
data is crucial for the performance of the resulting model. For example, if the used
position coordinates are unreliable, the accuracy of the model will be limited from the
start and a meaningful evaluation will be hindered. For this reason, multiple publicly
available trajectory datasets were analysed for their applicability in this project.

The criteria for a good training dataset depend on the use case of the desired model.
In this work, cooperative traffic scenarios were investigated, as already outlined in
Sect. 1. Given this area of application, the following characteristics are used for the
selection of a suitable dataset:

1. The type of featured scenarios These should be comparable with the in Sect. 1
defined scenario, an intersection situation where multiple road users including at
least one cyclist have to interact cooperatively with other vehicles. This limits the
selection to recordings from urban areas. In natural data, the density of the traffic can
vary a lot. A high density can make the analysis of individual interactions difficult,
but offer a larger amount of potential training data.

2. The included road users While there is a multitude of recordings of cars in real
traffic, the number of datasets which include the movement of the cyclists in the
area is rather small. In addition to that, each type of road users must be explicitly
distinguishable from each other, for example through a prior classification and a
unique label.

3. The type of measurement data Since this work is focused on the trajectory of
cyclists, the most important measurements are position coordinates combined with
corresponding timestamps. Further interesting data are velocity, acceleration and
driving direction (heading) of the vehicles. Image and video material can be helpful
to improve the understanding of a traffic scenario and individual situations.
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4. Frequency of the data The Frequency of the data should not be too low to ensure
that even the movement of faster vehicles can be seamlessly described. Some traffic
monitoring data is recorded with frequencies of 1 Hz or less and are therefore not
suitable for this project. Datasets with a recording frequency of more than 2 Hz are
sufficient for the analysis of low-speed scenarios in this use case.

5. Size of the dataset For the training of machine learning algorithms, especially
neural networks, a large-scale and diverse dataset is required. The more complex the
desired model, the more data is needed to effectively train the model. The minimum
required number of training data is in most cases way smaller for a MLP than for a
more complex neural networks like a LSTM or CNN, varying from a few hundred
data points to several thousands. Measurement data with a high diversity will be
required, if the trained model should be able to adapt to new scenarios. Alternatively,
data augmentation methods can be used to enhance the model’s transferability to
new conditions.

Under consideration of these criteria, three public datasets were chosen: the
“ApolloScape trajectories” dataset [9], the “Lankershim boulevard dataset” from the
NGSIM project [10] and the “Intersection Drone Dataset” (InD) [11]. The included
measurement data are best suited for the investigation of cyclists’ trajectories. Nev-
ertheless, compromises must be made when using a public dataset, which is not
specifically designed for the own use case. For this reason, the mentioned datasets
are further described below regarding their features, strengths and weaknesses.

The ApolloScape dataset was recorded in the city centre of Hong-Kong and
includes recordings from multiple big intersections. That means it features mainly
dense and complex traffic scenarios with a high amount of traffic participants. The
data contains position coordinates of cars, pedestrians and cyclists, that are distinc-
tively classified and labelled. All data were recorded with a frequency of 2 Hz, which
is rather low, but sufficient in this case, since the average velocities of the road users
are not very high. In conclusion, ApolloScape offers a large and accurate dataset.
The downside is the complexity of the traffic scenarios, making it hardly possible to
analyse individual interactions between specific traffic participants. Furthermore, a
localization of the position coordinates in a map is not possible, because these are
all relative to a local coordinate system and not a world coordinate system.

The second dataset is part of a collection of trajectory datasets from the NGSIM
project. It contains recordings from multiple intersections along the Lankershim
Boulevard in Los Angeles. The measurement data does not only consist of world
coordinates from cars, trucks and cyclists, but also their velocity, acceleration and
heading. The featured traffic scenarios are less dense than in ApolloScape, and allow
for a better investigation of interaction situations between these road users. The
biggest disadvantage of this dataset is the sparse number and therefore limited diver-
sity of cyclist recordings.

The InD dataset was created with drones at various intersections in German cities.
The high number of cyclists at these places create diverse measurement data, which
are very suitable for the training of machine learning models. The observed inter-
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sections are smaller than the ones in the NGSIM dataset and not regulated by any
traffic lights, which leads to very heterogeneous behaviour of the cyclists. One special
feature of this dataset is, a drone image is provided for each measurement location.
Later, the position coordinates of all road users can be mapped to these images, which
is a decisive factor for the proposed algorithm (see Sect. 3).

The described datasets were used to develop a proof of concept for a trajectory
forecasting algorithm in cooperative traffic scenarios. The large-scale ApolloScape
dataset was used to design and validate a workflow for extracting, structuring and
pre-processing data, as well as a first training algorithm. The NGSIM dataset could
later be used to develop a method to incorporate maps into the training procedure.
This approach will be further described in Sect. 3.2. The InD Dataset is best suited for
the training and validation of complex neural networks because of its high diversity
in cyclist-car interactions and its high amount of data.

3 Algorithm

3.1 Model Implementation

To calculate a cyclist’s trajectory as an indicator for their behaviour, multiple algo-
rithms were implemented. A trajectory forecast allows for a time discrete approx-
imation of the future state of a bicycle through, e.g., its position and velocity. One
goal of this project was to investigate different influencing parameters on VRUs’
behaviours and to explore factors that can support the development of accurate pre-
dictions. A cyclist’s movement in traffic is not only dependent on the kinematic of
bicycles itself but can be affected, by for example, the given infrastructure or indi-
vidual factors of each person. For that reason, NN have been utilized as they are
capable of incorporating different types of data into the trajectory forecast. When
choosing a suitable architecture for a NN, there are many possible model types, each
with their own possibilities, strengths and weaknesses. In this project, three specific
NN variations were implemented and compared for their applicability in trajectory
forecasting. The concept of the used architectures, a multi-layer perceptron (MLP),
a long-short-term-memory-NN (LSTM) and a convoluted neural network (CNN),
will be described below.

1. MLP The first implemented NN was a MLP [12], as it is the most simplistic vari-
ant of the aforementioned. The input for the model is a 3s time series of the cyclist’s
position coordinates and the output are multiple 2D-coordinates of the cyclists’ esti-
mated future position in 0.5s intervals. This means the measurement data has to be
converted and split into evenly long sequences as a preparation for the training. The
focus of this first model implementation was to validate the data extraction, trans-
formation and sequencing as well as the training procedure itself. The MLP itself
consists of one input layer, three dense layers and one output layer, each connected
with a ReLu activation function. The number of layers and the best suited activation
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function has been determined experimentally which later could be reused to design
the fully connected parts of the more complex models. Despite its rather simple
structure, the results showed that the MLP is already capable to predict a cyclist’s
trajectory, especially for straight movements.

2. LSTM The described MLP model calculated the cyclists’ trajectory based on
only its past position, but the behaviour of the cyclist is strongly dependent on the
movement of all other road users in a scene. Therefore, the next step was to extend
the model to include the cooperative aspect of a traffic scenario into the prediction to
allow for an interaction-aware trajectory forecast. The chosen algorithm for this task
is a LSTM based on the TrajNet++ framework [13], which was originally designed
to predict movements of pedestrians in crowded areas with focus on the coopera-
tion and interaction of the individual attendants. The pre-existing implementation
was altered and adapted for the use on bicycle trajectories rather than pedestrians.
The model includes a classification of potential interaction situations through given
parameters like the distance between the road users, the movement direction or their
field of view. The conditions for this classification were adjusted to fit the faster
movement of cyclists and cars in this use case and the bigger possible distances
between interaction partners. The input of the model can now not only include the
cyclist’s previous positions, but the movement of all road users within a specific
area around the cyclist. The output of the model has been kept the same as in the
MLP, a time series of estimated position coordinates for the bicycle. This ensures
the comparability between the implemented models.

3. CNN After looking at the performance of the LSTM in the bicycle trajectory fore-
cast on intersections, it is still noticeable that the model excels in predicting forward
movement, but shows weaknesses when estimating tight and sudden cornering of
the cyclist. Cyclists in those kinds of manoeuvres show a high amount of diversity
in their actual movement, because of their ability for dynamic and fast steering. That
means the greater possible range of motions for a cyclist when turning will make
it harder for a model to predict the correct driving path. One way to increase the
accuracy in those situations is to narrow the potential action radius of the bicycle.
This is accomplished by providing infrastructural data to the model, like street mark-
ings and borders. In order to process this new kind of input data, a third NN type
has been chosen. A CNN allows to extend the input for the trajectory forecast, by
extracting infrastructural data from maps, but just as the LSTM it is also capable of
incorporating the movement data of all road users in one given scene. How this is
accomplished will be further described in the next section (see Sect. 3.2).

The main part of the CNN, the feature extractor, is based on MobileNetv2 [14],
a well-established CNN with high accuracy and fast computation times. Transfer
learning allows to adapt the pre-trained model for the new use case of this project,
while keeping its already high precision. The fully connected part of the model is
loosely based on the MLP that was described before, but experimentally optimized
in this application. The output of the model is still kept the same, also to allow a
comparison with the other implemented models.
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Out of the three described model architectures, the CNN showed the highest
potential in integrating different data types for a trajectory forecast with the highest
possible accuracy. The input of the model could always be extended by additional
parameters, as an indicator for the cyclist’s behaviour. It will be part of future works
to investigate such parameters and utilize them in the proposed algorithm.

3.2 Data Augmentation

When training the described CNN, the data pre-processing and augmentation is
equally important as the model implementation itself. As mentioned earlier, the rea-
son for using a CNN is its capability of processing images fast, in this case recordings
of the infrastructure in the form of maps, satellite, or drone images. Further, the model
should also be given the position coordinates and kinematic data of the cyclist and all
surrounding vehicles. An algorithm is proposed to merge those different data types
into one combined image, which can then be used as a training input for the CNN.
This data processing will be described step by step.

The first step is to convert the cyclist’s past position coordinates into local image
coordinates (see Fig. 1). For consistency, the origin of the movement is always the
centre of the image. The dimensions of the area that is shown in the image is a
parameter of the model and was optimized for the given use case, here 100x 100 m.
The chosen image size must be compatible with the input layer of the CNN.

As second step the position coordinates of all surrounding vehicles in the scene
were converted in the same way and added to the image (see Fig.2). Distinct grey
scale values can be used to separate individual vehicle types from each other. In this
case the black line shows the cyclist and the grey line the cars.
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The last step of the data conversion is to include kinematic data in the image, in
this case the velocity and heading value of each vehicle. For this, the given data is
transformed to a scale between 0 and 255, or colour values for an image. The scaled
values can then be added to one corresponding colour channel at each corresponding
position of the vehicle. This means in practice that the trajectory of the vehicles is
visualized in different colours depending on their velocity and heading (see Fig. 3).

Next up the infrastructural data is extracted from given images of the intersection.
This can be done by utilizing satellite images or in this case drone images of the
scene (see Fig.4a). Since the color channels of the image are already used in the
last step to encode kinematic data, the map is converted to grey scale. To further
highlight important information, e.g., street borders, the image is processed with an
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Fig. 4 Important features in the original image are highlighted using an edge detection algorithm
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edge detection algorithm (see Fig. 4b). This new image is merged with the previously
described converted vehicle data, by matching the position coordinates exactly to the
cut out. Now, the generated image (see Fig.5) contains all relevant data and can be
used as input for the CNN. This algorithm is repeated for the next given time step
until all measurement data are converted into images. This way a training set of more
than 40,000 images could be created from the InD data, an amount that is more than
sufficient to train deep neural networks.

When creating a training set with this many images, it is important that none
of the possible scenarios is overrepresented, otherwise the model will over-fit on
these scenes while not performing well in other conditions. In this case one specific
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intersection was featuring a lot more cyclists than any other location and therefore
offered way more measurement data, which means that the NN could possibly be
trained on this specific intersection and fail to adapt to other infrastructures. To avoid
this problem, a random rotation is applied to each image that counteracts overfitting
and makes the trained models usable with other scenes as well. The adaptability of
the NN is proven by utilizing a test dataset from an intersection that was completely
excluded from the training.

4 Evaluation

To evaluate the prediction accuracy of the implemented models, a test dataset has
been created. For that, 1,000 images have been used which were generated from a
scene, that was completely excluded from the model’s training. This way the model’s
adaptability to new scenarios and conditions can be investigated. The test dataset is
the same for all used NN variations to ensure comparability between the calculated
trajectory forecast precisions.

With the given test dataset, a statistical evaluation was conducted to investigate
the three NN’s prediction accuracy. In the field of trajectory forecasts, a specific error
metric is commonly used to calculate the deviation of an estimated position from its
ground truth. This error metric is called average displacement error (short ADE) and
is widely used in literature to evaluate similar approaches [15]. The advantage of
using an established error metric is, that it does not only allow a comparison between
the proposed models but also with pre-existing ones.

dx = Xn:(;e,- —x)?
i=1

o (1)
dy =) (5 —»)’
i=1

ADE = ./dx +dy/2n

To determine the ADE, the deviation of a predicted point from the ground truth
is calculated in lateral (dx) as well as longitudinal (dy) direction (see Eq. 1). Both
individual values are used to evaluate a model’s precision for specific manoeuvres of
the bicycle. The lateral error indicates how well turning movements can be predicted
and the longitudinal error shows the precision during straight driving. The combined
displacement of the prediction is then calculated by the mean of these two values.
These values were averaged for all predictions that correspond to each image in the
test dataset in order to obtain the average error for every implemented model.
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Table 1 ADE comparison of the four used models. A constant prediction time frame of 3 s has
been used with all models

KF (m) MLP (m) LSTM (m) CNN (m)
ADE 1.78 1.9 1.24 0.84
dx .12 1.16 0.73 0.45
dy 2.44 2.64 1.75 1.23

4.1 Evaluation of Different Input Data

The main purpose of the evaluation process was to compare the influence of different
data types on the trajectory prediction accuracy for the cyclist. For that, the three
NN types were compared, which are used to incorporate additional data each. As
mentioned in Sect. 3 algorithm the MLP uses only the cyclist’s past positions for a
trajectory prediction, the LSTM is capable of incorporating movements of potentially
interacting vehicles, and the CNN additionally uses infrastructural data as input for
the model. A Kalman filter was used to compare the proposed machine learning
algorithms with a physical approach. Like the MLP, the Kalman filter uses only the
cyclist’s position as input and therefore both models offer a baseline accuracy for the
trajectory predictions.

The table (see Table 1) shows the ADE of the three implemented NNs and the
Kalman filter. A constant prediction time frame of 3s was used for all models to
make the results comparable.

The MLP revealed the highest average error of 1.9m, followed closely by the
Kalman filter with an error of 1.78 m. Both of these algorithms only use the cyclist’s
past position as input for the trajectory forecast, which means a lower accuracy is
to be expected here. Despite the higher overall error, the lower longitudinal error
indicates that a prediction of movements in driving direction is possible even with
these comparatively simple models.

The LSTM column shows that the inclusion of interactions between the cyclist
and vehicles in close proximity yields a significant accuracy increase. A LSTM is
generally better suited for a time series forecast than the aforementioned models,
which means the lower average error is caused by not only the interaction-aware
prediction but also a more viable algorithm for this use case.

The best model in this comparison is the CNN with an ADE of 0.84 m. It includes
all relevant vehicles’ past positions and kinematic data as well as infrastructural
data of the cyclist’s surroundings. An accuracy increase of up to 42% can be seen in
longitudinal and lateral direction compared to the LSTM. Especially the improvement
in lateral movements is important, as it makes the CNN the best model to accurately
predict cyclists’ turning manoeuvres out of the compared approaches.

The influence of the infrastructural data on the trajectory forecasts was further
investigated by implementing a variation of the CNN that is not using this data. All
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Table 2 ADE comparison of two CNN variations. One with and one without the usage of map data

CNN with map data (m) CNN without map data (m)
ADE 0.84 1.08
dx 0.45 0.59
dy 1.23 1.57

- CNN
-=MLP

LSTM
~#=Kalman Filter

0 1 2 3 4 5 6 7
prediction time (s)

Fig. 6 Comparison of the four used trajectory forecast models with increasing prediction time
horizons

other training and model parameters remained constant, which makes this version
comparable to the aforementioned CNN (Table 2).

The comparison of the ADEs for both CNN variations shows a clear improvement
in the forecast accuracy when using infrastructural data.

4.2 Evaluation of Prediction Time Horizons

The prediction time horizon is one of the most important parameters of any trajectory
forecast model. It defines the time frame over which the prediction is supposed to
happen. Naturally, the accuracy of a calculated trajectory decreases with a higher
time horizon. The overall precision of a model determines how long the prediction
time can be chosen before the accuracy is not sufficient anymore for the given use
case. The previous results were generated using a prediction time horizon of 3 s. In the
following, the influence of different time horizons on the ADE is investigated. This
can be achieved by training a separate model with each of the respective prediction
time frames from one to six seconds (Fig. 6).
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The comparison shows that the ADE of each model increases with higher pre-
diction times. The MLP showed the worst results at high prediction times to a point
where the model is no longer trainable if the time horizon would be even higher. The
best performing model is the CNN, which yields a better performance than the other
models at all prediction times. All error values increase to a value where they are
no longer reasonable in the use case of an intersection. The crucial difference is that
the CNN could be used to predict trajectories of cyclists up to 4s length, while the
Kalman Filter and the MLP are already too inaccurate with a prediction of 3s.

In future work, possibilities of increasing the forecast time frame can be further
investigated. The most important advantage of the used NN is the fact that additional
types of data, e.g., behavioural or psychological parameters can be incorporated in
order to allow for an even more precise and long-term trajectory prediction.

5 Discussion and Future Work

In both this book chapter and the previous one by Trommler et al., influencing factors
on the behaviour of cyclists in interaction situations with cars were investigated. The
analysis of naturalistic cycling studies in the book chapter by Trommler et al. showed
that the cyclists’ actions can be very dynamic and depend on a variety of conditions.
Determining every deciding factor on a certain manoeuvre is not always possible.
A neural network like the proposed model of this chapter is a well-suited method
to predict such manoeuvres. Not only is this machine learning algorithm capable
of utilizing input parameters of all sorts but it may also implicitly learn behaviour
patterns of cyclists, by training it with a large amount of real traffic data.

The implementation and evaluation of the neural networks proved to be a viable
approach for an accurate trajectory forecast of cyclists in cooperative interaction
situations with cars. The dynamic and fast movement of a bicycle makes the cyclist’s
behaviour generally hard to anticipate. Providing information about the scenery and
also the other vehicles helps to improve this estimation, by reducing the cyclist’s
possible range of action. Comparing the effect of additional input data showed that
the cyclist’s movement can be predicted better by utilizing influencing factors in
its surrounding, like the infrastructure. This can be seen in the contrast between
the proposed CNN'’s accuracy to the Kalman Filter (see Sect.4). The advantage of
a neural network in this use case is its capability to incorporate parameters that a
physical model could not. In future work, this approach can be expanded to utilize
even more behaviour indicators like individual factors of the cyclist.

The evaluation of the proposed CNN for cyclist trajectory prediction showed that
its accuracy can vary depending on the type of movement. The amount of behaviour
patterns that a machine learning algorithm can model is limited by the given scenarios
that are included in the training dataset but also by the used input parameters and if
they can serve as indicators for a certain manoeuvre. One example of a manoeuvre
that cannot be predicted early is the starting of cyclist who was standing and waiting
at an intersection. From the currently used parameters, the kinematic data of the
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bicycle and its past position, there is no indication for such a motion making it
impossible to estimate when the cyclistis going to start. To allow for such a prediction,
additional input parameters would need to be incorporated. Such potential indicators
for the cyclist’s starting behaviour were investigated in the previous book chapter
by Trommler et al.. A body pose detection algorithm could be used to extract these
features and use them as additional input for the proposed neural network. This would
widen the algorithms potential field of use and will be subject to future research.

6 Conclusion

Neural networks can combine the autonomous vehicle’s trajectory with infrastruc-
tural data to forecast a collision free trajectory for cyclists in interaction situations.
The research in this project showed that a cyclist’s behaviour in mixed traffic is
dependent on many factors. A neural network, like the CNN that was discussed in
this work proved to be a potent algorithm to incorporate data of various types, e.g., the
kinematic data of the road users and map data, into a trajectory forecast. Combining
these data types significantly increased the overall accuracy of the movement pre-
diction. In future work this algorithm will be extended by including more potential
influencing parameters on the VRUs behaviour.
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Detecting Intentions of Vulnerable Road )
Users Based on Collective Intelligence as L
a Basis for Automated Driving

Stefan Zernetsch, Viktor Kress, Maarten Bieshaar, Jan Schneegans,
Giinther Reitberger, Erich Fuchs, Bernhard Sick, and Konrad Doll

Abstract The project Detecting Intentions of Vulnerable Road Users Based on Col-
lective Intelligence as a Basis for Automated Driving (DeColnt?) focuses on detecting
the intentions of vulnerable road users (VRUs) in automated driving using cooper-
ative technologies. Especially in urban areas, VRUs, e.g., pedestrians and cyclists,
will continue to play an essential role in mixed traffic. For an accident-free and highly
efficient traffic flow with automated vehicles, it is vital to perceive VRUs and their
intentions and analyze them similarly to humans when driving and forecasting VRU
trajectories. Doing this reliably and robustly with a multimodal sensor system (e.g.,
cameras, LiDARs, accelerometers, and gyroscopes in mobile devices) in real-time
is a big challenge. We follow a holistic, cooperative approach to recognize humans’
movements and forecast their trajectories. Heterogeneous open sets of agents, i.e.,
collaboratively interacting vehicles, infrastructure, and VRUs equipped with mobile
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devices, exchange information to determine individual models of their surrounding
environment, allowing an accurate and reliable forecast of VRU basic movements
and trajectories. The collective intelligence of cooperating agents resolves occlu-
sions, implausibilities, and inconsistencies. We developed new methods by consid-
ering and combining novel signal processing and modeling techniques with machine
learning-based pattern recognition approaches. The cooperation between agents hap-
pens on several levels: the VRU perception level, the level of recognized trajectories,
or the level of already detected intentions.

1 Introduction

Traffic is what moves us. Due to rapid developments in the past years in the fields of
hardware, software, communication, and connectivity, it is in close reach that we do
not even have to steer anymore. In special use cases, e.g., on motorways with reduced
speeds, we are already there. Autonomous cars aim to combine additional comfort
with exceeding efficiency when it comes to traffic jam avoidance, pathfinding, and
car sharing. The most crucial aspect though is the potential to create safer traffic with
fewer accidents and fatalities. This is the key issue that prevents the installation of
autonomous cars right now.

The project Detecting Intentions of Vulnerable Road Users Based on Collective
Intelligence as a Basis for Automated Driving (DeColnt?) aims at providing the ben-
efits of cooperation in traffic with a focus on pedestrians and cyclists. The consortium
consists of three partners who work together, contributing novel ideas and algorithms
to tackle this crucial challenge in future traffic. Collaboration and cooperation are
necessary for the automated domain as well. Single sources of data always lack
information. The shift from forward-looking sensors to 360° perception systems is
a first step to alleviate this issue, but still, a single sensor-equipped vehicle is not
able to resolve occlusions or to sense behind corners. Nevertheless, this is crucial for
a holistic understanding of the current situation and upcoming dangers to provide
protection for VRUs and enable efficient and comfortable driving.

Autonomous cars shall not operate in isolation. Their implementation drasti-
cally influences every mobility aspect in the public space. Vulnerable road users
(VRUs), i.e., micromobility users or pedestrians, are sharing parts of the same space
as autonomous vehicles. Whereas cars have the capability to communicate and share
information on a technical level, VRUs are not able to tell an autonomous car that they
want to cross the street by establishing eye contact as humans would. Special care
has to be taken to make automated traffic safe for all vulnerable traffic participants.

The vision of future traffic the DeColnt? [8] project is based on is illustrated in
Fig. 1. Equipped vehicles share information about their perception and predictions
and thus extend their individual limits. Even VRUs themselves and static infras-
tructure can communicate and contribute in this local ad hoc information environ-
ment. These are the three core components in our project to perceive pedestrians
and cyclists: the intersection infrastructure, the sensor-equipped vehicle, and sensor-
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Fig. 1 Vision of a connected and cooperating world to provide safety for VRUs

equipped VRUs. Together we collect data to build a labeled ground truth database,
apply existing approaches in real-world circumstances, and learn from the observed
behavior by training novel models, thus pushing the state of the art of VRU pro-
tection systems in an automated and connected world. Figure?2 depicts the actual
sensor setup. In the bottom, the static, wide-angle, synchronized stereo camera setup
mounted at the research intersection [28] in Aschaffenburg, Germany, together with
two sample images illustrating the fields of view, is shown. The area of the corner of
the main road to a side road is the common field of view. Additionally, we collected
data with a research vehicle [36] equipped with a LiDAR, a stereo camera, and an
automotive dynamic motion analyzer (ADMA). The latter provides a self-localization
ability. We created a local coordinate system with the ADMA of the research vehicle
and the stereo camera setup of the intersection having the same origin. The third
component are the VRUs themselves. We conducted measurement campaigns fol-
lowing specific scenarios involving the research vehicle and VRUs in the area of the
research intersection. The VRUs are equipped with smart devices [7], as, for exam-
ple, depicted in Fig. 2a. In the common field of view, labeled data can, together with
the precise calibration of the stereo camera system, provide a positional ground truth.
The VRU smart devices provide inertial and positional information about the VRU.
Altogether, throughout the project, we collected short sequences with instructed and
uninstructed VRUs capturing the movements listed in Table 1. Curated parts of the
database are made publicly available [41, 44, 65, 66]. Extensive descriptions of
the data collection and preparation, approaches, algorithms, and evaluations can be
found in the Ph.D. theses [7, 36, 53, 64] that evolved from the project.
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(a) Exemplary cyclist body area network of a (b)Research vehicle with LIDAR, stereo camera,
smartphone, a smart watch, and a smart helmet  and Automotive Dynamic Motion Analyzer
Ny \ b, A

;]I

(c) Wide angle stereo camera setup at the research intersection. The individual fields of view are
marked blue and yellow, and the intersection of the fields of view is marked green.

Fig. 2 Cooperative perception and movement prediction sensor setup

1.1 Main Goals

The main focus of our approach, and consequently the DeColnt? project, is the inves-
tigation of techniques for cooperative intention detection and trajectory forecasting
of VRUs. Our overall goal is to detect the intentions of VRUs early and reliably using
the collective intelligence of all road users. A schematic of this process is depicted
in Fig.3.

Due to the ability of VRUs to suddenly start a motion or to change the direction
of motion, a dangerous situation may occur within hundreds of milliseconds. To
avoid accidents, autonomous vehicles must be aware of their surroundings at all
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Table1 The gathered dataset with the number of scenes, persons, and motion primitives describing
the possible motion states of VRUs

Instructed Uninstructed Total
Scenes 976 672 1648
Test persons 89 ~672 761
Stop 344 189 533
Wait 348 358 706
Start 342 351 693
Straight 972 668 1640
Turn left 269 65 334
Turn right 271 130 401
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Fig. 3 Schematic representation of the overall process to cooperative perception and cooperative
intention detection [8]

times. This includes not only the current but also the future positions of VRUs.
Based on position forecasts, each autonomous vehicle can then plan a safe trajectory
in mixed traffic. To achieve this goal, we aim to perform cooperative trajectory
forecasting for VRUs. We generate forecasts over a short time horizon of 2.5 s, which
is sufficient to perform emergency braking or evasive maneuvers [7, 64]. While we
aim at forecasting trajectories with high positional accuracy, all predictions of VRU
behavior are subject to error. This is especially true for larger forecast horizons since
VRUs can change direction quickly without evidence of the behavior at the time
at which the forecast is made. Therefore, we need to quantize the uncertainty of
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Fig. 4 Two fusion approaches for the basic movement detection [7]

our forecasts as well. This can be achieved by probabilistic trajectory forecasting,
where, instead of one position for every forecast time step, regions with a certain
probability are predicted. The main goal of probabilistic trajectory forecasting is to
generate reliable estimates, i.e., if we estimate regions with a probability of 95%, the
true position of the VRU should fall into that region in 95% of all forecasts. Another
goal of probabilistic trajectory forecasting is to estimate regions that are as small as
possible to allow efficient maneuver planning. Since a single sensor setup is prone
to occlusion in dense traffic, our goal is to perform these forecasts cooperatively.

According to the Oxford Dictionary, cooperation is the action of working together
to the same end [51]. Hence, the action is the process of combining information
originating from different sources, i.e., vehicles, sensor-equipped infrastructure, and
VRUs themselves, to increase the safety of VRUs. In the following, all involved
entities are referred to as agents. In our work, we see the cooperative system from
the perspective of an ego vehicle. All agents (including the ego vehicle) perform
cyclist detection and intention detection locally. These agents exchange information
via a wireless ad hoc network (i.e., V2X network). Ego-vehicle information (such
as the position) and fused information of earlier stages are always available to the
ego vehicle. For the sake of brevity, the corresponding arrows are not shown in
Fig. 3. Perception incorporates the detection of cyclists, e.g., the detection of cyclists
in camera images, RADAR, or LIDAR scans. Smart devices and other wearables
detect the position using the integrated GNSS receivers, predict the VRU class, and
perform intention detection (i.e., basic movement detection and trajectory forecasts)
using their inertial sensors (cf. Sect.4.2). Furthermore, we assume that the time
between the agents is synchronized, e.g., via GPS time.

‘We conduct cooperative intention detection on the feature- and the decision-level.
We can further subdivide this into the fusion of basic movements and trajectory
forecasts. We depict a schematic showing the feature- and the decision-level fusion
paradigms for the cyclist’s basic movement detection in Fig. 4. We refer to the feature-
level fusion paradigm as the fusion of sensor measurements and features from dif-
ferent sensors and sources. This combined information is used to detect the cyclist’s
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intention better. In the decision-level fusion paradigm, predictions from basic move-
ment and forecasting models of different road users are fused.

1.2 Outline

In this chapter, we describe how we solved the issues of detecting and tracking VRUs
together with the follow-up process of intention detection as our main contribution.
Our focus lies on the cooperative information gain based on the multimodal set-
ting depicted in Fig.2. In doing so, we first evaluate the weaknesses of uni-modal
object detection and determine the strengths and chances of multiple different sen-
sor sources via cooperative tracking in Sect.2. Towards confidence estimations, we
identify external factors influencing the tracking performance, i.e., context infor-
mation. VRU tracks form the essential input to the intention detection process in
Sect. 3, which we divide into basic movement detection and trajectory forecasting.
We perform both steps separately on the three different device types we have avail-
able, i.e., the stationary cameras, the moving vehicle, and the smart devices. This
is beneficial, as we point out throughout the work, due to different constraints and
possibilities. Moreover, we identify additional input data derived from the sensors,
such as optical flow images and poses. The basic movements form an additional
input for trajectory forecasting, the essential part of our work. At first, we predict
the movement of pedestrians and cyclists in a deterministic manner again separately
for our three sources. Then, we show approaches of how to estimate, predict, and
evaluate the confidence in the forecasts made on stationary cameras and a moving
vehicle in our work on probabilistic trajectory forecasts. At this point, we emphasize
the contribution of our work to the trajectory planning task of autonomous vehicles.
Object detection, together with tracking and probabilistic trajectory forecast, have
direct use in the planning of efficient and safe vehicle paths. In Sect. 4, we showcase
the benefits of cooperatively using our three information sources in the intention
detection process as we already have for the tracking stage. As shown in Fig. 2, the
VRUs themselves equipped with multiple smart devices form an information source.
Therefore, we show how the different devices and wearing positions contribute to
specific information gains, and we can combine them beneficially. In the next step,
we examine different methods for cooperative intention detection, including feature-
and decision-level fusion for basic movements and trajectories. In this context, we
present innovative solutions for a great variety of problems, such as delay, sensor
outage and occlusion, out-of-sequence fusion, and information loops. Moreover, we
investigate and compare different approaches and elaborate on the possibilities of
implementing such a system utilizing current V2X protocols and standards, such as
collective perception messages (CPM) and collective awareness messages (CAM).
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2 Cooperative Perception and Tracking

The first step on the road to intention detection and prediction of VRUs is to detect
pedestrians and cyclists and identify them throughout the scene, i.e., perform track-
ing. This has to be done in a precise and accurate way as it is the basis for all the
following steps. Accuracy addresses the ability to ensure that a detected VRU is
existing and indeed of the claimed type. If a VRU is not detected although it is in the
field of view of the sensors and not occluded, the accuracy is reduced. The precision
measures the distance of a detected VRU to the ground truth real-world object. Our
approach is to achieve reliable and precise detection and tracking in a multimodal
and multi-agent setting, i.e., in a cooperative way. We make use of a stereo camera
setup at a static road site unit, a stereo camera mounted in a vehicle, and the VRUs
themselves equipped with smart devices to provide superior coverage and more pre-
cise solutions than one single sensor could provide. Additionally, we will show the
impact of context information on the performance of our system representative for
all state of the art detection algorithms and the ability to gather context information
more extensively and accurately in cooperation.

2.1 Context Dependent Detection

In this section, we explore the performance of state of the art object detection methods.
On the way to fault-free and therefore safe autonomous driving, such perception
techniques should be reliable in any case. For the viewing angle and lighting situation,
two exemplary cases of context knowledge, we will discover significant differences
to the regular performance.

2.1.1 Viewing Angle Dependent Bicycle Detection

Neural networks (NNs), in the field of image processing especially convolutional
neural networks (CNNs), define the state of the art techniques for detecting objects,
segmenting images, and many more tasks. Although setting the bars higher for algo-
rithms in this domain and outperforming all previous approaches assuming the testing
data to be at least similar to the training data, there is still room for improvement. In
this section, we want to highlight some flaws of state of the art detection algorithms
based on our data.

Figure 2c shows the viewing angles of our static stereo camera setup. There is a
bike lane next to the sidewalk on the main street. The lane is directed towards the
left camera. The right camera has an orthogonal view of the lane. An example of a
cyclist riding on the described bike lane can be seen in Fig. 5. The figure also shows
the detection boxes with classes and confidentialities created by a Faster R-CNN [56]
network based on a ResNet-101 [29] backbone trained on the COCO dataset [46],
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Fig. 5 Bicycle, person, and car detections from the left and right camera view

Table 2 Viewing angle dependent bicycle detection rate evaluated on 51 scenarios

View on bicycle Average detection rate
Right, orthogonal camera 0.8993
Left, straight ahead camera 0.2476

which had a state of the art performance at the time of the evaluation considering
a close to real-time execution speed. A cyclist is not labeled as a separate class. A
cyclist is detected by a person bounding box and a bicycle bounding box which have
an intersection over union (IoU) above a determined threshold. We experienced an
IoU of 0.3 as sufficient. The detection of cyclists is a central part of our project as
we want to increase the cyclists’ safety by predicting their behavior. In particular,
reliable bicycle detection is crucial. Figure 5 shows the bicycle detected in the right,
orthogonal camera view, but not in the left, straight ahead camera view. This is
indeed no exception in evaluating the bicycle detection rate with respect to the two
mentioned camera angles. We evaluated 51 scenarios of cyclists riding on the bicycle
lane or on the pavement next to it in the direction indicated in Fig.5. The scenarios
cover most of the possibilities cyclists can be visible in the two cameras.

Table 2 lists the detection rates with respect to all frames of all 51 scenarios. The
detection rate in the right camera is 0.8993. It might be a little lower than the expected
detection rate of an object detection task, but the fact that there are people sitting on
the bicycles in every image and the, in some parts, low contrast with respect to the
background makes the task more difficult than in the trained dataset. Moreover, the
weather conditions are challenging in some scenarios. We will elaborate on that fact
in more detail in the following. Nevertheless, the detection rate of 0.2476 in the left
camera is significantly worse than the one on the right. The detection rate is smaller
for the left camera angle in 50 of the 51 scenarios. The cause can be manifold. It
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might be an underrepresentation of such images in the training dataset or simply a
more challenging task due to the fact that less of the bicycle is visible and more of
the bicycle is hidden by the rider. Whatever the case, the consequence is that we are
not able to reliably detect a cyclist in such a case if only the straight-ahead camera
is available.

We, therefore, propose in our approach that at least a second camera angle is
necessary to be able to track cyclists without gaps. This will be discussed in more
detail in Sect. 2.3. Moreover, we created a novel algorithm to subtract the background
from the foreground in static camera setups [55] that is able to identify moving
objects. Regions of movements without detected objects indicate missed detections.

2.1.2 Lighting Situation Dependent Person Detection

The differences in the detection performance with respect to the viewing angle give
a hint that is important to take additional information into account when we estimate
our trust in the output of our perception system. We call this additional information
context. It is an explicit goal of our project to investigate the influence of context
information on the detection and prediction capabilities of our algorithms. Therefore,
we split our database with respect to another criterion, the time of day. In Sect. 2.4,
we take a look at further types of weather and lighting condition context types.
Nevertheless, the main focus in the process of the creation of our dataset was to
provide a basis for the development of algorithms for VRU intention detection and
the corresponding evaluation. The different times of day and viewing angles are a side
product of the data-capturing process. They are represented in significant amounts
of scenarios to be able to make deductions. We also discovered rain or sun glare but
in too few scenarios to provide statistically significant results. In the current projects
of the three participating teams, we are continuing to work on extending the existing
database specifically with respect to such further aspects to evaluate and address
model weaknesses. To avoid the viewing angle as an influencing factor, we choose
the person detection in the two camera views for the 51 scenarios already mentioned.
The mean detection performance is similar for both cameras with a recall of 0.825
in the right camera view and 0.780 in the left one. There are 11 scenarios captured
in the evening or during a thunderstorm which resulted in less daylight and darker
images. We refer to such scenarios as dawn_dusk in contrast to daytime which is

Table 3 Lighting situation dependent person detection evaluated on 51 scenarios

Camera Lighting situation Average detection rate
Right Daytime 0.8885
Right Dawn_dusk 0.6818
Left Daytime 0.8019
Left Dawn_dusk 0.6910
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the regular case. Table 3 shows the detection rates. The detection rate is lower for
the 11 dawn_dusk scenarios for both cameras. In the left camera, the difference
is about 0.11 and in the right one even 0.21. The sample size is still small such
that with more data and a network training based on more dawn_dusk images the
difference might not be so big anymore. Nevertheless, we have found a motivation to
further work on the detection and determination of context information and to include
context information in the data collection process and the assessment of detection
confidentialities.

2.2 Cooperative Detection and Tracking of Cyclists

Cooperation is an integral component on the way to a comprehensive and reliable
detection of VRUs in an automated traffic environment. To showcase the ability of
an equipped multi-agent system to overcome the limitations of single ego-vehicles
for example, we gathered data in multiple measurement campaigns in real-world
environments based on the setup described in Sect. 1.

In a reduced setting, we showcase the benefit of cooperation in [54]. We concen-
trate on the tracking of cyclists, i.e., we assumed that the objects we want to track are
cyclists. The relevant device the cyclists carry is a smartphone in the trouser pocket.
Followup works described in Sect. 4.2 elaborate more on additional devices mounted
at different wearing positions. The output of the VRU sensors is an estimation of the
velocity, the yaw rate, and the GPS-based position. Additionally, we detect and deter-
mine the 3D positions of the cyclists with the static stereo camera setup mounted at
the research intersection. The intersection sensor setting provides a positional accu-
racy of less than 10 cm in every direction. The accuracy of the intersection detections
is superior to the ones provided by smart devices. Therefore, if both sources are
available, the smart devices do not contribute to better tracking performance. Nev-
ertheless, in cases of occlusions, e.g., a truck blocking the view of a cyclist from
one camera, no 3D object detection can be performed by the stereo camera system
anymore. An example of such a scenario can be seen in Fig.6. Smart devices are

(a) Left camera view (b) Right camera view

Fig. 6 Cyclist occluded by a truck in the right camera of the static stereo camera system
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still able to communicate their measurements. In [54], we show that in more than
84% of the turning scenes under occlusion, the additional smart device information
benefits the tracking performance significantly. Figure 7 depicts a scene in which the
cooperative tracking follows the ground truth closely, whereas the tracking based on
the static camera setup only loses sight and can only predict the following positions
based on the tracking model.

The chosen model is the bicycle model tracked with an extended Kalman filter
(EKF) [3, Chap. 10]. The state transition for the state space x := [x, y, ¥, ¥, v]”
with the positional coordinates x and y, the orientation y, its derivation y, i.e., the
yaw rate, and the velocity v is given by

x 4+ cos(y)a —sin(y) b
y 4+ sin(y)a + cos(y) b
Jx) = y+yT (1)
14
v

with ¢ = S0V gpg p = U= TDY for 5 time step T. The z coordinate can be
determined by the stereo camera setup besides x and y, but it is not used in the
referred evaluation. The smart devices contribute with the velocity v and the yaw
rate y. The occlusion in the case referred to in Fig. 7 starts at the white-filled circle.
Starting at this point, the trajectories drift apart. Due to the yaw rate information by
the smart devices, the green cooperative track can follow the ground truth closely.
The grey and black-filled circles depict one and two seconds after the start of the
occlusion.
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2.3 Pedestrian and Cyclist Tracking Including Class
Probabilities

So far, we have mentioned the perception of cyclists that contains an intersecting
detection of a bicycle and a person and the tracking of cyclists themselves. The
movement model used for the cyclist tracking in Sect.2.2 describes movements by
arcs and therefore is especially suitable for cyclists but unstable in cases of sudden,
not smooth, or even backward-oriented changes in the movement direction, which
is in the nature of pedestrian trajectories. Therefore, a linear constant velocity or
acceleration model that is independent in the lateral and longitudinal directions is
more suitable for a pedestrian. We have already mentioned that being able to track
VRUEs is a basis for further steps in our VRU intention detection approach. Besides
the choice of the tracking algorithm, a tracker tends to perform best if it is applied
to an object of the class it has been designed or trained for. In our case, we have
the cyclist model with the state space [x, y, ¥, ¥, v] and the pedestrian model with
the state space [x, x, y, y]. In the following, we also develop models to predict the
behavior of cyclists and pedestrians. They depend on the knowledge of the class of
the VRU, too. Therefore, we want to extend the aforementioned state spaces and
the tracking described in Sect.2.2 by an additional class probability functionality.
There are two information sources for the class probability. The fit of the respective
model to the movement behavior observed and the object class predictions by the
NN classifier. The former is a problem that is studied in the literature in the field of
multiple model approaches. The idea is to have a set of possible models, and each
of them is fed by the measurements, i.e., the detected object positions. In every step,
it is evaluated with a probability score of how well each model fits the perception.
We intend to implement the individual model tracking with Kalman filters following
Sect. 2.2. Therefore, the bicycle model is implemented via an EKF and the pedestrian
model via a two-dimensional constant velocity Kalman filter. The interacting multiple
model IMM) [15, 24] approach is popular, especially together with Kalman filters.
It shows a robust behavior with respect to model mismatching [49]. In addition to
the individual model states, the IMM holds a common mixed state and covariance
estimate that form the state of the IMM model. We name the state estimates at a
given point of time for the bicycle and the pedestrian model x;, and x,, respectively.
Every model is assigned a model probability 1, and 1. The IMM state estimate is
given by

XIMM = Xplhp + Xpihp. 2

The covariance Py is deduced analogously. To perform the prediction step of the
IMM, mixed states X; := xppll + x,uPY are calculated for every model j with
w = # o"J u; being the conditional model probabilities for model i assuming

j» ¥/ being a normalization factor, and p*/ being the respective entry in the state
switching matrix p. The state switching matrix adds to the stability of the IMM.
Initially, the probabilities of staying in a state or switching states are initialized with
0.5. With the growing age of the track, the probabilities of staying in a state iteratively
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grow. At every prediction step, the mixed model states X, and X, are propagated
together with the covariances as new states to the individual models. The prediction
step is performed based on the propagated states in the way defined by the individual
models to gain X, and X,. The update step is performed on the individual models
given the incoming measurements, i.e., person or cyclist detections. The residuals r;,
and r, given by the differences of the measurements to the predicted model states
define the model likelihoods A, and A ,. The likelihoods are the log of the probability
density function of the zero averaged normal distribution with the covariance given
by the innovation covariance matrices of the Kalman filters of model b and p. The
likelihoods are used to update the model probabilities by

- [Ap, Apl

Do ol” with ¢ := [up, uplp
s Ivp

(1o, upl =

and ‘-> denoting a point-wise product. The IMM state xyvv can be calculated again
following formula (2). One adaptation has to be made with respect to the standard
IMM algorithm described so far. The state spaces of the bicycle and the person
model differ. The state space of the IMM is the union of the individual state spaces,
thus [x, x, y, ¥, ¥, ¥, v]. To make the IMM state and covariance compatible with
the individual model ones in cases of propagation and update, the individual model
states have to be lifted to the IMM model state space in such cases following [63].

The standalone IMM tracker is able to classify pedestrians in 38 scenarios with
a precision of 0.914 by its inherent model probabilities. Nevertheless, if a cyclist is
waiting at traffic lights for example, the bicycle model is unstable and does not fit the
behavior very well due to small rapid movements in the process of impatient waiting
for example. In the regular movements detected in our scenarios, cyclists did not
follow the bicycle model enough for the IMM to classify it. The average precision
in 46 scenarios with moving cyclists is 0.335. In comparison to a pedestrian, a
cyclist is still classifiable on average, as a true cyclist track holds from a frame-wise
perspective more cyclist classifications than a pedestrian track. Still, for a standalone
classification, one would expect more from a classifier. The reason might be the
tracking of the head of the cyclist that we perform. Nevertheless, by taking into
account the detected class labels as well, the classification can be improved. The
relative amount of assigned bike detections measured by IoU with a person detection
as described in Sect.2.1.1 with respect to the age of the track provides a sufficient
feature. The classification precision is 0.970 for the pedestrian scenarios and 0.969
for the cyclist ones.

The IMM tracker extends our setup by the functionality to track two classes of
VRUs simultaneously without having to decide at the level of the object detector
output which measurement is assigned to what kind of tracker. In the case of the
viewing angle dependent bicycle detection described in Sect.2.1.1, the cyclist detec-
tions are unreliable. Therefore, a standalone cyclist tracker receives only a few cyclist
measurements. Table 4 depicts the tracking performance averaged over the 51 cyclist
scenarios already evaluated in Sect.2.1.1 comparing the bicycle model taking only
cyclist detections into account with the IMM approach based on both pedestrian and
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Table 4 Comparison of cyclist tracking based on a bicycle model taking only cyclist detections
into account with IMM tracking taking pedestrian and cyclist detections into account

Tracking algorithm Average MOTP Average MOTA
Bicycle model 0.155 0.325
IMM 0.076 0.976

cyclist detections but classifying a cyclist. The performance measures MOTP and
MOTA are standard tracking metrics [4] measuring the precision and accuracy of
the given track, respectively. Due to the small MOTA score, one can induce that the
bicycle model is far less capable of tracking the object at all. This results from the
missing detections. Because of the lower MOTP value, the IMM does not only cover
the object better but is additionally capable of giving a more precise estimate of the
location due to the mixed-in pedestrian component.

2.4 Cooperative Context Determination

We have already mentioned the relevance of context in the field of object detection.
Moreover, we have shown that cooperation in detection and tracking can overcome
the limitations of singular sensor sources and extend the tracking ability. The sources
of context information can be various such as its types. In Sect.2.1, the context
information is based on external ground truth information that is able to be manually
determined as the data is relatively small and the scenery is fixed. This is not possible
in general. Therefore, in this section, we want to take a look at how we can extend
the generation of context information and gather it in a cooperative way to aim for
more reliability and better coverage.

24.1 Cooperative Semantic Maps

A straightforward idea that comes to mind when thinking about how to extend the
available information with some extra knowledge is to use maps, more so maps that
are enriched with additional annotations. We call this semantic maps. Especially in
the field of prediction and motion planning, maps can help to avoid invalid impossible
paths. This will be discussed in the following in more detail, especially in Sect. 3.2.2.
But also the viewing angle dependent object detection evaluation Sect.2.1.1 shows
that knowledge of bike lanes with respect to the camera mounting positions and
orientations contributes to a more accurate assessment of the expected detection
performance.

We use a local map provided by the open street map (OSM) [48] organization to
gather static map information. The amount of information and the accuracy varies
depending on the contributions to the map pool by the community. In our case
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houses and streets are contained, cf. Fig. 8a. Considering additional annotations, high-
definition maps hold precise and excessive information. Nevertheless, it is expensive
to capture HD maps and thus they are only available in certain areas. To extend our
initial maps, we included information about sidewalks (yellow) and parking slots
(brown) in the map visible in Fig. 8b. Whereas the bare OSM map can be retrieved
automatically, the extensions are made with human interaction. Still, it is expected
that maps like Fig.8b are available in close future and even already are in many
locations. Another way to gain maps is to use sensor information. Using LiDAR point
clouds and image-based segmentation provided by a stereo camera both mounted on
our research vehicle, map Fig. 8c was created. There is more detail to it in Sect. 3.2.2.
It is created and fused in multiple capturing drives. The output has the advantage that
it can be captured automatically and can contain all the information the segmentation
classifies. The disadvantage lies in a limited field of view and the dependency on the
accuracy of the ego-positioning ability of the vehicle and the classification together

(b) Enriched OSM map

B N L é.‘&

(c) Map captured by sensors (d) Sensor map fused with enriched OSM map

Fig. 8 Semantic map fused from sensor information with enriched OSM maps
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with the association to the LiDAR point cloud. The latter can have serious errors due
to perspective issues. Moreover, it is difficult to create smooth and convex solutions.
For example, in Fig. 8c, the holes at the edges of the pavement are visible. Therefore,
it is beneficial to fuse the two information sources. Figure 8d shows the result. The
houses are complete and the edges of the pavement are sharper. The benefit of such a
semantic map for movement prediction is shown in Sect. 3.2.2 and the fusion benefits
the accuracy in a straightforward way.

2.4.2 Cooperative Weather, Road, and Lighting Conditions

In Sect.2.1.2 we show the effect the brightness of the daylight has on the detection
rate of objects. We extend this context information to weather and conditions. The
assumption is that not only the task of perception but also the behavior of traffic
participants are affected, for example, by heavy rain or icy roads. We train our models
to detect objects and predict their behavior under the assumption that they act the same
way we have seen during training under similar conditions. It is crucial that these
conditions have been met in the training phase. Otherwise, unpredictable behavior is
the consequence. To support the description of conditions, context information might
be useful. In this section, we describe what kind of context information we thought
of being interesting and how we cooperatively detect it. As already mentioned, it was
not possible to conduct enough field studies to evaluate in a statistically significant
way the influence of the specific context types on the performance of our algorithms.
This is one topic of the current project KI Data Tooling [33] the partners of this
project also contribute to.

Table 5 lists the types of context and conditions we considered with the expected,
i.e., labeled, values. Not all of them are contained in the dataset described in Sect. 1.
Moreover, the list is not comprehensive and extended in the context of KI Data
Tooling. As already mentioned in the evaluation in Sect.2.1.2, the times of day
‘daytime’ and ‘dawn_dusk’ can be found in the research intersection dataset. To be
able to detect the context types automatically, we trained a model for every type
based on a ResNet-50V2-architecture [30]. The challenging parts are to build a good
training dataset and to conduct consistent labeling. Without further knowledge, for
example, it is not easy for a human spectator to detect, e.g., rain in images. Neverthe-
less, we labeled 28563 single images manually by ourselves. The images originate

Table 5 Types of context with the sets of possible values

Context type Values

Precipitation Rain, snow, nothing

Road Dry, wet, slushy, snowy, indistinguishable
Time_of_day Daytime, dawn_dusk, night, indistinguishable
Illumination Natural_standard, sunglare, artificial, dark
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Table 6 Number of true context detections on images of 50 scenes from the research vehicle, the
left and right intersection cameras, and a fused result

Data source Illumination Time_of_day Precipitation Road
Left camera 29 39 36 41
Right camera 48 16 25 -
Vehicle 13 25 41 36
Fused 34 26 38 41

from our own dataset, the University of Passau Weather in Autonomous Robotic
Driving (UPWARD) dataset containing 15566 samples and from the DENSE See-
ingThroughFog dataset [13] providing another 12997 samples. We train and vali-
date on 23028 samples (12630 UPWARD, 10398 DENSE) and test on 5535 images
(2936 UPWARD, 2599 DENSE). To address the heavy class imbalance, we apply
undersampling. This necessitates independent training of a separate model for each
attribute.

Although the context classes are not all contained in the 50 scenarios used in
Sect.2.1—one scenario does not contain vehicle data and is therefore removed—we
want to show the performance of the context detection models on them, because
due to the setup we can evaluate the benefit of cooperation. We use the two cameras
mounted at the research intersection and the camera mounted in the research vehicle
as sensors. The mounting angle of the right intersection camera is such that the
reflections of the street give, in any case, ‘wet’ due to the road context. This is due
to the fact that the training data is gathered from lower-mounted cameras. The right
camera does not contribute to a fused result as well.

The evaluation results are shown in Table 6 by the number of correctly classified
scenarios. To reduce the labeling effort, one ground truth label was created for every
scenario. This might not be very accurate in case of illumination for example as sun
glare can be limited to a short time span and the rest of the scenario is not affected.
This is also the reason why the vehicle performs much worse than the static cameras
in the illumination context. The left camera is mounted in a way that allows a good
detection performance with respect to the time_of_day. Precipitation is detected best
by the vehicle.

Overall, we discovered two major takeaways throughout the process of coopera-
tive context determination. Firstly, it is difficult to determine consistent labels for the
specified classes and to detect them properly as a human spectator. The granularity
of the labeling is also a factor that has to be covered in more detail. Secondly, the
fused result does not always give the top result but does in almost every case exceed
the vehicle’s performance capabilities. For a single car equipped with a camera, it is
not possible, at least at the state of our training data, to detect the defined classes of
context with an acceptable rate. Additional information sources are necessary.
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Fig. 9 Schematic of the two-stage cyclist intention detection and trajectory forecasting model [5]

3 Intention Detection

In this section, we describe our work in the field of VRU intention detection. The
goal of intention detection is to create a basis for maneuver planning algorithms to
be able to interact with VRUs safely. Therefore, we have to make a forecast about
the VRUs’ future trajectory, including uncertainties. The main focus of our project
is on cooperative intention detection. In the first step, we investigate methods for
intention detection in a non-cooperative way using different sensor modalities and
analyze their strengths and weaknesses. These investigations are described in this
section. We then select suitable methods for use in a cooperative manner and explore
how much improvement can be achieved through cooperation. The investigations
regarding cooperative intention detection are described in the next section.

We define intention detection as a two-stage process comprised of basic movement
detection and trajectory forecasting. A schematic of the process is depicted in Fig. 9.

The first stage is basic movement detection to identify the VRUs’ current state
of motion, e.g., waiting or starting. As the results from basic movement detection
alone do not allow to make a statement about the future VRU positions, the state
estimations are used as an intermediate result within the intention detection process.
Our goal is to demonstrate that the state estimations can help to improve the trajectory
forecast results. Furthermore, we show that basic movement detection results can be
significantly improved by incorporating video and pose information into the process.
Additionally, we investigate using data from smart devices worn by VRUs as a
basis for basic movement detection. Our methods for basic movement detection are
described in Sect.3.1.

The second stage of the intention detection process is trajectory forecast, which
generates estimates of future VRU positions. The forecasted trajectories are the out-
put of the intention detection process and form the basis for maneuver planning in
automated vehicles. One of our goals is to include video information and basic move-
ment detections in the forecasting process. Secondly, we aim to generate probabilistic
trajectory forecasts to quantify the uncertainties of our estimates. To demonstrate the
applicability of our methods, we combine our probabilistic forecasts with a maneuver
planning method. Trajectory forecasting is described in Sect.3.2.
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3.1 Basic Movement Detection

Basic movement detection of VRUs has become an active field of research over the
past decade. While many existing methods focus on specific scenarios or movement
states often placed in a lab environment with ideal conditions [32, 52], we aim
to demonstrate heuristic approaches covering all possible scenarios and states. We
investigate using different sensor sources, i.e., stationary cameras mounted at an
intersection, a stereo camera from within a moving vehicle, and smart devices worn
by the VRUs themselves (Sect. 1). Furthermore, we examine different representations
of the VRU sensor data in the form of trajectories, human poses, or video sequences.
In this section, we describe different methods for basic movement detection. In
Sect.3.2, we discuss methods to incorporate basic movement detections into the
forecast process.

Basic Movement Detection Using Stationary Cameras

The use of stationary cameras for intention detection leads to multiple advantages.
Compared to sensors in a moving vehicle, stationary cameras can be mounted at
higher positions and at an angle to each other to resolve occlusions and to reduce
uncertainties of single sensors. Stationary cameras also have the advantage that the
environment is known and the background is static. Furthermore, since stationary
systems are less limited to space and power consumption requirements compared
to systems inside vehicles, more powerful systems with regard to their computing
capabilities can be used. We use these advantages by incorporating video information
into our basic movement detection.

Many existing methods use a single past VRU trajectory as input data for basic
movement detection [1, 27]. However, compared to the original video feed from the
sensors, a lot of information about the VRU behavior is lost, e.g., movements of the
upper body may signalize a starting motion, or the VRU’s gaze direction can indicate
a turning motion.

An approach to preserve information about the VRU’s body gestures uses motion
history images (MHI) [35]. To generate the MHI, the binarized silhouette of the
VRU is extracted from every image. The silhouettes from the current image and past
images of a certain observation period are then stacked into a single image, where
the most recent silhouette has the value 1.0, and older silhouettes receive smaller
values between 1.0 and 0.0 with regards to their timestamp (Fig. 10). This creates an
image that encodes the past movements of the VRU, which can now be used with a
simple image classifier to perform basic movement detection. However, the method
strongly depends on the quality of extracted silhouettes. Also, a lot of information is
lost through the binarization of the images.

To increase the level of information, more recent approaches utilize human pose
trajectories for basic movement detection. Instead of using a single trajectory from
an anchor point, such as the center of the VRU’s head, multiple trajectories of the
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Fig. 10 Exemplary MHI generation of a starting cyclist
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Fig. 11 Extraction of a video sequence from the original video feed from camera 1. In the VRU
detection step, every VRU is detected, and a region of interest is created (left). In the second step,
images (right, top) and optical (right, bottom) are stacked to sequences that are used as input for
our model

VRU’s joints are used. This way, important features such as distinct body poses or
leg movements are preserved while greatly reducing the feature size compared to the
original video stream. One disadvantage of the method is that it depends strongly
on the quality of the pose detection. While larger joints can be detected relatively
reliably, detecting smaller features, such as the eyes, which can be used to extract the
gaze direction, proves difficult. Furthermore, information about the surroundings,
such as road markings or obstacles in the VRU’s way, is lost.

Therefore, in our approach to basic movement detection with stationary cameras,
we directly utilize video sequences for basic movement detection. Figure 11 describes
the extraction of video sequences from the original video feed. In the first step, the
VRU is detected in the current image. The detection window is used to create a region
of interest that covers the near vicinity of the VRU, which is used to extract images
from the current time step and past time steps within the observation period. In our
case, the past observation horizon covers one second. The extracted images are then
stacked into a short video of the VRU moving inside the region of interest, which
is used as input for a three-dimensional convolutional neural network (3D-CNN).
In a preliminary investigation, where we focused on detecting starting motions of
a cyclist, we used these image sequences as the only input for the network [10].
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However, more recent studies in the field of action recognition aside from intention
detection in road traffic have shown that the use of an optical flow sequence in
addition to the image sequence leads to significant improvements with regard to
detection accuracy [18]. Therefore, we additionally use the optical flow sequence for
our investigations. Furthermore, to reduce negative effects caused by occlusions, our
movement detection is performed using inputs from both cameras of our wide-angle
stereo-camera system described in Sect. 1. We investigate the use of single cameras
individually, both cameras simultaneously, and the use of only image sequences or
optical flow sequences, respectively. Since the past VRU trajectory is known, we also
examine its additional use as input data. For our investigations of stationary systems,
we use the dataset created with the wide-angle stereo-camera system described in
Sect. 1. Our methods are compared to a single trajectory approach, as well as an MHI-
based approach. The feature extraction from the video sequences is performed using
the proposed network architecture from [18]. To evaluate the results of individual
time steps, we use standard metrics used in classification. To evaluate the detection
results over time, we use the segment-based approach proposed in [7, 22], allowing
us to rate the detection method in terms of how often a motion state is wrongfully
detected over time. We see this as an important metric since wrong detections during
a motion state can lead to a false trigger of an emergency brake assistant of an
automated vehicle. A detailed description of the used algorithms and the conducted
experiments can be found in [71].

Our experiments regarding the user input data show that the best results are
achieved by using all inputs, i.e., image and optical flow sequences from both cam-
eras and the past trajectory. However, only slightly worse results are achieved if we
omit the trajectory input. If we compare the use of input data from both cameras to
only one camera, we can see a significant improvement by adding the second cam-
era. This is partly due to the resolvement of occlusion, but we also found that some
motion states are better detected using a certain camera angle. For example, starting
motions are better detected when the VRU is viewed from the side. We compared
our motion sequence (MS) based method to the MHI and trajectory-based methods
and found that our approach outperforms both in terms of frame-based classification
scores and segment scores. The inference time of the algorithm using an NVIDIA
RTX 2080 Ti GPU is about 33 ms and can therefore be used in a real-time system.
The detailed results of our experiments can be found in [64, 71]. While our results
show that our method outperforms existing approaches, we cannot make a statement
about whether or not the improvements transfer to the use in trajectory forecasting
methods. This aspect will be discussed in Sect. 3.2, where we investigate the use of
basic movement detections to improve trajectory forecasts.

Basic Movement Detection from a Moving Vehicle
When we compare stationary intention detection to intention detection from within a

moving vehicle, the requirements for the algorithms change significantly. Since the
sensors are usually mounted behind the windshield of the car or behind the radia-
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tor grill, VRUs are often occluded by other vehicles or objects at the roadside. The
consequence is that we often have a significantly shorter observation period to esti-
mate future VRU behavior. Compared to stationary cameras, we do not know the
surroundings of the cameras, and we have to deal with changing backgrounds. Fur-
thermore, the vehicle cannot accommodate large PCs, and the power consumption
is limited. Due to these requirements, we investigate the use of human pose trajec-
tories for intention detection from within a moving vehicle and compare them to
single trajectory approaches. The sparsity of the representation allows us to design
lightweight models that allow for real-time capability despite limited resources. At
the same time, we maintain a high level of information about the VRU behavior by
capturing the trajectories of the body extremities.

In the first step, we evaluate the quality of human pose estimation from within a
moving vehicle. While some datasets regarding 2D pose estimation exist, e.g., [2],
they are not designed for research in traffic environments. The amount of data with
annotated 3D poses are quite limited. Typically, they are created in lab environments,
e.g., [31], and do not include any cyclists. As a consequence, the recorded scenarios
lack realism with regard to the behavior of the recorded people. Furthermore, there
are too many dissimilarities compared to real-world traffic scenarios, such as the
surroundings and occlusions of the VRUs. Therefore, we created a dataset recorded
in real traffic. The human poses are labeled manually, and we extracted 2D and 3D
poses. For the generation of reasonably good ground truth for the 3D poses, we use
our wide-angle stereo-camera system at the research intersection. Using this dataset,
we evaluate two methods for human pose estimation. The first method detects 2D
poses in an image. The second method uses 3D lifting to estimate 3D poses, which
we transfer to the world coordinate system using a stereo camera. Our investigations
show that both methods perform well and can be used as a basis for vehicle-based
intention detection. The detailed results can be found in [38].

Based on these results, we conduct experiments regarding the applicability of
human pose trajectories for vehicle-based basic movement detection. In a prelimi-
nary investigation, we limit our traffic scenario to starting cyclists. An example scene
is visualized in Fig. 12. The goal is to detect starting motions as early as possible
while maintaining high detection scores. The method is compared to a single trajec-
tory approach. The focus of the evaluation is on comparing the two approaches using
different observation periods. As mentioned above, from the perspective of a mov-
ing vehicle, VRUs are often occluded, highlighting the importance of a method that
functions well for small observation times. In our experiments, we evaluate observa-
tion periods between 0.12 and 1.0's. Both methods use the same model architectures,
i.e., a fully connected network (FCN). Only the inputs differ, where the input of the
single trajectory model is the past head trajectory, and the pose-based model receives
all joint trajectories. We find that both models show similar performance for input
periods of 1.0 s. The results of the single trajectory model strongly deteriorate with
smaller observation periods, while the pose-based model maintained significantly
higher scores for all investigated periods. The investigations regarding observation
periods for starting cyclists are published in [39].
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Fig. 12 Example scene of a starting cyclist recorded from within a moving vehicle. On the left,
two images from the scene are visualized, showing waiting in the first image and starting in the
second. The starting motion is clearly visible in the poses extracted from the images shown on the
right. The cyclist’s upper body is bent forward, and uses his foot to push off the ground, which is a
distinct motion indicating starting process

Building on our findings on the observation period, we develop a holistic approach
to pose-based basic movement detection for pedestrians and cyclists. Compared to
the previous method, our investigation is not limited to a single scenario but includes
all possibly occurring motion states. Furthermore, we switch our model architecture
from an FCN to a recurrent neural network (RNN). The advantage is that RNNs are
specifically designed to model time series and allow for variable input lengths. Our
method is therefore able to estimate motion states despite short observation periods
and successively improves with larger periods. As in the previous investigation, we
compare our method to a single trajectory approach, where the pose-based method
outperforms the single trajectory approach, especially for short observation periods.
The evaluation can be found in [40].

Basic Movement Detection Using Smart Devices

In the previous sections, we described stationary and vehicle-based basic movement
detection, where we used camera sensors in both cases. While both methods have
different advantages and disadvantages, they are both error-prone with regard to
the shortcomings of camera sensors. Camera-based approaches depend on lighting
and weather conditions and are affected by occlusions. In contrast, these conditions
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do not affect smart devices worn by VRUs themselves. Therefore, they have great
potential to serve as additional sensor sources for intention detection.

In [6, 9, 10, 12, 58], we investigate how one can use the inertial sensors of smart
devices for basic movement detection. The approaches presented in the different
publications are based on human activity recognition involving a machine learn-
ing classifier at its core [17]. A schematic of the six-step detection process using
accelerometer and gyroscope data is shown in Fig. 13. First, the inertial sensor mea-
surements are preprocessed (i.e., the data is transformed into a rotationally invariant
coordinate system), then the signal is windowed, and features are extracted based
on the windowed data. Subsequently, feature selection is performed to filter features
relevant for detection. These filtered features are then used for detection. For this
purpose, the detection problem is modeled as a classification problem. The classi-
fier (e.g., an extreme gradient boosting classifier) is trained with labeled example
data. Finally, a probability calibration of the detection probabilities output by the
classifier is performed, and a temporal filter filters out any outliers. More details
about the approach can be found in [7, 10, 12]. Regarding the early detection of
cyclists’ starting movements, we showed that our approach reaches an F; score of
67% within 0.33 s after the first movement of the bicycle wheel. Further, investiga-
tions concerning the influence of the device wearing location show that for devices
worn in the trouser pocket, the detector has fewer false detections and detects starting
movements faster on average. Moreover, we found that we can improve the results
by training distinct classifiers for different wearing locations. In this case, we reach
an F; score of 94% with a mean detection time of 0.34 s for the device worn in the
trouser pocket.

Based on these findings, we investigate an extended smart-devices-based approach
to detect longitudinal (i.e., waiting, starting, moving, and stopping) and lateral (turn-
ing left, going straight, and turning right) basic movements. Smart devices can be used
very well for the detection of longitudinal basic movements; our approach achieves
a macro F; score of 72% with an average detection time of only 0.365, i.e., on aver-
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Fig. 13 Process for basic movement detection using smart devices consisting of six stages: Prepro-
cessing, segmentation, feature extraction, feature selection, classification, as well as post-processing
and probability calibration [12]
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age a movement change is detected within 0.36s. Curves or changes of direction
of movement (i.e., lateral basic movements) can be detected even more reliably (F,
score of 82%) and equally fast (mean detection time of 0.38s). A detailed evaluation
and further results can be found in [7]. In [16], we showed the successful transfer
of our smart-device-based movement detection approach to the early anticipation of
pedestrians’ movements. Yet in [11], we moved from movement transition detection
to short-term cyclist’s movement transition forecasting.

3.2 Trajectory Forecasting

The goal of trajectory forecasting is to estimate future VRU positions. The forecasts
build the basis for automated vehicles to safely interact with VRUs, where the fore-
cast horizon, i.e., the time span for which the positions are estimated, depends on the
application. In our case, the goal is to perform a short-time forecast for a horizon of
2.5, which is often named a relevant horizon to perform emergency brake maneu-
vers. To perform forecasting, we consider the VRU behavior we extract from video
sequences. We avoid incorporating information about the traffic situation, such as
traffic lights since the VRUs’ disregard of such can lead to potentially dangerous
situations. In the next section, we describe our methods for deterministic trajectory
forecasting, where the goal is to forecast the VRU positions in the form of points.
Afterward, we describe our approaches to add uncertainty estimation to our methods.

3.2.1 Deterministic Trajectory Forecasting

To perform deterministic trajectory forecasts, we utilize similar methods to the ones
used for basic movement detection described in Sect.3.1. While the same network
architectures can be used, the problem is modeled as regression.

Deterministic Trajectory Forecasting Using Stationary Cameras

We investigated the incorporation of video information for trajectory forecasting
using stationary cameras. We used the same representation as we used for basic
movement detection, i.e., the image and optical flow sequences from both cameras
and the past trajectories. We investigated the use of different inputs and compared the
results to a method solely based on the past trajectory. In contrast to the results from
basic movement detection, the results achieved by incorporating the optical flow
sequences from both cameras and the past trajectory outperform the results achieved
using all inputs. We attribute this to the fact that the optical flow sequences mainly
contain information about the movement of the VRU, and excess information, such
as the image background, is removed. The extraction of the optical flow is therefore
comparable to an attention mechanism [62]. The positional accuracy is improved by
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16.9% using the optical flow sequence compared to 8.2% when all inputs are used.
We found that compared to the trajectory-based method, turning motions are better
distinguished from straight motions due to a distinct head movement of the VRU
towards the direction visible in the optical flow sequence. The detailed results of our
investigations can be found in [64, 72].

Deterministic Trajectory Forecasting from a Moving Vehicle

From within a moving vehicle, we utilize 3D poses for trajectory forecast similar to
the basic movement detection described in the previous section. In our evaluation,
we perform trajectory forecasts for both pedestrians and cyclists and compare the
results to a single trajectory method [36, 42]. The focus of our investigation is again
on the length of the observation period, where periods between 0.2 and 1.0s are
considered. Furthermore, we compare two different variants of the poses. One variant
uses joints of the entire body. In the second variant, the arms, i.e., the elbows and
wrists, are not used as input. We hypothesize that the main features to forecast the
future trajectory are the orientation of the VRU and the head and leg motions. We
found that in the case of pedestrians and cyclists, the forecast accuracy improved by
up to 6.93% for pedestrians, and 17.9% for cyclists by using poses. In both cases,
no significant improvements were achieved by using the complete poses compared
to the armless poses, demonstrating that the arm movements do not add additional
information about the VRUs’ future positions. While especially in the case of cyclists,
this may seem counterintuitive since they are supposed to indicate turning motions
by hand signals, we found that turns are seldom signalized. However, cyclists often
perform a shoulder check before turning, demonstrating the importance of tracking
head movements. In [43], we use RNNs for a pose-based trajectory forecasting of
pedestrians and cyclists based on observation periods varying between 0.04 and 1 s.
The use of 3D poses improves forecasting accuracy, especially for short observation
periods, compared to a single trajectory method.

As discussed in the previous section, basic movement detection aims to add addi-
tional information to the trajectory forecast process. Therefore, we developed a two-
stage approach to incorporate basic movement detections into the forecasting and
compared the results to a single-stage approach [27, 64]. Instead of a single forecast
model, we train specialized models for different VRU movements, such as starting
or waiting. The forecast is generated by performing a forecast for every motion state
and weighting the results with the probabilities estimated by the basic movement
detection. The methods for basic movement detection, as well as trajectory fore-
cast, are interchangeable. In our evaluation, we compare all possible combinations
of the single trajectory and video-based methods. We found that forecast accuracy
can be significantly improved if basic movement detection adds new information to
the forecast. No improvements were achieved when the basic movement detection
does not introduce new information to the model. Compared to the best video-based
single-stage model, the best two-stage model did not improve the accuracy. Leading
to the conclusion that in the case of deterministic trajectory forecast, incorporation
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of basic movement detection is only helpful if new information is introduced by the
detection method, e.g., by cooperation with smart devices. While this holds for deter-
ministic forecasts, probabilistic forecasts are a different matter, which we discuss in
the next section.

Deterministic Trajectory Forecasting Using Smart Devices

Furthermore, we investigate the use of smart devices for trajectory forecasting. For
this work, we focus on a single wearing position and consider a Samsung Galaxy
S6 device placed in the trouser pocket. In this investigation, we do not use the two-
stage intention detection process consisting of basic movement detection followed by
trajectory forecasting. Instead, we focus on the realization of a trajectory forecasting
module using the smart device sensors and examine the potential of this approach
in principle. Since the GNSS is too inaccurate, we only forecast relative positions
in the ego-frame. In doing so, we do not need absolute positioning information for
forecasting. If we want to use the issued forecast with respect to a global coordinate
system, we merely have to transform it back from the ego-frame. A possible use
case would be, for example, that the smartphone issues a trajectory forecast in the
ego-frame and transmits this forecast to an oncoming vehicle. The vehicle sees the
cyclist and can determine the cyclist’s position. This vehicle can now use the cyclist’s
position to transform the received forecast into a global or its local coordinate system.
The advantage of forecasting the trajectories in the ego-frame is that the trajectory
forecast is independent of the possible large absolute positioning error of the GNSS
receiver integrated in the smart device. Furthermore, this approach allows us to
only predict trajectories based on the inertial sensors. In the following case study,
we investigate an approach to cyclist trajectory forecasting using only the smart
device inertial sensors. We use a neural network for trajectory forecasting [57].
The forecasting time horizon is 2.5s, and we have a lead time increment of 40 ms.
Hence, the neural network has an output dimensionality of 126 (63 x 2, i.e., one
for the longitudinal and one for the lateral position). The preprocessing and feature
extraction of our smart device-based forecasting approach is mostly analogous to
the approach for basic movement detection, i.e., we use multiple different statistical
features curated from sliding windows of various sizes as input for the neural network.
However, the feature selection for trajectory forecasting is more difficult because we
have not only one output variable but two output variables for each forecasting
lead time, i.e., 126 in total. Hence, we cannot transfer the feature selection method
designed for classification tasks, i.e., basic movement detection in a straightforward
way. To solve this, our approach aims to convert the multivariate regression task into
a multi-class classification task. Therefore, we first perform clustering in the output
domain, i.e., in the 126-dimensional target space. We use the cluster assignments to
discretize the output variables into a set of 100 target classes. In this way, we reduce
the multivariate regression to a classification task and may apply feature selection
methods for classification tasks. Note that we only use this modeling for feature
selection. We apply two feature selection approaches, a filter based on the chi-squared
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Model Type Complete  Waiting Starting Moving  Stopping  Straight Turning Right Turning Lefe
All Features 0.353 0.342 0.303 0.375 0.378 0.353 0.334 0.363
Selected Fearures 0.463 0.459 0.379 0.483 0.489 0.462 0.480 0.456

Fig. 14 The table shows the ASAEE in m/s of the respective motion types. We consider two
different smart device trajectory forecasting models: One model using all features and a second
using only the features selected by the feature selection procedure

statistics and a model-based approach using a gradient-boosting classifier. We union
the features selected by both methods. As before, the intuition about combining two
different feature selection methods is to get a diverse set of features. Subsequently,
we train a neural network with these features. For this purpose, we first standardize
the features. We optimize the neural network on the ASAEE [26] using the Adam
optimizer [34]. The hyperparameters of the neural network, i.e., the learning rate,
the number of hidden layers, the number of neurons in the hidden layers, and the
number of epochs for training are determined using Bayesian optimization [61]. We
use exponential linear units (ELU) as the activation function [20].

The results of our investigation are presented in Fig. 14. We compare the feature
selection approach to the one where we do not reduce the number of features. As we
can see, the model that uses all features has better ASAEE scores across all move-
ment types. Additionally, we compared the smart device-based model, which uses all
features, to infrastructure- and vehicle-based trajectory forecasting approaches. We
observed that the smart device-based approach has worse ASAEE scores for almost
all movement types than vehicle- or infrastructure-based approaches. However, there
are a few exceptions, e.g., the ASAEE for starting movements is lower. Furthermore,
the forecasting errors for turning, i.e., right and left, are comparable to those of the
infrastructure-based approach. The smart device-based approach performs here bet-
ter than the vehicle-based approach. We observe a similar result for moving cyclists.
Besides, we also observe that the variance or interquartile range (IQR) is usually
noticeably greater for the smart device-based approach with regard to the ASAEE.
This applies to both directions, i.e., in some cases, the smart device-based approach
is considerably better but sometimes also notably worse. These results show that
the smart device-based approach is not yet fully competitive with the vehicle- or
infrastructure-based approaches. However, the smart device-based approach per-
forms comparably or better in some cases.

3.2.2 Probabilistic Trajectory Forecasting

Most existing methods for VRU trajectory forecasting create deterministic forecasts,
i.e., estimates of the future VRU positions in the form of points (e.g., [27, 52]). Since
these estimations are error-prone, methods to quantify their uncertainties are needed
to create a basis for maneuver planning methods in automated vehicles. While there
are few existing approaches to model uncertainties of trajectory forecasts (e.g., [1,
50]), the authors’ focus is on the positional accuracy achieved by their methods.
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Fig. 15 Example for the
probabilistic forecast of
cyclist trajectory for time
steps 0.5s (purple), 1.5s
(purple), and 2.5 s (purple)
into to future. The inner
regions (solid lines) describe
that the cyclist will reside
with a probability of 68%
within the region, and the
outer regions (dashed lines)
with 95%, respectively. The
red line describes the
cyclist’s head trajectory over
the past second

The estimated uncertainties are treated as byproducts, and no further evaluations are
performed to rate the quality of the estimates. However, to use uncertainty estimates
as the basis for safe maneuver planning, it is crucial to validate that the chosen
methods can create reliable outputs. Furthermore, the estimated uncertainties should
be kept as small as possible.

To achieve these goals, we perform probabilistic forecasts, where instead of single
point estimates, we estimate confidence regions for future time steps. The regions
describe an area where the VRU will reside within with a certain probability (see
Fig. 15). We propose the use of three different approaches based on widely known
techniques for uncertainty modeling. The first approach forecasts the parameters of
probability distributions from which confidence regions can be created. The second
approach extends quantile regression (QR) to multivariate targets, called quantile
surfaces (QS). Both approaches are implemented using stationary cameras. The third
approach is used within a moving vehicle and is based on occupancy grid maps.
Furthermore, we compare standard metrics and propose novel approaches to rate
the quality of our uncertainty estimates. Finally, we combine our approaches with a
method for maneuver planning to demonstrate their applicability in the real world.

Probabilistic Trajectory Forecasting Using Stationary Cameras

A widely used method to add uncertainty quantification to the output of neural net-
works is to estimate the parameters of a probability distribution. Usually, Gaussian
distributions are used. In the field of VRU trajectory forecasts, this method has been
used to forecast bivariate Gaussian distributions in earlier work (e.g., [1, 50]). How-
ever, the focus of these articles is on the positional accuracy of the forecasts, i. e., only
the means of the distributions are used for evaluation and no statements about the
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quality of the uncertainty estimates are made. Therefore, we created a method that
forecasts cyclist trajectories in the form of bivariate Gaussian distributions and eval-
uated the confidence regions generated from the estimated distributions with regards
to their reliability [69]. We consider the regions to be reliable if the frequency with
which the real position lies within the estimated region equals the probability of
the region. For example, if we look at the 80% confidence region, the real position
should fall into the region in 80% of all times. Our evaluations using our real-world
dataset [67] show that the method is not able to create reliable outputs. More pre-
cisely, the method produced underconfident probabilities, meaning that the regions’
probabilities are smaller than the percentage of real positions within the regions. This
especially applies to waiting conditions, where an early forecast of the exact starting
time is not possible, leading to the conclusion that VRU trajectories are inherently
multimodal and cannot be modeled by a single Gaussian distribution.

To solve this problem, we developed a two-stage approach to forecast multimodal
distributions similar to the deterministic approach from the previous section [70].
The pipeline of our approach is visualized in Fig. 16. The first stage performs basic
movement detection by creating a probability for every possible VRU motion state
(e.g., starting or waiting). Simultaneously, a Gaussian distribution is forecasted for
every motion state using the uni-modal model from [69], where we train one special-
ized model for each motion state. In the second stage, the motion state probabilities
are used to weigh the estimated density function of the specialized models, leading
to a Gaussian mixture distribution. For detection of the current motion state, we
investigate the use of the trajectory-based and image-based methods for basic move-
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ment detection described in the previous section [68, 71]. Compared to the deter-
ministic two-stage approach, the probabilistic approach has a significant advantage.
While in the deterministic case, only a weighted mean of the position is created, we
add multimodality to the probabilistic approach by incorporating basic movements.
Every estimated mode represents a motion state of the VRU. E.g., Fig. 15 shows an
example of a cyclist beginning to make a right turn. The basic movement detection
outputs high probabilities for the motion states moving straight and turning right
and low probabilities for the remaining states, leading to two dominant modes. Our
evaluations show that incorporating both detection methods into the probabilistic
forecasts leads to reliable uncertainty estimates, solving the problem caused by the
uni-modal approach. As indicated by the results of the basic movement detection, the
regions estimated using the video-based method achieve a better sharpness than the
trajectory-based method. The 95% confidence regions estimated by the video-based
method are on average 14% smaller compared to the trajectory-based method’s esti-
mates, demonstrating that the results from basic movement detection can be applied
when incorporating basic movement detection into the probabilistic trajectory fore-
cast process. While we evaluated the method using data from the stationary cameras,
the method can also be applied in a moving vehicle since the method for basic
movement detection, and the architecture for trajectory forecast are interchangeable.

Our second method to forecast reliable confidence regions is based on QR. By
extension of the single-output of QR to multivariate targets, we QS [7] serving the
same purpose as the confidence regions created by the Gaussian mixture approach.
The method consists of a two-stage model described in Fig. 17. The first stage per-
forms deterministic point forecasting followed by the probabilistic QS estimation
that uses the point estimate as the center. The method is capable of producing star-
shaped estimates. While the method is based on a uni-modal approach, the star shape
of the estimated regions allows us to model the uncertainties of our forecasts reliably.
In contrast to the Gaussian mixtures, the method is not able to estimate multiple sepa-
rate regions for a single probability, possibly leading to larger regions. However, due
to the two-stage approach, any existing forecasting method that produces determin-
istic outputs can be extended by a probabilistic output without requiring additional
detection of basic movements. This leads to a much leaner model with no need to
train specialized models for every motion state, especially eliminating the need for
time-consuming labeling of motion states.

Probabilistic Trajectory Forecasting from a Moving Vehicle

An approach from within a moving vehicle is described in [37]. As in the deterministic
forecast, the method utilizes 3D poses. Additionally, we incorporate semantic maps to
represent the surroundings of the VRUs, allowing us to prevent implausible forecasts,
such as a VRU moving through an obstacle. The maps are created using 3D positions
from LiDAR in combination with a semantic segmentation performed on images from
a stereo camera and contain information about static obstacles, such as buildings,
and dynamic obstacles, such as cars. Our forecast model is described in Fig. 18. The
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Fig. 17 Qunatile surfaces forecasting pipeline: In the first step, the central tendency estimation is
performed using a classic deterministic forecasting approach. In the second step, we pass the central
tendencies together with the used input features to the quantile surface estimation, which generates
the probabilistic outputs for different confidences

probabilistic forecast is performed in a discrete way in the form of occupancy grids.
We forecast one grid for every forecast time horizon centered at the current position
of the respective VRU. Instead of a continuous probability distribution, we predict a
probability for every cell within the grid. In our evaluation of the discrete method, we
compare the use of only the head position to the complete pose with and without the
semantic maps. Furthermore, we compare the discrete method to the single Gaussian
approach from [69]. We compare the reliability, sharpness, and positional accuracy
of the models. The comparison of poses with the single trajectory approach shows
that the positional accuracy is improved by 9.7% in the case of the Gaussian approach
and by 7.2% for the discrete method. In both cases, reliability and sharpness are also
improved by using poses. While the semantic maps lead to a slight improvement in
accuracy, improvements are more apparent when evaluating qualitatively, showing
that fewer forecasts intersect with obstacles. Comparing the Gaussian method to
the discrete method, we find both have advantages and disadvantages. While the
Gaussian model overall achieves a better reliability score, only the discrete method
is able to model certain motion types, e.g., waiting, reliably due to its ability to model
multimodality.
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Fig. 18 Grid-based discrete probabilistic forecast: The model input consists of the past 3D pose
trajectory of the VRU. Additionally, we use a semantic map representing the VRU’s surroundings.
The model outputs grid maps for each forecasted time horizon containing probabilities for every
grid cell describing the likelihood of the VRU occupying the respective cell at the forecast time
horizon

3.2.3 Application in Planning Algorithms for Autonomous Vehicles

To investigate whether our methods can serve as a basis for maneuver planning
methods, we conducted a case study regarding an autonomous vehicle overtaking
a cyclist [59] intending to safely overtake the cyclist while maintaining a lateral
safety distance of at least 1.5 m. We combine our probabilistic methods with a model
predictive planning (MPP) approach to achieve this goal. We simulate overtaking
maneuvers based on cyclist trajectories from our real-world dataset leading to two
different outcomes. Either a successful overtaking maneuver could be performed, or
the vehicle stays behind the cyclist without overtaking due to larger uncertainties in
the forecasted regions. While the second behavior is less desirable, it is considered
safe. The MPP algorithm expects the estimated confidence region to have a convex
hull in the form of a polygon. Since neither the multimodal nor the QR approach
output a convex hull, we compare different approximation methods. We choose a
method where a single rectangle aligned with the VRU’s ego coordinate system per
forecast horizon is used to approximate the region. The rectangle shape is chosen
to keep the computational load of the MPP small since every edge adds to the load.
For safety reasons, the rectangle over-approximates the actual region. Comparing
the forecast methods showed that both methods can estimate reliable confidence
regions. The multimodal approach can estimate sharper regions compared to the



Detecting Intentions of Vulnerable Road Users Based ... 69

Fig. 19 Planned overtaking maneuver based on the forecasted confidence regions. The rectangles
starting in the car lane represent the planned car positions. The rectangles on the bike lane are the
forecasted cyclist regions. Future time steps are color coded so that the depicted boxes correspond
to the same point in time

QR approach, which becomes evident, especially for larger forecast horizons. In our
case study, the most desirable outcome is a successful overtaking of the cyclist. An
example of a successful overtaking is displayed in Fig. 19. The less desirable yet
acceptable behavior would be for the vehicle to abort the overtaking maneuver and
stay behind the cyclist until overtaking is possible. The second case mainly occurred
for large confidence regions. None of our tests resulted in a collision. Our results
show that our methods can be used as the basis for interaction between autonomous
vehicles and VRUs and highlight the importance of reliable and sharp uncertainty
estimates.

4 Cooperative Intention Detection

Up till now, we focused on investigating intention detection using different sensor
modalities independently. This helped us to gain an understanding of the different
challenges of individual modalities. The goal of our project however is cooperative
intention detection. Therefore, the following section describes our methods to com-
bine intention detection from stationary cameras, vehicles, and smart devices into
one system in order to improve the intention detection results. Before we describe
our methods for cooperative intention detection, we give a short interim summary
of what we have learned about the strengths and weaknesses of different sensor
modalities used independently.
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4.1 Interim Summary of Vehicle, Infrastructure, and Smart
Device Based Intention Detection

In the previous section, we covered VRU intention detection methods. We especially
showed that approaches for intention detection from within a moving vehicle face
very different challenges than approaches using stationary cameras.

The process for moving vehicles is especially complicated due to occlusions
from the viewpoint of the vehicle’s sensors caused by other vehicles or objects
on the roadside. This is challenging since many times we only have a short time
frame within which we can observe the VRU’s behavior to estimate future behavior.
Therefore, the focus of our investigation was on finding appropriate methods that
allow us to take the short observation period into account, which we achieved by the
incorporation of human 3D poses into the intention detection process. We were able
to improve the results for both basic movement detection and trajectory forecast,
especially for short observation periods. By utilizing recurrent neural networks, we
were able to consider observation periods of different lengths.

Compared to vehicle-based intention detection, stationary intention detection has
many advantages. By mounting cameras at a higher elevation and using multiple
cameras in a wide-angle stereo-camera system, we were able to resolve most occlu-
sions. Furthermore, we are not as restricted to space and power consumption as we
are inside a vehicle, allowing us to use a dense representation of the surroundings as
a basis for our intention detection algorithms. Therefore, we investigated the direct
incorporation of video sequences into our methods, leading to significant improve-
ments compared to existing methods for basic movement detection. While stationary
intention detection solves many problems of vehicle-based intention detection, it is
not feasible to equip every existing road with cameras. However, stationary systems
can be installed at busy traffic junctions, where many occlusions and most accidents
with VRU involvement occur.

Another possibility we investigated is the use of smart device sensors for intention
detection. Since smart devices are worn by the VRU directly and are not affected by
occlusion at all. However, compared to camera-based intention detection we achieve
far less accurate results due to sensor limitations. Therefore, we don’t see smart
device sensors as a feasible stand-alone solution for intention detection. However,
we think that a combination of smart devices and vehicle-based intention detection
can be used to improve the overall results.

4.2 Cyclists as Additional Sensors

Nowadays, almost everyone carries smart devices in form of a smartphone, smart-
watch, or similar with them while taking part in traffic. Accordingly, we examine the
use of smartphones and other wearable devices for the task of intention detection of
vulnerable road users. These devices are equipped with a great variety of sensors, e.g.,
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inertial measurement units or GNSS receivers. To work mobile, most smartphones
are permanently online; they share their location or send the accelerometer profile
to the server of the fitness application provider for further analysis. Essential for this
are communication technologies such as UMTS, 4G, and 5G or, in the future, 6G,
which allow us to send and receive large amounts of data within a few milliseconds.
In 2010 David and Flach [21] proposed using smartphones for advanced pedestrian
protection, i.e., as a sort of wireless safety belt. Many studies are investigating the
usage of smartphones and other wearables for pedestrians in cooperative intelli-
gent transport systems (C-ITS) [60]. However, cyclists have gained little attention.
In contrast to vision-based approaches, smart devices also enable reliable intention
detection in cases of occlusions. The position and the detected intentions, e.g., of
crossing cyclists appearing from an occlusion, can then be communicated between
approaching traffic participants using modern means of communication (such as 5G,
V2V). Regarding our work, the utilization of smart devices worn by cyclists for the
intention detection of vulnerable road users was the focus of our experimentation.
We investigate various aspects, including smart device-based positioning as well as
the influence of the wearing location of the smart devices [6]. We propose a novel
basic movement detection approach for robust and yet fast basic movement detec-
tion using the smart device inertial sensors solely [12]. We investigate the usage of
smart devices for cyclist trajectory forecasting [7]. Moreover, we propose a novel
cyclist ad-hoc network involving the usage of multiple cooperating smart devices
(e.g., smartphone, smartwatch, or sensor-equipped helmets) for intention detection
at the same time [7, 22]. The main challenges of cooperative intention detection for
cyclists are:

1. The localization of the cyclist [7]

2. The detection of the cyclist and their intention [7, 58]

3. The forecasting of the cyclists trajectory (probabilistically) [7]
4. The incorporation of multiple smart devices [7, 22].

4.3 Smart Device Cooperation for Intention Detection

Instead of a single smart device, in the future, people will carry many devices, e.g., a
smartphone, smartwatch, and smart helmet. Smartwatches, for example, are already
widely used today. Additionally, those may also include cloths containing sensors
or helmets equipped with sensors, i.e., smart helmets. It is also likely that future
bicycle generations will be equipped with intelligent assistance systems, sensors
(e.g., cameras, Lidar, or Radar), and V2X communication capabilities [14]. All of
these smart devices can potentially be used to anticipate cyclists’ movements, to
communicate them (e.g., to an oncoming vehicle), and thereby make an important
contribution to improving cyclists’ safety. The smart devices described previously
measure different aspects of cyclist movement due to their different wearing locations
or other sensor types. If these devices are connected, for example, using a kind of
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wireless body area network (BAN) [45] for cyclists, then the smart devices can
exchange information. This information can be fused and refined and subsequently
be used for cyclist intention detection. An example of this is depicted in Fig.2a.
The smart devices can communicate with each other, e.g., via Bluetooth, and the
smartphone might provide communication abilities with cloud services.

The worn devices provide both redundant as well as complementary information.
The smart helmet and the smartwatch, for example, might have better GNSS signal
due to their wearing location, so their information should be preferably used for
positioning. The smartphone, which is located, for example, in the cyclist’s trouser
pocket, can give information about the pedaling frequency. If we combine these
two pieces of information, we could, for example, improve the positioning or the
forecasting of the future trajectory. We can fuse the communicated information either
in a centralized manner (e.g., on the smartphone) or in a decentralized fashion (e.g.,
on each device itself). This provides safe handling of a user’s data in regard to privacy.
Still, the data information could also be processed non-locally on a remote server
through a secure cloud connection should the computational requirements exceed
the capabilities of the smart devices or simply to save battery power.

In the following, we present two case studies to demonstrate the potential of a
body area network incorporating the usage of multiple smart devices for a cyclist’s
movement anticipation. In the first case study, we investigated the use of a hel-
met equipped with sensors, i.e., a smart helmet. However, because off-the-shelf and
ready-to-use smart helmets are not yet commonly available, we utilize a smartwatch
attached to the cyclist’s helmet. In the second case study, we investigate the use of
multiple smart devices for longitudinal basic movement detection.

4.3.1 Combining a Smart Helmet with a Smartphone for Improved
Orientation Estimation

In this section, we investigate the possibility to use of a smart helmet as an additional
device connected to a smartphone. In our investigations concerning GNSS-based
position, velocity, and orientation estimation, we found that especially the device
placed on the helmet provides excellent velocity and orientation measurements. How-
ever, the sampling rate of 1 Hz is far too low for our intended applications, e.g., basic
movement detection. Therefore, we present an approach combining inertial sensor
measurements with GNSS measurements. In this case study, we combine the GNSS
measurements from the smart helmet with the inertial sensors of a smartphone car-
ried in the trouser pocket. Thereby, the utilized data comprises 48 test subjects and
257 trajectories. An implementation of our approach could be that the smart helmet
sends its current GNSS measurement via Bluetooth to the cyclist’s smartphone. On
the smartphone, the GNSS data is now combined with the smartphone inertial sensor
data to obtain an improved velocity or orientation estimate. For the orientation esti-
mation, we use a Kalman filter running on the smartphone. The velocity estimation
based on the combination of GNSS and inertial sensor data was much more difficult.
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Fig. 20 Performance of the cyclist’s orientation estimation using a smartphone in the trouser pocket
and a smart helmet, as well as the smart helmet only. The evaluation was carried out for different
velocity ranges, i.e., all of the available data, moving faster than 0.5 m/s, and slower than 0.5 m/s

However, we achieved very good results using machine learning models and HAR
techniques.

First, we present the results of the orientation estimation involving a smartphone
and a smart helmet. We examine the following device combinations: First, GNSS
from the smart helmet with gyroscope data from the smartphone in the trouser pocket
and, second, only the smart helmet (i.e., GNSS and gyroscope data from the hel-
met). The experiments are conducted offline with real data. We do not consider any
communication delays, as these are not large compared to the delay of the GNSS
measurement. We tune the hyperparameters of the Kalman filter, i.e., the process-
and measurement noise, using a grid search. We depict the results of our investi-
gation in Fig. 20. The fusion of the GNSS measurements obtained from the smart
helmet and the gyroscope measurements of the smartphone in the trouser pocket can
greatly improve the orientation estimation. Furthermore, we observe that the orienta-
tion estimation based on the smart helmet and smartphone works differently well at
different velocities. This can be explained since the cyclist might look around at slow
velocities, e.g., when waiting at a traffic light, which can be mistaken as a change
in orientation of the bicycle. The smartphone is less prone to such misinterpretation
when it is kept in the trouser pocket. Although, the orientation of the smart helmet
is a very helpful source of information to predict the intended cycling direction.

4.3.2 Inter-Device Cooperation for Basic Longitudinal Movement
Detection

In this section, we present a case study for longitudinal basic movement detection
using multiple smart devices. For this purpose, we consider the smartphone carried
in the trouser pocket, the smartwatch at the wrist, and the device at the helmet. The
results of the case study presented in the following have been published in [22]. In this
case study, we restrict ourselves to data originating from the inertial sensors, i.e., we
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do not consider GNSS measurements. For comparison, we train classifiers for each
of the three considered devices. These are our baseline models. For classification, we
apply XGBoost classifiers [19], followed by an isotonic regression for probability
calibration [47]. To assess the trade-off between robustness and detection time, we
consider Pareto fronts. Therefore, we evaluate different hyperparameters using a
randomized search with 250 trials. In this respect, we apply ten-fold cross-validation
over the test subjects.

For fusing, we considered three different methods to combine the measurements
of the three smart devices: (a) fusion of the feature spaces of all devices (feature
stacking); (b) fusion at the decision-level of the basic movement detections (classifier
stacking); (c) a hybrid approach combining the fusion of the feature spaces and the
decision-level fusion. In the case under consideration, we assume that the fusion of
the measurements and predictions of the smart devices is performed in a centralized
manner on the smartphone. The choice of the smartphone as the point of fusion is
based on the premise that today’s smartphones have the necessary computing power,
enabling more complex calculations to be performed here. However, this is only an
example; the fusion could also be carried out on any other device. In this case study,
we do not consider communication delays, i.e., we assume that the communication
delay between the devices is negligible. As the devices are all worn at different
locations on the body, they also measure different aspects of the motions performed
by the cyclist. To prevent loss of information, we have decided against fusing these
individual features (e.g., averaging) and instead decided to stack the feature spaces.
We reduce the dimensionality of this feature space by applying a two-stage feature
selection procedure. Based on the selected features, we then train a classifier to detect
the longitudinal basic movements.

The fusion at decision-level is based on the trained classifiers of the individ-
ual smart devices. For each smart device, we train a dedicated classifier. These are
referred to as base classifiers. Their outputs (i.e., predicted probabilities of the indi-
vidual classes) constitute a new feature space. Subsequently, we train a new classifier
based on this feature space. In literature, this approach is also known as classifier
stacking or stacking ensemble [73]. We obtain the predictions of the base classifiers
used for training the stacked classifiers using cross-validation.

The third and last approach is a hybrid approach. This hybrid approach uses the
stacked feature space of all smart devices and, additionally, the predicted probabili-
ties, as described before. The feature space is again reduced by applying the two-stage
feature selection procedure.

Overall, when first evaluating individual smart devices, we observed that the
smart helmet performs rather poorly in terms of the scores considered. Altogether,
we can conclude that the classifiers based on the data from the smartwatch mounted
at the wrist provide the best detection results. The results of longitudinal basic move-
ment detection using multiple cooperating smart devices indicate that the combina-
tion of data originating from multiple smart devices leads to both faster and more
robust longitudinal basic movement detection. Although, the results show that the
different fusion paradigms yield considerably different results in some cases. The
decision-level fusion multiple-devices classifiers have smaller detection delays than
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the other approaches. The detection delays are in a range from 0.194 to 0.38s. The
hybrid approach achieves detection delays between 0.24 and 0.72 s. Thus, the hybrid
approach is regarding the detection speed slower but reaches higher scores. The fea-
ture stacking approach usually performs slightly worse than the hybrid approach both
in terms of detection delay as well as its score. Further detailed consideration and
extensive evaluation regarding the use of multiple smart devices for basic movement
detection is provided in the work of Depping [22].

4.4 Cooperative Basic Movement Detection

Another approach concerns the use of cooperation to improve basic movement detec-
tion. These cooperatively determined basic movements can then be used for trajectory
forecasting, i.e., for the parameterization of the forecasting models. In this regard,
we examine different approaches:

Stacking of Feature Spaces: In feature space stacking, we assume that the agents
exchange preprocessed features with each other. These features originating from
different sensors are combined and used for basic movement detection. We realize
fusion by concatenating the feature spaces of different sensors. This is, for example,
the concatenation of orthogonal expansion coefficients (describing the past cyclist’s
trajectory) with Fourier coefficients (describing the acceleration profile derived from
the smart device inertial sensors).

Stacking Ensemble: In the stacking ensemble fusion methodology, we fuse basic
movement predictions employing a machine learning ensemble. These basic move-
ment predictions, which originate from the basic movement detection models of other
agents, are combined using a dedicated machine learning model. The combination
of a stacking ensemble and a stacking of feature spaces is referred to as a hybrid
model.

Probabilistic Fusion: Another method that we examine for cooperative basic
movement detection is the independent likelihood fusion (ILP) fusion. This is a
probabilistic fusion technique (similar to the Bayes filter) which is based on the
assumption that the measurements of the sensors are independent of each other given
the current state. It combines basic movement prediction originating from different
agents.

Coopetitive Soft-Gating Ensemble (CSGE): The Coopetitive Soft Gating
Ensemble (CSGE) [25] is an ensemble technique that is used to fuse forecasts of
different base models. The CSGE has three different weighting aspects, i.e., global-,
local-, and time-dependent, which are used to compute an overall weight for each
ensemble member. We modified the original CSGE to cope with the special require-
ments of the task at hand, i.e., handling delayed or missing predictions.

Orthogonal Polynomials: This approach is a classifier fitted on the cooperatively
acquired orthogonal expansion coefficients.
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Fusion Methods for Longitudinal Basic Movement Detection
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Fig. 21 Micro average F; score for cooperative longitudinal basic movement detection. Results of
cooperative longitudinal basic movement detection for different agent configurations. The colored
bars represent different fusion types. The baseline, i.e., the ego vehicle only, is given by the black,
dashed line [7]

We used real data acquired at the urban research intersection in Aschaffenburg
to evaluate and compare the different approaches. In this context, we examine the
cooperation among three agents: aresearch vehicle, a sensor-equipped infrastructure,
and a cyclist, i.e., a smart device carried in the cyclist’s trouser pocket. We evaluate
the results of the cooperative approaches from the perspective of a non-cooperatively
ego vehicle. The vehicle-based approach is, therefore, our baseline against which we
compare the cooperative approaches. We observe that almost all fusion methods
outperform the baseline for almost all considered agent configurations.

As we can deduce from Fig. 21, cooperation is nearly always advantageous. Espe-
cially remarkable is the performance of the ILP approach. This method is almost
parameter-free and performs better or at least as well as other methods with signif-
icantly more parameters. The CSGE shows the most significant improvement with
up to 30% compared to the baseline. Hence, we can increase the F; score for basic
movement detection significantly through cooperation. However, not only the detec-
tion performance is getting better, but also the mean detection time improves by
up to 30% [7]. In addition, it is important to note that cooperative basic movement
detection is currently the only cooperation method that effectively allows the inte-
gration of smartphones. Although this is also possible with the other methods, the
use of the smartphone position often has a negative effect on the fusion result due
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to the poorer position estimation. The practical implementation of the cooperation
techniques with current communication protocols is possible. Still, depending on the
type of cooperation, it is not as straightforward to realize as with the probabilistic
trajectory fusion technique.

4.5 Cooperative Trajectory Forecasting Using the CSGE

In this section, we outline an approach for cooperative cyclist trajectory forecasting
using the CSGE. The underlying idea is that agents share predictions about their
future trajectory. The trajectory forecasts are then combined using the CSGE. The
approach described in this section fuses deterministic trajectory forecasts. The fused
forecast is the starting point of the probabilistic trajectory forecast. We look at the
fusion from the perspective of an ego vehicle, i.e., the fusion is conducted on the vehi-
cle. The approach can be considered as decision-level fusion. From the perspective of
sensor configuration, the approach can be classified as competitive fusion. The CSGE
has three parameters, i.e., the soft gating parameters, which determine the weights of
the individual ensemble members according to three influencing factors. We use the
ASAEE as the target function to optimize these parameters of the CSGE. Moreover,
we assume that the ensemble members are already trained. We also pretend that there
is a dataset not yet used for training the ensemble members, which can be used for
the CSGE training. We use ten-fold cross-validation to create this ensemble training
dataset. The agents share their trajectory forecasts in the cyclist’s ego-frame. The
usage of this coordinate system has the advantage that errors in the absolute posi-
tioning (e.g., in the global coordinate system) of the respective agent do not influence
the actual trajectory forecast. This allows us to include trajectory forecasts of agents
with poor absolute positioning. This is the case, for example, with smart devices
whose absolute positioning is not comparable to that of modern infrastructure- or
vehicle-based approaches. Nevertheless, smart device-based trajectory forecasts can
be helpful in some situations, e.g., when the field-of-view of the infrastructure or
vehicle cameras is occluded. The CSGE natively supports the outage of a sensor or
ensemble member. Similar to the CSGE approach for cooperative basic movement
detection, we only have to re-compute the respective weights. The introduction of a
new ensemble member can be handled similarly. The prerequisite for this is that the
corresponding error estimates, i.e., global, local, and lead time-dependent errors, are
available. However, in both cases (i.e., outage and introduction of a new ensemble
member), we cannot guarantee that the soft gating parameters are still optimal.

4.5.1 Extending the CSGE for the Fusion of Delayed Trajectory
Forecasts

Additionally, we proposed an extension of the CSGE for the fusion of trajectory
forecasts that allows the integration of delayed trajectory forecasts. We investigate
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the extension in a case study considering the fusion of vehicle- and infrastructure-
based trajectory forecasts. The fundamental idea of our modeling is analogous to the
one used to integrate time-delayed basic movement predictions. The provider of the
forecast always provides an estimate of the forecast quality, i.e., the expected error.
The receiver uses this as a starting point and tries to model the increased expected
error due to the delay. We distinguish three different types of expected errors, i.e.,
global, local, and lead time-dependent errors. Hereby, the challenge we face with
delayed forecasts is that the cyclist’s ego-frame changes over time. This offset is not
only temporal but is also spatial, i.e., a simple temporal shift of the forecast is not
sufficient. In addition to the temporal shifting, we must also simultaneously translate
and rotate the cyclist’s ego-frame. Hence, we cannot simply compare and fuse two
trajectory forecasts of two agents without considering the time and spatial alignment
of the ego-coordinate frames first. We have two possibilities for this purpose. First, the
vehicle itself can estimate the change of the cyclist’s ego-frame, i.e., the translation
and the rotation, and apply these to the received trajectory forecast. For this purpose,
the vehicle must estimate the current and the past (i.e., the time of the creation
of the trajectory forecast) position and orientation of the cyclist. Subsequently, the
vehicle can use these estimates to determine the translational and rotational shift. The
second possibility we investigated is to use the trajectory forecast itself to estimate
the change in terms of the cyclist’s ego-frame and then use this estimation to translate
and rotate the forecast accordingly. This method has the advantage that we can even
fuse two trajectory forecasts if we cannot reconstruct exactly the past position and
orientation at the time of the creation of the trajectory forecast. By artificially shifting
the forecasting origin, our maximum lead time changes as well. We compensate for
this by extrapolating the forecast based on its local trend and then padding it again.

4.5.2 Case-Study Delayed Trajectory Forecasts

In another case study, we examine the handling of delayed messages in the case
where a vehicle receives delayed infrastructure-based trajectory forecasts and fuse
these with its trajectory forecasts using the CSGE. We use the previously described
modeling of the delays for the different weighting aspects of the CSGE. We assume
that only the messages from the infrastructure are delayed. A delay on the side of the
vehicle (e.g., due to data processing) is not considered. The results of this analysis are
given in Fig. 22. We see that the improvement due to the combination of the trajectory
forecasts diminishes with increasing delay. We observe a slow convergence towards
the ASAEE of purely vehicle-based trajectory forecasting methodology. From this,
we can conclude that the fusion of trajectory forecasts is advantageous for a maximum
delay of approximately 1 s.
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Fig. 22 CSGE forecasting performance improvements over the vehicle baseline for different
delays [7]

4.5.3 Comparing Different Approaches for Cooperative Intention
Detection

In the following, we compare the presented approaches to cooperative intention
detection, i.e., cooperation on the data-level using the probabilistic trajectory fusion
method, cooperation on the level of basic movements using various approaches, and
cooperation on the level of trajectory forecasts using the CSGE. In our comparison,
we examine the cyclist trajectory forecasting results of the different approaches using
the example of three cooperating agents: vehicle, infrastructure, and smart devices
carried by the cyclist. As a baseline, we use the forecast based on a non-cooperatively
acting ego vehicle. The results of our investigation are depicted in Fig.23. We see
that the cooperative methods almost all perform better than the baseline in terms of
the median ASAEE. In addition, the spread is also considerably smaller. Trajectory
Fusion CSGE has the lowest ASAEE. Furthermore, the ASAEE of the infrastructure-
based approach is particularly striking. This result underlines the potential of using
infrastructure-based technologies for C-ITS in general and cyclist intention detection
in particular.

Additionally, we performed a statistical analysis of the results to show whether
there is a statistically significant difference between the performances of the cooper-
ative methods and the baseline. The trajectory fusion CSGE approach ranks first. It
is significantly better than all other approaches except the infrastructure-based tra-
jectory forecasting approach. All cooperative approaches outperform the baseline,
although the difference regarding the average rank is not statistically significant. It is
not surprising that the ranks of cooperative methods for basic movements are not sig-
nificantly different from the baseline. This is because the actual trajectory forecasts
only use the ego vehicle data and the cooperatively determined basic movements.
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Fig. 23 Box plot showing the ASAEE for different approaches to cyclist trajectory forecasting.
All cooperative approaches involve the combination of data originating from three different agents,
i.e., an intelligent vehicle, sensor-equipped infrastructure, and smart device carried by the cyclist

itself [7]

Nevertheless, the superior average rank shows the potential of cooperative basic
movement detection. For future work, the cooperative basic movement prediction

may be supplemented by cooperation based on trajectory forecasts.

4.6 Cooperative Probabilistic Trajectory Fusion Using

Orthogonal Polynomials

Assuming that road users make at least partial use of the same set of features, e.g., the
absolute velocity or angular velocity, the cyclist’s trajectory is approximated using
polynomials with orthogonal basis functions [23]. This representation is abstract,

independent of the sensor’s cycle time, and robust against noise due

to implicit data

smoothing. The feature-level fusion is realized using weighted polynomial approxi-
mation. We are exploiting specific properties of the orthogonal polynomials and the

approximation technique: (1) fast incremental approximations are p

ossible (update

mechanisms are available [23]), and (2) information can be weighted individually.
The former keeps the runtime short, and the latter allows us to fade out outdated
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Fig. 24 Cooperative cyclist intention system using trajectory fusion from the view of a single
agent, e.g., vehicle. The position and orientation estimates (indicated by the blue crosses and gray
triangles) received via collective perception messages (CPM) or collective awareness messages
(CAM) are fused probabilistically using a polynomial approximation with orthogonal basis poly-
nomials. Subsequently, the orthogonal expansion coefficients are transformed into the ego-frame.
These coefficients are used for basic movement detection and trajectory forecasting [7]

information or emphasize more recent information. Furthermore, by additionally
modeling the posterior distribution over the polynomial coefficients in a Bayesian
approach, we obtain a fully probabilistic model of the trajectory. New measurements
are integrated by modeling the likelihood, i.e., implementing a sequential update
methodology. We obtain the weighting of information originating from different
road users through a measurement model. The measurement model describes the
likelihood of an observation given the currently estimated polynomial coefficients.
We derive the weight of each measurement by combining a global weight (e.g.,
how good is a measurement of an agent’s sensor globally) and a situation-dependent
weight (e.g., how good is a measurement of an agent’s sensor in the current situation).
Moreover, due to the usage of a polynomial approximation instead of a state-space
model-based approach, e.g., a recursive Bayesian filter, we can cope with situations
where, e.g., due to communication problems, the information does not arrive in the
correct temporal order (out-of-sequence fusion). The coefficients of the orthogonal
expansion of the approximating polynomial are optimal estimators of the average,
slope, curvature, and change of curvature of the approximating trajectory in the con-
sidered time window [23]. Hence in terms of the cyclist’s trajectory, the coefficients
are optimal estimators of the velocity, acceleration, and jerk. As shown in [26], these
are useful features for detecting the intentions of VRUs. We use these coefficients
as features for basic movement detection and trajectory forecasting. A schematic of
this cooperative intention detection approach is depicted in Fig.24.

For evaluation, we utilize the data from real cyclists driving in real traffic at
the research intersection. We recorded the cyclists’ trajectories using a wide-angle
stereo-camera system (i.e., an intelligent sensor-equipped infrastructure), a camera-
equipped vehicle, and a smartphone carried by the cyclists. In the first place, we
consider the evaluation of the position and orientation estimation derived from the
probabilistic trajectory fusion. Therefore, we evaluate the approximating polyno-
mial at the current time. We compare the probabilistic trajectory fusion approach
to a Kalman filter for the fusion of the position measurements showing that our
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Position Error

Orientation Error

(a) Average Euclidean Position Error. (b) Average Orientation RMSE.

Fig.25 The average position (AEE) and orientation error (RMSE) for different numbers of vehicles
and delays [7]

probabilistic approach is on par with the Kalman filter. Furthermore, we study the
probabilistic trajectory fusion approach’s behavior under message and measurement
delays. We can show that the use of position and orientation estimates supplied by the
infrastructure is beneficial, even for larger delays from an ego vehicle’s perspective.
The fused estimate does not worsen and up to a delay of about 0.7% always leads
to an improvement. In another experiment with simulated vehicles, we showed that
the approach scales well to larger vehicle collectives (cf. Fig.25). Since this method
only relies on the exchange of positions or velocities between the agents, it can be
well implemented using existing standards such as CAM or CPM.

S Prospects

We want to conclude this outline of our contribution to VRU safety by detection,
tracking, basic movement detection, and trajectory forecasting with a short summary
of our main findings.

First, we do not see the detection of objects as a solved problem. Despite signifi-
cant improvements due to the success of data learning in the past couple of years, the
resulting models still lack generality, reliability, and trustworthy confidence approx-
imations. We introduce additional annotations of the data we collected to be able to
determine types of data that cause poor results. The so-called context information is
a basis for further research fields. The tasks may include a thorough determination
of relevant context, concepts to gather data with respect to a specific context effi-
ciently, and an evaluation that the model trained on the enhanced database is able to
outperform the original model in any case.

Second, basic movements are an intuitive way of judging the current and short
time future behavior of a VRU. More than that, they contribute greatly in a method-
ological way to the probabilistic trajectory prediction to reduce the future confidence
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regions in a multimodal approach, a single end-to-end learning approach with a single
resulting distribution can not.

Third, trajectory forecasts must be made with probabilistic estimations of future
VRU appearances. Only in that way is a safe and efficient coexistence of VRUs and
autonomous cars possible. It will include ethics to find a way of dealing with how
much risk is acceptable in the case of intersecting confidence regions.

Finally, an infrastructure to share information between traffic participants and to
supply additional static knowledge is essential to exceeding the limitations of single
sources, i.e., solely ego-vehicle sensors, and to be able to perform in a way that is
acceptable for autonomous driving. Each data source could contribute beneficially
in every processing step until trajectory prediction. Even relatively imprecise smart
device data increased the tracking and trajectory forecast performance in cases of
occluded infrastructure or ego-vehicle sensors. Altogether, we consider as a result of
our project the proof of a concept that can estimate and predict the unsteady behavior
of VRUs and thus make VRUs accessible to autonomous cars. The degree of realistic
conditions and real-time performance capabilities has not been reached so far, to the
best of our knowledge.
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Analysis and Simulation of Driving )
Behavior at Inner City Intersections L

Hannes Weinreuter, Nadine-Rebecca Strelau, Barbara Deml,
and Michael Heizmann

Abstract Inner city intersections are a challenging scenario for human drivers as
well as for the development of autonomous vehicles. This is especially the case for
unsignalized intersections where the right before left rule applies. At these inter-
sections, ambiguous situations can arise. In this chapter, we cover two aspects of
this intersection type: First, we use driving data from a field study conducted in
inner city traffic to analyze the relationship between intersections and human driving
behavior. For that, we describe the intersection, its surrounding environment and
the traffic there by features that constitute an intersection’s complexity (e.g. street
width, visibility conditions, number of cooperation vehicles). With those we are able
to predict features describing the driving behavior reliably. Second, we propose a
decision making algorithm for unsignalized inner city T-junctions. The algorithm is
modeled as a discrete event system and does not rely on any explicit communica-
tion. Instead, only the observable state is used. This includes the map, the positions
and velocities of the cooperation vehicles and the driving pattern. We introduce the
algorithm in detail and present results of a comprehensive simulation for validation.
The algorithm is able to drive through all situations in the simulation safely.
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1 Introduction

The ongoing development of autonomous driving is a promising field of research.
When autonomous vehicles are finally admitted onto public roads, one can expect
several benefits from them. They have the potential to reduce the number and severity
of traffic accidents. Additionally, it would enable people who are unable to drive for
themselves access to individual mobility. There are, however, several aspects of
autonomous driving that currently prohibit its introduction into real world traffic.
Among them is driving through inner city traffic and especially at unsignalized
intersections. This intersection type is common in Germany in areas with low or
medium traffic density. At these intersections the right before left rule applies. It
states that one has to yield to a driver approaching on the next street to one’s right
and that one has priority over a driver approaching from the next street to the left.
Oncoming traffic has priority over turning left. This rule does not, however, provide
a defined driving order in all possible scenarios. Instead, situations can occur in
which each driver has to yield to at least one other driver, thus creating a deadlock
at the intersection. In this case the German traffic regulations for example only
state that driving before someone who has priority may only occur after the drivers
communicated and thus cooperated with each other [1]. This of course is problematic
for an autonomous vehicle (A-V) as it has to interpret human behavior, make a
decision based on potentially unreliable predictions and still drive safely and in a
way that is acceptable to both its passengers and its human interaction partners.

In this work we focus on two aspects of driving through unsignalized inner city
intersections. The first aspect is how intersections influence driving behavior [42]. For
that we describe an intersection by intersection complexity. We define intersection
complexity based on features which describe an intersection. This includes both the
static environment (e.g. visibility or the street width) and the dynamic environment,
i.e. the traffic at the intersection. Driving behavior is described based on features
obtained from the driven trajectory. We then predict the behavior features using the
intersection features as inputs. The basis for that is data from a field study in real world
traffic. The study, both the intersection and the behavior features and the prediction
are described in detail in Sect. 3. The second aspect of this work focuses on the
decision making at unsignalized intersections [43]. We present a decision making
algorithm based on a discrete event system (DES) that is able to drive according to
the traffic regulations. It is also able to cope with unclear situations like deadlocks or
if a vehicle yields despite not having to. The strategy to solve these situations is based
on the findings by [20]: They found that human drivers prefer not having to drive first
in demanding situations such as a deadlock at a T-junction. Our approach does not
require any explicit communication between the vehicles, the decisions are based
only on the observable state of the cooperation vehicles, i.e. its position, velocity
and acceleration. This is in line with findings from literature that state that human
drivers rely on implicit communication when approaching such scenarios [19]. The
algorithm, alongside a detailed validation, is presented in Sect. 4.
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2 Related Work

Aspects of this work have been covered in literature before. We first present rele-
vant publications for the behavior analysis as described in Sect. 3, and then on the
behavior generation (Sect. 4). The first aspect of this work focuses on the influence
of intersection complexity on the driving behavior. There are previous publications
that use features describing the environment of a driving task to define complexity.
[9] assume inner city scenarios as most complex and driving on a highway as least
complex. The type of scenario can also be used to discriminate between complex-
ity levels, [20] found a T-junction to be more complex than a symmetrical narrow
passage. Further features that have been used before include the difference between
signalized and unsignalized intersections [24], whether or not parked vehicles at the
side of the road are present [8] and if a driver drove straight through an intersec-
tion or turned right or left [12]. Reference [45] uses satellite images and classifies
intersections as complex if they have at least one street with multiple lanes, traf-
fic islands, sliplanes or more than four roads leading into the intersection. Another
possible feature is visual clutter [14]. All these features so far describe stationary
surroundings. However, one can also consider the dynamic environment, i.e. the traf-
fic, to describe the complexity of a situation. Reference [31] defines high complexity
as situations that have high demands on both information processing and vehicle
control and low complexity if there is low demand for either category. A medium
complexity is assigned to scenarios that require high demand in one category and low
demand in the other. Reference [21] uses the same definition but omits the medium
class. Traffic density [28, 39, 44] can be considered for complexity as well as the
occurrence of lane changes [39] or driving after a congestion compared to regular
driving [23]. Further aspects of traffic and the environment of an intersection have
also been studied, [44] included the number of vehicles from the left and whether or
not a zebra crossing was present in their work. Reference [30] defines complexity by
the grade of urbanization, the presence of oncoming traffic, leading traffic and the
street geometry (straight road, tight corner, soft corner). Reference [4] considers a
straight road as less complex than an intersection at which a stop is required or an
overtaking maneuver. Reference [15] defines complexity by the number of adver-
tisement signs, buildings, oncoming vehicles and further infrastructure while driving
on a highway.

The second aspect of this work deals with decision making in the context of
autonomous driving and has also been the focus of many authors. A common method
for decision making at intersections and other traffic scenarios are partially observ-
able Markov decision processes (POMDP): [26] uses a POMDP for decision making
at intersections and roundabouts. Reference [18] uses a POMDP for real-time deci-
sion making where other vehicles are treated as hidden variables to adapt the driving
behavior to the most likely behavior of the other drivers. Reference [38] applies a
POMDP for decision making at an intersection while turning left. The autors define
several critical turning points from which a turn can be executed and select the
most efficient one. Additionally, one can also consider limited visibility caused by
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both static and dynamic objects. A possible solution for that problem is to add vir-
tual vehicles at the edge of the obscured space [25]. Reference [2] uses POMDPs
for decision making at intersections and pedestrian crossings with limited visibil-
ity. Besides POMDP, further methods for decision making have been employed as
well. Reference [37] uses a mixed observability Markov decision process to pre-
dict the intention of cooperation partners and base the decision on that. Reference
[29] presents a framework that combines prediction, threat detection and decision
making. Using a Bayesian network the threat levels of other vehicles are classified
and the decision is based on that. A decision can also be made by evaluating pos-
sible behavior policies and selecting the optimal one [5, 11]. Reference [6] selects
the trajectory of an autonomous vehicle from a list of reference trajectories from
human drivers during interaction with an additional vehicle. Finally, one can use a
game theoretic approach by considering a game between the ego vehicle and the first
oncoming vehicle [36].

All these works have in common that they do not rely on explicit communica-
tion between vehicles. Instead they rely on the vehicles’ states that are observable by
onboard sensors. Alternatively, decision making at intersections can also be designed
to use explicit communication between the vehicles themselves or between the vehi-
cles and a centralized coordination mechanism. Reference [27] presents an algorithm
for coordination of autonomous vehicles at an intersection using model predictive
control. This decentralized approach requires all vehicles to use the same algorithm
and to share their current state. Reference [34] presents a centralized coordination
algorithm for autonomous vehicles at unsignalized intersections. The vehicles are
assigned arrival times and the problem is formulated as an absolute value prob-
lem. Reference [10] determines the driving order by centralized coordination using a
mixed-integer linear problem. All vehicles transmit their state and receive their allot-
ted time to pass the intersection. They regulate their velocity accordingly. Versions
for mixed traffic and traffic lights are also suggested.

Certain aspects of inner city traffic have been modeled as DES before by using
Petri-nets (PN). Reference [41] models an intersection with traffic lights using PNs
for the traffic light control and to model the traffic flow. A PN can also be used to
model the traffic light control mechanism at several connected intersections as well,
using the largest intersection as the master control [16]. PN based traffic lights control
can also be used to give arriving emergency vehicles green light at intersections [17].
Reference [7] models a city environment consisting of intersections with traffic lights
and connecting streets using deterministic time-based PNs. Reference [33] controls
intersections with traffic lights using deterministic and stochastic PNs. The model is
adapted in case of incidents that would otherwise cause neighboring intersections to
be blocked.

In this work we do not rely on explicit communication with the cooperation vehi-
cles. Instead, the decision making is based only on the observable state of the other
vehicles. We consider this to be more realistic, especially in the short term, as we
cannot expect every vehicle to be equipped with such communication interfaces any-
time soon. We further rely on DES as decisions by the system are easily explainable
and they are made using only basic operations.
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3 Intersection Complexity for Behavior Prediction

In order to autonomously drive through unsignalized inner city intersections, it is
helpful to understand why human drivers drive the way they do. This is important for
two reasons: Autonomous vehicles will have to interact with human drivers for the
foreseeable future. An understanding of human driving behavior might make these
interactions more safe and efficient. It might enable autonomous vehicles to predict
the driving behavior of their interaction partners more reliably. One can secondly
make such systems behave similar to human drivers, this could improve their accep-
tance. The evaluation of this section is based on a field study that was conducted in the
inner city of Karlsruhe in Germany [42]. In that study 34 participants drove through a
predefined course during which they encountered several unsignalized intersections.
At one of the intersections they were confronted with instructed drivers who created
a deadlock situation. In this work we are investigating the interaction with regular
traffic, therefore the runs through this intersection are not part of this work. The
data set includes in total 1818 runs through 13 unsignalized T-intersections and 565
runs through 4 unsignalized X-intersections. Four of the remaining T-intersections
were specifically selected. This way we were able to include intersections with high
and low traffic density and intersections with buildings close to and far from the
street. The remaining intersections are included in the data set as they lie along the
drive path between the selected intersections. The test vehicle was equipped with
a 16 channel lidar, an inertial measurement unit (IMU) and two global navigation
satellite system (GNSS) receivers. The data was recorded using the robotic operating
system (ROS) [35] and the driven trajectory as well as the transformation of the point
clouds to a global reference were generated using a simultaneous localization and
mapping (SLAM) approach [13]. We then generated our data set by extracting the
runs through the intersections which are included in the analysis. For that only those
parts of the trajectory are included in a run that lie within a 35 m radius around the
intersection center. Within the point clouds vehicles and pedestrians are detected and
their trajectories are tracked. We have presented the work described in this section
before in more detail [42].

3.1 Intersection and Behavior Features

From the recorded and preprocessed data we then extract several features to describe
both the intersection itself and its surroundings. As we additionally need a way to
describe the driving behavior of the participants, behavior features are calculated from
the driven trajectories as well. The intersection features include features describing
properties of the driven path, the intersection itself and features about the traffic at
the intersection the participant had to interact with. The set of all features can be seen
as the complexity of an intersection.
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The driven path is described by the entry position and the turning direction. For the
entry position p. the T-intersection is rotated such that it resembles the letter “T”. The
entry position can then either take the value left, bottom or right. The entry position is
not considered in case of the X-intersections because of their symmetry. The turning
direction p, takes one of the values left, straight or right. At T-intersections not all
turning directions are possible depending on the entry position.

Further, we define features that describe the traffic at the intersection the partic-
ipants had to interact with. For that we use the number of pedestrians nj, and the
number of vehicles n, as features. Both pedestrians and vehicles are counted if they
are detected in the point clouds during the approach to the intersection. Please refer to
[42] for further details on the detection and tracking. The visible vehicles are divided
into further features: The number of interaction vehicles n,; are those vehicles that
are within 10 m from the intersection center at the same time as the test vehicle.
In order to be counted their observed track has to pass the intersection center. The
interaction vehicles are further analyzed if they have the right of way over the test
vehicle or if they have to give way; the number of vehicles that fulfill these conditions
are counted in ny and ngy,, Tespectively.

The final class of intersection features is designed to describe the static envi-
ronment at the intersection. Among them is the number of trees n, that are near
the intersection and the road a participant uses to enter the intersection. To judge
the occlusion of an intersection during the approach we include visibility distances.
These are the distances at which reference points in the streets to the left and right
of the street the vehicle enters the intersection from are visible for the first time. The
reference points are placed on the center line of the streets at a distance of
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from the intersection center. This is the distance that is needed to stop when driving
at the speed limit of vy,,x = 30km h~!. With areaction time of #, = 1 sand a braking
deceleration of a, = 6 ms?, the distance of the reference points is dief = 14.12 m. We
use two variants to calculate the visibility distance, an approach based on the point
clouds and one based on object polygons. For the point clouds variant we merge the
current and the two point clouds before and after to the merged point cloud P(d).
This represents the merged point cloud at distance d from the intersection center. For
that the current trajectory point is projected onto the center line of the current lane,
the distance is then measured along the lane center. Within P(d) cylinders C;; with
aradius of 0.6 m are placed between the current location and the reference points i.
If there is at least one point of P(d) within Cs;, reference point i is considered not
visible at distance d. The visibility distance d, . ; to each reference point is then the
distance at which the reference point is visible for the first time. Alternatively, we
use polygons of the buildings and tree trunks along the intersection to determine the
visibility distance. For that we draw a sight line between the current location and
the reference points. If this line does not intersect with any polygon, the reference
point is visible. Again, the first distance d for which this is true determines the
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visibility distance dyp ; of a reference point. The visibility distance of an intersection
is the minimum visibility distance of all its reference points: dy,. = min; (dv.., i). To
include the actual and perceived narrowness of the road leading into the intersection,
we define three widths that are calculated along the normal of each point of the
trajectory. The street width w(d) is the distance from the intersection points of the
normal at distance d with the street curbs and is calculated based on the map of the
intersection. For the visible range the point clouds are analyzed. It describes how
far a driver can see to the left and right and is supposed to model the perceived
narrowness of the street. For each trajectory position the lidar data is evaluated along
the normal at sensor height. The first point within +5° in vertical direction and +10°
in horizontal direction determines the visual range. For the visual range w,(d) this
is performed both to the left and right of the trajectory. The available width w,(d)
is a combination of the previous two widths and describes the space on the street
that is available to drive on. At each trajectory point the smaller one of the street
width wy(d) and visual range w,(d) determines the available width. For this the
calculation of the available width is adapted such that it includes all points within
415° in vertical direction. All three widths are averaged over the approach interval
from 25m to 7m before the intersection center. A more detailed introduction into
the features discussed here can be found in [42].

To describe the driving behavior at the intersections, we define three features
based on the driven trajectory: the commit distance, the velocity drop and the min-
imum velocity. The commit distance is the distance from the intersection center at
which, given the current velocity, stopping before the intersection center is no longer
possible:

_ v(d)?
d. = m;lx (d <v(d)t + M) . 2)

The commit distance can be interpreted as a measure for the distance at which the
final decision to drive is made. The further from the intersection, the more offen-
sive the driving behavior. The minimum velocity is the minimum velocity that the
driver assumed during the approach interval of d; = 25m to d. = 0 m distance to
the intersection center:

Umin = min(v(d)), ds>d > d.. 3)

The final behavior feature is the velocity drop. It describes the ratio between the
minimal velocity during the approach vp;, to the mean initial approach velocity v,
in the interval from 25m to 20 m:

vy = 4)
Va
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3.2 Prediction of Driving Behavior

Using the intersection and behavior features from above we can now predict the
driving behavior. For that we train several Random Forest (RF) [3] regression models.
RFs are employed because of their ease of use and because they can model non-linear
dependencies [22]. Several other regression methods could be used here as well.
We use the intersection features, or a subset of them, as predictors and predict the
behavior features. For each combination of the three behavior features and the two
intersection types (X- and T-intersections) 10 models are trained. For each of the 10
models 70 % of the runs are used as the training set, the remaining 30 % are used as
the test set. In Table 1 the average and standard deviation of the 10 models are given
for all variants. The performance of the RF regression models is evaluated using the
root mean squared error (RMSE):

(RN,
RMSE = | =3~ (5 - ). (5)
k=1

N is the number of runs in the test set, y; is the behavior feature of the k-th run of
the test set and ;. is the value of the behavior feature estimated by the regression
model for the same run. A first analysis was performed using the entire feature set
as introduced in Sect. 3.1. For the T-intersection models all 13 features were used.
In the case of the X-intersections the entry position p. was omitted as a feature.
The results of that analysis are given in the first row of Table 1. The last row of this
table contains the reference value, that is the results of a naive regression model that
outputs the mean of the training set. The prediction error of the driving behavior
for all three behavior features is well below the reference value with a low standard
deviation for both the T-intersections and the X-intersections. The performance of
this regression model is especially noteworthy given the fact that driving behavior
might also be influenced by a driver’s personality or mood.

Additionally, we investigate whether a dimensionality reduction of the feature set
is feasible. For that we first select a subset of the most relevant complexity features.
This selection is a compromise between the feature importance of all investigated
model variants. The remaining features are the entry position p. (only for the T-
intersections), the turning direction py, both visibility distance variants d, . and d, p,
the street width wg and the available width w,, the number of trees n; and the num-
ber of visible vehicles n,. This means that there is only one feature describing the
traffic. This might, at least in part, be explained by the fact that most runs did not
include any cooperation partners as this study was conducted in regular traffic. The
performance of the RF regression models with that feature set are given in the second
row of Table 1. The regression is less accurate than with the full feature set, but the
performance is very similar, indicating that these reduced complexity feature sets are
sufficient to predict the driving behavior at intersections.
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Table 1 Mean RMSE regression results for T-intersections and X-intersections using different
feature sets and all behavior features: commit distance d., minimum velocity vy, and velocity
drop vg4. The standard deviation is in brackets

1

d. inm Umin INM 8~ vd
T-int. X-int. T-int. X-int. T-int. X-int.
Full feature | 1.492 1.696 1.033 1.150 0.153 0.159

set

(0.050) (0.093) (0.036) (0.057) (0.005) (0.008)

Reduced 1.512 1.728 1.068 1.173 0.157 0.162
feature set

(0.049) (0.110) (0.036) (0.069) (0.006) (0.008)

Directions | 1.800 2.590 1.298 1.686 0.187 0.209
feature set

(0.068) (0.084) (0.041) (0.045) (0.006) (0.008)
Reference | 3.093 3.229 1.977 2.000 0.275 0.256
(0.116) (0.135) (0.051) (0.075) (0.004) (0.011)

As the entry position p. and turning direction p; are relevant factors to the driving
behavior [42], we also train models with only these two complexity features. In case of
the X-intersections we only use the turning direction p;. The performance of these RF
regression models is given in the third row of Table 1. The results show that prediction
is still possible, the performance, however, decreases substantially compared to the
full and reduced feature sets. This is especially true for the X-intersection. A possible
explanation for the reduced performance might be that both features can only assume
three distinct values each. Thus there are only six distinct value combinations possible
in the case of the T-intersections and only three combinations for the X-intersections.
This limits the number of possible regression values to the same numbers, thus
causing a less accurate regression.

4 Behavior Generation

The second aspect of this work focuses on an approach to decide on the behavior
of an A-V at a T-intersection, i.e. whether it drives first or waits for its cooperation
vehicles (C-V) to pass the intersection before it. Both this high-level decision and the
resulting longitudinal acceleration of the A-V is covered by our proposed decision
making algorithm. There are several challenges associated with this problem: As
the driving paths of the A-V and its C-Vs intersect, there oftentimes is no solution
that guarantees safety from collisions in any possible scenario. This would only be
possible if the A-V always waits for all other vehicles to drive first. This, however,
is not a feasible option. It would firstly lead to a deadlock if there is another A-V
with the same strategy. This behavior could secondly be more confusing than helpful
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when interacting with human drivers, especially given that human drivers prefer
others to drive first in complex scenarios such as deadlocks at T-intersections [20].
In order to avoid these problems, a certain degree of risk has to be accepted. Also,
another challenge is the number of possible interactions between the vehicles that
are involved in the situation. If all pairwise interactions are explicitly modeled the
model is dependent on the number of cooperation partners. Also, explicitly modeling
all interactions would be challenging.

4.1 Basic Setup

The algorithm is modeled as a discrete event system (DES) and does not assume
any communication between the vehicles. The only available information is the
observable state of the C-Vs, i.e. their position, speed and acceleration and the map of
the intersection. As soon as a C-V is closer than 10 m from the start of the intersection
we assume that the turning direction is known, e.g. by observing the indicators or
from the driven trajectory. There exist previous works from literature that support
this assumption [32, 46]. In this work the vehicles follow the center line of their lane,
so only the longitudinal acceleration has to be controlled. The map is a generic T-
intersection with a 90° angle between the bottom street and the street going straight,
see Fig. 1 for a schematic. Additionally, we consider occlusions at the intersection.
For that we define two points that specify the corners of obstacles between the
streets that block the direct line of sight. These points are placed on the bisecting
lines between the streets and the distance from the curb is used to parameterize the
visibility conditions.

To simplify the model and reduce the number of vehicles that have to be evaluated,
we only consider those vehicles that are currently relevant to the A-V. Each of these
vehicles is evaluated independently. With that strategy we avoid having to model
the interaction between all possible pairs of vehicles as well. Each of the relevant
C-Vsis assigned a virtual traffic light that is either red or green. The A-V only drives
offensively if all traffic lights are green, a red light thus means that the A-V cannot
drive due to that vehicle. The first relevant C-V is the vehicle that has priority (P-V)
over the A-V, i.e. the vehicle closest to the intersection on the next street to the right.
If the A-V will turn into the next street to the right itself, there is no P-V as the A-V
does not have to yield to any vehicle in this case. Additionally, the vehicle that has
to yield (Y-V) to the A-V has to be taken into consideration. The Y-V is the vehicle
closest to the intersection that is approaching on the next street to the left. If its path
does not intersect with the A-V’s path, the vehicle behind it is evaluated. To ensure
a safe passage of the intersection, two more vehicles have to be considered. The
blocking vehicle (B-V) is the closest vehicle that is leaving the intersection on the
same road as the A-V will and the leading vehicle (L-V) is the vehicle driving directly
in front of the A-V on its path. The B-V and the L-V can be the same vehicle. All
these vehicles are relevant for the decision of the A-V as either their paths intersect
with the A-V’s (this is the case for the P-V and the Y-V) or because they can hinder
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Fig.1 Schematic representation of a scenario at a T-intersection. The visibility is determined by the
visibility edges C1 and C2. These are placed on the bisecting lines between the streets originating
from the intersection center IC. With that the visible street area can be calculated. In this case
vehicles B, Y1 and L are visible, vehicles P and Y2 are not visible. The A-V enters the intersection
from the bottom direction and turns left. It has to yield to vehicles from the right and has priority
over vehicles from the left. Therefore, vehicle P is the P-V (as soon as it becomes visible). As both
Y1 and Y2 are turning right, there is no Y-V. If Y2 were to drive straight it would be assigned
the Y-V even before its preceding vehicle Y1 passes the intersection. Vehicle B is the B-V as it is
driving on the road the A-V intends to enter and is potentially blocking this road if it is too close to
the intersection. Vehicle L is driving directly in front of the A-V and is thus the L-V

the A-V from leaving the intersection right away (in the case of the B-V or the L-V).
We only consider the vehicles closest to the intersection as only those are directly
relevant for the decision of the A-V. A vehicle behind e.g. the P-V is irrelevant as it
cannot interact with the A-V as long as the P-V is before the intersection. The same
is true for the L-V: The vehicle driving in front of the L-V does not directly affect
the A-V. If one of the C-Vs passes the intersection the situation is re-evaluated, the
labels are assigned anew and all considerations are based on the new assignments. In
the case of limited visibility the A-V might currently not be able to see some of the
vehicles, despite them existing. To cope with that possibility certain non-existence is
only assumed if a reference point that is placed on the road center at a radius of 25 m
from the intersection center is visible. In the case of the B-V the reference point is
set to a distance of 15 m and the existence of the L-V is assumed to be known in any
case. If the turning direction is not yet known, the worst case is assumed. Both the
vehicle assignment and the visibility is showcased in Fig. 1.

4.2 Decision Making Algorithm

As the algorithm for decision making is modeled as a DES, the vehicle is described
and controlled by its current state. The state only changes if an event occurs. For
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the definition of these events features that are based on the observable data are used.
Based on the current state the behavior of the A-V, i.e. its acceleration, is determined.

4.2.1 Features

To indicate for which vehicle a feature is calculated, it is marked by a corresponding
index: (-)*, x € {a, p, y, b, 1}. All distances are measured along the drive path of a
vehicle. The distance to scenario dy () is positive before, zero within and negative
after the intersection. The begin of an intersection is defined as the point where lanes
diverge and the end is the point where lanes merge. All features are calculated for
the current time ¢. For better readability this dependence is omitted in the following.

At an intersection, the drive paths of vehicles oftentimes intersect. The area where
the lanes of two vehicles overlap is referred to as the common collision zone. For
the algorithm only the distances to the collision zones of the A-V with its C-Vs are
needed. d; , , and d;, . are the distance of vehicle x to the beginning and the end
of the collision zone of the A-V with the C-V x.. The distance of the A-V to the
beginning of the collision zone with the P-V is then d? p,p and the distance of the P-V

to the beginning of the same zone is d" . Based on the distance to collision zone
the time to collision zone is calculated usmg the current velocity v* of vehicle x:

X dgxc
lox,.. = v (6)

Additionally, the distance required to brake to a complete stop assuming the velocity
v; and the acceleration a; is used as a feature:

x 2
—(;';g , af < O0ms™2
X X X "
dy (vi.a3) = 10 al=0ms 2 Av) = Oms™? - ™)
00, otherwise

The distance to the last stopping point 4} is the distance to the point a vehicle has
to stop to not interfere with any other driving path through the intersection. The
final feature is the free distance behind the B-V. This feature measures the distance
between the end of the intersection and the rear of the B-V including the distance to
break in an emergency (¢, = —7.5 ms~?) from the current velocity:

1
d? = dlb — E ly + dg (Ub, ae) s ®)

where dib is the current distance along the driven path from the end of the intersection
and [, = 4.4 m is the length of the vehicle.
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4.2.2 Events

In our model the behavior is supposed to differ depending on the distance of the A-V
to the intersection. Thus, the approach to the intersection is split into six zones. The
current zone is determined by the A-V’s distance to scenario d?. In the first zone
(d? > 40 m) the A-V is not controlled by the decision making algorithm but drives
freely. At the beginnings of the second (40m > d? > 25m) and the third (25m >
d? > 10m) zone a single prediction of the P-V is performed and the behavior of the
A-V is adapted accordingly. The A-V adapts its behavior to show its intention as
early as possible. The prediction is only run twice to avoid changing the behavior too
often. The fourth zone is the area just before the intersection (10m > d? > 1 m). In
itthe A-V constantly monitors the behavior of its C-Vs and adapts its own behavior if
necessary. Zone 5 is the area within the intersection itself (1 m > d? > O m). In these
last two zones the final decision on the behavior has to be made and then executed
accordingly. The final zone 6 is the street past the intersection where the vehicle is
no longer controlled by the decision making algorithm.

The model is based on events, most events are themselves a combination of so
called base events. Their meaning and definition is shown in Table 2 and the events
are presented in Table 3. Each of the four relevant C-Vs has a traffic light event
assigned to it. The P-V is the only vehicle that has two variants of that event. In

Table 2 Base events for the DES for decision making

Name Description Condition

epl Certain non-existence of P-V Ref. point is visible and no P-V detected

e No conflict expected with P-V Bpet Aty <10 ANdE, 4 Ady < df

€3 P-V stopped near intersection W <y AaP < Osm2 AP <dy A df,p’b >
Om

eba P-V yields th >ty

ebs Y-V inside collision zone dg,y,b <0mA dg,y,e > 0m

ebe A-V can pass before Y-V Eye < té" v.b

ey7 Stop possible (comfort dec.) d > di (vi, ac)

eps Y-V stops & A-V could brake dt > (d{,1 (vi,ap) +0.2 m) AVY < vg
AaY < Osm2 /\dcy’y,b > dg WY, aY)

eh9 Y-V stopped near intersection vW<uvAaY < OSE2 AdY <dy A dzy’b >
Om

€b10 Certain non-existence of B-V Ref. point is visible and no B-V detected

épl1 Enough space behind B-V d}’ > Iy 4+ dmin

ep12 L-V does not exist No L-V detected

ep13 L-V passed intersection di <O0m

epla Stop possible (emergency dec.) dl > dff (v, ae)

ebls Deadlock possible A-V, P-V, Y-V: turning directions intersect

ebl6 A-V stopped near intersection V! <vsAa? <0ms™2A < df <dy
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Table 3 Events of the DES for decision making. Most events are a combination of base events

Definition Description

elpl = epl Ve Green light from P-V in zones 2 and 3
elpl = €l Ven2 V (eb3 A eps) Green light from P-V in zones 4 and 5
el,y = —eps A (ens V ep7 V eps V eny) Green light from Y-V

€1,b = €p10 V ebll Green light from B-V

€11 = ep12 V €p13 Green light from L-V

e Entered next zone

e3 = epla Emergency stop possible

e4 = epl5 Deadlock possible

e5 = ep3 A epg A eplg Deadlock detected

e6 = ep3 A epo Deadlock of C-V detected

the prediction phase (zones 2 and 3) its light is green (event ey ) if the A-V is
either certain that no P-V exists (base event ey,;) or if it does not expect a conflict
with its P-V (the A-V is predicted to enter the intersection at least A, = 2.5s and
Ady, = 10 m earlier, ep;). In zones 4 and 5 the light is additionally set to green (ey p,11)
if the P-V is currently stopped close to the intersection (the velocity is below the stop
threshold of v, = 0.15ms™!, it does not accelerate and it is closer than the threshold
d, = 12 m to the start of the intersection, ey3) and the wait time ¢ has exceeded its
ty = 2 s limit (i.e. both vehicles stood for 2 at the intersection and it is not due to
a deadlock, epq). The parameters are either set to the authors considerations and are
thus options to parameterize the model or are due to physical constraints.

The traffic light of the Y-V (e y) is green if the Y-V is currently not within the
common collision zone (—eps) and if at least one of these events is true: The A-V
is predicted to be able to pass the collision zone before the Y-V (base event epg);
the Y-V is stationary close before the intersection (epg); the distance to the last stop
point of the A-V is still large enough so that it is able to stop before it without
exceeding the comfort deceleration of a. = —2.5ms™? and assuming a velocity
within the intersection of v; = 6.5ms™! if driving straight and v; = 4.0ms™! if
turning (ey7); the Y-V is slow (vg = 2ms™!), it currently brakes such that it will
come to a complete stop before the beginning of the collision zone and the A-V
has enough space remaining for a hard stop (a, = —4.5ms™?) if it should become
necessary (epg). The latter two base events allow the A-V to drive despite currently
not being predicted to pass the intersection before the Y-V. With these conditions
we avoid unnecessarily defensive behavior. Only if the A-V is very close to the
intersection and still cannot drive first safely, it yields to the Y-V.

The B-V gives green light (e p) if the A-V is certain that it does not exist (base
event ey ) or if there is enough space (i.e. the length of a vehicle /, and the minimum
distance for a following vehicle during standstill d,;, = 1.5 m) behind the B-V so
that the A-V can pass the intersection without the risk of having to stop inside the
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intersection (ep1). The L-V has a green traffic light assigned to it (e ;) in case it does
not exist (ep12) or after it has passed the intersection (ep13).

Additionally, some further events are needed for the model. If the A-V enters a
new zone in the current time step, event e; is triggered. Event ej is triggered if an
emergency stop before the intersection is still possible. If the turning patterns of the
A-V, the P-V, and the Y-V all intersect with each other, a deadlock is possible (es).
A deadlock occurs (es) if both the P-V (ep3) and the Y-V (en9) as well as the A-V
(eb16) are stopped before the intersection at the same time. If only the P-V and the
Y-V are standing at the intersection, a deadlock of the C-Vs occurs (eg).

4.2.3 DES Model

Each zone has states associated to it. The model can only be in a state that is associated
with its current zone. In zones 1 and 6 there is only one state each (s1o and sgp), as
the model does not influence the behavior in these states. The remaining states each
have a state for offensive driving (states s»1, $31, S41 and ss1) and defensive driving
(s22, 8§32, S42 and s5p). Offensive states prepare the A-V for driving directly through
the intersection or are the state in which the vehicle actually passes the intersection.
The defensive states correspond with waiting before the intersection or describe the
waiting state directly. State ss3 describes offensive driving after waiting in state ss,.
The model switches between states if certain events occur. The model and all its
states and events are shown in Fig. 2.

zone |

e3 N\ ((84 A —|86)
V(s £ mey)

|

|

|

| eq VvV (—‘64 A eg)
| |

d*>40m '40m > d® > 25m! 25m > d°
: , >10m

within intersection
Im>d}>0m

d* <0m

s

> 1m

Fig. 2 DES of the A-V. If none of the events attributed to the current state occurs, the system
remains in that state. These events have been omitted for better readability. The event eg = e p 11 A
e1y A e1p A ey describes the case that the traffic lights of all four relevant C-Vs are green in zones
4 and 5. Event eq) = e4 A es Aeqp A eq is true if a deadlock is possible, has occurred and both
the L-V and the B-V do not obstruct the A-V from driving
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During the approach the model always starts in state s;o. It remains there until
it leaves the first zone (event e;). When this happens, the prediction of the P-V is
evaluated for the first time. In the prediction phase only the P-V is considered as the
A-V only has to yield to this vehicle. In case of green light (e;,, 1) the A-V assumes
its offensive state s,;, otherwise it drives more defensively in state s,;. When it
eventually enters zone 3 the same evaluation is performed again. If the evaluation
leads to a green light, it enters state s3; that is associated with offensive behavior,
otherwise it enters state 53, and shows defensive behavior. When the A-V leaves
zone 3 there is no prediction, it transitions from state s3; to s4; or from s3; to s4»,
thus keeping its offensive or defensive behavior, respectively. This can be done as
the prediction is run constantly (i.e. in every time step) in zones 4 and 5.

In addition to the constant prediction, all four relevant vehicles are now considered
for decision making, as the A-V is close to or within the collision zones with its C-Vs
in these zones and dangerous situations can thus occur easily. If the A-V is in the
defensive state s4» and all four lights are green (evente; = ej 1 Aejy Aegp Aer)
and if a deadlock cannot occur (—ey), it transitions to state s4. If it is in the offensive
state s4; it switches to s4; if at least one of the four lights is no longer green (—e,) and
if there is still enough space for an emergency stop by the A-V (e3). This does not
pose a large risk as the parameterization for the green lights is rather conservative.
Additionally, this strategy avoids a potentially dangerous stop within the intersection.
If the vehicle reaches the end of zone 4 and enters zone 5 (event e;), it progresses
from s4; to s51 or from s4; to §5, respectively. If the vehicle is in state ss; it remains in
this offensive state unless at least one of the traffic lights is no longer green (—e,) and
there is still enough space for an emergency stop (e3). In this case it transitions to state
s52. There is no transition from ss, to ss;. Instead, the A-V can only leave the waiting
state ss; to ss3 if all traffic lights are green again (e,) while no deadlock is possible
(—ey) or if there is a deadlock that the A-V tries to solve (eq = e4 A es Aejp Aep)).
If a deadlock is detected by the A-V it always tries to drive first. An alternative
strategy would be to drive after a certain waiting period. State ss3 is an offensive
state that is assumed after the A-V was defensive. From it, the A-V either progresses
to s¢o after it leaves the intersection (e,) or it returns to the defensive state ss; if it can
no longer drive safely. The latter is the case if an emergency stop is still possible (e3)
and either a deadlock is possible (e4) but the cooperation vehicles are not stopped
(—eg) or a deadlock is not possible (—e4) and not all lights are green (—e,). State
S0 1s the only state of zone 6. This state is not controlled by the algorithm as the
interaction at the intersection is now over.

4.2.4 Acceleration

So far the DES only describes the current situation of the interaction. To actually
control it, the behavior of the A-V has to be set depending on the current state of
the DES. For that we set a target velocity for each state (see Table 4) and control the
vehicle using the intelligent driver model (IDM) [40]:
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Table 4 Target velocities v, in m s~ ! for the states of the DES. Entries marked with an asterix are
set in conjunction with a virtual vehicle to enforce stopping before the intersection

State 521 $22 8§31 8§32 S41, S51, §53 | 542, $52
e straight | 8.3 6.0 7.5 6.0 6.5 6.5"
v turning | 8.3 6.0 6.0 6.0 4.0 4.0

a v\ d*\? i a v Av
a = dy 1-— v—t — Ad with d :dmin-f—v tmin+2,\/Tm_ab. (9)

With the maximum acceleration a,,, = 2.5 ms~2, the braking deceleration a, = ac,
the target velocity v, as specified in Table 4, the distance along the drive path to the
L-V Ad, the difference in velocity Av = v® — v! and the minimum time between
following vehicles #,;, = 1.2s. The acceleration a® by the IDM is limited to a lower
threshold of apin = ac. If there is no L-V Ad is set to infinity and v =0ms'. In
states s4p and ssp the A-V is supposed to stop 1 m before the last stopping point. If
this is not possible, the A-V brakes harder (ani, = ap) to still stop at that point. If
this is also no longer possible, an emergency stop with am;, = d. is initiated and the
A-V will stop directly at the last stopping point. To ensure that the A-V stops at its
stopping point, a virtual vehicle is placed such that its rear is dy,, before the stop
point. The virtual vehicle is not used if there is an L-V that is closer. v is set to the
same value as in the offensive states s4; or s5;. This approach ensures that the A-V
proceeds to its stopping point if there is no L-V before the intersection and that the
A-V is able to restart after waiting in a queue to proceed to its stop point.

4.3 Simulation Results

To test and validate our proposed decision making system we implemented a simu-
lation framework. To properly test the algorithm, also the C-Vs have to be simulated.
For that a simplified version of the proposed algorithm is used because we are only
interested in testing the A-V’s algorithm. In it, the conditions for driving depend on
fewer features and events and zones 4 and 5 of the original algorithm are merged.
In this zone the decision to drive first is not revised, i.e. once the algorithm decides
to drive, it continues to do so regardless of any future development of its surround-
ings. In case of a deadlock, the C-V waits for a random duration before it tries to
resolve the situation. The C-Vs detect a deadlock before the A-V does. That way,
it is also possible for the C-Vs to drive first despite the A-V driving as soon as it
detects a deadlock. That way it is possible to test the behavior of the A-V’s algorithm
if someone else tries to resolve a deadlock. Additionally, visibility is not taken into
consideration for the C-Vs, all vehicles are visible by the simplified algorithm at
all times. Finally, the algorithm of the C-Vs can have some special behavior to test
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certain aspects of the main algorithm: They can be set to drive first despite having
to yield and alternatively they can be set to wait for an arbitrary duration if they are
allowed to drive first. This behavior is only shown when the relevant cooperation
partner from the C-V’s perspective is the A-V. With both variants we can test the
A-V’s behavior towards unexpected behavior. Additionally, the target velocity inside
and after the intersection can be reduced. With that one can further ensure that the
A-V only drives once the intersection is cleared.

Within the simulation framework, the simulation for a single run is performed as
follows: First, the map for the simulation is loaded and all vehicles are initiated. Then
each time step is simulated: The currently visible vehicles are determined and only
the current states of these vehicles are presented to the algorithm. Then the C-Vs are
identified and the features are calculated. Afterwards, the currently active events are
checked and the DES is updated. Finally, the acceleration is calculated. These steps
are performed for the A-V and all C-Vs.

For the simulations we used the generic map as described above, the visibil-
ity distance was set to either dy € {7m, 14m, 21 m} and there were either n. €
{1,2,3,4,5, 6} cooperation vehicles present in the simulation. Each of these com-
binations was simulated 200 times, resulting in 3600 simulations in total. In each
simulation run the distances to the intersection of all vehicles and their initial veloc-
ities and turning patterns were set randomly within a certain feasible range. The
special behavior and the waiting durations were set randomly as well.

None of the simulations resulted in a collision. One should note, however, that
it is possible for two C-Vs to restart simultaneously after a deadlock. As the deci-
sion to drive is not revised, this would result in a collision. Such a run could safely
be disregarded for evaluation as we are only interested in the performance of the
A-V’s algorithm. For each run we also measured the time to drive through the
intersection #q (time while the A-V was within 30m > d¢ > Om). If we average
over all runs with the same visibility distance, we get the following average dura-
tions and corresponding standard deviations: 73 (dy = 7m) = 12.10s (o = 6.035),
tqg(dy = 14m) = 12.14s (o0 = 6.185s) and 4 (dy =21 m) = 12.16s (o = 6.23 ).
As these values are very similar, we did not analyze the results separately for each
visibility distance. In Table 5 the time to drive through the intersection is averaged
over all runs that have the same number of P-Vs and Y-Vs. The results from that
table have to be interpreted with caution as there are some aspects that are not con-
sidered, e.g. a leading vehicle that has to wait can increase the duration even though
the A-V would not have had to stop. Also, there are only a few runs with more than
three vehicles of a kind, the average is thus less reliable. Nonetheless, the results
indicate that the algorithm results in reasonable decisions: The average time to pass
the intersection increases with the number of cooperation vehicles. The increase is
more pronounced for the P-Vs than for the Y-Vs. This is to be expected as one has
to yield to the P-Vs instead of the interaction with Y-Vs where one should have to
wait less often.
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Table 5 Average time to clear the intersection by the number of P-Vs and Y-Vs for all visibility
distances

0P-Vs 1P-V 2 P-Vs 3P-Vs 4 P-Vs 5P-Vs
0Y-Vs 9.49s 14.02s 19.435s 22.49s 24.265s 29.39s
1Y-V 9.62s 16.79s 21.95s 25.45s 29.87s 36.6s
2 Y-Vs 13.53s 19.83s 25.28s 27.31s 36.87s -
3Y-Vs 15.87s 20.58s 24.73s - - -
4Y-Vs 26.87s 15.22s - - - -

5 Conclusion

The results from Sect. 3 show that the driving behavior of human drivers depends on
the intersection. We can thus predict the driving behavior using features that describe
the intersection itself, its surroundings and the traffic there. As these features can be
considered as a description of an intersection’s complexity, one can conclude that the
complexity of an intersection has an influence on the driving behavior. We further
show that it is possible to predict the driving behavior using only a subset with the
most relevant features. In future work we intend to directly ask human participants
for a complexity rating of such situations. With that we hope to find a dependence
between the perceived complexity and the resulting behavior.

In Sect. 4 we further present a decision making algorithm that is able to reliably
drive through an unsignalized T-intersection while interacting with other drivers. We
validate our proposed algorithm with a simulation and the results indicate a reliable
performance. Future work on this topic will include variants of this algorithm for
further scenarios such as X-intersections, roundabouts or narrow passages. We further
intend to run the algorithm on real world maps.
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Robust Local and Cooperative )
Perception Under Varying i
Environmental Conditions

Jorg Gamerdinger, Georg Volk, Sven Teufel, Alexander von Bernuth,
Stefan Miiller, Dennis Hospach, and Oliver Bringmann

Abstract Robust perception of the environment under a variety of ambient con-
ditions is crucial for autonomous driving. Convolutional Neural Networks (CNNs)
achieve high accuracy for vision-based object detection, but are strongly affected by
adverse weather conditions such as rain, snow, and fog, as well as soiled sensors. We
propose physically correct simulations of these conditions for vision-based systems,
since publicly available data sets lack scenarios with different environmental condi-
tions. In addition, we provide a data set of real images containing adverse weather for
evaluation. By training CNNs with augmented data, we achieve a significant improve-
ment in robustness for object detection. Furthermore, we present the advantages of
cooperative perception to compensate for limited sensor ranges of local perception.
A key aspect of autonomous driving is safety; therefore, a robustness evaluation of
the perception system is necessary, which requires an appropriate safety metric. In
contrast to existing approaches, our safety metric focuses on scene semantics and the
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relevance of surrounding objects. The performance of our approaches is evaluated
using real-world data as well as augmented and virtual reality scenarios.

1 Introduction

Autonomous driving is one of the big challenges in society and currently of great
interest in research. Autonomous vehicles are a promising approach to reduce traffic
jams and the number of accidents and furthermore increase the comfort for the drivers
respectively passengers. To achieve market readiness, autonomous vehicles have to
be safe, this requires a complete and correct perception of the environment.

Different sensors like LIDAR, RADAR, and cameras are available for perception;
of them, cameras are most frequently employed [107]. Since camera sensors are
vision-based, they are affected by weather circumstances such as rain or fog [107].
The effect of adverse weather on the frequency of car crashes is not to be neglected
as shown by the National Highway Traffic Safety Administration; on average over
the past 10 years, adverse weather is responsible for 21% of the car accidents in the
United States [106].

Therefore, these characteristics must be taken into account when developing per-
ception algorithms in order to obtain a robust perception, which is crucial for a safe
system. Car manufacturers are able to capture data using their own test vehicles,
however, in research often publicly accessible data sets are utilized. Most of them
contain no or only few data under adverse weather conditions. One method is to
create artificial weather conditions and use those to enhance the data set.

Two major issues come with simulating weather conditions. In order to gain a
benefit, it is first necessary to simulate a wide range of potential conditions, such as
rain, snow, and fog. A second problem is that these simulations must be physically
accurate.

Harsh weather affects not just the image itself but also neural network-based object
detectors, whose performance is highly dependent on their training [108]. Hence,
neural networks must be trained under different weather conditions to achieve a safe
and robust perception.

Even with robust neural networks, the perception is limited due to occlusion and
sensor ranges. At this point the so-called cooperative or collective perception (CP)
comes into play. Using multiple distributed vehicles to perceive objects locally and
share these detections with other vehicles via Vehicle-to-Everything (V2X) commu-
nication helps to acquire information even about vehicles which cannot be perceived
locally.

In Sects.1.1-1.4 we describe the concept of our work as well as the simula-
tion framework “RESIST”. Section?2 considers our physically-correct image-based
weather augmentations. The following section presents a new way to evaluate safety
of object perception systems. Section4 presents optimization approaches for local
and cooperative perception. Finally, in Sect. 5 we present our conclusion and give an
outlook about further research topics.
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1.1 Concept

A complete perception of the environment under all circumstances is crucial for
autonomous driving. Hence, it must be robust against environmental influences like
rain and fog as well as physical restrictions such as limited sensor ranges. This work
mainly considers the environmental perception with camera sensors since this sen-
sor type is one of the most frequently used [107]. Our goal is a safe and complete
perception of the environment. An overview of our work is shown in. We consider
two different ways to achieve this goal: Local perception and cooperative perception.
First we consider the local perception of an ego vehicle and investigate strategies to
enhance the vision-based perception. The proposed robustness enhancement is based
on training CNNs for object detection on a more comprehensive data set including
weather augmentations. Thus, a significant part of our research covers the physically
correct simulation of the weather conditions rain, snow and fog. Realistic weather
simulations allow to augment existing data sets and increase the data variety for the
training of neural networks. Also, the influence of weather on object detection itself
must be investigated in detail. Some findings are transferred to LiDAR sensors by
our group, since these are also vision-based (see work of Teufel et al. [100]). More-
over, the robustness improvement of RADAR sensors is investigated in our group by
Zlavik [95]. The work presents a noise modulated pulsed radar system which out-
performs commercial state-of-the-art radar systems. Additionally, with compressive
sensing the effort for signal acquisition is reduced by 70% [95]. Instead of sensor
specific optimization, other approaches from our team use more generic deep learn-
ing techniques to optimize robustness. Rusak et al. [84] demonstrate that a simple

A) Scenario Generation B) Weather Simulation C) Local Perception
— ' —~
. I

4

F) Safety Evaluation E) Cooperative Perception D) V2V Communication

Fig. 1 Overview of the project’s total concept. We focus on b weather simulation (see Sect.?2),
the improvement of ¢ local perception (see Sect.4.2) and e cooperative perception (see Sect.4.3).
Furthermore, we investigate f how to evaluate safety for object perception (see Sect. 3.2). a Scenario
generation is out of the scope of this work due to space limitation. d V2V communication is part
of the workflow but not a focus of our research and covered in more detail in Chap.6. Images
from [19, 108, 110, 112]
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but properly tuned training with additive Gaussian and Speckle noise generalizes
surprisingly well to unseen corruptions. Michaelis et al. [64] extend the ImageNet-C
robustness benchmark from image classification to object detection in order to pro-
vide an easy-to-use benchmark to assess how object detection models perform when
image quality degrades.

Even with significant improvements in the local perception, a full perception of
the environment is not possible due to physical restrictions regarding sensor ranges
as well as covered line-of-sights through infrastructural elements or buildings. Thus,
as a second improvement strategy, we investigate cooperative perception and an
optimization approach to determine the validity and trustworthiness of collectively
perceived information before performing a fusion. Cooperative perception aims to
increase the sensor ranges through distributed perception and helps to see traffic
participants that are occluded by e.g., buildings.

Since the goal is to achieve safety, we also have to consider how to evaluate safety.
Therefore, we present a novel metric to evaluate safety for local and cooperative
perception systems which incorporates important factors such as velocity and the
object class.

1.2 Related Work

Most simulations of rain are made for computer games and only a few simulations
consider physical correctness [6]. Therefore, Hospach et al. [42] proposed a realistic
rain simulation based on falling, white-colored triangles. They use alpha-blending
to simulate different intensities; but this approach does not consider effects like
refraction. The approach of Wang et al. [115] uses ray tracing for the rendering of
raindrops. Therefore, they have to know the exact position of the light source. Sato
et al. [87] are using a single hemisphere in front of the camera; but this approach
ignores the real distance of objects towards the camera. Furthermore, they had to
use various simplifications to achieve real-time capability. Many more publications
consider the rendering of realistic fluid dynamics of water droplets on different
surfaces [47, 51, 52, 116]. A further study of Garg and Nayar considers the shape
of falling water drops [29]. Moreover, interesting physical properties of rain can be
learned from [36, 119]; both works regard the detection and removal of raindrops
on images. A comprehensive work about the physical correct simulation of rain and
fog was presented by Hasirlioglu [38].

For water spray of vehicles driving on wet roads (in the following: road spray)
fewer works exist. The size of road spray was investigated by Kooij et al. [56].
Beginning with the work of Kamm and Wray [50] different researchers considered
the movement of the road spray [31, 32, 44, 49]. Slomp et al. [96] presented a fast
and efficient rendering method for water droplets based on OpenGL.

To simulate snow, a simple approach without considering depth or falling speed
was introduced by Wang and Wade [117]; they produced a texture with 2D-
snowflakes that surrounds the camera. Another approach is presented by Zhou and
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Libaicheng [103], they propose a method to draw falling snowflakes. Since these
snowflakes are visible every time, it lacks in realism regarding the rotation of flakes.
While the falling snowflakes as well as how the snow covers the ground and even
the process of snow melting is investigated very well [24, 69, 86, 114], the move-
ment of the flakes while falling is considered less. This was covered by Langer and
Zhang [59] who used Fourier transformations to add noise; this results in snow-like
artifacts in dependence to a virtual depth.

To augment fog, very basic fog simulations are presented by Sellers et al. [91]
and Aleshin et al. [3]. Further authors generate noise to simulate different fog den-
sities [120]. Even new works only use simple light attenuation formulas such as
presented by Sakaridis et al. [85]. This fog simulation was used to augment the
well known Cityscapes data set [14] and create foggy Cityscapes. More realistic
and advanced methods are presented by Dumont [20] as well as Jensen and Chris-
tensen [46]. Both approaches use Monte-Carlo-driven methods with multiple rays
per pixel to get a realistic virtual result. Another more advanced method was pre-
sented by Biri and Michelin [9] who even integrated wind into their simulation. More
realistic fog data can be produced with synthetic fog in fog chambers, such as shown
by Colomb et al. [12]. They have built a 30 x 5.5 m fog chamber, which allows fog
simulation for some static scenarios.

For the vision-based object detection mostly CNN-based methods are used. The
effects of blurring, image compression and different types of noise on object detec-
tion were investigated by Dodge and Karam [18] and Costa et al. [15]. Both works
show that noise or image corruptions lead to a lower accuracy in object detection and
classification. The same result was shown by Nazaré et al. [70]. Since the accuracy
of neural networks depend on the training, it is a common way to extend existing
data sets by image transformations such as geometric and color transformations as
proposed by Montserrat et al. [66]. The approaches in [15, 18, 70] mainly consider
generic errors but no realistic environmental influences. A more realistic data set
extension was presented by Hasirlioglu and Riener [39] who proposed a rain simu-
lation to investigate the effect of weather on the detection performance. The strong
effect of synthetic rain on the object detection accuracy was also shown by Miiller
et al. [68]. Tian et al. [102] proposed DeepTest; a methodology to evaluate neural
networks for autonomous driving to detect erroneous behavior by augmenting the
data. Similar to DeepTest, Pei et al. [73] proposed DeepXplore to evaluate neural
networks; additionally they did an optimization with augmented data and achieved a
higher detection accuracy. Further works [5, 25, 53] considered using General Adver-
sial Networks (GANs) to augment data. Luc et al. [61] used GANs and achieved a
reduction of overfitting for semantic segmentation. Karacan et al. [53] created syn-
thetic environmental conditions through a combination of GANs and semantic image
information. It is necessary to point out that for the augmentations of [5, 25, 53, 73,
102] there is no proof of realism.

As aforementioned, the local perception is not only affected by environmental
conditions but also limited due to sensor ranges and occlusion. These are problems
which can be addressed by cooperative perception (CP).
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Two initial works to CP were presented by Rauch et al. [77, 78]. They present dif-
ferent approaches, how to handle and fuse information of distributed vehicles. Meth-
ods for multiple-object tracking and CP using camera and LiDAR were proposed by
Obst et al. [72] and Kim et al. [54]. To evaluate the capability and advantages of CP,
a correct V2V communication model must be used. An approach of modeling the
reception probability and communication delay was presented by Torrent-Moreno et
al. [104]. However, this approach does not consider environmental influences such
as weather and buildings which cover the line-of-sight between sender and receiver.
More advanced models, which are parameterizable and consider different environ-
ments such as buildings at an intersection, are proposed in [2, 62] or by Boban et
al. [10]. Nowadays, the European Telecommunications Standards Institute (ETSI)
works on a standard for a message format and exchange frequency for information
about the ego vehicle and detected objects in cooperative perception [21, 22]. These
work-in-progress standards and the rules for the message generation are reviewed
by different researchers [17, 30, 101]. Since the simulations of [21] lack in realism
due to missing delays and simplified sensor models. Allig and Wanielik [4] extended
this simulation setup by more realistic vehicle dynamics and sensor models. Another
simulation approach is presented by Schiegg et al. [89]. A real-world demonstra-
tion of the capabilities of CP was done by Shan et al. [94]. Next to simulations and
real-world demonstrations there exist some analytical models for CP as presented in
[45, 88].

To evaluate object detection, in common benchmarks like COCO [60] or
KITTI [34] simple performance indicators like precision, accuracy, average pre-
cision (AP), and mean average precision (mAP) [16, 23, 74] are used. Since this
does not satisfy the safety constraints of autonomous vehicles, this is not sufficient
to evaluate object detection systems. Stiefelhagen et al. [97] proposed a slightly more
comprehensive metric, using the Intersection over Union (IoU) [83] and the distance
between track estimation and real position. A metric considering real-time aspects is
proposed by Kim et al. [58]. The metric considers the detection time of video surveil-
lance systems, which is also a factor for autonomous vehicles. A model to achieve
safety is the Responsible-Sensitive Safety (RSS) model. Shalev-Shwartz et al. [93]
proposed a guideline that mathematically describes how safety can be achieved in
autonomous driving. The RSS model has become well known but does not include
any metric to evaluate safety.

1.3 Data Sets

Comprehensive data is crucial for development in the field of autonomous driving.
Basically, the data can be split into two groups: real-world data and simulation data.
Here we present the data sources used for our experiments; therefore, it should be
pointed out that it is not a complete overview over data sources for object detection
in the field of autonomous driving.
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As real-world data, the KITTI data set by Geiger et al. [34] was used. KITTI
consists of different benchmarks for 2D- and 3D object detection as well as tracking.
The KITTI data set was recorded in Karlsruhe (Germany) using a stereo-camera setup
and a LiDAR sensor [34]. The data set consists mostly of inner-city recordings. The
2D object detection benchmark consists of about 15,000 images with over 80,000
labeled objects [34]. Further examples of real-world data sets are Cityscapes [14]
and the Waymo data set [98]. A more comprehensive data set regarding adverse
weather was presented by Bijelic et al. [8]. The presented DENSE data set contains
real-world recordings including different weather conditions such as rain, snow or
fog as well as recordings from a fog chamber. For a more sophisticated evaluation we
created our own 2D image data set with heavy rain scenes. Therefore, we collected
images of challenging rainy road scenes from our archive of self-conducted test
drives and from dashcam videos on YouTube. This resulted in a very diverse data set
of international road scenes. In the following, we call it realrain data set [112]. It
contains 2062 images with 9551 labeled objects. The objects are labeled according
to the KITTI label format. The realrain data set contains 7368 cars, 626 vans, 955
trucks, 395 pedestrians, 205 cyclists and one tram. The scenes are well spread from
urban to freeway scenarios and contain heavy rain, mist and drops on the windshield
representing challenging environmental conditions for vision-based object detection
systems.

Since publicly available real-world data sets are limited, they possibly do not cover
all scenarios which should be tested during development. This disadvantage can be
solved by using realistic and parameterizable simulation frameworks. An exemplary
commercial simulation framework is Vires VID [1]. VTD provides different simu-
lation scenarios such as rural road, freeway sections or an inner-city intersection. A
more extensive, highly realistic (see Fig. 2) and open source simulator called CARLA
was presented by Dosovitskiy et al. [19]. CARLA is based on the Unreal Engine
and provides a set of different maps, containing many inner-city scenarios as well
as rural sections and multiple freeway sections. Besides the maps, CARLA provides
a wide range of different vehicles (bicycle, motorbike, truck, van, different types
of cars) and pedestrians which can be spawned at different locations. Each vehicle
can be equipped with different sensors such as camera, RADAR and LiDAR. More
information about available sensors can be found in [19]. CARLA also includes
weather variations as well as day and nighttime. Furthermore, if a specific route is to
be driven, the vehicles can be controlled by a user. Scenarios can also be described
using the OpenScenario standard, which CARLA can execute.

1.4 RESIST Framework and Workflow

For algorithm development and simulation a configurable and deterministic pipeline
is necessary. Therefore, we use the RESIST framework developed in our team by
Miiller et al. [67] with the improvements by Volk et al. [108]. RESIST is a QT-based
C++ framework, which allows combining different plugins to a perception pipeline
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Fig. 2 Example image generated with CARLA simulator [19] with the proposed weather augmen-
tations (original, rain, snow, fog) from Sect. 2

with different inputs and an evaluation. The framework’s main focus lies on local
and cooperative perception with simulation of the weather conditions rain, snow,
and fog as proposed in Sect.2. RESIST can read a wide range of data sets such as
KITTTI [34] or Cityscapes [14]. Moreover, the simulation frameworks Vires VTD [1]
and CARLA [19] can be used as input for the sensor data. This allows a comprehen-
sive evaluation of perception algorithms using a comprehensive range of data sets.
This sensor data is used to simulate the perception using realistic camera-models.
Various well known vision-based object detection algorithms like Faster-RCNN [82],
RRC [81] and YOLOV3 [79] are implemented in the framework, which allows a com-
parison between different architectures. For the object tracking, a Kalman filter [118]
with different models such as constant velocity, constant acceleration or constant turn
rate can be used.

RESIST is also capable to simulate cooperative perception. To simulate CP,
RESIST includes a comprehensive communication channel simulation and process-
ing delays [109]. The transmission of locally detected objects is done by V2X commu-
nication. A V2X channel simulation based on the analytical model of IEEE 802.11p
by Sepulcre et al. [92] is integrated into RESIST. For the CP the focus lies in the
perception and less on the V2X communication; but to gather valid results a correct
communication model is necessary.

In the area of CP, different algorithms for matching and fusion are integrated. For
the matching of measurements to existing tracks Hungarian matching [57], Nearest
Neighbor or Expectation Maximization can be used with different cost metrics such
as euclidean distance or IoU. For the Track-to-Track fusion there are also various
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algorithms available, such as covariance intersection [48], Kalman filter [118] or a
simple mean fusion.

To evaluate algorithms a comprehensive evaluation plugin exists. This plugin
allows an evaluation of a defined environment with different metrics such as precision,
recall, mAP or the safety metric [110] presented in Sect. 3.2.

In conclusion RESIST is a comprehensive framework for a realistic simulation of
local and cooperative object perception with physically correct vision-based weather
simulation.

2 Simulation of Environmental Conditions

Simulating realistic weather influences allows extending existing data sets, which
mainly consists of images with clear weather. Therefore, we present different weather
augmentations for image data in this section.

2.1 Rain

The simulation of realistic rain is based on two approaches developed in our team by
Hospach et al. [42] for simulation of falling rain and the simulation of raindrops on
the windshield by von Bernuth et al. [6]. By combining these two steps it is possible to
achieve a photorealistic simulation of rain. The rain simulation workflow is illustrated
in Fig. 3. Examples of the proposed simulation are illustrated in Figs.4 and 5. The
first step is the reconstruction of the 3D scene with a depth image containing the scene
depth for each pixel. Afterwards the falling rain as already introduced by Hospach
et al. [42] is applied. The reconstructed 3D scene is used to distribute rain streaks
in the space between camera and background, respecting the well known Marshall
Palmer distribution [63]. The simulation of rain streaks respects camera parameters
such as focal length, field of view, aperture, pixel size and shutter speed. Hence, the
length of the simulated rain streaks varies depending on the configured shutter speed
and the sharpness is depending on the aperture and the distance of the simulated
rain streak from the camera. As next step, raindrops on the windshield are generated
with the approach presented by von Bernuth et al. [6]. Raindrops are distributed
on a virtual windshield and ray tracing is used for a physically correct rendering
of these raindrops. Finally, the brightness of an image can be altered to achieve a
realistic setting. This can be necessary if rain shall be simulated on a sunny image. By
reducing the overall brightness of the image the simulated rain looks more realistic.

The proposed rain simulation can be parametrized with six parameters. Falling
rain is parametrized by the rain intensity r; and the rain angle r, of the vertical
rain streaks. The simulation of raindrops on the windshield uses r; as well as the
additional parameter drop count d,,,,; which specifies the number of drops resting
on the virtual windshield. The mean drop radius d,, and the standard deviation d,,
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Fig. 3 Rain simulation workflow from reading the input data over the scene reconstruction to the
defined rain simulation. Image from [112]

(a) Image of scene without rain (b) Image of scene with real rain

(c) Image of scene with synthetic rain (d) Real rain vs. synthetic rain

Fig. 4 Comparison of our synthetic rain and brightness augmentation technique against real rain.
Image from [112]

specify the drop size distribution on the windshield. With parameter r;, the brightness
of the image can be adapted.

Compared to other solutions such as applying a simple rainfilter mask as in [40],
our approach allows a more realistic rain simulation by taking the current environment
such as scene depth together with sensor characteristics into account. Additionally,
our approach allows simulating variations of different rain instances by adapting the
six presented parameters.

To show the visual realism of the presented synthetic rain model we compared
the same scene without rain (Fig. 4a), with real rain (Fig. 4b) and with synthetic rain
(Fig.4c). The same image extract is enlarged in (Fig. 4d) for better visibility. The real
rain image (Fig. 4b) as well as the synthetic rain (Fig. 4c) have identical rain streaks,
blur effects and drops, showing that the used rain model produces similar optical
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(a) Original image extract from KITTI (b) Applied synthetic rain ( ; = 80 mm h,
dataset [34] ra =-20°%rp =75%, dcount = 1985)

Fig. 5 Synthetic rain augmentation technique on KITTI dataset [34]. Image from [112]

effects as real rain. An additional comparison of an original KITTI image compared
to the same image with our synthetic rain augmentation is illustrated in Fig. 5.

In addition to the qualitative realism evaluation before, a quantitative evaluation is
performed as well. Measurements of images containing real rain have shown that rain
has a significant influence on basic image processing metrics like for example Harris
features [42]. Edge detection based algorithms (SURF, Canny, Harris, Sobel) allow
a deliberate generalization to validate the realism of this rain simulation. Therefore,
these basic image processing algorithms are applied to validate our rain simulation.
The influence of real rain on these features will be compared to the influence of
simulated rain for the exact same scene. If simulated rain as well as real rain have
similar effects on these features we state that our model is realistic. Two sets of
images of a well-structured scene containing edges and corners for the algorithms to
detect were recorded for validation. The first set of images was recorded under heavy
real rain (RefReal). The rain intensity was averaged over the period of recording
this set of images. The rain intensity of RefReal was 52mm h~!. The second set
of images (RefClean) has been recorded immediately after the rain had stopped.
RefClean was used as input for the rain simulation with intensities of 10, 40, 70
and 100mm h~'. The simulated rain will be called SimX with X specifying the
simulated rain intensity. The effects of SimX and RefReal on Harris features were
then compared. Therefore, the 20 best Harris features of seven randomly chosen
frames of RefReal and SimX have been compared against RefClean. For RefClean
16.27 correspondences were identified correctly, while for RefReal only 15.71 correct
correspondences were found. Sim40 was closest to RefReal with an average of 15.57
correct correspondences. For Sim70 and Sim100, 13.81 and 13.14 correspondences
have been found respectively. Another simulation run without rain streaks, Sim0, has
shown that the simulation does not produce unwanted side effects and has exactly
the same value as RefClean with 16.27 correspondences. Further validation results
were in close agreement to the presented example for Harris features. This shows
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that the presented model for simulating synthetic rain variations produces similar
effects compared to real rain. For more details on validation we refer to [41].

2.2 Road Spray

In contrast to rain as presented in Sect.2.1, road spray represents a rather locally
occurring noise. It occurs behind the wheels of a vehicle driving on a surface that is
covered with water. However, as road spray occurs directly behind a driving vehicle,
it covers large parts of the vehicle, making it more difficult to detect by vision-based
object detection algorithms. Therefore, realistic simulation of road spray is important
for performance characterization.

To simulate the droplets, physical properties were used to calculate the trajectory
of each droplet. When looking at the 2D case, neglecting the lateral distribution of
the droplets, the drops have an initial velocity equal to the rotation velocity of the
wheel [113]. After the spray is detached from the wheel, air resistance and gravity
slow down the droplets until they reach the road surface again. For the 2D case the
trajectory of a single droplet represents a curve given projectile motion. To transfer
this simulation into 3D space, jitter was added to the droplet positions for every time
step. The standard deviation of the jitter was increased the longer the time of flight
of a single droplet was in simulation. A result of the 3D positioning of droplets is
illustrated in Fig. 6.

As wheel positions are known and the drop positions are calculated, the droplets
are rendered as spheres. The mean diameter of droplets was set to 200 um with a
standard deviation of 10pum. This is just large enough for the droplets to influence
visible light geometrically. Instead of using ray tracing for refraction and reflection
calculations, reflection and refraction vectors were precalculated. Therefore, many
of these vectors were calculated depending on the distance of a droplet to the camera
and the location within a droplet where a ray would have hit it. With this look-up
vectors the location where the reflected ray would hit the environment is the last

08 - ; < g0

Fig. 6 Example drop distribution behind an imaginary wheel positioned at the origin. To maintain
visibility, this plot reduced the number of drops. Colors indicate the longitudinal distance from the
origin and aid spatial vision. The axes dimension is in [m]. Image from [113]
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Fig. 7 Qualitative comparison of real spray (taken from the realrain data set [112]) on the left, and
our simulated spray on the right. Because of the lack of clean spray data sets, we can only compare
the occlusion of the lower end of the vehicle. Here, we can observe similar behavior: parts of the
wheel are not visible, as well as part of the rear end and parts of the rear lights. The spray color
blends in with the background and the color of the street; it reaches the same height as the real
spray. Image from [113]

thing to be calculated for rendering. This was solved by generating an approximated
cubemap of the 2D input image. Droplets too small to qualify for geometric reflection
and refraction were generally considered to be fog. Instead of rendering those large
number of micro droplets the sky color is assumed to be the color sampled by an
up-pointing reflection vector and is mixed to the droplet color. The result of the
presented rain spray simulation can be seen in Fig. 7. For more details of road spray
simulation, we refer to the work from our team by von Bernuth et al. [113].

2.3 Dust

Camera sensors are affected by different types of dust throughout the year, making
object detection more difficult by partially obstructing the field of view. Dirt on the
windshield ranges from pollen in the spring to dirt thrown onto the windshield from
the tires of vehicles in front, to tire wear particles.

Our proposed simulation of dust consists of two steps as presented by
Hospach [41]. First, dust particles are distributed on a virtual windshield in front
of the camera sensor. The size, number, transparency and color of the particles is
configurable as well as the distance and angle of the virtual windshield. Afterwards
a filter mask with the influence on each sensor pixel is calculated respecting the
geometry of the particles as well as the camera parameters. In contrast to the rain
simulation in Sect.2.1 or the snow simulation in Sect.2.4 a complete scene recon-
struction is not necessary as dust is a rather static environmental influence restricted
to the windshield. Hence, the filter mask can be precalculated once and applied to
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Fig. 8 Original image generated with CARLA on the left and image with dust on the right with 60
simulated particles and a distance of 50 mm distance to sensor

a complete video stream, saving computation time. The calculated filter mask is
then applied pixel wise to the input data in the second step. The result of the dust
simulation on an image from CARLA [19] is illustrated in Fig. 8.

The dust simulation was validated comparing the influence on HARRIS and SURF
features as well as the number of edge points found by Canny edge detection [41].
The experimental setup was as follows: five black, round paper particles distributed
on a glass pane were recorded with a real camera. Additionally, a single particle
was recorded at different distances from the glass pane to investigate different par-
ticle sizes and edge blur effects. These real dust recordings are called RefReal in
the following. The same scene without particles denoted as RefClean was recorded
as baseline and input for dust simulation. Afterwards the baseline image was aug-
mented by dust simulation denoted as SimX, where X stands for the number of
simulated particles. SimX is then compared against RefReal. If the influence of Ref-
Real to basic image processing algorithms is similar to RefSim we have shown that
the dust simulation produces equal effects. For evaluation based on Harris features:
20 and eight correct correspondences have been found for RefClean and RefReal,
respectively. Sim10000 was closest with an average of 9.35 found correspondences.
Sim20000 resulted in 5.25 correct correspondences and the simulation run with the
lowest number of dust particles Sim1000 resulted in 16.6 found correspondences.
This shows that the higher the number of simulated particles the lower the num-
ber of found Harris features gets. The found SURF features decrease as well with
increasing amount of dust particles [41] for SimX. The results show similar effects to
RefReal, which also reduces the average number of features found. Other simulation
results with Canny edge detection were in close agreement. For more details on dust
validation we refer to [41].

2.4 Snow

Similar to the simulation of rain (see Sect.2.1), the first step of the snow simulation
is the reconstruction of the 3D scene. Either stereo images to calculate the depth
image, a camera image together with LiDAR data or simulation data from e.g.,
CARLA with a perfect depth image can be used for 3D scene reconstruction. After
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scene reconstruction, snowflakes have to be distributed in front of the camera sensor.
For snow simulation the first step is to determine the number of snowflakes which
shall be simulated per volume:

— M‘Y
T 2mg’

Ny (D

M represents the mass concentration in air according to Koh and Lacombe [55]:

M, =0.30 - Ry, (2a)
M, = 0.47 - R,. (2b)

Equation (2a) represents the mass concentration for dense snow such as in snow
storms whereas (2b) represents the regular snow mass concentration. R; is the snow
precipitation rate in [mm h~']. After having the number of snowflakes per volume
specified with (1), the size of the simulated snowflakes has to be determined. With
a given snowflake diameter D in [mm] and Rj, the frequency of a snowflake having
diameter Np can be calculated as follows [35, 90]:

Np = Ny -e 2P, (3a)
No =2.50 x 10> - R7%* [m~'m™], (3b)
A =229 R [mm™']. (3c)

For each snowflake an appropriate diameter is assigned using a piece-wise defined
probability distribution function weighted by Np. Each snowflake is either repre-
sented by a flat crystal or a three-dimensional crystal constructed out of three flat
ones. The orientation of each flake is randomly chosen based on velocity vectors
given by gravity, the velocity of the car onto which the camera sensor is attached and
additional wind speeds.

The result of the snow simulation can be seen in Fig.9. Here, a comparison with
real snow is illustrated showing the realism of the proposed simulation approach.
For more details on our approach of snow simulation, we refer to [7].

2.5 Fog

Similar to rain, fog consists of little water droplets. However, the amount of water
droplets per volume is extremely high (10° times higher than for rain), and the
droplets are very small (10° times smaller compared to rain) [76]. Therefore, a
simulation based on 3D reconstruction with trillions of particles and ray tracing
would be extremely expensive considering computing power and time. Hence, the
fog simulation will use light attenuation algorithms.
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(a) Real Snow (b) Simulated Snow

Fig. 9 Visual comparison of real and simulated snowflakes. The images on the left were taken
during snowy weather. On the right, snow was simulated onto images of the exact same scene that
were taken on days without any snow fall. Images from [7]

When light traverses fog its rays are partially scattered or absorbed when hitting
the small water droplets. It can be assumed that each ray passes a fixed number of
fog particles for a specific traveled distance. When passing through fog the amount
of scattered or absorbed light can be described by the first term of (4), where I;
describes the incident light intensity, o, in [m~'] an extinction factor and d in [m]
the distance the light travels through fog. Given the i-th pixel color /; of an image
and a sky color I, every pixel with depth d is assigned its new color [7]

[ = Le @ 4 [(1 — e %), 4

In Fig. 10 the resulting fog simulation on an image from Cityscapes data set is
depicted. It can be seen that depending on the distance of a given pixel within the
image the scattering and absorbing effects of fog differ. Distant objects are harder to
spot than closer ones, as they are affected more by the fog. This results in a realistic
fog simulation which takes the environment into account. For more information and
results we refer to the work of von Bernuth et al. [7].
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Fig. 10 The upper image is from the Cityscapes data set [14], the lower image shows the image
with our fog simulation applied. Image from [7]

3 Evaluation Metrics for Object Perception

To rate and compare object detection systems, different metrics exist. These metrics
consider the accuracy of the perceived bounding boxes and indicate the perception
rate. An overview is given in Sect.3.1. As aforementioned, autonomous vehicles
must be safe. Since performance and safety do not always correlate, a new metric to
evaluate the safety of perception systems is presented in Sect.3.2.

3.1 Common Metrics for Perception Evaluation

In existing benchmarks like COCO [60] or KITTI [34], simple performance measures
such as precision, accuracy, recall, and mean Average Precision (mAP) are used to
evaluate object detection [16, 23, 74]. These metrics are calculated on the number
of true positive (TP) or false positive (FP) detections. The classification of TP/FP
is based on the IoU of detection and ground truth (GT) bounding box. The IoU, is
a well known metric in the field of object detection [83]. For calculation the area
of intersection and union of detection D and the corresponding GT G is used as
described by Rezatofighi et al. [83]:
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IoU is used by object detection benchmarks like COCO [60] or Pascal VOC [23].
The threshold value to classify an object as TP can be parameterized; different thresh-
old values like 0.5 in Pascal VOC or 0.7 in KITTI are used. The aforementioned met-
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rics concentrate on analyzing a single frame and are applicable to both 2D and 3D
bounding box-based object detection. However, none of these measures can evaluate
object-tracking techniques; they only take into account tagged GT objects.

The performance metrics precision (P) and recall (R) [74] include the true neg-
ative (TN) and false negative (FN) results to describe the percentage of correct
detection and how accurate the detections are:

TP TP
P=— R=_—" . (6)
TP 4 FP TP 4+ FN
The accuracy (A) [74] can be calculated as :
TP+ TN
(7N

“TPYTNfFP+FN’

The average precision (AP) is equal to the area of the corresponding precision
recall curve (see (8)). Similarly the average accuracy (AA) is defined. The mean
average precision (mAP) describes the precision averaged over all available classes.

1
AP:/ P(R)dR (8)
0

The Classification of Events, Activities and Relationships (CLEAR) defined dif-
ferent metrics to evaluate object detection,—tracking and head-pose estimation.
For the detection/tracking evaluation, the Multiple-Object-Detection and Multiple-
Object-Tracking precision (MODP/MOTP), and accuracy (MODA/MOTA) were
defined [97].

With m, as misses, fp, as amount of FPs and g; as number of GT objects at time
t and the ToU of each object as well as N," aPPed a5 number of mapped object sets at
t, MODA and MODP are defined as [97]:

Nmapped
! ToU;
MODA(t) = 1 — M’ MODP(t) = Zl=1—0_ )
oo VR

The tracking metrics include additional parameters; mme, as number of mis-
matches between GT and tracking hypothesis, d;, as deviation between tracking
hypothesis and GT as well as ¢, as number of matches. Using these parameters
MOTA and MOTP are defined as [97]:

3, (my + fp, + mme,) > i i
Zt gl ' Zt Ct

The CLEAR metrics are used in the KITTI Multiple-Object-Tracking bench-
mark [34].

MOTA(t) = 1 — MOTP(t) = (10)
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] Ego vehicle
[[] Detected
[ Not detected

Fig. 11 Exemplary scenario showing the necessity for a metric to evaluate safety

The higher level of detail in the CLEAR metrics gives them a significant edge over
more fundamental performance indicators like precision and accuracy. As opposed
to the binary method of computation based on TP and FP quantity, using the IoU
or distance to determine the accuracy scores, allows a better statement about the
precision.

3.2 Safety Metric

Since the semantics of a scenario are not taken into account by current performance
measures, it is necessary to utilize a metric that assesses the real-world safety of an
object perception system.

This can be shown by the scenario in Fig. 11. Based on the detections, the given
perception system achieves a precision of 100% and a recall of 86% since 12 of 14
objects are correctly perceived. These results appear to be good, but the undetected
vehicle in front of the ego vehicle or the one in the bottom right corner of the
intersection could lead to an accident.

The goal is the development of a metric that allows to evaluate safety of vari-
ous perceptual techniques in various traffic situations and weather conditions. The
outcome must be a single value inside a specified range for this use. Therefore, we
propose the “Comprehensive Safety Metric (CSM)”.

The composition of the individual safety metric components and their relation-
ship is presented in Fig. 12. It demonstrates the method through which our strategy
integrates many factors to produce a single safety-metric score that makes it simple
to compare the perception algorithms.
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Fig. 12 Process overview of the single components and their relation to one another to determine a
safety metric score S. Red areas around ego (black) indicate safety critical areas. Image from [110]

For the assessment of safety, three criteria to consider were defined:

Quality The effectiveness of perception is crucial for subsequent activities, such
as trajectory planning.

Relevance Itisimportant to recognize any objects that may be related to a collision.
We must therefore discriminate between objects that are relevant and those that
are not.

Time Time is always an important consideration in a real-time system. Less reac-
tion time and fewer driving maneuvers are feasible as a result of longer detection
durations.

3.2.1 Basis of the Safety Metric

The accuracy of object perception is extremely important when assessing
autonomous driving safety. Further activities, such as motion planning, will be car-
ried out based on the perception. Low-quality detection or tracking may result in
incorrect planning, which may put the occupants of the vehicle and other road users
in danger.

Thus, perception quality is one main safety factor and will be used as basis of
the CSM. To combine accuracy and precision we use the CLEAR metrics [97] (see
Sect.3.1). The choice of CLEAR metrics was based on the completeness of the
metric, as it combines accuracy and precision for detection as well as tracking.

One issue with the MOTP score emerges when utilizing the CLEAR criteria to
assess safety. A better tracking is indicated by a lower MOTP score. Contrary to
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the safety metric score, which equates a higher number to better safety, this is not
the case. To invert the MOTP indication, an advanced mapping to a MOTP safety
metric score MOTP; € [0, 1] is defined. With T, as upper and 7; as lower threshold,
MOTP; can be determined by using:

1 x < T,
Jrom() =11 =3=L Ty <x<T, (1)
0 otherwise.

For our experiments it holds that 7; = 0.8 m, as this value corresponds to a step
width of a vulnerable road user (VRU) to avoid a collision. By similar reasoning we
set T, = 2.5 m, which roughly corresponds to a misjudgment that could lead to a
collision. A linear function is used because MOTP is metrically scaled.

The threshold values of f,,,, can be parameterized based on the application
domain and the accompanying requirements. This increases the variability and makes
the metric applicable for the assessment of various systems.

Precision and accuracy are equally important to us for the suggested safety mea-
sure, so we use the accuracy and precision score of detection and tracking to generate
a second safety metric basis rating. The detection safety (Sp) and the tracking safety
(St) are defined as:

MODA + MODP MOTA + MOTP,
p = OATVODOY g, - AT VOTE (12)
2 2
This evaluation is just a baseline and further values must be evaluated to cover
the three safety criteria, which were introduced in Sect. 3.2.

3.2.2 Distance-Based IoU Verification

A second parallel assessment is carried out before the CLEAR metrics are computed.
For objects closer to the ego vehicle, the perception must be more precise. The shorter
amount of time to react during motion planning is the basis for this harsher criterion
for closer objects. We need to differentiate the perception quality, since these things
exhibit a higher safety criticality.

The distance-based IoU verification uses the cover C, of GT object G. For a
detected object o with detection D the cover is defined as:

_ID,NG,|
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Using C,, a safety function f; is defined as:
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1+mC+(1—mC) sin((C,—}))

3 C, e[mC,1],
1 C, e (,0T],
fs(Cu) = S(—T (C.— (14)
1+C0‘<7110—§T (C,—oT)) Cg c (OT, mO],
0 otherwise.

This function guarantees a minimum detection precision mC. Between the thresh-
olds mC and mO, trigonometric functions are used for a smooth distance-based scal-
ing factor depending on the precision of the detection. o7 defines a threshold how
much larger an object is allowed to be detected without lowering the detection preci-
sion. If C, is larger than oT', mO represents the upper bound up to which f; reduces
the precision towards zero.

The distance-based score is calculated by function g : [0, 11> —» [—1, 1], where

g, y)=x—(1—-x)-(1—-y). 15)

The function g(f;(C,), d,) must be transformed to [0, 1] to be used as a precision
factor. The transformation is described by

_ 8(A(C) ) +1
: .

fo (16)
For each detected object o the IoU gets multiplied by f,. This additional consid-
eration leads to a stricter rating, which should be preferred in context of safety.

3.2.3 Consideration of the Collision Relevance

The second criteria to assess the perception safety is the relevance of an object.
A possibly safety critical object has a higher importance than a non safety critical
object.

First, it must be defined when an object must be considered as safety critical. An
object is safety critical if its distance to the ego vehicle is less than a correspond-
ing safety distance. To calculate the safety distance, we use the approach of the
“Responsible-Sensitive Safety” (RSS) model [93]. The RSS model is an attempt to
formalize the human judgment in different road scenarios in a mathematical sense.
The RSS model consists of 34 definitions of different safety distances, times, and
procedural rules. These rules specify how an autonomous vehicle should behave and
provide a mathematical description of a safe conduct.

We use the longitudinal safety distance with same direction of movement dj,g s,
with opposite direction of movement dj,, , and the lateral safety distance dj,, [93,
Definition 1,2, 6].

To evaluate the collision relevance of an object, the future position must be pre-
dicted. With the ego velocity vy and the weather-dependent brake acceleration a, the
prediction time frame 7, is defined as:
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Fig. 13 Schematic identification of collision relevant objects from KITTI raw data set [33]. The
right image represents the bird’s eye view of the camera image on the left. Blue boxes illustrate
ground truth annotations, light blue boxes represent the predicted object positions. Red filled objects
are collision relevant and white ones are not. The corresponding collision relevant objects in the
camera image are marked in red. Image from [110]
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For each time step in the position prediction phase, it is verified whether the
distance between ego and the object is higher than the corresponding safety distance.
The object is marked as safety critical if this is not the case and the perception system
did not perceive it.

Figure 13 shows this process schematically. The red area in the bird’s eye view
marks the safety critical area identified by lateral and longitudinal RSS safety dis-
tances. The collision relevant objects are marked in red. If they are not perceived,
they are considered safety critical, as shown in Fig. 13.

To rate the relevance in context of safety, we need to approximate the effect
of a missing detection and a hypothetical resulting collision. The first step is an
approximation of the impact velocity, in case of an in fact collision.

Since safety in automated driving affects not only the vehicle occupants but also
other road users, these must also be taken into account. Road users can be categorized
into VRUs and road users with a crush collapsible zone, like cars, vans or trucks.

The combination of impact velocity and the road user category c of the collision
relevant object leads to a collision score s.,, for a relevant non-detected safety
critical object ro. To assess s, o, a classification of the impact velocity with four
levels is defined. The level definition is based on the common accident categories
used in Germany. These categories are defined by the Ministry of the Interior of the
state North Rhine-Westphalia in Germany as UK 1 (fatality)—UK?3 (minor injuries
only) [65]. Furthermore, an additional category UK is used to include collisions
with material damage only [65].

More about the effects of vehicle impact velocity in a collision can be found in
the publications of Frederiksson et al. [27] and Han et al. [37].

The defined categories with their collision scores s, ,, are:
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0.9  no or almost no effect (UKS),

0.75 risk of minor injuries (UK3), (18)
Sc,ro += . . . .
' 0.5 risk of serious violation (UK?2),

0 high probability of fatality (UK1).

In our approach, s ,, is used as a factor for a single frame. A collision that is rated
as having a high chance of fatalities is unacceptable and receives a score of 0. The
case with almost no effect is worse than no accident, thus a factor of 0.9 is defined.
Sc.ro Must not be too strict, otherwise no accurate differentiation of the final safety
value would be possible.

For a single frame the worst case s. ,, is calculated and used as factor f. on Sy
and Sp.

3.2.4 Evaluation of Perception Time

The time is the third requirement for a safety-critical real-time perception system.
The longer object identification takes, the less time there is to avert a life-threatening
situation. The time requirements of the proposed safety metric is covered by the soft
real-time approach of Kim et al. [58].

For the CSM, the perception time 7, , of object o is defined as time from falling
below the safety distance (see Sect.3.2.3) until its perception.

A weighted perception time is used to convert the detection time to a perception
time factor. The introduction of the weighting was necessary, since the problem
becomes more dangerous the longer it takes to identify it. The mean perception time
is used to categorize long and short durations for this purpose. Let m be the number
of all weights and 7, the mean perception time. The weighted perception time 7,4,
with m as number of all weights is defined as:

1 td.o tao <14,
tw:— ’ } 19
d mz{ (19)

~ |2 ta,0 otherwise.

Similar to Kim et al. [58], the CLEAR scores are mapped by a function depending
on f4,,. The mapping of #;,, to f; is done with (11). The parameter 7; is set to 0.1,
as tolerable delay for the detection. 7, is set to ego braking time #. If 75, > 13, f;
has to be 0, since an emergency braking would not be possible anymore.

3.3 Comprehensive Safety Metric Score

The result of the CSM has the requirement of an easy comparability. Hence, the
safety metric score is a single value S € [0, 1], where 1 describes the maximum
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Table 1 Rating of the safety metric score. Table from [110]

Se Classification

[0.0 —0.2] High risk of fatality

(0.2 —0.4] Existing risk for serious violation
0.4 —-0.6] Low probability of minor injuries
(0.6 —0.8] Low risk UK 5 collisions

(0.8 — 1.0] High probability of safe status

safety. Like the previous described performance metrics, S is determined for each
frame of a scenario. Therefore, Sp and Sy including the evaluation of collision
relevance and perception time are combined.

To achieve a high variability in the CSM, Sp and Sy can be weighted with
wp, wr € [0, 1] : wp + wr = 1. The safety score S is defined as:

S =wpSp + wrSr. (20)

The comprehensive safety is not a percentage value, in contrast to precision or
accuracy, which results in a non-intuitive interpretability. It is necessary to specify a
categorization of S (see Table 1) in order to improve interpretability. The five-level
defined classification is based on the evaluation of the individual CLEAR metrics
values as well as the specified influences of collision relevance and detection time
analysis.

This classification offers a quick and easy performance comparison safety evalu-
ation of different test scenarios and perception systems.

3.4 Data Set Evaluation with the Safety Metric

Initially, we motivated the safety metric by the scenario shown in Fig. 11. The result-
ing precision of 100% and a recall of 86% indicate a very good perception. Depending
on the velocity of the vehicles in an inner-city scenario, the result of the CSM would
be in the range of 0.4 and therefore indicating minor to serious injuries which are far
away from a safe state.

Table 2 shows the results of an image-plane object detection using YOLOv3 [79]
on three VTD scenarios (freeway, crossing and rural) [1] and the KITTI raw data
set [33]. As we can see, the precision is over 80% for the virtual scenarios but recall
and mAP are rather low with about 30% for freeway and crossing. The significant
gap between the mAP for KITTI and the simulated scenarios can be explained by
the number of objects and their positioning. Multiple objects are occluded and thus
cannot be perceived correctly. For the state-of-the-art performance, these results
seem acceptable but the CSM has a result of 0.14/0.20 for freeway/crossing. Using
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Table 2 Evaluation results for object detection with YOLOv3. Table from [110]

KITTI Virtual scenarios
Freeway Crossing Rural
Precision 0.59 0.82 0.86 0.96
Recall 0.60 0.23 0.36 0.60
mAP 0.51 0.21 0.35 0.60
Safety score S 0.48 0.14 0.20 0.78

the corresponding classification of Table 1, this indicates a high risk of fatality due
to undetected relevant objects. For the rural scenario the safety score S is higher than
the corresponding recall and mAP. Even if the recall is not perfect, we can observe
that the perception is close to a safe state. This is based on the scenario of a rural
road with our ego vehicle following two further vehicles. Single misdetections do
not have an influence, since the distance between the objects is big enough that there
is no significant risk of an accident. For the KITTI raw data set, the safety score
S, the recall and the mAP are quite similar, but the interpretation of these values is
quite different. While a recall or mAP of 50-60% seems good, a safety score of 0.48
indicates that some missing detections could lead to accidents with a probability of
injuries, which is not acceptable.

Further results for Faster-RCNN, RCC and a Birds-Eye 3D detection can be found
in [110].

4 Optimization of Object Perception

This section thematizes the optimization of local and cooperative perception. First,
the need of robustness improvement is motivated by showing the influence of weather
on vision-based object detection. Sections 1.3 and 4.2 present the used data sets and
introduce our proposed robustness enhancement for local perception. Concluding,
the advantages of cooperative perception are introduced and an environment-aware
optimization approach for the data fusion in CP is presented.

4.1 Influence of Weather on Perception

Object detection relying on camera sensors is prone to adverse weather conditions
such as heavy rain or difficult lighting conditions. Therefore, vision-based object
detection in particular needs to be resilient to adverse and varying weather conditions.
In order to determine its resilience and robustness, the capabilities of vehicle-local
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brighaness [

(a) Faster-RCNN (b) YOLOV3

Fig. 14 Mean average precision depending on varying rain and brightness intensities for a Faster-
RCNN and b YOLOvV3. Image from [112]

perception under varying weather conditions are investigated. In the following vision-
based perception will be referred to as perception.

For robustness assessment of perception, two different neural networks (Faster-
RCNN [82] and YOLOV3 [79]) will be evaluated. Both networks are trained with
the KITTI data set [34] and the quality of object detection is assessed with the well
known average precision metric (AP) as presented in Sect. 3.1. To evaluate resilience
against adverse weather conditions, a realistic synthetic rain augmentation is used to
modify the KITTI data set. The augmentation consists of two steps, the generation
of falling rain [43] followed by rendering raindrops on the windshield [6]. The exact
process of simulating rain is explained in Sect. 2.1. The rain augmentation technique
consists of various parameters to adjust the simulated rain. For evaluation, the same
parameter ranges as used for the optimization from Table 3 were used. However, the
ranges of rain intensity and image brightness have been adapted to cover a large
variation in the evaluation phase:

e rain intensity r; [0 mm h™', 80mmh~']
e brightness r;, [25%, 200%]

The exact parameter values were randomly chosen in between the above defined
parameter ranges. The networks which were initially trained on the original and not
augmented KITTI data set are then evaluated on the distinct test set of KITTI which
was not used for training. The test set is augmented with synthetic rain augmentations
and the perception capabilities are investigated.

The result to identify the influence of synthetic rain variations on mAP of Faster-
RCNN is illustrated in Fig. 14a and b for YOLOV3 respectively. The achieved mAP
is plotted for different rain intensities and brightness levels. Drop radii are implicitly
included in the varying rain intensities. The angle of the falling rain is not plotted
separately as it had fewer influence compared to rain rate and brightness.

Faster-RCNN achieved a mean mAP of 45.45% while YOLOv3 achieved a mean
mAP of 33.74% over all rain and brightness variations. The networks were not
separately trained for cars, pedestrians and cyclist only as usually done for the KITTI
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benchmark. We rather used all present KITTI labels for training. Hence, the mAP
of 50.42% (Faster-RCNN) and 48.42% (YOLOv3) without augmentation are not
to be confused with the online available results. Additionally, the online available
AP values are given per class, and we average the AP over all classes regarding the
number of objects per class.

Increasing rain intensities and brightness values below 100% drastically lower
mAP of the investigated neural networks. For Faster-RCNN, the most critical situ-
ation was observed for 80 mm b~ rain intensity, 0° rain angle and 25% brightness,
which resulted in a drop by 94.21% compared to not augmented KITTI. YOLOv3
had the worst detection rates at 80mm h~! rain intensity, —30° rain angle and 25%
brightness, which led to a detection drop of 99.61%. Hasirlioglu and Riener [39]
found similar results in their investigation about the influence of rainy weather on
the object detection performance. The investigation shows that neural networks are
not robust against adverse weather conditions. Data sets such as KITTI lack weather-
influenced scenarios. Therefore, it is not possible to obtain robust networks just by
training on them.

4.2 Optimization of Local Perception

Vehicle-local perception is strongly affected by adverse weather conditions such as
heavy rain (see Sect.4.1). To optimize perception capabilities of vision-based object
detection, we introduce a methodology that uses realistic augmentation techniques
as presented in Sect.2 to diversify existing data sets with adverse weather condi-
tions. This makes neural networks more robust by having as diverse training data as
possible. An overview of our proposed workflow is illustrated in Fig. 15.

The first step is to extend the KITTI training set [34] with augmented data. Next
the training of Faster-RCNN [82] and YOLOV3 [79] is performed again on this new
and diversified data set. The KITTI training set was split as before in a training set
consisting of 6800 images and a test set containing 468 images. Rain augmentation is
performed for the whole training set of 6800 images and added to the original training
data setresulting in a training data set of 13600 images. Hence, only half of the images
from the training data are augmented while the other half are not. This prevents
overfitting to adverse weather conditions and the neural networks will have still good
performance on the original data set. To validate the effectiveness of the proposed
data augmentation through synthetic rain and brightness variation, additional data
augmentation methods were compared against our approach. Therefore, the neural
networks were also trained with a data set extended by Gaussian noise (GN), Salt-
and-Pepper noise (SPN) and a combination of GN and SPN.

A large variation of different augmentations (see Table 3) has been used to extend
the training data set. Six parameters for synthetic rain have been chosen as in the
evaluation (see Sect.4.1). For GN two parameters, for SPN one parameter and for
the combination three parameters specify the noise intensity. The selected parameter
ranges were chosen as follows: The evaluation has identified that only a bright-
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Fig. 15 Workflow of local robustness optimization and evaluation by simulating rain variations.

Image from [112]

Table 3 Parameter ranges for data augmentation in the optimization phase of our workflow. Table

from [112]

Case Parameters Value intervals

GN o [10, 50]
o [1,20]

SPN Density [1%, 30%]

GN m [10, 50]

& o [1,20]

SPN Density [1%, 30%]

Synthetic rain Rain intensity r; [30mmh~!, 80 mmh~!]
Rain angle r, [—30°, 30°]

Brightness ry,

[40%, 100%]

Drop count dgoynt

[1000, 2000]

Mean drop radius d,

[0.3 mm, 0.8 mm]

Std dev of drop radius d,

[0.25 mm, 1.25 mm)]

ness below 100% has a strong negative effect on the neural networks. For a higher
brightness an increasing rain rate affects the neural networks less. The intervals for
brightness augmentation and rain intensity have therefore been set to the ranges found
as critical in the evaluation phase. The lower bound of the brightness augmentation
was set to 40% as this has shown to be more effective compared to lower brightness
values. The lower bound of rain intensity was raised to 30mm h~', as challenging

situations only occurred above this rain intensity.



142 J. Gamerdinger et al.

(b) Examples containing rain streaks, blur and rain drops on the windshield

Fig. 16 Comparison of GT (blue), Faster-RCNN baseline (red), optimization with GN and SPN
(yellow) and our optimization with rain and brightness variations (green) on example images taken
from our realrain data set. Images from [112]

Similar to the evaluation phase, the exact parameter values for every augmentation
technique were randomly chosen for each image within the specified parameter
ranges to generate a training set of various conditions, except for d,, and d,.

d, and d,; are calculated according to the randomly chosen rain intensity with
equations according as introduced in Sect.2.1. The random number generator was
seeded to be able to generate reproducible results.

4.2.1 Results for Optimization of Local Perception

To evaluate the presented perception optimization approach the realrain data set
(see Sect. 1.3) was used. This data set was solely used for validation and not for
training. The perception capabilities in terms of AP and AA were investigated for the
baseline, GN and SPN augmentation techniques and our optimization. A qualitative
comparison is illustrated in Fig. 16.

Quite remarkable is the fact, that only with our optimization approach the CNN
was able to detect the vehicle obstructed with raindrops in Fig. 16b. A complete
overview of the results is presented in Table4. It can be seen that our optimiza-
tion performs best for YOLOv3 as well as for Faster-RCNN considering AP. With
our approach, the unoptimized detection for Faster-RCNN was improved by 4.37%
points (p.p.) and by 7.33 p.p. for YOLOV3. The second-best optimization in compar-
ison achieved an improvement of 1.65 p.p. for Faster-RCNN and 2.18 for YOLOV3.
Looking at AA instead of AP it can be seen that AA decreased by 1.67 p.p. for Faster-
RCNN but on the other hand gets improved by 0.53 p.p. for YOLOv3. Optimization
with SPN performs best for AA but worst when it comes to AP. When it comes to
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Table 4 Average precision and accuracy results for Faster-RCNN, YOLOv3 and RRC on the
evaluation of our realrain data set and the original KITTI test set. Table shortened from [112]

Neural Training Realrain data set KITTI test set
network method
AP in % AA in % AP in % AA in %

Faster-RCNN | Baseline 7.48 36.22 50.42 41.87
GN 10.20 38.08 51.02 42.90
SPN 7.62 39.93 48.82 40.78
GN and SPN | 9.96 37.62 49.59 40.98
Synthetic rain | 11.85 34.55 49.95 42.27
variations

YOLOv3 Baseline 5.15 37.96 48.42 60.93
GN 10.30 42.26 45.51 58.25
SPN 3.40 43.95 37.72 59.36
GN and SPN |5.10 42.33 39.61 56.19
Synthetic rain | 12.48 38.49 47.79 59.86
variations

RRC Baseline 12.97 64.33 74.60 74.60

safety under adverse weather conditions not perceiving an obstacle is more severe
than false positive detections which e.g., could result in additional breaking maneu-
vers. Therefore, the AP metric is more relevant than the AA metric for assessing
perception performance because it considers recall as well as precision.

Furthermore, we compare our two optimized networks to the more robust neural
network RRC [81]. RRC achieves a mean AP of 74.60% on the KITTI test set.
This is a lower mean AP value compared to the online available results on the
KITTI benchmark website as RRC was trained on all present KITTI labels and not
separately for cars, cyclists and pedestrians. However, on the realrain data set RRC
only achieves an AP of 12.97%. This shows that even more robust networks are
incapable of handling adverse weather conditions such as heavy rain. Both networks
which were optimized with rain variations achieve similar performance like RRC in
AP on the realrain data set, although the unoptimized versions perform drastically
worse.

A disadvantage of many data augmentation techniques for enlarging training data
sets is the decrease of performance on the original data set. Hence, we evaluated
the performance on the original KITTI data set as well. The results are present
in Table4. It can be observed that our optimization approach with synthetic rain
variations almost has no negative effect on the performance on the original KITTI
data set. For Faster-RCNN the AP got lowered by 0.47 p.p. and for YOLOv3 AP
got decreased by 0.63 p.p. Comparing our approach with the augmentation with GN
the performance got increased for Faster-RCNN and decreased for YOLOvV3. The
remaining augmentation techniques including SPN lowered AP slightly for Faster-
RCNN but significantly for YOLOv3.
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Fig. 17 Process of cooperative perception including a weather simulation (b). Image from [108]

The presented approach shows that using realistic synthetic rain variations to
extend existing data sets for the training of neural networks can improve the robust-
ness of these networks against adverse weather conditions. It has been shown that the
performance on the completely different realrain data set could be improved while
maintaining the performance on the original data set.

4.3 Cooperative Perception

Cooperative Perception describes a process in which the perception is done across
multiple distributed vehicles. Information about locally perceived objects is trans-
mitted via V2X communication between different vehicles. The ETSI defined two
message formats for this purpose. The first message is the Cooperative Awareness
Message (CAM) [22] which contains the state (position, velocity, orientation) of
the ego vehicle. The second message type is the Collective Perception Message
(CPM) [21] which contains the ego state as well as the states of the locally perceived
objects. The ego must align all information of the local perception and the data from
the cooperative vehicles to its ego vehicle coordinate system; afterwards all infor-
mation must be matched before a fusion can be executed. The fusion is necessary
to combine different information about the same object as exact one valid state per
object is necessary.

The advantages of CP are manifold. The main advantage is the increase of the
perception range. Local perception can be limited through weather conditions (see
Sect.4.1), limited sensor ranges and occlusion. The CP, as shown in Fig. 17, enables
the perception of objects that cannot be perceived locally. The ego vehicle (blue)
can only locally detect the gray vehicle in front; the other objects are occluded by
a building. The cooperative vehicle (red) can detect the gray vehicle in front of it
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Table 5 Comparison of mean average precision of local perception (LP) against cooperative per-
ception (CP) over different rain rates on a rural, intersection and freeway scenario. CP40 refer to
cooperative equipment rate of 40%. Table shortened from [108]

Rain-rate Rural Intersection Freeway

in mm/h LPin % CPin % LPin % CP40in% |LPin % CP40 in %
0 32.17 37.83 15.86 32.98 10.63 28.27

10 23.50 39.50 15.60 31.57 7.86 26.44

30 12.50 38.83 15.46 31.28 4.21 25.40

50 11.33 38.50 14.72 29.72 1.51 24.48

70 3.67 35.50 11.65 25.85 0.07 23.30

90 1.67 31.33 8.64 22.59 0.00 23.75

and send this detection together with its state to the ego. The ego now knows about
the existence of two further objects behind the corner. Furthermore, CP can lead to
multiple detections of the same vehicle, which allows a more precise estimation of
an object’s state.

The advantage of CP under different weather conditions was investigated by Volk
et al. [108]. Their results can be used to quantify the above described advantage.

As shown in Table5, they achieved remarkable results. For a freeway scenario
without any rain CP could increase the mAP from 10.63 to 28.27% with 40% coop-
erative vehicles. At higher rain rates of about 70-90mm h~' the local perception
was not able to detect any object while the CP still achieved a mAP of about 24%.
Similar results could be observed for a rural and an intersection scenario. The rural
scenario only consists of two vehicles except the ego; one of the further vehicles is
a cooperative vehicle.

4.3.1 Optimization of Cooperative Perception

Cooperative perception complicates the measurement-to-track assignment problem,
as well as data tracking and fusion. There are two basic methodologies for tracking
and fusion. The first is to have a centralized tracking component that directly han-
dles sensor data [77]. The second method, known as Track-to-Track Fusion (T2TF),
employs decentralized tracking components and fuses preprocessed sensor data avail-
able as tracks (state vector and corresponding covariance/confidence). T2TF has the
advantage of providing more information about object dynamics and compensating
V2X transmission latencies for CP [77].

Covariance Intersection (CI) of Julier and Uhlmann [48] was one of the first fusion
approaches considering unknown correlations.

The CI to determine a fused state X, with covariance matrix (CM) P, for two track
states X;, X; with their CMs P;, P; is defined by Julier and Uhlmann [48] as
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Fig. 18 Process overview
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Improvements of the CI regarding the sequential fusion of multiple data and the
approximation of @ were presented by Cong et al. [13] as well as Niehsen [71] and
Frinken and Hiipper [26].

The CI has some disadvantages; for more than two tracks it was proven by Rein-
hardt et al. [80] that the CI does not necessarily deliver the optimal result. Further-
more, the CI does not consider inconsistent inputs. To address the problem of incon-
sistent inputs, Covariance Union (CU) was presented [105]. If the deviation between
two inputs exceeds a defined threshold they are considered as inconsistent [11].

In addition to CI and CU, there exist many more approaches for the T2TF. More
information about T2TF can be found in [11, 75, 77, 111]

However, the CI can not fulfil the performance requirements for CP in autonomous
driving. As a result, the robust but suboptimal CI must be optimized so that only
accurate and trustworthy data contribute to the cooperatively perceived environmen-
tal model. A pre-evaluation analyzes the capabilities of local perception systems so
that the T2TF algorithm can evaluate the trustworthiness and validity of coopera-
tively transmitted data before fusing it. Therefore, the assumption is made that the
local perception system of each vehicle is known.

Figure 18 shows a schematic overview of our proposed optimization pipeline. The
pre-evaluation is used to determine the reference data R q,¢ for the confidence and
Reov for the covariance. The reference data, combined with corresponding tracks
used in a track-validation module; this performs the suggested validation before the
Cl is used for T2TF.
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Pre-Evaluation of Local Perception

For our approach we assume that the local perception system [, (sensor configura-
tion and processing pipeline) of a cooperative vehicle v is known. Additionally, the
current weather condition e including its intensity must be known. Adverse weather
is considered since it has a significant influence on the perception capabilities [112].
The pre-evaluation investigates the local perception systems by their perception accu-
racy, measured with the CMs and the perception capabilities in terms of confidence
which is measured by the recall.

The local perception is analyzed under varying weather conditions and the objects
are clustered in distance bins d of size sp;, = 5 m; this approximately corresponds
to the length of an average car.

The results of a local perception are analyzed to get realistic and comparable con-
fidences and CMs, to determine if a track from a cooperative vehicle seems plausible
and is considered as valid to fuse it. Based on this evaluation two weather-related
lookup-tables of the local perception capabilities for each specific perception system
l, are built. These lookup-tables are Reone(/y, €, d) (abbr. Reons) and Reoy(ly, €, d)
(abbr. Reoy).

The recall [74] at a distance bin d for [, is used as confidence. The IoU [83] must
be greater 0.5 for a classification as true positive.

A cloudy day is used as baseline for the evaluation. To include adverse weather
condition, a local perception under foggy condition with different densities from
0.01 pm™3 to 0.15 wm3 is performed. To achieve reliable results each weather con-
dition is executed for 10 runs with random positioning of the vehicles. Even for 10
runs it can occur that no objects were present at specific distances. Hence, no refer-
ence data can be calculated. To avoid missing values in Reoy as well as Reqy, linear
interpolation is used to determine missing values.

Optimization Strategies

Based on the pre-evaluation, our proposed approach validates collectively received
tracks by comparison to R¢ons and R,y . This enables sophisticated validation of per-
ceived data in order to improve the resilience of unoptimized data fusion methods to
harsh weather conditions as well as forged data. Two different validation approaches
will be investigated. First a selection of tracks to reduce the number of tracks is
presented. Second an advanced filtering approach based on the pre-evaluation is
investigated.

Track Selection

Reinhardt et al. [80] have proven that the CI is not necessarily optimal for more than
two tracks. As a result, one optimization strategy considers reducing the number
of tracks used for fusion to two. For the selection of the tracks used for fusion, two
approaches based on confidence and CM are considered. The first strategy only takes
the two tracks with the highest confidence into account. The second strategy uses
the two estimates with the smallest trace of their CM. The two advantages of this
approach are the simplicity and a reduction of noise from inaccurate estimations; but
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the method only works if more than two estimations exist and can not avoid forged
data.

Track Filtering

The second investigated optimization is filtering based on validation using pre-
evaluated reference data. This technique addresses fusion precision as well as secu-
rity; it’s split into confidence-based and CM-based validation.

A received detection has an assigned confidence, describing its trustworthiness.
Distant objects are perceived less precisely [108]; thus lower confidence values are
expected. An attacker is interested to make sure that the forged information are con-
sidered for fusion; thus they are sent with a high confidence which can be implausi-
ble. The corresponding reference confidence from R.,,¢ can be used for validation. If
reference and received confidence differ more than a defined threshold the received
information is either inaccurate or maybe forged and thus considered as invalid and
not used for fusion. Therefore, we assume a standardized assessment for confidence
values.

A similar approach is possible using the CMs of the received state estimations.
The CMs of R,y are used to validate the received CM by trace or element wise.
The CM’s main diagonal consists of the variances of the track-state items. Higher
variances stand for a more inaccurate estimation such as for occluded or far distant
objects. To avoid an inaccurate fusion, inaccurate estimates with a high variance
must be discarded, even if their influence is small through the calculation of w.

If the received information’s trace exceeds the reference trace by a threshold
tiace, the received information is deemed incorrect and discarded before the fusion.
However, as some variation is acceptable, the threshold should not be set too low.

Not only the trace can be used for validation but also an element wise validation on
the main diagonal is possible. To do so a threshold vector 7., With the size n of the
main diagonal of the CM must be defined. Mathematically the validation process of
the two mentioned techniques for filtering inaccurate estimations can be formulated
as:

tr(Py) — tr(Reoy) > firace, OF
Py(i,i) — Reoy(i, i) > fteem(@) fori = 1,2, ..., n.

If one of the conditions applies, the track s(x,, Py) is considered inaccurate and
discarded.

The two advantages of the element wise approach are the higher flexibility and
more detailed validation. The element wise approach allows a more specific filtering
based on the requirements of the current system. Additionally, errors of single values
can be detected.

To achieve an influence as high as possible an attacker would send forged data
with a significant low CM. Contrary to the filtering of inaccurate estimations Rcqy
must not exceed the received information by more than #ace OF fejem-

Mathematically this can be described with the two following conditions:
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Table 6 Overall precision [%] for a cloudy day, varying fog densities and different rates of coop-
erative vehicles. CR1 refer to 16.7% cooperative vehicles, CR2 refer to 30.6% cooperative vehicles.
Adapted from [111]

Cloudy Fog density [um ™3]
0.01 0.07 0.13
CRI CR2 CRI CR2 CRI CR2 CRI CR2
Baseline 61.2 56.5 589 54.1 67.4 57.4 67.7 68.8

2TracksConf 53.5 46.7 56.8 52.8 67.6 57.5 67.3 68.8
2TracksCov 61.0 48.7 584 53.7 67.6 56.9 67.3 68.3
FilterConf0.2 66.7 55.8 589 54.1 67.4 57.4 67.7 68.8
FilterTrace4 62.4 574 60.3 58.1 73.2 65.1 712 71.2
FilterElement 824 73.3 80.6 75.5 94.7 85.8 89.4 91.5

tr(Rcov) - tr(Ps) > lirace; O
Reoy (i, i) — Py(i, i) > teem(i) fori = 1,2, ..., n.

If one of the conditions is evaluated as true, the track must be considered as
possibly forged and therefore will be discarded.

Results for Optimization of Cooperative Perception
First results showed a precision increase for the detection. Table 6 shows an extract
of the precision results for a Vires VTD freeway scenario with 36 vehicles in total for
different optimization strategies. With 16.7% (CR1) and 30.6% (CR2), two different
equipment rates for cooperative vehicles are investigated. To test the robustness of
the approach under realistic environmental conditions, a fog simulation with three
different densities is incorporated. Baseline describes the regular CI fusion using all
tracks. We can observe a precision of about 55-69%. For the track selection strategies
based on the confidence (2TracksConf’) and the covariance matrix (27racksCov), we
can observe that the precision drops for no or low fog (0.01 wm~3). For medium
(0.07 wm=3) and dense (0.13 wm™3) fog, the precision is similar to the original CI
fusion. Using a confidence deviation threshold of 0.2 for the track filtering leads to
a minor increase for a cloudy day. For the different fog densities no effect on the
precision can be observed. Filtering tracks by trace with #,;,c = 4.0 leads to slightly
better results for the cloudy day and low fog with an increase of about 2.5 p.p.
For medium and dense fog the precision could be increased significantly by up to
9.5 p.p. for CR1 at dense fog. The element wise track filtering strategy with threshold
telem = {1.5,0.8,0.2, 2.0, 1.0, 0.3} achieved the best precision scores. For the cloudy
day as well as for all fog densities, there is a significant increase of precision. Using
this strategy the precision can be increased by at least 16.8 p.p. and up to 28.4 p.p.
for CR2 and a fog density of 0.07 wm 3.

Further details about the confidence and covariance based optimization of the
covariance intersection fusion and more results can be found in Volk et al. [111].
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5 Conclusion and Outlook

In this chapter we presented environment-aware approaches for robustness enhance-
ment of local and cooperative perception. Vision-based object detection must be
robust against harsh weather to ensure safety. To enhance existing data sets, which
lack adverse weather scenarios, we presented physically correct image-based sim-
ulations for rain (including raindrops in the windshield and road spray of driving
vehicles), snow and fog. With our proposed RESIST framework [67], a workflow
to investigate different local and cooperative object perception setups exist. A wide
range of possible input sources allows a comprehensive evaluation of the imple-
mented algorithms. In addition, the realistic weather augmentations were used to
study the effects of different weather conditions of varying intensity on vision-based
object detection, showing a significant decrease in average accuracy as rain intensity
increased. This leads to the statement that state-of-the-art neural networks are not
robust against harsh weather. However, it was shown that training neural networks
on data sets containing images with our proposed weather augmentations leads to an
increase of the perception performance of up to 7.33 p.p. for the YOLOvV3 network.

Additionally, we have shown that even with robust neural networks, the local
perception is limited by different factors. To overcome these disadvantages, we con-
sidered vision-based cooperative perception. Gathering information with multiple
vehicles allows perceiving objects outside the local sensor range or occluded in
difficult inner-city scenarios. For different scenarios it was shown that cooperative
perception can increase the mean average perception by about 18 p.p. compared
to a local perception without any influence of adverse weather. Considering adverse
weather it could be shown that a cooperative perception is possible to achieve a mean
average precision of about 23% while the local perception was not able to detect any
object. Hence, the cooperative perception increases safety.

Moreover, we have shown that state-of-the-art evaluation metrics for object per-
ception do not necessarily satisfy the safety constraint. Hence, we considered addi-
tional factors such as velocity and object class for the evaluation of object perception
systems to determine the safety with a comprehensive safety metric.

Besides all achievements some further research topics are still open.

Extend Weather Simulation to Further Sensors

The influence of weather circumstances on vision-based object detection was inves-
tigated and presented in detail. To achieve a safe system, autonomous vehicles must
have a redundancy in sensors to balance the advantages and disadvantages of differ-
ent sensor types. LIDAR is a promising technology for object detection because it is
highly accurate and has a high sensor range. Since LiDAR sensors emit light waves,
they are affected by weather as well. Rain, snow or fog can scatter the light waves
such that false detections occur or the sensor range decreases. A first approach to
weather simulations for LiIDAR perception has been proposed by Teufel et al. [100].
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Similar to the camera-based object detection, the optimization of LiDAR-
based object detection has been investigated to increase robustness of LiDAR
perception [99].

Safety Metric for Environment Perception

Object Perception is only one part of the perception for an autonomous vehicle.
There are more subsystems such as lane detection, traffic sign recognition or motion
planning. To achieve a safe autonomous vehicle all subsystems are required to be safe.
Thus, the safety must be evaluated. Since lane detection and traffic sign recognition
are part of the perception, the proposed safety metric can be extended to these tasks.
For both tasks some requirements exist; e.g., a lane detection should at least cover
the distance required for an emergency brake to enable safety.

Optimization of Cooperative Perception

An inaccurate local perception could lead to deviations of a state estimation of a
cooperatively perceived object. As a worst case, the estimation error increases that
much that the benefit of cooperative perception disappears. Thus, only valid and
accurate information should be considered for fusion. Additionally, for cooperative
perception, the communication channel should not be overloaded by transmitting
erroneous information. Therefore, validation strategies at sender and receiver should
be investigated to improve communication channel usage as well as fusion accuracy.
Moreover, the concept of cooperative perception has been extended to lane detection
by Gamerdinger et al. [28].
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Design and Evaluation of V2X )
Communication Protocols for oo
Cooperatively Interacting Automobiles

Quentin Delooz, Daniel Maksimovski, Andreas Festag, and Christian Facchi

Abstract This chapter studies two key communication services for the support
of cooperative driving capabilities using Vehicle-to-Everything (V2X) communi-
cations: sensor data sharing and maneuver coordination. Based on the current state
of the art in research and pre-standardization of V2X communications, we enhance
the protocol design for both services and assess their performance by discrete-event
simulations in highway and city scenarios. The first part of this chapter addresses the
performance improvement of sensor data sharing by two complementary strategies.
The shared sensor data are adapted to the available resources on the used channel.
Furthermore, the redundancy of the transmitted information is reduced to lower the
load on the wireless channel, whereas several approaches are proposed and assessed.
The second part of the chapter analyzes cooperative maneuver coordination pro-
tocols. We propose a distributed approach based on the explicit exchange of V2X
messages, which introduces priorities in maneuver coordination and studies several
communication patterns for the negotiation and coordination of maneuvers among
two and more vehicles. The results demonstrate the potential of V2X communi-
cations for automated driving, showcase several approaches for enhancements of
sensor data sharing and maneuver coordination, and indicate the performance of
these enhancements.
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1 Motivation and Technical Background

In recent years, various Advanced Drivers Assistance Systems (ADAS) have been
developed [1], while automated vehicles with an increasing different level of auton-
omy are being extensively tested and deployed on the roads. It is commonly assumed
that safety, comfort, and efficiency on the road can be enhanced by the introduction
of automated and fully autonomous vehicles, especially utilizing cooperative driving
capabilities.

Cooperation among traffic participants is essential to reach a high level of automa-
tion. The cooperation requires interaction, which can be implicit or explicit. With
implicit interaction, a vehicle infers the desired information of another traffic partici-
pant based on its behavior and actions. For example, it can recognize the intention of
another vehicle by its local sensors and predict its future driving intentions when the
other participant slows down. With explicit interaction, traffic participants exchange
information by different means, such as by light projections in front of an auto-
mated vehicle for pedestrians. Communications can be regarded as a specific type of
explicit interaction enabling an automated vehicle to warn others, exchange detailed
information about the perceived environment or even negotiate maneuvers.

Vehicle-to-everything (V2X) communication enables the direct information
exchange among traffic participants in an ad hoc network, as opposed to the typical
communication with a communication infrastructure. It comprises communication
among vehicles and with the road infrastructure as well as with pedestrians, bicy-
clists, etc. V2X communication operates in the 5.9 GHz frequency band, which has
been specifically allocated for road safety and traffic efficiency applications in Europe
and other regions of the world. Two access technologies have reached a mature sta-
tus of research and development towards widespread deployment: WLAN-V2X and
Cellular-V2X [37, 44]. Both facilitate an information exchange based on messages
carrying application-specific content.

The development and deployment of V2X communications are commonly divided
into three subsequent phases that rely on communication services with increasing
complexity and requirements using dedicated, standardized message types (Fig. 1):

1. The Cooperative Awareness Message (CAM) and the Decentralized Environ-
mental Notification Message (DENM) for the exchange of information about
the vehicle state (position, speed, heading, acceleration) and about safety-critical
events, respectively (Day 1);

2. The Collective Perception Message (CPM) for exchange of sensor data as lists of
detected and classified objects in the perception range of a vehicle (Day 2); and

3. The Maneuver Coordination Message (MCM) for the exchange of intended
maneuvers and coordination data among Connected and Automated Vehicles
(CAVs) (Day 34).

In Europe, these messages types and corresponding protocols are standardized
by the European Telecommunications Standards Institute (ETSI): The specification
of Day-1 message types CAM [15] and DENM is completed, CPM is close to com-
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Fig. 1 Evolution of V2X communication in phases: Day 1, Day 2 and Day 3+

pletion [14], while the MCM is still very early in the research and standardization
phase [17].

For performance evaluation of the studied V2X communication protocols, the
discrete-event simulator Artery [42] is applied. The simulator relies on Vanetza,
INET, and OMNeT++ [48] to implement the ETSI Cooperative-Intelligent Trans-
port System (C-ITS) communication protocol stack. Furthermore, Artery realizes an
environmental model and sensor models that represent vehicles to perceive objects,
such as vehicles and bicycles, in their vicinity. To model node mobility, Artery is
coupled with microscopic traffic simulator SUMO [31]. To model realistic traffic and
vehicle movement, the traffic scenario of the city of Ingolstadt (Bavaria, Germany),
referred to as InTAS [30], is chosen. The InTAS scenario lasts 24 hours long and
relies on real daily data traffic from Ingolstadt. Figure 2 illustrates the road topology
of the InTAS scenario.

This chapter is divided into two main parts. The first part considers the sensor
data sharing based on the exchange of CPMs with lists of detected and classified
objects. The second part focuses on cooperative maneuver coordination relying on
the exchange of intention and coordination data among the vehicles. These parts are
structured as follows:

e In the first part about sensor data sharing, an overview is provided in Sect. 2.1
along with the description of the state of the art and research questions in Sect. 2.2.
Section 2.3 reviews the protocol design from research and current standardization
efforts. Sections 2.4 and 2.5 present in detail the proposed changes to the current
protocol design, followed by an analysis of the obtained results in Sect. 2.6.

e The maneuver coordination part consists of three sections. Section 3.1 presents an
overview that also includes maneuver coordination use cases and a description of
the state of the art in the field. Section 3.2 presents the Priority Maneuver (PriMa)
coordination protocol design including the maneuver coordination message, com-
munication patterns, and an example scenario. An overview of the simulation
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Fig. 2 Road topology for the studied scenario of the city Ingolstadt

framework and a discussion of the results for the studied coordination scenarios
are presented in Sect. 3.3.

Finally, a summary and outlook of both parts, Collective Perception (CP) and coop-
erative maneuver coordination are given in Sect. 4.

2 V2X Communications-Based Sensor Data Sharing

This section presents an overview of V2X communications-based sensor data shar-
ing, i.e., CP, followed by its state of the art, protocol designs, and our proposed
improvements with performance evaluations.

2.1 Overview

Sensor data sharing for V2X communications has been studied extensively during
the last few years. European research and standardization activities, e.g., in ETSI,
commonly refer to it as “Collective Perception (CP)”. The protocol design of CP
slowly reaches a stable state and is further used as a baseline. We investigate two
remaining and relevant problems of CP: First, the information to be included in a
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Fig.3 Overview of the addressed research problems and studied solutions for Collective Perception

CPM—the detected and classified objects—needs to be carefully selected to avoid
overloading the bandwidth-limited wireless channel. This can be achieved by apply-
ing smart filtering approaches to reduce the number of objects to transmit, called
filtering rules within the rest of this chapter. The problem with the current design
of these filtering rules is that they do not take into account the available channel
resources, e.g., objects are unnecessarily filtered even when the channel usage is
low. Our first research question to improve CP is, therefore, how and when object
filtering should be modified to adapt to the available channel resources. The sec-
ond problem addresses information redundancy. Currently, many vehicles can send
information about the same object, unnecessarily dissipating channel resources. To
diminish it, the second research question is how to address information redundancy
by filtering objects considering the information received by other traffic participants.
The following sections will focus on these two main research questions. Figure 3
gives a brief overview of the addressed research problems and the studied solutions
(Fig. 4).

2.2 State of the Art in Collective Perception

Initial work on sensor data sharing or Collective Perception dates back to 2012 [39].
Ideas developed in [20] and others have led to standardization activities, the pub-
lication of the ETSI study item TR 103562 [14], and draft versions of a European
standard for CP in TS 103 324 [16]. Besides message format, [14] defines different
design aspects of CP such as message format as well as the CPM dissemination
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Fig. 4 Intersection use case for sensor data sharing based on V2X communication

concept to determine when to generate a CPM, i.e., the CPM generation rules. These
rules determine which objects to include in a message and the triggering conditions
to generate a CPM. Several publications, such as [7, 18, 46, 51], have reviewed
the design for CP and elaborated on algorithms for message generation and object
filtering.

The problem of information redundancy has been already considered in [14]
and several redundancy mitigation approaches were defined but not evaluated. Only
a few studies have addressed the redundancy problems. [6] has investigated two
approaches, Dynamic and Self-Announcement redundancy mitigation rules (see
Sect. 2.5), before [14] was published but applied different CPM generation rules than
the currently designed ones [14, 16]. The authors of [47] focused on the redundancy
mitigation approach using the object dynamics to filter objects, i.e., the dynamics-
based redundancy mitigation rule (see Sect. 2.5). In [25], the authors reduce redun-
dant object information on the wireless channel using a probabilistic object filtering
approach based on the perceived density of vehicles, market penetration, and road
geometry. The paper showed the efficiency of object filtering using a highway sce-
nario and a minimal urban scenario with two roads. In [4], objects are filtered taking
into account three criteria: channel load, and the number as well as the type of V2X
stations that have already provided information about these objects. The main idea
is to adapt the number of V2X stations that send information about the same object
to the channel load. The lower the channel load is, the larger the number of stations
that can send information about this object.
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Congestion control algorithms in the context of safety applications have been
the subject of intense research and resulted in ETSI standards such as the ETSI TS
102 687 [13] which specifies two different types of congestion control mechanism:
reactive and adaptive. Both congestion control mechanisms rely on the perceived
channel load to estimate available channel resources and enforce the respect of the
channel access limitations imposed by the European norm [12]. These mechanisms
attempt to share channel resources fairly among V2X stations by imposing constraints
on the message transmission parameters, e.g., by reducing the allowed message
transmission rate. The performance of CP with the constraints imposed by the reactive
congestion control mechanism was initially studied in [19, 21] and later used in the
evaluations realized in [14]. Our work [9] distinguishes itself by being the first to
evaluate the CP performance with the adaptive approach and propose to adapt the
filtering of objects based on the current channel access constraints.

In comparison to other works, we assess the performance of four redundancy miti-
gation approaches, the impact of their parameter settings, and the congestion control
aware object filtering with the Artery framework in a complex and diverse urban
scenario. We design and use novel metrics for a fair comparison, and compute the
information value brought by the different message generation rules while consider-
ing the object dynamics. For an assessment of all redundancy mitigation approaches
considered in the standardization process [14], we refer to our publication in [10].

2.3 Protocol Design

The published standardization document ETSI TR 103 562 [14] is considered as
the baseline for the protocol design of Collective Perception. The corresponding
dedicated message type CPM is composed of distinct containers with different pur-
poses. The containers relevant for this paper are the Sensor Information Container
(SIC), Perceived Object Container (POC), and the Station and Management Con-
tainer (SMC) (Fig. 5). The SIC contains information about the sensing capabilities
of a transmitting V2X station. The sensing capabilities are described using a list of
capability descriptions of each of the sensors mounted on the vehicle, e.g., by indi-
cating the Field of View (FOV) and the mounted position of the sensor. Since this
information is static, the SIC does not need to be repeated with a high frequency and
is included only once every second. The second and most relevant container is the
POC, which contains all objects that a vehicle perceives with its local sensors. An
object is selected for inclusion in the POC if it fulfills at least one of the following
conditions [14]:

1. The object was never sent previously, i.e., it is considered new for the transmitting
station.

2. The object’s position changed by more than 4m (absolute euclidian distance)
since its last inclusion in a CPM of the transmitting station.

3. The object’s speed changed by more than 0.5 m/s since its last inclusion.
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Fig. 5 CPM format and data elements as defined in [14]. © ETSI2019. All rights reserved

4. The object’s heading changed by more than 4 degrees since its last inclusion.
5. The object was previously included in a CPM of the transmitter more than one
second ago.

The SMC contains information about vehicle mobility such as position and velocity.

Following the message generation rules in [14], a CPM is generated whenever the
SIC needs to be transmitted, the POC contains at least one object for transmission or
both. However, the CPM generation interval cannot be higher than 1 000 ms or lower
than 100 ms. Following these message generation rules, the size and frequency of
generated CPMs can considerably vary within the interval.

These rules were originally proposed in [ 18] with the idea that an object is included
in a CPM whenever it would generate a CAM, presuming that the object is capable
to generate messages, e.g. it is a vehicle capable of V2X communication. CP helps
increase awareness of unconnected vehicles, especially in the first years of V2X
deployment. However, it can overreach the goal when the V2X market penetration
ratio grows over the years and it can start overusing the communication channel. On
the opposite, at a low market penetration rate and when a few vehicles with V2X
capabilities are within communication range, the hypothesis is that object filtering
does not bring significant value (see Sect. 2.1).

Figure 6 shows an example of how to realize the CPM generation process as
described in [14]. The Collective Perception Service (CPS) checks every Tepq if a
CPM has to be generated. The common value for T, is 100ms. Then, the CPS
checks if any congestion control mechanism prevents the generation of a CPM (see
Sect. 2.4.1), referenced as “Triggering” in Fig. 6. If allowed, the filtering rules and
generation rules as described above are applied to the detected objects. Finally, the
CPM is generated and passed to the lower layers for transmission.

Our contributions are the following:

1. To adapt the object filtering to the available channel resources, works have been
realized in [9] and in [8]. The modification in the protocol design happens in the
“Add filtered objects*” step of Fig. 6.

2. To address information redundancy, several redundancy mitigation approaches
have been analyzed following the relevant approaches in ETSI TR 103 562 [14].
The resulting modifications occur in the “Filtering rules” step in Fig. 6.
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Fig. 6 CPM generation process. Figure derived from [9]

2.4 Adapting Object Filtering to the Available Channel
Resources

In the 5.9 GHz bandwidth in which V2X communications are deployed, channel
resources are scarce and have to be used mindfully. The default data rate for WLAN-
V2Xis 6 Mb/s [26]. Communication services, such as Cooperative Awareness or Col-
lective Perception with semi-periodic message generation consume a large amount of
the wireless bandwidth. Moreover, the availability of resources for a service depends
on two main factors: the presence of other V2X stations transmitting messages and
the number of services of a V2X station attempting to generate messages on the
same channel. To adapt to these two factors, congestion control mechanisms are
being considered. For WLAN-V2X in Europe, these mechanisms are referred to as
Decentralized Congestion Control (DCC). We review the main DCC mechanisms in
Sect. 2.4.1. To adapt the CPM generation rules to the current DCC restrictions, we
propose an algorithm following a principle explained in Sect. 2.4.2. The objective is
to allow more objects to be transmitted when channel resources can support it.

2.4.1 Decentralized Congestion Control (DCC)

DCC is a cross-layer functionality with interacting entities at all layers. The DCC
entities at the access layer [13] provide different control for the outgoing packets.
Practically, a “gatekeeper” is implemented and it realizes a first-in-first-out (FIFO)
packet queuing system for each channel. A gatekeeper relies on multiple simple
priority queues for the packets to be selected for transmission and acts as a single
server. The non-empty queue with the highest priority is dispatched first. If a queue
is full and a packet arrives or if the lifetime of a packet expires inside the queue,
the packet is discarded. The gatekeeper acts as a switch by opening and closing
its gate repetitively. When a packet passes the opened gate to the lower layers,
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the gate is closed by the gatekeeper for a period of time depending on the current
channel condition and the size of the packet. To determine the closing time of the
door, ETSI TS 102 687 [13] specifies two DCC access layer strategies: reactive and
adaptive. Both strategies respect the following DCC-related regulatory requirements
for operation in the 5.9 GHz frequency band as specified in [12]:

e 0 <T,, <4ms:T,, is the duration of a packet transmission.

e § <= 3%, whereas 4§ is the duty cycle defined as the allowed ratio of the trans-
mitter’s total “on” time relative to 1 s. 3 % means that a station can occupy at most
3%, i.e., 30 ms, of channel time within 1s.

o Top >=25ms: T,y is the duration before the gatekeeper re-opens its gate after
the transmission of packet. In another word, the maximum packet transmission
frequency is 40 Hz for a V2X station on a channel.

e if CBR>=0.62, T, >=min(1000ms, T,,(4000 x SBR0E2 _ 1) see

CBR
Sect. 2.6.1 for the definition of the Channel Busy Ratio (CBR).

LIMERIC is the adaptive DCC algorithm approach proposed in ETSI TS
102 687 [13]. Every 200 ms, it updates the duty cycle §. Table 3 from [13] is used to
parametrize LIMERIC. To improve the convergence time of LIMERIC and fairness
during transition phases, [45] proposes a dual-o approach which we used for the
simulations in this paper.

To enforce the allowed duty cycle § determined by LIMERIC, the following
equations from [13] are used:

Ton
Ty = min(maX(T””, 25ms), 1), (D

where 7,,,, denotes the transmission time of the previous packet. If § is updated
during the T4 interval, the closing time of the gatekeeper needs to be updated as per
Top* given by (2).

T

ony, Lremain

off

Toﬁ’* = min(max( , 25 ms), ls— tpassed) (2)

tremain 18 the Temaining time to wait with respect to the unmodified 7,5 and #,445cq the
time since the gatekeeper closed.

An interesting feature of the gatekeeper implementation is the fact that it takes
into account the size of the previously transmitted packet to determine the time to
wait between two transmissions. Thus, Ton,, is also affected by the size of CPMs
directly, and indirectly by the applied filtering rules. This characteristic is exploited
to adapt the size of a CPM to the closing time of the gatekeeper.
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2.4.2 Congestion-Aware Collective Perception

Principle: We propose to enhance the current generation rules such that the Collective
Perception service avoids filtering objects when the channel resources are sufficient
to transmit them. The modifications brought to the current design of the CPS [14]
add a new step into the CPM generation algorithms (Fig. 6) marked as “Add filtered
objects” box. This new step is motivated by two observations.

First, services such as the CPS are currently not specified to adapt to the DCC
constraints. It is expected that with the Release 2 set of standards for V2X communi-
cations, mechanisms such as the one proposed here to adapt to the available channel
resources and DCC restrictions will be specified or suggested. In particular for CP,
when channel resources are sufficiently available, objects should not be filtered as
rigorously as in congested situations.

Second, following the CPM generation rules (see Sect. 2.3), if there is no object
to transmit then no CPM is generated in most of the cases. Therefore, the filtering of
objects influences the message generation procedure. Moreover, the current object
filtering approach relies on object dynamics, and including more objects in a message
increases the probability of having none of them transmitted at the next attempt at
CPM generation. The expected result is to generate a smaller number of CPMs
containing more objects. The advantage of reducing the CPM generation rate is the
reduction of the overhead created by the lower layer headers.

To address the two points discussed above, we worked on the following principle:
if a CPM is to be generated and the addition of an object from the set of filtered
objects does not directly impact the CPM generation rate, the object will be included
in the CPM. This principle is possible thanks to 7. and the gatekeeper as explained
in Sect. 2.4.1.

The following example illustrates the principle: Let’s consider that 7T¢;... equals
100ms. If a generated CPM just passed the gatekeeper, and the resulting T, is
115ms, the next potential CPM generation will be not earlier than 200ms later. At
the first occurrence of Tepeqk, the T,y interval has not elapsed yet. Hence, the CP
service has to postpone the message generation to the next T .. cycle, which is
200ms after the preceding CPM generation. The resulting gap of 85ms remains
unused. If by adding filtered objects, the increased CPM size causes the gatekeeper
to extend 7,7 by less than those 85 ms, the effective CPM generation rate would not
get reduced at all. As a result, the CPM generation at an interval of 200 ms is not
prevented by DCC, independently of some additional filtered objects included.

Effects on the Collective Perception Service: With consideration of the chan-
nel congestion, the previously described principle has three possible effects on the
CP service:

1. The CPM includes all objects (filtered and non-filtered) without restrictions from
DCC on the CPM generation rate. This will occur when channel resources are
largely available. We refer to this effect as “One-For-All”, i.e., all objects are
included if a CPM is to be generated.
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2. Part of the filtered objects is included in the generated CPM. This occurs when
DCC would start delaying packet transmissions if all objects, filtered and non-
filtered, would be included. As result, the CPM contains some filtered objects
chosen randomly.

3. No filtered objects are included. The CPMs generated using the current ETSI
rules are sufficient for DCC to restrict the generation rate.

Process: The principle elaborated in the previous section was analyzed and evaluated
in [9]. We enhanced the algorithm developed in [9] by simplifying its implementa-
tion and limiting its application. This enhancement was proposed in [8]. The main
modification is to avoid adding filtered objects if the DCC restrictions before the next
message to generate are higher than T of fies, With a default value of 100 ms, which
is the minimum time to wait between two consecutive messages. In this chapter,
we evaluate additional values for Tof fiesn as shown in Table 1. Figure 7 shows
the resulting process to include filtered objects considering DCC, named Enhanced
DCC Aware Filtering (EDAF) rules. First, the CPM containing the objects that have
passed the POC inclusion rules and other containers is created. Second, the highest
T of fuors: that DCC could impose is computed. The steps to compute T of fiors are
not included in this book but the reader is kindly invited to find them in [9]. Then, if
T of fwors: 1s lower than TGeucpmmin, One of the objects filtered is added. These steps
are repeated until either there are no more objects or T of fiors: €xceeds Tgencpmmtin-

2.5 Redundancy Mitigation Rules

A problem remaining with the current CP protocol design is that many vehicles can
send information about the same object without any control. Information redundancy
is not bad in itself and could help to improve the perception of the surrounding. How-
ever, in the context of limited channel resources, a too-high information redundancy
does not bring any benefit. Moreover, it may even decrease the perceived quality
of the object by adding extra processing delay. To address this problem, different
techniques were elaborated in [14] and analyzed in other documents (see Sect. 2.2).
Based on [14], parts of the techniques established for the RMRs are described in the
following:

The Distance-based RMR: An object is filtered if it was already received from
another V2X station within the R_Redundancy range during the last time window
W_Redundancy. The parameter R_Redundancy needs to be carefully tuned such that
the RMR efficiently allow enough object transmissions while controlling the channel
load. CAMs and CPMs are considered sources of information for this RMR. A benefit
of this RMR is that it attempts to maintain the awareness range by distributing in
space the sources of information.

The Dynamics-based RMR:The logic behind this RMR is inspired by the “POC
inclusion rules” of the CPM and the CAM triggering rules [15]. If the last
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Table 1 Summary of the simulation parameters

171

Parameters Values

Protocol stack European WLAN-V2X
Frequency band 5.9GHz

Channel model Two Ray Interference
Transmission power 23dBm

DCC

Dual-alpha LIMERIC

Services Cooperative Awareness (SCHO), Collective
Perception (SCH1)

Scenarios InTAS

MPR {0.1,0.2, ..., 1}

Time of simulation 9:15a.m.

Number of vehicles ~2800

Simulation time 135 (incl. 10s of warmup)

Number of repetitions 2

Vehicle sensor equipment

2 radars: (160m, 35°, Front), (80 m, 325°,
Back)

Area of relevance 500m
EDAF
Tof fihresh (25,50, 75, 100} ms

Distance-based RMR

W_Redundancy

1s

R_Redundancy

{25, 50, 100, 200} m

Dynamics-based RMR

P_Redundancy {2,4}m

S_Redundancy {0.25,0.5} m/s
Frequency-based RMR

W_Redundancy 1s

N_Redundancy {1,3,5,10, 15}

update received time, position, or absolute speed of an object changed less than
P_Redundancy meters or S_Redundancy meters per second, respectively, the object
is filtered. As for the "POC inclusion rules”, the advantage of this rule is that the
updates of objects will depend on their dynamics, avoiding too many objects of non

or slow-moving vehicles.

The Self-Announcement-based RMR:If an object is detected as capable of trans-
mitting V2X messages (e.g., CAM or CPM), the object is filtered.

The Frequency-based RMR:An object is filtered if it is subject to a number of updates
higher than N_Redundancy during last time window W_Redundancy.
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Fig. 7 The Enhanced DCC Aware Filtering (EDAF) rules

2.6 Simulation Results

The following of this section describes the evaluation framework used for the per-
formance evaluations of the different proposed CP protocol designs.

2.6.1 Evaluation Framework

We review in this section the relevant parameters and components of our simulation
framework. Table 1 summarizes the parameters used.

Communication: The insertion of V2X devices into the market is expected to increase
slowly over the coming years. For our simulations, the following V2X market pen-
etration rates (MPRs), i.e., the rate of vehicle able to generate and receive V2X
messages, were investigated: 0.1, 0.2, ..., 1.

For communication, vehicles operate a WLAN-V2X-compatible transceiver capa-
ble of working on two channels simultaneously without co-channel interference. For
DCC, the adaptive approach described in Sect. 2.4.1 is deployed for all V2X capable
vehicles.

Messages: CAM and CPMs are transmitted on all vehicles with enabled V2X capa-
bilities. The CAMs are assigned to the control channel (SCHO) (or IEEE channel #
180) and generated according to ETSIEN 302 637-2 [15]. The CPMs are assigned to
the SCH1 (IEEE channel # 176) and triggered following Sect. 2.3 and according to
the studied filtering rules. In a CPM, the itsPduHeader, the managementContainer,
and the stationDataContainer counts for 44 B together. A SIC is included once a
second and is 12 B large. A POC in a CPM is 35 B after encoding. The FreeSpaceAd-
dendumContainer is omitted.



Design and Evaluation of V2X Communication Protocols ... 173

Sensor Configuration: In Artery, object perception is assumed idealistic, i.e., there
are no inaccuracies, and all the object information, such as dimensions, position,
and speed, are available to the perceiving vehicle. Sensors can be allocated with a
defined field of view, range, and attachment point to vehicles in the simulations. A
direct line of sight between the sensor and one of the object corners is required for
successful detection. Buildings and other vehicles are obstacles to the perception.

In our simulations, vehicles have two radars: one with 80 m range and 325° FOV
facing backward and one with 160m range and 35° FOV facing forwards. This
configuration is inspired by the one Tesla states to use for their autopilot on its
vehicles.!

EDAF Rules: With the sensor configuration used in our simulation, vehicles detect
with their mounted sensors around 7.5 objects on average. In [9], only the configura-
tion T of finesn=100ms was investigated with a different sensor configuration. In this
book chapter, different Tof fiu.sn values are investigated: 25, 50, 75, 100ms. The
objective is to find a threshold allowing enough filtered objects to reduce the number
of CPMs to generate while avoiding high information redundancy by including too
many filtered objects. The sensor-equipped configuration on the vehicle is similar to
the study performed in [10] and presented in Sect. 2.5.

Metrics: The following metrics were used to assess the performance of the different
object filtering techniques and CPM generation rules:

e Channel Busy Ratio (CBR): Fraction of time that the radio channel is perceived
as busy to the total period under observation.

e CPM rate: The number of CPMs generated per second.

e CPM size: The size in bytes of the generated CPMs.

o Environmental Awareness Ratio (EAR): The ratio of vehicles known within a
delimited area around a vehicle. The area considered in our simulation is a circle
centered on the vehicle with a diameter of 500 m.

¢ Redundancy Level (RL): During the last second, the number of updates received
about an object is divided by the number of updates that the object would have
sent if it would have generate CAMs. More details on this metric can be found
in [10].

e Score: This metric is realized using (3). The Gompertz function G is the valuation
of the RL score measured for each object and has the following parametrization:
a =1,b = 7,c = 2.31337. The objective is to facilitate the comparison among
the CPM generation and filtering rules. More details on this metric are explained
in [10].

Score = (1 —CBR) x G(RL) x EAR 3)

! https://www.tesla.com/autopilot, last accessed: 25. Nov 2022.
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2.6.2 Results for Enhanced DCC Filtering (EDAF) Rules

Results to adapt the object filtering to the available channel resources were initially
presented in [9] and [8]. Because the scenario and part of the metrics used for sim-
ulation in [9] are different from the ones presented in Sect. 1, simulations were
performed again to align the simulation configuration.

To evaluate the EDAF rules, we compare them to two default configurations: the
“No Filtering” for which all the objects are included every 100 ms and the ETSI rules
as defined in Sect. 2.3. The EDAF rules were explained in Sect. 2.4 and its parameter
T of finresn 1s configured for different values as indicated in Table 1.

Figure 8 shows the obtained results for the CBR with the different CPM generation
rules. In general, the higher the MPR, the higher the CBR. This is expected as more
vehicles transmit messages. Considering the greediest approach, the “No Filtering”
strategy results in the highest average CBR perceived within the scenario (up to CBR
around 0.55 at MPR=100 %).

In contrast, the ETSI filtering approach, which is the most conservative regarding
the inclusion of objects in CPMs, shows the second lowest obtained CBR indepen-
dently of the MPR. The CBR starts at around 0.04 at MPR =0.1 and increases up to
0.42 at MPR=1.0.

All EDAF configurations result in a lower channel usage than the No Filtering
approach. With the EDAF-100ms configuration, the CBR reaches a maximum of
0.45 at MPR =1.0. We can observe that the EDAF-50,75,100 ms have similar CBR
values up to different MPRs. For example, for MPR higher than 0.4, the EDAF-50 ms
starts obtaining a lower CBR than the two other configurations. It indicates that the
rules are in different phases as explained in Sect. 2.4.2. First, the three configurations
are in the “One-for-All” phase. Then, as DCC starts to impose a higher closing gate

0.10 0.30 0.5 0.70 0.90

0
MPR
-— ETSI +~ EDAF-25ms +—~ EDAF-50ms —s— EDAF-75ms ~~ EDAF-100ms —+— MNo Filtering

Fig. 8 Average CBR perceived by vehicles on SCHI for different CPM generation rules
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delay, not all filtered objects are included in a CPM for the EDAF-50 ms. The phase
change occurs at MPR=0.4 for EDAF-50ms and at MPR =0.6 for EDAF-75 ms.

In contrast to the other EDAF configurations, the EDAF-25 ms results in a slightly
lower CBR than the ETSI rules while being more permissive for object inclusion.

To explain this phenomenon, Figs. 9 and 10 show the resulting tradeoff between
CPM size and rate obtained with both the ETSI and EDAF rules. The CPM size
obtained at low MPR for the EDAF-50, —75, —100ms is around 2.5 times higher
(~250B) and 1.7 higher (=170B) for the EDAF-25ms than for the ETSI rules
(=100B). On the opposite, the obtained CPM rate is on average higher for the
ETSI rules (=9 CPM/s) than for the EDAF-50,75,100ms rules (4.8 CPM/s) and
EDAF-25ms (*5.3 CPM/s). This tradeoff between CPMs containing more objects
but with a lower message generation rate is due to the nature of the filtering rules.
For example, let’s consider the scenario of a V2X vehicle perceiving two objects
requiring to be transmitted every 500ms (due to their dynamics). There are two
possible scenarios of CPM generation for these objects. In the first scenario, two
CPMs are transmitted every second containing both objects. In the second scenario,
four CPMs are generated per second containing each one of the objects. The second
scenario is what happens in many cases with the ETSI rules, as the objects are not
grouped for transmission. The first scenario is an example of what happens with the
EDAF rules. As there are enough channel resources, the station creates a CPM for
both objects, even if one of them shouldn’t have been transmitted at that time due to its
last transmission. The advantage of the first scenario is to reduce the communication
overhead from the lower layer headers. For the No filtering strategy, the CPM rate
stays at a high value (around 10 CPM/s) with most of the included objects.

As shown b Fig. 11, the resulting EAR is similar, independently of the employed
generation rules. The lowest EAR is obtained at MPR=0.1 with around 67 % of the
detected objects. At MPR=0.3, the obtained EAR is around 92 %.
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Fig. 11 EAR for the studied filtering strategies

Figure 12 for the Redundancy Level metric, the No filtering strategy results in
the highest RL. Independently of the rules, the higher the MPR, the higher the RL
is. Moreover, with the No Filtering rules, the RL can go up to 20 on average, i.e.,
a vehicle has 20 times more updates about an object than if this object would have
sent CAMs following the CAM generation rules. This underlines the necessity to
have RMR. We point out again that the tradeoff proposed by the EDAF-25ms creates
more data redundancy, for a lower channel load, and a similar EAR than the ETSI
rules.

The resulting scores depend only on RL and CBR. Indeed, the EAR does not
differ significantly among the filtering rules for the same MPR. Figure 13 shows the
obtained scores. At MPRs < 0.15, the EDAF-50, 75, 100 ms rules resulted in the best
score of around 0.64. At the same MPRs, the No Filtering scored better (0.61) than
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Fig. 13 Score as defined by (3) obtained for the different filtering strategies

the EDAF-25ms (0.56) and the ETSI one (0.46). This result shows that at low MPRs,
greedier approaches than the ETSI one could and should be applied. At higher MPRs,
the No Filtering approach does not score well and finishes with a score of around
0.45 at MPR=1.0. This score is expected from the high RL and CBR obtained.
At MPR > 0.2, the EDAF-25ms rule performs the best with the highest score of
0.8 obtained at MPR =0.3. The maximum score obtained by the different filtering
approaches is reached between MPR = (0.2 and MPR = 0.3. For higher MPR, the RL
is too high, resulting in a reduced gain from the Gompertz function compared to the
generated channel load.
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2.6.3 Results for Redundancy Mitigation Rules (RMRs)

The RMRs as described in Sect. 2.5 have been evaluated in [10] using the parameters
indicated in Table 1 with the metrics: CBR, EAR, RL, and Score. By lack of place,
only the score is shown here as a summary of the results. We did not evaluate the
RMR “confidence level” proposed in [ 14] because they required detailed and realistic
modeling of the environmental data capturing. The current version of Artery used in
our study provides detailed modeling of the communication but does not have the
capabilities for realistic sensor modeling yet. Therefore, the assumed ideal perception
(no delay and no errors) in the object measurement is not suitable to study the
confidence level. To better understand the impact of realistic sensor models on the
RMR performance, enhanced simulation models and alternative simulation tools
such as [49] would need to be used.

Figure 13 shows the obtained score for the RMRs and their respective parametriza-
tions. Similarly to the results of the EDAF rules, the score is not affected by the EAR.
Consequently, the score is influenced mostly by the CBR and the RL. Note that the
None RMR is equivalent to the ETSI rules of Sect. 2.6.2. In the experiments per-
formed for these RMRs, the highest CBR was obtained with the None RMR. The
results do not match exactly between the two sets of simulations. The reason is that
two slightly different implementations of the CP Service and InTAS scenario were
used to collect the results, which lead to the differences observed between Figs. 13
and 14.

The obtained score for the None RMR goes from 0.385 at MPR=0.1 up to 0.77
at MPR=0.5 and decreases down to 0.62 at MPR=1. In comparison to the other
RMRs, the None-RMR rule performs best at an MPR lower or equal to 0.25.

For the Self-Announcement-based RMR, the score evolves from 0.38 at MPR =0.1
to 0.83 at MPR=0.75 then decreases until 0.66 at MPR =1. Relatively to the other
rules, this rule performs as one of the best scorers up to MPR=0.5. At a higher MPR,
it starts to underperform compared to others.

The best scores relative to other RMRs obtained with the Frequency-based RMR
are between MPR=0.1 to 0.5 with N_Redundancy=3. At higher MPRs, this rule
underperforms in comparison to the best scores obtained at each MPR.

The scores obtained by the Dynamics-based RMR are lower than the best-
performing RMRs at MPRs lower than 0.5. At MPR =0.5 and higher, independently
of the chosen parameter value, this RMR obtains some of the best scores from around
0.83 at MPR=0.5 to 0.875 at MPR=1.

For the Distance-based RMR, the results differ predominantly for R_Redundancy
=200 and the other configurations. For R_Redundancy =200, the obtained score is the
same as for the Frequency-based RMR with N_Redundancy =1, even by behaving
differently. The reason is that both rules allow only a single vehicle to transmit
information about an object. Still, both configurations result in some of the lowest
scores obtained independently of the MPRs. With R_Redundancy =50 m, the scores
are some of the best at MPR higher and equal to 0.25, which corresponds to one of the
best performing rules independently of the MPR. The other remaining configurations
perform in general well but are either better at low or at high MPRs.
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Fig. 14 Scores obtained for the different RMRs. The score is based on the obtained performance
for the CBR, EAR, and RL. To ease the readability, an offset in the x axis has been applied to each
line

2.6.4 Conclusion

‘We made proposals to address two problems of the current protocol design for CP:
adapt the filtering of objects on the available resources and reduce the problem of
information redundancy by applying filtering rules considering objects received by
other stations.

We conclude that within this evaluation framework, the EAR is not affected by
the filtering rules. The score, as currently configured, shows that at low MPR, i.e.,
MPR <0.25, an RMR is not necessary. By allowing the inclusion of all or part
of the filtered objects in CPMs, the EDAF rules have shown better performance
than the current CP protocol design with a carefully chosen value for the parameter
T of finresn- At higher MPRs, RMRs relying on either distance or dynamics criteria



180 Q. Delooz et al.

perform well to decrease the number of objects included and maintain a balance
between channel usage and information redundancy. Combining EDAF rules with
RMRs is the next logical step for this research and is considered future work. The
end objective is to have an approach addressing both problems simultaneously. The
presented research opens a clear path to the following works. We expect to derive a
new approach combining and using the advantages of both EDAF and some of the
RMRs to obtain the best of CP, independently of the available channel resources.

Furthermore, more work is required to analyze these filtering rules with a focus on
perception. Indeed, in this research, measurement inaccuracies were not considered
while being a critical factor for the development of CP. Further investigations are
needed to understand how error-prone perception would impact the operation and
choice of the RMRs and EDAF rules.

3 V2X Communication-Based Maneuver Coordination

After the detailed presentation of the sensor data sharing service, the following part
of the chapter presents the V2X service for sharing intention and coordination data.

3.1 Overview

Cooperative Maneuver Coordination (CMC) represents a V2X-based application for
exchanging of intentions and coordination data among the CAVs through V2X com-
munication. Through this process, the vehicles can broadcast their planned maneu-
vers, request and negotiate a coordinated maneuver or accordingly accept a coordina-
tion offer from other CAVs which is presented by Fig. 15. Increased safety, comfort
and traffic optimization are the main goals of V2X enabled CMC. The standardiza-
tion process of the Maneuver Coordination Service (MCS) is still in a very early
stage at ETSI [17].

CMC applications can be classified based on different criteria. One of them is to
divide the applications into use case specific and generic ones where the former can

Fig. 15 Illustration of a maneuver coordination process
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only be used for one traffic use case, while the latter can be applied to multiple use
cases.

Another way to categorize the CMC applications is by centralized and decentral-
ized coordination. Centralized coordination involves a central unit, mostly a Road
Side Unit (RSU) that receives all the information from the involved vehicles and
accordingly calculates and distributes the coordinated maneuvers to all involved vehi-
cles. Infrastructure-controlled CMC can be applied to different use cases especially
for signalized or non-signalized intersections, roundabouts and junctions, as well as
cooperative merging situations through Vehicle-to-Infrastructure (V2I) communi-
cation. Decentralized CMC utilizes only Vehicle-to-Vehicle (V2V) communication
among CAVs to negotiate and coordinate maneuvers.

Furthermore, the coordination can be implicit and explicit. In an implicit coordi-
nation, the vehicles broadcast messages with intention and coordination data without
specifying which vehicles are included in the negotiation. This can lead to a con-
flicted situation if more vehicles are negotiating a maneuver. Explicit coordination
involves the IDs of the negotiating and coordinating vehicles that leads to an explicit
agreement among the vehicles for an acknowledged maneuver.

3.1.1 Use Cases

Various use cases exist [34] where CMC can bring certain benefits to increase the
traffic safety, comfort and efficiency as well as the road capacity. Some of these use
cases are presented in Fig. 16:

Cooperative-Adaptive Cruise Control (C-ACC): V2X communication enhanced
ACC that enables additional information exchange between the vehicles to synchro-
nize their velocities.

Platooning: A platoon consists of a group of vehicles driving in a stable formation,
usually trucks, that can keep small distances among each other by sharing V2X
messages that include their current state information. Typically, there is a master
vehicle that leads and manages the platoon consisting of following vehicles.

Cooperative lane change: Two or more vehicles can cooperate to create a gap for a
safe and efficient lane change maneuver.

Cooperative lane merging: Common highway situation that can be facilitated by
V2X communication to allow safe and comfortable lane merging for the CAVs.

Cooperative overtaking: Another common maneuver that occurs frequently on
highways and rural roads that can be utilized especially for heavy loaded trucks.

Cooperative driving at intersections, roundabouts and junctions: Such traffic use
cases can often cause conflicted outcomes. By exchanging the planned and desired
intentions, the involved CAV's can coordinate each other in a safe and efficient way.
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(a) C-ACC, Platooning (b) Cooperative lane change

(c) Cooperative lane merging (d) Cooperative overtaking

(e) Cooperative junction (f) Cooperative intersection

Fig. 16 Cooperative driving use cases

3.1.2 State of the Art in Maneuver Coordination

The topic of cooperative maneuver coordination is a relatively new field with a lot
of open research gaps. Much of the earlier research was done on use case-specific
coordination, whereas in the recent years more work emerged on generic maneu-
ver coordination. Platooning [50] and C-ACC [11] represent typical examples for
use case-specific cooperative driving applications that have been more extensively
researched and analyzed. These approaches utilize V2V communication to achieve
coordination that is mostly focused on longitudinal acceleration and deceleration.
Numerous approaches exist with different control strategies and characteristics pre-
sented in [11, 40, 50]. A research on driving in a convoy is presented in [35] where
the vehicles adjust their longitudinal and lateral dynamics to keep a stable driving
formation. Certain applications like lane change, merging and overtaking require
coordination in both longitudinal and lateral direction in order to create the needed
space. Such a lane change approach is presented in [24] consisting of three different
phases: search, preparation and execution, where dedicated lane change messages
are broadcast in each phase. C-ACC have been used for lane change and merging sce-
narios, as presented in [2]. Various message sets are utilized by distributed resource
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reservation protocols in [3] to analyze distributed intersection and roundabout man-
agement without infrastructure support.

Generic decentralized maneuver coordination focuses on using one protocol to
achieve coordination in different traffic use cases. There are different approaches
presented in the last several years, however a lot of gaps in the protocol design,
testing and evaluation still exist. Maksimovski et al. already published surveys [33,
34] that analyze the up to date proposed coordination approaches and their advan-
tages and limitations. Comparison of the approaches was performed as well. Several
research gaps were highlighted focusing on the detection and decision logic, the
maneuver coordination protocol and the V2X communication. The detection and
decision logic part includes research questions related to: decision when to request a
maneuver on the side of the requesting vehicles as well as when to accept a maneu-
ver coordination on the side of the accepting vehicle. In the maneuver coordination
protocol section, the following research questions are discussed: the message type
and format, additional use case-specific information in the message, message gen-
eration rules, number of messages, number of vehicles included in a coordination,
maneuver cascading, data security and privacy as well as a question related to the
implementation, testing and evaluation of the maneuver coordination protocol. The
V2X communication section discusses the communication requirements for CMC,
the improvement of the access technologies, the communication type as well as
multi-channel operation.

The early standardization work by ETSI [17] is based on the work presented
in [27] that proposed a Maneuver Coordination Service that utilizes periodic broad-
cast of dedicated Maneuver Coordination Messages (MCMs) consisting of trajectory
related data, namely planned and desired trajectories, further enhanced by an explicit
coordination approach and a safety analysis [28]. An explicit approach with extended
communication pattern based on [27] with three new MCMs is proposed in [52] where
a lane merge scenario was also used to evaluate the approach in different situations
with and without coordination among the vehicles. An implicit approach utilizing
MCMs is presented in [29], where the trajectory data have cost values representing
the need or willingness to cooperate with the surrounding vehicles. A space time
reservation protocol (STRP) using reservations of position and time constraints has
been presented in [23] and continuously upgraded and evaluated for different traf-
fic scenarios [38]. This protocol uses an extended CAM message in an event based
manner to broadcast the request in comparison to the other approaches that pro-
pose periodic MCM with trajectory data. Extended CAM message to include future
vehicle trajectories in an event based manner is presented in [41] as well to be used
in hazardous situations to mitigate or avoid an accident. An additional maneuver
suggested container in the MCM is presented in [5] to be used by the infrastruc-
ture through V2I communication to send suggestions to the CAVs, which was also
demonstrated on real world tests in [43]. The Complex Vehicular Interactions Pro-
tocol (CVIP) is another explicit approach presented in [22], utilizing four different
messages in an event based manner also involving joint maneuver negotiation. The
maneuvers in the message can be represented with standardized names, functions or
trajectories. Maneuver Coordination Service with abstracted functions for automated
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driving is proposed in [36] consisting of seven messages that demonstrates reduced
communication bandwidth and increases the speed of the participating vehicles in
the coordination.

The Priority Maneuver Coordination (PriMa) approach is proposed in [32] which
relies on decentralized and explicit exchange of MCMs introducing three levels of
maneuver requests and accordingly different negotiation process among the CAVs.
Different communication patterns depending on the number of included vehicles in
the coordination are also proposed, including cascading scenario. The current work
is based on this approach and will be presented in more details in the next section.

3.2 Protocol Design

This section presents the PriMa coordination [32] protocol design. Three different
priority levels are introduced that describe the different maneuver types. Communi-
cation patterns for different cooperative driving situations depending on the number
of involved vehicles are studied too. The proposed MCM format is also introduced
consisting of intention and coordination data required to complete a coordination.

3.2.1 Priority Maneuver Request

The proposed PriMa coordination relies on an explicit exchange of MCMs using
different communication patterns with additional three levels of maneuver requests
that facilitate the decision-making process of the involved CAVs in the negotiation
phase. Three different levels of priority requests were defined in the concept that
are based on different metrics and costs which vary depending on the use case. The
following type of maneuver requests are defined:

Low priority—desired maneuvers that the vehicle wants to execute in order to
improve time efficiency.

Medium priority—necessary maneuvers that the vehicle needs to perform in order
to stay on the route or significantly improve time efficiency.

High priority—critical maneuvers to avoid an emergency maneuver or accident.
A thorough analysis of cooperative driving use cases is required to determine the
priority of the requested maneuvers utilizing metrics and cost values based on the
road rules, velocity, acceleration, time efficiency, conflicted traffic situations, as well
as potential collisions and emergency situations. Such a different level of requests
will also lead to a different negotiation process between the involved participants. On
the side of the accepting vehicles, similar metrics can be used to evaluate whether a
request is feasible and worthy to accept because in most of the cases the vehicles that
accept the maneuvers will be disadvantaged. In [32] estimated values were used for
a lane change scenario where the priority level of the request was based on the time



Design and Evaluation of V2X Communication Protocols ... 185

MCM PDU

; Vehicle
ITS PDU ] Basic
Timestamp . maneuver
h r ntainer =
eade containe container
protocol, message generation  position, dynamics,
message type time station type intention and

coordination data

Fig. 17 Maneuver Coordination Message

gap to the front vehicle. On the other side, the accepting vehicles were evaluating the
request based on the required deceleration and velocity reduction. Three different
thresholds for reducing the velocity were used based on the priority level of the
request. However, a high priority critical maneuver is accepted whenever the vehicle
can plan and execute a conflict free trajectory.

3.2.2 Maneuver Coordination Message

The MCM consists of vehicle state information, trajectory related data that represent
the planned movement of the vehicle as well as trajectories included in the negotiation
process. Figure 17 presents the MCM which includes several containers and is similar
to the already standardized ETSI message formats. The ITS PDU (protocol data
unit) header includes the version of the protocol, the ID of the station sending the
message as well as the message type, in this case the MCM subtypes which are
introduced below. Along the header, the timestamp when the MCM was generated is
also included in each message. The basic container consists of the current reference
position and the station type that can also be a vehicle or a RSU. The main container
of the message is the vehicle maneuver container that includes the required vehicle
dynamics, namely the planned (PT), requested (RT) and offered (OT) trajectories.
The data type that represents the trajectory is a sequence of data points that includes
the vehicle pose (position and orientation), the velocity as well as the time step
between the trajectory points. The pose includes the longitude and latitude values,
alongside the heading of the vehicle. Furthermore, the lane ID that the vehicle is
currently driving on is also included. In a request MCM, the priority level as well
as the request ID are also included alongside the IDs of the potential accepting
vehicles. Accordingly, during negotiation the replying vehicles also include the ID
of the request they refer to. The inclusion of the ID of the request and the IDs of
the vehicles involved in the negotiation makes the coordination process explicit and
unambiguous.
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Fig. 18 Message flow in coordination between two vehicles (a), three vehicles (b) and cascading
situation with three vehicles (c)

3.2.3 Communication Pattern

PriMa proposes three different communication patterns depicted in Fig. 18 repre-
senting coordination between two, more than two (in this case three) vehicles and
a cascading situation using the following MCM subtypes explained below: regular,
request, offer, confirm, accept, reject, execute, cancel, abort, emergency, cascading
request, cascading accept and cascading reject.

As an intention sharing message, the vehicles regularly broadcast MCMs. In a
coordination between two vehicles, only two MCMs are required to complete the
negotiation process: request and accept. However, in a situation involving three or
more vehicles, additional MCM subtypes like offer and confirm are needed in order
to ensure an unambiguous and efficient negotiation process. This avoids a divergent
situation that can lead to conflicted and inefficient maneuvers between the involved
vehicles. In such a way, the influence of the lost message packets on the negotiation
process can also be limited. The impact of the unreliable communication is also
discussed in more detail in [32] and will be analyzed in the next section too. In a
cascading situation, the accepting vehicle in order to accept the incoming request,
has to send a cascading request to another vehicle which prolongs the negotiation
process. PriMa proposes a limited cascading coordination involving three vehicles.
Additional subtypes are cancel, abort and emergency messages that can be used to
cancel a request, to abort an agreed maneuver from the requesting vehicle as well
as to send an emergency MCM involving an emergency trajectory that the vehicle is
going to take without a negotiation. The final execute message from the requesting
vehicle is not needed in order to complete the negotiation, however can be useful to
confirm that the vehicle is executing the request.

3.24 PriMa Example Scenario

Figure 19 depicts a proof of concept scenario presented in [32] that includes four
CAVs. In the scenario, the ego vehicle VI needs to change a lane or decelerate because
the vehicle V2 in front of VI is stopping. In order to avoid a critical decelerating
maneuver, VI sends a high priority request message to vehicle V3. However, at the
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Fig. 19 PriMa coordination [32]

same time vehicle V4 also sends a low priority lane change request to V3 (Fig. 19b). In
this situation V3 broadcasts an accept message to the high priority request and allows
V1 to avoid the decelerating maneuver and perform a lane change. V4 also receives
the accept message, however the message includes the station ID and request ID
of VI, therefore showing the benefit of explicit and unambiguous communication.
In an implicit coordination, V3 only sends an accept message that can lead to a
conflicting situation where both VI and V4 start to execute the lane change maneuvers.
Furthermore, this scenario also demonstrates the benefit of the PriMa coordination
to perform maneuvers that have a higher priority.

3.3 Simulation Results

In order to design and evaluate the proposed coordination approach, a simulation
was performed for a highway lane merging scenario. The simulation is performed in
the discrete-event simulator Artery [42], see Sect. 1.

3.3.1 Scenario Description and Evaluation Metrics

Scenario description: Figure 20 shows the map of the SUMO scenario taken from
InTAS [30] which is modeled based on a highway in the outside parts of Ingolstadt,
including the speed limits. The main highway road with a driving direction to the
right has a total length of 705,78 m, of which on the first 251,86 m the speed limit
is 80km/h (22.22m/s), while the rest of the road has a speed limit of 100km/h
(27.77m/s). The first merging road on the bottom has a total length of 146.2m and
also has a speed limit of 80 km/h. However, the vehicles coming from this lane must
give way to the vehicles on the main highway road. The merging point of the two
roads is shown as well. The vehicles coming from the main road drive a total length
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Fig. 20 SUMO scenario map

of 158,84 m until the merging point, while the vehicle coming from the first merging
road drive a similar length of 145.2 m. The simulation is run for 22s.
Scenarios: Three different situations are considered:

e Scenario without coordination—SUMO simulation following the right of way
rules.

e Scenario without right of way rules—the vehicle coming from the merging road
drives without giving way to the vehicles on the main road.

e Coordinated scenario—the vehicle coming from the merging road coordinates a
merging maneuver with the vehicles driving on the main road.

Evaluation metrics: To evaluate the coordination protocol the following metrics are
considered:

o Safety metrics: The time gap between the negotiated and executed trajectories
of the cooperative vehicles needs to be bigger than 1s. The results also show
the position of the vehicles and the distance between them during the merging
maneuver.

o Comfort metrics: the car following models from SUMO are used in the simulation
with desired acceleration of up to 3m/s*> and deceleration of up to 4m/s” to keep
the comfort values according to the ACC standard.

o Efficiency metrics: The results show the time loss of each cooperating vehicle in
the simulation. SUMO calculates the time loss as the time that the vehicle spends
in the simulation driving below the desired speed, in this case the maximum speed
limit on the road.

¢ Communication related metrics—The results present the total negotiation time
between the vehicles to complete the coordination. Additionally, the unreliable
communication effect on the coordination is analyzed too by introducing a package
loss rate of 10, 20 and 30%. The average negotiation time for different packet
reception rate (PRR) is calculated based on ten simulation runs for each scenario
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using random number generators with different seeds. It has to be noted that the
processing delays of the motion planning system that plans a maneuver request or
evaluates an incoming request are not considered, as well as the additional delay
and latency that can arise due to the communication device or communication
channel (Decentralized Congestion Control—DCC). More details on DCC can be
found in the first part of the chapter about collective perception.

3.3.2 Coordination Protocol Implementation

The maneuver coordination protocol is implemented as a V2X service based on
the ETSI ITS-GS protocol and is analyzed for coordination involving two and three
negotiating vehicles. The priority request analysis was not performed in this evalu-
ation. MCMs are broadcast every 100ms (broadcasting interval of 10Hz) by each
of the involved CAVs in the simulation. The broadcast trajectories include 20 points
with a time step of 0.25 s between the points representing the intention of the vehi-
cles in the next 5s. Cartesian coordinates (x, y) are used to represent the position
of the vehicle in the local coordinate system, however they can be transformed to
the global coordinate system with longitude and latitude values as used in the ETSI
standards. The trajectory is calculated based on the constant velocity model, in this
case joining the highway with 22.22 m/s. A very important part of the coordination
is the time when the ego vehicle starts to send the request. The negotiation needs
to be completed at a certain distance before the merging point, to let the requesting
vehicle decelerate on time with a comfortable deceleration in case if the negotiation
is not successful. The required distance to stop the vehicle with the current speed and
desired deceleration can be calculated using the generic braking distance formula:
d = (V; = V?)/(2(—a)), where V; is final velocity, V; is initial velocity, and a is
the deceleration. Additionally, a timeout of 1s is added to complete the negotiation.
Therefore, the vehicle starts sending a request once it is away from the merging point
at a distance equal to the braking distance + the distance required for driving 1's with
the current speed. Since the vehicle is driving with 22.22 m/s, and has a desired com-
fortable deceleration of 4 m/s?, it starts sending requests around 4 s before reaching
the merging point with the current speed.

3.3.3 Coordination—Two Vehicles

This simulation involves two vehicles: the ego vehicle Vego and VI. In the first
scenario, Vego decelerates to let VI that has the right of way which leads to a big
reduction of the velocity as shown on the velocity-time graph in Fig. 21a. The second
situation involves the same vehicles without following the right of way rules, which
leads to a conflict and an emergency deceleration from VI, which is also shown in
Fig. 21b. Vego, on the other side, joins the road with a small deceleration that is
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Fig. 21 Velocity change—two coordinating vehicles
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Fig. 22 Coordination scenario comparison—two coordinating vehicles

required to drive in the curve. The position of the vehicles during the emergency
deceleration at t = 7.0s is also shown in Fig. 22a.

The third situation, involves the implemented maneuver coordination service. The
message flow during the negotiation is shown in Fig. 23. Two regular messages at
time steps 71 and ¢, are included as well to show the periodic flow of the messages.
Since the vehicles broadcast MCMs, Vego detects a conflict between its desired
trajectory and the PT from VI. In order to avoid deceleration, once Vego arrives at
the required distance before the merging point, it broadcasts a request MCM (#3)
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Fig. 23 Message flow in a coordination between two vehicles

Table 2 Time loss—coordination of two vehicles

Execute

t5 =3.085794
t4 =3.071518

191

Vehicle/scenario Uncoordinated No right of way Coordinated
Vego 48s 0.21s 0.21s
Vi 0.3s 23s 1.53s
Total time loss 5.1s 2.51s 1.74 s

including the RT that starts at the merging point. After performing collision check,
V1 broadcasts an accept message and starts adapting the new PT (#4). After receiving
the acceptance from VI, Vego broadcasts an execute message at t5, completing the
negotiation in 100 ms, in a situation with 100% communication reliability. In case of
repeating the request, Vego accordingly updates the time when the RT should start,
as the vehicle is getting closer to the merging point. If there is no accept message or
if Vego receives a reject message, it will follow the right of way rules and decelerate
before the merging point. After accepting the request, V1 is reducing the speed with a
small comfortable deceleration as depicted in Fig. 21c. Figure 22b shows the already
coordinated merging of the vehicles at t = 7.0s with a safe distance between the
vehicles, in comparison with the emergency maneuver situation. The PT from Vego
is calculated with constant velocity of 22.22 m/s, however it differs little bit in the
execution since Vego requires small deceleration in the curve before merging to the
highway. Because of that, it can be observed from the velocity-time graph that it
leads to an additional small deceleration from VI, as can be seen at around 9s. This
also shows that keeping a time gap bigger than 1 s between the negotiated trajectory
points also allows for safe adjustment of the these trajectories without causing further
conflicts. The acceleration and deceleration values are also kept within the comfort
interval as it can also be observed from the velocity change graph.

Table 2 includes the time loss of the vehicles in the different situations. It can be
observed that in the uncoordinated SUMO simulation, Vego experienced time loss of
4.8 s, in comparison with the other two situations where the time loss is only 0.21s,
however, the second scenario leads to emergency braking from V1. As expected, since
V1 needs to decelerate, it will be disadvantaged and the coordination leads to a time
loss of 1.53 s due to the deceleration. The total time loss is however reduced by half
in comparison without coordination, equaling 2.51s, thus making the cooperative
maneuver more time efficient.

The average negotiation time was also analyzed by introducing the packet recep-
tion rate. Table 3 shows that for 70% reliability the negotiation time doubles to
210ms, however is still well below 1 s that is set as a negotiation timeout.
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Table 3 Average negotiation time—coordination of two vehicles
PRR 100% 90% 80% 70%
Negotiation time | 100 ms 120 ms 150 ms 210 ms

Fig. 24 Coordinated scenario

3.3.4 Coordination—Three Vehicles

The scenario with three coordinating vehicles involves a longer negotiation process
utilizing the communication pattern for a coordination with three or more vehicles, in
order to ensure unambiguous and effective coordination. Figure 24 shows the coor-
dinated scenario involving all of the vehicles in the simulation. The vehicles involved
in the coordination are Vego, VI and V2. V3 is included in the scenario to show the
effect of the coordination on the other traffic participants but it is not participating in
the coordination process. In this scenario, the ego vehicle is introduced 1.4 s after VI
into the simulation. Vehicles V2 and V3 are also introduced after V/ in the same lane
and they have smaller speed than VI in the beginning of the simulation since they
need to keep the gap with the vehicle in front: Therefore, these vehicles experience a
bigger time loss while driving below the desired speed. In the uncoordinated SUMO
scenario, the ego vehicle decelerates in a similar way as in the scenario with two
vehicles. Hence the velocity-time graph is not shown, but this time Vego needs to
wait longer because there are three vehicles driving on the main road. Figure 25a
depicts the velocity-time graph for the second situation without the right of way.
Also, the position of the vehicles at time ¢ = 8.3 s is shown in Fig. 26a. Vego needs to
perform emergency deceleration due to VI which is not affected by Vego now, since
Vego was introduced 1.4s later in the simulation. V2 needs to perform emergency
deceleration due to Vego, while V3 also performs a high deceleration because of the
emergency braking of V2.

The message flow in the coordination is depicted in Fig. 27. It can be observed that
the negotiation time is increased to 200 ms for perfect communication conditions.
Since the ego vehicle is introduced later, the request is sent at t = 4.35s, once the
vehicle is at the same distance from the merging point as in the previous scenario.
In this situation, Vego requires a merging gap between VI and V2, hence the longer
communication pattern is required for the negotiation process, meaning Vego needs
to wait for the offer and accept messages from both of the vehicles in order to start
the requested maneuver. After receiving the offer messages from VI and V2 which
include their offered trajectories and confirming that there is no conflict, Vego sends
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Fig. 25 Velocity change—three coordinating vehicles
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Fig. 26 Coordination scenario comparison—three coordinating vehicles
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Fig. 27 Message flow in a coordination between three vehicles

the confirm message at t4. However, it still needs to wait for the negotiated maneuvers
to be acknowledged by both of the accepting vehicles. The maneuver negotiation
process is finally over after the accept messages from VI and V2 are received and
the requested maneuver can be performed. In the end, the execute message is sent,
but it is not needed to complete the coordination. After the negotiation, the vehicles
keep sending the regular MCMs with their new PTs. Figures 25b and 26b present the
velocity-time graph and position of the vehicles at the merging point, showing the
smooth velocity change as well as the safe time gap between the involved vehicles
in the coordinated maneuver.

The time loss of all included vehicles in the simulation is shown in Table 4. In
an uncoordinated situation Vego experiences significant time loss because it has to
let three vehicles pass. As mentioned, V2 and V3 experience higher time loss in the
uncoordinated SUMO scenario due to driving with lower speeds in the beginning
of the scenario. In the no right of way scenario, the vehicles experience higher time
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loss and additionally need to perform emergency deceleration. In the coordinated
scenario, Vego has almost no time loss, similar as VI that only changes the lane
in the coordinated scenario, therefore does not experience any additional time loss.
V3 is also included in the time loss table in order to show the oscillating effect of
the coordination on the other traffic participants as it also has to decelerate in this
situation to keep the safe time gap to the vehicle in front. However, the maneuver
for Vego was highly optimized with no waiting time to merge into the lane, and
in this situation required small deceleration from V2, and a lane change with no
time loss from VI. The total time loss for the three vehicles in the coordination,
as well as the one with V3 (in brackets) is also presented in Table 4, which shows
that the total time loss for all of the vehicles is significantly reduced in comparison
with the uncoordinated scenario. The coordination makes the merging maneuver
much more efficient without compromising the safety or comfort of driving as the
vehicles also keep safe time gaps between each other and comfortable acceleration
and deceleration values.

The effect of the unreliable communication on the negotiation process was also
analyzed and is presented in Table 5. Since the vehicles require in total six messages to
complete the negotiation process (without the execute message), the negotiation will
be much more affected by the unreliable communication. With increased number
of vehicles, the negotiation will become more complicated. However, the results
show that for this traffic scenario, even with a PRR of 70%, the negotiation can
still be completed under 1s, as the average negotiation time is S00ms and in each
of the ten runs the negotiation was completed under 1s. However, considering the
processing delays of the motion planning system, the communication device and
communication channel, the negotiation time will be increased and needs to be taken
into account when designing the coordination protocol for real world applications.
Further analysis is required to have an approximation of the negotiation time in
different traffic situations.

Table 4 Time loss—coordination three vehicles

Vehicle/scenario Uncoordinated No right of way Coordinated
Vego 7.74 s 1.43s 0.21s

Vi 0.3s 0.3s 03s

V2 0.58s 399s 1.77 s

V3 0.79 s 4525 241s

Total time loss (with | 8.62s (9. 41 s) 5.72s(10.24 s) 2.28 s (4.69 s)
V3)

Table 5 Average negotiation time—coordination three vehicles

PRR 100% 90%

80%

70%

Negotiation time

200 ms

290 ms

360 ms

500 ms
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3.3.5 Conclusion

Cooperative maneuver coordination represents a V2X communication enabled appli-
cation that has the potential to significantly improve the safety, comfort and efficiency
of the CAVs on the road. By exchanging the intention and coordination data, the CAV's
will be able to detect and perform cooperative maneuvers that can improve the traf-
fic flow in different traffic situations. The proposed decentralized Priority Maneu-
ver (PriMa) Coordination approach introduces three different levels of maneuver
requests: low, medium and high priority differentiating between desired, necessary
and critical maneuvers that can improve the decision making process of the cooper-
ating vehicles. The Maneuver Coordination Message that includes trajectory related
data is also presented with additional subtypes. Different communication patterns
are proposed that can be utilized depending on the number of included vehicles in
the coordination, whether there are two vehicles, more than two vehicles, or cas-
cading situation. Such a designed protocol aims to ensure safe, fast, efficient and
unambiguous coordination in different traffic situations.

This work shows a proof of concept and evaluation of the coordination protocol as
a V2X service in the simulation framework Artery for a coordination involving two
and three vehicles utilizing different communication patterns. A highway merging
scenario was simulated in three different situations: uncoordinated, scenario with no
right of way rules and a coordinated scenario. The evaluation is based on metrics
regarding the safety, comfort, efficiency and communication. The results show the
potential that the coordination offers to perform safe and comfortable maneuvers
that can significantly improve the traffic flow and time efficiency of the vehicles.
The impact of the unreliable communication on the coordination was evaluated for
different packet reception rates as an important part in the protocol design that ensures
enough time to complete the negotiation and coordination process. The presented
work can be seen as a contribution to further research and development of generic
decentralized maneuver coordination applications based on V2V communication.

Future work will include enhancement of the coordination protocol and implemen-
tation and evaluation for different traffic scenarios. The communication requirements
will also be specified for various cooperative driving use cases. An analysis will be
performed to define the threshold values for different priority maneuvers. Further-
more, the simulation results will also be verified in a real world testing environment.

4 Summary and Outlook

In this chapter, we presented, analyzed, and enhanced two key V2X communication
protocols for cooperatively interacting automobiles. The first one, Collective Per-
ception, is part of the Day 2 development of V2X applications and is expected to be
deployed in the coming years. We investigated the adaption of information included
in CPMs depending on the channel load and the observed information redundancy on
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the channel. We proposed approaches to address independently each of these prob-
lems. In future work, we plan to develop a combination of the developed solutions.

The second one, Maneuver Coordination, is part of the Day 3+ development of
V2X applications. It is expected to be deployed later in the mass market and is still
at an early stage of development. In this book chapter, we proposed a new maneuver
coordination approach introducing three different levels of maneuver priorities. The
potential of this approach was analyzed and we showed its capacity to perform safe,
efficient, and comfortable maneuvers. Future works include enhancements of this
protocol considering more traffic scenarios and proof of concept in a real-world
testing environment.

Acknowledgements This work was gratefully supported by the German Science Foundation
(DFG) by project KOALA 2 under number 273374642 within the priority program Cooperatively
Interacting Automobiles (Coln-Car, SPP 1835). The illustration toolkit from C2C-CC was used to
create the figures illustrating the cooperative driving use cases (https://www.car-2-car.org).

References

1. Bengler, K., et al.: Three decades of driver assistance systems: review and future perspec-
tives. IEEE Intell. Transp. Syst. Mag. 6(4), 622 (2014). https://doi.org/10.1109/MITS.2014.
2336271

2. Bevly, D., et al.: Lane change and merge maneuvers for connected and automated vehicles:
a survey. IEEE Trans. Intell. Veh. 1(1), 105-120 (2016). https://doi.org/10.1109/TIV.2015.
2503342

3. Chen, L., Englund, C.: Cooperative intersection management: a survey. IEEE Trans. Intell.
Transp. Syst. 17(2), 570-586 (2016). https://doi.org/10.1109/TITS.2015.2471812

4. Chtourou, A., Merdrignac, P., Shagdar, O.: Context-aware content selection and message gen-
eration for collective perception services. Electronics 10(20), 2509 (2021). https://doi.org/10.
3390/electronics10202509

5. Correa, A., et al.: Infrastructure support for cooperative maneuvers in connected and automated
driving. In: IEEE Intelligent Vehicles Symposium (IV), pp. 20-25 (2019). https://doi.org/10.
1109/1VS.2019.8814044

6. Delooz, Q., Festag, A.: Network load adaptation for collective perception in V2X communi-
cations. In: 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)
(2019). https://doi.org/10.1109/ICCVE45908.2019.8964988

7. Delooz, Q., Festag, A., Vinel, A.: Revisiting message generation strategies for collective per-
ception in connected and automated driving. In: VEHICULAR 2020 (2020)

8. Delooz, Q., Festag, A., Vinel, A.: Congestion aware objects filtering for collective perception.
Electron. Commun. EASST 80 (2021)

9. Delooz, Q., Riebl, R., Festag, A., Vinel, A.: Design and performance of congestion-aware
collective perception. In: 2020 IEEE Vehicular Networking Conference (VNC), pp. 1-8 (2020).
https://doi.org/10.1109/VNC51378.2020.9318335

10. Delooz, Q., et al.: Analysis and evaluation of information redundancy mitigation for V2X col-
lective perception. IEEE Access 10, 47076-47093 (2022). https://doi.org/10.1109/ACCESS.
2022.3170029

11. Dey, K.C., et al.: A review of communication, driver characteristics, and controls aspects of
cooperative adaptive cruise control (CACC). IEEE Trans. Intell. Transp. Syst. 17(2), 491-509
(2016). https://doi.org/10.1109/TITS.2015.2483063


https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://www.car-2-car.org
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TIV.2015.2503342
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.3390/electronics10202509
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/IVS.2019.8814044
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/ICCVE45908.2019.8964988
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/VNC51378.2020.9318335
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063
https://doi.org/10.1109/TITS.2015.2483063

Design and Evaluation of V2X Communication Protocols ... 197

12.

13.

14.

15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

ETSI: Intelligent Transport Systems (ITS); Radiocommunications equipment operating in the
5855 MHz to 5 925 MHz frequency band; Harmonised Standard covering the essential require-
ments of article 3.2 of Directive 2014/53/EU (2017). ETSI EN 302 571 V2.1.1

ETSI: Intelligent Transport Systems (ITS); Decentralized Congestion Control Mechanisms for
Intelligent Transport Systems operating in the 5 GHz range; Access layer part (2018). ETSI
TS 102 687 V1.2.1

ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Analysis of the Collective Perception Service (CPS); Release 2 (2019). ETSI TR 103
562 V2.1.1

ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Appli-
cations; Part 2: Specification of Cooperative Awareness Basic Service (2019). ETSI EN 302
637-2V1.4.1

. ETSI: Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applica-

tions; Specification of the Collective Perception Service (2022). ETSI TS 103 324 V0.0.45
(Draft)

ETSI: Intelligent Transport Systems (ITS); Vehicular Communication; Informative Report for
the Maneuver Coordination Service (2022). ETSI TR 103 578 V0.0.8 (Draft)

Garlichs, K., Giinther, H., Wolf, L.C.: Generation rules for the collective perception service.
In: 2019 IEEE Vehicular Networking Conference (VNC), pp. 1-8 (2019). https://doi.org/10.
1109/VNC48660.2019.9062827

. Giinther, H., Riebl, R., Wolf, L., Facchi, C.: Collective perception and decentralized congestion

control in vehicular ad-hoc networks. In: IEEE VNC (2016). https://doi.org/10.1109/VNC.
2016.7835931

Giinther, H., Trauer, O., Wolf, L.: The potential of collective perception in vehicular ad-hoc
networks. In: 2015 14th International Conference on ITS Telecommunications (ITST), pp. 1-5
(2015). https://doi.org/10.1109/ITST.2015.7377190

Giinther, H.J., Riebl, R., Wolf, L., Facchi, C.: The effect of decentralized congestion control
on collective perception in dense traffic scenarios. Elsevier Comput. Commun. 122 (2018).
https://doi.org/10.1016/j.comcom.2018.03.009

Hifner, B., et al.: CVIP: a protocol for complex interactions among connected vehicles. In:
IEEE Intelligent Vehicles Symposium, pp. 510-515 (2020). https://doi.org/10.1109/1V47402.
2020.9304556

HeB, D., et al.: Fast maneuver planning for cooperative automated vehicles. In: IEEE Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 1625-1632 (2018).
https://doi.org/10.1109/1TSC.2018.8569791

Hobert, L., Festag, A., Llatser, 1., Altomare, L., Visintainer, F., Kovacs, A.: Enhancements
of V2X communication in support of cooperative autonomous driving. [IEEE Commun. Mag.
53(12), 64-70 (2015). https://doi.org/10.1109/MCOM.2015.7355568

Huang, H., et al.: Data redundancy mitigation in V2X based collective perceptions. IEEE
Access 8, 13405-13418 (2020). https://doi.org/10.1109/ACCESS.2020.2965552

Jiang, D., Chen, Q., Delgrossi, L.: Optimal data rate selection for vehicle safety commu-
nications. In: Proceedings of the fifth ACM international workshop on VehiculAr Inter-
NETworking, pp. 30-38 (2008)

Lehmann, B., Giinther, H., Wolf, L.: A generic approach towards maneuver coordination for
automated vehicles. In: IEEE International Conference on Intelligent Transportation Systems
(ITSC), pp. 3333-3339 (2018). https://doi.org/10.1109/ITSC.2018.8569442

Lehmann, B., Wolf, L.: Safety analysis of a maneuver coordination protocol. In: IEEE Vehic-
ular Networking Conference (VNC), p. 8 (2020). https://doi.org/10.1109/VNC51378.2020.
9318359

Llatser, I., Michalke, T., Dolgov, M., Wildschiitte, F., Fuchs, H.: Cooperative automated driving
use cases for 5G V2X communication. In: IEEE 2nd 5G World Forum, pp. 120-125 (2019).
https://doi.org/10.1109/5GWF.2019.8911628


https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC48660.2019.9062827
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/VNC.2016.7835931
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1109/ITST.2015.7377190
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1016/j.comcom.2018.03.009
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/IV47402.2020.9304556
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ACCESS.2020.2965552
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/ITSC.2018.8569442
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/VNC51378.2020.9318359
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628
https://doi.org/10.1109/5GWF.2019.8911628

198

30.

31.

32.

33.

34.

35.

36.

37.

38.

30.

40.

41.

42.

43.

44.

45.

Q. Delooz et al.

Lobo, S., Neumeier, S., Fernandez, E., Facchi, C.: InTAS — the Ingolstadt traffic scenario for
SUMO. In: SUMO User Conference. DLR, Hamburg, Germany (2020). https://www.eclipse.
org/sumo/2020, Extended version in ArXiv:abs/2011.11995, GitHub repository: https://github.
com/silaslobo/InTAS, retrieved Jun 2, 2022

Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 2575-2582. IEEE (2018). https://
doi.org/10.1109/ITSC.2018.8569938

Maksimovski, D., Facchi, C., Festag, A.: Priority Maneuver (PriMa) coordination for connected
and automated vehicles. In: 2021 IEEE International Intelligent Transportation Systems Con-
ference (ITSC), pp. 1083-1089 (2021). https://doi.org/10.1109/ITSC48978.2021.9564923
Maksimovski, D., Facchi, C., Festag, A.: Cooperative driving: research on generic decentral-
ized maneuver coordination for connected and automated vehicles. In: Smart Cities, Green
Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021. Commu-
nications in Computer and Information Science, vol 1612. Springer, Cham. (2022). https://doi.
org/10.1007/978-3-031-17098-0_18

Maksimovski, D., Festag, A., Facchi, C.: A survey on decentralized cooperative maneuver
coordination for connected and automated vehicles. In: Proceedings of the 7th International
Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,
pp. 100-111. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010442501000111
Marjovi, A., Vasic, M., Lemaitre, J., Martinoli, A.: Distributed graph-based convoy control
for networked intelligent vehicles. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp.
138-143 (2015). https://doi.org/10.1109/TVS.2015.7225676

Mizutani, M., Tsukada, M., Esaki, H.: Automcm: maneuver coordination service with
abstracted functions for autonomous driving. In: 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC), pp. 1069-1076 (2021). https://doi.org/10.1109/
ITSC48978.2021.9564556

Molina-Masegosa, R., Gozalvez, J.: LTE-V for sidelink 5G V2X vehicular communications: A
new 5G technology for short-range vehicle-to-everything communications. In: IEEE Vehicular
Technology Magazine, pp. 30-39 (2017). https://doi.org/10.1109/MVT.2017.2752798
Nichting, M., HeB, D., Schindler, J., Hesse, T., Koster, F.: Space time reservation procedure
(STRP) for V2X-based maneuver coordination of cooperative automated vehicles in diverse
conflict scenarios. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 502-509 (2020).
https://doi.org/10.1109/1V47402.2020.9304769

Rauch, A., Klanner, F., Rasshofer, R., Dietmayer, K.: Car2X-based perception in a high-level
fusion architecture for cooperative perception systems. In: 2012 IEEE Intelligent Vehicles
Symposium, pp. 270-275 (2012). https://doi.org/10.1109/1VS.2012.6232130

Renzler, T., Stolz, M., Watzenig, D.: Decentralized dynamic platooning architecture with
V2V communication tested in Omnet++. In: 2019 IEEE International Conference on Con-
nected Vehicles and Expo (ICCVE), pp. 1-6 (2019). https://doi.org/10.1109/ICCVE45908.
2019.8965224

Renzler, T., Stolz, M., Watzenig, D.: Looking into the path future: extending CAMs for cooper-
ative event handling. In: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall),
pp- 1-5 (2020). https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776

Riebl, R., Giinther, H., Facchi, C., Wolf, L.: Artery: Extending Veins for VANET applications.
In: MT-ITS 2015, pp. 450-456 (2015). https://doi.org/10.1109/MTITS.2015.7223293.
Schindler, J., Coll-Perales, B., Zhang, X., Rondinone, M., Thandavarayan, G.: Infrastructure-
supported cooperative automated driving in transition areas. In: IEEE Vehicular Networking
Conference (VNC), p. 8 (2020). https://doi.org/10.1109/VNC51378.2020.9318392

Sjoberg, K., Andres, P., Buburuzan, T., Brakemeier, A.: Cooperative intelligent transport sys-
tems in Europe: current deployment status and outlook. IEEE Veh. Technol. Mag. 12(2), 89-97
(2017). https://doi.org/10.1109/MVT.2017.2670018

Soto, I., Amador, O., Urueiia, M., Calderon, M.: Strengths and weaknesses of the ETSI adaptive
DCC algorithm: a proposal for improvement. IEEE Commun. Lett. 23(5), 802-805 (2019).
https://doi.org/10.1109/LCOMM.2019.2906178


https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
https://www.eclipse.org/sumo/2020
ArXiv:abs/2011.11995
 13326 1633 a 13326 1633 a
 
http://arxiv.org/2011.11995
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://github.com/silaslobo/InTAS
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1109/ITSC48978.2021.9564923
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.1007/978-3-031-17098-0_18
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.5220/0010442501000111
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/IVS.2015.7225676
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/ITSC48978.2021.9564556
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/MVT.2017.2752798
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IV47402.2020.9304769
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/ICCVE45908.2019.8965224
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348776
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/MTITS.2015.7223293.
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/VNC51378.2020.9318392
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/MVT.2017.2670018
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178
https://doi.org/10.1109/LCOMM.2019.2906178

Design and Evaluation of V2X Communication Protocols ... 199

46. Thandavarayan, G., Sepulcre, M., Gozalvez, J.: Analysis of message generation rules for col-
lective perception in connected and automated driving. In: 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 134-139 (2019). https://doi.org/10.1109/1VS.2019.8813806

47. Thandavarayan, G., Sepulcre, M., Gozalvez, J.: Redundancy mitigation in cooperative per-
ception for connected and automated vehicles. In: 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), pp. 1-5. IEEE (2020). https://doi.org/10.1109/VTC2020-
Spring48590.2020.9129445

48. Varga, A.: Omnet++. In: Modeling and Tools for Network Simulation, pp. 35-59. Springer
(2010)

49. Volk, G., et al.: Towards realistic evaluation of collective perception for connected and auto-
mated driving. In: 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), pp. 1049-1056. IEEE (2021). https://doi.org/10.1109/ITSC48978.2021.9564783

50. Vukadinovic, V., etal.: 3GPP C-V2X and IEEE 802.11p for vehicle-to-vehicle communications
in highway platooning scenarios. Elsevier Ad Hoc Netw. 74, 17 — 29 (2018). https://doi.org/
10.1016/j.adhoc.2018.03.004

51. Willecke, A., Garlichs, K., Schulze, F., Wolf, L.C.: Vulnerable road users are important as well:
Persons in the collective perception service. In: 2021 IEEE Vehicular Networking Conference
(VNCQO), pp. 24-31. IEEE (2021). https://doi.org/10.1109/VNC52810.2021.9644669

52. Xu, W., Willecke, A., Wegner, M., Wolf, L., Kapitza, R.: Autonomous maneuver coordination
via vehicular communication. In: IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), pp. 70-77 (2019). https://doi.org/10.1109/DSN-W.2019.
00022

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/VTC2020-Spring48590.2020.9129445
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1109/ITSC48978.2021.9564783
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/VNC52810.2021.9644669
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
https://doi.org/10.1109/DSN-W.2019.00022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Motion Planning



Interaction-Aware Motion Planning )
as a Game L

Christoph Burger, Shengchao Yan, Wolfram Burgard, and Christoph Stiller

Abstract Motion planning for automated vehicles (AVs) in mixed traffic, where
AVs share the road with human-driven vehicles, is a challenging task. To reduce
the complexity, state-of-the-art planning approaches often assume that the future
motion of surrounding vehicles can be predicted independently of the AV’s plan. This
separation can lead to suboptimal, overly conservative behavior especially in highly
interactive traffic situations. In this work, we introduce a motion planning algorithm
to generate interaction-aware behavior for highly interactive scenarios. The presented
algorithm is based upon a reformulation of a bi-level optimization problem, which
frames interactions between a human driver and a AV as a Stackelberg game. In
contrast to existing works, the algorithm can account for general nonlinear state and
input constraints. Further, we introduce mechanisms to integrate cooperation and
courtesy into motion planning to prevent overly aggressive driving behavior.

1 Introduction

When automated vehicles (AV)s first enter traffic, they will not drive in isolation
but share the road with predominantly human drivers. Thus, interacting with them is
crucial for smooth and efficient operation. This is especially important in interactive
situations where the actions of multiple vehicles are tightly coupled. For instance,
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Fig. 1 Illustrated are the results of a planner following a predict-then-plan structure for a merge
scenario in (a) low traffic and (b) high traffic. While in low traffic, separating prediction and
planning is a useful simplification, in high traffic it can lead to suboptimal, overly conservative
driving behavior of the AV

a driver on a highway might decide to slow down so that another driver can merge,
or a driver might start to nudge into the adjacent lane, hoping that the driver behind
will slow down and open a gap.

A key aspect to master such scenarios with AVs is to consider interactions with
human drivers. However, to reduce the computational complexity of motion planning,
most state-of-the-art planners follow a structure that overlooks these mechanisms.
In particular, they follow a predict-then-plan scheme, where the motion planning is
separated into a prediction step, where the future motion of surrounding drivers is
predicted, and a subsequent planning step, where the motion of the AV is determined.
During the planning, surrounding vehicles are treated as moving objects with an
immutable trajectory.

While this separation poses a useful simplification for many traffic scenarios, it
can lead to situations similar to the frozen robot problem [34], a state in which the
predictions of other traffic participants block all paths, and thus the planner is not
able to find a solution to its goal anymore. Fig. 1 illustrates this issue for a merge
scenario. Following a predict-then-plan structure, the AV, in blue, first predicts the
future motion of surrounding vehicles and plans its trajectory in a subsequent step.
In Fig. 1(a) the result in low traffic is shown. Following the same principle in high
traffic, shown in Fig. 1(b), the planner is unable to find a collision-free trajectory
onto the highway and the AV stops at the end of the lane.

Some approaches are already able to overcome the structural limitation of planners
following a predict-then-plan scheme by solving the prediction and planning task
simultaneously. These planners can be categorized into the following three classes:
Forward simulation methods, multi-agent methods, and game-theoretic methods.
Forward Simulation Methods: One technique to generate interaction-aware behavior
is via forward simulation. Here, the current traffic scene is simulated for different
actions of the AV. Transition models are used to describe how the environment
changes due to the actions of the AV and further how other drivers react to these
changes in the environment. We refer to such techniques as forward simulation
methods. Most sampling-based planning methods that consider interactions can be
associated with this category [11, 27]. An important group among the sampling-
based planning methods are methods based on partially observable Markov decision
process (POMDP), e.g. as presented in [17].
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The behavior of other agents is often modeled with specific driver models such as
the Intelligent Driver Model (IDM) [35] or the Minimum Overall Braking Induced by
Lane change (MOBIL) model [18]. An example where the IDM is used to determine
the reaction of other vehicles is presented in [11]. Here, to generate the behavior
for the AV, multiple candidate trajectories are simulated and evaluated based on the
effect imposed on others. In forward simulation methods the influence the AV exerts
on others is not explicitly given, but must be determined by trying out several actions
and subsequent forward simulations of the traffic scene.

Multi-Agent Methods: In multi-agent methods, the separate prediction of other vehi-
cles is replaced by planning coupled trajectories. Therefore, the traffic scene is mod-
eled as a multi-agent planning problem with the underlying assumption that all traffic
participants behave towards optimizing a joint objective [2, 4, 5, 8, 19, 22, 32]. The
AV then solves the multi-agent problem assuming that other agents will also roughly
follow their part of the plan. Varying weights can be used to model different levels
of cooperation or incorporate asymmetries in the traffic scene [4, 7]. To cope with
uncertainties in the behavior of humans, these methods are combined with tracking
approaches to estimate if humans roughly follow the same model [5, 32].
Game-Theoretic Methods: In real traffic, the assumption that each driver is behav-
ing towards optimizing a common objective might not be valid, since some drivers
are only interested in optimizing their own driving. To model interactions among
agents with different objectives, a game-theoretic perspective might be more suit-
able. Several game-theoretic methods have already successfully been used, e.g., for
lane change, merge, intersection, round-about, and overtaking scenarios [6, 10, 12,
13,21, 29-31, 38, 39]. E.g., in [30], human-like driving behavior, e.g., slowing down
before intersections or nudging into the adjacent lane while doing a lane change, could
be generated.

Apart from these driving applications, game-theoretic methods have been used for
agile maneuvering of multiple ground vehicles in close proximity [40], and automated
car racing [23, 25, 37, 39], where it is shown that game-theoretic planners yield
complex strategies such as blocking and faking and significantly outperform baseline
MPC planners.

In game-theoretic formulations, there is no optimal solution in the traditional
sense, but depending on the game’s structure, different solutions are possible, also
referred to as equilibria. Therefore, an important feature to categorize game-theoretic
methods is the type of solution they are solving for. In literature, it is distinguished
between Nash and Stackelberg equilibria. A Nash equilibrium describes a set of
strategies where no individual agent can benefit from unilaterally changing its strat-
egy, given that all other agents will stick to their strategy. This type of equilibrium
has been investigated, e.g., in [3, 10, 14, 20, 37, 40].

Compared to a Nash equilibrium, a Stackelberg equilibrium involves turn taking
and, therefore, an asymmetry in the decision-making process. It is typically modeled
for a two-player game, where one player is the leader, and the other is the follower.
The leader chooses its strategy first, and the follower then optimizes its strategy as
the best response to the leader’s strategy. In contrast, the Nash solution can be seen
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as the best response from everyone to everyone else without hierarchical turn-taking.
Stackelberg equilibria are considered in [6, 12, 23, 29, 30, 33, 41, 42]

In this work, we present a model based on a game-theoretic formulation that
directly captures interactions between a AV and a human driver (HD) as a Stackel-
berg game. This algorithm enables AVs to be aware of how their actions influence
other drivers and thereby allows generating interaction-aware driving behavior. In
contrast to existing works, the algorithm can account for general nonlinear state
and input constraints. Additionally, we present mechanisms to integrate cooperation
and courtesy into interaction-aware methods to prevent overly aggressive driving
behavior, which has been reported as an issue of existing approaches.

2 Problem Statement

To derive a model to directly capture interactions, we consider a system with one AV,
referred to as the leader L, and one HD, referred to as the follower F. The system’s
state at time 7 is given by the leader’s and follower’s state x*, x/ € X', where X' is the
set that contains all possible states. The leader’s and follower’s actions are described
by their trajectories &1 (¢), §r(f) : [0, 7] — X. Further, each agent has its individual
objective function denoted by J; and Jp.

The objective is minimized subject to the vehicle’s initial state £(0) = xo and
the evolution of the state described by the trajectory, which is only allowed to pass
through the set of feasible states Xfeqsiple (f) S X' Xeasible () encodes, for instance,
collision avoidance. Additionally, system dynamics and bound constraints can be
enforced by D(&(1), £(1), £(r),...) = 0. The set of all feasible trajectories £ () is
denoted by E.

In contrast to traditional multi-agent systems, we assume a turn-taking structure,
where the follower optimizes its trajectory as a response to the leader’s trajectory.
To do so, the follower predicts the leader’s future motion £, and then plans by
minimizing its objective function Jr considering these predictions. Therefore, the
follower’s optimal trajectory can be described as:

argmin Jp (x5, X}, &L, €F) ey
§r€BF

For simplicity, we assume that for short time horizons, a human can predict the
trajectory of the AV sufficiently well, such that the prediction &, can be assumed to
be the actual trajectory &;, of the AV. Hence, the optimal trajectory of the follower as
a function of the leader’s trajectory &, is given as:

EF (X, X§, EL) = argmin Jp(XG, X{), €L, £F) 2)
EpeBr
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With this link between the leader’s actions and the follower’s actions the optimal
trajectory for the AV can be stated as:

¥ =argmin J; (x§,x{, &2, (x5, xE L EL)) 3)
£L€8L

Equation (3) gives the leader the ability to reason about how its actions will influ-
ence the follower’s response and is therefore the fundamental model which enables
interaction-aware planning.

3 Bi-level Formulation

The derived model, in (3), describes a Stackelberg game, where the leader decides
on its behavior first and the follower optimizes its behavior given the decision of the
leader (Fig. 2). If the follower’s best response to the leader’s actions can be stated in
closed form, (3) can be solved as a standard optimal control problem (OCP). However,
thisis, in general, not the case since &, is the outcome of an OCP itself. This resultsina
nested or bi-level optimization problem. Further, solving the underlying Stackelberg
game would require planning until 7", which is the end of an interaction. However,
the end of an interaction is not trivial to determine and requires the consideration of
a varying time horizon.

In the following, we propose an approximate solution to (3) based on model
predictive control (MPC), where we solve the problem on a receding horizon with a
fixed length 7', execute the first action and then replan. We utilize multiple shooting
methods and discretize the time horizon ¢t € [0, T] into N = T/t intervals, where
T denotes the duration of one time step. To improve readability, we subsume the
state and input sequences of the leader and follower as X := [Xo, ..., Xy]? andu :=
[uy,...,uy_1]7. In the following, the resulting nonlinear programs (NLP)s of the
follower and leader are stated. The equality constraints h can be used to represent
constraints imposed by the system dynamics while the inequality constraints g collect
bound constraints, collision constraints, and dynamic constraints.

3.1 NLP of the Follower

The follower’s NLP is parametrized by the leader’s states and inputs (x’, u*) and
can be formulated as:
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Fig. 2 Structure of a bi-level optimization problem. Here, the follower optimizes its objective

function as a response to the given actions of the leader

argmin  Jp(xF, xF, uf)
xF uf

st. hpx™,uf) =0,
gr(x, x",uf) <0

3.2 NLP of the Leader

The leader’s bi-level optimization problem can be stated as:
argmin  Jp L, xf ul)
xL xF ul uf
st. hy(xF,ub) =0,
g (x", x",u") <0,

", uf) e argmin{Jp(xL, xF,uf) :hy =0, gr <0}
xF uf

(4a)

(4b)
(40)

(5a)

(5b)
(5¢)
(5d)
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Formulating the follower’s optimization problem as a constraint, (5d), ensures
that only optimal solutions for the follower are considered feasible solutions for the
leader.

4 Single-Level Representation

To efficiently solve (5), we need to reformulate the bi-level optimization problem
into a regular, single-level problem. Therefore, we assume that the follower will act
optimally with respect to its own objective function (4). With this assumption, we can
replace the inner optimization problem with its necessary conditions for optimality.

If the follower’s problem is convex, the Karush Kuhn Tucker (KKT) conditions
are necessary and sufficient for optimality. However, due to the combinatorial nature
of driving it is, in general, non-convex, e.g., due to non-linear collision avoidance
constraints or a non-convex cost function. To obtain locally optimal solutions, we
convexity the follower’s problem around an initial guess, which at the same time
encodes the considered homotopy class. For the convexification, the constraints are
linearized, and the cost function is approximated by a 2. order Tailer expansion.

By replacing the follower’s optimization problem with its KKT conditions in (5),
we obtain the following single-level optimization problem:

argmin  J, (x5, x, ub) (6a)
xL xF ubl uf A p

s.t. hy(xk,ul) =0, (6b)

g (x", x" uh) <0, (6¢)

Virar LXE, x5, a1, p) =0, (6d)

hy, (x7,u”) =0, (6e)

gp““(xL, x" uf) <o, (61)

>0, (6g)

/LJ_gF““(xL, xF, uF) (6h)

with the Lagrangian

L(XL,XF,uF,l,;L) =Jr (xL,xF,uF)

con

+X"hg, " uf) + u"gp, (xF x" 0
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Here, A and p are the KKT multipliers and hg, , gr,, and Jr, , are the constraints
and objective after the convexification. For the reformulation we assume sufficient
regularity of the follower’s NLP, differentiability of hy and g, and the cost function

Jr to be twice differentiable.

4.1 Solving the Complementarity Constraints

The leader’s NLP in (6) forms an instance of a mathematical program with com-
plementarity constraints (MPCC). Due to the complementarity constraints p_Lgg, ,
MPCCs are non-smooth and non-convex. MPCC are particularly challenging to solve
because at every feasible point, ordinary constraint qualifiers (CQ) such as LICQ or
Mangasarian-Fromovitz CQ are violated [9]. Therefore, to solve (6), we reformulate
the complementarity constraints using relaxation methods [16] as shown in (7).

—e<p’gr. (7)

With € > 0 a regularized NLP is obtained, and CQ can be satisfied again. The
smaller € is chosen, the closer any feasible solution is to achieving complementarity.
However, if € is chosen too small, the problem may be numerically unstable and the
solver will fail to find a feasible solution at all.

5 Application to Motion Planning for AVs

So far the derived model represents a formulation of how interactions between a
robot and a human can be considered during motion planning or decision-making
for robots in general. In the following, we present a modeling to apply the bi-level
algorithm to motion planning for AVs. The section starts by stating the OCP used
for trajectory optimization of an AV. This OCP contains the system dynamics, bound
constraints, as well as an objective function to encode desirable driving behavior.
For the purpose of the evaluation in Sect. 6, we assume that a good approximation
of a human objective function is provided. Such a function could be obtained, e.g.,
via inverse reinforcement learning.
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5.1 Trajectory Optimization for AVs

The OCP wused for trajectory optimization can be stated as:

argmin Jygse = Jx + Ju + Ji (8a)
x.u
s.t.:
X1 = £, ug) k=0,...,N—1 (8b)
Xo =X (8c)
Zayn = Bayn (%) = Bayn k=1,...,N (8d)
el (X{ X{) <0 k=1,...,N (8e)
8obs(Xk) =0 k=1,...,N (8f)
X<x <X k=1,...,N (8g)
u<uy <u k=0,....,N—1 (8h)

The objective function Jy,s is used to generate a desirable driving behavior. The
equality constraints (8b) enforces the vehicle dynamics. Further, (8c) ensures that
the trajectory is planed from the current state X. The inequality constraints (8d)—(8h)
are used for collision avoidance and to account for physical limitations of the real
system.

5.1.1 Vehicle Model

To describe the dynamics of the vehicle (8b), the kinematic single-track model is
used. The vehicle state at time k, X = [x, Y, ¥k, vc]”, is described by the lateral
and longitudinal position (x, y) of the vehicle’s center of gravity, the orientation
¥, and the absolute velocity v. Together with the input u, = [8;, a;]7 consisting of
steering angle § and acceleration a, the dynamics of a vehicle are given by (Fig. 3):
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Here, f is the slip angle which is given by g = arctan (% tan(s)).

Further, [ is the wheelbase, and /, is the distance between the center of gravity
and the rear axis. To obtain the discrete dynamics model x| = f (X, u) in (8b)
we use a fourth-order Runge-Kutta method.

To ensure the validity of the kinematic single-track model [28], g4, (8d) are
introduced to limit the lateral acceleration as follows:

j UI% m
[ve| = |T tan(8;) cos(B)| < @atmax = 4 = )

To also limit the jerk, the following constraints on the acceleration change are intro-
duced:
ax — Ag—1

jmin =< f = jmax (10)

Here, jyin and jpnax are the minimum and maximum allowed jerk values.

5.1.2 Collision Avoidance

The collision avoidance constraints (8¢) are formulated pairwise between vehicles.
Hereby, the shape of one vehicle is approximated by a finite number of circles and the
shape of the second vehicle is approximated with a superellipses, as illustrated in Fig.
4. Compared to regular ellipses, superellipses provide a more accurate approximation
of the vehicle’s rectangular shape [24].

Collision avoidance between a point p = [x, y]” and a superellipse defined by
the semi-major a, the semi-minor b, and order n € N can be formulated as:

[y =

Xi vk cos(Yx + Br)
% = )'fk _| o Sin((//k +ﬁk)
7 2 tan(6y ) cos(Br )
/% ay

Fig. 3 Kinematic bicycle model
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Similarly, collision avoidance between a circle with radius r and a superellipse can be
formulated as a point mass constraint on the center point of the circle p. = [x., y.]”.
Therefore, p. needs to be outside the Minkowski sum of the superellipse and a circle
with radius %, see Fig. 5.

To maintain an efficient formulation, the Minkowsi sum is approximated by an
enlarged superellipse. In case of a superellipse of order n = 4, enlarging the semi-
major and semi-minor by the radius r is a sufficient over approximation, see Fig.
5.

Henceforth, the collision avoidance constraints can be stated as:

" xe \" e \"
\/(a+r> +(b+r> z1 (12)

O =

L

() (d)

Fig. 4 Illustrated are the shape approximations by (a) multiple circles and (b) a superellipse of
ordern =4

0

-10 -8 -6 -4 -2 0 2 4 6 8

Fig. 5 Comparison of the Minkowski sum, shown in blue, and a superellipse with the semi-major
and semi-minor enlarged by r, shown in red. The original superellipse is shown in grey
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5.1.3 Objective Function
The objective function (8a) consists of three components, Jy, Jy, Ju, penalizing

deviations from a desired state Xeet = [Xk ref, Vi refs Yk ref, Uk’ref]T, any control effort,
and any changes in control, respectively. The function can be stated as:

JbaSC(X7 ll) =)+t (133)
T
N Xk — Xk,ref Xk — Xk, ref
Yk — Yk ref Yk — Yk ref
= ’ ’ 13b
=1 Y — I/fk,ref Y — wk,ref ( )
a Av Av
N—1
+ ) wl R (13¢)
k=0
N—-1
+ Z(llk —we)" Ri (e — we_y) (13d)
k=1
+ (ug — )" R; (ug — ) (13e)

With the velocity vector v = [vcos(y + 8), vsin(y + 8)]7 and the road tan-
gential unit vector t, Av = v - t — v,r measures the difference between the current
velocity along the road and the reference velocity vs. Further, 1 is the control input
from the previous step. Finally, R,,R; and Q are weighting matrices used to model
the desired driving behavior.

6 Evaluation

The efficacy of the proposed bi-level algorithm is evaluated in two different settings.
First, the ability of the AV to deliberately influence the HD’s state through its driving
behavior is investigated. These experiments make use of the direct link between the
AV’s actions and the HD’s response which the bi-level approach provides.

Since in real driving applications, the goal of the AV is to drive efficiently and
comfortably rather than to influence the state of other vehicles, the focus of the
second part, is to demonstrate how the approach can be used to plan interaction-
aware, cooperative driving behavior.

Apart from the efficacy, the algorithm’s runtime is analyzed followed by a dis-
cussion highlighting the advantages and limitations of the algorithm.



Interaction-Aware Motion Planning as a Game 215

Straight road

AN Merge

Fig. 6 Depending on the experiment, either a multi-lane or a merging scenario, where the right
lane ends, is considered

Table 1 MPC parameters

Parameter Value

N 30

T 65

0 diag(0, 1, 0, 100)
R, diag(1, 1)

R; diag(10000, 1000)
Umins Umax 0%, 30%

Smax 30°

Amin, dmax 83,33

Jmin: Jmax ~10%,61

l 4m

I, 2m

6.1 Base Scenario

We evaluate our approach in multi-lane scenarios as shown in Fig. 6, where the
AV is depicted in blue and the HD is depicted in gray. For the purpose of these
experiments, the AV is considered the leader, and the HD is considered the follower.
In the following, we will use the terms leader and AV as well as follower and HD
interchangeably.

Both vehicles have a width of 2.0 m and a length of 4.0 m. Collision avoidance is
implemented using a superellipse of order n = 4 for the leader and two circles for
the follower. Further parameters are given in Table 1.

The follower directly uses the cost function (13) for its trajectory optimization
with the weights and vehicle characteristics given in Table 1. The leader’s NLP is also
based on (13) but additionally considers the KKT conditions of the follower’s NLP
as constraints, as stated in (6). Further, the leader’s objective function is augmented
with additional cost terms to set scenario-specific incentives.



216

Table 2 Leader’s and follower’s initial and reference states

C. Burger et al.

Parameter Value

xk [12.0m,3.0m, 0°,10.0 217
xf [2.0m, 5.0m, 0°,10.0 27
xL, = xF, [0.0m, 5.0m, 0°, 10.0 I;‘]T

If not stated otherwise, the initial and reference states listed in Table 2 are used
for the leader and follower.

6.2 Influence the Human’s State

The following two experiments investigate the leader’s ability to influence the fol-
lower’s state. To provide the appropriate incentives, the leader’s objective function is
augmented with Jizauence- The leader’s objective is, therefore, the following weighted
sum:

Ji = wp Jpase + Winfluence Jinfluence (14)

Henceforth, a ratio of w‘“lg“:““s = 107 is used.

6.2.1 Slow Down the Human

In this experiment, the leader’s goal is to slow down the follower to a certain velocity,
vk To incentivize this behavior, deviations of the follower’s velocity to v ar
penalized. The scenario-specific Jipguence 1S therefore set to

N
mﬂuence Z ¢ tk rlgf)z ( 1 5)
k=1

with v = [vcos(y + B), vsin(y + B)]” and t as the road tangential unit vector.

The results for a desired velocity of v/, = 5.2 are illustrated in Fig. 7. As can
be seen, the leader changes to the left lane to get 1n front of the follower. Despite its
interest in driving fast, the leader starts to brake, forcing the follower to slow down.
To prevent the follower from overtaking, the leader drives close to the center of the
road.
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t=0.0s
t=12s
t=6.0s

Fig. 7 By sole penalizing the follower’s velocity the bi-level approach yields an intuitive solution;
The leader has to change the lane and needs to brake to slow down the follower

6.2.2 Push the Human to the Adjacent Lane

In this experiment, the ability to also influence the follower in the lateral direction is
investigated. Therefore, a 3-lane road is considered, see Fig. 8.

The leader’s goal is to enforce a lane change of the human to the adjacent left lane.
This incentive is encoded by setting Jipguence to penalize deviations of the follower’s
lateral position to a reference yf; as:

N
Tinfuence = Y (0 — k)’ (16)
k=1

Figure 8 shows the behavior for y£: = 8.5 m, which corresponds the center of the
leftmost lane. To push the follower to the left, the leader changes lanes and slows
down, almost coming to a full stop. The leader thereby blocks the middle lane, which
forces the follower to also slow down to avoid a collision. To continue, the follower
starts an overtaking maneuver. At the same time, the leader accelerates again to stay
next to the follower, blocking him from changing back to his original lane.

6.3 Interaction-Aware Trajectory Optimization

In real traffic, the primary goal of the AV is to drive comfortably and efficiently rather
than to change the state of surrounding vehicles in a certain way. Therefore, the
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oF =100 t=0.0s
oF ~am t=1.35s
=603

oL x9gm

Fig. 8 The leader changes lanes and brakes harshly to enforce an overtaking maneuver of the
follower. As soon as the follower tries to overtake, the leader accelerates again, blocking the follower
from changing back to the middle lane

generated behavior when planning trajectories with the proposed interaction-aware
algorithm in different lane change scenarios is investigated next. To better show the
effect of the planned behavior, the desired velocity of the follower is increased to
vE. = 15. - Throughout the scenarios, the leader aims to perform a lane change to
the left.

6.3.1 Efficient Planning

We start by formulating the leader’s objective in an egocentric way, similar to how
it is formulated for planners following a predict-then-plan scheme. Here, the leader
solely considers attributes of its own trajectory, formulated by only optimizing Jpse-

The resulting trajectories are shown in Fig. 9. As can be seen, the leader plans
a very efficient lane change without any acceleration. However, as a response, the
follower has to brake harshly to avoid a collision, see Fig. 10. This aggressive cut in
is a result of the leader knowing that the follower will react, which the leader then
exploits to further optimize its own driving behavior.

This example shows that interactive behavior not only occurs when the leader is
incentivized to alter the state of the follower but also emerges out of efficiency.
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t=0.0s
oF =150m
oL =100
t=24s
oF x93
ol ~ 1000
t=6.0s
oF ~100m
NS S o e e e = S s s bp = ]
ol ~ 1001

Fig. 9 When only considering its own costs, the leader performs an aggressive lane change

6.3.2 Cooperative Interaction-Aware Planning

The proposed interaction-aware model gives the leader the ability to anticipate the
follower’s reaction. When naively using an egocentric objective function, the leader
exploits the follower’s response and generates an overly aggressive behavior, as
demonstrated in the previous example.

To mitigate this effect, the impact imposed on others must be considered in the
objective function of the leader. Therefore, a formulation base on a cooperative cost
function that includes the leader’s and followers’s cost in the leader’s objective is
considered in the following:

Velocity

[

15.0 \
10.0 —

5.0

0.0

0.0 2.0 4.0 6.0 8.0 I[s]
time

Fig. 10 While the leader can perform a smooth lane change without accelerating, the follower has
to brake harshly to avoid a collision
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Jcooperalive = aJF pase + (1 — &) JL base (17)

In this formulation, the variable o € [0, 1] determines to which extent the leader’s
and the follower’s cost are considered. Therefore, o provides a way to design different
driving behaviors, ranging from overly aggressive to overly conservative.

The impact the parameter « has on the generated behavior is investigated in the
following. Therefore, we consider a scenario including a mandatory lane change for
the leader, see Fig. 11. The different «-dependent acceleration and velocity profiles
forao = 0.0, « = 0.5 and & = 0.99 are illustrated in Fig. 12.

In detail, for « = 0.0, the leader does not accelerate, and all the discomfort has
to be carried out by the follower. This represents the aggressive, egocentric behav-
ior presented in the previous experiment. With a larger «, the leader increases its
acceleration until reaching the acceleration limits. In the case of « = 0.99, the leader
mostly considers the follower’s cost and tries to intervene with its optimal plan as
little as possible. This value of o generates a very conservative behavior similar to
a predict-then-plan approach. With « = 0.5, the leader’s and the follower’s cost are

oF =150 t=0.0s
—o

(=245

e

S
9.1
a=0.0
—— -

am
———— "
oL ~13.0m

t=24s oF ~ 147
oL ~157m

Fig. 11 Illustrated is a scenario where the leader has to perform a lane change to the left. Depending
on the value of «, different behaviors are generated, ranging from overly aggressive to overly
conservative
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Fig. 12 Depending on the value of « different acceleration and velocity profiles are obtained.
Thereby, the langer « is, the more discomfort the leader accepts. Further, with different « the
vehicles approach different stationary velocities which might significantly differ from their desired
velocities
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considered equaly, which leads to an approximately equal distribution of discomfort.
Note however, that, besides adjusting the acceleration during the lane change, the
leader also adapts its stationary velocity depending on «.

6.3.3 Courtesy Constraints

The cooperative cost formulation presented in the previous experiment has the side
effect that for « > 0.0, the leader permanently drives faster than its desired velocity
vL.. For some scenarios, e.g., overtaking a slow-moving truck on the highway, a
temporal increased velocity might be acceptable or even desirable for traffic effi-
ciency. However, in most situations, a vehicle in front does not adapt its velocity to
the desires of rear traffic.

An alternative to the cooperative cost formulation is introducing courtesy con-
straints. With these constraints, the leader’s impact on others can be limited without
altering the leader’s objective function.

In this experiment, we introduce a constraint such that the leader is allowed to,
at max, cause a deceleration of ajin;; to the follower. To enforce this, the following
constraints are added to the leader’s NLP:

F
Scourtesy,k = @ — Alimit > 0 (18)

Here, a/ is the acceleration of the follower.

The effect of the courtesy constraint with @y = —2.0 on the considered merging
scenario is illustrated in Fig. 13. By introducing the constraint, the leader acceler-
ates during the lane change, which successfully limits the induced deceleration to
—2.0 7. The velocity profiles are shown in Fig. 13b. Compared to the cooperative cost

(2] Acceleration () Velocity

2.0 S

0.0 15.0

-2.0 10.0 >x

-4.0

-6.0 5.0

-8.0

00 20 40 60 8061 %0 20 40 60 8015

time time
@ (b)

Fig. 13 Shown are the acceleration (a) and velocity (b) profiles when planning with the courtesy
constraints. Introducing these constraints into the leader’s NLP generates a behavior that success-
fully limit the follower’s deceleration to ajimir = —2.0. Further, after the merge is completed, the
leader returns to its desired velocity
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formulation, the leader returns to its desired velocity of 10.0 T after the successful
merge.

Both, the cooperative cost and the courtesy constraint method have traffic scenar-
ios where they are particularly suited. E.g., when overtaking a slower driving vehicle
on the highway, the cooperative cost formulation might be more suitable as it leads
to a temporal increase in velocity for the duration of the overtaking maneuver. In
contrast, for a merging scenario or a permanent lane change, the courteous constraint
method might be the better choice since the leader returns to its desired velocity after
the merge is completed.

6.4 Runtime Experiments

The presented method for interaction-aware trajectory optimization computes an
open-loop solution for the AV. More precisely, the control inputs are functions of
time and not of the state. To adapt to unforeseen changes in the environment, the
algorithm needs to run in an MPC fashion. For MPC, a sufficiently high update rate
is crucial. Therefore, we analyze the performance of the algorithm with a proof of
concept MPC implementation.

The MPC was implemented in Python. All necessary derivatives were calculated
using the open-source software CasADi [1]. CasADi utilizes automatic differentia-
tion methods to accurately calculate the derivatives. Compared to, finite difference
methods, automatic differentiation is faster and more accurate. Further, IPOPT [36]
was used to solve the formulated NLP. IPOPT is a general-purpose solver for large-
scale nonlinear problems. We cold started the IPOPT solver with a feasible solution
of the desired driving maneuver, which we obtained by sequentially solving a single
vehicle NLP, as in (8), first for the leader and then for the follower. This initialization
was only performed for the very first iteration of the planner. All subsequent itera-
tions were warm started with the solution of the previous iteration. To get a better
initial guess, the previous solution was shifted by the duration between the planning
iterations.

The timing results were obtained by considering a merging scenario, with the two
most relevant methods for the application to real traffic, namely, the cooperative cost
function method, with « = 0.5 and the courtesy constraints method, with @,y =
—2.0. We simulate each method for 9.0s. A horizon length of N = 30 steps is
considered for the MPC. Further parameters were taken from Table 1. The runtime
results are obtained by running the MPC implementation 100 times on the merging
scenario with both methods. The mean solve time over the 100 simulation runs are
shown in the histogram in Fig. 14. Additionally, the mean and standard deviation of
the mean solve times are listed in Table 3. All timing results were obtained on an
Intel Core 17-8565U CPU with a clock rate of 1.80GHz.

Even though the experiments were conducted with an MPC implementation that
leaves great potential for improvements, we could already demonstrate our algo-
rithm’s real-time capability with mean solve times of 96.82 ms and 83.85 ms, respec-
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Fig. 14 Mean solve times obtained by running the MPC implementation 100 times on the merging
scenario with (a) the cooperative cost and (b) the courtesy constraint method

Table 3 Mean and standard deviation of the mean solve times obtained by running the MPC
implementation 100 times

Method " o
cooperative cost 96.82 ms 2.61 ms
courtesy constraints 83.85ms 5.50 ms

tively. The presented results can be considered a conservative estimate of the achiev-
able performance. However, in the future, this could be greatly improved by utilizing
tailored solvers and implementing the approach in a high-performance programming
language, e.g., C++.

7 Algorithm Discussion

A core assumption that we made to obtain the model for interaction-aware planning,
stated in (3), is that the human does not try to influence the AV but rather reacts
to its actions. According to [30, 31], this is a valid assumption for a wide range of
interactive scenarios. Further, compared to a Nash equilibrium, it might even be the
better model for how humans act in interactive situations since humans typically do
not solve games in their everyday lives when they are not playing chess [15].

The formulated NLP (6), is a non-convex and non-smooth problem. As such, one
can not expect to find globally optimal solutions. However, we use derivative-based
optimization methods to find local optima. These methods require an initial guess,
which sets the considered homotopy, as solutions of local methods are typically in the
same homotopy as the initial guess. In the context of automated driving, homotopies
are often thought of as maneuvers. Thus, we use the initial guess to encode the desired
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driving maneuver. Via the experiments, we empirically observe that initializing with
a rough, but feasible initial guess of the desired maneuver is sufficient to reliably
solves the problem. To take multiple maneuvers into consideration, it is advisable
to combine the presented approach with a global method. E.g., a higher abstraction
behavior planner based on an arbitration scheme as in [26] could be used to generate
good initial guesses.

The focus of the experiments was to analyze the capabilities and the performance
of the proposed bi-level planner. As such, the algorithm was evaluated in a tailored
simulation environment, where one important modeling assumption was that the
human driver is always attentive. However, in real traffic, this is not the case, and
human drivers are sometimes distracted and do not respond to the actions of the
AV. Therefore, the presented algorithm needs to be combined with an intention
estimation, e.g, as presented in [5], to cope with unattentive drivers.

8 Conclusion

In this chapter, we presented an algorithm that is able to generate interaction-aware
trajectories for AV. The interaction between a HD and an AV is modeled as a Stack-
elberg game, where the human responds rationally to the AV’s actions optimizing its
own objective. This leads to a nested optimization problem which we approximate
by MPC based on a bi-level optimization formulation. To solve this, we reformu-
lated the problem into a single-level representation, exploiting the assumption that the
human will act optimally with respect to its objective function. We solve the obtained
NLP using derivative-based optimization methods. The presented algorithm is able
to solve the interaction-aware trajectory optimization problem in a continuous state
and input space. Further, in contrast to existing methods, general nonlinear state and
input constraints can be considered, which allows for an accurate dynamics model.

The algorithm enables the AV to anticipate how surrounding HD will react to
its actions. This gives the AV the possibility to deliberately influence the state of
the human. Here, simply encoding the desired effect into the AV’s objective func-
tion is enough to generate complex, interaction rich behavior, without the need for
hand designed decision heuristic. Further, interactive behavior does not only occur
if incentivized in the AV’s objective function, but also emerges out of optimizing the
AV’s behavior.

However, care must be taken to avoid that the AV exploits interactions to fur-
ther optimize its own objective, and thereby generates an overly aggressive driving
behavior. To prevent such an aggressive behavior, the AV’s objective is extended to
also consider the costs of the HD.

As an alternative to modifying the AV’s objective function, we presented a strategy
to establish courtesy in the planning algorithm via additional constraints. These con-
straints allow a motion planner to utilizes an egocentric objective function, provided
that the negative impact imposed on other vehicles is limited.
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The experiments demonstrated the efficacy of our algorithm and suggest that
the algorithm can be used in challenging interactive driving scenarios. Further, we
could achieve real-time performance even with an unoptimized proof-of-concept
implementation.
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Designing Maneuver Automata )
of Motion Primitives for Optimal L
Cooperative Trajectory Planning

Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee,
and Kathrin FlaBkamp

Abstract Trajectory planning techniques form a central step to enable autonomous
driving. The motion primitives method generates an automaton of precomputed
maneuvers with structure-exploiting properties. Thereby, the trajectory planning
problem can be reduced to finding an admissible/optimal sequence of motion prim-
itives. In this chapter, we present ways to designing maneuver automata based on
different system models and on either analytical or data-based approaches for automa-
ton generation. Moreover, numerical methods for computing optimal maneuvers are
listed and we discuss graph-based planning techniques. A subsequent chapter shows
the evaluation of motion primitives automata in the Cyber-Physical Mobility Lab.

1 Introduction

The task of planning trajectories for multiple vehicles can be solved by many available
techniques (see, for instance, [2, 3, 17]). However, there are still key challenges to be
tackled for a multi-vehicle trajectories planner: (a) the admissibility of the planned
trajectories, (b) the real-time capability of the optimization solvers on the respective
vehicles and (c) the feasibility of the communication overhead between the vehicles.
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Complemented into two chapters,' our work brings new methodologies for solving
the cooperative trajectory planning problem for autonomous driving. We address the
challenges mentioned above through graph-based optimal solutions. Before going
into more detail about which methods we use and how we use them, let us first give
an overview of how it is contextualized within vehicle automation.

Automated driving systems basically consist of three modules [31]:

1. Sensing or perception: capture the environment objects and conditions through
Sensors.

2. Planning: find a feasible trajectory.

3. Acting or control: track the trajectory by controlling the vehicle’s actuators.

We place our focus on solving the second step. Motion planning aims to find a
sequence of control inputs to move a vehicle from an original state to a set of possible
goal states, while avoiding collisions during the trajectory [30]. At first, this task can
be achieved by solving an optimal control problem (OCP). However, it could be
computationally costly to get optimal control solutions when dealing with nonlinear
vehicle models. Complex environments can also make it difficult to properly design
all the obstacles into the optimization problem, which make the OCP unsuitable for
many applications [14]. As an alternative, discrete planning techniques sample the
state space, map it as a graph and perform a graph search for a minimum-cost path
[22]. As disadvantages, we can cite the total neglect of the model in the case of the
most famous graph search, the A*, or the numerically complex and non-time-critical
solutions for the also well-known Hybrid A* search [10, 23, 26].

In order to get the best of both worlds, i.e., decreasing the motion planning prob-
lem complexity and avoiding a full discretization over the state space, we use the
concept of motion primitives, originally proposed by [14]. Motion primitives are
finite-time pieces of trajectories that can be concatenated. They are constructed from
the dynamical system model. That is, the final path resulting from their interlocks is
feasible with respect to the selected model. References [12, 14, 19] showed that, by
using them, the highly complex problem of trajectory planning can be transformed
into a graph search, in which solutions can be found with a suitable difficulty. How-
ever, for this to happen, it is of fundamental importance to have a library of primitives
at hand that ensures appropriate routes for the desired road scenarios. At the same
time, it should also have a size that makes the problem as computationally inex-
pensive as possible. Note that all this should also take into account the cooperative
communication between agents, since it is desirable to have a trajectory planning
with a sufficiently small communication effort.

The realization of motion primitives is only possible when the dynamic model has
the symmetry property. To give an intuition, this property indicates that it is possible
to perform rotations and translations in mechanical systems—without deformation
of their path profile under the same sequence of control inputs. In the original work
[14], the symmetry property of systems was exploited to develop two special kinds of

! Trajectory planning strategies for multiple vehicles are presented in the Chapter “Prioritized
Trajectory Planning for Networked Vehicles Using Motion Primitives”.
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Fig. 1 Example of a
maneuver automaton with
four trim primitives:

{p1. p2. p3. pa}and eight
maneuvers:

{my11, mi2, myg,

mp 3, m32, m33, m34, mq 1}
(figure from [24])

motion primitives: the trim primitives and the maneuvers. Trims are steady motions,
where the control inputs are kept fixed, while the maneuvers are motions transitioning
between the steady motions. Their rules for concatenation can be translated into a
directed graph, which we call motion primitive automaton (MPA), also referred in
[14] as maneuver automaton. Figure 1 illustrates an example of an MPA with four
trims and eight maneuvers. Then, solving the motion planning problem consists
of using a graph search method to find a sequence of primitives, which can be
concatenated according to the MPA.

In this chapter, with the first part of our studies, we present the development of
methods to architect the motion primitives selection and construction, as well as
the relationship between them. The second part, written in the chapter “Prioritized
Trajectory Planning for Networked Vehicles Using Motion Primitives”, is devoted
to detailing the cooperative trajectory planning algorithms that represent maneuvers
primitives. The general workflow is given in Fig. 2.

This chapter is organized as follows. In Sect. 2, we evaluate, from a list of different
vehicle models, the suitable dynamics for the planning problem and determine the
symmetry group for a generic class of vehicle models. In Sect. 3, based on previous
works, e.g., [12-14, 21, 23], we determine a method to analytically select trim
primitives from a vehicle model and, alternatively, abstract typical trim primitives
from traffic data. In Sect. 4, we model the computation of maneuvers as an OCP and
solve the respective OCP to obtain the optimal maneuvers. Automata of different
configurations with respect to their computational complexity and solution quality
are analyzed in Sect. 5. It also investigates both time-optimal and maximum comfort
motion graphs via the analysis of multi-objective maneuvers. In Sect. 6, we briefly
present possible algorithms to solve the graph-based planning problem. Lastly, we
give concluding remarks in Sect. 7.

2 Models and Symmetry

There are several ways to represent the dynamic system of vehicles, from the simplest
cases, such as the point-mass model, the Dubins curves [11] and the Reeds—Shepp
curves [25], to detailed, vehicle-specific models. Both Dubins and Reeds—Shepp
curves take into account a kinematic car model consisting only of the pose, i.e., the
position and orientation. Halfway through, the CommonRoad benchmarks present a
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Fig. 2 Workflow of our methodology

hierarchical list of models that considers increasingly complex lateral vehicle dynam-
ics and tire models [5]. This list includes, among others, the following models: kine-
matic single-track model, single-track model, and a multi-body model. It is assumed
for these models the existence of controllers that can realize a commanded accel-
eration. The choice of the appropriate model depends on which detail you want to
capture the physics of motion. In the Appendix, the reader can find the description
of the equations for the kinematic single-track and the single-track models, as they
will be used in this chapter.

All of the CommonRoad models have in common the following generic structure
of ordinary differential equations:

Sfi(r,u)cos (fo(r, u) + )

Sfi(r,u)sin (fo(r, u) + %)
Sy (r,u) ’
fr(rou)

x=flxu) = (D

with the vector of states x = [sx sy ¥ r]T belonging to a manifold X, where s, and
sy are the positions of the center of gravity, ¥ is the vehicle orientation, r is any
vector of n — 3 states, u € U is the vector of inputs and fi(r, u), fo(r, u), fy(r, u),
and f, (r, u) are arbitrary nonlinear functions. For convenience, we omit the notation
for dependence of x(¢) and u(¢) on time t € R-,. We assume the function f(x, u)
of Eq. (1) as being continuous and locally Lipschitz w.r.t. x(¢). Then, we guarantee
the existence and uniqueness of solutions given by the flow

x(1) = ¢u(x(0), 1) 2

for a given input function u on the time interval ¢ € [0, T1].
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Many mechanical systems, including vehicles, exhibit the symmetry property,
which acts as state transformations defined by Lie group representations [14]. They
are necessary to build the primitives from the model. To describe them mathemati-
cally, we need to introduce some considerations.

Let the Lie group be denoted by G, its identity element by e, and its left action on
XbyV : G x X — X with W smooth, ¥(e, x) = x forx € X,and ¥ (g, ¥ (h, x)) =
W(gh,x)forallg,h € Gandx € X.

Definition 1 (Symmetry) The tuple (G, W) is a symmetry for x = f(x, u) on X, if
for any fixed control u € L7%.([0, 00), R™),

0 (W (g, x0), 1) = W(g, pu(xo, 1)) (3)
holds forall g € G, xg € X, and t > 0.

We can produce a symmetry group that fits the entire set of models described in
[5]. Itis given by combined rotations and translations on the pose, which we represent
by p = [sx sy w]T e R? x S!, in the following form [24]:

Theorem 1 The symmetry group for Eq. (1) is given by

G = {geSE(n):g: g(Ax) = [§ Alx]} 4)
where
_ | Rso@ 0
R = [ ; 1] € SOMm), 5)
Asy
Ax = 2‘1‘; eR® x S' x {02, ©)
0

cos(AY) —sin(Ay) 0
RSO(3) = Sln(Aw) COS(AW) 0] e SO(3), (7)

0 0 1

for I being the identity matrix with appropriate dimension, a vector Ax, and g
given in homogeneous coordinates, such that the affine-linear group action can be
represented by:

W, (x) = Rx + Ax. ()

To prove it, we show the equivariance of the system (1) w.r.t. the symmetry action
(8). We will show the idea of the proof, while details can be found in [24].

Proof The vector field f is equivariant w.r.t. the symmetry action W if
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dw, (x)
dx

fWP(x),u) = - fx, ). 9

Let Ap = [Asx As, AI//]T. The group action (8) can be written as

cos(Ap)s, — sin(Ap)sy + Asy

| Rso@yp + Ap| | sin(Ap)sy + cos(Ap)sy, + As,
‘Ifg(x)—[ - = v+ Ay (10)
r
Then, from Egs. (1), (10) and (5), we get that the left-hand side of Eq. (9) is:
f (W), u) = Rf(x, ). (11
Considering W, (x) = Rx + Ax as in Eq. (8),
dw
W) _ R, (12)
dx

which we can replace in Eq. (11), proving the equivariance of the vector field by
satisfying Eq. (9).

Given the proper considerations, we can now define motion primitives as equiv-
alence classes of trajectories.

Definition 2 (Motion primitive) A motion primitive is the equivalence class of a
representing pair (x, u) on [#;, ¢ ], if for any class member (x, i) on [#, t_f], it holds
that t; —t; = t; — ; and there exists a group element ¢ € G and a shift Ar € R,
such that

x@),u@®) = V(g x(t — A1), u(t — At)) Vt € [t;,tr]. 13)

In the next sections, we will introduce the two types of motion primitives: trim
primitives and maneuvers.

3 Trim Primitives

These primitives are characterized by fixed, i.e., trimmed, controls and are symmetry-
induced motions. They were introduced in [ 14], and the authors add that the trims are
identified with steady-state motions, also known as relative equilibria of the system.
Formally, they can be defined as follows.

Definition 3 (7rim Primitive) Following the Definition 1, let g denote the Lie algebra
of G with the exponential map exp : ¢ — G, and u € U a fixed control input. The
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tuple (x, u) on [0, T] with x(0) = xq is called a trim primitive if it is a solution to
the system dynamics expressed, for all ¢ € [0, T'], by

u(t) = i, (14)

{ x(t) = W(exp(£1), xo),

with & € g being a suitable chosen Lie algebra element.

The duration of a trim primitive is, in principle, not fixed and is called “coast-
ing time”. For the kinematic single-track or the single-track models, the trims are
characterized by a fixed velocity and a constant curvature?® (see [23, 24]).

A choice for a finite number of trim primitives has to be taken. The question of
representation and well-spread trims arises. A “plain vanilla” approach is to uni-
formly grid the Lie algebra up until borders that seem physically plausible [19].
More sophisticated approaches choose representative trim primitives based on data,
either the road-geometry of interest or from driving, as detailed in the following two
subsections.

3.1 Choice Based on Road-Geometry

One way to select the trim primitives is to fit them to the geometry of the roads on
which the vehicle is to drive. As an example, we take the map of the Cyber-Physical
Mobility Lab (CPM Lab) [16] drawn using the CommonRoad interface [5], depicted
in Fig.3a. From information contained in the CommonRoad scenario file, we can
decompose the roads into the discrete points taken from the center of each lane, as
can be seen in the upper left of the Fig. 3b and generate trims by the sequence:

1. Calculate all the possible curvatures from the map.

2. Select the most frequent curvatures.

3. Choose an arbitrary set of speeds within the boundaries interval.
4. Combine curvatures and speeds in tuples that represent each trim.

The yaw angles at each point of the decomposed map could be calculated from the
vectors tangent to the lane’s center (see Fig. 3b). Then, we can get and store the set of
different curvatures, which might be a large data set. To reduce it, we can cluster the
data points, for instance via k-means, to get a smaller number of the representative
curvatures [24]. However, we can directly steer the number of different curvatures
by the considered rounding accuracy, as we can have many similar data points. For
example, the set of curvatures {0.0507..., 0.0543..., 0.0539...} could be reduced to
the values {0.051, 0.054} when considering three decimal places, or to just to the
value of 0.05 if two decimal places are considered. See Fig. 4 for checking the number

2 The curvature is calculated by dividing the yaw rate by the velocity. Then, the trims could, alter-
natively, be represented by a constant speed and constant yaw rate.
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(a) CPM Lab’s map (b) Lane’s centers (upper left) with their discrete decom-
position

Fig. 3 Road geometry decomposition of the CPM Lab’s map into 208 different points. The axes
are the coordinates in meters
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Fig. 4 The number of different curvatures computed in the example according to the tolerated
decimal places

of different curvatures considered according to the accepted decimal places for this
example. Having two decimal places, we get 14 classes of curvatures, that can be
representative for this map. Lastly, a set of arbitrary speeds can be combined with
these different classes and we get a set of trims to be used in the planning problem.

3.2 Choice Based on Driving Data

An automatic generation of data-based automata was proposed in [24]. The authors
assumed that the data represents a dynamical model with symmetries. Also, this
model is observable such that the full system state could be reconstructed from the
available states on the data. Then, making an assumption on the model, the following
sequence of steps was carried out:

1. Find invariances of trims in data.
2. Cluster trim primitives.
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Fig. 5 Trims clustered using k-means in seven representative points, where the black squares are
the centers of each cluster (figure from [24])

3. Evaluate a transition matrix.

The selected data in [24] was taken from the nuScenes data set [8], having multiple
information about the vehicle’s states, including the pose, the velocity, the accelera-
tion, and the rotation rate recorded using an inertial measurement unit during urban
driving in Singapore (Singapore) and Boston (United States). It is worth mention-
ing that this data set represents the interaction of the car in real traffic with other
vehicles, including overtaking, braking, waiting on corners, etc. That is, several real
interactions between vehicles are embedded in the selected primitives, ideal for a
cooperative planning scenario.

Consider the data points being represented by the triples (¢;, x;, u;) for i =
0,1,2,...,D, where D € R is the number of elements in the data set. Consider
that, for a suitable chosen symmetry (G, V), there exist solutions (x, u) satisfying
Definition 3 for a model x = f(x, u). Then, subsequent data points belong to the
same trim if

||ui+1 - ul” < €y, and

[[W(exp(§(tir1 — 1), xi) — Xit1l] < & (1
for a sufficient small positive error margins €, and €,.

We can determine a minimum time length t for the duration of a trim primitive,
i.e., aminimal coasting time. Then, a trim will be considered only if, for a sequence of
N > 1 points, the conditions (15) hold fromi toi + N — 1 such thatt;, .y — t; > 7.

However, the number of extracted trims from the data can be huge. Then, we
need to look for a finite amount of clusters that define the most representative trims
during a route in real traffic. In [24], they worked with the k-means algorithm, an
unsupervised learning technique that finds clusters in a set of data points, where the
amount of clusters is given [20]. The representative trims will be selected as the
center points of each cluster. Figure5 shows an example of trims being clustered
for the kinematic single-track model (28) from [24]. The trims are represented by a
constant speed (x-axis) and a constant curvature (y-axis).
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At first, we could consider that a vehicle would be able to transit from any relative
equilibrium to any other. For instance, in a kinematic robot model under nonholo-
nomic constraints, given by

se(1) cos(Y (1)) 0
Sy(0) | = | sin(y (@) |ur (@) + | 0| u2(2), (16)
Y (1) 0 1

where the states are the pose and the controller manages the linear velocity u;(¢) =
v(¢) and the angular velocity u;(t) = w (1), trajectories can switch directly from one
trim to another [13]. This is due to this model directly controlling the velocities and,
thus, allowing discontinuities thereof. In this case, as well as in the (kinematic) single-
track model, every constant control input defines a trim, either going straight with
constant velocity or going in a circle with constant rotational velocity. However, in
the (kinematic) single-track model, the control inputs correspond to the longitudinal
acceleration and the steering angle velocity (see the Appendix for these models’
equations). Thus, trims necessarily correspond to uncontrolled, i.e., constant-velocity
motion. Smooth transitions between trims are then needed for, e.g., accelerating and
decelerating to a new cruising speed, or for transitioning between straight and circular
motions.

We can search and select these transitions according to their occurrence in the data.
That is, only transitions with a high probability of occurrence will be considered.
The probabilities are organized in a transition matrix, in which, for each trim cluster,
the transitions from all points of this cluster to other clusters are counted in the data.

These transitions are another kind of primitive, called “maneuvers”. The last step
for the automatic generation of an automaton is the computation of the maneuvers.
Their formal definition, as well as techniques to compute them, will be given in the
next section.

4 Maneuvers

The second type of motion primitives is the maneuvers. They are responsible for
smooth transitions in the system from one trim primitive to another. Formally, we
can define them as follows.

Definition 4 (Maneuver) A maneuver is a finite-time trajectory that connects two
trim primitives and is identified by:

e atime duration T';

e a sequence of control actions « : [0, T] — R™;

e and an evolution in the form of (2) such that (x(0), #(0)) and (x(7T'), u(T)) belong
to trim primitives characterized by (14).
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In the class of vehicle models, the physics of maneuvers depends on the specific
choice of the dynamical system model.

To derive maneuvers for the considered family of vehicle models, we present a
geometric approach, in which polynomial equations define the transitions from the
predecessor trim to the successor one. Alternatively, maneuvers can be computed as
solutions of an OCP. In this case, we can also explore Pareto fronts in a multiobjective
optimization problem.

4.1 Polynomial Approach

The paper [23] exemplifies a concrete case of formulating the geometric method
using the single-track model (30) from [5]. In this case, a smooth transition needs
to be made between the velocities v and steering angles § from the predecessor
trim to the successor one, both having these parameters fixed. Then, for a maneu-
ver with the duration 7 > 0, we have the constraints v(0) = vy and v(T) = vr. A
jump in acceleration at the beginning or the end of the maneuver would theoretically
result in infinite jerk, which can be avoided by setting u(0) = u(T) = [0 O]T. Then,
the control inputs are continuous, but we have additional constraints on the veloc-
ity v(0) = v(T) = 0. These constraints are met by the following cubic polynomial
transitions for 0 <t < T:

t t\?
v(t) = (vr — vg) (3 — 2?) <7> —+ vy,

, (17
t t
) =0r—68)(3—-2= )= Bo.
(1) = (ér 0)( T)(T>+O
Then, the corresponding control signals u; and u;(¢t) are
(1) = 6(wr —vp) (1- %)
§(0) =6(r —vo) | 1 — = ) 7.
u T 0 T ) T2
(18)

us (1) = 6(57 — 8) (1 - %) %

In addition, to ensure the feasibility of the maneuver, constraints on the longitu-
dinal acceleration and the derivative of the steering angle need to be considered. For
the selected model, there exist the constraints

3vr — vy

387 —do

[v] < and |8] < |=
T

19)

When the maneuvers have positive acceleration (i.e., vp < vr), another constraint
needs to be considered:
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Wy < a2, (20)
v

with the switching velocity v, representing limited engine power, and a maximal
longitudinal acceleration ap,x > 0. Then, the duration of the maneuver can be chosen
according to

<3|UT—UO| 3187 — ol 3 (vr — vo)vr )
T =max | = , = — = s Tin )
2 Gmax 2 Omax 2 Amax Us

for vy < vr, 21
3 lvr —wol 3|67 — ol

2 dmx 2 8max

T = max < , Tmin) , otherwise.

where Ty, is a defined shortest duration, set as a design choice.

4.2 Optimal and Pareto-Optimal Maneuvers

Alternatively, the maneuvers can be computed optimally with respect to a cost func-
tional J (T, x, u), for a duration T. Then, each maneuver is obtained by solving the
following OCP:

miITlimize J(T, x, u) (22a)
subject to x()= f(x@®),u@), 0<t<T (22b)
0>gx(@),u(), 0<t<T (22¢)

x(0)= xg (22d)

x(T)= x7, (22e)

with xy and x7 as fixed states® evaluated at the predecessor and successor trims,
respectively, and g(-) as the constraints for the states and inputs.

In the case of multiple cost functionals to be considered, the problem (22a)
becomes a multiobjective optimal control problem. Then, we can select a Pareto-
optimal maneuver by computing the so-called Pareto set of optimal compromises
between the concurrent objectives [9] and choosing one of its points (see Fig. 6).

For instance, consider the kinematic single-track model (28), the costs J; = T and
Jo = fOT [uy) |%, for a trade-off between fast and comfortable trajectories. The maneu-
ver goes from a trim described by (v, §) = (Okmh~', 0°) to a trim (20kmh~', 15°)
and it is limited by 5s. The Pareto front with 25 points is given in Fig. 6 together
with their respective pose and inputs. Optimal control problems can be solved using
numerical software tools, for instance CasADi [6] or TransWORHP [18]. We can

3 Depending on the dynamical system, only part, not all, of the states x could be considered as fixed
at the initial and final times of the maneuver.
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Fig. 6 Example of a Pareto front for a maneuver with J; = T and J, = fOT lusl13

select a Pareto-optimal point based on a decision-making, to get the maneuver to be
considered in the MPA.

5 Maneuver Automaton Selection

In [14], motion graphs are introduced as “maneuver automata”, in which trims form
the vertices and maneuvers the edges of the graph. This defines the concatenation
rules, i.e., any path in the automaton defines a sequence of primitives. Together with
a choice of coasting times, this sequence can be transformed into an admissible,
controlled trajectory of the underlying dynamical system.

As presented in Sect.3, maneuver automata can be constructed in an automatic
way by extracting representative primitives from a data set. In [24], numerical exam-
ples were solved to compare handcrafted and extracted automata for the kinematic
single-track model (Eq. (28)). The handcrafted automata consider a usual pragmatic
way of designing it: a grid covering the entire space of allowed velocities and steering
angles for the model [23]. For comparison, the handcrafted and extracted automata
had the same quantity of trims and a similar number of maneuvers. A visual com-
parison of these two different ways of constructing an automaton is given in Fig. 7,
considering the selection of 21 trim primitives. The difference in the trajectory plan-
ning when using each of these automata is replicated in Fig. 8. Note that the extracted
primitives fit better to the road shape and the final goal position.

For the planning problem, a starting trim is assumed and an initial condition
x(0), i.e., a starting node in the MPA, is given. For a guarantee of the existence of a
solution from an initial trim to a final trim (or node), it is shown in [14] that one of
the requirements is the strong connectivity of the MPA. However, a priori, an MPA
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Fig. 7 Automata with 21 trim primitives. The dots correspond to trim primitives (axes: velocities
versus steering angle) and the colored lines represent maneuvers connecting the trims (figures from
[24])
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Fig. 8 Trajectories for the two different automata with 21 trim primitives (figures from [24])
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(a) A* search (b) Hybrid A* search (c) IT* search

Fig. 9 Comparison between different graph search methods: the goal regions are denoted in red
and the yellow area is an optimization region, where the II* will try to optimize the trim’s coasting
times to lead the vehicle to a goal point inside the goal region

does not need to be strongly connected. For the cases where there exists more than
one admissible solution, an optimization problem can be posed.

6 Planning Algorithms

With a library of primitives condensed into a graph, path planning can be done using
different techniques. In this section, we will mention some of the ideas developed. The
complementary chapter will, however, delve into planning in a cooperative trajectory
planning scenario.

6.1 Optimized Primitives (I1*¥) Search

The IT* search was developed in [23] and it is inspired by the Hybrid A* algorithm
[10], an A*-based search. In the Hybrid A*, continuous states are associated with
grid cells and the costs of the states, therefore, are the cost of their respective cell.
However, in [T* search, each state is fully continuous, instead of being associated with
discrete grid cells. The trims’ coasting times can be adjusted by an online optimization
problem of reduced complexity. The algorithm encapsulates the method of anytime
search to deal with time deadlines [32]. The search, then, can lead the vehicle to an
exact goal point in the state space while respecting computation time constraints.
Figure 9 compares the different graph search methods.
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Fig. 10 The interaction of action
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6.2 Reinforcement Learning

Reinforcement learning as a Markov decision process, as described in [29], is the
task of learning from the interaction between an agent and an environment to achieve
a goal. The agent is the decision-maker and learns which is the best action given the
current state. A numerical value evaluates an action and it is called “reward”. Thus,
the action is selected to maximize the rewards. The environment, in turn, responds to
the agent with a new state and the reward for a given action. A schematic depiction
of this iterative process can be seen in Fig. 10.

It is possible to use primitives as the actions of a reinforcement learning agent,
as opposed to using a discrete or continuous set of control inputs as the action space
[15]. A work in this regard was developed in the Bachelor’s thesis [28].

6.3 Graph-Based Receding Horizon Control

Introduced in [27], this method aims to transfer the receding horizon control approach
into graph-search problems, specially made for maneuver automata. Thus, nonlinear,
nonconvex optimization problems are solved in real-time, in opposite to traditional
graph-search approaches that keep the search until the goal vertex is found. This
approach was applied to cooperative planning of multiple networked and autonomous
vehicles on the CPM Lab [16]. Also, it was shown that the solutions are recursively
feasible by design of the finite state automaton. This method is explained in detail in
the chapter “Prioritized Trajectory Planning for Networked Vehicles Using Motion
Primitives”.

6.4 Motion Graphs as Mixed Logical Dynamical System

We can model the motion graphs as a mixed logical dynamical (MLD) system to
transform the graph search into an OCP. MLD systems were introduced by [7] and
describe systems by a combination of continuous variables with Boolean ones. As an
example of application, an MLD system was modeled to solve collision avoidance
of collaborative vehicles in [4]. The authors did not use primitives, but linearized
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the vehicle model over the operation points and solved mixed-integer linear and
quadratic programming problems.

In short, the idea of our proposed MLD system is to formulate the execution of a
primitive at a discrete-time k by “enabling” one primitive over all others available,
given which node of the MPA is active for the vehicle. For that, we can define the
Boolean variables, fori = 1,2, ..., as

® 1, if the primitive p; is executed at k, 23)
m; = .
0, otherwise.

where the set of available primitives at time k is {p;, i € N}. Then, given the current
automaton state in the MPA and x (k), the system dynamics can be written as:

xk+1) = Z W, (x(k)) - m;(k), (8.24a)

> mitk) =1, (8.24b)

for the continuous times given by

fkp1 = i + Z Tim; (25)

L

with 7; representing the duration of the primitive p;. This modeling approach leads
to a mixed-integer nonlinear programming problem when searching for the optimal
sequence for a given planning problem within an MPA.

Thus, it is possible to extend this modeling into a model predictive control (MPC)
formulation and thus exploit the tools available for MPC, for example, stability,
robustness, and inclusion of constraints, in the computation of trajectories with
motion primitives.

7 Conclusion

We presented in this chapter a description of methods to design an automaton of
motion primitives by properly selecting and constructing them. This automaton of
primitives is implemented in trajectory planning for cooperative vehicles and its
architecture is essential for efficient paths. We presented a list of vehicle models
abstracted in a general formulation. Then, we showed how to abstract typical trim
primitives from traffic data and derived maneuvers by the polynomial method and
by an OCP. This last one is useful for finding Pareto-optimal maneuvers. We also
compared different automata and presented possible algorithms to solve the graph-
based planning problem.
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Appendices

Here, we present two vehicle models from [5], the kinematic single-track and the
single-track model.

A. The Kinematic Single-Track Model
The kinematic bicycle model has the state vector

x=[s.s, ¥ v3] eR’, (26)

and the input vector:
T 2
U= [ul; ug] e R?, 27

where s, and s, are the positions of the rear axis, v is the vehicle orientation, v is
the velocity, § is the steering angle, u,, is the longitudinal acceleration, and u; is the
velocity of the steering angle. The state space equations are given by:

$x(t) = v(t) - cos(Y (1)),

$y(1) = v(t) - sin(y (1)),

(1) = % -tan(3(1)), (28)
(1) = uy(h),

8(t) = uz(1),

for L being the wheelbase of the vehicle. In [24], it was used the wheelbase of the
Renault Zoe, used in obtaining the nuScenes data, with value 2.588 m [1].

B. The Single-Track Model

The state vector ) T
x=[sxsy ¥y yvsB] eR, (29)

has the same variables described for Eq. (26) together with the slip angle at the center
of gravity B (see Fig.11). The inputs are the same as in Eq. (27). The state space
equations are:
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Fig. 11 Single-track model
5 (1) = v(t) - cos(y (1) + B (1)),
Sy() = v(@) - sin(Y (1) + B(1)),
. d
V() = EW(I)’
.. uwM
Y() = TL (lf cagp o 8(t) + (b oy — I - o) B(2)
140
_ (lf2 “ o+ lrz -y f) o) ), (30)
V(1) = uy(1),
8(1) = us (1),
O = <af.r - 8(0) — (tes + ar)B(1)
+ o — ~af,r>%) -y,
where o; j := o j(u3(t)) is a function of the input u;(t) defined as
a;j=Ci(g-lj—h-uz)) (31)

fori, j € {f,r}, L givenby L = Iz + [; and the parameters described in Table I with
the values used in [23].



250 M. V. A. Pedrosa et al.

Table 1 Single-track model’s parameters

Parameter Symbol Unit Value
Distance from the center of gravity to front axle |/¢ [m] 0.883
Distance from the center of gravity to rear axle |/, [m] 1.508
Total vehicle mass M [kg] 1.225
Moment of inertia about z axis I, lkg - m?] 1.538
Center of gravity height of M h [m] 0.557
Cornering stiftness coeff. (front, rear) Cr, Cy [1/rad] 20.89
Friction coefficient % [—1 1.048
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Prioritized Trajectory Planning m
for Networked Vehicles Using Motion L
Primitives

Patrick Scheffe, Matheus V. A. Pedrosa, Kathrin FlaBkamp,
and Bassam Alrifaee

Abstract The computation time required to solve nonconvex, nonlinear optimiza-
tion problems increases rapidly with their size. This poses a challenge in trajectory
planning for multiple networked vehicles with collision avoidance. In the centralized
formulation, the optimization problem size increases with the number of vehicles in
the networked control system (NCS), rendering the formulation unusable for exper-
iments. We investigate two methods to decrease the complexity of networked trajec-
tory planning. First, we approximate the optimization problem by discretizing the
vehicle dynamics with an automaton, which turns it into a graph-search problem. Our
search-based trajectory planning algorithm has a limited horizon to further decrease
computation complexity. We achieve recursive feasibility by design of the automaton
which models the vehicle dynamics. Second, we distribute the optimization prob-
lem to the vehicles with prioritized distributed model predictive control (P-DMPC),
which reduces the problem size. To counter the incompleteness of P-DMPC, we
propose a framework for time-variant priority assignment. The framework expands
recursive feasibility to every vehicle in the NCS. We present two time-variant pri-
ority assignment algorithms for road vehicles, one to improve vehicle progress and
one to improve computation time of the NCS. We evaluate our approach for online
trajectory planning of multiple networked vehicles in simulations and experiments.
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1 Introduction

Networked and autonomous vehicles (NAVs) have the potential to increase the safety
and efficiency of traffic [42]. Realizing this potential requires advances in many fields
of networked and autonomous vehicles (NAVs), among which is the field of decision
making [56]. In decision making, we develop a plan and control the actuators of
the vehicle to execute this plan. Planning can be decomposed into three hierarchical
layers. The highest layer plans a route through the road network, the middle layer
plans behaviors for the vehicle on the road, and the bottom layer plans motions
to realize the behavioral plan [46]. The work in this article focuses on the middle
and bottom layer of planning for a multi-agent system. We will refer to this area as
trajectory planning for multiple NAVs. Section 1.1 motivates our work on networked
trajectory planning, Sect. 1.2 presents the state of the art and Sect. 1.3 states our
contribution to the state of the art. We introduce our notation in Sect. 1.4 and give
an overview of this chapter in Sect. 1.5.

1.1 Motivation

Trajectory planning for multiple NAVs with collision avoidance can be modeled as
a nonconvex, nonlinear optimal control problem (OCP). For trajectory planning in
changing environments, this OCP must be solved within a duration of tenths of a
second. With an increasing amount of controlled vehicles, the OCP grows large,
and finding a solution quickly becomes intractable. This chapter investigates two
approaches to decrease computation time of networked trajectory planning: simpli-
fying and distributing the OCP.

When simplifying the OCP, a compromise between global optimality and compu-
tational efficiency must be found [12]. Trajectory planning approaches can be classi-
fied as optimization-based and graph-based [46]. Optimization-based algorithms are
often based on convexification of the original nonconvex OCP [5, 6, 28, 52, 58]. The
advantage of convexification is a short computation time, which comes at the cost
of disregarding nonlinearities in the vehicle model and of disregarding parts of the
solution space. Graph-based methods based on motion primitives (MPs) can retain
the nonlinearities and the complete solution space. The coarseness of quantization
of states and control inputs highly influences the computational complexity and the
trajectory quality.

Distributing the centralized OCP, which plans trajectories for all vehicles at once,
reduces the computational effort at the cost of global system knowledge. Prioritized
trajectory planning for vehicles is first presented in [21]. In a prioritized approach,
vehicles with lower priority adjust their objectives and constraints to respect coupled
vehicles with higher priority. The core problem of prioritized planning algorithms
is their incompleteness. That is, there might exist a priority assignment that leads to
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feasible optimization problems of all participating agents, but the algorithm can fail
to find it.

1.2 Related Work

This section presents related work on trajectory planning with MPs and on prioritized
trajectory planning.

1.2.1 Trajectory Planning with Motion Primitives

The goal of trajectory planning with MPs is to find an optimal sequence and duration
of MPs that achieve a desired objective while satisfying constraints. MP consists of a
control and state trajectory. Multiple MPs can be concatenated to form a vehicle tra-
jectory plan. There are mainly two kinds of methods to plan trajectories using MPs:
methods based on continuous optimization problem formulations, such as mixed inte-
ger programming (MIP), and methods with graph-based problem formulations, such
as an A* algorithm or a rapidly-exploring random tree algorithm [39]. A literature
review on both methods follows.

MIP formulates an OCP with both continuous and discrete variables. MIP can
find the optimal sequence and duration of MPs for trajectory planning of a single
vehicle [23, 26, 27]. When dealing with multiple NAVs, collision constraints can be
modeled with binary decision variables [7]. The ability of MIP to find the optimal
solution comes at the cost of high computation time, which rapidly increases with
the size of the OCP. Centralized trajectory planning for multiple vehicles with MPs
[2, 20, 22] encounters this problem.

A popular search algorithm for trajectory planning using MPs is A* and its variant
hybrid A* [1, 19, 49]. When operating on a gridded environment representation, A*
associates a cost value with a grid cell center and the cell center’s state value, whereas
hybrid A* associates a cost value alongside a continuous state value with a grid cell. A
computationally demanding task in search algorithms for trajectory planning are edge
evaluations, as they incorporate the collision constraints [39]. The number of edge
evaluations can be reduced using a lazy approach, in which an edge is only evaluated
when the connected vertex is chosen for expansion [17, 18, 43]. The computation
time of graph-search algorithms increases with the length of its horizon. Limiting
the horizon decreases computation time [9, 36, 45]. Algorithms for graph-based
trajectory planning for multiple NAVs include a Monte Carlo tree search [37] and a
traditional A* graph search [24, 25]. Graph searches with an infinite horizon suffer
from high computation time [17-19, 43, 49]. This challenge can be overcome with
areceding horizon at the cost of global optimality guarantees. Graph-based receding
horizon approaches do not yet guarantee recursive feasibility [9, 40, 45].
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1.2.2 Prioritized Distributed Control

The distributed control strategy for networked control system (NCS) examined in
this work is prioritized distributed model predictive control (P-DMPC), in which
each vehicle optimizes only its own decision variables. Lower prioritized vehicles
consider a communicated optimized solution of coupled higher prioritized vehicles
in both in their objective function and their constraints. The benefit of the greedy
P-DMPC algorithm is its short computation time [3, 57]. One of the main challenges
in P-DMPC is its incompleteness [40]. That means, a priority assignment might lead
to an infeasible OCP of a vehicle although the problem is solvable with a different
priority assignment. Additionally, the priority assignment influences the solution
quality and the computation time.

The following works have designed priority assignments for robots and NAVs
with the goal of feasibility and solution quality. In our work [32] the ordering is
based on rules, i.e., we assign time-variant priorities to multiple vehicles compet-
ing on a racetrack based on their race position. Constraint-based heuristics increase
the priority of a vehicle with the number of constraints it has [13, 16, 41, 48, 60].
The goal of these heuristics is to maintain feasibility of the control problems. In our
work [35], we assign priorities to vehicles based on the time remaining before they
enter an intersection. In our work [31], we assign priorities to vehicles based on the
crowdedness of their goal location. Objective-based heuristics assign priorities to
improve the solution quality of the NCS [15, 59]. A randomized priority assignment
with hill-climbing is proposed in [10]. In [8], all priority assignments are considered
to find the optimal one. Both approaches achieve higher solution quality with higher
computation time. In [61], priorities are assigned based on machine learning and
achieve results competitive to heuristics. The priority assignment can also influence
computation time [4]. The number of simultaneous computations in prioritized plan-
ning is maximized in [38]. Despite the number of priority assignment strategies, the
incompleteness of P-DMPC remains. Many works assign time-invariant priorities for
a specific scenario [13, 16, 38, 41, 48, 59, 60]. Time-variant priority assignments
improve feasibility in changing operating conditions over time-invariant priority
assignments [10, 15]. In [38], time-invariant priorities are shown to produce recur-
sively feasible solutions. Similarly, this property needs to be shown for time-variant
priorities.

1.3 Contribution

The contribution of this chapter is twofold. First, we present our method of reced-
ing horizon graph search (RHGS), a search-based trajectory planning algorithm for
road vehicles. We reduce the computation time by limiting the planning horizon. We
prove that our method fulfills recursive feasibility by design of the motion primitive
automaton (MPA) [55]. Second, we present a framework for distributed reprioritiza-



Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives 257

tion of vehicles. We prove that it fulfills recursive NCS-feasibility for P-DMPC with
any time-variant priority assignment algorithm [51].

We present two priority assignment algorithms, one for vehicle progression using
a constraint-based heuristic, and a one for computation time reduction of the NCS
using graph coloring. We demonstrate the effectiveness of the presented approach in
a simulative case study of P-DMPC for trajectory planning.

1.4 Notation

A variable x is marked with a superscript x/) if belonging to agent j, and with x =/
if belonging to the neighbors of agent j. The actual value of a variable x at time k is
written as x (k), while values predicted for time k 4 i at time k are written as X .
A trajectory is denoted by substituting the time argument with - as in x.;. An agent
equals a vehicle in our application of prioritized trajectory plannning. In this chapter,
we use the terms vehicle, road vehicle and NAV interchangeably.

1.5 Structure

The remainder of this chapter is structured as follows. Section 2 presents our vehicle
model, our RHGS for trajectory planning, and our proof of recursive agent-feasibility.
Section 3 presents the distribution of RHGS with P-DMPC for trajectory planning.
‘We show recursive NCS-feasibility of our reprioritization framework before present-
ing two time-variant priority assignment algorithms, one for vehicle progression and
one for computation time reduction. In Sect. 4, we evaluate both the RHGS and the
P-DMPC in experiment, before combining both in a simulative case study.

2 Receding Horizon Graph Search for Trajectory Planning

This section presents how we transfer a receding horizon control (RHC) approach
to graph-based trajectory planning. The content is based on our previous publication
[55]. Section 2.1 states the RHC trajectory planning problem that we subsequently
map to graph search based on an MPA. Section 2.2 presents our approximation of
the vehicle dynamics as an MPA, Sect. 2.3 shows the graph-based optimization in
our RHGS algorithm. In Sect. 2.4, we prove that our RHGS produces recursively
agent-feasible trajectories by design of the MPA.
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Fig. 1 Kinematic
single-track model of a
vehicle [55]

2.1 Trajectory Planning Problem

This section presents the ordinary differential equations describing the vehicle
dynamics and our cost function before both are incorporated in a RHC problem
for trajectory planning.

Figure 1 shows an overview of the variables for the nonlinear kinematic single-
track model [47]. Assuming low velocities, we model no slip on the front and rear
wheels, and no forces acting on the vehicle. The resulting equations are

x(t) = () - cos(Pr (2) + B(1)),
y(#) = v() - sin(y () + B(1)),
. 1
Y)=v()- i tan(8(z)) cos(B(1)), (D
V(t) = uv(t)v
5(t) = us (1),
with
B(t) = tan™! (% tan(c?(t))) , 2)

where x € R and y € R describe the position of the center of gravity (CG), ¢ €
[0, 27r) is the orientation, 8 € [—m, ) is the side slip angle, § € [—m, w) andu, € R
are the steering angle and its derivative respectively, v € R and u, € R are the speed
and acceleration of the CG respectively, L is the wheelbase length and ¢, is the length
from the rear axle to the CG. The position of the CG and the orientation together
form the pose p.

The system dynamics defined in (1) are compactly written as

d
x(1) = 750 = flx@), u) 3)

with the state vector T
x:(xylﬂV(S) ERS, “4)

the control input
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T
u= (uv uv) e R? (5)

and the vector field f defined by (1). Transferring (3) to a discrete-time nonlinear
system representation yields

X1 = fa(e ui) (6)

with k € N, the vector field f;: R x R? — R?, the state vector x € R’ and the
input vector u € R?.
We define the cost function to minimize in our trajectory planning problem as

N
T

Jesirng = Z (Xkrik — Xrefkrifk) QO (Xkvilk — Xrefkrilk) @)
i=1

with the planning horizon length N, the positive semi-definite, block diagonal matrix

Iy 0y 5x5
= - [ R 8
Q <O3><2 0; ®)

and a reference trajectory X f,.x € R3.
We combine the system model (6) and the cost function (7) to an OCP

minimize Jk—)k-ﬁ-N\k (93.)
Uk k+Nik

subject to

Xprivik= fa(Xrrips i), i =0,...,N—1 (9b)

Uik € U, i=0,...,N—1 (90)

xk+,-|k€X i=1,...,N—1 (9d)

XiNk€ Xy (%e)

Xip= x (k) (91)
with the vector Uy_, x4+~ Of stacked control inputs (#x, Uk+1k, - - - » Uk+N—1]k), the

input constraint set U < R2, the state constraint set X € R> and the terminal set
Xy C R>. We assume a full measurement or estimate of the state x (k) is available
at the current time k. The OCP (9) is solved repeatedly after a timestep duration T
and with updated values for the states and constraints, which establishes the RHC.

2.2 Motion Primitive Automaton as System Model

This section presents how we model the state-continuous system (6) as an MPA, a
type of maneuver automaton [23]. The MPA incorporates the constraints on system
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dynamics (9b), on control inputs (9¢), and on both the steering angle and the speed
(9d) and (%e).!

From the system dynamics (1), we derive a finite state automaton which we call
MPA and define as follows.

Definition 1 (Motion primitive automaton) An MPA is a 5-tuple (Q, S, ¥, qo, Q)
composed of:

e ( is afinite set of automaton states g;

e S is a finite set of transitions 7, also called motion primitives;

e y:0xSxN-— Q is the update function defining the transition from one
automaton state to another, dependent on the timestep in the horizon;

qo € Q is the initial automaton state;

QO C Q is the set of final automaton states.

An automaton state is characterized by a specific speed v and steering angle 8.
An MP is characterized by an input trajectory and a corresponding state trajectory
which starts and ends with the speed and steering angle of an automaton state. It
has a fixed duration which we choose equal to the timestep duration 7. MPs can be
concatenated to vehicle trajectories by rotation and translation. Our MPA discretizes
both the state space with the update function y and the time space with a fixed
duration T for all MPs. This MPA replaces the system representation (6). Note that
the dynamics model on which our MPA is based is exchangeable. Its complexity is
irrelevant computation-wise for trajectory planning since MPs are computed offline.

2.3 Receding Horizon Graph Search Algorithm

This section demonstrates how our RHGS incorporates the constraints on the pose,
which are included in (9d) and (9¢), while minimizing the cost function (9a).

Our RHGS algorithm constructs a search tree 7 up to a limited depth N. A level i
in the tree directly corresponds to the timestep k + i in the OCP (9). The information
contained in each vertex v of the tree is a tuple (g, p, i, J), whose elements are the
automaton state, the vehicle pose, the distance to the root vertex, and the value of the
cost function, respectively. When the algorithm finds the leaf vertex with the minimal
cost value at the horizon k + N, it returns the path from the root vertex to this leaf
vertex. The algorithm ensures optimality of the returned path with an admissible and
underestimating cost estimation, similar to A*.

1 A detailed explanation of modeling with MPAs is found in this book’s chapter “Designing Maneu-
ver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning”.
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Algorithm 1 Receding Horizon Graph Search

Input: initial vertex vy, MPA, goal set Xy
Output: path from vy to best vertex v,

1: Lopen — o

2: while Lypen # 0 do

3: Sort Lopen ascending by J = Jere + Jera
4: Up Lopen [0]

5 Lopen — Lopen \ Up

6: if not IsVaLip(v),) then

7: continue

8: if iy, = Nandz,, € Xy then
9: return path from vy to v,
10: successors<— ExpAND(v),)

11: for all vg € successors do

12: LazyEvaL(vy)

13: Lopen — Lopen U vg

14: return failure

Algorithm 1 shows the main steps of our RHGS algorithm. At the beginning of the
control loop at time k, the algorithm determines the search tree’s root vertex vy from
the state vector x (k) and initializes the open list with this root vertex (Line 1). Sorting
the open list by the cost function value brings the vertex with the lowest cost v, to
the front (Line 3). It is removed from the open list (Line 5). We evaluate the edge
to the selected vertex by checking inter-vehicle collisions and obstacle collisions
(Line 6). If there is a collision, the algorithm continues to the next vertex in the open
list. If the vertex is collision-free, satisfies the constraint (9¢), and is at the planning
horizon N, it is optimal (Line 8). The algorithm returns the path to the vertex (Line
9). Otherwise, the algorithm expands the vertex based on its automaton state g, the
update function y, and its state vector x (Line 10). The algorithm evaluates edges
to successors lazily by computing only the cost function without collision checks
to reduce computation time (Lines 11 to 12). In informed graph-search algorithms,
the cost function consists of the cost-to-come (CTC) and the cost-to-go (CTG). Our
algorithm minimizes (7) as the CTC is equal to (7) and the CTG is an underestimation
of (7). We underestimate the cost from a vertex v at depth i, by moving a vehicle
towards its reference position at each subsequent timestep with maximum speed in
a straight line

N

Jeratiy) = Y max (0,
imivt1
T .
(Xktite — Xrefrilk) @ (Fritk — Xrefh+ik) — i * Vmax - Ts)
(10)

with the same Q as in (7). At the end of the loop, all successor vertices are added to
the open list (Line 13).
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2.4 Recursive Agent-Feasibility

This section proves recursive agent-feasibility of our RHGS. The property is com-
monly known as recursive feasibility or persistent feasibility. We design the time-
variant update function y of our MPA such that an equilibrium state can always be
reached within the horizon N from expanded successors (Line 10).
A set Cipy € X is a control invariant set for the system (6) subject to constraints
(9b)—(9f) if
x (k) € Cijny = Ju(k) € U such that

(1)
x(k+1) € Cyy, Yk € N.

Lemma 1 If X is a control invariant set of the system (9) with N > 1, then (9e)
ensures recursive agent-feasibility of the RHC.

Proof The proof is given in [11]. O
‘We reformulate the condition of control invariant sets for MPAs as follows.

Definition 2 (Control invariant set foran MPA) A setCy,y C X isacontrol invariant
set for the system (6) given by an MPA if

x(k) € Ciny with g(k) € Oy == 3 € § such that
x(k+1) € Cipy withg(k +1) € Qf and (12)
y(qk), m, k) = q(k +1),Vk e N.

Note that the automaton state g follows from the state vector x.

Theorem 1 RHGS achieves recursive agent-feasibility if the generated sequence of
transitions ends in an automaton state and a state vector that together form a control
invariant set.

Proof Follows directly from Lemma 1 with Definition 2 of control invariant sets for
MPAs. ([

In an equilibrium of the system, it holds that f; (x (k), u(k)) = x (k). If a sequence
of transitions ends in an automaton state from where there exists a transition which
keeps the system at an equilibrium, x (k) represents a control invariant set. Such
an automaton state in our MPA has a speed v = O0m s~'. Figure 2 depicts a simple
example of an MPA with a time-invariant update function. This MPA can generate
sequences of transitions which are not recursively feasible. We design a time-variant
update function which only generates recursively feasible sequences, as shown in an
example MPA in Fig. 3.
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Fig. 2 MPA which does not . t=k+0 t=k+1 t=k+2

guarantee recursive =15 3 15 3 15 3

agent—feamb%hty, roued ou.t o1 ¥ 1 W 1 W'

over a planning horizon with z 05 0.5 0.5

length N =3 é 0 ®1 0 ®1 0 ®1
02 0 02 02 0 02 -02 0 02

Steering Angle § [°]

Fig. 3 MPA which - t=k+0 t=k+1 t=k+2

guarantees recursive =15 3 15 *3 15 °3

agent-feasibility by only o1 1 1

allowing a speed of Om s™! =z 05 A2 0.5 A2 0.5 2

at the end of the horizon, ;55 0 ®1 0 ® 1 0 ®1

rolled out over a planning 02 0 02 -02 0 02 -02 0 02

horizon with length N =3 Steering Angle 6 [7]

3 Prioritized Trajectory Planning

This section presents our approach for distributed trajectory planning with distributed
reprioritization while guaranteeing recursive NCS-feasibility. It is based on our pub-
lications [51, 53]. Our P-DMPC loop consists of the steps coupling, prioritization,
trajectory planning, and communication of trajectories. We couple agents if they
potentially interact during their planning horizon N. We represent couplings between
agents with a coupling graph. Denote by V = {1, ..., N4} the set of agents and by
N4 = |V| € N its cardinality.

Definition 3 (Coupling graph) A coupling graph G = (V, &) is a graph that rep-
resents the interaction between agents. Vertices represent agents and edges denote
coupling objectives or constraints in the OCP associated with the vertex.

The agents connected to agent j are called its neighbors V). Introducing prior-
ities results in clear responsibilities to satisfy collision constraints. We direct edges
in the coupling graph from a higher prioritized agent to a lower prioritized agent.

Definition 4 (Directed coupling graph) A directed coupling graph G’ = (V, &)
results from a coupling graph G = (V, &) by keeping all vertices V and a subset of
edges & C &of G. In a directed coupling graph, a directed edge denotes a coupling
objective or constraint in the OCP associated with the ending vertex.

Vehicles determine their priorities using a priority assignment algorithm. A time-
variant priority assignment algorithm yields an injective priority assignment function
p: V x N — N, which assigns a unique priority to each vehicle in the NCS at every
timestep. If p(l, k) < p(j, k), then vehicle [ has a higher priority than vehicle j at
timestep k. At each timestep k, every vehicle groups its current neighbors V (vj) (k) in
a set of higher prioritized neighbors V) (k) and lower prioritized neighbors V) (k).
When a vehicle j has received the planned trajectories of all vehicles in V@ (k), it
plans its own trajectory while avoiding collisions with the received trajectories. It
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communicates its own trajectory to vehicles in V¢ (k). Each vehicle j adds con-
straint functions ¢-? to its OCP (9) to ensure collision-free trajectories with vehicles
in VY (k)

D (el xly) S0, Vi=1 N, Ve PO, (13)

3.1 Reprioritization Framework for Recursive
NCS-Feasibility

One of the main challenges for P-DMPC is its incompleteness: even though there
exists a priority assignment that results in an NCS-feasible P-DMPC problem, a
specific priority assignment might fail to produce a solution. Changing the priority
assignment during runtime can prevent such a failure, but loses recursive NCS-
feasibility of the P-DMPC problem.

Definition 5 (NCS-feasible) A P-DMPC problem is NCS-feasible if every agent in
the NCS finds a feasible solution to its OCP.

A P-DMPC problem is recursively NCS-feasible if from NCS-feasibility at time
k we can guarantee NCS-feasibility for all future times. Figure 4 illustrates our
distributed reprioritization framework to maintain NCS-feasible P-DMPC trajectory
planning problems while using a time-variant priority assignment function. At the
beginning of every timestep k, each agent attempts to plan its trajectory given the
priorities from time k. If any agent fails to find a feasible solution, it notifies all other
agents. All agents stay on their recursively agent-feasible trajectory. At any point, if
the P-DMPC problem is NCS-feasible, the corresponding input is applied.

A proof for recursive NCS-feasibility of time-invariant priorities is given in [38].
We need to prove recursive NCS-feasibility with time-variant priorities and our dis-
tributed reprioritization framework. We assume an initially NCS-feasible problem
and bounded disturbances which an underlying controller can compensate.

Theorem 2 A P-DMPC problem with our distributed reprioritization framework,
the OCP (9) with coupling constraints (13), and any time-variant priority assignment
Sfunction p is recursively NCS-feasible.

Fig. 4 Distributed New i f P-DMPC N )
reprioritization framework ew timestep with p(j, k) reuse mput w.j;_

which guarantees recursive
NCS-feasibility, as seen from
agent j. Figure adapted
from [51]

INFEASIBLE

)]
FEASIBLE apply uy;
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Proof Without loss of generality, assume the computation order resulting from the
priority assignment function p(j, k) tobe 1, ..., N4. Assume an NCS-feasible solu-

tion <u(‘1k>, x(‘Jk)> ,Vj € V at timestep k. Because of bounded disturbances which an

underlying controller can compensate, we have
D+ ~xf) . VjieV. (14)

Every agent shifts and extends the feasible solution of the previous timestep

() ) . .
X it = X Y€V, Vi=1. N -1 (15)

j G .
XNkl = X Vi€V

For agent 1, who does not consider other agents, recursive feasibility is given by
Theorem 1. For any agent 2 < j < Nj4, the coupling constraints (13) must also be
considered. Substituting (15) in (13) yields

ol )l 0] _ AGD () @
- (xk+1+1|k+1’ xk+1+z|k+1> =c (xk+1+z\k’ xk+1+z|k) (16)
Vi=1,...,N —1and VI € VU (k). Since the agents stand still at the horizon, we

have for the last timestep k + N + 1

( ) () 0] _ G.D ) ]
’ (xk+N+1\k+1’xk+N+1\k+l> =c (xk+N|k’xk+N\k) 17

VI € VU (k). This establishes recursive NCS-feasibility of the P-DMPC at time .
Because of a time-variant directed coupling graph, the set of higher prioritized agents
VP (k + 1) might differ from V) (k). Still, all coupling constraints are fulfilled.
Our coupling constraints are symmetric, i.e., ¢/’ = ¢/, A new coupling constraint
is guaranteed to be satisfied, as there was no collision possibility in timestep k. A
vanished coupling constraint cannot interfere with feasibility. Since all constraints
are satisfied at timestep k 4 1, the P-DMPC problem with time-variant priorities is
recursively NCS-feasible with our reprioritization framework. (]

3.2 Priority Assignment Algorithms

This section introduces two priority assignment functions. Section 3.2.1 describes
a constraint-based heuristic which aims at assigning priorities for NCS-feasibility.
Section 3.2.2 presents a priority assignment function based on coloring of the cou-
pling graph which reduces computation time.
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3.2.1 Constraint-Based Heuristic

The goal of the priority assignment function presented in this subsection is to reduce
the risk of standstill of the NCS due to infeasible OCPs of vehicles. We propose
a distributed, time-variant priority assignment algorithm for road vehicles on road
networks based on our previous work [51]. Each vehicle j first plans a trajectory
without inter-vehicle collision constraints (13), which we call the free trajectory

yge)e. Then, each vehicle j counts the number of collisions N, with other free trajec-

tories yﬁr_eé ) and possibly already planned, optimal trajectories y~/)". Vehicle w with
most collisions receives the next priority and plans its trajectory considering already
planned, optimal trajectories y~*)" by solving OCP (9) with coupling constraints
(13). The loop repeats until all vehicles have planned their optimal trajectories. If a
vehicle cannot find a feasible solution, all vehicles use the previous input as illus-
trated in Fig. 4. This algorithm results in a time-variant priority assignment function
Ptea: V x N — N. The index “future collision assessment (FCA)” reflects the inspi-
ration of this approach from [41].

3.2.2 Graph Coloring

In P-DMPC, if there is no path between two vehicles in the coupling DAG, they can
compute in parallel [4]. We call the number of necessary sequential computations the
number of computation levels. This section presents a priority assignment function
which minimizes the number of computation levels by vertex coloring based on
our previous work [53]. Figure 5 illustrates the proposed problem solution with an
example. From an example undirected graph, a baseline approach which assigns
priorities equal to the vertex number results in four computation levels. Assigning

Fig.5 Example of computation levels from graph coloring compared to baseline. Left: Undirected
coupling graph. Middle: Coupling DAG with computation levels from baseline priorities equal
to vertex number. Right: Coupling DAG with computation levels from priorities based on graph
coloring. Figure adapted from [53]
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priorities with our coloring approach reduces the number of computation levels to
three, as each color corresponds to a computation level.

In vertex coloring, we map vertices i € V(G) to colors ¢ € C C N. with the
function ¢ : V(G) — C. In order to produce a valid coloring, ¢ has to satisfy

o) #@(j), Vi,jeV(G), Ve € E(G), i # . (18)

Our distributed graph coloring algorithm must produce the same coloring ¢ in every
vehicle and must be fast enough for online execution. We propose a combination
of saturation degree ordering, largest degree ordering and first-fit to achieve a deter-
ministic coloring as detailed in [53]. We translate our graph coloring function ¢ to a
priority assignment function p. Let V. be all vertices of color ¢

V.={v|veV, ol =c}. (19)

We can generate a coupling DAG from an undirected coupling graph colored with ¢
with an injective priority assignment function p that fulfills the requirement

pi) <p(j) & c1<c2, VieV,, VjeV,. (20)

4 Numerical and Experimental Results

This section describes the evaluation platform, our Cyber-Physical Mobility Lab
(CPM Lab).? It presents the evaluation of our RHGS algorithm for recursive agent-
feasibility and of our reprioritization framework for recursive NCS-feasibility. Our
algorithms are implemented in MATLAB R2023a and openly available online.’

4.1 Cyber-Physical Mobility Lab

The evaluation hardware for this work is our 1:18 model-scale CPM Lab [34].
It is a remotely accessible open-source platform consisting of 20 networked and
autonomous vehicles (jLCars) [54]. Our trajectory planning algorithms run on a PC
with an AMD Ryzen 5 5600X 6-core 3.7 GHz CPU and 32 GB of RAM. This PC
communicates with the other components in the CPM Lab via the data distribution
service standard over WLAN [33]. Figure 6 illustrates the road network in the CPM
Lab. It replicates a wide variety of common traffic scenarios with a 16-lane urban
intersection, a highway, highway on-ramps, and highway off-ramps.

2 https://cpm.embedded.rwth-aachen.de.
3 https://github.com/embedded- software-laboratory/p-dmpc.
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Fig. 6 1:18 model-scale road network in the CPM Lab with an intersection, a highway, highway
on-ramps, and highway off-ramps
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Fig. 7 The MPA for our experiments. The position of a state marks its speed v and its steering
angle §. For clarity of presentation, the figure omits the time dependency of transitions to ensure
recursive feasibility

Our algorithm plans trajectories using the MPA shown in Fig. 7. It is based on
a kinematic bicycle model (1) of our pCars with £, = 7.5cm and L = 15cm. Itis
designed such that transitions between automata states respect input constraints of
the pCars used in the experiments. The transitions change the control inputs linearly
over the duration of the sampling time 7; = 0.2 s. The planning horizon is N = 8.

4.2 Evaluation of Receding Horizon Graph Search

In our RHGS algorithm, we achieve recursive agent-feasibility by design of the MPA,
as illustrated in Fig. 3. The recursive agent-feasibility is verified in [55].

In [55], we compare our RHGS planner with a state-of-the-art graph search (SGS)
planner. The SGS planner computes the trajectory once at the beginning of the exper-
iment with a horizon spanning the whole experiment duration. The test scenario
contains moving obstacles with known future trajectories. Both planners manage to
avoid the obstacles. In the specific test scenario, the RHGS planner stops in front of
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the obstacles, while the SGS avoids the obstacles by steering early enough. Conse-
quently, the cost function value is lower for the SGS than for the RHGS. However,
in the worst case, the computation effort increases exponentially with the horizon
length. A video of an experiment using RHGS with multiple vehicles in the CPM
Lab is available online.*

4.3 Evaluation of Time-Variant Priority Assignment

This section presents P-DMPC trajectory planning with time-variant priority assign-
ment using our reprioritization framework depicted in Fig. 4 to guarantee recursive
NCS-feasibility. A time-invariant priority assignment algorithm and a time-variant
random priority assignment algorithm represent state-of-the-art priority assign-
ment algorithms for our evaluation. In the time-invariant priority assignment algo-
rithm, each vehicle receives a unique priority corresponding to its unique num-
ber j € V at the beginning of the experiment. The priority assignment function
Peonst: V X N — Nis

Peonst(J. k) = J. 2D

In the random priority assignment algorithm, each vehicle receives a random priority
in each timestep. The priority assignment function panga: V X N — Nis

Prana(J, k) = r (k). (22)

The evaluation focuses on two criteria: (i) the ability to maintain progress of the
vehicles, i.e., to avoid a standstill, and (ii) the ability to reduce computation time. We
call the absence of progress a standstill, which we define as a situation where two or
more vehicles stop for the rest of the experiment.

Our evaluation spans 720 numerical experiments with an individual duration of
180 s, a combination of the four priority assignment functions (Pfca, Pcolors Prand> and
Peonst) With vehicle amounts from 1 to 20 in 9 random scenarios. All scenarios are
based on the map shown in Fig. 6. The vehicle starting positions and their reference
paths in the map are determined randomly to replicate various traffic situations.
We use the Mersenne Twister algorithm [44] with a manually set random seed for
reproducible experiments.

Figure 8 depicts the performance on a scale of 0 to 1 of the four priority assign-
ments in three aspects. The first aspect is the number of vehicles up to which all
vehicles in all scenarios could maintain progress over the experiment duration. The
functions pconst and pc, are able to move up to 10 and 9 vehicles respectively, whereas
Prand and peojor produce a standstill with already 6 and 5 vehicles respectively. The
second aspect is the percentage of scenarios from all scenarios with all numbers
of vehicles, for which the corresponding priority assignment function successfully

4 https:/youtu.be/7LB7I5SOpQE.
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time until standstill (x 145.1 )
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Fig. 9 Median and maximum number of computation levels N¢r, in all timesteps of all standstill-
free scenarios per priority assignment function over the number of vehicles Ny

maintained progress over the full experiment duration. The performance tendency is
similar to the first aspect. Both aspects indicate that a change in the priority assign-
ment can decrease NCS-feasibility. A constant priority might not be ideal in all
situations, but can help maintaining NCS-feasibility and avoid standstills. The third
aspect is the average time until standstill, in which p., performs best with an aver-
age time of 145.1 s. These results indicate that changing priorities might harm the
systems performance. A better approach might be to change priorities only when the
P-DMPC problem becomes NCS-infeasible.

The computation time in P-DMPC is mainly determined by number of compu-
tation levels, i.e., the minimum number of sequential computations of the NCS [4].
Figure 9 shows the median and maximum number of computation levels per prior-
ity assignment function in experiments without standstills. A scenario will develop
differently for different priority assignment functions. To mitigate the effect of this
difference, we consider each timestep from all experiments on its own. In every



Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives 271

timestep, we assign priorities with all four priority assignment functions and analyze
the resulting number of computation levels. The strength of the priority assignment
function poor lies in this criterion, as it produces the lowest amount of median and
maximum computation levels for all experiments. In the scenarios with 17 to 19
vehicles, it reduces the number of computation levels by up to 33 %.

A video of an experiment in the CPM Lab is available online.’ It presents the
priority assignment function pg., with our distributed reprioritization framework.

5 Conclusion

This chapter presented two approaches to deal with the complexity of a nonconvex
trajectory planning problem: discretization of control inputs using motion primitives
and distribution of the control problem using prioritization. We showed recursive
agent-feasibility for our receding horizon graph search using motion primitives, mak-
ing it a viable alternative to receding horizon approaches using optimization. The
efficiency of the informed search algorithm is highly dependent on the quality of
the cost-estimating heuristic. We showed recursive NCS-feasibility for time-variant
priority assignment functions in prioritized planning. We presented and evaluated
two priority assignment functions for road vehicles, one for maintaining progress
of vehicles and one for reduced computation time. Changing the priorities during
an experiment affects NCS-feasibility of the P-DMPC problem, as it alters the con-
straints of the vehicles’ OCPs. Experiments with up to 17 vehicles in our CPM Lab
showed efficient computation and effective results for networked trajectory planning
problems.

The priority assignment function offers potential for improvement. A strategy that
might be worth examining is the application of game theory to assign priorities [30].
Our framework for distributed reprioritization achieves recursive NCS-feasibility
through standstill at the end of the prediction horizon. While ensuring safety, this
counteracts the goal to maintain progress in traffic. Some of the scenarios we evalu-
ated resulted in a standstill which could not be resolved through the priority assign-
ment function. In these situations, the priority assignment function could be altered
to explore different priority permutations. The trajectory planner could also switch
to a cooperative or centralized trajectory planning algorithm, which is more flexible,
but has higher computation time [29]. The minimum number of computation levels
and thus the expected computation time in our P-DMPC is decided by the coupling
graph. If the allowed computation time is fixed and the number vehicles increases,
less computation time for each vehicle is available. This issue will be addressed in our
future work. Another topic to explore is the cooperation of our distributed trajectory
planning algorithm with others such as [14], and the cooperation with human-driven
vehicles [50].

3 https://youtu.be/RqwbHUwip10.
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Maneuver-Level Cooperation )
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Matthias Nichting, Daniel Hef3, and Frank Koster

Abstract Cooperative behavior of automated vehicles at the maneuver level is of
utmost importance for the efficient and safe use of traffic space. This chapter discusses
a vehicle-to-vehicle communication-based negotiation and cooperation method for
maneuver cooperation. The method is based on the negotiation about explicitly
defined reservation areas on the road for the exclusive use of a particular traffic
participant. It covers all standard traffic situations occurring on regular streets and
thus achieves universal applicability. The evaluation of simulations and driving tests
shows the suitability of the method for effective maneuver cooperation in various
traffic situations. Furthermore, based on this method, the planning and execution of
cooperative maneuvers in emergency situations are investigated. Simulations show
that collisions can be avoided in relevant cases by this method. Moreover, further
simulations and driving tests show that joint maneuvers can avoid sharp braking
maneuvers in many situations. In addition, research on a methodology for implicit
maneuver cooperation is presented. Based on reinforcement learning methods, par-
tially cooperative decision-making functions are studied in a setting that benefits
from cooperative behavior. The evaluation shows that cooperative behaviors of road
participants can be achieved using this technique.
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1 Introduction

Road traffic rules should ensure efficient and, above all, safe traffic. In doing so, the
participants in road traffic are taken into account with their capabilities. Automated
vehicles have much greater potential than manually operated vehicles concerning
the exchange and utilization of data so that more suitable solutions can replace static
traffic rules on a situational basis. The cooperative behavior of automated cars at
the maneuver level can contribute significantly to this. Joint maneuvers can, for
example, increase efficiency and comfort in road traffic. For instance, explicitly
coordinated cooperative behavior allows vehicles to keep shorter safety distances
than human drivers or to give way in conflicting traffic situations, such as changing
lanes, entering roundabouts, or at intersections. In summary, cooperative behavior
at the maneuver level based on explicit communication enables the optimization of
vehicle movements concerning shared objectives, whereas, without this cooperative
behavior, vehicles act only based on their own goals.

Another possible use of cooperative maneuver execution addresses emergency
situations. Unforeseen events may disrupt the planned movement of a vehicle and
require a change in the preconditions for trajectory planning to achieve or maintain a
safe state. This is often neither dangerous nor uncomfortable because other road users
act considerately and do not force other participants to make last-minute changes in
their motion planning, even if just out of self-interest. However, there are situations
where prompt response is required to prevent or mitigate collisions. For example,
the door of a car parked at the side of the road may suddenly be torn open and
protrude into the planned path of the vehicle. Likewise, pedestrians or bicyclists
may unexpectedly block the path of travel, for example, by suddenly changing the
direction and speed of travel without correctly being predicted by the automated
vehicle.

Figure 1 shows an exemplary traffic situation in which an immediate reaction of
the automated vehicle is required. There, an automated vehicle approaches a suddenly
occurring pedestrian on the right of two parallel lanes leading in the same direction.
Depending on the time and location of the obstacle’s occurrence and the speed of
the approaching vehicle, a specific braking rate must be attained to avoid a collision
with the obstacle without changing lanes. There may be constellations in which a
lane change is more favorable in terms of an associated cost function than a pure

L D
X

Fig.1 Exemplary depiction of an emergency situation. The depicted pedestrian steps unexpectedly
and irregularly into the lane, forcing the approaching automated vehicle to adapt its plan. The
illustration indicates a cooperative lane change in response to the event
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braking maneuver, e.g., a high braking rate is required without a lane change, or a
collision cannot be avoided without changing the lane due to the physically limited
braking rate. To execute a lane change, a suitable gap is required in the adjacent lane
so that the lane change does not create a risk of collision. If an appropriate gap is
available, it can be used by the swerving vehicle to resolve the situation. However,
if this is not the case, cooperative behavior of vehicles in the target lane would
be desirable so that the vehicle can tackle the emergency as smoothly as possible.
Because of the dynamic nature of the situation, achieving this goal requires a quick
agreement among the vehicles involved. Thus, a joint maneuver could increase road
safety in safety-critical cases by allowing a coordinated, targeted response without
the uncertainty and delay of inexplicit human communication.

Another critical point of cooperative maneuver-level behavior is the decision-
making of an automated vehicle. The decisions that an automated vehicle has to make
in road traffic range from very simple to complex. Examples include starting to move
when a traffic light has just switched to green, selecting a cruising speed, choosing
a distance to the vehicle in front, when to change lanes, and selecting a suitable gap
for a lane change or crossing an intersection. Complexities are added by the traffic
dynamics, differing or even unknown goals of road users, and their interactions.
Reinforcement learning, a subcategory of machine learning, is particularly suitable
for problems where it is relatively easy to evaluate the outcome of a decision, but
engineering an algorithm to solve a given task is very complex or too time-consuming.

Up to this point, three essential aspects of Cooperative Automated Driving have
been outlined. The research conducted in the CoInCiDE project on these three aspects
is expounded in this chapter. Sect.2 presents research on a foundational univer-
sal cooperation methodology based on explicit vehicle-to-vehicle communication
(V2V). In the following Sect. 3, research on the further development of the method
with regard to emergency situations is presented. Sect.4 contains the research results
on reinforcement learning methods for cooperative maneuver-level decision-making.
Last, this chapter is concluded in Sect. 5.

2 Framework of Explicitly Negotiated Maneuver
Cooperation via V2V

While human drivers on the road must rely mainly on implicit communication and
communication methods that can rarely be interpreted beyond doubt, automated
vehicles can easily exchange data via explicit communication. This enables explicit
agreements between vehicles regarding joint maneuvers to be executed. This section
presents a method, the Space-Time Reservation Procedure (STRP), based on the
work already published on this topic [14, 15, 24, 25].
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2.1 Related Work

Several approaches for the coordination and cooperation of automated vehicles based
on explicit data exchange have already been documented in the literature. And there
are already several message types that support cooperative driving functions defined
or under development. Some of the messages have already been standardized or are
in the process of being standardized. The Cooperative Awareness Message (CAM) is
already standardized and contains basic information such as the position and velocity
of the sender [6]. The likewise standardized Decentralized Environmental Notifica-
tion Message (DENM) can be used for exchanging data on particular danger spots in
the road network [7]. It contains information about the type and position of the area
to be described. Collective Perception Messages (CPM) can be used to share infor-
mation about obstacles and other road users detected by the sensors of the originating
system [8]. This message is already standardized, too.

In many cases, specific, frequently occurring traffic situations are considered. One
example is the change between parallel lanes. An approach is to equalize the speeds
of the vehicles involved in the lane change to enable the maneuver [22]. This method
is adapted from a technique for cooperation at intersections [28]. Another method for
cooperative lane changes on highways achieves safe lane change maneuvers based
on a minimum safety spacing model (MSS), even in complex situations [34]. The
method performs trajectory planning based on the distances at different points in
time between the involved vehicles calculated by the MSS.

The Maneuver Coordination Message (MCM) that is currently under standard-
ization [5] allows the exchange of trajectories. Based on this, an approach in which
vehicles continuously publish their currently planned trajectory is presented in [19].
In addition to the currently planned trajectory, a trajectory can be broadcast that is
marked as desired and conflicts with the plans of other road users. Other vehicles
can adjust their planned trajectory so that it no longer conflicts with other road users’
desired trajectory. The desired trajectory can be executed once all trajectory con-
flicts are resolved. This method can be extended by a coordination protocol [35]
which allows vehicles to form cooperative groups. A similar method that also relies
on MCM and the continuous exchange of trajectories is presented in [21]. In this
method, other trajectories in addition to the reference trajectory are sent that can be
either more favorable for the sending vehicle or advantageous for other vehicles but
to the disadvantage of the sending vehicle. Cooperation is achieved by evaluating
the received trajectories and adjusting the reference trajectory.

A co-simulation framework for evaluating and testing cooperative driving func-
tions is presented in [20]. The framework couples a vehicle dynamics simulation and
a traffic flow simulation. It contains a machine learning module to generate and eval-
uate test scenarios. These three components together allow for extracting scenes from
the traffic flow simulation, automatically testing them using the vehicle dynamics
simulation, and evaluating the cooperative driving functions.
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The space time reservation procedure (STRP) is another approach to achieve coop-
erative maneuver level behavior of automated vehicles [15]. The method is based
on a structured negotiation about reservations of road space for agreeing on binding
cooperative maneuvers. This approach has also been tested for more than two partic-
ipating vehicles [24] and by test drives with two automated research vehicles [14].
Moreover, universality has been investigated to cover all traffic scenarios [25]. In the
following, this method is presented in detail.

2.2 Definition of a Cooperative Maneuver

The foundation of the STRP is a set of rules for explicitly defining joint maneuvers.
These rules avoid misunderstandings and allow the details of coordinated maneuvers
to be described precisely. The reservation templates described in Sect. 2.3 are specifi-
cally adapted for different types of joint maneuvers. In this section, attributes that are
used for all templates are explained. The method is based on reserving temporarily
and spatially limited traffic space for the exclusive use of one automated vehicle. A
data set represents the restriction of the traffic space reserved during a cooperative
maneuver. First, this includes information for uniquely identifying the lane contain-
ing the reservation area. This is covered by two points Py and P; connected by the
lane to be identified. Both points are described by their longitude, latitude, and eleva-
tion coordinates. The reservation area is longitudinally bounded by the length values
so and s;. Both values refer to the point P and determine the exact start and end of
the reservation lengthwise. In the lateral direction, the reservation area is predeter-
mined by the lane width. Therefore, the reservation area is spatially unambiguously
defined. A time interval [y, #;] specifies the time limit within which the reserving
vehicle must start to enter the reservation area. Otherwise, the cooperative maneuver
becomes invalid. The reservation templates for different situations extend this basic
definition as needed for specific traffic situations.

With this set of rules for explicitly defining reservation areas for cooperative
maneuvers, a schematic negotiation process between road users can take place. A
vehicle can use a definition of a reservation area to request cooperative behavior
from other road users via vehicle-to-vehicle communication. To do this, a request
message containing the reservation definition is broadcast. All receiving vehicles
can then evaluate the request based on the requested reservation and ignore, reject,
or accept it depending on their own goals. The evaluation of the responses is done
solely by the requesting vehicle. It can execute the intended maneuver if the cars
required for the coordinated maneuver have agreed to collaborate. Due to physical
limits and incompatible objectives, a vehicle may not send an acceptance message.
In this case, the requesting vehicle can cancel the reservation using an abort message
so that other participants do not avoid the reservation area unnecessarily. If a vehicle
has agreed to a reservation, the agreement is binding. The vehicle must then avoid
the area according to the reservation definition, provided that the reserving car starts
to enter the reservation area within the time interval [7y, #;].
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2.3 Reservation Templates

In order to make the method universally applicable for standard driving maneuvers
occurring on regular streets, three patterns for reservation are defined. These differ,
e.g., in terms of additional data that is transmitted and the end of a cooperative
maneuver. The first template covers a vehicle’s intention to change from a parallel lane
to the lane containing the reservation area, e.g., a standard lane change. The second
template covers cases in which vehicles leave the original lane, use another lane for a
limited distance, and change back to the initial lane afterward. This can be used, for
example, to drive around a traffic obstruction in the presence of oncoming traffic. The
third template defines a reservation area located on the original lane of the vehicle.
This template is suitable, for example, at intersection crossings for cooperation with
cross-traffic. A more detailed presentation of the reservation templates can be found
in [25].

2.3.1 Lane Change

To keep the length of the reservation area as short as possible and still allow the
lane-changing vehicle a certain tolerance, an additional parameter v defines a speed
at which the boundaries of the reservation area specified by sy and s; move along
the direction of the road from time fy. Furthermore, joint maneuvers agreed upon
based on this reservation template end with their activation. That means the cooper-
ative maneuver ends as soon as the reserving vehicle begins to enter the reservation
area in the interval [7y, #;]. After that, the vehicles involved continue their journey
individually.

The sequence of a cooperative maneuver with this reservation template is shown
in Fig.2. At the bottom of the figure, the two lanes are sketched, and the points
Py and Pj, as well as the distances sy and s;, are drawn in so that the reservation
area marked in green is spatially clearly delimited. In the upper part of the figure,
an s-t diagram is shown. In this, distances sy and s;, as well as the time interval
[#o, 1;], and an exemplary path on the target lane t are drawn. Furthermore, the chart
shows three different areas. The hatched area indicates the longitudinal positions
and times where the vehicle must not be on the target lane. This is the case before
to and spatially before the lower limit of the reservation determined by sy. The area
in which the vehicle must begin to enter the reservation area is shown in dark green.
Within the time interval, the spatial boundaries move with velocity v so that this area
forms a parallelogram in the chart. The white space in the diagram marks time and
space intervals on the target lane that may be used after the vehicle has activated the
cooperative maneuver by entering the reservation area within the dark green area.
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Fig.2 Reservation shape for lane change: The s-t-diagram shows three different areas for the target
lane. The hatched area must not be used by the reserving vehicle, the dark green area must be used
for starting to enter the target lane, and the white area can be used after; t is an exemplary path of
the vehicle, adapted from [25]

2.3.2 Evasion With Oncoming Traffic

This reservation template allows the requesting vehicle to avoid an obstacle by using
the lane of, e.g., the oncoming traffic. The vehicle must start entering the reservation
area within the interval [y, #;]. The defined reservation area is spatially static and
must be left before reaching the upper longitudinal limit defined by s;. The maneuver
ends as soon as the vehicle has left the reservation area; there is no predefined time
end. Figure 3a is analogous to Fig.2. The s-t diagram refers to the target lane. The
dark green room indicates when and in which area to enter the reservation. The
hatched areas must not be entered at all within the target lane. The fading green color
indicates the unlimited temporal validity of the reservation. The maneuver ends when
the vehicle leaves the area. A possible path 7 of the car on the target lane is drawn
in black.

2.3.3 Lane Keeping

This reservation pattern is suitable, e.g., for a crossing passage. In this case, the
reservation area is also spatially static and unrestricted in time. The start of the entry
must lie in the interval [f, #;]. Figure 3b shows this area in dark green in the s-t-
diagram. After that, the reservation is valid for an unlimited time until the reservation
area has been left.



284

> X

(a) Reservation shape for evasion with on-
coming traffic: The s-t-diagram shows three
different areas for the target lane. The
hatched area must not be used by the re-
serving vehicle, the dark green area must be
used for starting to enter the target lane, and
the shaded light green area can be used after
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(b) Reservation shape for lane keeping:
The s-t-diagram shows four different areas
for the target lane. The hatched area must
not be used by the reserving vehicle, the
dark green area represents the time interval
within the reservation must be activated by
being started to enter, and the light green

area can be used after activation for an un-
limited time. The white areas can be used
before and after the reservation; 7 is an ex-
emplary path of the vehicle

without a time limit; 7 is an exemplary path
of the vehicle

Fig. 3 Reservation shapes for evasion and lane keeping, adapted from [25]

2.4 Simulations and Driving Experiments

Several experiments were conducted in simulation and using two automated research
vehicles to analyze the method in more detail. Eclipse ADORe [13] is used to run
the research vehicles and the simulation. For more information, please refer to this
source. The research vehicles are equipped with hardware for vehicle-to-vehicle
communication, special sensors, and other devices to operate the automation. An
accurate map of an actual urban intersection in Braunschweig, Germany, is used for
the experiments. The map was shifted accordingly to perform the driving experiments
on a test site.

2.4.1 Simulation: Lane Change

In the simulation, two automated vehicles start about 200 m distant from a merging
area. Coordination is required to drive through the area as efficiently as possible.
The test drive results are shown in Fig.4. Two vehicles are plotted at four consec-
utive time instants with 14 < fg < fc < tp. At the earliest time, 74, both vehicles
approach the merging area in parallel lanes without coordination. Just before time
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Fig.4 Simulation of a cooperative lane change: The reservation area depicted in green is requested
by the lane changing vehicle (blue), adapted from [25]

tp, the reservation area marked in green is requested by the lane changing vehicle,
depicted in blue. The lane following vehicle shown in red has evaluated this and
agreed to the request. At the time 7¢, the reservation area is just activated by the
lane changing vehicle entering. Thus, the cooperative maneuver is finished, and both
vehicles continue independently on the now single-lane road. As a result, the method
is shown to coordinate the situation appropriately. The lane keeping vehicle brakes
slightly, and the lane changing vehicle drives through the area without braking.

2.4.2 Driving Test: Three Vehicles at an Intersection

Since only two automated vehicles were available for the driving experiments, one
of the three vehicles was simulated. Figure 5 shows the situation during the cooper-
ative maneuver. The left-turning vehicle, shown in red, and the straight-out vehicle,
shown in blue, are the two physical vehicles. The third car (green) is simulated.
While approaching the intersection, the left-turning vehicle had requested the shown
reservation area, and the other two conflicting cars had agreed to the maneuver. As a
result, the left-turning vehicle can pass the intersection unimpeded. In contrast, the
other two vehicles reduce speed to the required extent until the left-turning car has
cleared the respective lane. Although the usefulness of this experiment in terms of
traffic efficiency is not apparent at first glance, there are situations in which such

Fig. 5 Driving experiment 60 T
with three vehicles at an
intersection, adapted
from [25] . 40

R~

=

20
0 1 L 1 1
80 100 120 140 160 180

T in m
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a cooperative maneuver is beneficial. For example, such cooperation can allow the
automated vehicle to turn safely in heavy traffic, possibly including mixed traffic.
Furthermore, it can enable fast and reliable priority for emergency vehicles.

2.5 Conclusion

Cooperation at the maneuver level between road users can contribute to the efficient
use of road space. The presented approach uses vehicle-to-vehicle communication
and a method designed for explicit negotiation and agreement of cooperative maneu-
vers. Various reservation templates establish the universal applicability of the tech-
nique. These templates are not limited to the traffic situations discussed in this section
but may also be used for other conflicts between road users. The driving experiments
and simulations conducted to research and improve the method show that it is suitable
to ensure coordination in the studied situations. Furthermore, by design, the tech-
nique is inherently safe against message loss and suitable for mixed traffic scenarios.
Its decentralized architecture allows flexible use at any place. The reader is referred
to the publications [14, 15, 24, 25] for a deeper look at this method and more results
of many simulations and driving experiments in various traffic situations.

3 Cooperation in Emergency Situations

This section discusses research on adapting the cooperation method presented in
Sect. 2 to emergency situations. The effectiveness of the method to coordinate maneu-
vers of automated vehicles in emergency situations is evaluated by both simulations
and driving tests.

3.1 Related Work

The related work regarding vehicle-to-vehicle communication-based cooperation
of automated vehicles given in Sect.2.1 is relevant here, too. In addition, a few
publications concerning emergency maneuvers shall be presented here.

The authors of [16] propose a method for guaranteeing safety based on verifying
the planned trajectory while the vehicle is in motion. The core of the approach is a
two-step evasive strategy based on a discrete decision for an evasive maneuver and
the computation of an appropriate low-level control to follow this maneuver. The
method was validated in simulation.
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An approach for lateral control in evasive maneuvers is proposed in [4]. The
method, based on a sliding mode control, calculates a steering angle taking into
account, among other factors, the tire slip saturation. Simulations show that lane
changes are possible within 1.1s at speeds of up to 130 km/h under certain circum-
stances. Another proposal involves taking into account the dynamics of the steering
system during evasive maneuvers [27]. The model predictive control in this pub-
lication contains two models. Besides the vehicle model, also a steering model is
included.

A parameterization of a geometric path for an evasive maneuver based on rein-
forcement learning is proposed in [9]. The path consisting of straight lines and
clothoids is then executed by means of a model predictive control loop. Simulations
of a common emergency situation show that the method significantly outperforms
human drivers.

3.2 Approach

The basic framework of the cooperation and negotiation method has already been
stated in Sect.2. This approach is adapted to the particular requirements in emer-
gencies. Negotiating the cooperative maneuver in the shortest possible time without
avoidable delay is of the utmost importance in emergency situations. This is because
these situations are highly dynamic, and any delay reduces the ability to respond to
the situation. For example, evasive maneuvers may become impossible because of
the intermediate progress of the surrounding traffic. Therefore, negotiation is started
immediately after a cause for an emergency response is detected. Due to the safety-
critical nature of emergencies, cooperative maneuver requests are of higher priority
than other requests. The receiving vehicles can consider that during the evaluation
of the request.

3.3 Simulations and Driving Experiments

To verify and investigate the method, simulations and driving experiments are con-
ducted. The basis in each instance is the traffic situation shown in Fig. 1. The param-
eters, such as speeds and distances, vary in the different runs. A simulation run and
a driving experiment are presented below with their evaluation and results.
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3.3.1 Simulation

At the time ¢ = 0, the obstacle occurs on the lane of the lane changing vehicle (lc-
vehicle). At this point in time, the vehicle approaches the obstacle at a speed of
27.73m/s, and the lane following vehicle (If-vehicle) on the adjacent lane to the
left is driving at a speed of 27.16 m/s. The distances measured along the road from
the front bumpers of the vehicles to the position of the obstacle are 43.16m for
the 1f-vehicle and 38.96 m for the lc-vehicle. In this scenario, the obstacle does not
block the entire width of the right lane. The blocking is limited to the right side
of the lane so that only the outer 50% of the width is blocked at the longitudinal
position d = 0. The physically maximum possible braking rate of the lc-vehicle is
assumed to be 9.81m/s?. Even with hypothetical constant deceleration at this rate,
a collision would occur between the obstacle and the lc-vehicle since the braking
distance exceeds the distance to the block. Therefore, the lc-vehicle immediately
starts negotiating a cooperative maneuver and requests a reservation area just before
the obstacle. The If-vehicle in the target lane accepts the request and brakes to allow
the requesting vehicle to change lanes.

Figure 6 shows the positions of the two vehicles in the distance-time diagram.
Time ¢ = 0 corresponds to the point in time of the obstacle occurrence. The obstacle
is longitudinally located at d = 0. Two curves that are connected by a hatching are
plotted for each vehicle. The two curves correspond to the longitudinal positions of
the front and rear bumpers of both vehicles. The hatching patterns indicate which
lateral zone the vehicles use at the respective time. The inclined single hatching
corresponds to the left lane, which is unaffected by the obstacle at d = 0. The hori-

distance along the road to the obstacle in m

0 0.5 1 1.5 2 2.5 3
time in s

Fig. 6 Simulation: Distances between the front and rear bumpers of the 1f-vehicle (red) and the
Ic-vehicle (blue) and the obstacle located at d = 0, with # = 0 being the point in time of the obstacle
appearance; the distances are measured along the lane. The hatching patterns indicate the lateral
area used by the vehicle: Horizontal single hatching indicates the use of the right half of the right
lane, and inclined single hatching indicates the use of the left lane
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zontal parallel hatching indicates the usage of the lateral zone blocked from d = 0,
i.e., the right 50% of the right lane. Directly after the occurrence of the obstacle, the
Ic-vehicle requests a reservation which is evaluated and accepted by the 1f-vehicle. A
gray box in the diagram depicts the reservation area. The If-vehicle brakes sharply to
respect the reserved area for the emergency lane change. Within the interval in time
and longitudinal position, the lc-vehicle leaves the blocked part of the right lane and
changes towards the left lane. The cross-hatching in the diagram indicates the short
period in which the Ic-vehicle uses both the left and the blocked part of the right
lane. Figure 7 shows the development of the velocities of both vehicles during the
scenario. While the If-vehicle brakes and reduces its speed by approx. 7m/s to assist
the emergency evasion of the lc-vehicle, the latter reduces its velocity marginally.

SN TR

Fig. 8 Automated research vehicles VIEWCar II (left) and FASCar E during the demonstration of
a cooperative emergency lane change at the IEEE Intelligent Vehicles Symposium 2022
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3.3.2 Driving Experiment

In addition to the simulations, physical tests were performed with automated research
vehicles. These tests of the method were demonstrated at the IEEE Intelligent Vehi-
cles Symposium 2022 in Aachen, Germany. Figure8 shows the two automated
research vehicles on the site during the driving demonstration. The results of the
tests are presented in the following.

The two research vehicles, FASCarE and VIEWCarll, were used for the driv-
ing experiments and demonstrations. These vehicles are provided with the neces-
sary hardware for communication via ITS-GS5. The software framework for vehicle
automation ADORe [13], further developed in the CoInCiDE project, is used in
both cars for these tests. Currently, the maximum deceleration set by the automated
research vehicles is limited to 3 m/s?. This limitation is due to the vehicle interface
and cannot be influenced by the automation software. To account for that limitation,
the driving test distances are larger than those used in the simulation. In this way,
meaningful results can be obtained despite the restriction.

The initial situation of the scenario is again two automated vehicles traveling
in the same direction on adjacent lanes. The point in time of the virtual obstacle
occurrence is defined as r = 0, and its longitudinal position is d = 0. In this scenario,
the entire width of the right lane is blocked by the obstacle, so the vehicle must have
left it entirely before passing this location. The lc-vehicle in the right, blocked lane
approaches the obstacle at a speed of 13.65 m/s at a distance of 73.86m attime ¢ = 0.
The 1f-vehicle driving on the adjacent lane travels at this time with 13.45m/s at a
distance of 81.85 m measured along the lane in the same driving direction. Figure 9
shows the distances analogously to the evaluation in Sect.3.3.1. The longitudinal
distances from the front and rear bumpers to the obstacle are plotted for both vehicles.
The hatching again gives information about the lateral position of the vehicles. Here,
the inclined line hatching corresponds to the use of the unblocked left lane, and the
horizontal line hatching indicates the use of the right lane, which is blocked from
d = 0. The cross-hatching represents areas where both lanes are used at the same
time.

Immediately after the virtual obstacle appears, the lc-vehicle requests a reser-
vation area in the target lane so the obstacle can be passed without braking. After
evaluating this emergency request, the 1f-vehicle sends a confirmation message. Thus,
the cooperative maneuver is bindingly agreed upon. The temporarily and spatially
limited reservation area is indicated by a gray box in Fig.9. Right at the beginning
of this area, the lc-vehicle activates the reservation. The cross-hatching indicates the
partial use of both lanes. Before reaching the obstacle at the longitudinal position
d = 0, the lane change is completely finished, and both vehicles drive on the left
lane one after the other. Figure 10 shows the speeds of the two vehicles during the
experiment. The speed profile of the lc-vehicle is almost constant. The If-vehicle, on
the other hand, brakes and thus enables the cooperative maneuver.
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Fig. 9 Test drive: Distances between the front and rear bumpers of the 1f-vehicle (red) and the lc-
vehicle (blue) and the obstacle located at d = 0, with ¢t = 0 being the point in time of the obstacle
appearance; the distances are measured along the lane. The hatching patterns indicate the lateral
area used by the vehicle: Horizontal single hatching indicates the use of the right lane, and inclined
single hatching indicates the use of the left lane
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3.4 Conclusion

Emergencies in road traffic can hardly be avoided due to complexity and, not least,
due to humans. Therefore, appropriate handling of such situations is of the utmost
importance for developing automated vehicles. A basic example of such a hazardous
situation is an obstacle’s sudden and unforeseen occurrence within the planned path
of movement. The most basic method of responding to such a situation is to brake the
vehicle to avoid a collision or at least reduce the impact energy as much as possible.
Evasive maneuvers can be used in some instances to avoid heavy braking or even
to avoid collisions. The prerequisite is that the traffic space required for swerving
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is not in use by other road users. The method discussed in this section aims to use
vehicle-to-vehicle communication to negotiate a reservation of the space required for
an evasive maneuver with conflicting road users. Hence, evasive maneuvers should
be possible in more situations than before, thus avoiding heavy braking maneuvers
and collisions.

The evaluation of the performed simulation and test drive shows that the method is
suitable for this purpose. It was shown in the test drive that the cooperative behavior
reduced the impact of the obstacle. The simulation is parameterized so that a braking
maneuver within the lane cannot avert a collision. Initially, a lane change is impossible
because of the blocked adjacent lane. However, the cooperative behavior negotiated
using the presented method can effectively resolve the emergency situation without
causing a collision. Thus, the method can prevent collisions and reduce the impact
of unforeseen obstacles. To further improve cooperative emergency behavior, future
research can address, e.g., pre-negotiation of emergency responses and lane sharing
in emergency situations. This could prevent collisions in a wider range of situations.

4 Implicitly Cooperative Decision-Making

The research presented here builds upon prior work on cooperation of automated
vehicles [25] and the use of reinforcement learning for decision-making [26]. While
the previous reference investigated deep Q-learning for the decision-making of an
automated vehicle without considering interactions between road users, this section
presents a method that does this based on the soft actor-critic approach [10] and
proximal policy optimization algorithms [29]. For this purpose, a multi-agent system
is built, and partly cooperative objective functions are designed. A common problem
of road traffic is selected to show and research the methodology. Figure 11 shows a
traffic situation similar to a highway entrance. Two lanes are in parallel for a limited
stretch of way, with the right lane ending at the end of the segment and the left
lane proceeding as part of a road with an arbitrary number of lanes. In such traffic
situations, participants with different objectives interact, implicitly communicate and
sometimes even cooperate.

4.1 Related Work

In literature, several methods have already been documented to implement parts of
the decision-making of an automated vehicle using reinforcement learning methods.
There are a few examples where end-to-end learning approaches are employed [3,
33] with the decision-making being part of the end-to-end architecture. But the task of
automated driving is usually split into subtasks that are solved by different methods.
Tram et al. [30] use deep Q-learning to adjust the speed of an automated vehicle as it
passes through an intersection. The surrounding traffic, which consists of simulated
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manually driven vehicles, is used as input for an artificial neural network and a
recurrent artificial neural network for comparison. As a result, the automated vehicle
passes the intersection without collision in the majority of cases for both networks,
with better results obtained from the recurrent network.

Wang et al. [31] consider lane changing and investigate a methodology to perform
itin various situations. To do this, they model the problem with a state space consisting
of road information such as curvature and width and vehicle dynamics information
such as acceleration, speed, and position. Here, the reinforcement learning agent
serves as the lateral controller, and the action space contains the yaw acceleration
of the vehicle. The results show that the lane change controller manages the control
task but lacks robustness and flexibility. The principal author later reformulated the
task and published an approach for the lateral control during lane changing using
deep deterministic policy gradient [32]. As a result, stable lane changing is achieved
with the proposed architecture.

Kurzer et al. [18] propose a method to represent the environment in a generalized
way with as few restrictions as possible. This is intended to improve the capability for
generalization of the methods using this representation. To do this, the path in front
of the vehicle is divided into segments and properties such as time to occupancy and
time to vacancy are assigned to each segment. Together, these pieces of information
form the state representation. Experiments presented in the paper show the successful
abstraction of the environment representation from the concrete driving situation.

Bouton et al. [1] propose a decision-making algorithm for automated vehicles
to navigate at intersections. In addition to a reinforcement learning algorithm, a
model checker is used to make the decisions safe. Furthermore, perception errors
are addressed with the help of a recurrent neural network. As a result, the algorithm
proves to be robust and safe concerning the decisions.

For relevant examples of multi-agent reinforcement learning, reference is made
to the survey by Hernandez-Leal et al. [12] and the article by Canese et al. [2]. Both
references provide a literature review on multi-agent reinforcement learning.

4.2 Approach

The approach involves two independent agents that follow their goals defined by a
reward function in a scenario. The lane change agent (Ic-agent) has to change lanes in
a limited time and on a limited road section while the lane following agent (If-agent)
follows the lane the Ic-agent wants to change to. By adjusting the speed, the If-agent

Fig. 11 Overview of the map and gap identifiers; gap gs has no longitudinal lower bound in this
case, adapted from [26]
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can let the Ic-agent merge cooperatively. The agents differ in terms of the algorithm
used, the state space, and the action space definitions. The specific components are
described in Sects.4.2.1 and 4.2.2.

The characteristics of the map are part of the state spaces of both agents. The map
is depicted in Fig. 11, with [ being the longitudinal distance between the first and
last possibility to change lanes. In addition, a speed limit Vspeediimic is defined for the
area in which the examined traffic situation occurs. Other road characteristics, e.g.,
curvature, are not part of the state spaces to keep the definition general. Besides the
map-specific part of the environment, the traffic participants themselves are part of
the environment as they interact and limit the possibilities of the other participants
in the scenario.

4.2.1 Lane Change Agent

The Ic-agent controls the light-colored vehicle depicted in Fig. 11 and selects the gap
on the target lane depending on the observed state of the environment. The proximal
policy optimization algorithm [29] is used for this purpose. The state description
consists of the longitudinal boundaries of the five gaps depicted in Fig. 11, the veloc-
ities of the vehicles on the target lane, the position and velocity of the ego-vehicle,
and the longitudinal boundaries of the lane change area. The action space contains
the discrete gap selection. For training the agents, a reward signal is used to induce
the intended properties of the agents. For this purpose, a reward function is defined
that rewards high values of veg, and penalizes the use of the original lane in each time
step. A systematic parameter study has been conducted to define the exact reward
functions of both agents. The lc-agent’s reward function R). is defined as follows:

Ry =

{ —0.8 + ﬁ X Uego, if lane change is not finished 1

ﬁ X Uego, if lane change is finished

4.2.2 Lane Following Agent

For the If-agent, the soft actor-critic algorithm [11] is used. This is an off-policy algo-
rithm that seeks to maximize both expected reward and entropy. The state description
of this agent consists of the longitudinal distances to the vehicle in front, the vehicle
behind, the vehicle that attempts to perform a lane change, and the boundaries of
the lane change area. Moreover, the ego velocity veg, as well as the velocities of
the lane changing vehicle and the vehicles in front and behind are part of the state
representation. The continuous action space consists of a set-point velocity input to
the trajectory planning. The reward function Rj; depends on the velocity veg, and, to
induce a partly-cooperative behavior, on the lane change state of the Ic-agent:
Ry — { 0.7 X Vego, if lane change is not finished )

1 X vego, if lane change is finished
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4.3 Experiment

The experiment involves training the agents in dense surrounding traffic. During the
training, the policies of the agents are continuously evaluated. The scenario shown
in Fig. 11 is used for the experiment.

4.3.1 Configuration

The length of the segment in which a lane change is possible is / = 200 m. The
speed limit in the scenario is set t0 Vspeediimic = 13.89 m/s. Each episode consists
of 40 training steps and takes 40s of simulation time. A collision between traffic
participants is impossible as the action space consists of inputs for the trajectory
planning, which is inherently safe. Multiple simulations are conducted to identify
proper hyperparameters. Table 1 gives the most important hyperparameters that are
selected for the training process of the agents as they turned out to perform best after
a limited parameter study. Besides, the standard parameters are chosen, as given
in[11, 29].

The surrounding traffic on the middle and left lanes of the road shown in Fig. 11 is
simulated by SUMO [23]. This traffic consists of differently parameterized vehicles,
so random and busy traffic situations arise. The individual speed limit of each vehicle
is taken from a normal distribution considering but not always obeying the global
limit vgpeediimic- AS a measure of the density, an emission probability of 43% for each
of the middle and left lanes is specified. This value determines the probability of the
emission of one vehicle each second.

Two agents are permanently trained during the simulation. The lc-agent starts
from a standstill 150 m distant from the beginning of the merging lane and drives

Table 1 Hyperparameters

If-agent Ic-agent
Learning rate Actor: 6e-5 3e-4
critic: le-6
alpha: le-5
Discount factor y 0.999
Activation function Rectified linear unit
Optimizing algorithm Adam [17]
Batch size 512 128
Reward scale 1.0 n.a.
Size of replay buffer 10,000
Network topology All networks: all networks:
two fully connected layers two fully connected Layers
with 256 nodes each with 64 nodes each
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towards it. After the end of the episode, as defined above, the agent is reset to the
starting position, and the next episode begins. The simulation control ensures that
the If-agent always controls a vehicle that is at a position suitable for potential coop-
eration during training. The vehicles of the If-agent and the Ic-agent are controlled
by ADORe [13]. The interaction between the agents takes place solely implicitly
through their behavior and the understanding of that behavior. Each agent executes
decision-making at a frequency of 1 Hz.

4.3.2 Results

The training was conducted for 200,000 training steps. After every ten thousandth
training step, twenty episodes were executed for evaluation. For each episode, the
cumulative reward is logged. Figure 12 shows the accumulated reward per episode in
relation to the training progress for the If-agent, Fig. 13 shows that data analogously
for the Ic-agent. Initially, as the number of training episodes progresses, the rewards
of both agents per episode increase continuously and reach their maxima. Then,
the rewards remain approximately constant until the training is discontinued after
200,000 training steps. Figure 14 shows the number of evaluation episodes with
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and without successful lane changes depending on the training progress. While the
number of episodes without a successful lane change increases at the beginning of
training, the slope flattens sharply with progressing training.

4.4 Conclusion

The experiment results show the suitability of reinforcement learning methods for
the partially cooperative decision-making process. The agents use the soft actor-critic
and the proximal policy optimization algorithms to cooperatively adapt their behavior
to the other agent and maximize the reward per episode. Regardless of the presence of
automated and manually driven vehicles, understanding the other vehicles’ behavior
is essential for efficiently accomplishing those situations. Extending the state spaces
by a prediction of the vehicles in the scenario may further improve the performance.

The experiment does not consider direct communication via vehicle-to-vehicle
communication. However, many cooperation methods work based on explicit com-
munication. The combination of these two techniques can be addressed in the next
steps. Furthermore, the variance of reward functions of the agents can be increased.
More objectives can be considered, and thus more general applicability of the method
can be reached.
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5 Conclusion

The last three sections cover three important aspects of maneuver-level cooperation
of automated vehicles. First, a fundamental method for defining, negotiating, and
agreeing on cooperative maneuvers is presented. The STRP is based on reserving
temporarily and spatially limited traffic space for exclusive use. The driving tests
with automated research vehicles and simulations show that the method is suitable
for effective cooperative resolutions of conflicts on the road. The different reserva-
tion templates allow universal applicability in conflict situations occurring in traffic.
In the second part, research on cooperation in emergency situations is presented. The
investigated approach is based on STRP and tested both in test drives and simula-
tions. It is shown that the method allows to avoid collisions and to mitigate the impact
of suddenly occurring obstacles by performing cooperative emergency maneuvers.
The last part presents research on a cooperative high-level decision-making method.
It is based on reinforcement learning algorithms and does not require explicit com-
munication. Simulations show that cooperative behavior can be elicited by defining
suitable objective functions for the vehicles present in a traffic scenario.

The results contribute to the achievement of safe and efficient behavior of auto-
mated vehicles in the three addressed aspects of cooperative automated driving. Based
on the research presented in this chapter, the cooperative behavior of automated vehi-
cles can be further researched. For example, an integration of STRP relying on explicit
communication into the method for cooperative decision-making can be investigated.
This could then be used to research an integrated approach for decision-making and
explicitly negotiated cooperation of automated vehicles.
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Hierarchical Motion Planning )
for Consistent and Safe Decisions oo
in Cooperative Autonomous Driving

Jan Eilbrecht and Olaf Stursberg

Abstract The immersion of autonomous cars in continuously changing environ-
ments of on-road traffic requires procedures for decision-making with fast adapta-
tion as well as guarantees on safe motion and collision-avoidance. This contribution
proposes a three-layer hierarchic decomposition of the task of automatically steer-
ing the autonomous car along a designated route in cooperation with neighbored
vehicles. The upper layer of the hierarchy identifies cooperative groups of those
vehicles which are involved in a joint scenario for a phase of the planning horizon.
The medium layer employs set-based computations of the free space for any vehicle
of a joint scenario together with constrained optimal control to determine optimized
motion plans. These plans are used on the lower layer as reference signals for tracking
control in order to realize motion trajectories. The architecture ensures consistency of
the vehicle motion with respect to safety for given assumptions, as well as relatively
small computation times by combining offline with online computation.

1 Introduction

Autonomous driving of road vehicles promises to release passengers from paying
attention to traffic, to enable car-sharing concepts relying on automated vehicles,
and to enhance traffic flow by better coordination [34]. An anticipated additional
advantage—and a required property at the same time—is the reduction of the number
of accidents, injuries, and fatalities per driven distance. To see that this property
indeed is achieved, the process of determining driving decisions for automated cars
needs to continuously evaluate if an encountered scenario bears the risk of safety-
critical evolutions, and to choose only driving options for which the motion remains
safe as likely as possible. With respect to designing safe motion of single autonomous
vehicles, intense research efforts in the past years have led to considerable insight into
how to accomplish the main tasks of environment perception, vehicle localization,
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and control, see [2, 36, 40] among many others. Recent tremendous progress in
inter-vehicle communication [48] paves the path, however, to employ techniques
of coordination and cooperation to further improve safe autonomous operation also
for groups of vehicles. The exchange of driving plans among neighbored cars (or
the distribution of jointly computed plans to these cars) can obviously reduce the
uncertainty about the actions of other traffic participants, and thus can contribute
to safety. This book chapter investigates how hierarchical concepts of cooperative
motion planning for groups of autonomous vehicles can ensure driving decisions that
are consistent with respect to safe interaction.

1.1 Relevant Work

Due to the complexity of the tasks to timely identify a current traffic situation, of
computing a safe driving decision, and possibly to communicate with and align to
the behavior of connected vehicles, the use of modular and hierarchic approaches has
been investigated in various forms, see e.g. [5, 6, 10, 41, 50]. While such schemes
are often expected to lead to quicker reactions, to more flexibility and suitability for
maintenance (such as easier update of modules) [38], they also bear to the challenge
of ensuring consistency between different decision units: For the information-flow
from a top layer of a hierarchy, which typically determines a qualitative behavior
(such as lane following, turning, emergeny braking, etc.), to the bottom-most layer,
which takes care of the vehicle actuation, it must be ensured that decisions are not
contradictive.

For the subtask of path planning of autonomous vehicles, a large set of different
approaches has been proposed in the past, as reported in the survey papers [3, 21,
22]. One class of techniques is based on gridding of the state space of a vehicle
and searching a path along a set of grid points, e.g., by path-velocity decomposition
[27], by RRT*-algorithms [26, 30], or by Monte-Carlo trees [28]. The complexity
of these approaches, however, grows exponentially with the dimension of the state
space, as obtained for larger sets of vehicles. A second class of techniques is that
of learning-based approaches comprising supervised learning based on data from
human driving experience, e.g. [45, 47], and reinforcement learning [31]. While
these methods do not require structural insight into traffic situations and the com-
putational effort required online is relatively low, the data set required for learning
offline is very large, and means to always guarantee safety are not known yet. A
different class of methods, which is relevant for the approach to be proposed in
this paper, uses elements for structuring driving behavior into maneuvers, motion
primitives, or homotopies. The common idea is to group behaviors which satisfy a
notion of similarity or symmetry (such as invariance to translation or rotation), see
e.g. [18, 19]. Maneuvers together with principles of optimal control can be used for
motion planning [19, 33, 44], as well as for verifying safety of vehicle motion [25].
To satisfy conditions under which maneuvers or motion primitives can be concate-
nated to longer driving plans, and the consideration of obstacles are challenging for
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these techniques. In addition, these concepts are so far not used for sets of cooper-
ative autonomous vehicles. A fourth class of relevant techniques for the work to be
proposed in this chapter are approaches based on mixed-integer programming. The
underlying optimization problems combine logic conditions modeled by integer vari-
ables with continuous variables to represent vehicle motion, see e.g. [29, 35, 37, 39,
43]. While the subclasses of mixed-integer linear or quadratic programming ensure
that globally optimal solutions can be found, the computational effort is typically an
issue if used in online optimization.

For the subtask of tracking a reference on a lower layer of a control hierarchy, dif-
ferent variants of model-predictive control (MPC) have been considered in the past,
since this class of techniques is suitable to consider constraints of the inputs and states
(such as the adherence to the admissible regions). On the one hand, approaches of
nonlinear MPC have been considered for this purpose [16, 17, 23], but it is question-
able whether the nonlinear optimization problem can be solved with the frequency
required for low-level tracking control. On the other hand, linearized-based variants
of MPC [10, 24, 32, 50] need to account robustly for linearization errors, typi-
cally leading to conservativeness, thus implicitly reducing the space from which the
reference signals can be chosen. Similar reasoning applies to methods relying on
linear-parameter-varying models, see e.g. [1, 4]. For these reasons, the use of track-
ing techniques based on nonlinear dynamics, with consideration of constraints, but
without embedding online optimization seems preferable. The techniques reported
in [20, 49] for tracking by stabilizing feedback control motivate the concept used in
this paper for the same purpose, but those techniques require extensions to account
for the constraints imposed by the second layer.

1.2 Contribution

In order to timely adapt the driving behavior of sets of cooperative vehicles to chang-
ing situations, this book chapter proposes a hierarchic approach using three layers of
decision: The first (and upper) layer structures the setting into cooperative groups,
the second layer computes driving plans which are guaranteed to exclude collision
while leading to the goals of the involved vehicles, and the third layer uses the plans
as reference signals for the online control tasks. One particular focus with respect to
the second layer is the division into an offline and an online part for computational
efficiency. The offline part determines and stores admissible driving regions as well
as selected optimized trajectories for the vehicles grouped together for a specific
maneuver. The online part comprises only the relatively easy steps of interpolating
between the pre-computed optimal trajectories. A second focus of this chapter is on
the third layer, on which a feedback control task is solved for a more detailed repre-
sentation of nonlinear vehicle dynamics such that following the plan obtained from
the second layer (as reference signal) is achieved. At the same time, it is ensured that
the admissible driving region is not left. Thus, a main benefit of the approach to be
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presented is that consistency of the decisions at the interfaces between the first and
second layer, and between the second and third layer respectively, is guaranteed.

2 A Hierarchical Approach to Decision Making

This section first provides an overview of the proposed hierarchic procedure of deci-
sion making for cooperative autonomous driving, while details on the techniques
assigned to the three layers will be described in the subsequent sections. According
to Fig. 1, the upper-most layer is termed group coordination and aims at identi-
fying the traffic scenario in a particular road area. The underlying (and required)
information is the road topology in the respective area, the set of traffic participants
and obstacles in this area, and the routes of the vehicles (leading essentially to the
point at which each vehicle intends to leave the area). The sources of information
are the route planners of the vehicles, the communication units of the vehicles (and
possibly of road-side stations), and the on-board vision and perception systems. The
mechanisms of the latter are not in the scope of this paper, but the assumption is that
the onboard sensorics together with algorithms of object identification deliver the
complete set of objects in the environment, together with predictions of the motion
of dynamic objects. The available information is used to identify the current scenario
and to select a maneuver from a maneuver library, which is computed a-priori in an
offline phase. The selection of the maneuver comprises the formation of cooperative
groups, i.e. the set of vehicles is partitioned into subsets which cooperate in executing
a maneuver jointly, see Sect. 2. (Non-cooperative traffic participants are assigned to
separate groups.)

" . Vehicle Sets, Road Topology,
o Group Coordination ———
3 Routes, Obstacles . . .
~ \
i o
Scenario/Maneuver 1 Acknowledgment =
: <
N (e 1 . | 2
= . Simplified Dynamics, Goal Sets, <]
2 Maneuver Planning = A =4
5 Safety Restrictions, . . . 5
A h : §:
! 8
Reference trajectories : Acknowledgment %-
I 5
1 |

. Nonlinear Dynamics, Constraints,
Trajectory Control ———

Layer 3

Sensor Readings, ...

Fig. 1 Hierarchical structure of the decision-making procedure and additional information from
the environment
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For any of such cooperative groups, the maneuver selection is passed to layer
2, termed maneuver planning. For each maneuver, the set of possible behaviors for
each car of the respective group is computed offline based on reachable sets of hybrid
automata. These automata (to be defined in Sect. 4) combine the driving plans of the
vehicles assigned to a cooperative group, and they ensure that any vehicle exclusively
occupies a certain region of the road, thus excluding collision. The computation of
reachable sets is based on simplified linear dynamics and considers the goal set for
the chosen maneuver and constraints arising from obstacles and the road topology.
Optimized sample trajectories within these reachable sets are computed offline, and
are stored in a maneuver library for the respective situation. In the online execution, an
interpolation between the optimized sample trajectories is computed for each vehicle
and its exact position as observed by the sensors. These interpolated trajectories
determine a reference forwarded to the third layer, and they remain contained in
the set of admissible regions. An acknowledgement is sent back to the first layer to
either report success of maneuver planning, or to initiate the selection of a different
maneuver, if the one considered before was not found to be executable in the online
procedure.

On the third layer, each vehicle controller locally aims at controlling the vehicle
position and speed to the reference obtained from the second layer. As opposed to
the linearized dynamics used on layer 2, this feedback control task is based on a
higher-dimensional nonlinear model of the vehicle dynamics, which involves the
quantities obtained from the on-board sensors, the actuated quantities, as well as
possible disturbances (such as wind gusts). It is important for this layer that the
local tracking error between the planned reference and the actual vehicle path is
hold in suitable bounds. For the trajectory tracking, a tailored method is proposed
which uses a nonlinear model of the tracking error represented in the Frenet frame.
The tracking errors of the position, their speed of change, and of the yaw angle is
controlled by state feedback control. Bounds on the maximum deviation arising for
bounded uncertainties of wind and tire forces can be computed, and thus can be
compared with the driving corridors used in maneuver planning on layer 2. If an
inconsistency occurs, the acknowledgement signal from layer 3 to 2 needs to report
this and triggers modification of the reference trajectory.

The computations on the three layers are iteratively updated with appropriate
frequency: In the nominal case, formed groups on layer 1 would be expected to exist
for a range of several seconds until a maneuver is terminated, but possible occurrence
of new situations (including emergencies like suddenly occurring obstacles) requires
to react within a few milliseconds. If layer 2 follows a selected maneuver over
several seconds, incoming new measurements about the exact vehicle positions or
communicated information allow to update the computation of updated reference
trajectories—an update of every of 10-50 milliseconds can be deemed reasonable
for implementations of the hierarchy, while emergency situations again require to
switch much faster to, e.g., a mode of hard braking. On layer 3, the update of the
feedback control action would be executed nominally in the range of milliseconds.
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3 Group Coordination

The task of group coordination is explained based on the example scenario shown
in Fig. 2. Assume that a set of vehicles is present in a defined section of the road
network, here the area of a T-intersection. A decision unit performing the functions
of the upper two layers of the control hierarchy is assigned to this section. Physically,
this unit could either be embedded into the infrastructure of the intersection, or one
of the car controllers could temporarily assume this role. Let all vehicles be equipped
with devices for wireless communication, such that the intended routes, the current
positions and speed, and the driving plans (as outcome of the planning on layer 2)
can be exchanged among the vehicles and with the decision unit. If the five vehicles
follow the intended directions as indicated by the solid arrows, the assignment to
two cooperative groups is straightforward, namely the red-colored and the two gray-
colored vehicles form a group G, while the white and the green vehicle are assigned
to G,. Obviously, a simple lane following maneuver needs to be planned for G,,
whereas it has to be decided for G, at which position the car intending the right turn
merges into the convoi of the two others. Assuming that the green car intended a left
turn (indicated by the dashed arrow), the vehicle needed to be assigned to G .

The situation becomes more complicated if non-cooperative traffic participants
are present: If the red car were non-cooperative, the decision unit would assign it
to an additional group Gs3. It had to be distinguished if this car communicates its
planned trajectory, or not. If it did, the trajectory would be considered as disturbance
for the maneuver planning of the gray cars in G;. If it did not, the complete set of
possible behaviors of the red car would have to be considered (or estimated based on
the sensor data), leading to more conservative maneuver planning for the gray car
turning right. More details on considering non-cooperative traffic participants can be
found in [8, 42], where vulnerable road users (cyclists or pedestrians) are addressed.

Note that for some scenarios the assignment of vehicles to groups is not related
to a fixed section of a road, but to a moving section, as e.g. if a set of interacting
vehicles on a highway perform an over-taking maneuver.

While the approach presented in this paper determines cooperative maneuvers for
each group by the procedure described in the next section, the following alternative
approach from [9, 41] should be briefly mentioned: There, the different vehicles in
a road section compute a proposal for collision-free trajectories by MPC using lin-

Fig. 2 Example of forming
cooperative groups: The
green car is assigned to G,
or G depending on the
driving intention. In case of a
non-cooperative red car, it
forms another group G3. All
vehicles communicate with a
decision unit

Decision
Unit
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earized dynamics (as an alternative to layer 2). These trajectories are then negotiated
by an auction-like bidding procedure, i.e. the vehicle controllers determine which
proposed trajectories are agreeable for all vehicles of a group (as an alternative solu-
tion on layer 1).

4 Maneuver Planning

4.1 Planning Based on Hybrid Models and Controllable Sets

The maneuver planning for a cooperative group is based on joint modeling of the
vehicle dynamics by hybrid automata. This choice is motivated by the observation that
most maneuvers can be understood as a sequence of qualitatively different phases,
as shown for the example of an over-taking scenario in Fig. 3, adopted from [11].
The process of the red car overtaking the gray one can be separated into the phase
P, of accelerating and approaching the gray car, the phase P, of changing lane and
passing the gray car, and the phase P; of changing back to the right lane and possibly
decelerating. The maneuver is straightforwardly cast into a hybrid automaton, as
shown in the bottom part of Fig. 3: Each phase P;, i € {1, 2, 3} is modeled by a
discrete state g;, and transitions 6),, 6,3 represent the instantaneous change of the
discrete state if an associated transition condition g (62, xi), or g(6»3, x;) holds true.
These conditions depend on the continuous-valued state vector x; ata discrete point of
time indicated by k. The state vector comprises the position (in cartesian coordinates)
and the speed of all vehicles in the cooperative group. Based on x, the condition
g(612, x;) formulates, e.g., the conjunction of the facts that the red car has approached
the gray one up to alower distance threshold, that the speed of the red car is sufficiently

Fig. 3 Partitioning of the overtaking procedure of the red car into three phases and construction of
a hybrid automaton modeling the procedures
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larger that than the speed of the gray car, and that the distance to the white car is
sufficiently large for a given speed of the white car. Conditions of similar type can be
formulated to characterize the admissible values of x; for each of the discrete states g;,
then referred to as invariants x; € inv(q;). They play an important role in separating
safe from unsafe driving behavior, i.e., any x; modeling a dangerously close distance
between two vehicles is excluded from the invariants. Likewise, obstacles and regions
outside of the drivable road space are not included in inv(g;). The evolution of
the state is modeled by discrete-time difference equations xi4+1 = f; (xk, ug, wi),
which depend on the vector of control inputs u; (available to actively change x;
by accelerating, braking, and steering) and on a possible vector of disturbances
wi—Tfor both vectors, static bounds u; € U and w;, € W are assumed to be known.
Formally, a hybrid automaton HA = (T, Q, qo, g7, inv, U, W, Xo, X7,0, g, f)is
introduced for a maneuver, containing the set 7 C N of discrete points of time, the
set Q C N of discrete states, discrete initial and target states go € Q and g7 € Q, the
assignment i nv of invariants to discrete states, the boundedsets U C R™ and W C R”
of inputs and disturbances, the sets Xy C R” and X7 C R” of possible continuous
initial states and target states, the transition conditions g, and the discrete-time state
transfer functions f; (collected in f). See [7, 12] for more details on the semantics
of the model.

Given this model, a maneuver is defined as a tuple M = (G, N, HA, h) of the
group G of cooperating cars, the set N of non-cooperating vehicles, the hybrid
automaton, and a planning horizon /# (as a maximum number of time points to
complete the maneuver). Such a tuple is modeled offline as a template for a class
of scenarios of the same pattern, as for the example of overtaking procedures on a
single lane road involving three vehicles. A tuple M is modeled offline for any class
of scenarios the autonomous vehicles are expected to get in, and M is stored in a
maneuver library.

The advantage of using maneuvers of this type for planning is that set-based offline
computations allow (under some assumptions) to represent the set of feasible and
collision-free maneuver instances. For this purpose, let all f; be affine mappings of
its arguments and all continuous sets in H A be chosen polytopic. Then, j-step robust
controllable sets can be computed for H A as a sequence of polytopic subsets of the
invariants:

% = (Ko, .... K;)

for which an input trajectory (uo, ..., u;) exists to definitely transfer the state xq €
Xo in at most j steps into the target X7, despite of the presence of the disturbances
wy € W. These sets are instrumental for the guarantee of finding a winning control
strategy for an arbitrary initialization xy € X, measured in online operation, i.e. to
determine (uo, ..., u;) for:

(XQEKo,...,XJGXTng) (D)
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(compare to [12, 46]). Such a trajectory ensures for 2 < j that a maneuver M can
be successfully completed, and it implies that the vehicles are coordinated in safe
interaction.

Of course, the choice of (ug, ..., u;) is not unique. In order to determine an
optimal choice with respect to a cost functional, such as minimizing the control
effort and the distance to a target point of the maneuver, a minimization problem:

h
min Y " [IC - (e —xp) 13 + 1D - uel3 ©)
k=1

(o, ..., un)

(with weighting matrices C, D) could be solved (e.g. for worst-case values of the
wy). This minimization, however, is subject not only to (1), but also to the constraints
arising from the dynamics of H A. Its encoding with respect to the assignment of
fi to inv(g;) and the transitions involves to use binary variables and several linear
inequalities, leading to an optimization of type mixed-integer quadratic program-
ming. The computation times found to be required to solve such problems are often
too large compared to the update frequency targeted for layer 2. In addition, even
smaller times are required to decide whether a selected maneuver leads to a feasible
solution (in order to report back to layer 1 that an alternative maneuver is needed).
Thus, the proposal is to use a combination of offline computation of optimal strategies
and quick online interpolation [13]: First, polytopic inner approximations 7A(k C Ki
of the control invariant sets are determined. The objective is to obtain good coverage
of the K}, to consider the worst-case disturbances (if present), and to use only a
relatively small number of facets of the polytopes 7A(k. A procedure for this step is
described in [7], and it considers the transition dynamics and the invariants of H A.
Note that, as the result of this procedure, still a control trajectory leading to X is
guaranteed to exist for any initialization to a state in the 7A(k.

Secondly and still carried out offline, the vertices of the polytopes %K, are optimally
projected forward onto ‘]A(k+1 ,k € {0, ..., h — 1} bysolving an optimization problem
similar to (2). This procedure is exemplary sketched in Fig. 4 by dashed gray-colored

7
$o1 1
— N
LT Nz N
e ‘](1 N (](3
©
2 .
h Ko

Fig.4 Gray-colored arrows represent the optimal projections ¢ of the vertices of the polytopes 7A(k
(which are inscribed to the corresponding subset of K} ). The path shown in red is obtained online
from stepwise linear interpolation ¢ between the optimal vertex proejctions
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arrows, and is denoted by ¢. The triples of vertex v;, optimal input u and the optimal
projected state x; = ¢(v;, u}) are stored with the maneuver for online use.

In the online execution, the following is accomplished: First, it is checked whether
the currently measured state, denoted by x, is contained in any of the sets ‘kk of
the selected maneuver M. If not, the maneuver is not guaranteed to be executed
safely, and an alternative maneuver has to be determined. If x € 7%/« for any k, the
barycentric coordinates of x( in 7%;( (with respect to its vertices v;) are computed.
The input uy is then determined as the interpolation of the inputs u} (as optimized
offline for the vertices v;) by use of the same barycentric coordinates. In Fig. 4, the
outcome is shown by a red dashed line for the interpolated state path, and is denoted
by ¢. The corresponding sequence of interpolated inputs along this path determines
the control strategy which transfers the state x; eventually into the goal set X7 of the
maneuver. The interpolation requires only relatively small computational effort.

4.2 Illustration for an Overtaking Maneuver

For illustration of the procedure, consider again the overtaking maneuver from Fig. 3,
see also [7, 13]. Let the longitudinal position of the three vehicles be denoted by p'
and the lateral position by p!”, where i = 1 refers to the red car, i = 2 to the gray
car, and i = 3 to the white car approaching from opposite direction. To simplify the
model, the relative longitudinal positions p® = p@® — pl and p® = p& — p1)
are introduced, and the lateral positions of the gray and white car are assumed to be
constant (thus their lateral speeds equal zero). The reduced state vector:

2 3 1 1 2 3 1
£ = (6 P o o o uih)

is thus defined on a 7-dimensional space. The inputs are chosen identical to the
accelerations in longitudinal and lateral direction (1" := v, ugi) := 1), leading
to a 4-dimensional input vector:

1 2 3 1
u= (0 u® u® )

A simple double integrator dynamics is used for longitudinal and lateral motion,
leading to a linear model x(t) = A - x(¢) + B - u(t) with only entries O and 1 in the
matrices A and B. While very simple, such a model (with subsequent discretization of
time) is very frequently used in path planning—and well justifiable for the hierarchic
approach, since it only serves the purpose of computing a reference trajectory for a
control problem with more detailed dynamics on layer 3.

The model is complemented by constraints for the state and input vector, by a
target set formulating the ranges of the vehicle positions for completing the maneu-
ver, by a nominal longitudinal speed (as x7), and by weighting matrices C, D of the
cost functional (here chosen to identity matrices). The hybrid model H A is obtained
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Fig.5 Two-dimensional projections of the controllable sets obtained for the overtaking maneuver;

the white sets represent the exact controllable sets, while the gray sets establish polytopic inner
approximations; from [7]
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n
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Fig. 6 Results for the overtaking procedure: left part—lateral over longitudinal position (crossed:

red vehicle, boxed—gray vehicle, circled—white vehicle), & denotes the end of the planning horizon;
right part—Ilongitudinal speed over time (solid—red car, dashed—gray car, dotted—white car)

(according to Fig 3) by adding the discrete states, the invariants (which consider
a safe minimal distance between the vehicles in both coordinates), and the transi-
tions including the conditions g(0) (corresponding to reaching the boundaries of the
invariants); see [7] for a full parametrization of these components.

Based on this hybrid model (which does not include disturbances), the control-
lable sets are computed over j = 5 steps, and are shown in Fig. 5. After optimizing
the trajectories originating from the vertices of the controllable sets, the interpola-
tion procedure is applied. Figure 6 shows example trajectories of the positions and
longitudinal speeds for a chosen initialization. The trajectories demonstrate that the
maneuver is successfully completed without collision, and they indicate cooperation
in the sense that the gray vehicle lowers its speed and the white vehicle keeps a
low speed until the red vehicle has passed. The references [7, 13] provide insights
into the computation times for the proposed scheme of online interpolation between
offline optimized trajectories compared to online trajectory optimization within the
controllable sets: For a large number of test instances for this example (with varying
initialization) it was found that the interpolation approach required an average time
of 0.25 milliseconds, while the results for the online optimization were obtained in
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average after 12.1 milliseconds. The first value can be deemed sufficiently small for
execution within the hierarchic approach.

For a second example describing the cooperative maneuver of vehicles merging
into highway traffic at an on-ramp, the interested reader is referred to [15].

5 Trajectory Control

The technique described in the preceding section provides a feasible path for any
vehicle involved in a scenario with respect to the simplified (piecewise) linear dynam-
ics used on layer 2. The control strategies obtained there for realizing the paths are,
however, not immediately useful for controlling the autonomous vehicles for the
following reasons: (a) vehicle motion comprises nonlinear effects which need to be
considered for low-level vehicle control, (b) the state and input vectors used for layer
2 do not contain the full set of controlled and actuated variables typically employed
for vehicle control. In consequence, it is not ensured that the vehicle would indeed
follow the plan computed on layer 2—thus, the control hierarchy includes the addi-
tional layer 3 for local low-level vehicle control. This layer employs more accurate
models, and the paths computed on layer 2 serve as reference signals for the local
vehicle controllers. Two questions immediately arise from this choice: First, a more
accurate and nonlinear model lets one expect higher computational effort. Reference
tracking by nonlinear MPC, as in [10], may not be feasible if the time required for
the online solution of the optimization problem is not compatible to high execu-
tion frequencies for low-level control. Hence, the approach proposed below uses a
state-feedback controller with very low computational demands. Secondly, the use
of different models for plan generation and tracking control may compromise con-
sistency between the two decision levels—this point is addressed below. (See also
[14] for a discussion on the relation between linear integrator models for planning
and the nonlinear motion of vehicles on curved roads.)

To prepare the control design, it is convenient to transform the setting for a given
reference trajectory into so-called Frenet-coordinates, which specify positions rela-
tive to their projection onto the reference path. This means that a point on the path is
described by a path coordinate s, and an offset that is measured in normal direction
to the reference.

The standard bicycle model is used here as starting point for vehicle modeling,
with a state vector x containing the positions p, and p, (in cartesian coordinates), the
vehicle orientation ¥, and the longitudinal and lateral speeds vy, vy, and the yaw rate
. The input vector p is defined to contain longitudinal tire slip sy and the steering
angle §. With a rotation matrix R(v) and external accelerations a := (ayx, ay, all,)T
to account for effects like wind and tire forces, the model is formulated to:
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It is assumed that the accelerations a := a + Aa can be written as the sum of a
nominal part a and a bounded offset Aa, ||Aa|| < Aa,qy. As detailed in [7], the
dependency of (3) on sy is obtained from an appropriate tire model leading to the
function a(é, sy, sy, vy, ).

By defining the error state vector (with tangential and normal part to the reference
indicated by indices ¢ and n):

e = (et en € &y €y ew)T = (617;05 éZOS eyTaw)T ’

the error dynamics can be derived to:

00 1 0 0 00 0
d (epos 00 O 1. €pos 0 +| oo ax | oo Aay (4)
dt \épos 62 4 0 20| \épos § A
2 . R(ev,) R(elll)
—§ 62 26 0 03

d (e, _ (01) (ey 0\ - .
L)) Qs o

Inhere, 6 describes the orientation angle between the longitudinal direction (indicated
by X, tangential to the reference signal) and the cartesian coordinate x.

For given vy, vy, and w, the nominal acceleration a is controlled by appropriate
choice of § and sy (while Aa is a disturbance). By defining a virtual input vector fi,
a can be computed:

(6% 4 0 20\ (epos § ax

ii= (_é S O) (;) _ <0s) + Riey) (ay) ©)

ax\ r(~ (5 62 6 0 20\ (epos
(&) -mer (4 (1) - (52 53 () o

To reduce the tracking error by feedback compensation, define a feedback law:

~ €pos
peos(i)
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with controller matrix K, by which the closed-loop position and speed error are
obtained to:

00

d €pos \ _ . 02><2 [2><2 €pos AaX
E (épos> = fros(e, Aa) := ( _K épos + R(Ze(])/j) Aay ) &)

The transformation of a given a into § and sy is detailed in [7], as well is the derivation
of an expression for the yaw error dynamics:

d (”) = fraw(e. X, Aa).

dt \ew

For several variables contained in the nonlinear model, physical constraints need to be
satisfied in order to establish safe driving. Only those reference trajectories from layer
2 which satisfy these constraints, can be characterized as realizable. Furthermore,
deviations from the reference signal (in terms of the introduced tracking errors)
must be located inside of those constraints. Thus, for given bounds Aa,,,, of the
uncertainties, admissible ranges for the tracking errors can be computed in order to
satisfy the constraints. While out of scope of this book chapter, the reader is referred
to the approach described in [7] for synthesizing the matrix K in the feedback control
law (8). This law keeps the tracking error (for e,,, and é,,,) within the admissible
ranges (for single reference values). The synthesis is based on solving a semi-definite
program constrained by linear matrix inequalities. The analysis of the tracking error
of the yaw dynamics is more intricate due to its nonlinear and time-varying nature,
but boundedness of this error can be shown, too, under appropriate assumptions [7].

6 Conclusions

This book chapter has proposed the concept of a hierarchic decision architecture
to enable cooperative driving of a set of autonomous vehicles (even in presence
of non-cooperative traffic participants). While the implementation and testing of
this proposal in practice (i.e. on an autonomous vehicle) is still matter of future
investigations, the following principal advantages are highlighted:

e The decomposition of the overall problem into three layers for separating the tasks
of group determination, planning of joint maneuvers, and local vehicle control
makes the problem tractable, even for the challenging timing of real-world traffic
scenarios. The additional partitioning of the maneuver planning on layer 2 into an
offline and an online part further increases the computational efficiency.

e With the objective to provide guarantees on safety of the cooperative driving
strategies, particular emphasis has been set on embedding constraints for excluding
collision, and on reasoning about consistency of the decisions across the layers.
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Along this line, mechanisms for checking admissibility of the information received
from the super-ordinated layers have been proposed.

e The feedback control scheme on layer three is not only computationally very
efficient, but it allows to derive conditions for which constraint compliance is
obtained. Upper bounds on the tracking errors (for bounded disturbances) allow
to construct reference trajectories on layer 2 which have sufficient safety margins
for excluding collision.

Aspects of future research include the construction of an as complete as possible
maneuver library for layer 2. If a scenario is encountered for which no compliant
maneuver has been defined, stopping one or more vehicles is the only and undesired
choice. (Of course, this lack of completeness applies for all existing approaches,
including those relying on learning from massive data sets.) Systematic classification
of scenarios and structured modeling of atoms of maneuvers (and concatenation
hereof) may help to run into this situation very rarely. With respect to the third layer,
the inclusion of measurement uncertainties constitutes a valuable future extension.
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Specification-Compliant Motion )
Planning of Cooperative Vehicles Using oo
Reachable Sets

Edmond Irani Liu and Matthias Althoff

Abstract Automated vehicles must comply explicitly with specifications, includ-
ing traffic-based and handcrafted rules, in order for them to safely and effectively
participate in mixed traffic. In addition to driving individually, there are many traffic
situations in which cooperation between vehicles maximizes their collective benefits,
including preventing collisions. To realize these benefits, we compute specification-
compliant reachable sets for vehicles, i.e., sets of states which can be reached by
vehicles over time that are constrained by a set of considered specifications. We
summarize and combine our previous works on computing specification-compliant
reachable sets and negotiating conflicting reachable sets within a group of cooper-
ating vehicles. As a result, conflicts between specification-compliant reachable sets
of vehicles are resolved, and specification-compliant trajectories can be individually
planned for each vehicle within the negotiated reachable sets using arbitrary motion
planners.

1 Introduction

When compared with human-driven vehicles, automated vehicles are expected to
deliver enhanced road safety, passenger comfort, and traffic efficiency compared with
human-driven vehicles. To safely and effectively participate in mixed traffic, in which
both automated and human-driven vehicles share the road, automated vehicles must
comply explicitly with specifications, including traffic regulations and handcrafted
rules. Compliance with the former is essential in order to exempt manufacturers from
liability claims in the event of an accident, while compliance with the latter allows
motion plans to be generated that satisfy additional requirements. An example of a
handcrafted rule is: Follow vehicle I up to step ki, then completely overtake it from the
left before step k. Generating a drivable trajectory that satisfies a set of specifications

E. I Liu (X)) - M. Althoff
Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
e-mail: edmond.irani @tum.de

M. Althoff
e-mail: althoff @tum.de

© The Author(s) 2024 321
C. Stiller et al. (eds.), Cooperatively Interacting Vehicles,
https://doi.org/10.1007/978-3-031-60494-2_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60494-2_12&domain=pdf
edmond.irani@tum.de
 854 55001 a 854 55001 a
 
mailto:edmond.irani@tum.de
althoff@tum.de
 854 57879 a 854 57879
a
 
mailto:althoff@tum.de
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12
https://doi.org/10.1007/978-3-031-60494-2_12

322 E. I. Liu and M. Althoff

for an automated vehicle involves reasoning not only with continuous states (which
may reflect the physical motion of the vehicle) but also discrete states (possibly due to
discretization of the continuous state space or action space) of the vehicle. This poses
computational challenges from a variety of aspects, including vehicle dynamics, the
specifications under consideration (including collision avoidance), and dependencies
between planned trajectories and constraints originating from the specifications. On
the one hand, planning solely in the discrete state space may produce plans that meet
specifications but violate vehicle dynamic constraints or lead to collisions. On the
other hand, motion planners may generate dynamically drivable trajectories that do
not comply with the specifications.

One solution to this problem is to guide the motion planning of an automated
vehicle using its specification-compliant reachable set, which is defined as the set of
states reachable by the vehicle over time that is constrained by a set of considered
specifications. Computing the reachable sets in an over-approximative fashion will
enclose all drivable trajectories of the automated vehicle [34]. The smaller the solu-
tion space is, the faster reachable sets can be computed, as demonstrated in [22]. In
addition, the search space for the motion planner is greatly reduced particularly in
critical situations. In contrast to conventional approaches, both effects result in quick
computations even in critical situations. Low-level trajectory planning constraints
can be extracted from the computed reachable sets and passed on to motion planners
to generate specification-compliant trajectories.

In addition to driving individually, there are many traffic situations that demand
cooperation between vehicles in order to maximize their collective benefits and to pre-
vent collision in a potential emergency. Human drivers typically interact with each
other through implicit communication and by anticipating the most likely behav-
iors of others. In comparison, automated vehicles can communicate and collaborate
explicitly to jointly offer and suggest more sophisticated and efficient solutions in an
ongoing traffic situation. One of the challenges of such cooperation lies in developing
a computationally efficient scheme that does not compromise the optimality of the
output solutions.

Reachable sets can be employed to tackle this challenge. The reachable sets of
a group of cooperating vehicles can be computed and negotiated where conflicts in
the position domain arise. This negotiation can be systematically organized such that
each vehicle unambiguously receives its own negotiated reachable set, within which
trajectories can be planned. This prevents exponential complexity of the collaborative
motion planning.

In this chapter, we summarize and combine our previous works on computing
specification-compliant reachable sets for an ego vehicle [13] as well as on nego-
tiating conflicting reachable sets between a group of cooperating vehicles [21]. As
a result, conflicts between specification-compliant reachable sets of vehicles are
resolved, and each vehicle plans its own specification-compliant trajectories within
its negotiated reachable set, for example, using the planners described in [22, 36].

The remainder of this article is organized as follows: Sect.2 reviews related
work on specification-compliant motion planning and cooperative motion planning.
Section 3 presents the necessary preliminaries and definitions. The computation of
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specification-compliant reachable sets is summarized in Sect.4 and the negotiation
of reachable sets in Sect. 5. Example results are presented in Sect. 6, and we conclude
in Sect.7.

2 Related Work

In this section, review related works on specification-compliant motion planning and
cooperative motion planning of vehicles.

2.1 Specification-Compliant Motion Planning

The efforts to obtain a specification-compliant trajectory can be categorized on the
basis of whether compliance with specifications is examined after, during, or before
motion planning.

2.1.1 Considering Compliance After Motion Planning

The most straightforward approach to obtain a specification-compliant trajectory
is to examine the compliance with specifications after the trajectories have been
generated. The process of checking whether an execution of a system satisfies the
expected behaviors is often referred to as runtime verification or monitoring. For
example, article [29] presents a monitor for formally examining the compliance
of automated vehicles with traffic rules (safe distances and overtaking); a monitor
for so-called responsibility-sensitive safety rules [31] is described in [10]. While
monitoring can be performed efficiently, monitors typically only provide a verdict,
i.e., a true or false appraisal, on whether the specifications have been satisfied. If the
trajectory under examination is rejected, no alternative trajectory is returned. This
often necessitates the (re)planning of multiple trajectories in order to locate a valid
solution for more complex specifications.

2.1.2 Considering Compliance During Motion Planning

Works in this category often adopt a mechanism that simultaneously handles plan-
ning in both the continuous and discrete state spaces of a system, with the generated
discrete plans guiding the trajectory planning process. For example, a satisfiability
modulo convex programming framework for cyber-physical systems was introduced
in [32] that handles both convex constraints on a continuous model and Boolean
constraints on a discrete model; article [16] puts forth a multilayered synergistic
framework for motion planning of robots considering linear temporal logic (LTL);
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timed automata are used in [37] to synthesize timed paths for indoor robots that com-
ply with specifications expressed in metric temporal logic. In these works, discrete
plans are generated in the discrete state space based on abstractions of the consid-
ered systems, and trajectories are planned in the continuous state space by motion
planners, with the discrete plans taken into consideration. In most cases, the dynamic
constraints of the system are not reflected in the discrete plans. Thus, the drivability
of these plans is often not ensured, requiring frequent replanning of both the discrete
plans and the trajectories.

2.1.3 Considering Compliance Before Motion Planning

The final category of works considers the specifications prior to trajectory planning,
e.g., in high-level maneuver planners, from which trajectory planning constraints can
be extracted. The work in [15] generates maneuvers that respect simple traffic rules
by traversing a graph defined in a discretized state space of the ego vehicle; arti-
cle [8] embraces a similar concept and produces maneuvers satisfying specifications
expressed in LTL; in [33], so-called driving corridors are extracted from reachable
sets of an ego vehicle that reflect different position relations to other vehicles over
time. Our approach to computing specification-compliant reachable sets [13] falls
into this category. It can handle propositional logic with predicates related to posi-
tions, velocities, accelerations, and certain traffic regulations introduced in [18, 19].

2.2 Cooperative Motion Planning

Survey articles [9, 24, 28] reviewed recent advances in cooperative driving of
automated vehicles with varied focuses on architecture, maneuver planning, and
motion planning use cases. Optimization-based and reservation-based approaches
are common paradigms for cooperative motion planning [9, 28]. In optimization-
based approaches, one or more optimization problems are formulated based on the
motion planning constraints and cost functions of cooperating vehicles. The opti-
mization problems are solved with a (centralized) optimizer, which corresponds to
trajectories to be followed by the cooperating vehicles. The complexity of the opti-
mization problem increases dramatically with the number of vehicles considered,
which requires either a high computation power or a limit to the number of vehicles
in a group.

Our approach to cooperative motion planning falls into the reservation-based
category and employs auction algorithms for resolving conflicts in reachable sets
of vehicles. Reservation-based methods assign free space to vehicles for trajectory
planning. Earlier works with a focus on intersection management were introduced by
Dresner [4]: Tiles are created from the intersection region, which can be requested by
vehicles approaching the intersection. A centralized intersection manager proceeds
to assign tiles with multiple requests to vehicles, using a first-come-first-served pro-
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tocol, ensuring that no tile is occupied by more than one vehicle at any one time. Its
extensions and variations are presented in [5, 6]. As the first-come-first-served policy
for reservation assignment may be inefficient in situations with higher traffic density,
it was replaced in [3, 27, 35] by auction-based methods. In auction-based methods,
each bidder (cooperating vehicle) bids for offered packages (e.g., combinations of
tiles representing road areas) in a way that reflects its interests or utilities. An auction
algorithm is then executed to maximize the total revenue of the packages. Instead of
tiles, some works identify possible conflicting points, regions, or moving space-time
corridors and allocate them to vehicles in the event of a conflict [17, 20, 23, 38]. The
corridors correspond to predefined behaviors, such as following a lane or performing
a lane change; vehicles receiving such corridors must act accordingly. In [11, 25],
an efficient and explicit space-time reservation protocol was devised for cooperative
maneuver planning, through which a vehicle broadcasts requested space envelopes
over time and drives within the envelopes once the request has been accepted by
surrounding vehicles of interest.

3 Preliminaries

This section introduces the necessary preliminaries, including the general setup,
coordinate systems, definitions of reachable sets, and propositional logic.

3.1 Setup and Coordinate System

In this work, the considered scenarios are described in the CommonRoad! [1] format,
which consists of (1) a road network constructed of lanelets [2], whose left and right
bounds are represented by polylines, (2) dynamic and static obstacles, and (3) traffic
rule elements (such as road markings, traffic signs, and traffic lights). Figure 1 depicts
an exemplary traffic scenario. We denote by V< = {Vlc, ey V,\C,} the set of cooper-
ative vehicles V,° withIDs N' = {1, ..., N} for which trajectories are planned. Each
V< is associated with a planning problem with a planning horizon of up to k; € No,
which includes the initial state of V,~ and a set of goal states. A reference path I', is
constructed for a planning problem with a given route planner, which is then used to
establish a local curvilinear coordinate system F of V.° as described in [2]. Within
FY, (s, dy) describes the longitudinal coordinate s, and the lateral coordinate d,,.
Adopting this coordinate system facilitates the formulation of maneuvers from the
perspective of V7, examples of which include lane-following and preventing driv-
ing backwards. We use £L to denote the set of lanelets in the road network of a
considered scenario. Without loss of generality, we assume obstacles present in the
scenarios to be non-cooperating vehicles, denoted by V° = {Vlo, ey VA‘}} with IDs

! https://commonroad.in.tum.de/.
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Initial Goal Reference Other
state region path (= B vehicle
dy LL={1,234)

(1
y M —
FST %
Fig. 1 A scenario containing planning problems with two cooperating ego vehicles V° and V",

and four lanelets with IDs 1-4. The triangles at the beginning of each lanelet indicate the driving
directions

M={1,..., M}. In addition, we assume that the most likely predictions of trajec-
tories of other vehicles V.2 are given as input. The conflicts between the reachable
sets of vehicles in V¢ are detected and resolved in the global Cartesian coordinate
system FC.

3.2 System Dynamics

The dynamics of an ego vehicle V" is abstracted by a point-mass model with the cen-
ter of the vehicle as the reference point. Notably, the reachable sets of the point-mass
model over-approximate those of high-fidelity vehicle models; thus, this abstraction
does not exclude possible behaviors of V,°. This model is represented with two dou-
ble integrators in its longitudinal s, and lateral d,, directions. Let [J,, be a variable of
V¢, with minimum and maximum values denoted by (J, and [J,,, respectively. The

system dynamics of V,° is

1 A 0 0 A7 0
0O 1 0 O A 0
Xnk+1 = f(xn,kv un.k) = 0 0 1 At Xk + Ot lAz Un i, (1)
2 t
00 0 1 0 A

where k € Ny is a step corresponding to time #, = kA,, with A, € R being a prede-
fined time increment. The variable x,, y € X, C R* represents the state of V,° in the
state space X, x, and u, x € Uy, C R2 represents an input in the input space ([/In xof
V.S, each at step k. The states and inputs are modeled as x,, x = (Sn.ks Sn.k»> dn.k» Ao, 7
and Uy = (Snks ,,,k) , respectively. The velocities and accelerations at a position
(Sn.k» dn k) are bounded by

§(T) < s <30, d(Ty) < dyy <d(T,), (2a)
F(T) < $ox <5, d(T) < dyi < d(T). (2b)
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The bounds are chosen conservatively to consider the kinematic limitations and
effects of representing the system dynamics using the point-mass model within a
curvilinear coordinate system, see, for example, article [7]. We define an operator
proj, (-) for subsequent computations, which maps the input to its elements {. An
example is: proj; ;) (¥n.k) = (Sn.x Sni) T £Or Bt = (Sutes Snks Su) |- A set X« can
be projected using the same operator:

proj (X, = | proj ()| Fri € K-

3.3 Reachable Set

We denote the occupancy of V,© by @, (x,,x) C R? and the occupancies of all vehicles
in V° as well as the regions outside the road surface by O, ; C R?, both within Fr.
The set of forbidden states X}, , of V,¢ at k is defined as

Xpy = {xn,k € Xn,k’Qn(xn,k) NOni # VJ}-

Let ’RZ’O = X0 be the initial reachable set of V,°, with X,, o being the initial set of
states. The reachable set Ry | .| of the next step is defined as the set of states reachable

from the current reachable set R}, ; while avoiding the forbidden states:

% . * .
nk+1 {xn,k+l € Xn,k—H EIxn,k S Rn’ks EIun,k € (L(n,k .
F
Xngr1 = JXns, Un i) A Xnpr1 & X pi }

Efficient computation of R} is generally difficult; hence, we compute its over-
approximation R, x ~ R} ,, which encloses all trajectories of V,°. We adopt the union

of so-called base sets R,Siq),c, i € N as a set representation for R, x [34]. Each base set

Ry}c = 73?21 © X @S)n « 1s chosen to be a Cartesian product of two convex polytopes

that enclose the reachable positions and velocities of V. in the (s, §,) and (d,, dn)
planes, respectively (see Fig.2a, b). To simplify the notation, we also denote the
collection (set of sets) of R;’?k by Rux = {szl;( . Rzi‘)k, o } The projection of
Rg}k onto the position domain yields axis-aligned rectangles Z)fl’)k (see Fig.2c), whose
union is referred to as the drivable area D, ;. Similarly, we use D, ; to denote the
collection of Z)fliy)k.

In this study, each base set R,Si’),c carries a set of semantic labels Lfl';)k, whose
collection is denoted by L, ;. The generation of Lff’)k will be explained in Sect. 4.6.3.
To store the relationships of R,(,';)k in terms of reachability and time, we create a directed
and acyclic graph G,,, which is referred to as a reachability graph, see Fig.3. Each
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Fig. 2 Polytopes and drivable area of a base set R,(j,)k (adapted from [13])
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Fig. 3 Reachability graph G, connecting nodes of different steps. Nodes of the same color have
the same labels (adapted from [13])

node in G, corresponds to one base set with its labels. An edge connecting R,(f’)k and

Rflj ,)( 41 indicates that Rflj ,){ +1 1s reachable from Rff,)k after one step.

3.4 Propositional Logic

We consider specifications expressed in propositional logic [12] for V., denoted by
F., which are directly integrated during the computation of the reachable sets (see
Sect.4.6.4). Let ¢, € ¥, be a propositional logic formula, we introduce an additional
syntax G;(¢,), I = [a, b],0 < a < b <k, where I is an integer interval specifying
steps for which ¢, should hold. If 7 is not specified, we assume it to be the entire
planning horizon [0, k;]. For example, the following specification requires V,> to
follow V}° between steps 0 and 10, and never to be on the right of V°:

Go, 101 (behind (V) A aligned _ with(V)) A G (—right _of (V) .
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Table 1 Selection of considered predicates inspired by [19] (adapted from [13])

Category Type Predicate
Position VI in_lanelet, on _main _ carriageway, on _access _ramp, . ..
VD behind, beside, in _front _of, left _ of, aligned _ with, right _of, ...
Velocity VI below _fov _ velocity _ limit, below _type _ velocity _limit, ...
VD safe _ following _ velocity _speed _limit, safe _leading _ velocity _speed _limit, . ..
Acceleration VD admissible _braking, . ..
General VI change _ lanelet, preserve _ traffic _ flow, standing _still, . ..
VD in _congestion, exists _slow _leading _ vehicle, . ..

4 Computing Specification-Compliant Reachable Sets

To obtain specification-compliant and negotiated reachable sets for V,°, we (1) seman-
tically label reachable sets considering relevant predicates, (2) constrain reachable
sets to subsets satisfying specifications ¥, and (3) negotiate conflicting reachable
sets with other cooperating vehicles in V<. This section summarizes our previous
work [13] covering steps 1 and 2; step 3 will be covered in the next section. A
selection of considered predicates is listed in Table 1: The evaluation of a vehicle-
dependent (VD) predicate is dependent on other vehicles V°, whereas that of a
vehicle-independent (VI) predicate is not.

4.1 State Space Partitioning

To expedite the labeling of reachable sets, we partition the state space of V,° based
on considered position predicates. Velocity predicates are not considered in the par-
titioning since they require computationally demanding splitting of the state space
of V.° with (non)linear curves (see Fig.5c, d). For efficiency, we instead directly
evaluate them on individual reachable sets (see Sect.4.6.2). Set operations such as
intersection and difference are required to compute the partitions of the state space.
We model the partitions for V,° with a set of hyperrectangles R, , to avoid gross
approximations while keeping computational complexity at a reasonable level. This
choice is not mandatory; any other set representation that captures the partitions will
also suffice. R, , is defined as the Cartesian product of intervals over the position
and velocity domains within F:

Rug = (80,0 5na) X g 3na]) X (1 g drg) X 1y g dngl) . 3)

where s, 4 and $, 4 denote the position and velocity of the g-th hyperrectangle in
the s, direction, respectively. The same applies to d, 4 and d,, , in the d,, direction.
A regular grid of axis-aligned cells is formed along I';, and the g-th cell in the grid
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occupies [Q,,,q, Sngl X 14, o En,q] C R2. The default values of the velocity intervals

[gw, ST,,,q] and [dn_q, dn,q] are set according to (2a).

The set of considered position predicates as well as its power set are denoted by
Pros = {01, 02, ...} and 2777, respectively. We also denote by part,, (k; Z,, ;) the
set of hyperrectangles of V¢ for which the predicatesin Z, ; € Z, € 27" evaluate
to true at step k. Figures4 and5b illustrate example partitions projected onto the

(sn, d,) and (s,, s,,) planes, respectively.

4.2 Position Predicates

only a few example evaluations position predicates. Vehicle-independent position
predicates do not depend on other vehicles; examples are:

e in_lanelet(R, 4; Lig) & proj(s’d)(R,l,q) Nocc,(Lig) # &, where Lige LL
denotes the lanelet with ID id, and occ, (L;4) returns its occupancy within F.

e drives _rightmost(R, ; X™) < proj 4 (Rnq) N X™ # @, where X™ C R?
denotes the rightmost region of lanelets. Within this region, the distance between
any point to the right bound of a lanelet does not exceed a predefined distance [19].

For the sake of brevity, we omit R, , in the arguments of the predicates in the rest of
this work.

Vehicle-dependent position predicates describe position relationships between
an ego vehicle V° and non-cooperating vehicles in V°. Following [19],
we define necessary helper functions to assist the evaluation of predicates.
The functions front(k; n; m) and rear(k; n; m) return the maximum and mini-

- VP
{behind(V}), aligned_with(V}), in_lanelet(L;)}
{behind(V), left_of(V)), in_lanelet(L2)}
{beside(V), left_of(V;), in_lanelet(L,)}
{in_front_of(V7), aligned_with(V}), in_lanelet(L;)}
{in_front_of (), left_of(Vy), in_lanelet(L>)}

mmam
2 HH
T

1 L= »)

T
2 HH
[Tt

1 [(m )

Fig.4 Projection of the partitions of realizable sets of position predicates onto the position domain.
Lanelet IDs are shown with numbered boxes. In this example we only consider position predicates
related to L1, L2, and V; (adapted from [13])
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mum longitudinal coordinates of VS within F[, respectively, each at step k.
Along the longitudinal direction, the mutually exclusive predicates PRo° =
{{in _front _of (V,2)}, {behind(V,2)},

{beside(Vn‘j)}} can be evaluated as follows:

e in_front_of(V;)) & Spg l,/2 > front(k; n; m),

e behind(V,}) & 5,4 +1,/2 < rear(k; n; m),

e beside(V) & —in_front_of (V) A =behind(V,”) A (left _of (V) v
right _of (V,2)).

We define the mutually exclusive set of predicates 5. , = {{left_of(V,2)},

nm,d —

{right _of (V,0)}, {aligned _ with(V,2)} } similarly along the lateral direction.

mn

4.3 Realizable Sets of Position Predicates

The partitions of the collection Z, of realizable sets of position predicates of V,° are
used for splitting the reachable sets (see Sect.4.6.2). Sets Z,, ; € Z, are said to be
realizable for V> if 3k € 0, ..., ky, : part, (k; Z, ;) # @, with k;, being the planning
horizon. We refer the readers to [13, Sect. III.C] for the computation of Z,,. Figure 4
shows an example of the partitions of Z, ; projected onto the position domain for
a scenario containing two lanelets and one non-cooperating vehicle. It follows from
our formulation of the predicates that the aforementioned projection is collision-free
with respect to other vehicles.

4.4 Velocity Predicates

We briefly present examples of the evaluation of velocity predicates required for the
subsequent computation of reachable sets. Vehicle-independent velocity predicates
often relate to extremum requirements on velocities. For example, rule R-G3 [19]
specifies maximum velocity limits originating from different sources, which should
be respected. These include velocity limits introduced by the type of lane(let), the
type of vehicle, and the limited field of view of the ego vehicle.

The evaluation of vehicle-dependent velocity predicates depends on other vehicles
V°. Examples are predicates indicating whether the ego vehicle V,° is driving at a
safe velocity with respect to a leading or a following vehicle V.2 [19, cf. Sect. IV.C].
See [19] for further examples.
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Algorithm 1 One-Step Computation of Specification-Compliant Reachable Sets

Inputs: Specifications ¥, base sets R, x—1, realizable sets of predicates Z,,.
Output: Updated reachability graph G,,.

1: Ri,k < PROPAGATE(Ry k—1) > Sect. 4.6.1
2: RS < SPLIT(RE ;. Z,) > Sect. 4.6.2
3: Lok < LABEL(RS . F7) > Sect. 4.6.3
4: CHECKCOMPLIANCE(R,SL o Lni-Fn) > Sect. 4.6.4
5: Rok < CREATENEWBASESETS(R}?,{) > Sect. 4.6.5
6: for Rff}k € Rk do

7 G,,.ADDN ODE(VQSA),( ,Lff’)k)

8: end for

4.5 General Traffic Situation Predicates

General traffic situation predicates may reveal the states of a cooperating or non-
cooperating vehicle. These include whether V,° or V,° has conducted a lane change
maneuver, whether a slow leading vehicle exists for V,°, and whether V,° is stuck in
traffic congestion. See [19] for further examples.

4.6 Computation of Reachable Sets

Algorithm 1 details one step of the computation of specification-compliant reach-
able sets for an ego vehicle. The reachable sets of subsequent steps are computed
analogously.

4.6.1 Forward Propagation

Each base set Rff,)k_l € Ry x—1 from the previous step is forward-propagated based
on the discrete-time system model (1), resulting in the propagated sets R;‘,E') (see
Fig.5a). We perform the forward propagation as described in [34], except that addi-
tional acceleration constraints originating from the specifications can be imposed

(for example, unnecessary braking rule R_G2 in [19]).

4.6.2 Splitting

S, (1)

f: ’,Ei) are split into new sets R, " with respect to position and

The propagated sets R’
velocity predicates:

1. R;‘,Ei) are split such that the new sets only intersect with a single partition (see
Fig. 5b).
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Rﬁf,)k—l RS
n,k

t, (ks Zn ’
Pt 2 oty s Zno)

0 K 0 N
(a) Propagation (b) Splitting
S, (i)
Rn k

. \\ abo;efsﬁ
w7/

above _sj, below _s»

S1 |\
R

below _s

below _s;

0 K 0 N

(c) Splitting with respect to vehicle- (d) Splitting with respect to vehicle-
independent velocity predicates above _s;  dependent velocity predicate below _sg
and below _s;

Fig. 5 Propagation, splitting, and labeling of base sets. We only show the operations in the s-
direction. Labels of polytopes are shown in gray boxes. Notably, in d, the two newly split polytopes
are slightly over-approximated and convexified due to the nonlinearity introduced by the velocity
predicate (adapted from [13])

2. The split sets are further split, over-approximated, and convexified with respect
to velocity predicates (see Fig. 5c, d).

4.6.3 Semantic Labeling

The semantic labels Lfl';)k of reachable sets Ri’,ﬁi) are updated as follows:

1. Ri’ ,fi) propagated with acceleration-specific specifications include atomic propo-
sitions o € AP corresponding to acceleration predicates in their set of labels.

2. Rf:,i') include atomic propositions o € AP corresponding to the position pred-
icates associated with the partition with which it intersects, velocity predicates,

and traffic situation predicates that hold in 7{5 :,((i) in their set of labels.
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4.6.4 Compliance Check

In this step, we iterate through Rs ’,Ei) and examine the compliance of the labels Lff}k

with the given specifications ¥,. We discard Ri’,&i) if 3p, € Fu : ij’)k ¥ @, If all
sets are discarded, ¥, cannot be complied with by any trajectory of the ego vehicle
(recall that our reachable sets are over-approximative). In this case, one can either
recompute the reachable sets with respect to a different set of specifications or execute
a previously computed fail-safe trajectory [26].

4.6.5 Creation of New Base Sets

Finally, the new base sets are created by computing the drivable areas Z),f: ,Ei) of R;:’: ,Ei),

repartitioning Df:,ﬁi), and producing 72,(1{),{. We refer the reader to [34] for a detailed

explanation of these steps. The reachability graph G, is updated by adding Rif.)k along

LS_)k as new nodes.

5 Negotiation of Reachable Sets

This section summarizes our previous work on the negotiation of conflicting reach-
able sets R, among a group of cooperating vehicles [21]. We use the notation
[D,,]ZIV = [0y, ..., Op] to denote a list of elements [, of vehicles V,°. Algorithm 2
details the steps for resolving conflicts between cooperating vehicles at each step k:

1. Compute specification-compliant reachable sets for each cooperating vehicle.

2. Identify conflicting cells based on reachable sets of cooperating vehicles (see
Sect.5.1).

3. Determine the optimal allocation of packages of cells among cooperating vehi-
cles (see Sect.5.2).

4. Compute negotiated reachable sets for each cooperating vehicle (see Sect.5.2).

Step 1 is computed as described in Sect.4; we will now elaborate on steps 2—4.

5.1 Problem Statement

We denote by C = {Cp, Cy, ..., C;, ...} agrid with cells C; of rectangular shape,
created by tessellation of the position domain within the global Cartesian coordinate
system F¢. Each cell is an individual asset representing an area of the road surface and
can be combined into unions of assets, which we refer to as packages C ;. We specify
the mapping cell,, : 2%+ — 2€ that returns the cells C; € C occupied by vehicle V,°
due to its set of states X,  at step k and its shape. The cooperating vehicles in V< act
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Algorithm 2 Computation of Negotiated Reachable Sets

1: function COMPUTENEGOTIATEDREACHABLESET([R,, 01V .C)
20 [RY IV < [RuolV > Initialization

3 for k = 1toky do

4: forn =1to N do

5: Rk < COMPUTEREACHABLESET(REIJ{_l) > Sect. 4.6
6: end for

7 Cg <« IDENTIFYCONFLICTINGCELLS([Rn,k]N ,0) > Sect. 5.1
8: WH* «— DETERMINEOPTIMALALLOCATION([‘Rn’k]N ,C,f) > Sect. 5.2
9: forn =1to N do

10: Rff_ « < COMPUTENEGOTIATEDREACHABLESET(R,, 1, W*) > Sect. 5.2
11: end for

12:  end for

13:  return [UkREqk]{v
14: end function

as bidders and propose bids to packages C; for which C; N cell, (R, «) # & holds.
Let us introduce 2%¥_, to denote all subsets of the power set of A’ with a cardinality
greater than one, C$ C C denotes the set of conflicting cells requested by at least two
vehicles at step k:

cS = U ﬂ cell, (R, x). (4)

Ie2N_ nel

We restrict the packages to those containing at least one conflicting cell, denoted
by Cf C 2Ci (see Fig. 6). We assume that every cooperating vehicle V.. bids its true
value, with by (C ) being the maximum bid of the package C; proposed by V<. The
overall revenue is maximized, while no single cell is assigned to multiple bidders:

max > 8(C)) bi(C), (5)
kAL j C}

where 8;(C;) = 1if package Cj is assigned to the bidder with the highest bid at step
k. Problem (5) is known as the winner determination problem, and its solution is
NP-hard [30]. Furthermore, accepting every package C; demands that each bidder
Ve bids for 2/%! — 1 packages at step k, which becomes more computationally
demanding as |Cf| grows. Using a hierarchical tree structure for the packages allows
us to attain computational tractability and ensures that the optimal allocation of
packages will be found in the time O (|C§|?) [30].

5.2 Conflict Resolution

We employ an auction-based mechanism to resolve conflicts with occupied road cells
between cooperating vehicles. At every step k, the conflicts are resolved as follows:
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Fig. 6 Visualization of the I | C1
road grid C, the set of Ve I |
conflicting cells CS, the set I J_Y‘ Cy C |'c,
of packages Cf, and the = Co—-Cs | C4 | Cs
individual packages C+ = _A:r Cs Cy Cy

(adapted from [21])
Cc =1{Co, C1,C2, C3,Cy, |
Cs, C, C7,Cg }
Cr = {Co Ci}
Co = {GC3, C4, Cg, C7} _
C1 = {Cy, C1, G2, Cs, Gy}

1. Determine packages C; based on Cf and their position within the hierarchical
tree (see Sect.5.2.1).

2. Evaluate individual bids of packages C ; and determine the maximum bid b, (C j-,)
(see Sect.5.2.2).

3. Determine the optimal allocation “W* of packages to cooperating vehicles (see
Sect.5.2.3).

5.2.1 Hierarchical Tree of Packages

All conflicting cells C{ at k are included in the root node of a hierarchical tree 7.
At each level of the tree, the cells in a parent node are decomposed into disjoint sets
of cells, each of which is a package associated with a child node (see Fig.7). To
decompose the cells into more granular packages, we consider the following levels:

[2) Connected components
—13) Road network  [=14) Longitudinal coverage
[15) Lateral coverage C—16) Singletons

(a) Vf intends to perform a lane change (b) A possible hierarchical tree constructed
maneuver; both V¢ and VJ request cells using the decomposition strategy outlined in
{Co,...,Cio} Sect. 5.2.1

Fig. 7 Example grouping of conflicting cells (adapted from [21])
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1. Connected components: Connected regions on the road surface prevents ego
vehicles having disjointed drivable areas, which would complicate subsequent
motion planning. We aggregate connected cells into packages.

2. Road network: Vehicles have to obey the traffic rules imposed by the road net-
work; therefore, we encourage the creation of packages based on lanelets. A cell
is assigned to the lanelet with which it has the largest intersecting area.

3. Longitudinal position coverage: The packages of the parent nodes are decom-
posed in the longitudinal direction such that the longitudinal coverage of each
new package does not exceed a predefined threshold.

4. Lateral position coverage: The packages of the parent nodes are decomposed in
the lateral direction such that the lateral coverage of each new package does not
exceed a predefined threshold.

5. Singletons: The packages comprise only a single cell.

5.2.2 Bids on Packages

We adopt a common utility function for cooperating vehicles to avoid a situation in
which a vehicle could continuously outbid others due to differences in the scales and
weights used to calculate the bids on packages. We use the following sets as the basis
for computing the utility of V,* for C; to determine b, x(C;):

1. the conflict-free reachable set: RS, := {x,x € Ry cell,({x,4}) N C§ = .
2. the conflicting reachable set depending on package C; that would be lost if C;

was not assigned to V,5: R75 (C;) = {xn,k € Ryxe| cell, ({x, ) N C; # @}.

3. the assigned reachable set that V,* possesses given that C H is assigned to V,°:
Rﬁ(C;) = RSFk U RS};(C}).

For computational reasons, the sets Rgi,ﬂgi (C;), and Rﬁsk (C;) are approximated

by the union of base sets (see Sect.3.3) and are denoted by UiRSi’(i), UiRSi’(i),

and Uiﬂfi(i), respectively. To take the objectives of the vehicles into account while
preventing the complete loss of the reachable set of a vehicle (so that a trajectory
can still be found), the utilities of vehicles are computed differently for regular mode
and survival mode:

by L (Co) = U (C5), area(R;5) > A, (regular mode)

AR Uz (C;), otherwise, (survival mode)
where area(-) returns the size of the drivable area of the input (see Sect.3.3) and A is
a threshold. We now proceed with explaining the regular mode and survival mode.
(1) Regular Mode: The utility of R}% (or R, as the case may be) is defined as

the sum of the utilities of R:i’(i) (or Rgi’(i) ), weighted by their areas. The function
U,ff «(C;) reflects the utility of C; for V,7 by computing the ratio of the utility of ‘Rﬁ
to that of R'" :
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Y (MpOS(R:i,(l)) I uref(RiSk»(l))) x area (RS ")

> (0o R ) + =t R ) ¢ area (R

Uni(Cp) =

with partial utility functions #®°% and u*¢f. To encourage advances in traffic flow,
we reward progression in the longitudinal direction with

(O ) = v (max(proj(s)(lj,,,k)) - max(proj(s)(Rfl"k_]))> ’

1% 2 -
2 Snk At + sn,k At

where ?n, r and sTn,  are determined according to (2a), and y is a generalized logistic
function that maps the utility to (0, 1); in addition to [21], we also consider the
deviation of V,° from its reference path:

we (@) = e, d' =min({|d"| |d" € proj (.0},

where w € R, is a tunable weight that dictates how fast u*=£(J, ;) approaches 0 as
the deviation increases.

(2) Survival Mode: Two countermeasures are introduced to prevent reachable sets
of V° from vanishing: (1) if any V,7 is in survival mode, no other vehicle in regular
mode can bid on the package Cj; (2) the utility function is switched to

area (RS% (C Jv))

S (Co) —
UnaCj) = area (R x)

’

which reflects how close the reachable set of V7 is to vanishing given that C; is not
assigned to V,°.

5.2.3 Optimal Allocation of Packages

The algorithm for finding the optimal allocation “W* of packages C; is based
on [30]. In each iteration, we retrieve the deepest node N9°P in the hierarchi-
cal tree T (see Sect.5.2.1), its parent node NP2 °"t and the set of child nodes

Nebitd — { D } of NParent Next, we compare the summed maxi-
mum bids (revenue) of all child nodes rev(Ntild) ;= p Ek(Nthild) with the

maximum bid of the parent node by (N®3ret):

o If Ek (NParenty - rey(NChild) Arehild jg excluded from W*.
o If by (NParTent) < rey(NCRild) pParent jg excluded from W*.



Specification-Compliant Motion Planning of Cooperative Vehicles ... 339

Following this comparison, N “?*14 is removed from the tree. The process is repeated
until NP27*"* becomes the root node. After obtaining ‘W*, each ego vehicle V,©
proceeds to determine its negotiated reachable sets:

R ¢ = {Xns € Rus] celly (i) NCT = 2},

where CY;, C Cf denotes the set of unassigned cells of V. based on “W*.

6 Evaluation

This section provides example results for specification-compliant reachable sets for
a single ego vehicle and its extension to cooperative vehicles. The implementation
is based on the CommonRoad-Reach toolbox [14] for computing the reachable sets
of vehicles.

6.1 Scenario I: Precise Overtaking

This scenario depicts a situation in which the vehicle V© should overtake a leading
vehicle V in the presence of another vehicle V. Let the following specification be
issued by a high-level maneuver planner of V;°:

Go,151 (behind(V) A aligned _ with(V)) A
Gyi6.38] ( in _lanelet(L,) V in _lanelet(L4)) A
G39.457 (in_front_of(Vlo) A behind (V) A in_lanelet(L3)) .

The specification-compliant reachable sets are computed as described in Sect. 4.
The non-empty result implies that it is possible to find a trajectory that meets the
specifications. Figure 8 visualizes the drivable areas of V| along with a trajectory
planned within the reachable sets using the motion planner described in [22]. For a
more detailed evaluation of computing specification-compliant reachable sets for a
single ego vehicle, we refer the reader to [13].

6.2 Scenario Il: Highway

In this scenario, we negotiate the reachable sets of four cooperating vehicles driving
on a highway. Figure 9 shows the computation results at different steps. As can be
seen, our method can allocate road areas to cooperating vehicles even in such complex
traffic situations with many non-cooperating traffic participants. For a more detailed
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steps. b A trajectory planned F B a»
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evaluation of negotiating reachable sets among a group of cooperating vehicles, we
refer the reader to [21].

6.3 Scenario I1I: Roundabout

This scenarioillustrates a situation in which two vehicles V© and V5 should cooperate
to go around a roundabout. We show the computation results under different settings:
(1) no specification is considered; (2) V yields to V;; (3) V; yields to V. The
latter two settings are relevant when a yield traffic sign is present at the junction and
specifies which vehicle has to yield to other vehicles entering with a higher passing
priority. The specification can be expressed as follows:

G (exists _yield _sign A exists _other _entering _ vehicle = brake _to _ stop),

which can be regarded as a simplified version of the intersection rules described
in [18] but without temporal logic connectives. Figure 10 illustrates the computation
results under these settings. In Fig. 10b, V© can either accelerate and enter the round-
about ahead of V|° or decelerate to enable V€ to enter first. In Fig. 10c, d, the yielding
vehicles have to brake in order to stop and yield to the other entering vehicle.
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k=0 Initial state of V©

@ iy arca of Vi i

()

Fig. 9 Highway scenario. Subfigures b—d show the drivable areas of the negotiated reachable sets
of vehicles at different steps

7 Conclusions

In this chapter, we summarized our previous works on computing specification-
compliant reachable sets for an ego vehicle and negotiating conflicting reachable sets
between a group of cooperating vehicles. The specification-compliant and negotiated
reachable set is used to guide subsequent motion planners to find specification-
compliant trajectories. As a result, the cooperative vehicles can consider traffic rules
and handcrafted rules expressed in propositional logic that involve position, velocity,
acceleration, and general traffic situation predicates. A limitation of the method is
that it does not yet handle specifications formulated in temporal logic, which reflects
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k=0 ! k=30
Initial state of V£ Tnitial state of V7 \© N o
\ Drivable area of V.
- L
L
/77
—
| Drivable area of Vlc
(a) Initial states (b) No specification considered
k =30 -
_
—
- ¢
(c) Vehicle V' yields (d) Vehicle V[ yields

Fig. 10 Roundabout scenario. V5" intends to reach the first exit, and V|® intends to reach the second
exit. Subfigures b—d show the drivable areas of the negotiated reachable sets of vehicles at step
k =30

temporal requirements on vehicles, both in the computation and negotiation of the
reachable sets. This will be a subject of future research.
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AutoKnigge—Modeling, Evaluation )
and Verification of Cooperative L
Interacting Automobiles

Christian Kehl, Maximilian Kloock, Evgeny Kusmenko, Lutz Eckstein,
Bassam Alrifaee, Stefan Kowalewski, and Bernhard Rumpe

Abstract The development of cooperative driving functions to optimize traffic
systems shows high potential to improve individual autonomous driving systems
with respect to topics like traffic flow, vehicle safety and user comfort. The core
concept of the presented solutions is the Local Traffic System (LTS). Following the
messages defined in European Telecommunications Standards Institute (ETSI) Intel-
ligent Transport Systems (ITS) G5 for Vehicle-to-everything (V2X) cooperation we
introduce concepts and implementations to intelligently group vehicles based on the
exchanged V2X data with respect to the individual vehicle capability for cooperation.
Based on the determined grouping, we present algorithms for cooperative trajectory
planning. We develop a verification method for the cooperatively planned trajectories
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within a LTS. The verification guarantees collision avoidance and deadlock-freeness
in real-time. Finally we introduce a model language based on MontiArc to enable
a systematic representation and description of the presented concepts for grouping,
cooperation and interaction.

1 Introduction

Rapid technological advancements in the area of automated driving functions in
recent years make large-scale deployment of SAE Level 4 and 5 [45] automated
vehicles likely in the next few years. While technological progress is mainly limited
to the development of vehicle-specific automation functions, the development of
cooperative automation functions for the optimization of traffic systems already
shows high potential to significantly improve current topics of concern such as traffic
flow, vehicle safety and user comfort.

Current Vehicle-to-everything (V2X) systems show a beacon-like behavior with-
out a direct sender or receiver and are rather designed to transmit one-time events to
alert other traffic participants. The next logical step towards the development of coop-
eratively interacting vehicles requires a significant extension of existing V2X systems
at all levels. The extension of these systems from a one-time event-based communi-
cation to a continuous data exchange for the execution of cooperatively interacting
algorithms [4, 28, 39], raises questions regarding the grouping of the involved road
users [29], reliability vehicle communication [32], the type of information exchanged,
the underlying algorithms as well as the basic model description of these systems.
Methods that present cooperative trajectory planning of vehicles in different scenar-
ios are, e.g., the works in [31, 33, 34]. These works focus on the applicability of
cooperative trajectory planning in intersections, pose control, and vehicle racing.

The core concept of the solutions presented in the following is the Local Traffic
System [7]. Local Traffic Systems can be understood as cooperating C-ITS subsys-
tems as defined in European Telecommunications Standards Institute (ETSI) Intelli-
gent Transport Systems (ITS) GS. Based on this concept, different approaches for the
detection of the corresponding traffic scenarios, the formation of Local Traffic Sys-
tems as well as their evaluation are presented. Within these systems the cooperation
takes place. In the context of this work, the cooperative trajectory planning, as well as
a real-time verification of the cooperatively planned trajectories are presented. The
verification guarantees the absence of collisions and deadlocks for the trajectories of
all vehicles in one or multiple LTS. Finally, a model language based on MontiArc is
presented for the systematic representation and description of the presented concepts
for grouping, cooperation and interaction.
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2 Learning-Based and Vehicle Capability-Aware
Architecture for Clustering of Cooperative Interacting
Automobiles

One of the central aspects within the overall process for cooperation and interaction
of vehicles is the clustering of traffic participants relevant for cooperation. The forma-
tion of these clusters for the purpose of cooperation inevitably leads to the following
questions: When is cooperation and interaction between traffic participants useful?
What kind of vehicle data must be exchanged before and during cooperation? How
can relevant traffic participants be identified?

In order to group the corresponding traffic participants, this work takes up the con-
cept of Local Traffic Systems (LTS) [7] and develops it further. Local Traffic Systems
are defined as a grouping of road users for the purpose of information exchange as
well as cooperation. The cooperation take place exclusively within the LTS.

Previous work [8] in the area of Local Traffic Systems has been based on a single
evaluation function. This evaluation function consists of various normalized distance
metrics such as the distance between individual vehicles, the derivative of the distance
function, the direction of travel, etc. The position information is based on a predefined
road graph that must be known to all road users. The nodes of the road graph represent
different points within the traffic network and have a distance of a few meters. The
edges of the road graph represent the roads themselves. Road properties such as the
maximum permitted speed are assigned to the edges. The individual distance metrics
are then normalized and multiplied by a developer defined weighting factor. The now
normalized and weighted metrics are finally added to an overall evaluation function.
The objective is to minimize the evaluation function. The LTS configuration with
the most minimized evaluation function is considered as an optimal solution. The
information exchanged here to determine the individual metrics is already based on
current standardizations such as the Cooperative Awareness Message (CAM) [13]
and are extended when necessary. The vehicle data is exchanged cyclically. After the
LTS formation, the cooperation takes place through data exchange within the system.

However, this approach has several disadvantages. The recurring calculation of the
entire LTS configuration leads to an enormously high computing load, which makes
a calculation in real time almost impossible. In [8] therefore a greedy algorithm is
recommended, which makes only small changes at the past configuration in each
time step without recalculating the total configuration. Additionally, the number of
permitted LTS participants is limited to a maximum of 5-10 participants. This serves
on the one hand to reduce the total computation time, and on the other hand to reduce
the amount of information exchanged within the LTS in order to prevent an overload
of the available bandwidth.

The necessity for a common road graph model shared by all vehicles represents
a considerable limitation. The formation based on a road graph is here not limited
by the mere necessity of the graph itself, but by the required correspondence of
the graph between all road users. It is already apparent today that predefined map
data will play a decisive role in the implementation of autonomous driving functions
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[47]. However, they often take on a supporting role for localization [41]. Due to
the frequent changes in the road network and the resulting inaccurate data, possible
cooperation approaches should be map-independent. Furthermore, planning based
on the road graph limits the accuracy of LTS formation to the accuracy of the existing
map material because all positions are defined relative to the underlying graph. This
poses a problem especially for cooperative maneuvers when the required vehicle
distance is below the minimal accuracy level defined by the road graph.

Another disadvantage is the decoupling of exchanged vehicle data, LTS genera-
tion, the underlying cooperation algorithms, and the current driving situation. The
permanently high amount of exchanged vehicle data leads to an unnecessarily high
utilization of the available V2X data rate in the vehicle. IEEE 802.11p and LTE V2X
can support data rate of up to 27 Mbit s~ and 28.8 Mbit s~ [44]. The lack of a
link to the current vehicle situation and the underlying algorithms not only makes
it difficult to prioritize individual LTS systems, but also ignores the influence of the
current driving situation on LTS generation. The following section is intended to give
a better impression of the resulting problems and derive additional requirements for
improvements.

2.1 Requirements for an Extended LTS Architecture

Using selected examples, this section attempts to provide insight into the motiva-
tion for extending the previous approach and to derive possible requirements for an
extended architecture. The goal is to preserve the general concept while identify-
ing concept limitations and avoiding the disadvantages identified in the course of
previous work.

The question of when a Local Traffic System should be formed at all and which
road users should participate in it is closely linked to the respective traffic scenario.
Possible traffic scenarios are shown in Fig. 4. In the following an exemplary traffic
scenario of a roundabout with five vehicles is displayed in Fig. 1. The planned
routes of the vehicles are marked in color along the center of the lane. The drawn
rectangles indicate the possible LTS groupings for the scenario at hand. Vehicles can
be grouped based on their respective vehicle state relative to other road users as well
as relative to their surroundings. This can be based on various vehicle data such as
the spatial proximity to the next vehicle, the overlap of the planned trajectories, the
general overlap of the planned routes, or the spatial proximity of the vehicle under
consideration relative to a relevant traffic node such as an intersection or roundabout.

One of the central problems here is the influence of cooperation, or cooperation
capability, as well as the driving situation on LTS generation itself. The scenario
shown in Fig. 2 illustrates the problem. A fast moving vehicle is approaching a slow
moving vehicle on the right lane. In order to avoid heavy braking of the right vehicle
behind, a lane change to the left lane is attempted. In general, two possible LTS are
conceivable in this situation. One LTS consisting of the rear two vehicles to coordinate
the lane change and one overall LTS consisting of all vehicles. However, if the rear
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Fig. 1 Possible local traffic systems—roundabout scenario

Local Traffic System 1 Local Traffic System 2
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Trajectory
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Fig. 2 Motion planning LTS layers

vehicle does not have the ability to change lanes cooperatively, the formation of a
third LTS from the two right vehicles for the purpose of speed adaptation is necessary.
A downstream cooperation without consideration of the vehicle capabilities leads to
an incorrect LTS formation.

If we now extend the given scenario as shown in Fig. 3, assuming the ability to
change lanes, another problem becomes apparent. In order to enable a lane change
of the right vehicle, in principle three vehicles would have to slow down their speed,
which is unfavorable from the point of view of a global optimization. However, a
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Fig. 4 Possible LTS scenarios
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human actor would possibly prefer the light braking of several vehicles to the strong
braking maneuver of a single vehicle. The respective driving situation therefore also
has a decisive influence on the vehicle grouping here. The simple static weighting
of different distance metrics is highly unlikely to meet this requirement.

The examples described above show that the selection of LTS participants is
complex and a wide variety of conflict situations can occur within a single scenario.
These are strongly dependent on the direct driver environment and require a high
level of algorithmic understanding of the driving situation which, as shown in Fig. 3,
cannot be solved solely within the cooperation algorithm but has direct repercussions
on the LTS formation. The incorrect too narrow selection of the LTS makes an optimal
solution impossible.

In addition to the wrong selection of the LTS participants, there is also the possibil-
ity of potential target conflicts between different LTSs. If a vehicle is simultaneously
a member of several competing LTSs, it is necessary to establish a prioritization
between the individual systems.

2.2 Extended LTS Architecture

The disadvantages and problems of the previous concept described in the previous
sections are to be solved by an extension of the architecture. The basic principles
and advantages of the previous approach are to be preserved.

Figure 5 describes the novel approach to the clustering of vehicles. The most
obvious difference is the division into different LTS levels between level 0 and level
4. The individual levels represent an increasing urgency in the need for cooperation
between the road users and allow prioritization between individual LTS. Systems with
a higher level are always given priority. In case of identical levels, no cooperation
is performed. The system waits for escalation to higher levels. If several systems
reach the highest level at the same time, cooperation between all traffic participants
is required. The traffic systems are merged into a larger system. Each LTS level is
associated with a specific set of exchanged vehicle data, boundary conditions, and
available cooperation algorithms. At the beginning, every vehicle that has not yet been
assigned to a specific group is at level 0. No active cooperation takes place here. Only
simple awareness based information, like the current vehicle position or additional
road information, like emergency warnings, are exchanged. This also provides a
way to integrate passive road users unable to participate in a cooperative effort such
as pedestrians, cyclists or infrastructure components like traffic lights. Each level
is assigned a cooperation algorithm in addition to the vehicle data and associated
boundary conditions. The LTS level is increased if the exchanged vehicle data exceeds
the level specific boundary conditions. The type of cooperation algorithm increases
according to the intensity of the intervention in the longitudinal and lateral control of
the vehicle. The vehicle data required for the cooperation must not exceed the scope
of the data exchange planned for the level. The amount of data exchanged increases
here because more complex cooperation maneuvers usually require a larger pool of
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data. The data exchanged is roughly based on the data specified by the ETSI ITS
G5 standard. Large parts of the described ETSI ITS G5 functionalities are still in an
early stage of development at the time of this work and are therefore susceptible to
possible changes. ETSI ITS G5 defines Cooperative Intelligent Transport Systems
(C-ITS) as ITS subsystems such as people, vehicles, roadside units that exchange
information or cooperate with each other to improve driving safety, traffic guidance
or driving experience. The cooperation capabilities to be realized are referred to as
services.

A general distinction is made between three categories of services. Cooperative
Awareness Services [ 12—14] define the lowest level and describe the exchange of sim-
ple status information such as position and speed for the purpose of simple warnings.
Cooperative Perception Services [17, 18] describe the second type of information
exchange on top of status data. Within this service, other traffic participants are not
only warned but also enabled to perform more complex functions such as Coopera-
tive Adaptive Cruise Control. Cooperative Maneuver Coordination Services [15, 16]
describe the highest level of cooperation. In addition to status and observation data
road users can share their intention in order to allow cooperation in complex driving
situations. These include scenarios like platooning or cooperative lane changes. The
approach to LTS education presented here is oriented along the escalating nature of
these services in terms of user interaction and user collaboration. In addition to min-
imizing intervention in the longitudinal and lateral control of the vehicle to increase
user comfort, this also reduces the required bandwidth. Instead of exchanging all
driving information periodically, only the information required for cooperation at
the current level is exchanged. Further development and replacement of individual
cooperation algorithms is possible without adaptation to the overall system.

For further development of the described architecture, a stimulative implemen-
tation approach is used. The developed framework is structured according to the
diagram in Fig. 6. The CARLA simulator [10] serves as the basic foundation. The
CARLA simulator is an open source driving simulator providing a virtual environ-
ment to simulate different driving scenarios and test autonomous driving functions in
avirtual environment. The simulator is using a server/client concept. While the server
is responsible for the simulation itself, the client controls the simulator by reading
and writing data from and to the simulation using a TCP/IP. The client exposes the
provided functions using an API to control traffic generation, pedestrian behavior,
weather, sensors, maps and much more. During this project the provided Python
API is used by the simulator interface to expose relevant functionality to the other
components of the Autoknigge Framework. All components are connected using
a ROS2 Communication Layer. This applies to messages controlling the simulator
itself as well as messages exchanged between simulated vehicles. ROS2 uses the
Data Distribution Service (DDS) which is also part of the Automotive Open System
Architecture (AUTOSAR) Adaptive Platform. DDS is a middleware specified by the
Object Management Group for data-centric communication in distributed systems.
Based on the ROS Communication Layer there are higher level components like the
World component. The World acts as a central repository for all data relevant to the
simulation, such as vehicle positions, velocities, planned routes and trajectories, LTS
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Fig. 6 Autoknigge architecture (Cooperation (Coo.), Vehicle (Veh.))

allocations, etc. The World component is also the central repository for all data rele-
vant to the simulation. Unlike the data stored in the individual vehicle components,
all data is available here. The controller is responsible for controlling the simulation
itself and provides functions for selecting the map, adding vehicles and people. The
controller is in turn used by the Scenario Loader to load various traffic scenarios.
The Traffic Manager is used to abstract the management and communication of indi-
vidual vehicles in the simulation. Here, for example, a distance-based forwarding
of V2X messages takes place in order to simulate a range limitation of the vehicle
messages. The number of managed vehicles is determined by the vehicles currently
present in the simulation. Each vehicle component can theoretically contain its own
Cooperation Manager to start and stop cooperation maneuvers. For simplicity in the
context of the simulation, all vehicles currently share a Cooperation Manager. This
also applies to the LTS Manager which assigns vehicles to the individual LTS.

The architecture described so far still lacks a concrete cooperation algorithm.
Therefore Sect. 2.3 presents the implementation of a method for cooperative velocity
adaptation for LTS level 1 systems.
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2.3 Cooperative Velocity Adaption Algorithm

Cooperative adjustment of vehicle velocity represents one of the most minimally
invasive forms of active cooperation, as it only interferes with the longitudinal con-
trol of the vehicle. By intervening in the vehicle’s longitudinal control at an early
stage, it is often possible to resolve conflict situations without impairing the vehicle
occupants’ sense of comfort due to strong longitudinal or lateral acceleration. The
cooperative speed adaptation algorithm presented in the following is designed as a
constraint optimization problem. The relevant boundary conditions are formulated
as hard constraints and soft constraints. Hard constraints are unbreakable rules that
must be fulfilled in any case, otherwise the result is not considered as a valid solution
of the problem. Soft constraints represent less strict constraints and are understood as
a kind of optimization parameter to distinguish several valid solutions in their qual-
ity. The problem is formulated in the form of a model and then passed to a solver.
The concrete algorithm uses the Google OrTools CP-Sat Solver [42]. Due to the
limitations of the solver, all variables and parameters of the model are formulated as
integer values. Input and output values that are represented as floating point numbers
are appropriately scaled by the algorithm beforehand.

The algorithm expects for each vehicle j two position arrays specifying the
planned x,y-trajectories for each timestep i as well as additional parameters like
the allowed minimum speed v; i, the maximum speed v; ;4. In addition, lim-
its for the permitted longitudinal acceleration a,,,, as well as a minimum time gap
teap,min to €nsure collision avoidance need to be defined. The variables are defined
for each vehicle j involved.

The algorithm defines a vehicle velocity variable v;; as well as a resulting times-
tamp ¢;; for each vehicle position p;; = (x;;, y; ;). The maximum acceleration is
used to determine the permitted velocity change v; A max,; for each distance step d ;.
The timestamp #; ;1 is automatically calculated in the solver model using the distance
d; ; between the position p; ; and p; ;41 as well as the velocity v;; determined by the
solver. To avoid a collision the model requires the time gap between two timestamps
of two vehicles to be greater than the predefined time gap #44p, min threshold if the
positions are closer than d;,.;. The algorithm currently does not take into account the
actual vehicle geometry. Therefore, the position distance value d;;,.; must be cho-
sen sufficiently large. At every position the calculated velocity v;; must be between
Vj min and v qx to be considered as valid result. As an optimizable soft constraint,
the algorithm determines the maximum total duration of the maneuver as the time at
which the last vehicle reaches the last target position in the planned trajectory.

The goal of the optimization is to minimize the total maneuvering time while
taking into account the constraints described above.

As an example the algorithm is applied to the intersection scenario presented in
Fig. 7. The vehicles are each positioned 10 m from the center of the intersection. The
given speed is chosen for both vehicles so that the trajectories intersect at the same
time and place. The usage of the presented algorithm with a spatial resolution of 1 m
results in an optimal solution shown in Fig. 8. Compared to the individual use of the
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intersection by each vehicle, the travel time for the braking vehicle is increased by
approximately 13.5 %. The specified time gap is marked in green. The labeling of the
displayed time axis does not correspond to the actual time in seconds but represents

the direct integer solution value of the solver.

The formulation as a constraint optimization problem offers several advantages.

On the one hand, the solver is able to capture the problem completely

and detect

conflicting constraints or prove the unsolvability of the problem at an early stage.
The LTS system can thus detect the unsolvability of the cooperation task at an early
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stage with the algorithms available at this LTS level and increase the level. On
the other hand, the solver is able to recognize optimal solutions as such and abort
further optimization at an early stage. The term optimal here refers only to the given
solution space based on the discretization used. For example, a finer discretization
of the vehicle position would lead to an improved optimal solution.

A disadvantage of the used approach is the generally slower solution of complex
constraint optimization problems with many variables. If in the given example the
accuracy of the trajectory is increased from 1 m to 10 cm, the calculation time of the
solution increases by a factor of 10-12 to around 1.2 s. The solver allows to set a wall
time to reduce the calculation time. This represents the allowed calculation time. The
best available solution at this time is used. Figure 9 shows the computation time of
the algorithm for different given maximum computation times. For each calculation
time, 10 runs were performed. It can be seen that the algorithm respects the specified
maximal calculation time with a deviation of a few milliseconds. The lower value at
a maximal calculation time of 1.5s shows the automatic termination process, since
on average an optimal solution is already found at 1.2s.

The limitation of the calculation time has a significant influence on the reduction
of the solution quality. Figure 10 shows that below 1.0s in most cases no optimal
solution can be found. Between 0.1 s and 1.0 s the algorithm finds sufficient solutions
with constantly decreasing quality. The percentage increase in the duration of the
cooperation maneuver relative to an optimal solution is shown in Fig. 11. With a
limited calculation time of 0.1s, the algorithm only finds a valid solution in 50 %
of the cases. The measurements also show that the initial abandonment of an opti-
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mal solution brings significant speed advantages without a dramatic loss in solution
quality and increase in maneuver duration.
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2.4 Learning-Based Clustering

The architecture described in Fig. 6 successfully decouples the formation of Local
Traffic Systems from the actual cooperation between the participating vehicles and
the associated algorithm.

However, the limits for determining the LTS level are still statically defined by
the developer. This static specification of the LTS parameters has several disadvan-
tages. On the one hand, static optimization of the corresponding parameters is often
suboptimal. The system is only adapted to a small set of possible conflict situations
and traffic scenarios and is likely biased towards these scenarios used as test cases
during the development. The administration and maintenance of a corresponding
traffic scenario collection is time-consuming and often does not meet the require-
ment of completeness. On the other hand, there is no direct connection between
the exchanged vehicle information shown in Fig. 5, the respective LTS Boundary
Conditions and the capabilities of the underlying cooperation algorithm. However,
changes to the underlying algorithms should logically also have an impact on the
transmitted data as well as the LTS formation. Due to the disadvantages presented,
a static parameter definition should be considered unsuitable for fully meeting the
requirements of an LTS generation architecture described before.

A deep learning based approach offers a possible solution to the aforementioned
problems. Here, the formation algorithm based on static parameters is replaced by a
deep learning model. The model decides whether the LTS level should be increased
or decreased, based on the exchanged vehicle data. The internal decision process is
learned by the model during the training process based on a stimulative approach.
The system can be trained in a simulation environment without managing a complex
data set of conflict scenarios.

In this way, the model learns the link between the exchanged vehicle data and the
underlying algorithms. The system learns not only the influence of a single parameter
on the formation of the respective LTS level, but also the implicit relationships
and similarities of individual traffic scenarios represented by the exchanged vehicle
data. The detection of the traffic scenario takes place implicitly. If the underlying
cooperation algorithms or the training scenarios are changed, the model can be trained
again without additional changes.

However, a training process as described in Fig. 12 is unfortunately not applicable
to the current problem. On the one hand, it is not possible to provide a static data set
for training the deep learning model, since already after the first time step the LTS
formation has an impact on the training environment surrounding the vehicle. Another
central problem is caused by the time-delayed verifiability of the LTS formation for
correctness. Common supervised/unsupervised deep learning approaches are based
on presenting the model with input data based on a training data set. From this input
data, the model generates the output data, which is then compared with a label.
Labels are part of the training data set in the case of supervised learning and are
generated from it in the case of unsupervised learning. The label is considered as
the correct output of the model on the existing input data. The deviation from the
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Fig. 12 Basic training architecture of supervised/unsupervised deep learning models

output of the model is represented by a loss function. The underlying parameters of
the model are adjusted with the goal of minimizing the loss function. However, in the
present case, such a label does not exist for a given set of input data. Whether an LTS
formation was goal-directed becomes apparent only in the course of the executed
cooperation maneuver several time steps after the actual LTS formation. Therefore,
a reinforcement-based approach is used in the following.
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The diagram in Fig. 13 shows the general structure of a reinforcement learning
algorithm. The algorithm consists of three main components. The reinforcement
learning agent, the surrounding environment and a reward function. The reinforce-
ment learning agent has the task to make optimal decisions based on the surrounding
environment. The decision made by the agent at a time ¢ is called action A,. The
action A; is determined on the basis of the current environment. This is represented by
the current state S,. To evaluate the quality of a decision, the reward R, is calculated
by a reward function. Thus, the agent’s goal is to maximize the total reward.

To transform the previous concept into a reinforcement-based approach, modifi-
cations to the architecture described in Fig. 6 are necessary. The changes are shown
in Fig. 14.

A higher-level component RL-Agent is introduced. The previous algorithm based
on static thresholds for determining whether a local traffic system is formed is
removed from the LTS Manager. The LTS formation is made in the LTS Manager
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Fig. 14 Learning enabled Autoknigge architecture

on the basis of the action A, by the RL agent. These actions are based on the current
state S; which is determined by the already existing World component. Furthermore,
the previous pure data collection of the World component has been extended by a
reward component to determine R,. The required data S;, R, for the computation
of A, are provided by a reinforcement learning interface to the agent during train-
ing. The access to the Scenario Loader allows switching between different conflict
scenarios during the training process.

2.5 Example Cooperation Intersection and Highway Access

The following section shows two example applications of the described concepts
described and gives a visual impression about the cooperation result. The first sce-
nario describes the conflict situation between two vehicles crossing an intersection.
The second scenario describes the conflict situation at a highway access. The envi-
ronment perception of the vehicles involved was completely deactivated. The only
information exchanged is the data specified for LTS formation. Cooperative driving
maneuvers are visualized within the simulator by a green line between the involved
participants.
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Fig. 16 Example cooperation highway access
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As visible in Figs. 15 and 16, a short time gap was deliberately chosen in order
to test the system at its limits. Both conflict situations are solved successfully on
the LTS Level 1 by early cooperative adjustment of the vehicle speed. The fact that
the present different conflict scenarios can be successfully solved with the same
cooperation maneuver supports the chosen approach of using simple cooperation
maneuvers, similar to human behavior, to solve different conflict situations.

2.6 Conclusion and Outlook

The presented architecture fulfills the requirements placed on the system. The trans-
mitted vehicle data, the LTS formation as well as the underlying cooperation algo-
rithms are successfully separated without neglecting the retroactive influences of
the driving situation and cooperation algorithm on the LTS formation. Successful
separation avoids the black box behavior of an end-to-end trained machine learn-
ing architecture. The cooperation algorithms are exchangeable. The introduction of
LTS levels allows for easy prioritization in case of conflicting goals. The vehicle data
assigned to the individual levels and the quantity of transmitted data, which increases
proportionally to the urgency, as well as the constantly increasing interference in the
longitudinal and lateral guidance of the vehicle, both reduce the necessary quantity
of data for simple cooperation maneuvers and increase driving comfort.

Although the current approach is promising, there is still a need for research in
the field of LTS education. This can be found in three main areas. First—The cost
function. In addition to simplified basics such as a traffic flow optimization function,
this should take into account other factors such as the CO, emissions of vehicles.
Second—The underlying cooperation algorithms and the exchanged data. Since the
focus of this work is on the optimization of approaches to LTS formation, there is
still a high need for research in this area. In particular, as standardization contin-
ues, changes in V2X message definitions are to be expected. In the long run, V2X
communication should be realized by frameworks like Veins, Artery [20] instead
of ROS2 messages. Third—Further consideration of single-agent and multi-agent
concepts of the reinforcement learning approach. The current system uses a single
agent that learns the LTS formation. A multi-agent system where each vehicle uses an
individual agent could offer significant advantages as there is no need to ensure that
all vehicles have the same agent. This offers advantages in simplifying the learning
process or realizing vehicle individual optimizations relevant to specific user prefer-
ences. Whether such a system contributes at all to the minimization of a global cost
function if each agent follows an individual optimization remains to be researched.
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3 Verification of Cooperative Interacting Automobiles

3.1 Introduction

This section proposes an approach to use formal methods for verifying trajectories
in our LTS framework. Our algorithm generates behavior patterns that guarantee
collision-free and deadlock-free trajectories. In order to generate the behavior pat-
terns, we use the model checker nuXmv [6], which is specialised in synchronous
finite-state systems.

This section is structured as follows. We introduce our verification architecture in
Sect. 3.2. Section 3.3 presents the offline part of our approach, i.e., our modeling and
verification of traffic scenarios and the generation of rule sets. Section 3.4 introduces
the implementation of our rule checker and Sect. 3.5 evaluates the verification and
rule checker. Finally, Sect. 3.6 concludes this section.

3.2 Verification Architecture

Figure 17 shows our verification architecture from [30]. The verification works in
an offline and an online part. The offline part consists of modeling and verification
of traffic scenarios. The verification classifies the traffic scenarios as collision-free
and deadlock-free or provides a counter example in case of possible collisions or
deadlocks. We generalize the counter examples to traffic rules for networked and
autonomous vehicles. The traffic rules are stored in a rule set. The online part is
a rule checker, which uses the map and planned trajectories of the current driving
situation and the rule set generated by the offline part as input. The rule checker
checks if the trajectories comply with the traffic rules of the rule set. If no rule is
violated, the trajectories are considered safe.
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Fig. 17 Verification architecture of [30], consisting of an offline and an online part. Before deploy-
ment, counter examples of safety verification are generalized into rules that guarantee the absence
of collisions and deadlocks. At run-time, a rule checker classifies trajectories of vehicles into safe
and unsafe trajectories, depending if they follow the rules for the scenario

3.3 Rule Set Generation

‘We decompose the traffic scenario model into two parts: the map and vehicles’ trajec-
tories. Through this modular approach, it becomes easier to develop general purpose
encodings for vehicles and maps independently of each other. We call the map the
static model and we call the trajectory model dynamic model. We model both com-
ponents time and spatial discrete. Section 3.3.1 and 3.3.2 summarize our modeling
of [30, 46]. Section 3.3.3 introduces our extension to combined models of connected
LTS. Section 3.3.4 presents our NuXmv encoding and Sect. 3.3.5 introduces the rule
generation.

3.3.1 Roadway Model

The map consists of blocks and transitions. Each block represents a part of the
physical road. Blocks are non-overlapping and identified by unique Identities (IDs).
A discretization takes care of the vehicles’ dynamics and safety distances. Each
vehicle can occupy only one block at each time step. If a vehicle holds a block, the
block is occupied, otherwise the block is free. To model valid transitions between
blocks, each block has a list of successor-tuples.

Definition 1 (Successor-Tuple [30]) Successor-tuples are defined as

tsue = (I Dgye, Cost, Watchlist, I), (D)
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Fig. 18 Example model of a narrowing road, adapted from [30]

where:

e I Dy,. denotes the ID of the successor block,

Cost stores the costs for the transition,

Watchlist is alist of block IDs. A vehicle can only use the transition if all blocks
in its watchlist are free, and

I = (Type, Velocity) € (String x Z)is ascenario-dependent instruction. 7 ype
describes which behavior is expected by the vehicle, e.g., “move forward”, “turn
right”, and “switch to left lane”.

Figure 18 shows an example model of a narrowing scenario. Only physically
possible transitions respective to road boundaries and vehicle dynamics are included.

3.3.2 Trajectory Model

Trajectories consist of a sequence of adjacent blocks. The first block of a trajectory
is the vehicle’s current position. The last block represents the vehicle’s destination.
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Each time step, the vehicles transit to the next block in their trajectories. The same
block may be used multiple times in a trajectory. Trajectories can have different
lengths. After leaving the LTS, the vehicle moves into a final block with the ID n
with no further process. One of the following two statements hold for any consecutive
blocks in each trajectory:

1. The blocks have the same ID, i.e., the vehicle does not move.
2. There is a valid transition between the blocks in the direction of movement.

In traffic scenarios, some vehicles may be important for more than one LTS. We pro-
pose a method to create connected traffic scenarios. A connected traffic scenario com-
bines two traffic scenarios with transitions from one traffic scenario to the other traffic
scenario. Using these transitions, vehicles can travel between both traffic scenarios.
In connected traffic scenarios, different rules may apply in comparison to separate
traffic scenarios. Our approach extends the methods from our previous works done
in [30, 46] by connecting traffic scenarios and generating rules for connected traffic
scenarios. We classify pairs of traffic scenarios into overlapping traffic scenarios and
non-overlapping traffic scenarios. Overlapping Traffic scenarios are scenarios where
both single scenarios have entrance blocks, which have the same ID. In Fig. 19 two
single traffic scenarios are sketched. Both have blocks with the same IDs.

3.3.3 Connected LTS

In order to verify connected LTS, this subsection extends the modeling of Sects. 3.3.1
and 3.3.2. We start with an example of collision-free and deadlock-free single LTS,
while the combination of both LTS is collision-free but not deadlock-free.

Motivating Example

In the following, we give an example of rule sets generated for single traffic scenarios
that do not provide deadlock-freeness in overlapping LTS. The rules were generated
by our method in [30]. In this example, we use two overlapping intersections, both
with 4 entrances. Each single intersection has only one rule. This rule does not allow
vehicles in the center to drive in 4 different directions. In Fig. 20 we can see an
initial configuration. Each center of the model is filled with vehicles and all cars
try to reach the end of the opposite center. Using this configuration, we were able
to show that this rule is not sufficient to avoid deadlocks. As seen in Fig. 21, this
configuration leads to a deadlock in both centers of the intersections. In the upper
part, both vehicles on position c0 and d3 try to move to cl. Since only one vehicle
may occupy block cl, a deadlock is caused. The same holds for position c2 in the
bottom part, which is blocked by vehicles at position c¢3 and u0. These two situations
cause a deadlock, since every vehicle tries to take the entrance to get to the opposite
center and block one another. The entrances are blocked by the vehicles on block
d2 in the upper part and ul in the bottom intersection. Both vehicles cannot make
any progress. This example shows that rules that apply for a single scenario must
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(a) Model 1, where the bottom entrance is overlapping with
model 2

(b) Model 2, where the upper entrance is overlapping with
model 1

Fig. 19 Two single traffic scenarios, here crossroads, with overlapping borders in blue
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Fig. 20 Starting positions of vehicles for deadlock scenario in nuXmv
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Fig. 21 Deadlock situation for a connected traffic scenario
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not be enough to guarantee safety properties also in the connected traffic scenario.
Therefore we generated rule sets for overlapping LTS.

The rest of this subsection introduces our model of connected LTS in order to
guarantee collision-freeness and deadlock-freeness in connected LTS.

Border Blocks

Each entrance consists of multiple blocks. We divide these blocks in three categories:

1. blocks which border to a center block cl, c2, ¢3 or c4, e.g., the blocks 11 and 13
in Fig. 19a,

2. blocks which leave or enter the traffic scenarios, e.g., 12 and in Fig. 19a, and

3. all other blocks that are forming the middle of each lane.

In the following, we will call blocks of category 2 border blocks. Border blocks are
critical states, because taking only single traffic scenarios into consideration when
verifying for safety properties, e.g. collisions, everything that happens outside the
current traffic scenario is not considered. For example, it could be that a vehicle’s
position is currently a border block which is the exit of the traffic scenario. Not
considering the next traffic scenario after the border block could lead to deadlocks
or collisions. Verifying only separate traffic scenarios could lead to false negative
classification.

Transition States

There may be traffic scenarios that are not overlapping. In this case, no border blocks
lead from one traffic scenario into another traffic scenario. We model connection
points between traffic scenarios. Possible connection points are two border blocks,
each belonging to the other traffic scenario. These two border blocks form a connec-
tion pair.

We use lane information to identify connection pairs of multiple traffic scenarios.
In order to be connectable, the traffic scenarios require the same number of lanes.
If two traffic scenarios have the same number of lanes, we use the lane positions to
identify the border blocks of both traffic scenarios that form a connection pair. We
introduce an argument TransitionStates to model connection pairs in nuXmv. The
argument TransitionStates contains the following information:

the number of border blocks contained in the input traffic scenario,
the successor blocks of each border block,

the corresponding lane to which a block belongs,

the number of lanes existing in the input traffic scenario, and

each lane’s position compared to the other ones in the same entrance.

The argument TransitionStates is a list that contains all possible blocks for a con-
nection pair. Each element of the list represents an entrance or exit of the traffic
system.
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Definition 2 (Entrance) An entrance consists of multiple blocks that form a group
of pairing border blocks. In Fig. 19a, the pairs (10, 12), (d0, d1), (r1, r4), (u2, u3)
form four entrances.

Our method checks for opposing border blocks and create connection pairs. Then,
a transition is created between the corresponding border blocks. The transition starts
at the border block which is an exit block of its traffic scenario and is connected to
the corresponding input block from the connection pair.

An example combined model is the model in Fig. 20. The combination of multi-
ple LTS increases the size of the scenarios to be verified. Since large models cause
performance issues during verification, we reduce the combined model, while main-
taining the correctness of verification.

Model Reduction

We reduce the models of combined LTS to keep computational efficiency of the offline
verification. To this end, we reduce the number of blocks in the resulting model. We
include the center blocks of both single LTS models and all blocks connecting the
center blocks. Each center block that lead to an exit state becomes an exit state, while
each center block connected to an entrance becomes an entry block. The gray states
in Fig. 20 are the states included in the reduced model of connected LTS.

3.3.4 NuXmv Encoding

Based on our work in [46], we translate our models into the nuXmyv input language.
NuXmv distinguishes four input types: variables, transitions, dictionaries, and spec-
ifications.

Variables

We model vehicles as variables in nuXmv. The possible states of each variable are
the blocks the corresponding vehicle will occupy in the scenario. In the example
shown in Fig. 18, Vehicle vy has the following path: cO-cl -c2-¢3-14-15.

In nuXmv, the path is represented as follows:

VAR
vy : {c0, cl, c2, c3, 14, 15, n};

The initial state of each vehicle is the first block of its trajectory, e.g., vehicle vy
in Fig. 18 starts at block c0. The corresponding nuXmv code is

INIT
Vo = c0.

Transitions To encode transitions, we use the case statement for every pair of consec-
utive blocks in a vehicle’s trajectory (B;, B;+1). We use the following two statements:
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(Pos = Bi)&(9) : By 2)
(Pos = B)&(—¢) : B;, 3)

where Pos denotes the current block and ¢ is a Boolean expression. ¢ evaluates to
true, if the transition is safe to use, i.e., if all blocks in the watchlist of this transition
are free. Equation (2) allows the vehicle to move to its next block B; .1, if the transition
is safe. Equation (3) forces the vehicle to remain in its current block, if the transition
is not safe. The block c0 in Fig. 18 is given as

c0: [(cl, 1, [cl], (f,1))],

where I Dy, = cl, cost = 1, Watchlist = [cl], and I = (f, 1). The instruction /
states that the vehicle moves forward one block.

Suppose an example vehicle v; that moves from c0 to c1 in the scenario in Fig. 18.
If there is another vehicle in the LTS with ID vy, the nuXmv statements for this
transition are as follows:

((v1) = (c0)) & ((vo) != (cl))

:cl;

((v1) = (c0)) & (!((vo) != (cl)))
1 c0;

The first statement states that if vehicle vy is on block c0 and vehicle vy is not on
block c1, v; moves to cl. The second statement states that if vehicle vy is on block
cl, vehicle v; remains on block c0.

This is done for every pair of consecutive blocks in the vehicle’s trajectory. Once
a vehicle reaches the last block of its trajectory, it moves to block n and stays there
through the following equations:

Pos = By i n “4)
Pos =n:n &)

Equation 4 causes all vehicles to move to block n after their trajectory ended.
Equation 5 states that vehicles that reached block n will remain there.

Dictionaries

We use dictionaries to represent LTS entrances. Each entrance is represented by
two dictionaries, because there are always at least two lanes per entrance, one exit
and one entrance into the traffic scenario. Each dictionary can have multiple border
blocks. The number of elements in this dictionary represents the number of lanes
of the corresponding entrance’s exit or entry and the position of a block in this
dictionary represents its corresponding lane, to which the block belongs. An example
TransitionStates argument for the intersection of Fig. 19a looks like the following:



378 C. Kehl et al.

[

# border blocks of upper entrance
{’w2’: [(Cu0”, 1, ["w0’], Cf7, 1)]}
, {u3%: [Cu3t, 1, [Cu3’], (CsT, 0]}
# border blocks of right entrance
s {4 [Cr27, 1, [Pe27], CfF, )]}
s el (Ol 1, [Pe17], s, 0)])
# border blocks of bottom entrace
, {adr: [(°d3, 1, [’d3’], Cf, 1))}
, {7d0’: [(°dO*, 1, [’dO’], (’s”, O)]}
# border blocks of left entrance
{0100 [, 1, Iy, Cf7, )1y
127 (127, 1, [7127], (s, 0)]1}
].

The first two elements represent the border blocks of the upper entrance, the next
two the border blocks of the right entrance, the next two the border blocks of the bot-
tom entrance, and the last two for the border blocks of the left entrance. Each block
that is an element of an entrance lane stores the information about its successor block.

Specifications

We verify the safety of our traffic system. To this end, we formulate specifications
by invariants and temporal logic. We give more details on the specifications in [30].

We use invariants to check for collision-freeness. A collision occurs, if multiple
vehicles occupy the same block at the same time. The invariants to check collision-
avoidance are

(posy # n) = (pos| # posy), (6)

where pos; is the position of vehicle i. Equation (6) models that two vehicles 1 and
2 do not occupy the same block, unless vehicle 1 finished its trajectory and moved to
the end block n. We check this invariant for each pair of vehicles at each time step.

We use temporal logic to check deadlock-freeness. We use Linear Temporal Logic
(LTL) [43]. In LTL, we model deadlock-freeness as

F(posi=nApos;=nA...), (7)
where F(-) denotes the eventually operator of LTL. Equation (7) models that each
vehicle eventually reaches block #, i.e., finished its trajectory.

3.3.5 Summarize Rules

We alter the static and dynamic models to create different verification scenarios.
NuXmv provides counter examples if a verification scenario is not collision-free and
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Fig. 22 Evaluations of rule sets in an intersection scenario. Different rule sets apply, depending on
the intersection topology

deadlock-free. We generalize counter examples derived from the same group of static
models to generate rules for this group. The rule sets formulated for each scenario
group prevent any collisions or deadlocks found during verification. Depending on
the static and dynamic model, different rule sets have to be applied.

We demonstrate the generalized rule sets for intersection models. In the following,
“inner lanes” refer to the leftmost lane of each direction and “center” refers to the
area of the intersection, where the lanes intersect. In the intersection model, the
rule set depends on the intersection topology and the priority rule, i.e., the right of
way, applied in the trajectories. Figure 22 gives an overview of the rule set selection
process. If the map represents a T-intersection with only one lane in each direction,
it is called a minimal T-intersection. For minimal T-intersections, we need to check
the priority rule for vehicles, denoted as Rule set 1. If the vehicles in the intersection
consistently have priority over vehicles outside, the rules of Rule set 1 are met and
the trajectories are always safe to execute. In all other cases, Rule set 2 is applied. In
Rule set 2, trajectories are considered safe if the center never has vehicles traveling
in four different directions, denoted by the red arrows in Fig. 23.

3.4 Rule Checker

The rule checker takes the static and dynamic model, i.e., the map and trajectory
data, as input. The output of the rule checker is the classification of the trajectories
according to the rule sets generated in Sect. 3.3. The rule checker classifies the
trajectories into safe and unsafe trajectories. The rule checker detects the vehicle’s
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Fig. 23 Minimal T-intersection deadlock example

behavior, e.g., the applied priority rules. Different scenarios have different rule sets.
We form groups of scenarios with similar rule sets. We demonstrate the idea using
the intersection example in Fig. 19a.

One behavior that need to be identified is if the vehicles inside or outside the
intersection have priority at the entrances. In the intersection model shown in Fig. 19a,
the blocks c1 and r2 are a pair of interest, since vehicles on both blocks are able to
move into c3. The rule checker checks for all pairs of interest if the following two
conditions are satisfied at each time-step:

e both blocks in the pair of interest are occupied, and
e the vehicle in the intersection does not leave the intersection.

If both conditions are satisfied, the rule checker checks the next instructions of the
vehicles. If the vehicle in the intersection is the only one instructed to move forward,
then we have a case where vehicles in the intersection have priority. If the vehicle that
tries to enter the intersection is the only one instructed to move forward, then we have
a case where vehicles entering the intersection have priority. If none of the mentioned
possibilities happened, then we cannot decide what has happened and conclude that
there is no consistent priority rule between them. There are three possible cases after
the rule checker iterated over each pair of interest:

e vehicles in the intersection consistently have priority over vehicles outside of the
intersection,

e vehicles that enter the intersection consistently have priority over vehicles in the
intersection, and

e there are no consistent priority rules.

We formulate rules for all three cases.
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3.5 Evaluation

We evaluate the feasibility of our verification process for single LTS in Sect. 3.5.1
and for connected LTS in Sect. 3.5.2. Moreover, we evaluate the computation time
of the offline verification and online rule checker in Sect. 3.5.3.

3.5.1 Feasibility in Single LTS

This section presents evaluation results of the verification process for single LTS.
We evaluate the generation of rule sets and the performance of the rule checker. We
divide combinations of roadways and trajectories into different classes. We evaluate
scenarios of multiple classes.

We define classes of roadways according to their generated rule sets. Within the
same model class, different rules need to be applied depending on the road topology
and vehicles’ trajectories. For example of an intersection model, the rules to apply
depend on the number of entries of the intersection and the trajectories’ priority rules.
As such, a T-intersection has 3 potential classes:

1. The model is a T-intersection with one lane in each direction, vehicles in the inter-
section area always have priority over vehicles that are outside of the intersection.

2. The model is a T-intersection with one lane in each direction, all vehicles give
priority to vehicles on the right.

3. The model is not a T-intersection with one lane in each direction.

We evaluate our rule checker on a four-way intersection. Table 1 presents the
input trajectories for vehicles v, v,, v3, and v4 and compares the expected and actual
rule checker results. Figure 24 visualizes the first example of Table 1. The roadway
is a minimal T-intersection and the vehicles’ trajectories give priority to vehicles in
the intersection. Please note that the lower entrance (the blocks dO and d1) are not
included in the T-intersection model. The rule checker gives the expected results in all
cases. It classifies collision-free and deadlock-free scenarios as safe and unsafe oth-
erwise. Nevertheless, the rule checker may classify collision-free and deadlock-free
scenarios as unsafe. Figure 25 shows such a false positive result. The rule checker
rejects these trajectories since vehicles in the center are traveling in all four directions
on a non-minimal T-intersection. However, the rule checker will not classify unsafe
scenarios as safe.

3.5.2 Feasibility in Overlapping LTS

We extend the rule sets for single LTS to guarantee collision-free and deadlock-free
trajectories also in connected LTS. As an example we present two new rules for the
intersection scenario:
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Table 1 Evaluation scenarios for the intersection model. We show the trajectories of four vehicles
in each scenario, the expected result and the actual result of the rule checker. The trajectories of the
first evaluation are visualized in Fig. 24, represented by the corresponding color

Minimal T-intersection with priority of vehicles in the intersection

Input trajectory Expected Result
vi:c2-c0-dl Safe Safe
v2:10-10-¢c0-cl -rl

v3:d0-cl-c3-c2

v4:

vi:c2-c0-dl Safe Safe
v:c0-cl-rl

v3:cl-c3-c2-11

vg:¢c3-¢c2-12

Any other intersection model

Input trajectory Expected Result
vi:c2-c2-c0-dl Unsafe Unsafe
v2:10-¢c0-cl-rl

v3:d0-cl-c3-¢c2

vg:10-¢c3-¢c2-11

v1:¢c2-¢2-c0-dl Safe Safe
v2:10 - c0-dll

v3:d0-cl-c3-c2

vg:10-¢c3-¢2-11

v1:10-c3-ul Safe Safe
v2:u0-c2-c0-dl

v3:10-¢c0-cl-rl

v4:d0-cl -c3-ul

vi:r0-c3-c2-11 Unsafe Unsafe
v2:u0-c2-c0-dl

v3:10-¢c0-cl -rl

v4:d0-cl-c3-ul

e Vehicles entering the center must be able to exit the center. We refer to this rule as
exit free.

e Vehicles may not leave the center in the same entrance, which was used to enter
the center. We will call this rule entry and exit differ.

All developed models have been checked for correctness. To verify the correct-
ness of the scenario 2-intersection, we generate trajectories. Since the 2-intersection
model is a connection of two single crossroad scenarios, we only generated trajecto-
ries that are valid for single intersection models. Tables 2 and 3 show the test cases for
the newly generated rules exit free and entry and exit differ. For each rule, we show an
expected positive classification and an expected negative classification. The results
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Fig. 24 Visualization of Table 1

Fig. 25 False-positive result



384 C. Kehl et al.

Table 2 Rule entry and exit differ test cases for traffic scenario 2-intersection

Input trajectories Expected | Results
u2 u0 c2 c0 d2 do Safe Safe

11 c0 cl c3 ul u3

d3 cl c3 c2 13 12

r4 r4 r3 c3 ul u3

u0 c2 c0 cl c3 ul Unsafe Unsafe
11 c0 cl c3 ul u3

d3 cl c3 c2 13 12

r4 r4 3 c3 ul u3

Table 3 Rule exit free test cases for connected traffic scenario 2-intersection

Input trajectories Expected | Results
10 11 c0 cl c3 ul u3 n Safe Safe
dl d3 cl c3 c2 12 14

4 2 c3 ul u3 n n

10 11 11 c0 cl c3 ul u3 Unsafe Unsafe
dl d3 cl c3 c2 12 14

2 c3 ul u3 n n n

of the rule checker were as expected. Both rules are also valid in single intersection
scenarios.

3.5.3 Computation Time

As extension to our evaluation in [30], we evaluate the computation time of the
rule generation for connected LTS. We measured the computation times on a laptop
running nuXmv 2.0.0 on Windows 10 using a processor with 2x 3.20GHz and 8 GB
RAM.

Offline Computations

We present the results for the 2-intersection scenario. Each intersection model con-
sists of 4 entries, each consisting of one lane. We execute 100 runs per measure-
ment. Figure 26 shows the results. The execution time increases exponentially for an
increasing number of vehicles. For 6 vehicles, the execution time is less than 15 s.
For more vehicles, the execution time increases to around 1.7 min for 12 vehicles.

Online Performance

Figure 27 shows the execution time of one run of the rule checker. The execution
times are average values of 100 runs to reduce measurement inaccuracies. For up to
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16 vehicles, the execution time is almost constant and below 1.5 ms. For more than
17 vehicles, the execution time increases to around 2.8 ms for 28 vehicles.
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3.6 Conclusion

This verification method is able to verify collision-freeness and deadlock-freeness
of trajectories in one or more LTS. We summarized the space and time discrete
model of [46] and the verification architecture of [30]. Our verification architecture
generalizes counterexamples of the offline verification to generate rule sets. The rule
sets restrict the solution space of valid trajectories so that all trajectories that fulfill
the corresponding rule set are collision-free and deadlock-free. This work considered
the verification of connected LTS. Evaluation results show that this method is real-
time capable even for scenarios with a high number of vehicles. Further research
may include evaluations on more complex LTS with more than one overlap.

4 Modeling Dynamic Systems

4.1 Why Modeling?

Vehicles of all SAE levels are safety critical systems and hence, their development
needs to comply with legal regulations and safety standards. For instance, the func-
tional safety standard ISO26262 highly recommends the usage of formal and semi-
formal notations, hierarchical components of restricted size, the usage of strong type
systems, range and plausibility checks, as well as the avoidance of hidden data-flows.
In this section we are going to discuss the EmbeddedMontiArc (EMA) language
family, a model-driven design approach for dynamic cyber-physical systems such as
cooperative vehicles based on the component-and-connector (C&C) principle [37,
38]. The C&C paradigm views a software system as a composition of hierarchi-
cally organized components communicating with each other over connectors. The
approach can help the development team to enforce the design principles required by
1S026262 by providing a domain-oriented syntax, a strong type system, verification
mechanisms and a code generation toolchain.

4.2 The EMA Data Type System

Type systems are an important error avoidance mechanism of many programming
languages. Strong typing is highly recommended by the ISO26262 for the develop-
ment of automotive software. While most type systems are based on technical types
such as integers, floats, and doubles, we are going to show how more abstract type
systems can support modeling of cyber-physical systems on a more domain-oriented
level. The type system of EMA is based on primitive types, which can be refined or
grouped together, enabling the developer to create new types tailored to the appli-
cation. The primitive types are abstract in the sense that they are not bound to a
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specific realization or standard such as IEEE754 [25]. Instead, EMA types resemble
mathematical sets they aim to represent. EMA supports the following basic types:
N represents the set of positive integers including 0, i.e. N, N1 represents the set of
positive integers not including 0, i.e. N \ {0}, Z represents the set of signed integers
Z, Q represents the set of signed rational numbers Q, C represents the set of Gaus-
sian rationals Q[j] ={z € C:z=a+ jb:a,b € Q} C C, B represents the set of
Booleans (true and false). For the sake of convenience the alias Boolean can
be used interchangeably.

The types N1, N, Z, Q, and C form a directed compatibility relation, where a type
is compatible with another type if the latter can represent all the elements of the
former. For instance, N is compatible with Z, Q, and C, but not with N1, since the
latter does not include zero. A variable of type N can hence be assigned to variables
of types Z, Q, and C, but not to variables of type N1. Note that these types represent
infinite sets of numbers. Since no technical system can represent arbitrarily large
numbers, using primitive EMA types leads to a model that can only be implemented
partially by definition. Obviously, this does not hold for Booleans (B). The decision
how to implement such types is delegated to the compiler and can depend on the
application.

Technical systems are generally bounded, e.g. a vehicle has a maximum velocity,
a minimum turning radius, etc. To model such bounds explicitly, EMA types can be
refined by ranges consisting of a lower and an upper bound. A bounded type is defined
asT (minvValue : maxValue),where T canbe any primitive type except B. The
bounded type covers a subset of the primitive type T bounded by minvalue and
maxValue. minValue and maxValue must be of type T themselves and their
values are included in the bounded type. For instance, the bounded type N(5:7)
represents the set {5, 6, 7}. A type can be defined as half-open using the infinity
operator oo as one of the bounds. For instance, N (5:00) is a type covering all
integers in {n € N|n > 5}.

Bounded types are not completely implementable if the base type is Q or C, as a
technical system cannot handle arbitrarily high resolutions. To obtain a completely
realizable type, a bounded type needs to be refined by a resolution or step size.
This parameter is written between the minimum and maximum value of a bounded
type,i.e. T (minvalue : resolution : maxValue).Therefined type only
contains values of the form minvalue+kxresolution satisfying minvalue
< minValue+kxresolution < maxValue, where k € N. For instance, the
type Q(5:0.5:6.5) represents the set {5.0, 5.5, 6.0, 6.5} Similarly to the lower
and the upper bounds, the step size needs to be of the basic type it is restricting.

Different levels of type refinements can be employed in different phases of a sys-
tems engineering process such as the specification method for requirements, design,
and test (SMArDT) [11, 22] during the development of a cyber-physical system
(CPS).

In complex technical systems, data is often multidimensional. For this reason,
primitive types of EMA can be organized as one-, two- or multidimensional arrays.
The syntax to do so is based on the I4TEX syntax for raising a base to a power. To
specify the dimensionality of an array type, we need to append a circumflex fol-
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lowed by a list of comma-separated integer-valued dimension sizes in curly brackets
to the primitive type’s name: T" {a, b, . ..}. Each argument initializes the size
of the respective array dimension. For instance, Q" {5} represents the set of all
five-dimensional rational vectors Q3, Z" {2, 3} represents the set of all integer-
valued 2 x 3 matrices, and so on. We refer to one-dimensional arrays as vectors,
to two-dimensional arrays as matrices, to three-dimensional arrays as cubes, and to
multidimensional arrays as (n-dimensional) hypercubes. The base type of an array
can also be a bounded type. For instance, the type N(0:255) " {3, w, h}, is often
used to represent images with three channels, a size of wxh, and a color depth of
8 bit. In contrast to dynamic types systems as used by MATLAB or Python, dimen-
sions are set at compile-time and cannot be changed at runtime. Variables of the
aforementioned matrix type Z~ {2, 3} can only be assigned 2 x 3 matrices.

In EMA, a data type can be refined by the SI unit of the physical quantity it
represents. For instance, Q (Om:1dm:1km) is a rational variable representing a
length between 0 m and 1 km with a resolution of 1 dm. If the type has no range,
only the unit is given in brackets. For instance, Q (m) denotes the rangeless rational
number type to be interpreted as meters. Two EMA variables are only compatible if
they represent the same physical quantity. Conversions are carried out automatically
in assignments featuring compatible but different units. This way, the developer does
not need to keep track of the physical quantities of the variables used in a program,
nor does she have to carry out the conversions of units manually. EMA supports all
SI units as well as common prefixes.

4.3 Components, Ports, and Connectors

In EMA components are first-level citizens. A component type is defined using
the keyword component followed by a name which can later be used to create
instances of this component type.! For instance, we declare the component type
Main in L.1 of Fig. 28. Optionally, a component type declaration can include a list
of generic parameters in angle brackets and another list of component parameters
in round brackets. While generic parameters are allowed to change a component’s
interface, component parameters can only be used to parameterize a component’s
implementation. Depending on the use case, a generic parameter can be set to a
component type, a data type, or a concrete value.

The syntax for declaring a generic component or data type in a component header
definition is just the parameter name, cf. parameter T in L. 1. If the generic parameter is
a concrete value, its name needs to be preceded by its data type, cf. generic parameter
n, whichis of type N(2:10) in this example. Component parameters, in contrast to
generic parameters, can only be of a data type. The syntax resembles the definition of

! The component type system is not to be confused with the data type system introduced in Sect.
4.2.
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1 component Main<T, N(0:10) n> (Q paraml, N param2,..) { EMA
2 ports in T A,

3 in T B,

4 out T C;

5

6 instance Add<T, n> adder (0);

7 instance Mult<T, n> multiplier(l);
8

9 connect A -> adder.A;

10 connect B —-> adder.B;

11 connect adder.C -> multiplier.A;
12 connect B -> multiplier.B;

13 connect multiplier.C -> C;

14 |}

Fig. 28 A basic example of an EMA architecture. The component Main contains two subcompo-
nents Add adder and Mult multiplier

function parameters in many languages, where a type is followed by a unique name,
cf. parameters Q paraml and N param?2 inL.1.

The body of a component definition is enclosed in curly brackets and contains
an interface and a structure definition. The interface definition is initiated with the
keyword ports and is followed by a port list. A port definition consists of the port
kind, which can be either in or out (EMA ports are strictly unidirectional), a data
type, and a unique port name, cf. L.2-4 in Fig. 28. A component must have at least one
input and one output port, since a major assumption of EMA is the absolute absence of
side effects. Clean side effect-free models are crucial for testability, maintainability,
and extensibility. An exception are components outputting a constant or a (possibly
parameterizable) constant sequence. Such components obviously do not need an
input port, but can require a component parameter, which alone defines the output
behavior in every execution step.

Subcomponents are created using the keyword instance followed by the com-
ponent type to instantiate and a component instance name, which is unique in the
scope. If the component type to be instantiated has generic and/or component param-
eters, these have to be set by providing appropriate arguments in angle and/or round
brackets, respectively. In L.6-7 of Fig. 28 two components are instantiated with their
generic parameters being set to the type T and the value n. Furthermore, both sub-
components receive a component parameter in round brackets, which is 0 in L.6 and
linL.7.

To interconnect the subcomponents and to connect them to the parent component
in the first place, we need to create connectors. The source of a connector must be
either an output port of a sibling or subcomponent or an input port of the enclosing
component. Similarly, the target of a connector must be either an input port of a
sibling or subcomponent or an output port of the enclosing component. A connector
is created using the connect keyword followed by the source port, the arrow
operator ->, and a target port. Ports of subcomponents can be referenced by using
the subcomponent’s name and the dot access operator. Connector examples are given
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1 component Main<N(2:10) n> { EMA b
2 ports in Q A[n],

3 in Q B[n],

4 out Q C[n];

5 out Q D;

6

7 instance Add2 adder[n];

8 instance Mult2n<2*n> multiplier;

9

10 connect A[l:n] -> adder[l:n].firstSummand;
11 connect B[:] —> adder[:].secondSummand;

12 connect adder[:].sum -> C[:];

13

14 connect A[:] —-> multiplier.factors[l:n];

15 connect B[:] —> multiplier.factors[n+l:2*n];
16 connect multiplier.product -> D;

17 |}

Fig.29 AnEMA architecture example featuring port and component arrays. The component Main
contains n Add2 components, each operating on one of n operand pairs coming from the port arrays
A and B. The Mult2n component computes the product of 2n operands passed through the port
arrays A and B of the Main component to the port array factors of Mult2n

in L.9-13. Connectors define explicit dataflows. At execution time, data is exchanged
only between ports connected by connectors.

Once a component cannot be subdivided into smaller subcomponents, it can be
linked to a concrete behavior as will be discussed later. In standard EMA, the struc-
ture, i.e. the subcomponents as well as the connectors between them, is fixed at
design-time.

Modeling cooperative systems and agent networks often requires the replication of
large numbers of similar components and the interconnection thereof. EMA enables
the designer to create multiple similar components and/or ports by means of arrays.
Based on the array syntax of many languages, an array is created by appending the
array size to the port or component name in brackets. For instance, in Fig. 29 we
define the input ports A and B as well as the output port C as port arrays of length
n. Since parameter n affects the interface of Main by changing the length of the
port arrays A, B, and C, it cannot be defined as a component parameter, but must be
a generic parameter instead.

In this example we demonstrate two interconnection patterns which are commonly
used when dealing with port and component arrays. In the first one, we instantiate
an array of components to deal with an array of incoming streams. Therefore, we
create n adders of the component type Add2 in L.7, each instance to operate on two
scalar inputs. Now, we need to connect the ports of the two arrays A and B of the
parent component to the respective subcomponents, i.e. A[1] and B[1] should be
connected to adder [1] and so on. This can be done in just one line, cf. L.10, by
selecting the elements 1 to n from the port array A and, similarly, the components 1
to n from the adder component array. The connect operator connects each source
element to the respective target element based on the index. Since this connection
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EMA EMA
Main (View1) Main (View2)
Q firstSummand
L QA[1
QAM] asum| Qci] [11 L F——{ ] Q factors[1]
Add2[1] [H——{]

QB[] q secondSummand QAN }—[ ] Qfactors[n]
- : : Do Mult2n<n> [ M
Q firstSummand Q product

C Qs L +——{] Q factors[n+1]

QAIn] Q sum . .
Add2[n] C
QC[n]
C QB[n][ }——[ ] Qfactors[2*n]

QB Q secondSummand

Fig. 30 Graphical views of the component defined in Fig. 29. On the lhs, the elements of two port
arrays are connected to target ports of a component array. On the rhs, a port array is connected to
another port array

pattern is often applied to all elements of an array, EMA offers syntactic sugar
allowing the developer to leave out the indices of the first and last elements as is
done in L.11. Similarly, in L.12 the output of each component in the adder array is
connected to a corresponding port in the target port array C. This structural pattern
is depicted graphically in the view on the left side of Fig. 30.

Furthermore, we can connect a port array to the port array of a target compo-
nent, let this component aggregate the data and output a single result or a constant
number of values. In our example, the port array A is connected element-wise to
the first n elements of the input port array of the multiplier component of type
Mult2n in L.14, while the port array B is connected to the remaining n input ports
of multiplierinL.15. The output of the multiplier component is forwarded
to the output port D of the enclosing component in L.16. This connection pattern is
depicted graphically in the view on the rhs of Fig. 30.

4.4 Execution Semantics

Standard EMA has a synchronous and weakly causal execution semantics, which is
based on the FOCUS theory [3] and inspired by Simulink [40]. In each cycle, every
component is executed exactly once. Once a component has finished its execution,
the computation results are immediately available at its output ports. We assume that
data transmission over connectors is lossless and has no delay. Connectors transmit
data instantly, i.e. when a source port of a connector is updated, the data is replicated
immediately to the target port. A component is only allowed to be executed, once
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EMA EMA

Main1 Main2 . .
execution order id

C 1
QA QA QcC
(A+B)+B CH——>0]
C
QB QB

Fig. 31 This example shows two C&C architectures Mainl and Main2, which are semantically
equivalent in EMA due to its synchronized and weakly causal execution model, but which might
have different interpretations in a language with strongly causal semantics

all of its predecessors, i.e. components connected to its input ports via a connector,
have finished execution. Therefore, the identification of a dataflow-based execution
order is crucial for a correct realization of the model semantics. A fixed execution
order is established at compile-time and no re-scheduling needs to be performed
at runtime. This is similar to Simulink’s sorted execution order list.2 In EMA, the
C&C model is flattened at compile-time before the execution order is computed.
Hence, only atomic components receive an execution order id. In EMA, multiple
component instances can share a single execution order id if the execution order
of these respective component instances can be exchanged without affecting the
computation results. For instance, the adders of the adder component array of Fig.
28 can be executed independently.

At runtime all the components are executed sequentially based on the execu-
tion order list in each cycle. A cycle is finished when all components have been
executed. The next cycle can be started, once the preceding cycle is finished. In
EMA the input until time # completely determines the output until time ¢ rendering
the semantics weakly causal [3], which is convenient for modeling algorithms and
physical processes. As an example consider the two architectures in Fig. 31. Both
systems have the same semantics in EMA and can be described mathematically
using the equation C; = (A + By) By, where k is a sequential index. In contrast,
if the system were strongly causal under the assumption that each subcomponent
required n timesteps to compute and communicate the output, the equations describ-
ing Mainl and Main2 would become Cy = (Ay—, + Bi—n) Br—, for the left and
Cy = (Ag—2q + Bi—2,) By—, for the right model, respectively.

Finding an execution order for linear models, i.e. models without cyclic port
dependencies, is straightforward: each component instance is put on the execution
list after all component instances its input ports depend on. When structural loops
are present in the model, i.e. when there is a path from a subcomponent’s output to
its own input without a delay, the compiler checks if the loop is algebraic. If yes, the
compiler tries to transform the algebraic loop to a loop-free equivalent model.

2 https:/de.mathworks.com/help/simulink/ug/controlling-and- displaying-the-sorted-order.html,
accessed November 25, 2022.
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If an explicit solution cannot be found, i.e. if the loop does not correspond to
a known (solvable) pattern, it can be solved at runtime using an algebraic solver.
Since this must be done in each timestep and there is no guarantee that a solution
exists, a runtime solver would not only affect the runtime performance heavily, but
might also lead to unpredictable behavior, which must be avoided in safety-critical
systems. For this reason we only allow loops, which can be transformed into loop-
free architectures at compile-time. If no such transformation can be found, the model
is considered invalid.

To resolve algebraic loops, knowledge of the component behavior is required.
A means to integrate behavior models into EMA components will be discussed in
Sect. 4.5.

4.5 MontiMath

MontiMath is an imperative language developed for the design and implementation
of math-heavy algorithms and to describe physical processes. It has been inspired
by MATLAB’s matrix-oriented paradigm. However, in contrast to MATLAB, Mon-
tiMath uses the EMA type system, which makes it a statically and strictly typed
language similar to EMA itself. An example showing the basic language constructs
is given in Fig. 32. The declaration of a MontiMath variable requires a type def-
inition, which is expressed by preceding the newly declared variable by an EMA
type,e.g. Q(0 Ohm : 1 nOhm : 1 MOhm)"{2,2} impedance. The syn-
tax to define a matrix constant is the same as in MATLAB, but the literals inside the

MontiMath
1 | N nrows = 2; variables are statically and strongly
2 |Nneols = 3; < pypedusing the EMA type system
3 N (O m: 10 km) x = 1 m;
4 Q(-co m: 0.1lmm : 10km)“{nrows, ncols} A = [-1, x, 1; x, 2*x, 0];
5
6 | for ¢ = lineols < —— jndices are I-based in Z
7 for r = 1l:nrows ;
3 if r == ¢ EMA and MontiMath 2x3 matrix literal
9 A(r,c) = 2;
10 elseif abs(r-c) ==
11 A((r+2)5%r, (c*3)%c) = -1; for loop header defining a counter variable r
12 else \ and letting it run from 1 to nrows
13 A(r, c) = 0; . X L.
14 end if clause with a conditional and an
15 end unconditional alternative
16 | end \

similar to MATLAB, MontiMath uses ~ assigning a value to the entry at r-th
the end keyword to delimit blocks row and c-th column of the matrix A

Fig. 32 This listing shows a simple MontiMath example exhibiting the main language constructs
including variable declarations, matrix literal definitions, loops and conditions
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matrix can be enriched by systéme international d’unités (SI) units if needed. As in
MATLAB, a matrix constant is defined in square brackets. Thereby, columns and
rows are separated by commas and semicolons, respectively. The initialization of the
impedance matrix impedance modeling a two-port network can hence be written
as impedance = [10 Ohm, 5 Ohm; 6 Ohm, 8 Ohm];.

To maintain compatibility to MATLAB, MontiMath indices start with 1 as
opposed to most general purpose programming languages (GPLs), where arrays
are zero-based. Scalars are treated as 1 x 1 matrices, but the square brackets can be
dropped when defining a scalar literal. Other than in MATLAB, statements, except
conditional statements and loops, need to be terminated with a semicolon.

MontiMath supports the typical operators needed in many computations including
addition (+), subtraction (-), multiplication (*), division (-), and power (*). If applied
to matrices, these operators perform the corresponding algebraic matrix operation,
e.g. amatrix multiplication. Division by a matrix, e.g. A/ X, is semantically equivalent
to multiplying the dividend with the inverse of X, i.e. A/X is equivalent to A*X" -1
or A*inv (X).

Furthermore, MontiMath supports the Hadamard product or element-wise multi-
plication (.*), inverse Hadamard product (./), and element-wise power (. ). The trans-
pose operation for real and the Hermitian transpose operation for complex-valued
matrices can be expressed by appending the apostrophe operator (* ) to a matrix name,
e.g. A’ . Furthermore, the entries are conjugated in the complex case. Since matrix
dimensions are statically typed, incompatibilities are detected at compile-time.

MontiMath supports the standard control flow constructs including for loops
and if clauses, enabling us to write arbitrarily complex algorithms. Many tasks in
CPS engineering can be expressed as optimization problems, e.g. model-predictive
controllers. For this reason, we introduce optimization statements in MontiMath.
The syntax provides dedicated keywords for optimization problems to come as close
as possible to the original mathematical formulation enabling the developer to write
down the objective function, to define the optimization variable, as well as a set of
constraints.

A MontiMath program can be embedded into an EMA component by means of
an implementation block as is shown in Fig. 33. This way the MontiMath script is
executed in every execution cycle of the EMA component. It can read the input ports

A Writing to the output port

1 | component NormalizedLaplacian<Nl n> {
2 ports in Q*{n,n} A,

3 out Q*{n,n} Lx

4 Readling the input port

5 implementation Math {

6 0*{n,n} D = diag(A“* ones(n,1)); EMA with embedded MontiMath
7 L = D*-0.5 * A * D*-0.5; behavior specification

8

9

}

Fig. 33 An EMAM model embeds a MontiMath script into an EMA component
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of the EMA component and write the computation results to the output ports. To
let a MontiMath script pass variable values from one execution cycle to another, we
introduce the static keyword. A variable declared with this modifier, e.g. static
Q cumulativeError, is saved in a cycle-independent scope. Its value does not
get lost when an execution cycle is finished and can be reused in the next cycle.
Alternatively, variables can be passed between cycles by feeding the output of a
component back to one of its input ports and putting a delay block in between.

The modular structure of the EMA language family enables an easy composition
with other modeling languages to be used in the implementation block of an EMA
component for the definition of the component behavior. The language used can be
another domain-specific language (DSL) or a GPL such as C++ or Java. For the com-
position to work, the embedded language must have a MontiCore implementation
[23]. A particularly important DSL for component behavior definition is the deep
learning modeling language MontiAnna [27, 35, 36]. Itenables a concise modeling of
deep neural networks as directed acyclic graphs (DAGs) of neuron layers. The Mon-
tiAnna generator produces code for data loading, training, and execution of the neural
network. Furthermore, it controls the machine learning lifecycle of the deep learning
component, e.g. supporting data management [2] and deciding whether a training
phase is needed or can be skipped if a trained model is already available, based on a
machine learning artifact model [1]. MontiAnna has been applied to model deep neu-
ral networks for various domains, including image processing convolutional neural
networks (CNNs) [35], language processing networks [35], reinforcement learning
applications [19], generative adversarial networks (GANS), variational autoencoders
(VAESs), etc. A CNN for the recognition of handwritten digits embedded into an EMA
component is depicted in Fig. 34. The neural network is assembled from predefined
layers and the custom layer conv in L.13-21. While the example is a linear graph
of layers, arbitrary DAGs can be constructed using MontiAnna.

4.6 Cooperative Agents and EmbeddedMontiArc Dynamics

Until now the focus was on static architecture modeling of closed, isolated systems
such as autonomous vehicles using EMA. The elements of a static architecture are
fixed at design time and cannot be altered, removed, or added at runtime. With this
approach we can cover the majority of closed systems such as embedded devices and
control software. However, cooperative driving systems which are highly dynamic
by nature require the ability to restructure or reconfigure parts of their architecture
according to changing circumstances and requirements at runtime. For this reason,
we are going to discuss an extension for EMA introducing dynamics to architectural
elements such as ports, connectors, and components based on [26].

Different forms of dynamic architecture description languages (ADLs) are known
in the literature tackling different concerns of architectural dynamics [5]. In particu-
lar, the choice of appropriate means of architectural runtime reconfiguration depends
on the kind of system under development and the application domain. The concepts
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EMADL

1 component Detector<Z(2:00) classes = 10>{

2 ports in Z(0:255)~{1, 28, 28} data,

3 out Q(0:1)“{classes} softmax;

4

5 implementation CNN

6 {

7 def conv(channels, kernel=1l, stride=1){
8 Convolution (kernel=(kernel, kernel), channels=channels) ->
9 Relu() -—>

10 Pooling(pool_type="max", kernel=(2,2), stride=(stride,stride))
11 }

12

13 data ->

14 conv (kernel=5, channels=20, stride=2) ->
15 conv (kernel=5, channels=50, stride=2) ->
16 FullyConnected (units=500) ->

17 Relu() —>

18 Dropout () -—>

19 FullyConnected (units=classes) ->

20 Softmax () —->

21 softmax;

22 |} }

Fig.34 A CNN for handwritten digit recognition embedded into an EMA component, also referred
to as an EMADL component

discussed in this chapter are intended for the Local Traffic System (LTS) domain
discussed in the previous sections. Our design decisions will hence be based on the
following list of assumptions:

e The agents are instances of compatible types or share a common interface. In the
automotive domain, for instance, agents are equal or similar vehicles or roadside
units (RSUs). The agents are independent processes with proprietary goals. They
are not part of and do not contribute to the functioning of a bigger system (in
contrast to an aircraft architecture designed using a language like Architecture
Analysis & Design Language (AADL), where architectural dynamics is used to
model functional variations of a single but complex system).

e The agents do not know each other by default and there is no communication
between them at the beginning. Furthermore, the total number of agents living in
the system is not known to an agent. Each agent’s knowledge about its peers is
limited to what it perceives through its sensors and communication.

e The number of agents in the system can vary throughout time. Agents can be
spawned without existing agents to be notified explicitly. In the cooperative vehi-
cles domain, new vehicle instances can come into existence by being manufactured
or by entering the area of interest from outside.

e There is a communication channel which can be used by the agents to send and
receive messages to and from other agents, respectively. This channel can be used
for both directed and broadcast communication. However, since we are dealing
with the application layer, we will not care about lower network protocols in this
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work, assuming an end-to-end channel connecting the logical interfaces, e.g. EMA
ports, of two different agents directly.

To be able to model interactions between participants of a dynamically changing
traffic system, the C&C language used needs to support changes in the component
structure and variations of the dataflows at runtime. Such changes can be induced
by specific events, such as the occurrence of a new traffic participant, which the
developer should be able to model with the same language, as well.

The aim of this section is to introduce the main concepts of an EMA language
extension for dynamic reconfiguration, which we are going to refer to as Embedded-
MontiArc Dynamics (EMAD). The extension is conservative [24], meaning that stan-
dard, non-dynamic models can be parsed and generated by EMAD without changes.

4.7 EMAD Execution Semantics

In Sect. 4.4 we have discussed the synchronous execution semantics of EMA. The
system is executed stepwise. In each step all the subcomponents are executed accord-
ing to an execution order determined at compile-time. To enable reconfiguration and
to support dynamically evolving architectures, we extend the execution semantics of
EMA by a reconfiguration phase which takes place in each execution cycle.

In the reconfiguration phase, reconfiguration triggers are checked and, if present,
the corresponding reconfigurations are performed. This possibly activates further
reconfiguration triggers which are then handled as well, until the reconfiguration
queue is empty. We introduce two main concepts for runtime reconfiguration in
EMAD: 1. Data-triggered and 2. Service-based reconfiguration.

4.7.1 Data-Triggered Internal Reconfiguration

The simplest way to trigger and model reconfiguration is the data-triggered approach.
Thereby, a reconfiguration is initiated when a signal fulfills a given condition, e.g.
a port value exceeds a predefined threshold. The reconfiguration is executed and
maintained as long as the condition is satisfied. The approach can be easily motivated
and illustrated by non-linear components used in electronics. For instance, a diode
is conductive only if the applied voltage is higher than the threshold voltage; a
multiplexer passes the data signal chosen by a control signal; when a battery electric
vehicle (BEV) is connected to a charging station, the connection is signaled to the
charging electronics which reacts by enabling the charging process as long as the
connection signal is active.

To enable modeling data-triggered reconfiguration, we extend the body of an
EMA component definition by a list of reconfiguration blocks. The header of such a
reconfiguration block contains a condition formulated as a Boolean expression over
port values and architectural properties, which needs to be fulfilled in order to trigger
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1 component BMux4<T> EMAD j
2 ports in T inSig[4],

3 in B ctrSig[2],

4 out T outSig;

5

6 instance BMux2<T> mux2;

7

8 connect ctrSig[l] -> mux2.ctrSig;

9 connect mux2.outSig —-> outSig;

10 reconfiguration condition

11 '@ ctrsig[2]::value() == true {

12 connect inSig[3] -> mux2.inSig[1l]; Va/ue—fr’/ggered
13 connect inSig[4] -> mux2.inSig[2]; reconﬁqumﬁbn
14 }

15

16 @ ctrsSig[2]::value() == false {

17 connect inSig[l] -> mux2.inSig[1];

18 connect inSig[2] -> mux2.inSig[2];

19 }

20 |}

Fig. 35 A multiplexer component choosing two of its inputs to be passed to the inner multiplexer
dependent on a control signal

the reconfiguration. The body of the reconfiguration block follows for the most part
the same syntax as the body of a standard non-dynamic component and contains a
declarative definition of the architectural changes to be performed as a response to
the triggering event. These changes are rolled back as soon as the reconfiguration
condition in the reconfiguration block header ceases to hold.

To illustrate the syntax and the mechanics behind data-triggered reconfiguration,
we introduce a simple multiplexer example in Fig. 35. The BMux4 component has
four data inputs of a generic type T and two Boolean control inputs. The purpose of
the component is to choose one of the four input signals of the inSig port array
based on the values of the control signals (ctrSig port array) and to forward it
to the output port. The idea is to realize this behavior by altering the connectors
corresponding to the control signal. Therefore, we first choose two of the four data
signals (the first two or the second two ports of the inSig array) based on the value
of inSig[1] and then forward them as well as a further control signal inSig[2]
to a subcomponent of type BMux2, which in turn uses the received control signal
inSig[2] tochoose one of the remaining two data signals. Its choice is then output
through the parent component’s output port.

The static connectors of the component are defined in L.8-9 to connect the first
control signal with the inner multiplexer and its output to the output of the parent
BMux4. There are two reconfiguration definitions given in L.11-14 and L.16-19. In
L.11 and L.16 the @ symbol denotes the beginning of a reconfiguration condition.
The actual reconfiguration code is a block enclosed in curly brackets following the
condition. As can be seen in L.12-13 and in L.17-18, the configuration code is
composed of ordinary connect statements as we know them from the static EMA
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syntax. The connections defined in these two blocks are established and released in
the reconfiguration phase at the beginning of an execution cycle as discussed earlier.
In this example, this is used to choose two of the four incoming inputs to be forwarded
to the child component mux2.

A reconfiguration is executed once the condition becomes true and remains active
as long as the condition remains true, i.e. as long as the value at the port ctrSig[1]
is true in L.11 and as long as it is false for L.16. When the condition of an active
reconfiguration goes back to false, the reconfiguration is rolled back, i.e. all the
architectural elements defined in the reconfiguration block are removed (irrespective
of whether or not another reconfiguration becomes active instead). In our example, the
two reconfiguration conditions are mutually exclusive, but their disjunction is always
true. Consequently, exactly one of the two reconfigurations is active at any given point
in time. In general, arbitrarily many reconfigurations (including zero) can be active
in parallel. However, each combination must result in a valid architecture. That is, an
input port must not be the target of more than one connector. Furthermore, under no
circumstances an input port may be floating. This is verified by context conditions
at compile-time. Consequently, none of the two reconfigurations can be removed
from the component in the multiplexer example: when no dynamic reconfiguration
is active, only the static part of the architecture is present. In this case, the inSig
ports of mux2 would be floating.

Note that in order to access the value of a port in an EMAD reconfiguration, we

use the port function value () accessible for each port of the component using the
: : operator. The syntax highlights that we are not trying to use a model element in
a conventional manner (which would require a dot), but want to perform a runtime
query related to a model element instead. The function is available in reconfiguration
conditions and bodies only. If the port we are referring to belongs to a subcomponent,
we can access it by specifying the port’s name preceded by the (subcomponents’)
instance name, e.g. mux2 .outSig: :value (). Note that a component can only
query the values visible in its scope, i.e. values of its own or of its immediate sub-
components’, but not of its subsubcomponents’ or the parent component’s ports.

A reconfiguration condition can be an arbitrary Boolean expression. Similarly to
other languages the Boolean OR and the Boolean AND operators are denoted by | |
and &&, respectively. For equalities and inequalities we use the following operators:
==, <=, >=,<, >,

Reconfiguration conditions can be formulated in terms of an expression sequence
in order to identify sequence patterns. A value sequence can be notated similarly
to an EMA row vector with the oldest value coming leftmost. To avoid confusions
with vector-valued variables, the tick keyword is used as a separator instead of a
comma. For instance, the condition ctrSig[1l]::value() == [true tick
false tick false] is evaluated to true at execution cycle n if the following
sequence of values was observed: true atn — 2, falseatn — 1, false atn. The
type of each expression in the sequence must be compatible with the corresponding
port type. The sequence notation implies that past values of the underlying port need
to be stored at runtime. In this particular example, in addition to the current value at
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Component name EMAD Reconfiguration condition EMAD
BMux4 < / BMux4

@ ctrsig[1l]::value() == true <— @ ctrsig[1l]::value() == false

ctrSig[1] outsig [}
ctrsig2][ ] [ Jetrsig outSig

Dashed connector only valid if condition true

Fig. 36 The two architectural states of the BMux4 component

the ctrSig[1] port, the component needs to store two of this port’s past values in
order to be able to evaluate the reconfiguration condition in each execution step.

Until now, we have been using a graphical representation of EMA models to
facilitate the understanding of the architecture. Given the fact that there is no single
representation of an EMAD model, we need an appropriate extension of the graph-
ical syntax. Diagrams representing the two reconfigurations of the BMux4 model
are depicted in Fig. 36. Thereby, we introduce two syntactic elements: first, the
reconfiguration condition triggering the reconfiguration is specified in a box under
the component’s name. Second, model elements, which are added in this recon-
figuration, are denoted by dashed figures instead of solid ones. In this example,
only connectors are created dynamically at runtime. Components and ports can be
added in a similar way by the means of dynamic arrays, which will be discussed in
Sect. 4.7.2.

The aim of the example in Figs. 35 and 36 was to introduce the main ideas behind
data-triggered reconfiguration. The exactly same behavior can be achieved with a
mode model with two states [21]. Using a mode finite state machine (FSM) for
a system with a small number of states and state transitions can be favorable as
it facilitates a state-centric model analysis. In cases with many, possibly partially
overlapping reconfiguration conditions and state transitions between all possible
states, however, the data-triggered reconfiguration concept presented in this chapter
can lead to much more concise models, since we don’t need to define all possible states
explicitly and no transitions need to be modeled at all. On the other hand, modes
are more powerful since reconfigurations can depend on the current architectural
state, which is not possible with our concept. We recommend using modes and data-
triggered reconfiguration interchangeably depending on the requirements and the
nature of the modeled system.
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4.7.2 Service-Based External Reconfiguration

To enable the creation of more complex, propagating reconfigurations, we introduce
a second way of triggering architectural changes at runtime, the service-based recon-
figuration. The idea behind it is to trigger reconfigurations by external architectural
change requests and to propagate such requests from component to component.

We are going to present the concepts of service-based reconfiguration by the
example of a cooperative collision prediction component given in Fig. 37. The
CollisionSystemcomponent receives the planned trajectories from other vehi-
cles of an LTS and checks each of these trajectories for a collision with its own
one. Each trajectory is input into the component through a dedicated port. Further-
more, each pairwise collision check is executed by a dedicated subcomponent of
type CollisionCalculator.

Before we proceed with the discussion of the service-based trigger mechanism,
we need to introduce the concept of dynamic component and port arrays. In Sect. 4.3,
static component and port arrays were introduced, allowing us to model an arbitrary
but fixed number of similar components and ports in a single line of code. In the
collision detection example described here we don’t know at design time, how many
traffic participants will be present in the LTS. Furthermore, the number of peers
can change over time. The concept of dynamic arrays enables us to cope with this
modeling challenge by allowing us to specify a range instead of a fixed number of
elements in the array. At runtime the concrete number of elements in the array can
change.

indicates component with
dynamic interface and behavior

——

1 | dynamic component CollisionSystem { . EMAD
2 ports in Trajectory ownTrajectory, dynamic number range

3 keyword v \v

4 dynamic dynamic'in StatusMsg otherStatus [0:32],

5 popfi/l dynamic in TrajectoryMsg otherTrajectory [0:32],

6 out CollisionMsg msgOut;

7

8 instance CollisionCalculator cc[0:32];

9 instance CollisionMessageBuilder cmb;

10

11 connect cmb.msgOut —-> msgOut;

12 i port connection event /\1

13 @ 'otherStatus: :connect () '&& [otherTrajectory: :connect ()‘ {
14 connect ownTrajectory —-> cc[?].ownTraj;

15 connect otherStatus[?] —-> cc[?].otherStatus;

16 connect otherTrajectory[?] —-> cc[?].otherTraj;

17 connect cc[?].collisionOut -> cmb.collisionIn[?];

18 }

19 | /* other modes & connections */ }

Fig.37 Collision system of an autopilot calculating potential collisions with up to 32 other vehicles
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The syntax is based on the range syntax of EMA types: the modeler needs to spec-
ify the minimum and the maximum number of elements inside the square brackets
of an array declaration separated by a colon instead of a single length value. This is
done in L.4 and L.5 of Fig. 37 to define a dynamic port array and in L.8 to define
a dynamic component array. In the case of port arrays it is obligatory to use the
dynamic keyword. If the component interface contains dynamic port arrays, it is
also necessary to mark the component with the dynami c keyword in the header, cf.
L.1 of Fig. 37.

In case the lower bound of the element count is greater than zero, the minimum
number of elements will be created at instantiation of the component. Once the upper
bound of the elements in an array has been reached, events leading to an instantiation
of further elements cannot be handled. The availability of free port and/or component
slots in an array can hence be regarded as a further implicit condition of a reconfigu-
ration. Upper bounds on elements in an array have been introduced with embedded
systems in mind often having very limited resources and strict performance require-
ments. The upper bound can be set to infinity by putting oo, similarly to EMA type
bounds. However, since this can have a negative impact on the performance of an
overloaded system, this is not an advisable modeling pattern and results in a warn-
ing. A system knowing its limits can react to an overly high demand in a controlled
manner.

In our collision system example, the port arrays otherStatus and
otherTrajectory are supposed to receive status and trajectory messages from
other cooperative vehicles in the LTS. The maximum number of connections is lim-
ited to 32. On the other hand, if there are no other vehicles in the network, the port
arrays can be empty.

For each connected vehicle, the CollisionSystem component provides an
individual CollisionCalculator component instance. Accordingly, the num-
ber of these instances varies between O and 32, as well. At system start up, the
minimum number of components and ports is instantiated, i.e. zero.

The question arises how the free slots in the component and port arrays can be
used and released at runtime. We realize this by introducing a reconfiguration service
interface. This interface allows external components or even external software to
request reconfigurations. More precisely, it allows external clients to request a port
from a dynamic array.

The reconfiguration interface is defined not just by declaring a dynamic port
array, but by the reconfiguration conditions using it, cf. L.13 in Fig. 37. To
query reconfiguration requests in a reconfiguration condition, we introduce the
new port property connect, which is basically a Boolean flag indicating whether
a connect request for this port has been issued, bundled with an id to avoid
confusions with other requests sent to the same port. Similarly to the value at
a port, the connect property can be queried using the :: operator, i.e. as
portName: :connect (). A reconfiguration condition can be composed as a
conjunction of arbitrarily many connect atoms, i.e. portNamel : : connect ()
&&, ..., && portNameN: :connect (), where the port names used must be
dynamic port arrays declared in the component’s interface. Disjunctions and nega-
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tions of connect atoms are forbidden by a context condition to prevent inconsisten-
cies (in a disjunction we do not know at design-time which port(s) will be actually
requested and hence, cannot define meaningful reconfigurations using these ports).

The resulting reconfiguration interface can be used by issuing connect request for
all the ports required by the reconfiguration condition simultaneously. In our example
this means that, due to the reconfiguration condition in L.13 of Fig. 37, connections
to the otherStatus and the otherTrajectory port must be requested at
once. Such a request is created in an EMAD model in the reconfiguration body
of a parent component as connect statements targeting the corresponding dynamic
port arrays. This is shown in Fig. 38, where a component holding an instance of
CollisionSystem connects to the aforementioned port arrays otherStatus
and otherTrajectory of the latter in L.4-5 of its own reconfiguration body.

Note that the reconfiguration bodies of Figs. 37 and 38 are chained:
the reconfiguration of the Ilatter triggers the one of the former. If
ReconfigurationCondition in L.3 of Fig. 38 is a data-driven
reconfiguration as discussed in Sect. 4.7.1, the chain starts in Fig. 38. If
ReconfigurationCondition defines a reconfiguration interface similar
to L.13 in Fig. 37, it must be triggered from another reconfiguration body itself.
Hence, arbitrarily long service-based reconfiguration chains can be initiated by a
data-driven reconfiguration.

Note that the reconfiguration request issued by the parent component of the
CollisionSystem component in L.4-5 of Fig. 38 matches the reconfigura-
tion interface defined in L.13 of Fig. 37 exactly. This is verified at compile-
time by a context condition. An invalid usage of the reconfiguration interface of
the CollisionService component is shown in Fig. 39. Here we are trying
to connect to the otherStatus port only. However, this is not supported and
results in a compile-time error as there is no such reconfiguration condition in the
CollisionSystem component.

To be able to deal with dynamic port and component arrays in reconfiguration
descriptions, we need a syntax allowing us to access the newly created elements. To
do so, we introduce the ?-operator. It is used instead of the element number in square
brackets to request and access new elements in a dynamic port or component array,
e.g. myArray [ ?]. Usage of the operator is restricted to reconfiguration bodies.

triggers a reconfiguration condition in the CollisionSystem component by
requesting the two ports otherStatus and other Trajectory simultaneously

instance CollisionSystem cs; EMAD

@ ReconfigurationCondition {
connect somePortl —-> cs.otherStatus[?]; }

connect somePort2 -> cs.otherTrajectory[?];

o Ul W N

Fig. 38 The listing shows a valid usage of the reconfiguration service interface of the Collision
System component of Fig. 37 by a parent component
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invalid port request results in a compile-time error: the CollisionSystem
component requires otherStatus and other Trajectory to be requested together

instance CollisionSystem cs; EMAD

@ ReconfigurationCondition {
connect somePortl -> cs.otherStatus[?];

o W N

}

Fig. 39 The listing leads to a compile-time error since CollisionSystem does not have a reconfig-
uration triggered by requesting only the otherStatus port

An example is given in L.14-17 of the CollisionSystem model in Fig. 37.
In L.14 the ?-operator is used to connect the ownTrajectory port to a new com-
ponent cc [ ?]. Since this is the first access to cc [?] in this reconfiguration body,
it implicitly triggers the creation of a new component instance. In contrast, further
accesses to cc [ ?] in L.15-17 are pure access operations, no implicit instantiation is
involved. If the component type of the component array requires component param-
eters, the parameter list can be passed in parenthesis right after the array brackets
and before the dot operator, e.g. cc[?] (paraml, param2,...).ownTraj.

Since the cc array has a maximum capacity which cannot be exceeded, a further
implicit reconfiguration condition is that the maximum capacity of this array has not
yet been reached. If, however, the array is maxed out, the reconfiguration condition
will evaluate to false and the reconfiguration will thus not be activated.

The reconfiguration service interface is available not only at modeling level
allowing other components to use it, but also in the generated code. The lat-
ter can be used by any client. For instance, C++ code can be generated for the
CollisionSystem component. Then it can be compiled to a library to be
deployed as a building block of the vehicle run-time environment (RTE). The RTE
receives a stream of vehicle to vehicle (V2V) messages and redirects them to the
right ports of the Col1lisionSystem library (each sender is assigned to one port).
If a new LTS participant starts sending, the RTE can request a new port from the
CollisionSystem library by calling a generated request function. The library in
turn checks whether the request is satisfiable. If yes, it provides a new port instance
the RTE can forward messages of the new vehicle to. Otherwise no reconfiguration
is carried out and the library call returns with an error. The client can then withdraw
the request or wait until the dynamic component satisfies the request in a future
reconfiguration cycle.

To facilitate the usage of the generated reconfiguration interface, we gen-
erate request methods allowing the client to require all necessary ports to
activate a reconfiguration with a single function call, e.g. requestOther
StatusAndOtherTrajectory (Port<Tl> *otherStatus, Port<T2>
*otherTrajectory), where Port <T> is a generic class representing an
EMA port of type T at C++ level. This way, it is not possible to create invalid
request, e.g. requiring only an otherStatus, but no otherTrajectory port,
when using the generated code as a library.
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1 dynamic component DynamicSum { EMAD
2 port dynamic in Q summands[0:32],

3 out Q sum;

4

5 implementation Math {

6 Q tmp = 0; —— iterates over all ports in the
7 for i = 1l:size(summands) input port array summands
8 tmp = tmp + summands (i) ;

9 end

10 sum = tmp;

11111}

Fig. 40 Adder with O to 32 inputs

Figure 40 shows an example combining a dynamic interface with a MontiMath
implementation. The purpose of the component is to compute a sum of all inputs
and to output the result. This is a typical data aggregation example working on a
varying number of inputs. The dynamic input port array summands can contain 0
to 32 elements, i.e. at instantiation the component has no inputs and outputs zero
due to the initial assignment tmp = 0 in L.6. The loop in L.7-9 iterates over all
ports in the summands array and adds each port’s value to the overall sum, which
is accumulated in the tmp variable. In this example, we treat the dynamic port array
in a stateless anonymous way. We iterate over the port array and are only interested
in the value present at each available port without caring about its history. This is the
natural way to deal with dynamic port arrays in MontiMath. Tracking states related to
dynamic ports using MontiMath is possible but should be avoided. Instead, to track
a concrete dynamic port’s history, we need to replicate a dynamic subcomponent for
each dynamic port instance, as was done in Fig. 37. This way, each communication
partner requiring a port in a dynamic port array is assigned a dedicated processing
subcomponent maintaining the corresponding state. Each of these dedicated pro-
cessing subcomponents only sees a single input port of the dynamic port array it
is assigned to instead of the whole port array. This pattern enforces the separation
of concerns and high cohesion principle as the processing related to each commu-
nication partner is clearly encapsulated and limited to the actual logic (no explicit
iterating over the port array is needed in the behavior implementation).

Based on the reconfiguration mechanism described in this section, we can model
whole reconfiguration chains to realize deep or flat reconfigurations. A deep recon-
figuration means that reconfiguration of a parent component triggers reconfigurations
in child components. A connect to a subcomponent’s port activates this port’s con-
nect flag which can in turn be used to trigger a reconfiguration in the subcomponent.
In the same way, the subcomponent can trigger reconfigurations in its subcompo-
nents and so on. When a parent component instantiates a static subcomponent in an
EMAD model, it can connect its output ports immediately, e.g. as is done in L.11
of Fig. 37. However, the subcomponent might be dynamic and new output ports
might be added throughout the subcomponent’s reconfiguration procedures. In this
case, the parent component can react to newly created ports of the subcomponent by
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observing the dynamic ports’ connect flags in the same way as it would observe
connect request to its own input ports. This enables us to create reconfiguration chains
propagating downwards into the hierarchy as well as those coming from the bottom
and propagating upwards.

A reconfiguration chain is always performed in one single reconfiguration phase as
an atomic transaction, i.e. if the chain breaks at some point, the whole reconfiguration
is considered infeasible. If a failure occurs after some reconfiguration steps of the
chain have already been carried out, these steps will be rolled back.

As in data-triggered reconfiguration, a reconfiguration remains active as long as
the respective condition is fulfilled. Whenever a new port request is issued, the port
is created and a connector connected to it, the port: :connect () property is
activated for this port. This flag and hence, the configuration remain active until the
requesting client removes its connector to the dynamic port. If the client created the
connector as part of an EMAD reconfiguration, it would remove it, when the condition
of this original reconfiguration ceased to hold. If the client is an external software, it
can use the reconfiguration service interface to roll back a reconfiguration available in
the generated code. Such a rollback would remove all architectural elements created
in the reconfiguration and trigger the rollback of reconfigurations of subcomponents.
This way, a reconfiguration chain is rolled back completely. The rollback interface
is not usable explicitly in an EMAD model to prevent arbitrary removals of ports
leading to inconsistencies in an architecture.

The service-based reconfiguration procedure of EMAD models boils down to the
following steps:

1. Request: an external component sends a set of connect requests.

2. Reservation: the receiving component checks if the requested ports are available,
i.e. if the corresponding dynamic port arrays do not violate their respective upper
limit constraint. If yes, the component returns references for the new ports, i.e. the
newly allocated array indices, to the requester so that explicit access is possible in
the future. Otherwise, the requester is informed that its request has been rejected.

3. Reconfiguration: in the reconfiguration phase of the component, the reconfigu-
ration bodies of all valid reconfiguration requests, i.e. those fulfilling a reconfig-
uration condition, are realized (L.14-17 in the CollisionSystem example).
Consequently, the component reacts to the external reconfiguration request by
internal self-modifications.

4. Follow-up requests: possibly, the reconfiguration instructions of the previous step
contain the creation of new ports and/or subcomponents, as well. In this case, the
component becomes a requester itself initiating a follow-up reconfiguration in its
subcomponents or external components.

In our target domain of interconnected vehicles we mostly need the combination
of both data-driven and service-based reconfiguration, which, when used together,
can result in a powerful symbiosis. Reconfigurations which emerge as reactions to
environmental changes measured by sensors or to incoming messages can be mod-
eled using the following pattern: a data-driven event stands at the beginning of an
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Fig. 41 A reconfiguration chain involving input and output ports of the P1atoonManager com-
ponent. An arriving platoon message causes the creation of new input ports in the diagram on the
left. Follow-up reconfigurations inside the PlatoonManager result in a new output port and a
new outgoing connector as depicted in the diagram on the right

event chain. The reconfiguration caused by this event requests new components and
ports triggering service-based reconfigurations, which in turn trigger further service-
based reconfigurations. As soon as the original trigger vanishes, the reconfiguration
chain is rolled back completely and the architecture returns to its initial state. A data-
driven source event can be based on a sensor measurement (including the vehicle’s
antenna receiving messages from other cooperating traffic participants). A particular
measurement value or the reception of a specific message would trigger a reconfigu-
ration of the controller architecture, the internal reconfigurations of which are mostly
service-based.

An important aspect of EMAD is that there is no explicit way to remove archi-
tectural elements. Instead, elements are removed implicitly, whenever the triggering
reconfiguration condition switches back to false. This guarantees that an architecture
can always be put back into its original state.

A further important property is that all possible reconfigurations are fixed by the
design time model. Component and port replication is limited by an upper dynamic
array size. Consequently, there is only a finite number of possible architectural states
at runtime. This is an important design decision preventing a system to reach unex-
pected states and behaviors and facilitating verification.

Often reconfigurations trigger each other resulting in reconfiguration chains. We
can visualize such chains using reconfiguration views, each view only showing the
part of the model which is being changed in the current reconfiguration step. One
such reconfiguration chain is depicted using views in Fig. 41. In the first reconfigura-
tion view, depicted on the left, the CoOpAutopilot component, a controller of a
cooperative vehicle, instantiates a platoon manager when a platoon port is requested
and the velocity is greater than 0. In a second reconfiguration step, an inner compo-
nent of the platoon manager requests a new output port and the CoOpAutopilot
component reacts by creating a new connector. The ports triggering the reconfigu-
rations are emphasized with an exclamation mark. Additionally, the data condition
(v>0) is set next to the corresponding v port. Note that the PlatoonManager
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component is de